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      INTRODUCTION 

   The development of C++ started in 1982 by Bjarne Stroustrup, a Danish computer scientist, as the 
successor of C with Classes. In 1985, the first edition of The C++ Programming Language  book was 
released. The first standardized version of C++ was released in 1998, called C++98. In 2003, C++03 
came out and contained a few small updates. After that, it was silent for a while, but traction slowly
started building up, resulting in a major update of the language in 2011, called C++11. From then
on, the C++ Standard Committee has been on a three-year cycle to release updated versions, giving 
us C++14, C++17, and now C++20. All in all, with the release of C++20 in 2020, C++ is almost 40
years old and still going strong. In most rankings of programming languages in 2020, C++ is in the 
top four. It is being used on an extremely wide range of hardware, going from small devices with
embedded microprocessors all the way up to multirack supercomputers. Besides wide hardware
support, C++ can be used to tackle almost any programming job, be it games on mobile platforms, 
performance-critical artificial intelligence (AI) and machine learning (ML) software, real-time 3-D
graphics engines, low-level hardware drivers, entire operating systems, and so on. The performance of 
C++ programs is hard to match with any other programming language, and as such, it is the de facto
language for writing fast, powerful, and enterprise-class object-oriented programs. As popular as
C++ has become, the language is surprisingly difficult to grasp in full. There are simple, but powerful,
techniques that professional C++ programmers use that don ’ t show up in traditional texts, and there 
are useful parts of C++ that remain a mystery even to experienced C++ programmers. 

 Too often, programming books focus on the syntax of the language instead of its real-world use. The 
typical C++ text introduces a major part of the language in each chapter, explaining the syntax and 
providing an example. Professional C++  does not follow this pattern. Instead of giving you just the 
nuts and bolts of the language with little practical context, this book will teach you how to use C++
in the real world. It will show you the little-known features that will make your life easier, as well as
the programming techniques that separate novices from professional programmers.  

  WHO THIS BOOK IS FOR 

 Even if you have used the language for years, you might still be unfamiliar with the more advanced 
features of C++, or you might not be using the full capabilities of the language. Perhaps you write
competent C++ code, but would like to learn more about design and good programming style in C++. 
Or maybe you ’ re relatively new to C++ but want to learn the “right” way to program from the start.
This book will meet those needs and bring your C++ skills to the professional level. 

 Because this book focuses on advancing from basic or intermediate knowledge of C++ to becoming 
a professional C++ programmer, it assumes that you have some knowledge about programming. 
Chapter 1, “A Crash Course in C++ and the Standard Library,” covers the basics of C++ as a refresher,
but it is not a substitute for actual training in programming. If you are just starting with C++ but you
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have significant experience in another programming language such as C, Java, or C#, you should be
able to pick up most of what you need from Chapter 1. 

 In any case, you should have a solid foundation in programming fundamentals. You should know 
about loops, functions, and variables. You should know how to structure a program, and you should 
be familiar with fundamental techniques such as recursion. You should have some knowledge of com-
mon data structures such as queues, and useful algorithms such as sorting and searching. You don ’ t
need to know about object-oriented programming just yet—that is covered in Chapter 5, “Designing 
with Objects.”

 You will also need to be familiar with the compiler you will be using to compile your code. Two com-
pilers, Microsoft Visual C++ and GCC, are introduced later in this introduction. For other compilers, 
refer to the documentation that came with your compiler.

WHAT THIS BOOK COVERS 

Professional C++  uses an approach to C++ programming that will both increase the quality of your
code and improve your programming efficiency. You will find discussions on new C++20 features 
throughout this fifth edition. These features are not just isolated to a few chapters or sections; instead,
examples have been updated to use new features when appropriate. 

Professional C++  teaches you more than just the syntax and language features of C++. It also
emphasizes programming methodologies, reusable design patterns, and good programming style. The 
Professional C++  methodology incorporates the entire software development process, from designing 
and writing code to debugging and working in groups. This approach will enable you to master the 
C++ language and its idiosyncrasies, as well as take advantage of its powerful capabilities for large-
scale software development. 

 Imagine users who have learned all of the syntax of C++ without seeing a single example of its use. 
They know just enough to be dangerous! Without examples, they might assume that all code should 
go in the main()  function of the program or that all variables should be global—practices that are 
generally not considered hallmarks of good programming. 

 Professional C++ programmers understand the correct way to use the language, in addition to the
syntax. They recognize the importance of good design, the theories of object-oriented programming, 
and the best ways to use existing libraries. They have also developed an arsenal of useful code and 
reusable ideas. 

 By reading and understanding this book, you will become a professional C++ programmer. You will
expand your knowledge of C++ to cover lesser known and often misunderstood language features. 
You will gain an appreciation for object-oriented design and acquire top-notch debugging skills. 
Perhaps most important, you will finish this book armed with a wealth of reusable ideas that you can
actually apply to your daily work. 

 There are many good reasons to make the effort to be a professional C++ programmer as opposed 
to a programmer who knows C++. Understanding the true workings of the language will improve
the quality of your code. Learning about different programming methodologies and processes will
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help you to work better with your team. Discovering reusable libraries and common design patterns
will improve your daily efficiency and help you stop reinventing the wheel. All of these lessons will 
make you a better programmer and a more valuable employee. While this book can ’ t guarantee you a 
promotion, it certainly won ’ t hurt.  

  HOW THIS BOOK IS STRUCTURED 

 This book is made up of five parts. 

 Part I, “Introduction to Professional C++,” begins with a crash course in C++ basics to ensure a foun-
dation of C++ knowledge. Following the crash course, Part I goes deeper into working with strings, 
because strings are used extensively in most examples throughout the book. The last chapter of Part I 
explores how to write readable  C++ code.

 Part II, “Professional C++ Software Design,” discusses C++ design methodologies. You will read about 
the importance of design, the object-oriented methodology, and the importance of code reuse. 

 Part III, “C++ Coding the Professional Way,” provides a technical tour of C++ from the professional
point of view. You will read about the best ways to manage memory in C++, how to create reusable 
classes, and how to leverage important language features such as inheritance. You will also learn
techniques for input and output, error handling, string localization, how to work with regular expres-
sions, and how to structure your code in reusable components called modules. You will read about
how to implement operator overloading, how to write templates, how to put restrictions on template
parameters using concepts, and how to unlock the power of lambda expressions and function objects. 
This part also explains the C++ Standard Library, including containers, iterators, ranges, and algo-
rithms. You will also read about some additional libraries that are available in the standard, such as
the libraries to work with time, dates, time zones, random numbers, and the filesystem. 

 Part IV, “Mastering Advanced Features of C++,” demonstrates how you can get the most out of 
C++. This part of the book exposes the mysteries of C++ and describes how to use some of its more 
advanced features. You will read about how to customize and extend the C++ Standard Library to
your needs, advanced details on template programming, including template metaprogramming, and 
how to use multithreading to take advantage of multiprocessor and multicore systems. 

 Part V, “C++ Software Engineering,” focuses on writing enterprise-quality software. You ’ ll read about 
the engineering practices being used by programming organizations today; how to write efficient C++
code; software testing concepts, such as unit testing and regression testing; techniques used to debug
C++ programs; how to incorporate design techniques, frameworks, and conceptual object-oriented
design patterns into your own code; and solutions for cross-language and cross-platform code. 

 The book concludes with a useful chapter-by-chapter guide to succeeding in a C++ technical inter-
view, an annotated bibliography, a summary of the C++ header files available in the standard, and a 
brief introduction to the Unified Modeling Language (UML). 

 This book is not a reference of every single class, method, and function available in C++. The book
C++17 Standard Library Quick Reference  by Peter Van Weert and Marc Gregoire (Apress, 2019.
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ISBN: 978-1-4842-4923-9) is a condensed reference to all essential data structures, algorithms, and 
functions provided by the C++ Standard Library up until the C++17 standard. Appendix B lists a
couple more references. Two excellent online references are:

➤ cppreference.com : You can use this reference online or download an offl ine version for use
when you are not connected to the Internet. 

➤ cplusplus.com/reference/

 When I refer to a “Standard Library Reference” in this book, I am referring to one of these detailed 
C++ references. 

 The following are additional excellent online resources:

➤ github.com/isocpp/CppCoreGuidelines : The C++ Core Guidelines  are a collaborative
effort led by Bjarne Stroustrup, inventor of the C++ language itself. They are the result of 
many person-years of discussion and design across a number of organizations. The aim of 
the guidelines is to help people to use modern C++ effectively. The guidelines are focused on 
relatively higher-level issues, such as interfaces, resource management, memory management, 
and concurrency. 

➤ github.com/Microsoft/GSL : This is an implementation by Microsoft of the  Guidelines
Support Library  (GSL) containing functions and types that are suggested for use by the C++
Core Guidelines. It ’ s a header-only library.

➤ isocpp.org/faq : This is a large collection of frequently asked C++ questions.

➤ stackoverflow.com : Search for answers to common programming questions, or ask your
own questions.    

  CONVENTIONS 

 To help you get the most from the text and keep track of what ’ s happening, a number of conventions 
are used throughout this book.

 WARNING     Boxes like this one hold important, not-to-be-forgotten information
that is directly relevant to the surrounding text. 

 NOTE    Tips, hints, tricks, and asides to the current discussion are placed in boxes 
like this one. 
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 As for styles in the text:

  Important words are italic  when they are introduced. 

 Keyboard strokes are shown like this: Ctrl+A. 

 Filenames and code within the text are shown like so: monkey.cpp . 

 URLs are shown like this:  wrox.com .   

 Code is presented in three different ways:

  // Comments in code are shown like this.  
In code examples, new and important code is highlighted like this.
  Code that's less important in the present context or that has been shown before is
formatted like this.    

  Paragraphs or sections that are specific to the C++20 standard have a little C++20 icon on the left,
just as this paragraph does. C++11, C++14, and C++17 features are not marked with any icon.  

  WHAT YOU NEED TO USE THIS BOOK 

 All you need to use this book is a computer with a C++ compiler. This book focuses only on parts of 
C++ that have been standardized, and not on vendor-specific compiler extensions. 

  Any C++ Compiler 
 You can use whichever C++ compiler you like. If you don ’ t have a C++ compiler yet, you can down-
load one for free. There are a lot of choices. For example, for Windows, you can download Microsoft 
Visual Studio Community Edition, which is free and includes Visual C++. For Linux, you can use
GCC or Clang, which are also free. 

 The following two sections briefly explain how to use Visual C++ and GCC. Refer to the documenta-
tion that came with your compiler for more details.            

C++20

   COMPILERS AND C++20 FEATURE SUPPORT  

  This book discusses new features introduced with the C++20 standard. At the time 
of this writing, no compilers were fully C++20 compliant yet. Some new features
were only supported by some compilers and not others, while other features were
not yet supported by any compiler. Compiler vendors are hard at work to catch up 
with all new features, and I ’ m sure it won ’ t take long before there will be fully
C++20-compliant compilers available. You can keep track of which compiler 
supports which features at en.cppreference.com/w/cpp/compiler_support .
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  Example: Microsoft Visual C++ 2019
 First, you need to create a project. Start Visual C++ 2019, and on the welcome screen, click the Cre-
ate A New Project button. If the welcome screen is not shown, select File ➪ New ➪ Project. In the
Create A New Project dialog, search for the Console App project template with tags C++, Windows, 
and Console, and click Next. Specify a name for the project and a location where to save it, and 
click Create. 

 Once your new project is loaded, you can see a list of project files in the Solution Explorer. If this 
docking window is not visible, select View ➪ Solution Explorer. A newly created project will contain 
a file called <projectname>.cpp. You can start writing your C++ code in that .cpp  file, or if you 
want to compile source code files from the downloadable source archive for this book, select the
<projectname>.cpp  file in the Solution Explorer and delete it. You can add new files or existing files
to a project by right-clicking the project name in the Solution Explorer and then selecting Add ➪ New 
Item or Add ➪ Existing Item. 

 At the time of this writing, Visual C++ 2019 did not yet automatically enable C++20 features. To 
enable C++20 features, in the Solution Explorer window, right-click your project and click Properties. 
In the Properties window, go to Configuration Properties ➪ C/C++ ➪ Language, and set the C++ Lan-
guage Standard option to ISO C++20 Standard or Preview - Features from the Latest C++ Working
Draft, whichever is available in your version of Visual C++. These options are accessible only if your
project contains at least one .cpp  file. 

 Finally, select Build ➪ Build Solution to compile your code. When it compiles without errors, you can 
run it with Debug ➪ Start Debugging. 

  Module Support
 At the time of this writing, Visual C++ 2019 did not yet have full support for modules. Authoring and
consuming your own modules usually works just fine, but importing Standard Library headers such
as the following did not yet work out of the box: 

  import <iostream>;     

   COMPILERS AND C++20 MODULE SUPPORT 

  At the time of this writing, there was no compiler available yet that fully supported
C++20 modules. There was experimental support in some of the compilers, but it
was still incomplete. This book uses modules everywhere. We did our best to make
sure all sample code would compile once compilers fully support modules, but since 
we were not able to compile and test all examples, some errors might have crept in. 
When you use a compiler with support for modules and you encounter problems
with any of the code samples, double-check the list of errata for the book at www
.wiley.com/go/proc++5e  to see if it ’ s a known issue. If your compiler does not yet 
support modules, you can convert modularized code to non-modularized code, as
explained briefly in Chapter 11, “Odds and Ends.”  

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e


INTRODUCTION

liii

 To make such import declarations work, for the time being you need to add a separate header file 
to your project, for example called HeaderUnits.h , which contains an import declaration for every
Standard Library header you want to import. Here ’ s an example:  

  // HeaderUnits.h  
  #pragma once
  import <iostream>;
  import <vector>;  
  import <optional>;
  import <utility>;  
  // ...     

 Next, right-click the HeaderUnits.h  file in the Solution Explorer and click Properties. In Configura-
tion Properties ➪ General, set Item Type to C/C++ Compiler and click Apply. Next, in Configuration
Properties ➪ C/C++ ➪ Advanced, set Compile As to Compile as C++ Header Unit (/exportHeader)
and click OK. 

 When you now recompile your project, all import declarations that have a corresponding import 
declaration in your HeaderUnits.h  file should compile fine. 

 If you are using module implementation partitions (see Chapter 11), also known as internal parti-
tions, then right-click all files containing such implementation partitions, click Properties, go to
Configuration Properties ➪ C/C++ ➪ Advanced, and set the Compile As option to Compile as C++ 
Module Internal Partition (/internalPartition) and click OK.   

  Example: GCC
 Create your source code files with any text editor you prefer and save them to a directory. To compile 
your code, open a terminal and run the following command, specifying all your .cpp  files that you
want to compile: 

  g++ -std=c++2a -o <executable_name> <source1.cpp> [source2.cpp ...]     

 The  -std=c++2a  option is required to tell GCC to enable C++20 support. This option will change to 
-std=C++20  once GCC is fully C++20 compliant. 

  Module Support
 At the time of this writing, GCC only had experimental support for modules through a special ver-
sion of GCC (branch devel/c++-modules). When you are using such a version of GCC, module sup-
port is enabled with the -fmodules-ts  option, which might change to -fmodules  in the future. 

 Unfortunately, import declarations of Standard Library headers such as the following were not yet 
properly supported: 

  import <iostream>;

 If that ’ s the case, simply replace such import declarations with corresponding  #include  directives:  

  #include <iostream>
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 For example, the AirlineTicket  example from Chapter 1 uses modules. After having replaced the 
imports for Standard Library headers with #include  directives, you can compile the  AirlineTicket 
example by changing to the directory containing the code and running the following command: 

  g++ -std=c++2a -fmodules-ts -o AirlineTicket AirlineTicket.cppm AirlineTicket.cpp
AirlineTicketTest.cpp    

 When it compiles without errors, you can run it as follows:  

  ./AirlineTicket       

  std::format Support 
 Many code samples in this book use std::format() , introduced in Chapter 1. At the time of this
writing, there was no compiler yet that had support for std::format() . However, as long as your
compiler doesn ’ t support  std::format()  yet, you can use the freely available {fmt} library as a 
drop-in replacement:

1.   Download the latest version of the {fmt} library from  https://fmt.dev/  and extract the 
code on your machine. 

2.  Copy the include/fmt  and  src  directories to  fmt  and  src  subdirectories in your project
directory, and then add fmt/core.h, fmt/format.h, fmt/format-inl.h, and src/format

.cc to your project. 

3.  Add a file called format  (no extension) to the root directory of your project and add the
following code to it:   

  #pragma once
  #define FMT_HEADER_ONLY
  #include "fmt/format.h"
  namespace std  
  {  
      using fmt::format;
      using fmt::format_error;  
      using fmt::formatter;  
  }     

4.    Finally, add your project root directory (the directory containing the  format  file) as an addi-
tional include directory for your project. For example, in Visual C++, right click your project
in the Solution Explorer, click Properties, go to Configuration Properties ➪ C/C++ ➪ Gen-
eral, and add $(ProjectDir); to the front of the Additional Include Directories option.  

 NOTE     Don ’ t forget to undo these steps once your compiler supports the standard 
std::format() . 
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  READER SUPPORT FOR THIS BOOK 

 The following sections describe different options to get support for this book. 

  Companion Download Files
 As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. However, I suggest you type in all the 
code manually because it greatly benefits the learning process and your memory. All of the source 
code used in this book is available for download at www.wiley.com/go/proc++5e .

 NOTE     Because many books have similar titles, you may fi nd it easiest to search by
ISBN; for this book, the ISBN is 978-1-119-69540-0. 

    

 Once you ’ ve downloaded the code, just decompress it with your favorite decompression tool.  

  How to Contact the Publisher  
 If you believe you ’ ve found a mistake in this book, please bring it to our attention. At John Wiley & 
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur. 

 To submit your possible errata, please e-mail it to our Customer Service Team at wileysupport@
wiley.com  with “Possible Book Errata Submission” as a subject line.  

  How to Contact the Author 
 If you have any questions while reading this book, the author can easily be reached at 
marc.gregoire@nuonsoft.com  and will try to get back to you in a timely manner.    
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1
A Crash Course in C++ 
and the Standard Library

WHAT’S IN THIS CHAPTER?

➤➤ A brief overview of the most important parts and syntax of the 
C++ language and the Standard Library

➤➤ How to write a basic class

➤➤ How scope resolution works

➤➤ What uniform initialization is

➤➤ The use of const

➤➤ What pointers, references, exceptions, and type aliases are

➤➤ Basics of type inference

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s 
code download on this book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

The goal of this chapter is to cover briefly the most important parts of C++ so that you have a 
foundation of knowledge before embarking on the rest of this book. This chapter is not a 
comprehensive lesson in the C++ programming language or the Standard Library. Certain basic 
points, such as what a program is and what recursion is, are not covered. Esoteric points, such 
as the definition of a union, or the volatile keyword, are also omitted. Certain parts of the C 
language that are less relevant in C++ are also left out, as are parts of C++ that get in-depth 
coverage in later chapters.

http://www.wiley.com/go/proc++5e


4 ❘ CHAPTER 1  A CrAsh Course in C++ And the stAndArd LibrAry

This chapter aims to cover the parts of C++ that programmers encounter every day. For example, if 
you’re fairly new to C++ and don’t understand what a reference variable is, you’ll learn about that 
kind of variable here. You’ll also learn the basics of how to use the functionality available in the 
Standard Library, such as vector containers, optional values, string objects, and more. These 
parts of the Standard Library are briefly introduced in Chapter 1 so that these modern constructs can 
be used throughout examples in this book from the beginning.

If you already have significant experience with C++, skim this chapter to make sure that there aren’t 
any fundamental parts of the language on which you need to brush up. If you’re new to C++, read 
this chapter carefully and make sure you understand the examples. If you need additional introduc-
tory information, consult the titles listed in Appendix B.

C++ CRASH COURSE

The C++ language is often viewed as a “better C” or a “superset of C.” It was mainly designed to be 
an object-oriented C, commonly called as “C with classes.” Later on, many of the annoyances and 
rough edges of the C language were addressed as well. Because C++ is based on C, some of the syntax 
you’ll see in this section will look familiar to you if you are an experienced C programmer. The two 
languages certainly have their differences, though. As evidence, The C++ Programming Language 
by C++ creator Bjarne Stroustrup (fourth edition; Addison-Wesley Professional, 2013) weighs in at 
1,368 pages, while Kernighan and Ritchie’s The C Programming Language (second edition; Prentice 
Hall, 1988) is a scant 274 pages. So, if you’re a C programmer, be on the lookout for new or unfamil-
iar syntax!

The Obligatory “Hello, World” Program
In all its glory, the following code is the simplest C++ program you’re likely to encounter:

// helloworld.cpp
import <iostream>;
 
int main()
{
    std::cout << "Hello, World!" << std::endl;
    return 0;
}

This code, as you might expect, prints the message “Hello, World!” on the screen. It is a simple pro-
gram and unlikely to win any awards, but it does exhibit the following important concepts about the 
format of a C++ program:

➤➤ Comments

➤➤ Importing modules

➤➤ The main() function

➤➤ I/O streams
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These concepts are briefly explained in the following sections (along with header files as an alterna-
tive for modules, in the event that your compiler does not support C++20 modules yet).

Comments
The first line of the program is a comment, a message that exists for the programmer only and is 
ignored by the compiler. In C++, there are two ways to delineate a comment. In the preceding and fol-
lowing examples, two slashes indicate that whatever follows on that line is a comment:

// helloworld.cpp

The same behavior (this is to say, none) would be achieved by using a multiline comment. Multiline 
comments start with /* and end with */. The following code shows a multiline comment in action 
(or, more appropriately, inaction):

/* This is a multiline comment.
   The compiler will ignore it.
 */

Comments are covered in detail in Chapter 3, “Coding with Style.” 

Importing Modules
One of the bigger new features of C++20 is support for modules, replacing the old mechanism of 
 so-called header files. If you want to use functionality from a module, you need to import that mod-
ule. This is done with an import declaration. The first line of the “Hello, World” application imports 
the module called <iostream>, which declares the input and output mechanisms provided by C++:

import <iostream>;

If the program did not import that module, it would be unable to perform its only task of out-
putting text.

Since this is a book about C++20, this book uses modules everywhere. All functionality provided by 
the C++ Standard Library is provided in well-defined modules. Your own custom types and func-
tionality can also be provided through self-written modules, as you will learn throughout this book. 
If your compiler does not yet support modules, simply replace import declarations with the proper 
#include preprocessor directives, discussed in the next section.

Preprocessor Directives
If your compiler does not yet support C++20 modules, then instead of an import declaration such as 
import <iostream>;, you need to write the following preprocessor directive:

#include <iostream>

In short, building a C++ program is a three-step process. First, the code is run through a preproces-
sor, which recognizes meta-information about the code. Next, the code is compiled, or translated 
into machine-readable object files. Finally, the individual object files are linked together into a single 
application.

C++20
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Directives aimed at the preprocessor start with the # character, as in the line #include <iostream> 
in the previous example. In this case, an #include directive tells the preprocessor to take everything 
from the <iostream> header file and make it available to the current file. The <iostream> header 
declares the input and output mechanisms provided by C++.

The most common use of header files is to declare functions that will be defined elsewhere. A function 
declaration tells the compiler how a function is called, declaring the number and types of parameters, 
and the function return type. A definition contains the actual code for the function. Before the intro-
duction of modules in C++20, declarations usually went into header files, typically with extension .h,  
while definitions usually went into source files, typically with extension .cpp. With modules, it is 
no longer necessary to split declarations from definitions, although, as you will see, it is still possi-
ble to do so.

NOTE In C, the names of the Standard Library header files usually end in .h, 
such as <stdio.h>, and namespaces are not used.

In C++, the .h suffix is omitted for Standard Library headers, such as 
<iostream>, and everything is defined in the std namespace or a subnamespace 
of std.

The Standard Library headers from C still exist in C++ but in two versions.

➤➤ The recommended versions without a .h suffix but 
with a c prefix. These versions put everything in the 
std namespace (for example, <cstdio>).

➤➤ The old versions with the .h suffix. These versions do 
not use namespaces (for example, <stdio.h>).

Note that these C Standard Library headers are not guaranteed to be importable 
with an import declaration. To be safe, use #include <cxyz> instead of import 
<cxyz>;.

The following table shows some of the most common preprocessor directives:

PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#include [file] The specified file is inserted 
into the code at the location of 
the directive.

Almost always used to include 
header files so that code can 
make use of functionality defined 
elsewhere.
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PREPROCESSOR DIRECTIVE FUNCTIONALITY COMMON USES

#define [id] [value] Every occurrence of the 
specified identifier is replaced 
with the specified value.

Often used in C to define a 
constant value or a macro. C++ 
provides better mechanisms 
for constants and most types 
of macros. Macros can be 
dangerous, so use them 
cautiously. See Chapter 11,”Odds 
and Ends,” for details.

#ifdef [id]

#endif

 

#ifndef [id]

#endif

Code within the ifdef (“if 
defined”) or ifndef (“if 
not defined”) blocks are 
conditionally included or 
omitted based on whether the 
specified identifier has been 
defined with #define.

Used most frequently to protect 
against circular includes. Each 
header file starts with an #ifndef 
checking the absence of an 
identifier, followed by a #define 
directive to define that identifier. 
The header file ends with an 
#endif. This prevents the file 
from being included multiple 
times; see the example after 
this table.

#pragma [xyz] xyz is compiler dependent. 
Most compilers support a 
#pragma to display a warning 
or error if the directive is 
reached during preprocessing.

See the example after this table.

One example of using preprocessor directives is to avoid multiple includes, as shown here:

#ifndef MYHEADER_H
#define MYHEADER_H
// ... the contents of this header file
#endif

If your compiler supports the #pragma once directive, and most modern compilers do, then this can 
be rewritten as follows:

#pragma once
// ... the contents of this header file

Chapter 11 discusses this in a bit more detail. But, as mentioned, this book uses C++20 modules 
instead of old-style header files.
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The main() Function
main() is, of course, where the program starts. The return type of main() is an int, indicating the 
result status of the program. You can omit any explicit return statements in main(), in which case 
zero is returned automatically. The main() function either takes no parameters or takes two param-
eters as follows:

int main(int argc, char* argv[])

argc gives the number of arguments passed to the program, and argv contains those arguments. 
Note that argv[0] can be the program name, but it might as well be an empty string, so do not rely 
on it; instead, use platform-specific functionality to retrieve the program name. The important thing 
to remember is that the actual arguments start at index 1.

I/O Streams
I/O streams are covered in depth in Chapter 13, “Demystifying C++ I/O,” but the basics of output 
and input are simple. Think of an output stream as a laundry chute for data. Anything you toss into 
it will be output appropriately. std::cout is the chute corresponding to the user console, or standard 
out. There are other chutes, including std::cerr, which outputs to the error console. The << opera-
tor tosses data down the chute. In the preceding example, a quoted string of text is sent to standard 
out. Output streams allow multiple types of data to be sent down the stream sequentially on a single 
line of code. The following code outputs text, followed by a number, followed by more text:

std::cout << "There are " << 219 << " ways I love you." << std::endl;

Starting with C++20, though, it is recommended to use std::format(), defined in <format>, to 
perform string formatting. The format() function is discussed in detail in Chapter 2, “Working with 
Strings and String Views,” but in its most basic form it can be used to rewrite the previous statement 
as follows:

std::cout << std::format("There are {} ways I love you.", 219) << std::endl;

std::endl represents an end-of-line sequence. When the output stream encounters std::endl, it 
will output everything that has been sent down the chute so far and move to the next line. An alter-
nate way of representing the end of a line is by using the \n character. The \n character is an escape 
sequence, which refers to a new-line character. Escape sequences can be used within any quoted string 
of text. The following table shows the most common ones:

ESCAPE SEQUENCE MEANING

\n New line: moves the cursor to the beginning of the next line

\r Carriage return: moves the cursor to the beginning of the current line, but 
does not advance to the next line

\t Tab

\\ Backslash character

\" Quotation mark
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WARNING Keep in mind that endl inserts a new line into the stream and 
flushes everything currently in its buffers down the chute. Overusing endl, 
for example in a loop, is not recommended because it will have a performance 
impact. On the other hand, inserting \n into the stream also inserts a new line 
but does not automatically flush the buffers.

Streams can also be used to accept input from the user. The simplest way to do this is to use the >> 
operator with an input stream. The std::cin input stream accepts keyboard input from the user. 
Here is an example:

int value;
std::cin >> value;

User input can be tricky because you can never know what kind of data the user will enter. See Chap-
ter 13 for a full explanation of how to use input streams.

If you’re new to C++ and coming from a C background, you’re probably wondering what has been 
done with the trusty old printf() and scanf() functions. While these functions can still be used 
in C++, I strongly recommend using format() and the streams library instead, mainly because the 
printf() and scanf() family of functions do not provide any type safety.

Namespaces
Namespaces address the problem of naming conflicts between different pieces of code. For example, 
you might be writing some code that has a function called foo(). One day, you decide to start using 
a third-party library, which also has a foo() function. The compiler has no way of knowing which 
version of foo() you are referring to within your code. You can’t change the library’s function name, 
and it would be a big pain to change your own.

Namespaces come to the rescue in such scenarios because you can define the context in which names 
are defined. To place code in a namespace, enclose it within a namespace block. Here’s an example:

namespace mycode {
    void foo()
    {
        std::cout << "foo() called in the mycode namespace" << std::endl;
    }
}

By placing your version of foo() in the namespace mycode, you are isolating it from the foo() func-
tion provided by the third-party library. To call the namespace-enabled version of foo(), prepend the 
namespace onto the function name by using ::, also called the scope resolution operator, as follows:

mycode::foo();    // Calls the "foo" function in the "mycode" namespace

Any code that falls within a mycode namespace block can call other code within the same namespace 
without explicitly prepending the namespace. This implicit namespace is useful in making the code 
more readable. You can also avoid prepending of namespaces with a using directive. This directive 
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tells the compiler that the subsequent code is making use of names in the specified namespace. The 
namespace is thus implied for the code that follows:

using namespace mycode;
 
int main()
{
    foo();  // Implies mycode::foo();
}

A single source file can contain multiple using directives, but beware of overusing this shortcut. In 
the extreme case, if you declare that you’re using every namespace known to humanity, you’re effec-
tively eliminating namespaces entirely! Name conflicts will again result if you are using two names-
paces that contain the same names. It is also important to know in which namespace your code is 
operating so that you don’t end up accidentally calling the wrong version of a function.

You’ve seen the namespace syntax before—you used it in the “Hello, World” program, where cout 
and endl are names defined in the std namespace. You could have written “Hello, World” with the 
using directive as shown here:

import <iostream>;
 
using namespace std;
 
int main()
{
    cout << "Hello, World!" << endl;
}

NOTE Most code snippets in this book assume a using directive for the std 
namespace so that everything from the C++ Standard Library can be used 
without the need to qualify it with std::.

A using declaration can be used to refer to a particular item within a namespace. For example, if the 
only part of the std namespace that you want to use unqualified is cout, you can use the following 
using declaration:

using std::cout;

Subsequent code can refer to cout without prepending the namespace, but other items in the std 
namespace still need to be explicit:

using std::cout;
cout << "Hello, World!" << std::endl;
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WARNING Never put a using directive or using declaration in a header file at 
global scope; otherwise, you force it on everyone who includes your header file. 
Putting it in a smaller scope, for instance at namespace or class scope, is OK, 
even in a header. It’s also perfectly fine to put a using directive or declaration in 
a module interface file, as long as you don’t export it. However, this book always 
fully qualifies all types in module interface files, as I think it makes it easier to 
understand an interface.

Nested Namespace
A nested namespace is a namespace inside another one. Each namespace is separated by a double 
colon. Here’s an example:

namespace MyLibraries::Networking::FTP {
    /* ... */
}

This compact syntax was not available before C++17 and you had to resort to the following:

namespace MyLibraries {
    namespace Networking {
        namespace FTP {
            /* ... */
        }
    }
}

Namespace Alias
A namespace alias can be used to give a new and possibly shorter name to another namespace. Here’s 
an example:

namespace MyFTP = MyLibraries::Networking::FTP;

Literals
Literals are used to write numbers or strings in your code. C++ supports a few standard literals. 
Numbers can be specified with the following literals (the examples represent the same number, 123):

➤➤ Decimal literal, 123

➤➤ Octal literal, 0173

➤➤ Hexadecimal literal, 0x7B

➤➤ Binary literal, 0b1111011
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Other examples of literals in C++ include the following:

➤➤ A floating-point value (such as 3.14f)

➤➤ A double floating-point value (such as 3.14)

➤➤ A hexadecimal floating-point literal (such as 0x3.ABCp-10 and 0Xb.cp12l)

➤➤ A single character (such as 'a')

➤➤ A zero-terminated array of characters (such as "character array")

It is also possible to define your own type of literals, which is an advanced feature explained in  
Chapter 15, “Overloading C++ Operators.”

Digits separators can be used in numeric literals. A digits separator is a single quote character. 
For example:

➤➤ 23'456'789

➤➤ 0.123'456f

Variables
In C++, variables can be declared just about anywhere in your code and can be used anywhere in the 
current block below the line where they are declared. Variables can be declared without being given 
a value. These uninitialized variables generally end up with a semi-random value based on whatever 
is in memory at that time, and they are therefore the source of countless bugs. Variables in C++ can 
alternatively be assigned an initial value when they are declared. The code that follows shows both 
flavors of variable declaration, both using ints, which represent integer values:

int uninitializedInt;
int initializedInt { 7 };
cout << format("{} is a random value", uninitializedInt) << endl;
cout << format("{} was assigned an initial value", initializedInt) << endl;

NOTE Most compilers will issue a warning or an error when code is using  
uninitialized variables. Some compilers will generate code that will report an 
error at run time.

The initializedInt variable is initialized using the uniform initialization syntax. You can also use 
the following assignment syntax for initializing variables:

int initializedInt = 7;

Uniform initialization was introduced with the C++11 standard in 2011. It is recommended to use 
uniform initialization instead of the old assignment syntax, so that’s the syntax used in this book. 
The section “Uniform Initialization” later in this chapter goes deeper in on the benefits and why it is 
recommended.
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Variables in C++ are strongly typed; that is, they always have a specific type. C++ comes with a 
whole set of built-in types that you can use out of the box. The following table shows the most 
common types:

TYPE DESCRIPTION USAGE

(signed) int

signed

Positive and 
negative integers; 
the range depends 
on the compiler 
(usually 4 bytes)

int i {-7};

signed int i {-6};

signed i {-5};

(signed) short (int) Short integer 
(usually 2 bytes)

short s {13};

short int s {14};

signed short s {15};

signed short int s {16};

(signed) long (int) Long integer 
(usually 4 bytes)

long l {-7L};

(signed) long long (int) Long long integer; 
the range depends 
on the compiler 
but is at least the 
same as for long 
(usually 8 bytes)

long long ll {14LL};

unsigned (int)

unsigned short (int)

unsigned long (int)

unsigned long long (int)

Limits the preceding 
types to values >= 0

unsigned int i {2U};

unsigned j {5U};

unsigned short s {23U};

unsigned long l {5400UL};

unsigned long long ll {140ULL};

float Floating-
point numbers

float f {7.2f};

double Double precision 
numbers; precision 
is at least the same 
as for float

double d {7.2};

long double Long double 
precision numbers; 
precision is at 
least the same as 
for double

long double d {16.98L};

continues
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TYPE DESCRIPTION USAGE

char

unsigned char

signed char

A single character char ch {'m'};

char8_t (since C++20)

char16_t

char32_t

A single n-bit UTF-
n-encoded Unicode 
character where n 
can be 8, 16, or 32

char8_t c8 {u8'm'};

char16_t c16 {u'm'};

char32_t c32 {U'm'};

wchar_t A single wide 
character; the 
size depends on 
the compiler

wchar_t w {L'm'};

bool A Boolean type 
that can have one 
of two values: 
true or false

bool b {true};

Type char is a different type compared to both the signed char and unsigned char types. It 
should be used only to represent characters. Depending on your compiler, it can be either signed or 
unsigned, so you should not rely on it being signed or unsigned.

Related to char, <cstddef> provides the std::byte type representing a single byte. Before C++17, 
a char or unsigned char was used to represent a byte, but those types make it look like you are 
working with characters. std::byte on the other hand clearly states your intention, that is, a single 
byte of memory. A byte can be initialized as follows:

std::byte b { 42 };

NOTE C++ does not provide a basic string type. However, a standard imple-
mentation of a string is provided as part of the Standard Library, as briefly 
described later in this chapter and in detail in Chapter 2.

Numerical Limits
C++ provides a standard way to obtain information about numeric limits, such as the maximum pos-
sible value for an integer on the current platform. In C, you could access #defines, such as INT_MAX. 
While those are still available in C++, it’s recommended to use the std::numeric_limits class tem-
plate defined in <limits>. Class templates are discussed later in this book, but those details are not 
important to understand how to use numeric_limits. For now, you just need to know that, since it 
is a class template, you have to specify the type you are interested in between a set of angle brackets. 

TABLE (continued)
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Here are a few examples:

cout << "int:\n";
cout << format("Max int value: {}\n", numeric_limits<int>::max());
cout << format("Min int value: {}\n", numeric_limits<int>::min());
cout << format("Lowest int value: {}\n", numeric_limits<int>::lowest());
 
cout << "\ndouble:\n";
cout << format("Max double value: {}\n", numeric_limits<double>::max());
cout << format("Min double value: {}\n", numeric_limits<double>::min());
cout << format("Lowest double value: {}\n", numeric_limits<double>::lowest());

The output of this code snippet on my system is as follows:

int:
Max int value: 2147483647
Min int value: -2147483648
Lowest int value: -2147483648
 
double:
Max double value: 1.79769e+308
Min double value: 2.22507e-308
Lowest double value: -1.79769e+308

Note the differences between min() and lowest(). For an integer, the minimum value equals the 
lowest value. However, for floating-point types, the minimum value is the smallest positive value 
that can be represented, while the lowest value is the most negative value representable, which 
equals -max().

Zero Initialization
Variables can be initialized to zero with a {0} uniform initializer. The 0 here is optional. A uniform 
initializer of a set of empty curly brackets, {}, is called a zero initializer. Zero initialization initializes 
primitive integer types (such as char, int, and so on) to zero, primitive floating-point types to 0.0, 
pointer types to nullptr, and constructs objects with the default constructor (discussed later).

Here is an example of zero initializing a float and an int:

float myFloat {};
int myInt {};

Casting
Variables can be converted to other types by casting them. For example, a float can be cast to 
an int. C++ provides three ways to explicitly change the type of a variable. The first method is a 
holdover from C; it is not recommended but, unfortunately, still commonly used. The second method 
is rarely used. The third method is the most verbose but is also the cleanest one and is therefore 
recommended.

float myFloat { 3.14f };
int i1 { (int)myFloat };                // method 1
int i2 { int(myFloat) };                // method 2
int i3 { static_cast<int>(myFloat) };   // method 3
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The resulting integer will be the value of the floating-point number with the fractional part truncated. 
Chapter 10, “Discovering Inheritance Techniques,” describes the different casting methods in more 
detail. In some contexts, variables can be automatically cast, or coerced. For example, a short can be 
automatically converted into a long because a long represents the same type of data with at least the 
same precision:

long someLong { someShort };          // no explicit cast needed

When automatically casting variables, you need to be aware of the potential loss of data. For exam-
ple, casting a float to an int throws away the fractional part of the number, and the resulting 
integer can even be completely wrong if the floating-point value represents a number bigger than the 
maximum representable integer value. Most compilers will issue a warning or even an error if you 
assign a float to an int without an explicit cast. If you are certain that the left-hand side type is 
fully compatible with the right-hand side type, it’s OK to cast implicitly.

Floating-Point Numbers
Working with floating-point numbers can be more complicated than working with integral types. You 
need to keep a few things in mind. Calculations with floating-point values that are orders of magni-
tude different can cause errors. Furthermore, calculating the difference between two floating-point 
numbers that are almost identical will cause the loss of precision. Also keep in mind that a lot of deci-
mal values cannot be represented exactly as floating-point numbers. However, going deeper in on the 
numerical problems with using floating-point numbers and how to write numerical stable floating-
point algorithms is outside the scope of this book, as these topics warrant a whole book on their own.

There are several special floating-point numbers:

➤➤ +/-infinity: Represents positive and negative infinity, for example the result of dividing a 
non-zero number by zero

➤➤ NaN: Abbreviation for not-a-number, for example the result of dividing zero by zero, a 
mathematically undefined result

To check whether a given floating-point number is not-a-number, use std::isnan(). To check for 
infinity, use std::isinf(). Both functions are defined in <cmath>.

To obtain one of these special floating-point values, use numeric_limits, for example numeric_
limits<double>::infinity.

Operators
What good is a variable if you don’t have a way to change it? The following table shows the most 
common operators used in C++ and sample code that makes use of them. Note that operators in C++ 
can be binary (operate on two expressions), unary (operate on a single expression), or even ternary 
(operate on three expressions). There is only one ternary operator in C++, and it is explained in the 
section “The Conditional Operator” later in this chapter. Furthermore, Chapter 15, “Overloading 
C++ Operators,” is reserved for operators and explains how you can add support for these operators 
to your own custom types.
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OPERATOR DESCRIPTION USAGE

= Binary operator to assign the value on the right to the 
expression on the left.

int i;

i = 3;

int j;

j = i;

! Unary operator to complement the true/false (non-0/0) 
status of an expression.

bool b {!true};

bool b2 {!b};

+ Binary operator for addition. int i {3 + 2};

int j {i + 5};

int k {i + j};

-

*

/

Binary operators for subtraction, multiplication, 
and division.

int i {5 – 1};

int j {5 * 2};

int k {j / i};

% Binary operator for the remainder of a division 
operation. This is also referred to as the mod or modulo 
operator. For example: 5%2=1.

int rem {5 % 2};

++ Unary operator to increment an expression by 1. If the 
operator occurs after the expression, or post-increment, 
the result of the expression is the unincremented value. 
If the operator occurs before the expression, or pre-
increment, the result of the expression is the new value.

i++;

++i;

-- Unary operator to decrement an expression by 1. i--;

--i;

+=

-=

*=

/=

%=

Shorthand syntax for:

i = i + j

i = i - j;

i = i * j;

i = i / j;

i = i % j;

i += j;

i -= j;

i *= j;

i /= j;

i %= j;

&

&=

Takes the raw bits of one expression and performs a 
bitwise AND with the other expression.

i = j & k;

j &= k;

|

|=

Takes the raw bits of one expression and performs a 
bitwise OR with the other expression.

i = j | k;

j |= k;

continues
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OPERATOR DESCRIPTION USAGE

<<

>>

<<=

>>=

Takes the raw bits of an expression and “shifts” each bit 
left (<<) or right (>>) the specified number of places.

i = i << 1;

i = i >> 4;

i <<= 1;

i >>= 4;

^

^=

Performs a bitwise exclusive or, also called XOR 
operation, on two expressions.

i = i ^ j;

i ^= j;

The following program shows the most common variable types and operators in action. If you are 
unsure about how variables and operators work, try to figure out what the output of this program 
will be, and then run it to confirm your answer.

int someInteger { 256 };
short someShort;
long someLong;
float someFloat;
double someDouble;
 
someInteger++;
someInteger *= 2;
someShort = static_cast<short>(someInteger);
someLong = someShort * 10000;
someFloat = someLong + 0.785f;
someDouble = static_cast<double>(someFloat) / 100000;
cout << someDouble << endl;

The C++ compiler has a recipe for the order in which expressions are evaluated. If you have a compli-
cated line of code with many operators, the order of execution may not be obvious. For that reason, 
it’s probably better to break up a complicated expression into several smaller expressions, or explic-
itly group subexpressions by using parentheses. For example, the following line of code is confusing 
unless you happen to know the exact evaluation order of the operators:

int i { 34 + 8 * 2 + 21 / 7 % 2 };

Adding parentheses makes it clear which operations are happening first:

int i { 34 + (8 * 2) + ( (21 / 7) % 2 ) };

For those of you playing along at home, both approaches are equivalent and end up with i equal to 
51. If you assumed that C++ evaluated expressions from left to right, your answer would have been 
1. C++ evaluates /, *, and % first (in left-to-right order), followed by addition and subtraction, then 
bitwise operators. Parentheses let you explicitly tell the compiler that a certain operation should be 
evaluated separately.

Formally, the evaluation order of operators is expressed by their so-called precedence. Operators with 
a higher precedence are executed before operators with a lower precedence. The following list shows 

TABLE (continued)
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the precedence of the operators from the previous table. Operators higher in the list have higher  
precedence and hence are executed before operators lower in the list.

➤➤ ++ -- (postfix)

➤➤ ! ++ -- (prefix)

➤➤ * / %

➤➤ + -

➤➤ << >>

➤➤ &

➤➤ ^

➤➤ |

➤➤ = += -= *= /= %= &= |= ^= <<= >>=

This is only a selection of the available C++ operators. Chapter 15 gives a complete overview of all 
available operators, including their precedence.

Enumerated Types
An integer really represents a value within a sequence—the sequence of numbers. Enumerated types 
let you define your own sequences so that you can declare variables with values in that sequence. For 
example, in a chess program, you could represent each piece as an int, with constants for the piece 
types, as shown in the following code. The integers representing the types are marked const to indi-
cate that they can never change.

const int PieceTypeKing { 0 };
const int PieceTypeQueen { 1 };
const int PieceTypeRook { 2 };
const int PieceTypePawn { 3 };
//etc.
int myPiece { PieceTypeKing };

This representation can become dangerous. Since a piece is just an int, what would happen if another 
programmer added code to increment the value of a piece? By adding 1, a king becomes a queen, 
which really makes no sense. Worse still, someone could come in and give a piece a value of -1, which 
has no corresponding constant.

Strongly typed enumeration types solve these problems by tightly defining the range of values for a 
variable. The following code declares a new type, PieceType, which has four possible values, repre-
senting four of the chess pieces:

enum class PieceType { King, Queen, Rook, Pawn };

This new type can be used as follows:

PieceType piece { PieceType::King };
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Behind the scenes, an enumerated type is just an integer value. The underlying values for King, Queen, 
Rook, and Pawn are 0, 1, 2, and 3, respectively. It’s possible to specify the integer values for members 
of an enumeration type yourself. The syntax is as follows:

enum class PieceType
{
    King = 1,
    Queen,
    Rook = 10,
    Pawn
};

If you do not assign a value to an enumeration member, the compiler automatically assigns it a value 
that is the previous enumeration member incremented by 1. If you do not assign a value to the first 
enumeration member, the compiler assigns it the value 0. So, in this example, King has the integer 
value 1, Queen has the value 2 assigned by the compiler, Rook has the value 10, and Pawn has the 
value 11 assigned automatically by the compiler.

Even though enumeration values are internally represented by integer values, they are not automati-
cally converted to integers, which means the following is illegal:

if (PieceType::Queen == 2) {...}

By default, the underlying type of an enumeration value is an integer, but this can be changed 
as follows:

enum class PieceType : unsigned long
{
    King = 1,
    Queen,
    Rook = 10,
    Pawn
};

For an enum class, the enumeration value names are not automatically exported to the enclosing 
scope. This means they cannot clash with other names already defined in the parent scope. As a result, 
different strongly typed enumerations can have enumeration values with the same name. For exam-
ple, the following two enumerations are perfectly legal:

enum class State { Unknown, Started, Finished };
enum class Error { None, BadInput, DiskFull, Unknown};

A big benefit of this is that you can give short names to the enumeration values, for example, 
Unknown instead of UnknownState and UnknownError.

However, it also means that you either have to fully qualify enumeration values or use a using enum 
or using declaration, as described next.

Starting with C++20, you can use a using enum declaration to avoid having to fully qualify enumera-
tion values. Here’s an example:

using enum PieceType;
PieceType piece { King };

C++20
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Additionally, a using declaration can be used if you want to avoid having to fully qualify specific 
enumeration values. For example, in the following code snippet, King can be used without full quali-
fication, but other enumeration values still need to be fully qualified:

using PieceType::King;
PieceType piece { King };
piece = PieceType::Queen;

WARNING Even though C++20 allows you to avoid fully qualifying enumera-
tion values, I recommend using this feature judiciously. At least try to minimize 
the scope of the using enum or using declaration because if this scope is too big, 
you risk reintroducing name clashes. The section on the switch statement later 
in this chapter shows a properly scoped use of a using enum declaration.

Old-Style Enumerated Types
New code should always use the strongly typed enumerations explained in the previous section. How-
ever, in legacy code bases, you might find old-style enumerations: enum instead of enum class. Here 
is the previous PieceType defined as an old-style enumeration:

enum PieceType { PieceTypeKing, PieceTypeQueen, PieceTypeRook, PieceTypePawn };

The values of such old-style enumerations are exported to the enclosing scope. This means that in 
the parent scope you can use the names of the enumeration values without fully qualifying them, 
for example:

PieceType myPiece { PieceTypeQueen };

This of course also means that they can clash with other names already defined in the parent scope 
resulting in a compilation error. Here’s an example:

bool ok { false };
enum Status { error, ok };

This code snippet does not compile because the name ok is first defined to be a Boolean variable, and 
later the same name is used as the name of an enumeration value. Visual C++ 2019 emits the fol-
lowing error:

error C2365: 'ok': redefinition; previous definition was 'data variable'

Hence, you should make sure such old-style enumerations have enumeration values with unique 
names, such as PieceTypeQueen, instead of simply Queen.

These old-style enumerations are not strongly typed, meaning they are not type safe. They are always 
interpreted as integers, and thus you can inadvertently compare enumeration values from com-
pletely different enumeration types, or pass an enumeration value of the wrong enumeration type to 
a function.

WARNING Always use strongly typed enum class enumerations instead of the 
old-style type-unsafe enum enumerations.
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Structs
Structs let you encapsulate one or more existing types into a new type. The classic example of a struct 
is a database record. If you are building a personnel system to keep track of employee information, 
you might want to store the first initial, last initial, employee number, and salary for each employee. A 
struct that contains all of this information is shown in the employee.cppm module interface file that 
follows. This is your first self-written module in this book. Module interface files usually have .cppm 
as extension.1 The first line in the module interface file is a module declaration and states that this file 
is defining a module called employee. Furthermore, a module needs to explicitly state what it exports, 
i.e., what will be visible when somewhere else this module is imported. Exporting a type from a mod-
ule is done with the export keyword in front of, for example, a struct.

export module employee;
 
export struct Employee {
    char firstInitial;
    char lastInitial;
    int employeeNumber;
    int salary;
};

A variable declared with type Employee has all of these fields built in. The individual fields of a struct 
can be accessed by using the . operator. The example that follows creates and then outputs the record 
for an employee. Note that when importing custom modules, angle brackets must not be used.

import <iostream>;
import <format>;
import employee;
 
using namespace std;
 
int main()
{
    // Create and populate an employee.
    Employee anEmployee;
    anEmployee.firstInitial = 'J';
    anEmployee.lastInitial = 'D';
    anEmployee.employeeNumber = 42;
    anEmployee.salary = 80000;
    // Output the values of an employee.
    cout << format("Employee: {}{}", anEmployee.firstInitial, 
        anEmployee.lastInitial) << endl;
    cout << format("Number: {}", anEmployee.employeeNumber) << endl;
    cout << format("Salary: ${}", anEmployee.salary) << endl;
}

1 At the time of this writing, there was no standardized naming for module interface files. However, most compilers sup-
port the .cppm (C++ module) extension, so that’s what this book uses. Check the documentation of your compiler to 
learn which extension to use.
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Conditional Statements
Conditional statements let you execute code based on whether something is true. As shown in the fol-
lowing sections, there are two main types of conditional statements in C++: if/else statements and 
switch statements.

if/else Statements
The most common conditional statement is the if statement, which can be accompanied by an else. 
If the condition given inside the if statement is true, the line or block of code is executed. If not, 
execution continues with the else case if present or with the code following the conditional state-
ment. The following code shows a cascading if statement, a fancy way of saying that the if statement 
has an else statement that in turn has another if statement, and so on:

if (i > 4) {
    // Do something.
} else if (i > 2) {
    // Do something else.
} else {
    // Do something else.
}

The expression between the parentheses of an if statement must be a Boolean value or evaluate to 
a Boolean value. A value of 0 evaluates to false, while any non-zero value evaluates to true. For 
example, if(0) is equivalent to if(false). Logical evaluation operators, described later, provide 
ways of evaluating expressions to result in a true or false Boolean value.

Initializers for if Statements
C++ allows you to include an initializer inside an if statement using the following syntax:

if (<initializer>; <conditional_expression>) {
    <if_body>
} else if (<else_if_expression>) {
    <else_if_body>
} else {
    <else_body>
}

Any variable introduced in the <initializer> is available only in the <conditional_expression>, 
in the <if_body>, in all <else_if_expression>s and <else_if_body>s, and in the <else_body>. 
Such variables are not available outside the if statement.

It is too early in this book to give a useful example of this feature, but here is an example of how it 
could be employed:

if (Employee employee { getEmployee() }; employee.salary > 1000) { ... }

In this example, the initializer gets an employee, and the condition checks whether the salary of the 
retrieved employee exceeds 1000. Only in that case is the body of the if statement executed. More 
concrete examples will be given throughout this book.
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switch Statements
The switch statement is an alternate syntax for performing actions based on the value of an expres-
sion. In C++, the expression of a switch statement must be of an integral type, a type convertible 
to an integral type, an enumerated type, or a strongly typed enumeration, and must be compared to 
constants. Each constant value represents a “case.” If the expression matches the case, the subsequent 
lines of code are executed until a break statement is reached. You can also provide a default case, 
which is matched if none of the other cases matches. The following pseudocode shows a common use 
of the switch statement:

switch (menuItem) {
    case OpenMenuItem:
        // Code to open a file
        break;
    case SaveMenuItem:
        // Code to save a file
        break;
    default:
        // Code to give an error message
        break;
}

A switch statement can always be converted into if/else statements. The previous switch state-
ment can be converted as follows:

if (menuItem == OpenMenuItem) {
    // Code to open a file
} else if (menuItem == SaveMenuItem) {
    // Code to save a file
} else {
    // Code to give an error message
}

switch statements are generally used when you want to do something based on more than one 
specific value of an expression, as opposed to some test on the expression. In such a case, the switch 
statement avoids cascading if/else statements. If you need to inspect only one value, an if or  
if/else statement is fine.

Once a case expression matching the switch condition is found, all statements that follow it are 
executed until a break statement is reached. This execution continues even if another case expression 
is encountered, which is called fallthrough. In the following example, a single set of statements is exe-
cuted for both Mode::Standard and Default. If mode is Custom, value is first changed from 42 to 
84, after which the same set of statements as for Default and Standard is executed. In other words, 
the Custom case falls through to the Standard/Default case. This code snippet also shows a nice 
example of using a properly scoped using enum declaration to avoid having to write Mode::Custom, 
Mode::Standard, and Mode::Default for the different case labels.

enum class Mode { Default, Custom, Standard };
 
int value { 42 };
Mode mode { /* ... */ };
switch (mode) {
    using enum Mode;
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    case Custom:
        value = 84;
    case Standard:
    case Default:
        // Do something with value ...
        break;
}

Fallthrough can be a source of bugs, for example if you accidentally forget a break statement. 
Because of this, compilers might give a warning if a fallthrough is detected in a switch statement, 
unless the case is empty. In the previous example, no compiler will give a warning that the Stand-
ard case falls through to the Default case, but a compiler might give a warning for the Custom case 
fallthrough. To prevent this warning, you can tell the compiler that a fallthrough is intentional using 
the [[fallthrough]] attribute as follows:

switch (mode) {
    using enum Mode;
 
    case Custom:
        value = 84;
        [[fallthrough]];
    case Standard:
    case Default:
        // Do something with value ...
        break;
}

Initializers for switch Statements
Just as for if statements, you can use initializers with switch statements. The syntax is as follows:

switch (<initializer>; <expression>) { <body> }

Any variables introduced in the <initializer> are available only in the <expression> and in the 
<body>. They are not available outside the switch statement.

The Conditional Operator
C++ has one operator that takes three arguments, known as a ternary operator. It is used as a short-
hand conditional expression of the form “if [something] then [perform action], otherwise [perform 
some other action].” The conditional operator is represented by a ? and a :. The following code 
outputs “yes” if the variable i is greater than 2, and “no” otherwise:

cout << ((i > 2) ? "yes" : "no");

The parentheses around i > 2 are optional, so the following is equivalent:

cout << (i > 2 ? "yes" : "no");

The advantage of the conditional operator is that it is an expression, not a statement like the if and 
switch statements. Hence, a conditional operator can occur within almost any context. In the preced-
ing example, the conditional operator is used within code that performs output. A convenient way to 
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remember how the syntax is used is to treat the question mark as though the statement that comes 
before it really is a question. For example, “Is i greater than 2? If so, the result is ‘yes’; if not, the 
result is ‘no.’”

Logical Evaluation Operators
You have already seen a logical evaluation operator without a formal definition. The > operator com-
pares two values. The result is true if the value on the left is greater than the value on the right. All 
logical evaluation operators follow this pattern—they all result in a true or false.

The following table shows common logical evaluation operators:

OP DESCRIPTION USAGE

<

<=

>

>=

Determines if the left-hand side is less 
than, less than or equal to, greater 
than, or greater than or equal to the 
right-hand side.

if (i < 0) {

      cout << "i is negative";

}

== Determines if the left-hand side equals 
the right-hand side. Don’t confuse this 
with the = (assignment) operator!

if (i == 3) {

      cout << "i is 3";

}

!= Not equals. The result of the statement 
is true if the left-hand side does not 
equal the right-hand side.

if (i != 3) {

      cout << "i is not 3";

}

<=> Three-way comparison operator, also 
called the spaceship operator. Explained 
in more detail in the next section.

result = i <=> 0;

! Logical NOT. This complements the true/
false status of a Boolean expression. This 
is a unary operator.

if (!someBoolean) {

      cout << "someBoolean is false";

}

&& Logical AND. The result is true if both 
parts of the expression are true.

if (someBoolean && 

someOtherBoolean) {

      cout << "both are true";

}

C++20
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OP DESCRIPTION USAGE

|| Logical OR. The result is true if either 
part of the expression is true.

if (someBoolean || 

someOtherBoolean) {

        cout << "at least one is true";

}

C++ uses short-circuit logic when evaluating logical expressions. That means that once the final result 
is certain, the rest of the expression won’t be evaluated. For example, if you are performing a logical 
OR operation of several Boolean expressions, as shown in the following code, the result is known to 
be true as soon as one of them is found to be true. The rest won’t even be checked.

bool result { bool1 || bool2 || (i > 7) || (27 / 13 % i + 1) < 2 };

In this example, if bool1 is found to be true, the entire expression must be true, so the other parts 
aren’t evaluated. In this way, the language saves your code from doing unnecessary work. It can, how-
ever, be a source of hard-to-find bugs if the later expressions in some way influence the state of the 
program (for example, by calling a separate function). The following code shows a statement using && 
that short-circuits after the second term because 0 always evaluates to false:

bool result { bool1 && 0 && (i > 7) && !done };

Short-circuiting can be beneficial for performance. You can put cheaper tests first so that more 
expensive tests are not even executed when the logic short-circuits. It is also useful in the context of 
pointers to avoid parts of the expression to be executed when a pointer is not valid. Pointers and 
short-circuiting with pointers are discussed later in this chapter. 

Three-Way Comparisons
The three-way comparison operator can be used to determine the order of two values. It is also called 
the spaceship operator because its sign, <=>, resembles a spaceship. With a single expression, it tells 
you whether a value is equal, less than, or greater than another value. Because it has to return more 
than just true or false, it cannot return a Boolean type. Instead, it returns an enumeration-like2 
type, defined in <compare> and in the std namespace. If the operands are integral types, the result is 
a so-called strong ordering and can be one of the following:

➤➤ strong_ordering::less: First operand less than second

➤➤ strong_ordering::greater: First operand greater than second

➤➤ strong_ordering::equal: Equal operands

2 It’s not a true enumeration type. These ordering types cannot be used in switch statements, or with using enum 
declarations.

C++20
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If the operands are floating-point types, the result is a partial ordering:

➤➤ partial_ordering::less: First operand less than second

➤➤ partial_ordering::greater: First operand greater than second

➤➤ partial_ordering::equivalent: Equal operands

➤➤ partial_ordering::unordered: If one or both of the operands is not-a-number

Here is an example of its use:

int i { 11 };
strong_ordering result { i <=> 0 };
if (result == strong_ordering::less) { cout << "less" << endl; }
if (result == strong_ordering::greater) { cout << "greater" << endl; }
if (result == strong_ordering::equal) { cout << "equal" << endl; }

There is also a weak ordering, which is an additional ordering type that you can choose from to 
implement three-way comparisons for your own types.

➤➤ weak_ordering::less: First operand less than second

➤➤ weak_ordering::greater: First operand greater than second

➤➤ weak_ordering::equivalent: Equal operands

For primitive types, using the three-way comparison operator doesn’t gain you much compared to 
just performing individual comparisons using the ==, <, and > operators. However, it becomes useful 
with objects that are more expensive to compare. With the three-way comparison operator, such 
objects can be ordered with a single operator, instead of potentially having to call two individual 
comparison operators, triggering two expensive comparisons. Chapter 9, “Mastering Classes and 
Objects,” explains how to add support for three-way comparisons to your own types.

Finally, <compare> provides named comparison functions to interpret the result of an ordering. 
These functions are std::is_eq(), is_neq(), is_lt(), is_lteq(), is_gt(), and is_gteq() 
returning true if an ordering represents ==, !=, <, <=, >, or >= respectively, false otherwise. Here is 
an example:

int i { 11 };
strong_ordering result { i <=> 0 };
if (is_lt(result)) { cout << "less" << endl; }
if (is_gt(result)) { cout << "greater" << endl; }
if (is_eq(result)) { cout << "equal" << endl; }

Functions
For programs of any significant size, placing all the code inside of main() is unmanageable. To make 
programs easier to understand, you need to break up, or decompose, code into concise functions.

In C++, you first declare a function to make it available for other code to use. If the function is used 
only inside a particular file, you generally declare and define the function in that source file. If the 
function is for use by other modules or files, you export a declaration for the function from a module 
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interface file, while the function’s definition can be either in the same module interface file or in a 
 so-called module implementation file (discussed later).

NOTE Function declarations are often called function prototypes or function 
headers to emphasize that they represent how the function can be accessed, 
but not the code behind it. The term function signature is used to denote the 
combination of the function name and its parameter list, but without the return 
type.

A function declaration is shown in the following code. This example has a return type of void, indi-
cating that the function does not provide a result to the caller. The caller must provide two arguments 
for the function to work with—an integer and a character.

void myFunction(int i, char c);

Without an actual definition to match this function declaration, the link stage of the compilation 
process will fail because code that makes use of the function will be calling nonexistent code. The fol-
lowing definition prints the values of the two parameters:

void myFunction(int i, char c)
{
    cout << format("the value of i is {}", i) << endl;
    cout << format("the value of c is {}", c) << endl;
}

Elsewhere in the program, you can make calls to myFunction() and pass in arguments for the two 
parameters. Some sample function calls are shown here:

myFunction(8, 'a');
myFunction(someInt, 'b');
myFunction(5, someChar);

NOTE In C++, unlike C, a function that takes no parameters just has an empty 
parameter list. It is not necessary to use void to indicate that no parameters are 
taken. However, you must still use void to indicate when no value is returned.

C++ functions can also return a value to the caller. The following function adds two numbers and 
returns the result:

int addNumbers(int number1, int number2)
{
    return number1 + number2;
}

This function can be called as follows:

int sum { addNumbers(5, 3) };
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Function Return Type Deduction
You can ask the compiler to figure out the return type of a function automatically. To make use of 
this functionality, just specify auto as the return type.

auto addNumbers(int number1, int number2)
{
    return number1 + number2;
}

The compiler deduces the return type based on the expressions used for the return statements in the 
body of the function. There can be multiple return statements, but they must all resolve to the same 
type. Such a function can even include recursive calls (calls to itself), but the first return statement in 
the function must be a non-recursive call.

Current Function’s Name
Every function has a local predefined variable __func__ containing the name of the current function. 
One use of this variable could be for logging purposes.

int addNumbers(int number1, int number2)
{
    cout << format("Entering function {}", __func__) << endl;
    return number1 + number2;
}

Function Overloading
Overloading a function means providing several functions with the same name but with a differ-
ent set of parameters. Only specifying different return types is not enough; the number and/or types 
of the parameters must be different. For example, the following code snippet defines two functions 
called addNumbers(), one defined for integers, the other defined for doubles:

int addNumbers(int a, int b) { return a + b; }
double addNumbers(double a, double b) { return a + b; }

When calling addNumbers(), the compiler automatically selects the correct function overload based 
on the provided arguments.

cout << addNumbers(1, 2) << endl; // Calls the integer version
cout << addNumbers(1.11, 2.22);   // Calls the double version

Attributes
Attributes are a mechanism to add optional and/or vendor-specific information into source code. 
Before attributes were standardized in C++, vendors decided how to specify such information. Exam-
ples are __attribute__, __declspec, and so on. Since C++11, there is standardized support for 
attributes by using the double square brackets syntax [[attribute]].

Earlier in this chapter, the [[fallthrough]] attribute is introduced to prevent a compiler warning 
when fallthrough in a switch case statement is intentional. The C++ standard defines a couple more 
standard attributes useful in the context of functions.
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[[nodiscard]]
The [[nodiscard]] attribute can be used on a function returning a value to let the compiler issue 
a warning when that function is called without doing something with the returned value. Here is 
an example:

[[nodiscard]] int func()
{
    return 42;
}
 
int main()
{
    func();
}

The compiler issues a warning similar to the following:

warning C4834: discarding return value of function with 'nodiscard' attribute

This feature can, for example, be used for functions that return error codes. By adding the [[nodis-
card]] attribute to such functions, the error codes cannot be ignored.

More general, the [[nodiscard]] attribute can be used on classes, functions, and enumerations.

Starting with C++20, a reason can be provided for the [[nodiscard]] attribute in the form of a 
string, for example:

[[nodiscard("Some explanation")]] int func();

[[maybe_unused]]
The [[maybe_unused]] attribute can be used to suppress the compiler from issuing a warning when 
something is unused, as in this example:

int func(int param1, int param2)
{
    return 42;
}

If the compiler warning level is set high enough, this function definition might result in two compiler 
warnings. For example, Microsoft Visual C++ gives these warnings:

warning C4100: 'param2': unreferenced formal parameter
warning C4100: 'param1': unreferenced formal parameter

By using the [[maybe_unused]] attribute, you can suppress such warnings:

int func(int param1, [[maybe_unused]] int param2)
{
    return 42;
}

In this case, the second parameter is marked with the attribute suppressing its warning. The compiler 
now only issues a warning for param1:

warning C4100: 'param1': unreferenced formal parameter

C++20
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The [[maybe_unused]] attribute can be used on classes and structs, non-static data members, 
unions, typedefs, type aliases, variables, functions, enumerations, and enumeration values. Some of 
these terms you might not know yet but are discussed later in this book.

[[noreturn]]
Adding a [[noreturn]] attribute to a function means that it never returns control to the call site. 
Typically, the function either causes some kind of termination (process termination or thread termina-
tion) or throws an exception. With this attribute, the compiler can avoid giving certain warnings or 
errors because it now knows more about the intent of the function. Here is an example:

[[noreturn]] void forceProgramTermination()
{
    std::exit(1);  // Defined in <cstdlib>
}
 
bool isDongleAvailable()
{
    bool isAvailable { false };
    // Check whether a licensing dongle is available...
    return isAvailable;
}
 
bool isFeatureLicensed(int featureId)
{
    if (!isDongleAvailable()) {
        // No licensing dongle found, abort program execution!
        forceProgramTermination();
    } else {
        bool isLicensed { featureId == 42 };
        // Dongle available, perform license check of the given feature...
        return isLicensed;
    }
}
 
int main()
{
    bool isLicensed { isFeatureLicensed(42) };
}

This code snippet compiles fine without any warnings or errors. However, if you remove the [[nore-
turn]] attribute, the compiler generates the following warning (output from Visual C++):

warning C4715: 'isFeatureLicensed': not all control paths return a value

[[deprecated]]
[[deprecated]] can be used to mark something as deprecated, which means you can still use it, but 
its use is discouraged. This attribute accepts an optional argument that can be used to explain the 
reason for the deprecation, as in this example:

[[deprecated("Unsafe method, please use xyz")]] void func();
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If you use this deprecated function, you’ll get a compilation error or warning. For example, GCC 
gives the following warning:

warning: 'void func()' is deprecated: Unsafe method, please use xyz 

[[likely]] and [[unlikely]]
These likelihood attributes can be used to help the compiler in optimizing the code. These attributes 
can, for example, be used to mark branches of if and switch statements according to how likely it 
is that a branch will be taken. Note that these attributes are rarely required. Compilers and hardware 
these days have powerful branch prediction to figure it out themselves, but in certain cases, such as 
performance critical code, you might have to help the compiler. The syntax is as follows:

int value { /* ... */ };
if (value > 11) [[unlikely]] { /* Do something ... */ }
else { /* Do something else... */ }
 
switch (value)
{
    [[likely]] case 1:
        // Do something ...
        break;
    case 2:
        // Do something...
        break;
    [[unlikely]] case 12:
        // Do something...
        break;
}

C-Style Arrays
Arrays hold a series of values, all of the same type, each of which can be accessed by its position in 
the array. In C++, you must provide the size of the array when the array is declared. You cannot give 
a variable as the size—it must be a constant, or a constant expression (constexpr). Constant expres-
sions are discussed later in this chapter. The code that follows shows the declaration of an array of 
three integers followed by three lines to initialize the elements to 0:

int myArray[3];
myArray[0] = 0;
myArray[1] = 0;
myArray[2] = 0;

WARNING In C++, the first element of an array is always at position 0, not 
position 1! The last position of the array is always the size of the array minus 1!

C++20
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The “Loops” section later in this chapter discusses how you could use loops to initialize each element 
of an array. However, instead of using loops or the previous initialization mechanism, you can also 
accomplish zero initialization with the following one-liner:

int myArray[3] = { 0 };

You can even drop the 0.

int myArray[3] = {};

Finally, the equal sign is optional as well, so you can write this:

int myArray[3] {};

An array can be initialized with an initializer list, in which case the compiler deduces the size of the 
array automatically. Here’s an example:

int myArray[] { 1, 2, 3, 4 }; // The compiler creates an array of 4 elements.

If you do specify the size of the array and the initializer list has fewer elements than the given size, 
the remaining elements are set to 0. For example, the following code sets only the first element in the 
array to the value 2 and sets all others to 0:

int myArray[3] { 2 };

To get the size of a stack-based C-style array, you can use the std::size() function (requires 
<array>). It returns a size_t, which is an unsigned integer type defined in <cstddef>. Here is 
an example:

size_t arraySize { std::size(myArray) };

An older trick to get the size of a stack-based C-style array was to use the sizeof operator. The 
sizeof operator returns the size of its argument in bytes. To get the number of elements in a stack-
based array, you divide the size in bytes of the array by the size in bytes of the first element. Here’s 
an example:

size_t arraySize { sizeof(myArray) / sizeof(myArray[0]) };

The preceding examples show a one-dimensional array, which you can think of as a line of inte-
gers, each with its own numbered compartment. C++ allows multidimensional arrays. You might 
think of a two-dimensional array as a checkerboard, where each location has a position along the 
x-axis and a position along the y-axis. Three-dimensional and higher arrays are harder to picture and 
are rarely used. The following code shows the syntax for creating a two-dimensional array of charac-
ters for a tic-tac-toe board and then putting an “o” in the center square:

char ticTacToeBoard[3][3];
ticTacToeBoard[1][1] = 'o';

Figure 1-1 shows a visual representation of this board with the position of each square.

NOTE In C++, it is best to avoid C-style arrays and instead use Standard 
Library functionality, such as std::array and vector, discussed in the next two 
sections.
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std::array
The arrays discussed in the previous section come from C and still work in C++. However, C++ has a 
special type of fixed-size container called std::array, defined in <array>. It’s basically a thin wrap-
per around C-style arrays.

There are a number of advantages to using std::arrays instead of C-style arrays. They always know 
their own size, are not automatically cast to a pointer to avoid certain types of bugs, and have itera-
tors to easily loop over the elements. Iterators are discussed in detail in Chapter 17, “Understanding 
Iterators and the Ranges Library.”

The following example demonstrates how to use the array container. The use of angle brackets  
after array, as in array<int, 3>, will become clear during the discussion of templates in  
Chapter 12, “Writing Generic Code with Templates.” However, for now, just remember that you have 
to specify two parameters between the angle brackets. The first parameter represents the type of the 
elements in the array, and the second one represents the size of the array.

array<int, 3> arr { 9, 8, 7 };
cout << format("Array size = {}", arr.size()) << endl;
cout << format("2nd element = {}", arr[1]) << endl;

C++ supports so-called class template argument deduction (CTAD), as discussed in detail in Chap-
ter 12. For now, it’s enough to remember that this allows you to avoid having to specify the template 
types between angle brackets for certain class templates. CTAD works only when using an initializer 
because the compiler uses this initializer to automatically deduce the template types. This works for 
std::array, allowing you to define the previous array as follows:

array arr { 9, 8, 7 };

NOTE Both the C-style arrays and the std::arrays have a fixed size, which 
must be known at compile time. They cannot grow or shrink at run time.

If you want an array with a dynamic size, it is recommended to use std::vector, as explained in the 
next section. A vector automatically increases in size when you add new elements to it.

FIGURE 1-1 
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std::vector
The C++ Standard Library provides a number of different non-fixed-size containers that can be used 
to store information. std::vector, declared in <vector>, is an example of such a container. The 
vector class replaces the concept of C-style arrays with a much more flexible and safer mechanism. 
As a user, you need not worry about memory management, as a vector automatically allocates 
enough memory to hold its elements. A vector is dynamic, meaning that elements can be added 
and removed at run time. Chapter 18, “Standard Library Containers,” goes into more detail regard-
ing containers, but the basic use of a vector is straightforward, which is why it’s introduced in the 
beginning of this book so that it can be used in examples. The following code demonstrates the basic 
functionality of vector:

// Create a vector of integers.
vector<int> myVector { 11, 22 };
 
// Add some more integers to the vector using push_back().
myVector.push_back(33);
myVector.push_back(44);
 
// Access elements.
cout << format("1st element: {}", myVector[0]) << endl;

myVector is declared as vector<int>. The angle brackets are required to specify the template param-
eters, just as with std::array. A vector is a generic container. It can contain almost any type of 
object, but all elements in a vector must be of the same type. This type is specified between the angle 
brackets. Templates are discussed in detail in Chapters 12 and 26, “Advanced Templates.”

Just as std::array, the vector class template supports CTAD, allowing you to define myVector 
as follows:

vector myVector { 11, 22 };

Again, an initializer is required for CTAD to work. The following is illegal:

vector myVector;

To add elements to a vector, you can use the push_back() method. Individual elements can be 
accessed using a similar syntax as for arrays, i.e., operator[].

std::pair
The std::pair class template is defined in <utility>. It groups together two values of possibly 
different types. The values are accessible through the first and second public data members. Here is 
an example:

pair<double, int> myPair { 1.23, 5 };
cout << format("{} {}", myPair.first, myPair.second);

pair also supports CTAD, so you can define myPair as follows:

pair myPair { 1.23, 5 };
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std::optional
std::optional, defined in <optional>, holds a value of a specific type, or nothing. It is introduced 
already in this first chapter as it is a useful type to use in some of the examples throughout the book.

Basically, optional can be used for parameters of a function if you want to allow for values to be 
optional. It is also often used as a return type from a function if the function can either return something 
or not. This removes the need to return “special” values from functions such as nullptr, end(), -1, EOF, 
and so on. It also removes the need to write the function as returning a Boolean, representing success or 
failure, while storing the actual result of the function in an argument passed to the function as an output 
parameter (a parameter of type reference-to-non-const discussed later in this chapter).

The optional type is a class template, so you have to specify the actual type that you need between 
angle brackets, as in optional<int>. This syntax is similar to how you specify the type stored in a 
vector, for example vector<int>.

Here is an example of a function returning an optional:

optional<int> getData(bool giveIt)
{
    if (giveIt) {
        return 42;
    }
    return nullopt;  // or simply return {};
}

You can call this function as follows:

optional<int> data1 { getData(true) };
optional<int> data2 { getData(false) };

To determine whether an optional has a value, use the has_value() method, or simply use the 
optional in an if statement:

cout << "data1.has_value = " << data1.has_value() << endl;
if (data2) {
    cout << "data2 has a value." << endl;
} 

If an optional has a value, you can retrieve it with value() or with the dereferencing operator:

cout << "data1.value = " << data1.value() << endl;
cout << "data1.value = " << *data1 << endl;

If you call value() on an empty optional, an std::bad_optional_access exception is thrown. 
Exceptions are introduced later in this chapter.

value_or() can be used to return either the value of an optional or another value when the 
optional is empty:

cout << "data2.value = " << data2.value_or(0) << endl;

Note that you cannot store a reference (discussed later in this chapter) in an optional, so 
optional<T&> does not work. Instead, you can store a pointer in an optional.
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Structured Bindings
Structured bindings allow you to declare multiple variables that are initialized with elements from, for 
example, an array, struct, or pair.

Assume you have the following array:

array values { 11, 22, 33 };

You can declare three variables, x, y, and z, initialized with the three values from the array as fol-
lows. Note that you have to use the auto keyword for structured bindings. You cannot, for example, 
specify int instead of auto.

auto [x, y, z] { values };

The number of variables declared with the structured binding has to match the number of values in 
the expression on the right.

Structured bindings also work with structs if all non-static members are public. Here’s an example:

struct Point { double m_x, m_y, m_z; };
Point point;
point.m_x = 1.0; point.m_y = 2.0; point.m_z = 3.0;
auto [x, y, z] { point };

As a final example, the following code snippet decomposes the elements of a pair into separate 
variables:

pair myPair { "hello", 5 };
auto [theString, theInt] { myPair };  // Decompose using structured bindings.
cout << format("theString: {}", theString) << endl;
cout << format("theInt: {}", theInt) << endl;

It is also possible to create a set of references-to-non-const or references-to-const using the struc-
tured bindings syntax, by using auto& or const auto& instead of auto. Both references-to-non-
const and references-to-const are discussed later in this chapter.

Loops
Computers are great for doing the same thing over and over. C++ provides four looping mechanisms: 
the while loop, do/while loop, for loop, and range-based for loop.

The while Loop
The while loop lets you perform a block of code repeatedly as long as an expression evaluates to 
true. For example, the following completely silly code will output “This is silly.” five times:

int i { 0 };
while (i < 5) {
    cout << "This is silly." << endl;
    ++i;
}



C++ Crash Course ❘ 39

The keyword break can be used within a loop to immediately get out of the loop and continue execu-
tion of the program. The keyword continue can be used to return to the top of the loop and reevalu-
ate the while expression. However, using continue in loops is often considered poor style because it 
causes the execution of a program to jump around somewhat haphazardly, so use it sparingly.

The do/while Loop
C++ also has a variation on the while loop called do/while. It works similarly to the while loop, 
except that the code to be executed comes first, and the conditional check for whether to continue 
happens at the end. In this way, you can use a loop when you want a block of code to always be 
executed at least once and possibly additional times based on some condition. The example that fol-
lows outputs the statement, “This is silly.” once, even though the condition ends up being false:

int i { 100 };
do {
    cout << "This is silly." << endl;
    ++i;
} while (i < 5);

The for Loop
The for loop provides another syntax for looping. Any for loop can be converted to a while loop, 
and vice versa. However, the for loop syntax is often more convenient because it looks at a loop in 
terms of a starting expression, an ending condition, and a statement to execute at the end of every 
iteration. In the following code, i is initialized to 0; the loop continues as long as i is less than 5; and 
at the end of every iteration, i is incremented by 1. This code does the same thing as the while loop 
example earlier but is more readable because the starting value, ending condition, and per-iteration 
statements are all visible on one line.

for (int i { 0 }; i < 5; ++i) {
    cout << "This is silly." << endl;
}

The Range-Based for Loop
The range-based for loop is the fourth looping mechanism. It allows for easy iteration over elements 
of a container. This type of loop works for C-style arrays, initializer lists (discussed later in this chap-
ter), and any type that has begin() and end() methods returning iterators (see Chapter 17), such as 
std::array, vector, and all other Standard Library containers discussed in Chapter 18, “Standard 
Library Containers.”

The following example first defines an array of four integers. The range-based for loop then iterates 
over a copy of every element in this array and prints out each value. To iterate over the elements 
themselves without making copies, use a reference variable, as discussed later in this chapter.

array arr { 1, 2, 3, 4 };

for (int i : arr) { cout << i << endl; } 
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Initializers for Range-Based for Loops
Starting with C++20, you can use initializers with range-based for loops, similar to initializers for if 
and switch statements. The syntax is as follows:

for (<initializer>; <for-range-declaration> : <for-range-initializer>) { <body> }

Any variables introduced in the <initializer> are available only in the <for-range-ini-
tializer> and in the <body>. They are not available outside the range-based for loop. Here is 
an example:

for (array arr { 1, 2, 3, 4 }; int i : arr) { cout << i << endl; }

Initializer Lists
Initializer lists are defined in <initializer_list> and make it easy to write functions that can 
accept a variable number of arguments. The std::initializer_list type is a class template, and 
so it requires you to specify the type of elements in the list between angle brackets, similar to how 
you specify the type of object stored in a vector. The following example shows how to use an ini-
tializer list:

import <initializer_list>;
 
using namespace std;
 
int makeSum(initializer_list<int> values)
{
    int total { 0 };
    for (int value : values) {
        total += value;
    }
    return total;
}

The function makeSum() accepts an initializer list of integers as argument. The body of the function 
uses a range-based for loop to accumulate the total sum. This function can be used as follows:

int a { makeSum({ 1, 2, 3 }) };
int b { makeSum({ 10, 20, 30, 40, 50, 60 }) };

Initializer lists are type safe. All elements in such a list must be of the same type. For the makeSum() 
function shown here, all elements of the initializer list must be integers. Trying to call it with a dou-
ble, as shown next, results in a compilation error or warning.

int c { makeSum({ 1, 2, 3.0 }) };

Strings in C++
There are two ways to work with strings in C++:

➤➤ The C style: Representing strings as arrays of characters

➤➤ The C++ style: Wrapping a C-style representation in an easier-to-use and safer string type

C++20
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Chapter 2 provides a detailed discussion. For now, the only thing you need to know is that the C++ 
std::string type is defined in <string> and that you can use a C++ string almost like a basic 
type. The following example shows that strings can be used just like character arrays:

string myString { "Hello, World" };
cout << format("The value of myString is {}", myString) << endl;
cout << format("The second letter is {}", myString[1]) << endl;

C++ as an Object-Oriented Language
If you are a C programmer, you may have viewed the features covered so far in this chapter as 
convenient additions to the C language. As the name C++ implies, in many ways the language is 
just a “better C.” There is one major point that this view overlooks: unlike C, C++ is an object-ori-
ented language.

Object-oriented programming (OOP) is a different, arguably more natural, way to write code. If 
you are used to procedural languages such as C or Pascal, don’t worry. Chapter 5, “Designing with 
Objects,” covers all the background information you need to know to shift your mindset to the 
object-oriented paradigm. If you already know the theory of OOP, the rest of this section will get you 
up to speed (or refresh your memory) on basic C++ object syntax.

Defining Classes
A class defines the characteristics of an object. In C++, classes are usually defined and exported from 
a module interface file (.cppm), while their definitions can either be directly in the same module 
interface file or be in a corresponding module implementation file (.cpp). Chapter 11 discusses mod-
ules in depth.

A basic class definition for an airline ticket class is shown in the following example. The class can 
calculate the price of the ticket based on the number of miles in the flight and whether the customer is 
a member of the Elite Super Rewards Program.

The definition begins by declaring the class name. Inside a set of curly braces, the data members 
(properties) of the class and its methods (behaviors) are declared. Each data member and method 
is associated with a particular access level: public, protected, or private. These labels can occur 
in any order and can be repeated. Members that are public can be accessed from outside the class, 
while members that are private cannot be accessed from outside the class. It’s recommended to 
make all your data members private, and if needed, to give access to them with public or pro-
tected getters and setters. This way, you can easily change the representation of your data while 
keeping the public/protected interface the same. The use of protected is explained in the context 
of inheritance in Chapters 5 and 10.

Remember, when writing a module interface file, don’t forget to use an export module declaration 
to specify which module you are writing, and don’t forget to explicitly export the types you want to 
make available to users of your module.

export module airline_ticket;
 
import <string>;
 

continues
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export class AirlineTicket
{
    public:
        AirlineTicket();
        ~AirlineTicket();
 
        double calculatePriceInDollars();
 
        std::string getPassengerName();
        void setPassengerName(std::string name);
 
        int getNumberOfMiles();
        void setNumberOfMiles(int miles);
 
        bool hasEliteSuperRewardsStatus();
        void setHasEliteSuperRewardsStatus(bool status);
    private:
        std::string m_passengerName;
        int m_numberOfMiles;
        bool m_hasEliteSuperRewardsStatus;
};

This book follows the convention to prefix each data member of a class with a lowercase m followed 
by an underscore, such as m_passengerName.

The method that has the same name as the class with no return type is a constructor. It is automati-
cally called when an object of the class is created. The method with a tilde (~) character followed by 
the class name is a destructor. It is automatically called when the object is destroyed.

The .cppm module interface file defines the class, while the implementations of the methods in this 
example are in a .cpp module implementation file. This source file starts with the following module 
declaration to tell the compiler that this is a source file for the airline_ticket module:

module airline_ticket;

There are several ways to initialize data members of a class. One way is to use a constructor initial-
izer, which follows a colon after the constructor name. Here is the AirlineTicket constructor with 
a constructor initializer:

AirlineTicket::AirlineTicket()
    : m_passengerName { "Unknown Passenger" }
    , m_numberOfMiles { 0 }
    , m_hasEliteSuperRewardsStatus { false }
{
}

A second option is to put the initializations in the body of the constructor, as shown here:

AirlineTicket::AirlineTicket()
{
    // Initialize data members.
    m_passengerName = "Unknown Passenger";
    m_numberOfMiles = 0;
    m_hasEliteSuperRewardsStatus = false;
}

(continued)
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However, if the constructor is only initializing data members without doing anything else, then there 
is actually no real need for a constructor because data members can be initialized directly inside a 
class definition, also known as in-class initializers. For example, instead of writing an AirlineTicket 
constructor, you can modify the definition of the data members in the class definition to initialize 
them as follows:

    private:
        std::string m_passengerName { "Unknown Passenger" };
        int m_numberOfMiles { 0 };
        bool m_hasEliteSuperRewardsStatus { false };

If your class additionally needs to perform some other types of initialization, such as opening a 
file, allocating memory, and so on, then you still need to write a constructor to handle those ini-
tializations.

Here is the destructor for the AirlineTicket class:

AirlineTicket::~AirlineTicket()
{
    // Nothing to do in terms of cleanup
}

This destructor doesn’t do anything and can simply be removed from this class. It is just shown here 
so you know the syntax of destructors. Destructors are required if you need to perform some cleanup, 
such as closing files, freeing memory, and so on. Chapters 8, “Gaining Proficiency with Classes and 
Objects,” and 9 discuss destructors in more detail.

The definitions of some of the other AirlineTicket class methods are shown here:

double AirlineTicket::calculatePriceInDollars()
{
    if (hasEliteSuperRewardsStatus()) {
        // Elite Super Rewards customers fly for free!
        return 0;
    }
    // The cost of the ticket is the number of miles times 0.1.
    // Real airlines probably have a more complicated formula!
    return getNumberOfMiles() * 0.1;
}
 
string AirlineTicket::getPassengerName() { return m_passengerName; }
void AirlineTicket::setPassengerName(string name) { m_passengerName = name; }
// Other get and set methods have a similar implementation.

As mentioned in the beginning of this section, it’s also possible to put the method implementations 
directly in the module interface file. The syntax is as follows:

export class AirlineTicket
{
    public:
        double calculatePriceInDollars()
        {
            if (hasEliteSuperRewardsStatus()) { return 0; }
            return getNumberOfMiles() * 0.1;
        }
 continues
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        std::string getPassengerName() { return m_passengerName; }
        void setPassengerName(std::string name) { m_passengerName = name; }
 
        int getNumberOfMiles() { return m_numberOfMiles; }
        void setNumberOfMiles(int miles) { m_numberOfMiles = miles; }
 
        bool hasEliteSuperRewardsStatus() { return m_hasEliteSuperRewardsStatus; }
        void setHasEliteSuperRewardsStatus(bool status)
        {
            m_hasEliteSuperRewardsStatus = status;
        }
    private:
        std::string m_passengerName { "Unknown Passenger" };
        int m_numberOfMiles { 0 };
        bool m_hasEliteSuperRewardsStatus { false };
};

Using Classes
To use the AirlineTicket class, you first need to import its module:

import airline_ticket;

The following sample program makes use of the class. This example shows the creation of a stack-
based AirlineTicket object:

AirlineTicket myTicket; 
myTicket.setPassengerName("Sherman T. Socketwrench");
myTicket.setNumberOfMiles(700);
double cost { myTicket.calculatePriceInDollars() };
cout << format("This ticket will cost ${}", cost) << endl;

The preceding example exposes you to the general syntax for creating and using classes. Of course, 
there is much more to learn. Chapters 8, 9, and 10 go into more depth about the specific C++ mecha-
nisms for defining classes.

Scope Resolution
As a C++ programmer, you need to familiarize yourself with the concept of a scope. Every name in 
your program, including variable, function, and class names, is in a certain scope. You create scopes 
with namespaces, function definitions, blocks delimited by curly braces, and class definitions. Vari-
ables that are initialized in the initialization statement of for loops and range-based for loops are 
scoped to that for loop and are not visible outside the for loop. Similarly, variables initialized in an 
initializer for if or switch statements are scoped to that if or switch statement and are not visible 
outside that statement. When you try to access a variable, function, or class, the name is first looked 
up in the nearest enclosing scope, then the next scope, and so forth, up to the global scope. Any 
name not in a namespace, function, block delimited by curly braces, or class is assumed to be in the 
global scope. If it is not found in the global scope, at that point the compiler generates an undefined 
symbol error.

Sometimes names in scopes hide identical names in other scopes. Other times, the scope you 
want is not part of the default scope resolution from that particular line in the program. If you 

(continued)
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don’t want the default scope resolution for a name, you can qualify the name with a specific scope 
using the scope resolution operator ::. The following example demonstrates this. The example 
defines a class Demo with a get() method, a get() function that is globally scoped, and a get() 
function that is in the NS namespace.

class Demo
{
    public:
        int get() { return 5; }
};
 
int get() { return 10; }
 
namespace NS
{
    int get() { return 20; }
}

The global scope is unnamed, but you can access it specifically by using the scope resolution operator 
by itself (with no name prefix). The different get() functions can be called as follows. In this exam-
ple, the code itself is in the main() function, which is always in the global scope:

int main()
{
    Demo d;
    cout << d.get() << endl;      // prints 5
    cout << NS::get() << endl;    // prints 20
    cout << ::get() << endl;      // prints 10
    cout << get() << endl;        // prints 10
}

Note that if the namespace called NS is defined as an unnamed/anonymous namespace, then the fol-
lowing line will cause a compilation error about ambiguous name resolution because you would have 
a get() defined in the global scope, and another get() defined in the unnamed namespace.

cout << get() << endl;

The same error occurs if you add the following using directive right before the main() function:

using namespace NS;

Uniform Initialization
Before C++11, initialization of types was not always uniform. For example, take the following defini-
tions of a circle, once as a structure, and once as a class:

struct CircleStruct
{
    int x, y;
    double radius;
};
 
class CircleClass
{
    public:

continues
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        CircleClass(int x, int y, double radius)
            : m_x { x }, m_y { y }, m_radius { radius } {}
    private:
        int m_x, m_y;
        double m_radius;
};

In pre-C++11, initialization of a variable of type CircleStruct and a variable of type CircleClass 
looked different:

CircleStruct myCircle1 = { 10, 10, 2.5 };
CircleClass myCircle2(10, 10, 2.5);

For the structure version, you can use the {...} syntax. However, for the class version, you needed to 
call the constructor using function notation: (...).

Since C++11, you can more uniformly use the {...} syntax to initialize types, as follows:

CircleStruct myCircle3 = { 10, 10, 2.5 };
CircleClass myCircle4 = { 10, 10, 2.5 };

The definition of myCircle4 automatically calls the constructor of CircleClass. Even the use of the 
equal sign is optional, so the following are identical:

CircleStruct myCircle5 { 10, 10, 2.5 };
CircleClass myCircle6 { 10, 10, 2.5 };

As another example, in the section “Structs” earlier in this chapter, an Employee structure is initial-
ized as follows:

Employee anEmployee;
anEmployee.firstInitial = 'J';
anEmployee.lastInitial = 'D';
anEmployee.employeeNumber = 42;
anEmployee.salary = 80'000;

With uniform initialization, this can be rewritten as follows:

Employee anEmployee { 'J', 'D', 42, 80'000 };

Uniform initialization is not limited to structures and classes. You can use it to initialize almost any-
thing in C++. For example, the following code initializes all four variables with the value 3:

int a = 3;
int b(3);
int c = { 3 };  // Uniform initialization
int d { 3 };    // Uniform initialization

Uniform initialization can be used to perform zero-initialization3 of variables; you just specify an 
empty set of curly braces, as shown here:

int e { };      // Uniform initialization, e will be 0

3 Zero-initialization constructs objects with the default constructor and initializes primitive integer types (such as char, 
int, and so on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

(continued)
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A benefit of using uniform initialization is that it prevents narrowing. When using the old-style 
assignment syntax to initialize variables, C++ implicitly performs narrowing, as shown here:

void func(int i) { /* ... */ }
 
int main()
{
    int x = 3.14;
    func(3.14);
}

For both lines in main(), C++ automatically truncates 3.14 to 3 before assigning it to x or calling 
func(). Note that some compilers might issue a warning about this narrowing, while others won’t. In 
any case, narrowing conversions should not go unnoticed, as they might cause subtle or not so subtle 
bugs. With uniform initialization, both the assignment to x and the call to func() must generate a 
compilation error if your compiler fully conforms to the C++11 standard:

int x { 3.14 };    // Error because narrowing
func({ 3.14 });    // Error because narrowing

If a narrowing cast is what you need, I recommend using the gsl::narrow_cast() function avail-
able in the Guidelines Support Library (GSL).4

Uniform initialization can be used to initialize dynamically allocated arrays, as shown here:

int* myArray = new int[4] { 0, 1, 2, 3 };

And since C++20, you can drop the size of the array, 4, as follows:

int* myArray = new int[] { 0, 1, 2, 3 };

It can also be used in the constructor initializer to initialize arrays that are members of a class.

class MyClass
{
    public:
        MyClass() : m_array { 0, 1, 2, 3 } {}
    private:
        int m_array[4];
};

Uniform initialization can be used with the Standard Library containers as well—such as 
std::vector, already demonstrated earlier in this chapter.

NOTE Considering all these benefits, it is recommended to use uniform initiali-
zation over using the assignment syntax to initialize variables. Hence, this book 
uses uniform initialization wherever possible.

 

4 A header-only implementation of the GSL can be found at github.com/Microsoft/GSL.
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Designated Initializers
C++20 introduces designated initializers to initialize data members of so-called aggregates using their 
name. An aggregate type is an object of an array type, or an object of a structure or class that satisfies 
the following restrictions: only public data members, no user-declared or inherited constructors, no 
virtual functions (see Chapter 10), and no virtual, private, or protected base classes (see Chap-
ter 10). A designated initializer starts with a dot followed by the name of a data member. Designated 
initializers must be in the same order as the declaration order of the data members. Mixing desig-
nated initializers and non-designated initializers is not allowed. Any data members that are not initial-
ized using a designated initializer are initialized with their default values, which means the following:

➤➤ Data members that have an in-class initializer will get that value.

➤➤ Data members that do not have an in-class initializer are zero initialized.

Let’s take a look at a slightly modified Employee structure. This time the salary data member has a 
default value of 75,000.

struct Employee {
    char firstInitial;
    char lastInitial;
    int  employeeNumber;
    int  salary { 75'000 };
};

Earlier in this chapter, such an Employee structure is initialized using a uniform initialization syntax 
as follows:

Employee anEmployee { 'J', 'D', 42, 80'000 };

Using designated initializers, this can be written as follows:

Employee anEmployee {
    .firstInitial = 'J',
    .lastInitial = 'D',
    .employeeNumber = 42,
    .salary = 80'000
};

A benefit of using such designated initializers is that it’s much easier to understand what a designated 
initializer is initializing compared to using the uniform initialization syntax.

With designated initializers, you can skip initialization of certain members if you are satisfied with 
their default values. For example, when creating an employee, you could skip initializing employee-
Number, in which case employeeNumber is zero initialized as it doesn’t have an in-class initializer:

Employee anEmployee {
    .firstInitial = 'J',
    .lastInitial = 'D',
    .salary = 80'000
};

With the uniform initialization syntax, this is not possible, and you have to specify 0 for the employee 
number as follows:

Employee anEmployee { 'J', 'D', 0, 80'000 };

C++20
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If you skip initializing the salary data member as follows, then salary gets its default value, which 
is its in-class initialization value, 75,000:

Employee anEmployee {
    .firstInitial = 'J',
    .lastInitial = 'D'
};

A final benefit of using designated initializers is that when members are added to the data structure, 
existing code using designated initializers keeps working. The new data members will just be initial-
ized with their default values.

Pointers and Dynamic Memory
Dynamic memory allows you to build programs with data that is not of fixed size at compile time. 
Most nontrivial programs make use of dynamic memory in some form.

The Stack and the Free Store
Memory in your C++ application is divided into two parts—the stack and the free store. One way 
to visualize the stack is as a deck of cards. The current top card represents the current scope of the 
program, usually the function that is currently being executed. 
All variables declared inside the current function will take up 
memory in the top stack frame, the top card of the deck. If the 
current function, which I’ll call foo(), calls another function 
bar(), a new card is put on the deck so that bar() has its own 
stack frame to work with. Any parameters passed from foo() 
to bar() are copied from the foo() stack frame into the bar() 
stack frame. Figure 1-2 shows what the stack might look like 
during the execution of a hypothetical function foo() that has 
declared two integer values.

Stack frames are nice because they provide an isolated memory workspace for each function. If a vari-
able is declared inside the foo() stack frame, calling the bar() function won’t change it unless you 
specifically tell it to. Also, when the foo() function is done running, the stack frame goes away, and 
all of the variables declared within the function no longer take up memory. Variables that are stack-
allocated do not need to be deallocated (deleted) by the programmer; it happens automatically.

The free store is an area of memory that is completely independent of the current function or stack 
frame. You can put variables on the free store if you want them to exist even when the function in 
which they were created has completed. The free store is less structured than the stack. You can think 
of it as just a pile of bits. Your program can add new bits to the pile at any time or modify bits that 
are already on the pile. You have to make sure that you deallocate (delete) any memory that you allo-
cated on the free store. This does not happen automatically, unless you use smart pointers, which are 
discussed in detail in Chapter 7, “Memory Management.”

int i

int j

7

11

foo()

main()

FIGURE 1-2 
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WARNING Pointers are introduced here because you will encounter them, espe-
cially in legacy code bases. In new code, however, such raw/naked pointers are 
allowed only if there is no ownership involved. Otherwise, you should use one of 
the smart pointers explained in Chapter 7.

Working with Pointers
You can put anything on the free store by explicitly allocating memory for it. For example, to put an 
integer on the free store, you need to allocate memory for it, but first you need to declare a pointer:

int* myIntegerPointer;

The * after the int type indicates that the variable you are declaring refers or points to some integer 
memory. Think of the pointer as an arrow that points at the dynamically allocated free store memory. 
It does not yet point to anything specific because you haven’t assigned it to anything; it is an unini-
tialized variable. Uninitialized variables should be avoided at all times, and especially uninitialized 
pointers because they point to some random place in memory. Working with such pointers will most 
likely make your program crash. That’s why you should always declare and initialize your pointers 
at the same time! You can initialize them to a null pointer (nullptr—for more information, see the 
“Null Pointer Constant” section) if you don’t want to allocate memory right away:

int* myIntegerPointer { nullptr };

A null pointer is a special default value that no valid pointer will ever have and converts to false 
when used in a Boolean expression. Here’s an example:

if (!myIntegerPointer) { /* myIntegerPointer is a null pointer. */ }

You use the new operator to allocate the memory:

myIntegerPointer = new int;

In this case, the pointer points to the address of just a single integer value. To access this value, you 
need to dereference the pointer. Think of dereferencing as following the pointer’s arrow to the actual 
value on the free store. To set the value of the newly allocated free store integer, you would use code 
like the following:

*myIntegerPointer = 8;

Notice that this is not the same as setting myIntegerPointer to the value 8. You are not changing 
the pointer; you are changing the memory that it points to. If you were to reassign the pointer value, 
it would point to the memory address 8, which is probably random garbage that will eventually make 
your program crash.

After you are finished with your dynamically allocated memory, you need to deallocate the memory 
using the delete operator. To prevent the pointer from being used after having deallocated the 
memory it points to, it’s recommended to set it to nullptr:

delete myIntegerPointer;
myIntegerPointer = nullptr;
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WARNING A pointer must be valid before it is dereferenced. Dereferencing a 
null pointer or an uninitialized pointer causes undefined behavior. Your program 
might crash, but it might just as well keep running and start giving strange 
results.

Pointers don’t always point to free store memory. You can declare a pointer that points to a vari-
able on the stack, even another pointer. To get a pointer to a variable, you use the & (“address 
of”) operator:

int i { 8 };
int* myIntegerPointer { &i };  // Points to the variable with the value 8

C++ has a special syntax for dealing with pointers to structures or classes. Technically, if you have 
a pointer to a structure or a class, you can access its fields by first dereferencing it with *, and then 
using the normal . syntax, as in the code that follows. The code snippet assumes the existence of a 
function called getEmployee() returning a pointer to an Employee instance.

Employee* anEmployee { getEmployee() };
cout << (*anEmployee).salary << endl;

This syntax is a little messy. The -> (arrow) operator lets you perform both the dereference and the 
field access in one step. The following code is equivalent to the previous code but is easier to read:

Employee* anEmployee { getEmployee() };
cout << anEmployee->salary << endl;

Remember the concept of short-circuiting logic, discussed earlier in this chapter? This can be useful in 
combination with pointers to avoid using an invalid pointer, as in the following example:

bool isValidSalary { (anEmployee && anEmployee->salary > 0) };

Or, here it is a little bit more verbose:

bool isValidSalary { (anEmployee != nullptr && anEmployee->salary > 0) };

anEmployee is dereferenced to get the salary only if it is a valid pointer. If it is a null pointer, the logi-
cal operation short-circuits, and the anEmployee pointer is not dereferenced.

Dynamically Allocated Arrays
The free store can also be used to dynamically allocate arrays. You use the new[] operator to allocate 
memory for an array.

int arraySize { 8 };
int* myVariableSizedArray { new int[arraySize] };

This allocates enough memory to hold arraySize integers. Figure 1-3 shows what the stack and the 
free store both look like after this code is executed. As you can see, the pointer variable still resides on 
the stack, but the array that was dynamically created lives on the free store.
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Now that the memory has been allocated, you can work with myVariableSizedArray as though it 
were a regular stack-based array:

myVariableSizedArray[3] = 2;

When your code is done with the array, it should remove the array from the free store so that other 
variables can use the memory. In C++, you use the delete[] operator to do this:

delete[] myVariableSizedArray;
myVariableSizedArray = nullptr;

The brackets after delete indicate that you are deleting an array!

NOTE Avoid using malloc() and free() from C. Instead, use new and delete, 
or new[] and delete[].

WARNING To prevent memory leaks, every call to new should be paired with a 
call to delete, and every call to new[] should be paired with a call to delete[]. 
Not calling delete or delete[], or mismatching calls, results in memory leaks or 
worse. Memory leaks are discussed in Chapter 7.

Null Pointer Constant
Before C++11, the constant NULL was used for null pointers. NULL is simply defined as the constant 0, 
and this can cause problems. Take the following example:

void func(int i) { cout << "func(int)" << endl; }
 

FIGURE 1-3 
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int main()
{
    func(NULL);
}

The code defines a function func() with a single integer parameter. The main() function calls 
func() with argument NULL, which is supposed to be a null pointer constant. However, since NULL is 
not a real pointer, but identical to the integer 0, it triggers a call to func(int). This might be unex-
pected behavior. Hence, some compilers even give a warning about this.

This problem is avoided by using a real null pointer constant, nullptr. The following code uses this 
real null pointer constant and causes a compilation error because there is no overload of func() 
accepting a pointer:

func(nullptr);

The Use of const
The keyword const can be used in a few different ways in C++. Its uses are related, but there are 
subtle differences. The subtleties of const make for excellent interview questions!

Basically, the keyword const is short for “constant” and specifies that something remains unchanged. 
The compiler enforces this requirement by marking any attempt to change it as an error. Further-
more, when optimizations are enabled, the compiler can take advantage of this knowledge to produce 
better code.

const as a Qualifier for a Type
If you assumed that the keyword const has something to do with constants, you have correctly 
uncovered one of its uses. In the C language, programmers often use the preprocessor #define mech-
anism to declare symbolic names for values that won’t change during the execution of the program, 
such as the version number. In C++, programmers are encouraged to avoid #define in favor of using 
const to define constants. Defining a constant with const is just like defining a variable, except that 
the compiler guarantees that code cannot change the value. Here are some examples:

const int versionNumberMajor { 2 };
const int versionNumberMinor { 1 };
const std::string productName { "Super Hyper Net Modulator" };
const double PI { 3.141592653589793238462 };

You can mark any variable const, including global variables and class data members.

const with Pointers
When a variable contains one or more levels of indirection via a pointer, applying const becomes 
trickier. Consider the following lines of code:

int* ip;
ip = new int[10];
ip[4] = 5;
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Suppose that you decide to apply const to ip. Set aside your doubts about the usefulness of doing so 
for a moment, and consider what it means. Do you want to prevent the ip variable itself from being 
changed, or do you want to prevent the values to which it points from being changed? That is, do you 
want to prevent the second line or the third line?

To prevent the pointed-to values from being modified (as in the third line), you can add the keyword 
const to the declaration of ip like this:

const int* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!

Now you cannot change the values to which ip points. An alternative but semantically equivalent 
way to write this is as follows:

int const* ip;
ip = new int[10];
ip[4] = 5; // DOES NOT COMPILE!

Putting the const before or after the int makes no difference in its functionality.

If you instead want to mark ip itself const (not the values to which it points), you need to write this:

int* const ip { nullptr };
ip = new int[10]; // DOES NOT COMPILE!
ip[4] = 5;        // Error: dereferencing a null pointer

Now that ip itself cannot be changed, the compiler requires you to initialize it when you declare it, 
either with nullptr as in the preceding code or with newly allocated memory as follows:

int* const ip { new int[10] };
ip[4] = 5;

You can also mark both the pointer and the value to which it points const like this:

int const* const ip { nullptr };

Here is an alternative but equivalent syntax:

const int* const ip { nullptr };

Although this syntax might seem confusing, there is actually a simple rule: the const keyword applies 
to whatever is directly to its left. Consider this line again:

int const* const ip { nullptr };

From left to right, the first const is directly to the right of the word int. Thus, it applies to the int 
to which ip points. Therefore, it specifies that you cannot change the values to which ip points. The 
second const is directly to the right of the *. Thus, it applies to the pointer to the int, which is the 
ip variable. Therefore, it specifies that you cannot change ip (the pointer) itself.

The reason this rule becomes confusing is an exception. That is, the first const can go before the vari-
able like this:

const int* const ip { nullptr };

This “exceptional” syntax is used much more commonly than the other syntax.
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You can extend this rule to any number of levels of indirection, as in this example:

const int * const * const * const ip { nullptr };

NOTE Here is another easy-to-remember rule to figure out complicated variable 
declarations: read from right to left. For example, int* const ip reads from 
right to left as “ip is a const pointer to an int.” Further, int const* ip reads 
as “ip is a pointer to a const int,” and const int* ip reads as “ip is a pointer 
to an int constant.”

const to Protect Parameters
In C++, you can cast a non-const variable to a const variable. Why would you want to do this? It 
offers some degree of protection from other code changing the variable. If you are calling a func-
tion that a co-worker of yours is writing and you want to ensure that the function doesn’t change 
the value of an argument you pass in, you can tell your co-worker to have the function take a const 
parameter. If the function attempts to change the value of the parameter, it will not compile.

In the following code, a string* is automatically cast to a const string* in the call to mystery-
Function(). If the author of mysteryFunction() attempts to change the value of the passed string, 
the code will not compile. There are ways around this restriction, but using them requires conscious 
effort. C++ only protects against accidentally changing const variables.

void mysteryFunction(const string* someString)
{
    *someString = "Test";  // Will not compile
}
 
int main()
{
    string myString { "The string" };
    mysteryFunction(&myString);
}

You can also use const on primitive-type parameters to prevent accidentally changing them in the 
body of the function. For example, the following function has a const integer parameter. In the body 
of the function, you cannot modify the param integer. If you do try to modify it, the compiler will 
generate an error.

void func(const int param) { /* Not allowed to change param... */ }

const Methods
A second use of the const keyword is to mark class methods as const, preventing them from modi-
fying data members of the class. The AirlineTicket class introduced earlier can be modified to 
mark all read-only methods as const. If any of the const methods tries to modify one of the Airli-
neTicket data members, the compiler will emit an error.

export class AirlineTicket
{

continues
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    public:
        double calculatePriceInDollars() const;
 
        std::string getPassengerName() const;
        void setPassengerName(std::string name);
 
        int getNumberOfMiles() const;
        void setNumberOfMiles(int miles);
 
        bool hasEliteSuperRewardsStatus() const;
        void setHasEliteSuperRewardsStatus(bool status);
    private:
        std::string m_passengerName { "Unknown Passenger" };
        int m_numberOfMiles { 0 };
        bool m_hasEliteSuperRewardsStatus { false };
};
 
string AirlineTicket::getPassengerName() const
{
    return m_passengerName;
}
// Other methods omitted...

NOTE To follow the const-correctness principle, it’s recommended to declare 
member functions that do not change any data members of the object as being 
const. These member functions are also called inspectors, compared to mutators 
for non-const member functions.

The constexpr Keyword
C++ always had the notion of constant expressions, which are expressions evaluated at compile time. 
In some circumstances, constant expressions are a requirement. For example, when defining an array, 
the size of the array needs to be a constant expression. Because of this restriction, the following piece 
of code is not valid in C++:

const int getArraySize() { return 32; }
 
int main()
{
    int myArray[getArraySize()];    // Invalid in C++
}

Using the constexpr keyword, the getArraySize() function can be redefined to allow it to be 
called from within a constant expression:

constexpr int getArraySize() { return 32; }
 
int main()
{
    int myArray[getArraySize()];    // OK
}

(continued)
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You can even do something like this:

int myArray[getArraySize() + 1];    // OK

Declaring a function as constexpr imposes quite a lot of restrictions on what the function can  
do because the compiler has to be able to evaluate the function at compile time. For example, a 
constexpr function is allowed to call other constexpr functions but is not allowed to call any non-
constexpr functions. Such a function is not allowed to have any side effects, nor can it throw any 
exceptions. constexpr functions are an advanced feature of C++, and hence not discussed in further 
details in this book.

By defining a constexpr constructor, you can create constant-expression variables of user-defined 
types. As with constexpr functions, constexpr classes carry a lot of restrictions, again not further 
discussed in this book. However, to give you an idea of what is possible, here is an example. The fol-
lowing Rect class defines a constexpr constructor. It also defines a constexpr getArea() method 
that is performing some calculation.

class Rect
{
    public:
        constexpr Rect(size_t width, size_t height)
            : m_width { width }, m_height { height } {}
 
        constexpr size_t getArea() const { return m_width * m_height; }
    private:
        size_t m_width { 0 }, m_height { 0 };
};

Using this class to declare a constexpr object is straightforward.

constexpr Rect r { 8, 2 };

int myArray[r.getArea()];    // OK 

The consteval Keyword
The constexpr keyword discussed in the previous section specifies that a function could be executed 
at compile time, but it does not guarantee compile-time execution. Take the following constexpr  
function:

constexpr double inchToMm(double inch) { return inch * 25.4; }

If called as follows, the function is evaluated at compile time as desired:

constexpr double const_inch { 6.0 };
constexpr double mm1 { inchToMm(const_inch) };    // at compile time

However, if called as followed, the function is not evaluated at compile time, but at run time!

double dynamic_inch { 8.0 };
double mm2 { inchToMm(dynamic_inch) };  // at run time

C++20
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If you really want the guarantee that a function is always evaluated at compile time, you need to use 
the C++20 consteval keyword to turn a function into a so-called immediate function. The inch-
ToMm() function can be changed as follows:

consteval double inchToMm(double inch) { return inch * 25.4; }

Now, the first call to inchToMm() earlier still compiles fine and results in compile-time evalua-
tion. However, the second call now results in a compilation error because it cannot be evaluated at 
compile time.

References
Professional C++ code, including much of the code in this book, uses references extensively. A refer-
ence in C++ is an alias for another variable. All modifications to the reference change the value of the 
variable to which it refers. You can think of references as implicit pointers that save you the trouble 
of taking the address of variables and dereferencing the pointer. Alternatively, you can think of refer-
ences as just another name for the original variable. You can create stand-alone reference variables, 
use reference data members in classes, accept references as parameters to functions and methods, and 
return references from functions and methods.

Reference Variables
Reference variables must be initialized as soon as they are created, like this:

int x { 3 };
int& xRef { x };

Attaching & to a type indicates that the variable is a reference. It is still used as though it was a nor-
mal variable, but behind the scenes, it is really a pointer to the original variable. Both the variable x 
and the reference variable xRef point to exactly the same value; i.e., xRef is just another name for x.  
If you change the value through either one of them, the change is visible through the other one as 
well. For example, the following code sets x to 10 through xRef:

xRef = 10;

You cannot declare a reference variable outside of a class definition without initializing it.

int& emptyRef; // DOES NOT COMPILE!

WARNING A reference variable must always be initialized when it’s created.

Modifying References
A reference always refers to the same variable to which it is initialized; references cannot be changed 
once they are created. The syntax might be confusing for beginning C++ programmers. If you assign a 
variable to a reference when the reference is declared, the reference refers to that variable. However, if 
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you assign a variable to a reference after that, the variable to which the reference refers is changed to 
the value of the variable being assigned. The reference is not updated to refer to that variable. Here is 
a code example:

int x { 3 }, y { 4 };
int& xRef { x };
xRef = y; // Changes value of x to 4. Doesn't make xRef refer to y.

You might try to circumvent this restriction by taking the address of y when you assign it:

xRef = &y; // DOES NOT COMPILE!

This code does not compile. The address of y is a pointer, but xRef is declared as a reference to an 
int, not a reference to a pointer.

Some programmers go even further in their attempts to circumvent the intended semantics of refer-
ences. What if you assign a reference to a reference? Won’t that make the first reference refer to the 
variable to which the second reference refers? You might be tempted to try this code:

int x { 3 }, z { 5 };
int& xRef { x };
int& zRef { z };
zRef = xRef; // Assigns values, not references

The final line does not change zRef. Instead, it sets the value of z to 3, because xRef refers to x, 
which is 3.

WARNING Once a reference is initialized to refer to a specific variable, you 
cannot change the reference to refer to another variable; you can change only the 
value of the variable the reference refers to.

References-to-const
const applied to references is usually easier than const applied to pointers for two reasons. First, ref-
erences are const by default, in that you can’t change to what they refer. So, there is no need to mark 
them const explicitly. Second, you can’t create a reference to a reference, so there is usually only one 
level of indirection with references. The only way to get multiple levels of indirection is to create a 
reference to a pointer.

Thus, when C++ programmers refer to a reference-to-const, they mean something like this:

int z;
const int& zRef { z };
zRef = 4; // DOES NOT COMPILE

By applying const to the int&, you prevent assignment to zRef, as shown. Similar to pointers, const 
int& zRef is equivalent to int const& zRef. Note, however, that marking zRef const has no 
effect on z. You can still modify the value of z by changing it directly instead of through the reference.
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You cannot create a reference to an unnamed value, such as an integer literal, unless the reference is 
to a const value. In the following example, unnamedRef1 does not compile because it is a reference-
to-non-const referring to a constant. That would mean you could change the value of the constant, 
5, which doesn’t make sense. unnamedRef2 works because it’s a reference-to-const, so you cannot for 
example write unnamedRef2 = 7.

int& unnamedRef1 { 5 };       // DOES NOT COMPILE
const int& unnamedRef2 { 5 }; // Works as expected

The same holds for temporary objects. You cannot create a reference-to-non-const to a temporary 
object, but a reference-to-const is fine. For example, suppose you have the following function return-
ing an std::string object:

string getString() { return "Hello world!"; }

You can create a reference-to-const to the result of calling getString(), and that reference keeps 
the temporary std::string object alive until the reference goes out of scope:

string& string1 { getString() };       // DOES NOT COMPILE
const string& string2 { getString() }; // Works as expected

References to Pointers and Pointers to References
You can create references to any type, including pointer types. Here is an example of a reference to a 
pointer to int:

int* intP { nullptr };
int*& ptrRef { intP };
ptrRef = new int;
*ptrRef = 5;

The syntax is a little strange: you might not be accustomed to seeing * and & right next to each other. 
However, the semantics are straightforward: ptrRef is a reference to intP, which is a pointer to int. 
Modifying ptrRef changes intP. References to pointers are rare but can occasionally be useful, as 
discussed in the “Reference Parameters” section later in this chapter.

Taking the address of a reference gives the same result as taking the address of the variable to which 
the reference refers. Here is an example:

int x { 3 };
int& xRef { x };
int* xPtr { &xRef }; // Address of a reference is pointer to value.
*xPtr = 100;

This code sets xPtr to point to x by taking the address of a reference to x. Assigning 100 to *xPtr 
changes the value of x to 100. Writing the comparison xPtr == xRef will not compile because of 
a type mismatch; xPtr is a pointer to an int, while xRef is a reference to an int. The comparisons 
xPtr == &xRef and xPtr == &x both compile without errors and are both true.

Finally, note that you cannot declare a reference to a reference or a pointer to a reference. For exam-
ple, neither int& & nor int&* is allowed.
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Structured Bindings and References
Structured bindings are introduced earlier in this chapter. One of the examples given was the 
following:

pair myPair { "hello", 5 };
auto [theString, theInt] { myPair };  // Decompose using structured bindings

Now that you know about references and const variables, it’s time to learn that both can be com-
bined with structured bindings as well. Here’s an example:

auto& [theString, theInt] { myPair };    // Decompose into references-to-non-const
const auto& [theString, theInt] { myPair };  // Decompose into references-to-const

Reference Data Members
Data members of classes can be references. As discussed earlier, a reference cannot exist without 
referring to some other variable, and it is not possible to change where a reference refers to. Thus, 
reference data members cannot be initialized inside the body of a class constructor, but they must be 
initialized in the so-called constructor initializer. Syntax-wise, a constructor initializer immediately 
follows the constructor header and starts with a colon. The following is a quick example with the 
constructor initializer highlighted. Chapter 9 goes in much more detail.

class MyClass
{
    public:
        MyClass(int& ref) : m_ref { ref } { /* Body of constructor */ }
    private:
        int& m_ref;
};

WARNING A reference must always be initialized when it’s created. Usually, ref-
erences are created when they are declared, but reference data members need to 
be initialized in the constructor initializer for the containing class.

Reference Parameters
C++ programmers do not often use stand-alone reference variables or reference data members. The 
most common use of references is for parameters to functions. The default parameter-passing seman-
tics is pass-by-value: functions receive copies of their arguments. When those parameters are modi-
fied, the original arguments remain unchanged. Pointers to stack variables are often used in C to 
allow functions to modify variables in other stack frames. By dereferencing the pointer, the function 
can change the memory that represents the variable even though that variable isn’t in the current 
stack frame. The problem with this approach is that it brings the messiness of pointer syntax into 
what is really a simple task.
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Instead of passing pointers to functions, C++ offers a better mechanism, called pass-by-reference, 
where parameters are references instead of pointers. The following are two implementations of an 
addOne() function. The first one has no effect on the variable that is passed in because it is passed by 
value, and thus the function receives a copy of the value passed to it. The second one uses a reference 
and thus changes the original variable.

void addOne(int i)
{
    i++;  // Has no real effect because this is a copy of the original
}
 
void addOne(int& i)
{
    i++;  // Actually changes the original variable
}

The syntax for the call to the addOne() function with an integer reference is no different than if the 
function just took an integer.

int myInt { 7 };
addOne(myInt);

NOTE There is a subtle difference between the two addOne() implementations. 
The version using pass-by-value accepts literals without a problem; for example, 
addOne(3); is legal. However, doing the same with the pass-by-reference ver-
sion of addOne() will result in a compilation error. This can be solved by using 
reference-to-const parameters, discussed in the next section.

Here is another example where pass-by-reference comes in handy; it’s a simple swap function to swap 
the values of two ints:

void swap(int& first, int& second)
{
    int temp { first };
    first = second;
    second = temp;
}

You can call it like this:

int x { 5 }, y { 6 };
swap(x, y);

When swap() is called with the arguments x and y, the first parameter is initialized to refer to x, 
and the second parameter is initialized to refer to y. When swap() modifies first and second, x 
and y are actually changed.

A common quandary arises when you have a pointer to something that you need to pass to a func-
tion or method that takes a reference. You can “convert” a pointer to a reference in this case by 
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dereferencing the pointer. This action gives you the value to which the pointer points, which the com-
piler then uses to initialize the reference parameter. For example, you can call swap() like this:

int x { 5 }, y { 6 };
int *xp { &x }, *yp { &y };
swap(*xp, *yp);

Finally, if you have a function that needs to return an object of a class that is expensive to copy, you’ll 
often see the function accepting an output parameter of type reference-to-non-const to such a class 
that the function then modifies, instead of directly returning such an object. Developers thought that 
this was the recommended way to prevent any performance penalties with creating copies when 
returning objects from functions. However, even back then, compilers were usually smart enough to 
avoid any redundant copies. So, we have the following rule:

WARNING The recommended way to return objects from a function is to return 
them by value, instead of using output parameters.

Pass-by-Reference-to-const
The main value in reference-to-const parameters is efficiency. When you pass a value into a func-
tion, an entire copy is made. When you pass a reference, you are really just passing a pointer to the 
original so the computer doesn’t need to make a copy. By passing a reference-to-const, you get the 
best of both worlds: no copy is made, and the original variable cannot be changed. References-to-
const become more important when you are dealing with objects because they can be large and 
making copies of them can have unwanted side effects. The following example shows how to pass an 
std::string to a function as a reference-to-const:

void printString(const string& myString)
{
    cout << myString << endl;
}
 
int main()
{
    string someString { "Hello World" };
    printString(someString);
    printString("Hello World");  // Passing literals works.
}

Pass-by-Reference vs. Pass-by-Value
Pass-by-reference is required when you want to modify the parameter and see those changes reflected 
in the variable passed to the function. However, you should not limit your use of pass-by-reference 
to only those cases. Pass-by-reference avoids copying the arguments to the function, providing two 
additional benefits:

➤➤ Efficiency: Large objects could take a long time to copy. Pass-by-reference passes only a ref-
erence to the object into the function.

➤➤ Support: Not all classes allow pass-by-value.
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If you want to leverage these benefits but do not want to allow the original objects to be modified, 
you should mark the parameters const, giving you pass-by-reference-to-const.

NOTE These benefits of pass-by-reference imply that you should use pass-by-
value only for simple built-in types such as int and double for which you don’t 
need to modify the arguments. If you need to pass an object to a function, prefer 
to pass it by reference-to-const instead of by value. This prevents unneces-
sary copying. Pass it by reference-to-non-const if the function needs to modify 
the object. Chapter 9 slightly modifies this rule after the introduction of move 
semantics, allowing pass-by-value of objects in certain cases.

Reference Return Values
You can also return a reference from a function. Of course, you can use this technique only if the var-
iable to which the returned reference refers to continues to exist following the function termination.

WARNING From a function, never return a reference to a variable that is locally 
scoped to that function, such as an automatically allocated variable on the stack 
that will be destroyed when the function ends.

The main reason to return a reference is if you want to be able to assign to the return value directly 
as an lvalue (the left-hand side of an assignment statement). Several overloaded operators commonly 
return references, such as operators =, +=, and so on. Chapter 15 goes into more details on how to 
write such overloaded operators yourself.

Deciding Between References and Pointers
References in C++ could be considered redundant: everything you can do with references, you can 
accomplish with pointers. For example, you could write the earlier shown swap() function like this:

void swap(int* first, int* second)
{
    int temp { *first };
    *first = *second;
    *second = temp;
}

However, this code is more cluttered than the version with references. References make your pro-
grams cleaner and easier to understand. They are also safer than pointers: it’s impossible to have 
a null reference, and you don’t explicitly dereference references, so you can’t encounter any of the 
dereferencing errors associated with pointers. Of course, these arguments about references being safer 
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are valid only in the absence of any pointers. For example, take the following function that accepts a 
reference to an int:

void refcall(int& t) { ++t; }

You could declare a pointer and initialize it to point to some random place in memory. Then you 
could dereference this pointer and pass it as the reference argument to refcall(), as in the follow-
ing code. This code compiles fine, but it is undefined what will happen when executed. It could for 
example cause a crash.

int* ptr { (int*)8 };
refcall(*ptr);

Most of the time, you can use references instead of pointers. References to objects also support  
so-called polymorphism, discussed in detail in Chapter 10, in the same way as pointers to objects. 
However, there are some use cases in which you need to use a pointer. One example is when you 
need to change the location to which it points. Recall that you cannot change the variable to which 
references refer. For example, when you dynamically allocate memory, you need to store a pointer to 
the result in a pointer rather than a reference. A second use case in which you need to use a pointer is 
when the pointer is optional, that is, when it can be nullptr. Yet another use case is if you want to 
store polymorphic types (discussed in Chapter 10) in a container.

A long time ago, and in legacy code, a way to distinguish between appropriate use of pointers and ref-
erences in parameters and return types was to consider who owns the memory. If the code receiving 
the variable became the owner and thus became responsible for releasing the memory associated with 
an object, it had to receive a pointer to the object. If the code receiving the variable didn’t have to free 
the memory, it received a reference. Nowadays, however, raw pointers should be avoided in favor of 
so-called smart pointers (see Chapter 7), which is the recommended way to transfer ownership.

NOTE Prefer references over pointers; that is, use a pointer only if a reference is 
not possible.

Consider a function that splits an array of ints into two arrays: one of even numbers and one of odd 
numbers. The function doesn’t know how many numbers in the source array will be even or odd, so it 
should dynamically allocate the memory for the destination arrays after examining the source array. It 
should also return the sizes of the two new arrays. Altogether, there are four items to return: pointers 
to the two new arrays and the sizes of the two new arrays. Obviously, you must use pass-by-reference. 
The canonical C way to write the function looks like this:

void separateOddsAndEvens(const int arr[], size_t size, int** odds,
    size_t* numOdds, int** evens, size_t* numEvens)
{
    // Count the number of odds and evens.
    *numOdds = *numEvens = 0;
    for (size_t i = 0; i < size; ++i) {

continues
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        if (arr[i] % 2 == 1) {
            ++(*numOdds);
        } else {
            ++(*numEvens);
        }
    }
 
    // Allocate two new arrays of the appropriate size.
    *odds = new int[*numOdds];
    *evens = new int[*numEvens];
 
    // Copy the odds and evens to the new arrays.
    size_t oddsPos = 0, evensPos = 0;
    for (size_t i = 0; i < size; ++i) {
        if (arr[i] % 2 == 1) {
            (*odds)[oddsPos++] = arr[i];
        } else {
            (*evens)[evensPos++] = arr[i];
        }
    }
}

The final four parameters to the function are the “reference” parameters. To change the values to 
which they refer, separateOddsAndEvens() must dereference them, leading to some ugly syntax in 
the function body. Additionally, when you want to call separateOddsAndEvens(), you must pass the 
address of two pointers so that the function can change the actual pointers, and pass the address of 
two size_ts so that the function can change the actual size_ts. Note also that the caller is responsi-
ble for deleting the two arrays created by separateOddsAndEvens()!

int unSplit[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int* oddNums { nullptr };
int* evenNums { nullptr };
size_t numOdds { 0 }, numEvens { 0 };
 
separateOddsAndEvens(unSplit, std::size(unSplit),
    &oddNums, &numOdds, &evenNums, &numEvens);
 
// Use the arrays...
 
delete[] oddNums; oddNums = nullptr;
delete[] evenNums; evenNums = nullptr;

If this syntax annoys you (which it should), you can write the same function by using references to 
obtain true pass-by-reference semantics:

void separateOddsAndEvens(const int arr[], size_t size, int*& odds,
    size_t& numOdds, int*& evens, size_t& numEvens)
{
    numOdds = numEvens = 0;
    for (size_t i { 0 }; i < size; ++i) {
        if (arr[i] % 2 == 1) {
            ++numOdds;
        } else {
            ++numEvens;
        }
    }

(continued)
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    odds = new int[numOdds];
    evens = new int[numEvens];
 
    size_t oddsPos { 0 }, evensPos { 0 };
    for (size_t i { 0 }; i < size; ++i) {
        if (arr[i] % 2 == 1) {
            odds[oddsPos++] = arr[i];
        } else {
            evens[evensPos++] = arr[i];
        }
    }
}

In this case, the odds and evens parameters are references to int*s. separateOddsAndEvens() can 
modify the int*s that are used as arguments to the function (through the reference), without any 
explicit dereferencing. The same logic applies to numOdds and numEvens, which are references to 
size_ts. With this version of the function, you no longer need to pass the addresses of the pointers or 
size_ts. The reference parameters handle it for you automatically:

separateOddsAndEvens(unSplit, std::size(unSplit),
    oddNums, numOdds, evenNums, numEvens);

Even though using reference parameters is already much cleaner than using pointers, it is recom-
mended that you avoid dynamically allocated arrays as much as possible. For example, by using the 
Standard Library vector container, the separateOddsAndEvens() function can be rewritten to be 
much safer, shorter, more elegant, and much more readable, because all memory allocations and deal-
locations happen automatically.

void separateOddsAndEvens(const vector<int>& arr,
    vector<int>& odds, vector<int>& evens)
{
    for (int i : arr) {
        if (i % 2 == 1) {
            odds.push_back(i);
        } else {
            evens.push_back(i);
        }
    }
}

This version can be used as follows:

vector<int> vecUnSplit { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
vector<int> odds, evens;
separateOddsAndEvens(vecUnSplit, odds, evens);

Note that you don’t need to deallocate the odds and evens containers; the vector class takes care of 
this. This version is much easier to use than the versions using pointers or references.

The version using vectors is already much better than the versions using pointers or references, but 
as I recommended earlier, output parameters should be avoided as much as possible. If a function 
needs to return something, it should just return it instead of using output parameters! Statements of 
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the form return object; trigger return value optimization (RVO) if object is a local variable, a 
parameter to the function, or a temporary value. Furthermore, if object is a local variable, named 
return value optimization (NRVO) can kick in. Both RVO and NRVO are forms of copy elision and 
make returning objects from functions very efficient. With copy elision, compilers can avoid any 
copying of objects that are returned from functions. This results in zero-copy pass-by-value semantics.

The following version of separateOddsAndEvens() returns a simple struct of two vectors, instead 
of accepting two output vectors as parameters. It also uses C++20 designated initializers.

struct OddsAndEvens { vector<int> odds, evens; };
 
OddsAndEvens separateOddsAndEvens(const vector<int>& arr)
{
    vector<int> odds, evens;
    for (int i : arr) {
        if (i % 2 == 1) {
            odds.push_back(i);
        } else {
            evens.push_back(i);
        }
    }
    return OddsAndEvens { .odds = odds, .evens = evens };
}

With these changes, the code to call separateOddsAndEvens() becomes compact yet easy to read 
and understand:

vector<int> vecUnSplit { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
auto oddsAndEvens { separateOddsAndEvens(vecUnSplit) };
// Do something with oddsAndEvens.odds and oddsAndEvens.evens...

NOTE Avoid output parameters. If a function needs to return something, just 
return it by value.

const_cast()
In C++ every variable has a specific type. It is possible in certain situations to cast a variable of one 
type to a variable of another type. To that end, C++ provides five types of casts: const_cast(), 
static_cast(), reinterpret_cast(), dynamic_cast(), and std::bit_cast() (since C++20). 
This section discusses const_cast(). The second type of cast, static_cast(), is briefly introduced 
earlier in this chapter and discussed in more detail in Chapter 10. The other remaining casts are also 
discussed in Chapter 10.

const_cast() is the most straightforward of the different casts available. You can use it to add 
const-ness to a variable or cast away const-ness of a variable. It is the only cast of the five that is 
allowed to cast away const-ness. Theoretically, of course, there should be no need for a const cast. If 
a variable is const, it should stay const. In practice, however, you sometimes find yourself in a situ-
ation where a function is specified to take a const parameter, which it must then pass to a function 
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that takes a non-const parameter, and you are absolutely sure that the latter function will not modify 
its non-const argument. The “correct” solution would be to make const consistent in the program, 
but that is not always an option, especially if you are using third-party libraries. Thus, you sometimes 
need to cast away the const-ness of a variable, but again you should do this only when you are sure 
the function you are calling will not modify the object; otherwise, there is no other option than to 
restructure your program. Here is an example:

void ThirdPartyLibraryMethod(char* str);
 
void f(const char* str)
{
    ThirdPartyLibraryMethod(const_cast<char*>(str));
}

Additionally, the Standard Library provides a helper method called std::as_const(), defined in 
<utility>, which returns a reference-to-const version of its reference parameter. Basically, as_
const(obj) is equivalent to const_cast<const T&>(obj), where T is the type of obj. Using as_
const() results in shorter and more readable code compared to using const_cast(). Concrete use 
cases for as_const() are coming later in this book, but its basic use is as follows:

string str { "C++" };
const string& constStr { as_const(str) };

Exceptions
C++ is a flexible language but not a particularly safe one. The compiler will let you write code 
that scribbles on random memory addresses or tries to divide by zero (computers don’t deal well 
with infinity). One language feature that attempts to add a degree of safety back to the language is 
exceptions.

An exception is an unexpected situation. For example, if you are writing a function that retrieves a 
web page, several things could go wrong. The Internet host that contains the page might be down, the 
page might come back blank, or the connection could be lost. One way you could handle this situa-
tion is by returning a special value from the function, such as nullptr or an error code. Exceptions 
provide a much better mechanism for dealing with problems.

Exceptions come with some new terminology. When a piece of code detects an exceptional situation, 
it throws an exception. Another piece of code catches the exception and takes appropriate action. The 
following example shows a function, divideNumbers(), that throws an exception if the caller passes 
in a denominator of zero. The use of std::invalid_argument requires <stdexcept>.

double divideNumbers(double numerator, double denominator)
{
    if (denominator == 0) {
        throw invalid_argument { "Denominator cannot be 0." };
    }
    return numerator / denominator;
}

When the throw statement is executed, the function immediately ends without returning a value. If 
the caller surrounds the function call with a try/catch block, as shown in the following code, it 
receives the exception and is able to handle it. Chapter 14, “Handling Errors,” goes into much more 
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detail on exception handling, but for now, remember that it is recommended to catch exceptions by 
reference-to-const, such as const invalid_argument& in the following example. Also note that all 
Standard Library exception classes have a method called what(), which returns a string containing a 
brief explanation of the exception.

try {
    cout << divideNumbers(2.5, 0.5) << endl;
    cout << divideNumbers(2.3, 0) << endl;
    cout << divideNumbers(4.5, 2.5) << endl;
} catch (const invalid_argument& exception) {
    cout << format("Exception caught: {}", exception.what()) << endl;
}

The first call to divideNumbers() executes successfully, and the result is output to the user. The 
second call throws an exception. No value is returned, and the only output is the error message that is 
printed when the exception is caught. The third call is never executed because the second call throws 
an exception, causing the program to jump to the catch block. The output for the preceding code 
snippet is as follows:

5
An exception was caught: Denominator cannot be 0.

Exceptions can get tricky in C++. To use exceptions properly, you need to understand what happens 
to the stack variables when an exception is thrown, and you have to be careful to properly catch and 
handle the necessary exceptions. Also, if you need to include more information about an error in an 
exception, you can write your own exception types. Lastly, the C++ compiler doesn’t force you to 
catch every exception that might occur. If your code never catches any exceptions but an exception 
is thrown, the program will be terminated. These trickier aspects of exceptions are covered in much 
more detail in Chapter 14.

Type Aliases
A type alias provides a new name for an existing type declaration. You can think of a type alias as 
syntax for introducing a synonym for an existing type declaration without creating a new type. The 
following gives a new name, IntPtr, to the int* type declaration:

using IntPtr = int*;

You can use the new type name and the definition it aliases interchangeably. For example, the follow-
ing two lines are valid:

int* p1;
IntPtr p2;

Variables created with the new type name are completely compatible with those created with the orig-
inal type declaration. So, it is perfectly valid, given these definitions, to write the following, because 
they are not just compatible types; they are the same type:

p1 = p2;
p2 = p1;
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The most common use for type aliases is to provide manageable names when the real type declara-
tions become too unwieldy. This situation commonly arises with templates. An example from the 
Standard Library itself is std::basic_string<T> to represent strings. It’s a class template where T 
is the type of each character in the string, for example char. You have to specify the template type 
parameter any time you want to refer to such a type. For declaring variables, specifying function 
parameters, and so on, you would have to write basic_string<char>:

void processVector(const vector<basic_string<char>>& vec) { /* omitted */ }
 
int main()
{
    vector<basic_string<char>> myVector;
    processVector(myVector);
}

Since basic_string<char> is used that frequently, the Standard Library provides the following type 
alias as a shorter, more meaningful name:

using string = basic_string<char>;

With this type alias, the previous code snippet can be written more elegantly:

void processVector(const vector<string>& vec) { /* omitted */ }
 
int main()
{
    vector<string> myVector;
    processVector(myVector);
}

typedefs
Type aliases were introduced in C++11. Before C++11, you had to use typedefs to accomplish some-
thing similar but in a more convoluted way. This old mechanism is still explained here because you 
will come across it in legacy code bases.

Just as a type alias, a typedef provides a new name for an existing type declaration. For example, 
take the following type alias:

using IntPtr = int*;

This can be written as follows with a typedef:

typedef int* IntPtr;

As you can see, it’s much less readable. The order is reversed, which causes a lot of confusion, even 
for professional C++ developers. Other than being more convoluted, a typedef behaves the same as a 
type alias. For example, the typedef can be used as follows:

IntPtr p;
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Type aliases and typedefs are not entirely equivalent, though. Compared to typedefs, type aliases 
are more powerful when used with templates, but that is a topic covered in Chapter 12 because it 
requires more details about templates.

WARNING Always prefer type aliases over typedefs.

Type Inference
Type inference allows the compiler to automatically deduce the type of an expression. There are two 
keywords for type inference: auto and decltype.

The auto Keyword
The auto keyword has a number of different uses:

➤➤ Deducing a function’s return type, as explained earlier in this chapter

➤➤ Structured bindings, as explained earlier in this chapter

➤➤ Deducing the type of an expression, as discussed in this section

➤➤ Deducing the type of non-type template parameters; see Chapter 12

➤➤ Abbreviated function template syntax; see Chapter 12

➤➤ decltype(auto); see Chapter 12

➤➤ Alternative function syntax; see Chapter 12

➤➤ Generic lambda expressions; see Chapter 19, “Function Pointers, Function Objects, and 
Lambda Expressions”

auto can be used to tell the compiler to automatically deduce the type of a variable at compile time. 
The following line shows the simplest use of the auto keyword in that context:

auto x { 123 };    // x is of type int.

In this example, you don’t win much by typing auto instead of int; however, it becomes useful for 
more complicated types. Suppose you have a function called getFoo() that has a complicated return 
type. If you want to assign the result of calling getFoo() to a variable, you can spell out the compli-
cated type, or you can simply use auto and let the compiler figure it out:

auto result { getFoo() };

This has the added benefit that you can easily change the function’s return type without having to 
update all the places in the code where that function is called.

The auto& Syntax
Using auto to deduce the type of an expression strips away reference and const qualifiers. Suppose 
you have the following:

const string message { "Test" };
const string& foo() { return message; }
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You can call foo() and store the result in a variable with the type specified as auto, as follows:

auto f1 { foo() };

Because auto strips away reference and const qualifiers, f1 is of type string, and thus a copy is 
made! If you want a reference-to-const, you can explicitly make it a reference and mark it const, 
as follows:

const auto& f2 { foo() };

Earlier in this chapter, the as_const() utility function is introduced. It returns a reference-to-const 
version of its reference parameter. Be careful when using as_const() in combination with auto. 
Since auto strips away reference and const qualifiers, the following result variable has type 
string, not const string&, and hence a copy is made:

string str { "C++" };
auto result { as_const(str) };
 

WARNING Always keep in mind that auto strips away reference and const 
qualifiers and thus creates a copy! If you do not want a copy, use auto& or const 
auto&.

The auto* Syntax
The auto keyword can also be used for pointers. Here’s an example:

int i { 123 };
auto p { &i };

The type of p is int*. There is no danger here to accidentally make a copy, unlike when working with 
references as discussed in the previous section. However, when working with pointers, I do recom-
mend using the auto* syntax as it more clearly states that pointers are involved, for example:

auto* p { &i };

Additionally, the use of auto* versus just auto does resolve a strange behavior when using auto, 
const, and pointers together. Suppose you write the following:

const auto p1 { &i };

This is most of the time not doing what you expect it to do!

Often, when you use const, you want to protect the thing to which the pointer is pointing to. You 
would think that p1 is of type const int*, but in fact, the type is int* const, so it’s a const 
pointer to a non-const integer! Putting the const after the auto as follows doesn’t help; the type is 
still int* const:

auto const p2 { &i };
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When you use auto* in combination with const, then it is behaving as you would expect. Here’s 
an example:

const auto* p3 { &i };

Now p3 is of type const int*. If you really want a const pointer instead of a const integer, you put 
the const at the end:

auto* const p4 { &i };

p4 has type int* const.

Finally, with this syntax you can make both the pointer and the integer constant:

const auto* const p5 { &i };

p5 is of type const int* const. You cannot achieve this if you omit the *.

Copy List vs. Direct List Initialization
There are two types of initialization that use braced initializer lists:

➤➤ Copy list initialization: T obj = {arg1, arg2, ...};

➤➤ Direct list initialization: T obj {arg1, arg2, ...};

In combination with auto type deduction, there is an important difference between copy- and direct 
list initialization introduced since C++17.

Since C++17, you have the following results (requires <initializer_list>):

// Copy list initialization
auto a = { 11 };         // initializer_list<int>
auto b = { 11, 22 };     // initializer_list<int>
 
// Direct list initialization
auto c { 11 };           // int
auto d { 11, 22 };       // Error, too many elements.

Note that for copy list initialization, all the elements in the braced initializer must be of the same 
type. For example, the following does not compile:

auto b = { 11, 22.33 };  // Compilation error

In earlier versions of the standard (C++11/14), both copy- and direct list initialization would deduce 
an initializer_list<>:

// Copy list initialization
auto a = { 11 };         // initializer_list<int>
auto b = { 11, 22 };     // initializer_list<int>
 
// Direct list initialization
auto c { 11 };           // initializer_list<int>
auto d { 11, 22 };       // initializer_list<int>
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The decltype Keyword
The decltype keyword takes an expression as argument and computes the type of that expression, as 
shown here:

int x { 123 };
decltype(x) y { 456 };

In this example, the compiler deduces the type of y to be int because that is the type of x.

The difference between auto and decltype is that decltype does not strip reference and const 
qualifiers. Take, again, a function foo() returning a reference-to-const string. Defining f2 using 
decltype as follows results in f2 being of type const string&, and thus no copy is made:

decltype(foo()) f2 { foo() };

On first sight, decltype doesn’t seem to add much value. However, it is powerful in the context of 
templates, discussed in Chapters 12 and 26.

The Standard Library
C++ comes with a Standard Library, which contains a lot of useful classes that can easily be used in 
your code. The benefit of using these classes is that you don’t need to reinvent them, and you don’t 
need to waste time on implementing things that have already been implemented for you. Another 
benefit is that the classes available in the Standard Library are heavily tested and verified for correct-
ness by thousands of users. The Standard Library classes are also optimized for performance, so using 
them will most likely result in better performance compared to making your own implementation.

A lot of functionality is available to you in the Standard Library. Chapters 16 to 24 provide more 
details; however, when you start working with C++, it is good to have an idea of what the Standard 
Library can do for you from the beginning. This is especially important if you are a C programmer. As 
a C programmer, you might try to solve problems in C++ the same way you would solve them in C, 
but, in C++ there is probably an easier and safer solution to the problem that involves using Standard 
Library classes.

That is the reason why this chapter already introduces some Standard Library classes, such as 
std::string, array, vector, pair, and optional. These are used throughout examples in this book 
from the beginning, to make sure you get into the habit of using Standard Library classes. Many more 
classes are introduced in Chapters 16 to 24.

YOUR FIRST BIGGER C++ PROGRAM

The following program builds on the employee database example used earlier in the discussion on 
structs. This time, you will end up with a fully functional C++ program that uses many of the features 
discussed in this chapter. This real-world example includes the use of classes, exceptions, streams, 
vectors, namespaces, references, and other language features.
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An Employee Records System
A program to manage a company’s employee records needs to be flexible and have useful features. 
The feature set for this program includes the following abilities:

➤➤ To add and fire employees

➤➤ To promote and demote employees

➤➤ To view all employees, past and present

➤➤ To view all current employees

➤➤ To view all former employees

The design for this program divides the code into three parts. The Employee class encapsulates the 
information describing a single employee. The Database class manages all the employees of the com-
pany. Finally, a separate UserInterface file provides the interactivity of the program.

The Employee Class
The Employee class maintains all the information about an employee. Its methods provide a way to 
query and change that information. Employees also know how to display themselves on the console. 
Additionally, methods exist to adjust the employee’s salary and employment status.

Employee.cppm
The Employee.cppm module interface file defines the Employee class. The sections of this file are 
described individually in the text that follows. The first few lines are as follows:

export module employee;
import <string>;
namespace Records {

The first line is a module declaration and states that this file exports a module called employee, fol-
lowed by an import for the string functionality. This code also declares that the subsequent code, 
contained within the curly braces, lives in the Records namespace. Records is the namespace that is 
used throughout this program for application-specific code.

Next, the following two constants are defined inside the Records namespace. Note that this book 
uses the convention to not prefix constants with any special letter.

    const int DefaultStartingSalary { 30'000 };
    export const int DefaultRaiseAndDemeritAmount { 1'000 };

The first constant represents the default starting salary for new employees. This constant is not 
exported, because code outside this module does not need access to it. Code in the employee module 
can access this constant as Records::DefaultStartingSalary.

The second constant is the default amount for promoting or demoting an employee. This constant 
is exported, so code outside this module could, for example, promote an employee by twice the 
default amount.
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Next, the Employee class is defined and exported, along with its public methods:

    export class Employee
    {
        public:
            Employee(const std::string& firstName,
                     const std::string& lastName);
 
            void promote(int raiseAmount = DefaultRaiseAndDemeritAmount);
            void demote(int demeritAmount = DefaultRaiseAndDemeritAmount);
            void hire(); // Hires or rehires the employee
            void fire(); // Dismisses the employee
            void display() const;// Outputs employee info to console
 
            // Getters and setters
            void setFirstName(const std::string& firstName);
            const std::string& getFirstName() const;
 
            void setLastName(const std::string& lastName);
            const std::string& getLastName() const;
 
            void setEmployeeNumber(int employeeNumber);
            int getEmployeeNumber() const;
 
            void setSalary(int newSalary);
            int getSalary() const;
 
            bool isHired() const;

A constructor is provided that accepts a first and last name. The promote() and demote() methods 
both have integer parameters that have a default value equal to DefaultRaiseAndDemeritAmount. 
In this way, other code can omit the parameter, and the default will automatically be used. Methods 
to hire and fire an employee are provided, together with a method to display information about an 
employee. A number of setters and getters provide functionality to change the information or to query 
the current information of an employee.

The data members are declared as private so that other parts of the code cannot modify 
them directly:

        private:
            std::string m_firstName;
            std::string m_lastName;
            int m_employeeNumber { -1 };
            int m_salary { DefaultStartingSalary };
            bool m_hired { false };
    };
}

The setters and getters provide the only public way of modifying or querying those values. The data 
members are directly initialized here inside the class definition instead of in a constructor. By default, 
new employees have no name, an employee number of –1, the default starting salary, and a status of 
not hired.
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Employee.cpp
The first few lines of the module implementation file are as follows:

module employee;
import <iostream>;
import <format>;
using namespace std;

The first line specifies for which module this source file is, followed by an import of <iostream> and 
<format>, and a using directive.

The constructor accepting a first and last name just sets the corresponding data members:

namespace Records {
    Employee::Employee(const string& firstName, const string& lastName)
        : m_firstName { firstName }, m_lastName { lastName }
    {
    }

The promote() and demote() methods simply call setSalary() with a new value. Note that the 
default values for the integer parameters do not appear in the source file; they are allowed only in a 
function declaration, not in a definition.

    void Employee::promote(int raiseAmount)
    {
        setSalary(getSalary() + raiseAmount);
    }
 
    void Employee::demote(int demeritAmount)
    {
        setSalary(getSalary() - demeritAmount);
    }

The hire() and fire() methods just set the m_hired data member appropriately:

    void Employee::hire() { m_hired = true; }
    void Employee::fire() { m_hired = false; }

The display() method uses the console output stream to display information about the current 
employee. Because this code is part of the Employee class, it could access data members, such as  
m_salary, directly instead of using getters, such as getSalary(). However, it is considered good 
style to make use of getters and setters when they exist, even from within the class.

    void Employee::display() const
    {
        cout << format("Employee: {}, {}", getLastName(), getFirstName()) << endl;
        cout << "-------------------------" << endl;
        cout << (isHired() ? "Current Employee" : "Former Employee") << endl;
        cout << format("Employee Number: {}", getEmployeeNumber()) << endl;
        cout << format("Salary: ${}", getSalary()) << endl;
        cout << endl;
    }
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Finally, a number of getters and setters perform the task of getting and setting values:

    // Getters and setters
    void Employee::setFirstName(const string& firstName)
    {
        m_firstName = firstName;
    }
 
    const string& Employee::getFirstName() const
    {
        return m_firstName;
    }
    // ... other getters and setters omitted for brevity
}

Even though these methods seem trivial, it’s better to have trivial getters and setters than to make 
your data members public. For example, in the future, you may want to perform bounds checking 
in the setSalary() method. Getters and setters also make debugging easier because you can insert a 
breakpoint in them to inspect values when they are retrieved or set. Another reason is that when you 
decide to change how you are storing the data in your class, you only need to modify these getters 
and setters, while other code using your class can remain untouched.

EmployeeTest.cpp
As you write individual classes, it is often useful to test them in isolation. The following code includes 
a main() function that performs some simple operations using the Employee class. Once you are con-
fident that the Employee class works, you should remove or comment out this file so that you don’t 
attempt to compile your code with multiple main() functions.

import <iostream>;
import employee;
 
using namespace std;
using namespace Records;
 
int main()
{
    cout << "Testing the Employee class." << endl;
    Employee emp { "Jane", "Doe" };
    emp.setFirstName("John");
    emp.setLastName("Doe");
    emp.setEmployeeNumber(71);
    emp.setSalary(50'000);
    emp.promote();
    emp.promote(50);
    emp.hire();
    emp.display();
}

Another way to test individual classes is with unit testing, discussed in Chapter 30, “Becoming Adept 
at Testing.”
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The Database Class
The Database class uses the std::vector class from the Standard Library to store Employee objects.

Database.cppm
Here are the first few lines of the database.cppm module interface file:

export module database;
import <string>;
import <vector>;
import employee;
 
namespace Records {
    const int FirstEmployeeNumber { 1'000 };

Because the database will take care of automatically assigning an employee number to a new 
employee, a constant defines where the numbering begins.

Next, the Database class is defined and exported:

    export class Database
    {
        public:
            Employee& addEmployee(const std::string& firstName,
                                  const std::string& lastName);
            Employee& getEmployee(int employeeNumber);
            Employee& getEmployee(const std::string& firstName,
                                  const std::string& lastName);

The database provides an easy way to add a new employee by providing a first and last name. For 
convenience, this method returns a reference to the new employee. External code can also get an 
employee reference by calling the getEmployee() method. Two versions of this method are declared. 
One allows retrieval by employee number. The other requires a first name and a last name.

Because the database is the central repository for all employee records, it has the following meth-
ods to output all employees, the employees who are currently hired, and the employees who are no 
longer hired:

            void displayAll() const;
            void displayCurrent() const;
            void displayFormer() const;

Finally, the private data members are defined as follows:

        private:
            std::vector<Employee> m_employees;
            int m_nextEmployeeNumber { FirstEmployeeNumber };
    };
}

The m_employees data member contains the Employee objects, while m_nextEmployeeNumber keeps 
track of what employee number is assigned to a new employee and is initialized with the FirstEm-
ployeeNumber constant.
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Database.cpp
Here is the implementation of the addEmployee() method:

module database;
import <stdexcept>;
 
using namespace std;
 
namespace Records {
    Employee& Database::addEmployee(const string& firstName,
                                    const string& lastName)
    {
        Employee theEmployee { firstName, lastName };
        theEmployee.setEmployeeNumber(m_nextEmployeeNumber++);
        theEmployee.hire();
        m_employees.push_back(theEmployee);
        return m_employees.back();
    }

The addEmployee() method creates a new Employee object, fills in its information, and adds it to 
the vector. The m_nextEmployeeNumber data member is incremented after its use so that the next 
employee will get a new number. The back() method of vector returns a reference to the last ele-
ment in the vector, which is the newly added employee.

One of the getEmployee() methods is implemented as follows. The second version is implemented 
similarly, hence not shown. They both loop over all employees in m_employees using a range-based 
for loop and check to see whether an Employee is a match for the information passed to the method. 
An exception is thrown if no match is found.

    Employee& Database::getEmployee(int employeeNumber)
    {
        for (auto& employee : m_employees) {
            if (employee.getEmployeeNumber() == employeeNumber) {
                return employee;
            }
        }
        throw logic_error { "No employee found." };
    }

The following display methods all use a similar algorithm: they loop through all employees and tell 
each employee to display itself to the console if the criterion for display matches. displayFormer() 
is similar to displayCurrent().

    void Database::displayAll() const
    {
        for (const auto& employee : m_employees) { employee.display(); }
    }
 
    void Database::displayCurrent() const
    {
        for (const auto& employee : m_employees) {
            if (employee.isHired()) { employee.display(); }
        }
    }
}
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DatabaseTest.cpp
A simple test for the basic functionality of the database is shown here:

import <iostream>;
import database;
 
using namespace std;
using namespace Records;
 
int main()
{
    Database myDB;
    Employee& emp1 { myDB.addEmployee("Greg", "Wallis") };
    emp1.fire();
 
    Employee& emp2 { myDB.addEmployee("Marc", "White") };
    emp2.setSalary(100'000);
 
    Employee& emp3 { myDB.addEmployee("John", "Doe") };
    emp3.setSalary(10'000);
    emp3.promote();
 
    cout << "all employees: " << endl << endl;
    myDB.displayAll();
 
    cout << endl << "current employees: " << endl << endl;
    myDB.displayCurrent();
 
    cout << endl << "former employees: " << endl << endl;
    myDB.displayFormer();
}

The User Interface
The final part of the program is a menu-based user interface that makes it easy for users to work with 
the employee database.

The following main() function contains a loop that displays the menu, performs the selected action, 
and then does it all again. For most actions, separate functions are defined. For simpler actions, such 
as displaying employees, the actual code is put in the appropriate case.

import <iostream>;
import <stdexcept>;
import <exception>;
import <format>;
import <string>;
import database;
import employee;
 
using namespace std;
using namespace Records;
 
int displayMenu();
void doHire(Database& db);
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void doFire(Database& db);
void doPromote(Database& db);
 
int main()
{
    Database employeeDB;
    bool done { false };
    while (!done) {
        int selection { displayMenu() };
        switch (selection) {
        case 0:
            done = true;
            break;
        case 1:
            doHire(employeeDB);
            break;
        case 2:
            doFire(employeeDB);
            break;
        case 3:
            doPromote(employeeDB);
            break;
        case 4:
            employeeDB.displayAll();
            break;
        case 5:
            employeeDB.displayCurrent();
            break;
        case 6:
            employeeDB.displayFormer();
            break;
        default:
            cerr << "Unknown command." << endl;
            break;
        }
    }
}

The displayMenu() function outputs the menu and gets input from the user. One important note is 
that this code assumes that the user will “play nice” and type a number when a number is requested. 
When you read about I/O in Chapter 13, you will learn how to protect against bad input.

int displayMenu()
{
    int selection;
    cout << endl;
    cout << "Employee Database" << endl;
    cout << "-----------------" << endl;
    cout << "1) Hire a new employee" << endl;
    cout << "2) Fire an employee" << endl;
    cout << "3) Promote an employee" << endl;
    cout << "4) List all employees" << endl;
    cout << "5) List all current employees" << endl;
    cout << "6) List all former employees" << endl;
    cout << "0) Quit" << endl;

continues
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    cout << endl;
    cout << "---> ";
    cin >> selection;
    return selection;
}

The doHire() function gets the new employee’s name from the user and tells the database to add 
the employee:

void doHire(Database& db)
{
    string firstName;
    string lastName;
 
    cout << "First name? ";
    cin >> firstName;
 
    cout << "Last name? ";
    cin >> lastName;
 
    auto& employee { db.addEmployee(firstName, lastName) };
    cout << format("Hired employee {} {} with employee number {}.",
        firstName, lastName, employee.getEmployeeNumber()) << endl;
}

doFire() and doPromote() both ask the database for an employee by their employee number and 
then use the public methods of the Employee object to make changes:

void doFire(Database& db)
{
    int employeeNumber;
    cout << "Employee number? ";
    cin >> employeeNumber;
 
    try {
        auto& emp { db.getEmployee(employeeNumber) };
        emp.fire();
        cout << format("Employee {} terminated.", employeeNumber) << endl;
    } catch (const std::logic_error& exception) {
        cerr << format("Unable to terminate employee: {}",
            exception.what()) << endl;
    }
}
 
void doPromote(Database& db)
{
    int employeeNumber;
    cout << "Employee number? ";
    cin >> employeeNumber;
 
    int raiseAmount;
    cout << "How much of a raise? ";
    cin >> raiseAmount;
 

(continued)
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    try {
        auto& emp { db.getEmployee(employeeNumber) };
        emp.promote(raiseAmount);
    } catch (const std::logic_error& exception) {
        cerr << format("Unable to promote employee: {}", exception.what()) << endl;
    }
}

Evaluating the Program
The preceding program covers a number of topics from the simple to the more complex. There are a 
number of ways that you could extend this program. For example, the user interface does not expose 
all the functionality of the Database and Employee classes. You could modify the UI to include those 
features. You could also try to implement additional functionality that you can think of for both 
classes, which would be a great exercise to practice the material you learned in this chapter.

If there are parts of this program that don’t make sense, consult the relevant sections in this chapter 
to review those topics. If something is still unclear, the best way to learn is to play with the code and 
try things. For example, if you’re not sure how to use the conditional operator, write a short main() 
function that uses it.

SUMMARY

After this crash course in C++ and the Standard Library, you are ready to become a professional C++ 
programmer. When you start getting deeper into the C++ language later in this book, you can refer to 
this chapter to brush up on parts of the language you may need to review. Going back to some of the 
sample code in this chapter may be all you need to bring a forgotten concept back to the forefront of 
your mind.

The next chapter goes deeper in on how strings are handled in C++, because almost every program 
you’ll write will have to work with strings one way or another.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 1-1: Modify the Employee structure from the beginning of this chapter by putting it 
in a namespace called HR. What modifications do you have to make to the code in main() to 
work with this new implementation? Additionally, modify the code to use C++20 designated 
initializers.

Exercise 1-2: Build further on the result of Exercise 1-1 and add an enumeration data mem-
ber title to Employee to specify whether a certain employee is a Manager, Senior Engineer, 
or Engineer. Which kind of enumeration type will you use and why? Whatever you need to 
add, add it to the HR namespace. Test your new Employee data member in the main() func-
tion. Use a switch statement to print out a human-readable string for the title.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 1-3: Use an std::array to store three Employee instances from Exercise 1-2 
with different data. Subsequently, use a range-based for loop to print out the employees in 
the array.

Exercise 1-4: Do the same as Exercise 1-3, but use an std::vector instead of an array, and 
use push_back() to insert elements into the vector.

Exercise 1-5: Now that you know about const and references, and what they are used for, 
modify the AirlineTicket class from earlier in this chapter to use references wherever pos-
sible and to be so-called const correct.

Exercise 1-6: Modify the AirlineTicket class from Exercise 1-5 to include an optional 
frequent-flyer number. What is the best way to represent this optional data member? Add a 
setter and a getter to set and retrieve the frequent-flyer number. Modify the main() function 
to test your implementation.



2
Working with Strings 
and String Views

WHAT’S IN THIS CHAPTER?

➤➤ The differences between C-style strings and C++ strings

➤➤ Details of the C++ std::string class

➤➤ Why you should use std::string_view

➤➤ What raw string literals are

➤➤ How to format strings

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as a part of the chapter’s 
code download on this book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Every program that you write will use strings of some kind. With the old C language, there is 
not much choice but to use a dumb null-terminated character array to represent a string. 
Unfortunately, doing so can cause a lot of problems, such as buffer overflows, which can result 
in security vulnerabilities. The C++ Standard Library includes a safe and easy-to-use 
std::string class that does not have these disadvantages.

Because strings are so important, this chapter, early in the book, discusses them in more detail.

http://www.wiley.com/go/proc++5e
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DYNAMIC STRINGS

Strings in languages that have supported them as first-class objects tend to have a number of attrac-
tive features, such as being able to expand to any size or to have substrings extracted or replaced. 
In other languages, such as C, strings were almost an afterthought; there was no really good string 
data type, just fixed arrays of bytes. The C string library was nothing more than a collection of 
rather primitive functions without even bounds checking. C++ provides a string type as a first-class 
data type.

C-Style Strings
In the C language, strings are represented as an array of characters. The last character of a string is a 
null character (\0) so that code operating on the string can determine where it ends. This null char-
acter is officially known as NUL, spelled with one L, not two. NUL is not the same as the NULL pointer. 
Even though C++ provides a better string abstraction, it is important to understand the C technique 
for strings because they still arise in C++ programming. One of the most common situations is where 
a C++ program has to call a C-based interface in some third-party library or as part of interfacing to 
the operating system.

By far, the most common mistake that programmers make 
with C strings is that they forget to allocate space for the \0 
character. For example, the string "hello" appears to be five 
characters long, but six characters worth of space are needed in 
memory to store the value, as shown in Figure 2-1.

C++ contains several functions from the C language that operate on strings. These functions are 
defined in the <cstring> header. As a general rule of thumb, these functions do not handle memory 
allocation. For example, the strcpy() function takes two strings as parameters. It copies the second 
string onto the first, whether it fits or not. The following code attempts to build a wrapper around 
strcpy() that allocates the correct amount of memory and returns the result, instead of taking in an 
already allocated string. This initial attempt will turn out to be wrong! It uses the strlen() func-
tion to obtain the length of the string. The caller is responsible for freeing the memory allocated by 
copyString().

char* copyString(const char* str)
{
    char* result { new char[strlen(str)] };  // BUG! Off by one!
    strcpy(result, str);
    return result;
}

The copyString() function as written is incorrect. The strlen() function returns the length of the 
string, not the amount of memory needed to hold it. For the string "hello", strlen() returns 5, not 
6. The proper way to allocate memory for a string is to add 1 to the amount of space needed for the 
actual characters. It seems a bit unnatural to have +1 all over the place. Unfortunately, that’s how 
it works, so keep this in mind when you work with C-style strings. The correct implementation is 
as follows:

char* copyString(const char* str)
{

FIGURE 2-1 
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    char* result { new char[strlen(str) + 1] };
    strcpy(result, str);
    return result;
}

One way to remember that strlen()returns only the number of actual characters in the string is 
to consider what would happen if you were allocating space for a string made up of several other 
strings. For example, if your function took in three strings and returned a string that was the con-
catenation of all three, how big would it be? To hold exactly enough space, it would be the length 
of all three strings added together, plus one space for the trailing \0 character. If strlen() included 
the \0 in the length of the string, the allocated memory would be too big. The following code uses 
the strcpy() and strcat() functions to perform this operation. The cat in strcat() stands for 
concatenate.

char* appendStrings(const char* str1, const char* str2, const char* str3)
{
    char* result { new char[strlen(str1) + strlen(str2) + strlen(str3) + 1] };
    strcpy(result, str1);
    strcat(result, str2);
    strcat(result, str3);
    return result;
}

The sizeof() operator in C and C++ can be used to get the size of a certain data type or variable. 
For example, sizeof(char) returns 1 because a char has a size of 1 byte. However, in the context 
of C-style strings, sizeof() is not the same as strlen(). You should never use sizeof() to try to 
get the size of a string. It returns different sizes depending on how the C-style string is stored. If it is 
stored as a char[], then sizeof() returns the actual memory used by the string, including the \0 
character, as in this example:

char text1[] { "abcdef" };
size_t s1 { sizeof(text1) };  // is 7
size_t s2 { strlen(text1) };  // is 6

However, if the C-style string is stored as a char*, then sizeof() returns the size of a pointer!

const char* text2 { "abcdef" };
size_t s3 { sizeof(text2) };  // is platform-dependent
size_t s4 { strlen(text2) };  // is 6

Here, s3 will be 4 when compiled in 32-bit mode, and it will be 8 when compiled in 64-bit mode 
because it is returning the size of a const char*, which is a pointer.

A complete list of functions to operate on C-style strings can be found in the <cstring> header file.

WARNING When you use the C-style string functions with Microsoft Visual 
Studio, the compiler is likely to give you security-related warnings or even errors 
about these functions being deprecated. You can eliminate these warnings by 
using other C Standard Library functions, such as strcpy_s() or strcat_s(), 
which are part of the “secure C library” standard (ISO/IEC TR 24731). How-
ever, the best solution is to switch to the C++ std::string class, discussed in the 
upcoming “The C++ std::string Class” section, but first a bit more on string lit-
erals.
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String Literals
You’ve probably seen strings written in a C++ program with quotes around them. For example, the 
following code outputs the string hello by including the string itself, not a variable that contains it:

cout << "hello" << endl;

In the preceding line, "hello" is a string literal because it is written as a value, not a variable. String 
literals are actually stored in a read-only part of memory. This allows the compiler to optimize 
memory usage by reusing references to equivalent string literals. That is, even if your program uses 
the string literal "hello" 500 times, the compiler is allowed to optimize memory by creating just one 
instance of hello in memory. This is called literal pooling.

String literals can be assigned to variables, but because string literals are in a read-only part of 
memory and because of the possibility of literal pooling, assigning them to variables can be risky. 
The C++ standard officially says that string literals are of type “array of n const char”; however, 
for backward compatibility with older non-const-aware code, most compilers do not enforce your 
program to assign a string literal to a variable of type const char*. They let you assign a string 
literal to a char* without const, and the program will work fine unless you attempt to change the 
string. Generally, the behavior of modifying string literals is undefined. It could, for example, cause a 
crash, it could keep working with seemingly inexplicable side effects, the modification could silently 
be ignored, or it could just work; it all depends on your compiler. For example, the following code 
exhibits undefined behavior:

char* ptr { "hello" };       // Assign the string literal to a variable.
ptr[1] = 'a';                // Undefined behavior!

A much safer way to code is to use a pointer to const characters when referring to string literals. 
The following code contains the same bug, but because it assigned the literal to a const char*, the 
compiler catches the attempt to write to read-only memory:

const char* ptr { "hello" }; // Assign the string literal to a variable.
ptr[1] = 'a';                // Error! Attempts to write to read-only memory

You can also use a string literal as an initial value for a character array (char[]). In this case, the 
compiler creates an array that is big enough to hold the string and copies the string to this array. The 
compiler does not put the literal in read-only memory and does not do any literal pooling.

char arr[] { "hello" }; // Compiler takes care of creating appropriate sized
                        // character array arr.
arr[1] = 'a';           // The contents can be modified.

Raw String Literals
Raw string literals are string literals that can span multiple lines of code, they don’t require escaping 
of embedded double quotes, and escape sequences like \t and \n are processed as normal text and 
not as escape sequences. Escape sequences are discussed in Chapter 1, “A Crash Course in C++ and 
the Standard Library.” For example, if you write the following with a normal string literal, you will 
get a compilation error because the string contains non-escaped double quotes:

const char* str { "Hello "World"!" };    // Error!
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Normally you have to escape the double quotes as follows:

const char* str { "Hello \"World\"!" };

With a raw string literal, you can avoid the need to escape the quotes. A raw string literal starts with 
R"( and ends with )":

const char* str { R"(Hello "World"!)" };

If you need a string consisting of multiple lines, without raw string literals, you need to embed \n 
escape sequences in your string where you want to start a new line. Here’s an example:

const char* str { "Line 1\nLine 2" };

If you output this string to the console, you get the following:

Line 1
Line 2

With a raw string literal, instead of using \n escape sequences to start new lines, you can simply press 
Enter to start real physical new lines in your source code as follows. The output is the same as the 
previous code snippet using the embedded \n.

const char* str { R"(Line 1
Line 2)" };

Escape sequences are ignored in raw string literals. For example, in the following raw string literal, 
the \t escape sequence is not replaced with a tab character but is kept as the sequence of a backslash 
followed by the letter t:

const char* str { R"(Is the following a tab character? \t)" };

So, if you output this string to the console, you get this:

Is the following a tab character? \t

Because a raw string literal ends with )", you cannot embed a )" in your string using this syntax. 
For example, the following string is not valid because it contains the )" sequence in the middle of 
the string:

const char* str { R"(Embedded )" characters)" };    // Error!

If you need embedded )" characters, you need to use the extended raw string literal syntax, which is 
as follows:

R"d-char-sequence(r-char-sequence)d-char-sequence"

The r-char-sequence is the actual raw string. The d-char-sequence is an optional delimiter 
sequence, which should be the same at the beginning and at the end of the raw string literal. This 
delimiter sequence can have at most 16 characters. You should choose this delimiter sequence as a 
sequence that will not appear in the middle of your raw string literal.

The previous example can be rewritten using a unique delimiter sequence as follows:

const char* str { R"-(Embedded )" characters)-" };

Raw string literals make it easier to work with database querying strings, regular expressions, file 
paths, and so on. Regular expressions are discussed in Chapter 21, “String Localization and Regular 
Expressions.”
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The C++ std::string Class
C++ provides a much-improved implementation of the concept of a string as part of the Standard 
Library. In C++, std::string is a class (actually an instantiation of the basic_string class tem-
plate) that supports many of the same functionalities as the <cstring> functions, but that takes 
care of memory allocations for you. The string class is defined in <string> and lives in the std 
namespace. It has already been introduced in the previous chapter, but now it’s time to take a closer 
look at it.

What Is Wrong with C-Style Strings?
To understand the necessity of the C++ string class, consider the advantages and disadvantages of 
C-style strings.

Advantages:

➤➤ They are simple, making use of the underlying basic character type and array structure.

➤➤ They are lightweight, taking up only the memory that they need if used properly.

➤➤ They are low level, so you can easily manipulate and copy them as raw memory.

➤➤ If you’re a C programmer—why learn something new?

Disadvantages:

➤➤ They require incredible efforts to simulate a first-class string data type.

➤➤ They are unforgiving and susceptible to difficult-to-find memory bugs.

➤➤ They don’t leverage the object-oriented nature of C++.

➤➤ They require knowledge of their underlying representation on the part of the programmer.

The preceding lists were carefully constructed to make you think that perhaps there is a better way. 
As you’ll learn, C++ strings solve all the problems of C strings and render most of the arguments 
about the advantages of C strings over a first-class data type irrelevant.

Using the string Class
Even though string is a class, you can almost always treat it as if it were a built-in type. In fact, the 
more you think of it that way, the better off you are. Through the magic of operator overloading, 
C++ strings are much easier to use than C-style strings. For example, the + operator is redefined for 
strings to mean “string concatenation.” The following code produces 1234:

string a { "12" };
string b { "34" };
string c;
c = a + b;    // c is "1234"

The += operator is also overloaded to allow you to easily append a string:

a += b;    // a is "1234"
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Comparing strings
Another problem with C strings is that you cannot use == to compare them. Suppose you have the 
following two strings:

char* a { "12" };
char b[] { "12" };

Writing a comparison as follows always returns false, because it compares the pointer values, not 
the contents of the strings:

if (a == b) { /* ... */ }

Note that C arrays and pointers are related. You can think of C arrays, like the b array in the exam-
ple, as pointers to the first element in the array. Chapter 7, “Memory Management,” goes deeper in 
on the array-pointer duality.

To compare C strings, you have to write something like so:

if (strcmp(a, b) == 0) { /* ... */ }

Furthermore, there is no way to use <, <=, >=, or > to compare C strings, so strcmp() performs a 
three-way comparison, returning a value less than 0, 0, or a value greater than 0, depending on the 
lexicographic relationship of the strings. This results in clumsy and hard-to-read code, which is also 
error-prone.

With C++ strings, operators (==, !=, <, and so on) are all overloaded to work on the actual string 
characters. Individual characters can still be accessed with the square brackets operator, [].

The C++ string class additionally provides a compare() method that behaves like strcmp() and 
has a similar return type. Here is an example:

string a { "12" };
string b { "34" };
 
auto result { a.compare(b) };
if (result < 0) { cout << "less" << endl; }
if (result > 0) { cout << "greater" << endl; }
if (result == 0) { cout << "equal" << endl; }

Just as with strcmp(), this is cumbersome to use. You need to remember the exact meaning of the 
return value. Furthermore, since the return value is just an integer, it is easy to forget the meaning of 
this integer and to write the following wrong code to compare for equality:

if (a.compare(b)) { cout << "equal" << endl; }

compare() returns 0 for equality, anything else for non-equality. So, this line of code does the oppo-
site of what it was intended to do; that is, it outputs “equal” for non-equal strings! If you just want to 
check whether two strings are equal, do not use compare(), but simply ==.

C++20 improves all this with the three-way comparison operator, introduced in Chapter 1. The 
string class has full support for this operator. Here’s an example:

auto result { a <=> b };
if (is_lt(result)) { cout << "less" << endl; }
if (is_gt(result)) { cout << "greater" << endl; }
if (is_eq(result)) { cout << "equal" << endl; }
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Memory Handling
As the following code shows, when string operations require extending the string, the memory 
requirements are automatically handled by the string class, so memory overruns are a thing 
of the past:

string myString { "hello" };
myString += ", there";
string myOtherString { myString };
if (myString == myOtherString) {
    myOtherString[0] = 'H';
}
cout << myString << endl;
cout << myOtherString << endl;

The output of this code is shown here:

hello, there
Hello, there

There are several things to note in this example. One point is that there are no memory leaks even 
though strings are allocated and resized in a few places. All of these string objects are created as 
stack variables. While the string class certainly has a bunch of allocating and resizing to do, the 
string destructors clean up this memory when string objects go out of scope. How exactly destruc-
tors work is explained in detail in Chapter 8, “Gaining Proficiency with Classes and Objects.”

Another point to note is that the operators work the way you want them to work. For example, the 
= operator copies the strings, which is most likely what you want. If you are used to working with 
array-based strings, this will be either refreshingly liberating for you or somewhat confusing. Don’t 
worry—once you learn to trust the string class to do the right thing, life gets so much easier.

Compatibility with C-Style Strings
For compatibility, you can use the c_str() method on a string to get a const char pointer, 
representing a C-style string. However, the returned const pointer becomes invalid whenever the 
string has to perform any memory reallocation or when the string object is destroyed. You should 
call the method just before using the result so that it accurately reflects the current contents of the 
string, and you must never return the result of c_str() called on a stack-based string object from 
a function.

There is also a data() method that, up until C++14, always returned a const char* just as  
c_str(). Starting with C++17, however, data() returns a char* when called on a non-const string.

Operations on strings
The string class supports quite a few additional operations. Here are a few:

➤➤ substr(pos,len): Returns the substring that starts at a given position and has a 
given length

➤➤ find(str): Returns the position where a given substring is found, or string::npos 
if not found
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➤➤ replace(pos,len,str): Replaces part of a string (given by a position and a length) with 
another string 

➤➤ starts_with(str)/ends_with(str): Returns true if a string starts/ends with a 
given substring

Here is a small code snippet that shows some of these operations in action:

string strHello { "Hello!!" };
string strWorld { "The World..." };
auto position { strHello.find("!!") };
if (position != string::npos) {
    // Found the "!!" substring, now replace it.
    strHello.replace(position, 2, strWorld.substr(3, 6));
}
cout << strHello << endl;

The output is as follows:

Hello World

Consult a Standard Library Reference for a complete list of all supported operations that can be 
performed on string objects.

NOTE Since C++20, std::string is a constexpr class, introduced in Chapter 1. 
This means that string can be used to perform operations at compile time and 
that it can be used in the implementation of constexpr functions and classes.

std::string Literals
A string literal in source code is usually interpreted as a const char*. You can use the standard user-
defined literal s to interpret a string literal as an std::string instead.

auto string1 { "Hello World" };    // string1 is a const char*.
auto string2 { "Hello World"s };   // string2 is an std::string.

The standard user-defined literal s is defined in the std::literals::string_literals namespace. 
However, both the string_literals and literals namespaces are so-called inline namespaces. As 
such, you have the following options to make those string literals available to your code:

using namespace std;
using namespace std::literals;
using namespace std::string_literals;
using namespace std::literals::string_literals;

C++20
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Basically, everything that is declared in an inline namespace is automatically available in the parent 
namespace. To define an inline namespace yourself, you use the inline keyword. For example, the 
string_literals inline namespace is defined as follows:

namespace std {
    inline namespace literals {
        inline namespace string_literals {
            // ...
        }
    }
}

CTAD with std::vector and Strings
Chapter 1 explains that std::vector supports class template argument deduction (CTAD), allow-
ing the compiler to automatically deduce the type of a vector based on an initializer list. You have 
to be careful when using CTAD for a vector of strings. Take the following declaration of a vector, 
for example:

vector names { "John", "Sam", "Joe" };

The deduced type will be vector<const char*>, not vector<string>! This is an easy mistake to 
make and can lead to some strange behavior of your code, or even crashes, depending on what you 
do with the vector afterward.

If you want a vector<string>, then use std::string literals as explained in the previous section. 
Note the s behind each string literal in the following example:

vector names { "John"s, "Sam"s, "Joe"s };

Numeric Conversions
The C++ Standard Library provides both high-level and low-level numeric conversion functions, 
explained in the upcoming sections.

High-Level Numeric Conversions
The std namespace includes a number of helper functions, defined in <string>, that make it easy to 
convert numerical values into strings or strings into numerical values.

Converting to Strings
The following functions are available to convert numerical values into strings, where T can be 
(unsigned) int, (unsigned) long, (unsigned) long long, float, double, or long double. All of 
these functions create and return a new string object and manage all necessary memory allocations.

string to_string(T val);

These functions are pretty straightforward to use. For example, the following code converts a long 
double value into a string:

long double d { 3.14L };
string s { to_string(d) };
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Converting from Strings
Converting in the other direction is done by the following set of functions, also defined in the std 
namespace. In these prototypes, str is the string that you want to convert, idx is a pointer that 
receives the index of the first non-converted character, and base is the mathematical base that should 
be used during conversion. The idx pointer can be a null pointer, in which case it will be ignored. 
These functions ignore leading whitespace, throw invalid_argument if no conversion could be per-
formed, and throw out_of_range if the converted value is outside the range of the return type.

➤➤ int stoi(const string& str, size_t *idx=0, int base=10);

➤➤ long stol(const string& str, size_t *idx=0, int base=10);

➤➤ unsigned long stoul(const string& str, size_t *idx=0, int base=10);

➤➤ long long stoll(const string& str, size_t *idx=0, int base=10);

➤➤ unsigned long long stoull(const string& str, size_t *idx=0, int base=10);

➤➤ float stof(const string& str, size_t *idx=0);

➤➤ double stod(const string& str, size_t *idx=0);

➤➤ long double stold(const string& str, size_t *idx=0);

Here is an example:

const string toParse { "   123USD" };
size_t index { 0 };
int value { stoi(toParse, &index) };
cout << format("Parsed value: {}", value) << endl;
cout << format("First non-parsed character: '{}'", toParse[index]) << endl;

The output is as follows:

Parsed value: 123
First non-parsed character: 'U'

stoi(), stol(), stoul(), stoll(), and stoull() accept integral values and have a parameter 
called base, which specifies the base in which the given integral value is expressed. A base of 10, the 
default, assumes the usual decimal numbers, 0–9, while a base of 16 assumes hexadecimal numbers. If 
the base is set to 0, the function automatically figures out the base of the given number as follows:

➤➤ If the number starts with 0x or 0X, it is parsed as a hexadecimal number.

➤➤ If the number starts with 0, it is parsed as an octal number.

➤➤ Otherwise, it is parsed as a decimal number.

Low-Level Numeric Conversions
The standard also provides a number of lower-level numerical conversion functions, all defined in 
<charconv>. These functions do not perform any memory allocations and do not work directly with 
std::strings, but instead they use raw buffers provided by the caller. Additionally, they are tuned 
for high performance and are locale-independent (see Chapter 21 for details on localization). The 
end result is that these functions can be orders of magnitude faster than other higher-level numerical 
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conversion functions. These functions are also designed for so-called perfect round-tripping, which 
means that serializing a numerical value to a string representation followed by deserializing the result-
ing string back to a numerical value results in the exact same value as the original one.

You should use these functions if you want highly performant, perfect round-tripping, locale-inde-
pendent conversions, for example to serialize/deserialize numerical data to/from human-readable 
formats such as JSON, XML, and so on.

Converting to Strings
For converting integers to characters, the following set of functions is available:

to_chars_result to_chars(char* first, char* last, IntegerT value, int base = 10);

Here, IntegerT can be any signed or unsigned integer type or char. The result is of type to_chars_
result, a type defined as follows:

struct to_chars_result {
    char* ptr;
    errc ec;
};

The ptr member is either equal to the one-past-the-end pointer of the written characters if the con-
version was successful or equal to last if the conversion failed (in which case ec == errc::value_
too_large).

Here is an example of its use:

const size_t BufferSize { 50 };
string out(BufferSize, ' '); // A string of BufferSize space characters.
auto result { to_chars(out.data(), out.data() + out.size(), 12345) };
if (result.ec == errc{}) { cout << out << endl; /* Conversion successful. */ }

Using structured bindings introduced in Chapter 1, you can write it as follows:

string out(BufferSize, ' '); // A string of BufferSize space characters.
auto [ptr, error] { to_chars(out.data(), out.data() + out.size(), 12345) };
if (error == errc{}) { cout << out << endl; /* Conversion successful. */ }

Similarly, the following set of conversion functions is available for floating-point types:

to_chars_result to_chars(char* first, char* last, FloatT value);
to_chars_result to_chars(char* first, char* last, FloatT value,
                         chars_format format);
to_chars_result to_chars(char* first, char* last, FloatT value,
                         chars_format format, int precision);

Here, FloatT can be float, double, or long double. Formatting can be specified with a combina-
tion of chars_format flags.

enum class chars_format {
    scientific,                  // Style: (-)d.ddde±dd
    fixed,                       // Style: (-)ddd.ddd
    hex,                         // Style: (-)h.hhhp±d (Note: no 0x!)
    general = fixed | scientific // See next paragraph.
};
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The default format is chars_format::general, which causes to_chars() to convert the floating-
point value to a decimal notation in the style of (-)ddd.ddd or to a decimal exponent notation in the 
style of (-)d.ddde±dd, whichever results in the shortest representation with at least one digit before 
the decimal point (if present). If a format but no precision is specified, the precision is automatically 
determined to result in the shortest possible representation for the given format, with a maximum 
precision of six digits. Here is an example:

double value { 0.314 };
string out(BufferSize, ' '); // A string of BufferSize space characters.
auto [ptr, error] { to_chars(out.data(), out.data() + out.size(), value) };
if (error == errc{}) { cout << out << endl; /* Conversion successful. */ }

Converting from Strings
For the opposite conversion—that is, converting character sequences into numerical values—the fol-
lowing set of functions is available:

from_chars_result from_chars(const char* first, const char* last,
                             IntegerT& value, int base = 10);
from_chars_result from_chars(const char* first, const char* last,
                             FloatT& value,
                             chars_format format = chars_format::general);

Here, from_chars_result is a type defined as follows:

struct from_chars_result {
    const char* ptr;
    errc ec;
};

The ptr member of the result type is a pointer to the first character that was not converted, or it 
equals last if all characters were successfully converted. If none of the characters could be con-
verted, ptr equals first, and the value of the error code will be errc::invalid_argument. If the 
parsed value is too large to be representable by the given type, the value of the error code will be 
errc::result_out_of_range. Note that from_chars() does not skip any leading whitespace.

The perfect round-tripping feature of to_chars() and from_chars() can be demonstrated 
as follows:

double value1 { 0.314 };
string out(BufferSize, ' '); // A string of BufferSize space characters.
auto [ptr1, error1] { to_chars(out.data(), out.data() + out.size(), value1) };
if (error1 == errc{}) { cout << out << endl; /* Conversion successful. */ }
 
double value2;
auto [ptr2, error2] { from_chars(out.data(), out.data() + out.size(), value2) };
if (error2 == errc{}) {
    if (value1 == value2) {
        cout << "Perfect roundtrip" << endl;
    } else {
        cout << "No perfect roundtrip?!?" << endl;
    }
}
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The std::string_view Class
Before C++17, there was always a dilemma of choosing the parameter type for a function that 
accepted a read-only string. Should it be a const char*? In that case, if a client had an std::string 
available, they had to call c_str() or data() on it to get a const char*. Even worse, the func-
tion would lose the nice object-oriented aspects of string and all its nice helper methods. Maybe 
the parameter could instead be a const string&? In that case, you always needed a string. If you 
passed a string literal, for example, the compiler silently created a temporary string object that 
contained a copy of your string literal and passed that object to your function, so there was a bit of 
overhead. Sometimes people would write multiple overloads of the same function—one that accepted 
a const char* and another that accepted a const string&—but that was obviously a less-than-
elegant solution.

Since C++17, all those problems are solved with the introduction of the std::string_view class, 
which is an instantiation of the std::basic_string_view class template, and defined in <string_
view>. A string_view is basically a drop-in replacement for const string& but without the 
overhead. It never copies strings! A string_view provides a read-only view of a string and supports 
an interface similar to string. One exception is the absence of c_str(), but data() is available. 
On the other hand, string_view does add the methods remove_prefix(size_t) and remove_
suffix(size_t), which shrink a string by advancing the starting pointer by a given offset or by 
moving the end pointer backward by a given offset.

If you know how to use std::string, then using a string_view is straightforward, as the follow-
ing example code demonstrates. The extractExtension() function extracts and returns from a 
given filename the extension including the dot character. Note that string_views are usually passed 
by value because they are extremely cheap to copy. They just contain a pointer to, and the length 
of, a string.

string_view extractExtension(string_view filename)
{
    return filename.substr(filename.rfind('.'));
}

This function can be used with all kinds of different strings:

string filename { R"(c:\temp\my file.ext)" };
cout << format("C++ string: {}", extractExtension(filename)) << endl;
 
const char* cString { R"(c:\temp\my file.ext)" };
cout << format("C string: {}", extractExtension(cString)) << endl;
 
cout << format("Literal: {}", extractExtension(R"(c:\temp\my file.ext)")) << endl;

There is not a single copy being made in all these calls to extractExtension(). The filename 
parameter of the extractExtension() function is just a pointer and a length, and so is the return 
type of the function. This is all very efficient.

There is also a string_view constructor that accepts any raw buffer and a length. This can be used 
to construct a string_view out of a string buffer that is not NUL terminated. It is also useful when 
you do have a NUL-terminated string buffer, but you already know the length of the string, so the 
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constructor does not need to count the number of characters again. Here is an example:

const char* raw { /* ... */ };
size_t length { /* ... */ };
cout << format("Raw: {}", extractExtension({ raw, length })) << endl;

The last line can also be written as follows:

cout << format("Raw: {}", extractExtension(string_view { raw, length })) << endl;

NOTE Use an std::string_view instead of const string& or const char* 
whenever a function requires a read-only string as one of its parameters.

You cannot implicitly construct a string from a string_view. Either you use an explicit string 
constructor or you use the string_view::data() member. For example, suppose you have the fol-
lowing function that accepts a const string&:

void handleExtension(const string& extension) { /* ... */ }

Calling this function as follows does not work:

handleExtension(extractExtension("my file.ext"));

The following are two possible options you can use:

handleExtension(extractExtension("my file.ext").data());     // data() method
handleExtension(string { extractExtension("my file.ext") }); // explicit ctor

For the same reason, you cannot concatenate a string and a string_view as such. The following 
code does not compile:

string str { "Hello" };
string_view sv { " world" };
auto result { str + sv };

Instead, you can use the data() method on the string_view as follows:

auto result1 { str + sv.data() };

Or, you can use append():

string result2 { str };
result2.append(sv.data(), sv.size());

WARNING Functions returning a string should return a const string& or a 
string, but not a string_view. Returning a string_view would introduce the 
risk of invalidating the returned string_view if, for example, the string to which 
it refers needs to reallocate.
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WARNING Storing a const string& or a string_view as a data member of a 
class requires you to make sure the string to which they refer stays alive for the 
duration of the object’s lifetime. It’s safer to store a std::string instead.

std::string_view and Temporary Strings
A string_view should not be used to store a view of a temporary string. Take the follow-
ing example:

string s { "Hello" };
string_view sv { s + " World!" };
cout << sv;

This code snippet has undefined behavior, i.e., what happens when running this code depends on your 
compiler and compiler settings. It might crash, it might print “ ello World!” (without the letter H), 
and so on. Why is this undefined behavior? The initializer expression for the sv string_view results 
in a temporary string with the “Hello World!” contents. The string_view then stores a pointer to 
this temporary string. At the end of the second line of code, this temporary string is destroyed, leaving 
the string_view with a dangling pointer.

WARNING Never use std::string_view to store a view of temporary strings.

std::string_view Literals
You can use the standard user-defined literal sv to interpret a string literal as an std::string_view. 
Here’s an example:

auto sv { "My string_view"sv };

The standard user-defined literal sv requires one of the following using directives:

using namespace std::literals::string_view_literals;
using namespace std::string_view_literals;
using namespace std::literals;
using namespace std;

Nonstandard Strings
There are several reasons why many C++ programmers don’t use C++-style strings. Some program-
mers simply aren’t aware of the string type because it was not always part of the C++ specification. 
Others have discovered over the years that the C++ string doesn’t provide the behavior they need or 
dislike the fact that std::string is totally agnostic about the character encoding and so have devel-
oped their own string type. Chapter 21 returns to the topic of character encodings.

Perhaps the most common reason is that development frameworks and operating systems tend 
to have their own way of representing strings, such as the CString class in the Microsoft MFC 
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framework. Often, this is for backward compatibility or to address legacy issues. When starting a 
project in C++, it is important to decide ahead of time how your group will represent strings. Some 
things are for sure:

➤➤ You should not pick the C-style string representation.

➤➤ You can standardize on the string functionality available in the framework you are using, 
such as the built-in string features of MFC, Qt, and so on.

➤➤ If you use std::string for your strings, then use std::string_view to pass read-only 
strings as arguments to functions; otherwise, see if your framework has support for 
something similar like string_views. 

STRING FORMATTING

Up until C++20, formatting of strings was usually done with C-style functions like printf() or with 
C++ I/O streams:

➤➤ C-style functions:

➤➤ Not recommended because they are not type safe and are not extensible to support 
your own custom types

➤➤ Easy to read because of separation of format string and arguments, and hence easy 
to translate to different languages

➤➤ For example:

printf("x has value %d and y has value %d.\n", x, y);

➤➤ C++ I/O streams:

➤➤ Recommended (before C++20) because they are type safe and extensible

➤➤ Harder to read because the strings and arguments are intertwined, and hence harder 
to translate

➤➤ For example:

cout << "x has value " << x << " and y has value " << y << endl;

C++20 introduces std::format(), defined in <format>, to format strings. It basically combines all 
advantages of the C-style functions and the C++ I/O streams. It’s a type-safe and extensible format-
ting mechanism. Its basic form is introduced in the previous chapter and already used throughout 
examples. Now it’s time to look at how powerful format() really is.

The first argument to format() is the formatting string. Subsequent arguments are values that are 
used to fill in placeholders in the formatting string. Up until now, format() has always been used 
with as placeholders empty sets of curly brackets: {}. Inside those braces can be a string in the for-
mat [index][:specifier]. You can either omit the index from all placeholders or specify, for all 

C++20
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placeholders, the zero-based index of one of the values passed to format() as second and subsequent 
arguments that should be used for this placeholder. If index is omitted, the values passed as second 
and subsequent arguments to format() are used in their given order for all placeholders. The speci-
fier is a format specifier to change how a value must be formatted in the output and explained in 
detail in the next section. If you need the { or } character in the output, then you need to escape it 
as {{ or }}.

Let’s start by looking at how the index part can be used. The following call to format() omits 
explicit indices in the placeholders:

auto s1 { format("Read {} bytes from {}", n, "file1.txt") };

You can specify manual indices as follows:

auto s2 { format("Read {0} bytes from {1}", n, "file1.txt") };

Mixing manual indices and automatic indices is not allowed. The following uses an invalid for-
mat string:

auto s2 { format("Read {0} bytes from {}", n, "file1.txt") };

The order of the formatted values in the output string can be changed without having to change the 
actual order of the arguments passed to format(). This is a useful feature if you want to translate 
strings in your software. Certain languages have different ordering within their sentences. For exam-
ple, the previous format string can be translated to Chinese as follows. In Chinese, the order of the 
placeholders in the sentence is reversed, but thanks to positional placeholders in the format string, the 
order of the arguments to the format() function remains unchanged.1

auto s3 { format(L"从{1}中读取{0}个字节  ∘➤➤", n, L"file1.txt") };

The next section delves deeper in on how to control the output using format specifiers.

Format Specifiers
A format specifier is used to manipulate how a value is formatted in the output. A format specifier is 
prefixed with a colon, :. The general form of a format specifier is as follows2:

[[fill]align][sign][#][0][width][.precision][type]

All parts between square brackets are optional. The individual specifier parts are discussed in the next 
subsections.

width
The width specifies the minimum width of the field into which the given value should be format-
ted, for example 5. This can also be another set of curly brackets, in which case it’s called a dynamic 
width. If an index is specified in the curly brackets, for example {3}, the width for the dynamic width 
is taken from the format()’s argument with the given index. Otherwise, if no index is specified, for 
example {}, the width is taken from the next argument in the list of arguments passed to format().

1 The use of the L prefix is explained in Chapter 21.
2 Technically, there is an optional L that can be passed in between the precision and the type. This has to do with locale-
specific formatting, not further discussed in this text.
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Here are some examples:

int i { 42 };
cout << format("|{:5}|", i) << endl;      // |   42|
cout << format("|{:{}}|", i, 7) << endl;  // |     42|

[fill]align
The [fill]align part optionally says what character to use as a fill character, followed by how a 
value should be aligned in its field:

➤➤ < means left alignment (default for non-integers and non-floating-point numbers).

➤➤ > means right alignment (default for integers and floating-point numbers).

➤➤ ^ means center alignment.

The fill character is inserted into the output to make sure the field in the output reaches the desired 
minimum width specified by the [width] part of the specifier. If no [width] is specified, then [fill]
align has no effect.

Here are some examples:

int i { 42 };
cout << format("|{:7}|", i) << endl;    // |     42|
cout << format("|{:<7}|", i) << endl;   // |42     |
cout << format("|{:_>7}|", i) << endl;  // |_____42|
cout << format("|{:_^7}|", i) << endl;  // |__42___|

sign
The sign part can be one of the following:

➤➤ - means to only display the sign for negative numbers (default).

➤➤ + means to display the sign for negative and positive numbers.

➤➤ space means that a minus sign should be used for negative numbers, and a space for 
positive numbers.

Here are some examples:

int i { 42 };
cout << format("|{:<5}|", i) << endl;   // |42   |
cout << format("|{:<+5}|", i) << endl;  // |+42  |
cout << format("|{:< 5}|", i) << endl;  // | 42  |
cout << format("|{:< 5}|", -i) << endl; // |-42  |

#
The # part enables the so-called alternate formatting rules. If enabled for integral types, and hexadeci-
mal, binary, or octal number formatting is specified as well, then the alternate format inserts a 0x, 0X, 
0b, 0B, or 0 in front of the formatted number. If enabled for floating-point types, the alternate format 
will always output a decimal separator, even if no digits follow it.

The following two sections give examples with alternate formatting.
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type
The type specifies the type a given value must be formatted in. There are several options:

➤➤ Integer types: b (binary), B (binary, but with 0B instead of 0b if # is specified), d (decimal), 
o (octal), x (hexadecimal with lowercase a, b, c, d, e, f), X (hexadecimal with uppercase A, 
B, C, D, E, F, and if # is specified, with 0X instead of 0x). If type is unspecified, d is used for 
integer types.

➤➤ Floating-point types: The following floating-point formats are supported. The result of 
scientific, fixed, general, and hexadecimal formatting is the same as discussed earlier in this 
chapter for std::chars_format::scientific, fixed, general, and hex.

➤➤ e, E: Scientific notation with either small e or capital E as the representation of the 
exponent, formatted with either a given precision or 6 if no precision is specified.

➤➤ f, F: Fixed notation formatted with either a given precision or 6 if no precision is 
specified.

➤➤ g, G: General notation with either small e or capital E as the representation of the 
exponent, formatted with either a given precision or 6 if no precision is specified.

➤➤ a, A: Hexadecimal notation with either lowercase letters (a) or uppercase letters (A)

➤➤ If type is unspecified, g is used for floating-point types.

➤➤ Booleans: s (outputs true or false in textual form), b, B, c, d, o, x, X (outputs 1 or 0 in 
integer form). If type is unspecified, s is used for Boolean types.

➤➤ Characters: c (character is copied to output), b, B, d, o, x, X (integer representation). If type 
is unspecified, c is used for character types.

➤➤ String: s (string is copied to output). If type is unspecified, s is used for string types.

➤➤ Pointers: p (hexadecimal notation of the pointer prefixed with 0x). If type is unspecified, p is 
used for pointer types.

Here are some examples with an integral type:

int i { 42 };
cout << format("|{:10d}|", i) << endl;   // |        42|
cout << format("|{:10b}|", i) << endl;   // |    101010|
cout << format("|{:#10b}|", i) << endl;  // |  0b101010|
cout << format("|{:10X}|", i) << endl;   // |        2A|
cout << format("|{:#10X}|", i) << endl;  // |      0X2A|

Here is an example with a string type:

string s { "ProCpp" };
cout << format("|{:_^10}|", s) << endl; // |__ProCpp__|

Examples with floating-point types are given in the next section on precision.
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precision
The precision can be used only for floating-point and string types. It is specified as a dot followed 
by the number of decimal digits to output for floating-point types, or the number of characters to 
output for strings. Just as with width, this can also be another set of curly brackets, in which case it’s 
called a dynamic precision. The precision is then taken either from the next argument in the list of 
arguments passed to format() or from the argument with given index.

Here are some examples using a floating-point type:

double d { 3.1415 / 2.3 };
cout << format("|{:12g}|", d) << endl;                         // |    1.365870|
cout << format("|{:12.2}|", d) << endl;                        // |        1.37|
cout << format("|{:12e}|", d) << endl;                         // |1.365870e+00|
 
int width { 12 };
int precision { 3 };
cout << format("|{2:{0}.{1}f}|", width, precision, d) << endl; // |       1.366|

0
The 0 part of the specifier means that, for numeric values, zeros are inserted into the formatted value 
to reach the desired minimum width specified by the [width] part of the specifier (see earlier). These 
zeros are inserted at the front of the numeric value, but after any sign, and after any 0x, 0X, 0b, or 0B 
prefix. It is ignored if an alignment is specified.

Here are some examples:

int i { 42 };
cout << format("|{:06d}|", i) << endl;   // |000042|
cout << format("|{:+06d}|", i) << endl;  // |+00042|
cout << format("|{:06X}|", i) << endl;   // |00002A|
cout << format("|{:#06X}|", i) << endl;  // |0X002A|

Format Specifier Errors
As you can see from the discussion, format specifiers need to follow strict rules. If a format specifier 
contains an error, an std::format_error exception will be thrown:

try {
    cout << format("An integer: {:.}", 5);
} catch (const format_error& caught_exception) {
    cout << caught_exception.what(); // "missing precision specifier"
}

Support for Custom Types
The C++20 formatting library can be extended to add support for custom types. This involves writing 
a specialization of the std::formatter class template containing two method templates: parse() 
and format(). Template specialization and method templates are explained in Chapter 12, “Writing 
Generic Code with Templates.” Still, for completeness, let’s see how you would implement a custom 
formatter once you are fluent in template specializations. I know, at this time in the book, you will 
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not understand all the syntax in this example yet—for that you need to wait until Chapter 12—but 
it gives you a taste of what is possible once you advance further in the book, at which point you can 
come back to this example.

Suppose you have the following class to store a key-value pair:

class KeyValue
{
    public:
        KeyValue(string_view key, int value) : m_key { key }, m_value { value } {}
 
        const string& getKey() const { return m_key; }
        int getValue() const { return m_value; }
 
    private:
        string m_key;
        int m_value;
};

A custom formatter for KeyValue objects can be implemented by writing the following class 
 template specialization. This custom formatter supports custom format specifiers as well: {:a} outputs 
only the key, {:b} outputs only the value, and {:c} and {} output both key and value.

template<>
class formatter<KeyValue>
{
    public:
        constexpr auto parse(auto& context)
        {
            auto iter { context.begin() };
            const auto end { context.end() };
            if (iter == end || *iter == '}') {  // {} format specifier
                m_outputType = OutputType::KeyAndValue;
                return iter;
            }
        
            switch (*iter) {
                case 'a':  // {:a} format specifier
                    m_outputType = OutputType::KeyOnly;
                    break;
                case 'b':  // {:b} format specifier
                    m_outputType = OutputType::ValueOnly;
                    break;
                case 'c':  // {:c} format specifier
                    m_outputType = OutputType::KeyAndValue;
                    break;
                default:
                    throw format_error { "Invalid KeyValue format specifier." };
            }
 
            ++iter;
            if (iter != end && *iter != '}') {
                throw format_error { "Invalid KeyValue format specifier." };
            }
            return iter;
        }
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        auto format(const KeyValue& kv, auto& context)
        {
            switch (m_outputType) {
                using enum OutputType;
 
                case KeyOnly:
                    return format_to(context.out(), "{}", kv.getKey());
                case ValueOnly:
                    return format_to(context.out(), "{}", kv.getValue());
                default:
                    return format_to(context.out(), "{} - {}",
                        kv.getKey(), kv.getValue());
            }
        }
    private:
        enum class OutputType
        {
            KeyOnly,
            ValueOnly,
            KeyAndValue
        };
        OutputType m_outputType { OutputType::KeyAndValue };
};

The parse() method is responsible for parsing the format specifier given as a character range  
[context.begin(), context.end()). It should store the result of parsing the format specifier in data 
members of the formatter class, and it should return an iterator pointing to the character after the 
end of the parsed format specifier string.

The format() method formats the value given as first argument according to the format specifica-
tion parsed by parse(), writes the result to context.out(), and returns an iterator to the end of the 
output. In this example, the actual formatting is performed by forwarding the work to std::format_
to(). The format_to() function accepts a pre-allocated buffer as first argument to which it writes 
the resulting string, while format() creates a new string object to return.

The custom formatter can be tested as follows:

KeyValue keyValue { "Key1", 11 };
cout << format("{}", keyValue) << endl;
cout << format("{:a}", keyValue) << endl;
cout << format("{:b}", keyValue) << endl;
cout << format("{:c}", keyValue) << endl;
try { cout << format("{:cd}", keyValue) << endl; }
catch (const format_error& caught_exception) { cout << caught_exception.what(); }

The output is as follows:

Key1 - 11
Key1
11
Key1 - 11
Invalid KeyValue format specifier.

As an exercise, you could add support for a custom separator symbol between the key and the value. 
With custom formatters, the possibilities are endless, and everything is type safe!
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SUMMARY

This chapter discussed the C++ string and string_view classes and what their benefits are com-
pared to plain old C-style character arrays. It also explained how a number of helper functions make 
it easier to convert numerical values into strings and vice versa, and it introduced the concept of 
raw string literals.

The chapter finished with a discussion of the C++20 string formatting library, used throughout  
examples in this book. It is a powerful mechanism to format strings with fine-grained control over 
how the formatted output should look.

The next chapter discusses guidelines for good coding style, including code documentation,  
decomposition, naming, code formatting, and other tips.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 2-1: Write a program that asks the user for two strings and then prints them out 
in alphabetical order, using the three-way comparison operator. To ask the user for a string, 
you can use the std::cin stream, briefly introduced in Chapter 1. Chapter 13,”Demystify-
ing C++ I/O,” explains input and output in detail, but for now, here is how to read in a string 
from the console. To terminate the line, just press Enter.

std::string s;
getline(cin, s1);

Exercise 2-2: Write a program that asks the user for a source string (= haystack), a string 
to find (= needle) in the source string, and a replacement string. Write a function with 
three parameters—the haystack, needle, and replacement string—that returns a copy of the 
haystack with all needles replaced with the replacement string. Use only std::string, no 
string_view. What kind of parameter types will you use and why? Call this function from 
main() and print out all the strings for verification.

Exercise 2-3: Modify the program from Exercise 2-2 and use std::string_view on as many 
places as you can.

Exercise 2-4: Write a program that asks the user to enter an unknown number of floating-
point numbers and stores all numbers in a vector. Each number should be typed followed by 
Enter. Stop asking for more numbers when the user inputs the number 0. To read a floating-
point number from the console, use cin in the same way it was used in Chapter 1 to input 
integer values. Format all numbers in a table with a couple of columns where each column 
formats a number in a different way. Each row in the table corresponds to one of the input-
ted numbers.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e


3
Coding with Style

WHAT’S IN THIS CHAPTER?

➤➤ The importance of documenting your code and what kind of  
commenting styles you can use

➤➤ What decomposition means and how to use it

➤➤ What naming conventions are

➤➤ What formatting rules are

If you’re going to spend several hours each day in front of a keyboard writing code, you should 
take some pride in all that work. Writing code that gets the job done is only part of a program-
mer’s work. After all, anybody can learn the fundamentals of coding. It takes a true master to 
code with style.

This chapter explores the question of what makes good code. Along the way, you’ll see several 
approaches to C++ style. As you will discover, simply changing the style of code can make it 
appear very different. For example, C++ code written by Windows programmers often has its 
own style, using Windows conventions. It almost looks like a completely different language 
than C++ code written by macOS programmers. Exposure to several different styles will help 
you avoid that sinking feeling you get when opening a C++ source file that barely resembles the 
C++ you thought you knew.

THE IMPORTANCE OF LOOKING GOOD

Writing code that is stylistically “good” takes time. You probably don’t need much time to whip 
together a quick-and-dirty program to parse an XML file. Writing the same program with func-
tional decomposition, adequate comments, and a clean structure would take you more time. Is 
it really worth it?
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Thinking Ahead
How confident would you be in your code if a new programmer had to work with it a year from 
now? A friend of mine, faced with a growing mess of web application code, encouraged his team to 
think about a hypothetical intern who would be starting in a year. How would this poor intern ever 
get up to speed on the code base when there was no documentation and scary multiple-page func-
tions? When you’re writing code, imagine that somebody new or even you will have to maintain it in 
the future. Will you even still remember how it works? What if you’re not available to help? Well-
written code avoids these problems because it is easy to read and understand.

Elements of Good Style
It is difficult to enumerate the characteristics of code that make it “stylistically good.” Over time, 
you’ll find styles that you like and notice useful techniques in code that others wrote. Perhaps more 
important, you’ll encounter horrible code that teaches you what to avoid. However, good code shares 
several universal tenets that are explored in this chapter:

➤➤ Documentation

➤➤ Decomposition

➤➤ Naming

➤➤ Use of the language

➤➤ Formatting

DOCUMENTING YOUR CODE

In the programming context, documentation usually refers to comments contained in the source 
files. Comments are your opportunity to tell the world what was going through your head when you 
wrote the accompanying code. They are a place to say anything that isn’t obvious from looking at the 
code itself.

Reasons to Write Comments
It may seem obvious that writing comments is a good idea, but have you ever stopped to think about 
why you need to comment your code? Sometimes programmers acknowledge the importance of com-
menting without fully understanding why comments are important. There are several reasons, all of 
which are explored in this chapter.

Commenting to Explain Usage
One reason to use comments is to explain how clients should interact with the code. Normally, a 
developer should be able to understand what a function does simply based on the name of the func-
tion, the type of the return value, and the name and type of its parameters. However, not everything 
can be expressed in code. Function pre- and postconditions1 and the exceptions a function can throw 

1 Preconditions are the conditions that client code must satisfy before calling a function. Postconditions are the condi-
tions that must be satisfied by the function when it has finished executing.
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are things that you can only explain in a comment. In my opinion, it is OK to only add a comment if 
it really adds any useful information, such as pre- and postconditions and exceptions; otherwise, it’s 
acceptable to omit the comment. Nevertheless, it’s rare for a function to have no pre- or postcondi-
tions. Bottom line, it’s up to the developer to decide whether a function needs a comment. Experi-
enced programmers will have no problems deciding this, but less experienced developers might not 
always make the right decision. That’s why some companies have a rule stating that at least each 
publicly accessible function or method in a module or header file should have a comment explaining 
what it does, what its arguments are, what values it returns, and possible exceptions it can throw.

A comment gives you the opportunity to state, in English, anything that you can’t state in code. For 
example, there’s really no way in C++ code to indicate that the saveRecord() method of a database 
object throws an exception if openDatabase() has not been called yet. A comment, however, can be 
the perfect place to note this restriction, as follows:

// Throws:
//    DatabaseNotOpenedException if the openDatabase() method has not
//    been called yet.
int saveRecord(Record& record);

The saveRecord() method accepts a reference-to-non-const Record object. Users might wonder 
why it’s not a reference-to-const, so this is something that needs to be explained in a comment:

// Parameters:
//    record: If the given record does not yet have a database ID, then the method
//    modifies the record object to store the ID assigned by the database.
// Throws:
//    DatabaseNotOpenedException if the openDatabase() method has not
//    been called yet.
int saveRecord(Record& record);

The C++ language forces you to specify the return type of a method, but it does not provide a way 
for you to say what the returned value actually represents. For example, the declaration of the 
saveRecord() method may indicate that it returns an int (a bad design decision discussed further 
in this section), but a client reading that declaration wouldn’t know what the int means. A comment 
explains the meaning of it:

// Saves the given record to the database.
//
// Parameters:
//    record: If the given record does not yet have a database ID, then the method
//    modifies the record object to store the ID assigned by the database.
// Returns: int
//    An integer representing the ID of the saved record.
// Throws:
//    DatabaseNotOpenedException if the openDatabase() method has not
//    been called yet.
int saveRecord(Record& record);

The previous comment documents everything about the saveRecord() method in a formal way, 
including a sentence that describes what the method does. Some companies require such formal and 
thorough documentation, however, I don’t recommend this style of commenting all the time. The first 
line, for example, is rather useless since the name of the function is self-explanatory. The description 
of the parameter is important as is the comment about the exception, so these definitely should stay. 
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Documenting what exactly the return type represents for this version of saveRecord() is required 
since it returns a generic int. However, a much better design would be to return a RecordID instead 
of a plain int, which removes the need to add any comments for the return type. RecordID could 
be a simple class with a single int data member, but it conveys more information, and it allows you 
to add more data members in the future if need be. So, the following is my recommendation for the 
saveRecord() method:

// Parameters:
//    record: If the given record does not yet have a database ID, then the method
//    modifies the record object to store the ID assigned by the database.
// Throws:
//    DatabaseNotOpenedException if the openDatabase() method has not
//    been called yet.
RecordID saveRecord(Record& record);

NOTE If your company coding guidelines don’t force you to write formal com-
ments for functions, use common sense when writing comments. Only state 
something in a comment that is not obvious based on the name of the function, 
the return type, and the name and type of its parameters.

Sometimes, the parameters to and the return type from a function are generic and can be used to pass 
all kinds of information. In that case you need to clearly document exactly what type is being passed. 
For example, message handlers in Windows accept two parameters, LPARAM and WPARAM, and can 
return an LRESULT. All three can be used to pass almost anything you like, but you cannot change 
their type. By using type casting, they can, for example, be used to pass a simple integer or a pointer 
to some object. Your documentation could look like this:

// Parameters:
//    WPARAM wParam: (WPARAM)(int): An integer representing...
//    LPARAM lParam: (LPARAM)(string*): A string pointer representing...
// Returns: (LRESULT)(Record*)
//    nullptr in case of an error, otherwise a pointer to a Record object
//    representing...
LRESULT handleMessage(WPARAM wParam, LPARAM lParam);

Your public documentation should describe the behavior of your code, not the implementation. The 
behavior includes the inputs, outputs, error conditions and handling, intended uses, and performance 
guarantees. For example, public documentation describing a call to generate a single random num-
ber should specify that it takes no parameters, returns an integer in a previously specified range, and 
should list all the exceptions that might be thrown when something goes wrong. This public docu-
mentation should not explain the details of the linear congruence algorithm for actually generating 
the number. Providing too much implementation detail in comments targeted for users of your code is 
probably the single most common mistake in writing public comments.
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Commenting to Explain Complicated Code
Good comments are also important inside the actual source code. In a simple program that processes 
input from the user and writes a result to the console, it is probably easy to read through and under-
stand all of the code. In the professional world, however, you will often need to write code that is 
algorithmically complex or too esoteric to understand simply by inspection.

Consider the code that follows. It is well-written, but it may not be immediately apparent what it 
is doing. You might recognize the algorithm if you have seen it before, but a newcomer probably 
wouldn’t understand the way the code works.

void sort(int data[], size_t size)
{
    for (int i { 1 }; i < size; ++i) {
        int element { data[i] };
        int j { i };
        while (j > 0 && data[j - 1] > element) {
            data[j] = data[j - 1];
            j--;
        }
        data[j] = element;
    }
}

A better approach would be to include comments that describe the algorithm that is being used and 
to document (loop) invariants. Invariants are conditions that have to be true during the execution of 
a piece of code, for example, a loop iteration. In the modified function that follows, a thorough com-
ment at the top explains the algorithm at a high level, and inline comments explain specific lines that 
may be confusing:

// Implements the "insertion sort" algorithm. The algorithm separates the 
// array into two parts--the sorted part and the unsorted part. Each
// element, starting at position 1, is examined. Everything earlier in the
// array is in the sorted part, so the algorithm shifts each element over
// until the correct position is found to insert the current element. When 
// the algorithm finishes with the last element, the entire array is sorted.
void sort(int data[], size_t size)
{
    // Start at position 1 and examine each element.
    for (int i { 1 }; i < size; ++i) {
        // Loop invariant:
        //     All elements in the range 0 to i-1 (inclusive) are sorted.
 
        int element { data[i] };
        // j marks the position in the sorted part where element will be inserted.
        int j { i };
        // As long as the value in the slot before the current slot in the sorted
        // array is higher than element, shift values to the right to make room 
        // for inserting element (hence the name, "insertion sort") in the correct
        // position.

continues
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        while (j > 0 && data[j - 1] > element) {
            // invariant: elements in the range j+1 to i are > element.
            data[j] = data[j - 1];
            // invariant: elements in the range j to i are > element.
            j--;
        }
        // At this point the current position in the sorted array
        // is *not* greater than the element, so this is its new position.
        data[j] = element;        
    }
}

The new code is certainly more verbose, but a reader unfamiliar with sorting algorithms would be 
much more likely to understand it with the comments included.

Commenting to Convey Meta-information
Another possible reason to use comments is to provide information at a higher level than the code 
itself. This meta-information provides details about the creation of the code without addressing 
the specifics of its behavior. For example, your organization may want to keep track of the original 
author of each method. You can also use meta-information to cite external documents or refer to 
other code.

The following example shows several instances of meta-information, including the author, the date it 
was created, and the specific feature it addresses. It also includes inline comments expressing meta-
data, such as the bug number that corresponds to a line of code and a reminder to revisit a possible 
problem in the code later.

// Author:  marcg
// Date:    110412
// Feature: PRD version 3, Feature 5.10
RecordID saveRecord(Record& record)
{
    if (!m_databaseOpen) { throw DatabaseNotOpenedException { }; }
    RecordID id { getDB()->saveRecord(record) };
    if (id == -1) return -1;  // Added to address bug #142 – jsmith 110428
    record.setId(id);
    // TODO: What if setId() throws an exception? – akshayr 110501
    return id;
}

A change-log could also be included at the beginning of each file. The following shows a possible 
example of such a change-log:

// Date     | Change
//----------+--------------------------------------------------
// 110413   | REQ #005: <marcg> Do not normalize values.
// 110417   | REQ #006: <marcg> use nullptr instead of NULL.

(continued)
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WARNING All the meta-information in the previous examples (except for the 
“TODO” comment) is discouraged when you use—and you should use—a 
source code control solution, as discussed in Chapter 28, “Maximizing Software 
Engineering Methods.” Such a solution offers an annotated change history with 
revision dates, author names, and, if properly used, comments accompanying 
each modification, including references to change requests and bug reports. 
You should check in or commit each change request or bug fix separately with a 
descriptive comment. With such a system, you don’t need to manually keep track 
of meta-information.

Another type of meta-information is a copyright notice. Some companies require such a copyright 
notice at the beginning of every source file.

It’s easy to go overboard with comments. A good approach is to discuss which types of comments are 
most useful with your group and to form a policy. For example, if one member of the group uses a 
“TODO” comment to indicate code that still needs work but nobody else knows about this conven-
tion, the code in need of attention could be overlooked.

Commenting Styles
Every organization has a different approach to commenting code. In some environments, a particular 
style is mandated to give the code a common standard for documentation. Other times, the quan-
tity and style of commenting are left up to the programmer. The following examples depict several 
approaches to commenting code.

Commenting Every Line
One way to avoid lack of documentation is to force yourself to overdocument by including a com-
ment for every line. Commenting every line of code should ensure that there’s a specific reason for 
everything you write. In reality, such heavy commenting on a large scale is unwieldy, messy, and tedi-
ous! For example, consider the following useless comments:

int result;                   // Declare an integer to hold the result.
result = doodad.getResult();  // Get the doodad's result.
if (result % 2 ==  0) {       // If the result modulo 2 is 0 ...
   logError();                // then log an error,
} else {                      // otherwise ...
   logSuccess();              // log success.
}                             // End if/else.
return result;                // Return the result.

The comments in this code express each line as part of an easily readable English story. This is 
entirely useless if you assume that the reader has at least basic C++ skills. These comments don’t add 
any additional information to code. Specifically, look at this line:

if (result % 2 == 0) {        // If the result modulo 2 is 0 ...
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The comment is just an English translation of the code. It doesn’t say why the programmer has used 
the modulo operator on the result with the value 2. The following would be a better comment:

if (result % 2 == 0) {        // If the result is even ...

The modified comment, while still fairly obvious to most programmers, gives additional information 
about the code. The modulo operator with 2 is used because the code needs to check whether the 
result is even.

Even better, if some expression does something that might not be immediately obvious to everyone,  
I recommend turning it into a function with a well-chosen name. This makes the code self-document-
ing, removing the need to write comments where the function is used, and results in a piece of reus-
able code. For example, you can define a function isEven() as follows:

bool isEven(int value) { return value % 2 == 0; }

And then use it like this, without any comments:

if (isEven(result)) {

Despite its tendency to be verbose and superfluous, heavy commenting can be useful in cases where 
the code would otherwise be difficult to comprehend. The following code also comments every line, 
but these comments are actually helpful:

// Calculate the doodad. The start, end, and offset values come from the
// table on page 96 of the "Doodad API v1.6."
result = doodad.calculate(Start, End, Offset);
// To determine success or failure, we need to bitwise AND the result with
// the processor-specific mask (see "Doodad API v1.6," page 201).
result &= getProcessorMask();
// Set the user field value based on the "Marigold Formula."
// (see "Doodad API v1.6", page 136)
setUserField((result + MarigoldOffset) / MarigoldConstant + MarigoldConstant);

This code is taken out of context, but the comments give you a good idea of what each line does. 
Without them, the calculations involving & and the mysterious “Marigold Formula” would be dif-
ficult to decipher.

NOTE Commenting every line of code is usually not warranted, but if the code 
is complicated enough to require it, don’t just translate the code to English: 
explain what’s really going on.

Prefix Comments
Your group may decide to begin all source files with a standard comment. This is an opportunity to 
document important information about the program and a specific file. Examples of information that 
could be at the top of every file include the following:

➤➤ Copyright information

➤➤ A brief description of the file/class
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➤➤ The last-modified date*

➤➤ The original author*

➤➤ A change-log (as described earlier)*

➤➤ The feature ID addressed by the file*

➤➤ Incomplete features**

➤➤ Known bugs**

* These items are usually automatically handled by your source code control solution (see 
Chapter 28).

** These items are usually handled by your bug and feature tracking system (see Chapter 30, 
“Becoming Adept at Testing”).

Your development environment may allow you to create a template that automatically starts new files 
with your prefix comment. Some source control systems such as Subversion (SVN) can even assist by 
filling in metadata. For example, if your comment contains the string $Id$, SVN can automatically 
expand the comment to include the author, filename, revision, and date.

An example of a prefix comment is shown here:

// $Id: Watermelon.cpp,123 2004/03/10 12:52:33 marcg $
// 
// Implements the basic functionality of a watermelon. All units are expressed
// in terms of seeds per cubic centimeter. Watermelon theory is based on the
// white paper "Algorithms for Watermelon Processing."
//
// The following code is (c) copyright 2017, FruitSoft, Inc. ALL RIGHTS RESERVED

Fixed-Format Comments
Writing comments in a standard format that can be parsed by external document builders is a popu-
lar programming practice. In the Java language, programmers can write comments in a standard 
format that allows a tool called JavaDoc to automatically create hyperlinked documentation for the 
project. For C++, a free tool called Doxygen (available at doxygen.org) parses comments to auto-
matically build HTML documentation, class diagrams, UNIX man pages, and other useful docu-
ments. Doxygen even recognizes and parses JavaDoc-style comments in C++ programs. The code that 
follows shows JavaDoc-style comments that are recognized by Doxygen:

/**
 * Implements the basic functionality of a watermelon
 * TODO: Implement updated algorithms!
 */
export class Watermelon
{
    public:
        /**
         * @param initialSeeds The starting number of seeds, must be > 5.
         * @throws invalid_argument if initialSeeds <= 5.
         */
        Watermelon(size_t initialSeeds);

continues

http://doxygen.org
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        /**
         * Computes the seed ratio, using the Marigold algorithm.
         * @param slow Whether or not to use long (slow) calculations.
         * @return The marigold ratio.
         */
        double calculateSeedRatio(bool slow);
};

Doxygen recognizes the C++ syntax and special comment directives such as @param, @return, and 
@throws to generate customizable output. Figure 3-1 shows an example of a Doxygen-generated 
HTML class reference.

Note that you should still avoid writing useless comments, even when you use a tool to automatically 
generate documentation. Take a look at the Watermelon constructor in the previous code. Its com-
ment omits a description and only describes the parameter and the exceptions it throws. Adding a 
description, as in the following example, is redundant:

        /**
         * The Watermelon constructor.
         * @param initialSeeds The starting number of seeds, must be > 5.
         * @throws invalid_argument if initialSeeds <= 5.
         */
        Watermelon(size_t initialSeeds);

Automatically generated documentation like the file shown in Figure 3-1 can be helpful during devel-
opment because it allows developers to browse through a high-level description of classes and their 
relationships. Your group can easily customize a tool like Doxygen to work with the style of com-
ments that you have adopted. Ideally, your group would set up a machine that builds documentation 
on a daily basis.

Ad Hoc Comments
Most of the time, you use comments on an as-needed basis. Here are some guidelines for comments 
that appear within the body of your code:

➤➤ Before adding a comment, first consider whether you can rework the code to make the com-
ment redundant—for example, by renaming variables, functions, and classes; by reordering 
steps in the code; by introducing intermediate well-named variables; and so on.

➤➤ Imagine someone else is reading your code. If there are subtleties that are not immediately 
obvious, then you should document those.

➤➤ Don’t put your initials in the code. Source code control solutions will track that kind of 
information automatically for you.

➤➤ If you are doing something with an API that isn’t immediately obvious, include a reference 
to the documentation of that API where it is explained.

➤➤ Remember to update your comments when you update the code. Nothing is more confusing 
than code that is fully documented with incorrect information.

➤➤ If you use comments to separate a function into sections, consider whether the function can 
be broken up into multiple, smaller functions.

(continued)
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➤➤ Avoid offensive or derogatory language. You never know who might look at your 
code someday.

➤➤ Liberal use of inside jokes is generally considered OK. Check with your manager.

FIGURE 3-1 
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Self-Documenting Code
Well-written code often doesn’t need abundant commenting. The best code is written to be readable. 
If you find yourself adding a comment for every line, consider whether the code could be rewritten 
to better match what you are saying in the comments. For example, use descriptive names for your 
functions, parameters, variables, classes, and so on. Properly make use of const; that is, if a variable 
is not supposed to be modified, mark it as const. Reorder the steps in a function to make it clearer 
what it is doing. Introduce intermediate well-named variables to make an algorithm easier to under-
stand. Remember that C++ is a language. Its main purpose is to tell the computer what to do, but the 
semantics of the language can also be used to explain its meaning to a reader.

Another way of writing self-documenting code is to break up, or decompose, your code into smaller 
pieces. Decomposition is covered in detail in the following section.

NOTE Good code is naturally readable and only requires comments to provide 
useful additional information.

DECOMPOSITION

Decomposition is the practice of breaking up code into smaller pieces. There is nothing more daunt-
ing in the world of coding than opening up a file of source code to find 300-line functions and 
massive, nested blocks of code. Ideally, each function or method should accomplish a single task. Any 
subtasks of significant complexity should be decomposed into separate functions or methods. For 
example, if somebody asks you what a method does and you answer, “First it does A, then it does B; 
then, if C, it does D; otherwise, it does E,” you should probably have separate helper methods for A, 
B, C, D, and E.

Decomposition is not an exact science. Some 
programmers will say that no function should be 
longer than a page of printed code. That may be a 
good rule of thumb, but you could certainly find 
a quarter-page of code that is desperately in need 
of decomposition. Another rule of thumb is that 
if you squint your eyes and look at the format of 
the code without reading the actual content, it 
shouldn’t appear too dense in any one area. For 
example, Figures 3-2 and 3-3 show code that has 
been purposely blurred so that you don’t focus 
on the content. It should be obvious that the code 
in Figure 3-3 has better decomposition than the 
code in Figure 3-2.

FIGURE 3-2 
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Decomposition Through 
Refactoring

Sometimes, when you’ve had a few coffees and 
you’re really in the programming zone, you start 
 coding so fast that you end up with code that 
does exactly what it’s supposed to do but is far 
from pretty. All programmers do this from time to 
time. Short periods of vigorous coding are some-
times the most productive times in the course of 
a project. Dense code also arises over the course 
of time as code is modified. As new requirements 
and bug fixes emerge, existing code is amended 
with small modifications. The computing term 
cruft refers to the gradual accumulation of small 
amounts of code that eventually turns a once-
elegant piece of code into a mess of patches and  
special cases.

Refactoring is the act of restructuring your code. 
The following list contains example techniques 
that you can use to refactor your code. Consult 
one of the refactoring books in Appendix B to get 
a more comprehensive list.

➤➤ Techniques that allow for more 
abstraction:

➤➤ Encapsulate field: Make a field private and give access to it with getter and 
setter methods.

➤➤ Generalize type: Create more general types to allow for more code sharing.

➤➤ Techniques for breaking code apart into more logical pieces:

➤➤ Extract method: Turn part of a larger method into a new method to make it easier 
to understand.

➤➤ Extract class: Move part of the code from an existing class into a new class.

➤➤ Techniques for improving names and the location of code:

➤➤ Move method or move field: Move to a more appropriate class or source file.

➤➤ Rename method or rename field: Change the name to better reveal its purpose.

➤➤ Pull up: In object-oriented programming, move to a base class.

➤➤ Push down: In object-oriented programming, move to a derived class.

FIGURE 3-3 
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Whether your code starts its life as a dense block of unreadable cruft or it just evolves that way, 
refactoring is necessary to periodically purge the code of accumulated hacks. Through refactoring, 
you revisit existing code and rewrite it to make it more readable and maintainable. Refactoring is an 
opportunity to revisit the decomposition of code. If the purpose of the code has changed or if it was 
never decomposed in the first place, when you refactor the code, squint at it and determine whether 
it needs to be broken down into smaller parts.

When refactoring code, it is important to be able to rely on a testing framework that catches any 
defects that you might introduce. Unit tests, discussed in Chapter 30, are particularly well suited for 
helping you catch mistakes during refactoring.

Decomposition by Design
If you use modular decomposition and approach every module, method, or function by consider-
ing what pieces of it you can put off until later, your programs will generally be less dense and more 
organized than if you implement every feature in its entirety as you code.

Of course, you should still design your program before jumping into the code.

Decomposition in This Book
You will see decomposition in many of the examples in this book. In many cases, methods are 
referred to for which no implementation is shown because they are not relevant to the example and 
would take up too much space.

NAMING

The C++ compiler has a few naming rules:

➤➤ Names cannot start with a number (for example, 9to5).

➤➤ Names that contain a double underscore (such as my__name) are reserved and shall 
not be used.

➤➤ Names that begin with an underscore followed by an uppercase letter (such as _Name) are 
always reserved and shall not be used.

➤➤ Names in the global namespace that begin with an underscore (such as _name) are reserved 
and shall not be used.

Other than those rules, names exist only to help you and your fellow programmers work with the 
individual elements of your program. Given this purpose, it is surprising how often programmers use 
unspecific or inappropriate names.

Choosing a Good Name
The best name for a variable, method, function, parameter, class, namespace, and so on, accurately 
describes the purpose of the item. Names can also imply additional information, such as the type or 
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specific usage. Of course, the real test is whether other programmers understand what you are trying 
to convey with a particular name.

There are no set-in-stone rules for naming other than the rules that work for your organization. How-
ever, there are some names that are rarely appropriate. The following table shows some names at both 
ends of the naming continuum:

GOOD NAMES BAD NAMES

sourceName, destinationName
Distinguishes two objects

thing1, thing2
Too general

g_settings

Conveys global status

globalUserSpecificSettingsAndPreferences

Too long

m_nameCounter

Conveys data member status

m_NC

Too obscure, too brief

calculateMarigoldOffset()

Simple, accurate

doAction()

Too general, imprecise

m_typeString

Easy on the eyes

typeSTR256

A name only a computer could love

m_IHateLarry

Unacceptable inside joke

errorMessage

Descriptive name

string

Nondescriptive name

sourceFile, destinationFile
No abbreviations

srcFile, dstFile
Abbreviations

Naming Conventions
Selecting a name doesn’t always require a lot of thought and creativity. In many cases, you’ll want to 
use standard techniques for naming. The following are some of the types of data for which you can 
make use of standard names.

Counters
Early in your programming career, you probably saw code that used the variable i as a counter. It 
is customary to use i and j as counters and inner-loop counters, respectively. Be careful with nested 
loops, however. It’s a common mistake to refer to the “ith” element when you really mean the “jth” 
element. When working with 2-D data, it’s probably easier to use row and column as indices instead 
of i and j. Some programmers prefer using counters outerLoopIndex and innerLoopIndex, and 
some even frown upon using i and j as loop counters.
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Prefixes
Many programmers begin their variable names with a letter that provides some information about 
the variable’s type or usage. On the other hand, there are as many programmers, or even more, who 
disapprove of using any kind of prefix because this could make evolving code less maintainable in 
the future. For example, if a member variable is changed from static to non-static, you have to 
rename all the uses of that name. If you don’t rename them, your names continue to convey seman-
tics, but now they are the wrong semantics.

However, you often don’t have a choice, and you need to follow the guidelines of your company. The 
following table shows some potential prefixes:

PREFIX EXAMPLE NAME LITERAL PREFIX MEANING USAGE

m

m_

mData

m_data

“member” Data member within a class

s

ms

ms_

sLookupTable

msLookupTable

ms_lookupTable

“static” Static variable or data member

k kMaximumLength “konstant” (German for 
“constant”)

A constant value. Some program-
mers omit any prefix to indicate  
constants.

b

is

bCompleted

isCompleted

“Boolean” Designates a Boolean value

Hungarian Notation
Hungarian notation is a variable and data member–naming convention that is popular with Micro-
soft Windows programmers. The basic idea is that instead of using single-letter prefixes such as m, 
you should use more verbose prefixes to indicate additional information. The following line of code 
shows the use of Hungarian notation:

char* pszName; // psz means "pointer to string, zero-terminated"

The term Hungarian notation arose from the fact that its inventor, Charles Simonyi, is Hungar-
ian. Some also say that it accurately reflects the fact that programs using Hungarian notation end 
up looking as if they were written in a foreign language. For this latter reason, some programmers 
tend to dislike Hungarian notation. In this book, prefixes are used, but not Hungarian notation. 
Adequately named variables don’t need much additional context information besides the prefix. For 
example, a data member named m_name says it all.

NOTE Good names convey information about their purpose without making 
the code unreadable.
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Getters and Setters
If your class contains a data member, such as m_status, it is customary to provide access to the 
member via a getter called getStatus() and a setter called setStatus(). To give access to a Boolean 
data member, you typically use is as a prefix instead of get, for example isRunning(). The C++ 
language has no prescribed naming for these methods, but your organization will probably want to 
adopt this or a similar naming scheme.

Capitalization
There are many different ways of capitalizing names in your code. As with most elements of coding 
style, it is important that your group adopts a standardized approach and that all members adopt that 
approach. One way to get messy code is to have some programmers naming classes in all lowercase 
with underscores representing spaces (priority_queue) and others using capitals with each subse-
quent word capitalized (PriorityQueue). Variables and data members almost always start with a 
lowercase letter and use either underscores (my_queue) or capitals (myQueue) to indicate word breaks. 
Functions and methods are traditionally capitalized in C++, but, as you’ve seen, in this book I have 
adopted the style of lowercase functions and methods to distinguish them from class names. A similar 
style of capitalizing letters is used to indicate word boundaries for class and data member names.

Namespaced Constants
Imagine that you are writing a program with a graphical user interface. The program has several 
menus, including File, Edit, and Help. To represent the ID of each menu, you may decide to use a 
constant. A perfectly reasonable name for a constant referring to the Help menu ID is Help.

The name Help will work fine until you add a Help button to the main window. You also need a 
constant to refer to the ID of the button, but Help is already taken.

A possible solution for this is to put your constants in different namespaces, which are discussed in 
Chapter 1, “A Crash Course in C++ and the Standard Library.” You create two namespaces: Menu and 
Button. Each namespace has a Help constant, and you use them as Menu::Help and Button::Help. 
Another, and more recommended, solution is to use enumerated types, also introduced in Chapter 1.

USING LANGUAGE FEATURES WITH STYLE

The C++ language lets you do all sorts of terribly unreadable things. Take a look at this wacky code:

i++ + ++i;

This is unreadable, but more importantly, its behavior is undefined by the C++ standard. The problem 
is that i++ uses the value of i but has a side effect of incrementing it. The standard does not say when 
this incrementing should be done, only that the side effect (increment) should be visible after the 
sequence point ;. However, the compiler can do it at any time during the execution of that statement. 
It’s impossible to know which value of i will be used for the ++i part. Running this code with differ-
ent compilers and platforms can result in different values.
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Expressions such as the following

a[i] = ++i;

are well-defined since C++17, which guarantees that the evaluation of all operations on the right-
hand side of an assignment is finished before evaluating the left-hand side. So, in this case, first i is 
incremented and then used as index in a[i]. Even so, for clarity, it remains recommended to avoid 
such expressions.

With all the power that the C++ language offers, it is important to consider how the language features 
can be used toward stylistic good instead of evil.

Use Constants
Bad code is often littered with “magic numbers.” In some function, the code might be using 2.71828 
or 24 or 3600, and so on. Why? What do these values mean? People with a mathematical background 
might find it obvious that 2.71828 represents an approximation of the transcendental value e, but 
most people don’t know this. The C++ language offers constants to give symbolic names to values 
that don’t change, such as 2.71828, 24, 3600, and so on. Here are some examples:

const double ApproximationForE { 2.71828182845904523536 };
const int HoursPerDay { 24 };
const int SecondsPerHour { 3'600 };

NOTE Since C++20, the Standard Library includes a collection of predefined 
mathematical constants, all defined in <numbers> in the std::numbers 
namespace. For example, it defines std::numbers::e, pi, sqrt2, phi, and many 
more.

Use References Instead of Pointers
In the past, C++ programmers often learned C first. In C, pointers were the only pass-by-reference 
mechanism, and they certainly worked just fine for many years. Pointers are still required in some 
cases, but in many situations you can switch to references. If you learned C first, you probably think 
that references don’t really add any new functionality to the language. You might think that they 
merely introduce a new syntax for functionality that pointers could already provide.

There are several advantages to using references rather than pointers. First, references are safer than 
pointers because they don’t deal directly with memory addresses and cannot be nullptr. Second, 
references are more stylistically pleasing than pointers because they use the same syntax as stack 
variables, avoiding symbols such as * and &. They’re also easy to use, so you should have no prob-
lem adopting references into your style palette. Unfortunately, some programmers think that if they 
see an & in a function call, they know the called function is going to change the object, and if they 
don’t see the &, it must be pass-by-value. With references, they say they don’t know if the function is 
going to change the object unless they look at the function prototype. This is a wrong way of think-
ing. Passing in a pointer does not automatically mean that the object will be modified, because the 
parameter might be const T*. Passing both a pointer and a reference can modify the object, or it 

C++20
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may not, depending on whether the function prototype uses const T*, T*, const T&, or T&. So, you 
need to look at the prototype anyway to know whether the function might change the object.

Another benefit of references is that they clarify ownership of memory. If you are writing a method 
and another programmer passes you a reference to an object, it is clear that you can read and possibly 
modify the object, but you have no easy way of freeing its memory. If you are passed a pointer, this is 
less clear. Do you need to delete the object to clean up memory? Or will the caller do that? In mod-
ern C++, the preferred way of handling ownership and ownership transfer is to use smart pointers, 
discussed in Chapter 7, “Memory Management.”

Use Custom Exceptions
C++ makes it easy to ignore exceptions. Nothing about the language syntax forces you to deal with 
exceptions, and you could in theory write error-tolerant programs with traditional mechanisms such 
as returning special values (for example, -1, nullptr, . . .) or setting error flags. When returning 
special values to signal errors, the [[nodiscard]] attribute, introduced in Chapter 1, can be used to 
force the caller of your function to do something with the returned value.

However, exceptions provide a much richer mechanism for error handling, and custom exceptions 
allow you to tailor this mechanism to your needs. For example, a custom exception type for a web 
browser could include fields that specify the web page that contained the error, the network state 
when the error occurred, and additional context information.

Chapter 14, “Handling Errors,” contains a wealth of information about exceptions in C++.

NOTE Language features exist to help the programmer. Understand and make 
use of features that contribute to good programming style.

FORMATTING

Many programming groups have been torn apart and friendships ruined over code-formatting argu-
ments. In college, a friend of mine got into such a heated debate with a peer over the use of spaces in 
an if statement that people were stopping by to make sure that everything was OK.

If your organization has standards in place for code formatting, consider yourself lucky. You may not 
like the standards they have in place, but at least you won’t have to argue about them.

If no standards are in place for code formatting, I recommend introducing them in your organiza-
tion. Standardized coding guidelines make sure that all programmers on your team follow the same 
naming conventions, formatting rules, and so on, which makes the code more uniform and easier to 
understand.

There are automated tools available that can format your code according to certain rules right before 
committing the code to your source code control system. Some IDEs have such tools built-in and can, 
for example, automatically format the code when saving a file.
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If everybody on your team is just writing code their own way, try to be as tolerant as you can. 
As you’ll see, some practices are just a matter of taste, while others actually make it difficult to 
work in teams.

The Curly Brace Alignment Debate
Perhaps the most frequently debated point is where to put the curly braces that demark a block of 
code. There are several styles of curly brace use. In this book, the curly brace is put on the same line 
as the leading statement, except in the case of a class, function, or method. This style is shown in the 
code that follows (and throughout this book):

void someFunction()
{
    if (condition()) {
        cout << "condition was true" << endl;
    } else {
        cout << "condition was false" << endl;
    }
}

This style conserves vertical space while still showing blocks of code by their indentation. Some pro-
grammers would argue that preservation of vertical space isn’t relevant in real-world coding. A more 
verbose style is shown here:

void someFunction()
{
    if (condition())
    {
        cout << "condition was true" << endl;
    }
    else
    {
        cout << "condition was false" << endl;
    }
}

Some programmers are even liberal with the use of horizontal space, yielding code like this:

void someFunction()
{
    if (condition()) 
        {
            cout << "condition was true" << endl;
        }
    else 
        {
            cout << "condition was false" << endl;
        }
}

Another point of debate is whether to put braces around single statements, for example:

void someFunction()
{
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    if (condition())
        cout << "condition was true" << endl;
    else
        cout << "condition was false" << endl;
}

Obviously, I won’t recommend any particular style because I don’t want hate mail. Personally, I 
always use braces, even for single statements, as it protects against certain badly written C-style mac-
ros (see Chapter 11, “Odds and Ends”) and is safer against adding statements in the future.

NOTE When selecting a style for denoting blocks of code, the important 
consideration is how well you can see which block falls under which condition 
simply by looking at the code.

Coming to Blows over Spaces and Parentheses
The formatting of individual lines of code can also be a source of disagreement. Again, I won’t advo-
cate a particular approach, but you are likely to encounter a few of the styles shown here.

In this book, I use a space after any keyword, a space before and after any operator, a space after 
every comma in a parameter list or a call, and parentheses to clarify the order of operations, 
as follows:

if (i == 2) {
    j = i + (k / m);
}

An alternative, shown next, treats if stylistically like a function, with no space between the keyword 
and the left parenthesis. Also, the parentheses used to clarify the order of operations inside of the if 
statement are omitted because they have no semantic relevance.

if( i == 2 ) {
    j = i + k / m;
}

The difference is subtle, and the determination of which is better is left to the reader, yet I can’t move 
on from the issue without pointing out that if is not a function.

Spaces, Tabs, and Line Breaks
The use of spaces and tabs is not merely a stylistic preference. If your group does not agree on a con-
vention for spaces and tabs, there are going to be major problems when programmers work jointly. 
The most obvious problem occurs when Alice uses four-space tabs to indent code and Bob uses 
five-space tabs; neither will be able to display code properly when working on the same file. An even 
worse problem arises when Bob reformats the code to use tabs at the same time that Alice edits the 
same code; many source code control systems won’t be able to merge in Alice’s changes.

Most, but not all, editors have configurable settings for spaces and tabs. Some environments even 
adapt to the formatting of the code as it is read in or always save using spaces even if the Tab key 
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is used for authoring. If you have a flexible environment, you have a better chance of being able to 
work with other people’s code. Just remember that tabs and spaces are different because a tab can be 
any length and a space is always a space.

Finally, not all platforms represent a line break in the same way. Windows, for example, uses \r\n for 
line breaks, while Linux-based platforms typically use \n. If you use multiple platforms in your com-
pany, then you need to agree on which line break style to use. Here also, your IDE can most likely be 
configured to use the line break style you need, or automated tools can be used to automatically fix 
line breaks, for example, when committing your code to your source code control system.

STYLISTIC CHALLENGES

Many programmers begin a new project by pledging that this time they will do everything right. Any 
time a variable or parameter shouldn’t be changed, it’ll be marked const. All variables will have clear, 
concise, readable names. Every developer will put the left curly brace on the subsequent line and will 
adopt the standard text editor and its conventions for tabs and spaces.

For a number of reasons, it is difficult to sustain this level of stylistic consistency. In the case of const, 
sometimes programmers just aren’t educated about how to use it. You will eventually come across 
old code or a library function that isn’t const-savvy. For example, suppose you are writing a function 
accepting a const parameter, and you need to call a legacy function accepting a non-const param-
eter. If you cannot modify the legacy code to make it const aware, maybe because it’s a third-party 
library, and you are absolutely certain that the legacy function will not modify its non-const argu-
ment, then a good programmer will use const_cast() (see Chapter 1) to temporarily suspend the 
const property of the parameter, but an inexperienced programmer will start to unwind the const 
property back from the calling function, once again ending up with a program that never uses const.

Other times, standardization of style comes up against programmers’ individual tastes and biases. 
Perhaps the culture of your team makes it impractical to enforce strict style guidelines. In such situa-
tions, you may have to decide which elements you really need to standardize (such as variable names 
and tabs) and which ones are safe to leave up to individuals (perhaps spacing and commenting style). 
You can even obtain or write scripts that will automatically correct style “bugs” or flag stylistic prob-
lems along with code errors. Some development environments, such as Microsoft Visual C++, support 
automatic formatting of code according to rules that you specify. This makes it trivial to write code 
that always follows the guidelines that have been configured.

SUMMARY

The C++ language provides a number of stylistic tools without any formal guidelines on how to use 
them. Ultimately, any style convention is measured by how widely it is adopted and how much it ben-
efits the readability of the code. When coding as part of a team, you should raise issues of style early 
in the process as part of the discussion of what language and tools to use.
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The most important point about style is to appreciate that it is an important aspect of programming. 
Teach yourself to check over the style of your code before you make it available to others. Recognize 
good style in the code you interact with, and adopt the conventions that you and your organization 
find useful.

This chapter concludes the first part of this book. The next part discusses software design on a 
high level.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Code comments and coding style are subjective. The following exercises do not have a single perfect 
answer. The solutions from the website provide one of many possible correct answers to the exercises.

Exercise 3-1: Chapter 1 discusses an example of an employee records system. That system has 
a database, and one of the methods of the database is displayCurrent(). Here is the imple-
mentation of that method with some comments:

void Database::displayCurrent() const           // The displayCurrent() method
{
    for (const auto& employee : m_employees) {  // For each employee...
        if (employee.isHired()) {               // If the employee is hired
            employee.display();                 // Then display that employee
        }
    }
}

Do you see anything wrong with these comments? Why? Can you come up with bet-
ter comments?

Exercise 3-2: The employee records system from Chapter 1 contains a Database class. The 
following is a snippet of that class with only three methods. Add proper JavaDoc-style com-
ments to this code snippet. Consult Chapter 1 to brush up on what exactly these methods do.

class Database
{
    public:
        Employee& addEmployee(const std::string& firstName,
            const std::string& lastName);
        Employee& getEmployee(int employeeNumber);
        Employee& getEmployee(const std::string& firstName,
            const std::string& lastName);
    // Remainder omitted...
};

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 3-3: The following class has a number of naming issues. Can you spot them all and 
propose better names?

class xrayController
{
    public:
        // Gets the active X-ray current in μA.
        double getCurrent() const;
 
        // Sets the current of the X-rays to the given current in μA.
        void setIt(double Val);
 
        // Sets the current to 0 μA.
        void 0Current();
 
        // Gets the X-ray source type.
        const std::string& getSourceType() const;
 
        // Sets the X-ray source type.
        void setSourceType(std::string_view _Type);
 
    private:
        double d; // The X-ray current in μA.
        std::string m_src__type; // The type of the X-ray source.
};

Exercise 3-4: Given the following code snippet, reformat the snippet three times: first put 
curly braces on their own lines, then indent the curly braces themselves, and finally remove 
the curly braces for single-statement code blocks. This exercise allows you to get a feeling of 
different formatting styles and what the impact is on code readability.

Employee& Database::getEmployee(int employeeNumber)
{
    for (auto& employee : m_employees) {
        if (employee.getEmployeeNumber() == employeeNumber) {
            return employee;
        }
    }
    throw logic_error { "No employee found." };
}
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Designing Professional 
C++ Programs

WHAT’S IN THIS CHAPTER?

➤➤ The definition of programming design

➤➤ The importance of programming design

➤➤ The aspects of design that are unique to C++

➤➤ The two fundamental themes for effective C++ design: abstrac-
tion and reuse

➤➤ The different types of code available for reuse

➤➤ The advantages and disadvantages of code reuse

➤➤ Guidelines for choosing a library to reuse

➤➤ Open-source libraries

➤➤ The C++ Standard Library

Before writing a single line of code in your application, you should design your program. What 
data structures will you use? What classes will you write? This plan is especially important 
when you program in groups. Imagine sitting down to write a program with no idea what your 
co-worker, who is working on the same program, is planning! In this chapter, you’ll learn how 
to use the Professional C++ approach to C++ design.

Despite the importance of design, it is probably the most misunderstood and underused aspect 
of the software-engineering process. Too often, programmers jump into applications without 
a clear plan: they design as they code. This approach can lead to convoluted and overly com-
plicated designs. It also makes development, debugging, and maintenance tasks more difficult. 
Although it seems counterintuitive, investing extra time at the beginning of a project to design it 
properly actually saves time over the life of the project.
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WHAT IS PROGRAMMING DESIGN?

The first step when starting a new program, or a new feature for an existing program, is to analyze 
the requirements. This involves having discussions with your stakeholders. A vital outcome of this 
analysis phase is a functional requirements document describing what exactly the new piece of code 
has to do, but it does not explain how it has to do it. Requirement analysis can also result in a non-
functional requirements document describing how the final system should be, compared to what it 
should do. Examples of non-functional requirements are that the system needs to be secure, extensi-
ble, satisfy certain performance criteria, and so on.

Once all requirements have been collected, the design phase of the project can start. Your program 
design, or software design, is the specification of the architecture that you will implement to fulfill 
all functional and non-functional requirements of the program. Informally, the design is how you 
plan to write the program. You should generally write your design in the form of a design document. 
Although every company or project has its own variation of a desired design document format, most 
design documents share the same general layout, which includes two main parts:

➤➤ The gross subdivision of the program into subsystems, including interfaces and depen-
dencies between the subsystems, data flow between the subsystems, input and output to and 
from each subsystem, and a general threading model

➤➤ The details of each subsystem, including subdivision into classes, class hierarchies, data 
structures, algorithms, a specific threading model, and error-handling specifics

The design documents usually include diagrams and tables showing subsystem interactions and class 
hierarchies. The Unified Modeling Language (UML) is the industry standard for such diagrams and 
is used for diagrams in this and subsequent chapters. See Appendix D for a brief introduction to the 
UML syntax. With that being said, the exact format of the design document is less important than the 
process of thinking about your design.

NOTE The point of designing is to think about your program before you 
write it.

You should generally try to make your design as good as possible before you begin coding. The 
design should provide a map of the program that any reasonable programmer could follow in order 
to implement the application. Of course, it is inevitable that the design will need to be modified once 
you begin coding and you encounter issues that you didn’t think of earlier. Software-engineering 
processes have been designed to give you the flexibility to make these changes. Scrum, an agile 
software development methodology, is one example of such an iterative process whereby the appli-
cation is developed in cycles, known as sprints. With each sprint, designs can be modified, and new 
requirements can be taken into account. Chapter 28, “Maximizing Software Engineering Methods,” 
describes various software-engineering process models in more detail.
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THE IMPORTANCE OF PROGRAMMING DESIGN

It’s tempting to skip the analysis and design steps, or to perform them only cursorily, to begin pro-
gramming as soon as possible. There’s nothing like seeing code compiling and running to give you 
the impression that you have made progress. It seems like a waste of time to formalize a design or to 
write down functional requirements when you already know, more or less, how you want to structure 
your program. Besides, writing a design document just isn’t as much fun as coding. If you wanted to 
write papers all day, you wouldn’t be a computer programmer! As a programmer myself, I understand 
this temptation to begin coding immediately and have certainly succumbed to it on occasion. How-
ever, it will most likely lead to problems on all but the simplest projects. Whether or not you succeed 
without a design prior to the implementation depends on your experience as a programmer, your 
proficiency with commonly used design patterns, and how deeply you understand C++, the problem 
domain, and the requirements.

If you are working in a team where each team member will work on a different part of the project, it 
is paramount that there is a design document for all team members to follow. Design documents also 
help newcomers to get up to speed with the designs of a project.

Some companies have dedicated functional analysts to write the functional requirements and dedi-
cated software architects to work out the software design. In those companies, developers can usually 
just focus on the programming aspects of the project. In other companies, the developers have to do 
the requirements gathering and the designs themselves. Some companies lie in between these two 
extremes; maybe they only have a software architect making the bigger architectural decisions, while 
developers do smaller designs themselves.

To help you understand the importance of programming design, imagine that you own a plot of 
land on which you want to build a house. When the builder shows up, you ask to see the blueprints. 
“What blueprints?” he responds. “I know what I’m doing. I don’t need to plan every little detail 
ahead of time. Two-story house? No problem. I did a one-story house a few months ago—I’ll just 
start with that model and work from there.”

Suppose that you suspend your disbelief and allow the builder to proceed. A few months later, you 
notice that the plumbing appears to run outside the house instead of inside the walls. When you query 
the builder about this anomaly, he says, “Oh. Well, I forgot to leave space in the walls for the plumb-
ing. I was so excited about this new drywall technology that it just slipped my mind. But it works just 
as well outside, and functionality is the most important thing.” You’re starting to have your doubts 
about his approach, but, against your better judgment, you allow him to continue.

When you take your first tour of the completed building, you notice that the kitchen lacks a sink. The 
builder excuses himself by saying, “We were already two-thirds done with the kitchen by the time we 
realized there wasn’t space for the sink. Instead of starting over, we just added a separate sink room 
next door. It works, right?”

Do the builder’s excuses sound familiar if you translate them to the software domain? Have you 
ever found yourself implementing an “ugly” solution to a problem like putting plumbing outside the 
house? For example, maybe you forgot to include locking in your queue data structure that is shared 
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between multiple threads. By the time you realize the problem, you decide to just perform the locking 
manually on all places where the queue is used. Sure, it’s ugly, but it works, you say. That is, until 
someone new joins the project who assumes that the locking is built into the data structure, fails to 
ensure mutual exclusion in her access to the shared data, and causes a race condition bug that takes 
three weeks to track down. Of course, this locking problem is just given as an example of an ugly 
workaround. Obviously, a professional C++ programmer would never decide to perform the locking 
manually on each queue access but would instead directly incorporate the locking inside the queue 
class or make the queue class thread-safe in a lock-free manner.

Formalizing a design before you code helps you determine how everything fits together. Just as 
blueprints for a house show how the rooms relate to each other and work together to fulfill the 
requirements of the house, the design for a program shows how the subsystems of the program relate 
to each other and work together to fulfill the software requirements. Without a design plan, you are 
likely to miss connections between subsystems, possibilities for reuse or shared information, and the 
simplest ways to accomplish tasks. Without the “big picture” that the design gives, you might become 
so bogged down in individual implementation details that you lose track of the overarching architec-
ture and goals. Furthermore, the design provides written documentation to which all members of the 
project can refer. If you use an iterative process like the agile Scrum methodology mentioned earlier, 
you need to make sure to keep the design documentation up-to-date during each cycle of the pro-
cess, for as long as doing so adds value. One of the pillars of the agile methodology states to prefer 
“Working software over comprehensive documentation.” You should at least maintain design docu-
mentation about how the bigger parts of a project work together, while in my opinion, it’s up to the 
team whether maintaining design documentation about smaller aspects of the project adds any value 
towards the future or not. If not, then make sure to either remove such documents or mark them as 
out-of-date.

If the preceding analogy hasn’t convinced you to design before you code, here is an example where 
jumping directly into coding fails to lead to an optimal design. Suppose that you want to write a chess 
program. Instead of designing the entire program before you begin 
coding, you decide to jump in with the easiest parts and move slowly 
to the more difficult parts. Following the object-oriented perspective 
introduced in Chapter 1, “A Crash Course in C++ and the Standard 
Library,” and covered in more detail in Chapter 5, “Designing with 
Objects,” you decide to model your chess pieces with classes. You 
figure the pawn is the simplest chess piece, so you opt to start there. 
After considering the features and behaviors of a pawn, you write 
a class with the properties and methods shown in the UML class 
diagram in Figure 4-1.

In this design, the m_color attribute denotes whether the pawn is 
black or white. The promote() method executes upon reaching the 
opposing side of the board.

Of course, you haven’t actually made this class diagram. You’ve gone 
straight to the implementation phase. Happy with that class, you 
move on to the next easiest piece: the bishop. After considering its 
attributes and functionality, you write a class with the properties and 
methods shown in the class diagram in Figure 4-2.

FIGURE 4-1 

FIGURE 4-2 
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Again, you haven’t generated a class diagram, because you jumped straight to the coding phase. How-
ever, at this point you begin to suspect that you might be doing something wrong. The bishop and the 
pawn look similar. In fact, their properties are identical, and they share many methods. Although the 
implementations of the move method might differ between the pawn and the bishop, both pieces need 
the ability to move. If you had designed your program before jumping into coding, you would have 
realized that the various pieces are actually quite similar and that you should find some way to write 
the common functionality only once. Chapter 5 explains the object-oriented design techniques for 
doing that.

Furthermore, several aspects of the chess pieces depend on other subsystems of your program. For 
example, you cannot accurately represent the location on the board in a chess piece class without 
knowing how you will model the board. On the other hand, perhaps you will design your program 
so that the board manages pieces in a way that doesn’t require them to know their own locations. 
In either case, encoding the location in the piece classes before designing the board leads to problems. 
To take another example, how can you write a draw method for a piece without first deciding your 
program’s user interface? Will it be graphical or text-based? What will the board look like? The prob-
lem is that subsystems of a program do not exist in isolation—they interrelate with other subsystems. 
Most of the design work determines and defines these relationships.

DESIGNING FOR C++

There are several aspects of the C++ language that you need to keep in mind when designing for C++:

➤➤ C++ has an immense feature set. It is almost a complete superset of the C language, plus 
classes and objects, operator overloading, exceptions, templates, and many other features. 
The sheer size of the language makes design a daunting task.

➤➤ C++ is an object-oriented language. This means that your designs should include class hier-
archies, class interfaces, and object interactions. This type of design is quite different from 
traditional design in C or other procedural languages. Chapter 5 focuses on object-oriented 
design in C++.

➤➤ C++ has numerous facilities for designing generic and reusable code. In addition to basic 
classes and inheritance, you can use other language facilities such as templates and operator 
overloading for effective design. Design techniques for reusable code are discussed in more 
detail later in this chapter and further in Chapter 6, “Designing for Reuse.”

➤➤ C++ provides a useful Standard Library. This includes a string class, I/O facilities, and 
many common data structures and algorithms. All of these facilitate coding in C++.

➤➤ C++ readily accommodates many design patterns, that is, common ways to solve problems.

Tackling a design can be overwhelming. I have spent entire days scribbling design ideas on paper, 
crossing them out, writing more ideas, crossing those out, and repeating the process. Sometimes this 
process is helpful, and, at the end of those days (or weeks), it leads to a clean, efficient design. Other 
times it is frustrating and leads nowhere, but it is not a waste of effort. You will most likely waste 
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more time if you have to re-implement a design that turned out to be broken. It’s important to remain 
aware of whether you are making real progress. If you find that you are stuck, you can take one of 
the following actions:

➤➤ Ask for help. Consult a co-worker, mentor, book, newsgroup, or web page.

➤➤ Work on something else for a while. Come back to this design choice later.

➤➤ Make a decision and move on. Even if it’s not an ideal solution, decide on something and try 
to work with it. An incorrect choice will soon become apparent. However, it may turn out 
to be an acceptable method. Perhaps there is no clean way to accomplish what you want to 
with this design. Sometimes you have to accept an “ugly” solution if it’s the only realistic 
strategy to fulfill your requirements. Whatever you decide, make sure you document your 
decision so that you and others in the future know why you made it. This includes docu-
menting designs that you have rejected and the rationale behind the rejection.

NOTE Keep in mind that good design is hard, and getting it right takes practice. 
Don’t expect to become an expert overnight, and don’t be surprised if you find it 
more difficult to master C++ design than C++ coding.

TWO RULES FOR YOUR OWN C++ DESIGNS

When you are designing your own C++ programs, there are two fundamental design rules to follow: 
abstraction and reuse. These guidelines are so important that they can be considered themes of this 
book. They come up repeatedly throughout the text and throughout effective C++ program designs in 
all domains.

Abstraction
The principle of abstraction is easiest to understand through a real-world analogy. A television is a 
piece of technology found in most homes. You are probably familiar with its features: you can turn 
it on and off, change the channel, adjust the volume, and add external components such as speak-
ers, DVRs, and Blu-ray players. However, can you explain how it works inside the black box? That 
is, do you know how it receives signals through a cable, translates them, and displays them on the 
screen? Most people certainly can’t explain how a television works, yet are quite capable of using it. 
That is because the television clearly separates its internal implementation from its external interface. 
We interact with the television through its interface: the power button, channel changer, and volume 
control. We don’t know, nor do we care, how the television works; we don’t care whether it uses a 
cathode ray tube or some sort of alien technology to generate the image on our screen. It doesn’t mat-
ter because it doesn’t affect the interface.

Benefiting from Abstraction
The abstraction principle is similar in software. You can use code without knowing the underlying 
implementation. As a trivial example, your program can make a call to the sqrt() function declared 
in the <cmath> header file without knowing what algorithm the function actually uses to calculate 
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the square root. In fact, the underlying implementation of the square root calculation could change 
between releases of the library, and as long as the interface stays the same, your function call will still 
work. The principle of abstraction extends to classes as well. As introduced in Chapter 1, you can use 
the cout object of class ostream to stream data to standard output like this:

cout << "This call will display this line of text" << endl;

In this statement, you use the documented interface of the cout insertion operator (<<) with a charac-
ter array. However, you don’t need to understand how cout manages to display that text on the user’s 
screen. You only need to know the public interface. The underlying implementation of cout is free to 
change as long as the exposed behavior and interface remain the same.

Incorporating Abstraction in Your Design
You should design functions and classes so that you and other programmers can use them without 
knowing, or relying on, the underlying implementations. To see the difference between a design that 
exposes the implementation and one that hides it behind an interface, consider the chess program 
again. You might want to implement the chessboard with a two-dimensional array of pointers to 
ChessPiece objects. You could declare and use the board like this:

ChessPiece* chessBoard[8][8]{};  // Zero-initialized array.
...
chessBoard[0][0] = new Rook{};

However, that approach fails to use the concept of abstraction. Every programmer who uses the 
chessboard knows that it is implemented as a two-dimensional array. Changing that implementa-
tion to something else, such as a one-dimensional flattened vector of size 64, would be difficult, 
because you would need to change every use of the board in the entire program. Everyone using the 
chessboard also has to properly take care of memory management. There is no separation of interface 
from implementation.

A better approach is to model the chessboard as a class. You could then expose an interface that hides 
the underlying implementation details. Here is an example of the beginnings of a ChessBoard class:

class ChessBoard
{
    public:
        void setPieceAt(size_t x, size_t y, ChessPiece* piece);
        ChessPiece* getPieceAt(size_t x, size_t y) const;
        bool isEmpty(size_t x, size_t y) const;
    private:
        // Private implementation details...
};

Note that this interface makes no commitment to any underlying implementation. The ChessBoard 
could easily be a two-dimensional array, but the interface does not require it. Changing the implemen-
tation does not require changing the interface. Furthermore, the implementation can provide addi-
tional functionality, such as bounds checking.

Ideally, this example has convinced you that abstraction is an important technique in C++ program-
ming. Chapter 5 covers object-oriented design in more detail, while Chapter 6 goes deeper in on the 
principles of abstraction. Chapters 8, “Gaining Proficiency with Classes and Objects,” 9, “Mastering 
Classes and Objects,” and 10, “Discovering Inheritance Techniques,” provide all the details about 
writing your own classes.
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Reuse
The second fundamental rule of design in C++ is reuse. Again, it is helpful to examine a real-world 
analogy to understand this concept. Suppose that you give up your programming career in favor of 
working as a baker. On your first day of work, the head baker tells you to bake cookies. To fulfill his 
orders, you find the recipe for chocolate chip cookies, mix the ingredients, form cookies on the cookie 
sheet, and place the sheet in the oven. The head baker is pleased with the result.

Now, I’m going to point out something so obvious that it will surprise you: you didn’t build your 
own oven in which to bake the cookies. Nor did you churn your own butter, mill your own flour, 
or form your own chocolate chips. I can hear you think, “That goes without saying.” That’s true if 
you’re a real cook, but what if you’re a programmer writing a baking simulation game? In that case, 
you would think nothing of writing every component of the program, from the chocolate chips to the 
oven. Or, you could save yourself time by looking around for code to reuse. Perhaps your office-mate 
wrote a cooking simulation game and has some nice oven code lying around. Maybe it doesn’t do 
everything you need, but you might be able to modify it and add the necessary functionality.

Something else you took for granted is that you followed a recipe for the cookies instead of making 
up your own. Again, that goes without saying. However, in C++ programming, it does not go without 
saying. Although there are standard ways of approaching problems that arise over and over in C++, 
many programmers persist in reinventing these strategies in each design.

The idea of using existing code is not new. You’ve been reusing code from the first day you printed 
something with cout. You didn’t write the code to actually print your data to the screen. You used the 
existing cout implementation to do the work.

Unfortunately, not all programmers take advantage of available code. Your designs should take into 
account existing code and reuse it when appropriate.

Writing Reusable Code
The design theme of reuse applies to code you write as well as to code that you use. You should 
design your programs so that you can reuse your classes, algorithms, and data structures. You and 
your co-workers should be able to use these components in both the current project and future 
projects. In general, you should avoid designing overly specific code that is applicable only to the 
case at hand.

One language technique for writing general-purpose code in C++ is using templates. Instead of writ-
ing a specific ChessBoard class that stores ChessPieces, as shown earlier, consider writing a generic 
GameBoard class template that can be used for any type of two-dimensional board game such as chess 
or checkers. You would only need to change the class declaration so that it takes the piece to store as 
a template parameter, called PieceType, instead of hard-coding it in the interface. The class template 
could look something as follows. If you’ve never seen this syntax before, don’t worry! Chapter 12, 
“Writing Generic Code with Templates,” explains the syntax in depth.

template <typename PieceType>
class GameBoard
{
    public:
        void setPieceAt(size_t x, size_t y, PieceType* piece);



Two Rules for Your Own C++ Designs ❘ 145

        PieceType* getPieceAt(size_t x, size_t y) const;
        bool isEmpty(size_t x, size_t y) const;
    private:
        // Private implementation details...
};

With this simple change in the interface, you now have a generic game board class that you can 
use for any two-dimensional board game. Although the code change is simple, it is important to 
make these decisions in the design phase, so that you are able to implement the code effectively 
and efficiently.

Chapter 6 goes into more detail on how to design your code with reuse in mind.

Reusing Designs
Learning the C++ language and becoming a good C++ programmer are two very different things. If you 
sat down and read the C++ standard, memorizing every fact, you would know C++ as well as anybody 
else. However, until you gained some experience by looking at code and writing your own programs, 
you wouldn’t necessarily be a good programmer. The reason is that the C++ syntax defines what the 
language can do in its raw form but doesn’t say anything about how each feature should be used.

As the baker example illustrates, it would be ludicrous to reinvent recipes for every baked good that 
you make. However, programmers often make an equivalent mistake in their designs. Instead of using 
existing “recipes,” or patterns, for designing programs, they reinvent these techniques every time they 
design a program.

As they become more experienced in using the C++ language, C++ programmers develop their own 
individual ways of using the features of the language. The C++ community at large has also built 
some standard ways of leveraging the language, some formal and some informal. Throughout this 
book, I point out these reusable applications of the language, known as design techniques and design 
patterns. Additionally, Chapters 32, “Incorporating Design Techniques and Frameworks,” and 33, 
“Applying Design Patterns,” focus almost exclusively on design techniques and patterns. Some will 
seem obvious to you because they are simply a formalization of the obvious solution. Others describe 
novel solutions to problems you’ve encountered in the past. Some present entirely new ways of think-
ing about your program organization.

For example, you might want to design your chess program so that you have a single ErrorLogger 
object that serializes all errors from different components to a log file. When you try to design your 
ErrorLogger class, you realize that you would like to have only a single instance of the ErrorLog-
ger class in your program. But, you also want several components in your program to be able to use 
this ErrorLogger instance; that is, these components all want to use the same ErrorLogger service. 
A standard strategy to implement such a service mechanism is to use dependency injection. With 
dependency injection, you create an interface for each service and you inject the interfaces a compo-
nent needs into the component. Thus, a good design at this point would specify that you want to use 
the dependency injection pattern.

It is important for you to familiarize yourself with these patterns and techniques so that you can rec-
ognize when a particular design problem calls for one of these solutions. There are many more tech-
niques and patterns applicable to C++ than those described in this book. Even though a nice selection 
is covered here, you may want to consult a book on design patterns for more and different patterns. 
See Appendix B for suggestions.
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REUSING EXISTING CODE

Experienced C++ programmers never start a project from scratch. They incorporate code from a wide 
variety of sources, such as the Standard Library, open-source libraries, proprietary code bases in their 
workplace, and their own code from previous projects. You should reuse code liberally in your pro-
jects. To make the most of this rule, this section first explains the different types of code that you can 
reuse, followed by the trade-offs between reusing existing code and writing it yourself. The final part 
of this section discusses a number of guidelines for choosing a library to reuse, once you have decided 
not to write the code yourself but to reuse existing code.

NOTE Reusing code does not mean copying and pasting existing code! In fact, it 
means quite the opposite: reusing code without duplicating it.

A Note on Terminology
Before analyzing the advantages and disadvantages of code reuse, it is helpful to specify the terminol-
ogy involved and to categorize the types of reusable code. There are three categories of code available 
for reuse:

➤➤ Code you wrote yourself in the past

➤➤ Code written by a co-worker

➤➤ Code written by a third party outside your current organization or company

There are also several ways that the code you reuse can be structured:

➤➤ Stand-alone functions or classes. When you reuse your own code or co-workers’ code, you 
will generally encounter this variety.

➤➤ Libraries. A library is a collection of code used to accomplish a specific task, such as parsing 
XML or to handle a specific domain, such as cryptography. Other examples of function-
ality usually found in libraries include threads and synchronization support, networking, 
and graphics.

➤➤ Frameworks. A framework is a collection of code around which you design a program. For 
example, the Microsoft Foundation Classes (MFC) library provides a framework for cre-
ating graphical user interface applications for Microsoft Windows. Frameworks usually dic-
tate the structure of your program.

➤➤ Entire applications. Your project might include multiple applications. Perhaps you need a 
web server front end to support your new e-commerce infrastructure. It is possible to bundle 
entire third-party applications, such as a web server, with your software. This approach 
takes code reuse to the extreme in that you reuse entire applications.
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NOTE A program uses a library but fits into a framework. Libraries provide 
specific functionality, while frameworks are fundamental to your program design 
and structure.

Another term that arises frequently is application programming interface, or API. An API is an 
interface to a library or body of code for a specific purpose. For example, programmers often refer 
to the sockets API, meaning the exposed interface to the sockets networking library, instead of the 
library itself.

NOTE Although people use the terms API and library interchangeably, they are 
not equivalent. The library refers to the implementation, while the API refers to 
the published interface to the library.

For the sake of brevity, the rest of this chapter uses the term library to refer to any reusable code, 
whether it is really a library, framework, entire application, or random collection of functions from 
your office-mate.

Deciding Whether to Reuse Code or Write it Yourself
The rule to reuse code is easy to understand in the abstract. However, it’s somewhat vague when it 
comes to the details. How do you know when it’s appropriate to reuse code and which code to reuse? 
There is always a trade-off, and the decision depends on the specific situation. However, there are 
some general advantages and disadvantages to reusing code.

Advantages to Reusing Code
Reusing code can provide tremendous advantages to you and to your project:

➤➤ You may not know how to or may not be able to justify the time to write the code you need. 
Would you really want to write code to handle formatted input and output? Of course not. 
That’s why you use the standard C++ I/O streams and/or std::format().

➤➤ Your designs will be simpler because you will not need to design those components of the 
application that you reuse.

➤➤ The code that you reuse usually requires no debugging. You can often assume that library 
code is bug-free because it has already been tested and used extensively.

➤➤ Libraries handle more error conditions than would your first attempt at the code. You might 
forget obscure errors or edge cases at the beginning of the project and would waste time 
fixing these problems later. Library code that you reuse has generally been tested exten-
sively and used by many programmers before you, so you can assume that it handles most 
errors properly.
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➤➤ Libraries are often tested on a wide range of platforms with different hardware, different 
operating systems and operating system versions, different graphic cards, and so on; much 
more than you could possibly have available to test yourself. Sometimes, libraries contain 
workarounds to make them work on specific platforms.

➤➤ Libraries generally are designed to be suspect of bad user inputs. Invalid requests, or 
requests not appropriate for the current state, usually result in suitable error notifications. 
For example, a request to seek a nonexistent record in a database, or to read a record from a 
database that is not open, would have well-specified behavior from a library.

➤➤ Reusing code written by domain experts is safer than writing your own code for that area. 
For example, you should not attempt to write your own security code unless you are a 
security expert. If you need security or cryptography in your programs, use a library. Many 
seemingly minor details in code of that nature could compromise the security of the entire 
program, and possibly the entire system, if you got them wrong.

➤➤ Library code is constantly improving. If you reuse the code, you receive the benefits of these 
improvements without doing the work yourself. In fact, if the library writers have properly 
separated the interface from the implementation, you can obtain these benefits by upgrad-
ing your library version without changing your interaction with the library. A good upgrade 
modifies the underlying implementation without changing the interface.

Disadvantages to Reusing Code
Unfortunately, there are also some disadvantages to reusing code:

➤➤ When you use only code that you wrote yourself, you understand exactly how it works. 
When you use libraries that you didn’t write yourself, you must spend time understanding 
the interface and correct usage before you can jump in and use it. This extra time at the 
beginning of your project will slow your initial design and coding.

➤➤ When you write your own code, it does exactly what you want. Library code might not pro-
vide the exact functionality that you require.

➤➤ Even if the library code provides the exact functionality you need, it might not give you 
the performance that you desire. The performance might be bad in general, poor for your 
specific use case, or completely unspecified.

➤➤ Using library code introduces a Pandora’s box of support issues. If you discover a bug in the 
library, what do you do? Often you don’t have access to the source code, so you couldn’t fix 
it even if you wanted to. If you have already invested significant time in learning the library 
interface and using the library, you probably don’t want to give it up, but you might find it 
difficult to convince the library developers to fix the bug on your time schedule. Also, if you 
are using a third-party library, what do you do if the library authors drop support for the 
library before you stop supporting the product that depends on it? Think carefully about 
this before you decide to use a library for which you cannot get source code.

➤➤ In addition to support problems, libraries present licensing issues, which cover topics such 
as disclosure of your source code, redistribution fees (often called binary license fees), credit 
attribution, and development licenses. You should carefully inspect the licensing issues 
before using any library. For example, some open-source libraries require you to make your 
own code open-source.
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➤➤ Reusing code requires a trust factor. You must trust whoever wrote the code by assuming 
that they did a good job. Some people like to have control over all aspects of their project, 
including every line of source code.

➤➤ Upgrading to a new version of the library can cause problems. The upgrade could introduce 
bugs, which could have fatal consequences in your product. A performance-related upgrade 
might optimize performance in certain cases but make it worse in your specific use case.

➤➤ Upgrading your compiler to a new version can cause problems when you are using binary-
only libraries. You can only upgrade the compiler when the library vendor provides binaries 
compatible with your new version of the compiler.

Putting It Together to Make a Decision
Now that you are familiar with the terminology, advantages, and disadvantages of reusing code, you 
are better prepared to make the decision about whether to reuse code. Often, the decision is obvious. 
For example, if you want to write a graphical user interface (GUI) in C++ for Microsoft Windows, 
you should use a framework such as MFC or Qt. You probably don’t know how to write the underly-
ing code to create a GUI in Windows, and more importantly, you don’t want to waste time to learn it. 
You will save person-years of effort by using a framework in this case.

However, other times the choice is less obvious. For example, if you are unfamiliar with a library and 
need only a simple data structure, it might not be worth the time to learn the library to reuse only one 
component that you could write in a few days.

Ultimately, you need to make a decision based on your own particular needs. It often comes down to 
a trade-off between the time it would take to write it yourself and the time required to find and learn 
how to use a library to solve the problem. Carefully consider how the advantages and disadvantages 
listed previously apply to your specific case, and decide which factors are most important to you. 
Finally, remember that you can always change your mind, which might even be relatively easy if you 
handled the abstraction correctly.

Guidelines for Choosing a Library to Reuse
When you’ve decided to reuse libraries, frameworks, co-workers’ code, entire applications, or your 
own code, there are several guidelines you should keep in mind to pick the right code to reuse.

Understand the Capabilities and Limitations
Take the time to familiarize yourself with the code. It is important to understand both its capabilities 
and its limitations. Start with the documentation and the published interfaces or APIs. Ideally, that 
will be sufficient to understand how to use the code. However, if the library doesn’t provide a clear 
separation between interface and implementation, you may need to explore the source code itself if 
it is provided. Also, talk to other programmers who have used the code and who might be able to 
explain its intricacies. You should begin by learning the basic functionality. If it’s a library, what func-
tions does it provide? If it’s a framework, how does your code fit in? What classes should you derive 
from? What code do you need to write yourself? You should also consider specific issues depending 
on the type of code.
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Here are some points to keep in mind when choosing a library:

➤➤ Is the library safe for multithreaded programs?

➤➤ Does the library impose any specific compiler settings on code using it? If so, is that accept-
able in your project?

➤➤ On what other libraries does the library depend?

Additionally, you might have to do some more detailed research for specific libraries:

➤➤ Which initialization and cleanup calls are needed?

➤➤ If you need to derive from a class, which constructor should you call on it? Which virtual 
methods should you override?

➤➤ If a call returns memory pointers, who is responsible for freeing the memory: the caller or 
the library? If the library is responsible, when is the memory freed? It’s highly recommended 
to find out whether you can use smart pointers (see Chapter 7, “Memory Management”) to 
manage memory allocated by the library.

➤➤ What are all the return values (by value or reference) from a call?

➤➤ What are all the possible exceptions thrown?

➤➤ What error conditions do library calls check for, and what do they assume? How are errors 
handled? How is the client program notified about errors? Avoid using libraries that pop up 
message boxes, issue messages to stderr/cerr or stdout/cout, or terminate the program.

Understand the Learning Cost
The learning cost is the amount of time it takes for a developer to learn how to use a library. This is 
not just an initial cost when starting to use the library, but a recurring cost over time. Whenever a 
new team member joins the project, she needs to learn how to use that library.

This cost can be substantial for certain libraries. As such, if you find the functionality you need in a 
well-known library, I recommend using that one over using some exotic, lesser-known library. For 
example, if the Standard Library provides the data structure or algorithm you need, use that one 
instead of using another library.

Understand the Performance
It is important to know the performance guarantees that the library or other code provides. Even if 
your particular program is not performance sensitive, you should make sure that the code you use 
doesn’t have awful performance for your particular use.

Big-O Notation
Programmers generally discuss and document algorithm and library performance using big-O nota-
tion. This section explains the general concepts of algorithm complexity analysis and big-O notation 
without a lot of unnecessary mathematics. If you are already familiar with these concepts, you can 
skip this section.
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Big-O notation specifies relative, rather than absolute, performance. For example, instead of saying 
that an algorithm runs in a specific amount of time, such as 300 milliseconds, big-O notation speci-
fies how an algorithm performs as its input size increases. Examples of input sizes include the number 
of items to be sorted by a sorting algorithm, the number of elements in a hash table during a key 
lookup, and the size of a file to be copied between disks.

NOTE Big-O notation applies only to algorithms whose speed depends on their 
inputs. It does not apply to algorithms that take no input or whose running time 
is random. In practice, you will find that the running times of most algorithms of 
interest depend on their input, so this limitation is not significant.

To be more formal, big-O notation specifies an algorithm’s run time as a function of its input size, 
also known as the complexity of the algorithm. It’s not as complicated as it sounds. For example, an 
algorithm could take twice as long to process twice as many elements. Thus, if it takes 1 second to 
process 200 elements, it will take 2 seconds to process 400 elements, and 4 seconds to process 800 
elements. Figure 4-3 shows this graphically. It is said that the complexity of such an algorithm is a 
linear function of its input size, because, graphically, it is represented by a straight line.

Big-O notation summarizes the algorithm’s linear performance like this: O(n). The O just means that 
you’re using big-O notation, while the n represents the input size. O(n) specifies that the algorithm 
speed is a direct linear function of the input size.

Of course, not all algorithms have performance that is linear with respect to their input size. The fol-
lowing table summarizes the common complexities, in order of their performance from best to worst:
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ALGORITHM COMPLEXITY BIG-O NOTATION EXPLANATION EXAMPLE ALGORITHMS

Constant O(1) The running time is 
independent of the 
input size.

Accessing a single 
element in an array

Logarithmic O(log n) The running time 
is a function of the 
logarithm base 2 of the 
input size.

Finding an element 
in a sorted list using 
binary search

Linear O(n) The running time is 
directly proportional to 
the input size.

Finding an element in 
an unsorted list

Linear Logarithmic O(n log n) The running time is a 
function of the linear 
times the logarithmic 
function of the 
input size.

Merge sort

Quadratic O(n2) The running time is a 
function of the square 
of the input size.

A slower sorting 
algorithm like 
selection sort

Exponential O(2n) The running time is an 
exponential function of 
the input size.

Optimized traveling 
salesman problem

There are two advantages to specifying performance as a function of the input size instead of in abso-
lute numbers:

➤➤ It is platform independent. Specifying that a piece of code runs in 200 milliseconds on one 
computer says nothing about its speed on a second computer. It is also difficult to compare 
two different algorithms without running them on the same computer with the exact same 
load. On the other hand, performance specified as a function of the input size is applicable 
to any platform.

➤➤ Performance as a function of input size covers all possible inputs to the algorithm with one 
specification. The specific time in seconds that an algorithm takes to run covers only one 
specific input and says nothing about any other input.

Tips for Understanding Performance
Now that you are familiar with big-O notation, you are prepared to understand most performance 
documentation. The C++ Standard Library in particular describes its algorithm and data structure 
performance using big-O notation. However, big-O notation is sometimes insufficient or even mis-
leading. Consider the following issues whenever you think about big-O performance specifications:
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➤➤ If an algorithm takes twice as long to work on twice as much data, it doesn’t say anything 
about how long it took in the first place! If the algorithm is written badly but scales well, 
it’s still not something you want to use. For example, suppose the algorithm makes unneces-
sary disk accesses. That probably wouldn’t affect the big-O time but would be very bad for 
overall performance.

➤➤ Along those lines, it’s difficult to compare two algorithms with the same big-O running 
time. For example, if two different sorting algorithms both claim to be O(n log n), it’s hard 
to tell which is really faster without running your own tests.

➤➤ The big-O notation describes the time complexity of an algorithm asymptotically, as the 
input size grows to infinity. For small inputs, big-O time can be very misleading. An O(n2) 
algorithm might actually perform better than an O(log n) algorithm on small input sizes. 
Consider your likely input sizes before making a decision.

In addition to considering big-O characteristics, you should look at other facets of the algorithm 
performance. Here are some guidelines to keep in mind:

➤➤ You should consider how often you intend to use a particular piece of library code. Some 
people find the 90/10 rule helpful: 90 percent of the running time of most programs is 
spent in only 10 percent of the code (Hennessy and Patterson, Computer Architecture: 
A Quantitative Approach, Fifth Edition, 2011, Morgan Kaufmann). If the library code 
you intend to use falls in the oft-exercised 10 percent category of your code, you should 
make sure to analyze its performance characteristics carefully. On the other hand, if it falls 
into the oft-ignored 90 percent of the code, you should not spend much time analyzing 
its performance because it will not benefit the overall program performance very much. 
Chapter 29, “Writing Efficient C++,” discusses profilers, tools to help you find performance 
bottlenecks in your code.

➤➤ Don’t trust the documentation. Always run performance tests to determine if library code 
provides acceptable performance characteristics.

Understand Platform Limitations
Before you start using library code, make sure that you understand on which platforms it runs. If you 
want to write a cross-platform application, make sure the libraries you choose are also cross-platform 
portable. That might sound obvious, but even libraries that claim to be cross-platform might contain 
subtle differences on different platforms.

Also, platforms include not only different operating systems but different versions of the same operat-
ing system. If you write an application that should run on the operating systems Solaris 8, Solaris 9, 
and Solaris 10, ensure that any libraries you use also support all those releases. You cannot assume 
either forward or backward compatibility across operating system versions. That is, just because a 
library runs on Solaris 9 doesn’t mean that it will run on Solaris 10 and vice versa.

Understand Licensing
Using third-party libraries often introduces complicated licensing issues. You must sometimes pay 
license fees to third-party vendors for the use of their libraries. There may also be other licens-
ing restrictions, including export restrictions. Additionally, open-source libraries are sometimes 
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distributed under licenses that require any code that links with them to be open-source as well.  
A number of licenses commonly used by open-source libraries are discussed later in this chapter.

WARNING Make sure that you understand the license restrictions of any third-
party libraries you use if you plan to distribute or sell the code you develop. 
When in doubt, consult a legal expert whose specialty is intellectual property.

Understand Support and Know Where to Find Help
Before you use a library, make sure that you understand the process for submitting bugs and that 
you realize how long it will take for bugs to get fixed. If possible, determine how long the library will 
continue to be supported so that you can plan accordingly.

Interestingly, even using libraries from within your own organization can introduce support issues. 
You may find it just as difficult to convince a co-worker in another part of your company to fix a bug 
in their library as you would to convince a stranger in another company to do the same thing. In fact, 
you may even find it harder, because you’re not a paying customer. Make sure that you understand 
the politics and organizational issues within your own organization before using internal libraries.

For reusing entire applications, the support issue might even become more complex. If customers 
encounter a problem with your bundled web server, should they contact you or the web server ven-
dor? Make sure that you resolve this issue before you release the software.

Using libraries and frameworks can sometimes be daunting at first. Fortunately, there are many 
avenues of support available. First, consult the documentation that accompanies the library. If the 
library is widely used, such as the Standard Library or the MFC, you should be able to find a good 
book on the topic. In fact, for help with the Standard Library, you can consult Chapters 16 to 25. 
If you have specific questions not addressed by books and product documentation, try searching the 
Web. Type your question in your favorite search engine to find web pages that discuss the library. For 
example, when you search for the phrase introduction to C++ Standard Library, you will find several 
hundred websites about C++ and the Standard Library. Also, many websites contain their own private 
newsgroups or forums on specific topics for which you can register.

WARNING A note of caution: don’t believe everything you read on the Web! 
Web pages do not necessarily undergo the same review process as printed books 
and documentation and may contain inaccuracies.

Prototype
When you first sit down with a new library or framework, it is often a good idea to write a quick 
prototype. Trying the code is the best way to familiarize yourself with the library’s capabilities. You 
should consider experimenting with the library even before you tackle your program design so that 
you are intimately familiar with the library’s capabilities and limitations. This empirical testing will 
allow you to determine the performance characteristics of the library as well.



Reusing Existing Code ❘ 155

Even if your prototype application looks nothing like your final application, time spent prototyping 
is not a waste. Don’t feel compelled to write a prototype of your actual application. Write a dummy 
program that just tests the library capabilities you want to use. The point is only to familiarize your-
self with the library.

WARNING Due to time constraints, programmers sometimes find their proto-
types morphing into the final product. If you have hacked together a prototype 
that is insufficient as the basis for the final product, make sure that it doesn’t get 
used that way.

Open-Source Libraries
Open-source libraries are an increasingly popular class of reusable code. The general meaning of 
open-source is that the source code is available for anyone to look at. There are formal definitions  
and legal rules about including source code with all your distributions, but the important thing to 
 remember about open-source software is that anyone (including you) can look at the source code. 
Note that open-source applies to more than just libraries. In fact, the most famous open-source 
 product is probably the Android operating system. Linux is another open-source operating system. 
Google Chrome and Mozilla Firefox are two examples of famous open-source web browsers.

The Open-Source Movements
Unfortunately, there is some confusion in terminology in the open-source community. First, there are 
two competing names for the movement (some would say two separate, but similar, movements). 
Richard Stallman and the GNU project use the term free software. Note that the term free does not 
imply that the finished product must be available without cost. Developers are welcome to charge as 
much or as little as they want. Instead, the term free refers to the freedom for people to examine the 
source code, modify the source code, and redistribute the software. Think of the free in free speech 
rather than the free in free beer. You can read more about Richard Stallman and the GNU project at 
www.gnu.org.

The Open Source Initiative uses the term open-source software to describe software in which the 
source code must be available. As with free software, open-source software does not require the 
product or library to be available without cost. However, an important difference with free software 
is that open-source software is not required to give you the freedom to use, modify, and redistribute 
it. You can read more about the Open Source Initiative at www.opensource.org.

There are a lot of licensing options available for open-source projects. For example, a project could 
use one of the GNU Public License (GPL) versions. However, using a library under the GPL requires 
you to make your own product open-source under the GPL as well. On the other hand, an open-
source project can use a license like Boost Software License, Berkeley Software Distribution (BSD) 
license, MIT License, Apache License, and so on, which allow using an open-source project in closed-
source products. Some of these licenses have different versions. For example, there are actually four 
versions of the BSD license. Another option for an open-source project is to use one of the six flavors 
of the Creative Commons (CC) license.

http://www.gnu.org
http://www.opensource.org
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Some licenses require you to include the library’s license with your final product. Some licenses 
require attribution when using the library. Bottom line, all licenses come with subtleties that  
are important to understand if you want to use libraries in closed-source projects. The  
opensource.org/licenses website gives a thorough overview of approved open source licenses.

Because the name “open-source” is less ambiguous than “free software,” this book uses “open-source” 
to refer to products and libraries with which the source code is available. The choice of name is not 
intended to imply endorsement of the open-source philosophy over the free software philosophy: it is 
only for ease of comprehension.

Finding and Using Open-Source Libraries
Regardless of the terminology, you can gain amazing benefits from using open-source software. 
The main benefit is functionality. There is a plethora of open-source C++ libraries available for varied 
tasks, from XML parsing and cross-platform error logging, to deep learning and data mining using 
artificial neural networks.

Although open-source libraries are not required to provide free distribution and licensing, many 
open-source libraries are available without monetary cost. You will generally be able to save money in 
licensing fees by using open-source libraries.

Finally, you are often but not always free to modify open-source libraries to suit your exact needs.

Most open-source libraries are available on the Web. For example, searching for open-source C++ 
library XML parsing results in a list of links to XML libraries in C and C++. There are also a few 
open-source portals where you can start your search, including the following:

➤➤ www.boost.org

➤➤ www.gnu.org

➤➤ github.com/open-source

➤➤ www.sourceforge.net

Guidelines for Using Open-Source Code
Open-source libraries present several unique issues and require new strategies. First, open-source 
libraries are usually written by people in their “free” time. The source base is generally available 
for any programmer who wants to pitch in and contribute to development or bug fixing. As a good 
programming citizen, you should try to contribute to open-source projects if you find yourself reap-
ing the benefits of open-source libraries. If you work for a company, you may find resistance to this 
idea from your management because it does not lead directly to revenue for your company. However, 
you might be able to convince management that indirect benefits, such as exposure of your company 
name and perceived support from your company for the open-source movement, should allow you to 
pursue this activity.

Second, because of the distributed nature of their development and lack of single ownership, open-
source libraries often present support issues. If you desperately need a bug fixed in a library, it is 
often more efficient to make the fix yourself than to wait for someone else to do it. If you do fix bugs, 
make sure to put those fixes back into the public codebase for the library. Some licenses even require 

https://opensource.org/licenses
http://www.boost.org
http://www.gnu.org
http://github.com/open-source
http://www.sourceforge.net


Designing a Chess Program ❘ 157

you to do so. Even if you don’t fix any bugs, make sure to report problems that you find so that other 
programmers don’t waste time encountering the same issues.

The C++ Standard Library
The most important library that you will use as a C++ programmer is the C++ Standard Library. 
As its name implies, this library is part of the C++ standard, so any standards-conforming compiler 
should include it. The Standard Library is not monolithic: it includes several disparate components, 
some of which you have been using already. You may even have assumed they were part of the core 
language. Chapters 16 to 25 go into more detail about the Standard Library.

C Standard Library
Because C++ is mostly a superset of C, the C Standard Library is still available. Its functionality 
includes mathematical functions such as abs(), sqrt(), and pow(), and error-handling helpers such 
as assert() and errno. Additionally, the C Standard Library facilities for manipulating character 
arrays as strings, such as strlen() and strcpy(), and the C-style I/O functions, such as printf() 
and scanf(), are all available in C++.

NOTE C++ provides better strings and I/O support than C. Even though the 
C-style strings and I/O routines are available in C++, you should avoid them 
in favor of C++ strings and formatting (Chapter 2, “Working with Strings and 
String Views”) and I/O streams (Chapter 13, “Demystifying C++/IO”).

Chapter 1 explains that the C header files have different names in C++. These names should be used 
instead of the C library names, because they are less likely to result in name conflicts. For example, if 
you need the functionality of the C header file <stdio.h> in C++, then it’s recommended to include 
<cstdio> instead of <stdio.h>. For details of the C libraries, consult a Standard Library Reference, 
see Appendix B.

Deciding Whether or Not to Use the Standard Library
The Standard Library was designed with functionality, performance, and orthogonality as its priorities. 
The benefits of using it are substantial. Imagine having to track down pointer errors in linked list or 
balanced binary tree implementations or to debug a sorting algorithm that isn’t sorting properly. If you 
use the Standard Library correctly, you will rarely, if ever, need to perform that kind of coding yourself. 
Another benefit is that most C++ developers know how to work with the functionality provided by the 
Standard Library. Hence, when using the Standard Library in your projects, new team members will 
get up to speed faster compared to using third-party libraries that might have a substantial learning 
cost. Chapters 16 to 25 provide in-depth information on the Standard Library functionality.

DESIGNING A CHESS PROGRAM

This section introduces a systematic approach to designing a C++ program in the context of a simple 
chess game application. To provide a complete example, some of the steps refer to concepts covered 
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in later chapters. You should read this example now to obtain an overview of the design process, but 
you might also consider rereading it after you have finished later chapters.

Requirements
Before embarking on the design, it is important to possess clear requirements for the program’s func-
tionality and efficiency. Ideally, these requirements would be documented in the form of a require-
ments specification. The requirements for the chess program would contain the following types of 
specifications, although in more detail and greater number:

➤➤ The program should support the standard rules of chess.

➤➤ The program should support two human players. The program should not provide an artifi-
cially intelligent computer player.

➤➤ The program should provide a text-based interface:

➤➤ The program should render the game board and pieces in plain text.

➤➤ Players should express their moves by entering numbers representing locations on 
the chessboard.

The requirements ensure that you design your program so that it performs as its users expect.

Design Steps
You should take a systematic approach to designing your program, working from the general to the 
specific. The following steps do not always apply to all programs, but they provide a general guide-
line. Your design should include diagrams and tables as appropriate. UML is an industry standard for 
making diagrams. You can refer to Appendix D for a brief introduction, but in short, UML defines a 
multitude of standard diagrams you can use for documenting software designs, for example, class dia-
grams, sequence diagrams, and so on. I recommend using UML or at least UML-like diagrams where 
applicable. However, I don’t advocate strictly adhering to the UML syntax because having a clear, 
understandable diagram is more important than having a syntactically correct one.

Divide the Program into Subsystems
Your first step is to divide your program into its general functional subsystems and to specify the 
interfaces and interactions between the subsystems. At this point, you should not worry about specif-
ics of data structures and algorithms, or even classes. You are only trying to obtain a general feel for 
the various parts of the program and their interactions. You can list the subsystems in a table that 
expresses the high-level behaviors or functionality of the subsystem, the interfaces exported from 
the subsystem to other subsystems, and the interfaces consumed, or used, by this subsystem from 
other subsystems. The recommended design for this chess game is to have a clear separation between 
storing the data and displaying the data by using the Model-View-Controller (MVC) paradigm. This 
paradigm models the notion that many applications commonly deal with a set of data, one or more 
views on that data, and manipulation of the data. In MVC, a set of data is called the model, a view is 
a particular visualization of the model, and the controller is the piece of code that changes the model 
in response to some event. The three components of MVC interact in a feedback loop: actions are 
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handled by the controller, which adjusts the model, resulting in a change to the view or views. The 
controller can also directly modify the view, for example UI elements. Figure 4-4 visualizes this inter-
action. Using this paradigm, the different components are clearly separated, allowing you to modify 
one component without having to modify others. For example, without having to touch the underly-
ing data model or logic, you can easily switch between having a text-based interface and a graphical 
user interface, or between an interface for running on a desktop PC and an interface for running as a 
phone app.

The following table shows how the possible subsystems for the chess game could look like:

SUBSYSTEM  

NAME

INSTANCES FUNCTIONALITY INTERFACES  

EXPORTED

INTERFACES  

CONSUMED

GamePlay 1 Starts game

Controls game flow

Controls drawing

Declares winner

Ends game

Game Over Take Turn (on Player)

Draw (on 
ChessBoardView)

ChessBoard 1 Stores chess pieces

Checks for ties and 
checkmates

Get Piece At

Set Piece At

Game Over 
(on GamePlay)

ChessBoardView 1 Draws the 
associated 
ChessBoard

Draw Draw (on 
ChessPieceView)

ChessPiece 32 Moves itself

Checks for 
legal moves

Move

Check Move

Get Piece At (on 
ChessBoard)

Set Piece At (on 
ChessBoard)

ChessPieceView 32 Draws the 
associated 
ChessPiece

Draw None

FIGURE 4-4 

continues
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SUBSYSTEM  

NAME

INSTANCES FUNCTIONALITY INTERFACES  

EXPORTED

INTERFACES  

CONSUMED

Player 2 Interacts with 
the user by 
prompting the 
user for a move, 
and obtaining the 
user’s move

Moves pieces

Take Turn Get Piece At (on 
ChessBoard)

Move (on 
ChessPiece)

Check Move (on 
ChessPiece)

ErrorLogger 1 Writes error 
messages to 
a log file

Log Error None

As this table shows, the functional subsystems of this chess game include a GamePlay subsystem, a 
ChessBoard and ChessBoardView, 32 ChessPieces and ChessPieceViews, two Players, and one Error-
Logger. However, that is not the only reasonable approach. In software design, as in programming 
itself, there are often many different ways to accomplish the same goal. Not all solutions are equal; 
some are certainly better than others. However, there are often several equally valid methods.

A good division into subsystems separates the program into its basic functional parts. For example, a 
Player is a subsystem distinct from the ChessBoard, ChessPieces, or GamePlay. It wouldn’t make sense 
to lump the players into the GamePlay subsystem, because they are logically separate subsystems. 
Other choices might not be as obvious.

In this MVC design, the ChessBoard and ChessPiece subsystems are part of the Model. The Chess-
BoardView and ChessPieceView are part of the View, and the Player is part of the Controller.

Because it is often difficult to visualize subsystem relationships from tables, it is usually helpful to 
show the subsystems of a program in a diagram where lines represent calls from one subsystem to 
another. Figure 4-5 shows the chess game subsystems visualized as a diagram loosely based on a UML 
communication diagram.

Choose Threading Models
It’s too early in the design phase to think about how to multithread specific loops in algorithms you 
will write. However, in this step, you choose the number of high-level threads in your program and 
specify their interactions. Examples of high-level threads are a UI thread, an audio-playing thread, a 
network communication thread, and so on.

In multithreaded designs, you should try to avoid shared data as much as possible because it will 
make your designs simpler and safer. If you cannot avoid shared data, you should specify locking 
requirements.

TABLE (continued)
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If you are unfamiliar with multithreaded programs or your platform does not support multithreading, 
then you should make your programs single-threaded. However, if your program has several distinct 
tasks, each of which could work in parallel, it might be a good candidate for multiple threads. For 
example, graphical user interface applications often have one thread performing the main application 
work and another thread waiting for the user to press buttons or select menu items. Multithreaded 
programming is covered in Chapter 27, “Multithreaded Programming with C++.”

The chess program needs only one thread to control the game flow.

Specify Class Hierarchies for Each Subsystem
In this step, you determine the class hierarchies that you intend to write in your program. The chess 
program needs a class hierarchy to represent the chess pieces. This hierarchy could work as shown 
in Figure 4-6. The generic ChessPiece class serves as the abstract base class. A similar hierarchy is 
required for the ChessPieceView classes.

Another class hierarchy can be used for the ChessBoardView class to make it possible to have a text-
based interface or a graphical user interface for the game. Figure 4-7 shows an example hierarchy 

FIGURE 4-5 

FIGURE 4-6 
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that allows the chessboard to be displayed as text on a console, or with a 2D or 3D graphical user 
interface. A similar hierarchy is required for the individual classes of the ChessPieceView hierarchy.

Chapter 5 explains the details of designing classes and class hierarchies.

Specify Classes, Data Structures, Algorithms, and Patterns for Each Subsystem
In this step, you consider a greater level of detail, and specify the particulars of each subsystem, 
including the specific classes that you’ll write for each subsystem. It may well turn out that you model 
each subsystem itself as a class. This information can again be summarized in a table.

SUBSYSTEM CLASSES DATA  

STRUCTURES

ALGORITHMS PATTERNS

GamePlay GamePlay class GamePlay 
object 
includes one 
ChessBoard 
object and two 
Player objects.

Gives each 
player a 
turn to play

None

ChessBoard ChessBoard class ChessBoard 
object stores a 
two-dimensional 
8x8 grid 
containing 
up to 32 
ChessPieces.

Checks for  
a win or tie 
after each  
move

None

ChessBoardView ChessBoardView  
abstract base class

Concrete derived  
classes ChessBoard 
ViewConsole,  
ChessBoardView 

GUI2D, and so on

Stores 
information on 
how to draw a 
chessboard

Draws a 
chessboard

Observer

FIGURE 4-7 
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SUBSYSTEM CLASSES DATA  

STRUCTURES

ALGORITHMS PATTERNS

ChessPiece ChessPiece abstract 
base class

Rook, Bishop,  
Knight, King, 
Pawn, and Queen 
derived classes

Each piece 
stores its 
location on the 
chessboard.

Piece checks 
for a legal 
move by 
querying the 
chessboard 
for pieces 
at various 
locations.

None

ChessPieceView ChessPieceView 
abstract base class

Derived classes 
RookView, BishopView, 
and so on, and concrete 
derived classes 
RookViewConsole,  
RookViewGUI2D,  
and so on

Stores 
information on 
how to draw a 
chess piece

Draws a 
chess piece

Observer

Player Player abstract 
base class

Concrete derived 
classes PlayerConsole, 
PlayerGUI2D, and so on

None Prompts 
the user 
for a move, 
checks if 
the move is 
legal, and 
moves the  
piece

Mediator

ErrorLogger One ErrorLogger  
class

A queue of 
messages to  
log

Buffers 
messages 
and writes 
them to 
a log file

Dependency  
injection

Such a table already gives some information about the different classes in a software design, but it 
doesn’t clearly describe the interactions between them. A UML sequence diagram can be used to 
model such interactions. Figure 4-8 shows such a diagram visualizing the interactions of some of the 
classes from the previous table.

The diagram in Figure 4-8 shows only a single iteration, a single TakeTurn call from GamePlay to 
Player; hence, it’s only a partial sequence diagram. After a TakeTurn call is finished, the GamePlay 
object should ask the ChessBoardView to draw itself, which in turn should ask different Chess-
PieceViews to draw themselves. Furthermore, you should extend the sequence diagram to visual-
ize how a chess piece takes an opponent’s piece and to include support for a castling move, a move 
involving a player’s king and either of the player’s rooks. Castling is the only move for which a player 
moves two pieces at the same time.
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This section of the design document would normally present the actual interfaces for each class, but 
this example will forgo that level of detail.

Designing classes and choosing data structures, algorithms, and patterns can be tricky. You should 
always keep in mind the rules of abstraction and reuse discussed earlier in this chapter. For abstrac-
tion, the key is to consider the interface and the implementation separately. First, specify the interface 
from the perspective of the user. Decide what you want the component to do. Then decide how the 

FIGURE 4-8 
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component will do it by choosing data structures and algorithms. For reuse, familiarize yourself with 
standard data structures, algorithms, and patterns, and make sure you are aware of the Standard 
Library in C++, as well as any proprietary code available at your workplace.

Specify Error Handling for Each Subsystem
In this design step, you delineate the error handling in each subsystem. The error handling should 
include both system errors, such as network access failures, and user errors, such as invalid entries. 
You should specify whether each subsystem uses exceptions. You can again summarize this informa-
tion in a table.

SUBSYSTEM HANDLING SYSTEM ERRORS HANDLING USER ERRORS

GamePlay Logs an error with the 
ErrorLogger, shows a message 
to the user, and gracefully shuts 
down the program when an 
unexpected error occurs

Not applicable (no direct user 
interface)

ChessBoard

ChessPiece

Logs an error with the 
ErrorLogger and throws an 
exception when an unexpected 
error occurs

Not applicable (no direct user 
interface)

ChessBoardView

ChessPieceView

Logs an error with the 
ErrorLogger and throws an 
exception if something goes 
wrong during drawing

Not applicable (no direct user 
interface)

Player Logs an error with the 
ErrorLogger and throws an 
exception when an unexpected 
error occurs

Sanity-checks a user move entry 
to ensure that it is not off the 
board; it then prompts the user 
for another entry. This subsystem 
checks each move’s legality 
before moving the piece; if 
illegal, it prompts the user for 
another move.

ErrorLogger Attempts to log an error; informs 
the user when an unexpected 
error occurs

Not applicable (no direct user 
interface)

The general rule for error handling is to handle everything. Think hard about all possible error condi-
tions. If you forget one possibility, it will show up as a bug in your program! Don’t treat anything as 
an “unexpected” error. Expect all possibilities: memory allocation failures, invalid user entries, disk 
failures, and network failures, to name a few. However, as the table for the chess game shows, you 
should handle user errors differently from internal errors. For example, a user entering an invalid 
move should not cause your chess program to terminate. Chapter 14, “Handling Errors,” discusses 
error handling in more depth.
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SUMMARY

In this chapter, you learned about the professional C++ approach to design. I hope that it convinced 
you that software design is an important first step in any programming project. You also learned 
about some of the aspects of C++ that make design difficult, including its object-oriented focus, its 
large feature set and Standard Library, and its facilities for writing generic code. With this informa-
tion, you are better prepared to tackle C++ design.

This chapter introduced two design themes. The first theme, the concept of abstraction, or sepa-
rating interface from implementation, permeates this book and should be a guideline for all your 
design work.

The second theme, the notion of reuse, both of code and designs, also arises frequently in real-world 
projects, and in this book. You learned that your C++ designs should include both reuse of code, in 
the form of libraries and frameworks, and reuse of ideas and designs, in the form of techniques and 
patterns. You should write your code to be as reusable as possible. Also remember about the trade-
offs and about specific guidelines for reusing code, including understanding the capabilities and 
limitations, the performance, licensing and support models, the platform limitations, prototyping, and 
where to find help. You also learned about performance analysis and big-O notation. Now that you 
understand the importance of design and the basic design themes, you are ready for the rest of Part II. 
Chapter 5 describes strategies for using the object-oriented aspects of C++ in your design.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 4-1: What are the two fundamental design rules to follow when making your own 
designs in C++?

Exercise 4-2: Suppose you have the following Card class. The class supports only the normal 
cards in a card deck and does not need to support so-called joker cards.

class Card
{
    public:
        enum class Number { Ace, Two, Three, Four, Five, Six, Seven, Eight,
            Nine, Ten, Jack, Queen, King };
        enum class Figure { Diamond, Heart, Spade, Club };
 
        Card() {};
        Card(Number number, Figure figure)
            : m_number { number }, m_figure { figure } {}
    private:
        Number m_number { Number::Ace };
        Figure m_figure { Figure::Diamond };
};

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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What do you think of the following use of the Card class to represent a deck of cards? Are 
there any improvements you can think of?

int main()
{
    Card deck[52];
    // ...
}

Exercise 4-3: Suppose together with a friend you came up with a nice idea for making a 3-D 
game for mobile devices. You have an Android device, while your friend has an Apple iPhone, 
and of course you want the game to be playable on both devices. Explain on a high level how 
you will handle those two different mobile platforms and how you will prepare for starting 
development of the game.

Exercise 4-4: Given the following big-O complexities: O(n), O(n2), O(log n), and O(1), can 
you order them according to increasing complexity? What are their names? Can you think of 
any complexities that are even worse than these?





5
Designing with Objects

WHAT’S IN THIS CHAPTER?

➤➤ What object-oriented programming design is

➤➤ What classes, objects, properties, and behaviors are

➤➤ How you can define relationships between different objects

Now that you have developed an appreciation for good software design from Chapter 4, 
“Designing Professional C++ Programs,” it’s time to pair the notion of objects with the concept 
of good design. The difference between programmers who use objects in their code and those 
who truly grasp object-oriented programming comes down to the way their objects relate to 
each other and to the overall design of the program.

This chapter begins with a brief description of procedural programming (C-style), followed by 
a detailed discussion of object-oriented programming (OOP). Even if you’ve been using objects 
for years, you will want to read this chapter for some new ideas regarding how to think about 
objects. I will discuss the different kinds of relationships between objects, including pitfalls 
programmers often succumb to when building an object-oriented program.

When thinking about procedural programming or object-oriented programming, the most 
important point to remember is that they just represent different ways of reasoning about 
what’s going on in your program. Too often, programmers get bogged down in the syntax 
and jargon of OOP before they adequately understand what an object is. This chapter is light 
on code and heavy on concepts and ideas. Chapters 8, “Gaining Proficiency with Classes and 
Objects,” 9, “Mastering Classes and Objects,” and 10, “Discovering Inheritance Techniques,” go 
deeper in on C++ object syntax.
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AM I THINKING PROCEDURALLY?

A procedural language, such as C, divides code into small pieces, each of which (ideally) accomplishes 
a single task. Without procedures in C, all your code would be lumped together inside main(). Your 
code would be difficult to read, and your co-workers would be annoyed, to say the least.

The computer doesn’t care if all your code is in main() or if it’s split into bite-sized pieces with 
descriptive names and comments. Procedures are an abstraction that exists to help you, the program-
mer, as well as those who read and maintain your code. The concept is built around a fundamental 
question about your program—What does this program do? By answering that question in English, 
you are thinking procedurally. For example, you might begin designing a stock selection program by 
answering as follows: First, the program obtains stock quotes from the Internet. Then, it sorts this 
data by specific metrics. Next, it performs analysis on the sorted data. Finally, it outputs a list of buy 
and sell recommendations. When you start coding, you might directly turn this mental model into C 
functions: retrieveQuotes(), sortQuotes(), analyzeQuotes(), and outputRecommendations().

NOTE Even though C refers to procedures as “functions,” C is not a functional 
language. The term functional is different from procedural and refers to lan-
guages like Lisp, which use an entirely different abstraction.

The procedural approach tends to work well when your program follows a specific list of steps. How-
ever, in large, modern applications, there is rarely a linear sequence of events. Often a user is able to 
perform any command at any time. Procedural thinking also says nothing about data representation. 
In the previous example, there was no discussion of what a stock quote actually is.

If the procedural mode of thought sounds like the way you approach a program, don’t worry. Once 
you realize that OOP is simply an alternative, more flexible way of thinking about software, it’ll 
come naturally.

THE OBJECT-ORIENTED PHILOSOPHY

Unlike the procedural approach, which is based on the question “What does this program do?” the 
object-oriented approach asks another question: “What real-world objects am I modeling?” OOP is 
based on the notion that you should divide your program not into tasks but into models of physical 
objects. While this seems abstract at first, it becomes clearer when you consider physical objects in 
terms of their classes, components, properties, and behaviors.

Classes
A class helps distinguish an object from its definition. Consider the orange. There’s a difference 
between talking about oranges in general as tasty fruit that grows on trees and talking about a spe-
cific orange, such as the one that’s currently dripping juice on my keyboard.
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When answering the question “What are oranges?” you are talking about the class of things known 
as oranges. All oranges are fruit. All oranges grow on trees. All oranges are some shade of orange. All 
oranges have some particular flavor. A class is simply the encapsulation of what defines a classifica-
tion of objects.

When describing a specific orange, you are talking about an object. All objects belong to a particular 
class. Because the object on my desk is an orange, I know that it belongs to the orange class. Thus,  
I know that it is a fruit that grows on trees. I can further say that it is a medium shade of orange and 
ranks “mighty tasty” in flavor. An object is an instance of a class—a particular item with characteris-
tics that distinguish it from other instances of the same class.

As a more concrete example, reconsider the stock selection application from earlier. In OOP, “stock 
quote” is a class because it defines the abstract notion of what makes up a quote. A specific quote, such 
as “current Microsoft stock quote,” would be an object because it is a particular instance of the class.

From a C background, think of classes and objects as analogous to types and variables. In fact,  
Chapter 1, “A Crash Course in C++ and the Standard Library,” shows that the syntax for classes is 
similar to the syntax for C structs.

Components
If you consider a complex real-world object, such as an airplane, it should be fairly easy to see that 
it is made up of smaller components. There’s the fuselage, the controls, the landing gear, the engines, 
and numerous other parts. The ability to think of objects in terms of their smaller components is 
essential to OOP, just as the breaking up of complicated tasks into smaller procedures is fundamental 
to procedural programming.

A component is essentially the same thing as a class, just smaller and more specific. A good object-
oriented program might have an Airplane class, but this class would be huge if it fully described an 
airplane. Instead, the Airplane class deals with many smaller, more manageable, components. Each 
of these components might have further subcomponents. For example, the landing gear is a compo-
nent of an airplane, and the wheel is a component of the landing gear.

Properties
Properties are what distinguish one object from another. Going back to the Orange class, recall that 
all oranges are defined as having some shade of orange and a particular flavor. These two character-
istics are properties. All oranges have the same properties, just with different values. My orange has a 
“mighty tasty” flavor, but yours may have a “terribly unpleasant” flavor.

You can also think about properties on the class level. As recognized earlier, all oranges are fruit and 
grow on trees. These are properties of the fruit class, whereas the specific shade of orange is deter-
mined by the particular fruit object. Class properties are shared by all objects of a class, while object 
properties are present in all objects of the class, but with different values.

In the stock selection example, a stock quote has several object properties, including the name of the 
company, its ticker symbol, the current price, and other statistics.

Properties are the characteristics that describe an object. They answer the question, “What makes this 
object different?”
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Behaviors
Behaviors answer either of two questions: “What does this object do?” or “What can I do to this 
object?” In the case of an orange, it doesn’t do a whole lot, but we can do things to it. One behavior 
is that it can be eaten. Like properties, you can think of behaviors on the class level or the object 
level. All oranges can pretty much be eaten in the same way. However, they might differ in some other 
behavior, such as being rolled down an incline, where the behavior of a perfectly round orange would 
differ from that of a more oblate one.

The stock selection example provides some more practical behaviors. If you recall, when thinking 
procedurally, I determined that my program needed to analyze stock quotes as one of its functions. 
Thinking in OOP, you might decide that a stock quote object can analyze itself. Analysis becomes 
a behavior of the stock quote object.

In object-oriented programming, the bulk of functional code is moved out of procedures and into 
classes. By building classes that have certain behaviors and defining how they interact, OOP offers a 
much richer mechanism for attaching code to the data on which it operates. Behaviors for classes are 
implemented in so-called class methods.

Bringing It All Together
With these concepts, you could take another look at the stock selection program and redesign it in an 
object-oriented manner.

As discussed, “stock quote” would be a fine class to start with. To obtain the list of quotes, the 
program needs the notion of a group of stock quotes, which is often called a collection. So, a better 
design might be to have a class that represents a “collection of stock quotes,” which is made up of 
smaller components that represent a single “stock quote.”

Moving on to properties, the collection class would have at least one property—the actual list of 
quotes received. It might also have additional properties, such as the exact date and time of the most 
recent retrieval. As for behaviors, the “collection of stock quotes” would be able to talk to a server to 
get the quotes and provide a sorted list of quotes. These are the “retrieve quotes” and “sort quotes” 
behaviors.

The stock quote class would have the properties discussed earlier—name, symbol, current price, and 
so on. Also, it would have an analyze behavior. You might consider other behaviors, such as buying 
and selling the stock.

It is often useful to create 
diagrams showing the relation-
ship between components. 
Figure 5-1 uses the UML 
class diagram syntax, see 
Appendix D, to indicate that a 

FIGURE 5-1 
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StockQuoteCollection contains zero or more (0..*) 
StockQuote objects, and that a StockQuote object 
belongs to a single (1) StockQuoteCollection.

Figure 5-2 shows a possible UML class diagram for 
the orange class.

LIVING IN A WORLD OF CLASSES

Programmers who transition from a procedural thought process to the object-oriented paradigm 
often experience an epiphany about the combination of properties and behaviors into classes. Some 
programmers find themselves revisiting the design of programs they’re working on and rewriting 
certain pieces as classes. Others might be tempted to throw all the code away and restart the project 
as a fully object-oriented application.

There are two major approaches to developing software with classes. To some people, classes simply 
represent a nice encapsulation of data and functionality. These programmers sprinkle classes through-
out their programs to make the code more readable and easier to maintain. Programmers taking this 
approach slice out isolated pieces of code and replace them with classes like a surgeon implanting a 
pacemaker. There is nothing inherently wrong with this approach. These people see classes as a tool 
that is beneficial in many situations. Certain parts of a program just “feel like a class,” like the stock 
quote. These are the parts that can be isolated and described in real-world terms.

Other programmers adopt the OOP paradigm fully and turn everything into a class. In their minds, 
some classes correspond to real-world things, such as an orange or a stock quote, while others encap-
sulate more abstract concepts, such as a sorter or an undo class.

The ideal approach is probably somewhere in between these extremes. Your first object-oriented 
program might really have been a traditional procedural program with a few classes sprinkled in. Or 
perhaps you went whole hog and made everything a class, from a class representing an int to a class 
representing the main application. Over time, you will find a happy medium.

Over-Classification
There is often a fine line between designing a creative object-oriented system and annoying everybody 
else on your team by turning every little thing into a class. As Freud used to say, sometimes a variable 
is just a variable. Okay, that’s a paraphrase of what he said.

Perhaps you’re designing the next bestselling tic-tac-toe game. You’re going all-out OOP on this one, 
so you sit down with a cup of coffee and a notepad to sketch out your classes and objects. In games 
like this, there’s often a class that oversees game play and is able to detect the winner. To represent the 
game board, you might envision a Grid class that will keep track of the markers and their locations. 
In fact, a component of the grid could be the Piece class that represents an X or an O.

Wait, back up! This design proposes to have a class that represents an X or an O. That is perhaps 
class overkill. After all, can’t a char represent an X or an O just as well? Better yet, why can’t the 

FIGURE 5-2 
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Grid just use a two-dimensional array of an enumerated type? Does a Piece class just complicate the 
code? Take a look at the following table representing the proposed piece class:

CLASS ASSOCIATED COMPONENTS PROPERTIES BEHAVIORS

Piece None X or O None

The table is a bit sparse, strongly hinting that what we have here may be too granular to be a full-
fledged class.

On the other hand, a forward-thinking programmer might argue that while Piece is a pretty meager 
class as it currently stands, making it into a class allows future expansion without any real penalty. 
Perhaps down the road, additional properties could be added such as the color of the Piece or 
whether the Piece was the most recently moved.

Another solution might be to think about the state of a grid square instead of using pieces. The state 
of a square can be Empty, X, or O. To make the design future-proof, you could design an abstract 
base class State with concrete derived classes StateEmpty, StateX, and StateO. With this design, 
extra properties can be added in the future to the base class or to the individual classes.

Obviously, there is no right answer. The important point is that these are issues that you should 
consider when designing your application. Remember that classes exist to help programmers manage 
their code. If classes are being used for no reason other than to make the code “more object-oriented,” 
something is wrong.

Overly General Classes
Perhaps a worse annoyance than classes that shouldn’t be classes is classes that are too general. All 
OOP students start with examples like “orange”—things that are classes, no question about it. In 
real-life coding, classes can get pretty abstract. Many OOP programs have an “application class,” 
despite that an application isn’t really something you can envision in material form. Yet it may be 
useful to represent the application as a class because the application itself has certain properties and 
behaviors.

An overly general class is a class that doesn’t represent a particular thing at all. The programmer may 
be attempting to make a class that is flexible or reusable, but ends up with one that is confusing. For 
example, imagine a program that organizes and displays media. It can catalog your photos, organize 
your digital music and movie collection, and serve as a personal journal. The overly general approach 
is to think of all these things as “media” objects and build a single class that can accommodate all of 
the supported formats. This single class might have a property called “data” that contains the raw 
bits of the image, song, movie, or journal entry, depending on the type of media. The class might have 
a behavior called “perform” that appropriately draws the image, plays the song, plays the movie, or 
brings up the journal entry for editing.

The clues that this single class is too general are in the names of the properties and behaviors. The 
word data has little meaning by itself—you have to use a general term here because this class has 
been overextended to three very different uses. Similarly, perform will do very different things for the 
different types of media. Clearly, this class is trying to do too much.
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Nevertheless, when designing a program to organize media, there for sure will be a Media class in 
your application. This Media class will contain the common properties that all types of media have, 
such as a name, a preview, a link to the corresponding media file, and so on. What this Media class 
should not contain though is the details about handling specific media. It should not contain code to 
display an image, or to play a song or a movie. Instead, there should be other classes in your design 
such as a Picture class and a Movie class. Those specific classes then contain the actual media-
specific functionality such as displaying a picture or playing a movie. Obviously, those media-specific 
classes are somehow related to the Media class, and that’s exactly the topic of the next section on how 
to express relationships between classes.

CLASS RELATIONSHIPS

As a programmer, you will certainly encounter cases where different classes have characteristics in 
common, or seem somehow related to each other. Object-oriented languages provide a number of 
mechanisms for dealing with such relationships between classes. The tricky part is to understand 
what the relationship actually is. There are two main types of class relationships—a has-a relationship 
and an is-a relationship.

The Has-a Relationship
Classes engaged in a has-a relationship follow the pattern A has a B, or A contains a B. In this type of 
relationship, you can envision one class as part of another. Components, as defined earlier, generally 
represent a has-a relationship because they describe classes that are made up of other classes.

A real-world example of this might be the relationship between a zoo and a monkey. You could say 
that a zoo has a monkey or a zoo contains a monkey. A simulation of a zoo in code would have a zoo 
class, which has a monkey component.

Often, thinking about user interface scenarios is helpful in understanding class relationships. This 
is so because even though not all UIs are implemented in OOP (though these days, most are), the 
visual elements on the screen translate well into classes. One UI analogy for a has-a relationship is a 
window that contains a button. The button and the window are clearly two separate classes, but they 
are obviously related in some way. Because the button is inside the window, you say that the window 
has a button.

Figure 5-3 shows a real-world and a user interface has-a relationship.

There are two types of has-a relationships:

➤➤ Aggregation: With aggregation, the aggregated objects (components) can continue to live 
when the aggregator is destroyed. For example, suppose a zoo object contains a bunch of 
animal objects. When the zoo object is destroyed because it went bankrupt, the animal 
objects are (ideally) not destroyed; they are moved to another zoo.

➤➤ Composition: With composition, if an object composed of other objects is destroyed, those 
other objects are destroyed as well. For example, if a window object containing buttons is 
destroyed, those button objects are destroyed as well.



176 ❘ CHAPTER 5  Designing with Objects

The Is-a Relationship (Inheritance)
The is-a relationship is such a fundamental concept of object-oriented programming that it has many 
names, including deriving, subclassing, extending, and inheriting. Classes model the fact that the real 
world contains objects with properties and behaviors. Inheritance models the fact that these objects 
tend to be organized in hierarchies. These hierarchies indicate is-a relationships.

Fundamentally, inheritance follows the pattern A is a B or A is really quite a bit like B—it can get 
tricky. To stick with the simple case, revisit the zoo, but assume that there are other animals besides 
monkeys. That statement alone has already constructed the relationship—a monkey is an animal. 
Similarly, a giraffe is an animal, a kangaroo is an animal, and a penguin is an animal. So what? Well, 
the magic of inheritance comes when you realize that monkeys, giraffes, kangaroos, and penguins 
have certain things in common. These commonalities are characteristics of animals in general.

What this means for the programmer is that you can define an Animal class that encapsulates all of 
the properties (size, location, diet, and so on) and behaviors (move, eat, sleep) that pertain to every 
animal. The specific animals, such as monkeys, become derived classes of Animal because a monkey 
contains all the characteristics of an animal. Remember, a monkey is an animal plus some additional 
characteristics that make it distinct. Figure 5-4 shows an inheritance diagram for animals. The arrows 
indicate the direction of the is-a relationship.

Just as monkeys and giraffes are different types of animals, a user interface often has different types 
of buttons. A checkbox, for example, is a 
button. Assuming that a button is simply a 
UI element that can be clicked to perform an 
action, a Checkbox extends the Button class 
by adding state—whether the box is checked or 
unchecked.

FIGURE 5-3 
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When relating classes in an is-a relationship, one goal is to factor common functionality into the base 
class, the class that other classes extend. If you find that all of your derived classes have code that is 
similar or exactly the same, consider how you could move some or all of that code into the base class. 
That way, any changes that need to be made only happen in one place and future derived classes get 
the shared functionality “for free.”

Inheritance Techniques
The preceding examples cover a few of the techniques used in inheritance without formalizing them. 
When deriving classes, there are several ways that the programmer can distinguish a class from its 
parent class, also called base class or superclass. A derived class may use one or more of these tech-
niques, and they are recognized by completing the sentence, “A is a B that is ....”

Adding Functionality
A derived class can augment its parent by adding additional functionality. For example, a monkey is 
an animal that can swing from trees. In addition to having all of the methods of Animal, the Monkey 
class also has a swingFromTrees() method, which is specific to only the Monkey class.

Replacing Functionality
A derived class can replace or override a method of its parent entirely. For example, most animals 
move by walking, so you might give the Animal class a move() method that simulates walking. If 
that’s the case, a kangaroo is an animal that moves by hopping instead of walking. All the other prop-
erties and methods of the Animal base class still apply, but the Kangaroo derived class simply changes 
the way that the move() method works. Of course, if you find yourself replacing all of the functional-
ity of your base class, it may be an indication that inheriting was not the correct thing to do after all, 
unless the base class is an abstract base class. An abstract base class forces each of the derived classes 
to implement all methods that do not have an implementation in the abstract base class. You cannot 
create instances of an abstract base class. Abstract base classes are discussed in Chapter 10.

Adding Properties
A derived class can also add new properties to the ones that were inherited from the base class. For 
example, a penguin has all the properties of an animal but also has a beak size property.

Replacing Properties
C++ provides a way of overriding properties similar to the way you can override methods. However, 
doing so is rarely appropriate, because it hides the property from the base class; that is, the base class 
can have a specific value for a property with a certain name, while the derived class can have another 
value for another property but with the same name. Hiding is explained in more detail in Chapter 10. 
It’s important not to get the notion of replacing a property confused with the notion of derived classes 
having different values for properties. For example, all animals have a diet property that indicates 
what they eat. Monkeys eat bananas and penguins eat fish, but neither of these is replacing the diet 
property—they simply differ in the value assigned to the property.
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Polymorphism
Polymorphism is the notion that objects that adhere to a standard set of properties and methods 
can be used interchangeably. A class definition is like a contract between objects and the code that 
interacts with them. By definition, any Monkey object must support the properties and methods of the 
Monkey class.

This notion extends to base classes as well. Because all monkeys are animals, all Monkey objects sup-
port the properties and methods of the Animal class as well.

Polymorphism is a beautiful part of object-oriented programming because it truly takes advantage 
of what inheritance offers. In a zoo simulation, you could programmatically loop through all of the 
animals in the zoo and have each animal move once. Because all animals are members of the Animal 
class, they all know how to move. Some of the animals have overridden the move method, but that’s 
the best part—your code simply tells each animal to move without knowing or caring what type of 
animal it is. Each one moves whichever way it knows how.

The Fine Line Between Has-a and Is-a
In the real world, it’s pretty easy to classify has-a and is-a relationships between objects. Nobody 
would claim that an orange has a fruit—an orange is a fruit. In code, things sometimes aren’t so clear.

Consider a hypothetical class that represents an associative array, a data structure that efficiently 
maps a key to a value. For example, an insurance company could use an AssociativeArray class to 
map member IDs to names so that given an ID, it’s easy to find the corresponding member name. The 
member ID is the key, and the member name is the value.

In a standard associative array implementation, a key is associated with a single value. If the ID 
14534 maps to the member name “Kleper, Scott,” it cannot also map to the member name “Kleper, 
Marni.” In most implementations, if you tried to add a second value for a key that already has a 
value, the first value would go away. In other words, if the ID 14534 mapped to “Kleper, Scott” and 
you then assigned the ID 14534 to “Kleper, Marni,” then Scott would effectively be uninsured. This is 
demonstrated in the following sequence, which shows two calls to a hypothetical insert() method 
and the resulting contents of the associative array:

myArray.insert(14534, "Kleper, Scott");

KEYS VALUES

14534 “Kleper, Scott” [string]

myArray.insert(14534, "Kleper, Marni");

KEYS VALUES

14534 “Kleper, Marni” [string]
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It’s not difficult to imagine uses for a data structure that’s like an associative array but allows multiple 
values for a given key. In the insurance example, a family might have several names that correspond 
to the same ID. Because such a data structure is similar to an associative array, it would be nice to lev-
erage that functionality somehow. An associative array can have only a single value as a key, but that 
value can be anything. Instead of a string, the value could be a collection (such as a vector) contain-
ing the multiple values for the key. Every time you add a new member for an existing ID, you add the 
name to the collection. This would work as shown in the following sequence:

Collection collection;                 // Make a new collection.
collection.insert("Kleper, Scott");    // Add a new element to the collection.
myArray.insert(14534, collection);     // Insert the collection into the array.

KEYS VALUES

14534 {“Kleper, Scott”} [Collection]

Collection collection { myArray.get(14534) };  // Retrieve the existing collection.
collection.insert("Kleper, Marni");         // Add a new element to the collection.
myArray.insert(14534, collection);  // Replace the collection with the updated one.

KEYS VALUES

14534 {“Kleper, Scott”, “Kleper, Marni”} [Collection]

Messing around with a collection instead of a string is tedious and requires a lot of repetitive code. It 
would be preferable to wrap up this multiple-value functionality in a separate class, perhaps called a 
MultiAssociativeArray. The MultiAssociativeArray class would work just like AssociativeAr-
ray except that behind the scenes, it would store each value as a collection of strings instead of a single 
string. Clearly, MultiAssociativeArray is somehow related to AssociativeArray because it is still 
using an associative array to store the data. What is unclear is whether that constitutes an is-a or a 
has-a relationship.

To start with the is-a relationship, imagine that MultiAssociativeArray 
is a derived class of AssociativeArray. It would have to override the 
method that adds an entry into the array so that it would either create 
a collection and add the new element or retrieve the existing collection 
and add the new element to it. It would also have to override the method 
that retrieves a value. There is a complication, though: the overridden 
get() method should return a single value, not a collection. Which value 
should a MultiAssociativeArray return? One option is to return the 
first value associated with a given key. An additional getAll() method 
could be added to retrieve all values associated with a key. This seems 
like a perfectly reasonable design. Even though it overrides all the meth-
ods of the base class, it will still make use of the base class’s methods by 
using the original methods within the derived class. Figure 5-5 shows this 
approach as a UML class diagram.

FIGURE 5-5 
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Now consider it as a has-a relationship. MultiAssociativeArray is its own class, but it contains 
an AssociativeArray object. It probably has an interface similar to AssociativeArray, but it 
need not be the same. Behind the scenes, 
when a user adds something to the Multi-
AssociativeArray, it is really wrapped in 
a collection and put in an Associative-
Array object. This also seems perfectly 
reasonable and is shown in Figure 5-6.

So, which solution is right? There’s no clear 
answer, though a friend of mine who has written a MultiAssociativeArray class for production use 
viewed it as a has-a relationship. The main reason was to allow modifications to the exposed inter-
face without worrying about maintaining associative array functionality. For example, in Figure 5-6, 
the get() method is changed to getAll(), making it clear that this would get all the values for a 
particular key in a MultiAssociativeArray. Additionally, with a has-a relationship, you don’t have 
to worry about any associative array functionality bleeding through. For example, if the associative 
array class supported a method that would get the total number of values, it would report the number 
of collections unless MultiAssociativeArray knew to override it.

That said, one could make a convincing argument that a MultiAssociativeArray actually is an 
AssociativeArray with some new functionality, and it should have been an is-a relationship. 
The point is that there is sometimes a fine line between the two relationships, and you will need to 
consider how the class is going to be used and whether what you are building just leverages some 
functionality from another class or really is that class with modified or new functionality.

The following table represents the arguments for and against taking either approach for the Multi-
AssociativeArray class:

IS-A HAS-A

Reasons  
For

Fundamentally, it’s the same abstraction with 
different characteristics.

It provides (almost) the same methods as 
AssociativeArray.

MultiAssociativeArray 
can have whatever methods 
are useful without needing to 
worry about what methods 
AssociativeArray has.

The implementation could 
change to something other than 
an AssociativeArray without 
changing the exposed methods.

Reasons  
Against

An associative array by definition has one value 
per key. To say MultiAssociativeArray is an 
associative array is blasphemy!

MultiAssociativeArray overrides both 
methods of AssociativeArray, a strong sign 
that something about the design is wrong.

Unknown or inappropriate properties or 
methods of AssociativeArray could “bleed 
through” to MultiAssociativeArray.

In a sense, 
MultiAssociativeArray 
reinvents the wheel by coming up 
with new methods.

Some additional properties and 
methods of AssociativeArray 
might have been useful.

FIGURE 5-6 



Class Relationships ❘ 181

The reasons against using an is-a relationship in this case are pretty strong. Additionally, the Liskov 
substitution principle (LSP) can help you decide between an is-a and a has-a relationship. This prin-
ciple states that you should be able to use a derived class instead of a base class without altering the 
behavior. Applied to this example, it states that this should be a has-a relationship, because you can-
not just start using a MultiAssociativeArray where before you were using an AssociativeArray. 
If you would do so, the behavior would change. For example, the insert() method of Associa-
tiveArray removes an earlier value with the same key that is already in the array, while MultiAsso-
ciativeArray does not remove such values.

The two solutions explained in detail in this section are actually not the only two possible solutions. 
Other options could be for AssociativeArray to inherit from MultiAssociativeArray, Asso-
ciativeArray could contain a MultiAssociativeArray, both AssociativeArray and MultiAs-
sociativeArray could inherit from a common base class, and so on. There are often a multitude of 
solutions that you can come up with for a certain design.

If you do have a choice between the two types of relationships, I recommend, after years of experi-
ence, opting for a has-a relationship over an is-a relationship.

Note that the AssociativeArray and MultiAssociativeArray are used here to demonstrate the 
difference between the is-a and has-a relationships. In your own code, it is recommended to use one 
of the standard associative array classes instead of writing your own. The C++ Standard Library 
provides a map class, which you should use instead of the AssociativeArray, and a multimap class, 
which you should use instead of the MultiAssociativeArray. Both of these standard classes are 
discussed in Chapter 18, “Standard Library Containers.”

The Not-a Relationship
As you consider what type of relationship classes have, you should consider whether they actually 
have a relationship at all. Don’t let your zeal for object-oriented design turn into a lot of needless 
class/derived-class relationships.

One pitfall occurs when things are obviously related in the real world but have no actual relation-
ship in code. Object-oriented hierarchies need to model functional relationships, not artificial ones. 
Figure 5-7 shows relationships that are meaningful as ontologies or hierarchies but are unlikely to 
represent meaningful relationships in code.

The best way to avoid needless inheritance is to sketch out your design first. For every class and 
derived class, write down what properties and methods you’re planning on putting into the class. You 
should rethink your design if you find that a class has no particular properties or methods of its own, 
or if all of those properties and methods are completely overridden by its derived classes, except when 
working with abstract base classes as mentioned earlier.
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Hierarchies
Just as a class A can be a base class of B, B can 
also be a base class of C. Object-oriented hier-
archies can model multilevel relationships like 
this. A zoo simulation with more animals might 
be designed with every animal as a derived 
class of a common Animal class, as shown in 
Figure 5-8.

As you code each of these derived classes, you 
might find that a lot of them are similar. When this occurs, you should consider putting in a com-
mon parent. Realizing that Lion and Panther both move the same way and have the same diet 
might indicate a need for a possible BigCat class. You could further subdivide the Animal class to 
include WaterAnimal and Marsupial. Figure 5-9 shows a more hierarchical design that leverages this 
commonality.

A biologist looking at this hierarchy may be disappointed—a penguin isn’t really in the same fam-
ily as a dolphin. However, it underlines a good point—in code, you need to balance real-world 
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relationships with shared-functionality relationships. Even though two things might be closely related 
in the real world, they might have a not-a relationship in code because they really don’t share func-
tionality. You could just as easily divide animals into mammals and fish, but that wouldn’t factor any 
commonality to the base class.

Another important point is that there could be other ways of organizing the hierarchy. The preceding 
design is organized mostly by how the animals move. If it were instead organized by the animals’ diet 
or height, the hierarchy could be very different. In the end, what matters is how the classes will be 
used. The needs will dictate the design of the class hierarchy.

A good object-oriented hierarchy accomplishes the following:

➤➤ Organizes classes into meaningful functional relationships

➤➤ Supports code reuse by factoring common functionality to base classes

➤➤ Avoids having derived classes that override much of the parent’s functionality, unless the 
parent is an abstract base class

Multiple Inheritance
Every example so far has had a single inheritance chain. In other words, a given class has, at most, 
one immediate parent class. This does not have to be the case. Through multiple inheritance, a class 
can have more than one base class.

Figure 5-10 shows a multiple inheritance design. There is still a base class called Animal, which is 
further divided by size. A separate hierarchy categorizes by diet, and a third takes care of movement. 
Each type of animal is then a derived class of all three of these classes, as shown by different lines.

In a user interface context, imagine an image that the user can click. This class seems to be both a 
button and an image so the implementation might involve inheriting from both the Image class and 
the Button class, as shown in Figure 5-11.

Multiple inheritance can be useful in certain cases, but it also has a number of disadvantages that 
you should always keep in mind. Many programmers dislike multiple inheritance. C++ has explicit 
support for such relationships, though the Java language does away with them altogether, except for 

FIGURE 5-9 
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inheriting from multiple interfaces (abstract base classes). There are several reasons to which multiple 
inheritance critics point.

First, visualizing multiple inheritance is complicated. As you can see in Figure 5-10, even a sim-
ple class diagram can become complicated when there are multiple hierarchies and crossing lines. 
Class hierarchies are supposed to make it easier for the programmer to understand the relationships 
between code. With multiple inheritance, a class could have several parents that are in no way related 
to each other. With so many classes contributing code to your object, can you really keep track of 
what’s going on?

Second, multiple inheritance can destroy otherwise clean hierarchies. In the animal example, switch-
ing to a multiple inheritance approach means that the Animal base class is less meaningful because 
the code that describes animals is now separated into three separate 
hierarchies. While the design illustrated in Figure 5-10 shows three 
clean hierarchies, it’s not difficult to imagine how they could get 
messy. For example, what if you realize that all Jumpers not only 
move in the same way, but they also eat the same things? Because 
there are separate hierarchies, there is no way to join the concepts of 
movement and diet without adding yet another derived class.

Third, implementation of multiple inheritance is complicated. What 
if two of your base classes implement the same method in different 
ways? Can you have two base classes that are themselves a derived 
class of a common base class? These possibilities complicate the implementation because structuring 
such intricate relationships in code is difficult both for the author and a reader.

The reason that other languages can leave out multiple inheritance is that it is usually avoidable. By 
rethinking your hierarchies, you can often avoid introducing multiple inheritance when you have 
control over the design of a project.

Mixin Classes
Mixin classes represent another type of relationship between classes. In C++, one way to implement a 
mixin class is syntactically just like multiple inheritance, but the semantics are refreshingly different. 
A mixin class answers the question, “What else is this class able to do?” and the answer often ends 
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with “-able.” Mixin classes are a way that you can add functionality to a class without committing to 
a full is-a relationship. You can think of it as a shares-with relationship.

Going back to the zoo example, you might want to introduce the notion that some animals are “pet-
table.” That is, there are some animals that visitors to the zoo can pet, presumably without being 
bitten or mauled. You might want all pettable animals to support the behavior “be pet.” Because pet-
table animals don’t have anything else in common and you don’t want to break the existing hierarchy 
you’ve designed, Pettable makes a great mixin class.

Mixin classes are used frequently in user interfaces. Instead of saying that a PictureButton class 
is both an Image and a Button, you might say that it’s an Image that is Clickable. A folder icon 
on your desktop could be an Image that is Draggable and Clickable. Software developers tend to 
make up a lot of fun adjectives.

The difference between a mixin class and a base class has more to do with how you think about the 
class than any code difference. In general, mixin classes are easier to digest than multiple inherit-
ance because they are very limited in scope. The Pettable mixin class just adds one behavior to any 
existing class. The Clickable mixin class might just add “mouse down” and “mouse up” behaviors. 
Additionally, mixin classes rarely have a large hierarchy so there’s no cross-contamination of func-
tionality. Chapter 32, “Incorporating Design Techniques and Frameworks,” goes into more detail on 
mixin classes.

SUMMARY

In this chapter, you’ve gained an appreciation for the design of object-oriented programs without a lot 
of code getting in the way. The concepts you’ve learned are applicable to almost any object-oriented 
language. Some of it may have been a review to you, or it may be a new way of formalizing a familiar 
concept. Perhaps you picked up some new approaches to old problems or new arguments in favor of 
the concepts you’ve been preaching to your team all along. Even if you’ve never used classes in your 
code, or have used them only sparingly, you now know more about how to design object-oriented 
programs than many experienced C++ programmers.

The relationships between classes are important to study, not just because well-linked classes con-
tribute to code reuse and reduce clutter, but also because you will be working in a team. Classes that 
relate in meaningful ways are easier to read and maintain. You may decide to use the “Class Relation-
ships” section as a reference when you design your programs.

The next chapter continues the design theme by explaining how to design your code with reuse in mind.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Note that for the exercises in this chapter, there is no single correct solution. As you have learned 
in the course of this chapter, a specific problem often has several design solutions with different 

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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trade-offs. The solutions accompanying these exercises explain one possible design, but that doesn’t 
mean the solutions you came up with must match those.

Exercise 5-1: Suppose you want to write a car racing game. You will need some kind of 
model for the car itself. Assume for this exercise there is only one type of car. Each instance 
of that car needs to keep track of several properties, such as the current power output of its 
engine, the current fuel usage, the tire pressure, whether or not its driving lights are switched 
on, whether the windshield wipers are active, and so on. The game should allow players to 
configure their car with different engines, different tires, custom driving lights and windshield 
wipers, and so on. How would you model such a car and why?

Exercise 5-2: Continuing the racing game from Exercise 5-1, you of course want to include 
support for human-driven cars, but also cars driven by an artificial intelligence (AI). How 
would you model this in your game?

Exercise 5-3: Suppose part of a human resources (HR) application has the following 
three classes:

➤➤ Employee: Keeping track of employee ID, salary, date when employee started 
working, and so on

➤➤ Person: Keeping track of a name and address

➤➤ Manager: Keeping track of which employees are in their team

What do you think of the high-level class diagram in Figure 5-12? Are there any changes you 
would make to it? The diagram doesn’t show any properties or behaviors of the different 
classes, as that’s the topic of Exercise 5-4.

Exercise 5-4: Start from the final class diagram for 
Exercise 5-3. Add a couple of behaviors and proper-
ties to the class diagram. Finally, model the fact that 
a manager manages a team of employees.

FIGURE 5-12 
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Designing for Reuse

WHAT’S IN THIS CHAPTER?

➤➤ The reuse philosophy: Why you should design code for reuse

➤➤ How to design reusable code

➤➤ How to use abstraction

➤➤ Strategies for structuring your code for reuse

➤➤ Six strategies for designing usable interfaces

➤➤ How to reconcile generality with ease of use

➤➤ The SOLID principles

Reusing libraries and other code in your programs as discussed in Chapter 4, “Designing 
Professional C++ Programs,” is an important design strategy. However, it is only half of the 
reuse strategy. The other half is designing and writing your own code that you can reuse in your 
programs. As you’ve probably discovered, there is a significant difference between well-designed 
and poorly designed libraries. Well-designed libraries are a pleasure to use, while poorly 
designed libraries can prod you to give up in disgust and write the code yourself. Whether 
you’re writing a library explicitly designed for use by other programmers or merely deciding on 
a class hierarchy, you should design your code with reuse in mind. You never know when you’ll 
need a similar piece of functionality in a subsequent project.

Chapter 4 introduces the design theme of reuse and explains how to apply this theme by 
incorporating libraries and other code into your designs, but it doesn’t explain how to design 
reusable code. That is the topic of this chapter. It builds on the object-oriented design principles 
described in Chapter 5, “Designing with Objects.”
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THE REUSE PHILOSOPHY

You should design code that both you and other programmers can reuse. This rule applies not only 
to libraries and frameworks that you specifically intend for other programmers to use but also to any 
class, subsystem, or component that you design for a program. You should always keep in mind the 
following mottos:

➤➤ “Write once, use often.”

➤➤ “Avoid code duplication at any cost.”

➤➤ “DRY—Don’t Repeat Yourself.”

There are several reasons for this:

➤➤ Code is rarely used in only one program. You can be sure that your code will be used again 
somehow, so design it correctly to begin with.

➤➤ Designing for reuse saves time and money. If you design your code in a way that precludes 
future use, you ensure that you or your partners will spend time reinventing the wheel later 
when you encounter a need for a similar piece of functionality.

➤➤ Other programmers in your group must be able to use the code that you write. You are 
probably not working alone on a project. Your co-workers will appreciate your efforts to 
offer them well-designed, functionality-packed libraries and pieces of code to use. Designing 
for reuse can also be called cooperative coding.

➤➤ Lack of reuse leads to code duplication; code duplication leads to a maintenance nightmare. 
If a bug is found in duplicated code, it has to be fixed in all places where it got duplicated. 
Whenever you find yourself copy-pasting a piece of code, you have to at least consider 
moving it out to a helper function or class.

➤➤ You will be the primary beneficiary of your own work. Experienced programmers never 
throw away code. Over time, they build a personal library of evolving tools. You never 
know when you will need a similar piece of functionality in the future.

WARNING When you design or write code as an employee of a company, 
the company, not you, generally owns the intellectual property rights. It is 
often illegal to retain copies of your designs or code when you terminate your 
employment with the company. The same is also true when you are self-em-
ployed and working for clients.
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HOW TO DESIGN REUSABLE CODE

Reusable code fulfills two main goals:

➤➤ First, it is general enough to use for slightly different purposes or in different application 
domains. Program components with details of a specific application are difficult to reuse in 
other programs.

➤➤ Second, reusable code is also easy to use. It doesn’t require significant time to understand 
its interface or functionality. Programmers must be able to incorporate it readily into their 
applications.

The means of delivering your library to clients is also important. You can deliver it in source form, 
and clients just incorporate your source into their project. Another option is to deliver binaries in 
the form of static libraries, which they link into their application, or in the form of Dynamic Link 
Libraries (.dll) for Windows clients, or shared objects (.so) for Linux clients. Each of these delivery 
mechanisms can impose additional constraints on how you design your reusable code.

NOTE This chapter uses the term client to refer to a programmer who uses your 
interfaces. Don’t confuse clients with users who run your programs. This chapter 
also uses the phrase client code to refer to code that is written to use your inter-
faces.

The most important strategy for designing reusable code is abstraction.

Use Abstraction
The key to abstraction is effectively separating the interface from the implementation. The implemen-
tation is the code you’re writing to accomplish the task you set out to accomplish. The interface is 
the way that other people use your code. In C, the header file that describes the functions in a library 
you’ve written is an interface. In object-oriented programming, the interface to a class is the collec-
tion of publicly accessible methods and properties. However, a good interface should contain only 
public methods. Properties of a class should never be made public but can be exposed through public 
methods, also called getters and setters.

Chapter 4 introduces the principle of abstraction and presents a real-world analogy of a television, 
which you can use through its interfaces without understanding how it works inside. Similarly, when 
you design code, you should clearly separate the interface from the implementation. This separation 
makes the code easier to use, primarily because clients do not need to understand the internal imple-
mentation details to use the functionality.
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Using abstraction benefits both you and the clients who use your code. Clients benefit because they 
don’t need to worry about the implementation details; they can take advantage of the functionality 
you offer without understanding how the code really works. You benefit because you can modify 
the underlying code without changing the interface to the code. Thus, you can provide upgrades and 
fixes without requiring clients to change their use. With dynamically linked libraries, clients might 
not even need to rebuild their executables. Finally, you both benefit because you, as the library writer, 
can specify in the interface exactly what interactions you expect and what functionality you support. 
Consult Chapter 3, “Coding with Style,” for a discussion on how to write documentation. A clear 
separation of interfaces and implementations will prevent clients from using the library in ways that 
you didn’t intend, which can otherwise cause unexpected behaviors and bugs.

WARNING When designing your interface, do not expose implementation 
details to your clients.

Sometimes libraries require client code to keep information returned from one interface to pass it 
to another. This information is sometimes called a handle and is often used to keep track of specific 
instances that require state to be remembered between calls. If your library design requires a handle, 
don’t expose its internals. Make that handle into an opaque class, in which the programmer can’t 
access the internal data members, either directly or through public getters or setters. Don’t require the 
client code to tweak variables inside this handle. An example of a bad design would be a library that 
requires you to set a specific member of a structure in a supposedly opaque handle in order to turn on 
error logging.

NOTE Unfortunately, C++ is fundamentally unfriendly to the principle of good 
abstraction when writing classes. The syntax requires you to combine your 
public interfaces and non-public (private or protected) data members and 
methods together in one class definition, thereby exposing some of the internal 
implementation details of the class to its clients. Chapter 9, “Mastering Classes 
and Objects,” describes some techniques for working around this in order to 
 present clean interfaces.

Abstraction is so important that it should guide your entire design. As part of every decision you 
make, ask yourself whether your choice fulfills the principle of abstraction. Put yourself in your cli-
ents’ shoes and determine whether you’re requiring knowledge of the internal implementation in the 
interface. You should rarely, if ever, make exceptions to this rule.

While designing reusable code using abstraction, you should focus on the following:

➤➤ First, you must structure the code appropriately. What class hierarchies will you use? Should 
you use templates? How should you divide the code into subsystems?

➤➤ Second, you must design the interfaces, which are the “entries” into your library to access 
the functionality you provide.

Both topics are discussed in the upcoming sections.
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Structure Your Code for Optimal Reuse
You must consider reuse from the beginning of your design on all levels, that is, from a single func-
tion, over a class, to entire libraries and frameworks. In the text that follows, all these different levels 
are called components. The following strategies will help you organize your code properly. Note that 
all of these strategies focus on making your code general purpose. The second aspect of designing 
reusable code, providing ease of use, is more relevant to your interface design and is discussed later in 
this chapter.

Avoid Combining Unrelated or Logically Separate Concepts
When you design a component, you should keep it focused on a single task or group of tasks, that is, 
you should strive for high cohesion. This is also known as the single responsibility principle (SRP). 
Don’t combine unrelated concepts such as a random number generator and an XML parser.

Even when you are not designing code specifically for reuse, keep this strategy in mind. Entire pro-
grams are rarely reused on their own. Instead, pieces or subsystems of the programs are incorporated 
directly into other applications or are adapted for slightly different uses. Thus, you should design 
your programs so that you divide logically separate functionality into distinct components that can be 
reused in different programs. Each such component should have well-defined responsibilities.

This program strategy models the real-world design principle of discrete, interchangeable parts. For 
example, you could write a Car class and put all properties and behaviors of the engine into it. How-
ever, engines are separable components that are not tied to other aspects of the car. The engine could 
be removed from one car and put into another car. A proper design would include an Engine class 
that contains all engine-specific functionality. A Car instance then just contains an instance of Engine.

Divide Your Programs into Logical Subsystems
You should design your subsystems as discrete components that can be reused independently, that is, 
strive for low coupling. For example, if you are designing a networked game, keep the networking 
and graphical user interface aspects in separate subsystems. That way, you can reuse either com-
ponent without dragging in the other one. For example, you might want to write a non-networked 
game, in which case you could reuse the graphical interface subsystem but wouldn’t need the net-
working aspect. Similarly, you could design a peer-to-peer file-sharing program, in which case you 
could reuse the networking subsystem but not the graphical user interface functionality.

Make sure to follow the principle of abstraction for each subsystem. Think of each subsystem as a 
miniature library for which you must provide a coherent and easy-to-use interface. Even if you’re the 
only programmer who ever uses these miniature libraries, you will benefit from well-designed inter-
faces and implementations that separate logically distinct functionality.

Use Class Hierarchies to Separate Logical Concepts
In addition to dividing your program into logical subsystems, you should avoid combining unrelated 
concepts at the class level. For example, suppose you want to write a class for a self-driving car. You 
decide to start with a basic class for a car and incorporate all the self-driving logic directly into it. 
However, what if you just want a non-self-driving car in your program? In that case, all the logic 
related to self-driving is useless and might require your program to link with libraries that it could 
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otherwise avoid, such as vision libraries, LIDAR libraries, and so on. A solution is 
to create a class hierarchy (introduced in Chapter 5, “Designing with Objects”) in 
which a self-driving car is a derived class of a generic car. That way, you can use 
the car base class in programs that do not need self-driving capabilities without 
incurring the cost of such algorithms. Figure 6-1 shows this hierarchy.

This strategy works well when there are two logical concepts, such as 
self-driving and cars. It becomes more complicated when there are three 
or more concepts. For example, suppose you want to provide both a 
truck and a car, each of which could be self-driving or not. Logically, 
both the truck and the car are a special case of a vehicle, and so they 
should be derived classes of a vehicle class, as shown in Figure 6-2.

Similarly, self-driving classes could be derived classes of non-self-driving 
classes. You can’t provide these separations with a linear hierarchy. 
One possibility is to make the self-driving aspect a mixin class instead. 
The previous chapter shows one way to implement mixins in C++ by using multiple inheritance. For 
example, a PictureButton could inherit from both an Image class and a Clickable mixin class. 
However, for the self-driving design, it’s better to use a different kind of mixin implementation, one 
using class templates. Basically, the SelfDrivable mixin class can be defined as follows. This exam-
ple jumps ahead a bit on class template syntax, which is discussed in detail in Chapter 12, “Writing 
Generic Code with Templates,” but those details are not important to follow this discussion.

template <typename T>
class SelfDrivable : public T
{
};

This SelfDrivable mixin class provides all the necessary algorithms for implementing the self-driv-
ing functionality. Once you have this SelfDrivable mixin class template, you can instantiate one for 
a car and one for a truck as follows:

SelfDrivable<Car> selfDrivingCar;
SelfDrivable<Truck> selfDrivingTruck;

The result of these two lines is that the compiler will use the SelfDrivable mixin class template to 
create one instantiation where all T’s of the class template are replaced by Car and hence is derived 
from Car, and another where the T’s are replaced by Truck and thus derives from Truck. Chapter 32, 
“Incorporating Design Techniques and Frameworks,” goes into more detail on mixin classes.

This solution requires you to write four different classes, but the clear separation of functionality is 
worth the effort.

Similarly, you should avoid combining unrelated concepts, that is, strive for high cohesion, at any 
level of your design, not only at the class level. For example, at the level of methods, a single method 
should not perform logically unrelated things, mix mutation (set) and inspection (get), and so on.

Use Aggregation to Separate Logical Concepts
Aggregation, discussed in Chapter 5, models the has-a relationship: objects contain other objects to 
perform some aspects of their functionality. You can use aggregation to separate unrelated or related 
but separate functionality when inheritance is not appropriate.

FIGURE 6-1 

FIGURE 6-2 



How to Design Reusable Code ❘ 193

For example, suppose you want to write a Family class to store the members of a family. Obviously, 
a tree data structure would be ideal for storing this information. Instead of integrating the code for 
the tree structure in your Family class, you should write a separate Tree class. Your Family class can 
then contain and use a Tree instance. To use the object-oriented terminology, the Family has-a Tree. 
With this technique, the tree data structure could be reused more easily in another program.

Eliminate User Interface Dependencies
If your library is a data manipulation library, you want to separate data manipulation from the user 
interface. This means that for those kinds of libraries you should never assume in which type of user 
interface the library will be used. The library should not use any of the standard input and output 
streams, such as cout, cerr, and cin, because if the library is used in the context of a graphical user 
interface, these streams may make no sense. For example, a Windows GUI-based application usu-
ally will not have any form of console I/O. If you think your library will only be used in GUI-based 
applications, you should still never pop up any kind of message box or other kind of notification to 
the end user, because that is the responsibility of the client code. It’s the client code that decides how 
messages are displayed to the user. These kinds of dependencies not only result in poor reusability, but 
they also prevent client code from properly responding to an error, for example, to handle it silently.

The Model-View-Controller (MVC) paradigm, introduced in Chapter 4, is a well-known design pat-
tern to separate storing data from visualizing that data. With this paradigm, the model can be in the 
library, while the client code can provide the view and the controller.

Use Templates for Generic Data Structures and Algorithms
C++ has a concept called templates that allows you to create structures that are generic with respect 
to a type or class. For example, you might have written code for an array of integers. If you subse-
quently would like an array of doubles, you need to rewrite and replicate all the code to work with 
doubles. The notion of a template is that the type becomes a parameter to the specification, and you 
can create a single body of code that can work on any type. Templates allow you to write both data 
structures and algorithms that work on any types.

The simplest example of this is the in Chapter 1, “A Crash Course in C++ and the Standard Library,” 
introduced std::vector class, which is part of the C++ Standard Library. To create a vector of inte-
gers, you write std::vector<int>; to create a  vector of doubles, you write std::vector<double>. 
Template programming is, in general, extremely powerful but can be very complex. Luckily, it is pos-
sible to create rather simple usages of templates that parameterize according to a type. Chapters 12 
and 26, “Advanced Templates,” explain the techniques to write your own templates, while this section 
discusses some of their important design aspects.

Whenever possible, you should use a generic design for data structures and algorithms instead of 
encoding specifics of a particular program. Don’t write a balanced binary tree structure that stores 
only book objects. Make it generic, so that it can store objects of any type. That way, you could use it 
in a bookstore, a music store, an operating system, or anywhere that you need a balanced binary tree. 
This strategy underlies the Standard Library, which provides generic data structures and algorithms 
that work on any types.
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Why Templates Are Better Than Other Generic Programming Techniques
Templates are not the only mechanism for writing generic data structures. Another, albeit older 
approach to write generic structures in C and C++ is to store void* pointers instead of pointers of 
a specific type. Clients can use this structure to store anything they want by casting it to a void*. 
However, the main problem with this approach is that it is not type safe: the containers are unable 
to check or enforce the types of the stored elements. You can cast any type to a void* to store in the 
structure, and when you remove the pointers from the data structure, you must cast them back to 
what you think they are. Because there are no checks involved, the results can be disastrous. Imagine 
a scenario where one programmer stores pointers to int in a data structure by first casting them to 
void*, but another programmer thinks they are pointers to Process objects. The second programmer 
will blithely cast the void* pointers to Process* pointers and try to use them as Process* objects. 
Needless to say, the program will not work as expected.

Instead of directly using void* pointers in your generic non-template-based data structures, you can 
use the std::any class, available since C++17. The any class is discussed in Chapter 24, “Additional 
Library Utilities,” but for this discussion it’s enough to know that you can store any type of object in 
an instance of the any class. The underlying implementation of std::any does use a void* pointer in 
certain cases, but it also keeps track of the type stored, so everything remains type safe.

Yet another approach is to write the data structure for a specific class. Through polymorphism, any 
derived class of that class can be stored in the structure. Java takes this approach to an extreme: it 
specifies that every class derives directly or indirectly from the Object class. The containers in earlier 
versions of Java store Objects, so they can store objects of any type. However, this approach is also 
not type safe. When you remove an object from the container, you must remember what it really is 
and down-cast it to the appropriate type. Down casting means casting it to a more specific class in a 
class hierarchy, that is, casting it downward in the hierarchy.

Templates, on the other hand, are type safe when used correctly. Each instantiation of a template 
stores only one type. Your program will not compile if you try to store different types in the same 
template instantiation. Additionally, templates allow the compiler to generate highly optimized code 
for each template instantiation. Compared to void* and std::any based data structures, templates 
can also avoid allocations on the free store, and hence have better performance. Newer versions of 
Java do support the concept of generics that are type safe just like C++ templates.

Problems with Templates
Templates are not perfect. First of all, their syntax might be confusing, especially for someone who 
has not used them before. Second, templates require homogeneous data structures, in which you can 
store only objects of the same type in a single structure. That is, if you write a class template for a 
balanced binary tree, you can create one tree object to store Process objects and another tree object 
to store ints. You can’t store both ints and Processes in the same tree. This restriction is a direct 
result of the type safe nature of templates. Starting with C++17, there is a standardized way around 
this homogeneity restriction. You can write your data structure to store std::variant or std::any 
objects. An std::any object can store a value of any type, while an std::variant object can store a 
value of a selection of types. Both any and variant are discussed in detail in Chapter 24.
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Another possible disadvantage of templates is so-called code bloat: an increased size of the final 
binary code. Highly specialized code for each template instantiation takes more code than slightly 
slower generic code. Usually, however, code bloat is not so much of a problem these days.

Templates vs. Inheritance
Programmers sometimes find it tricky to decide whether to use templates or inheritance. The follow-
ing are some tips to help you make the decision.

Use templates when you want to provide identical functionality for different types. For example, if 
you want to write a generic sorting algorithm that works on any type, use a function template. If you 
want to create a container that can store any type, use a class template. The key concept is that the 
class- or function template treats all types the same. However, if required, templates can be specialized 
for specific types to treat those types differently. Template specialization is discussed in Chapter 12.

When you want to provide different behaviors for related types, use inheritance. For example, in a 
shape-drawing application, use inheritance to support different shapes such as a circle, a square, a 
line, and so on. The specific shapes then derive from, for example, a Shape base class.

Note that you can combine inheritance and templates. You could write a class template that derives 
from a base class template. Chapter 12 covers the details of the template syntax.

Provide Appropriate Checks and Safeguards
There are two opposite styles for writing safe code. The optimal programming style is probably using 
a healthy mix of both of them. The first is called design-by-contract, which means that the documen-
tation for a function or a class represents a contract with a detailed description of what the respon-
sibility of the client code is and what the responsibility of your function or class is. There are three 
important aspects of design-by-contract: preconditions, postconditions, and invariants. Preconditions 
list the conditions that client code must satisfy before calling a function or method. Postconditions 
list the conditions that must be satisfied by the function or method when it has finished executing. 
Finally, invariants list the conditions that must be satisfied during the whole execution of the function 
or method.

Design-by-contract is often used in the Standard Library. For example, std::vector defines a con-
tract for using the array notation to get a certain element from a vector. The contract states that no 
bounds checking is performed, but that this is the responsibility of the client code. In other words, a 
precondition for using array notation to get elements from a vector is that the given index is valid. 
This is done to increase performance for client code that knows their indices are within bounds.

The second style is that you design your functions and classes to be as safe as possible. The most 
important aspect of this guideline is to perform error checking in your code. For example, if your 
random number generator requires a seed to be in a specific range, don’t just trust the user to pass a 
valid seed. Check the value that is passed in, and reject the call if it is invalid. As a second example, 
next to the design-by-contract array notation for retrieving an element from a vector, it also defines 
an at() method to get a specific element while performing bounds checking. If the user provides an 
invalid index, the method throws an exception. So, client code can choose whether it uses the array 
notation without bounds checking, or the at() method with bounds checking.
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As an analogy, consider an accountant who prepares income tax returns. When you hire an account-
ant, you provide them with all your financial information for the year. The accountant uses this 
information to fill out forms from the IRS. However, the accountant does not blindly fill out your 
information on the form, but instead makes sure the information makes sense. For example, if you 
own a house but forget to specify the property tax you paid, the accountant will remind you to sup-
ply that information. Similarly, if you say that you paid $12,000 in mortgage interest but made only 
$15,000 gross income, the accountant might gently ask you if you provided the correct numbers (or 
at least recommend more affordable housing).

You can think of the accountant as a “program” where the input is your financial information and 
the output is an income tax return. However, the value added by an accountant is not just that they 
fill out the forms. You also choose to employ an accountant because of the checks and safeguards that 
they provide. Similarly in programming, you could provide as many checks and safeguards as possible 
in your implementations.

There are several techniques and language features that help you to write safe code and to incorpo-
rate checks and safeguards in your programs. To report errors to client code, you can for example 
return an error code, a distinct value like false or nullptr, or an std::optional as introduced in 
Chapter 1. Alternatively, you can throw an exception to notify client code of any errors. Chapter 14, 
“Handling Errors,” covers exceptions in detail.

Design for Extensibility
You should strive to design your classes in such a way that they can be extended by deriving another 
class from them, but they should be closed for modification; that is, the behavior should be extend-
able without you having to modify its implementation. This is called the open/closed principle (OCP).

As an example, suppose you start implementing a drawing application. The first version should only 
support squares. Your design contains two classes: Square and Renderer. The former contains the 
definition of a square, such as the length of its sides. The latter is responsible for drawing the squares. 
You come up with something as follows:

class Square { /* Details not important for this example. */ };
 
class Renderer
{
    public:
        void render(const vector<Square>& squares)
        {
            for (auto& square : squares) { /* Render this square object... */ }
        }
};

Next, you add support for circles, so you create a Circle class:

class Circle { /* Details not important for this example. */ };
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To be able to render circles, you have to modify the render() method of the Renderer class. You 
decide to change it as follows:

void Renderer::render(const vector<Square>& squares,
                      const vector<Circle>& circles)
{
    for (auto& square : squares) { /* Render this square object... */ }
    for (auto& circle : circles) { /* Render this circle object... */ }
}

While doing this, you feel there is something wrong, and you are correct! To extend the functionality 
to add support for circles, you have to modify the current implementation of the render() method, 
so it’s not closed for modifications.

Your design in this case should use inheritance. This example jumps ahead a bit on the syntax of 
inheritance. Chapter 10, “Discovering Inheritance Techniques,” discusses inheritance in details; how-
ever, the syntactical details are not important to understand this example. For now, you only need to 
know that the following syntax specifies that Square derives from the Shape class:

class Square : public Shape {};

Here is a design using inheritance:

class Shape
{
    public:
        virtual void render() = 0;
};
 
class Square : public Shape
{
    public:
        void render() override { /* Render square... */ }
    // Other members not important for this example.
};
 
class Circle : public Shape
{
    public:
        void render() override { /* Render circle... */ }
    // Other members not important for this example.
};
 
class Renderer
{
    public:
        void render(const vector<Shape*>& objects)
        {
            for (auto* object : objects) { object->render(); }
        }
};
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With this design, if you want to add support for a new type of shape, you just need to write a new 
class that derives from Shape and that implements the render() method. You don’t need to modify 
anything in the Renderer class. So, this design can be extended without having to modify the existing 
code; that is, it’s open for extension and closed for modification.

Design Usable Interfaces
In addition to abstracting and structuring your code appropriately, designing for reuse requires you 
to focus on the interface with which programmers interact. Even if you have the most beautiful and 
most efficient implementation, your library will not be any good if it has a wretched interface.

Note that every component in your program should have good interfaces, even if you don’t intend 
them to be used in multiple programs. First, you never know when something will be reused. Second, 
a good interface is important even for the first use, especially if you are programming in a group and 
other programmers must use the code you design and write.

In C++, a class’s properties and methods can each be public, protected, or private. Making a 
property or method public means that other code can access it; protected means that other code 
cannot access the property or method but derived classes can access them; private is a stricter con-
trol, which means that not only are the properties or methods locked for other code, but even derived 
classes can’t access them. Note that access specifiers are at the class level, not at the object level. This 
means that a method of a class can access, for example, private properties or private methods of 
other objects of the same class.

Designing the exposed interface is all about choosing what to make public. You should view the 
exposed interface design as a process. The main purpose of interfaces is to make the code easy to use, 
but some interface techniques can help you follow the principle of generality as well.

Consider the Audience
The first step in designing an exposed interface is to consider whom you are designing it for. Is your 
audience another member of your team? Is this an interface that you will personally be using? Is it 
something that a programmer external to your company will use? Perhaps a customer or an offshore 
contractor? In addition to determining who will be coming to you for help with the interface, this 
should shed some light on some of your design goals.

If the interface is for your own use, you probably have more freedom to iterate on the design. As 
you’re making use of the interface, you can change it to suit your own needs. However, you should 
keep in mind that roles on an engineering team change, and it is quite likely that, some day, others 
will be using this interface as well.

Designing an interface for other internal programmers to use is slightly different. In a way, your inter-
face becomes a contract with them. For example, if you are implementing the data store component 
of a program, others are depending on that interface to support certain operations. You will need 
to find out all of the things that the rest of the team wants your class to do. Do they need version-
ing? What types of data can they store? As a contract, you should view the interface as slightly less 
flexible. If the interface is agreed upon before coding begins, you’ll receive some groans from other 
programmers if you decide to change it after code has been written.
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When designing interfaces for an external customer, ideally the external customer should be involved 
in specifying what functionality your interfaces exposes, just as when designing interfaces for internal 
customers. You’ll need to consider both the specific features they want as well as what customers 
might want in the future. The terminology used in the interface will have to correspond to the terms 
that the customer is familiar with, and the documentation will have to be written with that audience 
in mind. Inside jokes, codenames, and programmer slang should be left out of your design.

The audience for which you are designing an interface also impacts how much time you should invest 
on the design. For example, if you are designing an interface with just a couple of methods that will 
be used only in a few places by a few users, then it could be acceptable to modify the interface later. 
However, if you are designing a complex interface or an interface that will be used by many users, 
then you should spent more time on the design and do your best to prevent having to modify the 
interface once users start using it.

Consider the Purpose
There are many reasons for writing an interface. Before putting any code on paper or even deciding 
on what functionality you’re going to expose, you need to understand the purpose of the interface.

Application Programming Interface
An application programming interface (API) is an externally visible mechanism to extend a product 
or use its functionality within another context. If an internal interface is a contract, an API is closer 
to a set-in-stone law. Once people who don’t even work for your company are using your API, they 
don’t want it to change unless you’re adding new features that will help them. So, care should be 
given to planning the API and discussing it with customers before making it available to them.

The main trade-off in designing an API is usually ease of use versus flexibility. Because the target 
audience for the interface is not familiar with the internal working of your product, the learning curve 
to use the API should be gradual. After all, your company is exposing this API to customers because 
the company wants it to be used. If it’s too difficult to use, the API is a failure. Flexibility often works 
against this. Your product may have a lot of different uses, and you want the customer to be able to 
leverage all the functionality you have to offer. However, an API that lets the customer do anything 
that your product can do may be too complicated.

As a common programming adage goes, “A good API makes the common case easy and the advanced/
unlikely case possible.” That is, APIs should have a simple learning curve. The things that most pro-
grammers will want to do should be accessible. However, the API should allow for more advanced 
usage, and it’s acceptable to trade off complexity of the rare case for simplicity of the common case. 
The “Design Interfaces That Are Easy to Use” section later in this chapter discusses this strategy in 
detail with a number of concrete tips to follow for your designs.

Utility Class or Library
Often, your task is to develop some particular functionality for general use elsewhere in the applica-
tion, for example a logging class. In this case, the interface is somewhat easier to decide on because 
you tend to expose most or all of the functionality, ideally without giving too much away about its 
implementation. Generality is an important issue to consider. Because the class or library is general 
purpose, you’ll need to take the possible set of use cases into account in your design.
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Subsystem Interface
You may be designing the interface between two major subsystems of the application, such as the 
mechanism for accessing a database. In these cases, separating the interface from the implementation 
is paramount for a number of reasons.

One of the most important reasons is mockability. In testing scenarios, you will want to replace a 
certain implementation of an interface with another implementation of the same interface. For exam-
ple, when writing test code for a database interface, you might not want to access a real database. An 
interface implementation accessing a real database could be replaced with one simulating all data-
base access.

Another reason is flexibility. Even besides testing scenarios, you might want to provide several differ-
ent implementations of a certain interface that can be used interchangeably. For example, you might 
want to replace a database interface implementation that uses a MySQL server database, with an 
implementation that uses a SQL Server database. You might even want to switch between different 
implementations at run time.

Yet another reason, albeit less important, by finishing the interface first, other programmers can 
already start programming against your interface before your implementation is complete.

When working on a subsystem, first think about what its main purpose is. Once you have identi-
fied the main task your subsystem is charged with, think about specific uses and how it should be 
presented to other parts of the code. Try to put yourself in their shoes and not get bogged down in 
implementation details.

Component Interface
Most of the interfaces you define will probably be smaller than a subsystem interface or an API. 
These will be classes that you use within other code that you’ve written. In these cases, the main 
pitfall occurs when your interface evolves gradually and becomes unruly. Even though these interfaces 
are for your own use, think of them as though they weren’t. As with a subsystem interface, consider 
the main purpose of each class and be cautious of exposing functionality that doesn’t contribute to 
that purpose.

Design Interfaces That Are Easy to Use
Your interfaces should be easy to use. That doesn’t mean that they must be trivial, but they should be 
as simple and intuitive as the functionality allows. You shouldn’t require consumers of your library to 
wade through pages of source code in order to use a simple data structure or to go through contor-
tions in their code to obtain the functionality they need. This section provides four specific strategies 
for designing interfaces that are easy to use.

Follow Familiar Ways of Doing Things
The best strategy for developing easy-to-use interfaces is to follow standard and familiar ways of 
doing things. When people encounter an interface similar to something they have used in the past, 
they will understand it better, adopt it more readily, and be less likely to use it improperly.
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For example, suppose that you are designing the steering mechanism of a car. There are a number 
of possibilities: a joystick, two buttons for moving left or right, a sliding horizontal lever, or a good 
old steering wheel. Which interface do you think would be easiest to use? Which interface do you 
think would sell the most cars? Consumers are familiar with steering wheels, so the answer to both 
questions is, of course, the steering wheel. Even if you developed another mechanism that provided 
superior performance and safety, you would have a tough time selling your product, let alone teach-
ing people how to use it. When you have a choice between following standard interface models and 
branching out in a new direction, it’s usually better to stick to the interface to which people are 
accustomed.

Innovation is important, of course, but you should focus on innovation in the underlying implemen-
tation, not in the interface. For example, consumers are excited about the innovative fully electric 
engine in some car models. These cars are selling well in part because the interface to use them is 
identical to cars with standard gasoline engines.

Applied to C++, this strategy implies that you should develop interfaces that follow standards to 
which C++ programmers are accustomed. For example, C++ programmers expect a constructor and 
destructor of a class to initialize and clean up an object, respectively (both discussed in details in 
Chapter 8, “Gaining Proficiency with Classes and Objects”). If you need to “reinitialize” an existing 
object, a standard way is to just assign a newly constructed object to it. When you design your classes, 
you should follow these standards. If you require programmers to call initialize() and cleanup() 
methods for initialization and cleanup instead of placing that functionality in the constructor and 
destructor, you will confuse everyone who tries to use your class. Because your class behaves differ-
ently from other C++ classes, programmers will take longer to learn how to use it and will be more 
likely to use it incorrectly by forgetting to call initialize() or cleanup().

NOTE Always think about your interfaces from the perspective of someone 
using them. Do they make sense? Are they what you would expect?

C++ provides a language feature called operator overloading that can help you develop easy-to-use 
interfaces for your objects. Operator overloading allows you to write classes such that the standard 
operators work on them just as they work on built-in types like int and double. For example, you 
can write a Fraction class that allows you to add, subtract, and stream fractions like this:

Fraction f1 { 3, 4 };
Fraction f2 { 1, 2 };
Fraction sum { f1 + f2 };
Fraction diff { f1 – f2 };
cout << f1 << " " << f2 << endl;

Contrast that with the same behavior using method calls:

Fraction f1 { 3, 4 };
Fraction f2 { 1, 2 };
Fraction sum { f1.add(f2) };

continues
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Fraction diff { f1.subtract(f2) };
f1.print(cout);
cout << " ";
f2.print(cout);
cout << endl;

As you can see, operator overloading allows you to provide an easier-to-use interface for your classes. 
However, be careful not to abuse operator overloading. It’s possible to overload the + operator so that 
it implements subtraction and the – operator so that it implements multiplication. Those implemen-
tations would be counterintuitive. This does not mean that each operator should always implement 
exactly the same behavior. For example, the string class implements the + operator to concatenate 
strings, which is an intuitive interface for string concatenation. See Chapters 9 and 15 for details 
on operator overloading.

Don’t Omit Required Functionality
As you are designing your interface, keep in mind what the future holds. Is this a design you will be 
locked into for years? If so, you might need to leave room for expansion by coming up with a plug-in 
architecture. Do you have evidence that people will try to use your interface for purposes other than 
what it was designed for? Talk to them and get a better understanding of their use case. The alter-
native is rewriting it later or, worse, attaching new functionality haphazardly and ending up with a 
messy interface. Be careful, though! Speculative generality is yet another pitfall. Don’t design the be-
all, end-all logging class if the future uses are unclear, because it might unnecessarily complicate the 
design, the implementation, and its public interface.

This strategy is twofold. First, include interfaces for all behaviors that clients could need. That might 
sound obvious at first. Returning to the car analogy, you would never build a car without a speedom-
eter for the driver to view their speed! Similarly, you would never design a Fraction class without a 
mechanism for client code to access the nominator and denominator values.

However, other possible behaviors might be more obscure. This strategy requires you to anticipate all 
the uses to which clients might put your code. If you are thinking about the interface in one particular 
way, you might miss functionality that could be needed when clients use it differently. For example, 
suppose that you want to design a game board class. You might consider only the typical games, such 
as chess and checkers, and decide to support a maximum of one game piece per spot on the board. 
However, what if you later decide to write a backgammon game, which allows multiple pieces in one 
spot on the board? By precluding that possibility, you have ruled out the use of your game board as a 
backgammon board.

Obviously, anticipating every possible use for your library is difficult, if not impossible. Don’t feel 
compelled to agonize over potential future uses in order to design the perfect interface. Just give it 
some thought and do the best you can.

The second part of this strategy is to include as much functionality in the implementation as possible. 
Don’t require client code to specify information that you already know in the implementation, or 
could know if you designed it differently. For example, if your library requires a temporary file, don’t 
make the clients of your library specify that path. They don’t care what file you use; find some other 
way to determine an appropriate temporary file path.

(continued)
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Furthermore, don’t require library users to perform unnecessary work to amalgamate results. If your 
random number library uses a random number algorithm that calculates the low-order and high-
order bits of a random number separately, combine the numbers before giving them to the user.

Present Uncluttered Interfaces
To avoid omitting functionality in their interfaces, some programmers go to the opposite extreme: 
they include every possible piece of functionality imaginable. Programmers who use the interfaces are 
never left without the means to accomplish a task. Unfortunately, the interface might be so cluttered 
that they never figure out how to do it!

Don’t provide unnecessary functionality in your interfaces; keep them clean and simple. It might 
appear at first that this guideline directly contradicts the previous strategy of not omitting neces-
sary functionality. Although one strategy to avoid omitting functionality would be to include every 
imaginable interface, that is not a sound strategy. You should include necessary functionality and omit 
useless or counterproductive interfaces.

Consider cars again. You drive a car by interacting with only a few components: the steering wheel, 
the brake and accelerator pedals, the gearshift, the mirrors, the speedometer, and a few other dials on 
your dashboard. Now, imagine a car dashboard that looked like an airplane cockpit, with hundreds 
of dials, levers, monitors, and buttons. It would be unusable! Driving a car is so much easier than 
flying an airplane that the interface can be much simpler: You don’t need to view your altitude, com-
municate with control towers, or control the myriad components in an airplane such as the wings, 
engines, and landing gear.

Additionally, from the library development perspective, smaller libraries are easier to maintain. If 
you try to make everyone happy, then you have more room to make mistakes, and if your imple-
mentation is complicated enough so that everything is intertwined, even one mistake can render the 
library useless.

Unfortunately, the idea of designing uncluttered interfaces looks good on paper, but is remarkably 
hard to put into practice. The rule is ultimately subjective: you decide what’s necessary and what’s 
not. Of course, your clients will for sure tell you when you get it wrong!

Provide Documentation
Regardless of how easy you make your interfaces to use, you should supply documentation for their 
use. You can’t expect programmers to use your library properly unless you tell them how to do it. 
Think of your library or code as a product for other programmers to consume. Your product should 
have documentation explaining its proper use.

There are two ways to provide documentation for your interfaces: comments in the interfaces them-
selves and external documentation. You should strive to provide both. Most public APIs provide 
only external documentation: comments are a scarce commodity in many of the standard Unix and 
Windows header files. In Unix, the documentation usually comes in the form of so-called man pages. 
In Windows, the documentation usually accompanies the integrated development environment or is 
available on the Internet.
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Despite that most APIs and libraries omit comments in the interfaces themselves, I actually consider 
this form of documentation the most important. You should never give out a “naked” module or 
header file that contains only code. Even if your comments repeat exactly what’s in the external docu-
mentation, it is less intimidating to look at a module or header file with friendly comments than one 
with only code. Even the best programmers still like to see written language every so often! Chapter 3 
gives concrete tips for what to comment and how to write comments, and also explains that there are 
tools available that can write external documentation for you based on the comments you write in 
your interfaces.

Design General-Purpose Interfaces
The interfaces should be general purpose enough that they can be adapted to a variety of tasks. If you 
encode specifics of one application in a supposedly general interface, it will be unusable for any other 
purpose. Here are some guidelines to keep in mind.

Provide Multiple Ways to Perform the Same Functionality
To satisfy all your “customers,” it is sometimes helpful to provide multiple ways to perform the same 
functionality. Use this technique judiciously, however, because over-application can easily lead to clut-
tered interfaces.

Consider cars again. Most new cars these days provide remote keyless entry systems, with which you 
can unlock your car by pressing a button on a key fob. However, these cars always provide a stand-
ard key that you can use to physically unlock the car, for example, when the battery in the key fob is 
drained. Although these two methods are redundant, most customers appreciate having both options.

Sometimes there are similar situations in interface design. Remember from earlier in this chapter, 
std::vector provides two methods to get access to a single element at a specific index. You can use 
either the at() method, which performs bounds checking, or array notation, which does not. If you 
know your indices are valid, you can use array notation and forgo the overhead that at() incurs due 
to bounds checking.

Note that this strategy should be considered an exception to the “uncluttered” rule in interface design. 
There are a few situations where the exception is appropriate, but you should most often follow the 
uncluttered rule.

Provide Customizability
To increase the flexibility of your interfaces, provide customizability. Customizability can be as simple 
as allowing a client to turn error logging on or off. The basic premise of customizability is that it 
allows you to provide the same basic functionality to every client but to give clients the ability to 
tweak it slightly.

One way to accomplish this is through the use of interfaces to invert dependency relationships, also 
called dependency inversion principle (DIP). Dependency injection is one implementation of this 
 principle. Chapter 4, “Designing Professional C++ Programs,” briefly mentions an example of an 
ErrorLogger service. You should define an ErrorLogger interface and use dependency injection to 
inject this interface into each component that wants to use the ErrorLogger service.
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You can allow greater customizability through callbacks and template parameters. For example, you 
could allow clients to set their own error-handling callbacks. Chapter 19, “Function Pointers, Func-
tion Objects, and Lambda Expressions,” discusses callbacks in detail.

The Standard Library takes this customizability strategy to the extreme and actually allows clients to 
specify their own memory allocators for containers. If you want to use this feature, you must write 
a memory allocator object that follows the Standard Library guidelines and adheres to the required 
interfaces. Most containers in the Standard Library take an allocator as one of its template param-
eters. Chapter 25, “Customizing and Extending the Standard Library,” provides more details.

Reconciling Generality and Ease of Use
The two goals of ease of use and generality sometimes appear to conflict. Often, introducing general-
ity increases the complexity of the interfaces. For example, suppose that you need a graph structure in 
a map program to store cities. In the interest of generality, you might use templates to write a generic 
map structure for any type, not just cities. That way, if you need to write a network simulator in your 
next program, you can employ the same graph structure to store routers in the network. Unfortu-
nately, by using templates, you make the interface a little clumsier and harder to use, especially if the 
potential client is not familiar with templates.

However, generality and ease of use are not mutually exclusive. Although in some cases increased 
generality may decrease ease of use, it is possible to design interfaces that are both general purpose 
and straightforward to use.

To reduce complexity in your interfaces while still providing enough functionality, you can provide 
multiple separate interfaces. This is called the interface segregation principle (ISP). For example, 
you could write a generic networking library with two separate facets: one presents the networking 
interfaces useful for games, and the other presents the networking interfaces useful for the Hypertext 
Transfer Protocol (HTTP) for web browsing. Providing multiple interfaces also helps with making the 
commonly used functionality easy to use, while still providing the option for the more advanced func-
tionality. Returning to the map program, you might want to provide a separate interface for clients of 
the map to specify names of cities in different languages, while making English the default as it is so 
predominant. That way, most clients will not need to worry about setting the language, but those who 
want to will be able to do so.

Designing a Successful Abstraction
Experience and iteration are essential to good abstractions. Truly well-designed interfaces come from 
years of writing and using other abstractions. You can also leverage someone else’s years of writing 
and using abstractions by reusing existing, well-designed abstractions in the form of standard design 
patterns. As you encounter other abstractions, try to remember what worked and what didn’t work. 
What did you find lacking in the Windows file system API you used last week? What would you 
have done differently if you had written the network wrapper, instead of your co-worker? The best 
interface is rarely the first one you put on paper, so keep iterating. Bring your design to your peers 
and ask for feedback. If your company uses code reviews, start by doing a review of the interface 
specifications before the implementation starts. Don’t be afraid to change the abstraction once coding 
has begun, even if it means forcing other programmers to adapt. Ideally, they’ll realize that a good 
abstraction is beneficial to everyone in the long term.
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Sometimes you need to evangelize a bit when communicating your design to other programmers. 
Perhaps the rest of the team didn’t see a problem with the previous design or feels that your approach 
requires too much work on their part. In those situations, be prepared both to defend your work and 
to incorporate their ideas when appropriate.

A good abstraction means that the exported interface has only public methods that are stable and 
will not change. A specific technique to accomplish this is called the private implementation idiom, or 
pimpl idiom, and is discussed in Chapter 9.

Beware of single-class abstractions. If there is significant depth to the code you’re writing, consider 
what other companion classes might accompany the main interface. For example, if you’re exposing 
an interface to do some data processing, consider also writing a result class that provides an easy way 
to view and interpret the results.

Always turn properties into methods. In other words, don’t allow external code to manipulate the 
data behind your class directly. You don’t want some careless or nefarious programmer to set the 
height of a bunny object to a negative number. Instead, have a “set height” method that does the 
necessary bounds checking.

Iteration is worth mentioning again because it is the most important point. Seek and respond to feed-
back on your design, change it when necessary, and learn from mistakes.

The SOLID Principles
This chapter and the previous one discuss a number of basic principles of object-oriented design. To 
summarize these principles, they are often abbreviated with an easy-to-remember acronym: SOLID. 
The following table summarizes the five SOLID principles:

S Single Responsibility Principle (SRP)

A single component should have a single, well-defined responsibility and should not 
combine unrelated functionality.

O Open/Closed Principle (OCP)

A class should be open to extension (by deriving from it), but closed for modification.

L Liskov Substitution Principle (LSP)

You should be able to replace an instance of an object with an instance of a subtype of that 
object. Chapter 5 explains this principle in the section “The Fine Line Between Has-A and 
Is-A” with an example to decide whether the relationship between AssociativeArray and 
MultiAssociativeArray is a has-a or an is-a relationship.

I Interface Segregation Principle (ISP)

Keep interfaces clean and simple. It is better to have many smaller, well-defined single-
responsibility interfaces than to have broad, general-purpose interfaces.

D Dependency Inversion Principle (DIP)

Use interfaces to invert dependency relationships. One way to support the dependency 
inversion principle is dependency injection, discussed earlier in this chapter and further in 
Chapter 33, “Applying Design Patterns.”
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SUMMARY

By reading this chapter, you learned how you should design reusable code. You read about the phi-
losophy of reuse, summarized as “write once, use often,” and learned that reusable code should be 
both general purpose and easy to use. You also discovered that designing reusable code requires you 
to use abstraction, to structure your code appropriately, and to design good interfaces.

This chapter presented specific tips for structuring your code: to avoid combining unrelated or logi-
cally separate concepts, to use templates for generic data structures and algorithms, to provide appro-
priate checks and safeguards, and to design for extensibility.

This chapter also presented six strategies for designing interfaces: to follow familiar ways of doing 
things, to not omit required functionality, to present uncluttered interfaces, to provide documentation, 
to provide multiple ways to perform the same functionality, and to provide customizability. It also 
discussed how to reconcile the often-conflicting demands of generality and ease of use.

The chapter concluded with SOLID, an easy-to-remember acronym that describes the most important 
design principles discussed in this and other chapters.

This is the last chapter of the second part of the book, which focuses on discussing design themes on 
a higher level. The next part delves into the implementation phase of the software engineering pro-
cess, with details of C++ coding.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 6-1: What does it mean to make the common case easy and the unlikely 
case possible?

Exercise 6-2: What is the number-one strategy for reusable code design?

Exercise 6-3: Suppose you are writing an application that needs to work with information 
about people. One part of the application needs to keep a list of customers with data such 
as a list of recent orders, loyalty card number, and so on. Another part of the application 
needs to keep track of employees of your company that have an employee ID, job title, and 
so on. So, you design a class called Person that contains their name, phone number, address, 
list of recent orders, loyalty card number, salary, employee ID, job title (like engineer, sen-
ior engineer, . . .). What do you think of such a class? Are there any improvements that you 
can think of?

Exercise 6-4: Without looking back to the previous pages, explain what SOLID means.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Memory Management

WHAT’S IN THIS CHAPTER?

➤➤ Different ways to use and manage memory

➤➤ The often perplexing relationship between arrays and pointers

➤➤ A low-level look at working with memory

➤➤ Common memory pitfalls

➤➤ Smart pointers and how to use them

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

In many ways, programming in C++ is like driving without a road. Sure, you can go anywhere 
you want, but there are no lines or traffic lights to keep you from injuring yourself. C++, like 
the C language, has a hands-off approach toward its programmers. The language assumes that 
you know what you’re doing. It allows you to do things that are likely to cause problems 
because C++ is incredibly flexible and sacrifices safety in favor of performance.

Memory allocation and management is a particularly error-prone area of C++ programming. To 
write high-quality C++ programs, professional C++ programmers need to understand how 
memory works behind the scenes. This first chapter of Part III explores the ins and outs of 
memory management. You will learn about the pitfalls of dynamic memory and some tech-
niques for avoiding and eliminating them.

This chapter discusses low-level memory handling because professional C++ programmers 
will encounter such code. However, in modern C++ code you should avoid low-level memory 
operations as much as possible. For example, instead of dynamically allocated C-style arrays, 
you should use Standard Library containers, such as vector, which handle all memory man-
agement automatically for you. Instead of raw pointers, you should use smart pointers, such as 

http://www.wiley.com/go/proc++5e
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unique_ptr and shared_ptr both discussed later in this chapter, which automatically free the under-
lying resource, such as memory, when it’s not needed anymore. Basically, you should try to avoid hav-
ing calls to memory allocation routines such as new/new[] and delete/delete[] in your code. Of 
course, it might not always be possible, and in existing code it will most likely not be the case, so as a 
professional C++ programmer, you still need to know how memory works behind the scenes.

WARNING In modern C++ code you should avoid low-level memory operations 
as much as possible in favor of modern constructs such as containers and smart 
pointers!

WORKING WITH DYNAMIC MEMORY

Memory is a low-level component of the computer that sometimes unfortunately rears its head even 
in a high-level programming language like C++. A solid understanding of how dynamic memory 
really works in C++ is essential to becoming a professional C++ programmer.

How to Picture Memory
Understanding dynamic memory is much easier if you have a mental model for what objects look like 
in memory. In this book, a unit of memory is shown as a box with a label next to it. The label indi-
cates a variable name that corresponds to the memory. The data inside the box displays the current 
value of the memory.

For example, Figure 7-1 shows the state of memory after 
the following line of code is executed. The line should be 
in a function, so that i is a local variable:

int i { 7 };

i is a so-called automatic variable allocated on the 
stack. It is automatically deallocated when the program flow leaves the scope in which the variable 
is declared.

When you use the new keyword, memory is allocated on the free store. The following code creates 
a variable ptr on the stack initialized with nullptr and then allocates memory on the free store to 
which ptr points:

int* ptr { nullptr };
ptr = new int;

This can also be written as a one-liner:

int* ptr { new int };

Figure 7-2 shows the state of memory after this code is 
executed. Notice that the variable ptr is still on the stack 
even though it points to memory on the free store. A pointer 
is just a variable and can live on either the stack or the free 
store, although this fact is easy to forget. Dynamic memory, 
however, is always allocated on the free store.

FIGURE 7-1 

FIGURE 7-2 
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WARNING As a rule of thumb, every time you declare a pointer variable, you 
should immediately initialize it with either a proper pointer or nullptr. Don’t 
leave it uninitialized!

The next example shows that pointers can exist both on the stack and on the free store:

int** handle { nullptr };
handle = new int*;
*handle = new int;

This code first declares a pointer to a pointer to an 
integer as the variable handle. It then dynamically 
allocates enough memory to hold a pointer to an inte-
ger, storing the pointer to that new memory in handle. 
Next, that memory (*handle) is assigned a pointer to 
another section of dynamic memory that is big enough 
to hold the integer. Figure 7-3 shows the two levels of 
pointers with one pointer residing on the stack (han-
dle) and the other residing on the free store (*handle).

Allocation and Deallocation
To create space for a variable, you use the new keyword. To release that space for use by other parts 
of the program, you use the delete keyword. Of course, it wouldn’t be C++ if simple concepts such 
as new and delete didn’t have several variations and intricacies.

Using new and delete
When you want to allocate a block of memory, you call new with the type of variable for which you 
need space. new returns a pointer to that memory, although it is up to you to store that pointer in a 
variable. If you ignore the return value of new or if the pointer variable goes out of scope, the memory 
becomes orphaned because you no longer have a way to access it. This is called a memory leak.

For example, the following code orphans 
enough memory to hold an int. Figure 7-4 
shows the state of memory after the code is exe-
cuted. When there are blocks of data on the free 
store with no access, direct or indirect, from the 
stack, the memory is orphaned or leaked.

void leaky()
{
    new int;   // BUG! Orphans/leaks memory!
    cout << "I just leaked an int!" << endl;
}

Until they find a way to make computers with an infinite supply of fast memory, you will need to 
tell the compiler when the memory associated with an object can be released and reused for another 

FIGURE 7-3 

FIGURE 7-4 
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purpose. To free memory on the free store, you use the delete keyword with a pointer to the 
memory, as shown here:

int* ptr { new int };
delete ptr;
ptr = nullptr;

WARNING As a rule of thumb, every line of code that allocates memory with 
new, and that uses a raw pointer instead of storing the pointer in a smart pointer, 
should correspond to another line of code that releases the same memory with 
delete.

NOTE It is recommended to set a pointer to nullptr after having freed its 
memory. That way, you do not accidentally use a pointer to memory that has 
already been deallocated. It’s also worth noting that you are allowed to call 
delete on a nullptr pointer; it simply will not do anything.

What About My Good Friend malloc?
If you are a C programmer, you may be wondering what is wrong with the malloc() function. In C, 
malloc() is used to allocate a given number of bytes of memory. For the most part, using malloc() 
is simple and straightforward. The malloc() function still exists in C++, but you should avoid it. The 
main advantage of new over malloc() is that new doesn’t just allocate memory, it constructs objects!

For example, consider the following two lines of code, which use a hypothetical class called Foo:

Foo* myFoo { (Foo*)malloc(sizeof(Foo)) };
Foo* myOtherFoo { new Foo{} };

After executing these lines, both myFoo and myOtherFoo point to areas of memory on the free store 
that are big enough for a Foo object. Data members and methods of Foo can be accessed using both 
pointers. The difference is that the Foo object pointed to by myFoo isn’t a proper object because its 
constructor was never called. The malloc() function only sets aside a piece of memory of a certain 
size. It doesn’t know about or care about objects. In contrast, the call to new allocates the appropriate 
size of memory and also calls an appropriate constructor to construct the object.

A similar difference exists between the free() function and the delete operator. With free(), 
the object’s destructor is not called. With delete, the destructor is called and the object is properly 
cleaned up.

WARNING You should never use malloc() and free() in C++. Use only new 
and delete.
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When Memory Allocation Fails
Many, if not most, programmers write code with the assumption that new will always be success-
ful. The rationale is that if new fails, it means that memory is very low and life is very, very bad. It is 
often an unfathomable state to be in because it’s unclear what your program could possibly do in this 
situation.

By default, an exception is thrown when new fails, for example if there is not enough memory availa-
ble for the request. If this exception is not caught, the program will be terminated. In many programs, 
this behavior is acceptable. Chapter 14, “Handling Errors,” explains possible approaches to recover 
gracefully from an out-of-memory situation.

There is also an alternative version of new, which does not throw an exception. Instead, it returns 
nullptr if allocation fails, similar to the behavior of malloc() in C. The syntax for using this ver-
sion is as follows:

int* ptr { new(nothrow) int };

The syntax is a little strange: you really do write “nothrow” as if it’s an argument to new (which it is).

Of course, you still have the same problem as the version that throws an exception—what do you 
do when the result is nullptr? The compiler doesn’t require you to check the result, so the nothrow 
version of new is more likely to lead to other bugs than the version that throws an exception. For this 
reason, it’s suggested that you use the standard version of new. If out-of-memory recovery is impor-
tant to your program, the techniques covered in Chapter 14 give you all the tools you need.

Arrays
Arrays package multiple variables of the same type into a single variable with indices. Working with 
arrays quickly becomes natural to a novice programmer because it is easy to think about values in 
numbered slots. The in-memory representation of an array is not far off from this mental model.

Arrays of Primitive Types
When your program allocates memory for an array, it is allocating contiguous pieces of memory, 
where each piece is large enough to hold a single element of the array. For example, a local array of 
five ints can be declared on the stack as follows:

int myArray[5];

The individual elements of such a primitive type array are uninitialized; that is, they contain whatever 
is at that location in memory. Figure 7-5 shows the state of memory after the array is created. When 
creating arrays on the stack, the size must be a constant value known at compile time.

NOTE Some compilers allow variable-sized arrays on the stack. This is not a 
standard feature of C++, so I recommend cautiously backing away when you see 
it.
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When creating an array on the stack, an initializer list can be used to provide initial elements:

int myArray[5] { 1, 2, 3, 4, 5 };

If the initializer list contains less elements than the size of the array, the remaining elements of the 
array are initialized to 0, for example:

int myArray[5] { 1, 2 }; // 1, 2, 0, 0, 0

This can be used to quickly initialize all elements in the array to 0:

int myArray[5] { 0 };    // 0, 0, 0, 0, 0

In this case, the 0 can be left out. The following zero-initializes (see Chapter 1, “A Crash Course in 
C++ and the Standard Library”) all elements:

int myArray[5] { };      // 0, 0, 0, 0, 0

When using an initializer list, the compiler can deduce the number of elements automatically, remov-
ing the need to explicitly state the size of the array. Here’s an example:

int myArray[] { 1, 2, 3, 4, 5 };

Declaring arrays on the free store is no different, except that you use a pointer to refer to the location 
of the array. The following code allocates memory for an array of five uninitialized ints and stores a 
pointer to the memory in a variable called myArrayPtr:

int* myArrayPtr { new int[5] };

As Figure 7-6 illustrates, the free store-based array is similar to a stack-based array, but in a different 
location. The myArrayPtr variable points to the 0th element of the array.

FIGURE 7-5 

FIGURE 7-6 
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As with the new operator, new[] accepts a nothrow argument to return nullptr instead of throwing 
an exception if allocation fails. Here’s an example:

int* myArrayPtr { new(nothrow) int[5] };

Dynamically created arrays on the free store can also be initialized with an initializer list. Here’s 
an example:

int* myArrayPtr { new int[] { 1, 2, 3, 4, 5 } };

Each call to new[] should be paired with a call to delete[] to clean up the memory. Here’s 
an example:

delete [] myArrayPtr;
myArrayPtr = nullptr;

The advantage of putting an array on the free store is that you can define its size at run time. For 
example, the following code snippet receives a desired number of documents from a hypothetical 
function named askUserForNumberOfDocuments() and uses that result to create an array of Docu-
ment objects.

Document* createDocArray()
{
    size_t numDocs { askUserForNumberOfDocuments() };
    Document* docArray { new Document[numDocs] };
    return docArray;
}

Remember that each call to new[] should be paired with a call to delete[], so in this example, it’s 
important that the caller of createDocArray() uses delete[] to clean up the returned memory. 
Another problem is that C-style arrays don’t know their size; thus, callers of createDocArray() have 
no idea how many elements there are in the returned array!

In the preceding function, docArray is a dynamically allocated array. Do not get this confused with 
a dynamic array. The array itself is not dynamic because its size does not change once it is allocated. 
Dynamic memory lets you specify the size of an allocated block at run time, but it does not automati-
cally adjust its size to accommodate the data.

NOTE There are data structures, for example Standard Library containers, that 
do dynamically adjust their size and that do know their actual size. You should 
use such containers instead of C-style arrays because they are much safer to use.

There is a function in C++ called realloc(), which is a holdover from the C language. Do not use 
it! In C, realloc() is used to effectively change the size of an array by allocating a new block of 
memory of the new size, copying all of the old data to the new location, and deleting the original 
block. This approach is extremely dangerous in C++ because user-defined objects will not respond 
well to bitwise copying.

WARNING Do not use realloc() in C++! It is not your friend.
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Arrays of Objects
Arrays of objects are no different than arrays of primitive types, except for how their elements are 
initialized. When you use new[N] to allocate an array of N objects, enough space is allocated for N 
contiguous blocks where each block is large enough for a single object. For an array of objects, new[] 
automatically calls the zero-argument (= default) constructor for each of the objects, while an array of 
primitive types by default has uninitialized elements. In this way, allocating an array of objects using 
new[] returns a pointer to an array of fully constructed and initialized objects.

For example, consider the following class:

class Simple
{
    public:
        Simple() { cout << "Simple constructor called!" << endl; }
        ~Simple() { cout << "Simple destructor called!" << endl; }
};

If you allocate an array of four Simple objects, the Simple constructor is called four times.

Simple* mySimpleArray { new Simple[4] };

Figure 7-7 shows the memory diagram for this array. As you can see, it is no different than an array 
of basic types.

Deleting Arrays
As mentioned earlier, when you allocate memory with the array version of new (new[]), you must 
release it with the array version of delete (delete[]). This version automatically destructs the 
objects in the array in addition to releasing the memory associated with them.

Simple* mySimpleArray { new Simple[4] };
// Use mySimpleArray...
delete [] mySimpleArray;
mySimpleArray = nullptr;

If you do not use the array version of delete, your program may behave in odd ways. With some 
compilers, only the destructor for the first element of the array will be called because the compiler 
only knows that you are deleting a pointer to an object, and all the other elements of the array will 
become orphaned objects. With other compilers, memory corruption may occur because new and 
new[] can use completely different memory allocation schemes.

FIGURE 7-7 
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WARNING Always use delete on anything allocated with new, and always use 
delete[] on anything allocated with new[].

Of course, the destructors are called only if the elements of the array are objects. If you have an array 
of pointers, you still need to delete each object pointed to individually just as you allocated each 
object individually, as shown in the following code:

const size_t size { 4 };
Simple** mySimplePtrArray { new Simple*[size] };
 
// Allocate an object for each pointer.
for (size_t i { 0 }; i < size; i++) { mySimplePtrArray[i] = new Simple{}; }
 
// Use mySimplePtrArray...
 
// Delete each allocated object.
for (size_t i { 0 }; i < size; i++) {
    delete mySimplePtrArray[i];
    mySimplePtrArray[i] = nullptr;
}
 
// Delete the array itself.
delete [] mySimplePtrArray;
mySimplePtrArray = nullptr;

WARNING In modern C++ you should avoid using raw C-style pointers. 
Instead of storing raw pointers in C-style arrays, you should store smart pointers 
in modern Standard Library containers, such as std::vector. Smart pointers, 
discussed later in this chapter, automatically deallocate the memory associated 
with them at the right time.

Multidimensional Arrays
Multidimensional arrays extend the notion of indexed values to multiple indices. For example, a 
tic-tac-toe game might use a two-dimensional array to represent a three-by-three grid. The follow-
ing example shows such an array declared on the stack, zero-initialized, and accessed with some 
test code:

char board[3][3] {};
// Test code
board[0][0] = 'X';   // X puts marker in position (0,0).
board[2][1] = 'O';   // O puts marker in position (2,1).

You may be wondering whether the first subscript in a two-dimensional array is the x-coordinate or 
the y-coordinate. The truth is that it doesn’t really matter, as long as you are consistent. A four-by-
seven grid could be declared as char board[4][7] or char board[7][4]. For most applications, it 
is easiest to think of the first subscript as the x-axis and the second as the y-axis.
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Multidimensional Stack Arrays
In memory, the three-by-three stack-based two-dimensional board array looks like Figure 7-8. 
Because memory doesn’t have two axes (addresses are merely sequential), the computer represents a 
two-dimensional array just like a one-dimensional array. The difference is in the size of the array and 
the method used to access it.

The size of a multidimensional array is all of its dimensions multiplied together and then multiplied 
by the size of a single element in the array. In Figure 7-8, the three-by-three board is 3 × 3 × 1 = 9 
bytes, assuming that a character is 1 byte. For a four-by-seven board of characters, the array would be  
4 × 7 × 1 = 28 bytes.

To access a value in a multidimensional array, the computer treats each subscript as if it were access-
ing another subarray within the multidimensional array. For example, in the three-by-three grid, 
the expression board[0] actually refers to the subarray highlighted in Figure 7-9. When you add a 
second subscript, such as board[0][2], the computer is able to access the correct element by looking 
up the second subscript within the subarray, as shown in Figure 7-10.

FIGURE 7-8 

FIGURE 7-10 FIGURE 7-9 
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These techniques are extended to N-dimensional arrays, though dimensions higher than three tend to 
be difficult to conceptualize and are rarely used.

Multidimensional Free Store Arrays
If you need to determine the dimensions of a multidimensional array at run time, you can use a free 
store-based array. Just as a single-dimensional dynamically allocated array is accessed through a 
pointer, a multidimensional dynamically allocated array is also accessed through a pointer. The only 
difference is that in a two-dimensional array, you need to start with a pointer-to-a-pointer; and in 
an N-dimensional array, you need N levels of pointers. At first, it might seem as if the correct way to 
declare and allocate a dynamically allocated multidimensional array is as follows:

char** board { new char[i][j] }; // BUG! Doesn't compile

This code doesn’t compile because multidimensional free store-based arrays don’t work like stack-
based arrays. Their memory layout isn’t contiguous. Instead, you start by allocating a single contigu-
ous array for the first subscript dimension of a free store-based array. Each element of that array 
is actually a pointer to another array that stores the elements for the second subscript dimension. 
Figure 7-11 shows this layout for a two-by-two dynamically allocated board.

Unfortunately, the compiler doesn’t allocate memory for the subarrays on your behalf. You can allo-
cate the first-dimension array just like a single-dimensional free store-based array, but the individual 
subarrays must be explicitly allocated. The following function properly allocates memory for a two-
dimensional array:

char** allocateCharacterBoard(size_t xDimension, size_t yDimension)
{
    char** myArray { new char*[xDimension] }; // Allocate first dimension
    for (size_t i { 0 }; i < xDimension; i++) {
        myArray[i] = new char[yDimension];    // Allocate ith subarray
    }
    return myArray;
}

FIGURE 7-11 
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Similarly, when you want to release the memory associated with a multidimensional free store-based 
array, the array delete[] syntax will not clean up the subarrays on your behalf. Your code to release 
an array should mirror the code to allocate it, as in the following function:

void releaseCharacterBoard(char**& myArray, size_t xDimension)
{
    for (size_t i { 0 }; i < xDimension; i++) {
        delete [] myArray[i];    // Delete ith subarray
        myArray[i] = nullptr;
    }
    delete [] myArray;           // Delete first dimension
    myArray = nullptr;
}

NOTE This example of allocating a multidimensional array is not the most 
efficient solution. It first allocates memory for the first dimension, followed 
by allocating memory for each subarray. This results in memory blocks scat-
tered around in memory, which will have a performance impact on algorithms 
working on such data structures. Algorithms run much faster if they can work 
with contiguous memory. A solution is to allocate one big block of memory with 
a size equal to xDimension * yDimension * elementSize, and to access ele-
ments with a formula such as x * yDimension + y.

Now that you know all the details to work with arrays, it is recommended to avoid these old C-style 
arrays as much as possible because they do not provide any memory safety. They are explained here 
because you will encounter them in legacy code. In new code, you should use the C++ Standard 
Library containers such as std::array and vector. For example, use vector<T> for a one-dimen-
sional dynamic array. For a two-dimensional dynamic array, you could use vector<vector<T>>, 
and similar for higher dimensions. Of course, working directly with data structures such as 
vector<vector<T>> is still tedious, especially for constructing them, and they suffer from the same 
memory fragmentation problem as discussed in the previous note. So, if you do need N-dimensional 
dynamic arrays in your application, consider writing helper classes that provide an easier to use inter-
face. For example, to work with two-dimensional data with equally long rows, you should consider 
writing (or reusing of course) a Matrix<T> or Table<T> class template that hides the memory alloca-
tion/deallocation and element access algorithms from the user. See Chapter 12, “Writing Generic 
Code with Templates,” for details on writing class templates.

WARNING Use C++ Standard Library containers such as std::array, vector, 
and so on, instead of C-style arrays!
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Working with Pointers
Pointers get their bad reputation from the relative ease with which you can abuse them. Because a 
pointer is just a memory address, you could theoretically change that address manually, even doing 
something as scary as the following line of code:

char* scaryPointer { (char*)7 };

This line builds a pointer to the memory address 7, which is likely to be random garbage or memory 
used elsewhere in the application. If you start to use areas of memory that weren’t set aside on your 
behalf, for example with new or on the stack, eventually you will corrupt the memory associated with 
an object, or the memory involved with the management of the free store, and your program will 
malfunction. Such a malfunction can manifest itself in several ways. For example, it can reveal itself 
as invalid results because the data has been corrupted, or as hardware exceptions being triggered due 
to accessing non-existent memory, or attempting to write to protected memory. If you are lucky, you 
will get one of the serious errors that usually result in program termination by the operating system 
or the C++ runtime library; if you are unlucky, you will just get wrong results.

A Mental Model for Pointers
There are two ways to think about pointers. More mathematically minded readers might view point-
ers as addresses. This view makes pointer arithmetic, covered later in this chapter, a bit easier to 
understand. Pointers aren’t mysterious pathways through memory; they are numbers that happen to 
correspond to a location in memory. Figure 7-12 illustrates a two-by-two grid in the address-based 
view of the world.

NOTE The addresses in Figure 7-12 are just for illustrative purposes. Addresses 
on a real system are highly dependent on the hardware and operating system.

FIGURE 7-12 
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Readers who are more comfortable with spatial representations might derive more benefit from the 
“arrow” view of pointers. A pointer is a level of indirection that says to the program, “Hey! Look 
over there.” With this view, multiple levels of pointers become individual steps on the path to the 
data. Figure 7-11 shows a graphical view of pointers in memory.

When you dereference a pointer, by using the * operator, you are telling the program to look one 
level deeper in memory. In the address-based view, think of a dereference as a jump in memory to the 
address indicated by the pointer. With the graphical view, every dereference corresponds to following 
an arrow from its base to its head.

When you take the address of a location, using the & operator, you are adding a level of indirection 
in memory. In the address-based view, the program is noting the numerical address of the location, 
which can be stored as a pointer. In the graphical view, the & operator creates a new arrow whose 
head ends at the location designated by the expression. The base of the arrow can be stored as 
a pointer.

Casting with Pointers
Because pointers are just memory addresses (or arrows to somewhere), they are somewhat weakly 
typed. A pointer to an XML document is the same size as a pointer to an integer. The compiler will let 
you easily cast any pointer type to any other pointer type using a C-style cast:

Document* documentPtr { getDocument() };
char* myCharPtr { (char*)documentPtr };

A static cast offers a bit more safety. The compiler refuses to perform a static cast on pointers to 
unrelated data types:

Document* documentPtr { getDocument() };
char* myCharPtr { static_cast<char*>(documentPtr) };   // BUG! Won't compile

If the two pointers you are casting are actually pointing to objects that are related through inherit-
ance, the compiler will permit a static cast. However, a dynamic cast is a safer way to accomplish a 
cast within an inheritance hierarchy. Chapter 10, “Discovering Inheritance Techniques,” discusses 
inheritance in detail, including the different C++ style casts that are available.

ARRAY-POINTER DUALITY

You have already seen some of the overlap between pointers and arrays. Free store-allocated arrays 
are referred to by a pointer to their first element. Stack-based arrays are referred to by using the array 
syntax ([]) with an otherwise normal variable declaration. As you are about to learn, however, the 
overlap doesn’t end there. Pointers and arrays have a complicated relationship.

Arrays Are Pointers!
A free store-based array is not the only place where you can use a pointer to refer to an array. You 
can also use the pointer syntax to access elements of a stack-based array. The address of an array is 
really the address of the first element (index 0). The compiler knows that when you refer to an array 
in its entirety by its variable name, you are really referring to the address of the first element. In this 
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way, the pointer works just like with a free store-based array. The following code creates a zero-ini-
tialized array on the stack, and uses a pointer to access it:

int myIntArray[10] {};
int* myIntPtr { myIntArray };
// Access the array through the pointer.
myIntPtr[4] = 5;

The ability to refer to a stack-based array through a pointer is useful when passing arrays into func-
tions. The following function accepts an array of integers as a pointer. Note that the caller needs to 
explicitly pass in the size of the array because the pointer implies nothing about size. In fact, C++ 
arrays of any form, pointer or not, have no built-in notion of size. That is another reason why you 
should use modern containers such as those provided by the Standard Library.

void doubleInts(int* theArray, size_t size)
{
    for (size_t i { 0 }; i < size; i++) { theArray[i] *= 2; }
}

The caller of this function can pass a stack-based or free store-based array. In the case of a free store-
based array, the pointer already exists and is passed by value into the function. In the case of a stack-
based array, the caller can pass the array variable, and the compiler automatically treats the array 
variable as a pointer to the array, or you can explicitly pass the address of the first element. All three 
forms are shown here:

size_t arrSize { 4 };
int* freeStoreArray { new int[arrSize]{ 1, 5, 3, 4 } };
doubleInts(freeStoreArray, arrSize);
delete [] freeStoreArray;
freeStoreArray = nullptr;
 
int stackArray[] { 5, 7, 9, 11 };
arrSize = std::size(stackArray);    // Since C++17, requires <array>
//arrSize = sizeof(stackArray) / sizeof(stackArray[0]); // Pre-C++17, see Ch1
doubleInts(stackArray, arrSize);
doubleInts(&stackArray[0], arrSize);

The parameter-passing semantics of arrays is uncannily similar to that of pointers, because the com-
piler treats an array as a pointer when it is passed to a function. A function that takes an array as 
an argument and changes values inside the array is actually changing the original array, not a copy. 
Just like a pointer, passing an array effectively mimics pass-by-reference functionality because what 
you really pass to the function is the address of the original array, not a copy. The following imple-
mentation of doubleInts() changes the original array even though the parameter is an array, not 
a pointer:

void doubleInts(int theArray[], size_t size)
{
    for (size_t i { 0 }; i < size; i++) { theArray[i] *= 2; }
}

Any number between the square brackets after theArray in the function prototype is simply ignored. 
The following three versions are identical:

void doubleInts(int* theArray, size_t size);
void doubleInts(int theArray[], size_t size);
void doubleInts(int theArray[2], size_t size);
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You may be wondering why things work this way. Why doesn’t the compiler just copy the array when 
array syntax is used in the function definition? This is done for efficiency—it takes time to copy the 
elements of an array, and they potentially take up a lot of memory. By always passing a pointer, the 
compiler doesn’t need to include the code to copy the array.

There is a way to pass known-length stack-based arrays “by reference” to a function, although the 
syntax is non-obvious. This does not work for free store-based arrays. For example, the following 
doubleIntsStack() accepts only stack-based arrays of size 4:

void doubleIntsStack(int (&theArray)[4]);

A function template, discussed in detail in Chapter 12, can be used to let the compiler deduce the size 
of the stack-based array automatically:

template<size_t N>
void doubleIntsStack(int (&theArray)[N])
{
    for (size_t i { 0 }; i < N; i++) { theArray[i] *= 2; }
}

To summarize, arrays declared using array syntax can be accessed through a pointer. When an array is 
passed to a function, it is always passed as a pointer.

NOTE Starting with C++20, if you need to pass a C-style array to a function, 
instead of passing it directly as a C-style array, it is recommended for the 
function to have a parameter of type std::span, discussed in Chapter 18. span 
wraps a pointer to an array and its size!

Not All Pointers Are Arrays!
Because the compiler lets you pass in an array where a pointer is expected, as in the doubleInts() 
function in the previous section, you may be led to believe that pointers and arrays are the same. In 
fact, there are subtle, but important, differences. Pointers and arrays share many properties and can 
sometimes be used interchangeably (as shown earlier), but they are not the same.

A pointer by itself is meaningless. It may point to random memory, a single object, or an array. You 
can always use array syntax with a pointer, but doing so is not always appropriate because pointers 
aren’t always arrays. For example, consider the following line of code:

int* ptr { new int };

The pointer ptr is a valid pointer, but it is not an array. You can access the pointed-to value using 
array syntax (ptr[0]), but doing so is stylistically questionable and provides no real benefit. In fact, 
using array syntax with non-array pointers is an invitation for bugs. The memory at ptr[1] could 
be anything!

WARNING Arrays are automatically referenced as pointers, but not all pointers 
are arrays.

C++20
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LOW-LEVEL MEMORY OPERATIONS

One of the great advantages of C++ over C is that you don’t need to worry quite as much about 
memory. If you code using objects, you just need to make sure that each individual class properly 
manages its own memory. Through construction and destruction, the compiler helps you manage 
memory by telling you when to do it. Hiding the management of memory within classes makes a 
huge difference in usability, as demonstrated by the Standard Library classes. However, with some 
applications or with legacy code, you may encounter the need to work with memory at a lower level. 
Whether for legacy, efficiency, debugging, or curiosity, knowing some techniques for working with 
raw bytes can be helpful.

Pointer Arithmetic
The C++ compiler uses the declared types of pointers to allow you to perform pointer arithmetic. If 
you declare a pointer to an int and increase it by 1, the pointer moves ahead in memory by the size 
of an int, not by a single byte. This type of operation is most useful with arrays, because they contain 
homogeneous data that is sequential in memory. For example, assume you declare an array of ints 
on the free store:

int* myArray { new int[8] };

You are already familiar with the following syntax for setting the value at index 2:

myArray[2] = 33;

With pointer arithmetic, you can equivalently use the following syntax, which obtains a pointer to the 
memory that is “2 ints ahead” of myArray and then dereferences it to set the value:

*(myArray + 2) = 33;

As an alternative syntax for accessing individual elements, pointer arithmetic doesn’t seem too appeal-
ing. Its real power lies in the fact that an expression like myArray+2 is still a pointer to an int and 
thus can represent a smaller int array.

Let’s look at an example using wide strings. Wide strings are discussed in Chapter 21, “String  
Localization and Regular Expressions,” but the details are not important at this point. For now, it 
is enough to know that wide strings support so-called Unicode characters to represent, for example, 
Japanese strings. The wchar_t type is a character type that can accommodate such Unicode char-
acters, and it is usually bigger than a char; i.e., it’s more than one byte. To tell the compiler that a 
string literal is a wide-string literal, prefix it with an L. For example, suppose you have the following 
wide string:

const wchar_t* myString { L"Hello, World" };

Suppose further that you have a function that takes in a wide string and returns a new string that 
contains a capitalized version of the input1:

wchar_t* toCaps(const wchar_t* text);

1 Remember from Chapter 2, “Working with Strings and String Views,” that C-style strings are zero terminated, i.e. their 
last element contains \0. Hence, there is no need to add a size parameter to the function to specify the length of the 
input string. The function just keeps iterating over the individual characters of the string until it reaches a \0 character.
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You can capitalize myString by passing it into this function. However, if you only want to capitalize 
part of myString, you can use pointer arithmetic to refer to only a latter part of the string. The fol-
lowing code calls toCaps() on the World part of the wide string by just adding 7 to the pointer, even 
though wchar_t is usually more than 1 byte:

toCaps(myString + 7);

Another useful application of pointer arithmetic involves subtraction. Subtracting one pointer from 
another of the same type gives you the number of elements of the pointed-to type between the two 
pointers, not the absolute number of bytes between them.

Custom Memory Management
For 99 percent of the cases you will encounter (some might say 100 percent of the cases), the built-in 
memory allocation facilities in C++ are adequate. Behind the scenes, new and delete do all the work 
of handing out memory in properly sized chunks, maintaining a list of available areas of memory and 
releasing chunks of memory back to that list upon deletion.

When resource constraints are extremely tight, or under very special conditions, such as managing 
shared memory, implementing custom memory management may be a viable option. Don’t worry—
it’s not as scary as it sounds. Basically, managing memory yourself means that classes allocate a large 
chunk of memory and dole out that memory in pieces as it is needed.

How is this approach any better? Managing your own memory can potentially reduce overhead. 
When you use new to allocate memory, the program also needs to set aside a small amount of space 
to record how much memory was allocated. That way, when you call delete, the proper amount of 
memory can be released. For most objects, the overhead is so much smaller than the memory allo-
cated that it makes little difference. However, for small objects or programs with enormous numbers 
of objects, the overhead can have an impact.

When you manage memory yourself, you might know the size of each object a priori, so you might 
be able to avoid the overhead for each object. The difference can be enormous for large numbers of 
small objects. Performing custom memory management requires overloading the operators new and 
delete, a topic for Chapter 15, “Overloading C++ Operators.”

Garbage Collection
With environments that support garbage collection, the programmer rarely, if ever, explicitly frees 
memory associated with an object. Instead, objects to which there are no longer any references will be 
cleaned up automatically at some point by the runtime library.

Garbage collection is not built into the C++ language as it is in C# and Java. In modern C++, you 
use smart pointers to manage memory, while in legacy code you will see memory management at 
the object level through new and delete. Smart pointers such as shared_ptr (discussed later in this 
chapter) provide something very similar to garbage-collected memory; that is, when the last shared_
ptr instance for a certain resource is destroyed, at that point in time the resource is destroyed as well. 
It is possible but not easy to implement true garbage collection in C++, but freeing yourself from the 
task of releasing memory would probably introduce new headaches.

One approach to garbage collection is called mark and sweep. With this approach, the garbage col-
lector periodically examines every single pointer in your program and annotates the fact that the 
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referenced memory is still in use. At the end of the cycle, any memory that hasn’t been marked is 
deemed to be not in-use and is freed. Implementing such an algorithm in C++ is not trivial, and if 
done wrongly, it can be even more error-prone than using delete!

Attempts at a safe and easy mechanism for garbage collection have been made in C++, but even if a 
perfect implementation of garbage collection in C++ came along, it wouldn’t necessarily be appropri-
ate to use for all applications. Among the downsides of garbage collection are the following:

➤➤ When the garbage collector is actively running, the program might become unresponsive.

➤➤ With garbage collectors, you have so-called non-deterministic destructors. Because an 
object is not destroyed until it is garbage-collected, the destructor is not executed immedi-
ately when the object leaves its scope. This means that cleaning up resources (such as closing 
a file, releasing a lock, and so on), which is done by the destructor, is not performed until 
some indeterminate time in the future.

Writing a garbage collection mechanism is very hard. You will undoubtedly do it wrong, it will be 
error prone, and more than likely it will be slow. So, if you do want to use garbage-collected memory 
in your application, I highly recommend you to research existing specialized garbage-collection librar-
ies that you can reuse.

Object Pools
Garbage collection is like buying plates for a picnic and leaving any used plates out in the yard where 
someone at some point will pick them up and throw them away. Surely, there must be a more ecologi-
cal approach to memory management.

Object pools are the equivalent of recycling. You buy a reasonable number of plates, and after using 
a plate, you clean it so that it can be reused later. Object pools are ideal for situations where you need 
to use many objects of the same type over time, and creating each one incurs overhead.

Chapter 29, “Writing Efficient C++,” contains further details on using object pools for performance 
efficiency.

COMMON MEMORY PITFALLS

Handling dynamic memory using new/delete/new[]/delete[], and low-level memory operations 
are prone to errors. It is difficult to pinpoint the exact situations that can lead to a memory-related 
bug. Every memory leak or bad pointer has its own nuances. There is no magic bullet for resolving 
memory issues. This section discusses several common categories of problems and some tools you can 
use to detect and resolve them.

Underallocating Data Buffers and Out-of-Bounds 
Memory Access

Underallocation is a common problem with C-style strings, where it arises when the programmer fails 
to allocate an extra character for the trailing '\0' sentinel. Underallocation of strings also occurs 
when programmers assume a certain fixed maximum size. The basic built-in C-style string functions 
do not adhere to a fixed size—they will happily write off the end of the string into uncharted memory.
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The following code demonstrates underallocation. It reads data off a network connection and puts 
it in a C-style string. This is done in a loop because the network connection receives only a small 
amount of data at a time. On each loop, getMoreData() is called, which returns a pointer to dynami-
cally allocated memory. When nullptr is returned from getMoreData(), all of the data has been 
received. strcat() is a C function that concatenates the C-style string given as a second argument 
to the end of the C-style string given as a first argument. It expects the destination buffer to be 
big enough.

char buffer[1024] {0};   // Allocate a whole bunch of memory.
while (true) {
    char* nextChunk { getMoreData() };
    if (nextChunk == nullptr) {
        break;
    } else {
        strcat(buffer, nextChunk); // BUG! No guarantees against buffer overrun!
        delete [] nextChunk;
    }
}

There are three ways to resolve the possible underallocation problem in this example. In decreasing 
order of preference, they are as follows:

1. Use C++-style strings, which handle the memory associated with concatenation on 
your behalf.

2. Instead of allocating a buffer as a global variable or on the stack, allocate it on the free store. 
When there is insufficient space left, allocate a new buffer large enough to hold at least the 
current contents plus the new chunk, copy the original buffer into the new buffer, append the 
new contents, and delete the original buffer.

3. Create a version of getMoreData() that takes a maximum count (including the '\0' char-
acter) and returns no more characters than that; then track the amount of space left, and the 
current position, in the buffer.

Underallocation of data buffers usually leads to out-of-bounds memory access. For example, if you 
are filling a memory buffer with data, you might start writing outside the allocated data buffer when 
you assume the buffer is bigger than it actually is. It is only a matter of time before an essential part 
of memory is overwritten and the program crashes. Consider what might happen if the memory asso-
ciated with the objects in your program is suddenly overwritten. It’s not pretty!

Out-of-bounds memory access also occurs when handling C-style strings that have somehow lost 
their '\0' termination character. For example, if an improperly terminated string is handed to the fol-
lowing function, it will fill the string with 'm' characters and will happily continue to fill the contents 
of memory after the string with 'm's, overwriting memory outside the bounds of the string.

void fillWithM(char* text)
{
    int i { 0 };
    while (text[i] != '\0') {
        text[i] = 'm';
        i++;
    }
}
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Bugs that result in writing to memory past the end of an array are often called buffer overflow errors. 
These bugs have been exploited by several high-profile malware programs such as viruses and worms. 
A devious hacker can take advantage of the ability to overwrite portions of memory to inject code 
into a running program.

WARNING Avoid using old C-style strings and arrays that offer no protection 
whatsoever. Instead, use modern and safe constructs like C++ strings and vec-
tors that manage all their memory for you.

Memory Leaks
Finding and fixing memory leaks can be one of the more frustrating parts of programming in C or 
C++. Your program finally works and appears to give the correct results. Then, you start to notice 
that your program gobbles up more and more memory as it runs. Your program has a memory leak.

Memory leaks occur when you allocate memory and neglect to release it. At first, this sounds like 
the result of careless programming that could easily be avoided. After all, if every new has a corre-
sponding delete in every class you write, there should be no memory leaks, right? Actually, that’s 
not always true. For example, in the following code, the Simple class is properly written to release 
any memory that it allocates. However, when doSomething() is called, the outSimplePtr pointer is 
changed to another Simple object without deleting the old one to demonstrate a memory leak. Once 
you lose a pointer to an object, it’s nearly impossible to delete it.

class Simple
{
    public:
        Simple() { m_intPtr = new int{}; }
        ~Simple() { delete m_intPtr; }
        void setValue(int value) { *m_intPtr = value; }
    private:
        int* m_intPtr;
};
 
void doSomething(Simple*& outSimplePtr)
{
    outSimplePtr = new Simple{}; // BUG! Doesn't delete the original.
}
 
int main()
{
    Simple* simplePtr { new Simple{} }; // Allocate a Simple object.
    doSomething(simplePtr);
    delete simplePtr; // Only cleans up the second object.
}

WARNING Keep in mind that this code is only for demonstration purposes! 
In production-quality code, both m_intPtr and simplePtr should not be raw 
pointers, but should be so-called smart pointers discussed later in this chapter.
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In cases like the previous example, the memory leak probably arose from poor communication 
between programmers or poor documentation of code. The caller of doSomething() may not have 
realized that the variable was passed by reference and thus had no reason to expect that the pointer 
would be reassigned. If they did notice that the parameter was a reference-to-non-const pointer, they 
may have suspected that something strange was happening, but there is no comment around doSome-
thing() that explains this behavior.

Finding and Fixing Memory Leaks in Windows with Visual C++
Memory leaks are hard to track down because you can’t easily look at memory and see what objects 
are not in use and where they were originally allocated. However, there are programs that can do this 
for you. Memory leak detection tools range from expensive professional software packages to free 
downloadable tools. If you work with Microsoft Visual C++2, its debug library has built-in support 
for memory leak detection. This memory leak detection is not enabled by default, unless you create an 
MFC project. To enable it in other projects, you need to start by including the following three lines at 
the beginning of your code:

#define _CRTDBG_MAP_ALLOC
#include <cstdlib>
#include <crtdbg.h>

These lines should be in the exact order as shown. Next, you need to redefine the new operator 
as follows:

#ifdef _DEBUG
    #ifndef DBG_NEW
        #define DBG_NEW new ( _NORMAL_BLOCK , __FILE__ , __LINE__ )
        #define new DBG_NEW
    #endif
#endif  // _DEBUG

Note that this is within an #ifdef _DEBUG statement so the redefinition of new is done only when 
compiling a debug version of your application. This is what you normally want. Release builds usu-
ally do not do any memory leak detection, because of the performance penalty.

The last thing you need to do is to add the following line as the first line in your main() function:

_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);

This tells the Visual C++ CRT (C RunTime) library to write all detected memory leaks to the debug 
output console when the application exits. For the previous leaky program, the debug console will 
contain lines similar to the following:

Detected memory leaks!
Dumping objects ->
c:\leaky\leaky.cpp(15) : {147} normal block at 0x014FABF8, 4 bytes long.
 Data: <    > 00 00 00 00 
c:\leaky\leaky.cpp(33) : {146} normal block at 0x014F5048, 4 bytes long.
 Data: <Pa  > 50 61 20 01
Object dump complete. 

2 There is a free version of Microsoft Visual C++ available, called the Community Edition.
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The output clearly shows in which file and on which line memory was allocated but never deallo-
cated. The line number is between parentheses immediately behind the filename. The number between 
the curly braces is a counter for the memory allocations. For example, {147} means the 147th alloca-
tion in your program since it started. You can use the VC++ _CrtSetBreakAlloc() function to tell 
the VC++ debug runtime to break into the debugger when a certain allocation is performed. For 
example, you can add the following line to the beginning of your main() function to instruct the 
debugger to break on the 147th allocation:

_CrtSetBreakAlloc(147);

In this leaky program, there are two leaks: the first Simple object that is never deleted (line 33) and 
the integer on the free store that it creates (line 15). In the Visual C++ debugger output window, 
you can simply double-click one of the memory leaks, and it will automatically jump to that line in 
your code.

Of course, programs like Microsoft Visual C++ (discussed in this section) and Valgrind (discussed in 
the next section) can’t actually fix the leak for you—what fun would that be? These tools provide 
information that you can use to find the actual problem. Normally, that involves stepping through 
the code to find out where the pointer to an object was overwritten without the original object being 
released. Most debuggers provide “watch point” functionality that can break execution of the pro-
gram when this occurs.

Finding and Fixing Memory Leaks in Linux with Valgrind
Valgrind is an example of a free open-source tool for Linux that, among other things, pinpoints the 
exact line in your code where a leaked object was allocated.

The following output, generated by running Valgrind on the previous leaky program, pinpoints the 
exact locations where memory was allocated but never released. Valgrind finds the same two memory 
leaks—the first Simple object never deleted and the integer on the free store that it creates:

==15606== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
==15606== malloc/free: in use at exit: 8 bytes in 2 blocks.
==15606== malloc/free: 4 allocs, 2 frees, 16 bytes allocated.
==15606== For counts of detected errors, rerun with: -v
==15606== searching for pointers to 2 not-freed blocks.
==15606== checked 4455600 bytes.
==15606==
==15606== 4 bytes in 1 blocks are still reachable in loss record 1 of 2
==15606==    at 0x4002978F: __builtin_new (vg_replace_malloc.c:172)
==15606==    by 0x400297E6: operator new(unsigned) (vg_replace_malloc.c:185)
==15606==    by 0x804875B: Simple::Simple() (leaky.cpp:4)
==15606==    by 0x8048648: main (leaky.cpp:24)
==15606==
==15606==
==15606== 4 bytes in 1 blocks are definitely lost in loss record 2 of 2
==15606==    at 0x4002978F: __builtin_new (vg_replace_malloc.c:172)
==15606==    by 0x400297E6: operator new(unsigned) (vg_replace_malloc.c:185)
==15606==    by 0x8048633: main (leaky.cpp:20)
==15606==    by 0x4031FA46: __libc_start_main (in /lib/libc-2.3.2.so)
==15606==

continues
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==15606== LEAK SUMMARY:
==15606==    definitely lost: 4 bytes in 1 blocks.
==15606==    possibly lost:   0 bytes in 0 blocks.
==15606==    still reachable: 4 bytes in 1 blocks.
==15606==         suppressed: 0 bytes in 0 blocks.

WARNING It is strongly recommended to use std::vector, array, string, 
smart pointers (discussed later in this chapter), and other modern C++ con-
structs to avoid memory leaks.

Double-Deletion and Invalid Pointers
Once you release memory associated with a pointer using delete, the memory is available for use 
by other parts of your program. Nothing stops you, however, from attempting to continue to use 
the pointer, which is now a dangling pointer. Double deletion is also a problem. If you use delete 
a second time on a pointer, the program could be releasing memory that has since been assigned to 
another object.

Double deletion and use of already released memory are both difficult problems to track down 
because the symptoms may not show up immediately. If two deletions occur within a relatively short 
amount of time, the program potentially could work indefinitely because the associated memory 
might not be reused that quickly. Similarly, if a deleted object is used immediately after being deleted, 
most likely it will still be intact.

Of course, there is no guarantee that such behavior will work or continue to work. The memory allo-
cator is under no obligation to preserve any object once it has been deleted. Even if it does work, it is 
extremely poor programming style to use objects that have been deleted.

To avoid double deletion and use of already released memory, you should set your pointers to null-
ptr after deallocating their memory.

Many memory leak-detection programs are also capable of detecting double deletion and use of 
released objects.

SMART POINTERS

As the previous section demonstrated, memory management in C++ is a perennial source of errors 
and bugs. Many of these bugs arise from the use of dynamic memory allocation and pointers. When 
you extensively use dynamic memory allocation in your program and pass many pointers between 
objects, it’s difficult to remember to call delete on each pointer exactly once and at the right time. 
The consequences of getting it wrong are severe: when you free dynamically allocated memory more 
than once or use a pointer to memory that was already free, you can cause memory corruption or a 
fatal run-time error; when you forget to free dynamically allocated memory, you cause memory leaks.

Smart pointers help you manage your dynamically allocated memory and are the recommended 
technique for avoiding memory leaks. Conceptually, a smart pointer can hold a dynamically allocated 

(continued)
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resource, such as memory. When a smart pointer goes out of scope or is reset, it can automatically 
free the resource it holds. Smart pointers can be used to manage dynamically allocated resources in 
the scope of a function, or as data members in classes. They can also be used to pass ownership of 
dynamically allocated resources through function arguments.

C++ provides several language features that make smart pointers attractive. First, you can write a 
type-safe smart pointer class for any pointer type using templates; see Chapter 12. Second, you can 
provide an interface to the smart pointer objects using operator overloading (see Chapter 15) that 
allows code to use the smart pointer objects as if they were dumb pointers. Specifically, you can over-
load the *, –>, and [] operators such that client code can dereference a smart pointer object the same 
way it dereferences a normal pointer.

There are several types of smart pointers. The simplest type takes sole/unique ownership of a 
resource. Being the single owner of a resource, the smart pointer can automatically free the referenced 
resource when it goes out of scope or is reset. The Standard Library provides std::unique_ptr, 
which is a smart pointer with unique ownership semantics.

A slightly more advanced type of smart pointer allows for shared ownership; that is, several of these 
smart pointers can refer to the same resource. When such a smart pointer goes out of scope or is reset, 
it should free the referenced resource only if it’s the last smart pointer referring to that resource. The 
Standard Library provides std::shared_ptr supporting shared ownership.

Both standard smart pointers, unique_ptr and shared_ptr, are defined in <memory> and are dis-
cussed in detail in the next sections.

NOTE Your default smart pointer should be unique_ptr. Use shared_ptr only 
when you really need to share the resource.

WARNING Never assign the result of a resource allocation to a raw pointer! 
Whatever resource allocation method you use, always immediately store the 
resource pointer in a smart pointer, either unique_ptr or shared_ptr, or use 
other RAII classes. RAII stands for Resource Acquisition Is Initialization. An 
RAII class takes ownership of a certain resource and handles its deallocation at 
the right time. It’s a design technique discussed in Chapter 32, “Incorporating 
Design Techniques and Frameworks.”

unique_ptr
A unique_ptr has sole ownership of a resource. When the unique_ptr is destroyed or reset, the 
resource is automatically freed. One advantage is that memory and resources are always freed, even 
when return statements are executed or when exceptions are thrown. This, for example, simplifies 
coding when a function has multiple return statements, because you don’t have to remember to free 
resources before each return statement.
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As a rule of thumb, always store dynamically allocated resources having a single owner in instances 
of unique_ptr.

Creating unique_ptrs
Consider the following function that blatantly leaks memory by allocating a Simple object on the 
free store and neglecting to release it:

void leaky()
{
    Simple* mySimplePtr { new Simple{} };  // BUG! Memory is never released!
    mySimplePtr->go();
}

Sometimes you might think that your code is properly deallocating dynamically allocated memory. 
Unfortunately, it most likely is not correct in all situations. Take the following function:

void couldBeLeaky()
{
    Simple* mySimplePtr { new Simple{} };
    mySimplePtr->go();
    delete mySimplePtr;
}

This function dynamically allocates a Simple object, uses the object, and then properly calls delete. 
However, you can still have memory leaks in this example! If the go() method throws an exception, 
the call to delete is never executed, causing a memory leak.

Instead, you should use a unique_ptr, created using the std::make_unique() helper function. 
unique_ptr is a generic smart pointer that can point to any kind of memory. That’s why it is a class 
template, and make_unique() a function template. Both require a template parameter between 
angle brackets, < >, specifying the type of memory you want the unique_ptr to point to. Templates 
are discussed in detail in Chapter 12, but those details are not important to understand how to use 
smart pointers.

The following function uses a unique_ptr instead of a raw pointer. The Simple object is not explic-
itly deleted; but when the unique_ptr instance goes out of scope (at the end of the function, or 
because an exception is thrown), it automatically deallocates the Simple object in its destructor.

void notLeaky()
{
    auto mySimpleSmartPtr { make_unique<Simple>() };
    mySimpleSmartPtr->go();
}

This code uses make_unique(), in combination with the auto keyword, so that you only have 
to specify the type of the pointer, Simple in this case, once. This is the recommended way to cre-
ate a unique_ptr. If the Simple constructor requires parameters, you pass them as arguments to 
make_unique().

make_unique() uses value initialization. Primitive types, for example, are initialized to zero, and 
objects are default constructed. If you don’t need this value initialization, for instance in performance 
critical code, you can use the new make_unique_for_overwrite() function introduced in C++20, 
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which uses default initialization. For primitive types, this means they are not initialized at all and 
contain whatever is in memory at their location, while objects are still default constructed.

You can also create a unique_ptr by directly calling its constructor as follows. Note that Simple 
must now be mentioned twice:

unique_ptr<Simple> mySimpleSmartPtr { new Simple{} };

As discussed earlier in this book, class template argument deduction (CTAD) can often be used to let 
the compiler deduce the template types for class templates based on the arguments passed to a class 
template constructor. For example, it allows you to write vector v{1,2} instead of vector<int> 
v{1,2}. CTAD does not work with unique_ptr, so you cannot omit the template type.

Before C++17, you had to use make_unique() not only because you have to specify the type only 
once, but also because of safety reasons! Consider the following call to a function called foo():

foo(unique_ptr<Simple> { new Simple{} }, unique_ptr<Bar> { new Bar { data() } });

If the constructor of Simple or Bar, or the data() function, throws an exception, depending on your 
compiler optimizations, it was possible that either a Simple or a Bar object would be leaked. With 
make_unique(), nothing would leak:

foo(make_unique<Simple>(), make_unique<Bar>(data()))

Since C++17, both calls to foo() are safe, but I still recommend using make_unique() as it results in 
code that is easier to read.

NOTE Always use make_unique() to create a unique_ptr.

Using unique_ptrs
One of the greatest characteristics of the standard smart pointers is that they provide enormous ben-
efit without requiring the user to learn a lot of new syntax. Smart pointers can still be dereferenced 
(using * or ->) just like standard pointers. For example, in the earlier example, the -> operator is used 
to call the go() method:

mySimpleSmartPtr->go();

Just as with standard pointers, you can also write this as follows:

(*mySimpleSmartPtr).go();

The get() method can be used to get direct access to the underlying pointer. This can be useful to 
pass the pointer to a function that requires a raw pointer. For example, suppose you have the follow-
ing function:

void processData(Simple* simple) { /* Use the simple pointer... */ }

Then you can call it as follows:

processData(mySimpleSmartPtr.get());
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You can free the underlying pointer of a unique_ptr and optionally change it to another pointer 
using reset(). Here’s an example:

mySimpleSmartPtr.reset();             // Free resource and set to nullptr
mySimpleSmartPtr.reset(new Simple{}); // Free resource and set to a new
                                      // Simple instance

You can disconnect the underlying pointer from a unique_ptr with release() which returns the 
underlying pointer to the resource and then sets the smart pointer to nullptr. Effectively, the smart 
pointer loses ownership of the resource, and as such, you become responsible for freeing the resource 
when you are done with it! Here’s an example:

Simple* simple { mySimpleSmartPtr.release() }; // Release ownership
// Use the simple pointer...
delete simple;
simple = nullptr;

Because a unique_ptr represents unique ownership, it cannot be copied! But, spoiler alert, it is pos-
sible to move one unique_ptr to another one using move semantics, as discussed in detail in Chap-
ter 9, “Mastering Classes and Objects.” As a sneak preview, the std::move() utility function can be 
used to explicitly move ownership of a unique_ptr, as in the following code snippet. Don’t worry 
about the syntax for now; Chapter 9 makes it all clear.

class Foo
{
    public:
        Foo(unique_ptr<int> data) : m_data { move(data) } { }
    private:
        unique_ptr<int> m_data;
};
 
auto myIntSmartPtr { make_unique<int>(42) };
Foo f { move(myIntSmartPtr) };

unique_ptr and C-Style Arrays
A unique_ptr is suitable to store a dynamically allocated old C-style array. The following example 
creates a unique_ptr that holds a dynamically allocated C-style array of ten integers:

auto myVariableSizedArray { make_unique<int[]>(10) };

The type of myVariableSizedArray is unique_ptr<int[]> and supports access to its elements 
using array notation. Here’s an example:

myVariableSizedArray[1] = 123;

Just as for the non-array case, make_unique() uses value initialization for all elements of an array, 
similarly as std::vector. For primitive types, this means initialization to zero. Since C++20, the 
make_unique_for_overwrite() function can be used instead to create an array with default-initial-
ized values, which means uninitialized for primitive types. Keep in mind, though, that unininitialized 
data should be avoided as much as possible, so use this judiciously.

Even though it is possible to use a unique_ptr to store a dynamically allocated C-style array, it’s 
recommended to use a Standard Library container instead, such as std::array or vector.
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Custom Deleters
By default, unique_ptr uses the standard new and delete operators to allocate and deallocate 
memory. You can change this behavior to use your own allocation and deallocation functions. Here is 
an example:

int* my_alloc(int value) { return new int { value }; }
void my_free(int* p) { delete p; }
 
int main()
{
    unique_ptr<int, decltype(&my_free)> myIntSmartPtr { my_alloc(42), my_free };
}

This code allocates memory for an integer with my_alloc(), and the unique_ptr deallocates the 
memory by calling the my_free() function. This feature of unique_ptr is also useful to manage 
other resources instead of just memory. For example, it can be used to automatically close a file or 
network socket or anything when the unique_ptr goes out of scope.

Unfortunately, the syntax for a custom deleter with unique_ptr is a bit clumsy. You need to 
specify the type of your custom deleter as a template type parameter, which should be the type of 
a pointer to a function accepting a single pointer as argument and returning void. In this example, 
decltype(&my_free) is used and returns the type of a pointer to the function my_free(). Using a 
custom deleter with shared_ptr is much easier. The following section on shared_ptr demonstrates 
how to use a shared_ptr to automatically close a file when it goes out of scope.

shared_ptr
Sometimes, several objects or pieces of code need copies of the same pointer. A unique_ptr cannot 
be copied and hence cannot be used for such cases. Instead, std::shared_ptr is a smart pointer 
supporting shared ownership that can be copied. But, if there are multiple instances of shared_ptr 
referring to the same resource, how can they know when to actually free the resource? This can be 
solved through so-called reference counting, the topic for the upcoming section “The Need for Refer-
ence Counting.” But first, let’s look at how you can construct and use shared_ptrs.

Creating and Using shared_ptrs
You use shared_ptr in a similar way as unique_ptr. To create one, you use make_shared(), which 
is more efficient than creating a shared_ptr directly. Here’s an example:

auto mySimpleSmartPtr { make_shared<Simple>() };

WARNING Always use make_shared() to create a shared_ptr.

Note that, just as with unique_ptr, class template argument deduction does not work for shared_
ptr, so you have to specify the template type.
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make_shared() uses value initialization, similar to make_unique(). If this is not desired, you can use 
C++20’s make_shared_for_overwrite() for default initialization, analogous to make_unique_for_
overwrite().

Starting with C++17, a shared_ptr can be used to store a pointer to a dynamically allocated C-style 
array, just as you can do with a unique_ptr. Additionally, starting with C++20, you can use make_
shared() for this, just as you can use make_unique(). However, even though it is now possible to 
store C-style arrays in a shared_ptr, I still recommend to use Standard Library containers instead of 
C-style arrays.

A shared_ptr also supports the get() and reset() methods, just as a unique_ptr. The only dif-
ference is that when calling reset(), the underlying resource is freed only when the last shared_ptr 
is destroyed or reset. Note that shared_ptr does not support release(). You can use the use_
count() method to retrieve the number of shared_ptr instances that are sharing the same resource.

Just like unique_ptr, shared_ptr by default uses the standard new and delete operators to allocate 
and deallocate memory, or new[] and delete[] when storing a C-style array. You can change this 
behavior as follows:

// Implementations of my_alloc() and my_free() as before.
shared_ptr<int> myIntSmartPtr { my_alloc(42), my_free };

As you can see, you don’t have to specify the type of the custom deleter as a template type parameter, 
so this makes it much easier than a custom deleter with unique_ptr.

The following example uses a shared_ptr to store a file pointer. When the shared_ptr is destroyed 
(in this case when it goes out of scope), the file pointer is automatically closed with a call to close(). 
Note that C++ has proper object-oriented classes to work with files (see Chapter 13, “Demystifying 
C++ I/O”). Those classes already automatically close their files. This example using the old C func-
tions fopen() and fclose() is just to give a demonstration of what shared_ptrs can be used for 
besides pure memory. For example, it can be used if you have to use a C-style library, for which there 
is no C++ alternative, and that has similar functions to open and close resources. You could wrap 
them with a shared_ptr as in this example:

void close(FILE* filePtr)
{
    if (filePtr == nullptr) { return; }
    fclose(filePtr);
    cout << "File closed." << endl;
}
int main()
{
    FILE* f { fopen("data.txt", "w") };
    shared_ptr<FILE> filePtr { f, close };
    if (filePtr == nullptr) {
        cerr << "Error opening file." << endl;
    } else {
        cout << "File opened." << endl;
        // Use filePtr
    }
}
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The Need for Reference Counting
As briefly mentioned earlier, when a smart pointer with shared ownership, such as shared_ptr, goes 
out of scope or is reset, it should only free the referenced resource if it’s the last smart pointer refer-
ring to it. How is this accomplished? One solution, used by the shared_ptr Standard Library smart 
pointer, is reference counting.

As a general concept, reference counting is a technique for keeping track of the number of instances 
of a class or particular object in use. A reference-counting smart pointer is one that keeps track of 
how many smart pointers have been constructed to refer to a single real pointer, or single object. 
Every time such a reference-counted smart pointer is copied, a new instance is created pointing to the 
same resource, and the reference count is incremented. When such a smart pointer instance goes out 
of scope or is reset, the reference count is decremented. When the reference count drops to zero, there 
are no other owners of the resource anymore, so the smart pointer frees the resource.

Reference-counted smart pointers solve a lot of memory management issues, such as double deletion. 
For example, suppose you have the following two raw pointers pointing to the same memory. The 
Simple class is introduced earlier in this chapter and simply prints out messages when an instance is 
created and destroyed.

Simple* mySimple1 { new Simple{} };
Simple* mySimple2 { mySimple1 };  // Make a copy of the pointer.

Deleting both raw pointers will result in a double deletion:

delete mySimple2;
delete mySimple1;

Of course, you’ll (ideally) never find code like this, but it can happen when there are several lay-
ers of function calls involved, where one function deletes the memory, while another function has 
already done so.

By using the shared_ptr reference-counted smart pointer, such double deletions are avoided:

auto smartPtr1 { make_shared<Simple>() };
auto smartPtr2 { smartPtr1 };  // Make a copy of the pointer.

In this case, when both smart pointers go out of scope or are reset, only then is the Simple instance 
freed, exactly once.

All this works correctly only when there are no raw pointers involved! For example, suppose you 
allocate some memory using new and then create two shared_ptr instances referring to the same 
raw pointer:

Simple* mySimple { new Simple{} };
shared_ptr<Simple> smartPtr1 { mySimple };
shared_ptr<Simple> smartPtr2 { mySimple };

Both these smart pointers will attempt to delete the same object when they are destroyed. Depending 
on your compiler, this piece of code might crash! If you do get output, it could be as follows:

Simple constructor called!
Simple destructor called!
Simple destructor called!
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Yikes! One call to the constructor and two calls to the destructor? You get the same problem with 
unique_ptr. You might be surprised that even the reference-counted shared_ptr class behaves this 
way. However, this is correct behavior. The only safe way to have multiple shared_ptr instances 
point to the same memory is to simply copy such shared_ptrs.

Casting a shared_ptr
Just as a raw pointer of a certain type can be cast to a pointer of a different type, a shared_ptr 
storing a certain type can be cast to a shared_ptr of another type. Of course, there are restrictions 
of what type can be cast to what type. Not all casts are valid. The functions that are available to cast 
shared_ptrs are const_pointer_cast(), dynamic_pointer_cast(), static_pointer_cast(), 
and reinterpret_pointer_cast(). These behave and work similar to the non-smart pointer casting 
functions const_cast(), dynamic_cast(), static_cast(), and reinterpret_cast(), which are 
discussed in detail in Chapter 10.

Note that these casts work only with shared_ptr and not with unique_ptr.

Aliasing
A shared_ptr supports so-called aliasing. This allows a shared_ptr to share ownership over a 
pointer (owned pointer) with another shared_ptr, but pointing to a different object (stored pointer). 
It can, for example, be used to have a shared_ptr pointing to a member of an object while owning 
the object itself. Here’s an example:

class Foo
{
    public:
        Foo(int value) : m_data { value } { }
        int m_data;
};
 
auto foo { make_shared<Foo>(42) };
auto aliasing { shared_ptr<int> { foo, &foo->m_data } };

The Foo object is only destroyed when both shared_ptrs (foo and aliasing) are destroyed.

The owned pointer is used for reference counting, while the stored pointer is returned when you 
dereference the pointer or when you call get() on it.

WARNING In modern C++ code, raw pointers are allowed only if there is 
no ownership involved! If there is ownership involved, use unique_ptr by 
default, and shared_ptr if ownership needs to be shared. Additionally, use 
make_unique() and make_shared() to create these smart pointers. By doing so, 
there should be almost no need to directly call the new operator, and there should 
never be a need to call delete.
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weak_ptr
There is one more smart pointer class in C++ that is related to shared_ptr, called weak_ptr. A 
weak_ptr can contain a reference to a resource managed by a shared_ptr. The weak_ptr does not 
own the resource, so the shared_ptr is not prevented from deallocating the resource. A weak_ptr 
does not destroy the pointed-to resource when the weak_ptr is destroyed (for example when it goes 
out of scope); however, it can be used to determine whether the resource has been freed by the associ-
ated shared_ptr or not. The constructor of a weak_ptr requires a shared_ptr or another weak_ptr 
as argument. To get access to the pointer stored in a weak_ptr, you need to convert it to a shared_
ptr. There are two ways to do this:

➤➤ Use the lock() method on a weak_ptr instance, which returns a shared_ptr. The returned 
shared_ptr is nullptr if the shared_ptr associated with the weak_ptr has been deallo-
cated in the meantime.

➤➤ Create a new shared_ptr instance and give a weak_ptr as argument to the shared_ptr 
constructor. This throws an std::bad_weak_ptr exception if the shared_ptr associated 
with the weak_ptr has been deallocated.

The following example demonstrates the use of weak_ptr:

void useResource(weak_ptr<Simple>& weakSimple)
{
    auto resource { weakSimple.lock() };
    if (resource) {
        cout << "Resource still alive." << endl;
    } else {
        cout << "Resource has been freed!" << endl;
    }
}
 
int main()
{
    auto sharedSimple { make_shared<Simple>() };
    weak_ptr<Simple> weakSimple { sharedSimple };
 
    // Try to use the weak_ptr.
    useResource(weakSimple);
 
    // Reset the shared_ptr.
    // Since there is only 1 shared_ptr to the Simple resource, this will
    // free the resource, even though there is still a weak_ptr alive.
    sharedSimple.reset();
 
    // Try to use the weak_ptr a second time.
    useResource(weakSimple);
}
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The output of this code is as follows:

Simple constructor called!
Resource still alive.
Simple destructor called!
Resource has been freed!

Since C++17, weak_ptr also supports C-style arrays, just as shared_ptr.

Passing to Functions
A function accepting a pointer as one of its parameters should accept a smart pointer only if there 
is ownership transfer or ownership sharing involved. To share ownership of a shared_ptr, simply 
accept a shared_ptr by value as parameter. Similarly, to transfer ownership of a unique_ptr, simply 
accept a unique_ptr by value as parameter. The latter requires using move semantics, discussed in 
detail in Chapter 9.

If neither ownership transfer nor ownership sharing is involved, then the function should simply 
have a reference-to-non-const or reference-to-const parameter, or a raw pointer if nullptr is a 
valid value for the parameter. Having a parameter type such as const shared_ptr<T>& or const 
unique_ptr<T>& never makes much sense.

Returning from Functions
The standard smart pointers, shared_ptr, unique_ptr, and weak_ptr, can easily and efficiently be 
returned from functions by value, thanks to (named) return value optimization, (N)RVO, discussed 
in Chapter 1, and move semantics, discussed in Chapter 9. Details of move semantics are not impor-
tant at this time. What is important is that all this means it is efficient to return a smart pointer from 
a function. For example, you can write the following create() function and use it as demonstrated 
in main():

unique_ptr<Simple> create()
{
    auto ptr { make_unique<Simple>() };
    // Do something with ptr...
    return ptr;
}
 
int main()
{
    unique_ptr<Simple> mySmartPtr1 { create() };
    auto mySmartPtr2 { create() };
}

enable_shared_from_this
Deriving a class from std::enable_shared_from_this allows a method called on an object to 
safely return a shared_ptr or weak_ptr to itself. Without this base class, one way to return a valid 
shared_ptr or weak_ptr to this is by adding a weak_ptr as a member to the class, and to return 
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copies of it or return shared_ptrs constructed from it. The enable_shared_from_this class adds 
the following two methods to a class deriving from it:

➤➤ shared_from_this(): Returns a shared_ptr that shares ownership of the object

➤➤ weak_from_this(): Returns a weak_ptr that tracks ownership of the object

This is an advanced feature not discussed in detail, but the following code briefly demonstrates its 
use. Both shared_from_this() and weak_from_this() are public methods. However, maybe you 
find the from_this part confusing in your public interface, so just as a demonstration, the following 
Foo class defines its own method called getPointer():

class Foo : public enable_shared_from_this<Foo>
{
    public:
        shared_ptr<Foo> getPointer() {
            return shared_from_this();
        }
};
 
int main()
{
    auto ptr1 { make_shared<Foo>() };
    auto ptr2 { ptr1->getPointer() };
}

Note that you can use shared_from_this() on an object only if its pointer has already been stored 
in a shared_ptr; otherwise, a bad_weak_ptr exception is thrown. In the example, make_shared() 
is used in main() to create a shared_ptr called ptr1, which contains an instance of Foo. After this 
shared_ptr creation, it is allowed to call shared_from_this() on that Foo instance. On the other 
hand, it is always allowed to call weak_from_this(), but it might return an empty weak_ptr if it is 
called on an object for which its pointer has not been stored in a shared_ptr yet.

The following would be a completely wrong implementation of the getPointer() method:

class Foo
{
    public:
        shared_ptr<Foo> getPointer() {
            return shared_ptr<Foo>(this);
        }
};

If you use the same code for main() as shown earlier, this implementation of Foo causes a double 
deletion. You have two completely independent shared_ptrs (ptr1 and ptr2) pointing to the same 
object, which will both try to delete the object when they go out of scope.

The Old and Removed auto_ptr
The old, pre-C++11 Standard Library included a basic implementation of a smart pointer, called 
auto_ptr. Unfortunately, auto_ptr has some serious shortcomings. One of these shortcomings is 
that it does not work correctly when used inside Standard Library containers such as vectors. C++11 
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and C++14 officially deprecated auto_ptr, and since C++17, it has been removed entirely from the 
Standard Library. It is replaced with unique_ptr and shared_ptr. auto_ptr is mentioned here to 
make sure you know about it and to make sure you never use it.

WARNING Never use the old auto_ptr smart pointer! Instead, use unique_ptr 
or shared_ptr.

SUMMARY

In this chapter, you learned the ins and outs of dynamic memory. Aside from memory-checking tools 
and careful coding, there are two key takeaways to avoid dynamic memory-related problems.

First, you need to understand how pointers work under the hood. After reading about two different 
mental models for pointers, you should now know how the compiler doles out memory.

Second, you should avoid raw pointers when ownership is involved, and avoid using old C-style con-
structs and functions. Instead, use safe C++ alternatives, such as objects that automatically manage 
their memory, like the C++ string class, the vector container, smart pointers, and so on.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 7-1: Analyze the following code snippet. Can you list any problems you find with it? 
You don’t need to fix the problems in this exercise; that will be for Exercise 7-2.

const size_t numberOfElements { 10 };
int* values { new int[numberOfElements] };
// Set values to their index value.
for (int index { 0 }; index < numberOfElements; ++index) {
    values[index] = index;
}
// Set last value to 99.
values[10] = 99;
// Print all values.
for (int index { 0 }; index <= numberOfElements; ++index) {
    cout << values[index] << " ";
}

Exercise 7-2: Rewrite the code snippet from Exercise 7-1 to use modern and safe C++ 
constructs.

Exercise 7-3: Write a basic class to store a 3-D point with x, y, and z coordinates. Include a 
constructor accepting x, y, and z arguments. Write a function that accepts a 3-D point and 
prints out its coordinates using std::format(). In your main() function, dynamically  
allocate an instance of your class and subsequently call your function.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 7-4: Earlier in this chapter, the following function is shown in the context of out-of-
bounds memory access. Can you modernize this function using safe C++ alternatives? Test 
your solution in your main() function.

void fillWithM(char* text)
{
    int i { 0 };
    while (text[i] != '\0') {
        text[i] = 'm';
        i++;
    }
}





8
Gaining Proficiency 
with Classes and Objects

WHAT’S IN THIS CHAPTER?

➤➤ How to write your own classes with methods and data members

➤➤ How to control access to your methods and data members

➤➤ How to use objects on the stack and on the free store

➤➤ What the life cycle of an object is

➤➤ How to write code that is executed when an object is created 
or destroyed

➤➤ How to write code to copy or assign objects

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the Download  
Code tab.

As an object-oriented language, C++ provides facilities for using objects and for writing object 
blueprints, called classes. You can certainly write programs in C++ without classes and objects, 
but by doing so, you do not take advantage of the most fundamental and useful aspect of the 
language; writing a C++ program without classes is like traveling to Paris and eating at 
McDonald’s. To use classes and objects effectively, you must understand their syntax and 
capabilities.

Chapter 1, “A Crash Course in C++ and the Standard Library,” reviewed the basic syntax of 
class definitions. Chapter 5, “Designing with Objects,” introduced the object-oriented approach 
to programming in C++ and presented specific design strategies for classes and objects. 

http://www.wiley.com/go/proc++5e
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This chapter describes the fundamental concepts involved in using classes and objects, including 
writing class definitions, defining methods, using objects on the stack and the free store, writing 
constructors, default constructors, compiler-generated constructors, constructor initializers (also 
known as ctor-initializers), copy constructors, initializer-list constructors, destructors, and assignment 
operators. Even if you are already comfortable with classes and objects, you should skim this chapter 
because it contains various tidbits of information with which you might not yet be familiar.

INTRODUCING THE SPREADSHEET EXAMPLE

Both this chapter and the next present a runnable example of a simple spreadsheet application. A 
spreadsheet is a two-dimensional grid of “cells,” and each cell contains a number or a string. Profes-
sional spreadsheets such as Microsoft Excel provide the ability to perform mathematical operations, 
such as calculating the sum of the values of a set of cells. The spreadsheet example in these chapters 
does not attempt to challenge Microsoft in the marketplace, but it is useful for illustrating the issues 
of classes and objects.

The spreadsheet application uses two basic classes: Spreadsheet and SpreadsheetCell. Each 
Spreadsheet object contains SpreadsheetCell objects. In addition, a SpreadsheetApplication 
class manages a collection of Spreadsheets. This chapter focuses on the SpreadsheetCell class. 
Chapter 9, “Mastering Classes and Objects,” develops the Spreadsheet and  
SpreadsheetApplication classes.

NOTE This chapter shows several different versions of the SpreadsheetCell 
class in order to introduce concepts gradually. Thus, the various attempts at the 
class throughout the chapter do not always illustrate the “best” way to do every 
aspect of class writing. In particular, the early examples omit important features 
that would normally be included but have not yet been introduced. You can down-
load the final version of the class as described in the beginning of this chapter.

WRITING CLASSES

When you write a class, you specify the behaviors, or methods, that will apply to objects of that class, 
and you specify the properties, or data members, that each object will contain.

There are two components in the process of writing classes: defining the classes themselves and defin-
ing their methods.

Class Definitions
Here is a first attempt at a simple SpreadsheetCell class in a spreadsheet_cell module, in which 
each cell can store only a single number:

export module spreadsheet_cell;
 
export class SpreadsheetCell
{
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    public:
        void setValue(double value);
        double getValue() const;
    private:
        double m_value;
};

As described in Chapter 1, the first line specifies that this is the definition of a module named 
spreadsheet_cell. Every class definition begins with the keyword class followed by the name of 
the class. If the class is defined in a module and the class should become visible to clients importing 
the module, then the class keyword is prefixed with export. A class definition is a declaration and 
ends with a semicolon.

Class definitions usually go in a file named after the class. For example, the SpreadsheetCell class 
definition can be put in a file called SpreadsheetCell.cppm. Some compilers require the use of a 
specific extension; others allow you to choose any extension.

Class Members
A class can have a number of members. A member can be a member function (which in turn is a 
method, constructor, or destructor), a member variable (also called a data member), member enu-
merations, type aliases, nested classes, and so on.

The two lines that look like function prototypes declare the methods that this class supports:

void setValue(double value);
double getValue() const;

Chapter 1 points out that it is always a good idea to declare member functions that do not change the 
object as const, like the getValue() method.

The line that looks like a variable declaration declares the data member for this class:

double m_value;

A class defines the member functions and data members that apply. They apply only to a specific 
instance of the class, which is an object. The only exceptions to this rule are static members, which 
are explained in Chapter 9. Classes define concepts; objects contain real bits. So, each object contains 
its own value for the m_value data member. The implementation of the member functions is shared 
across all objects. Classes can contain any number of member functions and data members. You can-
not give a data member the same name as a member function.

Access Control
Every member in a class is subject to one of three access specifiers: public, private, or protected. 
The protected access specifier is explained in the context of inheritance in Chapter 10, “Discovering 
Inheritance Techniques.” An access specifier applies to all member declarations that follow it, until the 
next access specifier. In the SpreadsheetCell class, the setValue() and getValue() methods have 
public access, while the m_value data member has private access.

The default access specifier for classes is private: all member declarations before the first access 
specifier have the private access specification. For example, moving the public access specifier 
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to after the setValue() method declaration gives the setValue() method private access instead 
of public:

export class SpreadsheetCell
{
        void setValue(double value); // now has private access
    public:
        double getValue() const;
    private:
        double m_value;
};

In C++, a struct can have methods just like a class. In fact, there is only one difference1: for a 
struct, the default access specifier is public, while it’s private for a class.

For example, the SpreadsheetCell class can be rewritten using a struct as follows:

export struct SpreadsheetCell
{
        void setValue(double value);
        double getValue() const;
    private:
        double m_value;
};

It’s custom to use a struct instead of a class if you only need a collection of publicly accessible data 
members and no or very few methods. The following is an example of such a simple struct to store 
2-D point coordinates:

export struct Point
{
    double x;
    double y;
};

Order of Declarations
You can declare your members and access control specifiers in any order: C++ does not impose any 
restrictions, such as member functions before data members or public before private. Additionally, 
you can repeat access specifiers. For example, the SpreadsheetCell definition could look like this:

export class SpreadsheetCell
{
    public:
        void setValue(double value);
    private:
        double m_value;
    public:
        double getValue() const;
};

1 Technically, a second difference is that the default base class access for a struct is also public, while it’s private 
for a class, but base class access is a topic for Chapter 10.
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However, for clarity it is a good idea to group declarations based on their access specifier and to 
group member functions and data members within those declarations.

In-Class Member Initializers
Data members can be initialized directly in the class definition. For example, the SpreadsheetCell 
class can, by default, initialize m_value to 0 directly in the class definition as follows:

export class SpreadsheetCell
{
    // Remainder of the class definition omitted for brevity
    private:
        double m_value { 0 };
};

NOTE It is recommended to always initialize data members of a class.

Defining Methods
The preceding definition for the SpreadsheetCell class is enough for you to create objects of the 
class. However, if you try to call the setValue() or getValue() method, your linker will complain 
that those methods are not defined. That’s because these methods only have prototypes so far, but no 
implementations yet. Usually, a class definition goes in a module interface file. For the method defini-
tions, you have a choice: they can go in the module interface file or in a module implementation file.

Here is the SpreadsheetCell class with in-class method implementations:

export module spreadsheet_cell;
 
export class SpreadsheetCell
{
    public:
        void setValue(double value) { m_value = value; }
        double getValue() const { return m_value; }
    private:
        double m_value { 0 };
};

Unlike with header files, with C++20 modules, there is no harm in putting method definitions in 
module interface files. This is discussed in more detail in Chapter 11, “Odds and Ends.” However, this 
book often puts method definitions in module implementation files, in the interest of keeping module 
interface files clean and without any implementation details.

The first line of a module implementation file specifies for which module the implemented methods 
are. Here are the definitions for the two methods of the SpreadsheetCell class in the spreadsheet_
cell module:

module spreadsheet_cell;
 
void SpreadsheetCell::setValue(double value)
{

continues
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    m_value = value;
}
 
double SpreadsheetCell::getValue() const
{
    return m_value;
}

Note that the name of the class followed by two colons precedes each method name:

void SpreadsheetCell::setValue(double value)

The :: is called the scope resolution operator. In this context, the syntax tells the compiler that the 
coming definition of the setValue() method is part of the SpreadsheetCell class. Note also that 
you do not repeat the access specification when you define the method.

Accessing Data Members
Non-static methods of a class, such as setValue() and getValue(), are always executed on behalf 
of a specific object of that class. Inside a method body, you have access to all data members of the 
class for that object. In the previous definition for setValue(), the following line changes the  
m_value variable inside whatever object calls the method:

m_value = value;

If setValue() is called for two different objects, the same line of code (executed once for each 
object) changes the variable in two different objects.

Calling Other Methods
You can call methods of a class from inside another method. For example, consider an extension 
to the SpreadsheetCell class to allow text data as well as numbers in the cells. When you try to 
interpret a text cell as a number, the spreadsheet tries to convert the text to a number. If the text does 
not represent a valid number, the cell value is ignored. In this program, strings that are not numbers 
will generate a cell value of 0. Here is a first stab at a class definition for a SpreadsheetCell that 
supports text data:

export module spreadsheet_cell;
import <string>;
import <string_view>;
export class SpreadsheetCell
{
    public:
        void setValue(double value);
        double getValue() const;
 
        void setString(std::string_view value);
        std::string getString() const;
    private:
        std::string doubleToString(double value) const;
        double stringToDouble(std::string_view value) const;
        double m_value { 0 };
};

(continued)



Writing Classes ❘ 255

This version of the class stores the data only as a double. If the client sets the data as a string, it 
is converted to a double. If the text is not a valid number, the double value is set to 0. The class 
definition shows two new methods to set and retrieve the text representation of the cell, and two new 
private helper methods to convert a double to a string and vice versa. Here are the implementations 
of all the methods:

module spreadsheet_cell;
import <charconv>;
using namespace std;
 
void SpreadsheetCell::setValue(double value)
{
    m_value = value;
}
 
double SpreadsheetCell::getValue() const
{
    return m_value;
}
 
void SpreadsheetCell::setString(string_view value)
{
    m_value = stringToDouble(value);
}
 
string SpreadsheetCell::getString() const
{
    return doubleToString(m_value);
}
 
string SpreadsheetCell::doubleToString(double value) const
{
    return to_string(value);
}
 
double SpreadsheetCell::stringToDouble(string_view value) const
{
    double number { 0 };
    from_chars(value.data(), value.data() + value.size(), number);
    return number;
}

The std::to_string() and from_chars() functions are explained in Chapter 2, “Working with 
Strings and String Views.”

Note that with this implementation of the doubleToString() method, a value of, for example, 6.1 
is converted to 6.100000. However, because it is a private helper method, you are free to modify the 
implementation without having to modify any client code.

The this Pointer
Every normal method call passes a pointer to the object for which it is called as a “hidden” param-
eter with the name this. You can use this pointer to access data members or call methods, and you 
can pass it to other methods or functions. It is sometimes also useful for disambiguating names. For 
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example, you could have defined the SpreadsheetCell class with a value data member instead of 
m_value. In that case, setValue() would look like this:

void SpreadsheetCell::setValue(double value)
{
    value = value; // Confusing!
}

That line is confusing. Which value do you mean: the value that was passed as a parameter, or the 
value that is a member of the object?

NOTE With some compilers or compiler settings, the preceding confusing line 
compiles without any warnings or errors, but it will not produce the results that 
you are expecting.

To disambiguate the names, you can use the this pointer:

void SpreadsheetCell::setValue(double value)
{
    this->value = value;
}

However, if you use the naming conventions described in Chapter 3, “Coding with Style,” you will 
never encounter this type of name collision.

You can also use the this pointer to call a function or method that takes a pointer to an object from 
within a method of that object. For example, suppose you write a printCell() stand-alone function 
(not method) like this:

void printCell(const SpreadsheetCell& cell)
{
    cout << cell.getString() << endl;
}

If you want to call printCell() from the setValue() method, you must pass *this as the argu-
ment to give printCell() a reference to the SpreadsheetCell on which setValue() operates:

void SpreadsheetCell::setValue(double value)
{
    this->value = value;
    printCell(*this);
}

NOTE Instead of writing a printCell() function, it would be more convenient  
to overload the << operator, as explained in Chapter 15, “Overloading C++ 
 Operators.” You can then use the following line to print a SpreadsheetCell:

    cout << *this << endl;
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Using Objects
The previous class definition says that a SpreadsheetCell consists of one data member, four pub-
lic methods, and two private methods. However, the class definition does not actually create any 
SpreadsheetCells; it just specifies their shape and behavior. In that sense, a class is similar to archi-
tectural blueprints. The blueprints specify what a house should look like, but drawing the blueprints 
doesn’t build any houses. Houses must be constructed later based on the blueprints.

Similarly, in C++ you can construct a SpreadsheetCell “object” from the SpreadsheetCell  
class definition by declaring a variable of type SpreadsheetCell. Just as a builder can build  
more than one house based on a given set of blueprints, a programmer can create more than one 
SpreadsheetCell object from a SpreadsheetCell class. There are two ways to create and use 
objects: on the stack and on the free store.

Objects on the Stack
Here is some code that creates and uses SpreadsheetCell objects on the stack:

SpreadsheetCell myCell, anotherCell;
myCell.setValue(6);
anotherCell.setString("3.2");
cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

You create objects just as you declare simple variables, except that the variable type is the class name. 
The . in lines like myCell.setValue(6); is called the “dot” operator; it allows you to call methods 
on the object. If there were any public data members in the object, you could access them with the 
dot operator as well. Remember that public data members are not recommended.

The output of the program is as follows:

cell 1: 6
cell 2: 3.2

Objects on the Free Store
You can also dynamically allocate objects by using new:

SpreadsheetCell* myCellp { new SpreadsheetCell { } };
myCellp->setValue(3.7);
cout << "cell 1: " << myCellp->getValue() <<
        " " << myCellp->getString() << endl;
delete myCellp;
myCellp = nullptr;

When you create an object on the free store, you access its members through the “arrow” operator: 
->. The arrow combines dereferencing (*) and member access (.). You could use those two operators 
instead, but doing so would be stylistically awkward:

SpreadsheetCell* myCellp { new SpreadsheetCell { } };
(*myCellp).setValue(3.7);
cout << "cell 1: " << (*myCellp).getValue() <<

continues
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        " " << (*myCellp).getString() << endl;
delete myCellp;
myCellp = nullptr;

Just as you must free other memory that you allocate on the free store, you must free the memory 
for objects that you allocate on the free store by calling delete on them! To guarantee safety and to 
avoid memory problems, you really should use smart pointers, as in the following example:

auto myCellp { make_unique<SpreadsheetCell>() };
// Equivalent to:
// unique_ptr<SpreadsheetCell> myCellp { new SpreadsheetCell { } };
myCellp->setValue(3.7);
cout << "cell 1: " << myCellp->getValue() <<
        " " << myCellp->getString() << endl;

With smart pointers you don’t need to manually free the memory; it happens automatically.

WARNING If you allocate an object with new, free it with delete when you are 
finished with it, or use smart pointers to manage the memory automatically!

NOTE If you don’t use smart pointers, it is always a good idea to reset a pointer 
to nullptr after deleting the object to which it pointed. You are not required to do 
so, but it will make debugging easier in case the pointer is accidentally used after 
deleting the object.

UNDERSTANDING OBJECT LIFE CYCLES

The object life cycle involves three activities: creation, destruction, and assignment. It is important to 
understand how and when objects are created, destroyed, and assigned, and how you can customize 
these behaviors.

Object Creation
Objects are created at the point you declare them (if they’re on the stack) or when you explicitly allo-
cate space for them with a smart pointer, new, or new[]. When an object is created, all its embedded 
objects are also created. Here is an example:

import <string>;
 
class MyClass
{
    private:
        std::string m_name;
};
 

(continued)
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int main()
{
    MyClass obj;
}

The embedded string object is created at the point where the MyClass object is created in the 
main() function and is destroyed when its containing object is destroyed.

It is often helpful to give variables initial values as you declare them, as so:

int x { 0 };

Similarly, you could give initial values to objects. You can provide this functionality by declaring and 
writing a special method called a constructor, in which you can perform initialization work for the 
object. Whenever an object is created, one of its constructors is executed.

NOTE C++ programmers sometimes call a constructor a ctor (pronounced  
“see-tor”).

Writing Constructors
Syntactically, a constructor is specified by a method name that is the same as the class name. A 
constructor never has a return type and may or may not have parameters. A constructor that can be 
called without any arguments is called a default constructor. This can be a constructor that does not 
have any parameters, or a constructor for which all parameters have default values. There are certain 
contexts in which you may have to provide a default constructor, and you will get compilation errors 
if you have not provided one. Default constructors are discussed later in this chapter.

Here is a first attempt at adding a constructor to the SpreadsheetCell class:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell(double initialValue);
        // Remainder of the class definition omitted for brevity
};

Just as you must provide implementations for normal methods, you must provide an implementation 
for the constructor:

SpreadsheetCell::SpreadsheetCell(double initialValue)
{
    setValue(initialValue);
}

The SpreadsheetCell constructor is a member of the SpreadsheetCell class, so C++ requires the 
normal SpreadsheetCell:: scope resolution before the constructor name. The constructor name 
itself is also SpreadsheetCell, so the code ends up with the funny-looking SpreadsheetCell:: 
SpreadsheetCell. The implementation simply makes a call to setValue().
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Using Constructors
Using the constructor creates an object and initializes its values. You can use constructors with both 
stack-based and free store-based allocation.

Constructors for Objects on the Stack
When you allocate a SpreadsheetCell object on the stack, you use the constructor like this:

SpreadsheetCell myCell(5), anotherCell(4);
cout << "cell 1: " << myCell.getValue() << endl;
cout << "cell 2: " << anotherCell.getValue() << endl;

Alternatively, you can use the uniform initialization syntax:

SpreadsheetCell myCell { 5 }, anotherCell { 4 };

Note that you do not call the SpreadsheetCell constructor explicitly. For example, do not do some-
thing as follows:

SpreadsheetCell myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Similarly, you cannot call the constructor later. The following is also incorrect:

SpreadsheetCell myCell;
myCell.SpreadsheetCell(5); // WILL NOT COMPILE!

Constructors for Objects on the Free Store
When you dynamically allocate a SpreadsheetCell object, you use the constructor like this:

auto smartCellp { make_unique<SpreadsheetCell>(4) };
// ... do something with the cell, no need to delete the smart pointer
 
// Or with raw pointers, without smart pointers (not recommended)
SpreadsheetCell* myCellp { new SpreadsheetCell { 5 } };
// Or
// SpreadsheetCell* myCellp{ new SpreadsheetCell(5) };
SpreadsheetCell* anotherCellp { nullptr };
anotherCellp = new SpreadsheetCell { 4 };
// ... do something with the cells
delete myCellp;            myCellp = nullptr;
delete anotherCellp;       anotherCellp = nullptr;

Note that you can declare a pointer to a SpreadsheetCell object without calling the constructor 
immediately, which is different from objects on the stack, where the constructor is called at the point 
of declaration.

Remember to always initialize pointers, either with a proper pointer or with nullptr.

Providing Multiple Constructors
You can provide more than one constructor in a class. All constructors have the same name (the name 
of the class), but different constructors must take a different number of arguments or different argu-
ment types. In C++, if you have more than one function with the same name, the compiler selects the 
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one whose parameter types match the types at the call site. This is called overloading and is discussed 
in detail in Chapter 9.

In the SpreadsheetCell class, it is helpful to have two constructors: one to take an initial double 
value and one to take an initial string value. Here is the new class definition:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell(double initialValue);
        SpreadsheetCell(std::string_view initialValue);
        // Remainder of the class definition omitted for brevity
};

Here is the implementation of the second constructor:

SpreadsheetCell::SpreadsheetCell(string_view initialValue)
{
    setString(initialValue);
}

Here is some code that uses the two different constructors:

SpreadsheetCell aThirdCell { "test" };  // Uses string-arg ctor
SpreadsheetCell aFourthCell { 4.4 };    // Uses double-arg ctor
auto aFifthCellp { make_unique<SpreadsheetCell>("5.5") }; // string-arg ctor
cout << "aThirdCell: " << aThirdCell.getValue() << endl;
cout << "aFourthCell: " << aFourthCell.getValue() << endl;
cout << "aFifthCellp: " << aFifthCellp->getValue() << endl;

When you have multiple constructors, it is tempting to try to implement one constructor in terms 
of another. For example, you might want to call the double constructor from the string constructor 
as follows:

SpreadsheetCell::SpreadsheetCell(string_view initialValue)
{
    SpreadsheetCell(stringToDouble(initialValue));
}

That seems to make sense. After all, you can call normal class methods from within other methods. 
The code will compile, link, and run, but will not do what you expect. The explicit call to  
the SpreadsheetCell constructor actually creates a new temporary unnamed object of type  
SpreadsheetCell. It does not call the constructor for the object that you are supposed to be 
initializing.

However, C++ supports delegating constructors that allow you to call other constructors from the 
same class from inside the ctor-initializer. This is discussed later in this chapter after the introduction 
of constructor initializer.

Default Constructors
A default constructor is a constructor that requires no arguments. It is also called a zero-argument 
constructor.
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When You Need a Default Constructor
Consider arrays of objects. The act of creating an array of objects accomplishes two tasks: it allocates 
contiguous memory space for all the objects, and it calls the default constructor on each object. C++ 
fails to provide any syntax to tell the array creation code directly to call a different constructor. For 
example, if you do not define a default constructor for the SpreadsheetCell class, the following 
code does not compile:

SpreadsheetCell cells[3]; // FAILS compilation without default constructor
SpreadsheetCell* myCellp { new SpreadsheetCell[10] }; // Also FAILS

You can circumvent this restriction by using initializers like these:

SpreadsheetCell cells[3] { SpreadsheetCell { 0 }, SpreadsheetCell { 23 },
    SpreadsheetCell { 41 } };

However, it is usually easier to ensure that your class has a default constructor if you intend to create 
arrays of objects of that class. If you haven’t defined your own constructors, the compiler automati-
cally creates a default constructor for you. This compiler-generated constructor is discussed in a 
later section.

How to Write a Default Constructor
Here is part of the SpreadsheetCell class definition with a default constructor:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell();
        // Remainder of the class definition omitted for brevity
};

Here is a first crack at an implementation of the default constructor:

SpreadsheetCell::SpreadsheetCell()
{
    m_value = 0;
}

If you use an in-class member initializer for m_value, then the single statement in this default con-
structor can be left out.

SpreadsheetCell::SpreadsheetCell()
{
}

You use the default constructor on the stack like this:

SpreadsheetCell myCell;
myCell.setValue(6);
cout << "cell 1: " << myCell.getValue() << endl;
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The preceding code creates a new SpreadsheetCell called myCell, sets its value, and prints out its 
value. Unlike other constructors for stack-based objects, you do not call the default constructor with 
function-call syntax. Based on the syntax for other constructors, you might be tempted to call the 
default constructor like this:

SpreadsheetCell myCell(); // WRONG, but will compile.
myCell.setValue(6);       // However, this line will not compile.
cout << "cell 1: " << myCell.getValue() << endl;

Unfortunately, the line attempting to call the default constructor compiles. The line following it does 
not compile. This problem is commonly known as the most vexing parse, and it means that your 
compiler thinks the first line is actually a function declaration for a function with the name myCell 
that takes zero arguments and returns a SpreadsheetCell object. When it gets to the second line, it 
thinks that you’re trying to use a function name as an object!

Of course, instead of using function-call-style parentheses, you can use the uniform initialization 
syntax as follows:

SpreadsheetCell myCell { }; // Calls the default constructor.

WARNING When creating an object on the stack with a default constructor, either 
use curly brackets for the uniform initialization syntax or omit any parentheses.

For free store-based object allocation, the default constructor can be used as follows:

auto smartCellp { make_unique<SpreadsheetCell>() };
// Or with a raw pointer (not recommended)
SpreadsheetCell* myCellp { new SpreadsheetCell { } };
// Or
// SpreadsheetCell* myCellp { new SpreadsheetCell };
// Or
// SpreadsheetCell* myCellp{ new SpreadsheetCell() };
// ... use myCellp
delete myCellp;    myCellp = nullptr;

Compiler-Generated Default Constructor
The first SpreadsheetCell class definition in this chapter looked like this:

export class SpreadsheetCell
{
    public:
        void setValue(double value);
        double getValue() const;
    private:
        double m_value;
};
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This definition does not declare a default constructor, but still, the code that follows works fine:

SpreadsheetCell myCell;
myCell.setValue(6);

The following definition is the same as the preceding definition except that it adds an explicit con-
structor, accepting a double. It still does not explicitly declare a default constructor.

export class SpreadsheetCell
{
    public:
        SpreadsheetCell(double initialValue); // No default constructor
        // Remainder of the class definition omitted for brevity
};

With this definition, the following code does not compile anymore:

SpreadsheetCell myCell;
myCell.setValue(6);

What’s going on here? The reason it is not compiling is that if you don’t specify any constructors, 
the compiler writes one for you that doesn’t take any arguments. This compiler-generated default 
constructor calls the default constructor on all object members of the class but does not initialize the 
language primitives such as int and double. Nonetheless, it allows you to create objects of that class. 
However, if you declare any constructor yourself, the compiler no longer generates a default construc-
tor for you.

NOTE A default constructor is the same thing as a zero-argument constructor. The 
term default constructor does not refer only to the constructor that is automati-
cally generated if you fail to declare any constructors yourself. It also refers to the 
constructor that is defaulted to if no arguments are required.

Explicitly Defaulted Default Constructors
Before C++11, if your class required a number of explicit constructors accepting arguments but also a 
default constructor that did nothing, you still had to explicitly write your own empty default con-
structor as shown earlier.

To avoid having to write empty default constructors manually, C++ supports the concept of explicitly 
defaulted default constructors. This allows you to write the class definition as follows without having 
to provide an empty implementation for the default constructor:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell() = default;
        SpreadsheetCell(double initialValue);
        SpreadsheetCell(std::string_view initialValue);
        // Remainder of the class definition omitted for brevity
};
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SpreadsheetCell defines two custom constructors. However, the compiler still generates a 
standard compiler-generated default constructor because one is explicitly defaulted using the 
default keyword.

Note that you are free to put the = default either directly in the class definition or in the implemen-
tation file.

Explicitly Deleted Default Constructors
The opposite of explicitly defaulted default constructors is also possible and is called explicitly deleted 
default constructors. For example, you can define a class with only static methods (see Chapter 9) for 
which you do not want to write any constructors, and you also do not want the compiler to generate 
the default constructor. In that case, you need to explicitly delete the default constructor.

export class MyClass
{
    public:
        MyClass() = delete;
};

NOTE If a class has data members that have a deleted default constructor, then 
the default constructor for the class is automatically deleted as well.

Constructor Initializers
Up to now, this chapter initialized data members in the body of a constructor, as in this example:

SpreadsheetCell::SpreadsheetCell(double initialValue)
{
    setValue(initialValue);
}

C++ provides an alternative method for initializing data members in the constructor, called the 
constructor initializer, also known as the ctor-initializer or member initializer list. Here is the same 
SpreadsheetCell constructor, rewritten to use the ctor-initializer syntax:

SpreadsheetCell::SpreadsheetCell(double initialValue)
    : m_value { initialValue }
{
}

As you can see, the ctor-initializer appears syntactically between the constructor argument list and the 
opening brace for the body of the constructor. The list starts with a colon and is separated by com-
mas. Each element in the list is an initialization of a data member using function notation or the uni-
form initialization syntax, a call to a base class constructor (see Chapter 10), or a call to a delegated 
constructor, discussed later in this chapter.

Initializing data members with a ctor-initializer provides different behavior than does initializing 
data members inside the constructor body itself. When C++ creates an object, it must create all the 
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data members of the object before calling the constructor. As part of creating these data members, it 
must call a constructor on any of them that are themselves objects. By the time you assign a value to 
an object inside your constructor body, you are not actually constructing that object. You are only 
modifying its value. A ctor-initializer allows you to provide initial values for data members as they are 
created, which is more efficient than assigning values to them later.

If your class has as data member an object of a class that has a default constructor, then you do not 
have to explicitly initialize the object in the ctor-initializer. For example, if you have an std::string 
as data member, its default constructor initializes the string to the empty string, so initializing it to "" 
in the ctor-initializer is superfluous.

On the other hand, if your class has as a data member an object of a class without a default construc-
tor, you have to use the ctor-initializer to properly construct that object. For example, take the follow-
ing SpreadsheetCell class:

export class SpreadsheetCell 
{
    public:
        SpreadsheetCell(double d);
};

This class has only one constructor accepting a double and does not include a default constructor. 
You can use this class as a data member of another class as follows:

export class SomeClass 
{
    public:
        SomeClass();
    private:
        SpreadsheetCell m_cell;
};

You can implement the SomeClass constructor as follows:

SomeClass::SomeClass() { }

However, with this implementation, the code does not compile. The compiler does not know how to 
initialize the m_cell data member of SomeClass because it does not have a default constructor.

You have to initialize the m_cell data member in the ctor-initializer as follows:

SomeClass::SomeClass() : m_cell { 1.0 } { }

NOTE Ctor-initializers allow initialization of data members at the time of their 
creation.
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Some programmers prefer to assign initial values in the body of the constructor, even though this 
might be less efficient. However, several data types must be initialized in a ctor-initializer or with an 
in-class initializer. The following table summarizes them:

DATA TYPE EXPLANATION

const data members You cannot legally assign a value to a const variable after it is 
created. Any value must be supplied at the time of creation.

Reference data members References cannot exist without referring to something, and 
once created, a reference cannot be changed to refer to 
something else.

Object data members for 
which there is no default 
constructor

C++ attempts to initialize member objects using a default 
constructor. If no default constructor exists, it cannot 
initialize the object, and you have to tell it explicitly which 
constructor to call.

Base classes without default 
constructors

These are covered in Chapter 10.

There is one important caveat with ctor-initializers: they initialize data members in the order that they 
appear in the class definition, not their order in the ctor-initializer. Take the following definition for a 
class called Foo. Its constructor simply stores a double value and prints out the value to the console.

class Foo
{
    public:
        Foo(double value);
    private:
        double m_value { 0 };
};
 
Foo::Foo(double value) : m_value { value }
{
    cout << "Foo::m_value = " << m_value << endl;
}

Suppose you have another class, MyClass, that contains a Foo object as one of its data members.

class MyClass
{
    public:
        MyClass(double value);
    private:
        double m_value { 0 };
        Foo m_foo;
};
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Its constructor could be implemented as follows:

MyClass::MyClass(double value) : m_value { value }, m_foo { m_value }
{
    cout << "MyClass::m_value = " << m_value << endl;
}

The ctor-initializer first stores the given value in m_value and then calls the Foo constructor with 
m_value as argument. You can create an instance of MyClass as follows:

MyClass instance { 1.2 };

Here is the output of the program:

Foo::m_value = 1.2
MyClass::m_value = 1.2

So, everything looks fine. Now make one tiny change to the MyClass definition; just reverse the order 
of the m_value and m_foo data members. Nothing else is changed.

class MyClass
{
    public:
        MyClass(double value);
    private:
        Foo m_foo;
        double m_value { 0 };
};

The output of the program now depends on your system. It could, for example, be as follows:

Foo::m_value = -9.25596e+61
MyClass::m_value = 1.2

This is far from what you would expect. You might assume, based on your ctor-initializer, that 
m_value is initialized before using m_value in the call to the Foo constructor. But C++ doesn’t work 
that way. The data members are initialized in the order they appear in the definition of the class, not 
the order in the ctor-initializer! So, in this case, the Foo constructor is called first with an uninitial-
ized m_value.

Note that some compilers issue a warning when the order in the ctor-initializer does not match the 
order in the class definition.

For this example, there is an easy fix. Don’t pass m_value to the Foo constructor, but simply pass the 
value parameter:

MyClass::MyClass(double value) : m_value { value }, m_foo { value }
{
    cout << "MyClass::m_value = " << m_value << endl;
}

WARNING Ctor-initializers initialize data members in their declared order in the 
class definition, not their order in the ctor-initializer list.
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Copy Constructors
There is a special constructor in C++ called a copy constructor that allows you to create an object 
that is an exact copy of another object. Here is the declaration for a copy constructor in the  
SpreadsheetCell class:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell(const SpreadsheetCell& src);
        // Remainder of the class definition omitted for brevity
};

The copy constructor takes a reference-to-const to the source object. Like other constructors, it does 
not return a value. The copy constructor should copy all the data members from the source object. 
Technically, of course, you can do whatever you want in a copy constructor, but it’s generally a good 
idea to follow expected behavior and initialize the new object to be a copy of the old one. Here is 
an example implementation of the SpreadsheetCell copy constructor. Note the use of the ctor-
initializer.

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
    : m_value { src.m_value }
{
}

If you don’t write a copy constructor yourself, C++ generates one for you that initializes each data 
member in the new object from its equivalent data member in the source object. For object data mem-
bers, this initialization means that their copy constructors are called. Given a set of data members, 
called m1, m2, . . . mn, this compiler-generated copy constructor can be expressed as follows:

classname::classname(const classname& src)
    : m1 { src.m1 }, m2 { src.m2 }, ... mn { src.mn } { }

Therefore, in most circumstances, there is no need for you to specify a copy constructor!

NOTE The SpreadsheetCell copy constructor is shown only for demonstration 
purposes. In fact, in this case, the copy constructor can be omitted because the 
default compiler-generated one is good enough. However, under certain condi-
tions, this default copy constructor is not sufficient. These conditions are covered 
in Chapter 9.

When the Copy Constructor Is Called
The default semantics for passing arguments to functions in C++ is pass-by-value. That means that 
the function or method receives a copy of the value or object. Thus, whenever you pass an object 
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to a function or method, the compiler calls the copy constructor of the new object to initialize it. 
For example, suppose you have the following printString() function accepting a string param-
eter by value:

void printString(string value)
{
    cout << value << endl;
}

Recall that the C++ string is actually a class, not a built-in type. When your code makes a call to 
printString() passing a string argument, the string parameter value is initialized with a  
call to its copy constructor. The argument to the copy constructor is the string you passed to  
printString(). In the following example, the string copy constructor is executed for the value 
object in printString() with name as its argument:

string name { "heading one" };
printString(name); // Copies name

When the printString() method finishes, value is destroyed. Because it was only a copy of name, 
name remains intact. Of course, you can avoid the overhead of copy constructors by passing param-
eters as references-to-const, discussed in an upcoming section.

When returning objects by value from a function, the copy constructor might also get called. This is 
discussed in the section “Objects as Return Values” later in this chapter.

Calling the Copy Constructor Explicitly
You can use the copy constructor explicitly as well. It is often useful to be able to construct one object 
as an exact copy of another. For example, you might want to create a copy of a SpreadsheetCell 
object like this:

SpreadsheetCell myCell1 { 4 };
SpreadsheetCell myCell2 { myCell1 }; // myCell2 has the same values as myCell1

Passing Objects by Reference
To avoid copying objects when you pass them to functions and methods, you should declare that 
the function or method takes a reference to the object. Passing objects by reference is usually more 
efficient than passing them by value, because only the address of the object is copied, not the entire 
contents of the object. Additionally, pass-by-reference avoids problems with dynamic memory alloca-
tion in objects, which is discussed in Chapter 9.

When you pass an object by reference, the function or method using the object reference could change 
the original object. When you are only using pass-by-reference for efficiency, you should preclude this 
possibility by declaring the object const as well. This is known as passing objects by reference-to-
const and has been done in examples throughout this book.

NOTE For performance reasons, it is best to pass objects as reference-to-const 
instead of by value. Chapter 9 slightly modifies this rule after the introduction of 
move semantics, allowing pass-by-value of objects in certain cases.
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Note that the SpreadsheetCell class has a number of methods accepting an std::string_view as 
parameter. As discussed in Chapter 2, a string_view is basically just a pointer and a length. So, it is 
cheap to copy and is usually passed by value.

Also primitive types, such as int, double, and so on, should just be passed by value. You don’t gain 
anything by passing such types as reference-to-const.

The doubleToString() method of the SpreadsheetCell class always returns a string by value 
because the implementation of the method creates a local string object that at the end of the method 
is returned to the caller. Returning a reference to this string wouldn’t work because the string to 
which it refers to will be destroyed when the function exits.

Explicitly Defaulted and Deleted Copy Constructors
Just as you can explicitly default or delete a compiler-generated default constructor for a class, you 
can also explicitly default or delete a compiler-generated copy constructor as follows:

SpreadsheetCell(const SpreadsheetCell& src) = default;

or

SpreadsheetCell(const SpreadsheetCell& src) = delete;

By deleting the copy constructor, the object cannot be copied anymore. This can be used to disallow 
passing the object by value, as discussed in Chapter 9.

NOTE If a class has data members that have a deleted copy constructor, then the 
copy constructor for the class is automatically deleted as well.

Initializer-List Constructors
An initializer-list constructor is a constructor with an std::initializer_list<T> as the first 
parameter, and without any additional parameters or with additional parameters having default 
values. The initializer_list<T> class template is defined in <initializer_list>. The follow-
ing class demonstrates its use. The class accepts only an initializer_list<double> with an even 
number of elements; otherwise, it throws an exception. Chapter 1 introduces exceptions.

class EvenSequence
{
    public:
        EvenSequence(initializer_list<double> args)
        {
            if (args.size() % 2 != 0) {
                throw invalid_argument { "initializer_list should "
                    "contain even number of elements." };
            }
            m_sequence.reserve(args.size());
            for (const auto& value : args) {
                m_sequence.push_back(value);
            }
        }
 

continues
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        void dump() const
        {
            for (const auto& value : m_sequence) {
                cout << value << ", ";
            }
            cout << endl;
        }
    private:
        vector<double> m_sequence;
};

Inside the initializer-list constructor you can access the elements of the initializer-list with a range-
based for loop. You can get the number of elements in an initializer-list with the size() method.

The EvenSequence initializer-list constructor uses a range-based for loop to copy elements from 
the given initializer_list<T>. You can also use the assign() method of vector. The different 
methods of vector, including assign(), are discussed in detail in Chapter 18, “Standard Library 
Containers.” As a sneak preview, to give you an idea of the power of a vector, here is the initializer-
list constructor using assign():

EvenSequence(initializer_list<double> args)
{
    if (args.size() % 2 != 0) {
        throw invalid_argument { "initializer_list should "
            "contain even number of elements." };
    }
    m_sequence.assign(args);
}

EvenSequence objects can be constructed as follows:

EvenSequence p1 { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0 };
p1.dump();
 
try {
    EvenSequence p2 { 1.0, 2.0, 3.0 };
} catch (const invalid_argument& e) {
    cout << e.what() << endl;
}

The construction of p2 throws an exception because it has an odd number of elements in the ini-
tializer-list.

The Standard Library has full support for initializer-list constructors. For example, the std::vector 
container can be initialized with an initializer-list:

vector<string> myVec { "String 1", "String 2", "String 3" };

Without initializer-list constructors, one way to initialize this vector is by using several  
push_back() calls:

vector<string> myVec;
myVec.push_back("String 1");
myVec.push_back("String 2");
myVec.push_back("String 3");

Initializer lists are not limited to constructors and can also be used with normal functions as 
explained in Chapter 1.

(continued)
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Delegating Constructors
Delegating constructors allow constructors to call another constructor from the same class. However, 
this call cannot be placed in the constructor body; it must be in the ctor-initializer, and it must be the 
only member-initializer in the list. The following is an example:

SpreadsheetCell::SpreadsheetCell(string_view initialValue)
    : SpreadsheetCell { stringToDouble(initialValue) }
{
}

When this string_view constructor (the delegating constructor) is called, it first delegates the call to 
the target constructor, which is the double constructor in this example. When the target constructor 
returns, the body of the delegating constructor is executed.

Make sure you avoid constructor recursion while using delegate constructors. Here is an example:

class MyClass
{
    MyClass(char c) : MyClass { 1.2 } { }
    MyClass(double d) : MyClass { 'm' } { }
};

The first constructor delegates to the second constructor, which delegates back to the first one. The 
behavior of such code is undefined by the standard and depends on your compiler.

Converting Constructors and Explicit Constructors
The current set of constructors for SpreadsheetCell is as follows:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell() = default;
        SpreadsheetCell(double initialValue);
        SpreadsheetCell(std::string_view initialValue);
        SpreadsheetCell(const SpreadsheetCell& src);
    // Remainder omitted for brevity
};

The single-parameter double and string_view constructors can be used to convert a double or a 
string_view into a SpreadsheetCell. Such constructors are called converting constructors. The 
compiler can use such constructors to perform implicit conversions for you. Here’s an example:

SpreadsheetCell myCell { 4 };
myCell = 5;
myCell = "6"sv; // A string_view literal (see Chapter 2).

This might not always be the behavior you want. You can prevent the compiler from doing such 
implicit conversions by marking constructors as explicit. The explicit keyword goes only in the 
class definition. Here’s an example:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell() = default;
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        SpreadsheetCell(double initialValue);
        explicit SpreadsheetCell(std::string_view initialValue);
        SpreadsheetCell(const SpreadsheetCell& src);
    // Remainder omitted for brevity
};

With this change, a line as follows no longer compiles:

myCell = "6"sv; // A string_view literal (see Chapter 2).

NOTE It’s recommended to mark any constructor that can be called with a single 
argument as explicit to avoid accidental implicit conversions, unless there is a 
real use case for such conversions.

Prior to C++11, converting constructors could have only a single parameter, as in the Spreadsheet-
Cell example. Since C++11, converting constructors can have multiple parameters because of sup-
port for list initialization. Let’s look at an example. Suppose you have the following class:

class MyClass
{
    public:
        MyClass(int) { }
        MyClass(int, int) { }
};

This class has two constructors, and since C++11, both are converting constructors. The following 
example shows that the compiler automatically converts the given arguments, 1, {1}, and {1,2}, to 
instances of MyClass using these converting constructors:

void process(const MyClass& c) { }
 
int main()
{
    process(1);
    process({ 1 });
    process({ 1, 2 });
}

To prevent this implicit conversion done by the compiler, both converting constructors can be marked 
as explicit:

class MyClass
{
    public:
        explicit MyClass(int) { }
        explicit MyClass(int, int) { }
};

With this change, you have to perform these conversions explicitly; here’s an example:

process(MyClass{ 1 });
process(MyClass{ 1, 2 });
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Starting with C++20, it is possible to pass a Boolean argument to explicit to turn it into a condi-
tional explicit. The syntax is as follows:

explicit(true) MyClass(int);

Of course, just writing explicit(true) is equivalent to explicit, but it becomes more useful in 
the context of generic template code using so-called type traits. With type traits you can query certain 
properties of given types, such as whether a certain type is convertible to another type. The result 
of such a type trait can be used as argument to explicit(). Type traits allow for writing advanced 
generic code and are discussed in Chapter 26, “Advanced Templates.”

Summary of Compiler-Generated Constructors
The compiler can automatically generate a default constructor and a copy constructor for every class. 
However, the constructors that the compiler automatically generates depend on the constructors that 
you define yourself according to the rules in the following table:

IF YOU DEFINE. . . THEN THE COMPILER  

GENERATES. . .

AND YOU CAN CREATE AN OBJECT. . .

[no constructors] A default constructor

A copy constructor

With no arguments: SpreadsheetCell a;

As a copy: SpreadsheetCell b{a};

A default 
constructor only

A copy constructor With no arguments: SpreadsheetCell a;

As a copy: SpreadsheetCell b{a};

A copy 
constructor only

No constructors Theoretically, as a copy of another object 
(practically, you can’t create any objects, because 
there are no non-copy constructors)

A single- or 
multi-argument 
non-copy 
constructor only

A copy constructor With arguments: SpreadsheetCell a{6};

As a copy: SpreadsheetCell b{a};

A default 
constructor 
as well as a 
single- or multi-
argument non-
copy constructor

A copy constructor With no arguments: SpreadsheetCell a;

With arguments: SpreadsheetCell b{5};

As a copy: SpreadsheetCell c{a};

Note the lack of symmetry between the default constructor and the copy constructor. As long as you 
don’t define a copy constructor explicitly, the compiler creates one for you. On the other hand, as 
soon as you define any constructor, the compiler stops generating a default constructor.

As mentioned before in this chapter, the automatic generation of a default constructor and a default 
copy constructor can be influenced by defining them as explicitly defaulted or explicitly deleted.

C++20
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NOTE A final type of constructor is a move constructor, which is required to 
implement move semantics. Move semantics is used to increase performance in 
certain situations and is discussed in detail in Chapter 9.

Object Destruction
When an object is destroyed, two events occur: the object’s destructor method is called, and the 
memory it was taking up is freed. The destructor is your chance to perform any cleanup work for the 
object, such as freeing dynamically allocated memory or closing file handles. If you don’t declare a 
destructor, the compiler writes one for you that does recursive member-wise destruction and allows 
the object to be deleted. A destructor of a class is a method with as name the name of the class pre-
fixed with a tilde (~) and does not return anything. Here is an example of a destructor that simply 
writes something to standard output:

export class SpreadsheetCell
{
    public:
        ~SpreadsheetCell();  // Destructor.
        // Remainder of the class definition omitted for brevity
};
 
SpreadsheetCell::~SpreadsheetCell()
{
    cout << "Destructor called." << endl;
}

Objects on the stack are destroyed when they go out of scope, which means whenever the current 
function, method, or other execution block ends. In other words, whenever the code encounters an 
ending curly brace, any objects created on the stack within those curly braces are destroyed. The fol-
lowing program shows this behavior:

int main()
{
    SpreadsheetCell myCell { 5 };
    if (myCell.getValue() == 5) {
        SpreadsheetCell anotherCell { 6 };
    } // anotherCell is destroyed as this block ends.
 
    cout << "myCell: " << myCell.getValue() << endl;
} // myCell is destroyed as this block ends.

Objects on the stack are destroyed in the reverse order of their declaration (and construction). For 
example, in the following code fragment, myCell2 is created before anotherCell2, so anotherCell2 
is destroyed before myCell2 (note that you can start a new code block at any point in your program 
with an opening curly brace):

{
    SpreadsheetCell myCell2 { 4 };
    SpreadsheetCell anotherCell2 { 5 }; // myCell2 constructed before anotherCell2
} // anotherCell2 destroyed before myCell2
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This ordering also applies to objects that are data members of other objects. Recall that data mem-
bers are initialized in the order of their declaration in the class. Thus, following the rule that objects 
are destroyed in the reverse order of their construction, data member objects are destroyed in the 
reverse order of their declaration in the class.

Objects allocated on the free store without the help of smart pointers are not destroyed automatically. 
You must call delete on the object pointer to call its destructor and free its memory. The following 
program shows this behavior:

int main()
{
    SpreadsheetCell* cellPtr1 { new SpreadsheetCell { 5 } };
    SpreadsheetCell* cellPtr2 { new SpreadsheetCell { 6 } };
    cout << "cellPtr1: " << cellPtr1->getValue() << endl;
    delete cellPtr1; // Destroys cellPtr1
    cellPtr1 = nullptr;
} // cellPtr2 is NOT destroyed because delete was not called on it.

WARNING Do not write programs like the preceding example where cellPtr2 
is not deleted. Make sure you always free dynamically allocated memory by calling 
delete or delete[] depending on whether the memory was allocated using new 
or new[]. Or better yet, use smart pointers as discussed earlier!

Assigning to Objects
Just as you can assign the value of one int to another in C++, you can assign the value of one object 
to another. For example, the following code assigns the value of myCell to anotherCell:

SpreadsheetCell myCell { 5 }, anotherCell;
anotherCell = myCell;

You might be tempted to say that myCell is “copied” to anotherCell. However, in the world of 
C++, “copying” occurs only when an object is being initialized. If an object already has a value that 
is being overwritten, the more accurate term is “assigned to.” Note that the facility that C++ provides 
for copying is the copy constructor. Because it is a constructor, it can only be used for object creation, 
not for later assignments to the object.

Therefore, C++ provides another method in every class to perform assignment. This method is called 
the assignment operator. Its name is operator= because it is actually an overload of the = operator 
for that class. In the preceding example, the assignment operator for anotherCell is called, with 
myCell as the argument.

NOTE The assignment operator as explained in this section is sometimes called 
the copy assignment operator because data is copied from the right-hand side 
object to the left-hand side object. Chapter 9 discusses another kind of assignment 
operator, the move assignment operator, in which data is moved instead of copied, 
which improves performance for certain use cases.
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As usual, if you don’t write your own assignment operator, C++ writes one for you to allow objects 
to be assigned to one another. The default C++ assignment behavior is almost identical to its default 
copying behavior: it recursively assigns each data member from the source to the destination object.

Declaring an Assignment Operator
Here is the assignment operator for the SpreadsheetCell class:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell& operator=(const SpreadsheetCell& rhs);
        // Remainder of the class definition omitted for brevity
};

The assignment operator usually takes a reference-to-const to the source object, like the copy con-
structor. In this case, the source object is called rhs, which stands for right-hand side of the equal 
sign, but you are free to call it whatever you want. The object on which the assignment operator is 
called is the left-hand side of the equal sign.

Unlike a copy constructor, the assignment operator returns a reference to a SpreadsheetCell object. 
The reason is that assignments can be chained, as in the following example:

myCell = anotherCell = aThirdCell;

When that line is executed, the first thing that happens is the assignment operator for anotherCell is 
called with aThirdCell as its “right-hand side” argument. Next, the assignment operator for myCell 
is called. However, its argument is not anotherCell; its right-hand side is the result of the assignment 
of aThirdCell to anotherCell. The equal sign is actually just shorthand for what is really a method 
call. When you look at the line in its full functional syntax shown here, you can see the problem:

myCell.operator=(anotherCell.operator=(aThirdCell));

Now, you can see that the operator= call from anotherCell must return a value, which is passed to 
the operator= call for myCell. The correct value to return is a reference to anotherCell itself, so it 
can serve as the source for the assignment to myCell.

WARNING You could actually declare the assignment operator to return whatever 
type you wanted, including void. However, you should always return a reference 
to the object on which it is called because that’s what clients expect.

Defining an Assignment Operator
The implementation of the assignment operator is similar to that of a copy constructor but with 
several important differences. First, a copy constructor is called only for initialization, so the destina-
tion object does not yet have valid values. An assignment operator can overwrite the current values 
in an object. This consideration doesn’t really come into play until you have dynamically allocated 
resources, such as memory, in your objects. See Chapter 9 for details.
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Second, it’s legal in C++ to assign an object to itself. For example, the following code com-
piles and runs:

SpreadsheetCell cell { 4 };
cell = cell; // Self-assignment

Your assignment operator needs to take the possibility of self-assignment into account. In the 
SpreadsheetCell class, this is not important, as its only data member is a primitive type, double. 
However, when your class has dynamically allocated memory or other resources, it’s paramount to 
take self-assignment into account, as is discussed in detail in Chapter 9. To prevent problems in such 
cases, assignment operators usually check for self-assignment at the beginning of the method and 
return immediately.

Here is the start of the definition of the assignment operator for the SpreadsheetCell class:

SpreadsheetCell& SpreadsheetCell::operator=(const SpreadsheetCell& rhs)
{
    if (this == &rhs) {

This first line checks for self-assignment, but it might be a bit cryptic. Self-assignment occurs when 
the left-hand side and the right-hand side of the equal sign are the same. One way to tell whether two 
objects are the same is if they occupy the same memory location—more explicitly, if pointers to them 
are equal. Recall that this is a pointer to an object accessible from any method called on the object. 
Thus, this is a pointer to the left-hand side object. Similarly, &rhs is a pointer to the right-hand side 
object. If these pointers are equal, the assignment must be self-assignment, but because the return type 
is SpreadsheetCell&, a correct value must still be returned. All assignment operators return *this 
as follows, and the self-assignment case is no exception:

        return *this;
    }

this is a pointer to the object on which the method executes, so *this is the object itself. The com-
piler returns a reference to the object to match the declared return type. Now, if it is not self-assign-
ment, you have to do an assignment to every member:

    m_value = rhs.m_value;
    return *this;
}

Here the method copies the values, and finally, it returns *this, as explained previously.

NOTE The SpreadsheetCell assignment operator is shown only for demonstra-
tion purposes. In fact, in this case, the assignment operator can be omitted because 
the default compiler-generated one is good enough; it does simple member-wise 
assignments of all data members. However, under certain conditions, this default 
assignment operator is not sufficient. These conditions are covered in Chapter 9.
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Explicitly Defaulted and Deleted Assignment Operator
You can explicitly default or delete a compiler-generated assignment operator as follows:

SpreadsheetCell& operator=(const SpreadsheetCell& rhs) = default;

or

SpreadsheetCell& operator=(const SpreadsheetCell& rhs) = delete;

Compiler-Generated Copy Constructor and Copy 
Assignment Operator

C++11 has deprecated the generation of a copy constructor if the class has a user-declared copy 
assignment operator or destructor. If you still need a compiler-generated copy constructor in such a 
case, you can explicitly default one:

MyClass(const MyClass& src) = default;

C++11 has also deprecated the generation of a copy assignment operator if the class has a user-
declared copy constructor or destructor. If you still need a compiler-generated copy assignment opera-
tor in such a case, you can explicitly default one:

MyClass& operator=(const MyClass& rhs) = default;

Distinguishing Copying from Assignment
It is sometimes difficult to tell when objects are initialized with a copy constructor rather than 
assigned to with the assignment operator. Essentially, things that look like a declaration are going to 
be using copy constructors, and things that look like assignment statements are handled by the assign-
ment operator. Consider the following code:

SpreadsheetCell myCell { 5 };
SpreadsheetCell anotherCell { myCell };

AnotherCell is constructed with the copy constructor. Now consider the following:

SpreadsheetCell aThirdCell = myCell;

aThirdCell is also constructed with the copy constructor, because this is a declaration. The 
operator= is not called for this line! This syntax is just another way to write SpreadsheetCell 
aThirdCell{myCell};. However, consider the following code:

anotherCell = myCell; // Calls operator= for anotherCell

Here, anotherCell has already been constructed, so the compiler calls operator=.

Objects as Return Values
When you return objects from functions or methods, it is sometimes difficult to see 
exactly what copying and assignment is happening. For example, the implementation of 
SpreadsheetCell::getString() looks like this:

string SpreadsheetCell::getString() const
{
    return doubleToString(m_value);
}
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Now consider the following code:

SpreadsheetCell myCell2 { 5 };
string s1;
s1 = myCell2.getString();

When getString() returns the string, the compiler actually creates an unnamed temporary string 
object by calling a string copy constructor. When you assign this result to s1, the assignment opera-
tor is called for s1 with the temporary string as a parameter. Then, the temporary string object is 
destroyed. Thus, the single line of code could invoke the copy constructor and the assignment opera-
tor (for two different objects). However, compilers are free and sometimes required to implement 
copy elision to optimize away costly copy constructions when returning values; see Chapter 1.

In case you’re not confused enough, consider this code:

SpreadsheetCell myCell3 { 5 };
string s2 = myCell3.getString();

In this case, getString() still creates a temporary unnamed string object when it returns. But now, 
s2 gets its copy constructor called, not its assignment operator.

With move semantics, the compiler can use a move constructor instead of a copy constructor to 
return the string from getString(). This can be more efficient in certain cases and is discussed in 
Chapter 9.

If you ever forget the order in which these things happen or which constructor or operator is called, 
you can easily figure it out by temporarily including helpful output in your code or by stepping 
through it with a debugger.

Copy Constructors and Object Members
You should also note the difference between assignment and copy constructor calls in constructors. 
If an object contains other objects, the compiler-generated copy constructor calls the copy construc-
tors of each of the contained objects recursively. When you write your own copy constructor, you can 
provide the same semantics by using a ctor-initializer, as shown previously. If you omit a data member 
from the ctor-initializer, the compiler performs default initialization on it (a call to the default con-
structor for objects) before executing your code in the body of the constructor. Thus, by the time the 
body of the constructor executes, all object data members have already been initialized.

For example, you could write your copy constructor like this:

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
{
    m_value = src.m_value;
}

However, when you assign values to data members in the body of the copy constructor, you are using 
the assignment operator on them, not the copy constructor, because they have already been initialized.

If you write the copy constructor as follows, then m_value is initialized using the copy constructor:

SpreadsheetCell::SpreadsheetCell(const SpreadsheetCell& src)
    : m_value { src.m_value }
{
}
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SUMMARY

This chapter covered the fundamental aspects of C++’s facilities for object-oriented programming: 
classes and objects. It first reviewed the basic syntax for writing classes and using objects, includ-
ing access control. Then, it covered object life cycles: when objects are constructed, destructed, and 
assigned to, and what methods those actions invoke. The chapter included details of the constructor 
syntax, including ctor-initializers and initializer-list constructors, and introduced the notion of copy 
assignment operators. It also specified exactly which constructors the compiler writes for you and 
under what circumstances, and it explained that default constructors require no arguments.

You may have found this chapter to be mostly review. Or, it may have opened your eyes to the world 
of object-oriented programming in C++. In any case, now that you are proficient with objects and 
classes, read Chapter 9 to learn more about their tricks and subtleties.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 8-1: Implement a Person class storing a first and last name as data members. Add 
a single constructor accepting two parameters, the first and last name. Provide appropriate 
getters and setters. Write a small main() function to test your implementation by creating a 
Person object on the stack and on the free store.

Exercise 8-2: With the set of member functions implemented in Exercise 8-1, the following 
line of code does not compile:

Person phoneBook[3];

Can you explain why this does not compile? Modify the implementation of your Person 
class to make this work.

Exercise 8-3: Add the following methods to your Person class implementation: a copy 
constructor, an assignment operator, and a destructor. In all of these methods, implement 
what you think is necessary, and additionally, output a line of text to the console so you can 
trace when they are executed. Modify your main() function to test these new methods. Note: 
technically, these new methods are not strictly required for this Person class, because the 
compiler-generated versions are good enough, but this exercise is to practice writing them.

Exercise 8-4: Remove the copy constructor, assignment operator, and destructor from your 
Person class, because the default compiler-generated versions are exactly what you need for 
this simple class. Next, add a new data member to store the initials of a person, and provide a 
getter and setter. Add a new constructor that accepts three parameters, a first and last name, 
and a person’s initials. Modify the original two-parameter constructor to automatically gen-
erate initials for a given first and last name, and delegate the actual construction work to the 
new three-parameter constructor.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?

➤➤ How to make classes friends of other classes

➤➤ How to use dynamic memory allocation in objects

➤➤ What the copy-and-swap idiom is

➤➤ What rvalues and rvalue references are

➤➤ How move semantics can improve performance

➤➤ What the rule of zero means

➤➤ The different kinds of data members you can have (static, const, 
reference)

➤➤ The different kinds of methods you can implement (static, 
const, inline)

➤➤ The details of method overloading

➤➤ How to work with default arguments

➤➤ How to use nested classes

➤➤ What operator overloading is

➤➤ How to write separate interface and implementation classes

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

http://www.wiley.com/go/proc++5e
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Chapter 8, “Gaining Proficiency with Classes and Objects,” started the discussion on classes and 
objects. Now it’s time to master their subtleties so you can use them to their full potential. By reading 
this chapter, you will learn how to manipulate and exploit some of the most powerful aspects of the 
C++ language to write safe, effective, and useful classes.

Many of the concepts in this chapter arise in advanced C++ programming, especially in the C++ 
Standard Library. Let’s start the discussion with the concept of friends in the C++ world.

FRIENDS

C++ allows classes to declare that other classes, member functions of other classes, or non-member 
functions are friends, and can access protected and private data members and methods. For exam-
ple, suppose you have two classes called Foo and Bar. You can specify that the Bar class is a friend of 
Foo as follows:

class Foo
{
    friend class Bar;
    // ...
}; 

Now all the methods of Bar can access the private and protected data members and meth-
ods of Foo.

If you only want to make a specific method of Bar a friend, you can do that as well. Suppose the Bar 
class has a method processFoo(const Foo&). The following syntax is used to make this method a 
friend of Foo:

class Foo
{
    friend void Bar::processFoo(const Foo&);
    // ...
}; 

Stand-alone functions can also be friends of classes. You might, for example, want to write a  
function that prints all data of a Foo object to the console. You might want this function to be outside 
the Foo class because printing is not core functionality of Foo, but the function should be able to 
access the internal data members of the object to print them all. Here is the Foo class definition with 
printFoo() as a friend:

class Foo
{
    friend void printFoo(const Foo&);
    // ...
}; 

The friend declaration in the class serves as the function’s prototype. There’s no need to write the 
prototype elsewhere (although it’s harmless to do so).

Here is the function definition:

void printFoo(const Foo& foo)
{
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    // Print all data of foo to the console, including
    // private and protected data members.
}

You write this function just like any other function, except that you can directly access private and 
protected data members of Foo. You don’t repeat the friend keyword in the function definition.

Note that a class needs to know which other classes, methods, or functions want to be its friends; 
a class, method, or function cannot declare itself to be a friend of some other class to gain access to 
non-public members of that class.

friend classes and methods are easy to abuse; they allow you to violate the principle of encapsula-
tion by exposing internals of your class to other classes or functions. Thus, you should use them only 
in limited circumstances. Some use cases are shown throughout this chapter.

DYNAMIC MEMORY ALLOCATION IN OBJECTS

Sometimes you don’t know how much memory you will need before your program actually runs. As 
you read in Chapter 7, “Memory Management,” the solution is to dynamically allocate as much space 
as you need during program execution. Classes are no exception. Sometimes you don’t know how 
much memory an object will need when you write the class. In that case, the object should dynami-
cally allocate memory. Dynamically allocated memory in objects provides several challenges, includ-
ing freeing the memory, handling object copying, and handling object assignment.

The Spreadsheet Class
Chapter 8 introduces the SpreadsheetCell class. This chapter moves on to write the Spreadsheet 
class. As with the SpreadsheetCell class, the Spreadsheet class evolves throughout this chapter. 
Thus, the various attempts do not always illustrate the best way to do every aspect of class writing. 
To start, a Spreadsheet is simply a two-dimensional array of SpreadsheetCells, with methods to 
set and retrieve cells at specific locations in the Spreadsheet. Although most spreadsheet applica-
tions use letters in one direction and numbers in the other to refer to cells, this Spreadsheet uses 
numbers in both directions.

The Spreadsheet class uses the size_t type, which is defined in the C header called <cstddef>. As 
Chapter 1, “A Crash Course in C++ and the Standard Library,” explains, C headers are not guaran-
teed to be importable; it’s better to include them. These should be included in the so-called global 
module fragment. This is done as follows with the first few lines of the Spreadsheet.cppm file:

module;
#include <cstddef>

Next, the name of the module is defined:

export module spreadsheet;

The Spreadsheet class needs access to the SpreadsheetCell class, so it needs to import the 
spreadsheet_cell module. Additionally, to make the SpreadsheetCell class visible to users of the 
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spreadsheet module, the spreadsheet_cell module is imported and exported with the following 
funny-looking syntax:

export import spreadsheet_cell;

Finally, here is a first attempt at a definition of the Spreadsheet class:

export class Spreadsheet
{
    public:
        Spreadsheet(size_t width, size_t height);
        void setCellAt(size_t x, size_t y, const SpreadsheetCell& cell);
        SpreadsheetCell& getCellAt(size_t x, size_t y);
    private:
        bool inRange(size_t value, size_t upper) const;
        size_t m_width { 0 };
        size_t m_height { 0 };
        SpreadsheetCell** m_cells { nullptr };
};

NOTE The Spreadsheet class uses normal pointers for the m_cells array. This 
is done throughout this chapter to show the consequences and to explain how to 
handle resources, such as dynamic memory, in classes. In production code, you 
should use one of the standard C++ containers, like std::vector, which greatly 
simplifies the implementation of Spreadsheet, but then you wouldn’t learn how 
to correctly handle dynamic memory using raw pointers. In modern C++, you 
should never use raw pointers with ownership semantics, but you might come 
across them in existing code, in which case you need to know how to work with 
them.

Note that the Spreadsheet class does not contain a standard two-dimensional array of  
SpreadsheetCells. Instead, it contains a SpreadsheetCell**. This is because each Spreadsheet 
object might have different dimensions, so the constructor of the class must dynamically allocate 
the two-dimensional array based on the client-specified height and width. To dynamically allocate a 
two-dimensional array, you need to write the following code. Note that in C++, unlike in Java, it’s not 
possible to simply write new SpreadsheetCell[m_width][m_height].

Spreadsheet::Spreadsheet(size_t width, size_t height)
    : m_width { width }, m_height { height }
{
    m_cells = new SpreadsheetCell*[m_width];
    for (size_t i { 0 }; i < m_width; i++) {
        m_cells[i] = new SpreadsheetCell[m_height];
    }
}

Figure 9-1 shows the resulting memory for a Spreadsheet called s1 on the stack with width 4 
and height 3.
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The implementations of the set and retrieval methods are straightforward:

void Spreadsheet::setCellAt(size_t x, size_t y, const SpreadsheetCell& cell)
{
    if (!inRange(x, m_width)) {
        throw out_of_range { format("{} must be less than {}.", x, m_width) };
    }
    if (!inRange(y, m_height)) {
        throw out_of_range { format("{} must be less than {}.", y, m_height) };
    }
    m_cells[x][y] = cell;
}
 
SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
    if (!inRange(x, m_width)) {
        throw out_of_range { format("{} must be less than {}.", x, m_width) };
    }
    if (!inRange(y, m_height)) {
        throw out_of_range { format("{} must be less than {}.", y, m_height) };
    }
    return m_cells[x][y];
}

Note that these two methods use a helper method called inRange() to check that x and y represent 
valid coordinates in the spreadsheet. Attempting to access an array element at an out-of-range index 
will cause the program to malfunction. This example uses exceptions, which are introduced in Chap-
ter 1 and described in detail in Chapter 14, “Handling Errors.”

If you look at the setCellAt() and getCellAt() methods, you see there is some clear code duplica-
tion. Chapter 6, “Designing for Reuse,” explains that code duplication should be avoided at all costs. 
So, let’s follow that guideline. Instead of a helper method called inRange(), the following verify
Coordinate() method is defined for the class:

void verifyCoordinate(size_t x, size_t y) const;

The implementation checks the given coordinate and throws an exception if the coordinate is invalid:

void Spreadsheet::verifyCoordinate(size_t x, size_t y) const
{

FIGURE 9-1 

continues
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    if (x >= m_width) {
        throw out_of_range { format("{} must be less than {}.", x, m_width) };
    }
    if (y >= m_height) {
        throw out_of_range { format("{} must be less than {}.", y, m_height) };
    }
}

The setCellAt() and getCellAt() methods can now be simplified:

void Spreadsheet::setCellAt(size_t x, size_t y, const SpreadsheetCell& cell)
{
    verifyCoordinate(x, y);
    m_cells[x][y] = cell;
}
 
SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}

Freeing Memory with Destructors
Whenever you are finished with dynamically allocated memory, you should free it. If you dynami-
cally allocate memory in an object, the place to free that memory is in the destructor. The compiler 
guarantees that the destructor is called when the object is destroyed. Here is the Spreadsheet class 
definition with a destructor:

export class Spreadsheet
{
    public:
        Spreadsheet(size_t width, size_t height);
        ~Spreadsheet();
        // Code omitted for brevity
};

The destructor has the same name as the name of the class (and of the constructors), preceded by a 
tilde (~). The destructor takes no arguments, and there can be only one of them. Destructors should 
never throw any exceptions for reasons explained in detail in Chapter 14.

Here is the implementation of the Spreadsheet class destructor:

Spreadsheet::~Spreadsheet()
{
    for (size_t i { 0 }; i < m_width; i++) {
        delete [] m_cells[i];
    }
    delete [] m_cells;
    m_cells = nullptr;
}

This destructor frees the memory that was allocated in the constructor. However, no rule requires you 
to free memory in the destructor. You can write whatever code you want in the destructor, but it is 
generally a good idea to use it only for freeing memory or disposing of other resources.

(continued)
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Handling Copying and Assignment
Recall from Chapter 8 that if you don’t write a copy constructor and an assignment operator your-
self, C++ writes them for you. These compiler-generated methods recursively call the copy constructor 
or assignment operator on object data members. However, for primitives, such as int, double, and 
pointers, they provide shallow or bitwise copying or assignment: they just copy or assign the data 
members from the source object directly to the destination object. That presents problems when you 
dynamically allocate memory in your object. For example, the following code copies the spreadsheet 
s1 to initialize s when s1 is passed to the printSpreadsheet() function:

import spreadsheet;
 
void printSpreadsheet(Spreadsheet s) { /* Code omitted for brevity. */ }
 
int main()
{
    Spreadsheet s1 { 4, 3 };
    printSpreadsheet(s1);
}

The Spreadsheet contains one pointer variable: m_cells. A shallow copy of a spreadsheet gives the 
destination object a copy of the m_cells pointer, but not a copy of the underlying data. Thus, you 
end up with a situation where both s and s1 have a pointer to the same data, as shown in Figure 9-2.

If s changes something to which m_cells points, that 
change shows up in s1 as well. Even worse, when the 
printSpreadsheet() function exits, s’s destructor is 
called, which frees the memory pointed to by m_cells. 
That leaves the situation shown in Figure 9-3.

Now, the m_cells pointer of s1 no longer points to 
valid memory. This is called a dangling pointer.

FIGURE 9-2 

FIGURE 9-3 
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Unbelievably, the problem is even worse with assignment. Suppose that you have the following code:

Spreadsheet s1 { 2, 2 }, s2 { 4, 3 };
s1 = s2;

After the first line, when both objects are constructed, you have the memory layout shown in 
Figure 9-4.

After the assignment statement, you have the layout shown in Figure 9-5.

Now, not only do the m_cells pointers in s1 and s2 point to the same memory, but you have also 
orphaned the memory to which m_cells in s1 previously pointed to. This is called a memory leak.

FIGURE 9-4 

FIGURE 9-5 
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It should be clear by now that copy constructors and assignment operators must do a deep copy; that 
is, they must not just copy pointer data members, but must copy the actual data to which such point-
ers point to.

As you can see, relying on C++’s default copy constructor and default assignment operator is not 
always a good idea.

WARNING Whenever you have dynamically allocated resources in a class, you 
should write your own copy constructor and assignment operator to provide a 
deep copy of the memory.

The Spreadsheet Copy Constructor
Here is a declaration for a copy constructor in the Spreadsheet class:

export class Spreadsheet
{
    public:
        Spreadsheet(const Spreadsheet& src);
        // Code omitted for brevity
};

The definition is as follows:

Spreadsheet::Spreadsheet(const Spreadsheet& src)
    : Spreadsheet { src.m_width, src.m_height }
{
    for (size_t i { 0 }; i < m_width; i++) {
        for (size_t j { 0 }; j < m_height; j++) {
            m_cells[i][j] = src.m_cells[i][j];
        }
    }
}

Note the use of a delegating constructor. The ctor-initializer of this copy constructor delegates  
first to the non-copy constructor to allocate the proper amount of memory. The body of the copy con-
structor then copies the actual values. Together, this process implements a deep copy of the m_cells  
dynamically allocated two-dimensional array.

There is no need to delete any existing m_cells because this is a copy constructor, and therefore there 
is no existing m_cells yet in this object.

The Spreadsheet Assignment Operator
The following shows the Spreadsheet class definition with an assignment operator:

export class Spreadsheet
{
    public:

continues
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        Spreadsheet& operator=(const Spreadsheet& rhs);
        // Code omitted for brevity
};

A naïve implementation could be as follows:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
    // Check for selfassignment
    if (this == &rhs) {
        return *this;
    }
 
    // Free the old memory
    for (size_t i { 0 }; i < m_width; i++) {
        delete[] m_cells[i];
    }
    delete[] m_cells;
    m_cells = nullptr;
 
    // Allocate new memory
    m_width = rhs.m_width;
    m_height = rhs.m_height;
 
    m_cells = new SpreadsheetCell*[m_width];
    for (size_t i { 0 }; i < m_width; i++) {
        m_cells[i] = new SpreadsheetCell[m_height];
    }
 
    // Copy the data
    for (size_t i { 0 }; i < m_width; i++) {
        for (size_t j { 0 }; j < m_height; j++) {
            m_cells[i][j] = rhs.m_cells[i][j];
        }
    }
 
    return *this;
}

The code first checks for self-assignment, then frees the current memory of the this object, then allo-
cates new memory, and finally copies the individual elements. There is a lot going on in this method, 
and a lot can go wrong! It is possible that the this object gets into an invalid state.

For example, suppose that the memory is successfully freed, that m_width and m_height are  
properly set, but that an exception is thrown in the loop that is allocating the memory. When that 
happens, execution of the remainder of the method is skipped, and the method is exited. Now the 
Spreadsheet instance is corrupt; its m_width and m_height data members state a certain size, but 
the m_cells data member does not point to the right amount of memory. Basically, this code is not 
exception safe!

What we need is an all-or-nothing mechanism; either everything succeeds or the this object remains 
untouched. To implement such an exception-safe assignment operator, the copy-and-swap idiom is 
used. For this, a swap() method is added to the Spreadsheet class. Additionally, it’s recommended 
to provide a non-member swap() function so that it can also be used by various Standard Library 

(continued)
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algorithms. Here is the definition of the Spreadsheet class with an assignment operator, and the 
swap() method and non-member function:

export class Spreadsheet
{
    public:
        Spreadsheet& operator=(const Spreadsheet& rhs);
        void swap(Spreadsheet& other) noexcept;
        // Code omitted for brevity
};
export void swap(Spreadsheet& first, Spreadsheet& second) noexcept;

A requirement for implementing the exception-safe copy-and-swap idiom is that swap() never throws 
any exceptions, so it is marked as noexcept.

NOTE A function can be marked with the noexcept keyword to specify that it 
won’t throw any exceptions. Here’s an example:

void myNonThrowingFunction() noexcept { /* ... */ }

If a noexcept function does throw an exception, the program is terminated. More 
details about noexcept are discussed in Chapter 14, but those details are not 
important for the remainder of the current chapter.

The implementation of the swap() method swaps each data member using the std::swap() utility 
function provided by the Standard Library in <utility>, which efficiently swaps two values:

void Spreadsheet::swap(Spreadsheet& other) noexcept
{
    std::swap(m_width, other.m_width);
    std::swap(m_height, other.m_height);
    std::swap(m_cells, other.m_cells);
}

The non-member swap() function simply forwards to the swap() method:

void swap(Spreadsheet& first, Spreadsheet& second) noexcept
{
    first.swap(second);
}

Now that we have an exception-safe swap(), it can be used to implement the assignment operator:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
    Spreadsheet temp { rhs }; // Do all the work in a temporary instance
    swap(temp);               // Commit the work with only nonthrowing operations
    return *this;
}

The implementation uses the copy-and-swap idiom. First, a copy of the right-hand-side is made, called 
temp. Then the current object is swapped with this copy. This pattern is the recommended way of 
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implementing your assignment operators because it guarantees strong exception safety, meaning that 
if any exception occurs, then the state of the current Spreadsheet object remains unchanged. The 
idiom is implemented in three phases:

➤➤ The first phase makes a temporary copy. This does not modify the state of the current 
Spreadsheet object, and so there is no problem if an exception is thrown during this phase.

➤➤ The second phase uses the swap() function to swap the created temporary copy with the 
current object. The swap() function shall never throw exceptions.

➤➤ The third phase is the destruction of the temporary object, which now contains the original 
object (because of the swap), to clean up any memory.

When you do not use the copy-and-swap idiom for implementing an assignment operator, then for 
efficiency and sometimes also for correctness, the first line of code in an assignment operator usually 
checks for self-assignment. Here’s an example:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
    // Check for selfassignment
    if (this == &rhs) { return *this; }
    // ...
    return *this;
}

With the copy-and-swap idiom, such a self-assignment test is not needed.

WARNING When implementing an assignment operator, use the copy-and-swap 
idiom to avoid code duplication and to guarantee strong exception safety.

NOTE The copy-and-swap idiom can be used for more than just assignment oper-
ators. It can be used for any operation that takes multiple steps and that you want 
to turn into an all-or-nothing operation.

Disallowing Assignment and Pass-by-Value
Sometimes when you dynamically allocate memory in your class, it’s easiest just to prevent anyone 
from copying or assigning to your objects. You can do this by explicitly deleting your operator= 
and copy constructor. That way, if anyone tries to pass the object by value, return it from a function 
or method, or assign to it, the compiler will complain. Here is a Spreadsheet class definition that 
prevents assignment and pass-by-value:

export class Spreadsheet
{
    public:
        Spreadsheet(size_t width, size_t height);
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        Spreadsheet(const Spreadsheet& src) = delete;
        ~Spreadsheet();
        Spreadsheet& operator=(const Spreadsheet& rhs) = delete;
        // Code omitted for brevity
};

You don’t provide implementations for deleted methods. The linker will never look for them because 
the compiler won’t allow code to call them. When you now write code to copy or assign to a 
Spreadsheet object, the compiler will complain with a message like this:

'Spreadsheet &Spreadsheet::operator =(const Spreadsheet &)' : attempting to  
reference a deleted function 

Handling Moving with Move Semantics
Move semantics for objects requires a move constructor and a move assignment operator. These can 
be used by the compiler when the source object is a temporary object that will be destroyed after the 
operation is finished or, as you will see, explicitly when using std::move(). Moving moves owner-
ship of memory and other resources from one object to another object. It basically does a shallow 
copy of data members and switches ownership of allocated memory and other resources to prevent 
dangling pointers or resources and to prevent memory leaks.

Both the move constructor and the move assignment operator move the data members from a source 
object to a new object, leaving the source object in some valid but otherwise indeterminate state. 
Often, data members of the source object are reset to null values, but this is not a requirement. To be 
safe, do not use any objects that have been moved from, as this triggers undefined behavior. Excep-
tions are std::unique_ptr and shared_ptr. The Standard Library explicitly states that these smart 
pointers must reset their internal pointer to nullptr when moving them, which makes it safe to reuse 
these smart pointers after having moved from them.

Before you can implement move semantics, you need to learn about rvalues and rvalue references.

Rvalue References
In C++, an lvalue is something of which you can take an address, for example, a named variable. The 
name comes from the fact that lvalues can appear on the left-hand side of an assignment. An rvalue, 
on the other hand, is anything that is not an lvalue, such as a literal, or a temporary object or value. 
Typically, an rvalue is on the right-hand side of an assignment operator. For example, take the follow-
ing statement:

int a { 4 * 2 };

In this statement, a is an lvalue, it has a name, and you can take the address of it with &a. The result 
of the expression 4 * 2, on the other hand, is an rvalue. It is a temporary value that is destroyed 
when the statement finishes execution. In this example, a copy of this temporary value is stored in the 
variable with name a.

An rvalue reference is a reference to an rvalue. In particular, it is a concept that is applied when the 
rvalue is a temporary object or an object that is explicitly moved using std::move(), explained 
later in this section. The purpose of an rvalue reference is to make it possible for a particular func-
tion overload to be chosen when an rvalue is involved. This allows certain operations that normally 
involve copying large values to instead copy pointers to those values.
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A function can specify an rvalue reference parameter by using && as part of the parameter specifica-
tion, for example, type&& name. Normally, a temporary object will be seen as a const type&,  
but when there is a function overload that uses an rvalue reference, a temporary object can be 
resolved to that overload. The following example demonstrates this. The code first defines two  
handleMessage() functions, one accepting an lvalue reference and one accepting an rvalue reference:

void handleMessage(string& message) // lvalue reference parameter
{
    cout << format("handleMessage with lvalue reference: {}", message) << endl;
}
 
void handleMessage(string&& message) // rvalue reference parameter
{
    cout << format("handleMessage with rvalue reference: {}", message) << endl;
}

You can call handleMessage() with a named variable as an argument:

string a { "Hello " };
handleMessage(a);             // Calls handleMessage(string& value)

Because a is a named variable, the handleMessage() function accepting an lvalue reference is called. 
Any changes handleMessage() does through its reference parameter will change the value of a.

You can also call handleMessage() with an expression as an argument:

string b { "World" };
handleMessage(a + b);         // Calls handleMessage(string&& value)

The handleMessage() function accepting an lvalue reference cannot be used, because the expres-
sion a + b results in a temporary, which is not an lvalue. In this case, the rvalue reference overload is 
called. Because the argument is a temporary, any changes handleMessage() does through its  
reference parameter will be lost after the call returns.

A literal can also be used as argument to handleMessage(). This also triggers a call to the rvalue 
reference overload because a literal cannot be an lvalue (though a literal can be passed as argument to 
a reference-to-const parameter):

handleMessage("Hello World"); // Calls handleMessage(string&& value)

If you remove the handleMessage() function accepting an lvalue reference, calling handle
Message() with a named variable like handleMessage(b) will result in a compilation error because 
an rvalue reference parameter (string&&) will never be bound to an lvalue (b). You can force the 
compiler to call the rvalue reference overload of handleMessage() by using std::move(). The only 
thing move() does is cast an lvalue to an rvalue reference; that is, it does not do any actual moving. 
However, by returning an rvalue reference, it allows the compiler to find an overload of handle
Message() accepting an rvalue reference, which can then perform the moving. Here is an example of 
using move():

handleMessage(std::move(b));  // Calls handleMessage(string&& value)

As I said before, but it’s worth repeating, a named variable is an lvalue. So, inside the handle
Message() function, the message rvalue reference parameter itself is an lvalue because it has a name! 
If you want to forward this rvalue reference parameter to another function as an rvalue, then you 
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need to use std::move() to cast the lvalue to an rvalue reference. For example, suppose you add the 
following function with an rvalue reference parameter:

void helper(std::string&& message) { }

Calling it as follows does not compile:

void handleMessage(std::string&& message) { helper(message); }

The helper() function needs an rvalue reference, while handleMessage() passes message, which 
has a name, so it’s an lvalue, causing a compilation error. The correct way is to use std::move():

void handleMessage(std::string&& message) { helper(std::move(message)); }

WARNING A named rvalue reference, such as an rvalue reference parameter, itself 
is an lvalue because it has a name!

Rvalue references are not limited to parameters of functions. You can declare a variable of an rvalue 
reference type and assign to it, although this usage is uncommon. Consider the following code, which 
is illegal in C++:

int& i { 2 };       // Invalid: reference to a constant
int a { 2 }, b { 3 };
int& j { a + b };   // Invalid: reference to a temporary

Using rvalue references, the following is perfectly legal:

int&& i { 2 };
int a { 2 }, b { 3 };
int&& j { a + b };

However, such stand-alone rvalue references are rarely used in this way.

NOTE If a temporary is assigned to an rvalue reference, the lifetime of the  
temporary is extended for as long as the rvalue reference is in scope.

Implementing Move Semantics
Move semantics is implemented by using rvalue references. To add move semantics to a class, you 
need to implement a move constructor and a move assignment operator. Move constructors and 
move assignment operators should be marked with the noexcept qualifier to tell the compiler that 
they don’t throw any exceptions. This is particularly important for compatibility with the Standard 
Library, as fully compliant implementations of, for example, the Standard Library containers will only 
move stored objects if, having move semantics implemented, they also guarantee not to throw. The 
following is the Spreadsheet class definition with a move constructor and move assignment opera-
tor. Two helper methods are introduced as well: cleanup(), which is used from the destructor and 
the move assignment operator, and moveFrom(), which moves the data members from a source to a 
destination and then resets the source object.
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export class Spreadsheet
{
    public:
        Spreadsheet(Spreadsheet&& src) noexcept; // Move constructor
        Spreadsheet& operator=(Spreadsheet&& rhs) noexcept; // Move assign
        // Remaining code omitted for brevity
    private:
        void cleanup() noexcept;
        void moveFrom(Spreadsheet& src) noexcept;
        // Remaining code omitted for brevity
};

The implementations are as follows:

void Spreadsheet::cleanup() noexcept
{
    for (size_t i { 0 }; i < m_width; i++) {
        delete[] m_cells[i];
    }
    delete[] m_cells;
    m_cells = nullptr;
    m_width = m_height = 0;
}
 
void Spreadsheet::moveFrom(Spreadsheet& src) noexcept
{
    // Shallow copy of data
    m_width = src.m_width;
    m_height = src.m_height;
    m_cells = src.m_cells;
 
    // Reset the source object, because ownership has been moved!
    src.m_width = 0;
    src.m_height = 0;
    src.m_cells = nullptr;
}
 
// Move constructor
Spreadsheet::Spreadsheet(Spreadsheet&& src) noexcept
{
    moveFrom(src);
}
 
// Move assignment operator
Spreadsheet& Spreadsheet::operator=(Spreadsheet&& rhs) noexcept
{
    // Check for selfassignment
    if (this == &rhs) {
        return *this;
    }
 
    // Free the old memory and move ownership
    cleanup();
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    moveFrom(rhs);
    return *this;
}

Both the move constructor and the move assignment operator are moving ownership of the memory 
for m_cells from a source object to a new object. They reset the m_cells pointer of the source object 
to a null pointer and set m_width and m_height of the source object to zero to prevent the source 
object’s destructor from deallocating any memory because the new object is now the owner of it.

Obviously, move semantics is useful only when you know that the source object is not 
needed anymore.

Note that this implementation includes a self-assignment test in the move assignment operator. 
Depending on your class and depending on how you are moving one instance of your class to another 
instance, this self-assignment test might not always be necessary. However, I do always include it as to 
make sure that code as follows never causes a crash at run time:

sheet1 = std::move(sheet1);

Move constructors and move assignment operators can be explicitly deleted or defaulted, just like 
copy constructors and copy assignment operators, as explained in Chapter 8.

The compiler automatically generates a default move constructor for a class if and only if the class 
has no user-declared copy constructor, copy assignment operator, move assignment operator, or 
destructor. A default move assignment operator is generated for a class if and only if the class has no 
user-declared copy constructor, move constructor, copy assignment operator, or destructor.

NOTE When you declare one or more of the special member functions (destruc-
tor, copy constructor, move constructor, copy assignment operator, and move 
assignment operator), then you typically need to declare all of them. This is called 
the rule of five. You either provide explicit implementations for them or explicitly 
default (=default) or delete (=delete) them.

Using std::exchange
std::exchange(), defined in <utility>, replaces a value with a new value and returns the old 
value, as in this example:

int a { 11 };
int b { 22 };
cout << format("Before exchange(): a = {}, b = {}", a, b) << endl;
int returnedValue { exchange(a, b) };
cout << format("After exchange():  a = {}, b = {}", a, b) << endl;
cout << format("exchange() returned: {}", returnedValue) << endl;

The output is as follows:

Before exchange(): a = 11, b = 22
After exchange():  a = 22, b = 22
exchange() returned: 11
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exchange() is useful in implementing move assignment operators. A move assignment operator 
needs to move the data from a source object to a destination object, after which the data in the source 
object is usually nullified. In the previous section, this is done as follows:

void Spreadsheet::moveFrom(Spreadsheet& src) noexcept
{
    // Shallow copy of data
    m_width = src.m_width;
    m_height = src.m_height;
    m_cells = src.m_cells;
 
    // Reset the source object, because ownership has been moved!
    src.m_width = 0;
    src.m_height = 0;
    src.m_cells = nullptr;
}

This method copies the m_width, m_height, and m_cells data members from the source object and 
then sets them to either 0 or nullptr, because ownership has been moved. With exchange() this can 
be written more compactly as follows:

void Spreadsheet::moveFrom(Spreadsheet& src) noexcept
{
    m_width = exchange(src.m_width, 0);
    m_height = exchange(src.m_height, 0);
    m_cells = exchange(src.m_cells, nullptr);
}

Moving Object Data Members
The moveFrom() method uses direct assignments of the three data members because they are primi-
tive types. If your object has other objects as data members, then you should move these objects using 
std::move(). Suppose the Spreadsheet class has an std::string data member called m_name. The 
moveFrom() method should then be implemented as follows:

void Spreadsheet::moveFrom(Spreadsheet& src) noexcept
{
    // Move object data members
    m_name = std::move(src.m_name);
 
    // Move primitives:
    m_width = exchange(src.m_width, 0);
    m_height = exchange(src.m_height, 0);
    m_cells = exchange(src.m_cells, nullptr);
}

Move Constructor and Move Assignment Operator in Terms of Swap
The previous implementation of the move constructor and the move assignment operator both use 
the moveFrom() helper method, which moves all data members by performing shallow copies. With 
this implementation, if you add a new data member to the Spreadsheet class, you have to modify 
both the swap() function and the moveFrom() method. If you forget to update one of them, you 
introduce a bug. To avoid such bugs, you can write the move constructor and the move assignment 
operator in terms of the swap() function.
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First, the cleanup() and moveFrom() helper methods can be removed. The code from the cleanup() 
method is moved to the destructor. The move constructor and move assignment operator can then be 
implemented as follows:

Spreadsheet::Spreadsheet(Spreadsheet&& src) noexcept
{
    swap(*this, src);
}
 
Spreadsheet& Spreadsheet::operator=(Spreadsheet&& rhs) noexcept
{
    swap(*this, rhs);
    return *this;
}

The move constructor simply swaps the default constructed *this with the given source object. Simi-
larly, the move assignment operator swaps *this with the given rhs object.

NOTE Implementing a move constructor and move assignment operator in terms 
of swap() requires less code. It is also less likely bugs are introduced when data 
members are added, because you only have to update your swap() implementation 
to include those new data members.

Testing the Spreadsheet Move Operations
The Spreadsheet move constructor and move assignment operator can be tested with the fol-
lowing code:

Spreadsheet createObject()
{
    return Spreadsheet { 3, 2 };
}
 
int main()
{
    vector<Spreadsheet> vec;
    for (size_t i { 0 }; i < 2; ++i) {
        cout << "Iteration " << i << endl;
        vec.push_back(Spreadsheet { 100, 100 });
        cout << endl;
    }
 
    Spreadsheet s { 2, 3 };
    s = createObject();
 
    Spreadsheet s2 { 5, 6 };
    s2 = s;
}

Chapter 1 introduces the vector. A vector grows dynamically in size to accommodate new objects. 
This is done by allocating a bigger chunk of memory and then copying or moving the objects from 
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the old vector to the new and bigger vector. If the compiler finds a noexcept move constructor, the 
objects are moved instead of copied. Because they are moved, there is no need for any deep copying, 
making it much more efficient.

When you add output statements to all constructors and assignment operators of the Spreadsheet 
class, the output of the preceding test program can be as follows. This output and the following 
discussion are based on the Microsoft Visual C++ 2019 compiler for a release build of the code. The 
C++ standard does not specify the initial capacity of a vector nor its growth strategy, so the output 
can be different on different compilers.

Iteration 0
Normal constructor         (1)
Move constructor           (2)
 
Iteration 1
Normal constructor         (3)
Move constructor           (4)
Move constructor           (5)
 
Normal constructor         (6)
Normal constructor         (7)
Move assignment operator   (8)
Normal constructor         (9)
Copy assignment operator  (10)
Normal constructor        (11)
Copy constructor          (12)

On the first iteration of the loop, the vector is still empty. Take the following line of code 
from the loop:

vec.push_back(Spreadsheet { 100, 100 });

With this line, a new Spreadsheet object is created, invoking the normal constructor (1). The vector 
resizes itself to make space for the new object being pushed in. The created Spreadsheet object is 
then moved into the vector, invoking the move constructor (2).

On the second iteration of the loop, a second Spreadsheet object is created with the normal con-
structor (3). At this point, the vector can hold one element, so it’s again resized to make space for a 
second object. Because the vector is resized, the previously added elements need to be moved from 
the old vector to the new and bigger vector. This triggers a call to the move constructor for each 
previously added element. There is one element in the vector, so the move constructor is called 
one time (4). Finally, the new Spreadsheet object is moved into the vector with its move con-
structor (5).

Next, a Spreadsheet object s is created using the normal constructor (6). The createObject() 
function creates a temporary Spreadsheet object with its normal constructor (7), which is then 
returned from the function and assigned to the variable s. Because the temporary object returned 
from createObject() ceases to exist after the assignment, the compiler invokes the move assignment 
operator (8) instead of the normal copy assignment operator. Another Spreadsheet object is created, 
s2, using the normal constructor (9). The assignment s2 = s invokes the copy assignment operator 
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(10) because the right-hand side object is not a temporary object, but a named object. This copy 
assignment operator uses the copy-and-swap idiom, which creates a temporary copy, triggering a call 
to the copy constructor, which first delegates to the normal constructor (11 and 12).

If the Spreadsheet class did not implement move semantics, all the calls to the move constructor and 
move assignment operator would be replaced with calls to the copy constructor and copy assignment 
operator. In the previous example, the Spreadsheet objects in the loop have 10,000 (100 × 100) 
elements. The implementations of the Spreadsheet move constructor and move assignment opera-
tor don’t require any memory allocation, while the copy constructor and copy assignment operator 
require 101 allocations each. So, using move semantics can increase performance a lot in certain 
situations.

Implementing a Swap Function with Move Semantics
As another example where move semantics increases performance, take a swap() function template 
that swaps two objects. The following swapCopy() implementation does not use move semantics:

template <typename T>
void swapCopy(T& a, T& b)
{
    T temp { a };
    a = b;
    b = temp;
}

First, a is copied to temp, then b is copied to a, and finally temp is copied to b. This implementation 
will hurt performance if type T is expensive to copy. With move semantics, the implementation can 
avoid all copying:

template <typename T>
void swapMove(T& a, T& b)
{
    T temp { std::move(a) };
    a = std::move(b);
    b = std::move(temp);
}

This is how std::swap() from the Standard Library is implemented.

Using std::move() in Return Statements
Statements of the form return object; are treated as rvalue expressions if object is a local vari-
able, a parameter to the function, or a temporary value, and they trigger return value optimization 
(RVO). Furthermore, if object is a local variable, named return value optimization (NRVO) can kick 
in. Both RVO and NRVO are forms of copy elision and make returning objects from functions very 
efficient. With copy elision, compilers can avoid any copying and moving of objects that are returned 
from functions. This results in so-called zero-copy pass-by-value semantics.

Now, what happens when using std::move() to return an object? Whether you write return 
object; or return std::move(object);, in both cases compilers treat it as an rvalue expression. 
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However, by using std::move(), compilers cannot apply RVO or NRVO anymore, as that works 
only for statements of the form return object;. Since RVO and NRVO don’t apply anymore, the 
next option for the compiler is to use move semantics if the object supports it, and if not, use copy 
semantics, which can have a big performance impact! So, keep the following rule in mind:

WARNING When returning a local variable or parameter from a function, simply 
write return object; and do not use std::move().

Keep in mind that (N)RVO works only for local variables or function parameters. As such, returning 
data members of an object never triggers (N)RVO. Additionally, be careful with expressions such as 
the following:

return condition ? object1 : object2;

This is not of the form return object;, so the compiler cannot apply (N)RVO and uses a copy con-
structor instead to return either object1 or object2. You can rewrite the return statement as follows 
for which a compiler can use (N)RVO:

if (condition) {
    return object1;
} else {
    return object2;
}

If you really want to use a conditional operator, you could write the following, but then keep in mind 
that this cannot trigger (N)RVO and forces the use of move or copy semantics:

return condition ? std::move(object1) : std::move(object2);

Optimal Way to Pass Arguments to Functions
Up to now, the advice has been to use reference-to-const parameters for non-primitive function 
parameters to avoid unnecessary expensive copying of an argument passed to a function. However, 
with rvalues in the mix, things change slightly. Imagine a function that copies an argument passed 
as one of its parameters anyway. This situation often pops up with class methods. Here is a sim-
ple example:

class DataHolder
{
    public:
        void setData(const std::vector<int>& data) { m_data = data; }
    private:
        std::vector<int> m_data;
};

The setData() method makes a copy of the data passed in. Now that you are fluent with rvalues 
and rvalue references, you might want to add an overload to optimize the setData() method to 
avoid any copying in case of rvalues. Here’s an example:

class DataHolder
{
    public:
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        void setData(const std::vector<int>& data) { m_data = data; }
        void setData(std::vector<int>&& data) { m_data = std::move(data); }
    private:
        std::vector<int> m_data;
};

When setData() is called with a temporary, no copies are made; the data is moved instead.

The code in the following code snippet triggers a call to the reference-to-const overload of  
setData(), and hence a copy of the data is made:

DataHolder wrapper;
std::vector myData { 11, 22, 33 };
wrapper.setData(myData);

On the other hand, the following code snippet calls setData() with a temporary, which triggers a 
call to the rvalue reference overload of setData(). The data is subsequently moved instead of copied.

wrapper.setData({ 22, 33, 44 });

Unfortunately, this way to optimize setData() for both lvalues and rvalues requires an implementa-
tion of two overloads. Luckily, there is a better way that involves a single method using pass-by-value. 
Yes, pass-by-value! Up to now, it was advised to always pass objects using reference-to-const param-
eters to avoid any unnecessary copying, but now we advise to use pass-by-value. Let’s clarify. For 
parameters that are not copied, passing by reference-to-const is still the way to go. The pass-by-value 
advice is suitable only for parameters that the function would copy anyway. In that case, by using 
pass-by-value semantics, the code is optimal for both lvalues and rvalues. If an lvalue is passed in, it’s 
copied exactly one time, just as with a reference-to-const parameter. And, if an rvalue is passed in, no 
copy is made, just as with an rvalue reference parameter. Let’s look at some code:

class DataHolder
{
    public:
        void setData(std::vector<int> data) { m_data = std::move(data); }
    private:
        std::vector<int> m_data;
};

If an lvalue is passed to setData(), it is copied into the data parameter and subsequently moved to 
m_data. If an rvalue is passed to setData(), it is moved into the data parameter, and moved again 
to m_data.

NOTE Prefer pass-by-value for parameters that a function inherently would copy, 
but only if the parameter is of a type that supports move semantics. Otherwise, use 
reference-to-const parameters.

Rule of Zero
Earlier in this chapter, the rule of five was introduced. All the discussions so far have been to explain 
how you have to write those five special member functions: destructor, copy and move constructors, 
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and copy and move assignment operators. However, in modern C++, you should adopt the so-called 
rule of zero.

The rule of zero states that you should design your classes in such a way that they do not require  
any of those five special member functions. How do you do that? Basically, you should avoid having 
any old-style dynamically allocated memory. Instead, use modern constructs such as Standard  
Library containers. For example, use a vector<vector<SpreadsheetCell>> instead of the  
SpreadsheetCell** data member in the Spreadsheet class. The vector handles memory  
automatically, so there is no need for any of those five special member functions.

WARNING In modern C++, adopt the rule of zero!

The rule of five should be limited to custom resource acquisition is initialization (RAII) classes. An 
RAII class takes ownership of a resource and handles its deallocation at the right time. It’s a design 
technique used, for example, by vector and unique_ptr and discussed further in Chapter 32, 
“Incorporating Design Techniques and Frameworks.”

MORE ABOUT METHODS

C++ also provides myriad choices for methods. This section explains all the tricky details.

static Methods
Methods, like data members, sometimes apply to the class as a whole, not to each object. You can 
write static methods as well as data members. As an example, consider the SpreadsheetCell class 
from Chapter 8. It has two helper methods: stringToDouble() and doubleToString(). These 
methods don’t access information about specific objects, so they could be static. Here is the class 
definition with these methods static:

export class SpreadsheetCell
{
    // Omitted for brevity
    private:
        static std::string doubleToString(double value);
        static double stringToDouble(std::string_view value);
        // Omitted for brevity
};

The implementations of these two methods are identical to the previous implementations. You don’t 
repeat the static keyword in front of the method definitions. However, note that static methods 
are not called on a specific object, so they have no this pointer and are not executing for a specific 
object with access to its non-static members. In fact, a static method is just like a regular func-
tion. The only difference is that it can access private and protected static members of the class. 
Additionally, it can also access private and protected non-static members on objects of the same 
type, if those objects are made visible to the static method, for example, by passing in a reference or 
pointer to such an object as a parameter.
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You call a static method just like a regular member function from within any method of the class. 
Thus, the implementation of all the methods in SpreadsheetCell can stay the same.

Outside of the class, you need to qualify the static method name with the class name using the 
scope resolution operator. Access control applies as usual. For example, if you have a class Foo with a 
public static method called bar(), then you can call bar() from anywhere in the code as follows:

Foo::bar();

const Methods
A const object is an object whose value cannot be changed. If you have a const, reference to 
const, or pointer to a const object, the compiler does not let you call any methods on that object 
unless those methods guarantee that they won’t change any data members. The way you guarantee 
that a method won’t change data members is to mark the method itself with the const keyword. This 
is already done throughout Chapter 8 during the development of the SpreadsheetCell class. As a 
reminder, here is the SpreadsheetCell class with the methods that don’t change any data members 
marked as const:

export class SpreadsheetCell
{
    public:
        double getValue() const;
        std::string getString() const;
        // Omitted for brevity
};

The const specification is part of the method prototype and must accompany its definition as well:

double SpreadsheetCell::getValue() const
{
    return m_value;
}
 
std::string SpreadsheetCell::getString() const
{
    return doubleToString(m_value);
}

Marking a method as const signs a contract with client code guaranteeing that you will not change 
the internal values of the object from within that method. If you try to declare a method const that 
actually modifies a data member, the compiler will complain. const methods work by making it 
appear inside the method that you have a reference-to-const to each data member. Thus, if you try to 
change a data member, the compiler will flag an error.

You cannot declare a static method const, because it is redundant. Static methods do not have an 
instance of the class, so it would be impossible for them to change internal values.

You can call const and non-const methods on a non-const object. However, you can only call 
const methods on a const object. Here are some examples:

SpreadsheetCell myCell { 5 };
cout << myCell.getValue() << endl;      // OK
myCell.setString("6");                  // OK
 

continues
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const SpreadsheetCell& myCellConstRef { myCell };
cout << myCellConstRef.getValue() << endl; // OK
myCellConstRef.setString("6");             // Compilation Error!

You should get into the habit of declaring const all methods that don’t modify the object so that you 
can use references to const objects in your program.

Note that const objects can still be destroyed, and their destructor can be called. Nevertheless, 
destructors are not allowed to be declared const.

mutable Data Members
Sometimes you write a method that is “logically” const but happens to change a data member of 
the object. This modification has no effect on any user-visible data, but is technically a change, so the 
compiler won’t let you declare the method const. For example, suppose that you want to profile your 
spreadsheet application to obtain information about how often data is being read. A crude way to do 
this would be to add a counter to the SpreadsheetCell class that counts each call to getValue() 
or getString(). Unfortunately, that makes those methods non-const in the compiler’s eyes, which 
is not what you intended. The solution is to make your new counter variable mutable, which tells 
the compiler that it’s OK to change it in a const method. Here is the new SpreadsheetCell class 
definition:

export class SpreadsheetCell
{
    // Omitted for brevity
    private:
        double m_value { 0 };
        mutable size_t m_numAccesses { 0 };
};

Here are the definitions for getValue() and getString():

double SpreadsheetCell::getValue() const
{
    m_numAccesses++;
    return m_value;
}
 
std::string SpreadsheetCell::getString() const
{
    m_numAccesses++;
    return doubleToString(m_value);
}

Method Overloading
You’ve already noticed that you can write multiple constructors in a class, all of which have the same 
name. These constructors differ only in the number and/or types of their parameters. You can do the 
same thing for any method or function in C++. Specifically, you can overload a function or method 

(continued)
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name by using it for multiple functions, as long as the number and/or types of the parameters differ. 
For example, in the SpreadsheetCell class you can rename both setString() and setValue() to 
set(). The class definition now looks like this:

export class SpreadsheetCell
{
    public:
        void set(double value);
        void set(std::string_view value);
        // Omitted for brevity
};

The implementations of the set() methods stay the same. When you write code to call set(), the 
compiler determines which instance to call based on the argument you pass: if you pass a string_
view, the compiler calls the string_view instance; if you pass a double, the compiler calls the  
double instance. This is called overload resolution.

You might be tempted to do the same thing for getValue() and getString(): rename each of them 
to get(). However, that does not work. C++ does not allow you to overload a method name based 
only on the return type of the method because in many cases it would be impossible for the compiler 
to determine which instance of the method to call. For example, if the return value of the method is 
not captured anywhere, the compiler has no way to tell which instance of the method you are try-
ing to call.

Overloading Based on const
You can overload a method based on const. That is, you can write two methods with the same name 
and same parameters, one of which is declared const and one of which is not. The compiler calls the 
const method if you have a const object, and it calls the non-const overload if you have a non-
const object.

Often, the implementation of the const overload and the non-const overload is identical. To  
prevent code duplication, you can use the Scott Meyer’s const_cast() pattern. For example, the 
Spreadsheet class has a method called getCellAt() returning a reference-to-non-const to a 
SpreadsheetCell. You can add a const overload that returns a reference-to-const to a  
SpreadsheetCell as follows:

export class Spreadsheet
{
    public:
        SpreadsheetCell& getCellAt(size_t x, size_t y);
        const SpreadsheetCell& getCellAt(size_t x, size_t y) const;
        // Code omitted for brevity.
};

Scott Meyer’s const_cast() pattern implements the const overload as you normally would and 
implements the non-const overload by forwarding the call to the const overload with the appropri-
ate casts, as follows:

const SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}
 continues
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SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
    return const_cast<SpreadsheetCell&>(as_const(*this).getCellAt(x, y));
}

Basically, you first cast *this (a Spreadsheet&) to a const Spreadsheet& using std::as_const() 
(defined in <utility>). Next, you call the const overload of getCellAt(), which returns a const 
SpreadsheetCell&. You then cast this to a non-const SpreadsheetCell& with a const_cast().

With these two getCellAt() overloads, you can now call getCellAt() on const and non-const 
Spreadsheet objects:

Spreadsheet sheet1 { 5, 6 };
SpreadsheetCell& cell1 { sheet1.getCellAt(1, 1) };
 
const Spreadsheet sheet2 { 5, 6 };
const SpreadsheetCell& cell2 { sheet2.getCellAt(1, 1) };

In this case, the const overload of getCellAt() is not doing much, so you don’t win a lot by using 
the const_cast() pattern. However, imagine that the const overload of getCellAt() is doing more 
work; then forwarding the non-const to the const overload avoids duplicating that code.

Explicitly Deleting Overloads
Overloaded methods can be explicitly deleted, which enables you to disallow calling a method with 
particular arguments. For example, the SpreadsheetCell class has a method setValue(double) 
that can be called as follows:

SpreadsheetCell cell;
cell.setValue(1.23);
cell.setValue(123);

For the third line, the compiler converts the integer value (123) to a double and then calls 
setValue(double). If, for some reason, you do not want setValue() to be called with integers, you 
can explicitly delete an integer overload of setValue():

export class SpreadsheetCell
{
    public:
        void setValue(double value);
        void setValue(int) = delete;
};

With this change, an attempt to call setValue() with an integer will be flagged as an error by 
the compiler.

Ref-Qualified Methods
Ordinary class methods can be called on both non-temporary and temporary instances of a class. 
Suppose you have the following class:

class TextHolder
{

(continued)
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    public:
        TextHolder(string text) : m_text { move(text) } {}
        const string& getText() const { return m_text; }
    private:
        string m_text;
};

Of course, there is no doubt that you can call the getText() method on non-temporary instances of 
TextHolder. Here’s an example:

TextHolder textHolder { "Hello world!" };
cout << textHolder.getText() << endl;

However, getText() can also be called on temporary instances:

cout << TextHolder{ "Hello world!" }.getText() << endl;
cout << move(textHolder).getText() << endl;

It is possible to explicitly specify on what kind of instances a certain method can be called, be it 
temporary or non-temporary instances. This is done by adding a so-called ref-qualifier to the method. 
If a method should be called only on non-temporary instances, a & qualifier is added after the method 
header. Similarly, if a method should be called only on temporary instances, a && qualifier is added.

The following modified TextHolder class implements the & qualified getText() by returning a 
reference-to-const to m_text. The && qualified getText(), on the other hand, returns an rvalue 
reference to m_text so that m_text can be moved out of a TextHolder. This can be more efficient if 
you, for example, want to retrieve the text from a temporary TextHolder instance.

class TextHolder
{
    public:
        TextHolder(string text) : m_text { move(text) } {}
        const string& getText() const & { return m_text; }
        string&& getText() && { return move(m_text); }
    private:
        string m_text;
};

Suppose you have the following invocations:

TextHolder textHolder { "Hello world!" };
cout << textHolder.getText() << endl;
cout << TextHolder{ "Hello world!" }.getText() << endl;
cout << move(textHolder).getText() << endl;

Then the first call to getText() calls the & qualified overload, while the second and third invocations 
call the && qualified overload.

Inline Methods
C++ gives you the ability to recommend that a call to a method (or function) should not actually be 
implemented in the generated code as a call to a separate block of code. Instead, the compiler should 
insert the method’s body directly into the code where the method is called. This process is called inlin-
ing, and methods that want this behavior are called inline methods.
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You can specify an inline method by placing the inline keyword in front of its name in the method 
definition. For example, you might want to make the accessor methods of the SpreadsheetCell 
class inline, in which case you would define them like this:

inline double SpreadsheetCell::getValue() const
{
    m_numAccesses++;
    return m_value;
}
 
inline std::string SpreadsheetCell::getString() const
{
    m_numAccesses++;
    return doubleToString(m_value);
}

This gives a hint to the compiler to replace calls to getValue() and getString() with the actual 
method body instead of generating code to make a function call. Note that the inline keyword is 
just a hint for the compiler. The compiler can ignore it if it thinks it would hurt performance.

There is one caveat: definitions of inline methods (and functions) must be available in every source 
file in which they are called. That makes sense if you think about it: how can the compiler substi-
tute the method’s body if it can’t see the method definition? Thus, if you write inline methods, you 
should place the definitions of such methods in the same file as the definition of the class to which the 
methods belong.

NOTE Advanced C++ compilers do not require you to put definitions of inline 
methods in the same file as the class definition. For example, Microsoft Visual C++ 
supports Link-Time Code Generation (LTCG), which automatically inlines small 
function bodies, even if they are not declared as inline and even if they are not 
defined in the same file as the class definition. GCC and Clang have similar fea-
tures.

Outside of C++20 modules, if the definition of a method is placed directly in the class definition, that 
method implicitly is marked as inline, even without using the inline keyword. With classes exported 
from modules in C++20, this is not the case anymore. If you want such methods to be inline, you 
need to mark them with the inline keyword. Here’s an example:

export class SpreadsheetCell
{
    public:
        inline double getValue() const { m_numAccesses++; return m_value; }
 
        inline std::string getString() const
        {
            m_numAccesses++;
            return doubleToString(m_value);
        }
        // Omitted for brevity
};
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NOTE If you single-step with a debugger on a function call that is inlined, some 
advanced C++ debuggers will jump to the actual source code of the inline function, 
giving you the illusion of a function call when in reality, the code is inlined.

Many C++ programmers discover the inline method syntax and employ it without understanding 
the ramifications of marking a method inline. Marking a method or function as inline only gives 
a hint to the compiler. Compilers will only inline the simplest methods and functions. If you define an 
inline method that the compiler doesn’t want to inline, it will silently ignore the hint. Modern com-
pilers will take metrics such as code bloat into account before deciding to inline a method or function, 
and they will not inline anything that is not cost-effective.

Default Arguments
A feature similar to method overloading in C++ is default arguments. You can specify defaults for 
function and method parameters in the prototype. If the user provides arguments for those param-
eters, the default values are ignored. If the user omits those arguments, the default values are used. 
There is a limitation, though: you can only provide defaults for a continuous list of parameters start-
ing from the rightmost parameter. Otherwise, the compiler will not be able to match missing argu-
ments to default arguments. Default arguments can be used in functions, methods, and constructors. 
For example, you can assign default values for the width and height in the Spreadsheet constructor 
as follows:

export class Spreadsheet
{
    public:
        Spreadsheet(size_t width = 100, size_t height = 100);
        // Omitted for brevity
};

The implementation of the Spreadsheet constructor stays the same. Note that you specify the 
default arguments only in the method declaration, but not in the definition.

Now you can call the Spreadsheet constructor with zero, one, or two arguments even though there 
is only one non-copy constructor:

Spreadsheet s1;
Spreadsheet s2 { 5 };
Spreadsheet s3 { 5, 6 };

A constructor with defaults for all its parameters can function as a default constructor. That is, you 
can construct an object of that class without specifying any arguments. If you try to declare both 
a default constructor and a multi-argument constructor with defaults for all its parameters, the 
compiler will complain because it won’t know which constructor to call if you don’t specify any 
arguments.

Note that anything you can do with default arguments you can do with method overloading. You 
could write three different constructors, each of which takes a different number of arguments. 
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However, default arguments allow you to write just one constructor that can take three different 
number of arguments. You should use the mechanism with which you are most comfortable.

DIFFERENT KINDS OF DATA MEMBERS

C++ gives you many choices for data members. In addition to declaring simple data members in your 
classes, you can create static data members that all objects of the class share, const members, refer-
ence members, reference-to-const members, and more. This section explains the intricacies of these 
different kinds of data members.

static Data Members
Sometimes giving each object of a class a copy of a variable is overkill or won’t work. The data 
member might be specific to the class, but not appropriate for each object to have its own copy. For 
example, you might want to give each spreadsheet a unique numerical identifier. You would need a 
counter that starts at 0 from which each new object could obtain its ID. This spreadsheet counter 
really belongs to the Spreadsheet class, but it doesn’t make sense for each Spreadsheet object to 
have a copy of it, because you would have to keep all the counters synchronized somehow. C++ pro-
vides a solution with static data members. A static data member is a data member associated with 
a class instead of an object. You can think of static data members as global variables specific to a 
class. Here is the Spreadsheet class definition, including the new static counter data member:

export class Spreadsheet
{
    // Omitted for brevity
    private:
        static size_t ms_counter;
};

In addition to listing static class members in the class definition, you will have to allocate space for 
them in a source file, usually the source file in which you place your class method definitions. You can 
initialize them at the same time, but note that unlike normal variables and data members, they are 
initialized to 0 by default. Static pointers are initialized to nullptr. Here is the code to allocate space 
for, and zero-initialize, ms_counter:

size_t Spreadsheet::ms_counter;

Static data members are zero-initialized by default, but if you want, you can explicitly initialize them 
to 0 as follows:

size_t Spreadsheet::ms_counter { 0 };

This code appears outside of any function or method bodies. It’s almost like declaring a global varia-
ble, except that the Spreadsheet:: scope resolution specifies that it’s part of the Spreadsheet class.

Inline Variables
Since C++17, you can declare your static data members as inline. The benefit of this is that you do 
not have to allocate space for them in a source file. Here’s an example:

export class Spreadsheet
{
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    // Omitted for brevity
    private:
        static inline size_t ms_counter { 0 };
};

Note the inline keyword. With this class definition, the following line can be removed from the 
source file:

size_t Spreadsheet::ms_counter;

Accessing static Data Members within Class Methods
You can use static data members as if they were regular data members from within class methods. 
For example, you might want to create an m_id data member for the Spreadsheet class and initialize 
it from ms_counter in the Spreadsheet constructor. Here is the Spreadsheet class definition with 
an m_id member:

export class Spreadsheet
{
    public:
        // Omitted for brevity 
        size_t getId() const;
    private:
        // Omitted for brevity
        static inline size_t ms_counter { 0 };
        size_t m_id { 0 };
};

Here is an implementation of the Spreadsheet constructor that assigns the initial ID:

Spreadsheet::Spreadsheet(size_t width, size_t height)
    : m_id { ms_counter++ }, m_width { width }, m_height { height }
{
    // Omitted for brevity
}

As you can see, the constructor can access ms_counter as if it were a normal member. The copy con-
structor should also assign a new ID. This is handled automatically because the Spreadsheet copy 
constructor delegates to the non-copy constructor, which creates the new ID.

For this example, let’s assume that once an ID is assigned to an object, it never changes. So, you 
should not copy the ID in the copy assignment operator. Thus, it’s recommended to make m_id a 
const data member:

export class Spreadsheet
{
    private:
        // Omitted for brevity
        const size_t m_id { 0 };
};

Since const data members cannot be changed once created, it’s, for example, not possible to initial-
ize them inside the body of a constructor. Such data members must be initialized either directly inside 
the class definition or in the ctor-initializer of a constructor. This also means you cannot assign new 
values to such data members in an assignment operator. This is not a problem for m_id, because once 
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a Spreadsheet has an ID, it’ll never change. However, depending on your use case, if this makes your 
class unassignable, the assignment operator is typically explicitly deleted.

Accessing static Data Members Outside Methods
Access control specifiers apply to static data members: ms_counter is private, so it cannot be 
accessed from outside class methods. If ms_counter was public, you could access it from outside 
class methods by specifying that the variable is part of the Spreadsheet class with the :: scope reso-
lution operator:

int c { Spreadsheet::ms_counter };

However, it’s not recommended to have public data members (const static data members 
discussed in the next section are an exception). You should grant access through public getters 
and setters. If you want to grant access to a static data member, you can implement static get/
set methods.

const static Data Members
Data members in your class can be declared const, meaning they can’t be changed after they are 
created and initialized. You should use static const (or const static) data members in place 
of global constants when the constants apply only to the class, also called class constants. static 
const data members of integral and enumeration types can be defined and initialized inside the class 
definition even without making them inline variables. For example, you might want to specify a 
maximum height and width for spreadsheets. If the user tries to construct a spreadsheet with a greater 
height or width than the maximum, the maximum is used instead. You can make the maximum 
height and width static const members of the Spreadsheet class:

export class Spreadsheet
{
    public:
        // Omitted for brevity
        static const size_t MaxHeight { 100 };
        static const size_t MaxWidth { 100 };
};

You can use these new constants in your constructor as follows:

Spreadsheet::Spreadsheet(size_t width, size_t height)
    : m_id { ms_counter++ }
    , m_width { min(width, MaxWidth) } // std::min() requires <algorithm>
    , m_height { min(height, MaxHeight) }
{
    // Omitted for brevity
}

NOTE Instead of automatically clamping the width and height to their maximum, 
you could also decide to throw an exception when the width or height exceed 
their maximum. However, the destructor will not be called when you throw an 
exception from a constructor, so you need to be careful with this. This is further 
explained in Chapter 14, which discusses error handling in detail.
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Such constants can also be used as default values for parameters. Remember that you can only give 
default values for a continuous set of parameters starting with the rightmost parameter. Here is 
an example:

export class Spreadsheet
{
    public:
        Spreadsheet(size_t width = MaxWidth, size_t height = MaxHeight);
        // Omitted for brevity
};

Reference Data Members
Spreadsheets and SpreadsheetCells are great, but they don’t make a useful application by them-
selves. You need code to control the entire spreadsheet program, which you could package into a 
SpreadsheetApplication class. Suppose further that we want each Spreadsheet to store a refer-
ence to the application object. The exact definition of the SpreadsheetApplication class is  
not important at this moment, so the following code simply defines it as an empty class. The  
Spreadsheet class is modified to include a new reference data member called m_theApp:

export class SpreadsheetApplication { };
 
export class Spreadsheet
{
    public:
        Spreadsheet(size_t width, size_t height,
            SpreadsheetApplication& theApp);
        // Code omitted for brevity.
    private:
        // Code omitted for brevity.
        SpreadsheetApplication& m_theApp;
};

This definition adds a SpreadsheetApplication reference as a data member. It’s recommended 
to use a reference in this case instead of a pointer because a Spreadsheet should always refer to a 
SpreadsheetApplication. This would not be guaranteed with a pointer.

Note that storing a reference to the application is done only to demonstrate the use of references as 
data members. It’s not recommended to couple the Spreadsheet and SpreadsheetApplication 
classes together in this way, but instead to use a paradigm such as Model-View-Controller (MVC), 
introduced in Chapter 4, “Designing Professional C++ Programs.”

The application reference is given to each Spreadsheet in its constructor. A reference cannot exist 
without referring to something, so m_theApp must be given a value in the ctor-initializer of the 
constructor.

Spreadsheet::Spreadsheet(size_t width, size_t height,
    SpreadsheetApplication& theApp)
    : m_id { ms_counter++ }
    , m_width { std::min(width, MaxWidth) }
    , m_height { std::min(height, MaxHeight) }
    , m_theApp { theApp }
{
    // Code omitted for brevity.
}
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You must also initialize the reference member in the copy constructor. This is handled automatically 
because the Spreadsheet copy constructor delegates to the non-copy constructor, which initializes 
the reference data member.

Remember that after you have initialized a reference, you cannot change the object to which it refers. 
It’s not possible to assign to references in the assignment operator. Depending on your use case, this 
might mean that an assignment operator cannot be provided for your class with reference data mem-
bers. If that’s the case, the assignment operator is typically marked as deleted.

Finally, a reference data member can also be marked as const. For example, you might decide that 
Spreadsheets should only have a reference-to-const to the application object. You can simply 
change the class definition to declare m_theApp as a reference-to-const:

export class Spreadsheet
{
    public:
        Spreadsheet(size_t width, size_t height,
            const SpreadsheetApplication& theApp);
        // Code omitted for brevity.
    private:
        // Code omitted for brevity.
        const SpreadsheetApplication& m_theApp;
};

NESTED CLASSES

Class definitions can contain more than just member functions and data members. You can also write 
nested classes and structs, declare type aliases, or create enumerated types. Anything declared inside 
a class is in the scope of that class. If it is public, you can access it outside the class by scoping it 
with the ClassName:: scope resolution syntax.

You can provide a class definition inside another class definition. For example, you might decide that 
the SpreadsheetCell class is really part of the Spreadsheet class. And since it becomes part of the 
Spreadsheet class, you might as well rename it to Cell. You could define both of them like this:

export class Spreadsheet
{
    public:
        class Cell
        {
            public:
                Cell() = default;
                Cell(double initialValue);
                // Omitted for brevity
        };
 
        Spreadsheet(size_t width, size_t height,
            const SpreadsheetApplication& theApp);
        // Remainder of Spreadsheet declarations omitted for brevity
};



Enumerated Types Inside Classes ❘ 319

Now, the Cell class is defined inside the Spreadsheet class, so anywhere you refer to a Cell outside 
of the Spreadsheet class, you must qualify the name with the Spreadsheet:: scope. This applies 
even to the method definitions. For example, the double constructor of Cell now looks like this:

Spreadsheet::Cell::Cell(double initialValue)
    : m_value { initialValue }
{
}

You must even use the syntax for return types (but not parameters) of methods in the Spreadsheet 
class itself:

Spreadsheet::Cell& Spreadsheet::getCellAt(size_t x, size_t y)
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}

Fully defining the nested Cell class directly inside the Spreadsheet class makes the definition of the 
Spreadsheet class a bit bloated. You can alleviate this by only including a forward declaration for 
Cell in the Spreadsheet class and then defining the Cell class separately, as follows:

export class Spreadsheet
{
    public:
        class Cell;
 
        Spreadsheet(size_t width, size_t height,
            const SpreadsheetApplication& theApp);
        // Remainder of Spreadsheet declarations omitted for brevity
};
class Spreadsheet::Cell
{
    public:
        Cell() = default;
        Cell(double initialValue);
        // Omitted for brevity
};

Normal access control applies to nested class definitions. If you declare a private or protected 
nested class, you can only use it from inside the outer class. A nested class has access to all protected 
and private members of the outer class. The outer class on the other hand can only access public 
members of the nested class.

ENUMERATED TYPES INSIDE CLASSES

Enumerated types can also be data members of a class. For example, you can add support for cell 
coloring to the SpreadsheetCell class as follows:

export class SpreadsheetCell
{
    public:
        // Omitted for brevity

continues
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        enum class Color { Red = 1, Green, Blue, Yellow };
        void setColor(Color color);
        Color getColor() const;
    private:
        // Omitted for brevity
        Color m_color { Color::Red };
};

The implementation of the setColor() and getColor() methods is straightforward:

void SpreadsheetCell::setColor(Color color) { m_color = color; }
SpreadsheetCell::Color SpreadsheetCell::getColor() const { return m_color; }

The new methods can be used as follows:

SpreadsheetCell myCell { 5 };
myCell.setColor(SpreadsheetCell::Color::Blue);
auto color { myCell.getColor() };

OPERATOR OVERLOADING

You often want to perform operations on objects, such as adding them, comparing them, or stream-
ing them to or from files. For example, spreadsheets are useful only when you can perform arithmetic 
actions on them, such as summing an entire row of cells.

Example: Implementing Addition for SpreadsheetCells
In true object-oriented fashion, SpreadsheetCell objects should be able to add themselves to 
other SpreadsheetCell objects. Adding a cell to another cell produces a third cell with the result. 
It doesn’t change either of the original cells. The meaning of addition for SpreadsheetCells is the 
addition of the values of the cells.

First Attempt: The add Method
You can declare and define an add() method for your SpreadsheetCell class like this:

export class SpreadsheetCell
{
    public:
         SpreadsheetCell add(const SpreadsheetCell& cell) const;
        // Omitted for brevity
};

This method adds two cells together, returning a new third cell whose value is the sum of the first 
two. It is declared const and takes a reference to a const SpreadsheetCell because add() does 
not change either of the source cells. Here is the implementation:

SpreadsheetCell SpreadsheetCell::add(const SpreadsheetCell& cell) const
{
    return SpreadsheetCell { getValue() + cell.getValue() };
}

(continued)
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You can use the add() method like this:

SpreadsheetCell myCell { 4 }, anotherCell { 5 };
SpreadsheetCell aThirdCell { myCell.add(anotherCell) };
auto aFourthCell { aThirdCell.add(anotherCell) };

That works, but it’s a bit clumsy. You can do better.

Second Attempt: Overloaded operator+ as a Method
It would be convenient to be able to add two cells with the plus sign the way that you add two ints 
or two doubles—something like this:

SpreadsheetCell myCell { 4 }, anotherCell { 5 };
SpreadsheetCell aThirdCell { myCell + anotherCell };
auto aFourthCell { aThirdCell + anotherCell };

C++ allows you to write your own version of the plus sign, called the addition operator, to work 
correctly with your classes. To do that, you write a method with the name operator+ that looks 
like this:

export class SpreadsheetCell
{
    public:
         SpreadsheetCell operator+(const SpreadsheetCell& cell) const;
        // Omitted for brevity
};

NOTE You are allowed to insert spaces between operator and the plus sign. For 
example, instead of writing operator+, you can write operator +. This book 
adopts the style without spaces.

The definition of the method is identical to the implementation of the add() method:

SpreadsheetCell SpreadsheetCell::operator+(const SpreadsheetCell& cell) const
{
    return SpreadsheetCell { getValue() + cell.getValue() };
}

Now you can add two cells together using the plus sign as shown previously.

This syntax takes a bit of getting used to. Try not to worry too much about the strange method name 
operator+—it’s just a name like foo or add. To understand the rest of the syntax, it helps to under-
stand what’s really going on. When your C++ compiler parses a program and encounters an operator, 
such as +, , =, or <<, it tries to find a function or method with the name operator+, operator, 
operator=, or operator<<, respectively, that takes the appropriate parameters. For example, when 
the compiler sees the following line, it tries to find a method in the SpreadsheetCell class named 
operator+ that takes another SpreadsheetCell object (or, as discussed later in this chapter, a global 
function named operator+ that takes two SpreadsheetCell objects):

SpreadsheetCell aThirdCell { myCell + anotherCell };
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If the SpreadsheetCell class contains an operator+ method, then the previous line is trans-
lated to this:

SpreadsheetCell aThirdCell { myCell.operator+(anotherCell) };

Note that there’s no requirement that operator+ takes as a parameter an object of the same type as 
the class for which it’s written. You could write an operator+ for SpreadsheetCells that takes a 
Spreadsheet to add to the SpreadsheetCell. That wouldn’t make sense to the programmer, but the 
compiler would allow it.

Note also that you can give operator+ any return type you want. However, you should follow the 
principle of least astonishment; that is, the return type of your operator+ should generally be what 
users would expect.

Implicit Conversions
Surprisingly, once you’ve written the operator+ shown earlier, not only can you add two cells 
together, but you can also add a cell to a string_view, a double, or an int! Here’s an example:

SpreadsheetCell myCell { 4 }, aThirdCell;
string str { "hello" };
aThirdCell = myCell + string_view{ str };
aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;

The reason this code works is that the compiler does more to try to find an appropriate operator+ 
than just look for one with the exact types specified. The compiler also tries to find an appropriate 
conversion for the types so that an operator+ can be found. The SpreadsheetCell class has con-
verting constructors (discussed in Chapter 8) to convert a double or a string_view into a  
SpreadsheetCell. In the preceding example, when the compiler sees a SpreadsheetCell trying to 
add itself to double, it finds the SpreadsheetCell constructor that takes a double and constructs a 
temporary SpreadsheetCell object to pass to operator+. Similarly, when the compiler sees the line 
trying to add a SpreadsheetCell to a string_view, it calls the string_view SpreadsheetCell 
constructor to create a temporary SpreadsheetCell to pass to operator+.

Keep in mind, though, that the use of an implicit converting constructor might be inefficient, because 
temporary objects must be created. In this example, to avoid implicit construction for adding a  
double, you could write a second operator+ as follows:

SpreadsheetCell SpreadsheetCell::operator+(double rhs) const
{
    return SpreadsheetCell { getValue() + rhs };
}

Third Attempt: Global operator+
Implicit conversions allow you to use an operator+ method to add your SpreadsheetCell objects 
to ints and doubles. However, the operator is not commutative, as shown in the following code:

aThirdCell = myCell + 5.6; // Works fine.
aThirdCell = myCell + 4;   // Works fine.
aThirdCell = 5.6 + myCell; // FAILS TO COMPILE!
aThirdCell = 4 + myCell;   // FAILS TO COMPILE!
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The implicit conversion works fine when the SpreadsheetCell object is on the left of the operator, 
but it doesn’t work when it’s on the right. Addition is supposed to be commutative, so something 
is wrong here. The problem is that the operator+ method must be called on a SpreadsheetCell 
object, and that object must be on the left-hand side of the operator+. That’s just the way the C++ 
language is defined. So, there’s no way you can get this code to work with an operator+ method.

However, you can get it to work if you replace the in-class operator+ method with a global  
operator+ function that is not tied to any particular object. The function looks like this:

SpreadsheetCell operator+(const SpreadsheetCell& lhs,
    const SpreadsheetCell& rhs)
{
    return SpreadsheetCell { lhs.getValue() + rhs.getValue() };
}

You need to declare this operator in the module interface file and export it:

export class SpreadsheetCell { /* Omitted for brevity */ };
 
export SpreadsheetCell operator+(const SpreadsheetCell& lhs,
    const SpreadsheetCell& rhs);

Now all four of the earlier additions work as you expect.

aThirdCell = myCell + 5.6; // Works fine.
aThirdCell = myCell + 4;   // Works fine.
aThirdCell = 5.6 + myCell; // Works fine.
aThirdCell = 4 + myCell;   // Works fine.

You might be wondering what happens if you write the following code:

aThirdCell = 4.5 + 5.5;

It compiles and runs, but it’s not calling the operator+ you wrote. It does normal double addition of 
4.5 and 5.5, which results in the following intermediate statement:

aThirdCell = 10;

To make this assignment work, there should be a SpreadsheetCell object on the right-hand side. 
The compiler will discover a non-explicit user-defined constructor that takes a double, will use this 
constructor to implicitly convert the double value into a temporary SpreadsheetCell object, and 
will then call the assignment operator.

NOTE In C++, you cannot change the precedence of operators. For example, * 
and / are always evaluated before + and . The only thing user-defined operators 
can do is specify the implementation once the precedence of operations has been 
determined. C++ also does not allow you to invent new operator symbols or to 
change the number of arguments for operators.
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Overloading Arithmetic Operators
Now that you understand how to write operator+, the rest of the basic arithmetic operators are 
straightforward. Here are the declarations of +, , *, and /, where you have to replace <op> with +, , 
*, and /, resulting in four functions. You can also overload %, but it doesn’t make sense for the  
double values stored in SpreadsheetCells.

export class SpreadsheetCell { /* Omitted for brevity */ };
 
export SpreadsheetCell operator<op>(const SpreadsheetCell& lhs,
    const SpreadsheetCell& rhs);

The implementations of operator and operator* are similar to the implementation of operator+, 
so these are not shown. For operator/, the only tricky aspect is remembering to check for division 
by zero. This implementation throws an exception if division by zero is detected:

SpreadsheetCell operator/(const SpreadsheetCell& lhs,
    const SpreadsheetCell& rhs)
{
    if (rhs.getValue() == 0) {
        throw invalid_argument { "Divide by zero." };
    }
    return SpreadsheetCell { lhs.getValue() / rhs.getValue() };
}

C++ does not require you to actually implement multiplication in operator*, division in operator/, 
and so on. You could implement multiplication in operator/, division in operator+, and so forth. 
However, that would be extremely confusing, and there is no good reason to do so. Whenever pos-
sible, stick to the commonly used operator meanings in your implementations.

Overloading the Arithmetic Shorthand Operators
In addition to the basic arithmetic operators, C++ provides shorthand operators such as += and =. 
You might assume that writing operator+ for your class also provides operator+=. No such luck. 
You have to overload the shorthand arithmetic operators explicitly. These operators differ from the 
basic arithmetic operators in that they change the object on the left-hand side of the operator instead 
of creating a new object. A second, subtler difference is that, like the assignment operator, they gener-
ate a result that is a reference to the modified object.

The arithmetic shorthand operators always require an object on the left-hand side, so you  
should write them as methods, not as global functions. Here are the declarations for the  
SpreadsheetCell class:

export class SpreadsheetCell
{
    public:
        SpreadsheetCell& operator+=(const SpreadsheetCell& rhs);
        SpreadsheetCell& operator-=(const SpreadsheetCell& rhs);
        SpreadsheetCell& operator*=(const SpreadsheetCell& rhs);
        SpreadsheetCell& operator/=(const SpreadsheetCell& rhs);
        // Omitted for brevity
};
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Here is the implementation for operator+=. The others are similar.

SpreadsheetCell& SpreadsheetCell::operator+=(const SpreadsheetCell& rhs)
{
    set(getValue() + rhs.getValue());
    return *this;
}

The shorthand arithmetic operators are combinations of the basic arithmetic and assignment opera-
tors. With the previous definitions, you can now write code like this:

SpreadsheetCell myCell { 4 }, aThirdCell { 2 };
aThirdCell = myCell;
aThirdCell += 5.4;

You cannot, however, write code like this (which is a good thing!):

5.4 += aThirdCell;

When you have both a normal and a shorthand version of a certain operator, it’s recommended 
to implement the normal one in terms of the shorthand version to avoid code duplication. Here’s 
an example:

SpreadsheetCell operator+(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
    auto result { lhs };  // Local copy
    result += rhs;        // Forward to +=()
    return result;
}

Overloading Comparison Operators
The comparison operators, >, <, <=, >=, ==, and !=, are another useful set of operators to define for 
your classes. The C++20 standard has brought quite a few changes for these operators and has added 
the three-way comparison operator, also known as the spaceship operator, <=>, introduced in Chap-
ter 1. To make you appreciate more what C++20 has to offer, let’s first start by looking at what you 
had to do before C++20 and what you still need to do as long as your compiler does not support the 
three-way comparison operator yet.

Like the basic arithmetic operators, the six pre-C++20 comparison operators should be global func-
tions so that you can use implicit conversion on both the left- and the right-hand side argument of the 
operator. The comparison operators all return a bool. Of course, you can change the return type, but 
that’s not recommended.

Here are the declarations, where you have to replace <op> with ==, <, >, !=, <=, and >=, resulting in 
six functions:

export class SpreadsheetCell { /* Omitted for brevity */ };
 
export bool operator<op>(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs);

Here is the definition of operator==. The others are similar.

bool operator==(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
    return (lhs.getValue() == rhs.getValue());
}
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NOTE The preceding overloaded comparison operators are comparing double 
values. Most of the time, performing equality or inequality tests on floating-point 
values is not a good idea. You should use a so-called epsilon test, but that falls 
outside the scope of this book.

In classes with more data members, it might be painful to compare each data member. However, once 
you’ve implemented == and <, you can write the rest of the comparison operators in terms of those 
two. For example, here is a definition of operator>= that uses operator<:

bool operator>=(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs)
{
    return !(lhs < rhs);
}

You can use these operators to compare SpreadsheetCells to other SpreadsheetCells, and also to 
doubles and ints:

if (myCell > aThirdCell || myCell < 10) {
    cout << myCell.getValue() << endl;
}

As you can see, you need to write six separate functions to support the six comparison operators, and 
that’s only to compare two SpreadsheelCells with each other. With the current six implemented 
comparison functions, it’s possible to compare a SpreadsheetCell with a double because a double 
argument is implicitly converted to a SpreadsheetCell. As discussed earlier, such implicit conver-
sions might be inefficient, because temporary objects must be created. Just as with operator+ earlier, 
you can avoid this by implementing explicit functions to compare with doubles. For each operator 
<op>, you would then need the following three overloads:

bool operator<op>(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs);
bool operator<op>(double lhs, const SpreadsheetCell& rhs);
bool operator<op>(const SpreadsheetCell& lhs, double rhs);

If you want to support all comparison operators, that’s a lot of repetitive code to write!

Let’s now switch gears and see what C++20 brings to the table. C++20 simplifies adding support for 
comparison operators to your classes a lot. First, with C++20, it is actually recommended to imple-
ment operator== as a member function of the class instead of a global function. Note also that it’s a 
good idea to add the [[nodiscard]] attribute so the result of the operator cannot be ignored. Here’s 
an example:

[[nodiscard]] bool operator==(const SpreadsheetCell& rhs) const;

With C++20, this single operator== overload makes the following comparisons work:

if (myCell == 10) { cout << "myCell == 10\n"; }
if (10 == myCell) { cout << "10 == myCell\n"; }

An expression such as 10==myCell is rewritten by a C++20 compiler as myCell==10 for which the 
operator== member function can be called. Additionally, by implementing operator==, C++20 
automatically adds support for != as well.

C++20
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Next, to implement support for the full suite of comparison operators, in C++20 you just need to 
implement one additional overloaded operator, operator<=>. Once your class has an overload for 
operator== and <=>, C++20 automatically provides support for all six comparison operators! For 
the SpreadsheetCell class, operator<=> looks as follows:

[[nodiscard]] std::partial_ordering operator<=>(const SpreadsheetCell& rhs) const;

NOTE A C++20 compiler will not rewrite == or != comparisons in terms of <=>. 
This is done to avoid performance issues, as an explicit implementation of  
operator== is typically more efficient than using <=>.

The value stored in a SpreadsheetCell is a double. Remember from Chapter 1 that floating-point 
types only have a partial order, so that’s why the overload returns std::partial_ordering. The 
implementation is straightforward:

partial_ordering SpreadsheetCell::operator<=>(const SpreadsheetCell& rhs) const
{
    return getValue() <=> rhs.getValue();
}

By implementing operator<=>, C++20 automatically provides support for >, <, <=, and >=, 
by rewriting expressions using those operators to use <=> instead. For example, an expression 
such as myCell<aThirdCell is automatically rewritten to something equivalent to std::is_
lt(myCell<=>aThirdCell), where is_lt() is a named comparison function; see Chapter 1.

So, by just implementing operator== and operator<=>, the SpreadsheetCell class supports the 
full set of comparison operators:

if (myCell < aThirdCell) { cout << "myCell < aThirdCell\n"; }
if (aThirdCell < myCell) { cout << "aThirdCell < myCell\n"; }
 
if (myCell <= aThirdCell) { cout << "myCell <= aThirdCell\n"; }
if (aThirdCell <= myCell) { cout << "aThirdCell <= myCell\n"; }
 
if (myCell > aThirdCell) { cout << "myCell > aThirdCell\n"; }
if (aThirdCell > myCell) { cout << "aThirdCell > myCell\n"; }
 
if (myCell >= aThirdCell) { cout << "myCell >= aThirdCell\n"; }
if (aThirdCell >= myCell) { cout << "aThirdCell >= myCell\n"; }
 
if (myCell == aThirdCell) { cout << "myCell == aThirdCell\n"; }
if (aThirdCell == myCell) { cout << "aThirdCell == myCell\n"; }
 
if (myCell != aThirdCell) { cout << "myCell != aThirdCell\n"; }
if (aThirdCell != myCell) { cout << "aThirdCell != myCell\n"; }
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Since the SpreadsheetCell class supports implicit conversion from double to a SpreadsheetCell, 
comparisons such as the following are supported as well:

if (myCell < 10) { cout << "myCell < 10\n"; }
if (10 < myCell) { cout << "10 < myCell\n"; }
if (10 != myCell) { cout << "10 != myCell\n"; }

As with comparing two SpreadsheetCell objects, the compiler rewrites such expressions in terms of 
operator== and <=>, and optionally swaps the order of the arguments. For example, 10<myCell is 
rewritten first to something equivalent to is_lt(10<=>myCell), which won’t work because we  
only have an overload for <=> as a member, meaning that the left-hand side argument must be a 
SpreadsheetCell. Noticing this, the compiler then tries to rewrite the expression to something 
equivalent to is_gt(myCell<=>10), which works out fine.

As before, if you want to avoid the slight performance impact of implicit conversions, you can pro-
vide specific overloads for doubles. And this is now, thanks to C++20, not even a lot of work. You 
only need to provide the following two additional overloaded operators as methods:

[[nodiscard]] bool operator==(double rhs) const;
[[nodiscard]] std::partial_ordering operator<=>(double rhs) const;

These are implemented as follows:

bool SpreadsheetCell::operator==(double rhs) const
{
    return getValue() == rhs;
}
std::partial_ordering SpreadsheetCell::operator<=>(double rhs) const
{
    return getValue() <=> rhs;
}

Compiler-Generated Comparison Operators
Looking at the implementation of operator== and <=> for SpreadsheetCell, they simply compare 
all data members. In such a case, we can reduce the number of lines of code we need to write even 
further, as C++20 can write those for us. Just as, for example, a copy constructor can be explicitly 
defaulted, operator== and <=> can also be defaulted in which case the compiler writes them for you 
and implements them by comparing each data member in turn. Additionally, if you just explicitly 
default operator<=>, the compiler automatically includes a defaulted operator== as well. So, for the 
SpreadsheetCell version without the explicit operator== and <=> for doubles (I’ll come back to 
this later in this section), we can simply write the following single line of code to add full support for 
all six comparison operators to compare two SpreadsheetCells:

[[nodiscard]] std::partial_ordering operator<=>(
    const SpreadsheetCell&) const = default;

Furthermore, you can use auto as the return type for operator<=>, in which case the compiler 
deduces the return type based on the return types of the <=> operator for the data members. If your 
class has data members that do not support operator<=>, then return type deduction won’t work 
and you need to explicitly specify the return type to be either strong_ordering, partial_ordering, 
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or weak_ordering. For the compiler to be able to write a defaulted <=> operator, all data members of 
the class need to either support operator<=>, in which case the return type can be auto, or  
operator< and ==, in which case the return type cannot be auto. Since SpreadsheetCell has a  
single double as data member, the compiler deduces the return type to be partial_ordering.

[[nodiscard]] auto operator<=>(const SpreadsheetCell&) const = default;

In the beginning of this section, I mentioned that this single explicitly defaulted operator<=> works 
for the SpreadsheetCell version without the explicit operator== and <=> for doubles. If you do 
add those explicit double versions, you are adding a user-declared operator==(double). Because of 
this, the compiler will no longer automatically generate an operator==(const SpreadsheetCell&), 
so you have to explicitly default one yourself as follows:

export class SpreadsheetCell
{
    public:
        // Omitted for brevity
        [[nodiscard]] auto operator<=>(const SpreadsheetCell&) const = default;
        [[nodiscard]] bool operator==(const SpreadsheetCell&) const = default;
 
        [[nodiscard]] bool operator==(double rhs) const;
        [[nodiscard]] std::partial_ordering operator<=>(double rhs) const;
        // Omitted for brevity
};

If you can explicitly default operator<=> for your class, I recommend doing that instead of imple-
menting it yourself. By letting the compiler write it for you, it will stay up-to-date with newly added 
or modified data members. If you implement the operator yourself, then whenever you add data 
members or change existing data members, you need to remember to update your implementa-
tion of operator<=>. The same holds for operator== in case it’s not automatically generated by 
the compiler.

It is only possible to explicitly default operator== and <=> when they have as parameter a ref-
erence-to-const to the class type for which the operators are defined. For example, the following 
does not work:

[[nodiscard]] auto operator<=>(double) const = default;  // Does not work!

NOTE To add support for all six comparison operators to a class in C++20:

➤➤ If a defaulted operator<=> works for your class, 
then a single line of code to explicitly default opera
tor<=> as a method is all you need to do. In certain 
cases, you might need to explicitly default opera
tor== as well.

➤➤ Otherwise, just overload and implement operator== 
and <=> as methods.

There is no need to manually implement the other comparison operators.
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Building Types with Operator Overloading
Many people find the syntax of operator overloading tricky and confusing, at least at first. The irony 
is that it’s supposed to make things simpler. As you’ve discovered, that doesn’t mean simpler for the 
person writing the class, but simpler for the person using the class. The point is to make your new 
classes as similar as possible to built-in types such as int and double: it’s easier to add objects using 
+ than to remember whether the method name you should call is add() or sum().

NOTE Provide operator overloading as a service to clients of your class.

At this point, you might be wondering exactly which operators you can overload. The answer is 
almost all of them—even some you’ve never heard of. You have actually just scratched the surface: 
you’ve seen the assignment operator in the section on object life cycles, the basic arithmetic operators, 
the shorthand arithmetic operators, and the comparison operators. Overloading the stream insertion 
and extraction operators is also useful. In addition, there are some tricky, but interesting, things you 
can do with operator overloading that you might not anticipate at first. The Standard Library uses 
operator overloading extensively. Chapter 15, “Overloading C++ Operators,” explains how and when 
to overload the rest of the operators. Chapters 16 to 24 cover the Standard Library.

BUILDING STABLE INTERFACES

Now that you understand all the syntax of writing classes in C++, it helps to revisit the design prin-
ciples from Chapters 5, “Designing with Objects,” and 6. Classes are the main unit of abstraction in 
C++. You should apply the principles of abstraction to your classes to separate the interface from the 
implementation as much as possible. Specifically, you should make all data members private and 
optionally provide getter and setter methods. This is how the SpreadsheetCell class is implemented: 
m_value is private, while the public set() sets the value, and getValue() and getString() 
retrieve the value.

Using Interface and Implementation Classes
Even with the preceding measures and the best design principles, the C++ language is fundamentally 
unfriendly to the principle of abstraction. The syntax requires you to combine your public interfaces 
and private (or protected) data members and methods together in one class definition, thereby 
exposing some of the internal implementation details of the class to its clients. The downside of this is 
that if you have to add new non-public methods or data members to your class, all the clients of the 
class have to be recompiled. This can become a burden in bigger projects.

The good news is that you can make your interfaces a lot cleaner and hide all implementation details, 
resulting in stable interfaces. The bad news is that it takes a bit of coding. The basic principle is to 
define two classes for every class you want to write: the interface class and the implementation class. 
The implementation class is identical to the class you would have written if you were not taking this 
approach. The interface class presents public methods identical to those of the implementation class, 
but it has only one data member: a pointer to an implementation class object. This is called the pimpl 
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idiom, private implementation idiom, or bridge pattern. The interface class method implementations 
simply call the equivalent methods on the implementation class object. The result of this is that no 
matter how the implementation changes, it has no impact on the public interface class. This reduces 
the need for recompilation. None of the clients that use the interface class need to be recompiled if 
the implementation (and only the implementation) changes. Note that this idiom works only if the 
single data member is a pointer to the implementation class. If it were a by-value data member, clients 
would have to recompile when the definition of the implementation class changes.

To use this approach with the Spreadsheet class, define the following public interface class, called 
Spreadsheet. The important parts are highlighted.

module;
#include <cstddef>
 
export module spreadsheet;
 
export import spreadsheet_cell;
import <memory>;
 
export class SpreadsheetApplication { };
 
export class Spreadsheet
{
    public:
        Spreadsheet(const SpreadsheetApplication& theApp,
            size_t width = MaxWidth, size_t height = MaxHeight);
        Spreadsheet(const Spreadsheet& src);
        Spreadsheet(Spreadsheet&&) noexcept;
        ~Spreadsheet();
 
        Spreadsheet& operator=(const Spreadsheet& rhs);
        Spreadsheet& operator=(Spreadsheet&&) noexcept;
 
        void setCellAt(size_t x, size_t y, const SpreadsheetCell& cell);
        SpreadsheetCell& getCellAt(size_t x, size_t y);
 
        size_t getId() const;
 
        static const size_t MaxHeight { 100 };
        static const size_t MaxWidth { 100 };
 
        void swap(Spreadsheet& other) noexcept;
 
    private:
        class Impl;
        std::unique_ptr<Impl> m_impl;
};
export void swap(Spreadsheet& first, Spreadsheet& second) noexcept;

The implementation class, Impl, is a private nested class, because no one else besides the  
Spreadsheet class needs to know about this implementation class. The Spreadsheet class now 
contains only one data member: a pointer to an Impl instance. The public methods are identical to 
the old Spreadsheet.
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The nested Spreadsheet::Impl class is defined in a spreadsheet module implementation file. It 
should be hidden from clients, so the Impl class is not exported. The Spreadsheet.cpp module 
implementation file starts as follows:

module;
#include <cstddef>
 
module spreadsheet; 
 
import <utility>;
import <stdexcept>;
import <format>;
import <algorithm>;
 
using namespace std;
 
// Spreadsheet::Impl class definition.
class Spreadsheet::Impl { /* Omitted for brevity */ };
 
// Spreadsheet::Impl method definitions.
Spreadsheet::Impl::Impl(const SpreadsheetApplication& theApp,
    size_t width, size_t height)
    : m_id { ms_counter++ }
    , m_width { min(width, Spreadsheet::MaxWidth) }
    , m_height { min(height, Spreadsheet::MaxHeight) }
    , m_theApp { theApp }
{
    m_cells = new SpreadsheetCell*[m_width];
    for (size_t i{ 0 }; i < m_width; i++) {
        m_cells[i] = new SpreadsheetCell[m_height];
    }
}
// Other method definitions omitted for brevity.

The Impl class has almost the same interface as the original Spreadsheet class. For the method 
implementations, you need to remember that Impl is a nested class; hence, you need to specify the 
scope as Spreadsheet::Impl. So, for the constructor, it becomes Spreadsheet::Impl::Impl(...).

Now that the Spreadsheet class has a unique_ptr to the implementation class, the Spreadsheet 
class needs to have a user-declared destructor. Since we don’t need to do anything in this destructor, it 
can be defaulted in the implementation file as follows:

Spreadsheet::~Spreadsheet() = default;

In fact, it must be defaulted in the implementation file and not directly in the class definition. The 
reason is that the Impl class is only forward declared in the Spreadsheet class definition; that is, the 
compiler knows there will be a Spreadsheet::Impl class somewhere, but at this time it does not 
know the definition yet. As such, you cannot default the destructor in the class definition, because 
then the compiler would try to use the destructor of the as of yet undefined Impl class. The same 
is true when defaulting other methods in this case, such as the move constructor and move assign-
ment operator.
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The implementations of the Spreadsheet methods, such as setCellAt() and getCellAt(), just 
pass the request on to the underlying Impl object:

void Spreadsheet::setCellAt(size_t x, size_t y, const SpreadsheetCell& cell)
{
    m_impl>setCellAt(x, y, cell);
}
 
SpreadsheetCell& Spreadsheet::getCellAt(size_t x, size_t y)
{
    return m_impl>getCellAt(x, y);
}

The constructors for the Spreadsheet must construct a new Impl to do its work:

Spreadsheet::Spreadsheet(const SpreadsheetApplication& theApp,
    size_t width, size_t height) 
{
    m_impl = make_unique<Impl>(theApp, width, height);
}
 
Spreadsheet::Spreadsheet(const Spreadsheet& src)
{
    m_impl = make_unique<Impl>(*src.m_impl);
}

The copy constructor looks a bit strange because it needs to copy the underlying Impl from the 
source spreadsheet. The copy constructor takes a reference to an Impl, not a pointer, so you must 
dereference the m_impl pointer to get to the object itself.

The Spreadsheet assignment operator must similarly pass on the assignment to the underlying Impl:

Spreadsheet& Spreadsheet::operator=(const Spreadsheet& rhs)
{
    *m_impl = *rhs.m_impl;
    return *this;
}

The first line in the assignment operator looks a little odd. The Spreadsheet assignment operator 
needs to forward the call to the Impl assignment operator, which runs only when you copy direct 
objects. By dereferencing the m_impl pointers, you force direct object assignment, which causes the 
assignment operator of Impl to be called.

The swap() method simply swaps the single data member:

void Spreadsheet::swap(Spreadsheet& other) noexcept
{
    std::swap(m_impl, other.m_impl);
}

This technique to truly separate the interface from the implementation is powerful. Although it is a 
bit clumsy at first, once you get used to it, you will find it natural to work with. However, it’s not 
common practice in most workplace environments, so you might find some resistance to trying it 
from your coworkers. The most compelling argument in favor of it is not the aesthetic one of splitting 
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out the interface, but the speedup in build time if the implementation of the class changes. When a 
class is not using the pimpl idiom, a change to its implementation details might trigger a long rebuild. 
For example, adding a new data member to a class definition triggers a rebuild of all other source 
files that use this class definition. With the pimpl idiom, you can modify the implementation class 
definition as much as you like, and as long as the public interface class remains untouched, it won’t 
trigger a long rebuild.

NOTE With stable interface classes, build times can be reduced.

An alternative to separating the implementation from the interface is to use an abstract interface—
that is, an interface with only pure virtual methods—and then have an implementation class that 
implements that interface. That’s a topic for the next chapter.

SUMMARY

This chapter, along with Chapter 8, provided all the tools you need to write solid, well-designed 
classes, and to use objects effectively.

You discovered that dynamic memory allocation in objects presents new challenges: you need to 
implement a destructor, copy constructor, copy assignment operator, move constructor, and move 
assignment operator, which properly copy, move, and free your memory. You learned how to prevent 
pass-by-value and assignment by explicitly deleting the copy constructor and assignment operator. 
You discovered the copy-and-swap idiom to implement copy assignment operators and learned about 
the rule of zero.

You read more about different kinds of data members, including static, const, reference-to-const, 
and mutable members. You also learned about static, inline, and const methods, method 
overloading, and default arguments. This chapter also described nested class definitions, and friend 
classes, functions, and methods.

You encountered operator overloading and learned how to overload the arithmetic and comparison 
operators, both as global functions and as class methods. You also discovered how to add support for 
C++20’s three-way comparison operator to your own classes.

Finally, you learned how to take abstraction to the extreme by providing separate interface and 
implementation classes.

Now that you’re fluent in the language of object-oriented programming, it’s time to tackle inherit-
ance, which is covered next in Chapter 10, “Discovering Inheritance Techniques.”
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 9-1: Take your implementation of the Person class from Exercise 8-3 and adapt it to 
pass strings in the most optimal way you can think of. Additionally, add a move constructor 
and move assignment operator to it. In both methods, write a message to the console so you 
can track when they get called. Implement any additional methods you need for implement-
ing the move methods and for improving the implementation of other methods from Exercise 
8-3 to avoid code duplication. Modify main() to test your methods.

Exercise 9-2: Based on the Person class from Exercise 8-4, add full support for all six 
comparison operators to compare two Person objects. Try to implement this support in the 
least amount of code. Test your implementation by performing all kinds of comparisons in 
main(). How are Persons ordered? Is the ordering happening based on the first name, or 
based on the last name, or based on a combination?

Exercise 9-3: Before C++20, adding support for all six comparison operators required a bit 
more lines of code. Start from the Person class from Exercise 9-2, remove the operator<=>, 
and add the necessary code to add all comparison operators to compare two Person objects 
without using <=>. Perform the same set of tests as you’ve implemented for Exercise 9-2.

Exercise 9-4: In this exercise, you’ll practice writing stable interfaces. Take your Person class 
from Exercise 8-4, and split it up into a stable public interface class and a separate implemen-
tation class.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?

➤➤ How to extend a class through inheritance

➤➤ How to employ inheritance to reuse code

➤➤ How to build interactions between base classes and derived classes

➤➤ How to use inheritance to achieve polymorphism

➤➤ How to work with multiple inheritance

➤➤ How to deal with unusual problems in inheritance

➤➤ How to cast one type to another type

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the Download  
Code tab.

Without inheritance, classes would simply be data structures with associated behaviors. That 
alone would be a powerful improvement over procedural languages, but inheritance adds an 
entirely new dimension. Through inheritance, you can build new classes based on existing ones. 
In this way, your classes become reusable and extensible components. This chapter teaches you 
the different ways to leverage the power of inheritance. You will learn about the specific syntax 
of inheritance as well as sophisticated techniques for making the most of inheritance.

http://www.wiley.com/go/proc++5e
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The portion of this chapter relating to polymorphism draws heavily on the spreadsheet example 
discussed in Chapter 8, “Gaining Proficiency with Classes,” and Chapter 9, “Mastering Classes and 
Objects.” This chapter also refers to the object-oriented methodologies described in Chapter 5, 
“Designing with Objects.” If you have not read that chapter and are unfamiliar with the theories 
behind inheritance, you should review Chapter 5 before continuing.

BUILDING CLASSES WITH INHERITANCE

In Chapter 5, you learned that an is-a relationship recognizes the pattern that real-world objects tend 
to exist in hierarchies. In programming, that pattern becomes relevant when you need to write a class 
that builds on, or slightly changes, another class. One way to accomplish this aim is to copy code 
from one class and paste it into the other. By changing the relevant parts or amending the code, you 
can achieve the goal of creating a new class that is slightly different from the original. This approach, 
however, leaves an OOP programmer feeling sullen and highly annoyed for the following reasons:

➤➤ A bug fix to the original class will not be reflected in the new class because the two classes 
contain completely separate code.

➤➤ The compiler does not know about any relationship between the two classes, so they are not 
polymorphic (see Chapter 5)—they are not just different variations on the same thing.

➤➤ This approach does not build a true is-a relationship. The new class is similar to the original 
because it shares code, not because it really is the same type of object.

➤➤ The original code might not be obtainable. It may exist only in a precompiled binary format, 
so copying and pasting the code might be impossible.

Not surprisingly, C++ provides built-in support for defining a true is-a relationship. The characteris-
tics of C++ is-a relationships are described in the following section.

Extending Classes
When you write a class definition in C++, you can tell the compiler that your class is inheriting from, 
deriving from, or extending an existing class. By doing so, your class automatically contains the data 
members and methods of the original class, which is called the parent class or base class or superclass. 
Extending an existing class gives your class (which is now called a derived class or a subclass) the 
ability to describe only the ways in which it is different from the parent class.

To extend a class in C++, you specify the class you are extending when you write the class definition. 
To show the syntax for inheritance, two classes are used, Base and Derived. Don’t worry—more 
interesting examples are coming later. To begin, consider the following definition for the Base class:

class Base
{
    public:
        void someMethod() {}
    protected:
        int m_protectedInt { 0 };
    private:
        int m_privateInt { 0 };
};
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If you want to build a new class, called Derived, which inherits from Base, you use the follow-
ing syntax:

class Derived : public Base
{
    public:
        void someOtherMethod() {}
};

Derived is a full-fledged class that just happens to share the characteristics of 
the Base class. Don’t worry about the word public for now—its meaning is 
explained later in this chapter. Figure 10-1 shows the simple relationship between 
Derived and Base. You can declare objects of type Derived just like any other 
object. You could even define a third class that inherits from Derived, forming a 
chain of classes, as shown in Figure 10-2.

Derived doesn’t have to be the only derived class of Base. Additional classes 
can also inherit from Base, effectively becoming siblings to Derived, as shown 
in Figure 10-3.

A Client’s View of Inheritance
To a client, or another part of your code, an object of type Derived is also an 
object of type Base because Derived inherits from Base. This means that all the 
public methods and data members of Base and all the public methods and 
data members of Derived are available.

Code that uses the derived class does not need to know which class 
in your inheritance chain has defined a method in order to call it. For 
example, the following code calls two methods of a Derived object even 
though one of the methods is defined by the Base class:

Derived myDerived;
myDerived.someMethod();
myDerived.someOtherMethod();

It is important to understand that inheritance works in only one direc-
tion. The Derived class has a clearly defined relationship to the Base class, but the Base class, as 
written, doesn’t know anything about the Derived class. That means objects of type Base do not sup-
port public methods and data members of Derived because Base is not a Derived.

The following code does not compile because the Base class does not contain a public method called 
someOtherMethod():

Base myBase;
myBase.someOtherMethod();  // Error! Base doesn't have a someOtherMethod().

NOTE From the perspective of other code, an object belongs to its defined class as 
well as to any base classes.

FIGURE 10-1 

FIGURE 10-2 

FIGURE 10-3 
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A pointer or reference to an object can refer to an object of the declared class or any of its derived 
classes. This tricky subject is explained in detail later in this chapter. The concept to understand now 
is that a pointer to a Base can actually be pointing to a Derived object. The same is true for a refer-
ence. The client can still access only the methods and data members that exist in Base, but through 
this mechanism, any code that operates on a Base can also operate on a Derived.

For example, the following code compiles and works just fine, even though it initially appears that 
there is a type mismatch:

Base* base { new Derived{} }; // Create Derived, store in Base pointer.

However, you cannot call methods from the Derived class through the Base pointer. The following 
does not work:

base->someOtherMethod();

This is flagged as an error by the compiler because, although the object is of type Derived and there-
fore does have someOtherMethod() defined, the compiler can only think of it as type Base, which 
does not have someOtherMethod() defined.

A Derived Class’s View of Inheritance
To the derived class, nothing much has changed in terms of how it is written or how it behaves. 
You can still define methods and data members on a derived class just as you would on a regular 
class. The previous definition of Derived declares a method called someOtherMethod(). Thus, the 
Derived class augments the Base class by adding an additional method.

A derived class can access public and protected methods and data members declared in its base 
class as though they were its own, because technically they are. For example, the implementation 
of someOtherMethod() on Derived could make use of the data member m_protectedInt, which 
is declared as part of Base. The following code shows this. Accessing a base class data member or 
method is no different than if the data member or method were declared as part of the derived class.

void Derived::someOtherMethod()
{
    cout << "I can access base class data member m_protectedInt." << endl;
    cout << "Its value is " << m_protectedInt << endl;
}

If a class declares methods or data members as protected, derived classes have access to them. If 
they are declared as private, derived classes do not have access. The following implementation of 
someOtherMethod() does not compile because the derived class attempts to access a private data 
member from the base class:

void Derived::someOtherMethod()
{
    cout << "I can access base class data member m_protectedInt." << endl;
    cout << "Its value is " << m_protectedInt << endl;
    cout << "The value of m_privateInt is " << m_privateInt << endl; // Error!
} 

The private access specifier gives you control over how a potential derived class could interact with 
your class. I recommend that you make all your data members private by default. You can provide 
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public getters and setters if you want to allow anyone to access those data members, and you can 
provide protected getters and setters if you want only derived classes to access them. The reason to 
make data members private by default is that this provides the highest level of encapsulation. This 
means that you can change how you represent your data while keeping the public and protected 
interfaces unchanged. Additionally, without giving direct access to data members, you can easily add 
checks on the input data in your public and protected setters. Methods should also be private 
by default. Only make those methods public that are designed to be public, and make methods 
 protected if you want only derived classes to have access to them.

NOTE From the perspective of a derived class, all public and protected data 
members and methods from the base class are available for use.

The following table summarizes the meaning of all three access specifiers:

ACCESS SPECIFIER MEANING WHEN TO USE

public Any code can call a public 
member function or access 
a public data member of 
an object.

Behaviors (methods) that you want 
clients to use.

Access methods (getters and 
setters) for private and protected 
data members.

protected Any member function of the class 
can call protected member 
functions and access protected 
data members. Member 
functions of a derived class can 
access protected members of a 
base class.

“Helper” methods that you do not want 
clients to use.

private Only member functions of the 
class can call private member 
functions and access private 
data members. Member 
functions in derived classes 
cannot access private members 
from a base class.

Everything should be private by 
default, especially data members. You 
can provide protected getters and 
setters if you only want to allow derived 
classes to access them, and provide 
public getters and setters if you want 
clients to access them.

Preventing Inheritance
C++ allows you to mark a class as final, which means trying to inherit from it will result in a com-
pilation error. A class can be marked as final with the final keyword right behind the name of the 
class. For example, if a class tries to inherit from the following Foo class, the compiler will complain:

class Foo final { };
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Overriding Methods
The main reasons to inherit from a class are to add or replace functionality. The definition of 
Derived adds functionality to its parent class by providing an additional method, someOther-
Method(). The other method, someMethod(), is inherited from Base and behaves in the derived class 
exactly as it does in the base class. In many cases, you will want to modify the behavior of a class by 
replacing, or overriding, a method.

The virtual Keyword
There is one small twist to overriding methods in C++, and it has to do with the keyword virtual. 
Only methods that are declared as virtual in the base class can be overridden properly by derived 
classes. The keyword goes at the beginning of a method declaration as shown in the modified version 
of Base that follows:

class Base
{
    public:
        virtual void someMethod() {}
    protected:
        int m_protectedInt { 0 };
    private:
        int m_privateInt { 0 };
};

The same holds for the Derived class. Its methods should also be marked virtual if you want to 
override them in further derived classes:

class Derived : public Base
{
    public:
        virtual void someOtherMethod();
};

Syntax for Overriding a Method
To override a method, you redeclare it in the derived class definition exactly as it was declared in the 
base class, but you add the override keyword and remove the virtual keyword.

For example, the Base class contains a method called someMethod(). The definition of  
someMethod() could be as follows:

void Base::someMethod()
{
    cout << "This is Base's version of someMethod()." << endl;
}

Note that you do not repeat the virtual keyword in front of the method definition.

If you want to provide a new definition for someMethod() in the Derived class, you must first add 
it to the class definition for Derived, as follows. Note the absence of the virtual keyword and the 
addition of the override keyword.

class Derived : public Base
{
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    public:
        void someMethod() override; // Overrides Base's someMethod()
        virtual void someOtherMethod();
};

The new definition of someMethod() is specified along with the rest of Derived’s methods:

void Derived::someMethod()
{
    cout << "This is Derived's version of someMethod()." << endl;
}

If you want, you are allowed to add the virtual keyword in front of overridden methods, but it’s 
redundant. Here’s an example:

class Derived : public Base
{
    public:
        virtual void someMethod() override;  // Overrides Base's someMethod()
};

Once a method or destructor is marked as virtual, it is virtual for all derived classes even if the 
virtual keyword is removed from derived classes.

A Client’s View of Overridden Methods
With the preceding changes, other code still calls someMethod() the same way it did before. Just as 
before, the method could be called on an object of class Base or an object of class Derived. Now, 
however, the behavior of someMethod() varies based on the class of the object.

For example, the following code works just as it did before, calling Base’s version of someMethod():

Base myBase;
myBase.someMethod();  // Calls Base's version of someMethod().

The output of this code is as follows:

This is Base's version of someMethod().

If the code declares an object of class Derived, the other version is automatically called:

Derived myDerived;
myDerived.someMethod();   // Calls Derived's version of someMethod()

The output this time is as follows:

This is Derived's version of someMethod().

Everything else about objects of class Derived remains the same. Other methods that might have 
been inherited from Base still have the definition provided by Base unless they are explicitly overrid-
den in Derived.

As you learned earlier, a pointer or reference can refer to an object of a class or any of its derived 
classes. The object itself “knows” the class of which it is actually a member, so the appropriate 
method is called as long as it was declared virtual. For example, if you have a Base reference that 
refers to an object that is really a Derived, calling someMethod() actually calls the derived class’s 
version, as shown next. This aspect of overriding does not work properly if you omit the virtual 
keyword in the base class.
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Derived myDerived;
Base& ref { myDerived };
ref.someMethod();   // Calls Derived's version of someMethod()

Remember that even though a base class reference or pointer knows that it is actually a derived  
class, you cannot access derived class methods or members that are not defined in the base class.  
The following code does not compile because a Base reference does not have a method called  
someOtherMethod():

Derived myDerived;
Base& ref { myDerived };
myDerived.someOtherMethod();  // This is fine.
ref.someOtherMethod();        // Error

The derived class knowledge characteristic is not true for nonpointer or nonreference objects. You 
can cast or assign a Derived to a Base because a Derived is a Base. However, the object loses any 
knowledge of the derived class at that point.

Derived myDerived;
Base assignedObject { myDerived };  // Assigns a Derived to a Base.
assignedObject.someMethod();        // Calls Base's version of someMethod()

One way to remember this seemingly strange behavior is to imagine what the objects look like in 
memory. Picture a Base object as a box taking up a certain amount of memory. A Derived object is 
a box that is slightly bigger because it has everything a Base has plus a bit more. Whether you have 
a Derived or Base reference or pointer to a Derived, the box doesn’t change—you just have a new 
way of accessing it. However, when you cast a Derived into a Base, you are throwing out all the 
“uniqueness” of the Derived class to fit it into a smaller box.

NOTE Derived classes retain all their data members and methods when referred 
to by base class pointers or references. They lose their uniqueness when cast to 
a base class object. The loss of the derived class’s data members and methods is 
called slicing.

The override Keyword
The use of the override keyword is optional, but highly recommended. Without the keyword, it 
could be possible to accidentally create a new virtual method instead of overriding a method from 
the base class. Take the following Base and Derived classes where Derived is properly overriding 
someMethod(), but is not using the override keyword:

class Base
{
    public:
        virtual void someMethod(double d);
};
 
class Derived : public Base
{
    public:
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        virtual void someMethod(double d);
};

You can call someMethod() through a reference as follows:

Derived myDerived;
Base& ref { myDerived };
ref.someMethod(1.1);  // Calls Derived's version of someMethod()

This correctly calls the overridden someMethod() from the Derived class. Now, suppose you acci-
dentally use an integer parameter instead of a double while overriding someMethod(), as follows:

class Derived : public Base
{
    public:
        virtual void someMethod(int i);
};

This code does not override someMethod() from Base, but instead creates a new virtual method. 
If you try to call someMethod() through a Base reference as in the following code, someMethod() of 
Base is called instead of the one from Derived!

Derived myDerived;
Base& ref { myDerived };
ref.someMethod(1.1);  // Calls Base's version of someMethod()

This type of problem can happen when you start to modify the Base class but forget to update  
all derived classes. For example, maybe your first version of the Base class has a method called 
someMethod() accepting an integer. You then write the Derived class overriding this someMethod() 
accepting an integer. Later you decide that someMethod() in Base needs a double instead of an inte-
ger, so you update someMethod() in the Base class. It could happen that at that time, you forget to 
update overrides of someMethod() in derived classes to also accept a double instead of an integer. By 
forgetting this, you are now actually creating a new virtual method instead of properly overriding 
the base method.

You can prevent this situation by using the override keyword as follows:

class Derived : public Base
{
    public:
        void someMethod(int i) override;
};

This definition of Derived generates a compilation error, because with the override keyword you 
are saying that someMethod() is supposed to be overriding a method from a base class, but the Base 
class has no someMethod() accepting an integer, only one accepting a double.

The problem of accidentally creating a new method instead of properly overriding one can also hap-
pen when you rename a method in the base class and forget to rename the overriding methods in 
derived classes.

WARNING Always use the override keyword on methods that are meant to be 
overriding methods from a base class.
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The Truth About virtual
If a method is not virtual, you can still attempt to override it, but it will be wrong in subtle ways.

Hiding Instead of Overriding
The following code shows a base class and a derived class, each with a single method. The derived 
class is attempting to override the method in the base class, but it is not declared to be virtual in the 
base class.

class Base
{
    public:
        void go() { cout << "go() called on Base" << endl; }
};
 
class Derived : public Base
{
    public:
        void go() { cout << "go() called on Derived" << endl; }
};

Attempting to call go() on a Derived object initially appears to work:

Derived myDerived;
myDerived.go();

The output of this call is, as expected, “go() called on Derived.” However, because the method is not 
virtual, it is not actually overridden. Rather, the Derived class creates a new method, also called 
go(), that is completely unrelated to the Base class’s method called go(). To prove this, simply call 
the method in the context of a Base pointer or reference:

Derived myDerived;
Base& ref { myDerived };
ref.go();

You would expect the output to be “go() called on Derived,” but in fact, the output is “go() called 
on Base.” This is because the ref variable is a Base reference and because the virtual keyword was 
omitted. When the go() method is called, it simply executes Base’s go() method. Because it is not 
virtual, there is no need to consider whether a derived class has overridden it.

WARNING Attempting to override a non-virtual method hides the base class 
definition, and it will be used only in the context of the derived class.

How virtual Is Implemented
To understand how method hiding is avoided, you need to know a bit more about what the  virtual 
keyword actually does. When a class is compiled in C++, a binary object is created that contains 
all methods for the class. In the non-virtual case, the code to transfer control to the appropriate 
method is hard-coded directly where the method is called based on the compile-time type. This is 
called static binding, also known as early binding.
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If the method is declared virtual, the correct implementation is called through the use of a special 
area of memory called the vtable, or “virtual table.” Each class that has one or more virtual methods 
has a vtable, and every object of such a class contains a pointer to said vtable. This vtable contains 
pointers to the implementations of the virtual methods. In this way, when a method is called on an 
object, the pointer is followed into the vtable, and the appropriate version of the method is executed 
based on the actual type of the object at run time. This is called dynamic binding, also known as 
late binding.

To better understand how vtables make overriding of methods possible, take the following Base and 
Derived classes as an example:

class Base
{
    public:
        virtual void func1();
        virtual void func2();
        void nonVirtualFunc();
};
 
class Derived : public Base
{
    public:
        void func2() override;
        void nonVirtualFunc();
};

For this example, assume that you have the following two instances:

Base myBase;
Derived myDerived;

Figure 10-4 shows a high-level view of how the 
vtables for both instances look. The myBase 
object contains a pointer to its vtable. This vta-
ble has two entries, one for func1() and one for 
func2(). Those entries point to the implementa-
tions of Base::func1() and Base::func2().

myDerived also contains a pointer to its vtable, 
which also has two entries, one for func1() and 
one for func2(). Its func1() entry points to 
Base::func1() because Derived does not over-
ride func1(). On the other hand, its func2() 
entry points to Derived::func2().

Note that both vtables do not contain any entry 
for the nonVirtualFunc() method because that method is not virtual.

The Justification for virtual
In some languages, such as Java, all methods are automatically virtual so they can be overridden 
properly. In C++ that’s not the case. The argument against making everything virtual in C++, and 

FIGURE 10-4 
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the reason that the keyword was created in the first place, has to do with the overhead of the vtable. 
To call a virtual method, the program needs to perform an extra operation by dereferencing the 
pointer to the appropriate code to execute. This is a miniscule performance hit in most cases, but the 
designers of C++ thought that it was better, at least at the time, to let the programmer decide if the 
performance hit was necessary. If the method was never going to be overridden, there was no need to 
make it virtual and take the performance hit. However, with today’s CPUs, the performance hit is 
measured in fractions of a nanosecond, and this will keep getting smaller with future CPUs. In most 
applications, you will not have a measurable performance difference between using virtual methods 
and avoiding them.

Still, in certain specific use cases, the performance overhead might be too costly, and you may need 
to have an option to avoid the hit. For example, suppose you have a Point class that has a virtual 
method. If you have another data structure that stores millions or even billions of Points, calling a 
virtual method on each point creates significant overhead. In that case, it’s probably wise to avoid any 
virtual methods in your Point class.

There is also a tiny hit to memory usage for each object. In addition to the implementation of the 
method, each object also needs a pointer for its vtable, which takes up a tiny amount of space. This is 
not an issue in the majority of cases. However, sometimes it does matter. Take again the Point class 
and the container storing billions of Points. In that case, the additional required memory becomes 
significant.

The Need for virtual Destructors
Destructors should almost always be virtual. Making your destructors non-virtual can eas-
ily result in situations in which memory is not freed by object destruction. Only for a class that is 
marked as final could you make its destructor non-virtual.

For example, if a derived class uses memory that is dynamically allocated in the constructor and 
deleted in the destructor, it will never be freed if the destructor is never called. Similarly, if your 
derived class has members that are automatically deleted when an instance of the class is destroyed, 
such as std::unique_ptrs, then those members will not get deleted either if the destructor is 
never called.

As the following code shows, it is easy to “trick” the compiler into skipping the call to the destructor 
if it is non-virtual:

class Base 
{
    public:
        Base() {}
        ~Base() {}
};
 
class Derived : public Base
{
    public:
        Derived()
        {
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            m_string = new char[30];
            cout << "m_string allocated" << endl;
        }
 
        ~Derived()
        {
            delete[] m_string;
            cout << "m_string deallocated" << endl;
        }
    private:
        char* m_string;
};
 
int main()
{
    Base* ptr { new Derived{} };   // m_string is allocated here.
    delete ptr; // ~Base is called, but not ~Derived because the destructor
                // is not virtual!
}

As you can see from the output, the destructor of the Derived object is never called:

m_string allocated

Actually, the behavior of the delete call in the preceding code is undefined by the standard. A C++ 
compiler could do whatever it wants in such undefined situations. However, most compilers simply 
call the destructor of the base class, and not the destructor of the derived class.

NOTE If you don’t need to do any work in your destructor, but you only want to 
make it virtual, you can explicitly default it. Here’s an example:

    class Base
    {
        public:
            virtual ~Base() = default;
    };

Note that since C++11, the generation of a copy constructor and copy assignment operator is depre-
cated if the class has a user-declared destructor. Basically, once you have a user-declared destructor, 
the rule of five kicks in. This means you need to declare a copy constructor, copy assignment operator, 
move constructor, and move assignment operator, possibly by explicitly defaulting them. This is not 
done in the examples in this chapter in the interest of keeping them concise and to the point.

WARNING Unless you have a specific reason not to or the class is marked as 
final, destructors should be marked as virtual. Constructors cannot and need 
not be virtual because you always specify the exact class being constructed when 
creating an object.
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Preventing Overriding
Besides marking an entire class as final, C++ also allows you to mark individual methods as final. 
Such methods cannot be overridden in a further derived class. For example, overriding someMethod() 
from the following Derived class results in a compilation error:

class Base
{
    public:
        virtual ~Base() = default;
        virtual void someMethod();
};
class Derived : public Base
{
    public:
        void someMethod() override final;
};
class DerivedDerived : public Derived
{
    public:
        void someMethod() override;  // Compilation error.
};

INHERITANCE FOR REUSE

Now that you are familiar with the basic syntax for inheritance, it’s time to explore one of the main 
reasons that inheritance is an important feature of the C++ language. Inheritance is a vehicle that 
allows you to leverage existing code. This section presents an example of inheritance for the purpose 
of code reuse.

The WeatherPrediction Class
Imagine that you are given the task of writing a program to issue simple weather predictions, work-
ing with both Fahrenheit and Celsius. Weather predictions may be a little bit out of your area 
of expertise as a programmer, so you obtain a third-party class library that was written to make 
weather predictions based on the current temperature and the current distance between Jupiter and 
Mars (hey, it’s plausible). This third-party package is distributed as a compiled library to protect 
the  intellectual property of the prediction algorithms, but you do get to see the class definition. The 
Weather Prediction class definition is as follows:

// Predicts the weather using proven new-age techniques given the current
// temperature and the distance from Jupiter to Mars. If these values are
// not provided, a guess is still given but it's only 99% accurate.
export class WeatherPrediction
{
    public:
        // Virtual destructor
        virtual ~WeatherPrediction();
        // Sets the current temperature in Fahrenheit
        virtual void setCurrentTempFahrenheit(int temp);
        // Sets the current distance between Jupiter and Mars
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        virtual void setPositionOfJupiter(int distanceFromMars);
        // Gets the prediction for tomorrow's temperature
        virtual int getTomorrowTempFahrenheit() const;
        // Gets the probability of rain tomorrow. 1 means
        // definite rain. 0 means no chance of rain.
        virtual double getChanceOfRain() const;
        // Displays the result to the user in this format:
        // Result: x.xx chance. Temp. xx
        virtual void showResult() const;
        // Returns a string representation of the temperature
        virtual std::string getTemperature() const;
    private:
        int m_currentTempFahrenheit { 0 };
        int m_distanceFromMars { 0 };
};

Note that this class marks all methods as virtual, because the class presumes that its methods might 
be overridden in a derived class.

This class solves most of the problems for your program. However, as is usually the case, it’s not 
exactly right for your needs. First, all the temperatures are given in Fahrenheit. Your program needs 
to operate in Celsius as well. Also, the showResult() method might not display the result in a way 
you require.

Adding Functionality in a Derived Class
When you learned about inheritance in Chapter 5, adding functionality was the first technique 
described. Fundamentally, your program needs something just like the WeatherPrediction class but 
with a few extra bells and whistles. Sounds like a good case for inheritance to reuse code. To begin, 
define a new class, MyWeatherPrediction, that inherits from WeatherPrediction:

import weather_prediction;
 
export class MyWeatherPrediction : public WeatherPrediction
{
};

The preceding class definition compiles just fine. The MyWeatherPrediction class can already be 
used in place of WeatherPrediction. It provides the same functionality, but nothing new yet. For 
the first modification, you might want to add knowledge of the Celsius scale to the class. There is a 
bit of a quandary here because you don’t know what the class is doing internally. If all of the internal 
calculations are made using Fahrenheit, how do you add support for Celsius? One way is to use the 
derived class to act as a go-between, interfacing between the user, who can use either scale, and the 
base class, which only understands Fahrenheit.

The first step in supporting Celsius is to add new methods that allow clients to set the current tem-
perature in Celsius instead of Fahrenheit and to get tomorrow’s prediction in Celsius instead of Fahr-
enheit. You also need private helper methods that convert between Celsius and Fahrenheit in both 
directions. These methods can be static because they are the same for all instances of the class.

export class MyWeatherPrediction : public WeatherPrediction
{
    public:

continues



352 ❘ CHAPTER 10  Discovering inheritance techniques

        virtual void setCurrentTempCelsius(int temp);
        virtual int getTomorrowTempCelsius() const;
    private:
        static int convertCelsiusToFahrenheit(int celsius); 
        static int convertFahrenheitToCelsius(int fahrenheit);
};

The new methods follow the same naming convention as the parent class. Remember that from the 
point of view of other code, a MyWeatherPrediction object has all of the functionality defined in 
both MyWeatherPrediction and WeatherPrediction. Adopting the parent class’s naming conven-
tion presents a consistent interface.

The implementation of the Celsius/Fahrenheit conversion methods is left as an exercise for the 
reader—and a fun one at that! The other two methods are more interesting. To set the current tem-
perature in Celsius, you need to convert the temperature first and then present it to the parent class in 
units that it understands:

void MyWeatherPrediction::setCurrentTempCelsius(int temp)
{
    int fahrenheitTemp { convertCelsiusToFahrenheit(temp) };
    setCurrentTempFahrenheit(fahrenheitTemp);
}

As you can see, once the temperature is converted, the method calls the existing functionality from the 
base class. Similarly, the implementation of getTomorrowTempCelsius() uses the parent’s existing 
functionality to get the temperature in Fahrenheit, but converts the result before returning it:

int MyWeatherPrediction::getTomorrowTempCelsius() const
{
    int fahrenheitTemp { getTomorrowTempFahrenheit() };
    return convertFahrenheitToCelsius(fahrenheitTemp);
}

The two new methods effectively reuse the parent class because they “wrap” the existing functionality 
in a way that provides a new interface for using it.

You can also add new functionality completely unrelated to existing functionality of the parent 
class. For example, you could add a method that retrieves alternative forecasts from the Internet or a 
method that suggests an activity based on the predicted weather.

Replacing Functionality in a Derived Class
The other major technique for inheritance is replacing existing functionality. The showResult() 
method in the WeatherPrediction class is in dire need of a facelift. MyWeatherPrediction can 
override this method to replace the behavior with its own implementation.

The new class definition for MyWeatherPrediction is as follows:

export class MyWeatherPrediction : public WeatherPrediction
{
    public:
        virtual void setCurrentTempCelsius(int temp);
        virtual int getTomorrowTempCelsius() const;
        void showResult() const override;

(continued)
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    private:
        static int convertCelsiusToFahrenheit(int celsius);
        static int convertFahrenheitToCelsius(int fahrenheit);
};

Here is a possible new, user-friendlier implementation:

void MyWeatherPrediction::showResult() const
{
    cout << format("Tomorrow will be {} degrees Celsius ({} degrees Fahrenheit)",
        getTomorrowTempCelsius(), getTomorrowTempFahrenheit()) << endl;
    cout << format("Chance of rain is {}%", getChanceOfRain() * 100) << endl;
    if (getChanceOfRain() > 0.5) { cout << "Bring an umbrella!" << endl; }
}

To clients using this class, it’s as if the old version of showResult() never existed. As long as the 
object is a MyWeatherPrediction object, the new version is called. As a result of these changes, 
MyWeatherPrediction has emerged as a new class with new functionality tailored to a more specific 
purpose. Yet, it did not require much code because it leveraged its base class’s existing functionality.

RESPECT YOUR PARENTS

When you write a derived class, you need to be aware of the interaction between parent classes and 
child classes. Issues such as order of creation, constructor chaining, and casting are all potential 
sources of bugs.

Parent Constructors
Objects don’t spring to life all at once; they must be constructed along with their parents and any 
objects that are contained within them. C++ defines the creation order as follows:

1. If the class has a base class, the default constructor of the base class is executed, unless there 
is a call to a base class constructor in the ctor-initializer, in which case that constructor is 
called instead of the default constructor.

2. Non-static data members of the class are constructed in the order in which they 
are declared.

3. The body of the class’s constructor is executed.

These rules can apply recursively. If the class has a grandparent, the grandparent is initialized before 
the parent, and so on. The following code shows this creation order. The proper execution of this 
code outputs 123.

class Something
{
    public:
        Something() { cout << "2"; }
};
 
class Base
{
    public:

continues
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        Base() { cout << "1"; }
};
 
class Derived : public Base
{
    public:
        Derived() { cout << "3"; }
    private:
        Something m_dataMember;
};
 
int main()
{
    Derived myDerived;
}

When the myDerived object is created, the constructor for Base is called first, outputting the string 
"1". Next, m_dataMember is initialized, calling the Something constructor, which outputs the string 
"2". Finally, the Derived constructor is called, which outputs "3".

Note that the Base constructor is called automatically. C++ automatically calls the default construc-
tor for the parent class if one exists. If no default constructor exists in the parent class or if one does 
exist but you want to use an alternate constructor, you can chain the constructor just as when initial-
izing data members in the constructor initializer. For example, the following code shows a version 
of Base that lacks a default constructor. The associated version of Derived must explicitly tell the 
compiler how to call the Base constructor or the code will not compile.

class Base
{
    public:
        Base(int i) {}
};
 
class Derived : public Base
{
    public:
        Derived() : Base { 7 } { /* Other Derived's initialization ... */ }
};

The Derived constructor passes a fixed value (7) to the Base constructor. Of course, Derived could 
also pass a variable:

Derived::Derived(int i) : Base { i } {}

Passing constructor arguments from the derived class to the base class is perfectly fine and quite nor-
mal. Passing data members, however, will not work. The code will compile, but remember that data 
members are not initialized until after the base class is constructed. If you pass a data member as an 
argument to the parent constructor, it will be uninitialized.

WARNING Virtual methods behave differently in constructors. If your derived 
class has overridden a virtual method from the base class, calling that method from 
a base class constructor calls the base class implementation of that virtual method 
and not your overridden version in the derived class!

(continued)
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Parent Destructors
Because destructors cannot take arguments, the language can always automatically call the destructor 
for parent classes. The order of destruction is conveniently the reverse of the order of construction:

1. The body of the class’s destructor is called.

2. Any data members of the class are destroyed in the reverse order of their construction.

3. The parent class, if any, is destructed.

Again, these rules apply recursively. The lowest member of the chain is always destructed first. The 
following code adds destructors to the earlier example. The destructors are all declared virtual! If 
executed, this code outputs "123321".

class Something
{
    public:
        Something() { cout << "2"; }
        virtual ~Something() { cout << "2"; }
};
 
class Base
{
    public:
        Base() { cout << "1"; }
        virtual ~Base() { cout << "1"; }
};
 
class Derived : public Base
{
    public:
        Derived() { cout << "3"; }
        virtual ~Derived() { cout << "3"; }
    private:
        Something m_dataMember;
};

If the preceding destructors were not declared virtual, the code would seem to work fine. How-
ever, if code ever called delete on a base class pointer that was really pointing to a derived class, the 
destruction chain would begin in the wrong place. For example, if you remove the virtual keyword 
from all destructors in the previous code, then a problem arises when a Derived object is accessed as 
a pointer to a Base and deleted, as shown here:

Base* ptr { new Derived{} };
delete ptr;

The output of this code is a shockingly terse "1231". When the ptr variable is deleted, only the 
Base destructor is called because the destructor was not declared virtual. As a result, the Derived 
destructor is not called, and the destructors for its data members are not called!

Technically, you could fix the preceding problem by marking only the Base destructor virtual. The 
“virtualness” automatically applies to any derived classes. However, I advocate explicitly making all 
destructors virtual so that you never have to worry about it.
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WARNING Always make your destructors virtual! The compiler-generated 
default destructor is not virtual, so you should define (or explicitly default) a 
virtual destructor, at least for your base classes.

WARNING Just as with constructors, virtual methods behave differently when 
called from a destructor. If your derived class has overridden a virtual method 
from a base class, calling that method from a base class destructor calls the base 
class implementation of that virtual method and not your overridden version in the 
derived class.

Referring to Parent Names
When you override a method in a derived class, you are effectively replacing the original as far as 
other code is concerned. However, that parent version of the method still exists, and you may want 
to make use of it. For example, an overridden method would like to keep doing what the base class 
implementation does, plus something else. Take a look at the getTemperature() method in the 
WeatherPrediction class that returns a string representation of the current temperature:

export class WeatherPrediction
{
    public:
        virtual std::string getTemperature() const;
        // Omitted for brevity
};

You can override this method in the MyWeatherPrediction class as follows:

export class MyWeatherPrediction : public WeatherPrediction
{
    public:
        std::string getTemperature() const override;
        // Omitted for brevity
};

Suppose the derived class wants to add °F to the string by first calling the base class’s getTempera-
ture() method and then adding °F to it. You might write this as follows:

string MyWeatherPrediction::getTemperature() const 
{
    // Note: \u00B0 is the ISO/IEC 10646 representation of the degree symbol.
    return getTemperature() + "\u00B0F";  // BUG
}

However, this does not work because, under the rules of name resolution for C++, it first resolves 
against the local scope, then resolves against the class scope, and as a result ends up calling 
MyWeather Prediction::getTemperature(). This causes an infinite recursion until you run out of 
stack space (some compilers detect this error and report it at compile time).
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To make this work, you need to use the scope resolution operator as follows:

string MyWeatherPrediction::getTemperature() const 
{
    // Note: \u00B0 is the ISO/IEC 10646 representation of the degree symbol.
    return WeatherPrediction::getTemperature() + "\u00B0F";
}

NOTE Microsoft Visual C++ supports the non-standard __super keyword (with 
two underscores). This allows you to write the following:

    return __super::getTemperature() + "\u00B0F";

Calling the parent version of the current method is a commonly used 
pattern in C++. If you have a chain of derived classes, each might want 
to perform the operation already defined by the base class but add their 
own additional functionality as well.

Let’s look at another example. Imagine a class hierarchy of book types, 
as shown in Figure 10-5.

Because each lower class in the hierarchy further specifies the type 
of book, a method that gets the description of a book really needs to 
take all levels of the hierarchy into consideration. This can be accom-
plished by chaining to the parent method. The following code illustrates 
this pattern:

class Book
{
    public:
        virtual ~Book() = default;
        virtual string getDescription() const { return "Book"; }
        virtual int getHeight() const { return 120; }
};
 
class Paperback : public Book
{
    public:
        string getDescription() const override { 
            return "Paperback " + Book::getDescription(); 
        }
};
 
class Romance : public Paperback
{
    public:
        string getDescription() const override { 
            return "Romance " + Paperback::getDescription(); 
        }
        int getHeight() const override { return Paperback::getHeight() / 2; }
};

FIGURE 10-5 

continues
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class Technical : public Book
{
    public:
        string getDescription() const override { 
            return "Technical " + Book::getDescription();
        }
};
 
int main()
{
    Romance novel;
    Book book;
    cout << novel.getDescription() << endl; // Outputs "Romance Paperback Book"
    cout << book.getDescription() << endl;  // Outputs "Book"
    cout << novel.getHeight() << endl;      // Outputs "60"
    cout << book.getHeight() << endl;       // Outputs "120"
}

The Book base class has two virtual methods: getDescription() and getHeight(). All derived 
classes override getDescription(), but only the Romance class overrides getHeight() by calling 
getHeight() on its parent class (Paperback) and dividing the result by two. Paperback does not 
override getHeight(), but C++ walks up the class hierarchy to find a class that implements  
get Height(). In this example, Paperback::getHeight() resolves to Book::getHeight().

Casting Up and Down
As you have already seen, an object can be cast or assigned to its parent class. Here’s an example:

Base myBase { myDerived };  // Slicing! 

Slicing occurs in situations like this because the end result is a Base object, and Base objects lack the 
additional functionality defined in the Derived class. However, slicing does not occur if a derived 
class is assigned to a pointer or reference to its base class:

Base& myBase { myDerived }; // No slicing!

This is generally the correct way to refer to a derived class in terms of its base class, also called 
upcasting. This is why it’s always a good idea to make your methods and functions take references 
to classes instead of directly using objects of those classes. By using references, derived classes can be 
passed in without slicing.

WARNING When upcasting, use a pointer or reference to the base class to avoid 
slicing.

(continued)
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Casting from a base class to one of its derived classes, also called downcasting, is often frowned upon 
by professional C++ programmers because there is no guarantee that the object really belongs to 
that derived class and because downcasting is a sign of bad design. For example, consider the fol-
lowing code:

void presumptuous(Base* base)
{
    Derived* myDerived { static_cast<Derived*>(base) };
    // Proceed to access Derived methods on myDerived.
}

If the author of presumptuous() also writes code that calls presumptuous(), everything will prob-
ably be OK because the author knows that the function expects the argument to be of type Derived*. 
However, if other programmers call presumptuous(), they might pass in a Base*. There are no 
compile-time checks that can be done to enforce the type of the argument, and the function blindly 
assumes that base is actually a pointer to a Derived.

Downcasting is sometimes necessary, and you can use it effectively in controlled circumstances. How-
ever, if you are going to downcast, you should use a dynamic_cast(), which uses the object’s built-in 
knowledge of its type to refuse a cast that doesn’t make sense. This built-in knowledge typically 
resides in the vtable, which means that dynamic_cast() works only for objects with a vtable, that 
is, objects with at least one virtual member. If a dynamic_cast() fails on a pointer, the result will be 
nullptr instead of pointing to nonsensical data. If a dynamic_cast() fails on an object reference, 
an std::bad_cast exception will be thrown. The last section of this chapter discusses the different 
options for casting in more detail.

The previous example could have been written as follows:

void lessPresumptuous(Base* base) 
{
    Derived* myDerived { dynamic_cast<Derived*>(base) };
    if (myDerived != nullptr) {
        // Proceed to access Derived methods on myDerived.
    }
}

However, keep in mind that the use of downcasting is often a sign of a bad design. You should 
rethink and modify your design so that downcasting can be avoided. For example, the lessPresump-
tuous() function only really works with Derived objects, so instead of accepting a Base pointer, it 
should simply accept a Derived pointer. This eliminates the need for any downcasting. If the function 
should work with different derived classes, all inheriting from Base, then look for a solution that uses 
polymorphism, which is discussed next.

WARNING Use downcasting only when really necessary, and be sure to use 
dynamic_cast().
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INHERITANCE FOR POLYMORPHISM

Now that you understand the relationship between a derived class and its parent, you can use 
inheritance in its most powerful scenario—polymorphism. Chapter 5 discusses how polymorphism 
allows you to use objects with a common parent class interchangeably and to use objects in place of 
their parents.

Return of the Spreadsheet
Chapters 8 and 9 use a spreadsheet program as an example of an application that lends itself to an 
object-oriented design. A SpreadsheetCell represents a single element of data. Up to now, that ele-
ment always stored a single double value. A simplified class definition for SpreadsheetCell follows. 
Note that a cell can be set either as a double or as a string_view, but it is always stored as a  
double. The current value of the cell, however, is always returned as a string for this example.

class SpreadsheetCell
{
    public:
        virtual void set(double value);
        virtual void set(std::string_view value);
        virtual std::string getString() const;
     private:
        static std::string doubleToString(double value);
        static double stringToDouble(std::string_view value); 
        double m_value;
};

In a real spreadsheet application, cells can store different things. A cell could store a double, but it 
might just as well store a piece of text. There could also be a need for additional types of cells, such as 
a formula cell or a date cell. How can you support this?

Designing the Polymorphic Spreadsheet Cell
The SpreadsheetCell class is screaming out for a hierarchical makeover. A reasonable approach 
would be to narrow the scope of the SpreadsheetCell to cover only strings, perhaps renaming 
it to StringSpreadsheetCell in the process. To handle doubles, a second class, DoubleSpread-
sheetCell, would inherit from the StringSpreadsheetCell and provide functionality specific to its 
own format. Figure 10-6 illustrates such a design. This approach models inheritance for reuse because 
the DoubleSpreadsheetCell would be deriving from StringSpreadsheetCell only to make use of 
some of its built-in functionality.

If you were to implement the design shown in Figure 10-6, you might dis-
cover that the derived class would override most, if not all, of the functional-
ity of the base class. Because doubles are treated differently from strings 
in almost all cases, the relationship may not be quite as it was originally 
understood. Yet, there clearly is a relationship between a cell containing 
strings and a cell containing doubles. Rather than using the model in 
Figure 10-6, which implies that somehow a DoubleSpreadsheetCell “is-a” 
StringSpreadsheetCell, a better design would make these classes peers with a common parent, 
SpreadsheetCell. Figure 10-7 shows such a design.

FIGURE 10-6 
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The design in Figure 10-7 shows a polymorphic 
approach to the SpreadsheetCell hierarchy. 
Because DoubleSpreadsheetCell and String-
SpreadsheetCell both inherit from a common 
parent, SpreadsheetCell, they are interchangeable 
in the view of other code. In practical terms, that 
means the following:

➤➤ Both derived classes support the same interface (set of methods) defined by the base class.

➤➤ Code that makes use of SpreadsheetCell objects can call any method in the inter-
face without even knowing whether the cell is a DoubleSpreadsheetCell or a String-
SpreadsheetCell.

➤➤ Through the magic of virtual methods, the appropriate instance of every method in the 
interface is called depending on the class of the object.

➤➤ Other data structures, such as the Spreadsheet class described in Chapter 9, can contain a 
collection of multityped cells by referring to the base type.

The SpreadsheetCell Base Class
Because all spreadsheet cells are deriving from the SpreadsheetCell base class, it is probably a 
good idea to write that class first. When designing a base class, you need to consider how the derived 
classes relate to each other. From this information, you can derive the commonality that will go inside 
the parent class. For example, string cells and double cells are similar in that they both contain a 
single piece of data. Because the data is coming from the user and will be displayed back to the user, 
the value is set as a string and retrieved as a string. These behaviors are the shared functionality 
that will make up the base class.

A First Attempt
The SpreadsheetCell base class is responsible for defining the behaviors that all SpreadsheetCell-
derived classes will support. In this example, all cells need to be able to set their value as a string. All 
cells also need to be able to return their current value as a string. The base class definition declares 
these methods, as well as an explicitly defaulted virtual destructor, but note that it has no data 
members. The definition is in a spreadsheet_cell module.

export module spreadsheet_cell;
import <string>;
import <string_view>;
 
export class SpreadsheetCell
{
    public:
        virtual ~SpreadsheetCell() = default;
        virtual void set(std::string_view value);
        virtual std::string getString() const;
};

FIGURE 10-7 
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When you start writing the .cpp file for this class, you quickly run into a problem. Considering that 
the base class of the spreadsheet cell contains neither a double nor a string data member, how can 
you implement it? More generally, how do you write a base class that declares the behaviors that are 
supported by derived classes without actually defining the implementation of those behaviors?

One possible approach is to implement “do nothing” functionality for those behaviors. For example, 
calling the set() method on the SpreadsheetCell base class will have no effect because the base 
class has nothing to set. This approach still doesn’t feel right, however. Ideally, there should never be 
an object that is an instance of the base class. Calling set() should always have an effect because it 
should always be called on either a DoubleSpreadsheetCell or a StringSpreadsheetCell. A good 
solution enforces this constraint.

Pure Virtual Methods and Abstract Base Classes
Pure virtual methods are methods that are explicitly undefined in the class definition. By making 
a method pure virtual, you are telling the compiler that no definition for the method exists in the 
current class. A class with at least one pure virtual method is said to be an abstract class because no 
other code will be able to instantiate it. The compiler enforces the fact that if a class contains one or 
more pure virtual methods, it can never be used to construct an object of that type.

There is a special syntax for designating a pure virtual method. The method declaration is followed 
by =0. No implementation needs to be written.

export class SpreadsheetCell
{
    public:
        virtual ~SpreadsheetCell() = default;
        virtual void set(std::string_view value) = 0;
        virtual std::string getString() const = 0;
};

Now that the base class is an abstract class, it is impossible to create a SpreadsheetCell object. The 
following code does not compile and returns an error such as “‘SpreadsheetCell’: cannot instantiate 
abstract class”:

SpreadsheetCell cell; // Error! Attempts creating abstract class instance.

However, once the StringSpreadsheetCell class has been implemented, the following code will 
compile fine because it instantiates a derived class of the abstract base class:

unique_ptr<SpreadsheetCell> cell { new StringSpreadsheetCell{} };

NOTE An abstract class provides a way to prevent other code from instantiating 
an object directly, as opposed to one of its derived classes.

Note that there is nothing to implement for the SpreadsheetCell class. All methods are pure virtual, 
and the destructor is explicitly defaulted.
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The Individual Derived Classes
Writing the StringSpreadsheetCell and DoubleSpreadsheetCell classes is just a matter of imple-
menting the functionality that is defined in the parent. Because you want clients to be able to instanti-
ate and work with string cells and double cells, the cells can’t be abstract—they must implement all 
of the pure virtual methods inherited from their parent. If a derived class does not implement all pure 
virtual methods from the base class, then the derived class is abstract as well, and clients will not be 
able to instantiate objects of the derived class.

StringSpreadsheetCell Class Definition
The StringSpreadsheetCell class is defined in its own module called string_spreadsheet_cell. 
The first step in writing the class definition of StringSpreadsheetCell is to inherit from Spread-
sheetCell. For this, the spreadsheet_cell module needs to be imported.

Next, the inherited pure virtual methods are overridden, this time without being set to zero.

Finally, the string cell adds a private data member, m_value, which stores the actual cell data. This 
data member is an std::optional, introduced in Chapter 1, “A Crash Course in C++ and the Stand-
ard Library.” By using an optional, it is possible to distinguish whether a value for a cell has never 
been set or whether it was set to the empty string.

export module string_spreadsheet_cell;
import spreadsheet_cell;
import <string>;
import <string_view>;
import <optional>;
 
export class StringSpreadsheetCell : public SpreadsheetCell
{
    public:
        void set(std::string_view value) override;
        std::string getString() const override;
    private:
        std::optional<std::string> m_value;
};

StringSpreadsheetCell Implementation
The set() method is straightforward because the internal representation is already a string. The get-
String() method has to keep into account that m_value is of type optional and that it might not 
have a value. When m_value doesn’t have a value, getString() should return a default string, the 
empty string for this example. This is made easy with the value_or() method of optional. By using 
m_value.value_or(""), the real value is returned if m_value contains an actual value; otherwise, 
the empty string is returned.

void set(std::string_view value) override { m_value = value; }
std::string getString() const override { return m_value.value_or(""); }
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DoubleSpreadsheetCell Class Definition and Implementation
The double version follows a similar pattern, but with different logic. In addition to the set() 
method from the base class that takes a string_view, it also provides a new set() method that 
allows a client to set the value with a double argument. Two new private static methods are used 
to convert between a string and a double, and vice versa. As in StringSpreadsheetCell, it has a 
data member called m_value, this time of type optional<double>.

export module double_spreadsheet_cell;
import spreadsheet_cell;
import <string>;
import <string_view>;
import <optional>;
 
export class DoubleSpreadsheetCell : public SpreadsheetCell
{
    public:
        virtual void set(double value);
        void set(std::string_view value) override;
        std::string getString() const override;
    private:
        static std::string doubleToString(double value);
        static double stringToDouble(std::string_view value);
        std::optional<double> m_value;
};

The set() method that takes a double is straightforward. The string_view version uses the pri-
vate static method stringToDouble(). The getString() method returns the stored double 
value as a string, or returns an empty string if no value has been stored. It uses the has_value() 
method of std::optional to query whether the optional has an actual value. If it has a value, the 
value() method is used to get it.

virtual void set(double value) { m_value = value; }
void set(std::string_view value) override { m_value = stringToDouble(value); }
 
std::string getString() const override
{
    return (m_value.has_value() ? doubleToString(m_value.value()) : "");
}

You may already see one major advantage of implementing spreadsheet cells in a hierarchy—the code 
is much simpler. Each class can be self-centered and deal only with its own functionality.

Note that the implementations of doubleToString() and stringToDouble() are omitted because 
they are the same as in Chapter 8.

Leveraging Polymorphism
Now that the SpreadsheetCell hierarchy is polymorphic, client code can take advantage of 
the many benefits that polymorphism has to offer. The following test program explores many of 
these features.
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To demonstrate polymorphism, the test program declares a vector of three SpreadsheetCell 
pointers. Remember that because SpreadsheetCell is an abstract class, you can’t create objects 
of that type. However, you can still have a pointer or reference to a SpreadsheetCell because it 
would actually be pointing to one of the derived classes. This vector, because it is a vector of the 
parent type SpreadsheetCell, allows you to store a heterogeneous mixture of the two derived 
classes. This means that elements of the vector could be either a StringSpreadsheetCell or a 
DoubleSpreadsheetCell.

vector<unique_ptr<SpreadsheetCell>> cellArray;

The first two elements of the vector are set to point to a new StringSpreadsheetCell, while the 
third is a new DoubleSpreadsheetCell.

cellArray.push_back(make_unique<StringSpreadsheetCell>());
cellArray.push_back(make_unique<StringSpreadsheetCell>());
cellArray.push_back(make_unique<DoubleSpreadsheetCell>());

Now that the vector contains multityped data, any of the methods declared by the base class can be 
applied to the objects in the vector. The code just uses SpreadsheetCell pointers—the compiler 
has no idea at compile time what types the objects actually are. However, because they are inheriting 
from SpreadsheetCell, they must support the methods of SpreadsheetCell.

cellArray[0]->set("hello");
cellArray[1]->set("10");
cellArray[2]->set("18");

When the getString() method is called, each object properly returns a string representation of 
their value. The important, and somewhat amazing, thing to realize is that the different objects do 
this in different ways. A StringSpreadsheetCell returns its stored value, or an empty string. A 
DoubleSpreadsheetCell first performs a conversion if it contains a value; otherwise, it returns an 
empty string. As the programmer, you don’t need to know how the object does it—you just need to 
know that because the object is a SpreadsheetCell, it can perform this behavior.

cout << format("Vector: [{},{},{}]", cellArray[0]->getString(),
                                     cellArray[1]->getString(),
                                     cellArray[2]->getString()) << endl;

Future Considerations
The new implementation of the SpreadsheetCell hierarchy is certainly an improvement from an 
object-oriented design point of view. Yet, it would probably not suffice as an actual class hierarchy for 
a real-world spreadsheet program for several reasons.

First, despite the improved design, one feature is still missing: the ability to convert from one cell type 
to another. By dividing them into two classes, the cell objects become more loosely integrated. To 
provide the ability to convert from a DoubleSpreadsheetCell to a StringSpreadsheetCell, you 
could add a converting constructor, also known as a typed constructor. It has a similar appearance to 
a copy constructor, but instead of a reference to an object of the same class, it takes a reference to an 
object of a sibling class. Note also that you now have to declare a default constructor, which can be 
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explicitly defaulted, because the compiler stops generating one as soon as you declare any construc-
tor yourself.

export class StringSpreadsheetCell : public SpreadsheetCell
{
    public:
        StringSpreadsheetCell() = default;
        StringSpreadsheetCell(const DoubleSpreadsheetCell& cell)
            : m_value { cell.getString() }
        { }
        // Omitted for brevity
};

With a converting constructor, you can easily create a StringSpreadsheetCell given a 
DoubleSpreadsheetCell. Don’t confuse this with casting pointers or references, however. Casting 
from one sibling pointer or reference to another does not work, unless you overload the cast operator 
as described in Chapter 15, “Overloading C++ Operators.”

WARNING You can always cast up the hierarchy, and you can sometimes cast 
down the hierarchy. Casting across the hierarchy is possible by changing the 
behavior of the cast operator or by using reinterpret_cast(), neither of which 
is recommended.

Second, the question of how to implement overloaded operators for cells is an interesting one, and 
there are several possible solutions. One approach is to implement a version of each operator for 
every combination of cells. With only two derived classes, this is manageable. There would be an 
operator+ function to add two double cells, to add two string cells, and to add a double cell to 
a string cell. Another approach is to decide on a common representation. The preceding implemen-
tation already standardizes on a string as a common representation of sorts. A single operator+ 
function could cover all the cases by taking advantage of this common representation. A possible 
implementation that assumes that the result of adding two cells is always a string cell can be added 
to the string_spreadsheet_cell module and can be implemented as follows:

export StringSpreadsheetCell operator+(const StringSpreadsheetCell& lhs,
                                       const StringSpreadsheetCell& rhs)
{
    StringSpreadsheetCell newCell;
    newCell.set(lhs.getString() + rhs.getString());
    return newCell;
}

As long as the compiler has a way to turn a particular cell into a StringSpreadsheetCell, the 
operator will work. Given the previous example of having a StringSpreadsheetCell constructor 
that takes a DoubleSpreadsheetCell as an argument, the compiler will automatically perform the 
conversion if it is the only way to get the operator+ to work. That means the following code works, 
even though operator+ was explicitly written to work on StringSpreadsheetCells:

DoubleSpreadsheetCell myDbl;
myDbl.set(8.4);
StringSpreadsheetCell result { myDbl + myDbl };
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Of course, the result of this addition doesn’t really add the numbers together. It converts the double 
cells into string cells and concatenates the strings, resulting in a StringSpreadsheetCell with a 
value of 8.4000008.400000.

If you are still feeling a little unsure about polymorphism, start with the code for this example and try 
things out. The main() function in the preceding example is a great starting point for experimental 
code that simply exercises various aspects of the class.

MULTIPLE INHERITANCE

As you read in Chapter 5, multiple inheritance is often perceived as a complicated and unnecessary 
part of object-oriented programming. I’ll leave the decision of whether it is useful up to you and your 
co-workers. This section explains the mechanics of multiple inheritance in C++.

Inheriting from Multiple Classes
Defining a class to have multiple parent classes is simple from a syntactic point of view. All you need 
to do is list the base classes individually when declaring the class name.

class Baz : public Foo, public Bar { /* Etc. */ };

By listing multiple parents, the Baz object has the following characteristics:

➤➤ A Baz object supports the public methods and contains the data members of both 
Foo and Bar.

➤➤ The methods of the Baz class have access to protected data and methods in both 
Foo and Bar.

➤➤ A Baz object can be upcast to either a Foo or a Bar.

➤➤ Creating a new Baz object automatically calls the Foo and Bar default constructors, in the 
order in which the classes are listed in the class definition.

➤➤ Deleting a Baz object automatically calls the destructors for the Foo and Bar classes, in the 
reverse order that the classes are listed in the class definition.

The following example shows a class, DogBird, that has two parent 
classes—a Dog class and a Bird class, as shown in Figure 10-8. The fact 
that a dog-bird is a ridiculous example should not be viewed as a state-
ment that multiple inheritance itself is ridiculous. Honestly, I leave that 
judgment up to you.

class Dog
{
    public:
        virtual void bark() { cout << "Woof!" << endl; }
};
 
class Bird
{
    public:

FIGURE 10-8 

continues
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        virtual void chirp() { cout << "Chirp!" << endl; }
};
 
class DogBird : public Dog, public Bird
{
};

Using objects of classes with multiple parents is no different from using objects without multiple 
parents. In fact, the client code doesn’t even have to know that the class has two parents. All that 
really matters are the properties and behaviors supported by the class. In this case, a DogBird object 
supports all of the public methods of Dog and Bird.

DogBird myConfusedAnimal;
myConfusedAnimal.bark();
myConfusedAnimal.chirp(); 

The output of this program is as follows:

Woof!
Chirp!

Naming Collisions and Ambiguous Base Classes
It’s not difficult to construct a scenario where multiple inheritance would seem to break down. The 
following examples show some of the edge cases that must be considered.

Name Ambiguity
What if the Dog class and the Bird class both had a method called eat()? Because Dog and Bird are 
not related in any way, one version of the method does not override the other—they both continue to 
exist in the DogBird-derived class.

As long as client code never attempts to call the eat() method, that is not a problem. The DogBird 
class compiles correctly despite having two versions of eat(). However, if client code attempts to 
call the eat() method on a DogBird, the compiler gives an error indicating that the call to eat() 
is ambiguous. The compiler does not know which version to call. The following code provokes this 
ambiguity error:

class Dog
{
    public:
        virtual void bark() { cout << "Woof!" << endl; }
        virtual void eat() { cout << "The dog ate." << endl; }
};
 
class Bird
{
    public:
        virtual void chirp() { cout << "Chirp!" << endl; }
        virtual void eat() { cout << "The bird ate." << endl; }
};
 

(continued)
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class DogBird : public Dog, public Bird
{
};
 
int main()
{
    DogBird myConfusedAnimal;
    myConfusedAnimal.eat();   // Error! Ambiguous call to method eat()
}

The solution to the ambiguity is either to explicitly upcast the object using a dynamic_cast(), 
essentially hiding the undesired version of the method from the compiler, or to use a disambiguation 
syntax. For example, the following code shows two ways to invoke the Dog version of eat():

dynamic_cast<Dog&>(myConfusedAnimal).eat(); // Calls Dog::eat()
myConfusedAnimal.Dog::eat();                // Calls Dog::eat()

Methods of the derived class itself can also explicitly disambiguate between different methods of the 
same name by using the same syntax used to access parent methods, that is, the :: scope resolution 
operator. For example, the DogBird class could prevent ambiguity errors in other code by defining its 
own eat() method. Inside this method, it would determine which parent version to call.

class DogBird : public Dog, public Bird
{
    public:
        void eat() override
        {
            Dog::eat();          // Explicitly call Dog's version of eat()
        }
};

Yet another way to prevent the ambiguity error is to use a using declaration to explicitly state which 
version of eat() should be inherited in DogBird. Here’s an example:

class DogBird : public Dog, public Bird
{
    public:
        using Dog::eat;  // Explicitly inherit Dog's version of eat()
};

Ambiguous Base Classes
Another way to provoke ambiguity is to inherit from the same class twice. For example, if the Bird 
class inherits from Dog for some reason, the code for DogBird does not compile because Dog becomes 
an ambiguous base class:

class Dog {};
class Bird : public Dog {};
class DogBird : public Bird, public Dog {}; // Error!

Most occurrences of ambiguous base classes either are contrived “what-if” 
examples, as in the preceding one, or arise from untidy class hierarchies. Fig-
ure 10-9 shows a class diagram for the preceding example, indicating the 
ambiguity.

FIGURE 10-9 
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Ambiguity can also occur with data members. If Dog and Bird both had 
a data member with the same name, an ambiguity error would occur 
when client code attempted to access that member.

A more likely scenario is that multiple parents themselves have common 
parents. For example, perhaps both Bird and Dog are inheriting from an 
Animal class, as shown in Figure 10-10.

This type of class hierarchy is permitted in C++, though name ambiguity 
can still occur. For example, if the Animal class has a public method 
called sleep(), that method cannot be called on a DogBird object 
because the compiler does not know whether to call the version inherited 
by Dog or by Bird.

The best way to use these “diamond-shaped” class hierarchies is to make the topmost class an 
abstract base class with all methods declared as pure virtual. Because the class only declares methods 
without providing definitions, there are no methods in the base class to call, and thus there are no 
ambiguities at that level.

The following example implements a diamond-shaped class hierarchy in which the Animal abstract 
base class has a pure virtual eat() method that must be defined by each derived class. The DogBird 
class still needs to be explicit about which parent’s eat() method it uses, but any ambiguity is caused 
by Dog and Bird having the same method, not because they inherit from the same class.

class Animal
{
    public:
        virtual void eat() = 0;
};
 
class Dog : public Animal
{
    public:
        virtual void bark() { cout << "Woof!" << endl; }
        void eat() override { cout << "The dog ate." << endl; }
};
 
class Bird : public Animal
{
    public:
        virtual void chirp() { cout << "Chirp!" << endl; }
        void eat() override { cout << "The bird ate." << endl; }
};
 
class DogBird : public Dog, public Bird
{
    public:
        using Dog::eat;
};

A more refined mechanism for dealing with the top class in a diamond-shaped hierarchy, virtual base 
classes, is explained later in this chapter.

FIGURE 10-10 
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Uses for Multiple Inheritance
At this point, you’re probably wondering why programmers would want to tackle multiple inherit-
ance in their code. The most straightforward use case for multiple inheritance is to define a class of 
objects that is-a something and also is-a something else. As was said in Chapter 5, any real-world 
objects you find that follow this pattern are unlikely to translate well into code.

One of the most compelling and simple uses of multiple inheritance is for the implementation 
of mixin classes. Mixin classes are introduced in Chapter 5 and are discussed in more detail in 
Chapter 32, “Incorporating Design Techniques and Frameworks.”

Another reason that people sometimes use multiple inheritance is to model a component-based class. 
Chapter 5 gives the example of an airplane simulator. The Airplane class has an engine, a fuselage, 
controls, and other components. While the typical implementation of an Airplane class would make 
each of these components a separate data member, you could use multiple inheritance. The airplane 
class would inherit from engine, fuselage, and controls, in effect getting the behaviors and properties 
of all of its components. I recommend that you stay away from this type of code because it confuses 
a clear has-a relationship with inheritance, which should be used for is-a relationships. The recom-
mended solution is to have an Airplane class that contains data members of type Engine, Fuselage, 
and Controls.

INTERESTING AND OBSCURE INHERITANCE ISSUES

Extending a class opens up a variety of issues. What characteristics of the class can and cannot be 
changed? What is non-public inheritance? What are virtual base classes? These questions, and more, 
are answered in the following sections.

Changing the Overridden Method’s Return Type
For the most part, the reason you override a method is to change its implementation. Sometimes, 
however, you may want to change other characteristics of the method, such as its return type.

A good rule of thumb is to override a method with the exact method declaration, or method proto-
type, that the base class uses. The implementation can change, but the prototype stays the same.

That does not have to be the case, however. In C++, an overriding method can change the return type 
as long as the original return type is a pointer or reference to a class, and the new return type is a 
pointer or reference to a descendant class. Such types are called covariant return types. This feature 
sometimes comes in handy when the base class and derived class work with objects in a parallel hier-
archy—that is, another group of classes that is tangential, but related, to the first class hierarchy.

For example, consider a hypothetical cherry orchard simulator. You 
might have two hierarchies of classes that model different real-world 
objects but are obviously related. The first is the Cherry chain. The 
base class, Cherry, has a derived class called BingCherry. Similarly, 
there is another chain of classes with a base class called CherryTree 
and a derived class called BingCherryTree. Figure 10-11 shows the 
two class chains.

FIGURE 10-11 
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Now assume that the CherryTree class has a virtual method called pick() that retrieves a single 
cherry from the tree:

Cherry* CherryTree::pick() { return new Cherry{}; }

NOTE To demonstrate changing the return type, this example does not return 
smart pointers, but raw pointers. The reason is explained at the end of this section. 
Of course, the caller should store the result immediately in a smart pointer instead 
of keeping the raw pointer around.

In the BingCherryTree-derived class, you may want to override this method. Perhaps bing cher-
ries need to be polished when they are picked (bear with me on this one). Because a BingCherry is 
a Cherry, you could leave the method prototype as is and override the method as in the following 
example. The BingCherry pointer is automatically cast to a Cherry pointer. Note that this implemen-
tation uses a unique_ptr to make sure no memory is leaked when polish() throws an exception.

Cherry* BingCherryTree::pick()
{
    auto theCherry { make_unique<BingCherry>() };
    theCherry->polish();
    return theCherry.release();
}

This implementation is fine. However, because you know that the BingCherryTree will always 
return BingCherry objects, you could indicate this fact to potential users of this class by changing the 
return type, as shown here:

BingCherry* BingCherryTree::pick()
{
    auto theCherry { make_unique<BingCherry>() };
    theCherry->polish();
    return theCherry.release();
}

The following shows how you can use the BingCherryTree::pick() method. The printType() 
method is a virtual method of Cherry, overridden by BingCherry, and simply outputs the type 
of cherry.

BingCherryTree theTree;
unique_ptr<Cherry> theCherry { theTree.pick() };
theCherry->printType();

A good way to figure out whether you can change the return type of an overridden method is to 
consider whether existing code would still work; this is called the Liskov substitution principle (LSP). 
In the preceding example, changing the return type was fine because any code that assumed that the 
pick() method would always return a Cherry* would still compile and work correctly. Because 
a BingCherry is a Cherry, any methods that were called on the result of CherryTree’s version of 
pick() could still be called on the result of BingCherryTree’s version of pick().
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You could not, for example, change the return type to something completely unrelated, such as 
void*. The following code does not compile:

void* BingCherryTree::pick() { /* ... */ } // Error!

This generates a compilation error, something like this:

'BingCherryTree::pick': overriding virtual function return type differs and is not 
covariant from 'CherryTree::pick'.

As mentioned, this example is using raw pointers instead of smart pointers. It does not work when 
using, for example, unique_ptr as return type. Suppose the CherryTree::pick() method returns a 
unique_ptr<Cherry> as follows:

unique_ptr<Cherry> CherryTree::pick() { return make_unique<Cherry>(); }

Now, you cannot change the return type for the BingCherryTree::pick() method to unique_
ptr<BingCherry>. That is, the following does not compile:

unique_ptr<BingCherry> BingCherryTree::pick() override { /* ... */ }

The reason is that unique_ptr is a class template. Two instantiations of the unique_ptr class tem-
plate are created, unique_ptr<Cherry> and unique_ptr<BingCherry>. Both these instantiations 
are completely different types and are in no way related to each other. You cannot change the return 
type of an overridden method to return a completely different type.

Adding Overloads of Virtual Base Class Methods 
to Derived Classes

It is possible to add new overloads of virtual base class methods to derived classes. That is, you 
can add an overload of a virtual method in the derived class with a new prototype but continue to 
inherit the base class version. This technique uses a using declaration to explicitly include the base 
class definition of the method within the derived class. Here is an example:

class Base
{
    public:
        virtual void someMethod();
};
 
class Derived : public Base
{
    public:
        using Base::someMethod;         // Explicitly inherits the Base version.
        virtual void someMethod(int i); // Adds a new overload of someMethod().
        virtual void someOtherMethod();
};

NOTE It is rare to find a method in a derived class with the same name as a 
method in the base class but using a different parameter list.
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Inherited Constructors
In the previous section, you saw the use of a using declaration to explicitly include the base class 
definition of a method within a derived class. This works perfectly fine for normal class methods, but 
it also works for constructors, allowing you to inherit constructors from your base classes. Take a 
look at the following definitions for the Base and Derived classes:

class Base
{
    public:
        virtual ~Base() = default;
        Base() = default;
        Base(std::string_view str);
};
 
class Derived : public Base
{
    public:
        Derived(int i);
};

You can construct a Base object only with the provided Base constructors, either the default con-
structor or the constructor with a string_view parameter. On the other hand, constructing a 
Derived object can happen only with the provided Derived constructor, which requires a single inte-
ger as argument. You cannot construct Derived objects using a default constructor or the constructor 
accepting a string_view defined in the Base class. Here is an example:

Base base { "Hello" };        // OK, calls string_view Base ctor.
Derived derived1 { 1 };       // OK, calls integer Derived ctor.
Derived derived2 { "Hello" }; // Error, Derived does not inherit string_view ctor.
Derived derived3;             // Error, Derived does not have a default ctor.

If you want the ability to construct Derived objects using the string_view-based Base constructor, 
you can explicitly inherit the Base constructors in the Derived class as follows:

class Derived : public Base
{
    public:
        using Base::Base;
        Derived(int i);
};

The using declaration inherits all constructors from the parent class, so now you can construct 
Derived objects in the following ways:

Derived derived1 { 1 };        // OK, calls integer Derived ctor.
Derived derived2 { "Hello" };  // OK, calls inherited string_view Base ctor.
Derived derived3;              // OK, calls inherited default Base ctor.

Of course, a derived class can inherit all base class constructors without adding any constructors of 
its own. Here’s an example:

class Base
{
    public:
        virtual ~Base() = default;
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        Base() = default;
        Base(std::string_view str);
        Base(float f);
};
 
class Derived : public Base
{
    public:
        using Base::Base;
};

Derived instances can be created as follows:

Derived derived1 { "Hello" };   // OK, calls inherited string_view Base ctor.
Derived derived2 { 1.23f };     // OK, calls inherited float Base ctor.
Derived derived3;               // OK, calls inherited default Base ctor.

Hiding of Inherited Constructors
The Derived class can define a constructor with the same parameter list as one of the inherited con-
structors in the Base class. In this case, the constructor of the Derived class takes precedence over the 
inherited constructor. In the following example, the Derived class inherits all constructors, from the 
Base class with the using declaration. However, because the Derived class defines its own construc-
tor with a single parameter of type float, the inherited constructor from the Base class with a single 
parameter of type float is hidden.

class Base
{
    public:
        virtual ~Base() = default;
        Base() = default;
        Base(std::string_view str);
        Base(float f);
};
 
class Derived : public Base
{
    public:
        using Base::Base;
        Derived(float f);    // Hides inherited float Base ctor.
};

With this definition, objects of Derived can be created as follows:

Derived derived1 { "Hello" };   // OK, calls inherited string_view Base ctor.
Derived derived2 { 1.23f };     // OK, calls float Derived ctor.
Derived derived3;               // OK, calls inherited default Base ctor.

A few restrictions apply to inheriting constructors from a base class with a using declaration.

➤➤ When you inherit a constructor from a base class, you inherit all of them. It is not possible to 
inherit only a subset of the constructors of a base class.

➤➤ When you inherit constructors, they are inherited with the same access specification as 
they have in the base class, irrespective of which access specification the using declara-
tion is under.
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Inherited Constructors and Multiple Inheritance
Another restriction with inheriting constructors is related to multiple inheritance. It’s not possible 
to inherit constructors from one of the base classes if another base class has a constructor with the 
same parameter list, because this leads to ambiguity. To resolve this, the Derived class needs to 
explicitly define the conflicting constructors. For example, the following Derived class tries to inherit 
all constructors from both Base1 and Base2, which results in an ambiguity for the float-based 
constructors.

class Base1
{
    public:
        virtual ~Base1() = default;
        Base1() = default;
        Base1(float f);
};
 
class Base2
{
    public:
        virtual ~Base2() = default;
        Base2() = default;
        Base2(std::string_view str);
        Base2(float f);
};
 
class Derived : public Base1, public Base2
{
    public:
        using Base1::Base1;
        using Base2::Base2;
        Derived(char c);
};
 
int main()
{
    Derived d { 1.2f };  // Error, ambiguity.
}

The first using declaration in Derived inherits all constructors from Base1. This means that 
Derived gets the following constructor:

Derived(float f);   // Inherited from Base1.

The second using declaration in Derived tries to inherit all constructors from Base2. However, this 
means that Derived gets a second Derived(float) constructor. The problem is solved by explicitly 
declaring conflicting constructors in the Derived class as follows:

class Derived : public Base1, public Base2
{
    public:
        using Base1::Base1;
        using Base2::Base2;
        Derived(char c);
        Derived(float f);
};
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The Derived class now explicitly declares a constructor with a single parameter of type float, solv-
ing the ambiguity. If you want, this explicitly declared constructor in the Derived class accepting 
a float parameter can still forward the call to both the Base1 and Base2 constructors in its ctor-
initializer as follows:

Derived::Derived(float f) : Base1 { f }, Base2 { f } {}

Initialization of Data Members
When using inherited constructors, make sure that all data members are properly initialized. For 
example, take the following new definitions for Base and Derived. This example does not properly 
initialize the m_int data member in all cases, which is a serious error.

class Base
{
    public:
        virtual ~Base() = default;
        Base(std::string_view str) : m_str { str } {}
    private:
        std::string m_str;
};
 
class Derived : public Base
{
    public:
        using Base::Base;
        Derived(int i) : Base { "" }, m_int { i } {}
    private:
        int m_int;
};

You can create a Derived object as follows:

Derived s1 { 2 };

This calls the Derived(int) constructor, which initializes the m_int data member of the Derived 
class and calls the Base constructor with an empty string to initialize the m_str data member.

Because the Base constructor is inherited in the Derived class, you can also construct a Derived 
object as follows:

Derived s2 { "Hello World" };

This calls the inherited Base constructor in the Derived class. However, this inherited Base construc-
tor only initializes m_str of the Base class and does not initialize m_int of the Derived class, leaving 
it in an uninitialized state. This is not recommended!

The solution in this case is to use in-class member initializers, which are discussed in Chapter 8. 
The following code uses an in-class member initializer to initialize m_int to 0. Of course, the 
Derived(int) constructor can still change this and initialize m_int to the constructor parameter i.

class Derived : public Base
{
    public:
        using Base::Base;

continues
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        Derived(int i) : Base { "" }, m_int { i } {}
    private:
        int m_int { 0 };
};

Special Cases in Overriding Methods
Several special cases require attention when overriding a method. This section outlines the cases that 
you are likely to encounter.

The Base Class Method Is static
In C++, you cannot override a static method. For the most part, that’s all you need to know. There 
are, however, a few corollaries that you need to understand.

First of all, a method cannot be both static and virtual. This is the first clue that attempting to 
override a static method will not do what you intend it to do. If you have a static method in 
your derived class with the same name as a static method in your base class, you actually have two 
separate methods.

The following code shows two classes that both happen to have static methods called beStatic(). 
These two methods are in no way related.

class BaseStatic
{
    public:
        static void beStatic() {
            cout << "BaseStatic being static." << endl; }
};
 
class DerivedStatic : public BaseStatic
{
    public:
        static void beStatic() {
            cout << "DerivedStatic keepin' it static." << endl; }
};

Because a static method belongs to its class, calling the identically named methods on the two dif-
ferent classes calls their respective methods.

BaseStatic::beStatic();
DerivedStatic::beStatic();

This outputs the following:

BaseStatic being static.
DerivedStatic keepin' it static.

Everything makes perfect sense as long as the methods are accessed by their class names. The behav-
ior is less clear when objects are involved. In C++, you can call a static method using an object, but 
because the method is static, it has no this pointer and no access to the object itself, so it is equiva-
lent to calling it by its class name. Referring to the previous example classes, you can write code as 
follows, but the results may be surprising.

DerivedStatic myDerivedStatic;
BaseStatic& ref { myDerivedStatic };

(continued)
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myDerivedStatic.beStatic();
ref.beStatic();

The first call to beStatic() obviously calls the DerivedStatic version because it is explicitly called 
on an object declared as a DerivedStatic. The second call might not work as you expect. The object 
is a BaseStatic reference, but it refers to a DerivedStatic object. In this case, BaseStatic’s ver-
sion of beStatic() is called. The reason is that C++ doesn’t care what the object actually is when 
calling a static method. It only cares about the compile-time type. In this case, the type is a refer-
ence to a BaseStatic.

The output of the previous example is as follows:

DerivedStatic keepin' it static.
BaseStatic being static.

NOTE static methods are scoped by the name of the class in which they are 
defined, but they are not methods that apply to a specific object. When you call a 
static method, the version determined by normal name resolution is called. When 
the method is called syntactically by using an object, the object is not actually 
involved in the call, except to determine the type at compile time.

The Base Class Method Is Overloaded
When you override a method by specifying a name and a set of parameters, the compiler implicitly 
hides all other instances of the same name in the base class. The idea is that if you have overridden 
one method with a given name, you might have intended to override all the methods with that name, 
but simply forgot, and therefore this should be treated as an error. It makes sense if you think about 
it—why would you want to change some versions of a method and not others? Consider the follow-
ing Derived class, which overrides a method without overriding its associated overloaded siblings:

class Base
{
    public:
        virtual ~Base() = default;
        virtual void overload() { cout << "Base's overload()" << endl; }
        virtual void overload(int i) {
            cout << "Base's overload(int i)" << endl; }
};
 
class Derived : public Base
{
    public:
        void overload() override {
            cout << "Derived's overload()" << endl; }
};

If you attempt to call the version of overload() that takes an int parameter on a Derived object, 
your code will not compile because it was not explicitly overridden.

Derived myDerived;
myDerived.overload(2); // Error! No matching method for overload(int).
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It is possible, however, to access this version of the method from a Derived object. All you need is a 
pointer or a reference to a Base object.

Derived myDerived;
Base& ref { myDerived };
ref.overload(7);

The hiding of unimplemented overloaded methods is only skin deep in C++. Objects that are explic-
itly declared as instances of the derived class do not make the methods available, but a simple cast to 
the base class brings them right back.

A using declaration can be employed to save you the trouble of overloading all the versions when 
you really only want to change one. In the following code, the Derived class definition uses one ver-
sion of overload() from Base and explicitly overloads the other:

class Derived : public Base
{
    public:
        using Base::overload;
        void overload() override {
            cout << "Derived's overload()" << endl; }
};

The using declaration has certain risks. Suppose a third overload() method is added to Base, which 
should have been overridden in Derived. This will now not be detected as an error, because with the 
using declaration, the designer of the Derived class has explicitly said, “I am willing to accept all 
other overloads of this method from the parent class.”

WARNING To avoid obscure bugs, you should override all versions of an over-
loaded method.

The Base Class Method Is private
There’s absolutely nothing wrong with overriding a private method. Remember that the access spec-
ifier for a method determines who is able to call the method. Just because a derived class can’t call its 
parent’s private methods doesn’t mean it can’t override them. In fact, the template method pattern 
is a common pattern in C++ that is implemented by overriding private methods. It allows derived 
classes to define their own “uniqueness” that is referenced in the base class. Note that, for example, 
Java and C# only allow overriding public and protected methods, not private methods.

For example, the following class is part of a car simulator that estimates the number of miles the car 
can travel based on its gas mileage and the amount of fuel left. The getMilesLeft() method is the 
so-called template method. Usually, template methods are not virtual. They typically define some 
algorithmic skeleton in a base class, calling virtual methods to query for information. A derived 
class can then override these virtual methods to change aspects of the algorithm without having to 
modify the algorithm in the base class itself.

export class MilesEstimator
{
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    public:
        virtual ~MilesEstimator() = default;
        int getMilesLeft() const { return getMilesPerGallon() * getGallonsLeft(); }
        virtual void setGallonsLeft(int gallons) { m_gallonsLeft = gallons; }
        virtual int getGallonsLeft() const { return m_gallonsLeft; }
    private:
        int m_gallonsLeft { 0 };
        virtual int getMilesPerGallon() const { return 20; }
};

The getMilesLeft() method performs a calculation based on the results of two of its own methods. 
The following code uses the MilesEstimator to calculate how many miles can be traveled with two 
gallons of gas:

MilesEstimator myMilesEstimator;
myMilesEstimator.setGallonsLeft(2);
cout << format("Normal estimator can go {} more miles.",
    myMilesEstimator.getMilesLeft()) << endl;

The output of this code is as follows:

Normal estimator can go 40 more miles.

To make the simulator more interesting, you may want to introduce different types of vehicles, per-
haps a more efficient car. The existing MilesEstimator assumes that all cars get 20 miles per gallon, 
but this value is returned from a separate method specifically so that a derived class can override it. 
Such a derived class is shown here:

export class EfficientCarMilesEstimator : public MilesEstimator
{
    private:
        int getMilesPerGallon() const override { return 35; }
};

By overriding this one private method, the new class completely changes the behavior of existing, 
unmodified, public methods. The getMilesLeft() method in the base class automatically calls the 
overridden version of the private getMilesPerGallon() method. An example using the new class 
is shown here:

EfficientCarMilesEstimator myEstimator;
myEstimator.setGallonsLeft(2);
cout << format("Efficient estimator can go {} more miles.",
        myEstimator.getMilesLeft()) << endl;

This time, the output reflects the overridden functionality:

Efficient estimator can go 70 more miles.

NOTE Overriding private and protected methods is a good way to change 
certain features of a class without a major overhaul.



382 ❘ CHAPTER 10  Discovering inheritance techniques

The Base Class Method Has Default Arguments
Derived classes and base classes can each have different default arguments, but the arguments that are 
used depend on the declared type of the variable, not the underlying object. The following is a simple 
example of a derived class that provides a different default argument in an overridden method:

class Base
{
    public:
        virtual ~Base() = default;
        virtual void go(int i = 2) {
            cout << "Base's go with i=" << i << endl; }
};
 
class Derived : public Base
{
    public:
        void go(int i = 7) override {
            cout << "Derived's go with i=" << i << endl; }
};

If go() is called on a Derived object, Derived’s version of go() is executed with the default argu-
ment of 7. If go() is called on a Base object, Base’s version of go() is called with the default argu-
ment of 2. However (and this is the weird part), if go() is called on a Base pointer or Base reference 
that really points to a Derived object, Derived’s version of go() is called but with Base’s default 
argument of 2. This behavior is shown in the following example:

Base myBase;
Derived myDerived;
Base& myBaseReferenceToDerived { myDerived };
myBase.go();
myDerived.go();
myBaseReferenceToDerived.go();

The output of this code is as follows:

Base's go with i=2
Derived's go with i=7
Derived's go with i=2

The reason for this behavior is that C++ uses the compile-time type of the expression to bind default 
arguments, not the run-time type. Default arguments are not “inherited” in C++. If the Derived class 
in this example failed to provide a default argument as its parent did, it would be overloading the 
go() method with a new non-zero-argument version.

NOTE When overriding a method that has a default argument, you should pro-
vide a default argument as well, and it should probably be the same value. It is 
recommended to use a named constant for default values so that the same named 
constant can be used in derived classes.
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The Base Class Method Has a Different Access Specification
There are two ways you may want to change the access specification of a method: you could try to 
make it more restrictive or less restrictive. Neither case makes much sense in C++, but there are a few 
legitimate reasons for attempting to do so.

To enforce tighter restrictions on a method (or on a data member for that matter), there are two 
approaches you can take. One way is to change the access specifier for the entire base class. This 
approach is described later in this chapter. The other approach is simply to redefine the access in the 
derived class, as illustrated in the Shy class that follows:

class Gregarious 
{
    public:
        virtual void talk() {
            cout << "Gregarious says hi!" << endl; }
};
 
class Shy : public Gregarious
{
    protected:
        void talk() override {
            cout << "Shy reluctantly says hello." << endl; }
};

The protected version of talk() in the Shy class properly overrides the Gregarious::talk() 
method. Any client code that attempts to call talk() on a Shy object gets a compilation error:

Shy myShy;
myShy.talk();  // Error! Attempt to access protected method.

However, the method is not fully protected. One only has to obtain a Gregarious reference or 
pointer to access the method that you thought was protected:

Shy myShy;
Gregarious& ref { myShy };
ref.talk();

The output of this code is as follows:

Shy reluctantly says hello.

This proves that making the method protected in the derived class actually overrode the method 
(because the derived class version is correctly called), but it also proves that the protected access 
can’t be fully enforced if the base class makes it public.

NOTE There is no reasonable way (or good reason) to restrict access to a public 
base class method.
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NOTE The previous example redefined the method in the derived class because it 
wants to display a different message. If you don’t want to change the implemen-
tation but instead only want to change the access specification of a method, the 
preferred way is to simply add a using declaration in the derived class definition 
with the desired access specification.

It is much easier (and makes more sense) to lessen access restrictions in derived classes. The sim-
plest way is to provide a public method that calls a protected method from the base class, as 
shown here:

class Secret
{
    protected:
        virtual void dontTell() { cout << "I'll never tell." << endl; }
};
 
class Blabber : public Secret
{
    public:
        virtual void tell() { dontTell(); }
};

A client calling the public tell() method of a Blabber object effectively accesses the protected 
method of the Secret class. Of course, this doesn’t really change the access specification of dont-
Tell(); it just provides a public way of accessing it.

You can also override dontTell() explicitly in Blabber and give it new behavior with public 
access. This makes a lot more sense than reducing the access specification because it is entirely clear 
what happens with a reference or pointer to the base class. For example, suppose that Blabber actu-
ally makes the dontTell() method public:

class Blabber : public Secret
{
    public:
        void dontTell() override { cout << "I'll tell all!" << endl; }
};

Now you can call dontTell() on a Blabber object:

myBlabber.dontTell(); // Outputs "I'll tell all!"

If you don’t want to change the implementation of the overridden method but only change the access 
specification, then you can use a using declaration. Here’s an example:

class Blabber : public Secret
{
    public:
        using Secret::dontTell;
};
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This also allows you to call dontTell() on a Blabber object, but this time the output will be “I’ll 
never tell”:

myBlabber.dontTell(); // Outputs "I'll never tell."

In both previous cases, however, the protected method in the base class stays protected because 
any attempts to call Secret’s dontTell() method through a Secret pointer or reference will 
not compile:

Blabber myBlabber;
Secret& ref { myBlabber };
Secret* ptr { &myBlabber };
ref.dontTell();  // Error! Attempt to access protected method.
ptr->dontTell(); // Error! Attempt to access protected method.

NOTE The only truly useful way to change a method’s access specification is by 
providing a less restrictive accessor to a protected method.

Copy Constructors and Assignment Operators 
in Derived Classes

Chapter 9 says that providing a copy constructor and assignment operator is considered a good pro-
gramming practice when you have dynamically allocated memory in a class. When defining a derived 
class, you need to be careful about copy constructors and operator=.

If your derived class does not have any special data (pointers, usually) that require a nondefault 
copy constructor or operator=, you don’t need to have one, regardless of whether the base class has 
one. If your derived class omits the copy constructor or operator=, a default copy constructor or 
 operator= will be provided for the data members specified in the derived class, and the base class 
copy constructor or operator= will be used for the data members specified in the base class.

On the other hand, if you do specify a copy constructor in the derived class, you need to explic-
itly chain to the parent copy constructor, as shown in the following code. If you do not do this, the 
default constructor (not the copy constructor!) will be used for the parent portion of the object.

class Base
{
    public:
        virtual ~Base() = default;
        Base() = default;
        Base(const Base& src) { }
};
 
class Derived : public Base
{

continues
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    public:
        Derived() = default;
        Derived(const Derived& src) : Base { src } { }
};

Similarly, if the derived class overrides operator=, it is almost always necessary to call the parent’s 
version of operator= as well. The only case where you wouldn’t do this would be if there was some 
bizarre reason why you only wanted part of the object assigned when an assignment took place. The 
following code shows how to call the parent’s assignment operator from the derived class:

Derived& Derived::operator=(const Derived& rhs)
{
    if (&rhs == this) {
        return *this;
    } 
    Base::operator=(rhs); // Calls parent's operator=.
    // Do necessary assignments for derived class.
    return *this;
}

WARNING If your derived class does not specify its own copy constructor or 
operator=, the base class functionality continues to work. However, if the derived 
class does provide its own copy constructor or operator=, it needs to explicitly 
call the base class versions.

NOTE When you need copy functionality in an inheritance hierarchy, a common 
idiom employed by professional C++ developers is to implement a polymorphic 
clone() method, because relying on the standard copy constructor and copy 
assignment operators is not sufficient. The polymorphic clone() idiom is dis-
cussed in Chapter 12, “Writing Generic Code with Templates.”

Run-Time Type Facilities
Relative to other object-oriented languages, C++ is very compile-time oriented. As you learned earlier, 
overriding methods works because of a level of indirection between a method and its implementation, 
not because the object has built-in knowledge of its own class.

There are, however, features in C++ that provide a run-time view of an object. These features are 
commonly grouped together under a feature set called run-time type information (RTTI). RTTI pro-
vides a number of useful features for working with information about an object’s class membership. 
One such feature is dynamic_cast(), which allows you to safely convert between types within an 
object-oriented hierarchy; this was discussed earlier in this chapter. Using dynamic_cast() on a class 
without a vtable, that is, without any virtual methods, causes a compilation error.

(continued)
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A second RTTI feature is the typeid operator, which lets you query an object at run time to find out 
its type. For the most part, you shouldn’t ever need to use typeid because any code that is condition-
ally run based on the type of the object would be better handled with virtual methods.

The following code uses typeid to print a message based on the type of the object:

import <typeinfo>;
 
class Animal { public: virtual ~Animal() = default; };
class Dog : public Animal {};
class Bird : public Animal {};
 
void speak(const Animal& animal)
{
    if (typeid(animal) == typeid(Dog)) {
        cout << "Woof!" << endl;
    } else if (typeid(animal) == typeid(Bird)) {
        cout << "Chirp!" << endl;
    }
} 

Whenever you see code like this, you should immediately consider reimplementing the functionality 
as a virtual method. In this case, a better implementation would be to declare a virtual method 
called speak() in the Animal class. Dog would override the method to print "Woof!", and Bird 
would override the method to print "Chirp!". This approach better fits object-oriented program-
ming, where functionality related to objects is given to those objects.

WARNING The typeid operator works correctly only if the class has at least one 
virtual method, that is, when the class has a vtable. Additionally, the typeid 
operator strips reference and const qualifiers from its argument.

The typeid operator could be useful for logging and debugging purposes. The following code makes 
use of typeid for logging. The logObject() function takes a “loggable” object as a parameter. The 
design is such that any object that can be logged inherits from the Loggable class and supports a 
method called getLogMessage().

class Loggable
{
    public:
        virtual ~Loggable() = default;
        virtual std::string getLogMessage() const = 0;
};
 
class Foo : public Loggable
{
    public:
        std::string getLogMessage() const override { return "Hello logger."; }
};
 continues



388 ❘ CHAPTER 10  Discovering inheritance techniques

void logObject(const Loggable& loggableObject)
{
    cout << typeid(loggableObject).name() << ": ";
    cout << loggableObject.getLogMessage() << endl;
}

The logObject() function first writes the name of the object’s class to the output stream, followed 
by its log message. This way, when you read the log later, you can see which object was responsible 
for every written line. Here is the output generated by Microsoft Visual C++ 2019 when the  
log Object() function is called with an instance of Foo:

class Foo: Hello logger.

As you can see, the name returned by the typeid operator is “class Foo”. However, this name 
depends on your compiler. For example, if you compile the same code with GCC, the output is 
as follows:

3Foo: Hello logger.

NOTE If you are using typeid for purposes other than logging and debugging, 
consider reimplementing it using virtual methods.

Non-public Inheritance
In all previous examples, parent classes were always listed using the public keyword. You may be 
wondering if a parent can be private or protected. In fact, it can, though neither is as common as 
public. If you don’t specify any access specifier for the parent, then it is private inheritance for a 
class, and public inheritance for a struct.

Declaring the relationship with the parent to be protected means that all public methods and data 
members from the base class become protected in the context of the derived class. Similarly, specify-
ing private inheritance means that all public and protected methods and data members of the 
base class become private in the derived class.

There are a handful of reasons why you might want to uniformly degrade the access level of the par-
ent in this way, but most reasons imply flaws in the design of the hierarchy. Some programmers abuse 
this language feature, often in combination with multiple inheritance, to implement “components” 
of a class. Instead of making an Airplane class that contains an engine data member and a fuselage 
data member, they make an Airplane class that is a protected engine and a protected fuselage. In 
this way, the Airplane doesn’t look like an engine or a fuselage to client code (because everything is 
protected), but it is able to use all of that functionality internally.

NOTE Non-public inheritance is rare, and I recommend using it cautiously, if for 
no other reason than that most programmers are not familiar with it.

(continued)
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Virtual Base Classes
Earlier in this chapter, you learned about ambiguous base classes, a situ-
ation that arises when multiple parents each have a parent in common, 
as shown again in Figure 10-12. The solution that I recommended was 
to make sure that the shared parent doesn’t have any functionality of its 
own. That way, its methods can never be called, and there is no ambigu-
ity problem.

C++ has another mechanism, called virtual base classes, for addressing 
this problem if you do want the shared parent to have its own function-
ality. If the shared parent is a virtual base class, there will not be any 
ambiguity. The following code adds a sleep() method to the Animal 
base class and modifies the Dog and Bird classes to inherit from Animal as a virtual base class. With-
out using a virtual base class, a call to sleep() on a DogBird object would be ambiguous and would 
generate a compiler error because DogBird would have two subobjects of class Animal, one coming 
from Dog and one coming from Bird. However, when Animal is inherited virtually, DogBird has only 
one subobject of class Animal, so there will be no ambiguity with calling sleep().

class Animal
{
    public:
        virtual void eat() = 0;
        virtual void sleep() { cout << "zzzzz...." << endl; }
};
 
class Dog : public virtual Animal
{
    public:
        virtual void bark() { cout << "Woof!" << endl; }
        void eat() override { cout << "The dog ate." << endl; }
};
 
class Bird : public virtual Animal
{
    public:
        virtual void chirp() { cout << "Chirp!" << endl; }
        void eat() override { cout << "The bird ate." << endl; }
};
 
class DogBird : public Dog, public Bird
{
    public:
        void eat() override { Dog::eat(); }
};
 
int main()
{
    DogBird myConfusedAnimal;
    myConfusedAnimal.sleep();  // Not ambiguous because of virtual base class.
}

FIGURE 10-12 
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NOTE Virtual base classes are a great way to avoid ambiguity in class hierarchies. 
The only drawback is that many C++ programmers are unfamiliar with the con-
cept.

CASTS

The basic types in C++ are reviewed in Chapter 1, while Chapters 8 through 10 show how to write 
your own types with classes. This section explores some of the trickier aspects of casting one type to 
another type.

C++ provides five specific casts: const_cast(), static_cast(), reinterpret_cast(), dynamic_
cast(), and std::bit_cast() (since C++20). The first one is discussed in Chapter 1. Chapter 1 also 
introduces static_cast() for casting between certain primitive types, but there is more to say about 
it in the context of inheritance. Now that you are fluent in writing your own classes and understand 
class inheritance, it’s time to take a closer look at these casts.

Note that the old C-style casts such as (int)myFloat still work in C++ and are still used extensively 
in existing code bases. C-style casts cover all four C++ casts, so they are more error-prone because it’s 
not always obvious what you are trying to achieve, and you might end up with unexpected results. I 
strongly recommend you only use the C++ style casts in new code because they are safer and stand 
out better syntactically in your code.

static_cast()
You can use static_cast() to perform explicit conversions that are supported directly by the 
language. For example, if you write an arithmetic expression in which you need to convert an int 
to a double to avoid integer division, use a static_cast(). In this example, it’s enough to only use 
static_cast() with i, because that makes one of the two operands a double, making sure C++ 
performs floating-point division.

int i { 3 };
int j { 4 };
double result { static_cast<double>(i) / j };

You can also use static_cast() to perform explicit conversions that are allowed because of user-
defined constructors or conversion routines. For example, if class A has a constructor that takes an 
object of class B, you can convert a B object to an A object with static_cast(). In most situations 
where you want this behavior, however, the compiler performs the conversion automatically.

Another use for static_cast() is to perform downcasts in an inheritance hierarchy, as in 
this example:

class Base
{
    public:
        virtual ~Base() = default;
};
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class Derived : public Base
{
    public:
        virtual ~Derived() = default;
};
 
int main()
{
    Base* b { nullptr };
    Derived* d { new Derived{} };
    b = d; // Don't need a cast to go up the inheritance hierarchy.
    d = static_cast<Derived*>(b); // Need a cast to go down the hierarchy.
 
    Base base;
    Derived derived;
    Base& br { derived };
    Derived& dr { static_cast<Derived&>(br) };
}

These casts work with both pointers and references. They do not work with objects themselves.

Note that these casts using static_cast() do not perform run-time type checking. They allow you 
to convert any Base pointer to a Derived pointer, or Base reference to a Derived reference, even if 
the Base really isn’t a Derived at run time. For example, the following code compiles and executes, 
but using the pointer d can result in potentially catastrophic failure, including memory overwrites 
outside the bounds of the object.

Base* b { new Base{} };
Derived* d { static_cast<Derived*>(b) };

To perform the cast safely with run-time type checking, use dynamic_cast(), which is explained a 
little later in this chapter.

static_cast() is not all-powerful. You can’t static_cast() pointers of one type to pointers of 
another unrelated type. You can’t directly static_cast() objects of one type to objects of another 
type if there is no converting constructor available. You can’t static_cast() a const type to a non-
const type. You can’t static_cast() pointers to ints. Basically, you can’t do anything that doesn’t 
make sense according to the type rules of C++.

reinterpret_cast()
reinterpret_cast() is a bit more powerful, and concomitantly less safe, than static_cast(). You 
can use it to perform some casts that are not technically allowed by the C++ type rules but that might 
make sense to the programmer in some circumstances. For example, you can cast a reference to one 
type to a reference to another type, even if the types are unrelated. Similarly, you can cast a pointer 
type to any other pointer type, even if they are unrelated by an inheritance hierarchy. This is com-
monly used to cast a pointer to a void*. This can be done implicitly, so no explicit cast is required. 
However, casting a void* back to a correctly typed pointer requires reinterpret_cast(). A void* 
pointer is just a pointer to some location in memory. No type information is associated with a void* 
pointer. Here are some examples:

class X {};
class Y {};
 continues
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int main()
{
    X x;
    Y y;
    X* xp { &x };
    Y* yp { &y };
    // Need reinterpret_cast for pointer conversion from unrelated classes
    // static_cast doesn't work.
    xp = reinterpret_cast<X*>(yp);
    // No cast required for conversion from pointer to void*
    void* p { xp };
    // Need reinterpret_cast for pointer conversion from void*
    xp = reinterpret_cast<X*>(p);
    // Need reinterpret_cast for reference conversion from unrelated classes
    // static_cast doesn't work.
    X& xr { x };
    Y& yr { reinterpret_cast<Y&>(x) };
}

reinterpret_cast() is not all-powerful; it comes with quite a few restrictions on what can be cast 
to what. These restrictions are not further discussed in this text, as I recommend that you use these 
kind of casts judiciously.

In general, you should be careful with reinterpret_cast() because it allows you to do conversions 
without performing any type checking.

WARNING You can also use reinterpret_cast() to cast pointers to integral 
types and back. However, you can only cast a pointer to an integral type that is 
large enough to hold it. For example, trying to use reinterpret_cast() to cast a 
64-bit pointer to a 32-bit integer results in a compilation error.

 

std::bit_cast()
C++20 introduces std::bit_cast(), defined in <bit>. It’s the only cast that’s part of the Standard 
Library; the other casts are part of the C++ language itself. bit_cast() resembles reinterpret_
cast(), but it creates a new object of a given target type and copies the bits from a source object to 
this new object. It effectively interprets the bits of the source object as if they are the bits of the target 
object. bit_cast() requires that the size of the source and target objects are the same and that both 
are trivially copyable. Here is an example:

float asFloat { 1.23f };
auto asUint { bit_cast<unsigned int>(asFloat) };
if (bit_cast<float>(asUint) == asFloat) { cout << "Roundtrip success." << endl; }

C++20

(continued)
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NOTE A trivially copyable type is a type of which the underlying bytes making 
up the object can be copied into an array of, for example, char. If the data of that 
array is then copied back into the object, the object will keep its original value.

A use case for bit_cast() is with binary I/O of trivially copyable types. For example, you can write 
the individual bytes of such types to a file. When you read the file back into memory, you can use 
bit_cast() to correctly interpret the bytes read from the file.

dynamic_cast()
dynamic_cast() provides a run-time check on casts within an inheritance hierarchy. You can use it 
to cast pointers or references. dynamic_cast() checks the run-time type information of the underly-
ing object at run time. If the cast doesn’t make sense, dynamic_cast() returns a null pointer (for the 
pointer version) or throws an std::bad_cast exception (for the reference version).

For example, suppose you have the following class hierarchy:

class Base
{
    public:
        virtual ~Base() = default;
};
 
class Derived : public Base
{
    public:
        virtual ~Derived() = default;
};

The following example shows a correct use of dynamic_cast():

Base* b;
Derived* d { new Derived{} };
b = d;
d = dynamic_cast<Derived*>(b);

The following dynamic_cast() on a reference will cause an exception to be thrown:

Base base;
Derived derived;
Base& br { base };
try {
    Derived& dr { dynamic_cast<Derived&>(br) };
} catch (const bad_cast&) {
    cout << "Bad cast!" << endl;
}

Note that you can perform the same casts down the inheritance hierarchy with a static_cast() or 
reinterpret_cast(). The difference with dynamic_cast() is that it performs run-time (dynamic) 
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type checking, while static_cast() and reinterpret_cast() perform the casting even if they 
are erroneous.

Remember, the run-time type information is stored in the vtable of an object. Therefore, to use 
dynamic_cast(), your classes must have at least one virtual method. If your classes don’t have a 
vtable, trying to use dynamic_cast() will result in a compilation error. Microsoft Visual C++, for 
example, gives the following error:

error C2683: 'dynamic_cast' : 'MyClass' is not a polymorphic type.

Summary of Casts
The following table summarizes the casts you should use for different situations.

SITUATION CAST

Remove const-ness const_cast()

Explicit cast supported by the language (for example, 
int to double, int to bool)

static_cast()

Explicit cast supported by user-defined constructors 
or conversions

static_cast()

Object of one class to object of another 
(unrelated) class

bit_cast()

Pointer-to-object of one class to pointer-to-object of 
another class in the same inheritance hierarchy

dynamic_cast() recommended, or 
static_cast()

Reference-to-object of one class to reference-
to-object of another class in the same 
inheritance hierarchy

dynamic_cast() recommended, or 
static_cast()

Pointer-to-type to unrelated pointer-to-type reinterpret_cast()

Reference-to-type to unrelated reference-to-type reinterpret_cast()

Pointer-to-function to pointer-to-function reinterpret_cast()

SUMMARY

This chapter covered numerous details about inheritance. You learned about its many applications, 
including code reuse and polymorphism. You also learned about its many abuses, including poorly 
designed multiple-inheritance schemes. Along the way, you uncovered some cases that require special 
attention.

Inheritance is a powerful language feature that takes some time to get used to. After you have worked 
with the examples in this chapter and experimented on your own, I hope that inheritance will become 
your tool of choice for object-oriented design.
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 10-1: Take the Person class from Exercise 9-2 and add a derived class called 
Employee. You can omit the overload of operator<=> from Exercise 9-2. The Employee 
class adds one data member, an employee ID. Provide an appropriate constructor. From 
Employee, derive two more classes called Manager and Director.

Put all your classes, including the Person class, in a namespace called HR. Note that you can 
export everything in a namespace as follows:

export namespace HR { /* ... */ }

Exercise 10-2: Continuing with your solution from Exercise 10-1, add a toString() method 
to the Person class returning a string representation of a person. Override this method in the 
Employee, Manager, and Director classes to build up a complete string representation by 
delegating part of their work to parent classes.

Exercise 10-3: Practise polymorphic behavior of the classes in your Person hierarchy from 
Exercise 10-2. Define a vector to store a mix of employees, managers, and directors, and fill 
it with some test data. Finally, use a single range-based for loop to call toString() on all of 
the elements in the vector.

Exercise 10-4: In real companies, employees can get promoted to a manager or director posi-
tion. Do you see a way you can add support for this to your class hierarchy of Exercise 10-3?

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?

➤➤ What modules are and how to author and consume them

➤➤ Details of header files

➤➤ The different uses of the static keyword

➤➤ C-style variable-length argument lists and preprocessor macros

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

This chapter discusses a couple of features of the C++ language that don’t readily fit in any 
other chapter. The chapter starts with a detailed discussion on how modules allow you to write 
reusable components and contrasts this against the old-style header files. It also includes a 
discussion of the different uses of the static and extern keywords. The final part of the 
chapter discusses a few C-style utilities: variable-length argument lists and preprocessor macros.

MODULES

Modules are introduced in Chapter 1, “A Crash Course in C++ and the Standard Library,” and 
you have already authored and consumed your own simple modules in previous chapters. How-
ever, there are quite a few more things to say about modules. Before the introduction of mod-
ules in C++20, header files, discussed later in this chapter, were used to provide the interface to 
a reusable piece of code. Header files do have a number of problems, though, such as avoid-
ing multiple includes of the same header file and making sure header files are included in the 

C++20

http://www.wiley.com/go/proc++5e
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correct order. Additionally, simply #include’ing, for example, <iostream> adds tens of thousands of 
lines of code that the compiler has to crunch through. If several source files #include <iostream>, 
all of those translation units grow much bigger. And that is with an include of just a single header file. 
Imagine if you need <iostream>, <vector>, <format>, and more.

Modules solve all these issues, and more. The order in which modules are imported is not important. 
Modules can be compiled once, instead of over and over like header files; hence, they can drastically 
improve compilation times. Certain modifications in modules, for example, modifying an exported 
function’s implementation in a module interface file, do not trigger recompilation of users of  
that module (discussed in more details later in this chapter). Modules are not influenced by any  
externally defined macros, and any macros defined inside a module are never visible to any code 
outside the module.

With all these benefits, if your compiler has support for modules, newly written code should 
use modules.

NOTE How to compile modules is compiler dependent. Consult your compiler’s 
documentation to learn how to work with modules with your specific compiler.

NOTE At the time of this writing, there was no compiler available yet that fully 
supported modules. There was experimental support in some of the compilers, 
but it was still incomplete. This book uses modules everywhere. We did our best 
to make sure all sample code would compile once compilers fully support mod-
ules, but since we were not able to compile and test all examples, some errors 
might have crept in. When you use a compiler with support for modules and you 
encounter problems with any of the code samples, double-check the list of errata 
for the book at www.wiley.com/go/proc++5e to see if it’s a known issue. If your 
compiler does not yet support modules, you can convert the modularized code to 
non-modularized code, as explained next.

If you want to compile code samples from this book with a compiler that does not yet support mod-
ules, you can unmodularize the code as follows:

➤➤ Rename .cppm module interface files to .h header files.

➤➤ Add a #pragma once at the top of each .h header file.

➤➤ Remove export module xyz declarations.

➤➤ Replace module xyz declarations with an #include to include the corresponding header file.

➤➤ Replace import and export import declarations with proper #include directives.

➤➤ Remove any export keywords.

http://www.wiley.com/go/proc++5e
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➤➤ Remove all occurrences of module;, which denotes the start of a global module fragment.

➤➤ If a function definition or variable definition appears in a .h header file, add the inline key-
word in front of it.

Module Interface Files
A module interface file defines the interface for the functionality provided by a module. Module inter-
face files usually have .cppm as an extension. A module interface starts with a declaration stating that 
the file is defining a module with a certain name. This is called the module declaration. A module’s 
name can be any valid C++ identifier. The name can include dots but cannot start or end with  
a dot and cannot contain multiple dots in a row. Examples of valid names are datamodel,  
mycompany.datamodel, mycompany.datamodel.core, datamodel_core, and so on.

NOTE Currently, there is no standardized extension for module interface files. 
However, most compilers support the .cppm (C++ module) extension, so that’s 
what this book uses. Check the documentation of your compiler to learn which 
extension to use.

A module needs to explicitly state what to export, i.e., what should be visible when client code 
imports the module. Exporting entities (for example, classes, functions, constants, other modules, . . .) 
from a module is done with the export keyword. Anything that is not exported from a module is 
visible only from within the module itself. The collection of all exported entities is called the module 
interface.

Here is an example of a module interface file called Person.cppm, defining a person module and 
exporting a Person class. Note that it imports the functionality provided by <string>.

export module person;  // Module declaration
 
import <string>;       // Import declaration
 
export class Person    // Export declaration
{
    public:
        Person(std::string firstName, std::string lastName)
            : m_firstName { std::move(firstName) }
            , m_lastName { std::move(lastName) } { }
        const std::string& getFirstName() const { return m_firstName; }
        const std::string& getLastName() const { return m_lastName; }
    private:
        std::string m_firstName;
        std::string m_lastName;
};

This Person class can be made available for use by importing the person module as follows 
(test.cpp):

import person;     // Import declaration for person module
import <iostream>;

continues
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import <string>;   // For operator<< for std::string
 
using namespace std;
 
int main()
{
    Person person { "Kole", "Webb" };
    cout << person.getLastName() << ", " << person.getFirstName() << endl;
}

All C++ headers, such as <iostream>, <vector>, <string>, and so on, are so-called importable 
headers that can be imported with an import declaration. As Chapter 1 explains, the C headers avail-
able in C++ are not guaranteed to be importable. To be safe, use #include for C headers instead 
of import declarations. Such #include directives should be placed in the so-called global module 
fragment, which must come before any named module declaration, and starts with a nameless module 
declaration. A global module fragment can only contain preprocessing directives such as #include. 
Such a global module fragment and comments are the only things that are allowed to appear before 
a named module declaration. For example, if you need to use functionality from the <cstddef> C 
header file, you can make that available as follows:

module;                // Start of the global module fragment
#include <cstddef>     // Include legacy header files
 
export module person;  // Named module declaration

 
import <string>;
 
export class Person { /* ... */ };

In standardese terms, everything starting from a named module declaration until the end of the file is 
called the module purview.

Pretty much anything can be exported from a module, as long as it has a name. Examples are class 
definitions, function prototypes, class enumeration types, using declarations and directives, names-
paces, and so on. If a namespace is explicitly exported with the export keyword, everything inside 
that namespace is automatically exported as well. For example, the following code snippet exports 
the entire DataModel namespace; hence, there is no need to explicitly export the individual classes 
and type alias:

export module datamodel;
import <vector>;
export namespace DataModel
{
    class Person { /* ... */ };
    class Address { /* ... */ };
    using Persons = std::vector<Person>;
}

You can also export a whole block of declarations using an export block. Here’s an example:

export
{
    namespace DataModel

(continued)
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    {
        class Person { /* ... */ };
        class Address { /* ... */ };
        using Persons = std::vector<Person>;
    }
}

Module Implementation Files
A module can be split into a module interface file and one or more module implementation files. 
Module implementation files usually have .cpp as their extension. You are free to decide which 
implementations you move to module implementation files and which implementations you leave 
in the module interface file. One option is to move all function- and method implementations to a 
module implementation file and leave only the function prototypes, class definitions, and so on in the 
module interface file. Another option is to leave the implementation of small functions and methods 
in the interface file, while moving the implementations of other functions and methods to an imple-
mentation file. You have a lot of flexibility here.

A module implementation file again contains a named module declaration to specify for which  
module the implementations are for, but without the export keyword. For example, the previous 
person module can be split into an interface and an implementation file as follows. Here is the  
module interface file:

export module person;  // Module declaration
 
import <string>;
 
export class Person
{
    public:
        Person(std::string firstName, std::string lastName);
        const std::string& getFirstName() const;
        const std::string& getLastName() const;
    private:
        std::string m_firstName;
        std::string m_lastName;
};

The implementations now go in a Person.cpp module implementation file:

module person;  // Module declaration, but without the export keyword
 
using namespace std;
 
Person::Person(string firstName, string lastName)
    : m_firstName { move(firstName) }, m_lastName { move(lastName) }
{
}
 
const string& Person::getFirstName() const { return m_firstName; }
const string& Person::getLastName() const { return m_lastName; }
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Note that the implementation file does not have an import declaration for the person module. 
The module person declaration implicitly includes an import person declaration. Also note 
that the implementation file does not have any import declaration for <string>, even though it’s 
using std::string in the implementation of the methods. Thanks to the implicit import person, 
and because this implementation file is part of the same person module, it implicitly inherits the 
<string> import declaration from the module interface file. In contrast, adding an import person 
declaration to the test.cpp file does not implicitly inherit the <string> import declaration because 
test.cpp is not part of the person module. There is more to be said about this, which is the topic of 
the upcoming “Visibility vs. Reachability” section.

NOTE All import declarations in module interface and module implementation 
files must be at the top of the file, after the named module declaration, but before 
any other declarations.

Similar as for module interface files, if you need any #include directives for legacy headers in a mod-
ule implementation file, you should place them in a global module fragment with the same syntax as 
for module interface files.

WARNING Module implementation files cannot export anything; only module 
interface files can.

Splitting Interface from Implementation
When using header files instead of modules, it is a strong recommendation to only put declarations 
in your header file (.h) and move all implementations to a source file (.cpp). One of the reasons is 
to improve compilation times. If you would put your implementations in the header file, any change, 
even just changing a comment, requires you to recompile all other source files that include that 
header. For certain header files, this could ripple through the entire code base, causing a full recompile 
of the program. By putting your implementations in a source file instead, making changes to those 
implementations without touching the header file means that only that single source file needs to be 
recompiled.

Modules work differently. A module interface consists only of class definitions, function prototypes, 
and so on, but does not include any function or method implementations, even if those implementa-
tions are directly in the module interface file. So, changing a function or method implementation that 
is inside a module interface file does not require a recompilation of users of that module, as long as 
you do not touch the interface part, for example, the function header (= function name, parameter 
list, and return type). Two exceptions are functions/methods marked with the inline keyword, and 
template definitions. For both of these, the compiler needs to know their complete implementations 
at the time client code using them is compiled. Hence, any change to inline functions/methods or 
template definitions can trigger recompilation of client code.
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NOTE When class definitions in header files contain method implementations, 
those methods are implicitly inline, even without marking them with the inline 
keyword. This is not true for method implementations in class definitions in 
module interface files. If these need to be inline, they need to be explicitly marked 
as such.

Even though, technically, it is not required anymore to split the interface from the implementation, 
in some cases I still recommend doing so. The main goal should be to have clean and easy-to-read 
interfaces. Implementations of functions can stay in the interface, as long as they don’t obscure the 
interface and make it harder for users to quickly grasp what the public interface provides. For exam-
ple, if a module has a rather big public interface, it might be better not to obscure that interface with 
implementations, so the user can have a better overview of what’s being offered. Still, small getter and 
setter functions can stay in the interface, as they don’t really impact the readability of the interface.

Separating the interface from the implementation can be done in several ways. One option is to split a 
module into interface and implementation files, as discussed in the previous section. Another option is 
to separate the interface and the implementations within a single module interface file. For example, 
here is the Person class defined in a single module interface file (person.cppm), but with the imple-
mentations split from the interface:

export module person;
import <string>;
// Class definition
export class Person
{
    public:
        Person(std::string firstName, std::string lastName);
        const std::string& getFirstName() const;
        const std::string& getLastName() const;
    private:
        std::string m_firstName;
        std::string m_lastName;
};
// Implementations
Person::Person(std::string firstName, std::string lastName)
    : m_firstName { std::move(firstName) }, m_lastName { std::move(lastName) } { }
const std::string& Person::getFirstName() const { return m_firstName; }
const std::string& Person::getLastName() const { return m_lastName; }

Visibility vs. Reachability
As mentioned earlier, when you import the person module in another source file that is not part 
of the person module, for example in a test.cpp file, then you are not implicitly inheriting the 
<string> import declaration from the person module interface file. So, without an explicit import 
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for <string> in test.cpp, the std::string name is not visible, meaning the following highlighted 
lines of code will not compile:

import person;
int main()
{
    std::string str;
    Person person { "Kole", "Webb" };
    const std::string& lastName { person.getLastName() };
}

Still, even without adding an explicit import for <string> to test.cpp, the following lines of code 
work just fine:

const auto& lastName { person.getLastName() };
auto length { lastName.length() };

Why is this working? There is a difference between visibility and reachability of entities in C++. By 
importing the person module, the functionality from <string> becomes reachable but not visible. 
Member functions of reachable classes automatically become visible. All this means that you can use 
certain functionality from <string>, such as storing the result of getLastName() in a variable by 
using auto type deduction and calling methods on it such as length().

To make the std::string name visible in test.cpp, an explicit import for <string> is required. 
Such an explicit import is also necessary when you want to use, for example, operator<< as in the 
following line of code. That’s because operator<< is not a method of std::string, but a  
non-member function that becomes visible only with an import for <string>.

cout << person.getLastName() << endl;

Submodules
The C++ standard does not speak about submodules as such; however, it is allowed to use dots in a 
module’s name, and that makes it possible to structure your modules in any hierarchy you want. For 
example, earlier, the following example of a DataModel namespace was given:

export module datamodel;
import <vector>;
export namespace DataModel
{
    class Person { /* ... */ };
    class Address { /* ... */ };
    using Persons = std::vector<Person>;
}

Both the Person and Address classes are inside the DataModel namespace and in the datamodel 
module. This can be restructured by defining two submodules: datamodel.person and  
datamodel.address. The module interface file for the datamodel.person submodule is as follows:

export module datamodel.person;  // datamodel.person submodule
export namespace DataModel { class Person { /* ... */ }; }
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Here is the module interface file for datamodel.address:

export module datamodel.address;  // datamodel.address submodule
export namespace DataModel { class Address { /* ... */ }; }

Finally, a datamodel module is defined as follows. It imports and immediately exports both 
submodules.

export module datamodel;          // datamodel module
export import datamodel.person;   // Import and export person submodule
export import datamodel.address;  // Import and export address submodule
import <vector>;
export namespace DataModel { using Persons = std::vector<Person>; }

Of course, the method implementations of classes in submodules can also go into module implemen-
tation files. For example, suppose the Address class has a default constructor that just prints a state-
ment to standard output; that implementation could be in a file called datamodel.address.cpp:

module datamodel.address;  // datamodel.address submodule
import <iostream>;
using namespace std;
DataModel::Address::Address() { cout << "Address::Address()" << endl; }

A benefit of structuring your code with submodules is that clients can import either specific parts 
they want to use or everything at once. For example, if a client is only interested in using the Address 
class, the following import declaration suffices:

import datamodel.address;

On the other hand, if client code needs access to everything in the datamodel module, then the fol-
lowing import declaration is the easiest:

import datamodel;

Module Partitions
Another option to structure modules is by separating them into separate partitions. The difference 
between submodules and partitions is that the submodule structuring is visible to users of the module, 
allowing users to selectively import only those submodules they want to use. Partitions, on the other 
hand, are used to structure a module internally. Partitions are not exposed to users of the module. 
All partitions declared in module interface partition files must ultimately be exported by the primary 
module interface file. A module always has only one such primary module interface file, and that’s the 
interface file containing the export module name declaration.

A module partition is created by separating the name of the module and the name of the partition 
with a colon. The name of a partition can be any legal identifier. For example, the DataModel module 
from the previous section can be restructured using partitions instead of submodules. Here is the 
person partition in a datamodel.person.cppm module interface partition file:

export module datamodel:person;  // datamodel:person partition
export namespace DataModel { class Person { /* ... */ }; }
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Here is the address partition, including a default constructor:

export module datamodel:address; // datamodel:address partition
export namespace DataModel
{
    class Address
    {
    public:
        Address();
        /* ... */
    };
}

Unfortunately, there is a caveat when using implementation files in combination with partitions: there 
can be only one file with a certain partition name. So, having an implementation file that starts with 
the following declaration is ill-formed:

module datamodel:address;

Instead, you can just put the address partition implementations in an implementation file for the 
datamodel module as follows:

module datamodel;  // Not datamodel:address!
import <iostream>;
using namespace std;
DataModel::Address::Address() { cout << "Address::Address()" << endl; }

WARNING Multiple files cannot have the same partition name. So, having mul-
tiple module interface partition files with the same partition name is illegal, and 
implementations for declarations in a module interface partition file cannot go in 
an implementation file with the same partition name. Instead, just put those imple-
mentations in a module implementation file for the module instead.

An important point to remember when authoring modules structured in partitions is that each mod-
ule interface partition must ultimately be exported by the primary module interface file, either directly 
or indirectly. To import a partition, you just specify the name of the partition prefixed with a colon, 
for example import :person. It’s illegal to say something like import datamodel:person. Remem-
ber, partitions are not exposed to users of a module; partitions only structure a module internally. 
Hence, users cannot import a specific partition; they must import the entire module. Partitions can 
be imported only within the module itself, so it’s redundant (and illegal) to specify the name of the 
module before the colon. Here is the primary module interface file for the datamodel module:

export module datamodel; // datamodel module (primary module interface file)
export import :person;   // Import and export person partition
export import :address;  // Import and export address partition
import <vector>;
export namespace DataModel { using Persons = std::vector<Person>; }
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This partition-structured datamodel module can be used as follows:

import datamodel;
int main() { DataModel::Address a; }

NOTE Partitions are used to structure modules internally. Partitions are not visible 
outside of a module. Hence, users of a module cannot import specific partitions; 
they must import the entire module.

Earlier it is explained that a module name declaration implicitly includes an import name declara-
tion. This is not the case for partitions.

For example, the datamodel:person partition does not have an implicit import datamodel 
declaration. In this example, it’s even not allowed to add an explicit import datamodel to the 
datamodel:person interface partition file. Doing so would result in a circular dependency: the  
datamodel interface file contains an import :person declaration, while the datamodel:person 
interface partition file would contain an import datamodel declaration.

To break such circular dependencies, you can move the functionality that the datamodel:person 
partition needs from the datamodel interface file to another partition, which subsequently can be 
imported by both the datamodel:person interface partition file and the datamodel interface file.

Implementation Partitions
A partition does not need to be declared in a module interface partition file, it can also be declared 
in a module implementation partition file, a normal source code file with extension .cpp, in which 
case it’s an implementation partition, sometimes called an internal partition. Such partitions are not 
exported by the primary module interface file.

For example, suppose you have the following math primary module interface file (math.cppm):

export module math; // math module declaration
export namespace Math
{
    double superLog(double z, double b);
    double lerchZeta(double lambda, double alpha, double s);
}

Suppose further that the implementations of the math functions require some helper functions that 
must not be exported by the module. An implementation partition is the perfect place to put  
such helper functions. The following defines such an implementation partition in a file called  
math_helpers.cpp:

module math:details;  // math:details implementation partition
double someHelperFunction(double a) { return /* ... */ ; }
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Other math module implementation files can get access to these helper functions by importing this 
implementation partition. For example, a math module implementation file (math.cpp) could look 
like this:

module math;
import :details;
double Math::superLog(double z, double b) { return /* ... */; }
double Math::lerchZeta(double lambda, double alpha, double s) { return /* ... */; }

Of course, using such implementation partitions with helper functions makes sense only if multiple 
other source files use those helper functions.

Header Units
When importing a module, you use an import declaration such as the following:

import person;

If you have legacy code, such as a person.h header file defining a Person class, then you could 
modularize it by converting it to a proper module, person.cppm, and use import declarations to 
make it available to client code. However, sometimes you cannot modularize such headers. Maybe 
your Person class should remain usable by compilers that do not yet have support for modules. Or 
maybe the person.h header is part of a third-party library that you cannot modify. In such cases, you 
can import your header file directly, as follows:

import "person.h";  // Can also include a relative or absolute path.

With such a declaration, everything in the person.h header file becomes implicitly exported. 
Additionally, macros defined in the header become visible to client code, which is not the case for 
real modules.

Compared to #include’ing the header, importing it will improve build throughput, as the person.h 
header will implicitly be converted to a module and hence be compiled only once, instead of every 
time when the header is included in a source file. As such, it can be used as a standardized way to 
support so-called precompiled header files, instead of using compiler-dependent precompiled header 
file support.

For each import declaration naming a header file, the compiler must create a module with an 
exported interface similar to what the header file defines. This is called a header unit. The procedure 
for this is compiler dependent, so check the documentation of your compiler to learn how to work 
with header units.

HEADER FILES

Before the introduction of C++20’s modules, header files, also called headers, were used as a mecha-
nism for providing the interface to a subsystem or piece of code. Chapter 1 briefly introduces header 
files. Basically, the most common use of headers is to declare functions that will be defined elsewhere. 
A function declaration tells the compiler how a function is called, declaring the number and types of 
parameters and the function’s return type. A definition contains the actual code for the function. In 
C++, declarations usually go into header files, typically with extension .h, while definitions usually go 
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into source files, typically with extension .cpp. This book uses C++20 modules everywhere, but this 
section briefly discusses a few trickier aspects of using header files, such as avoiding duplicate defini-
tions and circular dependencies, because you will encounter these in legacy code bases.

Duplicate Definitions
Suppose A.h includes Logger.h, defining a Logger class, and B.h also includes Logger.h. If you 
have a source file called App.cpp, which includes both A.h and B.h, you end up with duplicate defini-
tions of the Logger class because the Logger.h header is included through A.h and B.h.

This problem of duplicate definitions can be avoided with a mechanism known as include guards, 
also known as header guards. The following code snippet shows the Logger.h header with include 
guards. At the beginning of each header file, the #ifndef directive checks whether a certain key has 
not been defined. If the key has been defined, the compiler skips to the matching #endif, which is 
usually placed at the end of the file. If the key has not been defined, the file proceeds to define the key 
so that a subsequent include of the same file will be skipped.

#ifndef LOGGER_H
#define LOGGER_H
 
class Logger { /* ... */ };
 
#endif // LOGGER_H

Alternatively, nearly all compilers these days support the #pragma once directive, which replaces 
include guards. Placing a #pragma once at the beginning of a header file makes sure it’ll be imported 
only once and hence avoids duplicate definitions resulting from including the header multiple times. 
Here’s an example:

#pragma once
 
class Logger { /* ... */ };

Circular Dependencies
Another tool for avoiding problems with header files is forward declarations. If you need to refer to 
a class but you cannot include its header file (for example, because it relies heavily on the class you 
are writing), you can tell the compiler that such a class exists without providing a formal definition 
through the #include mechanism. Of course, you cannot actually use the class in the code because 
the compiler knows nothing about it, except that the named class will exist after everything is linked 
together. However, you can still make use of pointers and references to forward-declared classes in 
your code. You can also declare functions that return such forward-declared classes by value or that 
have such forward-declared classes as pass-by-value function parameters. Of course, both the code 
defining the function and any code calling the function will need to include the right header files that 
properly defines the forward-declared classes.

For example, assume that the Logger class uses another class called Preferences that keeps track 
of user settings. The Preferences class may in turn use the Logger class, so you have a circular 
dependency that cannot be resolved with include guards. You need to make use of forward decla-
rations in such cases. In the following code, the Logger.h header file uses a forward declaration 
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for the Preferences class and subsequently refers to the Preferences class without including its 
header file:

#pragma once
 
#include <string_view>
 
class Preferences;  // forward declaration
 
class Logger
{
    public:
        void setPreferences(const Preferences& prefs);
        void logError(std::string_view error);
};

It’s recommended to use forward declarations as much as possible in your header files instead of 
including other headers. This can reduce your compilation and recompilation times, because it breaks 
dependencies of your header file on other headers. Of course, your implementation file needs to 
include the correct headers for types that you’ve forward-declared; otherwise, it won’t compile.

Querying Existence of Headers
To query whether a certain header file exists, use the __has_include("filename") or  
__has_include(<filename>) preprocessor constant expressions. These evaluate to 1 if the header 
file exists, 0 if it doesn’t exist. For example, before the <optional> header file was fully approved for 
C++17, some compilers already had a preliminary version in <experimental/optional>. You could 
use __has_include() to check which of the two header files was available on your system:

#if __has_include(<optional>)
    #include <optional>
#elif __has_include(<experimental/optional>)
    #include <experimental/optional>
#endif

FEATURE TEST MACROS FOR CORE LANGUAGE FEATURES

C++20 adds feature test macros that can be used to detect which core language features are  
supported by a compiler. All these macros start with either __cpp_ or __has_cpp_. The following are 
some examples:

➤➤ __cpp_range_based_for

➤➤ __cpp_binary_literals

➤➤ __cpp_char8_t

➤➤ __cpp_generic_lambdas

➤➤ __cpp_consteval

C++20
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➤➤ __cpp_coroutines

➤➤ __has_cpp_attribute(fallthrough)

➤➤ . . .

The value of these macros is a number representing the month and year when a specific  
feature was added or updated. The date is formatted as YYYYMM. For example, the value of  
__has_cpp_attribute(nodiscard) can be 201603, i.e., March 2016, which is the date when the 
[[nodiscard]] attribute was first introduced. Or it can be 201907, i.e., July 2019, which is the date 
when the attribute was updated to allow specifying a reason such as [[nodiscard("Reason")]].

Chapter 16, “Overview of the C++ Standard Library,” explains that there are similar feature test mac-
ros for Standard Library features.

NOTE You will rarely need these feature test macros, unless you are writing very 
generic cross-platform and cross-compiler libraries. Chapter 34, “Developing 
Cross-Platform and Cross-Language Applications,” discusses cross-platform 
development.

THE STATIC KEYWORD

There are several uses of the keyword static in C++, all seemingly unrelated. Part of the motiva-
tion for “overloading” the keyword was attempting to avoid having to introduce new keywords into 
the language.

static Data Members and Methods
You can declare static data members and methods of classes. static data members, unlike non-
static data members, are not part of each object. Instead, there is only one copy of the data member, 
which exists outside any objects of that class.

static methods are similarly at the class level instead of the object level. A static method does not 
execute in the context of a specific object; hence, it does not have an implicit this pointer. This also 
means that static methods cannot be marked as const.

Chapter 9, “Mastering Classes and Objects,” provides examples of both static data members 
and methods.

static Linkage
Before covering the use of the static keyword for linkage, you need to understand the concept of 
linkage in C++. C++ source files are each compiled independently, and the resulting object files are 
linked together. Each name in a C++ source file, including functions and global variables, has a link-
age that is either external or internal. External linkage means that the name is available from other 
source files. Internal linkage (also called static linkage) means that it is not. By default, functions 
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and global variables have external linkage. However, you can specify internal (or static) linkage by 
prefixing the declaration with the keyword static. For example, suppose you have two source files: 
FirstFile.cpp and AnotherFile.cpp. Here is FirstFile.cpp:

void f();
 
int main()
{
    f();
}

Note that this file provides a prototype for f() but doesn’t show the definition. Here is 
AnotherFile.cpp:

import <iostream>;
 
void f();
 
void f()
{
    std::cout << "f\n";
}

This file provides both a prototype and a definition for f(). Note that it is legal to write prototypes 
for the same function in two different files. That’s precisely what the preprocessor does for you if you 
put the prototypes in a header file that you #include in each of the source files. For this example, I 
don’t use a header file. The reason to use header files used to be that it was easier to maintain (and 
keep synchronized) one copy of the prototype, but starting with C++20, using modules is recom-
mended over using header files.

Each of these source files compiles without error, and the program links fine: because f() has exter-
nal linkage, main() can call it from a different file.

However, suppose you apply static to the f() prototype in AnotherFile.cpp. Note that you don’t 
need to repeat the static keyword in front of the definition of f(). As long as it precedes the first 
instance of the function name, there is no need to repeat it.

import <iostream>;
 
static void f();
 
void f()
{
    std::cout << "f\n";
}

Now each of the source files compiles without error, but the linker step fails because f() has internal 
(static) linkage, making it unavailable from FirstFile.cpp. Some compilers issue a warning when 
static methods are defined but not used in that source file (implying that they shouldn’t be static, 
because they’re probably used elsewhere).
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An alternative to using static for internal linkage is to employ anonymous namespaces. Instead of 
marking a variable or function static, wrap it in an unnamed namespace like this:

import <iostream>;
 
namespace
{
    void f();
 
    void f()
    {
        std::cout << "f\n";
    }
}

Entities in an anonymous namespace can be accessed anywhere following their declaration in the 
same source file but cannot be accessed from other source files. These semantics are the same as those 
obtained with the static keyword.

WARNING To get internal linkage, it is recommended to use anonymous 
namespaces, instead of the static keyword.

The extern Keyword
A related keyword, extern, seems like it should be the opposite of static, specifying external 
linkage for the names it precedes, and it can be used that way in certain cases. For example, consts 
and typedefs have internal linkage by default. You can use extern to give them external linkage. 
However, extern has some complications. When you specify a name as extern, the compiler treats it 
as a declaration, not a definition. For variables, this means the compiler doesn’t allocate space for the 
variable. You must provide a separate definition line for the variable without the extern keyword. 
For example, here is the content of AnotherFile.cpp:

extern int x;
int x { 3 };

Alternatively, you can initialize x in the extern statement, which then serves as the declaration and 
definition:

extern int x { 3 };

The extern in this case is not very useful, because x has external linkage by default anyway. The real 
use of extern is when you want to use x from another source file, FirstFile.cpp:

import <iostream>;
 
extern int x;
 
int main()
{
    std::cout << x << std::endl;
}
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Here, FirstFile.cpp uses an extern declaration so that it can use x. The compiler needs a decla-
ration of x to use it in main(). If you declared x without the extern keyword, the compiler would 
think it’s a definition and would allocate space for x, causing the linkage step to fail (because there 
are then two x variables in the global scope). With extern, you can make variables globally accessible 
from multiple source files.

WARNING It is not recommended to use global variables at all. They are con-
fusing and error-prone, especially in large programs. Use them judiciously!

static Variables in Functions
The final use of the static keyword in C++ is to create local variables that retain their values 
between exits and entrances to their scope. A static variable inside a function is like a global vari-
able that is accessible only from that function. One common use of static variables is to “remem-
ber” whether a particular initialization has been performed for a certain function. For example, code 
that employs this technique might look something like this:

void performTask()
{
    static bool initialized { false };
    if (!initialized) {
        cout << "initializing" << endl;
        // Perform initialization.
        initialized = true;
    }
    // Perform the desired task.
}

However, static variables are confusing, and there are usually better ways to structure your code 
so that you can avoid them. In this case, you might want to write a class in which the constructor 
performs the required initialization.

NOTE Avoid using stand-alone static variables. Maintain state within an object 
instead.

Sometimes, however, they can be useful. One example is for implementing the Meyer’s singleton 
design pattern, as explained in Chapter 33, “Applying Design Patterns.”

NOTE The implementation of performTask() is not thread-safe; it contains a 
race condition. In a multithreaded environment, you need to use atomics or other 
mechanisms for synchronization of multiple threads. Multithreading is discussed in 
detail in Chapter 27, “Multithreaded Programming with C++.”
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Order of Initialization of Nonlocal Variables
Before leaving the topic of static data members and global variables, consider the order of initializa-
tion of these variables. All global variables and static class data members in a program are initial-
ized before main() begins. The variables in a given source file are initialized in the order they appear 
in the source file. For example, in the following file, Demo::x is guaranteed to be initialized before y:

class Demo
{
    public:
        static int x;
};
int Demo::x { 3 };
int y { 4 };

However, C++ provides no specifications or guarantees about the initialization ordering of nonlo-
cal variables in different source files. If you have a global variable x in one source file and a global 
variable y in another, you have no way of knowing which will be initialized first. Normally, this 
lack of specification isn’t cause for concern. However, it can be problematic if one global or static 
variable depends on another. Recall that initialization of objects implies running their constructors. 
The constructor of one global object might access another global object, assuming that it is already 
constructed. If these two global objects are declared in two different source files, you cannot count on 
one being constructed before the other, and you cannot control the order of initialization. This order 
might not be the same for different compilers or even different versions of the same compiler, and the 
order might even change when you simply add another file to your project.

WARNING Initialization order of nonlocal variables in different source files is 
undefined.

Order of Destruction of Nonlocal Variables
Nonlocal variables are destroyed in the reverse order they were initialized. Nonlocal variables in dif-
ferent source files are initialized in an undefined order, which means that the order of destruction is 
also undefined.

C UTILITIES

There are a few obscure C features that are also available in C++. This section examines two of these 
features: variable-length argument lists and preprocessor macros.

Variable-Length Argument Lists
This section explains the old C-style variable-length argument lists. You need to know how these 
work because you might find them in legacy code. However, in new code you should use variadic 
templates for type-safe variable-length argument lists, which are discussed in Chapter 26, “Advanced 
Templates.”
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Consider the C function printf() from <cstdio>. You can call it with any number of arguments:

printf("int %d\n", 5);
printf("String %s and int %d\n", "hello", 5);
printf("Many ints: %d, %d, %d, %d, %d\n", 1, 2, 3, 4, 5);

C/C++ provides the syntax and some utility macros for writing your own functions with a variable 
number of arguments. These functions usually look a lot like printf(). Although you shouldn’t need 
this feature often, occasionally you will run into situations in which it’s quite useful. For example, 
suppose you want to write a quick-and-dirty debug function that prints strings to stderr if a debug 
flag is set but does nothing if the debug flag is not set. Just like printf(), this function should be 
able to print strings with an arbitrary number of arguments and arbitrary types of arguments. A sim-
ple implementation looks like this:

#include <cstdio>
#include <cstdarg>
 
bool debug { false };
 
void debugOut(const char* str, ...)
{
    va_list ap;
    if (debug) {
        va_start(ap, str);
        vfprintf(stderr, str, ap);
        va_end(ap);
    }
}

First, note that the prototype for debugOut() contains one typed and named parameter str, followed 
by ... (ellipses). They stand for any number and type of arguments. To access these arguments, you 
must use macros defined in <cstdarg>. You declare a variable of type va_list and initialize it with a 
call to va_start. The second parameter to va_start() must be the rightmost named variable in the 
parameter list. All functions with variable-length argument lists require at least one named parameter. 
The debugOut() function simply passes this list to vfprintf() (a standard function in <cstdio>). 
After the call to vfprintf() returns, debugOut() calls va_end() to terminate the access of the 
variable argument list. You must always call va_end() after calling va_start() to ensure that the 
function ends with the stack in a consistent state.

You can use the function in the following way:

debug = true;
debugOut("int %d\n", 5);
debugOut("String %s and int %d\n", "hello", 5);
debugOut("Many ints: %d, %d, %d, %d, %d\n", 1, 2, 3, 4, 5);

Accessing the Arguments
If you want to access the actual arguments yourself, you can use va_arg() to do so. It accepts a  
va_list as first argument, and the type of the argument to interpret. Unfortunately, there is no 
way to know what the end of the argument list is unless you provide an explicit way of doing so. 
For example, you can make the first parameter a count of the number of parameters. Or, in the case 
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where you have a set of pointers, you may require the last pointer to be nullptr. There are many 
ways, but they are all burdensome to the programmer.

The following example demonstrates the technique where the caller specifies in the first named 
parameter how many arguments are provided. The function accepts any number of ints and 
prints them out.

void printInts(size_t num, ...)
{
    va_list ap;
    va_start(ap, num);
    for (size_t i { 0 }; i < num; ++i) {
        int temp { va_arg(ap, int) };
        cout << temp << " ";
    }
    va_end(ap);
    cout << endl;
}

You can call printInts() as follows. Note that the first parameter specifies how many integers 
will follow.

printInts(5, 5, 4, 3, 2, 1);

Why You Shouldn’t Use C-Style Variable-Length Argument Lists
Accessing C-style variable-length argument lists is not very safe. There are several risks, as you can see 
from the printInts() function.

➤➤ You don’t know the number of parameters. In the case of printInts(), you must trust the 
caller to pass the right number of arguments as the first argument. In the case of debugOut(), 
you must trust the caller to pass the same number of arguments after the character array as 
there are formatting codes in the character array.

➤➤ You don’t know the types of the arguments. va_arg() takes a type, which it uses to interpret 
the value in its current spot. However, you can tell va_arg() to interpret the value as any 
type. There is no way for it to verify the correct type.

WARNING Avoid using C-style variable-length argument lists. It is preferable 
to pass in an std::array or vector of values, to use initializer lists described in 
Chapter 1, or to use variadic templates for type-safe variable-length argument lists, 
as described in Chapter 26.

Preprocessor Macros
You can use the C++ preprocessor to write macros, which are like little functions. Here is an example:

#define SQUARE(x) ((x) * (x)) // No semicolon after the macro definition!
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int main()
{
    cout << SQUARE(5) << endl;
}

Macros are a remnant from C that are quite similar to inline functions, except that they are not 
type-checked, and the preprocessor dumbly replaces any calls to them with their expansions. The 
preprocessor does not apply true function-call semantics. This behavior can cause unexpected results. 
For example, consider what would happen if you called the SQUARE macro with 2 + 3 instead of 5, 
like this:

cout << SQUARE(2 + 3) << endl;

You expect SQUARE to calculate 25, which it does. However, what if you left off some parentheses on 
the macro definition, so that it looks like this?

#define SQUARE(x) (x * x)

Now, the call to SQUARE(2 + 3) generates 11, not 25! Remember that the macro is dumbly expanded 
without regard to function-call semantics. This means that any x in the macro body is replaced by  
2 + 3, leading to this expansion:

cout << (2 + 3 * 2 + 3) << endl;

Following proper order of operations, this line performs the multiplication first, followed by the addi-
tions, generating 11 instead of 25!

Macros can also have a performance impact. Suppose you call the SQUARE macro as follows:

cout << SQUARE(veryExpensiveFunctionCallToComputeNumber()) << endl;

The preprocessor replaces this with the following:

cout << ((veryExpensiveFunctionCallToComputeNumber()) * 
         (veryExpensiveFunctionCallToComputeNumber())) << endl;

Now you are calling the expensive function twice—another reason to avoid macros.

Macros also cause problems for debugging because the code you write is not the code that the 
compiler sees or that shows up in your debugger (because of the search-and-replace behavior of the 
preprocessor). For these reasons, you should avoid macros entirely in favor of inline functions. The 
details are shown here only because quite a bit of C++ code out there still employs macros. You need 
to understand them to read and maintain that code.

NOTE Most compilers can output the preprocessed source to a file or to standard 
output. You can use that feature to see how the preprocessor is preprocessing your 
file. For example, with Microsoft Visual C++ you can use the /P switch. With GCC 
you can use the -E switch.
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SUMMARY

This chapter started with details on authoring and consuming C++20 modules, followed by a few 
trickier aspects of using old-style header files. You also learned about the different uses of the static 
and extern keywords.

The chapter finished with a discussion on how to write C-style variable-length argument lists and 
how to write preprocessor macros. Both of these topics are important to understand, because 
you might encounter them in legacy code bases. However, they should be avoided in any newly 
written code.

The next chapter starts a discussion on templates allowing you to write generic code.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 11-1: Write a single-file module called simulator containing two classes,  
CarSimulator and BikeSimulator, in a Simulator namespace. The content of the classes 
is not important for these exercises. Just provide a default constructor that outputs a message 
to the standard output. Test your code in a main() function.

Exercise 11-2: Take your solution from Exercise 11-1 and split the module into several files: a 
primary module interface file without any implementations and two module implementation 
files, one for the CarSimulator and one for the BikeSimulator class.

Exercise 11-3: Take your solution from Exercise 11-2 and convert it to use one primary 
module interface file and two module interface partition files, one for the simulator:car 
partition containing the CarSimulator class, and one for the simulator:bike partition 
containing the BikeSimulator class.

Exercise 11-4: Take your solution from Exercise 11-3 and add an implementation partition 
called internals, containing a helper method called convertMilesToKm(double miles) in 
the Simulator namespace. One mile is 1.6 kilometer. Add a method to both the  
CarSimulator and BikeSimulator classes called setOdometer(double miles), which 
uses the helper method to convert the given miles to kilometers and then prints it out to the 
standard output. Confirm in your main() function that the setOdometer() works on both 
classes. Also confirm that main() cannot call convertMilesToKm().

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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C++ provides language support not only for object-oriented programming but also for generic 
programming. As discussed in Chapter 6, “Designing for Reuse,” the goal of generic programming is 
to write reusable code. The fundamental tools for generic programming in C++ are templates. 
Although not strictly an object-oriented feature, templates can be combined with object-oriented 
programming for powerful results. Many programmers consider templates to be the most difficult 
part of C++ and, for that reason, tend to avoid them. However, as a professional C++ programmer, 
you need to know about them.

This chapter provides the coding details for fulfilling the design principle of generality discussed in 
Chapter 6, while Chapter 26, “Advanced Templates,” delves into some of the more advanced  
template features.

OVERVIEW OF TEMPLATES

The main programming unit in the procedural paradigm is the procedure or function. Functions are 
useful primarily because they allow you to write algorithms that are independent of specific values 
and can thus be reused for many different values. For example, the sqrt() function in C++ calcu-
lates the square root of a value supplied by the caller. A square root function that calculates only the 
square root of one number, such as four, would not be particularly useful! The sqrt() function is 
written in terms of a parameter, which is a stand-in for whatever value the caller passes. Computer 
scientists say that functions parameterize values.

The object-oriented programming paradigm adds the concept of objects, which group related data 
and behaviors, but it does not change the way functions and methods parameterize values.

Templates take the concept of parameterization a step further to allow you to parameterize on types 
as well as values. Types in C++ include primitives such as int and double, as well as user-defined 
classes such as SpreadsheetCell and CherryTree. With templates, you can write code that is 
independent not only of the values it will be given, but also of the types of those values. For example, 
instead of writing separate stack classes to store ints, Cars, and SpreadsheetCells, you can write 
one stack class definition that can be used for any of those types.

Although templates are an amazing language feature, templates in C++ can be syntactically  
confusing, and many programmers avoid writing templates themselves. However, every programmer 
needs to know at least how to use templates, because they are widely used by libraries, such as the 
C++ Standard Library.

This chapter teaches you about template support in C++ with an emphasis on the aspects that arise in 
the Standard Library. Along the way, you will learn about some nifty features that you can employ in 
your programs aside from using the Standard Library.

CLASS TEMPLATES

Class templates define a class where the types of some of the variables, return types of methods, 
and/or parameters to the methods are specified as template parameters. Class templates are useful 
primarily for containers, or data structures, that store objects. This section uses a running example of 
a Grid container. To keep the examples reasonable in length and simple enough to illustrate specific 
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points, different sections of the chapter add features to the Grid container that are not used in subse-
quent sections.

Writing a Class Template
Suppose that you want a generic game board class that you can use as a chessboard, checkers board, 
tic-tac-toe board, or any other two-dimensional game board. To make it general-purpose, you should 
be able to store chess pieces, checkers pieces, tic-tac-toe pieces, or any type of game piece.

Coding Without Templates
Without templates, the best approach to build a generic game board is to employ polymorphism to 
store generic GamePiece objects. Then, you could let the pieces for each game inherit from the  
GamePiece class. For example, in a chess game, ChessPiece would be a derived class of  
GamePiece. Through polymorphism, the GameBoard, written to store GamePieces, could also store 
ChessPieces. Because it should be possible to copy a GameBoard, the GameBoard needs to be able 
to copy GamePieces. This implementation employs polymorphism, so one solution is to add a pure 
virtual clone() method to the GamePiece base class, which derived classes must implement to return 
a copy of a concrete GamePiece. Here is the basic GamePiece interface:

export class GamePiece
{
    public:
        virtual ~GamePiece() = default;
        virtual std::unique_ptr<GamePiece> clone() const = 0;
};

GamePiece is an abstract base class. Concrete classes, such as ChessPiece, derive from it and imple-
ment the clone() method:

class ChessPiece : public GamePiece
{
    public:
        std::unique_ptr<GamePiece> clone() const override
        {
            // Call the copy constructor to copy this instance
            return std::make_unique<ChessPiece>(*this);
        }
};

The implementation of GameBoard uses a vector of vectors of unique_ptrs to store the 
GamePieces:

export class GameBoard
{
    public:
        explicit GameBoard(size_t width = DefaultWidth,
            size_t height = DefaultHeight);
        GameBoard(const GameBoard& src);   // copy constructor
        virtual ~GameBoard() = default;    // virtual defaulted destructor
        GameBoard& operator=(const GameBoard& rhs); // assignment operator
    

continues
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        // Explicitly default a move constructor and assignment operator.
        GameBoard(GameBoard&& src) = default;
        GameBoard& operator=(GameBoard&& src) = default;
 
        std::unique_ptr<GamePiece>& at(size_t x, size_t y);
        const std::unique_ptr<GamePiece>& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return m_height; }
        size_t getWidth() const { return m_width; }
 
        static const size_t DefaultWidth { 10 };
        static const size_t DefaultHeight { 10 };
 
        void swap(GameBoard& other) noexcept;
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::vector<std::vector<std::unique_ptr<GamePiece>>> m_cells;
        size_t m_width { 0 }, m_height { 0 };
};
export void swap(GameBoard& first, GameBoard& second) noexcept;

In this implementation, at() returns a reference to the piece at a specified spot instead of a copy of 
the piece. GameBoard serves as an abstraction of a two-dimensional array, so it should provide array 
access semantics by giving the actual object at an index, not a copy of the object. Client code should 
not store this reference for future use because it might become invalid, for example when the m_cells 
vector needs to be resized. Instead, client code should call at() right before using the returned refer-
ence. This follows the design philosophy of the Standard Library vector class.

NOTE This implementation of the class provides two versions of at(), one of 
which returns a reference-to-non-const while the other returns a reference-to-
const.

Here are the method definitions. Note that this implementation uses the copy-and-swap idiom for 
the assignment operator, and Scott Meyer’s const_cast() pattern to avoid code duplication, both of 
which are discussed in Chapter 9, “Mastering Classes and Objects.”

GameBoard::GameBoard(size_t width, size_t height)
    : m_width { width }, m_height { height }
{
    m_cells.resize(m_width);
    for (auto& column : m_cells) {
        column.resize(m_height);
    }
}
 
GameBoard::GameBoard(const GameBoard& src)
    : GameBoard { src.m_width, src.m_height }
{

(continued)
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    // The ctor-initializer of this constructor delegates first to the
    // non-copy constructor to allocate the proper amount of memory.
 
    // The next step is to copy the data.
    for (size_t i { 0 }; i < m_width; i++) {
        for (size_t j { 0 }; j < m_height; j++) {
            if (src.m_cells[i][j])
                m_cells[i][j] = src.m_cells[i][j]->clone();
        }
    }
}
 
void GameBoard::verifyCoordinate(size_t x, size_t y) const
{
    if (x >= m_width) {
        throw out_of_range { format("{} must be less than {}.", x, m_width) };
    }
    if (y >= m_height) {
        throw out_of_range { format("{} must be less than {}.", y, m_height) };
    }
}
 
void GameBoard::swap(GameBoard& other) noexcept
{
    std::swap(m_width, other.m_width);
    std::swap(m_height, other.m_height);
    std::swap(m_cells, other.m_cells);
}
 
void swap(GameBoard& first, GameBoard& second) noexcept
{
    first.swap(second);
}
 
GameBoard& GameBoard::operator=(const GameBoard& rhs)
{
    // Copy-and-swap idiom
    GameBoard temp { rhs }; // Do all the work in a temporary instance.
    swap(temp);             // Commit the work with only non-throwing operations.
    return *this;
}
 
const unique_ptr<GamePiece>& GameBoard::at(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}
 
unique_ptr<GamePiece>& GameBoard::at(size_t x, size_t y)
{
    return const_cast<unique_ptr<GamePiece>&>(as_const(*this).at(x, y));
}
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This GameBoard class works pretty well:

GameBoard chessBoard { 8, 8 };
auto pawn { std::make_unique<ChessPiece>() };
chessBoard.at(0, 0) = std::move(pawn);
chessBoard.at(0, 1) = std::make_unique<ChessPiece>();
chessBoard.at(0, 1) = nullptr;

A Template Grid Class
The GameBoard class in the previous section is nice, but insufficient. A first problem is that you  
cannot use GameBoard to store elements by value; it always stores pointers. Another, more serious  
issue is related to type safety. Each cell in a GameBoard stores a unique_ptr<GamePiece>. Even if  
you are storing ChessPieces, when you use at() to request a certain cell, you will get back a  
unique_ptr<GamePiece>. This means you have to downcast the retrieved GamePiece to a  
ChessPiece to be able to make use of ChessPiece’s specific functionality. Another shortcoming of 
GameBoard is that it cannot be used to store primitive types, such as int or double, because the type 
stored in a cell has to derive from GamePiece.

So, it would be nice if you could write a generic Grid class that you could use for storing  
ChessPieces, SpreadsheetCells, ints, doubles, and so on. In C++, you can do this by writing a 
class template, which allows you to write a class without specifying one or more types. Clients then 
instantiate the template by specifying the types they want to use. This is called generic program-
ming. The biggest advantage of generic programming is type safety. The types used in the class and 
its methods are concrete types, and not abstract base class types, as is the case with the polymorphic 
solution from the previous section. For example, suppose there is not only a ChessPiece but also a 
TicTacToePiece:

class TicTacToePiece : public GamePiece
{
    public:
        std::unique_ptr<GamePiece> clone() const override
        {
            // Call the copy constructor to copy this instance
            return std::make_unique<TicTacToePiece>(*this);
        }
};

With the polymorphic solution from the previous section, nothing stops you from storing tic-tac-toe 
pieces and chess pieces on the same chess board:

GameBoard chessboard { 8, 8 };
chessBoard.at(0, 0) = std::make_unique<ChessPiece>();
chessBoard.at(0, 1) = std::make_unique<TicTacToePiece>();

The big problem with this is that you somehow need to remember what a cell is storing so that you 
can perform the correct downcast when you call at().

The Grid Class Definition
To understand class templates, it is helpful to examine the syntax. The following example shows how 
you can modify the GameBoard class to make a templatized Grid class. The syntax is explained in 
detail following the code. Note that the class name has changed from GameBoard to Grid. The Grid 
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should also be usable with primitive types such as int and double. That’s why I opted to implement 
this solution using value semantics without polymorphism, compared to the polymorphic pointer 
semantics used in the GameBoard implementation. The m_cells container stores actual objects, 
instead of pointers. A downside of using value semantics compared to pointer semantics is that you 
cannot have a true empty cell; that is, a cell must always contain some value. With pointer semantics, 
an empty cell stores nullptr. Luckily, std::optional, introduced in Chapter 1, “A Crash Course in 
C++ and the Standard Library,” comes to the rescue here. It allows you to use value semantics, while 
still having a way to represent empty cells.

export template <typename T>
class Grid
{
    public:
        explicit Grid(size_t width = DefaultWidth,
            size_t height = DefaultHeight);
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        // Explicitly default a move constructor and assignment operator.
        Grid(Grid&& src) = default;
        Grid& operator=(Grid&& rhs) = default;
 
        std::optional<T>& at(size_t x, size_t y);
        const std::optional<T>& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return m_height; }
        size_t getWidth() const { return m_width; }
 
        static const size_t DefaultWidth { 10 };
        static const size_t DefaultHeight { 10 };
 
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::vector<std::vector<std::optional<T>>> m_cells;
        size_t m_width { 0 }, m_height { 0 };
};

Now that you’ve seen the full class definition, take another look at it, one line at a time.

export template <typename T>

This first line says that the following class definition is a template on one type, T, and that it’s being 
exported from the module. Both template and typename are keywords in C++. As discussed earlier, 
templates “parameterize” types in the same way that functions “parameterize” values. Just as you use 
parameter names in functions to represent the arguments that the caller will pass, you use template 
type parameter names (such as T) in templates to represent the types that the caller will pass as 
template type arguments. There’s nothing special about the name T—you can use whatever name you 
want. Traditionally, when a single type is used, it is called T, but that’s just a historical convention, 
like calling the integer that indexes an array i or j. The template specifier holds for the entire state-
ment, which in this case is the class definition.



428 ❘ CHAPTER 12  Writing generic code With templates

NOTE For historical reasons, you can use the keyword class instead of typename 
to specify template type parameters. Thus, many books and existing programs use 
syntax like this: template <class T>. However, the use of the word class in this 
context is confusing because it implies that the type must be a class, which is not 
true. The type can be a class, a struct, a union, a primitive type of the language like 
int or double, and so on.

In the earlier GameBoard class, the m_cells data member is a vector of vectors of pointers, which 
requires special code for copying—thus the need for a copy constructor and copy assignment opera-
tor. In the Grid class, m_cells is a vector of vectors of optional values, so the compiler-generated 
copy constructor and assignment operator are fine. However, as explained in Chapter 8, “Gaining 
Proficiency with Classes and Objects,” once you have a user-declared destructor, it’s deprecated for 
the compiler to implicitly generate a copy constructor or copy assignment operator, so the Grid class 
template explicitly defaults them. It also explicitly defaults the move constructor and move assign-
ment operator. Here is the explicitly defaulted copy assignment operator:

Grid& operator=(const Grid& rhs) = default;

As you can see, the type of the rhs parameter is no longer a const GameBoard&, but a const Grid&. 
Within a class definition, the compiler interprets Grid as Grid<T> where needed, but if you want, you 
can explicitly use Grid<T>:

Grid<T>& operator=(const Grid<T>& rhs) = default;

However, outside a class definition you must use Grid<T>. When you write a class template, what 
you used to think of as the class name (Grid) is actually the template name. When you want to talk 
about actual Grid classes or types, you have to use the template ID, i.e., Grid<T>, which are instan-
tiations of the Grid class template for a certain type, such as int, SpreadsheetCell, or ChessPiece.

Because m_cells is not storing pointers anymore, but optional values, the at() methods now return 
optional<T>s instead of unique_ptrs, that is, optionals that can either have a value of type T, 
or be empty:

std::optional<T>& at(size_t x, size_t y);
const std::optional<T>& at(size_t x, size_t y) const;

The Grid Class Method Definitions
The template <typename T> specifier must precede each method definition for the Grid template. 
The constructor looks like this:

template <typename T>
Grid<T>::Grid(size_t width, size_t height)
    : m_width { width }, m_height { height }
{
    m_cells.resize(m_width);
    for (auto& column : m_cells) {
        column.resize(m_height);
    }
}
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NOTE Method definitions of class templates need to be visible to any client code 
using the class template. This places some restrictions on where such method defi-
nitions can be placed. Usually, they are simply put in the same file as the class tem-
plate definition itself. Some ways around this restriction are discussed later in this 
chapter.

Note that the class name before the :: is Grid<T>, not Grid. You must specify Grid<T> as the class 
name in all your methods and static data member definitions. The body of the constructor is  
identical to the GameBoard constructor.

The rest of the method definitions are also similar to their equivalents in the GameBoard class with 
the exception of the appropriate template and Grid<T> syntax changes:

template <typename T>
void Grid<T>::verifyCoordinate(size_t x, size_t y) const
{
    if (x >= m_width) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", x, m_width) };
    }
    if (y >= m_height) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", y, m_height) };
    }
}
 
template <typename T>
const std::optional<T>& Grid<T>::at(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}
 
template <typename T>
std::optional<T>& Grid<T>::at(size_t x, size_t y)
{
    return const_cast<std::optional<T>&>(std::as_const(*this).at(x, y));
}

NOTE If an implementation of a class template method needs a default value for 
a certain template type parameter, for example T, then you can use the T{} syntax. 
T{} calls the default constructor for the object if T is a class type, or generates 
zero if T is a primitive type. This syntax is called the zero-initialization syntax. It’s 
a good way to provide a reasonable default value for a variable whose type you 
don’t know yet.
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Using the Grid Template
When you want to create grid objects, you cannot use Grid alone as a type; you must specify the 
type that will be stored in that Grid. Creating an object of a class template for a specific type is called 
instantiating the template. Here is an example:

Grid<int> myIntGrid; // Declares a grid that stores ints,
                     // using default arguments for the constructor.
Grid<double> myDoubleGrid { 11, 11 }; // Declares an 11x11 Grid of doubles.
 
myIntGrid.at(0, 0) = 10;
int x { myIntGrid.at(0, 0).value_or(0) };
 
Grid<int> grid2 { myIntGrid };  // Copy constructor
Grid<int> anotherIntGrid;
anotherIntGrid = grid2;      // Assignment operator

Note that the type of myIntGrid, grid2, and anotherIntGrid is Grid<int>. You cannot store 
SpreadsheetCells or ChessPieces in these grids; the compiler will generate an error if you 
try to do so.

Note also the use of value_or(). The at() method returns an optional reference, which can con-
tain a value or not. The value_or() method returns the value inside the optional if there is a value; 
otherwise, it returns the argument given to value_or().

The type specification is important; neither of the following two lines compiles:

Grid test;   // WILL NOT COMPILE
Grid<> test; // WILL NOT COMPILE

The first line causes the compiler to complain with something like, “use of class template requires 
template argument list.” The second line causes it to say something like “too few template 
arguments.”

If you want to declare a function or method that takes a Grid object, you must specify the type stored 
in that grid as part of the Grid type:

void processIntGrid(Grid<int>& grid) { /* Body omitted for brevity */ }

Alternatively, you can use function templates, discussed later in this chapter, to write a function tem-
platized on the type of the elements in the grid.

NOTE Instead of writing the full Grid type every time—for example, 
Grid<int>—you can use a type alias to give it an easier name:

    using IntGrid = Grid<int>;

Now you can write code as follows:

    void processIntGrid(IntGrid& grid) { }
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The Grid class template can store more than just ints. For example, you can instantiate a Grid that 
stores SpreadsheetCells:

Grid<SpreadsheetCell> mySpreadsheet;
SpreadsheetCell myCell { 1.234 };
mySpreadsheet.at(3, 4) = myCell;

You can store pointer types as well:

Grid<const char*> myStringGrid;
myStringGrid.at(2, 2) = "hello";

The type specified can even be another template type:

Grid<vector<int>> gridOfVectors;
vector<int> myVector { 1, 2, 3, 4 };
gridOfVectors.at(5, 6) = myVector;

You can also dynamically allocate Grid template instantiations on the free store:

auto myGridOnFreeStore { make_unique<Grid<int>>(2, 2) }; // 2x2 Grid on free store.
myGridOnFreeStore->at(0, 0) = 10;
int x { myGridOnFreeStore->at(0, 0).value_or(0) };

How the Compiler Processes Templates
To understand the intricacies of templates, you need to learn how the compiler processes template 
code. When the compiler encounters template method definitions, it performs syntax checking, but 
doesn’t actually compile the templates. It can’t compile template definitions because it doesn’t know 
for which types they will be used. It’s impossible for a compiler to generate code for something like  
x = y without knowing the types of x and y.

When the compiler encounters an instantiation of the template, such as Grid<int>, it writes 
code for an int version of the Grid template by replacing each T in the class template defini-
tion with int. When the compiler encounters a different instantiation of the template, such as 
Grid<SpreadsheetCell>, it writes another version of the Grid class for SpreadsheetCells. The 
compiler just writes the code that you would write if you didn’t have template support in the lan-
guage and had to write separate classes for each element type. There’s no magic here; templates just 
automate an annoying process. If you don’t instantiate a class template for any types in your pro-
gram, then the class method definitions are never compiled.

This instantiation process explains why you need to use the Grid<T> syntax in various places in your 
definition. When the compiler instantiates the template for a particular type, such as int, it replaces T 
with int, so that Grid<int> is the type.

Selective Instantiation
For implicit class template instantiations such as the following:

Grid<int> myIntGrid;

the compiler always generates code for all virtual methods of the class template. However, for non-
virtual methods, the compiler generates code only for those non-virtual methods that you actually 
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call. For example, given the preceding Grid class template, suppose that you write this code (and only 
this code) in main():

Grid<int> myIntGrid;
myIntGrid.at(0, 0) = 10;

The compiler generates only the zero-argument constructor, the destructor, and the non-const at() 
method for an int version of Grid. It does not generate other methods like the copy constructor, the 
assignment operator, or getHeight(). This is called selective instantiation.

The danger exists that there are compilation errors in some class template methods that go unnoticed. 
Unused methods of class templates can contain syntax errors, as these will not be compiled. This 
makes it hard to test all code for syntax errors. You can force the compiler to generate code for all 
methods, virtual and non-virtual, by using explicit template instantiations. Here’s an example:

template class Grid<int>;

NOTE Explicit template instantiation helps with finding errors, as it forces all 
your class template methods to be compiled even when unused.

When using explicit template instantiations, don’t just try to instantiate the class template with basic 
types like int, but try it with more complicated types like string.

Template Requirements on Types
When you write code that is independent of types, you must assume certain things about those types. 
For example, in the Grid class template, you assume that the element type (represented by T) is 
destructible, copy/move constructible, and copy/move assignable.

When the compiler attempts to instantiate a template with types that do not support all the opera-
tions used by the class template’s methods, the code will not compile, and the error messages will 
often be quite obscure. However, even if the types you want to use don’t support the operations 
required by all the methods of the class template, you can exploit selective instantiation to use some 
methods but not others.

C++20 introduces concepts, which allow you to write requirements for template parameters that the 
compiler can interpret and validate. The compiler can generate more readable errors if the template 
arguments passed to instantiate a template do not satisfy these requirements. Concepts are discussed 
later in this chapter.

Distributing Template Code Between Files
With class templates, both the class template definition and the method definitions must be available 
to the compiler from any source file that uses them. There are several mechanisms to accomplish this.
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Method Definitions in Same File as Class Template Definition
You can place the method definitions directly in the module interface file where you define the class 
template itself. When you import this module in another source file where you use the template, 
the compiler will have access to all the code it needs. This mechanism is used for the previous Grid 
implementation.

Method Definitions in Separate File
Alternatively, you can place the class template method definitions in a separate module interface par-
tition file. You then also need to put the class template definition in its own partition. For example, 
the primary module interface file for the Grid class template could look like this:

export module grid;
 
export import :definition;
export import :implementation;

This imports and exports two module partitions: definition and implementation. The class tem-
plate definition is defined in the definition partition:

export module grid:definition;
 
import <vector>;
import <optional>;
 
export template <typename T> class Grid { ... };

The implementations of the methods are in the implementation partition, which also needs to 
import the definition partition because it needs the Grid class template definition:

export module grid:implementation;
 
import :definition;
import <vector>;
...
export template <typename T>
Grid<T>::Grid(size_t width, size_t height) : m_width { width }, m_height { height }
{ ... }

Template Parameters
In the Grid example, the Grid template has one template parameter: the type that is stored in the 
grid. When you write the class template, you specify the parameter list inside the angle brackets, 
like this:

template <typename T>

This parameter list is similar to the parameter list in a function or method. As in functions and meth-
ods, you can write a class with as many template parameters as you want. Additionally, these param-
eters don’t have to be types, and they can have default values.



434 ❘ CHAPTER 12  Writing generic code With templates

Non-type Template Parameters
Non-type parameters are “normal” parameters such as ints and pointers—the kind of parameters 
with which you’re familiar from functions and methods. However, non-type template parameters 
can only be integral types (char, int, long, and so on), enumeration types, pointers, references, 
std::nullptr_t, auto, auto&, and auto*. C++20 additionally allows non-type template parameters 
of floating-point types, and even class types. The latter, however, come with a lot of limitations, not 
further discussed in this text.

In the Grid class template, you could use non-type template parameters to specify the height and 
width of the grid instead of specifying them in the constructor. The principal advantage to specifying 
non-type parameters in the template list instead of in the constructor is that the values are known 
before the code is compiled. Recall that the compiler generates code for template instantiations by 
substituting the template parameters before compiling. Thus, you can use a normal two-dimensional 
array in your implementation instead of a vector of vectors that is dynamically resized. Here is the 
new class definition with the changes highlighted:

export template <typename T, size_t WIDTH, size_t HEIGHT>
class Grid
{
    public:
        Grid() = default;
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        std::optional<T>& at(size_t x, size_t y);
        const std::optional<T>& at(size_t x, size_t y) const;
        
        size_t getHeight() const { return HEIGHT; }
        size_t getWidth() const { return WIDTH; }
 
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::optional<T> m_cells[WIDTH][HEIGHT];
};

This class does not explicitly default the move constructor and move assignment operator, because 
C-style arrays do not support move semantics anyway. You can implement support for move seman-
tics yourself as an exercise.

Note that the template parameter list requires three parameters: the type of objects stored in the grid, 
and the width and height of the grid. The width and height are used to create a two-dimensional 
array to store the objects. Here are the class method definitions:

template <typename T, size_t WIDTH, size_t HEIGHT>
void Grid<T, WIDTH, HEIGHT>::verifyCoordinate(size_t x, size_t y) const
{
    if (x >= WIDTH) {
        throw std::out_of_range {
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            std::format("{} must be less than {}.", x, WIDTH) };
    }
    if (y >= HEIGHT) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", y, HEIGHT) };
    }
}
 
template <typename T, size_t WIDTH, size_t HEIGHT>
const std::optional<T>& Grid<T, WIDTH, HEIGHT>::at(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}
 
template <typename T, size_t WIDTH, size_t HEIGHT>
std::optional<T>& Grid<T, WIDTH, HEIGHT>::at(size_t x, size_t y)
{
    return const_cast<std::optional<T>&>(std::as_const(*this).at(x, y));
}

Note that wherever you previously specified Grid<T> you must now specify Grid<T,WIDTH,HEIGHT> 
to specify the three template parameters.

You can instantiate this template and use it like this:

Grid<int, 10, 10> myGrid;
Grid<int, 10, 10> anotherGrid;
myGrid.at(2, 3) = 42;
anotherGrid = myGrid;
cout << anotherGrid.at(2, 3).value_or(0);

This code seems great, but unfortunately, there are more restrictions than you might initially expect. 
First, you can’t use a non-constant integer to specify the height or width. The following code 
doesn’t compile:

size_t height { 10 };
Grid<int, 10, height> testGrid; // DOES NOT COMPILE

However, if you define height as a constant, it compiles:

const size_t height { 10 };
Grid<int, 10, height> testGrid; // Compiles and works

constexpr functions with the correct return type also work. For example, if you have a constexpr 
function that returns a size_t, you can use it to initialize the height template parameter:

constexpr size_t getHeight() { return 10; }
...
Grid<double, 2, getHeight()> myDoubleGrid;

A second restriction might be more significant. Now that the width and height are template param-
eters, they are part of the type of each grid. That means Grid<int,10,10> and Grid<int,10,11> 
are two different types. You can’t assign an object of one type to an object of the other, and variables 
of one type can’t be passed to functions or methods that expect variables of another type.
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NOTE Non-type template parameters become part of the type specification of 
instantiated objects.

Default Values for Type Parameters
If you continue the approach of making height and width template parameters, you might want to 
provide defaults for the height and width non-type template parameters just as you did previously 
in the constructor of the Grid<T> class. C++ allows you to provide defaults for template parameters 
with a similar syntax. While you are at it, you could also provide a default for the T type parameter. 
Here is the class definition:

export template <typename T = int, size_t WIDTH = 10, size_t HEIGHT = 10>
class Grid
{
    // Remainder is identical to the previous version
};

You need not specify the default values for T, WIDTH, and HEIGHT in the template specification for the 
method definitions. For example, here is the implementation of at():

template <typename T, size_t WIDTH, size_t HEIGHT>
const std::optional<T>& Grid<T, WIDTH, HEIGHT>::at(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}

Now, you can instantiate a Grid without any template parameters, with only the element type, the 
element type and the width, or the element type, width, and height:

Grid<> myIntGrid;
Grid<int> myGrid;
Grid<int, 5> anotherGrid;
Grid<int, 5, 5> aFourthGrid;

Note that if you don’t specify any class template parameters, you still need to specify an empty set of 
angle brackets. For example, the following does not compile!

Grid myIntGrid;

The rules for default arguments in class template parameter lists are the same as for functions or 
methods; that is, you can provide defaults for parameters in order starting from the right.

Class Template Argument Deduction
With class template argument deduction, the compiler can automatically deduce the template param-
eters from the arguments passed to a class template constructor.

For example, the Standard Library has a class template called std::pair, defined in <utility> and 
introduced in Chapter 1. A pair stores exactly two values of two possibly different types, which you 
normally would have to specify as the template parameters. Here’s an example:

pair<int, double> pair1 { 1, 2.3 };
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To avoid having to write the template parameters, a helper function template called  
std::make_pair() is available. Details of writing your own function templates are discussed later 
in this chapter. Function templates have always supported the automatic deduction of template 
parameters based on the arguments passed to the function template. Thus, make_pair() is capable of 
automatically deducing the template type parameters based on the values passed to it. For example, 
the compiler deduces pair<int, double> for the following call:

auto pair2 { make_pair(1, 2.3) };

With class template argument deduction (CTAD), such helper function templates are not necessary 
anymore. The compiler now automatically deduces the template type parameters based on the argu-
ments passed to the constructor. For the pair class template, you can simply write the following code:

pair pair3 { 1, 2.3 };  // pair3 has type pair<int, double>

Of course, this works only when all template parameters of a class template either have default values 
or are used as parameters in the constructor so that they can be deduced.

Note that an initializer is required for CTAD to work. The following is illegal:

pair pair4;

A lot of the Standard Library classes support CTAD, for example, vector, array, and so on.

NOTE This type deduction is disabled for std::unique_ptr and shared_ptr. 
You pass a T* to their constructors, which means that the compiler would have 
to choose between deducing <T> or <T[]>, a dangerous choice to get wrong. So, 
just remember that for unique_ptr and shared_ptr, you need to keep using 
make_unique() and make_shared().

User-Defined Deduction Guides
You can also write your own user-defined deduction guides to help the compiler. These allow you to 
write rules for how the template parameters have to be deduced. This is an advanced topic, so it is not 
discussed in detail, but one example is given to demonstrate their power.

Suppose you have the following SpreadsheetCell class template:

template <typename T>
class SpreadsheetCell
{
    public:
        SpreadsheetCell(T t) : m_content { move(t) } { }
        const T& getContent() const { return m_content; }
    private:
        T m_content;
};
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With automatic template parameter deduction, you can create a SpreadsheetCell with an 
std::string type:

string myString { "Hello World!" };
SpreadsheetCell cell { myString };

However, if you pass a const char* to the SpreadsheetCell constructor, then type T is deduced 
as const char*, which is not what you want! You can create the following user-defined deduction 
guide to cause it to deduce T as std::string when passing a const char* as an argument to the 
constructor:

SpreadsheetCell(const char*) -> SpreadsheetCell<std::string>;

This guide has to be defined outside the class definition but inside the same namespace as the 
SpreadsheetCell class.

The general syntax is as follows. The explicit keyword is optional and behaves the same as 
explicit for constructors. Often, such deduction guides are templates as well.

explicit TemplateName(Parameters) -> DeducedTemplate;

Method Templates
C++ allows you to templatize individual methods of a class. Such methods are called method tem-
plates and can be inside a normal class or in a class template. When you write a method template, you 
are actually writing many different versions of that method for many different types. Method tem-
plates are useful for assignment operators and copy constructors in class templates.

WARNING Virtual methods and destructors cannot be method templates.

Consider the original Grid template with only one template parameter: the element type. You can 
instantiate grids of many different types, such as ints and doubles:

Grid<int> myIntGrid;
Grid<double> myDoubleGrid;

However, Grid<int> and Grid<double> are two different types. If you write a function that takes 
an object of type Grid<double>, you cannot pass a Grid<int>. Even though you know that the 
elements of an int grid could be copied to the elements of a double grid, because the ints could be 
coerced into doubles, you cannot assign an object of type Grid<int> to one of type Grid<double> 
or construct a Grid<double> from a Grid<int>. Neither of the following two lines compiles:

myDoubleGrid = myIntGrid;                 // DOES NOT COMPILE
Grid<double> newDoubleGrid { myIntGrid }; // DOES NOT COMPILE

The problem is that the copy constructor and assignment operator for the Grid template are 
as follows:

Grid(const Grid& src);
Grid& operator=(const Grid& rhs);
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which are equivalent to this:

Grid(const Grid<T>& src);
Grid<T>& operator=(const Grid<T>& rhs);

The Grid copy constructor and operator= both take a reference to a const Grid<T>. When you 
instantiate a Grid<double> and try to call the copy constructor and operator=, the compiler gener-
ates methods with these prototypes:

Grid(const Grid<double>& src);
Grid<double>& operator=(const Grid<double>& rhs);

Note that there are no constructors or operator= that take a Grid<int> within the generated 
Grid<double> class.

Luckily, you can rectify this oversight by adding templatized versions of the copy constructor and 
assignment operator to the Grid class to generate methods that will convert from one grid type to 
another. Here is the new Grid class template definition:

export template <typename T>
class Grid
{
    public:
        template <typename E>
        Grid(const Grid<E>& src);
 
        template <typename E>
        Grid& operator=(const Grid<E>& rhs);
 
        void swap(Grid& other) noexcept;
 
        // Omitted for brevity
};

The original copy constructor and copy assignment operator cannot be removed. The compiler 
will not call these new templatized copy constructor and templatized copy assignment operator if 
E equals T.

Examine the new templatized copy constructor first:

template <typename E>
Grid(const Grid<E>& src);

You can see that there is another template declaration with a different typename, E (short for “ele-
ment”). The class is templatized on one type, T, and the new copy constructor is also templatized on a 
different type, E. This twofold templatization allows you to copy grids of one type to another. Here is 
the definition of the new copy constructor:

template <typename T>
template <typename E>
Grid<T>::Grid(const Grid<E>& src)
    : Grid { src.getWidth(), src.getHeight() }
{

continues
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    // The ctor-initializer of this constructor delegates first to the
    // non-copy constructor to allocate the proper amount of memory.
 
    // The next step is to copy the data.
    for (size_t i { 0 }; i < m_width; i++) {
        for (size_t j { 0 }; j < m_height; j++) {
            m_cells[i][j] = src.at(i, j);
        }
    }
}

As you can see, you must declare the class template line (with the T parameter) before the member 
template line (with the E parameter). You can’t combine them like this:

template <typename T, typename E> // Wrong for nested template constructor!
Grid<T>::Grid(const Grid<E>& src)

In addition to the extra template parameter line before the constructor definition, note that you must 
use the public accessor methods getWidth(), getHeight(), and at() to access the elements of src. 
That’s because the object you’re copying to is of type Grid<T>, and the object you’re copying from is 
of type Grid<E>. They are not the same type, so you must use public methods.

The swap() method is implemented as follows:

template <typename T>
void Grid<T>::swap(Grid& other) noexcept
{
    std::swap(m_width, other.m_width);
    std::swap(m_height, other.m_height);
    std::swap(m_cells, other.m_cells);
}

The templatized assignment operator takes a const Grid<E>& but returns a Grid<T>&:

template <typename T>
template <typename E>
Grid<T>& Grid<T>::operator=(const Grid<E>& rhs)
{
    // Copy-and-swap idiom
    Grid<T> temp { rhs }; // Do all the work in a temporary instance.
    swap(temp); // Commit the work with only non-throwing operations.
    return *this;
}

The implementation of this assignment operator uses the copy-and-swap idiom introduced in 
Chapter 9. The swap() method can only swap Grids of the same type, but that’s OK because this 
templatized assignment operator first converts a given Grid<E> to a Grid<T> called temp using the 
templatized copy constructor. Afterward, it uses the swap() method to swap this temporary Grid<T> 
with this, which is also of type Grid<T>.

Method Templates with Non-type Parameters
Looking at the earlier example with integer template parameters for HEIGHT and WIDTH, you see that 
a major problem is that the height and width become part of the types. This restriction prevents you 

(continued)
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from assigning a grid with one height and width to a grid with a different height and width. In some 
cases, however, it’s desirable to assign or copy a grid of one size to a grid of a different size. Instead 
of making the destination object a perfect clone of the source object, you would copy only those 
elements from the source array that fit in the destination array, padding the destination array with 
default values if the source array is smaller in either dimension. With method templates for the assign-
ment operator and copy constructor, you can do exactly that, thus allowing assignment and copying 
of different-sized grids. Here is the class definition:

export template <typename T, size_t WIDTH = 10, size_t HEIGHT = 10>
class Grid
{
    public:
        Grid() = default;
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        template <typename E, size_t WIDTH2, size_t HEIGHT2>
        Grid(const Grid<E, WIDTH2, HEIGHT2>& src);
 
        template <typename E, size_t WIDTH2, size_t HEIGHT2>
        Grid& operator=(const Grid<E, WIDTH2, HEIGHT2>& rhs);
 
        void swap(Grid& other) noexcept;
 
        std::optional<T>& at(size_t x, size_t y);
        const std::optional<T>& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return HEIGHT; }
        size_t getWidth() const { return WIDTH; }
 
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::optional<T> m_cells[WIDTH][HEIGHT];
};

This new definition includes method templates for the copy constructor and assignment operator, plus 
a helper method swap(). Note that the non-templatized copy constructor and assignment operator 
are explicitly defaulted (because of the user-declared destructor). They simply copy or assign m_cells 
from the source to the destination, which is exactly the semantics you want for two grids of the 
same size.

Here is the templatized copy constructor:

template <typename T, size_t WIDTH, size_t HEIGHT>
template <typename E, size_t WIDTH2, size_t HEIGHT2>
Grid<T, WIDTH, HEIGHT>::Grid(const Grid<E, WIDTH2, HEIGHT2>& src)
{

continues
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    for (size_t i { 0 }; i < WIDTH; i++) {
        for (size_t j { 0 }; j < HEIGHT; j++) {
            if (i < WIDTH2 && j < HEIGHT2) {
                m_cells[i][j] = src.at(i, j);
            } else {
                m_cells[i][j].reset();
            }
        }
    }
}

Note that this copy constructor copies only WIDTH and HEIGHT elements in the x and y dimensions, 
respectively, from src, even if src is bigger than that. If src is smaller in either dimension, the 
std::optional objects in the extra spots are reset using the reset() method.

Here are the implementations of swap() and operator=:

template <typename T, size_t WIDTH, size_t HEIGHT>
void Grid<T, WIDTH, HEIGHT>::swap(Grid& other) noexcept
{
    std::swap(m_cells, other.m_cells);
}
 
template <typename T, size_t WIDTH, size_t HEIGHT>
template <typename E, size_t WIDTH2, size_t HEIGHT2>
Grid<T, WIDTH, HEIGHT>& Grid<T, WIDTH, HEIGHT>::operator=(
    const Grid<E, WIDTH2, HEIGHT2>& rhs)
{
    // Copy-and-swap idiom
    Grid<T, WIDTH, HEIGHT> temp { rhs }; // Do all the work in a temp instance.
    swap(temp); // Commit the work with only non-throwing operations.
    return *this;
}

Class Template Specialization
You can provide alternate implementations of class templates for specific types. For example, you 
might decide that the Grid behavior for const char*s (C-style strings) doesn’t make sense. A 
Grid<const char*> will store its elements in a vector<vector<optional<const char*>>>. The 
copy constructor and assignment operator will perform shallow copies of this const char* pointer 
type. For const char*s, it might make more sense to do a deep copy of strings. The easiest solution 
for this is to write an alternative implementation specifically for const char*s, which converts them 
to C++ strings and stores them in a vector<vector<optional<string>>>.

Alternate implementations of templates are called template specializations. You might find the syntax 
to be a little weird at first. When you write a class template specialization, you must specify that it’s a 
template and that you are writing the version of the template for a particular type. Here is the syntax 
for a const char* specialization for Grid. For this implementation, the original Grid class template 
is moved to a module interface partition called main, while the specialization is in a module interface 
partition called string.

(continued)
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export module grid:string;
// When the template specialization is used, the original template must be
// visible too.
import :main;
 
export template <>
class Grid<const char*>
{
    public:
        explicit Grid(size_t width = DefaultWidth,
            size_t height = DefaultHeight);
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        // Explicitly default a move constructor and assignment operator.
        Grid(Grid&& src) = default;
        Grid& operator=(Grid&& rhs) = default;
 
        std::optional<std::string>& at(size_t x, size_t y);
        const std::optional<std::string>& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return m_height; }
        size_t getWidth() const { return m_width; }
 
        static const size_t DefaultWidth { 10 };
        static const size_t DefaultHeight { 10 };
 
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::vector<std::vector<std::optional<std::string>>> m_cells;
        size_t m_width { 0 }, m_height { 0 };
};

Note that you don’t refer to any type variable, such as T, in the specialization: you work directly with 
const char*s and strings. One obvious question at this point is why this class is still a template. 
That is, what good is the following syntax?

template <>
class Grid<const char*>

This syntax tells the compiler that this class is a const char* specialization of the Grid class. Sup-
pose that you didn’t use that syntax and just tried to write this:

class Grid

The compiler wouldn’t let you do that because there is already a class template named Grid (the 
original class template). Only by specializing it can you reuse the name. The main benefit of  
specializations is that they can be invisible to the user. When a user creates a Grid of ints or  
SpreadsheetCells, the compiler generates code from the original Grid template. When the user 
creates a Grid of const char*s, the compiler uses the const char* specialization. This can all be 
“behind the scenes.”
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The primary module interface file simply imports and exports both module interface partitions:

export module grid;
 
export import :main;
export import :string;

The specialization can be tested as follows:

Grid<int> myIntGrid;                    // Uses original Grid template.
Grid<const char*> stringGrid1 { 2, 2 }; // Uses const char* specialization.
 
const char* dummy { "dummy" };
stringGrid1.at(0, 0) = "hello";
stringGrid1.at(0, 1) = dummy;
stringGrid1.at(1, 0) = dummy;
stringGrid1.at(1, 1) = "there";
 
Grid<const char*> stringGrid2 { stringGrid1 };

When you specialize a template, you don’t “inherit” any code; specializations are not like derivations. 
You must rewrite the entire implementation of the class. There is no requirement that you provide 
methods with the same names or behavior. As an example, the const char* specialization of Grid 
implements the at() methods by returning an optional<string>, not an optional<const char*>. 
As a matter of fact, you could write a completely different class with no relation to the original. Of 
course, that would abuse the template specialization ability, and you shouldn’t do it without good 
reason. Here are the implementations for the methods of the const char* specialization. Unlike in 
the template definitions, you do not repeat the template<> syntax before each method definition.

Grid<const char*>::Grid(size_t width, size_t height)
    : m_width { width }, m_height { height }
{
    m_cells.resize(m_width);
    for (auto& column : m_cells) {
        column.resize(m_height);
    }
}
 
void Grid<const char*>::verifyCoordinate(size_t x, size_t y) const
{
    if (x >= m_width) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", x, m_width) };
    }
    if (y >= m_height) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", y, m_height) };
    }
}
 
const std::optional<std::string>& Grid<const char*>::at(
    size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}
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std::optional<std::string>& Grid<const char*>::at(size_t x, size_t y)
{
    return const_cast<std::optional<std::string>&>(
        std::as_const(*this).at(x, y));
}

This section discussed how to use class template specialization. Template specialization allows you to 
write a special implementation for a template, with all template type parameters replaced with spe-
cific types. Chapter 26, “Advanced Templates,” continues the discussion of specialization with a more 
advanced feature called partial specialization.

Deriving from Class Templates
You can inherit from class templates. If the derived class inherits from the template itself, it must be 
a template as well. Alternatively, you can derive from a specific instantiation of the class template, in 
which case your derived class does not need to be a template. As an example of the former, suppose 
you decide that the generic Grid class doesn’t provide enough functionality to use as a game board. 
Specifically, you would like to add a move() method to the game board that moves a piece from one 
location on the board to another. Here is the class definition for the GameBoard template:

import grid;
 
export template <typename T>
class GameBoard : public Grid<T>
{
    public:
        explicit GameBoard(size_t width = Grid<T>::DefaultWidth,
            size_t height = Grid<T>::DefaultHeight);
        void move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest);
};

This GameBoard template derives from the Grid template and thereby inherits all its functionality. 
You don’t need to rewrite at(), getHeight(), or any of the other methods. You also don’t need to 
add a copy constructor, operator=, or destructor, because you don’t have any dynamically allocated 
memory in the GameBoard.

The inheritance syntax looks normal, except that the base class is Grid<T>, not Grid. The reason 
for this syntax is that the GameBoard template doesn’t really derive from the generic Grid template. 
Rather, each instantiation of the GameBoard template for a specific type derives from the Grid instan-
tiation for that same type. For example, if you instantiate a GameBoard with a ChessPiece type, then 
the compiler generates code for a Grid<ChessPiece> as well. The : public Grid<T> syntax says 
that this class inherits from whatever Grid instantiation makes sense for the T type parameter. Note 
that although some compilers don’t enforce it, the C++ name lookup rules require you to use the this 
pointer or Grid<T>:: to refer to data members and methods in the base class template. Hence, we 
use Grid<T>::DefaultWidth instead of just DefaultWidth.

Here are the implementations of the constructor and the move() method:

template <typename T>
GameBoard<T>::GameBoard(size_t width, size_t height)
    : Grid<T> { width, height }

continues
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{
}
 
template <typename T>
void GameBoard<T>::move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest)
{
    Grid<T>::at(xDest, yDest) = std::move(Grid<T>::at(xSrc, ySrc));
    Grid<T>::at(xSrc, ySrc).reset();  // Reset source cell
    // Or:
    // this->at(xDest, yDest) = std::move(this->at(xSrc, ySrc));
    // this->at(xSrc, ySrc).reset();
}

You can use the GameBoard template as follows:

GameBoard<ChessPiece> chessboard { 8, 8 };
ChessPiece pawn;
chessBoard.at(0, 0) = pawn;
chessBoard.move(0, 0, 0, 1);

NOTE Of course, if you want to override methods from Grid, you will have to 
mark them virtual in the Grid class template.

Inheritance vs. Specialization
Some programmers find the distinction between template inheritance and template specialization 
confusing. The following table summarizes the differences:

INHERITANCE SPECIALIZATION

Reuses code? Yes: Derived classes contain 
all base class data members 
and methods.

No: You must rewrite all required 
code in the specialization.

Reuses name? No: The derived class name 
must be different from the base 
class name.

Yes: The specialization must have 
the same name as the original.

Supports 
polymorphism?

Yes: Objects of the derived class 
can stand in for objects of the 
base class.

No: Each instantiation of 
a template for a type is a 
different type.

NOTE Use inheritance for extending implementations and for polymorphism. Use 
specialization for customizing implementations for particular types.

(continued)
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Alias Templates
Chapter 1 introduces the concept of type aliases and typedefs. They allow you to give other names 
to specific types. To refresh your memory, you could, for example, write the following type alias to 
give a second name to type int:

using MyInt = int;

Similarly, you can use a type alias to give another name to a class template. Suppose you have the fol-
lowing class template:

template <typename T1, typename T2>
class MyClassTemplate { /* ... */ };

You can define the following type alias in which you specify both class template type parameters:

using OtherName = MyClassTemplate<int, double>;

A typedef can also be used instead of such a type alias.

Additionally, it’s also possible to specify only some of the types and keep the other types as template 
type parameters. This is called an alias template. Here’s an example:

template <typename T1>
using OtherName = MyClassTemplate<T1, double>;

This is something you cannot do with a typedef.

FUNCTION TEMPLATES

You can also write templates for stand-alone functions. The syntax is similar as for class templates. 
For example, you could write the following generic function to find a value in an array and return 
its index:

static const size_t NOT_FOUND { static_cast<size_t>(-1) };
 
template <typename T>
size_t Find(const T& value, const T* arr, size_t size)
{
    for (size_t i { 0 }; i < size; i++) {
        if (arr[i] == value) {
            return i; // Found it; return the index.
        }
    }
    return NOT_FOUND; // Failed to find it; return NOT_FOUND.
}

NOTE Of course, instead of returning some kind of sentinel value when an 
element is not found, such as NOT_FOUND, you could rewrite this code to return 
an std::optional<size_t> instead of a size_t. This would be an interesting 
exercise to practice using optional.



448 ❘ CHAPTER 12  Writing generic code With templates

The Find() function template can work on arrays of any type. For example, you could use it to find 
the index of an int in an array of ints or a SpreadsheetCell in an array of SpreadsheetCells.

You can call the function in two ways: explicitly specifying the type parameter with angle brackets or 
omitting the type and letting the compiler deduce the type parameter from the arguments. Here are 
some examples:

int myInt { 3 }, intArray[] {1, 2, 3, 4};
const size_t sizeIntArray { size(intArray) };
 
size_t res;
res = Find(myInt, intArray, sizeIntArray);      // calls Find<int> by deduction.
res = Find<int>(myInt, intArray, sizeIntArray); // calls Find<int> explicitly.
if (res != NOT_FOUND) { cout << res << endl; }
else { cout << "Not found" << endl; }
 
double myDouble { 5.6 }, doubleArray[] {1.2, 3.4, 5.7, 7.5};
const size_t sizeDoubleArray { size(doubleArray) };
 
// calls Find<double> by deduction.
res = Find(myDouble, doubleArray, sizeDoubleArray);
// calls Find<double> explicitly.
res = Find<double>(myDouble, doubleArray, sizeDoubleArray);
if (res != NOT_FOUND) { cout << res << endl; }
else { cout << "Not found" << endl; }
 
//res = Find(myInt, doubleArray, sizeDoubleArray); // DOES NOT COMPILE!
                                      // Arguments are different types.
// calls Find<double> explicitly, even with myInt.
res = Find<double>(myInt, doubleArray, sizeDoubleArray);
 
SpreadsheetCell cell1 { 10 }
SpreadsheetCell cellArray[] { SpreadsheetCell { 4 }, SpreadsheetCell { 10 } };
const size_t sizeCellArray { size(cellArray) };
 
res = Find(cell1, cellArray, sizeCellArray);
res = Find<SpreadsheetCell>(cell1, cellArray, sizeCellArray);

The previous implementation of the Find() function requires the size of the array as one of the 
parameters. Sometimes the compiler knows the exact size of an array, for example, for stack-based 
arrays. It would be nice to be able to call Find() with such arrays without the need to pass it the size 
of the array. This can be accomplished by adding the following function template. The implementa-
tion just forwards the call to the previous Find() function template. This also demonstrates that 
function templates can take non-type parameters, just like class templates.

template <typename T, size_t N>
size_t Find(const T& value, const T(&arr)[N])
{
    return Find(value, arr, N);
}

The syntax of this version of Find() looks a bit strange, but its use is straightforward, as in 
this example:

int myInt { 3 }, intArray[] {1, 2, 3, 4};
size_t res { Find(myInt, intArray) };
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Like class template method definitions, function template definitions (not just the prototypes) must 
be available to all source files that use them. Thus, you should put the definitions in module interface 
files and export them if more than one source file uses them.

Finally, template parameters of function templates can have defaults, just like class templates.

NOTE The C++ Standard Library provides an std::find() function tem-
plate that is more powerful than the Find() function template shown here. See 
Chapter 20, “Mastering Standard Library Algorithms,” for details.

Function Template Overloading
In theory, the C++ language allows you to write function template specializations, just as you can 
write class template specializations. However, you rarely want to do this because such function tem-
plate specializations do not participate in overload resolution and hence might behave unexpectedly.

Instead, you can overload function templates with non-template functions. For example, you might 
want to write a Find() overload for const char* C-style strings that compares them with strcmp() 
(see Chapter 2, “Working with Strings and String Views”) instead of operator==, as == would only 
compare pointers, not the actual strings. Here is such an overload:

size_t Find(const char* value, const char** arr, size_t size)
{
    for (size_t i { 0 }; i < size; i++) {
        if (strcmp(arr[i], value) == 0) {
            return i; // Found it; return the index.
        }
    }
    return NOT_FOUND; // Failed to find it; return NOT_FOUND.
}

This function overload can be used as follows:

const char* word { "two" };
const char* words[] { "one", "two", "three", "four" };
const size_t sizeWords { size(words) };
size_t res { Find(word, words, sizeWords) }; // Calls non-template function.

If you do explicitly specify the template type parameter as follows, then the function template will be 
called with T=const char*, and not the overload for const char*:

res = Find<const char*>(word, words, sizeWords);

Friend Function Templates of Class Templates
Function templates are useful when you want to overload operators in a class template. For example, 
you might want to overload the addition operator (operator+) for the Grid class template to be able 
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to add two grids together. The result will be a Grid with the same size as the smallest Grid of the two 
operands. Corresponding cells are added together only if both cells contain an actual value. Suppose 
you want to make your operator+ a stand-alone function template. The definition, which should 
go in the Grid.cppm module interface file, looks as follows. The implementation uses std::min(), 
defined in <algorithm>, to return the minimum value of two given arguments:

export template <typename T>
Grid<T> operator+(const Grid<T>& lhs, const Grid<T>& rhs)
{
    size_t minWidth { std::min(lhs.getWidth(), rhs.getWidth()) };
    size_t minHeight { std::min(lhs.getHeight(), rhs.getHeight()) };
 
    Grid<T> result { minWidth, minHeight };
    for (size_t y { 0 }; y < minHeight; ++y) {
        for (size_t x { 0 }; x < minWidth; ++x) {
            const auto& leftElement { lhs.m_cells[x][y] };
            const auto& rightElement { rhs.m_cells[x][y] };
            if (leftElement.has_value() && rightElement.has_value()) {
                result.at(x, y) = leftElement.value() + rightElement.value();
            }
        }
    }
    return result;
}

To query whether an optional contains an actual value, you use the has_value() method, while 
value() is used to retrieve this value.

This function template works on any Grid, as long as there is an addition operator for the type of 
elements stored in the grid. The only problem with this implementation is that it accesses private 
member m_cells of the Grid class. The obvious solution is to use the public at() method, but let’s 
see how you can make a function template a friend of a class template. For this example, you can 
make the operator a friend of the Grid class. However, both the Grid class and the operator+ are 
templates. What you really want is for each instantiation of operator+ for a particular type T to be a 
friend of the Grid template instantiation for that same type. The syntax looks like this:

// Forward declare Grid template.
export template <typename T> class Grid;
 
// Prototype for templatized operator+.
export template <typename T>
Grid<T> operator+(const Grid<T>& lhs, const Grid<T>& rhs);
 
export template <typename T>
class Grid
{
    public:
        friend Grid operator+<T>(const Grid& lhs, const Grid& rhs);
        // Omitted for brevity
};

This friend declaration is tricky: you’re saying that, for an instance of the template with type T, the 
T instantiation of operator+ is a friend. In other words, there is a one-to-one mapping of friends 
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between the class instantiations and the function instantiations. Note particularly the explicit 
template specification <T> on operator+. This syntax tells the compiler that operator+ is itself 
a template.

More on Template Parameter Deduction
The compiler deduces the type of the function template parameters based on the arguments passed to 
the function template. Template parameters that cannot be deduced have to be specified explicitly.

For example, the following add() function template requires three template parameters: the type of 
the return value and the types of the two operands:

template <typename RetType, typename T1, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }

You can call this function template specifying all three parameters as follows:

auto result { add<long long, int, int>(1, 2) };

However, because the template parameters T1 and T2 are parameters to the function, the compiler can 
deduce those two parameters, so you can call add() by only specifying the type for the return value:

auto result { add<long long>(1, 2) };

This works only when the parameters to deduce are last in the list of parameters. Suppose the func-
tion template is defined as follows:

template <typename T1, typename RetType, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }

You have to specify RetType, because the compiler cannot deduce that type. However, because  
RetType is the second parameter, you have to explicitly specify T1 as well:

auto result { add<int, long long>(1, 2) };

You can also provide a default value for the return type template parameter so that you can call 
add() without specifying any types:

template <typename RetType = long long, typename T1, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }
...
auto result { add(1, 2) };

Return Type of Function Templates
Continuing the example of the add() function template, wouldn’t it be nice to let the compiler 
deduce the type of the return value? It would; however, the return type depends on the template type 
parameters, so how can you do this? For example, take the following function template:

template <typename T1, typename T2>
RetType add(const T1& t1, const T2& t2) { return t1 + t2; }

In this example, RetType should be the type of the expression t1+t2, but you don’t know this 
because you don’t know what T1 and T2 are.
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As discussed in Chapter 1, since C++14 you can ask the compiler to automatically deduce the return 
type for a function. So, you can simply write add() as follows:

template <typename T1, typename T2>
auto add(const T1& t1, const T2& t2) { return t1 + t2; }

However, using auto to deduce the type of an expression strips away reference and const qualifiers, 
while decltype does not strip those. This stripping is fine for the add() function template because 
operator+ usually returns a new object anyway, but this stripping might not be desirable for cer-
tain other function templates, so let’s see how you can avoid it. Before continuing with the function 
template examples, however, let’s first look at the differences between auto and decltype using a 
non-template example. Suppose you have the following function:

const std::string message { "Test" };
 
const std::string& getString() { return message; }

You can call getString() and store the result in a variable with the type specified as auto 
as follows:

auto s1 { getString() };

Because auto strips reference and const qualifiers, s1 is of type string, and thus a copy is made. If 
you want a reference-to-const, you can explicitly make it a reference and mark it const as follows:

const auto& s2 { getString() };

An alternative solution is to use decltype, which does not strip anything:

decltype(getString()) s3 { getString() };

In this case, s3 is of type const string&; however, there is code duplication because you need to 
specify getString() twice, which can be cumbersome when getString() is a more complicated 
expression. This is solved with decltype(auto):

decltype(auto) s4 { getString() };

s4 is also of type const string&.

So, with this knowledge, we can write our add() function template using decltype(auto) to avoid 
stripping any const and reference qualifiers:

template <typename T1, typename T2>
decltype(auto) add(const T1& t1, const T2& t2) { return t1 + t2; }

Before C++14—that is, before function return type deduction and decltype(auto) were sup-
ported—the problem was solved using decltype(expression),  introduced with C++11. For example, 
you would think you could write the following:

template <typename T1, typename T2>
decltype(t1+t2) add(const T1& t1, const T2& t2) { return t1 + t2; }

However, this is wrong. You are using t1 and t2 in the beginning of the prototype line, but these 
are not yet known. t1 and t2 become known once the semantic analyzer reaches the end of the 
parameter list.
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This problem used to be solved with the alternative function syntax. Note that with this syntax, auto 
is used at the beginning of the prototype line, and the actual return type is specified after the param-
eter list (trailing return type); thus, the names of the parameters (and their types, and consequently, 
the type t1+t2) are known:

template<typename T1, typename T2>
auto add(const T1& t1, const T2& t2) -> decltype(t1+t2)
{
    return t1 + t2;
}

NOTE Now that C++ supports auto return type deduction and decltype(auto), 
it is recommended to use one of these mechanisms, instead of the alternative 
function syntax.

Abbreviated Function Template Syntax
C++20 introduces an abbreviated function template syntax. Let’s take another look at the add() 
function template from the previous section. Here is the recommended version again:

template <typename T1, typename T2>
decltype(auto) add(const T1& t1, const T2& t2) { return t1 + t2; }

Looking at this, it’s a rather verbose syntax to specify a simple function template. With the abbrevi-
ated function template syntax, this can be written more elegantly as follows:

decltype(auto) add(const auto& t1, const auto& t2) { return t1 + t2; }

With this syntax, there is no template<> specification anymore to specify template parameters. 
Instead, where previously the implementation used T1 and T2 as types for the parameters of the func-
tion, these are now specified as auto. This abbreviated syntax is just syntactical sugar; the compiler 
automatically translates this abbreviated implementation to the longer original code. Basically, every 
function parameter that is specified as auto becomes a template type parameter.

There are two caveats that you have to keep in mind. First, each parameter specified as auto becomes 
a different template type parameter. Suppose you have a function template like this:

template <typename T>
decltype(auto) add(const T& t1, const T& t2) { return t1 + t2; }

This version has only a single template type parameter, and both parameters to the function, t1 and 
t2, are of type const T&. For such a function template, you cannot use the abbreviated syntax, as 
that would be translated to a function template having two different template type parameters.

A second issue is that you cannot use the deduced types explicitly in the implementation of the func-
tion template, as these automatically deduced types have no name. If you need this, you either need to 
keep using the normal function template syntax or use decltype() to figure out the type.

C++20
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VARIABLE TEMPLATES

In addition to class templates, class method templates, and function templates, C++ supports variable 
templates. The syntax is as follows:

template <typename T>
constexpr T pi { T { 3.141592653589793238462643383279502884 } };

This is a variable template for the value of pi. To get pi in a certain type, you use the follow-
ing syntax:

float piFloat { pi<float> };
auto piLongDouble { pi<long double> };

You will always get the closest value of pi representable in the requested type. Just like other types of 
templates, variable templates can also be specialized.

NOTE C++20 introduces <numbers>, which defines a selection of commonly used 
mathematical constants, including pi: std::numbers::pi.

CONCEPTS

C++20 introduces concepts, named requirements used to constrain template type and non-type 
parameters of class and function templates. These are written as predicates that are evaluated at 
compile time to verify the template arguments passed to a template. The main goal of concepts is to 
make template-related compiler errors more human readable. Everybody has encountered the situa-
tion where the compiler spews out hundreds of lines of errors when you provide the wrong argument 
for a class or function template. It’s not always easy to dig through those compiler errors to find the 
root cause.

Concepts allow the compiler to output readable error messages if certain type constraints are not 
satisfied. As such, to get meaningful semantical errors, it’s recommended to write concepts to model 
semantic requirements. Avoid concepts that validate only for syntactic aspects without any semantic 
meaning, such as a concept that just checks if a type supports operator+. Such a concept would 
check only for syntax, not semantics. An std::string supports operator+, but obviously, it has a 
completely different meaning compared to operator+ for integers. On the other hand, concepts such 
as sortable and swappable are good examples of concepts modeling some semantic meaning.

NOTE When writing concepts, make sure they model semantics and not just 
syntax.

Let’s start with looking at the syntax to write concepts.

C++20
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Syntax
The generic syntax of a concept definition is as follows:

template <parameter-list>
concept concept-name = constraints-expression;

It starts with the familiar template<> specifier, but unlike class and function templates, concepts are 
never instantiated. Next, a new keyword, concept, is used followed by a name for the concept. You 
can use any name you want. The constraints-expression can be any constant expression, that 
is, any expression that can be evaluated at compile time. The constraints expression must result in a 
Boolean value. The constraints are never evaluated at run time. Constraints expressions are discussed 
in detail in the next section.

A concept expression has the following syntax:

concept-name<argument-list>

Concept expressions evaluate to either true or false. If it evaluates to true, then it is said that the 
given template arguments model the concept.

Constraints Expression
Constant expressions that evaluate to a Boolean can directly be used as constraints for a concept defi-
nition. It must evaluate exactly to a Boolean without any type conversions. Here’s an example:

template <typename T>
concept C = sizeof(T) == 4;

With the introduction of concepts, a new type of constant expression is introduced, as well, called a 
requires expression, explained next.

Requires Expressions
A requires expression has the following syntax:

requires (parameter-list) { requirements; }

The parameter-list is optional. Each requirement must end with a semicolon.

There are four types of requirements: simple, type, compound, and nested requirements, all discussed 
in the upcoming sections.

Simple Requirements
A simple requirement is an arbitrary expression statement, not starting with requires. Variable dec-
larations, loops, conditional statements, and so on are not allowed. This expression statement is never 
evaluated; the compiler simply validates that it compiles.

For example, the following concept definition specifies that a certain type T must be incrementable; 
that is, type T must support the post- and prefix ++ operator:

template <typename T>
concept Incrementable = requires(T x) { x++; ++x; };
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The parameter list of a requires expression is used to introduce named variables that are local to 
the body of the requires expression. The body of a requires expression cannot have regular variable 
declarations.

Type Requirements
A type requirement verifies that a certain type is valid. For example, the following concept requires 
that a certain type T has a value_type member:

template <typename T>
concept C = requires { typename T::value_type; };

A type requirement can also be used to verify that a certain template can be instantiated with a given 
type. Here’s an example:

template <typename T>
concept C = requires { typename SomeTemplate<T>; };

Compound Requirements
A compound requirement can be used to verify that something does not throw any exceptions and/or 
to verify that a certain method returns a certain type. The syntax is as follows:

{ expression } noexcept -> type-constraint;

Both the noexcept and -> type-constraint are optional. For example, the following concept  
validates that a given type has a method swap() marked as noexcept:

template <typename T>
concept C = requires (T x, T y) {
    { x.swap(y) } noexcept;
};

The type-constraint can be any so-called type constraint. A type constraint is simply the name of 
a concept with zero or more template type arguments. The type of the expression on the left of the 
arrow is automatically passed as the first template type argument to the type constraint. Hence, a 
type constraint always has one less argument than the number of template type parameters of the cor-
responding concept definition. For example, a type constraint for a concept definition with a single 
template type does not require any template arguments; you can either specify empty brackets, <>, or 
omit them. This might sound tricky, but an example will make this clear. The following concept vali-
dates that a given type has a method called size() returning a type that is convertible to a size_t:

template <typename T>
concept C = requires (const T x) {
    { x.size() } -> convertible_to<size_t>;
};

std::convertible_to<From, To> is a concept predefined by the Standard Library in <concepts> 
and has two template type parameters. The type of the expression on the left of the arrow is auto-
matically passed as the first template type argument to the convertible_to type constraint. As such, 
you only need to specify the To template type argument, size_t in this case.
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A requires expression can have multiple parameters and can consist of a sequence of requirements. 
For example, the following concept requires that instances of a type T are comparable:

template <typename T>
concept Comparable = requires(const T a, const T b) {
    { a == b } -> convertible_to<bool>;
    { a < b } -> convertible_to<bool>;
    // ... similar for the other comparison operators ...
};

Nested Requirements
A requires expression can have nested requirements. For example, here is a concept that requires the 
size of a type to be 4 bytes, and the type to support the pre- and postfix increment and decrement 
operations:

template <typename T>
concept C = requires (T t) {
    requires sizeof(t) == 4;
    ++t; --t; t++; t--;
};

Combining Concept Expressions
Existing concept expressions can be combined using conjunctions (&&) and disjunctions (||). For 
example, suppose you have a Decrementable concept, similar to Incrementable; the following 
example shows a concept that requires a type to be both incrementable and decrementable:

template <typename T>
concept IncrementableAndDecrementable = Incrementable<T> && Decrementable<T>;

Predefined Standard Concepts
The Standard Library defines a whole collection of predefined concepts, divided into a number of  
categories. The following list gives a few example concepts of each category, all defined in  
<concepts> and in the std namespace:

➤➤ Core language concepts: same_as, derived_from, convertible_to, integral,  
floating_point, copy_constructible, and so on

➤➤ Comparison concepts: equality_comparable, totally_ordered, and so on

➤➤ Object concepts: movable, copyable, and so on

➤➤ Callable concepts: invocable, predicate, and so on

Additionally, <iterator> defines iterator-related concepts such as random_access_iterator,  
forward_iterator, and so on. It also defines algorithm requirements such as mergeable, sort-
able, permutable, and so on. The C++20 ranges library also provides a number of standard con-
cepts. Chapter 17, “Understanding Iterators and the Ranges Library,” discusses iterators and ranges 
in detail, while Chapter 20 goes deeper into the algorithms provided by the Standard Library. Consult 
your favorite Standard Library reference for a full list of available standard concepts.
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If any of these standard concepts is what you need, you can use them directly without having to 
implement your own. For example, the following concept requires that a type T is derived from 
class Foo:

template <typename T>
concept IsDerivedFromFoo = derived_from<T, Foo>;

The following concept requires that type T is convertible to bool:

template <typename T>
concept IsConvertibleToBool = convertible_to<T, bool>;

More concrete examples follow in the upcoming sections.

Of course, these standard concepts can also be combined into more specific concepts. The following 
concept, for example, requires a type T to be both default and copy constructible:

template <typename T>
concept DefaultAndCopyConstructible =
    default_initializable<T> && copy_constructible<T>;

NOTE Writing complete and correct concepts is not always easy. If possible, try 
to use the available standard concepts or combinations of them to constrain your 
types.

Type-Constrained auto
Type constraints can be used to constrain variables defined with auto type deduction, to constrain 
return types when using function return type deduction, to constrain parameters in abbreviated  
function templates and generic lambda expressions, and so on.

For example, the following compiles fine, as the type is deduced to be int, which models the  
Incrementable concept:

Incrementable auto value1 { 1 };

However, the following causes a compilation error. The type is deduced as std::string (note the use 
of the s standard user-defined literal), and string does not model Incrementable:

Incrementable auto value { "abc"s }; 

Type Constraints and Function Templates
There are several syntactically different ways to use type constraints with function templates. The first 
is to simply use the familiar template<> syntax, but instead of using typename (or class), you use a 
type constraint. Here’s an example:

template <convertible_to<bool> T>
void handle(const T& t);
 
template <Incrementable T>
void process(const T& t);
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Calling process() with an integer argument works as expected. Calling it with an std::string, 
for instance, results in an error complaining about unsatisfied constraints. As an example, the Clang 
compiler produces the following errors. On first sight, it might still look a bit verbose, but it’s actually 
surprisingly readable.

<source>:17:2: error: no matching function for call to 'process'
        process(str);
        ^~~~~~~
<source>:9:6: note: candidate template ignored: constraints not satisfied [with T = 
std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char>>]
void process(const T& t)
     ^
<source>:8:11: note: because 'std::__cxx11::basic_string<char, std::char_traits<char>,  
std::allocator<char>>' does not satisfy 'Incrementable'
template <Incrementable T>
          ^
<source>:6:42: note: because 'x++' would be invalid: cannot increment value of type 
'std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char>>'
concept Incrementable = requires(T x) { x++; ++x; };
                                         ^

Another syntax is to use a requires clause as follows:

template <typename T> requires constant_expression
void process(const T& t);

The constant_expression can be any constant expression resulting in a Boolean type. For example, 
the constant expression can be a concept expression:

template <typename T> requires Incrementable<T>
void process(const T& t);

or a predefined standard concept:

template <typename T> requires convertible_to<T, bool>
void process(const T& t);

or a requires expression (note the two requires keywords):

template <typename T> requires requires(T x) { x++; ++x; }
void process(const T& t);

or any constant expression resulting in a Boolean:

template <typename T> requires (sizeof(T) == 4)
void process(const T& t);

or a combination of conjunctions and disjunctions:

template <typename T> requires Incrementable<T> && Decrementable<T>
void process(const T& t);

or a type trait (see Chapter 26):

template <typename T> requires is_arithmetic_v<T>
void process(const T& t);
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The requires clause can also be specified after the function header, a so-called trailing requires clause:

template <typename T>
void process(const T& t) requires Incrementable<T>;

An elegant way of using type constraints combines the abbreviated function template syntax, dis-
cussed earlier in this chapter, and type constraints, resulting in the following nice and compact syntax. 
Mind you, even though there is no template<> specifier, don’t be fooled: process() is still a func-
tion template.

void process(const Incrementable auto& t);

NOTE With the introduction of type constraints, unconstrained template type 
parameters of function and class templates should be a thing of the past. Every 
template type inevitably will need to satisfy certain constraints directly related to 
what you do with that type in the implementation. Hence, you should put a type 
constraint on it so the compiler can verify it at compile time.

Constraint Subsumption
You can overload a function template with different type constraints. The compiler will always use 
the template with the most specific constraints; the more specific constraints subsume/imply the lesser 
constraints. Here’s an example:

template <typename T> requires integral<T>
void process(const T& t) { cout << "integral<T>" << endl; }
 
template <typename T> requires (integral<T> && sizeof(T) == 4)
void process(const T& t) { cout << "integral<T> && sizeof(T) == 4" << endl; }

Suppose you have the following calls to process():

process(int { 1 });
process(short { 2 });

Then the output will be as follows on a typical system where an int has 32 bits and a short 
has 16 bits:

integral<T> && sizeof(T) == 4
integral<T>

The compiler resolves any subsumption by first normalizing the constraints expressions. During 
normalization of a constraints expression, all concept expressions are recursively expanded to their 
definitions until the result is a single constant expression consisting of conjunctions and disjunctions 
of constant Boolean expressions. A normalized constraints expression then subsumes another one if 
the compiler can prove that it implies the other one. Only conjunctions and disjunctions are taken 
into account to prove any subsumption, never negations.

This subsumption reasoning is done only at the syntactical level, not semantically. For example, 
sizeof(T)>4 is semantically more specific than sizeof(T)>=4, but syntactically the former will not 
subsume the latter.
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One caveat, though, is that type traits, such as the std::is_arithmetic trait used earlier, are not 
expanded during normalization. Hence, if there is a predefined concept and a type trait available, you 
should use the concept and not the trait. For example, use the std::integral concept instead of the 
std::is_integral type trait.

Type Constraints and Class Templates
All type constraints examples up to now are using function templates. Type constraints can also be 
used with class templates, using a similar syntax. As an example, let’s revisit the GameBoard class tem-
plate from earlier in this chapter. The following is a new definition for it, requiring its template type 
parameter to be a derived class of GamePiece:

template <std::derived_from<GamePiece> T>
class GameBoard : public Grid<T>
{
    public:
        explicit GameBoard(size_t width = Grid<T>::DefaultWidth,
            size_t height = Grid<T>::DefaultHeight);
        void move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest);
};

The method implementations need to be updated as well. Here’s an example:

template <std::derived_from<GamePiece> T>
void GameBoard<T>::move(size_t xSrc, size_t ySrc, size_t xDest, size_t 
yDest) { ... }

Alternatively, you can also use a requires clause as follows:

template <typename T> requires std::derived_from<T, GamePiece>
class GameBoard : public Grid<T> { ... };

Type Constraints and Class Methods
It’s also possible to put additional constraints on specific methods of a class template. For example, 
the move() method of the GameBoard class template could be further constrained to require that type 
T is moveable:

template <std::derived_from<GamePiece> T>
class GameBoard : public Grid<T>
{
    public:
        explicit GameBoard(size_t width = Grid<T>::DefaultWidth,
            size_t height = Grid<T>::DefaultHeight);
        void move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest)
            requires std::movable<T>;
};

Such a requires clause also needs to be repeated on the method definition:

template <std::derived_from<GamePiece> T>
void GameBoard<T>::move(size_t xSrc, size_t ySrc, size_t xDest, size_t yDest)
    requires std::movable<T>
{ ... }
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Remember that thanks to selective instantiation, discussed earlier in this chapter, you could still 
use this GameBoard class template with non-movable types, as long as you never call the move() 
method on it.

Type Constraints and Template Specialization
As described earlier in this chapter, you can write specializations for class templates and overloads for 
function templates to have a different implementation for certain types. It’s also possible to write a 
specialization for a collection of types satisfying certain constraints.

Let’s take one more look at the Find() function template from earlier in this chapter. To refresh 
your memory:

template <typename T>
size_t Find(const T& value, const T* arr, size_t size)
{
    for (size_t i { 0 }; i < size; i++) {
        if (arr[i] == value) {
            return i; // Found it; return the index.
        }
    }
    return NOT_FOUND; // Failed to find it; return NOT_FOUND.
}

This implementation uses the == operator to compare values. It’s usually not advisable to compare 
floating-point types for equality using ==, but instead to use a so-called epsilon test. The following 
Find() specialization for floating-point types uses an epsilon test implemented in an AreEqual() 
helper function instead of operator==:

template <std::floating_point T>
size_t Find(const T& value, const T* arr, size_t size)
{
    for (size_t i { 0 }; i < size; i++) {
        if (AreEqual(arr[i], value)) {
            return i; // Found it; return the index.
        }
    }
    return NOT_FOUND; // Failed to find it; return NOT_FOUND.
}

AreEqual() is defined as follows, also using a type constraint. A detailed discussion of the  
mathematics behind the epsilon test logic is outside the scope of this book and not important for this 
discussion.

template <std::floating_point T>
bool AreEqual(T x, T y, int precision = 2)
{
    // Scale the machine epsilon to the magnitude of the given values and multiply
    // by the required precision.
    return fabs(x - y) <= numeric_limits<T>::epsilon() * fabs(x + y) * precision
        || fabs(x - y) < numeric_limits<T>::min(); // The result is subnormal.
}
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SUMMARY

This chapter started a discussion on using templates for generic programming. You saw the syntax 
on how to write templates and examples where templates are really useful. It explained how to write 
class templates, how to use template parameters, and how to templatize methods of a class. It further 
discussed how to use class template specialization to write special implementations of a template 
where the template parameters are replaced with specific arguments.

You also learned about variable templates, function templates, and the elegant new C++20 abbrevi-
ated function template syntax. The chapter finished with an explanation of another C++20 feature 
called concepts, allowing you to put constraints on template parameters.

Chapter 26 continues the discussion on templates with some more advanced features such as class 
template partial specializations, variadic templates, and metaprogramming.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 12-1: Write a KeyValuePair class template with two template type parameters: Key 
and Value. The class should have two private data members to store a key and a value. Pro-
vide a constructor accepting a key and a value, and add appropriate getters and setters. Test 
your class by creating a few instantiations in your main() function and try class template 
argument deduction.

Exercise 12-2: The KeyValuePair class template from Exercise 12-1 supports all kind of data 
types for both its key and value template type parameters. For example, the following instan-
tiates the class template with std::string as the type for both the key and the value:

KeyValuePair<std::string, std::string> kv { "John Doe", "New York" };

However, using const char* as the type will result in data members of type const char*, 
which is not what we want.

Write a class template specialization for const char* keys and values that converts the given 
strings to std::strings.

Exercise 12-3: Take your solution from Exercise 12-1 and make the appropriate changes to 
only allow integer types as the type of the key and only floating-point types as the type of 
the value.

Exercise 12-4: Write a function template called concat() with two template type parameters 
and two function parameters t1 and t2. The function first converts t1 and t2 to a string and 
then returns the concatenation of those two strings. For this exercise, focus only on numerical 
input like integers and floating-point numbers for which std::to_string() is supported. 
Create and use a proper concept to make sure users of the function template don’t try to use 
it with unsupported types. Try to write your function template without using the  
template keyword.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 12-5: The concat() function template from Exercise 12-4 only supports  
numerical types. In this exercise, modify your solution to make it work when both arguments 
are strings, and when one argument is a numerical type while the other is a string type.

Exercise 12-6: Take the original Find() function template from earlier in this chapter and 
add an appropriate constraint on the type T.
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Demystifying C++ I/O

WHAT’S IN THIS CHAPTER?

➤➤ The concept of streams

➤➤ How to use streams for input and output of data

➤➤ The available standard streams provided by the Standard Library

➤➤ How to use the filesystem support library

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

A program’s fundamental job is to accept input and produce output. A program that produces 
no output of any sort would not be very useful. All languages provide some mechanism for I/O, 
either as a built-in part of the language or through an OS-specific API. A good I/O system is 
both flexible and easy to use. Flexible I/O systems support input and output through a variety 
of devices, such as files and the user console. They also support reading and writing of different 
types of data. I/O is error-prone because data coming from a user can be incorrect or the 
underlying filesystem or other data source can be inaccessible. Thus, a good I/O system is also 
capable of handling error conditions.

If you are familiar with the C language, you have undoubtedly used printf() and scanf(). As 
I/O mechanisms, printf() and scanf()are certainly flexible. Through escape codes and 
variable placeholders (similar to format specifiers and placeholders for std::format(), as 
discussed in Chapter 2, “Working with Strings and String Views”), they can be customized to 
read in specially formatted data or output any value that the formatting codes permit. Supported 
types are limited to integer/character values, floating-point values, and strings. However, 

http://www.wiley.com/go/proc++5e
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printf() and scanf() falter on other measures of good I/O systems. They do not handle errors 
particularly well. For example, if you tell them to interpret a floating-point number as an integer, they 
will happily do so. Additionally, they are not flexible enough to handle custom data types, they are not 
type safe, and in an object-oriented language like C++, they are not at all object oriented.

C++ provides a more refined method of input and output through a mechanism known as streams. 
Streams are a flexible and object-oriented approach to I/O. In this chapter, you will learn how to use 
streams for data output and input. You will also learn how to use the stream mechanism to read from 
various sources and write to various destinations, such as the user console, files, and even strings. This 
chapter covers the most commonly used I/O features.

The last part of this chapter discusses the filesystem support library provided by the C++ Standard 
Library. This library allows you to work with paths, directories, and files, and it nicely complements 
the mechanisms provided for I/O by the streams.

USING STREAMS

The stream metaphor takes a bit of getting used to. At first, streams may seem more complex than 
traditional C-style I/O, such as printf(). In reality, they seem complicated initially only because 
there is a deeper metaphor behind streams than there is behind printf(). Don’t worry, though; after 
a few examples, you’ll never look back.

What Is a Stream, Anyway?
Chapter 1, “A Crash Course in C++ and the Standard Library,” compares the cout stream to a 
laundry chute for data. You throw some variables down the stream, and they are written to the 
user’s screen, or console. More generally, all streams can be viewed as data chutes. Streams vary in 
their direction and their associated source or destination. For example, the cout stream that you are 
already familiar with is an output stream, so its direction is “out.” It writes data to the console, so its 
associated destination is “console.” The c in cout does not stand for “console” as you might expect 
but stands for “character” as it’s a character-based stream. There is another standard stream called 
cin that accepts input from the user. Its direction is “in,” and its associated source is “console.” As 
with cout, the c in cin stands for “character.” Both cout and cin are predefined instances of streams 
that are defined within the std namespace. The following table gives a brief description of all prede-
fined streams defined in <iostream>.

The difference between buffered and unbuffered streams is that a buffered stream does not immedi-
ately send the data to the destination. Instead, it buffers, that is collects, incoming data and then sends 
it in blocks. An unbuffered stream, on the other hand, immediately sends the data to the destination. 
Buffering is usually done to improve performance, as certain destinations, such as files, perform better 
when writing bigger blocks at once. Note that you can always force a buffered stream to send all its 
currently buffered data to the destination by flushing its buffer using the flush() method. Buffering 
and flushing is discussed in a bit more detail later in this chapter.

STREAM DESCRIPTION

cin An input stream, reads data from the “input console”

cout A buffered output stream, writes data to the “output console”
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STREAM DESCRIPTION

cerr An unbuffered output stream, writes data to the “error console,” which is often the 
same as the “output console”

clog A buffered version of cerr

There are also wide-character versions available of these streams, starting with w: wcin, wcout, 
wcerr, and wclog. Wide characters can be used to work with languages that have more characters 
than, for example, English, such as Chinese. Wide characters are discussed in Chapter 21, “String 
Localization and Regular Expressions.”

NOTE Every input stream has an associated source. Every output stream has an 
associated destination.

Another important aspect of streams is that they include data but also have a so-called current posi-
tion. The current position is the position in the stream where the next read or write operation will 
take place.

NOTE Graphical user interface applications normally do not have a console; that 
is, if you write something to cout, the user will not see it. If you are writing a 
library, you should never assume the existence of cout, cin, cerr, or clog because 
you never know whether your library will be used in a console or a GUI  
application.

Stream Sources and Destinations
Streams as a concept can be applied to any object that accepts data or emits data. You could write a 
stream-based network class or stream-based access to a Musical Instrument Digital Interface (MIDI) 
instrument. In C++, there are three common sources and destinations for streams: console, file, 
and string.

You have already seen many examples of user, or console, streams. Console input streams make 
programs interactive by allowing input from the user at run time. Console output streams provide 
feedback to the user and output results.

File streams, as the name implies, read data from and write data to a filesystem. File input streams 
are useful for reading configuration data and saved files or for batch processing file-based data. File 
output streams are useful for saving state and providing output. If you are familiar with C-style input 
and output, then file streams subsume the functionality of the C functions fprintf(), fwrite(), and 
fputs() for output, and fscanf(), fread(), and fgets() for input. As these C-style functions are 
not recommended in C++, they are not further discussed.
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String streams are an application of the stream metaphor to the string type. With a string stream, you 
can treat character data just as you would treat any other stream. For the most part, this is merely a 
handy syntax for functionality that could be handled through methods on the string class. How-
ever, using stream syntax provides opportunities for optimization and can be far more convenient 
and more efficient than direct use of the string class. String streams subsume the functionality of 
sprintf(), sprintf_s(), sscanf(), and other forms of C string-formatting functions, not further 
discussed in this C++ book.

The rest of this section deals with console streams (cin and cout). Examples of file and string 
streams are provided later in this chapter. Other types of streams, such as printer output or network 
I/O, are often platform dependent, so they are not covered in this book.

Output with Streams
Output using streams is introduced in Chapter 1 and is used in almost every chapter in this book. 
This section briefly revisits some of the basics and introduces material that is more advanced.

Output Basics
Output streams are defined in <ostream>. Most programmers import <iostream> in their programs, 
which in turn includes the functionality for both input streams and output streams. <iostream> also 
declares all predefined stream instances: cout, cin, cerr, clog, and the wide versions.

The << operator is the simplest way to use output streams. C++ basic types, such as ints, point-
ers, doubles, and characters, can be output using <<. In addition, the C++ string class is compat-
ible with <<, and C-style strings are properly output as well. The following are some examples 
of using <<:

int i { 7 };
cout << i << endl;
 
char ch { 'a' };
cout << ch << endl;
 
string myString { "Hello World." };
cout << myString << endl;

The output is as follows:

7
a
Hello World.

The cout stream is the built-in stream for writing to the console, or standard output. You can 
“chain” uses of << together to output multiple pieces of data. This is because operator<< returns a 
reference to the stream as its result, so you can immediately use << again on the same stream. Here is 
an example:

int j { 11 };
cout << "The value of j is " << j << "!" << endl;
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The output is as follows:

The value of j is 11!

C++ streams correctly parse C-style escape sequences, such as strings that contain \n. You can also 
use std::endl to start a new line. The difference between using \n and endl is that \n just starts a 
new line while endl also flushes the buffer. Watch out with endl because too many flushes might hurt 
performance. The following example uses endl to output and flush several lines of text with just one 
line of code:

cout << "Line 1" << endl << "Line 2" << endl << "Line 3" << endl;

The output is as follows:

Line 1
Line 2
Line 3

WARNING endl flushes the destination buffer, so use it judiciously in 
performance critical code, such as tight loops.

Methods of Output Streams
The << operator is, without a doubt, the most useful part of output streams. However, there is addi-
tional functionality to be explored. If you look through the contents of <ostream>, you’ll see many 
lines of overloaded definitions of the << operator to support outputting all kinds of different data 
types. You’ll also find some useful public methods.

put() and write()
put() and write() are raw output methods. Instead of taking an object or variable that has some 
defined behavior for output, put() accepts a single character, while write() accepts a character 
array. The data passed to these methods is output as is, without any special formatting or processing. 
For example, the following code snippet shows how to output a C-style string to the console without 
using the << operator:

const char* test { "hello there\n" };
cout.write(test, strlen(test));

The next snippet shows how to write a single character to the console by using the put() method:

cout.put('a');

flush()
When you write to an output stream, the stream does not necessarily write the data to its destina-
tion right away. Most output streams buffer, or accumulate, data instead of writing it out as soon as 
it comes in. This is usually done to improve performance. Certain stream destinations, such as files, 
are much more performant if data is written in larger blocks, instead of, for example, character by 
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character. The stream flushes, or writes out, the accumulated data, when one of the following condi-
tions occurs:

➤➤ An endl manipulator is reached.

➤➤ The stream goes out of scope and is destructed.

➤➤ The stream buffer is full.

➤➤ You explicitly tell the stream to flush its buffer.

➤➤ Input is requested from a corresponding input stream (that is, when you make use of cin 
for input, cout will flush). In the section “File Streams,” you will learn how to establish this 
type of link.

One way to explicitly tell a stream to flush is to call its flush() method, as in the following code:

cout << "abc";
cout.flush();    // abc is written to the console.
cout << "def";
cout << endl;    // def is written to the console.

NOTE Not all output streams are buffered. The cerr stream, for example, does 
not buffer its output.

Handling Output Errors
Output errors can arise in a variety of situations. Perhaps you are trying to open a non-existing file. 
Maybe a disk error has prevented a write operation from succeeding, for example, because the disk 
is full. None of the streams’ code you have seen up until this point has considered these possibilities, 
mainly for brevity. However, it is vital that you address any error conditions that occur.

When a stream is in its normal usable state, it is said to be “good.” The good() method can be called 
directly on a stream to determine whether the stream is currently good:

if (cout.good()) {
    cout << "All good" << endl;
}

The good() method provides an easy way to obtain basic information about the validity of the 
stream, but it does not tell you why the stream is unusable. There is a method called bad() that 
provides a bit more information. If bad() returns true, it means that a fatal error has occurred 
(as opposed to any nonfatal condition like end-of-file, eof()). Another method, fail(), returns true 
if the most recent operation has failed; however, it doesn’t say anything about the next operation, 
which can either succeed or fail as well. For example, after calling flush() on an output stream, you 
could call fail() to make sure the flush was successful:

cout.flush();
if (cout.fail()) {
    cerr << "Unable to flush to standard out" << endl;
}
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Streams have a conversion operator to convert to type bool. This conversion operator returns the 
same as calling !fail(). So, the previous code snippet can be rewritten as follows:

cout.flush();
if (!cout) {
    cerr << "Unable to flush to standard out" << endl;
}

Important to know is that both good() and fail() return false if the end-of-file is reached. The 
relation is as follows: good() == (!fail() && !eof()).

You can also tell the streams to throw exceptions when a failure occurs. You then write a catch 
handler to catch ios_base::failure exceptions, on which you can use the what() method to get a 
description of the error, and the code() method to get the error code. However, whether or not you 
get useful information depends on the Standard Library implementation that you use.

cout.exceptions(ios::failbit | ios::badbit | ios::eofbit);
try {
    cout << "Hello World." << endl;
} catch (const ios_base::failure& ex) {
    cerr << "Caught exception: " << ex.what()
         << ", error code = " << ex.code() << endl;
}

To reset the error state of a stream, use the clear() method:

cout.clear();

Error checking is performed less frequently for console output streams than for file output or input 
streams. The methods discussed here apply for other types of streams as well and are revisited later as 
each type is discussed.

Output Manipulators
One of the unusual features of streams is that you can throw more than just data down the chute. 
C++ streams also recognize manipulators, objects that make a change to the behavior of the stream 
instead of, or in addition to, providing data for the stream to work with.

You have already seen one manipulator: endl. The endl manipulator encapsulates data and behavior. 
It tells the stream to output an end-of-line sequence and to flush its buffer. The following are some 
other useful manipulators, many of which are defined in <ios> and <iomanip>. An example after this 
list shows how to use them:

➤➤ boolalpha and noboolalpha: Tells the stream to output bool values as true and false 
(boolalpha) or 1 and 0 (noboolalpha). The default is noboolalpha.

➤➤ hex, oct, and dec: Outputs numbers in hexadecimal, octal, and base 10, respectively.

➤➤ setprecision: Sets the number of decimal places that are output for fractional numbers. 
This is a parameterized manipulator (meaning that it takes an argument).

➤➤ setw: Sets the field width for outputting data. This is a parameterized manipulator.

➤➤ setfill: Sets a character as the new fill character for the stream. The fill character pads 
output according to the width set by setw. This is a parameterized manipulator.
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➤➤ showpoint and noshowpoint: Forces the stream to always or never show the decimal point 
for floating-point numbers with no fractional part.

➤➤ put_money: A parameterized manipulator that writes a formatted monetary value 
to a stream.

➤➤ put_time: A parameterized manipulator that writes a formatted time to a stream.

➤➤ quoted: A parameterized manipulator that encloses a given string with quotes and escapes 
embedded quotes.

All of these manipulators stay in effect for subsequent output to the stream until they are reset, except 
setw, which is active for only the next single output. The following example uses several of these 
manipulators to customize its output:

// Boolean values
bool myBool { true };
cout << "This is the default: " << myBool << endl;
cout << "This should be true: " << boolalpha << myBool << endl;
cout << "This should be 1: " << noboolalpha << myBool << endl;
 
// Simulate printf-style "%6d" with streams
int i { 123 };
printf("This should be '   123': %6d\n", i);
cout << "This should be '   123': " << setw(6) << i << endl;
 
// Simulate printf-style "%06d" with streams
printf("This should be '000123': %06d\n", i);
cout << "This should be '000123': " << setfill('0') << setw(6) << i << endl;
 
// Fill with *
cout << "This should be '***123': " << setfill('*') << setw(6) << i << endl;
// Reset fill character
cout << setfill(' ');
 
// Floating-point values
double dbl { 1.452 };
double dbl2 { 5 };
cout << "This should be ' 5': " << setw(2) << noshowpoint << dbl2 << endl;
cout << "This should be @@1.452: " << setw(7) << setfill('@') << dbl << endl;
// Reset fill character
cout << setfill(' ');
 
// Instructs cout to start formatting numbers according to your location.
// Chapter 21 explains the details of the imbue() call and the locale object.
cout.imbue(locale { "" });
 
// Format numbers according to your location
cout << "This is 1234567 formatted according to your location: " << 1234567 
     << endl;
 
// Monetary value. What exactly a monetary value means depends on your
// location. For example, in the USA, a monetary value of 120000 means 120000
// dollar cents, which is 1200.00 dollars.



Using Streams ❘ 473

cout << "This should be a monetary value of 120000, "
     << "formatted according to your location: "
     << put_money("120000") << endl;
 
// Date and time
time_t t_t { time(nullptr) };  // Get current system time.
tm* t { localtime(&t_t) };     // Convert to local time.
cout << "This should be the current date and time "
     << "formatted according to your location: "
     << put_time(t, "%c") << endl;
 
// Quoted string
cout << "This should be: \"Quoted string with \\\"embedded quotes\\\".\": "
     << quoted("Quoted string with \"embedded quotes\".") << endl;

NOTE This example might give you a security-related error or warning on the call 
to localtime(). With Microsoft Visual C++ you can use the safe version, called 
localtime_s(). On Linux you can use localtime_r().

If you don’t care for the concept of manipulators, you can usually get by without them. Streams 
provide much of the same functionality through equivalent methods like precision(). For example, 
take the following line:

cout << "This should be '1.2346': " << setprecision(5) << 1.23456789 << endl;

This can be converted to use a method call as follows. The advantage of the method calls is that they 
return the previous value, allowing you to restore it, if needed.

cout.precision(5);
cout << "This should be '1.2346': " << 1.23456789 << endl;

For a detailed description of all stream methods and manipulators, consult your favorite Standard 
Library Reference.

Input with Streams
Input streams provide a simple way to read in structured or unstructured data. In this section, the 
techniques for input are discussed within the context of cin, the console input stream.

Input Basics
There are two easy ways to read data by using an input stream. The first is an analog of the << opera-
tor that outputs data to an output stream. The corresponding operator for reading data is >>. When 
you use >> to read data from an input stream, the variable you provide is the storage for the received 
value. For example, the following program reads one word from the user and puts it into a string. 
Then the string is output back to the console:

string userInput;
cin >> userInput;
cout << "User input was " << userInput << endl;
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By default, the >> operator tokenizes values according to whitespace. For example, if a user runs the 
previous program and enters hello there as input, only the characters up to the first whitespace 
character (the space character in this instance) are captured into the userInput variable. The output 
would be as follows:

User input was hello

One solution to include whitespace in the input is to use get(), which is discussed later in 
this chapter.

NOTE Whitespace characters in C++ are space (' '), form feed ('\f'), line feed 
('\n'), carriage return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').

The >> operator works with different variable types, just like the << operator. For example, to read an 
integer, the code differs only in the type of the variable:

int userInput;
cin >> userInput;
cout << "User input was " << userInput << endl;

You can use input streams to read in multiple values, mixing and matching types as necessary. For 
example, the following function, an excerpt from a restaurant reservation system, asks the user for a 
last name and the number of people in their party:

void getReservationData()
{
    string guestName;
    int partySize;
    cout << "Name and number of guests: ";
    cin >> guestName >> partySize;
    cout << "Thank you, " << guestName << "." << endl;
    if (partySize > 10) {
        cout << "An extra gratuity will apply." << endl;
    }
}

Remember that the >> operator tokenizes values according to whitespace, so the getReservation-
Data() function does not allow you to enter a name with whitespace. A solution using unget() is 
discussed later in this chapter. Note also that the first use of cout does not explicitly flush the buffer 
using endl or flush(), but still, the text will be written to the console because the use of cin imme-
diately flushes the cout buffer; they are linked together in this way.

NOTE If you get confused between << and >>, just think of the angles as pointing 
toward their destination. In an output stream, << points toward the stream itself 
because data is being sent to the stream. In an input stream, >> points toward the 
variables because data is being stored.
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Handling Input Errors
Input streams have a number of methods to detect unusual circumstances. Most of the error condi-
tions related to input streams occur when there is no data available to read. For example, the end 
of the stream (referred to as end-of-file, even for non–file streams) may have been reached. The 
most common way of querying the state of an input stream is to access it within a conditional. For 
example, the following loop keeps looping as long as cin remains in a good state. This pattern takes 
advantage of the fact that evaluating an input stream within a conditional context results in true 
only if the stream is not in any error state. Encountering an error causes the stream to evaluate to 
false. The underlying details of the conversion operations required to implement such behavior are 
explained in Chapter 15, “Overloading C++ Operators.”

while (cin) { ... }

You can input data at the same time:

while (cin >> ch) { ... }

The good(), bad(), and fail() methods can be called on input streams, just as on output streams. 
There is also an eof() method that returns true if the stream has reached its end. Similar as for out-
put streams, both good() and fail() return false if the end-of-file is reached. The relation is again 
as follows: good() == (!fail() && !eof()).

You should get into the habit of checking the stream state after reading data so that you can recover 
from bad input.

The following program shows a common pattern for reading data from a stream and handling errors. 
The program reads numbers from standard input and displays their sum once end-of-file is reached. 
Note that in command-line environments, the end-of-file is indicated by the user typing a particular 
character. In Unix and Linux, it is Control+D; in Windows it is Control+Z, both followed by Enter. 
The exact character is operating-system dependent, so you will need to know what your operating 
system requires.

cout << "Enter numbers on separate lines to add.\n"
    << "Use Control+D followed by Enter to finish (Control+Z in Windows).\n";
int sum { 0 }; 
 
if (!cin.good()) { 
    cerr << "Standard input is in a bad state!" << endl; 
    return 1; 
} 
 
while (!cin.bad()) { 
    int number;
    cin >> number;
    if (cin.good()) {
        sum += number; 
    } else if (cin.eof()) {
        break; // Reached end of file
    } else if (cin.fail()) {

continues
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        // Failure!
        cin.clear(); // Clear the failure state.
        string badToken;
        cin >> badToken; // Consume the bad input.
        cerr << "WARNING: Bad input encountered: " << badToken << endl;
    }
} 
cout << "The sum is " << sum << endl;

Here is some example output of this program. The ^Z characters in the output appear when 
Control+Z is pressed.

Enter numbers on separate lines to add.
Use Control+D followed by Enter to finish (Control+Z in Windows).
1
2
test
WARNING: Bad input encountered: test
3
^Z
The sum is 6

Input Methods
Just like output streams, input streams have several methods that allow a lower level of access than 
the functionality provided by the more common >> operator.

get()
The get() method allows raw input of data from a stream. The simplest version of get() returns the 
next character in the stream, though other versions exist that read multiple characters at once. get() 
is most commonly used to avoid the automatic tokenization that occurs with the >> operator. For 
example, the following function reads a name, which can be made up of several words, from an input 
stream until the end of the stream is reached:

string readName(istream& stream)
{
    string name;
    while (stream) { // Or: while (!stream.fail()) {
        int next { stream.get() };
        if (!stream || next == std::char_traits<char>::eof())
            break;
        name += static_cast<char>(next);// Append character.
    }
    return name;
}

There are several interesting observations to make about this readName() function:

➤➤ Its parameter is a reference-to-non-const to an istream, not a reference-to-const. The 
methods that read in data from a stream will change the actual stream (most notably, its posi-
tion), so they are not const methods. Thus, you cannot call them on a reference-to-const.

➤➤ The return value of get() is stored in an int, not in a char, because get() can return spe-
cial non-character values such as std::char_traits<char>::eof() (end-of-file).

(continued)
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readName() is a bit strange because there are two ways to get out of the loop: either the stream can 
get into a failed state or the end of the stream is reached. A more common pattern for reading from 
a stream uses a different version of get() that takes a reference to a character and returns a refer-
ence to the stream. Evaluating an input stream within a conditional context results in true only if the 
stream is not in any error state. The following version of the same function is a bit more concise:

string readName(istream& stream)
{
    string name;
    char next;    
    while (stream.get(next)) {
        name += next;
    }
    return name;
}

unget()
For most purposes, the correct way to think of an input stream is as a one-way chute. Data falls 
down the chute and into variables. The unget() method breaks this model in a way by allowing you 
to push data back up the chute.

A call to unget() causes the stream to back up by one position, essentially putting the previous char-
acter read back on the stream. You can use the fail() method to see whether unget() was success-
ful or not. For example, unget() can fail if the current position is at the beginning of the stream.

The getReservationData() function shown earlier in this chapter did not allow you to enter a 
name with whitespace. The following code uses unget() to allow whitespace in the name. The 
code reads character by character and checks whether the character is a digit or not. If the charac-
ter is not a digit, it is added to guestName. If it is a digit, the character is put back into the stream 
using unget(), the loop is stopped, and the >> operator is used to input an integer, partySize. The 
noskipws input manipulator tells the stream not to skip whitespace; that is, whitespace is read like 
any other characters.

void getReservationData()
{
    string guestName;
    int partySize { 0 };
    // Read characters until we find a digit
    char ch;
    cin >> noskipws;
    while (cin >> ch) {
        if (isdigit(ch)) {
            cin.unget();
            if (cin.fail())
                cout << "unget() failed" << endl;
            break;
        }
        guestName += ch;
    }
    // Read partySize, if the stream is not in error state
    if (cin)
        cin >> partySize;

continues
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    if (!cin) {
        cerr << "Error getting party size." << endl;
        return;
    }
 
    cout << format("Thank you '{}', party of {}",
        guestName, partySize) << endl;
    if (partySize > 10) {
        cout << "An extra gratuity will apply." << endl;
    }
}

putback()
The putback() method, like unget(), lets you move backward by one character in an input stream. 
The difference is that the putback() method takes the character being placed back on the stream as a 
parameter. Here is an example:

char c;
cin >> c;
cout << format("Retrieved {} before putback('e').", c) << endl;
 
cin.putback('e');  // 'e' will be the next character read off the stream.
cin >> c;
cout << format("Retrieved {} after putback('e').", c) << endl;

The output could be as follows:

w
Retrieved w before putback('e').
Retrieved e after putback('e').

peek ()
The peek() method allows you to preview the next value that would be returned if you were to call 
get(). To take the chute metaphor perhaps a bit too far, you could think of it as looking up the chute 
without a value actually falling down it.

peek() is ideal for any situation where you need to look ahead before reading a value. For example, 
the following code implements the getReservationData() function that allows whitespace in the 
name, but uses peek() instead of unget():

void getReservationData()
{
    string guestName;
    int partySize { 0 };
    // Read characters until we find a digit
    cin >> noskipws;
    while (true) {
        // 'peek' at next character
        char ch { static_cast<char>(cin.peek()) };
        if (!cin)
            break;
        if (isdigit(ch)) {

(continued)
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            // next character will be a digit, so stop the loop
            break;
        }
        // next character will be a non-digit, so read it
        cin >> ch;
        if (!cin)
            break;
        guestName += ch;
    }
    // Read partySize, if the stream is not in error state
    if (cin)
        cin >> partySize;
    if (!cin) {
        cerr << "Error getting party size." << endl;
        return;
    }
 
    cout << format("Thank you '{}', party of {}",
        guestName, partySize) << endl;
    if (partySize > 10) {
        cout << "An extra gratuity will apply." << endl;
    }
}

getline()
Obtaining a single line of data from an input stream is so common that a method exists to do it for 
you. The getline() method fills a character buffer with a line of data up to the specified size. The 
specified size includes the \0 character. Thus, the following code reads a maximum of BufferSize-1 
characters from cin or until an end-of-line sequence is read:

char buffer[BufferSize] { 0 };
cin.getline(buffer, BufferSize);

When getline() is called, it reads a line from the input stream, up to and including the end-of-line 
sequence. However, the end-of-line character or characters do not appear in the string. Note that the 
end-of-line sequence is platform dependent. For example, it can be \r\n, \n, or \n\r.

There is a form of get() that performs the same operation as getline(), except that it leaves the 
newline sequence in the input stream.

There is also a function called std::getline() that can be used with C++ strings. It is defined in 
<string> and is in the std namespace. It takes a stream and a string reference. The advantage of 
using this version of getline() is that it doesn’t require you to specify the size of any buffer.

string myString;
getline(cin, myString);

Both the getline() method and the std::getline() function accept an optional delimiter as last 
parameter. The default delimiter is \n. By changing this delimiter, these functions can be used to read 
in multiple lines of text until a given delimiter is reached. For example, the following code reads in 
multiple lines of text until it reads an @ character:

cout << "Enter multiple lines of text. "
     << "Use an @ character to signal the end of the text.\n> ";

continues
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string myString;
getline(cin, myString, '@');
cout << format("Read text: \"{}\"", myString) << endl;

Here is a possible output:

Enter multiple lines of text. Use an @ character to signal the end of the text.
> This is some
text on multiple
lines.@
Read text: "This is some
text on multiple
lines."

Input Manipulators
The built-in input manipulators, described in the list that follows, can be sent to an input stream to 
customize the way that data is read:

➤➤ boolalpha and noboolalpha: If boolalpha is used, the string false will be interpreted 
as the Boolean value false; anything else will be treated as the Boolean value true. If 
noboolalpha is set, zero will be interpreted as false, anything else as true. The default is 
noboolalpha.

➤➤ dec, hex, and oct: Reads numbers in decimal base 10, hexadecimal, or octal notation, 
respectively. For example, the decimal base 10 number 207 is cf in hexadecimal, and 317 in 
octal notation.

➤➤ skipws and noskipws: Tells the stream to either skip whitespace when tokenizing or to read 
in whitespace as its own token. The default is skipws.

➤➤ ws: A handy manipulator that simply skips over the current series of whitespace at the 
current position in the stream.

➤➤ get_money: A parameterized manipulator that reads a monetary value from a stream.

➤➤ get_time: A parameterized manipulator that reads a formatted time from a stream.

➤➤ quoted: A parameterized manipulator that reads a string enclosed with quotes and in which 
embedded quotes are escaped.

Input is locale aware. For example, the following code enables your system locale for cin. Locales are 
discussed in Chapter 21:

cin.imbue(locale { "" });
int i;
cin >> i;

If your system locale is U.S. English, you can enter 1,000 and it will be parsed as 1000. If you enter 
1.000, it will be parsed as 1. On the other hand, if your system locale is Dutch Belgium, you can 
enter 1.000 to get the value of 1000, but entering 1,000 will result in 1. In both cases, you can also 
just enter 1000 without any digit separators to get the value 1000.

(continued)
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Input and Output with Objects
You can use the << operator to output a C++ string even though it is not a basic type. In C++, 
objects are able to prescribe how they are output and input. This is accomplished by overloading the 
<< and >> operators to understand a new type or class.

Why would you want to overload these operators? If you are familiar with the printf() function in 
C, you know that it is not flexible in this area. printf() knows about several types of data, but there 
really isn’t a way to give it additional knowledge. For example, consider the following simple class:

class Muffin 
{
    public:
        virtual ~Muffin() = default;
 
        const string& getDescription() const { return m_description; }
        void setDescription(string description)
        {
            m_description = std::move(description);
        }
 
        int getSize() const { return m_size; }
        void setSize(int size) { m_size = size; }
 
        bool hasChocolateChips() const { return m_hasChocolateChips; }
        void setHasChocolateChips(bool hasChips)
        {
            m_hasChocolateChips = hasChips;
        }
    private:
        string m_description;
        int m_size { 0 };
        bool m_hasChocolateChips { false };
};

To output an object of class Muffin by using printf(), it would be nice if you could specify it as an 
argument, perhaps using %m as a placeholder:

printf("Muffin: %m\n", myMuffin); // BUG! printf doesn't understand Muffin.

Unfortunately, the printf() function knows nothing about the Muffin type and is unable to output 
an object of type Muffin. Worse still, because of the way the printf() function is declared, this will 
result in a run-time error, not a compile-time error (though a good compiler will give you a warning).

The best you can do with printf() is to add a new output() method to the Muffin class:

class Muffin
{
    public:
        void output() const
        {
            printf("%s, Size is %d, %s\n", getDescription().data(), getSize(),
                (hasChocolateChips() ? "has chips" : "no chips"));

continues
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        }
        // Omitted for brevity
};

Using such a mechanism is cumbersome, however. To output a Muffin in the middle of another line 
of text, you’d need to split the line into two calls with a call to Muffin::output() in between, as 
shown here:

printf("The muffin is ");
myMuffin.output();
printf(" -- yummy!\n");

Overloading the << operator lets you output a Muffin just like you output a string—by providing it 
as an argument to operator<<. Chapter 15 covers the details of overloading the << and >> operators.

Custom Manipulators
The Standard Library comes with a number of built-in stream manipulators, but if need be,  
custom manipulators can be written. This involves using functionality exposed by ios_base, such 
as xalloc(), iword(), pword(), and register_callback(). Since custom manipulators are rarely 
needed, this text does not further discuss this topic. Consult your favorite Standard Library reference 
in case you are interested.

STRING STREAMS

String streams provide a way to use stream semantics with strings. In this way, you can have an 
in-memory stream that represents textual data. For example, in a GUI application you might want 
to use streams to build up textual data, but instead of outputting the text to the console or a file, 
you might want to display the result in a GUI element like a message box or an edit control. Another 
example could be that you want to pass a string stream around to different functions, while retaining 
the current read position, so that each function can process the next part of the stream. String streams 
are also useful for parsing text, because streams have built-in tokenizing functionality.

The std::ostringstream class is used to write data to a string, while the std::istringstream 
class is used to read data from a string. The o in ostringstream stands for output, while the i in 
istringstream stands for input. They are both defined in <sstream>. Because ostringstream and 
istringstream inherit the same behavior as ostream and istream, working with them is pleas-
antly similar.

The following program requests words from the user and outputs them to a single ostringstream, 
separated by the tab character. At the end of the program, the whole stream is turned into a string 
object using the str() method and is written to the console. Input of tokens can be stopped by 
entering the token “done” or by closing the input stream with Control+D (Unix) or Control+Z 
(Windows).

cout << "Enter tokens. "
    << "Control+D (Unix) or Control+Z (Windows) followed by Enter to end."
    << endl;
ostringstream outStream;

(continued)
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while (cin) {
    string nextToken;
    cout << "Next token: ";
    cin >> nextToken;
    if (!cin || nextToken == "done")
        break;
    outStream << nextToken << "\t";
}
cout << "The end result is: " << outStream.str();

Reading data from a string stream is similarly familiar. The following function creates and populates 
a Muffin object (see the earlier example) from a string input stream. The stream data is in a fixed 
format so that the function can easily turn its values into calls to Muffin’s setters.

Muffin createMuffin(istringstream& stream)
{
    Muffin muffin;
    // Assume data is properly formatted:
    // Description size chips
 
    string description;
    int size;
    bool hasChips;
 
    // Read all three values. Note that chips is represented
    // by the strings "true" and "false"
    stream >> description >> size >> boolalpha >> hasChips;
    if (stream) { // Reading was successful.
        muffin.setSize(size);
        muffin.setDescription(description);
        muffin.setHasChocolateChips(hasChips);
    }
    return muffin;
}

NOTE Turning an object into a “flattened” type, like a string, is often called  
marshaling. Marshaling is useful for saving objects to disk or sending them across 
a network.

An advantage of string streams over standard C++ strings is that, in addition to data, they know 
where the next read or write operation will take place, also called the current position.

Another advantage is that string streams support manipulators and locales to enable more powerful 
formatting compared to strings.

Finally, if you need to build up a string by concatenating several smaller strings, using a string stream 
will be more performant compared to concatenating string objects directly.
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FILE STREAMS

Files lend themselves well to the stream abstraction because reading and writing files always involves 
a position in addition to the data. In C++, the std::ofstream and ifstream classes provide output 
and input functionality for files. They are defined in <fstream>.

When dealing with the filesystem, it is especially important to detect and handle error cases. The file 
you are working with could be on a network file store that just went offline, or you may be trying to 
write to a file that is located on a disk that is full. Maybe you are trying to open a file for which the 
current user does not have permissions. Error conditions can be detected by using the standard error 
handling mechanisms described earlier.

The only major difference between output file streams and other output streams is that the file stream 
constructor can take the name of the file and the mode in which you would like to open it. The 
default mode is write, ios_base::out, which starts writing to a file at the beginning, overwriting 
any existing data. You can also open an output file stream in append mode by specifying the constant 
ios_base::app as the second argument to the file stream constructor. The following table lists the 
different constants that are available:

CONSTANT DESCRIPTION

ios_base::app Open, and go to the end before each write operation.

ios_base::ate Open, and go to the end once immediately after opening.

ios_base::binary Perform input and output in binary mode as opposed to text mode. See 
the next section.

ios_base::in Open for input, start reading at the beginning.

ios_base::out Open for output, start writing at the beginning, overwriting 
existing data.

ios_base::trunc Open for output, and delete all existing data (truncate).

Note that modes can be combined. For example, if you want to open a file for output in binary mode, 
while truncating existing data, you would specify the open mode as follows:

ios_base::out | ios_base::binary  | ios_base::trunc

An ifstream automatically includes the ios_base::in mode, while an ofstream automatically 
includes the ios_base::out mode, even if you don’t explicitly specify in or out as the mode.

The following program opens the test.txt file and writes the program’s arguments to it. The 
ifstream and ofstream destructors automatically close the underlying file, so there is no need to 
explicitly call close().

int main(int argc, char* argv[])
{
    ofstream outFile { "test.txt", ios_base::trunc };
    if (!outFile.good()) {
        cerr << "Error while opening output file!" << endl;
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        return -1;
    }
    outFile << "There were " << argc << " arguments to this program." << endl;
    outFile << "They are: " << endl;
    for (int i { 0 }; i < argc; i++) {
        outFile << argv[i] << endl;
    }
}

Text Mode vs. Binary Mode
By default, a file stream is opened in text mode. If you specify the ios_base::binary flag, then the 
file is opened in binary mode.

In binary mode, the exact bytes you ask the stream to write are written to the file. When reading, the 
bytes are returned to you exactly as they are in the file.

In text mode, there is some hidden conversion happening: each line you write to, or read from, a file 
ends with \n. However, how the end of a line is encoded in a file depends on the operating system. 
For example, on Windows, a line ends with \r\n instead of with a single \n character. Therefore, 
when a file is opened in text mode and you write a line ending with \n to it, the underlying imple-
mentation automatically converts the \n to \r\n before writing it to the file. Similarly, when reading 
a line from the file, the \r\n that is read from the file is automatically converted back to \n before 
being returned to you.

Jumping Around with seek() and tell()
The seekx() and tellx() methods are present on all input and output streams. The seekx() meth-
ods let you move to an arbitrary position within an input or output stream. There are several forms 
of seekx(). For an input stream, the method is called seekg() (the g is for get), and for an output 
stream, it is called seekp() (the p is for put). You might wonder why there is both a seekg() and a 
seekp() method, instead of one seek() method. The reason is that you can have streams that are 
both input and output, for example, file streams. In that case, the stream needs to remember both a 
read position and a separate write position. This is also called bidirectional I/O and is covered later in 
this chapter.

There are two overloads of seekg() and two of seekp(). One overload accepts a single argument, 
an absolute position, and seeks to this absolute position. The second overload accepts an offset and 
a position and seeks an offset relative to the given position. Positions are of type std::streampos, 
while offsets are of type std::streamoff; both are measured in bytes. There are three predefined 
positions available, as shown in the following table:

POSITION DESCRIPTION

ios_base::beg The beginning of the stream

ios_base::end The end of the stream

ios_base::cur The current position in the stream
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For example, to seek to an absolute position in an output stream, you can use the one-parameter 
version of seekp(), as in the following case, which uses the constant ios_base::beg to move to the 
beginning of the stream:

outStream.seekp(ios_base::beg);

Seeking within an input stream is the same, except that the seekg() method is used:

inStream.seekg(ios_base::beg);

The two-argument versions move to a relative position in the stream. The first argument prescribes 
how many positions to move, and the second argument provides the starting point. To move relative 
to the beginning of the file, the constant ios_base::beg is used. To move relative to the end of the 
file, ios_base::end is used. To move relative to the current position, ios_base::cur is used. For 
example, the following line moves to the second byte from the beginning of the output stream. Note 
that integers are implicitly converted to type streampos and streamoff.

outStream.seekp(2, ios_base::beg);

The next example moves to the third-to-last byte of an input stream:

inStream.seekg(-3, ios_base::end);

You can also query a stream’s current location using the tellx() method, which returns a stream-
pos that indicates the current position. You can use this result to remember the current marker 
position before doing a seekx() or to query whether you are in a particular location. There are again 
separate versions of tellx() for input streams and output streams. Input streams use tellg(), and 
output streams use tellp().

The following code checks the position of an input stream to determine whether it is at the beginning:

streampos curPos { inStream.tellg() };
if (ios_base::beg == curPos) {
    cout << "We're at the beginning." << endl;
}

The following is a sample program that brings it all together. This program writes into a file called 
test.out and performs the following tests:

1. Outputs the string 54321 to the file

2. Verifies that the marker is at position 5 in the stream

3. Moves to position 2 in the output stream

4. Outputs a 0 in position 2 and closes the output stream

5. Opens an input stream on the test.out file

6. Reads the first token as an integer

7. Confirms that the value is 54021

ofstream fout { "test.out" };
if (!fout) {
    cerr << "Error opening test.out for writing" << endl;
    return 1;
}
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// 1. Output the string "54321".
fout << "54321";
 
// 2. Verify that the marker is at position 5.
streampos curPos { fout.tellp() };
if (curPos == 5) {
    cout << "Test passed: Currently at position 5" << endl;
} else {
    cout << "Test failed: Not at position 5" << endl;
}
 
// 3. Move to position 2 in the output stream.
fout.seekp(2, ios_base::beg);
 
// 4. Output a 0 in position 2 and close the output stream.
fout << 0;
fout.close();
 
// 5. Open an input stream on test.out.
ifstream fin { "test.out" };
if (!fin) {
    cerr << "Error opening test.out for reading" << endl;
    return 1;
}
 
// 6. Read the first token as an integer.
int testVal;
fin >> testVal;
if (!fin) {
    cerr << "Error reading from file" << endl;
    return 1;
}
 
// 7. Confirm that the value is 54021.
const int expected { 54021 };
if (testVal == expected) {
    cout << format("Test passed: Value is {}", expected) << endl;
} else {
    cout << format("Test failed: Value is not {} (it was {})",
        expected, testVal) << endl;
}

Linking Streams Together
A link can be established between any input and output streams to give them flush-on-access behav-
ior. In other words, when data is requested from an input stream, its linked output stream is automat-
ically flushed. This behavior is available to all streams but is particularly useful for file streams that 
may be dependent upon each other.

Stream linking is accomplished with the tie() method. To tie an output stream to an input stream, 
call tie() on the input stream, and pass the address of the output stream. To break the link, 
pass nullptr.
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The following program ties the input stream of one file to the output stream of an entirely different 
file. You could also tie it to an output stream on the same file, but bidirectional I/O (covered in the 
next section) is perhaps a more elegant way to read and write the same file simultaneously.

ifstream inFile { "input.txt" };  // Note: input.txt must exist.
ofstream outFile { "output.txt" };
// Set up a link between inFile and outFile.
inFile.tie(&outFile);
// Output some text to outFile. Normally, this would
// not flush because std::endl is not send.
outFile << "Hello there!";
// outFile has NOT been flushed.
// Read some text from inFile. This will trigger flush() on outFile.
string nextToken;
inFile >> nextToken;
// outFile HAS been flushed.

The flush() method is defined on the ostream base class, so you can also link an output stream to 
another output stream. Here’s an example:

outFile.tie(&anotherOutputFile);

Such a relationship means that every time you write to one file, the buffered data that has been sent 
to the other file is flushed. You can use this mechanism to keep two related files synchronized.

One example of this stream linking is the link between cout and cin. Whenever you try to input data 
from cin, cout is automatically flushed. There is also a link between cerr and cout, meaning that 
any output to cerr causes cout to flush. The clog stream, on the other hand, is not linked to cout. 
The wide versions of these streams have similar links.

BIDIRECTIONAL I/O

So far, this chapter has discussed input and output streams as two separate but related classes. In fact, 
there is such a thing as a stream that performs both input and output: a bidirectional stream.

Bidirectional streams derive from iostream, which in turn derives from both istream and ostream, 
thus serving as an example of useful multiple inheritance. As you would expect, bidirectional streams 
support both the >> operator and the << operator, as well as the methods of both input streams and 
output streams.

The fstream class provides a bidirectional file stream. fstream is ideal for applications that need to 
replace data within a file, because you can read until you find the correct position and then imme-
diately switch to writing. For example, imagine a program that stores a list of mappings between ID 
numbers and phone numbers. It might use a data file with the following format:

123 408-555-0394
124 415-555-3422
263 585-555-3490
100 650-555-3434
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A reasonable approach to such a program would be to read in the entire data file when the program 
opens and rewrite the file, with any modifications, when the program closes. If the data set is huge, 
however, you might not be able to keep everything in memory. With iostreams, you don’t have to. 
You can easily scan through the file to find a record, and you can add new records by opening the file 
for output in append mode. To modify an existing record, you could use a bidirectional stream, as in 
the following function that changes the phone number for a given ID:

bool changeNumberForID(string_view filename, int id, string_view newNumber)
{
    fstream ioData { filename.data() };
    if (!ioData) {
        cerr << "Error while opening file " << filename << endl;
        return false;
    }
 
    // Loop until the end of file.
    while (ioData) {
        // Read the next ID.
        int idRead;
        ioData >> idRead;
        if (!ioData)
            break;
 
        // Check to see if the current record is the one being changed.
        if (idRead == id) {
            // Seek the write position to the current read position.
            ioData.seekp(ioData.tellg());
            // Output a space, then the new number.
            ioData << " " << newNumber;
            break;
        }
 
        // Read the current number to advance the stream.
        string number;
        ioData >> number;
    }
    return true;
}

Of course, an approach like this only works properly if the data is of a fixed size. When the preced-
ing program switched from reading to writing, the output data overwrote other data in the file. To 
preserve the format of the file and to avoid writing over the next record, the data had to be the exact 
same size.

String streams can also be accessed in a bidirectional manner through the stringstream class.

NOTE Bidirectional streams have separate pointers for the read position and the 
write position. When switching between reading and writing, you need to seek to 
the appropriate position.
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FILESYSTEM SUPPORT LIBRARY

The C++ Standard Library includes a filesystem support library, defined in <filesystem> and living 
in the std::filesystem namespace. It allows you to write portable code to work with the filesys-
tem. You can use it for querying whether something is a directory or a file, iterating over the contents 
of a directory, manipulating paths, and retrieving information about files such as their size, extension, 
creation time, and so on. The two most important parts of the library—paths and directory entries—
are introduced in the next sections.

Path
The basic component of the library is a path. A path can be absolute or relative and can optionally 
include a filename. For example, the following code defines a couple of paths. Note the use of raw 
string literals, introduced in Chapter 2, to avoid having to escape backslashes:

path p1 { R"(D:\Foo\Bar)" };
path p2 { "D:/Foo/Bar" };
path p3 { "D:/Foo/Bar/MyFile.txt" };
path p4 { R"(..\SomeFolder)" };
path p5 { "/usr/lib/X11" };

A path can be converted to the native format of the system on which the code is running by calling 
c_str() or native() or by inserting it into a stream. Here’s an example:

path p1 { R"(D:\Foo\Bar)" };
path p2 { "D:/Foo/Bar" }; 
cout << p1 << endl;
cout << p2 << endl; 

The output on Windows, which supports both forward and backward slashes, is as follows:

"D:\\Foo\\Bar"
"D:/Foo/Bar"

You can append a component to a path with the append() method or with operator/=. A platform-
dependent path separator is automatically inserted. Here’s an example:

path p { "D:\\Foo" };
p.append("Bar");
p /= "Bar";
cout << p << endl;

The output on Windows is "D:\\Foo\\Bar\\Bar".

You can use concat() or operator+= to concatenate a string to an existing path. This does not 
insert any path separator! Here’s an example:

path p { "D:\\Foo" };
p.concat("Bar");
p += "Bar";
cout << p << endl;
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The output on Windows now is "D:\\FooBarBar".

WARNING append() and operator/= automatically insert a platform-dependent 
path separator, while concat() and operator+= do not.

A range-based for loop can be used to iterate over the different components of a path. Here is 
an example:

path p { R"(C:\Foo\Bar)" };
for (const auto& component : p) {
    cout << component << endl;
}

The output on Windows is as follows:

"C:"
"\\"
"Foo"
"Bar"

The path interface supports operations such as remove_filename(), replace_filename(), 
replace_extension(), root_name(), parent_path(), extension(), stem(), filename(), has_
extension(), is_absolute(), is_relative(), and more. A few of these are demonstrated in the 
following code snippet:

path p { R"(C:\Foo\Bar\file.txt)" };
cout << p.root_name() << endl;
cout << p.filename() << endl;
cout << p.stem() << endl;
cout << p.extension() << endl;

This code produces the following result on Windows:

"C:"
"file.txt"
"file"
".txt"

Consult your favorite Standard Library reference for a full list of all available functionality.

Directory Entry
A path just represents a directory or a file on a filesystem. A path may refer to a non-existing direc-
tory or file. If you want to query an actual directory or file on the filesystem, you need to construct 
a directory_entry from a path. The directory_entry interface supports operations such as 
exists(), is_directory(), is_regular_file(), file_size(), last_write_time(), and others.

The following example constructs a directory_entry from a path to query the size of a file:

path myPath { "c:/windows/win.ini" };
directory_entry dirEntry { myPath };

continues
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if (dirEntry.exists() && dirEntry.is_regular_file()) {
    cout << "File size: " << dirEntry.file_size() << endl;
}

Helper Functions
An entire collection of helper functions is available as well. For example, you can use copy() to copy 
files or directories, create_directory() to create a new directory on the filesystem, exists() to 
query whether a given directory or file exists, file_size() to get the size of a file, last_write_
time() to get the time the file was last modified, remove() to delete a file, temp_directory_path() 
to get a directory suitable for storing temporary files, space() to query the available space on a 
filesystem, and more. Consult a Standard Library reference for a full list.

The following example prints out the capacity of a filesystem and how much space is still free:

space_info s { space("c:\\") };
cout << "Capacity: " << s.capacity << endl;
cout << "Free: " << s.free << endl;

You can find more examples of these helper functions in the following section on directory iteration.

Directory Iteration
If you want to recursively iterate over all files and subdirectories in a given directory, you can use a 
recursive_directory_iterator. To start the iteration process, you need an iterator to the first 
directory_entry. To know when to stop the iteration, you need an end iterator. To create the start 
iterator, construct a recursive_directory_iterator and pass as argument a path of the directory 
over which you want to iterate. To construct the end iterator, default construct a recursive_ 
directory_iterator. To get access to the directory_entry that an iterator refers to, use the  
dereferencing operator, *. Traversing all elements in the collection is accomplished by simply incre-
menting the iterator using the ++ operator until it reaches the end iterator. Note that the end iterator 
is not part of the collection anymore and hence does not refer to a valid directory_entry and must 
not be dereferenced.

void printDirectoryStructure(const path& p)
{
    if (!exists(p)) {
        return;
    }
 
    recursive_directory_iterator begin { p };
    recursive_directory_iterator end { };
    for (auto iter { begin }; iter != end; ++iter) {
        const string spacer(iter.depth() * 2, ' ');
 
        auto& entry { *iter }; // Dereference iter to access directory_entry.
 
        if (is_regular_file(entry)) {
            cout << format("{}File: {} ({} bytes)",
                spacer, entry.path().string(), file_size(entry)) << endl;

(continued)
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        } else if (is_directory(entry)) {
            cout << format("{}Dir: {}", spacer, entry.path().string()) << endl;
        }
    }
}

This function can be called as follows:

path p { R"(D:\Foo\Bar)" };
printDirectoryStructure(p);

You can also use a directory_iterator to iterate over the contents of a directory and implement 
the recursion yourself. Here is an example that does the same thing as the previous example but using 
a directory_iterator instead of a recursive_directory_iterator:

void printDirectoryStructure(const path& p, size_t level = 0)
{
    if (!exists(p)) {
        return;
    }
 
    const string spacer(level * 2, ' ');
 
    if (is_regular_file(p)) {
        cout << format("{}File: {} ({} bytes)",
            spacer, p.string(), file_size(p)) << endl;
    } else if (is_directory(p)) {
        cout << format("{}Dir: {}", spacer, p.string()) << endl;
        for (auto& entry : directory_iterator { p }) {
            printDirectoryStructure(entry, level + 1);
        }
    }
}

SUMMARY

Streams provide a flexible and object-oriented way to perform input and output. The most impor-
tant message in this chapter, even more important than the use of streams, is the concept of a stream. 
Some operating systems may have their own file access and I/O facilities, but knowledge of how 
streams and stream-like libraries work is essential to working with any type of modern I/O system.

The chapter finished with an introduction to the filesystem support library, which you can use to 
work with files and directories in a platform-independent manner.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 13-1: Let’s revisit the Person class you developed during exercises in previous chap-
ters. Take your implementation from Exercise 9-2 and add an output() method that writes 
the details of a person to the standard output console.

Exercise 13-2: The output() method from the previous exercise always writes the details of 
a person to the standard output console. Change the output() method to have an output 
stream as parameter and write the details of a person to that stream. Test your new imple-
mentation in main() by writing a person to the standard output console, a string stream, 
and a file. Notice how it’s possible to output a person to all kinds of different targets (output 
console, string streams, files, and so on) with a single method using streams.

Exercise 13-3: Develop a class called Database that stores Persons (from Exercise 13-2) in 
an std::vector. Provide an add() method to add a person to the database. Also provide 
a save() method, accepting the name of a file to which it saves all persons in the database. 
Any existing contents in the file is removed. Add a load() method, accepting the name of 
a file from which the database loads all persons. Provide a clear() method to remove all 
persons from the database. Finally, add a method outputAll() that calls output() on all 
persons in the database. Make sure your implementation works, even if there are spaces in a 
person’s first or last name.

Exercise 13-4: The Database from Exercise 13-3 stores all persons in a single file. To practice 
the filesystem support library, let’s change that to store each person in its own file. Modify 
the save() and load() methods to accept a directory as argument where files should be 
stored to or loaded from. The save() method saves every person in the database to its own 
file with the person’s initials as the name and with a .person extension. If a file already 
exists, overwrite it. The load() method iterates over all .person files in a given directory 
and loads all of them.
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Handling Errors

WHAT’S IN THIS CHAPTER?

➤➤ How to handle errors in C++, including pros and cons of 
exceptions

➤➤ The syntax of exceptions

➤➤ Exception class hierarchies and polymorphism

➤➤ Stack unwinding and cleanup

➤➤ Common error-handling situations

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Inevitably, your C++ programs will encounter errors. The program might be unable to open a 
file, the network connection might go down, or the user might enter an incorrect value, to name 
a few possibilities. The C++ language provides a feature called exceptions to handle these 
exceptional but not unexpected situations.

Most code examples in this book so far have generally ignored error conditions for brevity. This 
chapter rectifies that simplification by teaching you how to incorporate error handling into 
your programs from their beginnings. It focuses on C++ exceptions, including the details of 
their syntax, and describes how to employ them effectively to create well-designed error- 
handling programs.

http://www.wiley.com/go/proc++5e
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ERRORS AND EXCEPTIONS

No program exists in isolation; they all depend on external facilities such as interfaces with the 
operating system, networks and file systems, external code such as third-party libraries, and user 
input. Each of these areas can introduce situations that require you to respond to problems you may 
encounter. These potential problems can be referred to with the general term exceptional situations. 
Even perfectly written programs encounter errors and exceptional situations. Thus, anyone who 
writes a computer program must include error-handling capabilities. Some languages, such as C, do 
not include many specific language facilities for error handling. Programmers using these languages 
generally rely on return values from functions and other ad hoc approaches. Other languages, such as 
Java, enforce the use of a language feature called exceptions as an error-handling mechanism. C++ lies 
between these extremes. It provides language support for exceptions but does not require their use. 
However, you can’t ignore exceptions entirely in C++ because a few basic facilities, such as memory 
allocation routines, use them.

What Are Exceptions, Anyway?
Exceptions are a mechanism for a piece of code to notify another piece 
of code of an “exceptional” situation or error condition without pro-
gressing through the normal code paths. The code that encounters the 
error throws the exception, and the code that handles the exception 
catches it. Exceptions do not follow the fundamental rule of step-by-
step execution to which you are accustomed. When a piece of code 
throws an exception, the program control immediately stops execut-
ing code step-by-step and transitions to the exception handler, which 
could be anywhere from the next line in the same function to several 
function calls up the stack. If you like sports analogies, you can think 
of the code that throws an exception as an outfielder throwing a base-
ball back to the infield, where the nearest infielder (closest exception 
handler) catches it. Figure 14-1 shows a hypothetical stack of three function 
calls. Function A() has the exception handler. It calls function B(), which 
calls function C(), which throws the exception.

Figure 14-2 shows the handler catching the exception. The stack frames for 
C() and B() have been removed, leaving only A().

Most modern programming languages, such as C# and Java, have support 
for exceptions, so it’s no surprise that C++ has full-fledged support for them 
as well. However, if you are coming from C, then exceptions are something new; but once you get 
used to them, you probably don’t want to go back.

Why Exceptions in C++ Are a Good Thing
As mentioned earlier, run-time errors in programs are inevitable. Despite that fact, error handling in 
most C and C++ programs is messy and ad hoc. The de facto C error-handling standard, which was 
carried over into many C++ programs, uses integer function return codes, and the errno macro to 
signify errors. Each thread has its own errno value. errno acts as a thread-local integer variable that 
functions can use to communicate errors back to calling functions.

A() stack
frame

B() stack frame

C() stack frame

FIGURE 14-1 

A() stack
frame

FIGURE 14-2 
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Unfortunately, the integer return codes and errno are used inconsistently. Some functions might 
choose to return 0 for success and -1 for an error. If they return -1, they also set errno to an error 
code. Other functions return 0 for success and nonzero for an error, with the actual return value 
specifying the error code. These functions do not use errno. Still others return 0 for failure instead of 
for success, presumably because 0 always evaluates to false in C and C++.

These inconsistencies can cause problems because programmers encountering a new function often 
assume that its return codes are the same as other similar functions. That is not always true. For 
example, on the Solaris 9 operating system, there are two different libraries of synchronization 
objects: the Portable Operating System Interface (POSIX) version and the Solaris version. The func-
tion to initialize a semaphore in the POSIX version is called sem_init(), and the function to initial-
ize a semaphore in the Solaris version is called sema_init(). As if that weren’t confusing enough, the 
two functions handle error codes differently! sem_init() returns -1 and sets errno on error, while 
sema_init() returns the error code directly as a positive integer and does not set errno.

Another problem is that the return type of functions in C++ can be of only one type, so if you need 
to return both an error and a value, you must find an alternative mechanism. One solution is to 
return an std::pair or tuple, an object that you can use to store two or more types. The pair 
class is introduced in Chapter 1, “A Crash Course in C++ and the Standard Library,” while tuple is 
discussed in the upcoming chapters that cover the Standard Library. Another choice is to define your 
own struct or class that contains several values, and return an instance of that struct or class from 
your function. Yet another option is to return the value or error through a reference parameter or to 
make the error code one possible value of the return type, such as a nullptr pointer. In all these solu-
tions, the caller is responsible for explicitly checking for any errors returned from the function, and 
if it doesn’t handle the error itself, it should propagate the error to its caller. Unfortunately, this often 
results in the loss of critical details about the error.

C programmers may be familiar with a mechanism known as setjmp()/longjmp(). This mechanism 
cannot be used correctly in C++, because it bypasses scoped destructors on the stack. You should avoid 
it at all costs, even in C programs; therefore, this book does not explain the details of how to use it.

Exceptions provide an easier, more consistent, and safer mechanism for error handling. There are 
several specific advantages of exceptions over the ad hoc approaches in C and C++:

➤➤ When return codes are used as an error reporting mechanism, you might forget to check  
the return code and properly handle it either locally or by propagating it upward. The 
[[nodiscard]] attribute, introduced in Chapter 1, offers a possible solution to prevent 
return codes from being ignored, but it’s not foolproof either. Exceptions cannot be forgotten 
or ignored: if your program fails to catch an exception, it terminates.

➤➤ When integer return codes are used, they generally do not contain sufficient information. You 
can use exceptions to pass as much information as you want from the code that finds the 
error to the code that handles it. Exceptions can also be used to communicate information 
other than errors, though many developers, including myself, consider that an abuse of the 
exception mechanism.

➤➤ Exception handling can skip levels of the call stack. That is, a function can handle an error 
that occurred several function calls down the stack, without error-handling code in the 
intermediate functions. Return codes require each level of the call stack to clean up explicitly 
after the previous level and to explicitly propagate the error code.
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In some compilers (fewer and fewer these days), exception handling added a tiny amount of overhead 
to any function that had an exception handler. For most modern compilers there is a trade-off in 
that there is almost no overhead in the non-throwing case, and only some slight overhead when you 
actually throw something. This trade-off is not a bad thing because throwing an exception should be 
exceptional.

Exception handling is not enforced in C++. In Java, for example, it is enforced. A Java function that 
does not specify a list of exceptions that it can possibly throw is not allowed to throw any exceptions. 
In C++, it is just the opposite: a function can throw any exception it wants, unless it specifies that it 
will not throw any exceptions (using the noexcept keyword)!

Recommendation
I recommend exceptions as a useful mechanism for error handling. I feel that the structure and error-
handling formalization that exceptions provide outweigh the less desirable aspects. Thus, the remain-
der of this chapter focuses on exceptions. Also, many popular libraries, such as the Standard Library 
and Boost, use exceptions, so you need to be prepared to handle them.

EXCEPTION MECHANICS

Exceptional situations arise frequently in file input and output. The following is a function to open a 
file, read a list of integers from the file, and return the integers in an std::vector data structure. The 
lack of error handling should jump out at you:

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    // Read the integers one-by-one and add them to a vector.
    vector<int> integers;
    int temp;
    while (inputStream >> temp) {
        integers.push_back(temp);
    }
    return integers;

}

The following line keeps reading values from the ifstream until the end of the file is reached or until 
an error occurs:

while (inputStream >> temp) {

If the >> operator encounters an error, it sets the fail bit of the ifstream object. In that case, the 
bool() conversion operator returns false, and the while loop terminates. Streams are discussed in 
more detail in Chapter 13, “Demystifying C++ I/O.”

You might use readIntegerFile() like this:

const string filename { "IntegerFile.txt" };
vector<int> myInts { readIntegerFile(filename) };
for (const auto& element : myInts) {
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    cout << element << " ";
}
cout << endl;

The rest of this section shows you how to add error handling with exceptions, but first, we need to 
delve a bit deeper into how you throw and catch exceptions.

Throwing and Catching Exceptions
Using exceptions consists of providing two parts in your program: a try/catch construct to handle 
an exception, and a throw statement that throws an exception. Both must be present in some form to 
make exceptions work. However, in many cases, the throw happens deep inside some library (includ-
ing the C++ runtime), and the programmer never sees it, but still has to react to it using a try/catch 
construct.

The try/catch construct looks like this:

try {
    // ... code which may result in an exception being thrown
} catch (exception-type1 exception-name) {
    // ... code which responds to the exception of type 1
} catch (exception-type2 exception-name) {
    // ... code which responds to the exception of type 2
}
// ... remaining code

The code that may result in an exception being thrown might contain a throw directly. It might also 
be calling a function that either directly throws an exception or calls—by some unknown number of 
layers of calls—a function that throws an exception.

If no exception is thrown, no code from any catch block is executed, and the “remaining code” that 
follows will follow the last statement executed in the try block.

If an exception is thrown, any code following the throw or following the call that resulted in the 
throw is not executed; instead, control immediately goes to the right catch block, depending on the 
type of the exception that is thrown.

If the catch block does not do a control transfer—for example, by returning from the function, 
throwing a new exception, or rethrowing the caught exception—then the “remaining code” is 
executed after the last statement of that catch block.

The simplest example to demonstrate exception handling is avoiding division-by-zero. This example 
throws an exception of type std::invalid_argument, defined in <stdexcept>:

double SafeDivide(double num, double den)
{
    if (den == 0)
        throw invalid_argument { "Divide by zero" };
    return num / den;
}
 
int main()
{

continues
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    try {
        cout << SafeDivide(5, 2) << endl;
        cout << SafeDivide(10, 0) << endl;
        cout << SafeDivide(3, 3) << endl;
    } catch (const invalid_argument& e) {
        cout << "Caught exception: " << e.what() << endl;
    }
}

The output is as follows:

2.5
Caught exception: Divide by zero

throw is a keyword in C++ and is the only way to throw an exception. In the previous code snippet 
we throw a new instance of invalid_argument(). It is one of the standard exceptions provided by 
the C++ Standard Library. All Standard Library exceptions form a hierarchy, which is discussed later 
in this chapter. Each class in the hierarchy supports a what() method that returns a const char* 
string describing the exception. This is the string you provide in the constructor of the exception.

NOTE Even though the return type of what() is const char*, exceptions can 
support Unicode strings if you encode them using UTF-8. See Chapter 21, “String 
Localization and Regular Expressions,” for details on Unicode strings.

Let’s go back to the readIntegerFile() function. The most likely problem to occur is for the file 
open to fail. That’s a perfect situation for throwing an exception. The following code throws an 
exception of type std::exception, defined in <exception>, if the file fails to open:

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        throw exception {};
    }
 
    // Read the integers one-by-one and add them to a vector.
    vector<int> integers;
    int temp;
    while (inputStream >> temp) {
        integers.push_back(temp);
    }
    return integers;
}

NOTE Always document the possible exceptions a function can throw in its code 
documentation, because users of your function need to know which exceptions 
might get thrown so they can properly handle them.

(continued)
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If the function fails to open the file and executes the throw exception(); statement, the rest of the 
function is skipped, and control transitions to the nearest exception handler.

Throwing exceptions in your code is most useful when you also write code that handles them. Excep-
tion handling is a way to “try” a block of code, with another block of code designated to react to 
any problems that might occur. In the following main() function, the catch statement reacts to any 
exception of type exception that was thrown within the try block by printing an error message. If 
the try block finishes without throwing an exception, the catch block is skipped. You can think of 
try/catch blocks as glorified if statements: if an exception is thrown in a try block, then execute its 
catch block, else skip it.

int main()
{
    const string filename { "IntegerFile.txt" };
    vector<int> myInts;
    try {
        myInts = readIntegerFile(filename);
    } catch (const exception& e) {
        cerr << "Unable to open file " << filename << endl;
        return 1;
    }
    for (const auto& element : myInts) {
        cout << element << " ";
    }
    cout << endl;
}

NOTE Although by default streams do not throw exceptions, you can tell the 
streams to throw exceptions for error conditions by calling their exceptions() 
method. However, most compilers give useless information in the stream excep-
tions they throw. For such compilers, it might be better to deal with the stream 
state directly instead of using exceptions. This book does not use stream  
exceptions.

Exception Types
You can throw an exception of any type. The preceding example throws an object of type 
std::exception, but exceptions do not need to be objects. You could throw a simple int like this:

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        throw 5;
    }
    // Omitted for brevity
}
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You would then need to change the catch statement as follows:

try {
    myInts = readIntegerFile(filename);
} catch (int e) {
    cerr << format("Unable to open file {} (Error Code {})", filename, e) << endl;
    return 1;
}

Alternatively, you could throw a const char* C-style string. This technique is sometimes useful 
because the string can contain information about the exception:

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        throw "Unable to open file";
    }
    // Omitted for brevity
}

When you catch the const char* exception, you can print the result as follows:

try {
    myInts = readIntegerFile(filename);
} catch (const char* e) {
    cerr << e << endl;
    return 1;
}

Despite the previous examples, you should generally throw objects as exceptions for two reasons:

➤➤ Objects convey information by their class name.

➤➤ Objects can store all kinds of information, including strings that describe the exception.

The C++ Standard Library defines a number of predefined exception classes structured in a class hier-
archy. Additionally, you can write your own exception classes and fit them in the standard hierarchy, 
as you’ll learn later in this chapter.

Catching Exception Objects as Reference-to-const
In the preceding example in which readIntegerFile() throws an object of type exception, the 
catch handler looks like this:

} catch (const exception& e) {

However, there is no requirement to catch objects as reference-to-const. You could catch the object 
by value like this:

} catch (exception e) {

Alternatively, you could catch the object as reference-to-non-const:

} catch (exception& e) { 
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Also, as you saw in the const char* example, you can catch pointers to exceptions, as long as point-
ers to exceptions are thrown.

NOTE Always catch exception objects as reference-to-const! This avoids object 
slicing (see Chapter 10, “Discovering Inheritance Techniques”), which could hap-
pen when you catch exception objects by value. 

Throwing and Catching Multiple Exceptions
Failure to open the file is not the only problem readIntegerFile() could encounter. Reading  
the data from the file can cause an error if it is formatted incorrectly. Here is an implementation of 
readIntegerFile() that throws an exception if it cannot either open the file or read the data cor-
rectly. This time, it uses a runtime_error, derived from exception and which allows you to specify 
a descriptive string in its constructor. The runtime_error exception class is defined in <stdexcept>.

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        throw runtime_error { "Unable to open the file." };
    }
 
    // Read the integers one-by-one and add them to a vector.
    vector<int> integers;
    int temp;
    while (inputStream >> temp) {
        integers.push_back(temp);
    }
 
    if (!inputStream.eof()) {
        // We did not reach the end-of-file.
        // This means that some error occurred while reading the file.
        // Throw an exception.
        throw runtime_error { "Error reading the file." };
    }
 
    return integers;
}

Your code in main() does not need to change much because it already catches an exception of type 
exception, from which runtime_error derives. However, that exception could now be thrown 
in two different situations, so we use the what() method to get a proper description of the caught 
exception:

try {
    myInts = readIntegerFile(filename);
} catch (const exception& e) {
    cerr << e.what() << endl;
    return 1;
}
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Alternatively, you could throw two different types of exceptions from readIntegerFile(). Here  
is an implementation of readIntegerFile() that throws an exception object of class invalid_
argument if the file cannot be opened, and an object of class runtime_error if the integers cannot be 
read. Both invalid_argument and runtime_error are classes defined in <stdexcept> as part of the 
C++ Standard Library.

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        throw invalid_argument { "Unable to open the file." };
    }
 
    // Read the integers one-by-one and add them to a vector.
    vector<int> integers;
    int temp;
    while (inputStream >> temp) {
        integers.push_back(temp);
    }
 
    if (!inputStream.eof()) {
        // We did not reach the end-of-file.
        // This means that some error occurred while reading the file.
        // Throw an exception.
        throw runtime_error { "Error reading the file." };
    }
 
    return integers;
}

There are no public default constructors for invalid_argument and runtime_error, only string 
constructors.

Now, main() can catch both invalid_argument and runtime_error exceptions with two catch 
statements:

try {
    myInts = readIntegerFile(filename);
} catch (const invalid_argument& e) {
    cerr << e.what() << endl;
    return 1;
} catch (const runtime_error& e) {
    cerr << e.what() << endl;
    return 2;
}

If an exception is thrown inside the try block, the compiler matches the type of the exception to  
the proper catch handler. So, if readIntegerFile() is unable to open the file and throws an  
invalid_argument object, it is caught by the first catch statement. If readIntegerFile() is unable 
to read the file properly and throws a runtime_error, then the second catch statement catches the 
exception.
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Matching and const
The const-ness specified in the type of the exception you want to catch makes no difference for 
matching purposes. That is, this line matches any exception of type runtime_error:

} catch (const runtime_error& e) {

The following line also matches any exception of type runtime_error:

} catch (runtime_error& e) {

Matching Any Exception
You can write a catch statement that matches any possible exception with the special syntax shown 
in the following example:

try {
    myInts = readIntegerFile(filename);
} catch (...) {
    cerr << "Error reading or opening file " << filename << endl;
    return 1;
}

The three dots are not a typo. They are a wildcard that matches any exception type. When you are 
calling poorly documented code, this technique can be useful to ensure that you catch all possible 
exceptions. However, in situations where you have complete information about the set of thrown 
exceptions, this technique is not recommended because it handles every exception type identically. It’s 
better to match exception types explicitly and take appropriate, targeted actions.

A possible use of a catch block matching any exception is as a default catch handler. When an 
exception is thrown, a catch handler is looked up in the order that it appears in the code. The fol-
lowing example shows how you can write catch handlers that explicitly handle invalid_argument 
and runtime_error exceptions and how to include a default catch handler for all other exceptions:

try {
    // Code that can throw exceptions
} catch (const invalid_argument& e) {
    // Handle invalid_argument exception
} catch (const runtime_error& e) {
    // Handle runtime_error exception
} catch (...) {
    // Handle all other exceptions
}

Uncaught Exceptions
If your program throws an exception that is not caught anywhere, the program terminates. Basically, 
there is a try/catch construct around the call to your main() function, which catches all unhandled 
exceptions, similar to the following:

try {
    main(argc, argv);
} catch (...) {
    // Issue error message and terminate program.
}
// Normal termination code.
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However, this behavior is not usually what you want. The point of exceptions is to give your program 
a chance to handle and correct undesirable or unexpected situations.

WARNING You should catch and handle all possible exceptions thrown in your 
programs.

It is also possible to change the behavior of your program if there is an uncaught exception. When the 
program encounters an uncaught exception, it calls the built-in terminate() function, which calls 
abort() from <cstdlib> to kill the program. You can set your own terminate_handler by call-
ing set_terminate() with a pointer to a callback function that takes no arguments and returns no 
value. terminate(), set_terminate(), and terminate_handler are all declared in <exception>. 
The following code shows a high-level overview of how it works:

try {
    main(argc, argv);
} catch (...) {
    if (terminate_handler != nullptr) {
        terminate_handler();
    } else {
        terminate();
    }
}
// Normal termination code.

Before you get too excited about this feature, you should know that your callback function must still 
terminate the program using either abort() or _Exit(). It can’t just ignore the error. Both abort() 
and _Exit() are defined in <cstdlib> and terminate the application without cleaning up resources. 
For example, destructors of objects won’t get called. The _Exit() function accepts an integer argu-
ment that is returned to the operating system and can be used to determine how a process exited. A 
value of 0 or EXIT_SUCCESS means the program exited without any error; otherwise, the program 
terminated abnormally. The abort() function does not accept any arguments. Additionally, there is 
an exit() function that also accepts an integer that is returned to the operating system and  
that does clean up resources by calling destructors, but it’s not advised to call exit() from a  
terminate_handler.

A terminate_handler can be used to print a helpful error message before exiting. Here is an exam-
ple of a main() function that doesn’t catch the exceptions thrown by readIntegerFile(). Instead, it 
sets the terminate_handler to a custom callback. This callback prints an error message and termi-
nates the process by calling _Exit():

[[noreturn]] void myTerminate()
{
    cout << "Uncaught exception!" << endl;
    _Exit(1);
}
 
int main()
{
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    set_terminate(myTerminate);
 
    const string filename { "IntegerFile.txt" };
    vector<int> myInts { readIntegerFile(filename) };
 
    for (const auto& element : myInts) {
        cout << element << " ";
    }
    cout << endl;
}

Although not shown in this example, set_terminate() returns the old terminate_handler when it 
sets the new one. The terminate_handler applies program-wide, so it’s considered good style  
to restore the old terminate_handler when you have completed the code that needed the new  
terminate_handler. In this case, the entire program needs the new terminate_handler, so there’s 
no point in restoring it.

While it’s important to know about set_terminate(), it’s not an effective exception-handling 
approach. It’s recommended to catch and handle each exception individually to provide more precise 
error handling.

NOTE In professionally written software, a terminate_handler is usually set 
up to create a so-called crash dump before terminating the process. A crash dump 
usually contains information such as the call stack and local variables at the time 
the uncaught exception was thrown. Such a crash dump can then be loaded into a 
debugger and allows you to figure out what the uncaught exception was and what 
caused it. However, writing crash dumps is platform dependent and therefore not 
further discussed in this book.

noexcept Specifier
By default, a function is allowed to throw any exception it likes. However, it is possible to mark 
a function with the noexcept specifier, a C++ keyword, to state that it will not throw any excep-
tions. For example, the following function is marked as noexcept, so it is not allowed to throw any 
exceptions:

void printValues(const vector<int>& values) noexcept;

NOTE A function marked with noexcept must not throw any exceptions.

When a function marked as noexcept throws an exception anyway, C++ calls terminate() to  
terminate the application.

When you override a virtual method in a derived class, you are allowed to mark the overrid-
den method as noexcept, even if the version in the base class is not noexcept. The opposite is 
not allowed.
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noexcept(expression) Specifier
The noexcept(expression) specifier marks a function as noexcept if and only if the given expres-
sion returns true. In other words, noexcept equals noexcept(true), and noexcept(false) is 
the opposite of noexcept(true); that is, a method marked with noexcept(false) can throw any 
exception it wants.

noexcept(expression) Operator
The noexcept(expression) operator returns true if the given expression is marked as noexcept, 
either with a noexcept specifier or with a noexcept(expression) specifier. This evaluation happens 
at compile time.

Here’s an example:

void f1() noexcept {}
void f2() noexcept(false) {}
void f3() noexcept(noexcept(f1())) {}
void f4() noexcept(noexcept(f2())) {}
 
int main()
{
    std::cout << noexcept(f1())
              << noexcept(f2())
              << noexcept(f3())
              << noexcept(f4());
}

The output of this code snippet is 1010:

➤➤ noexcept(f1()) is true because f1() is explicitly marked with a noexcept specifier.

➤➤ noexcept(f2()) is false because f2() is marked as such using a noexcept(expression) 
specifier.

➤➤ noexcept(f3()) is true because f3() is marked as noexcept but only if f1() is noexcept 
which it is.

➤➤ noexcept(f4()) is false because f4() is marked as noexcept but only if f2() is noex-
cept which it isn’t.

Throw Lists
Older versions of C++ allowed you to specify the exceptions a function or method intended to throw. 
This specification was called the throw list or the exception specification.

WARNING C++11 has deprecated, and C++17 has removed support for exception 
specifications, apart from noexcept and throw(). The latter was equivalent to 
noexcept. C++20 removed support for throw() entirely.
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Because C++17 has officially removed support for exception specifications, this book does not further 
discuss them.

EXCEPTIONS AND POLYMORPHISM

As described earlier, you can actually throw any type of exception. However, classes are the most 
useful types of exceptions. In fact, exception classes are usually written in a hierarchy so that you can 
employ polymorphism when you catch the exceptions.

The Standard Exception Hierarchy
You’ve already seen several exceptions from the C++ standard exception hierarchy: exception, 
runtime_error, and invalid_argument. Figure 14-3 shows the full hierarchy. For completeness, 
all standard exceptions are shown, including those thrown by parts of the Standard Library that are 
discussed in later chapters.

All of the exceptions thrown by the C++ Standard Library are objects of classes in this hierarchy. 
Each class in the hierarchy supports a what() method that returns a const char* string describing 
the exception. You can use this string in an error message.

FIGURE 14-3 
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Some of the exception classes require you to set in the constructor the string that is returned by 
what(). That’s why you have to specify a string in the constructors for runtime_error and  
invalid_argument. This has already been done in examples throughout this chapter. Here is another 
version of readIntegerFile() that includes the filename in the error message:

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        const string error { format("Unable to open file {}.", filename.data()) };
        throw invalid_argument { error };
    }
 
    // Read the integers one-by-one and add them to a vector.
    vector<int> integers;
    int temp;
    while (inputStream >> temp) {
        integers.push_back(temp);
    }
 
    if (!inputStream.eof()) {
        // We did not reach the end-of-file.
        // This means that some error occurred while reading the file.
        // Throw an exception.
        const string error { format("Unable to read file {}.", filename.data()) };
        throw runtime_error { error };
    }
 
    return integers;
}

Catching Exceptions in a Class Hierarchy
A feature of exception hierarchies is that you can catch exceptions polymorphically. For example, if 
you look at the following two catch statements, you can see that they are identical except for the 
exception class that they handle:

try {
    myInts = readIntegerFile(filename);
} catch (const invalid_argument& e) {
    cerr << e.what() << endl;
    return 1;
} catch (const runtime_error& e) {
    cerr << e.what() << endl;
    return 1;
}

Conveniently, invalid_argument and runtime_error are both derived classes of exception, so you 
can replace the two catch statements with a single catch statement for exception:

try {
    myInts = readIntegerFile(filename);
} catch (const exception& e) {
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    cerr << e.what() << endl;
    return 1;
}

The catch statement for an exception reference matches any derived classes of exception, includ-
ing both invalid_argument and runtime_error. Note that the higher in the exception hierarchy 
you catch exceptions, the less specific your error handling can be. You should generally catch excep-
tions at as specific a level as possible.

WARNING When you catch exceptions polymorphically, make sure to catch them 
by reference! If you catch exceptions by value, you can encounter slicing, in which 
case you lose information from the object. See Chapter 10 for details on slicing.

When more than one catch clause is used, the catch clauses are matched in syntactic order as they 
appear in your code; the first one that matches wins. If one catch is more inclusive than a later one, 
it will match first, and the more restrictive one, which comes later, will never be executed. Therefore, 
you should place your catch clauses from most restrictive to least restrictive in order. For example, 
suppose that you want to catch invalid_argument from readIntegerFile() explicitly, but you 
also want to leave the generic exception handler for any other exceptions. The correct way to do so 
is like this:

try {
    myInts = readIntegerFile(filename);
} catch (const invalid_argument& e) { // List the derived class first.
    // Take some special action for invalid filenames.
} catch (const exception& e) { // Now list exception.
    cerr << e.what() << endl;
    return 1;
}

The first catch statement catches invalid_argument exceptions, and the second catches any other 
exceptions of type exception. However, if you reverse the order of the catch statements, you don’t 
get the same result:

try {
    myInts = readIntegerFile(filename);
} catch (const exception& e) { // BUG: catching base class first!
    cerr << e.what() << endl;
    return 1;
} catch (const invalid_argument& e) {
    // Take some special action for invalid filenames.
}

With this order, any exception of a class that derives from exception is caught by the first catch 
statement; the second will never be reached. Some compilers issue a warning in this case, but you 
shouldn’t count on it.
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Writing Your Own Exception Classes
There are two advantages to writing your own exception classes:

➤➤ The number of exceptions in the C++ Standard Library is limited. Instead of using an 
exception class with a generic name, such as runtime_error, you can create classes with 
names that are more meaningful for the particular errors in your program.

➤➤ You can add your own information to these exceptions. Most exceptions in the standard 
hierarchy allow you to set only an error string. You might want to pass different information 
in the exception.

It’s recommended that all the exception classes that you write inherit directly or indirectly from the 
standard exception class. If everyone on your project follows that rule, you know that every excep-
tion in the program will be derived from exception (assuming that you aren’t using third-party 
libraries that break this rule). This guideline makes exception handling via polymorphism signifi-
cantly easier.

Let’s look at an example. invalid_argument and runtime_error don’t do a good job at capturing 
the file opening and reading errors in readIntegerFile(). You can define your own error hierarchy 
for file errors, starting with a generic FileError class:

class FileError : public exception
{
    public:
        FileError(string filename) : m_filename { move(filename) } {}
        const char* what() const noexcept override { return m_message.c_str(); }
        virtual const string& getFilename() const noexcept { return m_filename; }
    protected:
        virtual void setMessage(string message) { m_message = move(message); }
    private:
        string m_filename;
        string m_message;
};

As a good programming citizen, you make FileError a part of the standard exception hierarchy. It 
seems appropriate to integrate it as a child of exception. When you derive from exception, you can 
override the what() method, which has the prototype shown and which must return a const char* 
string that is valid until the object is destroyed. In the case of FileError, this string comes from the 
m_message data member. Derived classes of FileError can set the message using the protected 
setMessage() method. The generic FileError class also contains a filename and a public accessor 
for that filename.

The first exceptional situation in readIntegerFile() occurs if the file cannot be opened. Thus, you 
might want to write a FileOpenError exception derived from FileError:

class FileOpenError : public FileError
{
    public:
        FileOpenError(string filename) : FileError { move(filename) }
        {
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            setMessage(format("Unable to open {}.", getFilename()));
        }
};

The FileOpenError exception changes the m_message string to represent the file-opening error.

The second exceptional situation in readIntegerFile() occurs if the file cannot be read properly. 
It might be useful for this exception to include the line number where the error occurred, as well as 
the filename in the error message string returned from what(). Here is a FileReadError exception 
derived from FileError:

class FileReadError : public FileError
{
    public:
        FileReadError(string filename, size_t lineNumber)
            : FileError { move(filename) }, m_lineNumber { lineNumber }
        {
            setMessage(format("Error reading {}, line {}.",
                getFilename(), lineNumber));
        }
 
        virtual size_t getLineNumber() const noexcept { return m_lineNumber; }
    private:
        size_t m_lineNumber { 0 };
};

Of course, to set the line number properly, you need to modify your readIntegerFile()  
function to track the number of lines read instead of just reading integers directly. Here is a new 
readIntegerFile() function that uses the new exceptions:

vector<int> readIntegerFile(string_view filename)
{
    ifstream inputStream { filename.data() };
    if (inputStream.fail()) {
        // We failed to open the file: throw an exception.
        throw FileOpenError { filename };
    }
 
    vector<int> integers;
    size_t lineNumber { 0 };
    while (!inputStream.eof()) {
        // Read one line from the file.
        string line;
        getline(inputStream, line);
        ++lineNumber;
 
        // Create a string stream out of the line.
        istringstream lineStream { line };
 
        // Read the integers one-by-one and add them to the vector.
        int temp;
        while (lineStream >> temp) {
            integers.push_back(temp);
        }
 

continues
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        if (!lineStream.eof()) {
            // We did not reach the end of the string stream.
            // This means that some error occurred while reading this line.
            // Throw an exception.
            throw FileReadError { filename, lineNumber };
        }
    }
 
    return integers;
}

Now, code that calls readIntegerFile() can use polymorphism to catch exceptions of type 
FileError like this:

try {
    myInts = readIntegerFile(filename);
} catch (const FileError& e) {
    cerr << e.what() << endl;
    return 1;
}

There is one trick to writing classes whose objects will be used as exceptions. When a piece of code 
throws an exception, the object or value thrown is moved or copied, using either the move construc-
tor or the copy constructor. Thus, if you write a class whose objects will be thrown as exceptions, you 
must make sure those objects are copyable and/or moveable. This means that if you have dynamically 
allocated memory, your class must have a destructor, but also a copy constructor and copy assign-
ment operator and/or a move constructor and move assignment operator, see Chapter 9, “Mastering 
Classes and Objects.”

WARNING Objects thrown as exceptions are always moved or copied at least 
once.

It is possible for exceptions to be copied more than once, but only if you catch the exception by value 
instead of by reference.

NOTE Catch exception objects by reference (preferably reference-to-const) to 
avoid unnecessary copying.

Source Location
Before C++20, you could use the following preprocessor macros to get information about a location 
in your source code:

C++20

(continued)
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MACRO DESCRIPTION

__FILE__ Replaced with the current source code filename

__LINE__ Replaced with the current line number in the source code

Additionally, every function has a locally defined static character array called __func__ containing 
the name of the function.

C++20 introduces a proper object-oriented replacement for __func__ and these C-style preprocessor 
macros in the form of an std::source_location class, defined in <source_location>. An instance 
of source_location has the following public accessors:

ACCESSOR DESCRIPTION

file_name() Contains the current source code filename

function_name() Contains the current function name, if the current position is inside 
a function

line() Contains the current line number in the source code

column() Contains the current column number in the source code

A static method current() is provided that creates a source_location instance based on the 
location in the source code where the method is called.

Source Location for Logging
The source_location class is useful for logging purposes. Previously, logging often involved writing 
C-style macros to automatically gather the current file name, function name, and line number, so they 
can be included in the log output. Now, with source_location, you can write a pure C++ function 
to perform your logging and to automatically collect the location data you require. A nice trick to do 
this is defining a logMessage() function as follows. This time, the code is prefixed with line numbers 
to better explain what is happening.

 8. void logMessage(string_view message,
 9.     const source_location& location = source_location::current())
10. {
11.     cout << format("{}({}): {}: {}", location.file_name(),
12.         location.line(), location.function_name(), message) << endl;
13. }
14. 
15. void foo()
16. {
17.     logMessage("Starting execution of foo().");
18. }
19. 
20. int main()
21. {
22.     foo();
23. }
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The second parameter of logMessage() is a source_location with the result of the static method 
current() as default value. The trick here is that the call to current() does not happen on line 9, 
but actually at the location where logMessage() is called, which is line 17, and that’s exactly the 
location you are interested in.

When executing this program, the output will be something as follows:

./01_Logging.cpp(17): foo: Starting execution of foo().

Line 17 indeed corresponds to the line calling logMessage().

Source Location for Exceptions
Another interesting use case for source_location is in your own exception classes for storing the 
location where an exception was thrown. Here’s an example:

class MyException : public exception
{
    public:
        MyException(string message,
            source_location location = source_location::current())
            : m_message { move(message) }
            , m_location { move(location) }
        { }
 
        const char* what() const noexcept override { return m_message.c_str(); }
        virtual const source_location& where() const noexcept{ return m_location; }
    private:
        string m_message;
        source_location m_location;
};
 
void doSomething()
{
    throw MyException { "Throwing MyException." };
}
 
int main()
{
    try {
        doSomething();
    } catch (const MyException& e) {
        const auto& location { e.where() };
        cerr << format("Caught: '{}' at line {} in {}.",
            e.what(), location.line(), location.function_name()) << endl;
    }
}

The output is as follows:

Caught: 'Throwing MyException.' at line 30 in doSomething.
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Nested Exceptions
It could happen that during handling of a first exception, a second exceptional situation is triggered 
that requires a second exception to be thrown. Unfortunately, when you throw the second exception, 
all information about the first exception that you are currently trying to handle will be lost. The solu-
tion provided by C++ for this problem is called nested exceptions, which allow you to nest a caught 
exception in the context of a new exception. This can also be useful if you call a function in a third-
party library that throws an exception of a certain type, A, but you only want exceptions of another 
type, B, in your code. In such a case, you catch all exceptions from the library and nest them in an 
exception of type B.

You use std::throw_with_nested() to throw an exception with another exception nested 
inside it. A catch handler for the second exception can use a dynamic_cast() to get access to the 
std::nested_exception representing the first exception. The upcoming example demonstrates 
this. It first defines a MyException class, which derives from exception and accepts a string in its 
constructor:

class MyException : public exception
{
    public:
        MyException(string message) : m_message { move(message) } {}
        const char* what() const noexcept override { return m_message.c_str(); }
    private:
        string m_message;
};

The following doSomething() function throws a runtime_error that is immediately caught in a 
catch handler. The catch handler writes a message and then uses the throw_with_nested() function 
to throw a second exception that has the first one nested inside it. Note that nesting the exception 
happens automatically:

void doSomething()
{
    try {
        throw runtime_error { "Throwing a runtime_error exception" };
    } catch (const runtime_error& e) {
        cout << format("{} caught a runtime_error", __func__) << endl;
        cout << format("{} throwing MyException", __func__) << endl;
        throw_with_nested(
            MyException { "MyException with nested runtime_error" });
    }
}

throw_with_nested() works by throwing an unnamed new compiler-generated type that derives 
from both nested_exception and, in this example, from MyException. Hence, it’s another example 
of useful multiple inheritance in C++. The default constructor of the nested_exception base class 
automatically captures the exception currently being handled by calling std::current_exception() 
and stores it in an std::exception_ptr. An exception_ptr is a pointer-like type capable of  
storing either a null pointer or a pointer to an exception object that was thrown and captured with 
current_exception(). Instances of exception_ptr can be passed to functions (usually by value) 
and across different threads.
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Finally, the following code snippet demonstrates how to handle an exception with a nested exception. 
The code calls the doSomething() function and has one catch handler for exceptions of type  
MyException. When it catches such an exception, it writes a message and then uses a dynamic_
cast() to get access to the nested exception. If there is no nested exception inside, the result will  
be a null pointer. If there is a nested exception inside, the rethrow_nested() method on the nested_
exception is called. This causes the nested exception to be rethrown, which you can then catch in 
another try/catch block.

try {
    doSomething();
} catch (const MyException& e) {
    cout << format("{} caught MyException: {}", __func__, e.what()) << endl;
 
    const auto* nested { dynamic_cast<const nested_exception*>(&e) };
    if (nested) {
        try {
            nested->rethrow_nested();
        } catch (const runtime_error& e) {
            // Handle nested exception.
            cout << format("  Nested exception: {}", e.what()) << endl;
        }
    }
}

The output is as follows:

doSomething caught a runtime_error
doSomething throwing MyException
main caught MyException: MyException with nested runtime_error
  Nested exception: Throwing a runtime_error exception

This code uses a dynamic_cast() to check for a nested exception. Because you always have to 
perform such a dynamic_cast() if you want to check for a nested exception, the standard provides a 
helper function called std::rethrow_if_nested() that does it for you. This helper function can be 
used as follows:

try {
    doSomething();
} catch (const MyException& e) {
    cout << format("{} caught MyException: {}", __func__, e.what()) << endl;
    try {
        rethrow_if_nested(e);
    } catch (const runtime_error& e) {
        // Handle nested exception.
        cout << format("  Nested exception: {}", e.what()) << endl;
    }
}

throw_with_nested(), nested_exception, rethrow_if_nested(), current_exception(), and 
exception_ptr are all defined in <exception>.



Rethrowing Exceptions ❘ 519

RETHROWING EXCEPTIONS

The throw keyword can also be used to rethrow the current exception, as in the following example:

void g() { throw invalid_argument { "Some exception" }; }
 
void f()
{
    try {
        g();
    } catch (const invalid_argument& e) {
        cout << "caught in f: " << e.what() << endl;
        throw;  // rethrow
    }
}
 
int main()
{
    try {
        f();
    } catch (const invalid_argument& e) {
        cout << "caught in main: " << e.what() << endl;
    }
}

This example produces the following output:

caught in f: Some exception
caught in main: Some exception

You might think you could rethrow a caught exception e with throw e;. However, that’s wrong, 
because it can cause slicing of your exception object. For example, suppose f() is modified to catch 
std::exceptions, and main() is modified to catch both exception and invalid_argument 
exceptions:

void g() { throw invalid_argument { "Some exception" }; }
 
void f()
{
    try {
        g();
    } catch (const exception& e) {
        cout << "caught in f: " << e.what() << endl;
        throw;  // rethrow
    }
}
 
int main()
{
    try {
        f();
    } catch (const invalid_argument& e) {

continues
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        cout << "invalid_argument caught in main: " << e.what() << endl;
    } catch (const exception& e) {
        cout << "exception caught in main: " << e.what() << endl;
    }
}

Remember that invalid_argument derives from exception. The output of this code is as you would 
expect, shown here:

caught in f: Some exception
invalid_argument caught in main: Some exception

Now, try replacing the throw; statement in f() with throw e;. The output then becomes as follows:

caught in f: Some exception
exception caught in main: Some exception

main() seems to be catching an exception object, instead of an invalid_argument object. That’s 
because the throw e; statement causes slicing, reducing the invalid_argument to an exception.

WARNING Always use throw; to rethrow an exception. Never do something like 
throw e; to rethrow a caught exception e!

STACK UNWINDING AND CLEANUP

When a piece of code throws an exception, it searches for a catch handler on the stack. This catch 
handler could be zero or more function calls up the stack of execution. When one is found, the stack 
is stripped back to the stack level that defines the catch handler by unwinding all intermediate stack 
frames. Stack unwinding means that the destructors for all locally scoped variables are called, and all 
code remaining in each function past the current point of execution is skipped.

During stack unwinding, pointer variables are obviously not freed, and other cleanup is not per-
formed either. This behavior can present problems, as the following code demonstrates:

void funcOne();
void funcTwo();
 
int main()
{
    try {
        funcOne();
    } catch (const exception& e) {
        cerr << "Exception caught!" << endl;
        return 1;
    }
}
 
void funcOne()
{

(continued)
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    string str1;
    string* str2 { new string {} };
    funcTwo();
    delete str2;
}
 
void funcTwo()
{
    ifstream fileStream;
    fileStream.open("filename");
    throw exception {};
    fileStream.close();
}

When funcTwo() throws an exception, the closest exception handler is in main(). Control then 
jumps immediately from this line in funcTwo(),

throw exception {};

to this line in main():

cerr << "Exception caught!" << endl;

In funcTwo(), control remains at the line that threw the exception, so this subsequent line never gets 
a chance to run:

fileStream.close();

However, luckily for you, the ifstream destructor is called because fileStream is a local variable on 
the stack. The ifstream destructor closes the file for you, so there is no resource leak here. If you had 
dynamically allocated fileStream, it would not be destroyed, and the file would not be closed.

In funcOne(), control is at the call to funcTwo(), so this subsequent line never gets a chance to run:

delete str2;

In this case, there really is a memory leak. Stack unwinding does not automatically call delete on 
str2 for you. However, str1 is destroyed properly because it is a local variable on the stack. Stack 
unwinding destroys all local variables correctly.

WARNING Careless exception handling can lead to memory and resource leaks.

This is one reason why you should never mix older C models of allocation (even if you are calling 
new so it looks like C++) with modern programming methodologies like exceptions. In C++, this 
situation should be handled by using stack-based allocations or, if that is not possible, by one of the 
techniques discussed in the upcoming two sections.

Use Smart Pointers
If stack-based allocation is not possible, then use smart pointers. They allow you to write code that 
automatically prevents memory or resource leaks during exception handling. Whenever a smart 
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pointer object is destroyed, it frees the underlying resource. Here is a modified funcOne() implementa-
tion using a unique_ptr smart pointer, defined in <memory>, and introduced in Chapter 7, “Memory 
Management”:

void funcOne() 
{
    string str1;
    auto str2 { make_unique<string>("hello") };
    funcTwo();
}

The str2 pointer will automatically be deleted when you return from funcOne() or when an excep-
tion is thrown.

Of course, you should only allocate something dynamically if you have a good reason to do so. For 
example, in the previous funcOne() function, there is no good reason to make str2 a dynamically 
allocated string. It should just be a stack-based string variable. It’s merely shown here as an artificial 
example of the consequences of throwing exceptions.

NOTE With smart pointers, or other resource acquisition is initialization (RAII) 
objects, you never have to remember to free the underlying resource: the destruc-
tor of the RAII object does it for you, whether you leave the function normally or 
via an exception. It’s a design technique discussed in Chapter 32, “Incorporating 
Design Techniques and Frameworks.”

Catch, Cleanup, and Rethrow
Another technique for avoiding memory and resource leaks is for each function to catch any possible 
exceptions, perform necessary cleanup work, and rethrow the exception for the function higher up 
the stack to handle. Here is a revised funcOne() with this technique:

void funcOne()
{
    string str1;
    string* str2 { new string {} };
    try {
        funcTwo();
    } catch (...) {
        delete str2;
        throw; // Rethrow the exception.
    }
    delete str2;
}

This function wraps the call to funcTwo() with an exception handler that performs the cleanup (calls 
delete on str2) and then rethrows the exception. The keyword throw by itself rethrows whatever 
exception was caught most recently. Note that the catch statement uses the ... syntax to catch any 
exception.

This method works fine but is messy and error prone. In particular, note that there are now two 
identical lines that call delete on str2: one while handling the exception and one when the function 
exits normally.
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WARNING The preferred solution is to use smart pointers or other RAII classes 
instead of the catch, cleanup, and rethrow technique.

COMMON ERROR-HANDLING ISSUES

Whether or not you use exceptions in your programs is up to you and your colleagues. However, you 
are strongly encouraged to formalize an error-handling plan for your programs, regardless of your 
use of exceptions. If you use exceptions, it is generally easier to come up with a unified error-handling 
scheme, but it is not impossible without exceptions. The most important aspect of a good plan is uni-
formity of error handling throughout all the modules of the program. Make sure that every program-
mer on the project understands and follows the error-handling rules.

This section discusses the most common error-handling issues in the context of exceptions, but the 
issues are also relevant to programs that do not use exceptions.

Memory Allocation Errors
Despite that all the examples so far in this book have ignored the possibility, memory allocation can 
fail. On current 64-bit platforms, this will almost never happen, but on mobile or legacy systems, 
memory allocation can fail. On such systems, you must account for memory allocation failures. C++ 
provides several different ways to handle memory errors.

The default behaviors of new and new[] are to throw an exception of type bad_alloc, defined in 
<new>, if they cannot allocate memory. Your code could catch these exceptions and handle them 
appropriately.

It’s not realistic to wrap all your calls to new and new[] with a try/catch, but at least you should do 
so when you are trying to allocate a big block of memory. The following example demonstrates how 
to catch memory allocation exceptions:

int* ptr { nullptr };
size_t integerCount { numeric_limits<size_t>::max() };
cout << format("Trying to allocate memory for {} integers.", integerCount) << endl;
try {
    ptr = new int[integerCount];
} catch (const bad_alloc& e) {
    auto location { source_location::current() };
    cerr << format("{}({}): Unable to allocate memory: {}",
        location.file_name(), location.line(), e.what()) << endl;
    // Handle memory allocation failure.
    return;
}
// Proceed with function that assumes memory has been allocated.

Note that this code uses source_location to include the name of the file and the current line num-
ber in the error message. This makes debugging easier.



524 ❘ CHAPTER 14  Handling Errors

You could, of course, bulk handle many possible new failures with a single try/catch block at a 
higher point in the program, if that works for your program.

Another point to consider is that logging an error might try to allocate memory. If new fails, there 
might not be enough memory left even to log the error message.

Non-throwing new
If you don’t like exceptions, you can revert to the old C model in which memory allocation routines 
return a null pointer if they cannot allocate memory. C++ provides nothrow versions of new and 
new[], which return nullptr instead of throwing an exception if they fail to allocate memory. This is 
done by using the syntax new(nothrow) instead of new, as shown in the following example:

int* ptr { new(nothrow) int[integerCount] };
if (ptr == nullptr) {
    auto location { source_location::current() };
    cerr << format("{}({}): Unable to allocate memory!",
        location.file_name(), location.line()) << endl;
    // Handle memory allocation failure.
    return;
}
// Proceed with function that assumes memory has been allocated.

NOTE I do not recommend using non-throwing new, but the default behavior, 
which uses exceptions. An exception thrown when allocation fails cannot be 
ignored, while it’s easy to forget checking for nullptr when using non-throwing 
new.

Customizing Memory Allocation Failure Behavior
C++ allows you to specify a new handler callback function. By default, there is no new handler, so 
new and new[] just throw bad_alloc exceptions. However, if there is a new handler, the memory 
allocation routine calls the new handler upon memory allocation failure instead of throwing an 
exception. If the new handler returns, the memory allocation routine attempts to allocate memory 
again, calling the new handler again if it fails. This cycle could become an infinite loop unless your 
new handler changes the situation with one of three alternatives. Practically speaking, some of the 
options are better than others. Here is the list with commentary:

➤➤ Make more memory available. One trick to expose space is to allocate a large chunk of 
memory at program start-up and then to free it in the new handler. A practical example is 
when you hit an allocation error and you need to save the user state so no work gets lost. The 
key is to allocate a block of memory at program start-up large enough to allow a complete 
document save operation. When the new handler is triggered, you free this block, save the 
document, restart the application, and let it reload the saved document.
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➤➤ Throw an exception. The C++ standard mandates that if you throw an exception from your 
new handler, it must be a bad_alloc exception or an exception derived from bad_alloc. 
Here are some examples:

➤➤ Write and throw a document_recovery_alloc exception, deriving from bad_alloc. 
This exception can be caught somewhere in your application to trigger the document 
save operation and restart of the application.

➤➤ Write and throw a please_terminate_me exception, deriving from bad_alloc. In 
your top-level function—for example, main()—you catch this exception and handle 
it by returning from the top-level function. It’s recommended to terminate a program 
by returning from the top-level function, instead of by calling a function such 
as exit().

➤➤ Set a different new handler. Theoretically, you could have a series of new handlers, 
each of which tries to create memory and sets a different new handler if it fails. How-
ever, such a scenario is usually more complicated than useful.

If you don’t do one of these things in your new handler, any memory allocation failure will cause an 
infinite loop.

If there are some memory allocations that can fail but you don’t want your new handler to be called, 
you can simply set the new handler back to its default of nullptr temporarily before calling new in 
such cases.

You set the new handler with a call to set_new_handler(), declared in <new>. Here is an example of 
a new handler that logs an error message and throws an exception:

class please_terminate_me : public bad_alloc { };
 
void myNewHandler()
{
    cerr << "Unable to allocate memory." << endl;
    throw please_terminate_me {};
}

The new handler must take no arguments and return no value. This new handler throws a please_
terminate_me exception, as suggested in the preceding list. You can activate this new handler 
like this:

int main()
{
    try {
        // Set the new new_handler and save the old one.
        new_handler oldHandler { set_new_handler(myNewHandler) };
 
        // Generate allocation error.
        size_t numInts { numeric_limits<size_t>::max() };
        int* ptr { new int[numInts] };
 

continues



526 ❘ CHAPTER 14  Handling Errors

        // Reset the old new_handler.
        set_new_handler(oldHandler);
    } catch (const please_terminate_me&) {
        auto location { source_location::current() };
        cerr << format("{}({}): Terminating program.",
            location.file_name(), location.line()) << endl;
        return 1;
    }
}

new_handler is a type alias for the type of function pointer that set_new_handler() takes.

Errors in Constructors
Before C++ programmers discover exceptions, they are often stymied by error handling and construc-
tors. What if a constructor fails to construct the object properly? Constructors don’t have a return 
value, so the standard pre-exception error-handling mechanism doesn’t work. Without exceptions, 
the best you can do is to set a flag in the object specifying that it is not constructed properly. You can 
provide a method, with a name like checkConstructionStatus(), which returns the value of that 
flag, and hope that clients remember to call this method on the object after constructing it.

Exceptions provide a much better solution. You can throw an exception from a constructor, even 
though you can’t return a value. With exceptions, you can easily tell clients whether construction of 
an object succeeded. However, there is one major problem: if an exception leaves a constructor, the 
destructor for that object will never be called! Thus, you must be careful to clean up any resources 
and free any allocated memory in constructors before allowing exceptions to leave the constructor. 
This problem is the same as in any other function, but it is subtler in constructors because you’re 
accustomed to letting the destructors take care of the memory deallocation and resource freeing.

This section describes a Matrix class template as an example in which the constructor correctly 
handles exceptions. Note that this example is using a raw pointer called m_matrix to demonstrate the 
problems. In production-quality code, you should avoid using raw pointers, for example, by using a 
Standard Library container! The definition of the Matrix class template looks like this:

export template <typename T>
class Matrix
{
    public:
        Matrix(size_t width, size_t height);
        virtual ~Matrix();
    private:
        void cleanup();
 
        size_t m_width { 0 };
        size_t m_height { 0 };
        T** m_matrix { nullptr };
};

The implementation of the Matrix class is as follows. Note that the first call to new is not protected 
with a try/catch block. It doesn’t matter if the first new throws an exception because the construc-
tor hasn’t allocated anything else yet that needs freeing. If any of the subsequent new calls throw an 

(continued)
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exception, though, the constructor must clean up all of the memory already allocated. However, it 
doesn’t know what exceptions the T constructors themselves might throw, so it catches all excep-
tions via ... and then nests the caught exception inside a bad_alloc exception. Note that the 
array allocated with the first call to new is zero-initialized using the {} syntax; that is, each element 
will be nullptr. This makes the cleanup() method easier, because it is allowed to call delete on 
a nullptr.

template <typename T>
Matrix<T>::Matrix(size_t width, size_t height)
{
    m_matrix = new T*[width] {};    // Array is zero-initialized!
 
    // Don't initialize the m_width and m_height members in the ctor-
    // initializer. These should only be initialized when the above
    // m_matrix allocation succeeds!
    m_width = width;
    m_height = height;
 
    try {
        for (size_t i { 0 }; i < width; ++i) {
            m_matrix[i] = new T[height];
        }
    } catch (...) {
        std::cerr << "Exception caught in constructor, cleaning up..."
            << std::endl;
        cleanup();
        // Nest any caught exception inside a bad_alloc exception.
        std::throw_with_nested(std::bad_alloc {});
    }
}
 
template <typename T>
Matrix<T>::~Matrix()
{
    cleanup();
}
 
template <typename T>
void Matrix<T>::cleanup()
{
    for (size_t i { 0 }; i < m_width; ++i) {
        delete[] m_matrix[i];
    }
    delete[] m_matrix;
    m_matrix = nullptr;
    m_width = m_height = 0;
}

WARNING Remember, if an exception leaves a constructor, the destructor for that 
object will never be called!
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The Matrix class template can be tested as follows:

class Element
{
    // Kept to a bare minimum, but in practice, this Element class
    // could throw exceptions in its constructor.
    private:
        int m_value;
};
 
int main()
{
    Matrix<Element> m { 10, 10 };
}

You might be wondering what happens when you add inheritance into the mix. Base class construc-
tors run before derived class constructors. If a derived class constructor throws an exception, C++ 
will execute the destructor of the fully constructed base classes.

NOTE C++ guarantees that it will run the destructor for all fully constructed 
“subobjects.” Therefore, any constructor that completes without an exception will 
cause the corresponding destructor to be run.

Function-Try-Blocks for Constructors
The exception mechanism, as discussed up to now in this chapter, is perfect for handling exceptions 
within functions. But how should you handle exceptions thrown from inside a ctor-initializer of a 
constructor? This section explains a feature called function-try-blocks, which are capable of catching 
those exceptions. Function-try-blocks work for normal functions as well as for constructors. This sec-
tion focuses on the use with constructors. Most C++ programmers, even experienced C++ program-
mers, don’t know of the existence of this feature, even though it was introduced a long time ago.

The following piece of pseudo-code shows the basic syntax for a function-try-block for a constructor:

MyClass::MyClass()
try
    : <ctor-initializer>
{
    /* ... constructor body ... */
}
catch (const exception& e)
{
    /* ... */
}

As you can see, the try keyword should be right before the start of the ctor-initializer. The catch 
statements should be after the closing brace for the constructor, actually putting them outside the con-
structor body. There are a number of restrictions and guidelines that you should keep in mind when 
using function-try-blocks with constructors:
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➤➤ The catch statements catch any exception thrown either directly or indirectly by the ctor-
initializer or by the constructor body.

➤➤ The catch statements have to rethrow the current exception or throw a new exception. If a 
catch statement doesn’t do this, the runtime automatically rethrows the current exception.

➤➤ The catch statements can access arguments passed to the constructor.

➤➤ When a catch statement catches an exception in a function-try-block, all fully constructed 
base classes and members of the object are destroyed before execution of the catch state-
ment starts.

➤➤ Inside catch statements you should not access data members that are objects because these 
are destroyed prior to executing the catch statements (see the previous bullet). However, if 
your object contains non-class data members—for example, raw pointers—you can access 
them if they have been initialized before the exception was thrown. If you have such raw, also 
called naked, resources, you have to take care of them by freeing them in the catch state-
ments, as the following example demonstrates.

➤➤ The catch statements in a function-try-block cannot use the return keyword to return a 
value from the function enclosed by it. This is not relevant for constructors because they do 
not return anything.

Based on this list of limitations, function-try-blocks for constructors are useful only in a limited num-
ber of situations:

➤➤ To convert an exception thrown by the ctor-initializer to another exception

➤➤ To log a message to a log file

➤➤ To free raw resources that have been allocated in the ctor-initializer prior to the exception 
being thrown

The following example demonstrates how to use function-try-blocks. The code defines a class called 
SubObject. It has only one constructor, which throws an exception of type runtime_error:

class SubObject
{
    public:
        SubObject(int i) { throw runtime_error { "Exception by SubObject ctor" }; }
};

Next, the MyClass class has a data member of type int* and another one of type SubObject:

class MyClass
{
    public:
        MyClass();
    private:
        int* m_data { nullptr };
        SubObject m_subObject;
};
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The SubObject class does not have a default constructor. This means you need to initialize  
m_subObject in the MyClass ctor-initializer. The constructor of MyClass uses a function-try-block to 
catch exceptions thrown in its ctor-initializer as follows:

MyClass::MyClass() 
try
    : m_data { new int[42]{ 1, 2, 3 } }, m_subObject { 42 }
{
    /* ... constructor body ... */
}
catch (const exception& e)
{
    // Cleanup memory.
    delete[] m_data;
    m_data = nullptr;
    cout << format("function-try-block caught: '{}'", e.what()) << endl;
}

Remember that catch statements in a function-try-block for a constructor have to either rethrow the 
current exception or throw a new exception. The preceding catch statement does not throw any-
thing, so the C++ runtime automatically rethrows the current exception. The following is a simple 
function that uses MyClass:

int main()
{
    try {
        MyClass m;
    } catch (const exception& e) {
        cout << format("main() caught: '{}'", e.what()) << endl;
    }
}

The output is as follows:

function-try-block caught: 'Exception by SubObject ctor'
main() caught: 'Exception by SubObject ctor'

Note that the code in this example is error prone and not recommended. A proper solution for this 
example’s case is to make the m_data member a container, such as std::vector, or a smart pointer, 
such as unique_ptr, and to remove the function-try-block.

WARNING Avoid using function-try-blocks!

Function-try-blocks are usually necessary only when you have raw resources as 
data members. Raw resources should be avoided by using RAII classes such as 
std::vector or unique_ptr. The RAII design pattern is discussed in Chapter 32.

Function-try-blocks are not limited to constructors. They can be used with ordinary functions as 
well. However, for normal functions, there is no useful reason to use function-try-blocks because 
they can just as easily be converted to a simple try/catch block inside the function body. One 
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notable difference when using a function-try-block on a normal function compared to a constructor 
is that rethrowing the current exception or throwing a new exception in the catch statements is not 
required, and the C++ runtime will not automatically rethrow the exception.

Errors in Destructors
You should handle all error conditions that arise in destructors in the destructors themselves. You 
should not let any exceptions be thrown from destructors, for a couple of reasons:

1. Destructors are implicitly marked as noexcept, unless they are explicitly marked with 
noexcept(false) or the class has any subobjects with a noexcept(false) destruc-
tor. If you throw an exception from a noexcept destructor, the C++ runtime calls 
std::terminate() to terminate the application.

2. Destructors can run during the process of stack unwinding while there is another exception 
being handled. If you throw an exception from the destructor in the middle of stack unwind-
ing, the C++ runtime calls std::terminate() to terminate the application. For the brave 
and curious, C++ does provide the ability to determine, in a destructor, whether you are 
executing as a result of a normal function exit or delete call or because of stack unwinding. 
The function uncaught_exceptions(), declared in <exception>, returns the number of 
uncaught exceptions, that is, exceptions that have been thrown but that have not reached a 
matching catch yet. If the result of uncaught_exceptions() is greater than zero, then you 
are in the middle of stack unwinding. However, correct use of this function is complicated, 
messy, and should be avoided. Note that before C++17, the function was called uncaught_
exception() (singular) and returned a bool that was true if you were in the middle of 
stack unwinding. This singular version is deprecated since C++17 and removed from C++20.

3. What action would clients take? Clients don’t call destructors explicitly: they call delete, 
which calls the destructor. If you throw an exception from the destructor, what is a client 
supposed to do? It can’t call delete on the object again, and it shouldn’t call the destructor 
explicitly. There is no reasonable action the client can take, so there is no reason to burden 
that code with exception handling.

4. The destructor is your one chance to free memory and resources used in the object. If you 
waste your chance by exiting the function early due to an exception, you will never be able to 
go back and free the memory or resources.

WARNING Be careful not to let any exceptions escape from a destructor.

SUMMARY

This chapter described the issues related to error handling in C++ programs and emphasized that 
you must design and code your programs with an error-handling plan. By reading this chapter, you 
learned the details of C++ exceptions syntax and behavior. The chapter also covered some of the areas 
in which error handling plays a large role, including I/O streams, memory allocation, constructors, 
and destructors.
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 14-1: Without compiling and executing, find and correct the errors in the fol-
lowing code:

// Throws a logic_error exception if the number of elements
// in the given dataset is not even.
void verifyDataSize(const vector<int>& data)
{
    if (data.size() % 2 != 0)
        throw logic_error { "Number of data points must be even." };
}
 
// Throws a logic_error exception if the number of elements
// in the given dataset is not even.
// Throws a domain_error exception if one of the datapoints is negative.
void processData(const vector<int>& data)
{
    // Verify the size of the given dataset.
    try {
        verifyDataSize(data);
    } catch (const logic_error& caughtException) {
        // Write message on standard error output.
        cerr << "Invalid number of data points in dataset. Aborting." << endl;
        // And rethrow the exception.
        throw caughtException;
    }
    // Verify for negative datapoints.
    for (auto& value : data) {
        if (value < 0)
            throw domain_error { "Negative datapoints not allowed." };
    }
    // Process data ...
}
 
int main()
{
    try {
        vector data { 1, 2, 3, -5, 6, 9 };
        processData(data);
    } catch (const logic_error& caughtException) {
        cerr << "logic_error: " << caughtException.what() << endl;
    } catch (const domain_error& caughtException) {
        cerr << "domain_error: " << caughtException.what() << endl;
    }
}

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 14-2: Take the code from the bidirectional I/O example from Chapter 13. You 
can find this in the c13_code\19_Bidirectional folder in the downloadable source code 
archive. The example implements a changeNumberForID() function. Retrofit the code to use 
exceptions on all places you deem appropriate. Once your code is using exceptions, do you 
see a possible change you can make to the changeNumberForID() function header?

Exercise 14-3: Add proper error handling using exceptions to your person database solution 
of Exercise 13-3.

Exercise 14-4: Take a look at the code in Chapter 9 for the Spreadsheet example  
that includes support for move semantics using swap(). You can find the entire code  
in the downloadable source code archive in the folder c09_code\07_SpreadsheetMove-
SemanticsWithSwap. Add proper error handling to the code, including handling of memory 
allocation failures. Add a maximum width and height to the class and include the proper 
verification checks. Write your own exception class, InvalidCoordinate, which stores both 
an invalid coordinate and the range of allowed coordinates. Use it in the verifyCoordi-
nate() method. Write a couple of tests in main() to test various error conditions.
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http://www.wiley.com/go/proc++5e
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C++ allows you to redefine the meanings of operators, such as +, -, and =, for your classes. Many 
object-oriented languages do not provide this capability, so you might be tempted to disregard its 
usefulness in C++. However, it can be beneficial for making your classes behave similarly to built-in 
types such as ints and doubles. It is even possible to write classes that look like arrays, functions, 
or pointers.

Chapters 5, “Designing with Objects,” and 6, “Designing for Reuse,” introduce object-oriented design 
and operator overloading, respectively. Chapters 8, “Gaining Proficiency with Classes and Objects,” 
and 9, “Mastering Classes and Objects,” present the syntax details for objects and for basic operator 
overloading. This chapter picks up operator overloading where Chapter 9 left off.

OVERVIEW OF OPERATOR OVERLOADING

As Chapter 1, “A Crash Course in C++ and the Standard Library,” explains, operators in C++ are 
symbols such as +, <, *, and <<. They work on built-in types such as int and double to allow you 
to perform arithmetic, logical, and other operations. There are also operators such as -> and * that 
allow you to dereference pointers. The concept of operators in C++ is broad, and even includes [] 
(array index), () (function call), casting, and the memory allocation and deallocation operators. 
Operator overloading allows you to change the behavior of language operators for your classes. 
However, this capability comes with rules, limitations, and choices.

Why Overload Operators?
Before learning how to overload operators, you probably want to know why you would ever want to 
do so. The reasons vary for the different operators, but the general guiding principle is to make your 
classes behave like built-in types. The closer your classes are to built-in types, the easier they will be 
for clients to use. For example, if you want to write a class to represent fractions, it’s quite helpful to 
have the ability to define what +, -, *, and / mean when applied to objects of that class.

Another reason to overload operators is to gain greater control over the behavior in your program. 
For example, you can overload memory allocation and deallocation operators for your classes to 
specify exactly how memory should be distributed and reclaimed for each new object.

It’s important to emphasize that operator overloading doesn’t necessarily make things easier for you 
as the class developer; its main purpose is to make things easier for users of the class.

Limitations to Operator Overloading
Here is a list of things you cannot do when you overload operators:

➤➤ You cannot add new operator symbols. You can only redefine the meanings of operators 
already in the language. The table in the section “Summary of Overloadable Operators” lists 
all of the operators that you can overload.

➤➤ There are a few operators that you cannot overload, such as . and .* (member access in an 
object), :: (scope resolution operator), and ?: (the conditional operator). The table lists all 
the operators that you can overload. The operators that you can’t overload are usually not 
those you would care to overload anyway, so you shouldn’t find this restriction limiting.
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➤➤ The arity describes the number of arguments, or operands, associated with the operator. You 
can only change the arity for the function call, new, and delete operators. For all other oper-
ators, you cannot change the arity. Unary operators, such as ++, work on only one operand. 
Binary operators, such as /, work on two operands. The main situation where this limitation 
might affect you is when overloading [] (array index), which is discussed later in this chapter.

➤➤ You cannot change the precedence nor the associativity of an operator. The precedence is 
used to decide which operators need to be executed before other operators, while the associa-
tivity can be either left-to-right or right-to-left and specifies in which order operators of the 
same precedence are executed. Again, this constraint shouldn’t be cause for concern in most 
programs because there are rarely benefits to changing the order of evaluation.

➤➤ You cannot redefine operators for built-in types. The operator must be a method in a class, or 
at least one of the arguments to a global overloaded operator function must be a user-defined 
type (for example, a class). This means that you can’t do something ridiculous, such as rede-
fine + for ints to mean subtraction (though you could do so for your own classes). The one 
exception to this rule is the memory allocation and deallocation operators; you can replace 
the global operators for all memory allocations in your program.

Some of the operators already mean two different things. For example, the – operator can be used as 
a binary operator (as in x = y - z;) or as a unary operator (as in x = -y;). The * operator can be 
used for multiplication or for dereferencing a pointer. The << operator is the stream insertion opera-
tor or the left-shift operator, depending on the context. For such dual-meaning operators, you can 
overload both meanings.

Choices in Operator Overloading
When you overload an operator, you write a function or method with the name operatorX, where X 
is the symbol for some operator, and with optional whitespace between operator and X. For exam-
ple, Chapter 9 declares operator+ for SpreadsheetCell objects like this:

SpreadsheetCell operator+(const SpreadsheetCell& lhs, const SpreadsheetCell& rhs);

The following sections describe several choices involved in each overloaded operator function or 
method you write.

Method or Global Function
First, you must decide whether your operator should be a method of your class or a global function 
(sometimes a friend of the class). How do you choose? First, you need to understand the difference 
between these two choices. When the operator is a method of a class, the left-hand side of the opera-
tor expression must always be an object of that class. If you write a global function, the left-hand side 
can be an object of a different type.

There are three different types of operators:

➤➤ Operators that must be methods. The C++ language requires some operators to be methods 
of a class because they don’t make sense outside of a class. For example, operator= is tied 
so closely to the class that it can’t exist anywhere else. The table in the section “Summary of 
Overloadable Operators” lists those operators that must be methods. Most operators do not 
impose this requirement.
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➤➤ Operators that must be global functions. Whenever you need to allow the left-hand side of 
the operator to be a variable of a different type than your class, you must make the operator 
a global function. This rule applies specifically to operator<< and operator>>, where the 
left-hand side is an iostream object, not an object of your class. Additionally, commutative 
operators like binary + and – should allow variables that are not objects of your class on the 
left-hand side. Chapter 9 discusses this problem.

➤➤ Operators that can be either methods or global functions. There is some disagreement in the 
C++ community on whether it’s better to write methods or global functions to overload oper-
ators. However, I recommend the following rule: make every operator a method unless you 
must make it a global function, as described previously. One major advantage to this rule is 
that methods can be virtual, while global functions obviously cannot. Therefore, when you 
plan to write overloaded operators in an inheritance tree, you should make them methods 
if possible.

When you write an overloaded operator as a method, you should mark it const if it doesn’t change 
the object. That way, it can be called on const objects.

When you write an overloaded operator as a global function, put it in the same namespace that also 
contains the class for which the operator is written.

Choosing Argument Types
You are somewhat limited in your choice of argument types because, as stated earlier, for most opera-
tors you cannot change the number of arguments. For example, operator/ must always have two 
arguments if it is a global function, and one argument if it’s a method. The compiler issues an error if 
it differs from this standard. In this sense, the operator functions are different from normal functions, 
which you can overload with any number of parameters. Additionally, although you can write the 
operator for whichever types you want, the choice is usually constrained by the class for which you 
are writing the operator. For example, if you want to implement addition for class T, you don’t write 
an operator+ that takes two strings! The real choice arises when you try to determine whether to 
take parameters by value or by reference and whether to make them const.

The choice of value versus reference is easy: you should take every non-primitive parameter type by 
reference, unless the function always makes a copy of the passed object, see Chapter 9.

The const decision is also trivial: mark every parameter const unless you actually modify it. The 
table in the section “Summary of Overloadable Operators” shows sample prototypes for each opera-
tor, with the arguments marked const and reference as appropriate.

Choosing Return Types
C++ doesn’t determine overload resolution based on return type. Thus, you can specify any return 
type you want when you write overloaded operators. However, just because you can do something 
doesn’t mean you should do it. This flexibility implies that you could write confusing code in which 
comparison operators return pointers, and arithmetic operators return bools. However, you shouldn’t 
do that. Instead, you should write your overloaded operators such that they return the same types 
as the operators do for the built-in types. If you write a comparison operator, return a bool. If you 
write an arithmetic operator, return an object representing the result. Sometimes the return type is 



Overview of Operator Overloading ❘ 539

not obvious at first. For example, as Chapter 8 mentions, operator= should return a reference to the 
object on which it’s called in order to support chained assignments. Other operators have similarly 
tricky return types, all of which are summarized in the table in the section “Summary of Overloadable 
Operators.”

The same choices of reference and const apply to return types as well. However, for return values, 
the choices are more difficult. The general rule for value or reference is to return a reference if you 
can; otherwise, return a value. How do you know when you can return a reference? This choice 
applies only to operators that return objects: the choice is moot for the comparison operators that 
return bool, the conversion operators that have no return type, and the function call operator, which 
may return any type you want. If your operator constructs a new object, then you must return that 
new object by value. If it does not construct a new object, you can return a reference to the object on 
which the operator is called, or one of its arguments. The table in the section “Summary of Overload-
able Operators” shows examples.

A return value that can be modified as an lvalue (the left-hand side of an assignment expression) must 
be non-const. Otherwise, it should be const. More operators than you might expect require that 
you return lvalues, including all of the assignment operators (operator=, operator+=, operator-=, 
and so on).

Choosing Behavior
You can provide whichever implementation you want in an overloaded operator. For example, you 
could write an operator+ that launches a game of Scrabble. However, as Chapter 6 describes, you 
should generally constrain your implementations to provide behaviors that clients expect. Write 
operator+ so that it performs addition, or something like addition, such as string concatenation. 
This chapter explains how you should implement your overloaded operators. In exceptional circum-
stances, you might want to differ from these recommendations; but, in general, you should follow the 
standard patterns.

Operators You Shouldn’t Overload
Some operators should not be overloaded, even though it is permitted. Specifically, the address-of 
operator (operator&) is not particularly useful to overload and leads to confusion if you do because 
you are changing fundamental language behavior (taking addresses of variables) in potentially unex-
pected ways. The entire Standard Library, which uses operator overloading extensively, never over-
loads the address-of operator.

Additionally, you should avoid overloading the binary Boolean operators operator&& and || because 
you lose C++’s short-circuit evaluation rules.

Finally, you should not overload the comma operator (operator,). Yes, you read that correctly: there 
really is a comma operator in C++. It’s also called the sequencing operator, and is used to separate 
two expressions in a single statement, while guaranteeing that they are evaluated left to right. The fol-
lowing snippet demonstrates the comma operator:

int x { 1 };
cout << (++x, 2 * x); // Sets x to 2, and prints 4.

There is rarely a good reason to overload the comma operator.



540 ❘ CHAPTER 15  OverlOading C++ OperatOrs

Summary of Overloadable Operators
The following table lists the operators you can overload, specifies whether they should be methods of 
the class or global functions, summarizes when you should (or should not) overload them, and pro-
vides sample prototypes showing the proper parameter and return value types. Operators that cannot 
be overloaded, such as ., .*, ::, and ?: are not in this list.

This table is a useful reference for the future when you want to write an overloaded operator. 
You’re bound to forget which return type you should use and whether or not the function should 
be a method.

In this table, T is the name of the class for which the overloaded operator is written, and E is a differ-
ent type. Note that the sample prototypes given are not exhaustive; often there are other combina-
tions of T and E possible for a given operator:

OPERATOR NAME OR  

CATEGORY

METHOD OR  

GLOBAL  

FUNCTION

WHEN TO  

OVERLOAD

SAMPLE PROTOTYPES

operator+

operator-

operator*

operator/

operator%

Binary 
arithmetic

Global function 
recommended

Whenever you 
want to provide 
these operations 
for your class

T operator+(const 

T&, const T&);

T operator+(const 

T&, const E&);

operator-

operator+

operator~

Unary 
arithmetic 
and bitwise  
operators

Method 
recommended

Whenever you 
want to provide 
these operations 
for your class

T operator-()  

const;

operator++

operator--

Pre-increment  
and 
pre-decrement

Method 
recommended

Whenever you 
overload += 
and -= taking 
an arithmetic 
argument (int, 
long, . . .)

T& operator++();

operator++

operator--

Post-increment  
and 
post-decrement

Method 
recommended

Whenever you 
overload += 
and -= taking 
an arithmetic 
argument (int, 
long, . . .)

T operator++(int);
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OPERATOR NAME OR  

CATEGORY

METHOD OR  

GLOBAL  

FUNCTION

WHEN TO  

OVERLOAD

SAMPLE PROTOTYPES

operator= Assignment  
operator

Method  
required

Whenever 
your class has 
dynamically 
allocated 
resources, or 
members that are 
references

T& operator= 

(const T&);

operator+=

operator-=

operator*=

operator/=

operator%=

Shorthand  
arithmetic 
operator 
assignments

Method 
recommended

Whenever you 
overload the 
binary arithmetic 
operators and 
your class is not 
designed to 
be immutable

T& operator+= 

(const T&);

T& operator+= 

(const E&);

operator<<

operator>>

operator&

operator|

operator^

Binary bitwise  
operators

Global function 
recommended

Whenever you 
want to provide 
these operations

T operator<< 

(const T&, 

const T&);

T operator<< 

(const T&, 

const E&);

operator<<=

operator>>=

operator&=

operator|=

operator^=

Shorthand  
bitwise  
operator 
assignments

Method 
recommended

Whenever you 
overload the 
binary bitwise 
operators and 
your class is not 
designed to 
be immutable

T& operator<<= 

(const T&);

T& operator<<= 

(const E&);

operator<=> Three-way 
comparison  
operator

Method 
recommended

Whenever you 
want to provide 
comparison 
support for 
your class

auto operator<=> 

(const T&) const;

partial_ordering 

operator<=>(const 

E&) const;

C++20

continues
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OPERATOR NAME OR  

CATEGORY

METHOD OR  

GLOBAL  

FUNCTION

WHEN TO  

OVERLOAD

SAMPLE PROTOTYPES

operator== Binary  
equality  
operator

C++20: 
method 
recommended

Pre-C++20: 
global function 
recommended

Whenever you 
want to provide 
comparison 
support for 
your class

bool operator== 

(const T&) const;

bool operator== 

(const E&) const;

bool operator== 

(const T&, 

const T&);

bool operator== 

(const T&, 

const E&);

operator!= Binary  
inequality  
operator

C++20: 
method 
recommended

Pre-C++20: 
global function 
recommended

C++20: not 
needed as 
the compiler 
automatically 
provides != when 
you provide ==

Pre-C++20: 
Whenever you 
want to provide 
comparison 
support for 
your class

bool operator!= 

(const T&) const;

bool operator!= 

(const E&) const;

bool operator!= 

(const T&, 

const T&);

bool operator!= 

(const T&, 

const E&);

operator<

operator>

operator<=

operator>=

Binary  
comparison  
operators

Global function 
recommended

Whenever you 
want to provide 
these operations

bool operator< 

(const T&, 

const T&);

bool operator< 

(const T&, 

const E&);

operator<<

operator>>

I/O stream  
operators  
(insertion and 
extraction)

Global  
function  
required

Whenever you 
want to provide 
these operations

ostream& operator<< 

(ostream&, 

const T&);

istream& operator>> 

(istream&, T&);

TABLE (continued)
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OPERATOR NAME OR  

CATEGORY

METHOD OR  

GLOBAL  

FUNCTION

WHEN TO  

OVERLOAD

SAMPLE PROTOTYPES

operator! Boolean  
negation  
operator

Method 
recommended

Rarely; use 
bool or void* 
conversion  
instead

bool 

operator!() const;

operator&&

operator||

Binary  
Boolean  
operators

Global  
function 
recommended

Rarely, if ever, 
because you lose 
short-circuiting; 
it’s better to 
overload & and | 
instead, as these 
never short-circuit

bool 

operator&&(const 

T&, const T&);

operator[] Subscripting  
(array index)  
operator

Method  
required

When you  
want to  
support 
subscripting

E& 

operator[](size_t);

const E& operator[]

(size_t) const;

operator() Function  
call operator

Method  
required

When you want 
objects to behave 
like function 
pointers, or for 
multidimensional 
array access, 
since [] can have 
only one index

Return type and 
parameters can vary; 
see later examples in 
this chapter

operator type() Conversion,  
or cast, 
operators 
(separate 
operator for 
each type)

Method  
required

When you want 
to provide 
conversions from 
your class to 
other types

operator double()  

const;

operator ""_x User-
defined literal  
operator

Global function  
required

When you want 
to support user-
defined literals

T operator""_i(long 

double d);

operator new

operator new[]

Memory  
allocation  
routines

Method 
recommended

When you want to 
control memory 
allocation for your 
classes (rarely)

void* operator 

new(size_t size);

void* operator 

new[](size_t size);

continues
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OPERATOR NAME OR  

CATEGORY

METHOD OR  

GLOBAL  

FUNCTION

WHEN TO  

OVERLOAD

SAMPLE PROTOTYPES

operator delete

operator delete[]

Memory  
deallocation  
routines

Method 
recommended

Whenever you 
overload the 
memory allocation 
routines (rarely)

void operator 

delete(void* ptr)  

noexcept;

void operator 

delete[](void* ptr)  

noexcept;

operator*

operator->

Dereferencing  
operators

Method 
recommended 
for operator*

Method 
required for 
operator->

Useful for 
smart pointers

E& operator*()  

const;

E* operator->()  

const;

operator& Address-of  
operator

N/A Never N/A

operator->* Dereference  
pointer-to- 
member

N/A Never N/A

operator, Comma  
operator

N/A Never N/A

Rvalue References
Chapter 9 discusses move semantics and rvalue references. It demonstrates these by defining move 
assignment operators, which are used by the compiler in cases where the source object is a temporary 
object that will be destroyed after the assignment, or an object that is explicitly moved from using 
std::move(). The normal assignment operator from the preceding table has the following prototype:

T& operator=(const T&);

The move assignment operator has almost the same prototype, but uses an rvalue reference. It modi-
fies the argument so it cannot be passed as const. See Chapter 9 for details.

T& operator=(T&&);

The preceding table does not include sample prototypes with rvalue references. However, for most 
operators it can make sense to write both a version using normal lvalue references and a version using 
rvalue references. Whether or not it does make sense depends on implementation details of your class. 
The operator= is one example from Chapter 9. Another example is operator+ to prevent unneces-
sary memory allocations. The std::string class from the Standard Library, for example, implements 
an operator+ using rvalue references as follows (simplified):

string operator+(string&& lhs, string&& rhs);

TABLE (continued)



Overview of Operator Overloading ❘ 545

The implementation of this operator reuses memory of one of the arguments because they are being 
passed as rvalue references, meaning both are temporary objects that will be destroyed when this 
operator+ is finished. The implementation of the preceding operator+ has the following effect 
depending on the size and the capacity of both operands:

return move(lhs.append(rhs));

or

return move(rhs.insert(0, lhs));

In fact, string defines several operator+ overloads accepting two strings as arguments and differ-
ent combinations of lvalue and rvalue references. Here is a list (simplified):

string operator+(const string& lhs, const string& rhs); // No memory reuse.
string operator+(string&& lhs, const string& rhs); // Can reuse memory of lhs.
string operator+(const string& lhs, string&& rhs); // Can reuse memory of rhs.
string operator+(string&& lhs, string&& rhs); // Can reuse memory of lhs or rhs.

Reusing memory of one of the rvalue reference arguments is implemented in the same way as it is 
explained for move assignment operators in Chapter 9.

Precedence and Associativity
In statements containing multiple operators, the precedence of the operators is used to decide which 
operators need to be executed before other operators. For example, * and / are always executed 
before + and -.

The associativity can be either left-to-right or right-to-left and specifies in which order operators of 
the same precedence are executed.

The following table lists all available C++ operators, including those that you cannot overload, and 
lists their precedence and associativity. Operators with a lower precedence number are executed 
before operators with a higher precedence number. In the table, T represents a type, while x, y, and z 
represent objects:

PRECEDENCE OPERATOR ASSOCIATIVITY

1 :: Left-to-right

2 x++    x--    x()    x[]    T()    

T{}    .    ->
Left-to-right

3 ++x    --x    +x    -x    !    ~    

*x    &x    (T)

sizeof    co_await    new    delete    

new[]    delete[]

Right-to-left

4 .*    ->* Left-to-right

5 x*y    x/y    x%y Left-to-right

6 x+y    x-y Left-to-right

7 <<    >> Left-to-right

continues
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PRECEDENCE OPERATOR ASSOCIATIVITY

8 <=> Left-to-right

9 <    <=    >    >= Left-to-right

10 ==    != Left-to-right

11 & Left-to-right

12 ^ Left-to-right

13 | Left-to-right

14 && Left-to-right

15 || Left-to-right

16 x?y:z    throw    co_yield

=    +=    -=    *=    /=    %=    <<=    >>=    

&=    ^=    |=

Right-to-left

17 , Left-to-right

Relational Operators
The following set of function templates for relational operators are defined in <utility> in the 
std::rel_ops namespace:

template<class T> bool operator!=(const T& a, const T& b);// Needs operator==
template<class T> bool operator>(const T& a, const T& b); // Needs operator<
template<class T> bool operator<=(const T& a, const T& b);// Needs operator<
template<class T> bool operator>=(const T& a, const T& b);// Needs operator<

These function templates define the operators !=, >, <=, and >= in terms of the == and < operators for 
any class. So, if you implement operator== and < for your class, you get the other relational opera-
tors for free with these templates.

However, there are a lot of problems with this technique. A first problem is that those operators 
might be created for all classes that you use in relational operations, not only for your own class.

A second problem with this technique is that utility templates such as std::greater<T> (discussed 
in Chapter 19, “Function Pointers, Function Objects, and Lambda Expressions”) do not work with 
those automatically generated relational operators.

Yet another problem with these is that implicit conversions won’t work.

Finally, with C++20’s three-way comparison operator and the fact that C++20 has deprecated the 
std::rel_ops namespace, there is no reason at all anymore to still use it. With a single line of code 
to explicitly default the three-way comparison operator, <=>, your class automatically gains support 
for all six comparison operators. See Chapter 9 for details.

TABLE (continued)
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WARNING Do not use std::rel_ops! Instead, just explicitly default or  
implement operator<=> for your classes.

OVERLOADING THE ARITHMETIC OPERATORS

Chapter 9 shows how to write the binary arithmetic operators and the shorthand arithmetic assign-
ment operators, but it does not cover how to overload the other arithmetic operators.

Overloading Unary Minus and Unary Plus
C++ has several unary arithmetic operators. Two of these are unary minus and unary plus. Here is an 
example of these operators using ints:

int i, j { 4 };
i = -j;    // Unary minus
i = +i;    // Unary plus
j = +(-i); // Apply unary plus to the result of applying unary minus to i.
j = -(-i); // Apply unary minus to the result of applying unary minus to i.

Unary minus negates the operand, while unary plus returns the operand directly. Note that you can 
apply unary plus or unary minus to the result of unary plus or unary minus. These operators don’t 
change the object on which they are called so you should make them const.

Here is an example of a unary operator- as a member function for a SpreadsheetCell class. Unary 
plus is usually an identity operation, so this class doesn’t overload it.

SpreadsheetCell SpreadsheetCell::operator-() const
{
    return SpreadsheetCell { -getValue() };
}

operator- doesn’t change the operand, so this method must construct a new SpreadsheetCell 
with the negated value and return it. Hence, it can’t return a reference. You can use this operator 
as follows:

SpreadsheetCell c1 { 4 };
SpreadsheetCell c3 { -c1 };

Overloading Increment and Decrement
There are four ways to add 1 to a variable:

i = i + 1;
i += 1;
++i;
i++;

The last two forms are called the increment operators. The first form is prefix increment, which adds 
1 to the variable and then returns the newly incremented value for use in the rest of the expression. 
The second form is postfix increment, which also adds 1 to the variable but returns the old (non-
incremented) value for use in the rest of the expression. The decrement operators work similarly.
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The two possible meanings for operator++ and operator-- (prefix and postfix) present a problem 
when you want to overload them. When you write an overloaded operator++, for example, how do 
you specify whether you are overloading the prefix or the postfix version? C++ introduced a hack to 
allow you to make this distinction: the prefix versions of operator++ and operator-- take no argu-
ments, while the postfix versions take one unused argument of type int.

The prototypes of these overloaded operators for the SpreadsheetCell class look like this:

SpreadsheetCell& operator++();   // Prefix
SpreadsheetCell operator++(int); // Postfix
SpreadsheetCell& operator--();   // Prefix
SpreadsheetCell operator--(int); // Postfix

The return value in the prefix forms is the same as the end value of the operand, so prefix increment 
and decrement can return a reference to the object on which they are called. The postfix versions of 
increment and decrement, however, return values that are different from the end values of the oper-
ands, so they cannot return references.

Here are the implementations for operator++:

SpreadsheetCell& SpreadsheetCell::operator++()
{
    set(getValue() + 1);
    return *this;
}
 
SpreadsheetCell SpreadsheetCell::operator++(int)
{
    auto oldCell { *this }; // Save current value
    ++(*this);              // Increment using prefix ++
    return oldCell;         // Return the old value
}

The implementations for operator-- are almost identical. Now you can increment and decrement 
SpreadsheetCell objects to your heart’s content:

SpreadsheetCell c1 { 4 };
SpreadsheetCell c2 { 4 };
c1++;
++c2;

Increment and decrement also work on pointers. When you write classes that are smart pointers, 
for example, you can overload operator++ and operator-- to provide pointer incrementing and 
decrementing.

OVERLOADING THE BITWISE AND BINARY 
LOGICAL OPERATORS

The bitwise operators are similar to the arithmetic operators, and the bitwise shorthand assignment 
operators are similar to the arithmetic shorthand assignment operators. However, they are signifi-
cantly less common, so no examples are shown here. The table in the section “Summary of Overload-
able Operators” shows sample prototypes, so you should be able to implement them easily if the need 
ever arises.
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The logical operators are trickier. It’s not recommended to overload && and ||. These operators don’t 
really apply to individual types: they aggregate results of Boolean expressions. Additionally, when 
overloading these operators, you lose the short-circuit evaluation, because both the left-hand side and 
the right-hand side have to be evaluated before they can be bound to the parameters of your over-
loaded operator && and ||. Thus, it rarely, if ever, makes sense to overload them for specific types.

OVERLOADING THE INSERTION AND EXTRACTION OPERATORS

In C++, you use operators not only for arithmetic operations but also for reading from, and writ-
ing to, streams. For example, when you write ints and strings to cout, you use the insertion 
operator <<:

int number { 10 };
cout << "The number is " << number << endl;

When you read from streams, you use the extraction operator >>:

int number;
string str;
cin >> number >> str;

You can write insertion and extraction operators that work on your classes as well, so that you can 
read and write them like this:

SpreadsheetCell myCell, anotherCell, aThirdCell;
cin >> myCell >> anotherCell >> aThirdCell;
cout << myCell << " " << anotherCell << " " << aThirdCell << endl;

Before you write the insertion and extraction operators, you need to decide how you want to stream 
your class out and how you want to read it in. In this example, the SpreadsheetCells simply read 
and write a single double value.

The object on the left of an extraction or insertion operator is an istream or ostream (such as 
cin or cout), not a SpreadsheetCell object. Because you can’t add a method to the istream or 
ostream classes, you must write the extraction and insertion operators as global functions. The decla-
ration of these functions looks like this:

export std::ostream& operator<<(std::ostream& ostr, const SpreadsheetCell& cell);
export std::istream& operator>>(std::istream& istr, SpreadsheetCell& cell);

By making the insertion operator take a reference to an ostream as its first parameter, you allow 
it to be used for file output streams, string output streams, cout, cerr, and clog. See Chapter 13, 
“Demystifying C++ I/O,” for details on streams. Similarly, by making the extraction operator take a 
reference to an istream, you make it work on file input streams, string input streams, and cin.

The second parameter to operator<< and operator>> is a reference to the SpreadsheetCell 
object that you want to write or read. The insertion operator doesn’t change the SpreadsheetCell it 
writes, so the parameter is of type reference-to-const. The extraction operator, however, modifies the 
SpreadsheetCell object, requiring the parameter to be a reference-to-non-const.
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Both operators return a reference to the stream they were given as their first argument so that calls 
to the operator can be nested. Remember that the operator syntax is shorthand for calling the global 
operator>> or operator<< functions explicitly. Consider this line:

cin >> myCell >> anotherCell >> aThirdCell;

It’s actually shorthand for this line:

operator>>(operator>>(operator>>(cin, myCell), anotherCell), aThirdCell);

As you can see, the return value of the first call to operator>> is used as input to the next call. Thus, 
you must return the stream reference so that it can be used in the next nested call. Otherwise, the 
nesting won’t compile.

Here are the implementations for operator<< and operator>> for the SpreadsheetCell class:

ostream& operator<<(ostream& ostr, const SpreadsheetCell& cell)
{
    ostr << cell.getValue();
    return ostr;
}
 
istream& operator>>(istream& istr, SpreadsheetCell& cell)
{
    double value;
    istr >> value;
    cell.set(value);
    return istr;
}

OVERLOADING THE SUBSCRIPTING OPERATOR

Pretend for a few minutes that you have never heard of the vector or array class templates in the 
Standard Library, and so you have decided to write your own dynamically allocated array class. This 
class would allow you to set and retrieve elements at specified indices and would take care of all 
memory allocation “behind the scenes.” A first stab at the class definition for a dynamically allocated 
array might look like this:

export template <typename T>
class Array
{
    public:
        // Creates an array with a default size that will grow as needed.
        Array();
        virtual ~Array();
 
        // Disallow assignment and pass-by-value.
        Array& operator=(const Array& rhs) = delete;
        Array(const Array& src) = delete;
 
        // Move constructor and move assignment operator.
        Array(Array&& src) noexcept;
        Array& operator=(Array&& rhs) noexcept;
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        // Returns the value at index x. Throws an exception of type
        // out_of_range if index x does not exist in the array.
        const T& getElementAt(size_t x) const;
 
        // Sets the value at index x. If index x is out of range,
        // allocates more space to make it in range.
        void setElementAt(size_t x, const T& value);
 
        // Returns the number of elements in the array.
        size_t getSize() const noexcept;
    private:
        static const size_t AllocSize { 4 };
        void resize(size_t newSize);
        T* m_elements { nullptr };
        size_t m_size { 0 };
};

The interface supports setting and accessing elements. It provides random-access guarantees: a 
client could create an array and set elements 1, 100, and 1000 without worrying about memory 
management.

Here are the implementations of the methods:

template <typename T> Array<T>::Array()
{
    m_size = AllocSize;
    m_elements = new T[m_size] {}; // Elements are zero-initialized! 
}
 
template <typename T> Array<T>::~Array()
{
    delete [] m_elements;
    m_elements = nullptr;
}
 
template <typename T> Array<T>::Array(Array&& src) noexcept
    : m_elements { std::exchange(src.m_elements, nullptr) }
    , m_size { std::exchange(src.m_size, 0) }
{
}
 
template <typename T> Array<T>& Array<T>::operator=(Array<T>&& rhs) noexcept
{
    if (this == &rhs) { return *this; }
    delete[] m_elements;
    m_elements = std::exchange(rhs.m_elements, nullptr);
    m_size = std::exchange(rhs.m_size, 0);
    return *this;
}
 
template <typename T> void Array<T>::resize(size_t newSize)
{
    // Create new bigger array with zero-initialized elements.
    auto newArray { std::make_unique<T[]>(newSize) };
 

continues
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    // The new size is always bigger than the old size (m_size).
    for (size_t i { 0 }; i < m_size; i++) {
        // Move the elements from the old array to the new one.
        newArray[i] = std::move(m_elements[i]);
    }
 
    // Delete the old array, and set the new array.
    delete[] m_elements;
    m_size = newSize;
    m_elements = newArray.release();
}
 
template <typename T> const T& Array<T>::getElementAt(size_t x) const
{
    if (x >= m_size) { throw std::out_of_range { "" }; }
    return m_elements[x];
}
 
template <typename T> void Array<T>::setElementAt(size_t x, const T& val)
{
    if (x >= m_size) {
        // Allocate AllocSize past the element the client wants.
        resize(x + AllocSize);
    }
    m_elements[x] = val;
}
 
template <typename T> size_t Array<T>::getSize() const noexcept
{
    return m_size;
}

Pay some attention to the exception-safe implementation of the resize() method. First, it creates a 
new array of appropriate size and stores it in a unique_ptr. Then, all elements are copied from the 
old array to the new array. If anything goes wrong while copying the values, the unique_ptr cleans 
up the newly allocated memory automatically. Finally, when both the allocation of the new array and 
copying all the elements is successful, that is, no exceptions have been thrown, only then we delete the 
old m_elements array and assign the new array to it. The last line has to use release() to release 
the ownership of the new array from the unique_ptr; otherwise, the array would get destroyed when 
the destructor for the unique_ptr is called.

Here is a small example of how you could use this class:

Array<int> myArray;
for (size_t i { 0 }; i < 10; i++) {
    myArray.setElementAt(i, 100);
}
for (size_t i { 0 }; i < 10; i++) {
    cout << myArray.getElementAt(i) << " ";
}

As you can see, you never have to tell the array how much space you need. It allocates as much space 
as it requires to store the elements you give it.

(continued)
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NOTE Note that this is not a memory efficient implementation. If you create an 
array and only assign a value to the element with index 4000, then it will allocate 
memory for 4000 elements, all zero initialized except for the element with index 
4000.

However, it’s inconvenient to always have to use the setElementAt() and getElementAt() meth-
ods. Moreover, the way these two methods are implemented makes it cumbersome to work with 
multidimensional arrays.

This is where the overloaded subscripting operator comes in. You can add an operator[] to the class 
with the following implementation:

template <typename T> T& Array<T>::operator[](size_t x)
{
    if (x >= m_size) {
        // Allocate AllocSize past the element the client wants.
        resize(x + AllocSize);
    }
    return m_elements[x];
}

With this change, you can use conventional array index notation like this:

Array<int> myArray;
for (size_t i { 0 }; i < 10; i++) {
    myArray[i] = 100;
}
for (size_t i { 0 }; i < 10; i++) {
    cout << myArray[i] << " ";
}

The operator[] can be used to both set and get elements because it returns a reference to the ele-
ment at location x. This reference can be used to assign to that element. When operator[] is used on 
the left-hand side of an assignment statement, the assignment actually changes the value at location x 
in the m_elements array.

With support for operator[], working with multidimensional arrays is now easy; here’s an example:

Array<Array<int>> a;
a[2][4] = 24;
cout << a[2][4] << endl;

Providing Read-Only Access with operator[]
Although it’s sometimes convenient for operator[] to return an element that can serve as an lvalue, 
you don’t always want that behavior. It would be nice to be able to provide read-only access to the 
elements of the array as well, by returning a reference-to-const. To provide for this, you need two 
operator[]s: one returning a reference-to-non-const and one returning a reference-to-const:

T& operator[](size_t x);
const T& operator[](size_t x) const;
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Remember that you can’t overload a method or operator based only on the return type, so the second 
overload returns a reference-to-const and is marked as const.

Here is the implementation of the const operator[]. It throws an exception if the index is out of 
range instead of trying to allocate new space. It doesn’t make sense to allocate new space when you’re 
only trying to read the element value.

template <typename T> const T& Array<T>::operator[](size_t x) const
{
    if (x >= m_size) { throw std::out_of_range { "" }; }
    return m_elements[x];
}

The following code demonstrates these two forms of operator[]:

void printArray(const Array<int>& arr)
{
    for (size_t i { 0 }; i < arr.getSize(); i++) {
        cout << arr[i] << " "; // Calls the const operator[] because arr is
                               // a const object.
    }
    cout << endl;
}
 
int main()
{
    Array<int> myArray;
    for (size_t i { 0 }; i < 10; i++) {
        myArray[i] = 100; // Calls the non-const operator[] because
                          // myArray is a non-const object.
    }
    printArray(myArray);
}

Note that the const operator[] is called in printArray() only because the parameter arr is 
const. If arr were not const, the non-const operator[] would be called, despite that the result is 
not modified.

The const operator[] is called for const objects, so it cannot grow the size of the array. The 
current implementation throws an exception when the given index is out of bounds. An alternative 
would be to return a zero-initialized element instead of throwing. This can be done as follows:

template <typename T> const T& Array<T>::operator[](size_t x) const
{
    if (x >= m_size) {
        static T nullValue { T{} };
        return nullValue;
    }
    return m_elements[x];
}

The nullValue static variable is initialized using the zero-initialization syntax T{}. It’s up to 
you and your specific use case whether you opt for the throwing version or the version returning a 
null value.
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NOTE Zero-initialization constructs objects with the default constructor and ini-
tializes primitive integer types (such as char, int, and so on) to zero, primitive 
floating-point types to 0.0, and pointer types to nullptr.

Non-integral Array Indices
It is a natural extension of the paradigm of “indexing” into a collection to provide a key of some 
sort; a vector (or in general, any linear array) is a special case where the “key” is just a position in 
the array. Think of the argument of operator[] as providing a mapping between two domains: the 
domain of keys and the domain of values. Thus, you can write an operator[] that uses any type as 
its index. This type does not need to be an integer type. This is done for the Standard Library associa-
tive containers, like std::map, which are discussed in Chapter 18, “Standard Library Containers.”

For example, you could create a so-called associative array in which you use string keys instead of 
integral indices. The operator[] for such a class would accept a string, or better yet string_view, 
as an argument. Implementing such a class is an exercise for you at the end of this chapter.

NOTE You cannot overload the subscripting operator to take more than one 
parameter. If you want to provide subscripting on more than one index, you can 
use the function call operator explained in the next section.

OVERLOADING THE FUNCTION CALL OPERATOR

C++ allows you to overload the function call operator, written as operator(). If you write an oper-
ator() for your class, you can use objects of that class as if they were function pointers. An object of 
a class with a function call operator is called a function object, or functor, for short. You can over-
load this operator only as a non-static method in a class. Here is an example of a simple class with 
an overloaded operator() and a class method with the same behavior:

class FunctionObject
{
    public:
        int operator() (int param); // Function call operator
        int doSquare(int param);    // Normal method
};
 
// Implementation of overloaded function call operator
int FunctionObject::operator() (int param)
{
    return doSquare(param);
}
 

continues
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// Implementation of normal method
int FunctionObject::doSquare(int param)
{
    return param * param;
}

Here is an example of code that uses the function call operator, contrasted with the call to a normal 
method of the class:

int x { 3 }, xSquared, xSquaredAgain;
FunctionObject square;
xSquared = square(x);               // Call the function call operator.
xSquaredAgain = square.doSquare(x); // Call the normal method.

At first, the function call operator probably seems a little strange. Why would you want to write a 
special method for a class to make objects of the class look like function pointers? Why wouldn’t you 
just write a global function or a standard method of a class?

The advantage of function objects over standard methods of objects is simple: these objects can some-
times masquerade as function pointers; that is, you can pass function objects as callback functions to 
other functions. This is discussed in more detail in Chapter 19.

The advantages of function objects over global functions are more intricate. There are two 
main benefits:

➤➤ Objects can retain information in their data members between repeated calls to their function 
call operators. For example, a function object might be used to keep a running sum of num-
bers collected from each call to the function call operator.

➤➤ You can customize the behavior of a function object by setting data members. For example, 
you could write a function object to compare an argument to the function call operator 
against a data member. This data member could be configurable so that the object could be 
customized for whatever comparison you want.

Of course, you could implement either of the preceding benefits with global or static variables. 
However, function objects provide a cleaner way to do it, and besides, using global or static vari-
ables should be avoided and can cause problems in a multithreaded application. The true benefits of 
function objects are demonstrated with the Standard Library in Chapter 20, “Mastering Standard 
Library Algorithms.”

By following the normal method overloading rules, you can write as many operator()s for your 
classes as you want. For example, you could add an operator() to the FunctionObject class that 
takes an std::string_view:

int operator() (int param);
void operator() (string_view str);

The function call operator can also be used to provide subscripting for multidimensional arrays.  
Simply write an operator() that behaves like operator[] but allows for more than one index. The 
only minor annoyance with this technique is that you have to use () to index instead of [], as in 
myArray(3,4)=6;.

(continued)
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OVERLOADING THE DEREFERENCING OPERATORS

You can overload three dereferencing operators: *, ->, and ->*. Ignoring ->* for the moment (I’ll 
come back to it later), consider the built-in meanings of * and ->. The * operator dereferences a 
pointer to give you direct access to its value, while -> is shorthand for a * dereference followed by a . 
member selection. The following code shows the equivalences:

SpreadsheetCell* cell { new SpreadsheetCell };
(*cell).set(5); // Dereference plus member selection.
cell->set(5);   // Shorthand arrow dereference and member selection together.

You can overload the dereferencing operators for your classes to make objects of the classes behave 
like pointers. The main use of this capability is for implementing smart pointers, introduced in 
Chapter 7, “Memory Management.” It is also useful for iterators, which the Standard Library uses 
extensively. Iterators are discussed in Chapter 17, “Understanding Iterators and the Ranges Library.” 
This chapter teaches you the basic mechanics for overloading the relevant operators in the context of 
a simple smart pointer class template.

WARNING C++ has two standard smart pointers called std::unique_ptr and 
shared_ptr. You should use these standard smart pointers instead of writing your 
own. The example here is given only to demonstrate how to write dereferencing 
operators.

Here is an example of a smart pointer class template definition, without the dereferencing operators 
filled in yet:

export template <typename T> class Pointer
{
    public:
        Pointer(T* ptr) : m_ptr { ptr } {}
        virtual ~Pointer()
        {
            delete m_ptr;
            m_ptr = nullptr;
        }
        // Prevent assignment and pass by value.
        Pointer(const Pointer& src) = delete;
        Pointer& operator=(const Pointer& rhs) = delete;
 
        // Dereferencing operators will go here.
    private:
        T* m_ptr { nullptr };
};

This smart pointer is about as simple as you can get. All it does is store a dumb raw pointer, and the 
storage pointed to by the pointer is deleted when the smart pointer is destroyed. The implementation 
is equally simple: the constructor takes a raw pointer, which is stored as the only data member in the 
class. The destructor frees the storage referenced by the pointer.



558 ❘ CHAPTER 15  OverlOading C++ OperatOrs

You want to be able to use the smart pointer class template like this:

Pointer<int> smartInt { new int };
*smartInt = 5; // Dereference the smart pointer.
cout << *smartInt << endl;
 
Pointer<SpreadsheetCell> smartCell { new SpreadsheetCell };
smartCell->set(5); // Dereference and member select the set() method.
cout << smartCell->getValue() << endl;

As you can see from this example, you have to provide implementations of operator* and opera-
tor-> for this class. These are implemented in the next two sections.

WARNING You should rarely, if ever, write an implementation of just one of 
operator* and operator->. You should almost always write both operators 
together. It would confuse the users of your class if you failed to provide both.

Implementing operator*
When you dereference a pointer, you expect to be able to access the memory to which the pointer 
points. If that memory contains a simple type such as an int, you should be able to change its value 
directly. If the memory contains a more complicated type, such as an object, you should be able to 
access its data members or methods with the . operator.

To provide these semantics, you should return a reference from operator*. For the Pointer class 
this is done as follows:

export template <typename T> class Pointer
{
    public:
        // Omitted for brevity
        T& operator*() { return *m_ptr; }
        const T& operator*() const { return *m_ptr; }
        // Omitted for brevity
};

As you can see, operator* returns a reference to the object or variable to which the underlying raw 
pointer points. As with overloading the subscripting operators, it’s useful to provide both const and 
non-const versions of the method, which return a reference-to-const and a reference-to-non-const, 
respectively.

Implementing operator–>
The arrow operator is a bit trickier. The result of applying the arrow operator should be a member or 
method of an object. However, to implement it like that, you would have to be able to implement the 
equivalent of operator* followed by operator.; C++ doesn’t allow you to overload operator. for 
good reason: it’s impossible to write a single prototype that allows you to capture any possible mem-
ber or method selection. Therefore, C++ treats operator-> as a special case. Consider this line:

smartCell->set(5);
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C++ translates this to the following:

(smartCell.operator->())->set(5);

As you can see, C++ applies another operator-> to whatever you return from your overloaded 
operator->. Therefore, you must return a pointer, like this:

export template <typename T> class Pointer
{
    public:
        // Omitted for brevity
        T* operator->() { return m_ptr; }
        const T* operator->() const { return m_ptr; }
        // Omitted for brevity
};

You may find it confusing that operator* and operator-> are asymmetric, but once you see them a 
few times, you’ll get used to it.

What in the World Are operator.* and operator–>*?
It’s perfectly legitimate in C++ to take the address of class data members and methods to obtain 
pointers to them. However, you can’t access a non-static data member or call a non-static method 
without an object. The whole point of class data members and methods is that they exist on a per-
object basis. Thus, when you want to call the method or access the data member via the pointer, you 
must dereference the pointer in the context of an object. The syntax details for using operator.* and 
->* is deferred until Chapter 19, as it requires knowledge of how to define function pointers.

C++ does not allow you to overload operator.* (just as you can’t overload operator.), but you 
could overload operator->*. However, it is tricky, and, given that most C++ programmers don’t 
even know that you can access methods and data members through pointers, it’s probably not worth 
the trouble. The shared_ptr smart pointer in the Standard Library, for example, does not overload 
operator->*.

WRITING CONVERSION OPERATORS

Going back to the SpreadsheetCell example, consider these two lines of code:

SpreadsheetCell cell { 1.23 };
double d1 { cell }; // DOES NOT COMPILE!

A SpreadsheetCell contains a double representation, so it seems logical that you could assign it 
to a double variable. Well, you can’t. The compiler tells you that it doesn’t know how to convert a 
SpreadsheetCell to a double. You might be tempted to try forcing the compiler to do what you 
want, like this:

double d1 { (double)cell }; // STILL DOES NOT COMPILE!

First, the preceding code still doesn’t compile because the compiler still doesn’t know how to convert 
the SpreadsheetCell to a double. It already knew from the first line what you wanted it to do, and 
it would do it if it could. Second, it’s a bad idea in general to add gratuitous casts to your program.
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If you want to allow this kind of conversion, you must tell the compiler how to perform it.  
Specifically, you can write a conversion operator to convert SpreadsheetCells to doubles. The 
prototype looks like this:

operator double() const;

The name of the function is operator double. It has no return type because the return type is  
specified by the name of the operator: double. It is const because it doesn’t change the object on 
which it is called. The implementation looks like this:

SpreadsheetCell::operator double() const
{
    return getValue();
}

That’s all you need to do to write a conversion operator from SpreadsheetCell to double. Now the 
compiler accepts the following lines and does the right thing at run time:

SpreadsheetCell cell { 1.23 };
double d1 { cell }; // Works as expected

You can write conversion operators for any type with this same syntax. For example, here is an 
std::string conversion operator for SpreadsheetCell:

SpreadsheetCell::operator std::string() const
{
    return doubleToString(getValue());
}

Now you can convert a SpreadsheetCell to a string. However, due to the constructors provided 
by string, the following does not work:

string str { cell };

Instead, you can either use normal assignment syntax instead of uniform initialization, or use an 
explicit static_cast() as follows:

string str1 = cell;
string str2 { static_cast<string>(cell) };

Operator auto
Instead of explicitly specifying the type that a conversion operator returns, you can specify auto  
and let the compiler deduce it for you. For example, the double conversion operator of  
SpreadsheetCell could be written as follows:

operator auto() const { return getValue(); }

There is one caveat, the implementation of methods with auto return type deduction must be visible 
to users of the class. Hence, this example puts the implementation directly in the class definition.

Also, remember from Chapter 1 that auto strips away reference and const qualifiers. So, if your 
operator auto returns a reference to a type T, then the deduced type will be T returned by value, 
resulting in a copy being made. If needed, you can explicitly add reference and const qualifiers; here’s 
an example:

operator const auto&() const { /* ... */ }
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Solving Ambiguity Problems with Explicit 
Conversion Operators

Writing the double conversion operator for the SpreadsheetCell object introduces an ambiguity 
problem. Consider this line:

SpreadsheetCell cell { 6.6 };
double d1 { cell + 3.3 }; // DOES NOT COMPILE IF YOU DEFINE operator double()

This line now fails to compile. It worked before you wrote operator double(), so what’s the 
problem now? The issue is that the compiler doesn’t know if it should convert cell to a double with 
operator double() and perform double addition, or convert 3.3 to a SpreadsheetCell with the 
double constructor and perform SpreadsheetCell addition. Before you wrote operator double(), 
the compiler had only one choice: convert 3.3 to a SpreadsheetCell with the double constructor 
and perform SpreadsheetCell addition. However, now the compiler could do either. It doesn’t want 
to make a choice you might not like, so it refuses to make any choice at all.

The usual pre-C++11 solution to this conundrum is to make the constructor in question explicit  
so that the automatic conversion using that constructor is prevented (see Chapter 8). However, you 
don’t want that constructor to be explicit because you generally like the automatic conversion 
of doubles to SpreadsheetCells. Since C++11, you can solve this problem by making the double 
conversion operator explicit instead of the constructor:

explicit operator double() const;

With this change the following line compiles fine:

double d1 { cell + 3.3 };  // 9.9

Conversions for Boolean Expressions
Sometimes it is useful to be able to use objects in Boolean expressions. For example, programmers 
often use pointers in conditional statements like this:

if (ptr != nullptr) { /* Perform some dereferencing action. */ }

Sometimes they write shorthand conditions such as this:

if (ptr) { /* Perform some dereferencing action. */ }

Other times, you see code as follows:

if (!ptr) { /* Do something. */ }

Currently, none of the preceding expressions compiles with the Pointer smart pointer class template 
defined earlier. However, you can add a conversion operator to the class to convert it to a pointer 
type. Then, the comparisons to nullptr, as well as the object alone in an if statement, will trig-
ger the conversion to the pointer type. The usual pointer type for the conversion operator is void*, 
because that’s a pointer type with which you cannot do much except test it in Boolean expressions. 
Here is the implementation:

operator void*() const { return m_ptr; }
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Now the following code compiles and does what you expect:

void process(Pointer<SpreadsheetCell>& p)
{
    if (p != nullptr) { cout << "not nullptr" << endl; }
    if (p != NULL) { cout << "not NULL" << endl; }
    if (p) { cout << "not nullptr" << endl; }
    if (!p) { cout << "nullptr" << endl; }
}
 
int main()
{
    Pointer<SpreadsheetCell> smartCell { nullptr };
    process(smartCell);
    cout << endl;
 
    Pointer<SpreadsheetCell> anotherSmartCell { new SpreadsheetCell { 5.0 } };
    process(anotherSmartCell);
}

The output is as follows:

nullptr
 
not nullptr
not NULL
not nullptr

Another alternative is to overload operator bool() as follows instead of operator void*(). After 
all, you’re using the object in a Boolean expression; why not convert it directly to a bool?

operator bool() const { return m_ptr != nullptr; }

The following comparisons still work:

if (p != NULL) { cout << "not NULL" << endl; }
if (p) { cout << "not nullptr" << endl; }
if (!p) { cout << "nullptr" << endl; }

However, with operator bool(), the following comparison with nullptr results in a compila-
tion error:

if (p != nullptr) { cout << "not nullptr" << endl; }  // Error

This is because nullptr has its own type called nullptr_t, which is not automatically converted to 
the integer 0 (false). The compiler cannot find an operator!= that takes a Pointer object and a 
nullptr_t object. You could implement such an operator!= as a friend of the Pointer class:

export template <typename T>
class Pointer
{
    public:
        // Omitted for brevity
        template <typename T>
        friend bool operator!=(const Pointer<T>& lhs, std::nullptr_t rhs);
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        // Omitted for brevity
};
 
export template <typename T>
bool operator!=(const Pointer<T>& lhs, std::nullptr_t rhs)
{
    return lhs.m_ptr != rhs;
}

However, after implementing this operator!=, the following comparison stops working, because the 
compiler no longer knows which operator!= to use:

if (p != NULL) { cout << "not NULL" << endl; }

From this example, you might conclude that the operator bool() technique only seems appropri-
ate for objects that don’t represent pointers and for which conversion to a pointer type really doesn’t 
make sense. Unfortunately, even then, adding a conversion operator to bool presents some other 
unanticipated consequences. C++ applies promotion rules to silently convert bool to int whenever 
the opportunity arises. Therefore, with the operator bool(), the following code compiles and runs:

Pointer<SpreadsheetCell> anotherSmartCell { new SpreadsheetCell { 5.0 } };
int i { anotherSmartCell }; // Converts Pointer to bool to int.

That’s usually not behavior that you expect or desire. To prevent such assignments, you could explic-
itly delete the conversion operators to int, long, long long, and so on. However, this is getting 
messy. So, many programmers prefer operator void*() instead of operator bool().

As you can see, there is a design element to overloading operators. Your decisions about which opera-
tors to overload directly influence the ways in which clients can use your classes.

OVERLOADING THE MEMORY ALLOCATION 
AND DEALLOCATION OPERATORS

C++ gives you the ability to redefine the way memory allocation and deallocation work in your pro-
grams. You can provide this customization both on the global level and the class level. This capability 
is most useful when you are worried about memory fragmentation, which can occur if you allocate 
and deallocate a lot of small objects. For example, instead of going to the default C++ memory allo-
cation each time you need memory, you could write a memory pool allocator that reuses fixed-size 
chunks of memory. This section explains the subtleties of the memory allocation and deallocation 
routines and shows you how to customize them. With these tools, you should be able to write your 
own allocator if the need ever arises.

WARNING Unless you know a lot about memory allocation strategies, attempts 
to overload the memory allocation routines are rarely worth the trouble. Don’t 
overload them just because it sounds like a neat idea. Only do so if you have a gen-
uine requirement and the necessary knowledge.
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How new and delete Really Work
One of the trickiest aspects of C++ is the details of new and delete. Consider this line of code:

SpreadsheetCell* cell { new SpreadsheetCell{} };

The part new SpreadsheetCell() is called the new-expression. It does two things. First, it allocates 
space for the SpreadsheetCell object by making a call to operator new. Second, it calls the con-
structor for the object. Only after the constructor has completed does it return the pointer to you.

delete works analogously. Consider this line of code:

delete cell;

This line is called the delete-expression. It first calls the destructor for cell and then calls operator 
delete to free the memory.

You can overload operator new and operator delete to control memory allocation and dealloca-
tion, but you cannot overload the new-expression or the delete-expression. Thus, you can customize 
the actual memory allocation and deallocation, but not the calls to the constructor and destructor.

The New-Expression and operator new
There are six different forms of the new-expression, each of which has a corresponding operator 
new. Earlier chapters in this book already show four new-expressions: new, new[], new(nothrow), 
and new(nothrow)[]. The following list shows the corresponding four operator new overloads 
defined in <new>:

void* operator new(size_t size);
void* operator new[](size_t size);
void* operator new(size_t size, const std::nothrow_t&) noexcept;
void* operator new[](size_t size, const std::nothrow_t&) noexcept;

There are two special new-expressions that don’t do any allocation but invoke the constructor on an 
already allocated piece of memory. These are called placement new operators (including both single 
and array forms). They allow you to construct an object in pre-allocated memory like this:

void* ptr { allocateMemorySomehow() };
SpreadsheetCell* cell { new (ptr) SpreadsheetCell{} };

The two corresponding operator new overloads for these look as follows; however, the C++  
standard forbids you to overload them:

void* operator new(size_t size, void* p) noexcept;
void* operator new[](size_t size, void* p) noexcept;

This feature is a bit obscure, but it’s important to know that it exists. It can come in handy if you 
want to implement memory pools by reusing memory without freeing it in between. This allows you 
to construct and destruct instances of an object without re-allocating memory for each new instance. 
Chapter 29, “Writing Efficient C++,” gives an example of a memory pool implementation.
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The Delete-Expression and operator delete
There are only two different forms of the delete-expression that you can call: delete, and delete[]; 
there are no nothrow or placement forms. However, there are all six overloads of operator delete. 
Why the asymmetry? The two nothrow and two placement overloads are used only if an exception  
is thrown from a constructor. In that case, the operator delete is called that matches the  
operator new that was used to allocate the memory prior to the constructor call. However, if you 
delete a pointer normally, delete will call either operator delete or operator delete[] (never 
the nothrow or placement forms). Practically, this doesn’t really matter because the C++ standard says 
that throwing an exception from delete (for example, from a destructor called by delete) results 
in undefined behavior. This means delete should never throw an exception anyway, so the nothrow 
version of operator delete is superfluous. Also, placement delete should be a no-op, because the 
memory wasn’t allocated in placement new, so there’s nothing to free.

Here are the prototypes for the six operator delete overloads corresponding to the six operator 
new overloads:

void operator delete(void* ptr) noexcept;
void operator delete[](void* ptr) noexcept;
void operator delete(void* ptr, const std::nothrow_t&) noexcept;
void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
void operator delete(void* ptr, void*) noexcept;
void operator delete[](void* ptr, void*) noexcept;

Overloading operator new and operator delete
You can actually replace the global operator new and operator delete routines if you want. 
These functions are called for every new-expression and delete-expression in the program, unless 
there are more specific routines in individual classes. However, to quote Bjarne Stroustrup, “. . . 
replacing the global operator new and operator delete is not for the fainthearted” (The C++ 
Programming Language, third edition, Addison-Wesley, 1997). I don’t recommend it either!

WARNING If you fail to heed my advice and decide to replace the global oper-
ator new, keep in mind that you cannot put any code in the operator that makes 
a call to new because this will cause an infinite recursion. For example, you cannot 
write a message to the console with cout.

A more useful technique is to overload operator new and operator delete for specific classes. 
These overloaded operators will be called only when you allocate and deallocate objects of that par-
ticular class. Here is an example of a class that overloads the four non-placement forms of operator 
new and operator delete:

export class MemoryDemo
{
    public:

continues
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        virtual ~MemoryDemo() = default;
 
        void* operator new(size_t size);
        void operator delete(void* ptr) noexcept;
 
        void* operator new[](size_t size);
        void operator delete[](void* ptr) noexcept;
 
        void* operator new(size_t size, const std::nothrow_t&) noexcept;
        void operator delete(void* ptr, const std::nothrow_t&) noexcept;
 
        void* operator new[](size_t size, const std::nothrow_t&) noexcept;
        void operator delete[](void* ptr, const std::nothrow_t&) noexcept;
};

Here are implementations of these operators that simply write out a message to the standard output 
and pass the arguments through to calls to the global versions of the operators. Note that nothrow is 
actually a variable of type nothrow_t.

void* MemoryDemo::operator new(size_t size)
{
    cout << "operator new" << endl;
    return ::operator new(size);
}
void MemoryDemo::operator delete(void* ptr) noexcept
{
    cout << "operator delete" << endl;
    ::operator delete(ptr);
}
void* MemoryDemo::operator new[](size_t size)
{
    cout << "operator new[]" << endl;
    return ::operator new[](size);
}
void MemoryDemo::operator delete[](void* ptr) noexcept
{
    cout << "operator delete[]" << endl;
    ::operator delete[](ptr);
}
void* MemoryDemo::operator new(size_t size, const nothrow_t&) noexcept
{
    cout << "operator new nothrow" << endl;
    return ::operator new(size, nothrow);
}
void MemoryDemo::operator delete(void* ptr, const nothrow_t&) noexcept
{
    cout << "operator delete nothrow" << endl;
    ::operator delete(ptr, nothrow);
}
void* MemoryDemo::operator new[](size_t size, const nothrow_t&) noexcept
{
    cout << "operator new[] nothrow" << endl;
    return ::operator new[](size, nothrow);
}

(continued)
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void MemoryDemo::operator delete[](void* ptr, const nothrow_t&) noexcept
{
    cout << "operator delete[] nothrow" << endl;
    ::operator delete[](ptr, nothrow);
}

Here is some code that allocates and frees objects of this class in several ways:

MemoryDemo* mem { new MemoryDemo{} };
delete mem;
mem = new MemoryDemo[10];
delete [] mem;
mem = new (nothrow) MemoryDemo{};
delete mem;
mem = new (nothrow) MemoryDemo[10];
delete [] mem;

Here is the output from running the program:

operator new
operator delete
operator new[]
operator delete[]
operator new nothrow
operator delete
operator new[] nothrow
operator delete[]

These implementations of operator new and operator delete are obviously trivial and not 
particularly useful. They are intended only to give you an idea of the syntax in case you ever want to 
implement nontrivial versions of them.

WARNING Whenever you overload operator new, overload the corresponding 
form of operator delete. Otherwise, memory will be allocated as you specify 
but freed according to the built-in semantics, which may not be compatible.

It might seem overkill to overload all the various forms of operator new. However, it’s generally a 
good idea to do so to prevent inconsistencies in the memory allocations. If you don’t want to provide 
implementations for certain overloads, you can explicitly delete these using =delete to prevent any-
one from using them. See the next section for more information.

WARNING Overload all forms of operator new, or explicitly delete overloads 
that you don’t want to get used, to prevent inconsistencies in the memory alloca-
tions.
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Explicitly Deleting/Defaulting operator new 
and operator delete

Chapter 8 shows how you can explicitly delete or default a constructor or assignment operator. 
Explicitly deleting or defaulting is not limited to constructors and assignment operators. For example, 
the following class deletes operator new and new[], which means that this class cannot be dynami-
cally created using new or new[]:

class MyClass
{
    public:
        void* operator new(size_t size) = delete;
        void* operator new[](size_t size) = delete;
};

Using this class as follows results in compilation errors:

MyClass* p1 { new MyClass };
MyClass* p2 { new MyClass[2] };

Overloading operator new and operator delete with Extra 
Parameters

In addition to overloading the standard forms of operator new, you can write your own versions 
with extra parameters. These extra parameters can be useful for passing various flags or counters 
to your memory allocation routines. For instance, some runtime libraries use this in debug mode to 
provide the filename and line number where an object is allocated, so when there is a memory leak, 
the offending line that did the allocation can be identified.

As an example, here are the prototypes for an additional operator new and operator delete with 
an extra integer parameter for the MemoryDemo class:

void* operator new(size_t size, int extra);
void operator delete(void* ptr, int extra) noexcept;

The implementations are as follows:

void* MemoryDemo::operator new(size_t size, int extra)
{
    cout << "operator new with extra int: " << extra << endl;
    return ::operator new(size);
}
void MemoryDemo::operator delete(void* ptr, int extra) noexcept
{
    cout << "operator delete with extra int: " << extra << endl;
    return ::operator delete(ptr);
}

When you write an overloaded operator new with extra parameters, the compiler automatically 
allows the corresponding new-expression. The extra arguments to new are passed with function call 
syntax (as with nothrow versions). So, you can now write code like this:

MemoryDemo* memp { new(5) MemoryDemo{} };
delete memp;
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The output is as follows:

operator new with extra int: 5
operator delete

When you define an operator new with extra parameters, you should also define the corresponding 
operator delete with the same extra parameters. However, you cannot call this operator delete 
with extra parameters yourself; it will be called only when you use your operator new with extra 
parameters and the constructor of your object throws an exception.

Overloading operator delete with Size of Memory 
as Parameter

An alternate form of operator delete gives you the size of the memory that should be freed as well 
as the pointer. Simply declare the prototype for operator delete with an extra size parameter.

WARNING If your class declares two identical versions of operator delete 
except that one takes the size parameter and the other doesn’t, the version without 
the size parameter will always get called. If you want the version with the size 
parameter to be used, write only that version.

You can replace operator delete with a version that takes a size for any of the versions of  
operator delete independently. Here is the MemoryDemo class definition with the first operator 
delete modified to take the size of the memory to be deleted:

export class MemoryDemo
{
    public:
        // Omitted for brevity 
        void* operator new(size_t size);
        void operator delete(void* ptr, size_t size) noexcept;
        // Omitted for brevity
};

The implementation of this operator delete calls the global operator delete without the size 
parameter because there is no global operator delete that takes the size:

void MemoryDemo::operator delete(void* ptr, size_t size) noexcept
{
    cout << "operator delete with size " << size << endl;
    ::operator delete(ptr);
}

This capability is useful only if you are writing a complicated memory allocation and deallocation 
scheme for your classes.
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OVERLOADING USER-DEFINED LITERAL OPERATORS

C++ has a number of standard literals that you can use in your code. Here are some examples:

➤➤ 'a': Character

➤➤ "character array": Zero-terminated array of characters, C-style string

➤➤ 3.14f: float single-precision floating-point value

➤➤ 0xabc: Hexadecimal value

However, C++ also allows you to define your own literals. User-defined literals should start with an 
underscore. The first character following the underscore must be a lowercase letter. Some examples 
are _i, _s, _km, _miles, and so on.

User-defined literals are implemented by writing literal operators. A literal operator can work in 
raw or cooked mode. In raw mode, your literal operator receives a sequence of characters, while in 
cooked mode your literal operator receives a specific interpreted type. For example, take the C++ 
literal 123. A raw literal operator receives this as a sequence of characters '1', '2', '3'. A cooked 
literal operator receives this as the integer 123. The literal 0x23 is received by a raw operator as the 
characters '0', 'x', '2', '3', while a cooked operator receives the integer 35. A literal such as 3.14 
is received by a raw operator as '3', '.', '1', '4', while a cooked operator receives the floating-
point value 3.14.

Cooked-Mode Literal Operator
A cooked-mode literal operator should have either of the following:

➤➤ To process numeric values: One parameter of type unsigned long long, long double, 
char, wchar_t, char8_t, char16_t, or char32_t

➤➤ To process strings: Two parameters where the first is a character array and the second is the 
length of the character array, for instance, (const char* str, size_t len)

For example, the following implements a cooked literal operator for a user-defined literal operator _i 
to define complex number literals:

complex<long double> operator"" _i(long double d)
{
    return complex<long double> { 0, d };
}

This _i literal operator can be used as follows:

complex<long double> c1 { 9.634_i };
auto c2 { 1.23_i };       // c2 has as type complex<long double>

The next example implements a cooked literal operator for a user-defined literal operator _s to define 
std::string literals:

string operator"" _s(const char* str, size_t len)
{
    return string(str, len);
}
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This literal operator can be used as follows:

string str1 { "Hello World"_s };
auto str2 { "Hello World"_s };   // str2 has as type string

Without the _s literal operator, the auto type deduction would result in const char*:

auto str3 { "Hello World" };     // str3 has as type const char*

Raw-Mode Literal Operator
A raw-mode literal operator requires one parameter of type const char*, a zero-terminated C-style 
string. The following example defines the literal operator _i as a raw literal operator:

complex<long double> operator"" _i(const char* p)
{
    // Implementation omitted; it requires parsing the C-style
    // string and converting it to a complex number.
}

Using this raw-mode literal operator is the same as using the cooked version.

NOTE Raw-mode literal operators work only with non-string literals. For 
example, 1.23_i could be implemented with a raw-mode literal operator, but 
"1.23"_i cannot. The latter one requires a cooked-mode literal with two parame-
ters: the zero-terminated string and its length.

Standard User-Defined Literals
C++ defines the following standard user-defined literals. Note that these standard user-defined literals 
do not start with an underscore:

LITERAL CREATES INSTANCES OF . . . EXAMPLE REQUIRES NAMESPACE

s string auto myString { 

"Hello"s };
string_literals

sv string_view auto myStringView { 

"Hello"sv };
string_view_literals

h, min, s, 
ms, us, ns

chrono::duration 
discussed in Chapter 22

auto myDuration 

{ 42min };
chrono_literals

y, d chrono::year and day 
discussed in Chapter 22

auto thisYear 

{ 2020y };
chrono_literals

i, il, if complex<T> with T equal 
to double, long double, 
float respectively

auto 

myComplexNumber  

{ 1.3i };

complex_literals

C++20
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Technically, all of these are defined in subnamespaces of std::literals, for example 
std::literals::string_literals. However, both string_literals and literals are inline 
namespaces that automatically make their contents available in their parent namespace. Hence, if you 
want to use s string literals, you can use any of the following using directives:

using namespace std;
using namespace std::literals;
using namespace std::string_literals;
using namespace std::literals::string_literals;

SUMMARY

This chapter summarized the rationale for operator overloading and provided examples and  
explanations for overloading the various categories of operators. Ideally, this chapter taught you to 
appreciate the power that it gives you. Throughout this book, operator overloading is used to provide 
abstractions and easy-to-use class interfaces.

Now it’s time to start delving into the C++ Standard Library. The next chapter starts with an over-
view of the functionality provided by the C++ Standard Library, followed by chapters that go deeper 
into specific features of the library.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 15-1: Implement an AssociativeArray class. The class should store a number of 
elements in a vector, where each element consists of a key and a value. The key is always a 
string, while the type of the value can be specified using a template type parameter. Provide 
overloaded subscripting operators so that elements can be retrieved based on their key. Test 
your implementation in your main() function. Note: this exercise is just to practice imple-
menting subscripting operators using non-integral indices. In practice, you should just use the 
std::map class template provided by the Standard Library and discussed in Chapter 18 for 
such an associative array.

Exercise 15-2: Take your Person class implementation from Exercise 13-2, and add imple-
mentations of the insertion and extraction operators to it. Make sure that your extraction 
operator can read back what your insertion operator writes out.

Exercise 15-3: Add a string conversion operator to your solution of Exercise 15-2. The opera-
tor simply returns a string constructed from the first and last name of the person.

Exercise 15-4: Start from your solution of Exercise 15-3, and add a user-defined literal opera-
tor _p that constructs a Person from a string literal. It should support spaces in last names, 
but not in first names. For example, "Peter Van Weert"_p should result in a Person object 
with first name Peter and last name Van Weert.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?

➤➤ The coding principles used throughout the Standard Library

➤➤ An overview of the functionality provided by the Standard Library

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

The most important library that you will use as a C++ programmer is the C++ Standard 
Library. As its name implies, this library is part of the C++ standard, so any standards- 
conforming compiler should include it. The Standard Library is not monolithic: it includes 
several disparate components, some of which you have been using already. You may even have 
assumed they were part of the core language. All Standard Library classes and functions are 
declared in the std namespace, or a subnamespace of std.

The heart of the C++ Standard Library is its generic containers and algorithms. Some people 
still call this subset of the library the Standard Template Library, or STL for short, because 
originally it was based on a third-party library called the Standard Template Library, which 
used templates abundantly. However, STL is not a term defined by the C++ standard itself, so 
this book does not use it. The power of the Standard Library is that it provides generic contain-
ers and generic algorithms in such a way that most of the algorithms work on most of the 
containers, no matter what type of data the containers store. Performance is an important 
aspect of the Standard Library. The goal is to make the Standard Library containers and 
algorithms as fast as, or faster than, handwritten code.

http://www.wiley.com/go/proc++5e
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The C++ Standard Library also includes most of the C headers that are part of the C11 standard, but 
with new names. For example, you can access the functionality from the C <stdio.h> header by 
including <cstdio>. The former puts everything in the global namespace, while the latter puts 
everything in the std namespace. Though, technically, the former is allowed to put things in the std 
namespace as well, and the latter is allowed to additionally put things in the global namespace. The 
C11 headers <stdatomic.h>, <stdnoreturn.h>, <threads.h>, and their <c...> equivalents are 
not included in the C++ standard. Furthermore, C++17 has deprecated, and C++20 has removed the 
following C headers:

➤➤ <ccomplex> and <ctgmath>: Replace the use of these with <complex> and/or <cmath>.

➤➤ <ciso646>, <cstdalign>, and <cstdbool>: These headers were useless in C++ as these were 
either empty or defined macros that are keywords in C++.

C headers are not guaranteed to be importable. Use #include instead of import to get access to the 
functionality defined by them.

NOTE The use of any functionality provided by C headers is discouraged in favor 
of true C++ functionality.

A C++ programmer who wants to claim language expertise is expected to be familiar with the Stand-
ard Library. You can save yourself immeasurable time and energy by incorporating Standard Library 
containers and algorithms into your programs instead of writing and debugging your own versions. 
Now is the time to master this Standard Library.

This first chapter on the Standard Library provides a general overview of the available functionality. 
The next few chapters go into more detail on several aspects of the Standard Library, including con-
tainers, iterators, generic algorithms, predefined function object classes, regular expressions, random 
number generation, and much more. Additionally, Chapter 25, “Customizing and Extending the 
Standard Library,” is dedicated to customizing and extending the library.

Despite the depth of material found in this and the following chapters, the Standard Library is too 
large for this book to cover exhaustively. You should read these chapters to learn about the Standard 
Library, but keep in mind that they don’t mention every method and data member that the various 
classes provide or show you the prototypes of every algorithm. Appendix C summarizes all the header 
files in the Standard Library. Consult your favorite Standard Library Reference for a complete refer-
ence of all provided functionality.

CODING PRINCIPLES

The Standard Library makes heavy use of the C++ features called templates and operator overloading.

Use of Templates
Templates are used to allow generic programming. They make it possible to write code that can 
work with all kinds of objects, even objects unknown to the programmer when writing the code. The 
obligation of the programmer writing the template code is to specify the requirements of the classes 
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that define these objects, for example, that they have an operator for comparison or a copy construc-
tor, or whatever is deemed appropriate, and then making sure the code that is written uses only those 
required capabilities. The obligation of the programmer creating the objects is to supply those opera-
tors and methods that the template writer requires.

Unfortunately, many programmers consider templates to be the most difficult part of C++ and, for 
that reason, tend to avoid them. However, even if you never write your own templates, you need 
to understand their syntax and capabilities to use the Standard Library. Templates are described in 
detail in Chapter 12, “Writing Generic Code with Templates.” If you skipped that chapter and are not 
familiar with templates, I suggest you first read Chapter 12 and then come back to learn more about 
the Standard Library.

Use of Operator Overloading
Operator overloading is another feature used extensively by the C++ Standard Library. Chapter 9, 
“Mastering Classes and Objects,” has a whole section devoted to operator overloading. Make sure 
you read that section and understand it before tackling this and subsequent chapters. In addition, 
Chapter 15, “Overloading C++ Operators,” presents much more detail on the subject of operator 
overloading, but those details are not required to understand the following chapters.

OVERVIEW OF THE C++ STANDARD LIBRARY

This section introduces the various components of the Standard Library from a design perspective. 
You will learn what facilities are available for you to use, but you will not learn the coding details. 
Those details are covered in other chapters.

Strings
C++ provides a built-in string class, defined in <string>. Although you may still use C-style strings 
of character arrays, the C++ string class is superior in almost every way. It handles the memory 
management; provides some bounds checking, assignment semantics, and comparisons; and supports 
manipulations such as concatenation, substring extraction, and substring or character replacement.

NOTE Technically, std::string is a type alias for a char instantiation of the 
std::basic_string class template. However, you need not worry about these 
details; you can use string as if it were a bona fide nontemplate class.

The Standard Library also provides a string_view class, defined in <string_view>. It is a  
read-only view of any kind of string representation and can be used as a drop-in replacement for 
const string&, but without the overhead. It never copies strings!

C++ provides support for Unicode and localization. Unicode allows you to write programs that work 
with text in different languages, such as Arabic, Chinese, Japanese, and so on. Locales, defined in 
<locale>, allow you to format data such as numbers and dates according to the rules of a certain 
country or region.



576 ❘ CHAPTER 16  Overview Of the C++ Standard Library

C++20 includes a powerful type-safe string formatting library, accessed through std::format() 
and defined in <format>. The library is extensible to allow you to add support for your own 
custom types.

In case you missed it, Chapter 2, “Working with Strings and String Views,” provides all the details 
of the string and string_view classes and the string formatting library, while Chapter 21, “String 
Localization and Regular Expressions,” discusses Unicode and localization.

Regular Expressions
Regular expressions are available through functionality provided by <regex>. They make it easy to 
perform so-called pattern-matching, often used in text processing. Pattern-matching allows you to 
search special patterns in strings and optionally to replace them with a new pattern. Regular expres-
sions are discussed in Chapter 21.

I/O Streams
C++ includes a model for input and output called streams. The C++ library provides routines for 
reading and writing built-in types from and to files, console/keyboard, and strings. C++ also provides 
the facilities for coding your own routines for reading and writing your own objects. Most of the 
I/O functionality is defined in <fstream>, <iomanip>, <ios>, <iosfwd>, <iostream>, <istream>, 
<ostream>, <sstream>, <streambuf>, and <strstream>. Chapter 1, “A Crash Course in C++ and 
the Standard Library,” reviews the basics of I/O streams, and Chapter 13, “Demystifying C++ I/O,” 
discusses streams in detail.

Smart Pointers
One of the problems faced in robust programming is knowing when to delete an object. There are 
several failures that can happen. A first problem is not deleting the object at all (failing to free the 
storage). These are known as memory leaks, where objects accumulate and take up space but are not 
used. Another problem is where a piece of code deletes the storage while another piece of code is still 
pointing to that storage, resulting in pointers to storage that either is no longer in use or has been 
reallocated for another purpose. These are known as dangling pointers. Yet another problem is when 
one piece of code frees the storage and another piece of code attempts to free the same storage. This is 
known as double deletion. All of these problems tend to result in program failures of some sort. Some 
failures are readily detected and might crash your application; others cause the program to produce 
erroneous results. Most of these errors are difficult to discover and repair.

C++ addresses these problems with smart pointers: unique_ptr, shared_ptr, and weak_ptr, all 
defined in <memory>. These smart pointers are discussed in Chapter 7, “Memory Management.”

Exceptions
The C++ language supports exceptions, which allow functions or methods to pass errors of various 
types up to calling functions or methods. The C++ Standard Library provides a class hierarchy of 
exceptions that you can use in your code as is, or that you can derive from to create your own  
exception types. Most of the exception support is defined in <exception>, <stdexcept>, and  
<system_error>. Chapter 14, “Handling Errors,” covers the details of exceptions and the standard 
exception classes.

C++20
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Numerics Library
The C++ Standard Library provides a collection of mathematical utility classes and functions.

A whole range of common mathematical functions is available, such as abs(), remainder(), fma(), 
exp(), log(), pow(), sqrt(), sin(), atan2(), sinh(), erf(), tgamma(), ceil(), floor(), and 
more. C++17 adds a number of mathematical special functions to work with Legendre polynomials, 
beta functions, elliptic integrals, Bessel functions, cylindrical Neumann functions, and so on. These 
special functions have established names and notations and are often used in mathematical analysis, 
functional analysis, geometry, physics, and other applications. C++20 adds a lerp() function to cal-
culate a linear interpolation or extrapolation: lerp(a,b,t) calculates a+t(b-a). Linear interpolation 
calculates a certain value between given data points, while extrapolation calculates values that are 
either lower or higher than the minimum or maximum data point. All of these functions are defined 
in the <cmath> header.

<numeric> defines gcd() and lcm() that calculate the greatest common divisor and least common 
multiple of two integer types, respectively. C++20 adds midpoint() to calculate the midpoint of two 
values (integers, floating-point numbers, or pointers).

There is a complex number class called complex, defined in <complex>, which provides an abstrac-
tion for working with numbers that contain both real and imaginary components.

The compile-time rational arithmetic library provides a ratio class template, defined in <ratio>. 
This ratio class template can exactly represent any finite rational number defined by a numerator 
and denominator. This library is discussed in Chapter 22, “Date and Time Utilities.”

The Standard Library also contains a class called valarray, defined in <valarray>, which is similar 
to the vector class but is more optimized for high-performance numerical applications. The library 
provides several related classes to represent the concept of vector slices. From these building blocks, it 
is possible to build classes to perform matrix mathematics. There is no built-in matrix class; how-
ever, there are third-party libraries like Boost that include matrix support. The valarray class is not 
further discussed in this book.

C++20 includes a selection of mathematical constants, all defined in <numbers> in the std::numbers 
namespace. The following table shows just a few of the available constants:

CONSTANT DESCRIPTION APPROXIMATION

pi The value of pi (π) 3.141593

inv_pi The inverse of pi 0.318310

sqrt2 The square root of 2 1.414214

e Euler’s number e 2.718282

phi The golden ratio 1.618034

C++20 adds the following functions to work with bits, all defined in <bit>. All of these functions 
require an unsigned integral type as first argument:

C++20
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FUNCTION DESCRIPTION

has_single_bit() Returns true if a given value contains only a single bit, that is, is an 
integral power of two

bit_ceil() Returns the smallest integral power of two greater than or equal to a 
given value

bit_floor() Returns the largest integral power of two smaller than or equal to a given 
value

bit_width() Returns the number of bits needed to store a given value

rotl()

rotr()

Rotates the bits of a given value to the left or right respectively over a 
given number of positions

countl_zero()

countl_one()

Returns the number of consecutive zero or one bits respectively in a given 
value starting from the left, that is, starting with the most-significant bit

countr_zero()

countr_one()

Returns the number of consecutive zero or one bits, respectively, in 
a given value starting from the right, that is, starting with the least-
significant bit

popcount() Returns the number of one bits in a given value

Here are a few examples:

cout << popcount(0b10101010u) << endl;            // 4 

uint8_t value { 0b11101011u };
cout << countl_one(value) << endl;                // 3
cout << countr_one(value) << endl;                // 2 

value = 0b10001000u;
cout << format("{:08b}", rotl(value, 2)) << endl; // 00100010 

value = 0b00001011u;
cout << format("bit_ceil({0:08b} = {0}) = {1:08b} = {1}",
    value, bit_ceil(value)) << endl;  // bit_ceil(00001011 = 11) = 00010000 = 16
cout << format("bit_floor({0:08b} = {0}) = {1:08b} = {1}",
    value, bit_floor(value)) << endl; // bit_floor(00001011 = 11) = 00001000 = 8

C++20 also adds the following comparison functions: std::cmp_equal(), cmp_not_equal(),  
cmp_less(), cmp_less_equal(), cmp_greater(), and cmp_greater_equal(), all defined in 
<utility>. These perform proper comparisons of two integers and are safe to use on mixed signed 
and unsigned comparisons.

For example, the following code compares the signed value -1 with the unsigned value 0u. The output 
is 1 (= true), because the -1 is first converted to an unsigned integer and hence becomes a big number 
such as 4,294,967,295, which is definitely greater than 0:

cout << (-1 > 0u) << endl;             // 1 (= true)
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Use cmp_greater() to get the correct output:

cout << cmp_greater(-1, 0u) << endl;   // 0 (= false)

Time and Date Utilities
C++ includes the chrono library, defined in <chrono>. This library makes it easy to work with time, 
for example, to time certain durations, or to perform actions based on timing. C++20 adds support 
for time zones, including functionality to convert times between different time zones, and adds the 
concept of calendars to work with dates. The <ctime> header provides a number of C-style time and 
date utilities.

Chapter 22 discusses the time and date utilities in detail.

Random Numbers
C++ already has support for generating pseudo-random numbers for a long time with the srand() 
and rand() functions. However, those functions provide only basic random numbers. For example, 
you cannot change the distribution of the generated random numbers.

Since C++11, a random number library has been added to the standard, which is much more power-
ful. The new library is defined in <random> and comes with random number engines, random number 
engine adapters, and random number distributions. All of these can be used to give you random 
numbers more suited to your problem domain, such as normal distributions, negative exponential 
distributions, and so on.

Consult Chapter 23, “Random Number Facilities,” for details on this library.

Initializer Lists
Initializer lists are defined in <initializer_list>. They make it easy to write functions that can 
accept a variable number of arguments and are discussed in Chapter 1. Here is a reminder of how 
they work:

int makeSum(initializer_list<int> values)
{
    int total { 0 };
    for (int value : values) { total += value; }
    return total;
} 
int a { makeSum({ 1, 2, 3 }) };
int b { makeSum({ 10, 20, 30, 40, 50, 60 }) };

Pair and Tuple
<utility> defines the pair class template, which can store two elements of possibly different types. 
This is known as storing heterogeneous elements. All Standard Library containers discussed further 
in this chapter store homogeneous elements, meaning that all the elements in the container must have 
the same type. A pair allows you to store exactly two elements of completely unrelated types in one 
object. The pair class template is introduced in Chapter 1.
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tuple, defined in <tuple>, is a generalization of pair. It is a sequence with a fixed size that can have 
heterogeneous elements. The number and type of elements for a tuple instantiation is fixed at com-
pile time. Tuples are discussed in Chapter 24.

Vocabulary Types
C++ supports the following so-called vocabulary types:

➤➤ optional, defined in <optional>, holds a value of a specific type or nothing. It can be used 
for class data members, function parameters, return types of a function, and so on, if you 
want to allow for values to be optional. It is introduced in Chapter 1.

➤➤ variant, defined in <variant>, can hold a single value of one of a given set of types. This is 
discussed in Chapter 24, “Additional Library Utilities.”

➤➤ any, defined in <any>, is a class that can contain a single value of any type. This is discussed 
in Chapter 24.

Function Objects
A class that implements a function call operator is called a function object. Function objects can, 
for example, be used as predicates for certain Standard Library algorithms. <functional> defines 
a number of predefined function objects and supports creating new function objects based on 
existing ones.

Function objects are discussed in detail in Chapter 19, “Function Pointers, Function Objects, and 
Lambda Expressions.”

Filesystem
Everything for the filesystem support library is defined in <filesystem> and lives in the 
std::filesystem namespace. It allows you to write portable code to work with a filesystem. You 
can use it for querying whether something is a directory or a file, iterating over the contents of a 
directory, manipulating paths, and retrieving information about files such as their size, extension, 
creation time, and so on. This filesystem support library is discussed in Chapter 13.

Multithreading
All major CPU vendors are selling processors with multiple cores. They are being used for everything 
from servers to consumer computers and even smartphones. If you want your software to take advan-
tage of all these cores, then you need to write multithreaded code. The Standard Library provides 
a couple of basic building blocks for writing such code. Individual threads can be created using the 
thread class from <thread>. C++20 adds jthread to the library, a thread that can be cancelled, and 
that automatically performs a so-called join operation when it is destructed.

In multithreaded code you need to take care that several threads are not reading and writing to the 
same piece of data at the same time, because that will cause so-called data races. To prevent this, you 
can use atomics, defined in <atomic>, which give you thread-safe atomic access to a piece of data. 
Other thread synchronization mechanisms are provided by <condition_variable> and <mutex>. 
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C++20 adds support for additional synchronization primitives: semaphores (<semaphore>), latches 
(<latch>), and barriers (<barrier>).

If you just need to calculate something, possibly on a different thread, and get the result back with 
proper exception handling, you can use async and future. These are defined in <future> and are 
easier to use than directly using the thread class.

Writing multithreaded code is discussed in detail in Chapter 27, “Multithreaded Programming 
with C++.”

Type Traits
Type traits are defined in <type_traits> and provide information about types at compile time. They 
are useful when writing advanced templates and are discussed in Chapter 26, “Advanced Templates.”

Standard Integer Types
The <cstdint> header file defines a number of standard integer types such as int8_t, int64_t, and 
so on. It also includes macros specifying minimum and maximum values of those types. These integer 
types are discussed in the context of writing cross-platform code in Chapter 34, “Developing Cross-
Platform and Cross-Language Applications.”

Standard Library Feature Test Macros
Starting with C++20, so-called feature test macros are available for Standard Library features. These 
allow you to verify whether a certain feature is supported by your Standard Library implementation. 
All these macros start with __cpp_lib_. Here are some examples:

➤➤ __cpp_lib_concepts

➤➤ __cpp_lib_ranges

➤➤ __cpp_lib_scoped_lock

➤➤ __cpp_lib_atomic_float

➤➤ __cpp_lib_constexpr_vector

➤➤ __cpp_lib_constexpr_tuple

➤➤ __cpp_lib_filesystem

➤➤ __cpp_lib_three_way_comparison

➤➤ ...

The value of such a macro is a number representing the month and year when a specific  
feature was added or updated. The date is formatted as YYYYMM. For example, the value of  
__cpp_lib_file system is 201703, i.e., March 2017.

NOTE You will rarely need these feature test macros, unless you are writing very 
generic cross-platform and cross-compiler libraries.

C++20
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<version>
<version> can be used to query for implementation-dependent information about the C++ Standard 
Library that you are using. What exactly your <version> provides depends on your library  
implementation. The following could possibly be exposed:

➤➤ Version number

➤➤ Release date

➤➤ Copyright notice

Additionally, <version> also exposes all Standard Library feature test macros, discussed in the  
previous section.

Source Location
C++20 adds a class called std::source_location, defined in <source_location>. It can be used to 
query information about your source code, such as filename, function name, line number, and column 
number, and replaces the old C-style macros __FILE__ and __LINE__. Example use cases are to pro-
vide source code information when logging messages or when throwing exceptions. Chapter 14 gives 
an example of both these use cases.

Containers
The Standard Library provides implementations of commonly used data structures such as linked 
lists and queues. When you use C++, you should not need to write such data structures again. The 
data structures are implemented using a concept called containers, which store information called 
elements, in a way that implements the data structure (linked list, queue, and so on) appropriately. 
Different data structures have different insertion, deletion, and access behavior and performance 
characteristics. It is important to be familiar with the available data structures so that you can choose 
the most appropriate one for any given task.

All the containers in the Standard Library are class templates, so you can use them to store any type, 
from built-in types such as int and double to your own classes. Each container instance stores 
objects of only one type; that is, they are homogeneous collections. If you need non-fixed-sized  
heterogeneous collections, you can wrap each element in an std::any instance and store those  
any instances in a container. Alternatively, you can store std::variant instances in a container. A 
variant can be used if the number of different required types is limited and known at compile time. 
Both any and variant are available since C++17 and are discussed in Chapter 24. If you needed het-
erogeneous collections before C++17, you could create a class that had multiple derived classes, and 
each derived class could wrap an object of your required type.

NOTE The C++ Standard Library containers are homogeneous: they allow  
elements of only one type in each container.

C++20
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Note that the C++ standard specifies the interface, but not the implementation, of each container 
and algorithm. Thus, different vendors are free to provide different implementations. However, the 
standard also specifies performance requirements as part of the interface, which the implementations 
must meet.

This section provides an overview of the various containers available in the Standard Library.

vector
vector is defined in <vector> and stores a sequence of elements while providing random access to 
these elements. You can think of a vector as an array of elements that grows dynamically as you 
insert elements and additionally provides some bounds checking. Like an array, the elements of a 
vector are stored in contiguous memory.

NOTE A vector in C++ is a synonym for a dynamic array: an array that grows 
and shrinks automatically in response to the number of elements it stores.

vectors provide fast element insertion and deletion (amortized constant time) at the end of the  
vector. Amortized constant time insertion means that most of the time insertions are done in 
constant time O(1) (Chapter 4, “Designing Professional C++ Programs,” explains big-O notation). 
However, sometimes the vector needs to grow in size to accommodate new elements, which has a 
complexity of O(N). On average, this results in O(1) complexity or amortized constant time. Details 
are explained in Chapter 18, “Standard Library Containers.” A vector has slower (linear time) inser-
tion and deletion anywhere else, because the operation must move all the elements “up” or “down” 
by one to make room for the new element or to fill the space left by the deleted element. Like arrays, 
vectors provide fast (constant time) access to any of their elements.

Even though inserting and removing elements in the middle of a vector requires moving other ele-
ments up or down, a vector should be your default container! Often, a vector will be faster than, 
for example, a linked list, even for inserting and removing elements in the middle. The reason is that a 
vector is stored contiguously in memory, while a linked list is scattered around in memory. Comput-
ers are extremely efficient to work with contiguous data, which makes vector operations fast. You 
should only use something like a linked list if a performance profiler (discussed in Chapter 29,  
“Writing Efficient C++”) tells you that it performs better than a vector.

NOTE The vector container should be your default container.

There is a template specialization available for vector<bool> to store Boolean values in a vector. 
This specialization optimizes space allocation for the Boolean elements; however, the standard does 
not specify how an implementation of vector<bool> should optimize space. The difference between 
the vector<bool> specialization and the bitset discussed later in this chapter is that the bitset 
container is of fixed size, while vector<bool> automatically grows or shrinks when needed.
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list
A Standard Library list is a doubly linked list structure and is defined in <list>. Like an array or 
vector, it stores a sequence of elements. However, unlike an array or vector, the elements of a list 
are not necessarily contiguous in memory. Instead, each element in the list specifies where to find 
the next and previous elements in the list (usually via pointers), which is why it’s called a doubly 
linked list.

The performance characteristics of a list are the exact opposite of a vector. They provide slow 
(linear time) element lookup and access, but quick (constant time) insertion and deletion of elements 
once the relevant position has been found. Still, as discussed in the previous section, a vector is usu-
ally faster than a list. Use a profiler (discussed in Chapter 29) to be sure.

forward_list
The forward_list, defined in <forward_list>, is a singly linked list, compared to the list con-
tainer, which is doubly linked. forward_list supports forward iteration only and requires a bit less 
memory than a list. Like lists, forward_lists allow constant-time insertion and deletion any-
where once the relevant position has been found, and there is no fast random access to elements.

deque
The name deque is an abbreviation for a double-ended queue. A deque, defined in <deque>, pro-
vides quick (constant time) element access. It also provides fast (constant time) insertion and deletion 
at both ends of the sequence, but it provides slow (linear time) insertion and deletion in the middle 
of the sequence. The elements of a deque are not stored contiguously in memory, and thus a deque 
might be slower than a vector.

You could use a deque instead of a vector when you need to insert or remove elements from either 
end of the sequence but still need fast access to all elements. However, this requirement does not 
apply to many programming problems; in most cases, a vector is recommended.

array
array, defined in <array>, is a replacement for standard C-style arrays. Sometimes you know the 
exact number of elements in your container up front, and you don’t need the flexibility of a vector 
or a list, which are able to grow dynamically to accommodate new elements. An array is perfect 
for such fixed-sized collections, and it has a bit less overhead compared to a vector; it’s basically 
a thin wrapper around standard C-style arrays. There are a number of advantages in using arrays 
instead of standard C-style arrays: they always know their own size and do not automatically get cast 
to a pointer to avoid certain types of bugs. Also, arrays do not provide insertion or deletion; they 
have a fixed size. The advantage of having a fixed size is that this allows an array to be allocated on 
the stack, rather than always demanding access to the free store as vector does. Access to elements is 
very fast (constant time), just as with vectors.

NOTE The vector, list, forward_list, deque, and array containers are called 
sequential containers because they store a sequence of elements.
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span
A span, introduced in C++20 and defined in <span>, represents a view on a contiguous sequence of 
data. It can be either a read-only view or a view with read/write access to the underlying elements. A 
span allows you to write a single function that can work with data coming from, for example,  
vectors, arrays, C-style arrays, and so on. Chapter 18 discusses span in more detail.

NOTE When writing a function accepting, for example, a const vector<T>&, 
consider accepting a span<const T> instead, so the function can work with views 
and subviews of data sequences coming from vectors, arrays, C-style arrays, and 
more.

queue
The name queue comes directly from the definition of the English word queue, which means a line 
of people or objects. The queue container is defined in <queue> and provides standard first in, first 
out (or FIFO) semantics. A queue is a container in which you insert elements at one end and take 
them out at the other end. Both insertion (amortized constant time) and removal (constant time) of 
elements are quick.

You should use a queue structure when you want to model real-life “first-come, first-served” seman-
tics. For example, consider a bank. As customers arrive at the bank, they get in line. As tellers become 
available, they serve the next customer in line, thus providing “first-come, first-served” behavior. You 
could implement a bank simulation by storing customer objects in a queue. As customers arrive at the 
bank, they are added to the end of the queue. As tellers serve customers, they start with customers at 
the front of the queue.

priority_queue
A priority_queue, also defined in <queue>, provides queue functionality in which each element has 
a priority. Elements are removed from the queue in priority order. In the case of priority ties, the order 
in which elements are removed is undefined. priority_queue insertion and deletion are generally 
slower than simple queue insertion and deletion, because the elements must be reordered to support 
the priority ordering.

You can use priority_queues to model “queues with exceptions.” For example, in the preceding 
bank simulation, suppose that customers with business accounts take priority over regular customers. 
Many real-life banks implement this behavior with two separate lines: one for business customers and 
one for everyone else. Any customers in the business queue are taken before customers in the other 
line. However, banks could also provide this behavior with a single line in which business customers 
move to the front of the line ahead of any non-business customers. In your program, you could use 
a priority_queue in which customers have one of two priorities: business or regular. All business 
customers would be serviced before all regular customers.

C++20
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stack
<stack> defines the stack class, which provides standard first-in, last-out (FILO) semantics, also 
known as last-in, first-out (LIFO). Like a queue, elements are inserted and removed from the con-
tainer. However, in a stack, the most recent element inserted is the first one removed. The name 
stack derives from a visualization of this structure as a stack of objects in which only the top object 
is visible. When you add an object to the stack, you hide all the objects underneath it.

The stack container provides fast (constant time) insertion and removal of elements. You should use 
the stack structure when you want FILO semantics. For example, an error-processing tool might 
want to store errors on a stack so that the most recent error is the first one available for a human 
administrator to read. Processing errors in a FILO order is often useful because newer errors some-
times obviate older ones.

NOTE Technically, the queue, priority_queue, and stack containers are  
container adapters. They are simple interfaces built on top of one of the standard 
sequential containers vector, list, or deque.

set and multiset
The set class template is defined in <set>, and, as the name suggests, it is a set of elements, loosely 
analogous to the notion of a mathematical set: each element is unique, and there is at most one 
instance of the element in the set. One difference between the mathematical concept of set and set as 
implemented in the Standard Library is that in the Standard Library the elements are kept in an order. 
The reason for the order is that an order makes it much faster to verify whether a certain element is 
already in a set. When a client enumerates the elements, they’ll come out in the ordering imposed  
by the type’s operator< or a user-defined comparator. The set provides logarithmic insertion,  
deletion, and lookup. This means that, in theory, insertions and deletions are faster than for a vector 
but slower than for a list; while lookups are faster than for a list, but slower than for a vector. 
As always, use a profiler to make sure which container is faster for your use case.

You could use a set when you need the elements to be in an order, to have equal amounts of inser-
tion/deletion and lookups, and you want to optimize performance for both as much as possible. For 
example, an inventory-tracking program in a busy bookstore might want to use a set to store the 
books. The list of books in stock must be updated whenever books arrive or are sold, so insertion and 
deletion should be quick. Customers also need the ability to look for a specific book, so the program 
should provide fast lookup as well.

Elements in a set cannot be modified, because this could invalidate the order of the elements. If you 
need to change an element, remove that element first and insert a new one with the new value.

NOTE A set could be an option instead of a vector or list if you need order 
and want equal performance for insertion, deletion, and lookup. It could also be 
an option if you want to enforce that there are no duplicate elements.
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Note that a set does not allow duplicate elements. That is, each element in a set must be unique. If 
you want to store duplicate elements, you must use a multiset, also defined in <set>.

map and multimap
<map> defines the map class template, which is an associative array. You can use it as an array in 
which the index can be any type, for example, a string. A map stores key/value pairs and keeps its 
elements in sorted order, based on the keys, not the values. It also provides an operator[], which a 
set does not provide. In most other respects, it is identical to a set. You could use a map when you 
want to associate keys and values. For example, in the preceding bookstore example, you might want 
to store the books in a map where the key is the ISBN number of the book and the value is a Book 
object containing detailed information for that specific book.

A multimap, also defined in <map>, has the same relation to a map as a multiset does to a set.  
Specifically, a multimap is a map that allows duplicate keys.

NOTE The set and map containers are called associative containers because they 
associate keys and values. This term is confusing when applied to sets, because 
in sets the keys are themselves the values. Both containers sort their elements, so 
they are called sorted or ordered associative containers.

Unordered Associative Containers/Hash Tables
The Standard Library supports hash tables, also called unordered associative containers. There are 
four unordered associative containers:

➤➤ unordered_map/unordered_multimap

➤➤ unordered_set/unordered_multiset

The first two containers are defined in <unordered_map>, while the latter two are defined in  
<unordered_set>. Better names would have been hash_map, hash_set, and so on. Unfortunately, 
hash tables were not part of the C++ Standard Library before C++11, which means a lot of third-
party libraries implemented hash tables themselves by using names with “hash” as a prefix, like 
hash_map. Because of this, the C++ standard committee decided to use the prefix “unordered” instead 
of “hash” to avoid name clashes.

These unordered associative containers behave similar to their ordered counterparts. An  
unordered_map is similar to a standard map except that the standard map sorts its elements, while the 
unordered_map doesn’t sort its elements.

Insertion, deletion, and lookup with these unordered associative containers can be done on average in 
constant time. In a worst-case scenario, it will be in linear time. Lookup of elements in an unordered 
container can be much faster than with a normal map or set, especially when there are a lot of ele-
ments in the container.
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Chapter 18 explains how these unordered associative containers work and why they are also called 
hash tables.

bitset
C and C++ programmers commonly store a set of flags in a single int or long, using one bit for  
each flag. They set and access these bits with the bitwise operators: &, |, ^, ~, <<, and >>. The C++ 
Standard Library provides a bitset class that abstracts this bit field manipulation, so you shouldn’t 
need to use the bit manipulation operators anymore.

<bitset> defines the bitset container, but this is not a container in the normal sense, in that it 
does not implement a specific data structure in which you insert and remove elements. A bitset 
has a fixed size. You can think of them as a sequence of Boolean values that you can read and write. 
However, unlike the C-style way of handling bits, the bitset is not limited to the size of an int or 
other elementary data types. Thus, you can have a 40-bit bitset or a 213-bit bitset. The implemen-
tation will use as much storage as it needs to implement N bits when you declare your bitset with 
bitset<N>.

Summary of Standard Library Containers
The following table summarizes the containers provided by the Standard Library. It uses the big-O 
notation introduced in Chapter 4 to present the performance characteristics on a container of N  
elements. An N/A entry in the table means that the operation is not part of the container semantics:

NAME TYPE INSERT  

PERFORMANCE

DELETE  

PERFORMANCE

LOOKUP  

PERFORMANCE

vector Sequential Amortized O(1) 
at the end; O(N) 
otherwise.

O(1) at the 
end; O(N) 
otherwise.

O(1)

When to Use: This should be your default container. Only use another 
container after using a profiler to confirm it is faster than a vector.

list Sequential O(1) at the 
beginning and 
the end, and once 
you are at the 
position where 
you want to insert 
the element.

O(1) at the 
beginning and 
the end, and 
once you are 
at the position 
where you 
want to delete 
the element.

O(1) to 
access the 
first or last 
element; O(N) 
otherwise.

When to Use: Rarely. You should use a vector, unless a profiler tells 
you a list is faster for your use case.
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NAME TYPE INSERT  

PERFORMANCE

DELETE  

PERFORMANCE

LOOKUP  

PERFORMANCE

forward_list Sequential O(1) at the 
beginning, and 
once you are 
at the position 
where you want 
to insert the 
element.

O(1) at the 
beginning, and 
once you are 
at the position 
where you 
want to delete 
the element.

O(1) to access 
the first 
element; O(N) 
otherwise.

When to Use: Rarely. You should use a vector, unless a profiler tells 
you a forward_list is faster for your use case.

deque Sequential O(1) at the 
beginning or end; 
O(N) otherwise.

O(1) at the 
beginning 
or end; O(N) 
otherwise.

O(1)

When to Use: Not usually needed; use a vector instead.

array Sequential N/A N/A O(1)

When to Use: When you need a fixed-size array to replace a standard 
C-style array.

queue Container 
adapter

Depends on 
the underlying 
container; O(1) 
for list and 
deque.

Depends on 
the underlying 
container; O(1) 
for list and 
deque.

N/A

When to Use: When you want a FIFO structure.

priority_queue Container 
adapter

Depends on 
the underlying 
container; 
amortized 
O(log(N)) for 
vector, O(log(N)) 
for deque.

Depends on 
the underlying 
container; 
O(log(N)) for 
vector and 
deque.

N/A

When to Use: When you want a queue with priority.

stack Container 
adapter

Depends on 
the underlying 
container; O(1) 
for list and 
deque, amortized 
O(1) for vector.

Depends on 
the underlying 
container; 
O(1) for list, 
vector, and 
deque.

N/A

When to Use: When you want a FILO/LIFO structure.

continues
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NAME TYPE INSERT  

PERFORMANCE

DELETE  

PERFORMANCE

LOOKUP  

PERFORMANCE

set

multiset

Sorted 
associative

O(log(N)) O(log(N)) O(log(N))

When to Use: When you want a sorted collection of elements with 
equal lookup, insertion, and deletion times. Use a set when you want a 
collection of elements without duplicates.

map

multimap

Sorted 
associative

O(log(N)) O(log(N)) O(log(N))

When to Use: When you want a sorted collection to associate keys with 
values, that is, an associative array, with equal lookup, insertion, and 
deletion times.

unordered_map

unordered_multimap

Unordered 
associative 
/ hash table

Average case 
O(1); worst case 
O(N).

Average case 
O(1); worst 
case O(N).

Average case 
O(1); worst 
case O(N).

When to Use: When you want to associate keys with values with 
equal lookup, insertion, and deletion times, and you don’t require the 
elements to be sorted. Performance can be better than with a normal 
map, but that depends on the elements.

unordered_set

unordered_multiset

Unordered 
associative/
hash table

Average case 
O(1); worst case 
O(N).

Average case 
O(1); worst 
case O(N).

Average case 
O(1); worst 
case O(N).

When to Use: When you want a collection of elements with equal 
lookup, insertion, and deletion times, and you don’t require the 
elements to be sorted. Performance can be better than with a normal 
set, but that depends on the elements.

bitset Special N/A N/A O(1)

When to Use: When you want a collection of flags.

Note that strings are technically containers as well. Thus, some of the algorithms described in the 
material that follows also work on strings.

NOTE vector should be your default container! In practice, insertion and dele-
tion in a vector are often faster than in a list or forward_list. This is because 
of how memory and caches work on modern CPUs and because of the fact that for 
a list or forward_list, you first need to iterate to the position where you want 
to insert or delete an element. Memory for a list or forward_list might be frag-
mented, so iteration is slower than for a vector.

TABLE (continued)
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Algorithms
In addition to containers, the Standard Library provides implementations of many generic algo-
rithms. An algorithm is a strategy for performing a particular task, such as sorting or searching. These 
algorithms are implemented as function templates, so they work on most of the different container 
types. Note that the algorithms are not generally part of the containers. The Standard Library takes 
the approach of separating the data (containers) from the functionality (algorithms). Although this 
approach seems counter to the spirit of object-oriented programming, it is necessary in order to sup-
port generic programming in the Standard Library. The guiding principle of orthogonality maintains 
that algorithms and containers are independent, with (almost) any algorithm working with (almost) 
any container.

NOTE Although the algorithms and containers are theoretically independent, 
some containers provide certain algorithms in the form of class methods because 
the generic algorithms do not perform well on those particular containers. For 
example, sets provide their own find() algorithm that is faster than the generic 
find() algorithm. You should use the container-specific method form of an 
algorithm, if provided, because it is generally more efficient or appropriate for the 
container at hand.

Note that the generic algorithms do not work directly on containers; instead, they either use itera-
tors or work on ranges, both discussed in detail in Chapter 17, “Understanding Iterators and the 
Ranges Library.”

This section gives an overview of what kinds of algorithms are available in the Standard Library 
without going into detail. Chapter 20, “Mastering Standard Library Algorithms,” discusses a selection 
of algorithms with coding examples. For the exact prototypes of all the available algorithms, consult 
your favorite Standard Library reference.

There are more than 100 algorithms in the Standard Library. The following sections divide these  
algorithms into different categories. The algorithms are defined in <algorithm> unless otherwise 
noted. Note that whenever the following algorithms are specified as working on a “sequence” of  
elements, that sequence is presented to the algorithm via iterators.

NOTE When examining the list of algorithms, remember that the Standard 
Library is designed with generality in mind, so it adds generality that might never 
be used but that, if required, would be essential. You may not need every algorithm 
or need to worry about the more obscure parameters that are there for anticipated 
generality. It is important only to be aware of what’s available in case you ever find 
it useful.

Nonmodifying Sequence Algorithms
The nonmodifying algorithms are those that look at a sequence of elements and return some informa-
tion about the elements. As “nonmodifying” algorithms, they cannot change the values of elements 
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or the order of elements within the sequence. This category contains three types of algorithms. The 
following tables briefly summarize the various nonmodifying algorithms. With these algorithms, you 
should rarely need to write a for loop to iterate over a sequence of values.

Search Algorithms
These algorithms do not require the sequence to be sorted. N is the size of the sequence to search in, 
and M is the size of the pattern to find:

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

adjacent_find() Finds the first instance of two consecutive elements 
that are equal to each other or are equivalent to each 
other as specified by a predicate

O(N)

find()

find_if()

Finds the first element that matches a value or causes 
a predicate to return true

O(N)

find_first_of() Like find, but searches for one of several elements 
at the same time

O(N*M)

find_if_not() Finds the first element that causes a predicate to 
return false

O(N)

find_end() Finds the last subsequence in a sequence that 
matches another sequence or whose elements are 
equivalent, as specified by a predicate

O(M*(N-M))

search() Finds the first subsequence in a sequence that 
matches another sequence or whose elements are 
equivalent, as specified by a predicate*

O(N*M)*

search_n() Finds the first instance of n consecutive elements 
that are equal to a given value or relate to that value 
according to a predicate

O(N)

*Since C++17, search() accepts an optional extra parameter to specify the searching algorithm to use (default_
searcher, boyer_moore_searcher, or boyer_moore_horspool_searcher). With the Boyer–Moore searchers, the 
worst-case complexity is O(N+M) when the pattern is not found, and O(N*M) when the pattern is found.

Comparison Algorithms
The following comparison algorithms are provided. None of them requires the source sequences to be 
ordered. All of them have a linear worst-case complexity:

ALGORITHM NAME ALGORITHM SYNOPSIS

equal() Determines whether two sequences are equal by 
checking whether parallel elements are equal or 
match a predicate.
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ALGORITHM NAME ALGORITHM SYNOPSIS

mismatch() Returns the first element in each sequence that 
does not match the element in the same location 
in the other sequence.

lexicographical_compare() Compares two sequences to determine their 
“lexicographical” ordering. This algorithm 
compares each element of the first sequence 
with its equivalent element in the second. If one 
element is less than the other, that sequence is 
lexicographically first. If the elements are equal, 
it compares the next elements in order.

lexicographical_compare_three_way() Compares two sequences to determine their 
“lexicographical” ordering using C++20 three-
way comparisons and returns a comparison 
category type (strong_ordering,  
weak_ordering, or partial_ordering).

Counting Algorithms

ALGORITHM NAME ALGORITHM SYNOPSIS

all_of() Returns true if a given predicate returns true for all the elements in the 
sequence or if the sequence is empty; false otherwise

any_of() Returns true if a given predicate returns true for at least one element in 
the sequence; false otherwise

none_of() Returns true if a given predicate returns false for all the elements in the 
sequence or if the sequence is empty; false otherwise

count()

count_if()

Counts the number of elements matching a value or that cause a predicate 
to return true

Modifying Sequence Algorithms
The modifying algorithms modify some or all of the elements in a sequence. Some of them modify ele-
ments in place so that the original sequence changes. Others copy the results to a different sequence 
so that the original sequence remains unchanged. All of them have a linear worst-case complexity. 
The following table summarizes the modifying algorithms:

ALGORITHM NAME ALGORITHM SYNOPSIS

copy()

copy_backward()

Copies elements from one sequence to another.

C++20

continues
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ALGORITHM NAME ALGORITHM SYNOPSIS

copy_if() Copies elements for which a predicate returns true from one sequence 
to another.

copy_n() Copies n elements from one sequence to another.

fill() Sets all elements in the sequence to a new value.

fill_n() Sets the first n elements in the sequence to a new value.

generate() Calls a specified function to generate a new value for each element in 
the sequence.

generate_n() Calls a specified function to generate a new value for the first n 
elements in the sequence.

move()

move_backward()

Moves elements from one sequence to another using efficient move 
semantics (see Chapter 9).

remove()

remove_if()

remove_copy()

remove_copy_if()

Removes all elements that match a given value or that cause a 
predicate to return true, either in place or by copying the results to a 
different sequence.

replace()

replace_if()

replace_copy()

replace_copy_if()

Replaces all elements matching a value or that cause a predicate to 
return true with a new element, either in place or by copying the 
results to a different sequence.

reverse()

reverse_copy()

Reverses the order of the elements in the sequence, either in place or 
by copying the results to a different sequence.

rotate()

rotate_copy()

Swaps the first and second “halves” of the sequence, either in place or 
by copying the results to a different sequence. The two subsequences 
to be swapped need not be equal in size.

sample() Selects n random elements from the sequence.

shift_left()

shift_right()

Shifts the elements in a sequence left or right by a given number of 
positions. Elements are moved to their new position. Elements that fall 
of either end of the sequence are removed. shift_left() returns an 
iterator to the end of the new sequence; shift_right() returns an 
iterator to the beginning of the new sequence.

C++20

TABLE (continued)
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ALGORITHM NAME ALGORITHM SYNOPSIS

shuffle()

random_shuffle()

Shuffles the sequence by randomly reordering the elements. It is 
possible to specify the properties of the random number generator 
used for shuffling. random_shuffle() is deprecated since C++14, and 
is removed from C++17.

transform() Calls a unary function on each element of a sequence or a binary 
function on parallel elements of two sequences, and stores the results 
in a destination sequence. If the source and destination sequences are 
the same, the transformation happens in-place.

unique()

unique_copy()

Removes consecutive duplicates from the sequence, either in place or 
by copying results to a different sequence.

Operational Algorithms
Operational algorithms execute a function on individual elements of a sequence. There are two opera-
tional algorithms provided. Both have a linear complexity and do not require the source sequence to 
be ordered:

ALGORITHM NAME ALGORITHM SYNOPSIS

for_each() Executes a function on each element in the sequence. The sequence is 
specified with a begin and end iterator.

for_each_n() Similar to for_each() but only processes the first n elements in the 
sequence. The sequence is specified by a begin iterator and a number 
of elements (n).

Swap Algorithms
The C++ Standard Library provides the following swap algorithms:

ALGORITHM NAME ALGORITHM SYNOPSIS

iter_swap()

swap_ranges()

Swaps two elements or sequences of elements.

Partition Algorithms
A sequence is partitioned on a certain predicate, if all elements for which the predicate returns true 
are before all elements for which it returns false. The first element in the sequence that does not sat-
isfy the predicate is called the partition point. The Standard Library provides the following partition 
algorithms:
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ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_partitioned() Returns true if all elements for which a 
predicate returns true are before all elements 
for which it returns false.

Linear

partition() Sorts the sequence such that all elements for 
which a predicate returns true are before all 
elements for which it returns false, without 
preserving the original order of the elements 
within each partition.

Linear

stable_partition() Sorts the sequence such that all elements for 
which a predicate returns true are before 
all elements for which it returns false, while 
preserving the original order of the elements 
within each partition.

Linear logarithmic

partition_copy() Copies elements from one sequence to two 
different sequences. The target sequence is 
selected based on the result of a predicate, 
either true or false.

Linear

partition_point() Returns an iterator such that all elements 
before this iterator return true for a predicate 
and all elements after this iterator return 
false for that predicate.

Logarithmic

Sorting Algorithms
The Standard Library provides several different sorting algorithms with varying performance 
guarantees:

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_sorted()

is_sorted_until()

Checks if a sequence is sorted or which 
subsequence is sorted.

Linear

nth_element() Relocates the nth element of the sequence 
such that the element in the position pointed 
to by nth is the element that would be in that 
position if the whole range were sorted, 
and it rearranges all elements such that all 
elements preceding the nth element are 
less than the new nth element, and the ones 
following it are greater than the new nth 
element.

Linear
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ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

partial_sort()

partial_sort_copy()

Partially sorts the sequence: the first n 
elements (specified by iterators) are sorted; 
the rest are not. They are sorted either in 
place or by copying them to a new sequence.

Linear logarithmic

stable_sort()

sort()

Sorts elements in place, either preserving the 
order of duplicate elements (stable) or not.

Linear logarithmic

Binary Search Algorithms
The following binary search algorithms are normally used on sorted sequences. Technically, they only 
require the sequence to be at least partitioned on the element that is searched for. This could, for 
example, be achieved by applying std::partition(). A sorted sequence also meets this requirement. 
All these algorithms have logarithmic complexity:

ALGORITHM NAME ALGORITHM SYNOPSIS

lower_bound() Finds the first element in a sequence not less than (that is, greater or 
equal to) a given value

upper_bound() Finds the first element in a sequence greater than a given value

equal_range() Returns a pair containing the result of both lower_bound() and 
upper_bound()

binary_search() Returns true if a given value is found in a sequence; false 
otherwise

Set Algorithms
Set algorithms are special modifying algorithms that perform set operations on sequences. They 
are most appropriate on sequences from set containers, but work on sorted sequences from most 
containers:

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

inplace_merge() Merges two sorted sequences in 
place

Linear logarithmic

merge() Merges two sorted sequences by 
copying them to a new sequence

Linear

includes() Determines whether every element 
from one sorted sequence is in 
another sorted sequence

Linear

continues
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ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

set_union()

set_intersection()

set_difference()

set_symmetric_difference()

Performs the specified set operation 
on two sorted sequences, copying 
results to a third sorted sequence

Linear

Heap Algorithms
A heap is a standard data structure in which the elements of an array or sequence are ordered in a 
semi-sorted fashion so that finding the “top” element is quick. For example, a heap data structure is 
typically used to implement a priority_queue. Six algorithms allow you to work with heaps:

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_heap() Checks whether a range of elements is 
a heap

Linear

is_heap_until() Finds the largest subrange in the given 
range of elements that is a heap

Linear

make_heap() Creates a heap from a range of 
elements

Linear

push_heap()

pop_heap()

Adds an element to, or removes an 
element from, a heap

Logarithmic

sort_heap() Converts a heap into a range of 
ascending sorted elements

Linear logarithmic

Minimum/Maximum Algorithms
The following algorithms are provided to find minimum and maximum elements or to clamp values:

ALGORITHM NAME ALGORITHM SYNOPSIS

clamp() Makes sure a value (v) is between a given minimum (lo) and maximum 
(hi). Returns a reference to lo if v < lo; returns a reference to hi if v > hi; 
otherwise returns a reference to v.

min()

max()

Returns the minimum or maximum of two or more values.

TABLE (continued)
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ALGORITHM NAME ALGORITHM SYNOPSIS

minmax() Returns the minimum and maximum of two or more values as a pair.

min_element()

max_element()

Returns the minimum or maximum element in a sequence.

minmax_element() Returns the minimum and maximum element in a sequence as a pair.

Numerical Processing Algorithms
The following numerical processing algorithms are defined in <numeric>. None of them require the 
source sequences to be ordered. All of them have a linear complexity:

ALGORITHM NAME ALGORITHM SYNOPSIS

iota() Fills a sequence with successively incrementing values 
starting with a given value.

adjacent_difference() Generates a new sequence in which each element is the 
difference (or other binary operation) of the second and first 
of each adjacent pair of elements in the source sequence.

partial_sum() Generates a new sequence in which each element is the 
sum (or other binary operation) of an element and all its 
preceding elements in the source sequence.

exclusive_scan()

inclusive_scan()

These are similar to partial_sum(). An inclusive scan is 
identical to a partial sum if the given summation operation 
is associative. However, inclusive_scan() sums in a 
nondeterministic order, while partial_sum() left to right, 
so for nonassociative summation operations the result of 
the former is nondeterministic. The exclusive_scan() 
algorithm also sums in a nondeterministic order.

For inclusive_scan(), the ith element is included in the ith 
sum, just as for partial_sum(). For exclusive_scan(), 
the ith element is not included in the ith sum.

transform_exclusive_scan()

transform_inclusive_scan()

Applies a transformation to each element in a sequence, 
then performs an exclusive/inclusive scan.

accumulate() “Accumulates” the values of all the elements in a sequence. 
The default behavior is to sum the elements, but the caller 
can supply a different binary function instead.

continues
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ALGORITHM NAME ALGORITHM SYNOPSIS

inner_product() Similar to accumulate(), but works on two sequences. This 
algorithm calls a binary function (multiplication by default) 
on parallel elements in the sequences, accumulating the 
result using another binary function (addition by default). 
If the sequences represent mathematical vectors, the 
algorithm calculates the dot product of the vectors.

reduce() Similar to accumulate(), but supports parallel execution. 
The order of evaluation for reduce() is nondeterministic, 
while it’s from left to right for accumulate(). This means 
that the behavior of the former is nondeterministic if 
the given binary operation is not associative or not 
commutative.

transform_reduce() Applies a transformation to each element in a sequence, 
then performs a reduce().

Permutation Algorithms
A permutation of a sequence contains the same elements but in a different order. The following  
algorithms are provided to work with permutations:

ALGORITHM NAME ALGORITHM SYNOPSIS COMPLEXITY

is_permutation() Returns true if the elements in one range are a 
permutation of the elements in another range.

Quadratic

next_permutation()

prev_permutation()

Modifies the sequence by transforming it into its 
“next” or “previous” lexicographical permutation. 
Successive calls to one or the other will permute 
the sequence into all possible permutations of its 
elements, if you start with a properly sorted sequence. 
This algorithm returns false if no more permutations 
exist.

Linear

Choosing an Algorithm
The number and capabilities of the algorithms might overwhelm you at first. It can also be difficult to 
see how to apply them in the beginning. However, now that you have an idea of the available options, 
you are better able to tackle your program designs. The following chapters cover the details of how to 
use these algorithms in your code.

TABLE (continued)
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Ranges Library
C++20 introduces the ranges library, which makes it easier and more elegant to work with sequences 
of elements. Most algorithms discussed in the previous sections have counterparts that work with 
ranges instead of with iterators. Ranges provide nicer and easier to read syntax and eliminate the  
possibility of mismatching begin/end iterators. Additionally, range adapters allow you to lazily  
transform and filter underlying sequences, and range factories are provided to build up ranges.

The ranges library is defined in <ranges> and lives in the std::ranges namespace. Chapter 17  
discuss the ranges library.

What’s Missing from the Standard Library
The Standard Library is powerful, but it’s not perfect. Here are two examples of missing 
functionality:

➤➤ The Standard Library does not guarantee any thread safety for accessing containers simulta-
neously from multiple threads.

➤➤ The Standard Library does not provide any generic tree or graph structures. Although maps 
and sets are generally implemented as balanced binary trees, the Standard Library does 
not expose this implementation in the interface. If you need a tree or graph structure for 
something like writing a parser, you need to implement your own or find an implementation 
in another library.

It is important to keep in mind that the Standard Library is extensible. You can write your own 
containers or algorithms that work with existing algorithms or containers. So, if the Standard Library 
doesn’t provide exactly what you need, consider writing your desired code such that it works with 
the Standard Library. Chapter 25 covers the topic of customizing and extending the Standard Library 
with custom algorithms and custom containers.

SUMMARY

This chapter provided an overview of the C++ Standard Library, which is the most important library 
that you will use in your code. It subsumes the C library and includes additional facilities for strings, 
I/O, error handling, and other tasks. It also includes generic containers, algorithms, and the ranges 
library. The following chapters describe the Standard Library in more detail.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

C++20

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 16-1: The C++ Standard Library provides a whole selection of containers for you to 
choose from. What should be your preferred container and why?

Exercise 16-2: What are the differences between a map and an unordered_map?

Exercise 16-3: What are the so-called vocabulary types provided by the C++ Standard 
Library, and what are their differences?

Exercise 16-4: A self-service restaurant usually has a spring-loaded mechanism containing 
plates. As a customer, you take a plate from the top. When plates are cleaned and ready to 
be used again, they are placed on top of any remaining plates in the mechanism. How would 
you model such a system in C++?

Exercise 16-5: What is a partition?



17
Understanding Iterators 
and the Ranges Library

WHAT’S IN THIS CHAPTER?

➤➤ Details on iterators

➤➤ How to use stream iterators

➤➤ What iterator adapters are, and how to use the standard iterator  
adapters

➤➤ The power of the ranges library consisting of ranges, range-based 
algorithms, projections, views, and factories

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Chapter 16, “Overview of the C++ Standard Library,” introduces the Standard Library, 
describes its basic philosophy, and provides an overview of the provided functionality. This 
chapter begins a more-in-depth tour of the Standard Library by covering the ideas behind 
iterators used throughout a big part of the library. It also discusses the available stream iterators 
and iterator adapters. The second part of the chapter discusses the C++20 ranges library, a 
powerful new addition to the Standard Library that allows for more functional-style program-
ming: you write code that specifies what you want to accomplish instead of how.

http://www.wiley.com/go/proc++5e
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ITERATORS

The Standard Library uses the iterator pattern to provide a generic abstraction for accessing the ele-
ments of a container. Each container provides a container-specific iterator, which is a glorified pointer 
that knows how to iterate over the elements of that specific container, i.e., an iterator supports 
traversing the elements of a container. The different iterators for the various containers adhere to 
standard interfaces defined by the C++ standard. Thus, even though the containers provide different 
functionality, the iterators present a common interface to code that wants to work with elements of 
the containers.

You can think of an iterator as a pointer to a specific element of the container. Like pointers to ele-
ments in an array, iterators can move to the next element with operator++. Similarly, you can usually 
use operator* and operator-> on the iterator to access the actual element or field of the element. 
Some iterators allow comparison with operator== and operator!=, and support operator-- for 
moving to previous elements.

All iterators must be copy constructible, copy assignable, and destructible. Lvalues of iterators must 
be swappable. Different containers provide iterators with slightly different additional capabilities. The 
standard defines six categories of iterators, as summarized in the following table:

ITERATOR CATEGORY OPERATIONS REQUIRED COMMENTS

Input (also 
known as Read)

operator++

operator*

operator->

copy constructor

operator=

operator==

operator!=

Provides read-only access, forward 
only (no operator-- to move 
backward).

Iterators can be assigned, copied, 
and compared for equality.

Output (also 
known as Write)

operator++

operator*

copy constructor

operator=

Provides write-only access, 
forward only.

Iterators can be assigned, but cannot 
be compared for equality.

Specific to output iterators is that 
you can do *iter = value.

Note the absence of operator->.

Provides both prefix and postfix 
operator++.

Forward Capabilities of input iterators, 
plus default constructor

Provides read access, forward only.

Iterators can be assigned, copied, 
and compared for equality.
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ITERATOR CATEGORY OPERATIONS REQUIRED COMMENTS

Bidirectional Capabilities of forward 
iterators, plus

operator--

Provides everything a forward 
iterator provides.

Iterators can also move backward to 
a previous element.

Provides both prefix and postfix 
operator--.

Random access Bidirectional capability, plus the 
following:

operator+

operator-

operator+=

operator-=

operator<

operator>

operator<=

operator>=

operator[]

Equivalent to raw pointers: support 
pointer arithmetic, array index 
syntax, and all forms of comparison.

Contiguous Random-access capability and 
logically adjacent elements of 
the container must be physically 
adjacent in memory

Examples of this are iterators 
of std::array, vector (not 
vector<bool>), string, and 
string_view.

According to this table, there are six types of iterators: input, output, forward, 
bidirectional, random access, and contiguous. There is no formal class hierarchy 
of these iterators. However, one can deduce a hierarchy based on the functionality 
they are required to provide. Specifically, every contiguous iterator is also random 
access, every random-access iterator is also bidirectional, every bidirectional itera-
tor is also forward, and every forward iterator is also input. Iterators that addi-
tionally satisfy the requirements for output iterators are called mutable iterators; 
otherwise they are called constant iterators. Figure 17-1 shows such hierarchy. 
Dotted lines are used because the figure is not a real class hierarchy.

The standard way for the algorithms discussed in Chapter 20, “Mastering  
Standard Library Algorithms,” to specify what kind of iterators they need is to use 
the following names for the iterator template type arguments: InputIterator, 
OutputIterator, ForwardIterator, BidirectionalIterator, RandomAccessIterator, and  
ContiguousIterator. These names are just names: they don’t provide binding type checking.  
Therefore, you could, for example, try to call an algorithm expecting a RandomAccessIterator by 

FIGURE 17-1 
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passing a bidirectional iterator. The template cannot do type checking, so it would allow this instan-
tiation. However, the code in the function that uses the random-access iterator capabilities would 
fail to compile on the bidirectional iterator. Thus, the requirement is enforced, just not where you 
would expect. The error message can therefore be somewhat confusing. For example, attempting to 
use the generic sort() algorithm, which requires a random-access iterator, on a list, which pro-
vides only a bidirectional iterator, can result in a cryptic error. The following is the error generated by 
Visual C++ 2019:

...\VC\Tools\MSVC\14.27.29109\include\algorithm(4138,45): error C2676:  
binary '-': 'const std::_List_unchecked_iterator<std::_List_val<std::_List_simple_
types<_Ty>>>' does not define this operator or a conversion to a type acceptable 
to the predefined operator
        with
        [
            _Ty=int
        ]

Later in this chapter, the C++20 ranges library is introduced, which comes with range-based versions 
of most Standard Library algorithms. These range-based algorithms have proper type constraints (see 
Chapter 12, “Writing Generic Code with Templates”) for their template type parameters. Hence, the 
compiler can provide clearer error messages if you try to execute such an algorithm on a container 
that provides the wrong type of iterators.

NOTE Iterators mediate between algorithms and containers. They provide a  
standard interface to traverse the elements of a container in sequence so that  
any algorithm can work on any container as long as the container provides the 
algorithm’s required iterator category.

Iterators are implemented similarly to smart pointer classes in that they overload the specific desired 
operators. Consult Chapter 15, “Overloading C++ Operators,” for details on operator overloading.

The basic iterator operations are similar to those supported by raw pointers, so a raw pointer can be 
a legitimate iterator for certain containers. In fact, the vector iterator could technically be imple-
mented as a simple raw pointer. However, as a client of the containers, you need not worry about the 
implementation details; you can simply use the iterator abstraction.

NOTE Iterators might, or might not, be implemented internally as pointers, so this 
text uses the term refers to instead of points to when discussing the elements acces-
sible via an iterator.

Getting Iterators for Containers
Every data structure of the Standard Library that supports iterators provides public type aliases  
for its iterator types, called iterator and const_iterator. For example, a const iterator for a  
vector of ints has as type std::vector<int>::const_iterator. Containers that allow you to 
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iterate over their elements in reverse order also provide public type aliases called reverse_iterator 
and const_reverse_iterator. This way, clients can use the container iterators without worrying 
about the actual types.

NOTE const_iterators and const_reverse_iterators provide read-only 
access to elements of a container.

The containers also provide a method begin() that returns an iterator referring to the first element 
in the container. The end() method returns an iterator to the “past-the-end” value of the sequence 
of elements. That is, end() returns an iterator that is equal to the result of applying operator++ 
to an iterator referring to the last element in the sequence. Together, begin() and end() provide a 
half-open range that includes the first element but not the last. The reason for this apparent complica-
tion is to support empty ranges (containers without any elements), in which case begin() is equal to 
end(). The half-open range bounded by iterators begin() and end() is often written mathematically 
like this: [begin, end).

Additionally, the following methods are available:

➤➤ cbegin() and cend() returning const iterators

➤➤ rbegin() and rend() returning reverse iterators

➤➤ crbegin() and crend() returning const reverse iterators

<iterator> also provides the following global nonmember functions to retrieve specific iterators for 
a container:

FUNCTION NAME FUNCTION SYNOPSIS

begin()

end()

Returns a non-const iterator to the first, and one past the last, element in 
a sequence

cbegin()

cend()

Returns a const iterator to the first, and one past the last, element in 
a sequence

rbegin()

rend()

Returns a non-const reverse iterator to the last, and one before the first, 
element in a sequence

crbegin()

crend()

Returns a const reverse iterator to the last, and one before the first, element 
in a sequence

NOTE It’s recommended to use these nonmember functions instead of the 
member versions.
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These nonmember functions are defined in the std namespace; however, especially when writing 
generic code for class and function templates, it is recommended to use these non-member functions 
as follows:

using std::begin;
begin(...);

Note that begin() is called without the std:: qualification, as this enables so-called argument-
dependent lookups (ADL). When you specialize one of these nonmember functions for your own 
types, you can either put those specializations in the std namespace or put them in the same  
namespace as the type for which you are specializing them. The latter is recommended as this enables 
ADL. That means you can call your specialization without having to qualify it with any namespace, 
because the compiler is able to find the correct specialization in your namespace based on the types 
passed to the specialized function template. The standard mandates that a compiler first looks up the 
right overload in the namespace of the type of its argument using ADL. If the compiler cannot find 
an overload using ADL, it should try to find an appropriate overload in the std namespace due to 
the using std::begin declaration. Just calling begin() without the using declaration would only 
call user-defined overloads through ADL, and just calling std::begin() would only look in the std 
namespace.

NOTE Normally it is not allowed to add anything to the std namespace; how-
ever, it is legal to put specializations of Standard Library templates in the std 
namespace.

std::distance() can be used to compute the distance between two iterators of a container.

Iterator Traits
Some algorithm implementations need additional information about their iterators. For example, they 
might need to know the type of the elements referred to by the iterator to store temporary values, or 
perhaps they want to know whether the iterator is bidirectional or random access.

C++ provides a class template called iterator_traits, defined in <iterator>, that allows you to 
find this information. You instantiate the iterator_traits class template with the iterator type of 
interest, and access one of five type aliases:

➤➤ value_type: The type of elements referred to

➤➤ difference_type: A type capable of representing the distance, i.e., number of elements,  
between two iterators

➤➤ iterator_category: The type of iterator: input_iterator_tag, output_iterator_tag, 
forward_iterator_tag, bidirectional_iterator_tag, random_access_iterator_tag, 
or contiguous_iterator_tag (C++20)

➤➤ pointer: The type of a pointer to an element

➤➤ reference: The type of a reference to an element
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For example, the following function template declares a temporary variable of the type that an  
iterator of type IteratorType refers to. Note the use of the typename keyword in front of the  
iterator_traits line. You must specify typename explicitly whenever you access a type based on 
one or more template type parameters. In this case, the template type parameter IteratorType is 
used to access the value_type type.

template <typename IteratorType>
void iteratorTraitsTest(IteratorType it)
{
   typename iterator_traits<IteratorType>::value_type temp;
   temp = *it;
   cout << temp << endl;
}

This function can be tested with the following code:

vector v { 5 };
iteratorTraitsTest(cbegin(v));

With this code, the variable temp in iteratorTraitsTest() is of type int. The output is 5.

Of course, in this example, the auto keyword could be used to simplify the code, but that wouldn’t 
show you how to use iterator_traits.

Examples
A first example simply uses a for loop and iterators to iterate over every element in a vector and 
prints them to standard output:

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
for (auto iter { cbegin(values) }; iter != cend(values); ++iter) {
    cout << *iter << " ";
}

You might be tempted to test for the end of a range using the < operator, as in iter<cend(values). 
That is not recommended, however. The canonical way to test for the end of a range is to use !=, as in 
iter!=cend(values). The reason is that the != operator works on all types of iterators, while the < 
operator is not supported by bidirectional and forward iterators.

A helper method can be implemented that accepts a range of elements given as a begin and end itera-
tor and printing all elements in that range to standard output:

template <typename Iter>
void myPrint(Iter begin, Iter end)
{
    for (auto iter { begin }; iter != end; ++iter) { cout << *iter << " "; }
}

This helper method can be used as follows:

myPrint(cbegin(values), cend(values));
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A second example is a myFind() function template that finds a given value in a given range. If 
the value is not found, the end iterator of the given range is returned. Note the special type of the 
value parameter. It uses iterator_traits to get the type of the values to which the given itera-
tors point to.

template <typename Iter>
auto myFind(Iter begin, Iter end,
    const typename iterator_traits<Iter>::value_type& value)
{
    for (auto iter { begin }; iter != end; ++iter) {
        if (*iter == value) { return iter; }
    }
    return end;
}

This function template can be used as follows:

vector values { 11, 22, 33, 44 };
auto result { myFind(cbegin(values), cend(values), 22) };
if (result != cend(values)) {
    cout << format("Found value at position {}", distance(cbegin(values), result));
}

More examples of using iterators are given throughout this and subsequent chapters.

STREAM ITERATORS

The Standard Library provides four stream iterators. These are iterator-like class templates that allow 
you to treat input and output streams as input and output iterators. Using these stream iterators, you 
can adapt input and output streams so that they can serve as sources and destinations, respectively, 
for various Standard Library algorithms. The following stream iterators are available:

➤➤ ostream_iterator: An output stream iterator

➤➤ istream_iterator: An input stream iterator

There is also an ostreambuf_iterator and an istreambuf_iterator, but these are rarely used and 
are not further discussed in this book.

Output Stream Iterator
ostream_iterator is an output stream iterator. It is a class template that takes the element type as a 
template type parameter. The constructor takes an output stream and a delimiter string to write to the 
stream following each element. The ostream_iterator class writes elements using operator<<.

Let’s look at an example. Suppose you have the following myCopy() function template that copies a 
range given by a begin and end iterator to a target range given as a begin iterator:

template <typename InputIter, typename OutputIter>
void myCopy(InputIter begin, InputIter end, OutputIter target)
{
    for (auto iter { begin }; iter != end; ++iter, ++target) { *target = *iter; }
}
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Using the myCopy() function template to copy the elements of one vector to another one is straight-
forward. The first two parameters of myCopy() are the begin and end iterator of the range to copy, 
and the third parameter is an iterator to the destination range. You have to make sure the destination 
range is big enough.

vector myVector { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
// Use myCopy() to copy myVector to vectorCopy.
vector<int> vectorCopy(myVector.size());
myCopy(cbegin(myVector), cend(myVector), begin(vectorCopy));

Now, by using an ostream_iterator, the myCopy() function template can also be used to print ele-
ments of a container with only a single line of code. The following code snippet prints the contents of 
myVector and vectorCopy:

// Use the same myCopy() to print the contents of both vectors.
myCopy(cbegin(myVector), cend(myVector), ostream_iterator<int> { cout, " " });
cout << endl;
myCopy(cbegin(vectorCopy), cend(vectorCopy), ostream_iterator<int> { cout, " " });
cout << endl;

The output is as follows:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

Input Stream Iterator
You can use the input stream iterator, istream_iterator, to read values from an input stream using 
the iterator abstraction. It is a class template that takes the element type as a template type parameter. 
Elements are read using operator>>. You can use an istream_iterator as a source for algorithms 
and container methods.

Suppose you have the following sum() function template that calculates the sum of all the elements in 
a given range:

template <typename InputIter>
auto sum(InputIter begin, InputIter end)
{
    auto sum { *begin };
    for (auto iter { ++begin }; iter != end; ++iter) { sum += *iter; }
    return sum;
}

Now, an istream_iterator can be used to read integers from the console until the end of the stream 
is reached. On Windows, this happens when you press Ctrl+Z followed by Enter, while on Linux you 
press Enter followed by Ctrl+D. The sum() function is used to calculate the sum of all the integers. 
Note that the default constructor of istream_iterator creates an end iterator.

cout << "Enter numbers separated by whitespace." << endl;
cout << "Press Ctrl+Z followed by Enter to stop." << endl;
istream_iterator<int> numbersIter { cin };
istream_iterator<int> endIter;
int result { sum(numbersIter, endIter) };
cout << "Sum: " << result << endl;
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Take a moment to reflect on this code. If you remove all the output statements and the variable 
declarations, the only line left is the call to sum(). Thanks to iterators and input stream iterators, this 
single line of code reads any number of integers from the console and sums them together, without 
using any explicit loops.

ITERATOR ADAPTERS

The Standard Library provides five iterator adapters, which are special iterators, all defined in  
<iterator>. They are split into two groups. The first group of adapters are created from a container 
and are usually used as output iterators:

➤➤ back_insert_iterator: Uses push_back() to insert elements into a container

➤➤ front_insert_iterator: Uses push_front() to insert elements into a container

➤➤ insert_iterator: Uses insert() to insert elements into a container

The final two adapters are created from another iterator, not a container, and are usually used as 
input iterators:

➤➤ reverse_iterator: Reverse the iteration order of another iterator.

➤➤ move_iterator: The dereferencing operator for a move_iterator automatically converts 
the value to an rvalue reference, so it can be moved to a new destination.

It’s also possible to write your own iterator adapters, but this is not covered in this book. Consult one 
of the references on the Standard Library listed in Appendix B for details.

Insert Iterators
The myCopy() function template as implemented earlier in this chapter does not insert elements into 
a container; it simply replaces old elements in a range with new ones. To make such algorithms more 
useful, the Standard Library provides three insert iterator adapters that actually insert elements into a 
container: insert_iterator, back_insert_iterator, and front_insert_iterator. They are all 
templatized on a container type and take an actual container reference in their constructor. Because 
they supply the necessary iterator interfaces, these adapters can be used as the destination iterators of 
algorithms like myCopy(). However, instead of replacing elements in the container, they make calls on 
their container to actually insert new elements.

The basic insert_iterator calls insert(position,element) on the container, the back_
insert_iterator calls push_back(element), and the front_insert_iterator calls push_
front(element).

The following example uses a back_insert_iterator with myCopy() to populate vectorTwo with 
copies of all elements from vectorOne. Note that vectorTwo is not first resized to have enough ele-
ments, the insert iterator takes care of properly inserting new elements.

vector vectorOne { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
vector<int> vectorTwo;
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back_insert_iterator<vector<int>> inserter { vectorTwo };
myCopy(cbegin(vectorOne), cend(vectorOne), inserter);
 
myCopy(cbegin(vectorTwo), cend(vectorTwo), ostream_iterator<int> { cout, " " });

As you can see, when you use insert iterators, you don’t need to size the destination containers 
ahead of time.

You can also use the std::back_inserter() utility function to create a back_insert_iterator. 
In the previous example, you can remove the line that defines the inserter variable and rewrite the 
myCopy() call as follows. The result is the same as the previous implementation:

myCopy(cbegin(vectorOne), cend(vectorOne), back_inserter(vectorTwo));

With class template argument deduction (CTAD), this can also be written as follows:

myCopy(cbegin(vectorOne), cend(vectorOne), back_insert_iterator { vectorTwo });

The front_insert_iterator and insert_iterator work similarly, except that the insert_
iterator also takes an initial iterator position in its constructor, which it passes to the first call to 
insert(position,element). Subsequent iterator position hints are generated based on the return 
value from each insert() call.

One benefit of using an insert_iterator is that it allows you to use associative containers as 
destinations of the modifying algorithms. Chapter 20 explains that the problem with associative 
containers is that you are not allowed to modify the elements over which you iterate. By using an 
insert_iterator, you can instead insert elements. Associative containers have an insert() method 
that takes an iterator position and are supposed to use the position as a “hint,” which they can 
ignore. When you use an insert_iterator on an associative container, you can pass the begin() 
or end() iterator of the container to use as the hint. The insert_iterator modifies the iterator hint 
that it passes to insert() after each call to insert(), such that the position is one past the just-
inserted element.

Here is the previous example modified so that the destination container is a set instead of a vector:

vector vectorOne { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
set<int> setOne;
 
insert_iterator<set<int>> inserter { setOne, begin(setOne) };
myCopy(cbegin(vectorOne), cend(vectorOne), inserter);
 
myCopy(cbegin(setOne), cend(setOne), ostream_iterator<int> { cout, " " });

Similar to the back_insert_iterator example, you can use the std::inserter() utility function 
to create an insert_iterator:

myCopy(cbegin(vectorOne), cend(vectorOne), inserter(setOne, begin(setOne)));

Or, use class template argument deduction:

myCopy(cbegin(vectorOne), cend(vectorOne),
    insert_iterator { setOne, begin(setOne) });



614 ❘ CHAPTER 17  Understanding iterators and the ranges Library

Reverse Iterators
The Standard Library provides an std::reverse_iterator class template that iterates through a 
bidirectional or random-access iterator in a reverse direction. Every reversible container in the Stand-
ard Library, which happens to be every container that’s part of the standard except forward_list 
and the unordered associative containers, supplies a reverse_iterator type alias and methods 
called rbegin() and rend(). These reverse_iterator type aliases are of type std::reverse_
iterator<T> with T equal to the iterator type alias of the container. The method rbegin() returns 
a reverse_iterator pointing to the last element of the container, and rend() returns a reverse_
iterator pointing to the element before the first element of the container. Applying operator++ 
to a reverse_iterator calls operator-- on the underlying container iterator, and vice versa. For 
example, iterating over a collection from the beginning to the end can be done as follows:

for (auto iter { begin(collection) }; iter != end(collection); ++iter) {}

Iterating over the elements in the collection from the end to the beginning can be done using a 
reverse_iterator by calling rbegin() and rend(). Note that you still call ++iter.

for (auto iter { rbegin(collection) }; iter != rend(collection); ++iter) {}

An std::reverse_iterator is useful mostly with algorithms in the Standard Library or your own 
functions that have no equivalents that work in reverse order. The myFind() function introduced 
earlier in this chapter searches for the first element in a sequence. If you want to find the last element 
in the sequence, you can use a reverse_iterator. Note that when you call an algorithm such as 
myFind() with a reverse_iterator, it returns a reverse_iterator as well. You can always obtain 
the underlying iterator from a reverse_iterator by calling its base() method. However, because 
of how reverse_iterator is implemented, the iterator returned from base() always refers to 
one element past the element referred to by the reverse_iterator on which it’s called. To get to the 
same element, you must subtract one.

Here is an example of myFind() with a reverse_iterator:

vector myVector { 11, 22, 33, 22, 11 };
auto it1 { myFind(begin(myVector), end(myVector), 22) };
auto it2 { myFind(rbegin(myVector), rend(myVector), 22) };
if (it1 != end(myVector) && it2 != rend(myVector)) {
    cout << format("Found at position {} going forward.",
                   distance(begin(myVector), it1)) << endl;
    cout << format("Found at position {} going backward.",
                   distance(begin(myVector), --it2.base())) << endl;
} else {
    cout << "Failed to find." << endl;
}

The output of this program is as follows:

Found at position 1 going forward.
Found at position 3 going backward.
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Move Iterators
Chapter 9, “Mastering Classes and Objects,” discusses move semantics, which can be used to prevent 
unnecessary copying in cases where you know that the source object will be destroyed after an assign-
ment operation or copy construction, or explicitly when using std::move(). The Standard Library 
provides an iterator adapter called std::move_iterator. The dereferencing operator of a move_
iterator automatically converts the value to an rvalue reference, which means that the value can be 
moved to a new destination without the overhead of copying. Before you can use move semantics, 
you need to make sure your objects are supporting it. The following MoveableClass supports move 
semantics. For more details, see Chapter 9.

class MoveableClass
{
    public:
        MoveableClass() {
            cout << "Default constructor" << endl;
        }
        MoveableClass(const MoveableClass& src) {
            cout << "Copy constructor" << endl;
        }
        MoveableClass(MoveableClass&& src) noexcept {
            cout << "Move constructor" << endl;
        }
        MoveableClass& operator=(const MoveableClass& rhs) {
            cout << "Copy assignment operator" << endl;
            return *this;
        }
        MoveableClass& operator=(MoveableClass&& rhs) noexcept {
            cout << "Move assignment operator" << endl;
            return *this;
        }
};

The constructors and assignment operators are not doing anything useful here, except printing a mes-
sage to make it easy to see which one is being called. Now that you have this class, you can define a 
vector and store a few MoveableClass instances in it as follows:

vector<MoveableClass> vecSource;
MoveableClass mc;
vecSource.push_back(mc);
vecSource.push_back(mc);

The output could be as follows:

Default constructor  // [1]
Copy constructor     // [2]
Copy constructor     // [3]
Move constructor     // [4]

The second line of the code creates a MoveableClass instance by using the default constructor, [1]. 
The first push_back() call triggers the copy constructor to copy mc into the vector, [2]. After this 
operation, the vector has space for one element, the first copy of mc. Note that this discussion is based 
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on the growth strategy and the initial size of a vector as implemented by Microsoft Visual C++ 
2019. The C++ standard does not specify the initial capacity of a vector or its growth strategy, so the 
output can be different with different compilers.

The second push_back() call triggers the vector to resize itself, to allocate space for the second  
element. This resizing causes the move constructor to be called to move every element from the old 
vector to the new resized vector, [4]. The copy constructor is triggered to copy mc a second time 
into the vector, [3]. The order of moving and copying is undefined, so [3] and [4] could be reversed.

You can create a new vector called vecOne that contains a copy of the elements from vecSource 
as follows:

vector<MoveableClass> vecOne { cbegin(vecSource), cend(vecSource) };

Without using move_iterators, this code triggers the copy constructor two times, once for every  
element in vecSource:

Copy constructor
Copy constructor

By using std::make_move_iterator() to create move_iterators, the move constructor of  
MoveableClass is called instead of the copy constructor:

vector<MoveableClass> vecTwo { make_move_iterator(begin(vecSource)),
                               make_move_iterator(end(vecSource)) };

This generates the following output:

Move constructor
Move constructor

You can also use class template argument deduction (CTAD) with move_iterator:

vector<MoveableClass> vecTwo { move_iterator { begin(vecSource) },
                               move_iterator { end(vecSource) } };

WARNING Remember that you should not use an object any longer once it has 
been moved to another object.

RANGES

The iterator support of the C++ Standard Library allows algorithms to work independently of 
the actual containers, as they abstract away the mechanism to navigate through the elements of a 
container. As you’ve seen in all iterator examples up to now, most algorithms need an iterator pair 
consisting of a begin iterator that points to the first element in the sequence, and an end iterator 
pointing to one past the last element in the sequence. This makes it possible for algorithms to work 
on all kinds of containers, but it’s a bit cumbersome to always have to provide two iterators to specify 
a sequence of elements and to make sure you don’t provide mismatching iterators. Ranges provided 
by the ranges library are an abstraction layer on top of iterators, eliminating mismatching iterator 
errors, and adding extra functionality such as allowing range adapters to lazily filter and transform 
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underlying sequences of elements. The ranges library, defined in <ranges>, consists of the following 
major components:

➤➤ Ranges: A range is a concept (see Chapter 12) defining the requirements for a type that 
allows iteration over its elements. Any data structure that supports begin() and end() is a 
valid range. For example, std::array, vector, string_view, span, fixed-size C-style arrays, 
and so on, are all valid ranges.

➤➤ Range-based algorithms: Chapters 16 and 20 discuss the available Standard Library algo-
rithms accepting iterator pairs to perform their work. There are equivalents of most of these 
algorithms accepting ranges instead of iterators.

➤➤ Projection: A lot of the range-based algorithms accept a so-called projection callback. This 
callback is called for each element in the range and can transform an element to some other 
value before it is passed to the algorithm.

➤➤ Views: A view can be used to transform or filter the elements of an underlying range. Views 
can be composed together to form so-called pipelines of operations to be applied to a range.

➤➤ Factories: A range factory is used to construct a view that produces values on demand.

Iteration over the elements in a range can be done with iterators that can be retrieved with accessors 
such as ranges::begin(), end(), rbegin(), and so on. Ranges also support ranges::empty(), 
data(), cdata(), and size(). The latter returns the number of elements in a range but works only if 
the size can be retrieved in constant time. Otherwise, use std::distance() to calculate the number 
of elements between a begin and end iterator of a range. All these accessors are not member functions 
but stand-alone free functions, all requiring a range as argument.

Range-Based Algorithms
The std::sort() algorithm is an example of an algorithm that requires a sequence of elements 
specified as a begin and end iterator. Algorithms are introduced in Chapter 16 and discussed in detail 
in Chapter 20. The sort() algorithm is straightforward to use. For example, the following code sorts 
all the elements of a vector:

vector data { 33, 11, 22 };
sort(begin(data), end(data));

This code sorts all the elements in the data container, but you have to specify the sequence as a begin/
end iterator pair. Wouldn’t it be nicer to more accurately describe in your code what you really want 
to do? That’s where the range-based algorithms, part of ranges library, come in. These algorithms live 
in the std::ranges namespace and are defined in the same header file as the corresponding non-
range-based versions. With those, you can simply write the following:

ranges::sort(data); 

This code clearly describes your intent, that is, sorting all elements of the data container. Since 
you are not specifying iterators anymore, these range-based algorithms eliminate the possibility of 
accidently supplying mismatching begin and end iterators. The range-based algorithms have proper 
type constraints (see Chapter 12) for their template type parameters. This allows compilers to 
provide clearer error messages in case you supply a container to a range-based algorithm that does 
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not provide the type of iterator the algorithm requires. For example, calling the ranges::sort() 
algorithm on an std::list will more clearly state that sort() requires a random-access range, 
which list isn’t. Similar to iterators, you have input-, output-, forward-, bidirectional-, random-
access-, and contiguous ranges, with corresponding concepts such as ranges::contiguous_range, 
ranges::random_access_range, and so on.

NOTE Most Standard Library algorithms, introduced in Chapter 16 and dis-
cussed in detail in Chapter 20, have range-based equivalents in the std::ranges 
namespace.

Projection
A lot of the range-based algorithms have a so-called projection parameter, a callback used to  
transform each element before it is handed over to the algorithm. Let’s look at an example. Suppose 
you have a simple class representing a person:

class Person
{
    public:
        Person(string first, string last)
            : m_firstName { move(first) }, m_lastName { move(last) } { }
        const string& getFirstName() const { return m_firstName; }
        const string& getLastName() const { return m_lastName; }
    private:
        string m_firstName;
        string m_lastName;
};

The following code stores a couple of Person objects in a vector:

vector persons { Person {"John", "White"}, Person {"Chris", "Blue"} };

Since the Person class does not implement operator<, you cannot sort this vector using the 
normal std::sort() algorithm, as it compares elements using operator<. So, the following does 
not compile:

sort(begin(persons), end(persons)); // Error: does not compile.

Switching to the range-based ranges::sort() algorithm doesn’t help much at first sight. The follow-
ing still doesn’t compile as the algorithm still doesn’t know how to compare elements in the range:

ranges::sort(persons); // Error: does not compile.

However, if you want to sort persons based on a person’s first name, you can specify a projection 
function for the sort algorithm to project each person to their first name. The projection parameter 
is the third one, so we have to specify the second parameter as well, which is the comparator to use, 
by default std::ranges::less. In the following call, the projection function is specified as a lambda 
expression, see upcoming note.

ranges::sort(persons, {},
    [](const Person& person) { return person.getFirstName(); });
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Or even shorter:

ranges::sort(persons, {}, &Person::getFirstName);

NOTE The discussion on ranges in this chapter uses a few simple so-called lambda 
expressions. Lambda expressions are discussed in detail in Chapter 19, “Function 
Pointers, Function Objects, and Lambda Expressions,” but all those details are not 
important for the current discussion. For now, it’s enough to know only basic use. 
A lambda expression, as used in this chapter, has the following syntax:

    [](const Person& person) { return person.getFirstName(); }

The [] denotes the start of a lambda expression. Next is a comma-separated list of 
parameters, just as for functions. Finally, the body of the lambda expression is bet-
ween a set of curly brackets.

Basically, lambda expressions allow you to write small, unnamed inline functions 
at the place where you need them. The previous lambda expression could be 
replaced with the following standalone function:

auto getFirstName(const Person& person) {  
    return person.getFirstName(); }

The type of lambda expression parameters can also be auto. Here is an example:

    [](const auto& person) { return person.getFirstName(); }

Views
A view allows you to perform operations on the underlying range’s elements. Views can be chained/
composed together to form a pipeline performing multiple operations on the elements of a range. 
Composing views is easy, you just combine different operations using the bitwise OR operator, 
operator|. For example, you can easily filter the elements of a range first and then transform the 
remaining elements. In contrast, if you want to do something similar, filtering followed by transform-
ing, using the non-range-based algorithms, your code will be much less readable and possibly less 
performant, as you’ll have to create temporary containers to store intermediate results.

A view has the following important properties:

➤➤ Lazily evaluated: Just constructing a view doesn’t perform any operations on the underlying 
range yet. The operations of a view are applied only at the moment you iterate over the  
elements of the view and dereference such an iterator.

➤➤ Nonowning: A view doesn’t own any elements. As the name suggests, it’s a view over a 
range’s elements that could be stored in some container, and it’s that container that’s the 
owner of the data. A view just allows you to view that data in different ways. As such, the 
number of elements in a view does not influence the cost of copying, moving, or destroying 
a view. This is similar to std::string_view discussed in Chapter 2, “Working with Strings 
and String Views” and std::span discussed in Chapter 18, “Standard Library Containers.”

➤➤ Nonmutating: A view never modifies the data in the underlying range.
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A view itself is also a range, but not every range is a view. A container is a range but not a view, as it 
owns its elements.

Views can be created using range adapters. A range adapter accepts a range, which can be another 
view, and optionally some arguments, and returns a new view. The following table lists the most 
important range adapters provided by the Standard Library:

RANGE ADAPTER DESCRIPTION

views::all Creates a view that includes all elements of a range.

filter_view

views::filter

Filters the elements of a range based on a given predicate. If the 
predicate returns true, the element is kept, otherwise it is skipped.

transform_view

views::transform

Applies a callback to each element of a range to transform the element 
to some other value, possibly of a different type.

take_view

views::take

Creates a view of the first N elements of a range.

take_while_view

views::take_while

Creates a view of the initial elements of a range until an element is 
reached for which a given predicate returns false.

drop_view

views::drop

Creates a view by dropping the first N elements of a range.

drop_while_view

views::drop_while

Creates a view by dropping all initial elements of a range until an 
element is reached for which a given predicate returns false.

reverse_view

views::reverse

Creates a view that iterates over the elements of a range in reverse 
order. The range must be a bidirectional range.

elements_view

views::elements

Requires a range of tuple-like elements, creates a view of the Nth 
elements of the tuple-like elements.

keys_view

views::keys

Requires a range of pair-like elements, creates a view of the first 
element of each pair.

values_view

views::values

Requires a range of pair-like elements, creates a view of the second 
element of each pair.

common_view

views::common

Depending on the type of range, begin() and end() might return 
different types, such as a begin iterator and a so-called sentinel. This 
means that you cannot, for example, pass such an iterator pair to 
functions that expect them to be of the same type. common_view can 
be used to convert such a range to a common range which is a range 
for which begin() and end() return the same type. In one of the 
exercises you will use this range adapter.
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The range adapters in the first column of this table show both the class name in the std::ranges 
namespace and a so-called range adapter object from the std::ranges::views namespace. The 
Standard Library provides a namespace alias called std::views equal to std::ranges::views.

Each range adapter can be constructed by calling its constructor and passing any required arguments. 
The first argument is always the range on which to operate, followed by zero or more additional 
arguments, as follows:

std::ranges::operation_view { range, arguments... }

Usually, you will not create these range adapters using their constructors, but instead use the range 
adapter objects from the std::ranges::views namespace in combination with the bitwise OR 
operator, |, as follows:

range | std::ranges::views::operation(arguments...)

Let’s see some of these range adapters in action. The following example first defines an abbreviated 
function template called printRange() to print a message followed by all the elements in a given 
range. Next, the main() function starts by creating a vector of integers, 1. . .10, and subsequently 
applies several range adapters on it, each time calling printRange() on the result so you can follow 
what’s happening.

void printRange(string_view message, auto& range)
{
    cout << message;
    for (const auto& value : range) { cout << value << " "; }
    cout << endl;
}
 
int main()
{
    vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    printRange("Original sequence: ", values);
 
    // Filter out all odd values, leaving only the even values.
    auto result1 { values
        | views::filter([](const auto& value) { return value % 2 == 0; }) };
    printRange("Only even values: ", result1);
    
    // Transform all values to their double value.
    auto result2 { result1
        | views::transform([](const auto& value) { return value * 2.0; }) };
    printRange("Values doubled: ", result2);
 
    // Drop the first 2 elements.
    auto result3 { result2 | views::drop(2) };
    printRange("First two dropped: ", result3);
 
    // Reverse the view.
    auto result4 { result3 | views::reverse };
    printRange("Sequence reversed: ", result4);
}
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The output of this program is as follows:

Original sequence: 1 2 3 4 5 6 7 8 9 10
Only even values: 2 4 6 8 10
Values doubled: 4 8 12 16 20
First two dropped: 12 16 20
Sequence reversed: 20 16 12

It’s worth repeating that views are lazily evaluated. In this example, the construction of the result1 
view does not do any actual filtering yet. The filtering happens at the time when the printRange() 
function iterates over the elements of result1.

The code snippet uses the range adapter objects from std::ranges::views. You can also con-
struct range adapters using their constructors. For example, the result1 view can be constructed 
as follows:

auto result1 { ranges::filter_view { values,
    [](const auto& value) { return value % 2 == 0; } } };

This example is creating several intermediate views to be able to output their elements to make it 
easier to follow what’s happening in each step. If you don’t need these intermediate views, you can 
chain them all together in a single pipeline as follows:

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
printRange("Original sequence: ", values);
 
auto result { values
    | views::filter([](const auto& value) { return value % 2 == 0; })
    | views::transform([](const auto& value) { return value * 2.0; })
    | views::drop(2)
    | views::reverse };
printRange("Final sequence: ", result);

The output is as follows. The last line shows that the final sequence is the same as the earlier 
result4 view.

Original sequence: 1 2 3 4 5 6 7 8 9 10
Final sequence: 20 16 12

Modifying Elements Through a View
You can modify the elements of a range, as long as the range is not read-only. For example, the result 
of views::transform is a read-only view, because it returns a view with transformed elements but 
without transforming the actual values in the underlying range.

The following example again constructs a vector of ten elements. It then creates a view over the even 
values, drops the first two even values, and finally reverses the elements. The range-based for loop 
then multiplies the elements in the resulting view with 10. The last line outputs the elements in the 
values vector to confirm that some elements have been changed through the view.

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
printRange("Original sequence: ", values);
 
// Filter out all odd values, leaving only the even values.
auto result1 { values
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    | views::filter([](const auto& value) { return value % 2 == 0; }) };
printRange("Only even values: ", result1);
 
// Drop the first 2 elements.
auto result2 { result1 | views::drop(2) };
printRange("First two dropped: ", result2);
 
// Reverse the view.
auto result3 { result2 | views::reverse };
printRange("Sequence reversed: ", result3);
 
// Modify the elements using a range-based for loop.
for (auto& value : result3) { value *= 10; }
printRange("After modifying elements through a view, vector contains: ", values);

The output of this program is as follows:

Original sequence: 1 2 3 4 5 6 7 8 9 10
Only even values: 2 4 6 8 10
First two dropped: 6 8 10
Sequence reversed: 10 8 6
After modifying elements through a view, vector contains: 1 2 3 4 5 60 7 80 9 100

Mapping Elements
Transforming elements of a range doesn’t need to result in a range with elements of the same type. 
Instead, you can map elements to another type. The following example starts with a range of integers, 
filters out all odd elements, keeps only the first three even values, and transforms those to quoted 
strings using std::format() and a raw string literal (see Chapter 2):

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
printRange("Original sequence: ", values);
 
auto result { values
    | views::filter([](const auto& value) { return value % 2 == 0; })
    | views::take(3)
    | views::transform([](const auto& v) { return format(R"("{}")", v); }) };
printRange("Result: ", result);

The output is as follows:

Original sequence: 1 2 3 4 5 6 7 8 9 10
Result: "2" "4" "6"

Range Factories
The ranges library provides the following range factories to construct views that produce elements 
lazily on demand:

RANGE FACTORY DESCRIPTION

empty_view Creates an empty view

single_view Creates a view with a single given element

continues
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RANGE FACTORY DESCRIPTION

iota_view Creates an infinite or a bounded view containing elements 
starting with an initial value, and where each subsequent 
element has a value equal to the value of the previous element 
incremented by one

basic_istream_view

istream_view

Creates a view containing elements retrieved by calling the 
extraction operator, operator>>, on an underlying input stream

Just as with the range adapters from the previous section, the names in the range factories table are 
class names living in the std::ranges namespace, which you can directly create using their construc-
tor. Alternatively, you can use the factory functions available in the std::ranges:views namespace. 
For example, the following two statements are equivalent and create an infinite view with elements 
10, 11, 12, . . .:

std::ranges::iota_view { 10 }
std::ranges::views::iota(10)

Let’s look at a range factory in practice. The following example is loosely based on an earlier exam-
ple, but instead of constructing a vector with 10 elements in it, this code uses the iota range factory 
to create a lazy infinite sequence of numbers starting at 10. It then removes all odd values, doubles 
the remaining elements, and finally only keeps the first ten elements that are subsequently output to 
the console using printRange().

// Create an infinite sequence of the numbers 10, 11, 12, ...
auto values { views::iota(10) };
// Filter out all odd values, leaving only the even values.
auto result1 { values
    | views::filter([](const auto& value) { return value % 2 == 0; }) };
// Transform all values to their double value.
auto result2 { result1
    | views::transform([](const auto& value) { return value * 2.0; }) };
// Take only the first ten elements.
auto result3 { result2 | views::take(10) };
printRange("Result: ", result3);

The output is as follows:

Result: 20 24 28 32 36 40 44 48 52 56

The values range represents an infinite range, which is subsequently filtered and transformed. Work-
ing with infinite ranges is possible because all these operations are lazily evaluated only at the time 
when printRange() iterates over the elements of the view. This also means that in this example you 
cannot call printRange() to output the contents of values, result1, or result2 because that will 
cause the for loop in printRange() to loop forever as those are infinite ranges.

Of course, you can also get rid of those intermediate views and simply construct one big pipeline:

auto result { views::iota(10)
    | views::filter([](const auto& value) { return value % 2 == 0; })

TABLE (continued)
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    | views::transform([](const auto& value) { return value * 2.0; })
    | views::take(10) };
printRange("Result: ", result);

Input Streams as Views
The basic_istream_view/istream_view range factory can be used to construct a view over 
the elements read from an input stream, for example the standard input. Elements are read using 
operator>>.

For example, the following code snippet keeps reading integers from standard input. For each read 
number that is less than 5, the number is doubled and printed on standard output. Once you enter a 
number 5 or higher, the loop stops.

for (auto value : ranges::istream_view<int>(cin)
    | views::take_while([](const auto& v) { return v < 5; })
    | views::transform([](const auto& v) { return v * 2; })) {
    cout << format("> {}\n", value);
}
cout << "Terminating..." << endl; 

The following is a possible output sequence:

1
> 2
3
> 6
4
> 8
5
Terminating...

SUMMARY

This chapter explained the ideas behind iterators, which are an abstraction that allows you to 
navigate the elements of a container without the need to know the structure of the container. You 
have seen that output stream iterators can use standard output as a destination for iterator-based 
algorithms, and similarly that input stream iterators can use standard input as the source of data for 
algorithms. The chapter also discussed the insert-, reverse-, and move iterator adapters that can be 
used to adapt other iterators.

The last part of this chapter discussed the ranges library, part of the C++20 Standard Library. It 
allows you to write more functional-style code, by specifying what you want to accomplish instead of 
how. You can construct pipelines consisting of a combination of operations applied to the elements 
of a range. Such pipelines are executed lazily; that is, they don’t do anything until you iterate over the 
resulting view.
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 17-1: Write a program that lazily constructs the sequence of elements 10-100, 
squares each number, removes all numbers dividable by five, and transforms the remaining 
values to strings using std::to_string().

Exercise 17-2: Write a program that creates a vector of pairs, where each pair contains  
an instance of the Person class introduced earlier in this chapter, and their age. Next, use  
the ranges library to construct a single pipeline that extracts all ages from all persons  
from the vector, and removes all ages below 12 and above 65. Finally, calculate the average 
of the remaining ages using the sum() algorithm from earlier in this chapter. As you’ll pass a 
range to the sum() algorithm, you’ll have to work with a common range.

Exercise 17-3: Building further on the solution for Exercise 17-2, add an implementation for 
operator<< for the Person class.

Next, create a pipeline to extract the Person of each pair from the vector of pairs, and 
only keep the first four Persons. Use the myCopy() algorithm introduced earlier in this chap-
ter to print the names of those four persons to the standard output; one name per line.

Finally, create a similar pipeline but one that additionally projects all filtered Persons to their 
last name. Again use myCopy() to print those last names to the standard output.

Exercise 17-4: Write a program that uses a range-based for loop and ranges::istream_
view() to read integers from the standard input until a -1 is entered. Store the read integers 
in a vector, and use the myCopy() algorithm from earlier in this chapter to verify that your 
vector contains the correct values.

Bonus exercise: Can you find a couple of ways to change the solution for Exercise 17-4 to 
not use any loops? Hint: maybe one option could be to use the std::ranges::copy() algo-
rithm to copy a range from a source to a target. It can be called with a range as first argu-
ment and an output iterator as the second argument.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Standard Library Containers

WHAT’S IN THIS CHAPTER?

➤➤ Containers overview: requirements on elements and general 
error handling

➤➤ Sequential containers: vector, deque, list, forward_list,  
and array

➤➤ How to use the span class

➤➤ Container adapters: queue, priority_queue, and stack

➤➤ Associative containers: the pair utility, map, multimap, set, 
and multiset

➤➤ Unordered associative containers or hash tables: unordered_map, 
unordered_multimap, unordered_set, and unordered_multiset

➤➤ Other containers: standard C-style arrays, strings, streams, 
and bitset

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the Download  
Code tab.

This chapter of the Standard Library deep-dive chapters covers the available containers. It 
explains the different containers, their categories, and what the trade-offs are between them. 
Some containers are discussed in much more detail compared to others. Once you know how to 
work with a container of each category, you will have no problems using any of the other 
containers from the same category. Consult your favorite Standard Library Reference for a 
complete reference of all methods of all containers.

http://www.wiley.com/go/proc++5e
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CONTAINERS OVERVIEW

Containers in the Standard Library are generic data structures that are useful for storing collections 
of data. You should rarely need to use a standard C-style array, write a linked list, or design a stack 
when you use the Standard Library. The containers are implemented as class templates, so you can 
instantiate them for any type that meets certain basic conditions outlined in the next section. Most of 
the Standard Library containers, except for array and bitset, are flexible in size and automatically 
grow or shrink to accommodate more or fewer elements. This is a huge benefit compared to the old, 
C-style arrays, which had a fixed size. Because of the fixed-size nature of C-style arrays, they are more 
vulnerable to overruns, which in the simplest cases merely cause the program to crash because data 
has been corrupted, but in the worst cases allow certain kinds of security attacks. By using Standard 
Library containers, you ensure that your programs will be less vulnerable to these kinds of problems.

Chapter 16, “Overview of the C++ Standard Library,” gives a high-level overview of the different 
containers provided by the Standard Library. There are 16 containers, divided into four categories:

➤➤ Sequential containers

➤➤ vector (dynamic array)

➤➤ deque

➤➤ list

➤➤ forward_list

➤➤ array

➤➤ Associative containers

➤➤ map

➤➤ multimap

➤➤ set

➤➤ multiset

➤➤ Unordered associative containers or 
hash tables

➤➤ unordered_map

➤➤ unordered_multimap

➤➤ unordered_set

➤➤ unordered_multiset

➤➤ Container adapters

➤➤ queue

➤➤ priority_queue

➤➤ stack

Additionally, C++ strings and streams can also be used as Standard Library containers to a certain 
degree, and bitset can be used to store a fixed number of bits.

Everything in the Standard Library is in the std namespace. The examples in this book usually use 
the blanket using namespace std; statement in source files (never use this in header files!), but you 
can be more selective in your own programs about which symbols from std to use.

Requirements on Elements
Standard Library containers use value semantics on elements. That is, they store a copy of elements 
that they are given, assign to elements with the assignment operator, and destroy elements with the 
destructor. Thus, when you write classes that you intend to use with the Standard Library, you need 
to make sure they are copyable. When requesting an element from the container, a reference to the 
stored copy is returned.
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If you prefer reference semantics, you can store pointers to elements instead of the elements them-
selves. When the containers copy a pointer, the result still refers to the same element. An alternative 
is to store std::reference_wrappers in the container. A reference_wrapper basically exists to 
make references copyable and can be created using the std::ref() and cref() helper functions. 
The reference_wrapper class template, and the ref() and cref() function templates are defined 
in <functional>. An example of this is given in the section “Storing References in a vector” later in 
this chapter.

It is possible to store move-only types, that is non-copyable types, in a container, but when doing 
so, some operations on the container might not compile. An example of a move-only type is 
std::unique_ptr.

WARNING If you want to store pointers in containers, use unique_ptrs if the 
container becomes the owner of the pointed-to objects, or use shared_ptrs if the 
container shares ownership with other owners. Do not use the old and removed 
auto_ptr class in containers because it does not implement copying correctly.

One of the template type parameters for Standard Library containers is a so-called allocator. The 
container can use this allocator to allocate and deallocate memory for elements. The allocator type 
parameter has a default value, so you can almost always just ignore it. For example, the vector class 
template looks as follows:

template <class T, class Allocator = std::allocator<T>> class vector;

Some containers, such as a map, additionally accept a comparator as one of the template type param-
eters. This comparator is used to order elements. It has a default value as well, so you don’t always 
have to specify it. For example, the map class template looks like this:

template <class Key, class T, class Compare = std::less<Key>,
    class Allocator = std::allocator<std::pair<const Key, T>>> class map;

The specific requirements on elements in containers using the default allocator and comparator are 
shown in the following table:

METHOD DESCRIPTION NOTES

Copy Constructor Creates a new element 
that is “equal” to the old 
one, but that can safely 
be destructed without 
affecting the old one.

Used every time you insert an element, 
except when using an emplace method 
(discussed later).

Move Constructor Creates a new element by 
moving all content from 
the source element to the 
new element.

Used when the source element is an 
rvalue, and will be destroyed after the 
construction of the new element; also 
used when a vector grows in size. The 
move constructor should be noexcept; 
otherwise, it won’t be used!

continues
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METHOD DESCRIPTION NOTES

Assignment  
Operator

Replaces the contents of 
an element with a copy of 
the source element.

Used every time you modify an element.

Move 
Assignment Operator

Replaces the contents of 
an element by moving 
all content from the 
source element.

Used when the source element is an 
rvalue and will be destroyed after 
the assignment operation. The move 
assignment operator should be 
noexcept; otherwise, it won’t be used!

Destructor Cleans up an element. Used every time you remove an element, 
or when a vector grows in size.

Default Constructor Constructs an element 
without any arguments.

Required only for certain operations, 
such as the vector::resize() 
method with one argument, and the 
map::operator[] access.

operator== Compares two elements 
for equality.

Required for keys in unordered 
associative containers, and for certain 
operations, such as operator== on two 
containers.

operator< Determines whether 
one element is less 
than another.

Required for keys in ordered associative 
containers, and for certain operations, 
such as operator< on two containers.

Chapter 9, “Mastering Classes and Objects,” shows you how to write these methods.

WARNING The Standard Library containers often move or copy elements. So, 
for best performance, make sure the type of objects stored in a container supports 
move semantics, see Chapter 9. If move semantics is not possible, make sure the 
copy constructor and copy assignment operator are as efficient as possible.

Exceptions and Error Checking
The Standard Library containers provide limited error checking. Clients are expected to ensure that 
their uses are valid. However, some container methods and functions throw exceptions in certain con-
ditions, such as out-of-bounds indexing. Of course, it is impossible to list exhaustively the exceptions 
that can be thrown from these methods because they perform operations on user-specified types with 
unknown exception characteristics. This chapter mentions exceptions where appropriate. Consult a 
Standard Library Reference for a list of possible exceptions thrown from each method.

TABLE (continued)
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SEQUENTIAL CONTAINERS

vector, deque, list, forward_list, and array are called sequential containers because they  
store a sequence of elements. The best way to learn about sequential containers is to jump in with  
an example of the vector container, which should be your default container anyway. The next  
section describes the vector container in detail, followed by briefer discussions of deque, list,  
forward_list, and array. Once you become familiar with the sequential containers, it’s trivial to 
switch between them.

vector
The Standard Library vector container is similar to a standard C-style array: the elements are stored 
in contiguous memory, each in its own “slot.” You can index into a vector, as well as add new  
elements to the back or insert them anywhere else. Inserting and deleting elements into and from a 
vector generally takes linear time, though these operations actually run in amortized constant time 
at the end of a vector, as explained in the section “The vector Memory Allocation Scheme,” later in 
this chapter. Random access of individual elements has a constant complexity.

vector Overview
vector is defined in <vector> as a class template with two type parameters: the element type to 
store and an allocator type:

template <class T, class Allocator = allocator<T>> class vector;

The Allocator parameter specifies the type for a memory allocator object that the client can set in 
order to use custom memory allocation. This template parameter has a default value.

NOTE The default value for the Allocator type parameter is sufficient for most 
applications. This chapter assumes that you always use the default allocator. 
Chapter 25, “Customizing and Extending the Standard Library,” provides more 
details in case you are interested.

Starting with C++20, std::vector is constexpr, just as std::string. This means that vector 
can be used to perform operations at compile time and that it can be used in the implementation of 
constexpr functions and classes. At this time, vector and string are the only Standard Library 
containers that are constexpr.

Fixed-Length vectors
The simplest way to use a vector is as a fixed-length array. vector provides a constructor that 
allows you to specify the number of elements and provides an overloaded operator[] to access 
and modify those elements. The result of operator[] is undefined when used to access an element 
outside the vector bounds. This means that any compiler can decide how to behave in that case. For 
example, the default behavior of Microsoft Visual C++ is to give a run-time error message when your 
program is compiled in debug mode and to disable any bounds checking in release mode for perfor-
mance reasons. You can change these default behaviors.
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WARNING Like “real” array indexing, operator[] on a vector does not  
provide bounds checking.

In addition to using operator[], you can access vector elements via at(), front(), and back(). 
The at() method is identical to operator[], except that it performs bounds checking and throws an 
out_of_range exception if the index is out of bounds. front() and back() return references to the 
first and last elements of a vector, respectively. Calling front() or back() on an empty container 
causes undefined behavior.

NOTE All vector element accesses have constant complexity.

Here is a small example program to “normalize” test scores so that the highest score is set to 100, and 
all other scores are adjusted accordingly. The program creates a vector of ten doubles, reads in ten 
values from the user, divides each value by the max score (times 100), and prints out the new values. 
For the sake of brevity, the program forsakes error checking.

vector<double> doubleVector(10); // Create a vector of 10 doubles.
 
// Initialize max to smallest number
double max { -numeric_limits<double>::infinity() };
 
for (size_t i { 0 }; i < doubleVector.size(); i++) {
    cout << format("Enter score {}: ", i + 1);
    cin >> doubleVector[i];
    if (doubleVector[i] > max) {
        max = doubleVector[i];
    }
}
 
max /= 100.0;
for (auto& element : doubleVector) {
    element /= max;
    cout << element << " ";
}

As you can see from this example, you can use a vector just as you would use a standard C-style 
array. Note that the first for loop uses the size() method to determine the number of elements in 
the container. This example also demonstrates the use of a range-based for loop with a vector. Here, 
the range-based for loop uses auto& and not auto because a reference is required so that the actual 
elements can be modified in each iteration.
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NOTE operator[] on a vector normally returns a reference to the element, 
which can be used on the left-hand side of assignment statements. If operator[] is 
called on a const vector object, it returns a reference to a const element, which 
cannot be used as the target of an assignment. See Chapter 15, “Overloading  
C++ Operators,” for details on how this trick is implemented.

Dynamic-Length vectors
The real power of a vector lies in its ability to grow dynamically. For example, consider the test 
score normalization program from the previous section with the additional requirement that it should 
handle any number of test scores. Here is the new version:

vector<double> doubleVector; // Create a vector with zero elements.
 
// Initialize max to smallest number
double max { -numeric_limits<double>::infinity() };
 
for (size_t i { 1 }; true; i++) {
    double temp;
    cout << format("Enter score {} (-1 to stop): ", i);
    cin >> temp;
    if (temp == -1) {
        break;
    }
    doubleVector.push_back(temp);
    if (temp > max) {
        max = temp;
    }
}
 
max /= 100.0;
for (auto& element : doubleVector) {
    element /= max;
    cout << element << " ";
}

This version of the program uses the default constructor to create a vector with zero elements. As 
each score is read, it’s added to the end of the vector with the push_back() method, which takes 
care of allocating space for the new element. The range-based for loop doesn’t require any changes.

vector Details
Now that you’ve had a taste of vectors, it’s time to delve into their details.

Constructors and Destructors
The default constructor creates a vector with zero elements.

vector<int> intVector; // Creates a vector of ints with zero elements
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You can specify a number of elements and, optionally, a value for those elements, like this:

vector<int> intVector(10, 100); // Creates vector of 10 ints with value 100

If you omit the default value, the new objects are zero-initialized. Zero-initialization constructs 
objects with the default constructor and initializes primitive integer types (such as char, int, and so 
on) to zero, primitive floating-point types to 0.0, and pointer types to nullptr.

You can create vectors of built-in classes like this:

vector<string> stringVector(10, "hello");

User-defined classes can also be used as vector elements:

class Element
{
    public:
        Element() {}
        virtual ~Element() = default;
};
...
vector<Element> elementVector;

A vector can be constructed with an initializer_list containing the initial elements:

vector<int> intVector({ 1, 2, 3, 4, 5, 6 });

Uniform initialization, as discussed in Chapter 1, “A Crash Course in C++ and the Standard Library,” 
works on most Standard Library containers, including vector. Here is an example:

vector<int> intVector = { 1, 2, 3, 4, 5, 6 };
vector<int> intVector { 1, 2, 3, 4, 5, 6 };

Thanks to class template argument deduction (CTAD), you can omit the template type parameter. 
Here is an example:

vector intVector { 1, 2, 3, 4, 5, 6 };

Be cautious with uniform initialization, though; usually, when calling a constructor of an object, the 
uniform initialization syntax can be used. Here’s an example:

string text { "Hello World." };

With vector you need be careful. For example, the following line of code calls a vector constructor 
to create a vector of 10 integers with value 100:

vector<int> intVector(10, 100); // Creates vector of 10 ints with value 100

Using uniform initialization here instead as follows does not create a vector of 10 integers, but a 
vector with just two elements, initialized to 10 and 100:

vector<int> intVector { 10, 100 }; // Creates vector with two elements: 10 and 100

You can allocate vectors on the free store as well:

auto elementVector { make_unique<vector<Element>>(10) };
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Copying and Assigning vectors
A vector stores copies of the objects, and its destructor calls the destructor for each of the objects. 
The copy constructor and assignment operator of the vector class perform deep copies of all the 
elements in the vector. Thus, for efficiency, you should pass vectors by reference-to-non-const or 
reference-to-const to functions, instead of by value.

In addition to normal copying and assignment, vectors provide an assign() method that removes 
all the current elements and adds any number of new elements. This method is useful if you want to 
reuse a vector. Here is a trivial example. intVector is created with 10 elements having the default 
value 0. Then assign() is used to remove all 10 elements and replace them with 5 elements with 
value 100:

vector<int> intVector(10);
...
intVector.assign(5, 100);

assign() can also accept an initializer_list as follows. intVector now has four elements with 
the given values:

intVector.assign({ 1, 2, 3, 4 });

vectors also provide a swap() method that allows you to swap the contents of two vectors in con-
stant time. Here is a simple example:

vector<int> vectorOne(10);
vector<int> vectorTwo(5, 100);
vectorOne.swap(vectorTwo);
// vectorOne now has 5 elements with the value 100.
// vectorTwo now has 10 elements with the value 0.

Comparing vectors
The Standard Library provides the usual six overloaded comparison operators for vectors: ==, !=, <, 
>, <=, >=. Two vectors are equal if they have the same number of elements and all the corresponding 
elements in the two vectors are equal to each other. Two vectors are compared lexicographically; 
that is, one vector is “less than” another if all elements 0 through i–1 in the first vector are equal 
to elements 0 through i-1 in the second vector, but element i in the first is less than element i in the 
second, where i must be in the range 0...n and n must be less than the size() of the smallest of the 
two vectors.

NOTE Comparing two vectors with operator== or != requires the individual 
elements to be comparable with operator==. Comparing two vectors with  
operator<, >, <=, or >= requires the individual elements to be comparable with 
operator<. If you intend to store objects of a custom class in a vector, make sure 
to write those operators.

Here is an example of a program that compares vectors of ints:

vector<int> vectorOne(10);
vector<int> vectorTwo(10);
 continues
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if (vectorOne == vectorTwo) {
    cout << "equal!" << endl;
} else {
    cout << "not equal!" << endl;
}
 
vectorOne[3] = 50;
 
if (vectorOne < vectorTwo) {
    cout << "vectorOne is less than vectorTwo" << endl;
} else {
    cout << "vectorOne is not less than vectorTwo" << endl;
}

The output of the program is as follows:

equal!
vectorOne is not less than vectorTwo

vector Iterators
Chapter 17, “Understanding Iterators and the Ranges Library,” explains the concepts of container 
iterators. The discussion can get a bit abstract, so it’s helpful to jump in and look at a code example. 
Here is the last for loop of the test score normalization program from earlier using iterators instead 
of a range-based for loop:

for (vector<double>::iterator iter { begin(doubleVector) };
    iter != end(doubleVector); ++iter) {
    *iter /= max;
    cout << *iter << " ";
}

First, take a look at the for loop initialization statement:

vector<double>::iterator iter { begin(doubleVector) };

Recall that every container defines a type named iterator to represent iterators for that type of 
container. begin() returns an iterator of that type referring to the first element in the container. Thus, 
the initialization statement obtains in the variable iter an iterator referring to the first element of 
doubleVector. Next, look at the for loop comparison:

iter != end(doubleVector);

This statement simply checks whether the iterator is past the end of the sequence of elements in  
the vector. When it reaches that point, the loop terminates. The increment statement, ++iter,  
increments the iterator to refer to the next element in the vector.

NOTE Use pre-increment instead of post-increment when possible because pre-
increment is at least as efficient and usually more efficient. iter++ must return 
a new iterator object, while ++iter can simply return a reference to iter. See 
Chapter 15, “Overloading C++ Operators,” for details on implementing both  
versions of operator++.

(continued)
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The for loop body contains these two lines:

*iter /= max;
cout << *iter << " ";

As you can see, your code can both access and modify the elements over which it iterates. The first 
line uses * to dereference iter to obtain the element to which it refers and assigns to that element. 
The second line dereferences iter again, but this time only to stream the element to cout.

The preceding for loop using iterators can be simplified by using the auto keyword:

for (auto iter { begin(doubleVector) };
    iter != end(doubleVector); ++iter) {
    *iter /= max;
    cout << *iter << " ";
}

With auto, the compiler automatically deduces the type of the variable iter based on the right-hand 
side of the initializer, which in this case is the result of the call to begin().

A vector supports the following:

➤➤ (c)begin() and (c)end() returning (const) iterators referring to the first and one past the 
last element

➤➤ (c)rbegin() and (c)rend() returning (const) reverse iterators referring to the last and one 
before the first element

Accessing Fields of Object Elements

If the elements of your container are objects, you can use the -> operator on iterators to call methods 
or access data members of those objects. For example, the following program creates a vector of 10 
strings, then iterates over all of them appending a new string to each one:

vector<string> stringVector(10, "hello");
for (auto it { begin(stringVector) }; it != end(stringVector); ++it) {
    it->append(" there");
}

Often, using a range-based for loop results in more elegant code, as in this example:

for (auto& str : stringVector) {
    str.append(" there");
}

const_iterator

The normal iterator is read/write. However, if you call begin() or end() on a const object, or 
you call cbegin() or cend(), you receive a const_iterator. The const_iterator is  
read-only; you cannot modify the element it refers to. An iterator can always be converted to a 
const_iterator, so it’s always safe to write something like this:

vector<type>::const_iterator it { begin(myVector) };
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However, a const_iterator cannot be converted to an iterator. If myVector is const, the follow-
ing line doesn’t compile:

vector<type>::iterator it { begin(myVector) };

NOTE If you do not need to modify the elements of a vector, you should use a 
const_iterator. This rule makes it easier to guarantee correctness of your code, 
and helps the compiler to perform better optimizations.

When using the auto keyword, using const_iterators looks a bit different. Suppose you write the 
following code:

vector<string> stringVector(10, "hello");
for (auto iter { begin(stringVector) }; iter != end(stringVector); ++iter) {
    cout << *iter << endl;
}

Because of the auto keyword, the compiler deduces the type of the iter variable automatically and 
makes it a normal iterator because stringVector is not const. If you want a read-only const_
iterator in combination with using auto, then you need to use cbegin() and cend() instead of 
begin() and end() as follows:

for (auto iter { cbegin(stringVector) }; iter != cend(stringVector); ++iter) {
    cout << *iter << endl;
}

Now the compiler uses const_iterator as type for the variable iter because that’s what  
cbegin() returns.

A range-based for loop can also be forced to use const iterators as follows:

for (const auto& element : stringVector) {
    cout << element << endl;
}

Iterator Safety

Generally, iterators are about as safe as pointers—that is, extremely unsafe. For example, you can 
write code like this:

vector<int> intVector;
auto iter { end(intVector) };
*iter = 10; // BUG! iter doesn't refer to a valid element.

Recall that the iterator returned by end() is one element past the end of a vector, not an iterator 
referring to the last element! Trying to dereference it results in undefined behavior. Iterators are not 
required to perform any verification.

Another problem can occur if you use mismatched iterators. For example, the following for loop 
initializes iter with an iterator from vectorTwo and tries to compare it to the end iterator of 
vectorOne. Needless to say, this loop will not do what you intended and may never terminate. 
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Dereferencing the iterator in the loop will likely produce undefined results.

vector<int> vectorOne(10);
vector<int> vectorTwo(10);
 
// Fill in the vectors.
 
// BUG! Possible infinite loop
for (auto iter { begin(vectorTwo) }; iter != end(vectorOne); ++iter) {
    // Loop body
}

NOTE Microsoft Visual C++, by default, gives an assertion error at run time for 
both of the preceding problems when running a debug build of your program. By 
default, no verification of iterators is performed for release builds. You can enable 
it for release builds as well, but it has a performance penalty.

Other Iterator Operations

The vector iterator is random access, which means you can move it backward and forward, and 
jump around. For example, the following code eventually changes the fifth element (index 4) to 
the value 4:

vector<int> intVector(10);
auto it { begin(intVector) };
it += 5;
--it;
*it = 4;

Iterators vs. Indexing

Given that you can write a for loop that uses a simple index variable and the size() method to iter-
ate over the elements of the vector, why should you bother using iterators? That’s a valid question, 
for which there are three main answers:

➤➤ Iterators allow you to insert and delete elements and sequences of elements at any point in 
the container. See the section “Adding and Removing Elements.”

➤➤ Iterators allow you to use the Standard Library algorithms, which are discussed in 
Chapter 20, “Mastering Standard Library Algorithms.”

➤➤ Using an iterator to access each element sequentially is often more efficient than indexing the 
container to retrieve each element individually. This generalization is not true for vectors, 
but applies to lists, maps, and sets.

Storing References in a vector
As mentioned in the beginning of this chapter, it is possible to store references in a container, such as 
a vector. To do this, you store std::reference_wrappers in the container. The std::ref() and 
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cref() function templates are used to create non-const and const reference_wrapper instances. 
The get() method is used to get access to the object wrapped by a reference_wrapper. All this 
requires <functional>. Here is an example:

string str1 { "Hello" };
string str2 { "World" };
 
// Create a vector of references to strings.
vector<reference_wrapper<string>> vec{ ref(str1) };
vec.push_back(ref(str2));  // push_back() works as well.
 
// Modify the string referred to by the second reference in the vector.
vec[1].get() += "!";
 
// The end result is that str2 is actually modified.
cout << str1 << " " << str2 << endl;

Adding and Removing Elements
As you have already read, you can append an element to a vector with the push_back() method. 
The vector provides a parallel remove method called pop_back().

WARNING pop_back() does not return the element that it removed. If you want 
that element, you must first retrieve it with back().

You can also insert elements at any point in the vector with the insert() method, which adds one 
or more elements to a position specified by an iterator, shifting all subsequent elements down to make 
room for the new ones. There are five different overloaded forms of insert() that do the following:

➤➤ Insert a single element.

➤➤ Insert n copies of a single element.

➤➤ Insert elements from an iterator range. Recall that the iterator range is half-open, such that 
it includes the element referred to by the starting iterator but not the one referred to by the 
ending iterator.

➤➤ Insert a single element by moving the given element to a vector using move semantics.

➤➤ Insert a list of elements into a vector where the list of elements is given as an  
initializer_list.

NOTE There are versions of push_back() and insert() that take an lvalue or 
an rvalue as a parameter. Both versions allocate memory as needed to store the 
new elements. The lvalue versions store copies of the given elements, while the 
rvalue versions use move semantics to move ownership of the given elements to the 
vector instead of copying them.
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You can remove elements from any point in a vector with erase(), and you can remove all elements 
with clear(). There are two forms of erase(): one accepting a single iterator to remove a single ele-
ment, and one accepting two iterators specifying a range of elements to remove.

Let’s look at an example program that demonstrates the methods for adding and removing elements. 
It uses the following helper function template printVector() to print the contents of a vector 
to cout. See Chapter 12, “Writing Generic Code with Templates,” for details on writing function 
templates.

template <typename T>
void printVector(const vector<T>& v)
{
    for (auto& element : v) { cout << element << " "; }
    cout << endl;
}

The upcoming code snippet demonstrates the two-argument version of erase() and the following 
versions of insert():

➤➤ insert(const_iterator pos, const T& x): The value x is inserted at position pos.

➤➤ insert(const_iterator pos, size_type n, const T& x): The value x is inserted n 
times at position pos.

➤➤ insert(const_iterator pos, InputIterator first, InputIterator last): The ele-
ments in the range [first, last) are inserted at position pos.

Here is the code snippet:

vector vectorOne { 1, 2, 3, 5 };
vector<int> vectorTwo;
 
// Oops, we forgot to add 4. Insert it in the correct place
vectorOne.insert(cbegin(vectorOne) + 3, 4);
 
// Add elements 6 through 10 to vectorTwo
for (int i { 6 }; i <= 10; i++) {
    vectorTwo.push_back(i);
}
printVector(vectorOne);
printVector(vectorTwo);
 
// Add all the elements from vectorTwo to the end of vectorOne
vectorOne.insert(cend(vectorOne), cbegin(vectorTwo), cend(vectorTwo));
printVector(vectorOne);
 
// Now erase the numbers 2 through 5 in vectorOne
vectorOne.erase(cbegin(vectorOne) + 1, cbegin(vectorOne) + 5);
printVector(vectorOne);
 
// Clear vectorTwo entirely
vectorTwo.clear();
 
// And add 10 copies of the value 100
vectorTwo.insert(cbegin(vectorTwo), 10, 100);

continues
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// Decide we only want 9 elements
vectorTwo.pop_back();
printVector(vectorTwo);

The output of the program is as follows:

1 2 3 4 5
6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
1 6 7 8 9 10
100 100 100 100 100 100 100 100 100

Recall that iterator pairs represent half-open ranges, and insert() adds elements before the element 
referred to by a given iterator position. Thus, you can insert the entire contents of vectorTwo into the 
end of vectorOne, like this:

vectorOne.insert(cend(vectorOne), cbegin(vectorTwo), cend(vectorTwo));

WARNING Methods such as insert() and erase() that take a vector range as 
arguments assume that the beginning and ending iterators refer to elements in the 
same container and that the end iterator refers to an element at or past the begin 
iterator. The methods will not work correctly if these preconditions are not met!

If you want to remove all elements satisfying a condition, one solution would be to write a loop 
iterating over all the elements and erasing every element that matches the condition. However, this 
solution has quadratic complexity, which is bad for performance. This quadratic complexity can be 
avoided by using the remove-erase-idiom, which has a linear complexity. The remove-erase-idiom is 
discussed in Chapter 20.

Starting with C++20, however, there is a more elegant solution in the form of the std::erase() and 
std::erase_if() non-member functions, defined for all Standard Library containers. The former is 
demonstrated in the following code snippet:

vector values { 1, 2, 3, 2, 1, 2, 4, 5 };
printVector(values);
 
erase(values, 2);  // Removes all values equal to 2.
printVector(values);

The output is as follows:

1 2 3 2 1 2 4 5
1 3 1 4 5

erase_if() works similarly, but instead of passing a value as second argument, a predicate is passed 
that returns true for elements that should be removed, and false for elements that should be kept. 
The predicate can take the form of a function pointer, a function object, or a lambda expression, all 
of which are discussed in detail in Chapter 19, “Function Pointers, Function Objects, and Lambda 
Expressions.”

C++20

(continued)
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Move Semantics

Adding elements to a vector can make use of move semantics to improve performance in certain 
situations. For example, suppose you have the following vector of strings:

vector<string> vec;

You can add an element to this vector as follows:

string myElement(5, 'a');  // Constructs the string "aaaaa"
vec.push_back(myElement);

However, because myElement is not a temporary object, push_back() makes a copy of myElement 
and puts it in the vector.

The vector class also defines a push_back(T&&), which is the move equivalent of push_back(const 
T&). So, copying can be avoided if you call the push_back() method as follows:

vec.push_back(move(myElement));

Now you are explicitly saying that myElement should be moved into the vector. Note that after this 
call, myElement is in a valid but otherwise indeterminate state. You should not use myElement any-
more, unless you first bring it back to a determinate state, for example by calling clear() on it! You 
can also call push_back() as follows:

vec.push_back(string(5, 'a'));

The preceding call to push_back() triggers a call to the move version because the call to the string 
constructor results in a temporary object. The push_back() method moves this temporary string 
object into the vector, avoiding any copying.

Emplace Operations

C++ supports emplace operations on most Standard Library containers, including vector. Emplace 
means “to put into place.” An example is the emplace_back() method of vector, which does not 
copy or move anything. Instead, it makes space in the container and constructs the object in place, as 
in this example:

vec.emplace_back(5, 'a');

The emplace methods take a variable number of arguments as a variadic template. Variadic templates 
are discussed in Chapter 26, “Advanced Templates,” but those details are not required to understand 
how to use emplace_back(). Basically, the arguments passed to emplace_back() are forwarded to 
the constructor of the type stored in the vector. The difference in performance between emplace_
back() and push_back() using move semantics depends on how your specific compiler implements 
these operations. In most situations, you can pick the one based on the syntax that you prefer:

vec.push_back(string(5, 'a'));
// Or
vec.emplace_back(5, 'a');

Since C++17, the emplace_back() method returns a reference to the inserted element. Before C++17, 
the return type of emplace_back() was void.
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There is also an emplace() method that constructs an object in place at a specific position in the 
vector and that returns an iterator to the inserted element.

Algorithmic Complexity and Iterator Invalidation

Inserting or erasing elements in a vector causes all subsequent elements to shift up or down to make 
room for, or fill in the holes left by, the affected elements. Thus, these operations take linear complex-
ity. Furthermore, all iterators referring to the insertion or removal point or subsequent positions are 
invalid following the action. The iterators are not “magically” moved to keep up with the elements 
that are shifted up or down in the vector—that’s up to you.

Also keep in mind that an internal vector reallocation can cause invalidation of all iterators referring 
to elements in the vector, not just those referring to elements past the point of insertion or deletion. 
See the next section for details.

The vector Memory Allocation Scheme
A vector allocates memory automatically to store the elements that you insert. Recall that the  
vector requirements dictate that the elements must be in contiguous memory, like in standard C-style 
arrays. Because it’s impossible to request to add memory to the end of a current chunk of memory, 
every time a vector allocates more memory, it must allocate a new, larger chunk in a separate 
memory location and copy/move all the elements to the new chunk. This process is time-consuming, 
so vector implementations attempt to avoid it by allocating more space than needed when they 
have to perform a reallocation. That way, they can avoid reallocating memory every time you insert 
an element.

One obvious question at this point is why you, as a client of vector, care how it manages its memory 
internally. You might think that the principle of abstraction should allow you to disregard the inter-
nals of the vector memory allocation scheme. Unfortunately, there are two reasons why you need to 
understand how it works:

➤➤ Efficiency: The vector allocation scheme can guarantee that an element insertion runs in 
amortized constant time: most of the time the operation is constant, but once in a while (if it 
requires a reallocation), it’s linear. If you are worried about efficiency, you can control when a 
vector performs reallocations.

➤➤ Iterator invalidations: A reallocation invalidates all iterators referring to elements 
in a vector.

Thus, the vector interface allows you to query and control the vector reallocations, both explained 
in the upcoming subsections.

WARNING If you don’t control the reallocations explicitly, you should assume 
that all insertions cause a reallocation and thus invalidate all iterators.
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Size and Capacity

vector provides two methods for obtaining information about its size: size() and capacity(). The 
size() method returns the number of elements in a vector, while capacity() returns the number 
of elements that it can hold without a reallocation. Thus, the number of elements that you can insert 
without causing a reallocation is capacity() – size().

NOTE You can query whether a vector is empty with the empty() method. A 
vector can be empty but have nonzero capacity.

There are also non-member std::size() and std::empty() global functions, which can be used 
with all containers. They can also be used with statically allocated C-style arrays not accessed through 
pointers, and with initializer_lists. Here is an example of using them with a vector:

vector vec { 1, 2, 3 };
cout << size(vec) << endl;
cout << empty(vec) << endl;

Additionally, C++20 introduces std::ssize() as a global non-member helper function, returning the 
size as a signed integral type. Here’s an example:

auto s1 { size(vec) };   // Type is size_t (unsigned)
auto s2 { ssize(vec) };  // Type is long long (signed)

Reserving Capacity

If you don’t care about efficiency or iterator invalidations, there is never a need to control the vector 
memory allocation explicitly. However, if you want to make your program as efficient as possible or 
you want to guarantee that iterators will not be invalidated, you can force a vector to preallocate 
enough space to hold all of its elements. Of course, you need to know how many elements it will 
hold, which is sometimes impossible to predict.

One way to preallocate space is to call reserve(), which allocates enough memory to hold the speci-
fied number of elements. The upcoming round-robin class example shows the reserve() method 
in action.

WARNING Reserving space for elements changes the capacity, but not the size. 
That is, it doesn’t actually create elements. Don’t access elements past a vector’s 
size.

Another way to preallocate space is to specify, in the constructor, or with the resize() or assign() 
method, how many elements you want a vector to store. This method actually creates a vector of 
that size (and probably of that capacity).

C++20
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Reclaiming Memory

A vector automatically allocates more memory if needed; however, it will never release any memory, 
unless the vector is destroyed. Removing elements from a vector decreases the size of the vector, 
but never its capacity. How then can you reclaim its memory? One trick to reclaim all memory of a 
vector is to swap it with an empty one. The following code snippet shows how memory of a vector 
called values can be reclaimed with a single statement. The third line of code constructs a tempo-
rary empty default-constructed vector of the same type as values and swaps this with values. All 
memory that was allocated for values now belongs to this temporary vector, which is automatically 
destroyed at the end of that statement freeing all its memory. The end result is that all memory that 
was allocated for values is reclaimed, and values is left with a capacity of zero.

vector<int> values;
// Populate values ...
vector<int>().swap(values);

Directly Accessing the Data

A vector stores its data contiguously in memory. You can get a pointer to this block of memory with 
the data() method.

There is also a non-member std::data() global function that can be used to get a pointer to the 
data. It works for the array and vector containers, strings, statically allocated C-style arrays not 
accessed through pointers, and initializer_lists. Here is an example for a vector:

vector vec { 1, 2, 3 };
int* data1 { vec.data() };
int* data2 { data(vec) };

Another way to get access to the memory block of a vector is by taking the address of the first 
element, as in: &vec[0]. You might find this kind of code in legacy code bases, but it is not safe for 
empty vectors; as such, I recommend not to use it and instead use data().

Move Semantics
All Standard Library containers support move semantics by including a move constructor and move 
assignment operator. See Chapter 9 for details on move semantics. A benefit of this is that you can 
easily return a Standard Library container from a function by value without performance penalty. 
Take a look at the following function:

vector<int> createVectorOfSize(size_t size)
{
    vector<int> vec(size);
    for (int contents { 0 }; auto& i : vec) { i = contents++; }
    return vec;
}
...
vector<int> myVector;
myVector = createVectorOfSize(123);

Without move semantics, assigning the result of createVectorOfSize() to myVector might call the 
copy assignment operator. With the move semantics support in the Standard Library containers, copy-
ing of the vector is avoided. Instead, the assignment to myVector triggers a call to the move assign-
ment operator.
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Keep in mind, though, that for move semantics to work properly with Standard Library containers, the 
move constructor and move assignment operator of the type stored in the container must be marked  
as noexcept! Why are these move methods not allowed to throw any exceptions? Imagine that they 
are allowed to throw exceptions. Now, when adding, for example, new elements to a vector,  
it might be that the capacity of the vector is not sufficient and that it needs to allocate a bigger block 
of memory. Subsequently, the vector must either copy or move all the data from the original memory 
block to the new one. If this would be done using a move method that can potentially throw, then it 
might happen that an exception gets thrown when part of the data has already been moved to the new 
memory block. What can we do then? Not much. To avoid these kinds of problems, Standard Library 
containers will only use move methods if they guarantee not to throw any exceptions. If they are not 
marked noexcept, the copy methods will be used instead to guarantee exception safety.

When implementing your own Standard Library–like containers, there is a useful helper function 
available called std::move_if_noexcept(), defined in <utility>. This can be used to call  
either the move constructor or the copy constructor depending on whether the move constructor is 
noexcept. In itself, move_if_noexcept() doesn’t do much. It accepts a reference as a parameter 
and converts it to either an rvalue reference if the move constructor is noexcept or to a reference-to-
const otherwise, but this simple trick allows you to call the correct constructor with a single call.

The Standard Library does not provide a similar helper function to call the move assignment operator 
or copy assignment operator depending on whether the former is noexcept. Implementing one your-
self is not too complicated, but requires some template metaprogramming techniques and so-called 
type traits to inspect properties of types. Both topics are discussed in Chapter 26, which also gives an 
example of implementing your own move_assign_if_noexcept().

vector Example: A Round-Robin Class
A common problem in computer science is distributing requests among a finite list of resources. For 
example, a simple operating system could keep a list of processes and assign a time slice (such as 
100ms) to each process to let the process perform some of its work. After the time slice is finished, 
the OS suspends the process, and the next process in the list is given a time slice to perform some of 
its work. One of the simplest algorithmic solutions to this problem is round-robin scheduling. When 
the time slice of the last process is finished, the scheduler starts over again with the first process. For 
example, in the case of three processes, the first time slice would go to the first process, the second 
slice to the second process, the third slice to the third process, and the fourth slice back to the first 
process. The cycle would continue in this way indefinitely.

Suppose that you decide to write a generic round-robin scheduling class that can be used with any 
type of resource. The class should support adding and removing resources and should support cycling 
through the resources to obtain the next one. You could use a vector directly, but it’s often helpful to 
write a wrapper class that provides more directly the functionality you need for your specific applica-
tion. The following example shows a RoundRobin class template with comments explaining the code. 
First, here is the class definition, exported from a module called round_robin:

module;
#include <cstddef>
export module round_robin;
import <stdexcept>;
import <vector>;
 

continues
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// Class template RoundRobin
// Provides simple round-robin semantics for a list of elements.
export template <typename T>
class RoundRobin
{
    public:
        // Client can give a hint as to the number of expected elements for
        // increased efficiency.
        explicit RoundRobin(size_t numExpected = 0);
        virtual ~RoundRobin() = default;
        // Prevent assignment and pass-by-value
        RoundRobin(const RoundRobin& src) = delete;
        RoundRobin& operator=(const RoundRobin& rhs) = delete;
        // Explicitly default a move constructor and move assignment operator
        RoundRobin(RoundRobin&& src) noexcept = default;
        RoundRobin& operator=(RoundRobin&& rhs) noexcept = default;
        // Appends element to the end of the list. May be called
        // between calls to getNext().
        void add(const T& element);
        // Removes the first (and only the first) element
        // in the list that is equal (with operator==) to element.
        // May be called between calls to getNext().
        void remove(const T& element);
        // Returns the next element in the list, starting with the first,
        // and cycling back to the first when the end of the list is
        // reached, taking into account elements that are added or removed.
        T& getNext();
    private:
        std::vector<T> m_elements;
        typename std::vector<T>::iterator m_nextElement;
};

As you can see, the public interface is straightforward: only three methods plus the constructor and 
destructor. The resources are stored in a vector called m_elements. The iterator m_nextElement 
always refers to the element that will be returned with the next call to getNext(). If getNext() 
hasn’t been called yet, m_nextElement is equal to begin(m_elements). Note the use of the  
typename keyword in front of the line declaring m_nextElement. So far, you’ve only seen that 
keyword used to specify template type parameters, but there is another use for it. You must specify 
typename explicitly whenever you access a type based on one or more template parameters. In this 
case, the template parameter T is used to access the iterator type. Thus, you must specify typename. 
This is another example of arcane C++ syntax.

The class also prevents assignment and pass-by-value because of the m_nextElement data member. To 
make assignment and pass-by-value work, you would have to implement an assignment operator and 
copy constructor and make sure m_nextElement is valid in the destination object.

The implementation of the RoundRobin class follows with comments explaining the code. Note the 
use of reserve() in the constructor, and the extensive use of iterators in add(), remove(), and  
getNext(). The trickiest aspect is handling m_nextElement in the add() and remove() methods.

(continued)
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template <typename T> RoundRobin<T>::RoundRobin(size_t numExpected)
{
    // If the client gave a guideline, reserve that much space.
    m_elements.reserve(numExpected);
 
    // Initialize m_nextElement even though it isn't used until
    // there's at least one element.
    m_nextElement = begin(m_elements);
}
 
// Always add the new element at the end.
template <typename T> void RoundRobin<T>::add(const T& element)
{
    // Even though we add the element at the end, the vector could
    // reallocate and invalidate the m_nextElement iterator with
    // the push_back() call. Take advantage of the random-access
    // iterator features to save our spot.
    // Note: ptrdiff_t is a type capable of storing the difference
    //       between two random-access iterators.
    ptrdiff_t pos { m_nextElement - begin(m_elements) };
 
    // Add the element.
    m_elements.push_back(element);
 
    // Reset our iterator to make sure it is valid.
    m_nextElement = begin(m_elements) + pos;
}
 
template <typename T> void RoundRobin<T>::remove(const T& element)
{
    for (auto it { begin(m_elements) }; it != end(m_elements); ++it) {
        if (*it == element) {
            // Removing an element invalidates the m_nextElement iterator
            // if it refers to an element past the point of the removal.
            // Take advantage of the random-access features of the iterator
            // to track the position of the current element after removal.
            ptrdiff_t newPos;
 
            if (m_nextElement == end(m_elements) - 1 &&
                m_nextElement == it) {
                // m_nextElement refers to the last element in the list,
                // and we are removing that last element, so wrap back to
                // the beginning.
                newPos = 0;
            } else if (m_nextElement <= it) {
                // Otherwise, if m_nextElement is before or at the one
                // we're removing, the new position is the same as before.
                newPos = m_nextElement - begin(m_elements);
            } else {
                // Otherwise, it's one less than before.
                newPos = m_nextElement - begin(m_elements) - 1;
            }
 
            // Erase the element (and ignore the return value).
            m_elements.erase(it);
 continues
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            // Now reset our iterator to make sure it is valid.
            m_nextElement = begin(m_elements) + newPos;
 
            return;
        }
    }
}
 
template <typename T> T& RoundRobin<T>::getNext()
{
    // First, make sure there are elements.
    if (m_elements.empty()) {
        throw std::out_of_range { "No elements in the list" };
    }
 
    // Store the current element which we need to return.
    auto& toReturn { *m_nextElement };
 
    // Increment the iterator modulo the number of elements.
    ++m_nextElement;
    if (m_nextElement == end(m_elements)) { m_nextElement = begin(m_elements); }
 
    // Return a reference to the element.
    return toReturn;
}

Here’s a simple implementation of a scheduler that uses the RoundRobin class template, with com-
ments explaining the code:

// Basic Process class.
class Process final
{
    public:
        // Constructor accepting the name of the process.
        explicit Process(string name) : m_name { move(name) } {}
 
        // Lets a process perform its work for the duration of a time slice.
        void doWorkDuringTimeSlice()
        {
            cout << "Process " << m_name
                 << " performing work during time slice." << endl;
            // Actual implementation omitted.
        }
 
        // Needed for the RoundRobin::remove() method to work.
        bool operator==(const Process&) const = default; // = default since C++20.
    private:
        string m_name;
};
 

(continued)
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// Basic round-robin based process scheduler.
class Scheduler final
{
    public:
        // Constructor takes a vector of processes.
        explicit Scheduler(const vector<Process>& processes)
        {
            // Add the processes.
            for (auto& process : processes) { m_processes.add(process); }
        }
 
        // Selects the next process using a round-robin scheduling algorithm
        // and allows it to perform some work during this time slice.
        void scheduleTimeSlice()
        {
            try {
                m_processes.getNext().doWorkDuringTimeSlice();
            } catch (const out_of_range&) {
                cerr << "No more processes to schedule." << endl;
            }
        }
 
        // Removes the given process from the list of processes.
        void removeProcess(const Process& process)
        {
            m_processes.remove(process);
        }
    private:
        RoundRobin<Process> m_processes;
};
 
int main()
{
    vector processes { Process { "1" }, Process { "2" }, Process { "3" } };
 
    Scheduler scheduler { processes };
    for (size_t i { 0 }; i < 4; ++i) { scheduler.scheduleTimeSlice(); }
 
    scheduler.removeProcess(processes[1]);
    cout << "Removed second process" << endl;
 
    for (size_t i { 0 }; i < 4; ++i) { scheduler.scheduleTimeSlice(); }
}

The output should be as follows:

Process 1 performing work during time slice.
Process 2 performing work during time slice.
Process 3 performing work during time slice.
Process 1 performing work during time slice.
Removed second process
Process 3 performing work during time slice.
Process 1 performing work during time slice.
Process 3 performing work during time slice.
Process 1 performing work during time slice.
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The vector<bool> Specialization
The C++ standard requires a partial specialization of vector for bools, with the intention that it 
optimizes space allocation by “packing” the Boolean values. Recall that a bool is either true or 
false and thus could be represented by a single bit, which can take on exactly two values. C++ does 
not have a native type that stores exactly one bit. Some compilers represent a Boolean value with a 
type the same size as a char; other compilers use an int. The vector<bool> specialization is sup-
posed to store the “array of bools” in single bits, thus saving space.

NOTE You can think of the vector<bool> as a bit-field instead of a vector.  
The bitset container described later in this chapter provides a more full- 
featured bit-field implementation than does vector<bool>. However, the benefit 
of vector<bool> is that it can change size dynamically.

In a half-hearted attempt to provide some bit-field routines for vector<bool>, there is one additional 
method called flip() that complements bits; that is, true becomes false, and false becomes true, 
similar to the logical NOT operator. This method can be called either on the container—in which case 
it complements all the elements in the container—or on a single reference returned from operator[] 
or a similar method, in which case it complements that single element.

At this point, you should be wondering how you can call a method on a reference to bool. The 
answer is that you can’t. The vector<bool> specialization actually defines a class called reference 
that serves as a proxy for the underlying bool (or bit). When you call operator[], at(), or a similar 
method, then vector<bool> returns a reference object, which is a proxy for the real bool.

WARNING The fact that references returned from vector<bool> are really  
proxies means that you can’t take their addresses to obtain pointers to the actual 
elements in the container.

In practice, the little amount of space saved by packing bools hardly seems worth the extra effort. 
Even worse, accessing and modifying elements in a vector<bool> is much slower than, for example, 
in a vector<int>. Many C++ experts recommend avoiding vector<bool> in favor of the bitset. If 
you do need a dynamically sized bit field, then just use something like vector<std::int_fast8_t> 
or vector<unsigned char>. The std::int_fast8_t type is defined in <cstdint>. It is a signed 
integer type for which the compiler has to use the fastest integer type it has that is at least 8 bits.
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deque
deque (the abbreviation for double-ended queue) is almost identical to vector, but is used far less 
frequently. It is defined in <deque>. The principle differences are as follows:

➤➤ Elements are not stored contiguously in memory.

➤➤ A deque supports true constant-time insertion and removal of elements at both the front and 
the back (a vector supports amortized constant time at just the back).

➤➤ A deque provides the following methods that vector omits:

➤➤ push_front(): Inserts an element at the beginning.

➤➤ pop_front(): Removes the first element.

➤➤ emplace_front(): Creates a new element in-place at the beginning. Since C++17, 
returns a reference to the inserted element instead of void.

➤➤ A deque does not invalidate iterators when inserting elements at the front or at the back.

➤➤ A deque does not expose its memory management scheme via reserve() or capacity().

deques are rarely used, as opposed to vectors, so they are not further discussed. Consult a Standard 
Library Reference for a detailed list of all supported methods.

list
The Standard Library list class template, defined in <list>, is a standard doubly linked list. It 
supports constant-time insertion and deletion of elements at any point in the list, but provides slow 
(linear) time access to individual elements. In fact, the list does not even provide random-access 
operations like operator[]. Only through iterators can you access individual elements.

Most of the list operations are identical to those of vector, including the constructors, destructor, 
copying operations, assignment operations, and comparison operations. This section focuses on those 
methods that differ from those of vector.

Accessing Elements
The only methods provided by a list to access elements are front() and back(), both of which run 
in constant time. These methods return a reference to the first and last elements in a list. All other 
element access must be performed through iterators.

Just as vectors, lists support (c)begin(), (c)end(), (c)rbegin(), and (c)rend().

WARNING Lists do not provide random access to elements.
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Iterators
A list iterator is bidirectional, not random access like a vector iterator. That means that you can-
not add and subtract list iterators from each other or perform other pointer arithmetic on them. For 
example, if p is a list iterator, you can traverse through the elements of the list by doing ++p or 
--p, but you cannot use the addition or subtraction operator; p+n and p-n do not work.

Adding and Removing Elements
A list supports the same add and remove element methods as a vector, including push_back(), 
pop_back(), emplace(), emplace_back(), the five forms of insert(), the two forms of erase(), 
and clear(). Like a deque, it also provides push_front(), emplace_front(), and pop_front(). 
All these methods (except for clear()) run in constant time, once you’ve found the correct position. 
Thus, a list could be appropriate for applications that perform many insertions and deletions from 
the data structure, but do not need quick index-based element access. But even then, a vector might 
still be faster. Use a performance profiler to make sure.

list Size
Like deques, and unlike vectors, lists do not expose their underlying memory model. Conse-
quently, they support size(), empty(), and resize(), but not reserve() or capacity(). Note that 
the size() method on a list has constant complexity.

Special list Operations
A list provides several special operations that exploit its quick element insertion and deletion. This 
section provides an overview and examples. Consult a Standard Library Reference for a thorough 
reference of all the methods.

Splicing
The linked-list characteristics of a list allow it to splice, or insert, an entire list at any position in 
another list in constant time. The simplest version of this method works as follows:

// Store the a words in the main dictionary.
list<string> dictionary { "aardvark", "ambulance" };
// Store the b words.
list<string> bWords { "bathos", "balderdash" };
// Add the c words to the main dictionary.
dictionary.push_back("canticle");
dictionary.push_back("consumerism");
// Splice the b words into the main dictionary.
if (!bWords.empty()) {
    // Get an iterator to the last b word.
    auto iterLastB { --(cend(bWords)) };
    // Iterate up to the spot where we want to insert b words.
    auto it { cbegin(dictionary) };
    for (; it != cend(dictionary); ++it) {
        if (*it > *iterLastB)
            break;
    }
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    // Add in the b words. This action removes the elements from bWords.
    dictionary.splice(it, bWords);
}
// Print out the dictionary.
for (const auto& word : dictionary) {
    cout << word << endl;
} 

The result from running this program looks like this:

aardvark
ambulance
bathos
balderdash
canticle
consumerism

There are also two other forms of splice(): one that inserts a single element from another list and 
one that inserts a range from another list. Additionally, all forms of splice() are available with 
either a normal reference or an rvalue reference to the source list.

WARNING Splicing is destructive to the list passed as an argument: it removes 
the spliced elements from one list to insert them into the other.

More Efficient Versions of Algorithms
In addition to splice(), a list provides special implementations of several of the generic Standard 
Library algorithms. The generic forms are covered in Chapter 20. Here, only the specific versions 
provided by list are discussed.

NOTE When you have a choice, use the list-specific methods rather than the 
generic Standard Library algorithms because the former are more efficient. Some-
times you don’t have a choice, and you must use the list-specific methods; for 
example, the generic std::sort() algorithm requires random-access iterators, 
which a list does not provide.

The following table summarizes the algorithms for which list provides special implementations as 
methods. See Chapter 20 for more details on the algorithms.

METHOD DESCRIPTION

remove()

remove_if()

Removes all elements matching certain criteria from a list. Starting with 
C++20, these methods return the number of removed elements as a size_t, 
whereas before they didn’t return anything.

continues
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METHOD DESCRIPTION

unique() Removes duplicate consecutive elements from a list, based on operator== 
or a user-supplied binary predicate. Starting with C++20, unique() returns 
the number of removed elements as a size_t, whereas before it didn’t 
return anything.

merge() Merges two lists. Both lists must be sorted to start, according to operator< 
or a user-defined comparator. Like splice(), merge() is destructive to the 
list passed as an argument.

sort() Performs a stable sort on elements in a list.

reverse() Reverses the order of the elements in a list.

list Example: Determining Enrollment
Suppose that you are writing a computer registration system for a university. One feature you might 
provide is the ability to generate a complete list of enrolled students in the university from lists of the 
students in each class. For the sake of this example, assume that you must write only a single function 
that takes a vector of lists of student names (as strings), plus a list of students that have been 
dropped from their courses because they failed to pay tuition. This method should generate a com-
plete list of all the students in all the courses, without any duplicates, and without those students 
who have been dropped. Note that students might be in more than one course.

Here is the code for this method, with comments explaining the code. With the power of Standard 
Library lists, the method is practically shorter than its written description! Note that the Standard 
Library allows you to “nest” containers: in this case, you can use a vector of lists.

// courseStudents is a vector of lists, one for each course. The lists
// contain the students enrolled in those courses. They are not sorted.
//
// droppedStudents is a list of students who failed to pay their
// tuition and so were dropped from their courses.
//
// The function returns a list of every enrolled (non-dropped) student in
// all the courses.
list<string> getTotalEnrollment(const vector<list<string>>& courseStudents,
                                const list<string>& droppedStudents)
{
    list<string> allStudents;
 
    // Concatenate all the course lists onto the master list
    for (auto& lst : courseStudents) {
        allStudents.insert(cend(allStudents), cbegin(lst), cend(lst));
    }
 
    // Sort the master list
    allStudents.sort();
 

TABLE (continued)
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    // Remove duplicate student names (those who are in multiple courses).
    allStudents.unique();
 
    // Remove students who are on the dropped list.
    // Iterate through the dropped list, calling remove on the
    // master list for each student in the dropped list.
    for (auto& str : droppedStudents) {
        allStudents.remove(str);
    }
 
    // done!
    return allStudents;
}

NOTE This example demonstrates the use of the list-specific algorithms. As 
stated several times before, often a vector is faster than a list. So, the recom-
mended solution to the student enrollment problem would be to only use vectors 
and to combine these with generic Standard Library algorithms, but those are dis-
cussed in Chapter 20.

forward_list
A forward_list, defined in <forward_list>, is similar to a list except that it is a singly linked 
list, while list is a doubly linked list. This means that forward_list supports only forward itera-
tion, and because of this, ranges need to be specified differently compared to a list. If you want  
to modify any list, you need access to the element before the first element of interest. Because a  
forward_list does not have an iterator that supports going backward, there is no easy way to get 
to the preceding element. For this reason, ranges that will be modified—for example, ranges supplied 
to erase() and splice()—must be open at the beginning. The begin() function that was discussed 
earlier returns an iterator to the first element and thus can only be used to construct a range that is 
closed at the beginning. The forward_list class therefore defines a before_begin() method, which 
returns an iterator that points to an imaginary element before the beginning of the list. You cannot 
dereference this iterator as it points to invalid data. However, incrementing this iterator by 1 makes it 
the same as the iterator returned by begin(); as a result, it can be used to make a range that is open 
at the beginning.

Constructors and assignment operators are similar between a list and a forward_list. The C++ 
standard requires that forward_list minimizes its memory use. That’s the reason why there is no 
size() method, because by not providing it, there is no need to store the size of the list. The follow-
ing table sums up the differences between a list and a forward_list. A filled box (■) means the 
container supports that operation, while an empty box (□) means the operation is not supported.

OPERATION list forward_list

assign() ■ ■

back() ■ □

continues
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OPERATION list forward_list

before_begin() □ ■

begin() ■ ■

cbefore_begin() □ ■

cbegin() ■ ■

cend() ■ ■

clear() ■ ■

crbegin() ■ □

crend() ■ □

emplace() ■ □

emplace_after() □ ■

emplace_back() ■ □

emplace_front() ■ ■

empty() ■ ■

end() ■ ■

erase() ■ □

erase_after() □ ■

front() ■ ■

insert() ■ □

insert_after() □ ■

iterator / const_iterator ■ ■

max_size() ■ ■

merge() ■ ■

pop_back() ■ □

pop_front() ■ ■

push_back() ■ □

push_front() ■ ■

rbegin() ■ □

TABLE (continued)
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OPERATION list forward_list

remove() ■ ■

remove_if() ■ ■

rend() ■ □

resize() ■ ■

reverse() ■ ■

reverse_iterator / const_reverse_iterator ■ □

size() ■ □

sort() ■ ■

splice() ■ □

splice_after() □ ■

swap() ■ ■

unique() ■ ■

The following example demonstrates the use of forward_lists:

// Create 3 forward lists using an initializer_list
// to initialize their elements (uniform initialization).
forward_list<int> list1 { 5, 6 };
forward_list list2 { 1, 2, 3, 4 };  // CTAD is supported.
forward_list list3 { 7, 8, 9 };
 
// Insert list2 at the front of list1 using splice.
list1.splice_after(list1.before_begin(), list2);
 
// Add number 0 at the beginning of the list1.
list1.push_front(0);
 
// Insert list3 at the end of list1.
// For this, we first need an iterator to the last element.
auto iter { list1.before_begin() };
auto iterTemp { iter };
while (++iterTemp != end(list1)) { ++iter; }
list1.insert_after(iter, cbegin(list3), cend(list3));
 
// Output the contents of list1.
for (auto& i : list1) { cout << i << ' '; }

To insert list3, you need an iterator to the last element in the list. However, because this is a  
forward_list, you cannot use --end(list1), so you need to iterate over the list from the beginning 
and stop at the last element. The output of this example is as follows:

0 1 2 3 4 5 6 7 8 9
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array
An array, defined in <array>, is similar to a vector except that it is of a fixed size; it cannot grow 
or shrink in size. The purpose of a fixed size is to allow an array to be allocated on the stack, rather 
than always demanding access to the free store as vector does.

For arrays containing primitive types (integers, floating-point numbers, characters, Booleans, and so 
on), initialization of elements is different compared to how they are initialized for containers such as 
vector, list, and so on. If no initialization values are given to an array when it is created, then the 
array elements will be uninitialized, i.e., contain garbage. For other containers, such as vector and 
list, elements are always initialized, either with given values or using zero initialization. As such, 
arrays behave virtually identical to C-style arrays.

Just like vectors, arrays support random-access iterators, and elements are stored in contiguous 
memory. An array has support for front(), back(), at(), and operator[]. It also supports a 
fill() method to fill the array with a specific element. Because it is fixed in size, it does not support 
push_back(), pop_back(), insert(), erase(), clear(), resize(), reserve(), or capacity(). A 
disadvantage compared to a vector is that the swap() method of an array runs in linear time, while 
it has constant complexity for a vector. An array can also not be moved in constant time, while 
a vector can. An array has a size() method, which is a clear advantage over C-style arrays. The 
following example demonstrates how to use the array class. Note that the array declaration requires 
two template parameters: the first specifies the type of the elements, and the second specifies the fixed 
number of elements in the array.

// Create an array of 3 integers and initialize them
// with the given initializer_list using uniform initialization.
array<int, 3> arr { 9, 8, 7 };
// Output the size of the array.
cout << "Array size = " << arr.size() << endl; // or std::size(arr);
// Output the contents using a range-based for loop.
for (const auto& i : arr) {
    cout << i << endl;
}
 
cout << "Performing arr.fill(3)..." << endl;
// Use the fill method to change the contents of the array.
arr.fill(3);
// Output the contents of the array using iterators.
for (auto iter { cbegin(arr) }; iter != cend(arr); ++iter) {
    cout << *iter << endl;
}

The output of the preceding code is as follows:

Array size = 3
9
8
7
Performing arr.fill(3)...
3
3
3
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You can use the std::get<n>() function template to retrieve an element from an std::array at the 
given index n. The index has to be a constant expression, so it cannot, for example, be a loop vari-
able. The benefit of using std::get<n>() is that the compiler checks at compile time that the given 
index is valid; otherwise, it results in a compilation error, as in this example:

array<int, 3> myArray{ 11, 22, 33 };
cout << std::get<1>(myArray) << endl;
cout << std::get<10>(myArray) << endl;  // BUG! Compilation error!

C++20 introduces a new non-member function called std::to_array(), defined in <array>, which 
converts a given C-style array to an std::array, using copy-initialization of the elements. The func-
tion works only for one-dimensional arrays. Here is a quick example:

auto arr1 { to_array({ 11, 22, 33 }) }; // Type is array<int, 3>
 
double carray[] { 9, 8, 7, 6 };
auto arr2 { to_array(carray) };         // Type is array<double, 4>

span
Suppose you have this function to print the contents of a vector:

void print(const vector<int>& values)
{
    for (const auto& value : values) { cout << value << " "; }
    cout << endl;
}

Suppose further that you also want to print the contents of C-style arrays. One option is to overload 
the print() function to accept a pointer to the first element of the array, and the number of ele-
ments to print:

void print(const int values[], size_t count)
{
    for (size_t i { 0 }; i < count; ++i) { cout << values[i] << " "; }
    cout << endl;
}

If you also want to print std::arrays, you could provide a third overload, but what would the func-
tion parameter type be? For an std::array, you have to specify the type and the number of elements 
in the array as template parameters. You see, it’s getting complicated.

std::span, introduced in C++20 and defined in <span>, comes to the rescue here, as it allows you to 
write a single function that works with vectors, C-style arrays, and std::arrays of any size. Here is 
a single implementation of print() using span:

void print(span<int> values)
{
    for (const auto& value : values) { cout << value << " "; }
    cout << endl;
}

Note that, just as with string_view from Chapter 2, “Working with Strings and String Views,” a 
span is cheap to copy; it basically just contains a pointer to the first element in a sequence and a 
number of elements. A span never copies data! As such, it is usually passed by value.

C++20

C++20
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There are several constructors for creating a span. For example, one can be created to include all 
elements of a given vector, std::array, or C-style array. A span can also be created to include only 
part of a container, by passing the address of the first element and the number of elements you want 
to include in the span.

A subview can be created from an existing span using the subspan() method. Its first argument is 
the offset into the span, and the second argument is the number of elements to include in the subview. 
There are also two additional methods called first() and last() returning subviews of a span 
containing the first n elements or the last n elements respectively.

A span has a couple of methods that are similar to vector and array: begin(), end(), rbegin(), 
rend(), front(), back(), operator[], data(), size(), and empty().

The following code snippet demonstrates a few ways to call the print(span) function:

vector v { 11, 22, 33, 44, 55, 66 };
// Pass the whole vector, implicitly converted to a span.
print(v);
// Pass an explicitly created span.
span mySpan { v };
print(mySpan);
// Create a subview and pass that.
span subspan { mySpan.subspan(2, 3) };
print(subspan);
// Pass a subview created in-line.
print({ v.data() + 2, 3 });
 
// Pass an std::array.
array<int, 5> arr { 5, 4, 3, 2, 1 };
print(arr);
print({ arr.data() + 2, 3 });
 
// Pass a C-style array.
int carr[] { 9, 8, 7, 6, 5 };
print(carr);            // The entire C-style array.
print({ carr + 2, 3 }); // A subview of the C-style array.

The output is as follows:

11 22 33 44 55 66
11 22 33 44 55 66
33 44 55
33 44 55
5 4 3 2 1
3 2 1
9 8 7 6 5
7 6 5

Unlike string_view that provides a read-only view of a string, a span can provide read/write 
access to the underlying elements. Remember that a span just contains a pointer to the first element 
in a sequence and the number of elements; that is, a span never copies data! As such, modifying an 
element in a span actually modifies the element in the underlying sequence. If this is not desired, a 
span of const elements can be created. For example, the print() function has no reason to modify 
any of the elements in a given span. We can prevent such modifications as follows:
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void print(span<const int> values)
{
    for (const auto& value : values) { cout << value << " "; }
    cout << endl;
}

NOTE When writing a function accepting a const vector<T>&, consider accept-
ing a span<const T> instead, so the function can work with views and subviews 
of data sequences coming from vectors, arrays, C-style arrays and more.

CONTAINER ADAPTERS

In addition to the standard sequential containers, the Standard Library provides three container 
adapters: queue, priority_queue, and stack. Each of these adapters is a wrapper around one of 
the sequential containers. They allow you to swap the underlying container without having to change 
the rest of the code. The intent of the adapters is to simplify the interface and to provide only those 
features that are appropriate for the stack or queue abstraction. For example, the adapters don’t 
provide iterators or the capability to insert or erase multiple elements simultaneously.

queue
The queue container adapter, defined in <queue>, provides standard first-in, first-out semantics. As 
usual, it’s written as a class template, which looks like this:

template <class T, class Container = deque<T>> class queue;

The T template parameter specifies the type that you intend to store in the queue. The second tem-
plate parameter allows you to stipulate the underlying container that the queue adapts. However, 
the queue requires the sequential container to support both push_back() and pop_front(), so 
you have only two built-in choices: deque and list. For most purposes, you can just stick with the 
default deque.

queue Operations
The queue interface is extremely simple: there are only eight methods plus the constructor and the 
normal comparison operators. The push()and emplace() methods add a new element to the tail of 
the queue, while pop() removes the element at the head of the queue. You can retrieve references to, 
without removing, the first and last elements with front() and back(), respectively. As usual, when 
called on const objects, front() and back() return references-to-const; and when called on non-
const objects, they return references-to-non-const (read/write).

WARNING pop() does not return the element popped. If you want to retain a 
copy, you must first retrieve it with front().

The queue also supports size(), empty(), and swap().
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queue Example: A Network Packet Buffer
When two computers communicate over a network, they send information to each other divided into 
discrete chunks called packets. The networking layer of the computer’s operating system must pick 
up the packets and store them as they arrive. However, the computer might not have enough band-
width to process all of them at once. Thus, the networking layer usually buffers, or stores, the packets 
until the higher layers have a chance to attend to them. The packets should be processed in the order 
they arrive, so this problem is perfect for a queue structure. The following is a small PacketBuffer 
class, with comments explaining the code, which stores incoming packets in a queue until they are 
processed. It’s a class template so that different layers of the networking stack can use it for different 
kinds of packets, such as IP packets or TCP packets. It allows the client to specify a maximum size 
because operating systems usually limit the number of packets that can be stored, so as not to use too 
much memory. When the buffer is full, subsequently arriving packets are ignored.

export template <typename T>
class PacketBuffer
{
    public:
        // If maxSize is 0, the size is unlimited, because creating
        // a buffer of size 0 makes little sense. Otherwise only
        // maxSize packets are allowed in the buffer at any one time.
        explicit PacketBuffer(size_t maxSize = 0);
 
        virtual ~PacketBuffer() = default;
 
        // Stores a packet in the buffer.
        // Returns false if the packet has been discarded because
        // there is no more space in the buffer, true otherwise.
        bool bufferPacket(const T& packet);
 
        // Returns the next packet. Throws out_of_range
        // if the buffer is empty.
        [[nodiscard]] T getNextPacket();
    private:
        std::queue<T> m_packets;
        size_t m_maxSize;
};
 
template <typename T> PacketBuffer<T>::PacketBuffer(size_t maxSize/*= 0*/)
    : m_maxSize { maxSize }
{
}
 
template <typename T> bool PacketBuffer<T>::bufferPacket(const T& packet)
{
    if (m_maxSize > 0 && m_packets.size() == m_maxSize) {
        // No more space. Drop the packet.
        return false;
    }
    m_packets.push(packet);
    return true;
}
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template <typename T> T PacketBuffer<T>::getNextPacket()
{
    if (m_packets.empty()) {
        throw std::out_of_range { "Buffer is empty" };
    }
    // Retrieve the head element
    T temp { m_packets.front() };
    // Pop the head element
    m_packets.pop();
    // Return the head element
    return temp;
}

A practical application of this class would require multiple threads. C++ provides synchronization 
classes to allow thread-safe access to shared objects. Without explicit synchronization, no Standard 
Library object can be used safely from multiple threads when at least one of the threads modifies 
the object. Synchronization is discussed in Chapter 27, “Multithreaded Programming with C++.” 
The focus in this example is on the queue class, so here is a single-threaded example of using the 
PacketBuffer:

class IPPacket final
{
    public:
        explicit IPPacket(int id) : m_id { id } {}
        int getID() const { return m_id; }
    private:
        int m_id;
};
 
int main()
{
    PacketBuffer<IPPacket> ipPackets { 3 };
 
    // Add 4 packets
    for (int i { 1 }; i <= 4; ++i) {
        if (!ipPackets.bufferPacket(IPPacket { i })) {
            cout << "Packet " << i << " dropped (queue is full)." << endl;
        }
    }
 
    while (true) {
        try {
            IPPacket packet { ipPackets.getNextPacket() };
            cout << "Processing packet " << packet.getID() << endl;
        } catch (const out_of_range&) {
            cout << "Queue is empty." << endl;
            break;
        }
    }
}
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The output of this program is as follows:

Packet 4 dropped (queue is full).
Processing packet 1
Processing packet 2
Processing packet 3
Queue is empty.

priority_queue
A priority queue is a queue that keeps its elements in sorted order. Instead of a strict FIFO ordering, 
the element at the head of the queue at any given time is the one with the highest priority. This ele-
ment could be the oldest on the queue or the most recent. If two elements have equal priority, their 
relative order in the queue is undefined.

The priority_queue container adapter is also defined in <queue>. Its template definition looks 
something like this (slightly simplified):

template <class T, class Container = vector<T>,
          class Compare = less<T>>;

It’s not as complicated as it looks. You’ve seen the first two parameters before: T is the element type 
stored in the priority_queue, and Container is the underlying container on which the priority_
queue is adapted. The priority_queue uses vector as the default, but deque works as well. list 
does not work because the priority_queue requires random access to its elements. The third param-
eter, Compare, is trickier. As you’ll learn more about in Chapter 19, less is a class template that 
supports comparison of two objects of type T with operator<. This means the priority of elements in 
a priority_queue is determined according to operator<. You can customize the comparison used, 
but that’s a topic for Chapter 19. For now, just make sure the types stored in a priority_queue sup-
port operator<. Of course, with C++20 it’s enough to provide operator<=> which then automati-
cally provides operator<.

NOTE The head element of a priority_queue is the one with the “highest” pri-
ority; by default, this is determined according to operator< such that elements 
that are “less” than other elements have lower priority.

priority_queue Operations
A priority_queue provides even fewer operations than does a queue. The push() and emplace() 
methods allow you to insert elements, pop() allows you to remove elements, and top() returns a 
reference-to-const to the head element.

WARNING top() returns a reference-to-const even when called on a non-
const object, because modifying the element might change its order, which is not 
allowed. A priority_queue provides no mechanism to obtain the tail element.
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WARNING pop() does not return the element popped. If you want to retain a 
copy, you must first retrieve it with top().

Like a queue, a priority_queue supports size(), empty(), and swap(). However, it does not pro-
vide any comparison operators.

priority_queue Example: An Error Correlator
Single failures on a system can often cause multiple errors to be generated from different components. 
A good error-handling system uses error correlation to process the most important errors first. You 
can use a priority_queue to write a simple error correlator. Assume all error events encode their 
own priority. The error correlator simply sorts error events according to their priority so that the 
highest-priority errors are always processed first. Here are the class definitions:

// Sample Error class with just a priority and a string error description.
export class Error final
{
    public:
        Error(int priority, std::string errorString)
            : m_priority { priority }, m_errorString { std::move(errorString) } { }
        int getPriority() const { return m_priority; }
        const std::string& getErrorString() const { return m_errorString; }
        // Compare Errors according to their priority. (C++20 operator<=>)
        auto operator<=>(const Error& rhs) const {
            return getPriority() <=> rhs.getPriority(); }
    private:
        int m_priority;
        std::string m_errorString;
};
 
// Stream insertion overload for Errors.
export std::ostream& operator<<(std::ostream& os, const Error& err)
{
    os << std::format("{} (priority {})", err.getErrorString(), err.getPriority());
    return os;
}
 
// Simple ErrorCorrelator class that returns highest priority errors first.
export class ErrorCorrelator final
{
    public:
        // Add an error to be correlated.
        void addError(const Error& error) { m_errors.push(error); }
        // Retrieve the next error to be processed.
        [[nodiscard]] Error getError()
        {
            // If there are no more errors, throw an exception.
            if (m_errors.empty()) {
                throw std::out_of_range { "No more errors." };
            }

continues
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            // Save the top element.
            Error top { m_errors.top() };
            // Remove the top element.
            m_errors.pop();
            // Return the saved element.
            return top;
        }
    private:
        std::priority_queue<Error> m_errors;
};

Here is a simple unit test showing how to use the ErrorCorrelator. Realistic use would require mul-
tiple threads so that one thread adds errors, while another processes them. As mentioned earlier with 
the queue example, this requires explicit synchronization, which is discussed in Chapter 27.

ErrorCorrelator ec;
ec.addError(Error { 3, "Unable to read file" });
ec.addError(Error { 1, "Incorrect entry from user" });
ec.addError(Error { 10, "Unable to allocate memory!" });
 
while (true) {
    try {
        Error e { ec.getError() };
        cout << e << endl;
    } catch (const out_of_range&) {
        cout << "Finished processing errors" << endl;
        break;
    }
}

The output of this program is as follows:

Unable to allocate memory! (priority 10)
Unable to read file (priority 3)
Incorrect entry from user (priority 1)
Finished processing errors

stack
A stack is almost identical to a queue, except that it provides first-in, last-out (FILO) semantics, also 
known as last-in, first-out (LIFO), instead of FIFO. It is defined in <stack>. The template definition 
looks like this:

template <class T, class Container = deque<T>> class stack;

You can use vector, list, or deque as the underlying container for the stack.

stack Operations
Like the queue, the stack provides push(), emplace(), and pop(). The difference is that push() 
adds a new element to the top of the stack, “pushing down” all elements inserted earlier, and pop() 
removes the element from the top of the stack, which is the most recently inserted element. The 
top() method returns a reference-to-const to the top element if called on a const object, and a 
reference-to-non-const if called on a non-const object.

(continued)
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WARNING pop() does not return the element popped. If you want to retain a 
copy, you must first retrieve it with top().

The stack supports empty(), size(), swap(), and the standard comparison operators.

stack Example: Revised Error Correlator
You can rewrite the previous ErrorCorrelator class so that it gives out the most recent error  
instead of the one with the highest priority. The only change required is to change m_errors from a 
priority_queue to a stack. With this change, the errors are distributed in LIFO order instead of 
priority order. Nothing in the method definitions needs to change because the push(), pop(), top(), 
and empty() methods exist on both a priority_queue and a stack.

ORDERED ASSOCIATIVE CONTAINERS

Unlike the sequential containers, the ordered associative containers do not store elements in a linear 
configuration. Instead, they provide a mapping of keys to values. They generally offer insertion, dele-
tion, and lookup times that are equivalent to each other.

There are four ordered associative containers provided by the Standard Library: map, multimap, set, 
and multiset. Each of these containers stores its elements in a sorted, tree-like data structure. There 
are also four unordered associative containers: unordered_map, unordered_multimap, unordered_
set, and unordered_multiset. These are discussed later in this chapter.

The pair Utility Class
Before delving deeper into the ordered associative containers, let’s revisit the pair class template 
briefly introduced in Chapter 1. It is defined in <utility> and groups together two values of pos-
sibly different types. The values are accessible through the first and second public data members. 
All comparison operators are supported to compare both the first and second values. Here are 
some examples:

// Two-argument constructor and default constructor
pair<string, int> myPair { "hello", 5 };
pair<string, int> myOtherPair;
 
// Can assign directly to first and second
myOtherPair.first = "hello";
myOtherPair.second = 6;
 
// Copy constructor
pair<string, int> myThirdPair { myOtherPair };
 
// operator<
if (myPair < myOtherPair) {
    cout << "myPair is less than myOtherPair" << endl;

continues
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} else {
    cout << "myPair is greater than or equal to myOtherPair" << endl;
}
 
// operator==
if (myOtherPair == myThirdPair) {
    cout << "myOtherPair is equal to myThirdPair" << endl;
} else {
    cout << "myOtherPair is not equal to myThirdPair" << endl;
}

The output is as follows:

myPair is less than myOtherPair
myOtherPair is equal to myThirdPair

With class template argument deduction, you can omit the template type arguments and simply write 
something as follows. Note the use of the standard user-defined string literal s.

pair myPair { "hello"s, 5 };  // Type is pair<string, int>.

Before C++17 introduced support for CTAD, an std::make_pair() utility function template could 
be used to construct a pair from two values. The following are three ways to construct a pair of an 
int and a double:

pair<int, double> pair1 { make_pair(5, 10.10) };
auto pair2 { make_pair(5, 10.10) };
pair pair3 { 5, 10.10 };  // CTAD

map
A map, defined in <map>, stores key/value pairs instead of just single values. Insertion, lookup, and 
deletion are all based on the key; the value is just “along for the ride.” The term map comes from the 
conceptual understanding that the container “maps” keys to values.

A map keeps elements in sorted order, based on the keys, so that insertion, deletion, and lookup all 
take logarithmic time. Because of the order, when you enumerate the elements, they come out in the 
ordering imposed by the type’s operator< or a user-defined comparator. It is usually implemented 
as some form of balanced tree, such as a red-black tree. However, the tree structure is not exposed to 
the client.

You should use a map whenever you need to store and retrieve elements based on a “key” and you 
would like to have them in a certain order.

Constructing maps
The map class template takes four types: the key type, the value type, the comparison type, and the 
allocator type. As always, the allocator is ignored in this chapter. The comparison type is similar to 
the comparison type for a priority_queue described earlier. It allows you to specify a different com-
parison class than the default. In this chapter, only the default less comparison is used. When using 
the default, make sure that your keys all respond to operator< appropriately. If you’re interested in 
further detail, Chapter 19 explains how to write your own comparison classes.

(continued)
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If you ignore the comparison and allocator parameters, constructing a map is just like constructing a 
vector or a list, except that you specify the key and value types separately in the template instan-
tiation. For example, the following code constructs a map that uses ints as the key and objects of the 
Data class as values:

class Data final
{
    public:
        explicit Data(int value = 0) : m_value { value } { }
        int getValue() const { return m_value; }
        void setValue(int value) { m_value = value; }
 
    private:
        int m_value;
}; 
...
map<int, Data> dataMap;

Internally, dataMap stores a pair<int, Data> for each element in the map.

A map also supports uniform initialization. The following map internally stores instances of 
pair<string, int>:

map<string, int> m {
    { "Marc G.", 123 },
    { "Warren B.", 456 },
    { "Peter V.W.", 789 }
};

Class template argument deduction does not work as usual. For example, the following does 
not compile:

map m {
    { "Marc G.", 123 },
    { "Warren B.", 456 },
    { "Peter V.W.", 789 }
};

This does not work because the compiler cannot deduce pair<string, int> from, for example,  
{ "Marc G.", 123 }. If you really want, you can write the following (note the s suffix for the string 
literals!):

map m {
    pair { "Marc G."s, 123 },
    pair { "Warren B."s, 456 },
    pair { "Peter V.W."s, 789 }
};

Inserting Elements
Inserting an element into sequential containers such as vector and list always requires you to 
specify the position at which the element is to be added. A map, along with the other ordered associa-
tive containers, is different. The map’s internal implementation determines the position in which to 
store the new element; you need only to supply the key and the value.
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NOTE map and the other ordered associative containers do provide a version of 
insert() that takes an iterator position. However, that position is only a “hint” to 
the container as to the correct position. The container is not required to insert the 
element at that position.

When inserting elements, it is important to keep in mind that maps require unique keys: every element 
in the map must have a different key. If you want to support multiple elements with the same key, you 
have two options: either you can use a map and store another container such as a vector or an array 
as the value for a key or you can use multimaps, described later.

The insert() Method
The insert() method can be used to add elements to a map and has the advantage of allowing you 
to detect whether a key already exists. You must specify the key/value pair as a pair object or as an 
initializer_list. The return type of the basic form of insert() is a pair of an iterator and a 
bool. The reason for the complicated return type is that insert() does not overwrite a value if one 
already exists with the specified key. The bool element of the returned pair specifies whether the 
insert() actually inserted the new key/value pair. The iterator refers to the element in the map 
with the specified key (with a new or old value, depending on whether the insert succeeded or failed). 
map iterators are discussed in more detail in the next section. Continuing the map example from the 
previous section, you can use insert() as follows:

map<int, Data> dataMap;
 
auto ret { dataMap.insert({ 1, Data { 4 } }) };   // Using an initializer_list
if (ret.second) {
    cout << "Insert succeeded!" << endl;
} else {
    cout << "Insert failed!" << endl;
}
 
ret = dataMap.insert(make_pair(1, Data { 6 })); // Using a pair object
if (ret.second) {
    cout << "Insert succeeded!" << endl;
} else {
    cout << "Insert failed!" << endl;
}

The type of the ret variable is a pair as follows:

pair<map<int, Data>::iterator, bool> ret;

The first element of the pair is a map iterator for a map with keys of type int and values of type 
Data. The second element of the pair is a Boolean value.

The output of the program is as follows:

Insert succeeded!
Insert failed!



Ordered Associative Containers ❘ 673

With initializers for if statements (since C++17), inserting the data into the map and checking the 
result can be done with a single statement as follows:

if (auto result { dataMap.insert({ 1, Data { 4 } }) }; result.second) {
    cout << "Insert succeeded!" << endl;
} else {
    cout << "Insert failed!" << endl;
}

This can further be combined with C++17 structured bindings:

if (auto [iter, success] { dataMap.insert({ 1, Data { 4 } }) }; success) {
    cout << "Insert succeeded!" << endl;
} else {
    cout << "Insert failed!" << endl;
}

The insert_or_assign() Method
insert_or_assign() has a similar return type as insert(). However, if an element with the 
given key already exists, insert_or_assign() overwrites the old value with the new value, while 
insert() does not overwrite the old value in that case. Another difference with insert() is that 
insert_or_assign() has two separate parameters: the key and the value. Here is an example:

ret = dataMap.insert_or_assign(1, Data { 7 });
if (ret.second) {
    cout << "Inserted." << endl;
} else {
    cout << "Overwritten." << endl;
} 

operator[]
Another method to insert elements into a map is through the overloaded operator[]. The difference 
is mainly in the syntax: you specify the key and value separately. Additionally, operator[] always 
succeeds. If no value with the given key exists, it creates a new element with that key and value. If an 
element with the key already exists, operator[] replaces the value with the newly specified value. 
Here is part of the previous example using operator[] instead of insert():

map<int, Data> dataMap;
dataMap[1] = Data { 4 };
dataMap[1] = Data { 6 }; // Replaces the element with key 1

There is, however, one major caveat to operator[]: it always constructs a new value object, even if 
it doesn’t need to use it. Thus, it requires a default constructor for the element values and can be less 
efficient than insert().

The fact that operator[] creates a new element in a map if the requested element does not already 
exist means that this operator is not marked as const. This sounds obvious, but might sometimes 
look counterintuitive. For example, suppose you have the following function:

void func(const map<int, int>& m)
{
    cout << m[1] << endl;  // Error
}
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This fails to compile, even though you appear to be just reading the value m[1]. It fails because the 
parameter m is a reference-to-const to a map, and operator[] is not marked as const. Instead, you 
should use the find() method described in the section “Looking Up Elements.”

Emplace Methods
A map supports emplace() and emplace_hint() to construct elements in-place, similar to the 
emplace methods of a vector. There is also a try_emplace() method that inserts an element in-
place if the given key does not exist yet, or it does nothing if the key already exists in the map.

map Iterators
map iterators work similarly to the iterators on the sequential containers. The major difference is that 
the iterators refer to key/value pairs instead of just the values. To access the value, you must retrieve 
the second field of the pair object. map iterators are bidirectional, meaning you can traverse them in 
both directions. Here is how you can iterate through the map from the previous example:

for (auto iter { cbegin(dataMap) }; iter != cend(dataMap); ++iter) {
    cout << iter->second.getValue() << endl;
}

Take another look at the expression used to access the value:

iter->second.getValue()

iter refers to a key/value pair, so you can use the -> operator to access the second field of that 
pair, which is a Data object. You can then call the getValue() method on that Data object.

Note that the following code is functionally equivalent:

(*iter).second.getValue()

Using a range-based for loop, the loop can be written more readable as follows:

for (const auto& p : dataMap) {
    cout << p.second.getValue() << endl;
}

It can be implemented even more elegantly using a combination of a range-based for loop and struc-
tured bindings:

for (const auto& [key, data] : dataMap) {
    cout << data.getValue() << endl;
}

WARNING You can modify element values through non-const iterators, but the 
compiler will generate an error if you try to modify the key of an element, even 
through a non-const iterator, because it would destroy the sorted order of the ele-
ments in the map.
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Looking Up Elements
A map provides logarithmic lookup of elements based on a supplied key. If you already know that  
an element with a given key is in a map, the simplest way to look it up is through operator[] as 
long as you call it on a non-const map or a reference-to-non-const to a map. The nice thing about 
operator[] is that it returns a reference to the element that you can use and modify directly, without 
worrying about pulling the value out of a pair object. Here is an extension to the preceding example 
to call the setValue() method on the Data object value at key 1:

map<int, Data> dataMap;
dataMap[1] = Data { 4 };
dataMap[1] = Data { 6 };
dataMap[1].setValue(100);

However, if you don’t know whether the element exists, you may not want to use operator[], 
because it will insert a new element with that key if it doesn’t find one already. As an alternative, map 
provides a find() method that returns an iterator referring to the element with the specified key, if 
it exists, or the end() iterator if it’s not in the map. Here is an example using find() to perform the 
same modification to the Data object with key 1:

auto it { dataMap.find(1) };
if (it != end(dataMap)) {
    it->second.setValue(100);
}

As you can see, using find() is a bit clumsier, but it’s sometimes necessary.

If you only want to know whether an element with a certain key is in a map, you can use the count() 
method. It returns the number of elements in a map with a given key. For maps, the result will always 
be 0 or 1 because there can be no elements with duplicate keys.

Starting with C++20, all associative containers (ordered and unordered) have a method called  
contains(). It returns true if a given key exists in the container, false otherwise. With this, it’s no 
longer necessary to use count() to figure out whether a certain key is in an associative container. 
Here is an example:

auto isKeyInMap { dataMap.contains(1) };

Removing Elements
A map allows you to remove an element at a specific iterator position or to remove all elements in a 
given iterator range, in amortized constant and logarithmic time, respectively. From the client perspec-
tive, these two erase() methods are equivalent to those in the sequential containers. A great feature 
of a map, however, is that it also provides a version of erase() to remove an element matching a key. 
Here is an example:

map<int, Data> dataMap;
dataMap[1] = Data { 4 };
cout << format("There are {} elements with key 1.", dataMap.count(1)) << endl;
dataMap.erase(1);
cout << format("There are {} elements with key 1.", dataMap.count(1)) << endl;

C++20



676 ❘ CHAPTER 18  Standard Library ContainerS

The output is as follows:

There are 1 elements with key 1.
There are 0 elements with key 1.

Nodes
All the ordered and unordered associative containers are so-called node-based data structures. Start-
ing with C++17, the Standard Library provides direct access to nodes in the form of node handles. 
The exact type is unspecified, but each container has a type alias called node_type that specifies the 
type of a node handle for that container. A node handle can only be moved and is the owner of the 
element stored in a node. It provides read/write access to both the key and the value.

Nodes can be extracted from an associative container as a node handle using the extract() 
method, based either on a given iterator position or on a given key. Extracting a node from a con-
tainer removes it from the container, because the returned node handle is the sole owner of the 
extracted element.

New insert() overloads are provided that allow you to insert a node handle into a container.

By using extract() to extract node handles and using insert() to insert node handles, you can 
effectively transfer data from one associative container to another one without any copying or mov-
ing involved. You can even move nodes from a map to a multimap and from a set to a multiset. 
Continuing with the example from the previous section, the following code snippet transfers the node 
with key 1 from dataMap to a second map called dataMap2:

map<int, Data> dataMap2;
auto extractedNode { dataMap.extract(1) };
dataMap2.insert(move(extractedNode));

The last two lines can be combined into one:

dataMap2.insert(dataMap.extract(1));

One additional operation is available to move all nodes from one associative container to another 
one: merge(). Nodes that cannot be moved because they would cause, for example, duplicates in a 
target container that does not allow duplicates, are left in the source container. Here is an example:

map<int, int> src { {1, 11}, {2, 22} };
map<int, int> dst { {2, 22}, {3, 33}, {4, 44}, {5, 55} };
dst.merge(src);

After the merge operation, src still contains one element, {2, 22}, because the destination already con-
tains such an element, so it cannot be moved. dst contains {1, 11}, {2, 22}, {3, 33}, {4, 44}, and {5, 55} 
after the operation.

map Example: Bank Account
You can implement a simple bank account database using a map. A common pattern is for the key to 
be one field of a class or struct that is stored in a map. In this case, the key is the account number. 
Here are simple BankAccount and BankDB classes:

export class BankAccount final
{
    public:
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        BankAccount(int accountNumber, std::string name)
            : m_accountNumber { accountNumber }, m_clientName { std::move(name) }{}
 
        void setAccountNumber(int accountNumber) {
            m_accountNumber = accountNumber; }
        int getAccountNumber() const { return m_accountNumber; }
 
        void setClientName(std::string name) { m_clientName = std::move(name); }
        const std::string& getClientName() const { return m_clientName; }
    private:
        int m_accountNumber;
        std::string m_clientName;
};
 
export class BankDB final
{
    public:
        // Adds account to the bank database. If an account exists already
        // with that number, the new account is not added. Returns true
        // if the account is added, false if it's not.
        bool addAccount(const BankAccount& account);
 
        // Removes the account with accountNumber from the database.
        void deleteAccount(int accountNumber);
 
        // Returns a reference to the account represented
        // by its number or the client name.
        // Throws out_of_range if the account is not found.
        BankAccount& findAccount(int accountNumber);
        BankAccount& findAccount(std::string_view name);
 
        // Adds all the accounts from db to this database.
        // Deletes all the accounts from db.
        void mergeDatabase(BankDB& db);
    private:
        std::map<int, BankAccount> m_accounts;
};

Here are the implementations of the BankDB methods, with comments explaining the code:

bool BankDB::addAccount(const BankAccount& account)
{
    // Do the actual insert, using the account number as the key.
    auto res { m_accounts.emplace(account.getAccountNumber(), account) };
    // or: auto res { m_accounts.insert(
    //         pair { account.getAccountNumber(), account }) };
 
    // Return the bool field of the pair specifying success or failure.
    return res.second;
}
 
void BankDB::deleteAccount(int accountNumber)
{
    m_accounts.erase(accountNumber);
}
 

continues
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BankAccount& BankDB::findAccount(int accountNumber)
{
    // Finding an element via its key can be done with find().
    auto it { m_accounts.find(accountNumber) };
    if (it == end(m_accounts)) {
        throw out_of_range { "No account with that number." };
    }
 
    // Remember that iterators into maps refer to pairs of key/value.
    return it->second;
}
 
BankAccount& BankDB::findAccount(string_view name)
{
    // Finding an element by a non-key attribute requires a linear
    // search through the elements. With C++17 structured bindings:
    for (auto& [accountNumber, account] : m_accounts) {
        if (account.getClientName() == name) {
            return account;  // found it!
        }
    }
    throw out_of_range { "No account with that name." };
}
 
void BankDB::mergeDatabase(BankDB& db)
{
    // Use C++17 merge().
    m_accounts.merge(db.m_accounts);
    // Or: m_accounts.insert(begin(db.m_accounts), end(db.m_accounts));
 
    // Now clear the source database.
    db.m_accounts.clear();
}

You can test the BankDB class with the following code:

BankDB db;
db.addAccount(BankAccount { 100, "Nicholas Solter" });
db.addAccount(BankAccount { 200, "Scott Kleper" });
 
try {
    auto& account { db.findAccount(100) };
    cout << "Found account 100" << endl;
    account.setClientName("Nicholas A Solter");
 
    auto& account2 { db.findAccount("Scott Kleper") };
    cout << "Found account of Scott Kleper" << endl;
 
    auto& account3 { db.findAccount(1000) };
} catch (const out_of_range& caughtException) {
    cout << "Unable to find account: " << caughtException.what() << endl;
}

(continued)
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The output is as follows:

Found account 100
Found account of Scott Kleper
Unable to find account: No account with that number.

multimap
A multimap is a map that allows multiple elements with the same key. Like maps, multimaps sup-
port uniform initialization. The interface is almost identical to the map interface, with the following 
differences:

➤➤ multimaps do not provide operator[] and at(). The semantics of these do not make sense 
if there can be multiple elements with a single key.

➤➤ Inserts on multimaps always succeed. Thus, the multimap::insert() method that adds a 
single element returns just an iterator instead of a pair.

➤➤ The insert_or_assign() and try_emplace() methods supported by map are not sup-
ported by a multimap.

NOTE multimaps allow you to insert identical key/value pairs. If you want to 
avoid this redundancy, you must check explicitly before inserting a new element.

The trickiest aspect of multimaps is looking up elements. You can’t use operator[], because it is not 
provided. find() isn’t very useful because it returns an iterator referring to any one of the elements 
with a given key (not necessarily the first element with that key).

However, multimaps store all elements with the same key together and provide methods to obtain 
iterators for this subrange of elements with the same key in the container. The lower_bound() and 
upper_bound() methods each return a single iterator referring to the first and one-past-the-last 
elements matching a given key. If there are no elements matching that key, the iterators returned by 
lower_bound() and upper_bound() will be equal to each other.

If you need to obtain both iterators bounding the elements with a given key, it’s more efficient 
to use equal_range() instead of calling lower_bound() followed by calling upper_bound(). The 
equal_range() method returns a pair of the two iterators that would be returned by lower_
bound() and upper_bound().

NOTE The lower_bound(), upper_bound(), and equal_range() methods exist 
for maps as well, but their usefulness is limited because a map cannot have multiple 
elements with the same key.
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multimap Example: Buddy Lists
Most of the numerous online chat programs allow users to have a “buddy list” or list of friends. The 
chat program confers special privileges on users in the buddy list, such as allowing them to send unso-
licited messages to the user.

One way to implement the buddy lists for an online chat program is to store the information in a 
multimap. One multimap could store the buddy lists for every user. Each entry in the container stores 
one buddy for a user. The key is the user, and the value is the buddy. For example, if Harry Potter  
and Ron Weasley had each other on their individual buddy lists, there would be two entries of  
the form “Harry Potter” maps to “Ron Weasley” and “Ron Weasley” maps to “Harry Potter.”  
A multimap allows multiple values for the same key, so the same user is allowed multiple buddies. 
Here is the BuddyList class definition:

export class BuddyList final
{
    public:
        // Adds buddy as a friend of name.
        void addBuddy(const std::string& name, const std::string& buddy);
        // Removes buddy as a friend of name.
        void removeBuddy(const std::string& name, const std::string& buddy);
        // Returns true if buddy is a friend of name, false otherwise.
        bool isBuddy(const std::string& name, const std::string& buddy) const;
        // Retrieves a list of all the friends of name.
        std::vector<std::string> getBuddies(const std::string& name) const;
    private:
        std::multimap<std::string, std::string> m_buddies;
};

Here are the implementations, with comments explaining the code. It demonstrates the use of lower_
bound(), upper_bound(), and equal_range().

void BuddyList::addBuddy(const string& name, const string& buddy)
{
    // Make sure this buddy isn't already there. We don't want
    // to insert an identical copy of the key/value pair.
    if (!isBuddy(name, buddy)) {
        m_buddies.insert({ name, buddy }); // Using initializer_list
    }
}
 
void BuddyList::removeBuddy(const string& name, const string& buddy)
{
    // Obtain the beginning and end of the range of elements with
    // key 'name'. Use both lower_bound() and upper_bound() to demonstrate
    // their use. Otherwise, it's more efficient to call equal_range().
    auto begin { m_buddies.lower_bound(name) };  // Start of the range
    auto end { m_buddies.upper_bound(name) };    // End of the range
 
    // Iterate through the elements with key 'name' looking
    // for a value 'buddy'. If there are no elements with key 'name',
    // begin equals end, so the loop body doesn't execute.
    for (auto iter { begin }; iter != end; ++iter) {
        if (iter->second == buddy) {
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            // We found a match! Remove it from the map.
            m_buddies.erase(iter);
            break;
        }
    }
}
 
bool BuddyList::isBuddy(const string& name, const string& buddy) const
{
    // Obtain the beginning and end of the range of elements with
    // key 'name' using equal_range(), and C++17 structured bindings.
    auto [begin, end] { m_buddies.equal_range(name) };
 
    // Iterate through the elements with key 'name' looking
    // for a value 'buddy'.
    for (auto iter { begin }; iter != end; ++iter) {
        if (iter->second == buddy) {
            // We found a match!
            return true;
        }
    }
    // No matches
    return false;
}
 
vector<string> BuddyList::getBuddies(const string& name) const
{
    // Obtain the beginning and end of the range of elements with
    // key 'name' using equal_range(), and C++17 structured bindings.
    auto [begin, end] { m_buddies.equal_range(name) };
 
    // Create a vector with all names in the range (all buddies of name).
    vector<string> buddies;
    for (auto iter { begin }; iter != end; ++iter) {
        buddies.push_back(iter->second);
    }
    return buddies;
}

Note that removeBuddy() can’t simply use the version of erase() that erases all elements with a 
given key, because it should erase only one element with the key, not all of them. Note also that  
getBuddies() can’t use insert() on the vector to insert the elements in the range returned by 
equal_range(), because the elements referred to by the multimap iterators are key/value pairs, 
not strings. The getBuddies() method must iterate explicitly through the range extracting the 
string from each key/value pair and pushing that onto the new vector to be returned.

Here is a test of the BuddyList:

BuddyList buddies;
buddies.addBuddy("Harry Potter", "Ron Weasley");
buddies.addBuddy("Harry Potter", "Hermione Granger");
buddies.addBuddy("Harry Potter", "Hagrid");
buddies.addBuddy("Harry Potter", "Draco Malfoy");

continues
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// That's not right! Remove Draco.
buddies.removeBuddy("Harry Potter", "Draco Malfoy");

buddies.addBuddy("Hagrid", "Harry Potter");
buddies.addBuddy("Hagrid", "Ron Weasley");
buddies.addBuddy("Hagrid", "Hermione Granger");
 
auto harrysFriends { buddies.getBuddies("Harry Potter") };
 
cout << "Harry's friends: " << endl;
for (const auto& name : harrysFriends) {
    cout << "\t" << name << endl;
}

The output is as follows:

Harry's friends:
        Ron Weasley
        Hermione Granger
        Hagrid

set
A set, defined in <set>, is similar to a map. The difference is that instead of storing key/value pairs, 
in sets the value is the key. sets are useful for storing information in which there is no explicit key, 
but which you want to have in sorted order without any duplicates, with quick insertion, lookup, 
and deletion.

The interface supplied by set is almost identical to that of map. The main difference is that set 
doesn’t provide operator[], insert_or_assign(), and try_emplace().

You cannot change the value of elements in a set because modifying elements of a set while they are 
in the container would destroy the order.

set Example: Access Control List
One way to implement basic security on a computer system is through access control lists. Each entity 
on the system, such as a file or a device, has a list of users with permissions to access that entity. Users 
can generally be added to and removed from the permissions list for an entity only by users with 
special privileges. Internally, a set provides a nice way to represent the access control list. You could 
use one set for each entity, containing all the usernames that are allowed to access the entity. Here is 
a class definition for a simple access control list:

export class AccessList final
{
    public:
        // Default constructor
        AccessList() = default;
        // Constructor to support uniform initialization.
        AccessList(std::initializer_list<std::string_view> users)
        {
            m_allowed.insert(begin(users), end(users));
        }

(continued)
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        // Adds the user to the permissions list.
        void addUser(std::string user)
        {
            m_allowed.emplace(std::move(user));
        }
        // Removes the user from the permissions list.
        void removeUser(const std::string& user)
        {
            m_allowed.erase(user);
        }
        // Returns true if the user is in the permissions list.
        bool isAllowed(const std::string& user) const
        {
            return (m_allowed.count(user) != 0);
        }
        // Returns a vector of all the users who have permissions.
        std::vector<std::string> getAllUsers() const
        {
            return { begin(m_allowed), end(m_allowed) };
        }
    private:
        std::set<std::string> m_allowed;
};

Take a look at the interesting one-line implementation of getAllUsers(). That one line constructs a 
vector<string> to return, by passing a begin and end iterator of m_allowed to the vector con-
structor. If you want, you can split this over two lines:

std::vector<std::string> users(begin(m_allowed), end(m_allowed));
return users;

Finally, here is a simple test program:

AccessList fileX { "mgregoire", "baduser" };
fileX.addUser("pvw");
fileX.removeUser("baduser");
 
if (fileX.isAllowed("mgregoire")) {
    cout << "mgregoire has permissions" << endl;
}
 
if (fileX.isAllowed("baduser")) {
    cout << "baduser has permissions" << endl;
}
 
auto users { fileX.getAllUsers() };
for (const auto& user : users) {
    cout << user << "  ";
}

One of the constructors for AccessList uses an initializer_list as a parameter so that you can 
use the uniform initialization syntax, as demonstrated in the test program for initializing fileX.

The output of this program is as follows:

mgregoire has permissions
mgregoire  pvw
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Note that the m_allowed data member needs to be a set of std::strings, and not of string_
views. Changing it to a set of string_views will introduce problems with dangling pointers. For 
example, suppose you have the following code:

AccessList fileX;
{
    string user { "someuser" };
    fileX.addUser(user);
}

This code snippet creates a string called user and then adds that to the fileX access control list. 
However, the string and the call to addUser() are inside a set of curly brackets; that is, the string 
has a shorter lifetime than fileX. At the closing curly bracket, the string goes out of scope and is 
destroyed. This would leave the fileX access control list with a string_view pointing to a destroyed 
string, i.e., a dangling pointer!

multiset
A multiset is to a set what a multimap is to a map. A multiset supports all the operations of a 
set, but it allows multiple elements that are equal to each other to be stored in the container simulta-
neously. An example of a multiset is not shown because it’s so similar to set and multimap.

UNORDERED ASSOCIATIVE CONTAINERS OR HASH TABLES

The Standard Library has support for unordered associative containers or hash tables. There are four 
of them: unordered_map, unordered_multimap, unordered_set, and unordered_multiset. The 
map, multimap, set, and multiset containers discussed earlier sort their elements, while these unor-
dered variants do not sort their elements.

Hash Functions
The unordered associative containers are so-called hash tables. That is because the implementation 
makes use of hash functions. The implementation usually consists of some kind of array where each 
element in the array is called a bucket. Each bucket has a specific numerical index like 0, 1, 2, up until 
the last bucket. A hash function transforms a key into a hash value, which is then transformed into a 
bucket index. The value associated with that key is then stored in that bucket.

The result of a hash function is not always unique. The situation in which two or more keys hash 
to the same bucket index is called a collision. A collision can occur when different keys result in the 
same hash value or when different hash values transform to the same bucket index. There are many 
approaches to handling collisions, including quadratic re-hashing and linear chaining, among others. 
If you are interested, consult one of the references in the “Algorithms and Data Structures” section in 
Appendix B. The Standard Library does not specify which collision-handling algorithm is required, 
but most current implementations have chosen to resolve collisions by linear chaining. With linear 
chaining, buckets do not directly contain the data values associated with the keys, but contain a 
pointer to a linked list. This linked list contains all the data values for that specific bucket. Figure 
18-1 shows how this works.
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In Figure 18-1, there are two collisions. The first collision is because applying the hash function to 
the keys “Marc G.” and “John D.” results in the same hash value that maps to bucket index 128. This 
bucket then points to a linked list containing the keys “Marc G.” and “John D.” together with their 
associated data values. The second collision is caused by the hash values for “Scott K.” and “Johan G.”  
mapping to the same bucket index 129.

From Figure 18-1, it is also clear how lookups based on keys work and what the complexity is. 
A lookup involves a single hash function call to calculate the hash value. This hash value is then 
transformed to a bucket index. Once the bucket index is known, one or more equality operations are 
required to find the right key in the linked list. This shows that lookups can be much faster compared 
to lookups with normal maps, but it all depends on how many collisions there are.

The choice of the hash function is important. A hash function that creates no collisions is known as 
a perfect hash. A perfect hash has a lookup time that is constant; a regular hash has a lookup time 
that is, on average, close to 1, independent of the number of elements. As the number of collisions 
increases, the lookup time increases, reducing performance. Collisions can be reduced by increasing 
the basic hash table size, but you need to take cache sizes into account.

The C++ standard provides hash functions for pointers and all primitive data types such as bool, 
char, int, float, double, and so on. Hash functions are also provided for error_code, error_ 
condition, optional, variant, bitset, unique_ptr, shared_ptr, type_index, string, string_
view, vector<bool>, and thread::id. If there is no standard hash function available for the type of 
keys you want to use, then you have to implement your own hash function. Creating a perfect hash 
is a nontrivial exercise, even when the set of keys is fixed and known. It requires deep mathematical 
analysis. Even creating a non-perfect one, but one that is good enough and has decent performance, is 
still challenging. It’s outside the scope of this book to explain the mathematics behind hash functions 
in detail. Instead, only an example of a simple hash function is given.

FIGURE 18-1 
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The following code demonstrates how to write a custom hash function. The code defines a class 
IntWrapper that just wraps a single integer. An operator== is provided because that’s a requirement 
for keys used in unordered associative containers.

class IntWrapper
{
    public:
        IntWrapper(int i) : m_wrappedInt { i } {}
        int getValue() const { return m_wrappedInt; }
        bool operator==(const IntWrapper&) const = default;// = default since C++20
    private:
        int m_wrappedInt;
};

To write the actual hash function for IntWrapper, you write a specialization of the std::hash class 
template for IntWrapper. The std::hash class template is defined in <functional>. This specializa-
tion needs an implementation of the function call operator that calculates and returns the hash of a 
given IntWrapper instance. For this example, the request is simply forwarded to the standard hash 
function for integers:

namespace std
{
    template<> struct hash<IntWrapper>
    {
        size_t operator()(const IntWrapper& x) const {
            return std::hash<int>{}(x.getValue());
        }
    };
}

Note that you normally are not allowed to put anything in the std namespace; however, std 
class template specializations are an exception to this rule. The implementation of the function 
call operator is just one line. It creates an instance of the standard hash function for integers—
std::hash<int>{}—and then calls the function call operator on it with x.getValue() as argu-
ment. Note that this forwarding works in this example because IntWrapper contains just one data 
member, an integer. If the class contained multiple data members, then a hash value would need to be 
calculated taking all those data members into account; however, those details fall outside the scope of 
this book.

unordered_map
The unordered_map container is defined in <unordered_map> as a class template:

template <class Key,
          class T,
          class Hash = hash<Key>,
          class Pred = std::equal_to<Key>,
          class Alloc = std::allocator<std::pair<const Key, T>>>
    class unordered_map;

There are five template parameters: the key type, the value type, the hash type, the equal comparison 
type, and the allocator type. With the last three parameters you can specify your own hash function, 
equal comparison function, and allocator function, respectively. These parameters can usually be 
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ignored because they have default values. The most important parameters are the first two. As with 
maps, uniform initialization can be used to initialize an unordered_map, as shown in the follow-
ing example:

unordered_map<int, string> m {
    {1, "Item 1"},
    {2, "Item 2"},
    {3, "Item 3"},
    {4, "Item 4"}
};
// Using C++17 structured bindings.
for (const auto& [key, value] : m) {
    cout << format("{} = {}", key, value) << endl;
}
// Without structured bindings.
for (const auto& p : m) {
    cout << format("{} = {}", p.first, p.second) << endl;
}

The following table summarizes the differences between a map and an unordered_map. A filled box 
(■) means the container supports that operation, while an empty box (□) means the operation is not 
supported.

OPERATION map unordered_map

at() ■ ■

begin() ■ ■

begin(n) □ ■

bucket() □ ■

bucket_count() □ ■

bucket_size() □ ■

cbegin() ■ ■

cbegin(n) □ ■

cend() ■ ■

cend(n) □ ■

clear() ■ ■

contains() ■ ■

count() ■ ■

crbegin() ■ □

crend() ■ □

emplace() ■ ■

C++20

continues
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OPERATION map unordered_map

emplace_hint() ■ ■

empty() ■ ■

end() ■ ■

end(n) □ ■

equal_range() ■ ■

erase() ■ ■

extract() ■ ■

find() ■ ■

insert() ■ ■

insert_or_assign() ■ ■

iterator / const_iterator ■ ■

load_factor() □ ■

local_iterator / const_local_iterator □ ■

lower_bound() ■ □

max_bucket_count() □ ■

max_load_factor() □ ■

max_size() ■ ■

merge() ■ ■

operator[] ■ ■

rbegin() ■ □

rehash() □ ■

rend() ■ □

reserve() □ ■

reverse_iterator / const_reverse_iterator ■ □

size() ■ ■

swap() ■ ■

TABLE (continued)



Unordered Associative Containers or Hash Tables ❘ 689

OPERATION map unordered_map

try_emplace() ■ ■

upper_bound() ■ □

As with a normal map, all keys in an unordered_map should be unique. The preceding table includes 
a number of hash-specific methods. For example, load_factor() returns the average number of 
elements per bucket to give you an indication of the number of collisions. The bucket_count() 
method returns the number of buckets in the container. It also provides a local_iterator and 
const_local_iterator, allowing you to iterate over the elements in a single bucket; however, these 
may not be used to iterate across buckets. The bucket(key) method returns the index of the bucket 
that contains the given key; begin(n) returns a local_iterator referring to the first element in the 
bucket with index n, and end(n) returns a local_iterator referring to one-past-the-last element in 
the bucket with index n. The example in the next section demonstrates how to use these methods.

unordered_map Example: Phone Book
The following example uses an unordered_map to represent a phone book. The name of a person is 
the key, while the phone number is the value associated with that key.

void printMap(const auto& m)  // C++20 abbreviated function template
{
    for (auto& [key, value] : m) {
        cout << format("{} (Phone: {})", key, value) << endl;
    }
    cout << "-------" << endl;
}
 
int main()
{
    // Create a hash table.
    unordered_map<string, string> phoneBook {
        { "Marc G.", "123-456789" },
        { "Scott K.", "654-987321" } };
    printMap(phoneBook);
 
    // Add/remove some phone numbers.
    phoneBook.insert(make_pair("John D.", "321-987654"));
    phoneBook["Johan G."] = "963-258147";
    phoneBook["Freddy K."] = "999-256256";
    phoneBook.erase("Freddy K.");
    printMap(phoneBook);
 
    // Find the bucket index for a specific key.
    const size_t bucket { phoneBook.bucket("Marc G.") };
    cout << format("Marc G. is in bucket {} containing the following {} names:",
        bucket, phoneBook.bucket_size(bucket)) << endl;
    // Get begin and end iterators for the elements in this bucket.
    // 'auto' is used here. The compiler deduces the type of

continues
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    // both as unordered_map<string, string>::const_local_iterator
    auto localBegin { phoneBook.cbegin(bucket) };
    auto localEnd { phoneBook.cend(bucket) };
    for (auto iter { localBegin }; iter != localEnd; ++iter) {
        cout << format("\t{} (Phone: {})", iter->first, iter->second) << endl;
    }
    cout << "-------" << endl;
 
    // Print some statistics about the hash table
    cout << format("There are {} buckets.", phoneBook.bucket_count()) << endl;
    cout << format("Average number of elements in a bucket is {}.",
        phoneBook.load_factor()) << endl;
}

A possible output is as follows. Note that the output can be different on a different system, because it 
depends on the implementation of both the hash function and the unordered_map itself being used.

Scott K. (Phone: 654-987321)
Marc G. (Phone: 123-456789)
-------
Scott K. (Phone: 654-987321)
Marc G. (Phone: 123-456789)
Johan G. (Phone: 963-258147)
John D. (Phone: 321-987654)
-------
Marc G. is in bucket 1 which contains the following 2 elements:
        Scott K. (Phone: 654-987321)
        Marc G. (Phone: 123-456789)
-------
There are 8 buckets.
Average number of elements in a bucket is 0.5

unordered_multimap
An unordered_multimap is an unordered_map that allows multiple elements with the same key. 
Their interfaces are almost identical, with the following differences:

➤➤ unordered_multimaps do not provide operator[] and at(). The semantics of these do not 
make sense if there can be multiple elements with a single key.

➤➤ Inserts on unordered_multimaps always succeed. Thus, the unordered_multimap:: 
insert() method that adds a single element returns just an iterator instead of a pair.

➤➤ The insert_or_assign() and try_emplace() methods supported by unordered_map are 
not supported by an unordered_multimap.

NOTE unordered_multimaps allow you to insert identical key/value pairs. If you 
want to avoid this redundancy, you must check explicitly before inserting a new 
element.

(continued)
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As discussed earlier with multimaps, looking up elements in unordered_multimaps cannot be done 
using operator[] because it is not provided. You can use find(), but it returns an iterator referring 
to any one of the elements with a given key (not necessarily the first element with that key). Instead, 
it’s best to use the equal_range() method, which returns a pair of iterators: one referring to the first 
element matching a given key, and one referring to one-past-the-last element matching that key. The 
use of equal_range() is the same as discussed for multimaps, so you can look at the example given 
for multimaps to see how it works.

unordered_set/unordered_multiset
<unordered_set> defines unordered_set and unordered_multiset, which are similar to set and 
multiset, respectively, except that they do not sort their keys but use a hash function. The differ-
ences between unordered_set and unordered_map are similar to the differences between set and 
map as discussed earlier in this chapter, so they are not discussed in detail here. Consult a Standard 
Library Reference for a thorough summary of unordered_set and unordered_multiset operations.

OTHER CONTAINERS

There are several other parts of the C++ language that work with the Standard Library to varying 
degrees, including standard C-style arrays, strings, streams, and bitset.

Standard C-Style Arrays
Recall that raw pointers are bona fide iterators because they support the required operations. This 
point is more than just a piece of trivia. It means that you can treat standard C-style arrays as Stand-
ard Library containers by using pointers to their elements as iterators. Standard C-style arrays, of 
course, don’t provide methods like size(), empty(), insert(), and erase(), so they aren’t true 
Standard Library containers. Nevertheless, because they do support iterators through pointers, you 
can use them in the algorithms described in Chapter 20 and in some of the methods described in 
this chapter.

For example, you could copy all the elements of a standard C-style array into a vector using the 
insert() method of a vector that takes an iterator range from any container. This insert() 
method’s prototype looks like this:

template <class InputIterator> iterator insert(const_iterator position,
    InputIterator first, InputIterator last);

If you want to use a standard C-style int array as the source, then the template type parameter  
InputIterator becomes int*. Here is a full example:

const size_t count { 10 };
int values[count];     // standard C-style array
// Initialize each element of the array to the value of its index.
for (int i { 0 }; i < count; i++) { values[i] = i; }
 

continues
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// Insert the contents of the array at the end of a vector.
vector<int> vec;
vec.insert(end(vec), values, values + count);
 
// Print the contents of the vector.
for (const auto& i : vec) { cout << i << " "; }

Note that the iterator referring to the first element of the array is the address of the first element, 
which is values in this case. The name of an array alone is interpreted as the address of the first 
element. The iterator referring to the end must be one-past-the-last element, so it’s the address of the 
first element plus count, or values+count.

It’s easier to use std::begin() or cbegin() to get an iterator to the first element of a statically allo-
cated C-style array not accessed through pointers, and std::end() or cend() to get an iterator to 
one-past-the-last element of such an array. For example, the call to insert() in the previous example 
can be written as follows:

vec.insert(end(vec), cbegin(values), cend(values));

WARNING Functions such as std::begin() and end()work only on stati-
cally allocated C-style arrays not accessed through pointers. They do not work if 
pointers are involved or with dynamically allocated C-style arrays.

Strings
You can think of a string as a sequential container of characters. Thus, it shouldn’t be surprising 
to learn that a C++ string is a full-fledged sequential container. It has begin() and end() methods 
that return iterators into the string; and it has insert(), push_back(), erase(), size(), and 
empty() methods, and all the rest of the sequential container basics. It resembles a vector quite 
closely, even providing the methods reserve() and capacity().

You can use string as a Standard Library container just as you would use vector. Here is 
an example:

string myString;
myString.insert(cend(myString), 'h');
myString.insert(cend(myString), 'e');
myString.push_back('l');
myString.push_back('l');
myString.push_back('o');
 
for (const auto& letter : myString) {
    cout << letter;
}
cout << endl;
 
for (auto it { cbegin(myString) }; it != cend(myString); ++it) {
    cout << *it;
}
cout << endl;

(continued)
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In addition to the Standard Library sequential container methods, strings provide a host of useful 
methods and friend functions. The string interface is actually quite a good example of a cluttered 
interface, one of the design pitfalls discussed in Chapter 6, “Designing for Reuse.” The string class is 
discussed in detail in Chapter 2.

Streams
Input and output streams are not containers in the traditional sense because they do not store ele-
ments. However, they can be considered sequences of elements and as such share some characteristics 
with Standard Library containers. C++ streams do not provide any Standard Library–related methods 
directly, but the Standard Library supplies special iterators called istream_iterator and ostream_
iterator that allow you to “iterate” through input and output streams respectively. Chapter 17 
explains how to use them.

bitset
A bitset is a fixed-length abstraction of a sequence of bits. A bit can represent only two values, 1 
and 0, which can be referred to as on/off, true/false, and so on. A bitset also uses the terminology 
set and unset. You can toggle or flip a bit from one value to the other.

A bitset is not a true Standard Library container: it’s of fixed size, it’s not templatized on an element 
type, and it doesn’t support iteration. However, it’s a useful utility class, which is often lumped with 
the containers, so a brief introduction is provided here. Consult a Standard Library Reference for a 
thorough summary of the bitset operations.

bitset Basics
A bitset, defined in <bitset>, is templatized on the number of bits it stores. The default construc-
tor initializes all fields of a bitset to 0. An alternative constructor creates a bitset from a string 
of 0 and 1 characters.

You can adjust the values of individual bits with the set(), reset(), and flip() methods, and you 
can access and set individual fields with an overloaded operator[]. Note that operator[] on a 
non-const object returns a proxy object to which you can assign a Boolean value, call flip(), or 
complement with operator~. You can also access individual fields with the test() method. Bits are 
accessed using a zero-based index. Finally, you can stream bitsets with the normal insertion and 
extraction operators. A bitset is streamed as a string of 0 and 1 characters.

Here is a small example:

bitset<10> myBitset;
 
myBitset.set(3);
myBitset.set(6);
myBitset[8] = true;
myBitset[9] = myBitset[3];
 
if (myBitset.test(3)) {
    cout << "Bit 3 is set!"<< endl;
}
cout << myBitset << endl;
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The output is as follows:

Bit 3 is set!
1101001000

Note that the leftmost character in the output string is the highest numbered bit. This corresponds 
to our intuitions about binary number representations, where the low-order bit representing 20 = 1 is 
the rightmost bit in the printed representation.

Bitwise Operators
In addition to the basic bit manipulation routines, a bitset provides implementations of all the bit-
wise operators: &, |, ^, ~, <<, >>, &=, |=, ^=, <<=, and >>=. They behave just as they would on a “real” 
sequence of bits. Here is an example:

auto str1 { "0011001100" };
auto str2 { "0000111100" };
bitset<10> bitsOne { str1 };
bitset<10> bitsTwo { str2 };
 
auto bitsThree { bitsOne & bitsTwo };
cout << bitsThree << endl;
bitsThree <<= 4;
cout << bitsThree << endl;

The output of the program is as follows:

0000001100
0011000000

bitset Example: Representing Cable Channels
One possible use of bitsets is tracking channels of cable subscribers. Each subscriber could have 
a bitset of channels associated with their subscription, with set bits representing the channels to 
which they actually subscribe. This system could also support “packages” of channels, also repre-
sented as bitsets, which represent commonly subscribed combinations of channels.

The following CableCompany class is a simple example of this model. It uses two maps, each of 
string/bitset. One stores the cable packages, while the other stores subscriber information.

export class CableCompany final
{
    public:
        // Number of supported channels.
        static const size_t NumChannels { 10 };
        // Adds package with the channels specified as a bitset to the database.
        void addPackage(std::string_view packageName,
            const std::bitset<NumChannels>& channels);
        // Adds package with the channels specified as a string to the database.
        void addPackage(std::string_view packageName, std::string_view channels);
        // Removes the specified package from the database.
        void removePackage(std::string_view packageName);
        // Retrieves the channels of a given package.
        // Throws out_of_range if the package name is invalid.
        const std::bitset<NumChannels>& getPackage(
            std::string_view packageName) const;
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        // Adds customer to database with initial channels found in package.
        // Throws out_of_range if the package name is invalid.
        // Throws invalid_argument if the customer is already known.
        void newCustomer(std::string_view name, std::string_view package);
        // Adds customer to database with given initial channels.
        // Throws invalid_argument if the customer is already known.
        void newCustomer(std::string_view name,
            const std::bitset<NumChannels>& channels);
        // Adds the channel to the customer's profile.
        // Throws invalid_argument if the customer is unknown.
        void addChannel(std::string_view name, int channel);
        // Removes the channel from the customer's profile.
        // Throws invalid_argument if the customer is unknown.
        void removeChannel(std::string_view name, int channel);
        // Adds the specified package to the customer's profile.
        // Throws out_of_range if the package name is invalid.
        // Throws invalid_argument if the customer is unknown.
        void addPackageToCustomer(std::string_view name,
            std::string_view package);
        // Removes the specified customer from the database.
        void deleteCustomer(std::string_view name);
        // Retrieves the channels to which a customer subscribes.
        // Throws invalid_argument if the customer is unknown.
        const std::bitset<NumChannels>& getCustomerChannels(
            std::string_view name) const;
    private:
        // Retrieves the channels for a customer. (non-const)
        // Throws invalid_argument if the customer is unknown.
        std::bitset<NumChannels>& getCustomerChannelsHelper(
            std::string_view name);
 
        using MapType = std::map<std::string, std::bitset<NumChannels>>;
        MapType m_packages, m_customers;
};

Here are the implementations of all methods, with comments explaining the code:

void CableCompany::addPackage(string_view packageName,
    const bitset<NumChannels>& channels)
{
    m_packages.emplace(packageName, channels);
}
 
void CableCompany::addPackage(string_view packageName, string_view channels)
{
    addPackage(packageName, bitset<NumChannels> { channels.data() });
}
 
void CableCompany::removePackage(string_view packageName)
{
    m_packages.erase(packageName.data());
}
 

continues
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const bitset<CableCompany::NumChannels>& CableCompany::getPackage(
    string_view packageName) const
{
    // Get a reference to the specified package.
    if (auto it { m_packages.find(packageName.data()) }; it != end(m_packages)) {
        // Found package. Note that 'it' is a reference to a name/bitset pair.
        // The bitset is the second field.
        return it->second;
    }
    throw out_of_range { "Invalid package" };
}
 
void CableCompany::newCustomer(string_view name, string_view package)
{
    // Get the channels for the given package.
    auto& packageChannels { getPackage(package) };
    // Create the account with the bitset representing that package.
    newCustomer(name, packageChannels);
}
 
void CableCompany::newCustomer(string_view name,
    const bitset<NumChannels>& channels)
{
    // Add customer to the customers map.
    if (auto [iter, success] { m_customers.emplace(name, channels) }; !success) {
        // Customer was already in the database. Nothing changed.
        throw invalid_argument { "Duplicate customer" };
    }
}
 
void CableCompany::addChannel(string_view name, int channel)
{
    // Get the current channels for the customer.
    auto& customerChannels { getCustomerChannelsHelper(name) };
    // We found the customer; set the channel.
    customerChannels.set(channel);
}
 
void CableCompany::removeChannel(string_view name, int channel)
{
    // Get the current channels for the customer.
    auto& customerChannels { getCustomerChannelsHelper(name) };
    // We found this customer; remove the channel.
    customerChannels.reset(channel);
}
 
void CableCompany::addPackageToCustomer(string_view name, string_view package)
{
    // Get the channels for the given package.
    auto& packageChannels { getPackage(package) };
    // Get the current channels for the customer.
    auto& customerChannels { getCustomerChannelsHelper(name) };
    // Or-in the package to the customer's existing channels.
    customerChannels |= packageChannels;
}
 

(continued)
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void CableCompany::deleteCustomer(string_view name)
{
    m_customers.erase(name.data());
}
 
const bitset<CableCompany::NumChannels>& CableCompany::getCustomerChannels(
    string_view name) const
{
    // Find a reference to the customer.
    if (auto it { m_customers.find(name.data()) }; it != end(m_customers)) {
        // Found customer. Note that 'it' is a reference to a name/bitset pair.
        // The bitset is the second field.
        return it->second;
    }
    throw invalid_argument { "Unknown customer" };
}
 
bitset<CableCompany::NumChannels>& CableCompany::getCustomerChannelsHelper(
    string_view name)
{
    // Forward to const getCustomerChannels() to avoid code duplication.
    return const_cast<bitset<NumChannels>&>(
        as_const(*this).getCustomerChannels(name));
}

Finally, here is a simple program demonstrating how to use the CableCompany class:

CableCompany myCC;
myCC.addPackage("basic",   "1111000000");
myCC.addPackage("premium", "1111111111");
myCC.addPackage("sports",  "0000100111");
 
myCC.newCustomer("Marc G.", "basic");
myCC.addPackageToCustomer("Marc G.", "sports");
cout << myCC.getCustomerChannels("Marc G.") << endl;

The output is as follows:

1111100111

SUMMARY

This chapter introduced the Standard Library containers. It also presented sample code illustrating  
a variety of uses for these containers. Ideally, you appreciate the power of vector, deque, list,  
forward_list, array, span, stack, queue, priority_queue, map, multimap, set, multiset,  
unordered_map, unordered_multimap, unordered_set, unordered_multiset, string, and  
bitset. Even if you don’t incorporate them into your programs immediately, you should keep them 
in the back of your mind for future projects.

Before we can delve into the true power of the Standard Library with a discussion of its generic algo-
rithms, we first have to discuss function pointers, function objects, and lambda expressions. Those are 
the topics of the next chapter.
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 18-1: This exercise is to practice working with vectors. Create a program contain-
ing a vector of ints, called values, initialized with the numbers 2 and 5. Next, implement 
the following operations:

1. Use insert() to insert the numbers 3 and 4 at the correct place in values.

2. Create a second vector of ints initialized with 0 and 1, and then insert the contents of 
this new vector at the beginning of values.

3. Create a third vector of ints. Loop over the elements of values in reverse, and insert 
them in this third vector.

4. Print the contents of the third vector using a range-based for loop.

Exercise 18-2: Take your implementation of the Person class from Exercise 15-4. Add a new 
module called phone_book, defining a PhoneBook class that stores one or more phone num-
bers as strings for a person. Provide methods to add and remove person’s phone numbers 
to/from a phonebook. Also provide a method that returns a vector with all phone numbers 
for a given person. Test your implementation in your main() function. In your tests, use the 
user-defined person literal developed in Exercise 15-4.

Exercise 18-3: In Exercise 15-1 you developed your own AssociativeArray. Modify the test 
code in main() from that exercise to use one of the Standard Library containers instead.

Exercise 18-4: Write an average() function (not a function template) to calculate the aver-
age of a sequence of double values. Make sure it works with a sequence or subsequence 
from a vector or an array. Test your code with both a vector and an array in your 
main() function.

Bonus exercise: Can you convert your average() function into a function template? The 
function template should only be instantiatable with integral or floating-point types. What 
effect does it have on your test code in main()?

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?
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➤➤ How to use pointers to class methods

➤➤ How to use polymorphic function wrappers

➤➤ What function objects are and how to write your own
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WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Functions in C++ are so-called first-class functions, as functions can be used in the same way as 
normal variables, such as passing them as arguments to other functions, returning them from 
other functions, and assigning them to variables. A term that often comes up in this context is a 
callback, representing something that can be called. It can be a function pointer or something 
that behaves like a function pointer, such as an object with an overloaded operator(), or an 
inline lambda expression. A class that overloads operator() is called a function object, or 
functor for short. Conveniently, the Standard Library provides a set of classes that can be used 
to create callback objects and to adapt existing callback objects. It’s time to take a closer look 
at the concept of callbacks, because many of the algorithms explained in the next chapter 
accept such callbacks to customize their behavior.

http://www.wiley.com/go/proc++5e
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FUNCTION POINTERS

You don’t normally think about the location of functions in memory, but each function actually lives 
at a particular address. In C++, you can use functions as data; that is, C++ has first-class functions. In 
other words, you can take the address of a function and use it like you use a variable.

Function pointers are typed according to the parameter types and return type of compatible  
functions. One way to work with function pointers is to use a type alias. A type alias allows you to 
assign a type name to the family of functions that have the given characteristics. For example, the  
following line defines a type called Matcher that represents a pointer to any function that has two 
int parameters and returns a bool:

using Matcher = bool(*)(int, int);

The following type alias defines a type called MatchHandler for functions accepting a size_t and 
two ints and returning nothing:

using MatchHandler = void(*)(size_t, int, int); 

Now that these types are defined, you can write a function that takes two callbacks as parameters: a 
Matcher and a MatchHandler. Functions that accept other functions as parameters, or functions that 
return a function are called higher-order functions. For example, the following function accepts two 
spans of integers, as well as a Matcher and MatchHandler. It iterates through the spans in parallel 
and calls the Matcher on corresponding elements of both spans. If the Matcher returns true, the 
MatchHandler is called with as first argument the position of the match, and as second and third 
arguments the values that caused the Matcher to return true. Notice that even though the Matcher 
and MatchHandler are passed in as variables, they can be called just like regular functions:

void findMatches(span<const int> values1, span<const int> values2,
    Matcher matcher, MatchHandler handler)
{
    if (values1.size() != values2.size()) { return; } // Must be same size.
 
    for (size_t i { 0 }; i < values1.size(); ++i) {
        if (matcher(values1[i], values2[i])) {
            handler(i, values1[i], values2[i]);
        }
    }
}

Note that this implementation requires that both spans have the same number of elements. To call 
the findMatches() function, all you need is any function that adheres to the defined Matcher 
type—that is, any type that takes in two ints and returns a bool, and a function that adheres to the 
Match Handler type. Here is an example of a possible Matcher, returning true if the two parameters 
are equal:

bool intEqual(int item1, int item2) { return item1 == item2; }

The following is an example of a MatchHandler that simply prints out the match:

void printMatch(size_t position, int value1, int value2)
{
    cout << format("Match found at position {} ({}, {})",
        position, value1, value2) << endl;
}
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The intEqual() and printMatch() functions can be passed as arguments to findMatches(), 
as follows:

vector values1 { 2, 5, 6, 9, 10, 1, 1 };
vector values2 { 4, 4, 2, 9, 0, 3, 1 };
cout << "Calling findMatches() using intEqual():" << endl;
findMatches(values1, values2, &intEqual, &printMatch);

The callback functions are passed to findMatches() by taking their addresses. Technically, the & 
characters are optional—if you omit them and only put the function names, the compiler will know 
that you mean to take their addresses. The output is as follows:

Calling findMatches() using intEqual():
Match found at position 3 (9, 9)
Match found at position 6 (1, 1)

The benefit of function pointers lies in the fact that findMatches() is a generic function that com-
pares parallel values in two vectors. As it is used in the previous example, it compares values based 
on equality. However, because it takes a function pointer, it could compare values based on other 
criteria. For example, the following function also adheres to the definition of Matcher:

bool bothOdd(int item1, int item2) { return item1 % 2 == 1 && item2 % 2 == 1; }

The following code snippet shows that bothOdd() can also be used in a call to findMatches():

cout << "Calling findMatches() using bothOdd():" << endl;
findMatches(values1, values2, bothOdd, printMatch);

The output is as follows:

Calling findMatches() using bothOdd():
Match found at position 3 (9, 9)
Match found at position 5 (1, 3)
Match found at position 6 (1, 1)

By using function pointers, a single function, findMatches(), can be customized to different uses 
based on functions passed in as arguments.

NOTE Later in this chapter, you’ll learn about std::function, which, as you’ll 
see, is a more recommended solution over using these old-style function pointers.

One common use case for using function pointers is to obtain a pointer to a function in a dynamic 
link library. The following example obtains a pointer to a function in a Microsoft Windows Dynamic 
Link Library (DLL). A DLL is basically a library consisting of code and data that can be used by any 
program. A specific Windows DLL example is the Comdlg32 DLL, which provides common dialog 
box functions. Details of Windows DLLs are outside the scope of this book on platform-independent 
C++, but it is so important to Windows programmers that it is worth discussing briefly, and it is a 
good example of function pointers in general.
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Consider a DLL, hardware.dll, that has a function called Connect(). You would like to load this 
library only if you need to call Connect(). Loading the library at run time is done with the Windows 
LoadLibrary() function:

HMODULE lib { ::LoadLibrary("hardware.dll") };

The result of this call is called a library handle and will be NULL if there is an error. Before you can 
load the function from the library, you need to know the prototype for the function. Suppose the 
following is the prototype for Connect(), which returns an integer and accepts three parameters: a 
Boolean, an integer, and a C-style string:

int __stdcall Connect(bool b, int n, const char* p);

The __stdcall is a Microsoft-specific directive to specify the function calling convention, stipulating 
how parameters are passed to the function and how they are cleaned up.

You can now use a type alias to define a name (ConnectFunction) for a pointer to a function with 
the required prototype:

using ConnectFunction = int(__stdcall*)(bool, int, const char*);

Having successfully loaded the library and defined a name for the function pointer, you can get a 
pointer to the function in the library as follows:

ConnectFunction connect { (ConnectFunction)::GetProcAddress(lib, "Connect") };

If this fails, connect will be nullptr. If it succeeds, you can call the loaded function:

connect(true, 3, "Hello world");

POINTERS TO METHODS (AND DATA MEMBERS)

As the previous section explains, you can create and use pointers to stand-alone functions. You also 
know that you can work with pointers to stand-alone variables. Now, consider pointers to class data 
members and methods. It’s perfectly legitimate in C++ to take the addresses of class data members 
and methods in order to obtain pointers to them. However, you can’t access a non-static data 
member or call a non-static method without an object. The whole point of class data members 
and methods is that they exist on a per-object basis. Thus, when you want to call methods or access 
data members via a pointer, you must dereference the pointer in the context of an object. Here is an 
example using the Employee class introduced in Chapter 1, “A Crash Course in C++ and the Stand-
ard Library”:

int (Employee::*methodPtr) () const { &Employee::getSalary };
Employee employee { "John", "Doe" };
cout << (employee.*methodPtr)() << endl;

Don’t panic at the syntax. The first line declares a variable called methodPtr of type pointer to a non-
static const method of Employee that takes no arguments and returns an int. At the same time, 
it initializes this variable to point to the getSalary() method of the Employee class. This syntax is 
quite similar to declaring a simple function pointer, except for the addition of Employee:: before the 
*methodPtr. Note also that the & is required in this case.

The third line calls the getSalary() method (via the methodPtr pointer) on the employee object. 
Note the use of parentheses surrounding employee.*methodPtr. They are needed because  
operatror() has higher precedence than *.
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If you have a pointer to an object, you can use ->* instead of .*, as the following code snippet 
demonstrates:

int (Employee::*methodPtr) () const { &Employee::getSalary };
Employee* employee { new Employee { "John", "Doe" } }; 
cout << (employee->*methodPtr)() << endl;

The definition of methodPtr can be made easier to read with a type alias:

using PtrToGet = int (Employee::*) () const;
PtrToGet methodPtr { &Employee::getSalary };
Employee employee { "John", "Doe" };
cout << (employee.*methodPtr)() << endl;

Finally, it can be simplified even further using auto:

auto methodPtr { &Employee::getSalary };
Employee employee { "John", "Doe" };
cout << (employee.*methodPtr)() << endl;

NOTE You can get rid of the .* or ->* syntax by using std::mem_fn(), 
explained later in this chapter in the context of function objects.

Pointers to methods and data members usually won’t come up in your programs. However, it’s 
important to keep in mind that you can’t dereference a pointer to a non-static method or data 
member without an object. Every so often, you may want to try something like passing a pointer to 
a non-static method to a function such as qsort() that requires a function pointer, which simply 
won’t work.

NOTE C++ does permit you to dereference a pointer to a static data member or 
static method without an object.

std::function

The std::function function template, defined in <functional>, is a polymorphic function wrapper,  
which can be used to create a type that can point to anything that is callable such as a function, a 
function object, or a lambda expression; the latter two are discussed later in this chapter. An instance 
of std::function can be used as a function pointer, or as a parameter for a function to implement 
callbacks, and can be stored, copied, moved, and of course executed. The template parameters for the 
function template look a bit different than most template parameters. Its syntax is as follows:

std::function<R(ArgTypes...)>

R is the return type of the function, and ArgTypes is a comma-separated list of parameter types for 
the function.
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The following example demonstrates how to use std::function to implement a function pointer. It 
creates a function pointer f1 to point to the function func(). Once f1 is defined, you can use it to 
call func():

void func(int num, string_view str)
{
    cout << format("func({}, {})", num, str) << endl;
}
 
int main()
{
    function<void(int, string_view)> f1 { func };
    f1(1, "test");
}

Thanks to class template argument deduction, you can simplify the creation of f1 as follows:

function f1 { func };

Of course, in the preceding example, it is possible to just use the auto keyword, which removes the 
need to specify the type of f1. The following definition for f1 works the same and is much shorter, 
but the compiler-deduced type of f1 is a function pointer, that is, void (*f1)(int, string_view) 
instead of an std::function:

auto f1 { func };

Because std::function types behave as function pointers, they can be passed to functions accepting 
a callback. The earlier findMatches() example can be rewritten to use std::function. The only 
thing that needs to change are the two type aliases as follows:

// A type alias for a function accepting two integer values,
// returning true if both values are matching, false otherwise.
using Matcher = function<bool(int, int)>;
 
// A type alias for a function to handle a match. The first
// parameter is the position of the match,
// the second and third are the values that matched.
using MatchHandler = function<void(size_t, int, int)>;

These kinds of callbacks are what make many Standard Library algorithms, discussed in Chapter 20, 
“Mastering Standard Library Algorithms,” so powerful.

However, technically, you don’t need std::function parameters for findMatches() to accept call-
back parameters. Instead, you can convert findMatches() to a function template. The only changes 
needed are to remove the Matcher and MatchHandler type aliases and make it a function template. 
Changes are highlighted:

template<typename Matcher, typename MatchHandler>
void findMatches(span<const int> values1, span<const int> values2,
    Matcher matcher, MatchHandler handler)
{ /* ... */ }

This implementation of findMatches() requires two template type parameters, the type of the 
Matcher and MatchHandler callbacks. Thanks to function template argument deduction, calling this 
new version is the same as calling the earlier versions.
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Using the C++20 abbreviated function template syntax, the findMatches() function template can be 
written as follows:

void findMatches(span<const int> values1, span<const int> values2,
    auto matcher, auto handler)
{ /* ... */ }

The findMatches() function template or abbreviated function template is actually the recommended 
way to implement it. So, with all these examples, it looks like std::function is not really that use-
ful; however, std::function really shines when you need to store a callback as a data member of a 
class. That’s the topic of one of the exercises at the end of this chapter.

FUNCTION OBJECTS

You can overload the function call operator in a class such that objects of the class can be used in 
place of function pointers. These objects are called function objects, or functors for short. The benefits 
of using a function object instead of a simple function is that a function object can keep state between 
calls to it.

Writing Your First Function Object
To make any class a function object, you just have to provide an overload for the function call  
operator. Here is a simple function object example:

class IsLargerThan
{
    public:
        explicit IsLargerThan(int value) : m_value { value } {}
        bool operator()(int value1, int value2) const {
            return value1 > m_value && value2 > m_value;
        }
    private:
        int m_value;
};
 
int main()
{
    vector values1 { 2, 500, 6, 9, 10, 101, 1 };
    vector values2 { 4, 4, 2, 9, 0, 300, 1 };
 
    findMatches(values1, values2, IsLargerThan { 100 }, printMatch);
} 

Note that the overloaded function call operator of the IsLargerThan class is marked as const. This 
is not strictly necessary in this example, but as the next chapter explains, for most Standard Library 
algorithms, the function call operator of predicates must be const.
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Function Objects in the Standard Library
Many of the Standard Library algorithms discussed in the next chapter, such as find_if(),  
accumulate(), and so on, accept callbacks, for example function pointers and functors, as param-
eters to customize the algorithm’s behavior. C++ provides several predefined functor classes, defined 
in <functional>, that perform the most commonly used callback operations. This section gives an 
overview of these predefined functors.

Your <functional> might also contain functions like bind1st(), bind2nd(), mem_fun(),  
mem_fun_ref(), and ptr_fun(). These functions have officially been removed since the C++17 
standard and thus are not further discussed in this book. You should avoid using them.

Arithmetic Function Objects
C++ provides functor class templates for the five binary arithmetic operators: plus, minus,  
multiplies, divides, and modulus. Additionally, unary negate is supplied. These classes are 
templatized on the type of the operands and are wrappers for the actual operators. They take one or 
two parameters of the template type, perform the operation, and return the result. Here is an example 
using the plus class template:

plus<int> myPlus;
int res { myPlus(4, 5) };
cout << res << endl;

This example is of course silly, because there’s no reason to use the plus class template when you 
could just use operator+ directly. The benefit of the arithmetic function objects is that you can pass 
them as callbacks to other functions, which you cannot do directly with the arithmetic operators. For 
example, the following code snippet defines a function template accumulateData() accepting an 
Operation as parameter. The implementation of geometricMean() calls accumulateData() with an 
instance of the predefined multiplies function object:

template <typename Iter, typename StartValue, typename Operation>
auto accumulateData(Iter begin, Iter end, StartValue startValue, Operation op)
{
    auto accumulated { startValue };
    for (Iter iter { begin }; iter != end; ++iter) {
        accumulated = op(accumulated, *iter);
    }
    return accumulated;
}
 
double geometricMean(span<const int> values)
{
    auto mult {accumulateData(cbegin(values), cend(values), 1, multiplies<int>{})};
    return pow(mult, 1.0 / values.size()); // pow() requires <cmath>
}

The expression multiplies<int>() creates a new object of the multiplies functor class template, 
instantiating it with type int.

The other arithmetic function objects behave similarly.
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WARNING The arithmetic function objects are just wrappers around the 
arithmetic operators. To use them on objects of a certain type, you have to make 
sure that those types implement the appropriate operations, such as operator* or 
operator+.

Transparent Operator Functors
C++ has support for transparent operator functors, which allow you to omit the template type argu-
ment. For example, you can just specify multiplies<>(), short for multiplies<void>(), instead of 
multiplies<int>():

double geometricMeanTransparent(span<const int> values)
{
    auto mult { accumulateData(cbegin(values), cend(values), 1, multiplies<>{}) };
    return pow(mult, 1.0 / values.size());
}

An important feature of these transparent operators is that they are heterogeneous. That is, they are 
not only more concise than the non-transparent functors, but they also have real functional advan-
tages. For instance, the following code uses a transparent operator functor, multiplies<>{}, and 
uses 1.1, a double, as the start value, while the vector contains integers. accumulateData() calcu-
lates the result as a double, and result will be 6.6.

vector<int> values { 1, 2, 3 };
double result {accumulateData(cbegin(values), cend(values), 1.1, multiplies<>{})};

If this code uses a non-transparent operator functor, multiplies<int>{}, then accumulateData() 
calculates the result as an integer, and result will be 6. When you compile this code, the compiler 
will give you warnings about possible loss of data.

vector<int> values { 1, 2, 3 };
double result {
    accumulateData(cbegin(values), cend(values), 1.1, multiplies<int>{}) };

Finally, using transparent operators instead of the non-transparent ones can improve performance, as 
shown with an example in the next section.

NOTE It’s recommended to always use the transparent operator functors.

Comparison Function Objects
In addition to the arithmetic function object classes, all standard comparison operations are also avail-
able as functors: equal_to, not_equal_to, less, greater, less_equal, and greater_equal. You’ve 
already seen less in Chapter 18, “Standard Library Containers,” as the default comparison for  
elements in the priority_queue and the associative containers. Now you can learn how to change that 
criterion. Here’s an example of a priority_queue using the default comparison operator, std::less:
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priority_queue<int> myQueue;
myQueue.push(3);
myQueue.push(4);
myQueue.push(2);
myQueue.push(1);
while (!myQueue.empty()) {
    cout << myQueue.top() << " ";
    myQueue.pop();
}

Here is the output from the program:

4 3 2 1

As you can see, the elements of the queue are removed in descending order, according to the less 
comparison. You can change the comparison to greater by specifying it as the comparison template 
argument. The priority_queue template definition looks like this:

template <class T, class Container = vector<T>, class Compare = less<T>>;

Unfortunately, the Compare type parameter is last, which means that to specify it, you must also 
specify the container type. If you want to use a priority_queue that sorts the elements in ascending 
order using greater, then you need to change the definition of the priority_queue in the previous 
example to the following:

priority_queue<int, vector<int>, greater<>> myQueue;

The output now is as follows:

1 2 3 4

Note that myQueue is defined with a transparent operator, greater<>. In fact, it’s recommended to 
always use a transparent operator for Standard Library containers that accept a comparator type. 
Using a transparent comparator can be more performant compared to using a non-transparent opera-
tor. For example, if a set<string> uses a non-transparent comparator, performing a query for a key 
given as a string literal causes an unwanted copy to be created, because a string instance has to be 
constructed from the string literal:

set<string> mySet;
auto i1 { mySet.find("Key") };             // string constructed, allocates memory!
//auto i2 { mySet.find("Key"sv) };         // Compilation error!

When using a transparent comparator, this copying is avoided. This is called heterogeneous lookups. 
Here’s an example:

set<string, less<>> mySet;
auto i1 { mySet.find("Key") };   // No string constructed, no memory allocated.
auto i2 { mySet.find("Key"sv) }; // No string constructed, no memory allocated.

C++20 adds support for transparent operators for unordered associative containers, such as  
unordered_map and unordered_set. Using a transparent operator for unordered associative  
containers is a bit more involved compared to using them for ordered associative containers.  
Basically, a custom hash functor needs to be implemented, containing an is_transparent type alias 
defined as void:

class Hasher
{
    public:

C++20
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        using is_transparent = void;
        size_t operator()(string_view sv) const { return hash<string_view>{}(sv); }
};

When using this custom hasher, you also need to specify the transparent equal_to<> functor as the 
type for the key equality template type parameter. Here is an example:

unordered_set<string, Hasher, equal_to<>> mySet;
auto i1 { mySet.find("Key") };   // No string constructed, no memory allocated.
auto i2 { mySet.find("Key"sv) }; // No string constructed, no memory allocated.

Logical Function Objects
For the three logical operations, operator!, &&, and ||, C++ provides the following function object 
classes: logical_not, logical_and, and logical_or. These logical operations deal only with the 
values true and false. Bitwise function objects are covered in the next section.

Logical functors can, for example, be used to implement an allTrue() function that checks whether 
all the Boolean flags in a container are true:

bool allTrue(const vector<bool>& flags)
{
    return accumulateData(begin(flags), end(flags), true, logical_and<>{});
}

Similarly, the logical_or functor can be used to implement an anyTrue() function that returns 
true if there is at least one Boolean flag in a container true:

bool anyTrue(const vector<bool>& flags)
{
    return accumulateData(begin(flags), end(flags), false, logical_or<>{});
}

NOTE The allTrue() and anyTrue() functions are just given as examples. In 
fact, the Standard Library provides the std::all_of() and any_of() algorithms 
(see Chapter 20) that perform the same operations but that have the benefit of 
short-circuiting (see Chapter 1), so they are more performant.

Bitwise Function Objects
C++ has function objects bit_and, bit_or, bit_xor, and bit_not, corresponding to the bitwise 
operations operator&, |, ^, and ~. These bitwise functors can, for example, be used together with the 
transform() algorithm (discussed in Chapter 20) to perform bitwise operations on all elements in a 
container.

Adapter Function Objects
When you try to use the basic function objects provided by the standard, it often feels as if you’re 
trying to put a square peg into a round hole. If you want to use one of the standard function objects, 
but the signature doesn’t quite match your requirements, then you can use adapter function objects to 
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attempt to rectify the signature mismatch. They allow you to adapt function objects, function point-
ers, basically any callable. The adapters provide a modicum of support for functional composition, 
that is, to combine functions together to create the exact behavior you need.

Binders
Binders can be used to bind parameters of callables to certain values. For this you use std::bind(), 
defined in <functional>, which allows you to bind parameters of a callable in a flexible way. You 
can bind parameters to fixed values, and you can even rearrange parameters in a different order. 
It is best explained with an example. Suppose you have a function called func() accepting two 
arguments:

void func(int num, string_view str)
{
    cout << format("func({}, {})", num, str) << endl;
}

The following code demonstrates how you can use bind() to bind the second argument of func() 
to a fixed value, myString. The result is stored in f1(). The auto keyword is used because the return 
type of bind() is unspecified by the C++ standard and thus is implementation specific. Arguments 
that are not bound to specific values should be specified as _1, _2, _3, and so on. These are defined 
in the std::placeholders namespace. In the definition of f1(), the _1 specifies where the first 
argument to f1() needs to go when func() is called. The result: f1() can be called with just a single 
integer argument:

string myString { "abc" };
auto f1 { bind(func, placeholders::_1, myString) };
f1(16);

Here is the output:

func(16, abc)

bind() can also be used to rearrange the arguments, as shown in the following code. The _2 speci-
fies where the second argument to f2() needs to go when func() is called. In other words, the f2() 
binding means that the first argument to f2() will become the second argument to func(), and the 
second argument to f2() will become the first argument to func():

auto f2 { bind(func, placeholders::_2, placeholders::_1) };
f2("Test", 32);

The output is as follows:

func(32, Test)

As discussed in Chapter 18, <functional> defines the std::ref() and cref() helper function tem-
plates. These can be used to bind references-to-non-const and references-to-const, respectively. For 
example, suppose you have the following function:

void increment(int& value) { ++value; }

If you call this function as follows, then the value of index becomes 1:

int index { 0 };
increment(index);
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If you use bind() to call it as follows, then the value of index is not incremented because a  
copy of index is made, and a reference to this copy is bound to the first parameter of the  
increment() function:

auto incr { bind(increment, index) };
incr();

Using std::ref() to pass a proper reference correctly increments index:

auto incr { bind(increment, ref(index)) };
incr();

There is a small issue with binding parameters in combination with overloaded functions. Suppose 
you have the following two overloaded() functions. One accepts an integer, and the other accepts a 
floating-point number:

void overloaded(int num) {}
void overloaded(float f) {}

If you want to use bind() with these overloaded functions, you need to explicitly specify which of 
the two overloads you want to bind. The following will not compile:

auto f3 { bind(overloaded, placeholders::_1) }; // ERROR

If you want to bind the parameters of the overloaded function accepting a floating-point argument, 
you need the following syntax:

auto f4 { bind((void(*)(float))overloaded, placeholders::_1) }; // OK

Another example of bind() is to use findMatches() (defined earlier in this chapter) with a method 
of a class as MatchHandler. For example, suppose you have the following Handler class:

class Handler
{
    public:
        void handleMatch(size_t position, int value1, int value2)
        {
            cout << format("Match found at position {} ({}, {})",
                position, value1, value2) << endl;
        }
};

How to pass the handleMatch() method as the last argument to findMatches()? The problem 
here is that a method must always be called in the context of an object. Technically, every method 
of a class has an implicit first parameter, containing a pointer to an object instance and accessible 
in the method’s body with the name this. So, there is a signature mismatch, as our MatchHandler 
type accepts only three arguments: a size_t and two ints. The solution is to bind this implicit first 
parameter as follows:

Handler handler;
findMatches(values1, values2, intEqual, bind(&Handler::handleMatch, &handler,
            placeholders::_1, placeholders::_2, placeholders::_3));

You can also use bind() to bind parameters of standard function objects. For example, you can bind 
the second parameter of greater_equal to always compare with a fixed value:

auto greaterEqualTo100 { bind(greater_equal<>{}, placeholders::_1, 100) };
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NOTE Before C++11 there was bind2nd() and bind1st(). Both are removed 
since the C++17 standard. Use lambda expressions, discussed later in this chapter, 
or bind() instead.

Negator
not_fn() is a so-called negator, similar to a binder, but it complements the result of a callable. For 
example, if you want to use findMatches() to find pairs of non-equal values, you can apply the 
not_fn() negator adapter to the result of intEqual() like this:

findMatches(values1, values2, not_fn(intEqual), printMatch);

The not_fn() functor complements the result of every call to the callable it takes as a parameter.

As you can see, using functors and adapters can become complicated. My advice is to use lambda 
expressions, discussed later in this chapter, instead of functors if possible. Lambda expressions allow 
you to write code that is easier to read and understand compared to code using functors.

NOTE The std::not_fn() adapter is introduced with C++17. Before C++17 
you could use the std::not1() and not2() adapters. However, both not1() and 
not2() have been deprecated since C++17 and removed from C++20. As such, 
they are not further discussed, and you should avoid using them.

Calling Member Functions
You might want to pass a pointer to a class method as the callback to an algorithm. For example, 
suppose you have the following algorithm that prints strings from a container that match a certain 
condition:

template <typename Matcher>
void printMatchingStrings(const vector<string>& strings, Matcher matcher)
{
    for (const auto& string : strings) {
        if (matcher(string)) { cout << string << " "; }
    }
}

You could use this algorithm to print all non-empty strings by using the empty() method of 
string. However, if you just pass a pointer to string::empty() as the second argument to  
printMatchingStrings(), the algorithm has no way to know that it received a pointer to a method 
instead of a normal function pointer or functor. The code to call a method pointer is different from 
that to call a normal function pointer, because the former must be called in the context of an object.

C++ provides a conversion function called mem_fn() that you can call with a method pointer 
before passing it to an algorithm. The following example demonstrates this and combines it with 
not_fn() to invert the result of mem_fn(). Note that you have to specify the method pointer as 
&string::empty. The &string:: part is not optional.
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vector<string> values { "Hello", "", "", "World", "!" };
printMatchingStrings(values, not_fn(mem_fn(&string::empty)));

not_fn(mem_fn()) generates a function object that serves as the callback for  
printMatchingStrings(). Each time it is called, it calls the empty() method on its argument and 
inverts the result.

NOTE mem_fn() is not the most intuitive way to implement the desired behavior. 
I recommend using lambda expressions, discussed in the next section, to imple-
ment it in a more readable way.

LAMBDA EXPRESSIONS

The clumsiness of having to create a function or functor class, give it a name that does not conflict 
with other names, and then use this name is considerable overhead for what is fundamentally a sim-
ple concept. In these cases, using so-called anonymous (unnamed) functions represented by lambda 
expressions is a big convenience. Lambda expressions allow you to write anonymous functions inline. 
Their syntax is easier and can make your code more compact and easier to read. Lambda expressions 
are useful to define small callbacks passed to other functions inline, instead of having to define a full 
function object somewhere else with the callback logic implemented in its overloaded function call 
operator. This way, all the logic remains on a single place, and it is easier to understand and maintain. 
Lambda expressions can accept parameters, return values, be templated, access variables from its 
enclosing scope either by value or by reference, and more. There is a lot of flexibility, but first, let’s 
start with building up the syntax of lambda expressions step-by-step.

Syntax
Let’s start with a simple lambda expression. The following example defines a lambda expression that 
just writes a string to the console. A lambda expression starts with square brackets, [], called the 
lambda introducer, followed by curly braces, {}, which contain the body of the lambda expression. 
The lambda expression is assigned to the basicLambda auto-typed variable. The second line executes 
the lambda expression using normal function-call syntax.

auto basicLambda { []{ cout << "Hello from Lambda" << endl; } };
basicLambda();

The output is as follows:

Hello from Lambda

The compiler automatically transforms any lambda expression to a function object, also called 
lambda closure, with a unique, compiler-generated name. In this case, the lambda expression is trans-
lated to a function object that behaves like the following function object. Note that the function call 
operator is a const method and has an auto return type to let the compiler automatically deduce the 
return type based on the body of the method.

class CompilerGeneratedName
{

continues
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    public:
        auto operator()() const { cout << "Hello from Lambda" << endl; }
};

The compiler-generated name of a lambda closure can be something exotic like __Lambda_17Za. 
There is no way for you to figure out this name, but luckily, you don’t need to know its name.

A lambda expression can accept parameters. Parameters are specified between parentheses and multi-
ple parameters are separated by commas, just as with normal functions. Here is an example using one 
parameter called value:

auto parametersLambda {
    [](int value){ cout << "The value is " << value << endl; } };
parametersLambda(42);

If a lambda expression does not accept any parameters, you can either specify empty parentheses or 
simply omit them.

In the compiler-generated function object for this lambda expression, the parameters are simply trans-
lated to parameters for the overloaded function call operator:

class CompilerGeneratedName
{
    public:
        auto operator()(int value) const {
            cout << "The value is " << value << endl; }
};

A lambda expression can return a value. The return type is specified following an arrow, called a  
trailing return type. The following example defines a lambda expression accepting two parameters 
and returning their sum:

auto returningLambda { [](int a, int b) -> int { return a + b; } };
int sum { returningLambda(11, 22) };

The return type can be omitted, in which case the compiler deduces the return type of the lambda 
expression according to the same rules as for function return type deduction (see Chapter 1). In the 
previous example, the return type can be omitted as follows:

auto returningLambda { [](int a, int b){ return a + b; } };
int sum { returningLambda(11, 22) };

The closure for this lambda expression behaves as follows:

class CompilerGeneratedName
{
    public:
        auto operator()(int a, int b) const { return a + b; }
};

The return type deduction strips any reference and const qualifiers. For example, suppose you have 
the following Person class:

class Person
{
    public:
        Person(std::string name) : m_name { std::move(name) } { }
        const std::string& getName() const { return m_name; }

(continued)
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    private:
        std::string m_name;
};

The return type of the following lambda expression will be deduced as string, hence a copy of the 
person’s name is made, even though getName() returns a const string&:

[] (const Person& person) { return person.getName(); }

You can use a trailing return type in combination with decltype(auto) to make it so that the 
deduced type will match the return type of getName(), that is a const string&:

[] (const Person& person) -> decltype(auto) { return person.getName(); }

The lambda expressions up to now in this section are called stateless because they don’t capture 
anything from the enclosing scope. A lambda expression can be stateful by capturing variables from 
its enclosing scope. For example, the following lambda expression captures the variable data so that 
it can be used in its body:

double data { 1.23 };
auto capturingLambda { [data]{ cout << "Data = " << data << endl; } };

The square brackets part is called the lambda capture block. Capturing a variable means that the 
variable becomes available inside the body of the lambda expression. Specifying an empty capture 
block, [], means that no variables from the enclosing scope are captured. When you just write the 
name of a variable in the capture block as in the preceding example, then you are capturing that vari-
able by value.

Captured variables become data members of the lambda closure. Variables captured by value are cop-
ied into data members of the functor. These data members have the same constness as the captured 
variables. In the preceding capturingLambda example, the functor gets a non-const data member 
called data, because the captured variable, data, is non-const. The compiler-generated functor 
behaves as follows:

class CompilerGeneratedName
{
    public:
        CompilerGeneratedName(const double& d) : data { d } {}
        auto operator()() const { cout << "Data = " << data << endl; }
    private:
        double data;
};

In the following example, the functor gets a const data member called data, because the captured 
variable is const:

const double data { 1.23 };
auto capturingLambda { [data]{ cout << "Data = " << data << endl; } };

As mentioned earlier, a lambda closure has an overloaded function call operator that is marked as 
const by default. That means that even if you capture a non-const variable by value in a lambda 
expression, the lambda expression is not able to modify this copy. You can mark the function call 
operator as non-const by specifying the lambda expression as mutable, as follows:

double data { 1.23 };
auto capturingLambda {
    [data] () mutable { data *= 2; cout << "Data = " << data << endl; } };
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In this example, the non-const variable data is captured by value; thus, the functor gets a non-const 
data member that is a copy of data. Because of the mutable keyword, the function call operator is 
marked as non-const, and so the body of the lambda expression can modify its copy of data. Note 
that if you specify mutable, then you have to specify the parentheses for the parameters even if they 
are empty.

You can prefix the name of a variable with & to capture it by reference. The following example cap-
tures the variable data by reference so that the lambda expression can directly change data in the 
enclosing scope:

double data { 1.23 };
auto capturingLambda { [&data]{ data *= 2; } };

When you capture a variable by reference, you have to make sure that the reference is still valid at the 
time the lambda expression is executed.

There are two ways to capture all variables from the enclosing scope, called capture defaults:

➤➤ [=] captures all variables by value.

➤➤ [&] captures all variables by reference.

NOTE When using a capture default, only those variables that are really used in 
the body of the lambda expression are captured, either by value (=) or by reference 
(&). Unused variables are not captured.

It is also possible to selectively decide which variables to capture and how, by specifying a capture 
list with an optional capture default. Variables prefixed with & are captured by reference. Variables 
without a prefix are captured by value. If present, the capture default should be the first element in 
the capture list, and be either & or =. Here are some capture block examples:

➤➤ [&x] captures only x by reference and nothing else.

➤➤ [x] captures only x by value and nothing else.

➤➤ [=,&x,&y] captures by value by default, except variables x and y, which are captured by 
reference.

➤➤ [&,x] captures by reference by default, except variable x, which is captured by value.

➤➤ [&x,&x] is illegal because identifiers cannot be repeated.

➤➤ [this] captures the current object. In the body of the lambda expression you can access this 
object, even without using this->. You need to make sure that the object pointed to stays 
alive until the last time the lambda expression has been executed.

➤➤ [*this] captures a copy of the current object. This can be useful in cases where the original 
object will no longer be alive when the lambda expression is executed.
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➤➤ [=,this] captures everything by value and explicitly captures the this pointer. Before 
C++20, [=] would implicitly capture the this pointer. In C++20, this has been deprecated, 
and you need to explicitly capture this if you need it.

Here are a few notes on capture blocks:

➤➤ If a by-value (=) or by-reference (&) capture default is specified, then it is not allowed to addi-
tionally capture specific variables by value or by reference respectively. For example, [=,x] 
and [&,&x] are both invalid.

➤➤ Data members of an object cannot be captured, unless by using a lambda capture expression 
discussed in a later section.

➤➤ When capturing this, either by copying the this pointer, [this], or by copying the current 
object, [*this], the lambda expression has access to all public, protected, and private 
data members and methods of the captured object.

WARNING It is not recommended to use a capture default, even though a capture 
default only captures those variables that are really used in the body of the lambda 
expression. By using a = capture default, you might accidentally cause an expensive 
copy. By using an & capture default, you might accidentally modify a variable in 
the enclosing scope. I recommend you explicitly specify which variables you want 
to capture and how.

WARNING Global variables are always captured by reference, even if asked to 
capture by value! For example, in the following code snippet, a capture default is 
used to capture everything by value. Yet, the global variable, global, is captured 
by reference, and its value is changed after executing the lambda.

    int global { 42 };
    int main()
    {
        auto lambda { [=] { global = 2; } };
        lambda();
        // global now has the value 2!
    }

Additionally, capturing a global variable explicitly as follows is not allowed and 
results in a compilation error:

    auto lambda { [global] { global = 2; } };

Even besides these problems, global variables are never recommended anyway.

C++20
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The complete syntax of a lambda expression is as follows:

[capture_block] <template_params> (parameters) mutable constexpr
    noexcept_specifier attributes
    -> return_type requires {body}

Everything is optional except the capture block and the body:

➤➤ Capture block: This is also called the lambda introducer and can specify how variables from 
the enclosing scope are captured and made available in the body of the lambda.

➤➤ Template parameters (C++20): This allows you to write templatized lambda expressions,  
discussed later in this chapter.

➤➤ Parameters: This is a list of parameters for the lambda expression. You can omit this list only 
if you do not need any parameters and you do not specify mutable, constexpr, a noexcept 
specifier, attributes, a return type, or a requires clause. The parameter list is similar to the 
parameter list for normal functions.

➤➤ mutable: This marks the lambda expression as mutable; see earlier examples.

➤➤ constexpr: This marks the lambda expression as constexpr, so it can be evaluated at com-
pile time. Even if omitted, a lambda expression is constexpr implicitly if it satisfies the 
restrictions for constexpr functions.

➤➤ noexcept specifier: This can be used to specify noexcept clauses, similar to noexcept 
clauses for normal functions.

➤➤ Attributes: This can be used to specify attributes for the lambda expression. Attributes are 
explained in Chapter 1.

➤➤ Return type: This is the type of the returned value. If this is omitted, the compiler deduces the 
return type according to the same rules as for function return type deduction; see Chapter 1.

➤➤ Requires clause (C++20): This adds template type constraints to the function call operator of 
the lambda closure. Chapter 12, “Writing Generic Code with Templates,” explains how such 
constraints can be specified.

NOTE For lambda expressions that do not capture anything, the compiler auto-
matically provides a conversion operator that converts the lambda expression to a 
function pointer. Such lambda expressions can then, for example, be used to pass 
to functions that accept a function pointer as one of their arguments.

Lambda Expressions as Parameters
Lambda expressions can be passed as arguments to functions in two ways. One option is to have a 
function parameter of type std::function that matches the signature of the lambda expression. 
Another option is to use a template type parameter.
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For example, a lambda expression can be passed to the findMatches() function from earlier in 
this chapter:

vector values1 { 2, 5, 6, 9, 10, 1, 1 };
vector values2 { 4, 4, 2, 9, 0, 3, 1 };
findMatches(values1, values2,
    [](int value1, int value2) { return value1 == value2; },
    printMatch);

Generic Lambda Expressions
It is possible to use auto type deduction for parameters of lambda expressions instead of explicitly 
specifying concrete types for them. To specify auto-type deduction for a parameter, the type is simply 
specified as auto. The type deduction rules are the same as for template argument deduction.

The following example defines a generic lambda expression called areEqual. This lambda expression 
is used as callback for the findMatches() function from earlier in this chapter:

// Define a generic lambda expression to find equal values.
auto areEqual { [](const auto& value1, const auto& value2) {
    return value1 == value2; } };
// Use the generic lambda expression in a call to findMatches().
vector values1 { 2, 5, 6, 9, 10, 1, 1 };
vector values2 { 4, 4, 2, 9, 0, 3, 1 };
findMatches(values1, values2, areEqual, printMatch);

The compiler-generated functor for this generic lambda expression behaves like this:

class CompilerGeneratedName
{
    public:
        template <typename T1, typename T2>
        auto operator()(const T1& value1, const T2& value2) const
        { return value1 == value2; }
};

If the findMatches() function is modified to support not only spans of ints, but also other types, 
then the areEqual generic lambda expression can still be used without requiring any changes to it.

Lambda Capture Expressions
Lambda capture expressions allow you to initialize capture variables with any kind of expression. It 
can be used to introduce variables in the lambda expression that are not captured from the enclosing 
scope. For example, the following code creates a lambda expression. Inside this lambda expression 
there are two variables available: one called myCapture, initialized to the string “Pi: ” using a lambda 
capture expression; and one called pi, which is captured by value from the enclosing scope. Note that 
non-reference capture variables such as myCapture that are initialized with a capture initializer are 
copy constructed, which means that const qualifiers are stripped.

double pi { 3.1415 };
auto myLambda { [myCapture = "Pi: ", pi]{ cout << myCapture << pi; } };
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A lambda capture variable can be initialized with any kind of expression and thus also with 
std::move(). This is important for objects that cannot be copied, only moved, such as unique_ptr. 
By default, capturing by value uses copy semantics, so it’s impossible to capture a unique_ptr by 
value in a lambda expression. Using a lambda capture expression, it is possible to capture it by mov-
ing, as in this example:

auto myPtr { make_unique<double>(3.1415) };
auto myLambda { [p = move(myPtr)]{ cout << *p; } };

It is allowed, though not recommended, to have the same name for the capture variable as the name 
in the enclosing scope. The previous example can be written as follows:

auto myPtr { make_unique<double>(3.1415) };
auto myLambda { [myPtr = move(myPtr)]{ cout << *myPtr; } };

Templated Lambda Expressions
C++20 supports templated lambda expressions. This allows you to get easier access to type informa-
tion of parameters of generic lambda expressions. For example, suppose you have a lambda expres-
sion that requires a vector to be passed as argument. However, the type of elements in the vector 
can be anything; hence, it’s a generic lambda expression using auto for its parameter. The body of the 
lambda expression wants to figure out what the type of the elements in the vector is. Before C++20, 
this could be done only by using decltype() and std::decay_t, a so-called type trait. Type traits 
are explained in Chapter 26, “Advanced Templates,” but those details are not important to grasp the 
benefits of templated lambda expressions. It suffices to know that decay_t removes, among other 
things, any const and reference qualifications from a type. Here is the generic lambda expression:

auto lambda { [](const auto& values) {
    using V = decay_t<decltype(values)>; // The real type of the vector.
    using T = typename V::value_type;    // The type of the elements of the vector.
    T someValue { };
    T::some_static_function();
} };

You can call this lambda expression as follows:

vector values { 1, 2, 100, 5, 6 };
lambda(values);

Using decltype() and decay_t is rather convoluted. A templated lambda expression makes this 
much easier. The following lambda expression forces its parameter to be a vector but still uses a 
template type parameter for the vector’s element type:

[] <typename T> (const vector<T>& values) {
    T someValue { };
    T::some_static_function();
}

Another use of templated lambda expressions is if you want to put certain restrictions on generic 
lambda expressions. For example, suppose you have the following generic lambda expression:

[](const auto& value1, const auto& value2) { /* ... */ }

C++20
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This lambda expression accepts two parameters, and the compiler deduces the type of each param-
eter automatically. Since the type of both parameters is deduced separately, the type of value1 and 
value2 could be different. If you want to restrict this and want both parameters to have the same 
type, you can turn this into a templated lambda expression:

[] <typename T> (const T& value1, const T& value2) { /* ... */ }

You can also put constraints on the template types by adding a requires clause, discussed in  
Chapter 12. Here’s an example:

[] <typename T> (const T& value1, const T& value2) requires integral<T> {/* ... */}

Lambda Expressions as Return Type
By using std::function, discussed earlier in this chapter, lambda expressions can be returned from 
functions. Take a look at the following definition:

function<int(void)> multiplyBy2Lambda(int x)
{
    return [x]{ return 2 * x; };
}

The body of this function creates a lambda expression that captures the variable x from the enclosing 
scope by value and returns an integer that is two times the value passed to multiplyBy2Lambda(). 
The return type of the multiplyBy2Lambda() function is function<int(void)>, which is a func-
tion accepting no arguments and returning an integer. The lambda expression defined in the body 
of the function exactly matches this prototype. The variable x is captured by value, and thus a copy 
of the value of x is bound to the x in the lambda expression before the lambda is returned from the 
function. The function can be called as follows:

function<int(void)> fn { multiplyBy2Lambda(5) };
cout << fn() << endl;

You can use the auto keyword to make this easier:

auto fn { multiplyBy2Lambda(5) };
cout << fn() << endl;

The output will be 10.

Function return type deduction (see Chapter 1) allows you to write the multiplyBy2Lambda() func-
tion more elegantly, as follows:

auto multiplyBy2Lambda(int x)
{
    return [x]{ return 2 * x; };
}

The multiplyBy2Lambda() function captures the variable x by value, [x]. Suppose the function 
is rewritten to capture the variable by reference, [&x], as follows. This will not work because the 
lambda expression will be executed later in the program, no longer in the scope of the  
multiplyBy2Lambda() function, at which point the reference to x is not valid anymore.

auto multiplyBy2Lambda(int x)
{
    return [&x]{ return 2 * x; }; // BUG!
}
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Lambda Expressions in Unevaluated Contexts
C++20 allows lambda expressions to be used in so-called unevaluated contexts. For example, the 
argument passed to decltype() is used only at compile time and never evaluated. Hence, the follow-
ing is not valid in C++17 or older, but is valid since C++20:

using LambdaType = decltype([](int a, int b) { return a + b; });

Default Construction, Copying, and Assigning
Starting with C++20, stateless lambda expressions can be default constructed, copied, and assigned 
to. Here is a quick example:

auto lambda { [](int a, int b) { return a + b; } }; // A stateless lambda.
decltype(lambda) lambda2; // Default construction.
auto copy { lambda };     // Copy construction.
copy = lambda2;           // Copy assignment.

Combined with using lambda expressions in unevaluated contexts, the following kind of code is 
now valid:

using LambdaType = decltype([](int a, int b) { return a + b; }); // Unevaluated.
 
LambdaType getLambda()
{
    return LambdaType{}; // Default construction.
}

INVOKERS

std::invoke(), defined in <functional>, can be used to call any callable object with a set of 
parameters. The following example uses invoke() three times: once to invoke a normal function, 
once to invoke a lambda expression, and once to invoke a member function on a string instance:

void printMessage(string_view message) { cout << message << endl; }
 
int main()
{
    invoke(printMessage, "Hello invoke.");
    invoke([](const auto& msg) { cout << msg << endl; }, "Hello invoke.");
    string msg { "Hello invoke." };
    cout << invoke(&string::size, msg) << endl;
}

By itself, invoke() is not that useful, because you might as well just call the function or the lambda 
expression directly. However, it is useful when writing generic templated code where you need to 
invoke some arbitrary callable object.

C++20

C++20
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SUMMARY

This chapter explained the concept of callbacks, which are functions that are passed to other func-
tions to customize their behavior. You’ve seen that callbacks can be function pointers, function 
objects, or lambda expressions. You also learned that lambda expressions allow you to write more 
readable code than composing operations using function objects and adapter function objects. 
Remember, writing readable code is as important, if not more important, than writing code that 
works. So, even if a lambda expression is a bit longer than an adapted function object, the lambda 
expression will be more readable and hence more maintainable.

Now that you are fluent in working with callbacks, it’s time to delve into the true power of the Stand-
ard Library with a discussion of its generic algorithms.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 19-1: Rewrite the IsLargerThan function object example from this chapter using a 
lambda expression. You can find the code in the downloadable source code archive in  
c19_code\04_FunctionObjects\01_IsLargerThan.cpp.

Exercise 19-2: Rewrite the example given for bind() to use lambda expressions instead.  
You can find the code in the downloadable source code archive in c19_code\ 
04_FunctionObjects\07_bind.cpp.

Exercise 19-3: Rewrite the example given for binding the class method 
Handler::handleMatch() to use lambda expressions instead. You can find the  
code in the downloadable source code archive in c19_code\04_FunctionObjects\ 
10_FindMatchesWithMethodPointer.cpp.

Exercise 19-4: Chapter 18 introduces the std::erase_if() function to remove elements 
from a container for which a certain predicate returns true. Now that you know everything 
about callbacks, write a small program that creates a vector of integers, and then uses 
erase_if() to remove all odd values from the vector. The predicate you need to pass to 
erase_if() should accept a single value and return a Boolean.

Exercise 19-5: Implement a class called Processor. The constructor should accept a callback 
accepting a single integer and returning an integer. Store this callback in a data member of the 
class. Next, add an overload for the function call operator accepting an integer and returning 
an integer. The implementation simply forwards the work to the stored callback. Test your 
class with different callbacks.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Mastering Standard Library 
Algorithms

WHAT’S IN THIS CHAPTER?

➤➤ Algorithms explained

➤➤ The details of the Standard Library algorithms

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

As Chapter 18, “Standard Library Containers,” shows, the Standard Library provides an 
impressive collection of generic data structures. Most libraries stop there. The Standard Library, 
however, contains an additional assortment of generic algorithms that can, with some excep-
tions, be applied to elements from any container. Using these algorithms, you can find, sort, and 
process elements in containers and perform a host of other operations. The beauty of the 
algorithms is that they are independent not only of the types of the underlying elements, but 
also of the types of the containers on which they operate. Algorithms perform their work using 
only the iterator interfaces, discussed in Chapter 17, “Understanding Iterators and the 
Ranges Library.”

Chapter 16, “Overview of the C++ Standard Library,” gives a high-level overview of all the 
Standard Library algorithms, but without any coding details. Now it’s time to look at how 
those algorithms can be used in practice.

http://www.wiley.com/go/proc++5e
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OVERVIEW OF ALGORITHMS

The “magic” behind the algorithms is that they work on iterator intermediaries instead of on the 
containers themselves. In that way, they are not tied to specific container implementations. All the 
Standard Library algorithms are implemented as function templates, where the template type param-
eters are usually iterator types. The iterators themselves are specified as arguments to the function. 
Templatized functions can usually deduce the template types from the function arguments, so you can 
generally call the algorithms as if they were normal functions, not templates.

The iterator arguments are usually iterator ranges. As Chapter 17 explains, iterator ranges are half-
open for most containers such that they include the first element in the range, but exclude the last. 
The end iterator is really a “past-the-end” marker.

Algorithms pose certain requirements on iterators passed to them. For instance, copy_backward(), 
which copies elements from one sequence to another, starting with the last element, is an example of 
an algorithm that requires a bidirectional iterator. Similarly, stable_sort(), which sorts elements 
in place while preserving the order of duplicate elements, is an example of an algorithm requiring 
random access iterators. This means that such algorithms cannot work on containers that do not 
provide the necessary iterators. forward_list is an example of a container supporting only forward 
iterators, no bidirectional or random-access iterators; thus, copy_backward() and stable_sort() 
cannot work on forward_list.

Most algorithms are defined in <algorithm>, while some numerical algorithms are defined in 
<numeric>. All of them are in the std namespace.

Since C++20, the majority of the algorithms are constexpr, which means they can be used in the 
implementation of constexpr functions. Consult a Standard Library Reference to discover exactly 
which algorithms are constexpr.

The best way to understand the algorithms is to look at some examples first. After you’ve seen how a 
few of them work, it’s easy to pick up the others. This section describes the find(), find_if(), and 
accumulate() algorithms in detail. The subsequent sections discuss each of the classes of algorithms 
with representative samples.

The find and find_if Algorithms
find() looks for a specific element in an iterator range. You can use it on elements in any container 
type. It returns an iterator referring to the element found or the end iterator of the range in case the 
element is not found. Note that the range specified in the call to find() need not be the entire range 
of elements in a container; it could be a subset.

WARNING If find() fails to find an element, it returns an iterator equal to the 
end iterator specified in the function call, not the end iterator of the underlying 
container.
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Here is an example using std::find(). Note that this example assumes that the user plays nice and 
enters valid numbers; it does not perform any error checking on the user input. Performing error 
checking on stream input is discussed in Chapter 13, “Demystifying C++ I/O.”

import <algorithm>;
import <vector>;
import <iostream>;
using namespace std;
 
int main()
{
    vector<int> myVector;
    while (true) {
        cout << "Enter a number to add (0 to stop): ";
        int number;
        cin >> number;
        if (number == 0) { break; }
        myVector.push_back(number);
    }
 
    while (true) {
        cout << "Enter a number to lookup (0 to stop): ";
        int number;
        cin >> number;
        if (number == 0) { break; }
        auto endIt { cend(myVector) };
        auto it { find(cbegin(myVector), endIt, number) };
        if (it == endIt) {
            cout << "Could not find " << number << endl;
        } else {
            cout << "Found " << *it << endl;
        }
    }
}

To search all the elements of the vector, find() is called with cbegin(myVector) and endIt as 
iterator arguments, where endIt is defined as cend(myVector). If you want to search in a subrange, 
you can change these two iterators.

Here is a sample run of the program:

Enter a number to add (0 to stop): 3
Enter a number to add (0 to stop): 4
Enter a number to add (0 to stop): 5
Enter a number to add (0 to stop): 6
Enter a number to add (0 to stop): 0
Enter a number to lookup (0 to stop): 5
Found 5
Enter a number to lookup (0 to stop): 8
Could not find 8
Enter a number to lookup (0 to stop): 0
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With initializers for if statements (C++17), the call to find() and checking the result can be done 
with one statement as follows:

if (auto it { find(cbegin(myVector), endIt, number) }; it == endIt) {
    cout << "Could not find " << number << endl;
} else {
    cout << "Found " << *it << endl;
}

Some containers, such as map and set, provide their own versions of find() as class methods, as 
demonstrated with examples during the discussion of those containers in Chapter 18.

WARNING If a container provides a method with the same functionality as a 
generic algorithm, you should use the method instead, because it’s faster. For 
example, the generic find() algorithm runs in linear time, even on a map, while 
the find() method on a map runs in logarithmic time.

find_if() is similar to find(), except that it accepts a predicate function callback returning true 
or false, instead of a simple element to match. The find_if() algorithm calls the predicate on each 
element in the range until the predicate returns true, in which case find_if() returns an iterator 
referring to that element. The following program reads test scores from the user, then checks whether 
any of the scores are “perfect.” A perfect score is a score of 100 or higher. The program is similar to 
the previous example. Only the major differences are highlighted:

bool perfectScore(int num) { return num >= 100; }
 
int main()
{
    vector<int> myVector;
    while (true) {
        cout << "Enter a test score to add (0 to stop): ";
        int score;
        cin >> score;
        if (score == 0) { break; }
        myVector.push_back(score);
    }
 
    auto endIt { cend(myVector) };
    auto it { find_if(cbegin(myVector), endIt, perfectScore) };
    if (it == endIt) {
        cout << "No perfect scores" << endl;
    } else {
        cout << "Found a \"perfect\" score of " << *it << endl;
    }
}

This program passes a pointer to the perfectScore() function to find_if(), which the algorithm 
then calls on each element until it returns true.
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The following is the same call to find_if(), but using a lambda expression, discussed in Chapter 19,  
“Function Pointers, Function Objects, and Lambda Expressions.” Note the absence of the per-
fectScore() function.

auto it { find_if(cbegin(myVector), endIt, [](int i){ return i >= 100; }) };

The accumulate Algorithm
It’s often useful to calculate the sum, or some other arithmetic quantity, of elements in a container. 
The accumulate() function—defined in <numeric>, not in <algorithm>—does just that. In its most 
basic form, it calculates the sum of the elements in a specified range. For example, the following func-
tion calculates the arithmetic mean of a sequence of integers given as a span. The arithmetic mean is 
simply the sum of all the elements divided by the number of elements:

double arithmeticMean(span<const int> values)
{
    double sum { accumulate(cbegin(values), cend(values), 0.0) };
    return sum / values.size();
}

The accumulate() algorithm takes as its third parameter an initial value for the sum, which in this 
case should be 0.0 (the identity for addition) to start a fresh sum.

A second overload of accumulate() allows the caller to specify an operation to perform instead of 
the default addition. This operation takes the form of a binary callback. Suppose that you want to 
calculate the geometric mean, which is the product of all the numbers in the sequence to the power 
of the inverse of the size. In that case, you would want to use accumulate() to calculate the product 
instead of the sum. You could write it like this:

int product(int value1, int value2) { return value1 * value2; }
 
double geometricMean(span<const int> values)
{
    int mult { accumulate(cbegin(values), cend(values), 1, product) };
    return pow(mult, 1.0 / values.size());  // pow() needs <cmath>
}

Note that the product() function is passed as a callback to accumulate() and that the initial value 
for the accumulation is 1 (the identity for multiplication).

Instead of a separate product() function, you could use a lambda expression:

double geometricMeanLambda(span<const int> values)
{
    double mult { accumulate(cbegin(values), cend(values), 1,
        [](int value1, int value2) { return value1 * value2; }) };
    return pow(mult, 1.0 / values.size());
}

You could also use the transparent multiplies<> function object, discussed in Chapter 19, to imple-
ment the geometricMean() function:

double geometricMeanFunctor(span<const int> values)
{
    int mult { accumulate(cbegin(values), cend(values), 1, multiplies<>{}) };
    return pow(mult, 1.0 / values.size());
}
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Move Semantics with Algorithms
Just like Standard Library containers, Standard Library algorithms are also optimized to use move 
semantics at appropriate times; that is, they can move objects instead of performing potential expen-
sive copy operations. This can greatly speed up certain algorithms, for example, remove(), discussed 
in detail later in this chapter. For this reason, it is highly recommended that you implement move 
semantics in your custom element classes that you want to store in containers. Move semantics can  
be added to any class by implementing a move constructor and a move assignment operator. As dis-
cussed in Chapter 18, both should be marked as noexcept, otherwise they won’t be used by Standard 
Library containers and algorithms. Consult the “Implementing Move Semantics” section in  
Chapter 9, “Mastering Classes and Objects,” for details on how to add move semantics to 
your classes.

Algorithm Callbacks

WARNING The algorithms are allowed to make multiple copies of given call-
backs, such as functors and lambda expressions, and call different copies for  
different elements.

The fact that multiple copies of a callback can be made places strong restrictions on the side effects 
of such callbacks. Basically, the callbacks must be stateless. For functors, this means that the function 
call operator needs to be const; thus, you cannot write functors such that they count on any inter-
nal state to the object being consistent between calls. Similar for lambda expressions, they cannot be 
marked as mutable.

There are some exceptions. The generate() and generate_n() algorithms can accept stateful call-
backs, but even these make one copy of the callback. On top of that, they don’t return that copy, so 
you don’t have access to the changes made to the state once the algorithm is finished. The only excep-
tion is for_each(). It copies the given predicate once into the for_each() algorithm and returns 
that copy when finished. You can access the changed state through this returned value.

To prevent callbacks from getting copied by algorithms, you can use the std::ref() helper function 
to pass a callback reference to the algorithm instead. This ensures that the algorithm always uses the 
same callback. For example, the following code snippet is based on an earlier example in this chapter, 
but uses a lambda expression stored in a variable named isPerfectScore. The lambda expression 
counts how often it gets called and writes that to standard output. isPerfectScore is passed to the 
find_if() algorithm. The last statement of the snippet explicitly calls isPerfectScore one addi-
tional time.

auto isPerfectScore { [tally = 0] (int i) mutable {
    cout << ++tally << endl;  return i >= 100; } };
 
auto endIt { cend(myVector) };
auto it { find_if(cbegin(myVector), endIt, isPerfectScore) };
if (it != endIt) { cout << "Found a \"perfect\" score of " << *it << endl; }
isPerfectScore(1);
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The output can be as followed:

Enter a test score to add (0 to stop): 1
Enter a test score to add (0 to stop): 2
Enter a test score to add (0 to stop): 3
Enter a test score to add (0 to stop): 0
1
2
3
1

The output shows that the find_if() algorithm calls isPerfectScore three times producing the 
output 1, 2, 3. The last line shows that the explicit call to isPerfectScore occurs on a different 
instance of isPerfectScore as it starts again at 1.

Now, change the call to find_if() as follows:

auto it { find_if(cbegin(myVector), endIt, ref(isPerfectScore)) };

The output now will be 1, 2, 3, 4, showing that no copies of isPerfectScore are being made.

ALGORITHM DETAILS

Chapter 16 lists all available Standard Library algorithms, divided into different categories. Most of 
the algorithms are defined in <algorithm>, but a few are located in <numeric>. They are all in the 
std namespace.

The goal of this chapter is not to provide a reference-style overview of all available algorithms. 
Instead, I have picked a number of categories and provided examples for them. Once you know how 
to use these algorithms, you should have no problems with other algorithms. Consult a Standard 
Library Reference; see Appendix B for a full reference of all the algorithms.

Non-modifying Sequence Algorithms
Non-modifying sequence algorithms are algorithms that do not modify the sequence of elements they 
operate on. These include algorithms for searching elements in a range and for comparing two ranges 
to each other; they also include a number of counting algorithms.

Search Algorithms
You’ve already seen examples of two search algorithms in the beginning of this chapter: find() and 
find_if(). The Standard Library provides several other variations of the basic find() algorithm 
that work on sequences of elements. The section “Search Algorithms” in Chapter 16 describes the dif-
ferent search algorithms that are available, including their complexity.

All the algorithms use operator== or < as the default comparison operator, but also provide over-
loaded versions that allow you to specify a different comparison callback.

Here are examples of some of the search algorithms in action:

// The list of elements to be searched.
vector myVector { 5, 6, 9, 8, 8, 3 };

continues
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auto beginIter { cbegin(myVector) };
auto endIter { cend(myVector) };
 
// Find the first element that does not satisfy the given lambda expression.
auto it { find_if_not(beginIter, endIter, [](int i){ return i < 8; }) };
if (it != endIter) {
    cout << "First element not < 8 is " << *it << endl;
}
 
// Find the first pair of matching consecutive elements.
it = adjacent_find(beginIter, endIter);
if (it != endIter) {
    cout << "Found two consecutive equal elements with value " << *it << endl;
}
 
// Find the first of two values.
vector targets { 8, 9 };
it = find_first_of(beginIter, endIter, cbegin(targets), cend(targets));
if (it != endIter) {
    cout << "Found one of 8 or 9: " << *it << endl;
}
 
// Find the first subsequence.
vector sub { 8, 3 };
it = search(beginIter, endIter, cbegin(sub), cend(sub));
if (it != endIter) {
    cout << "Found subsequence {8,3}" << endl;
} else {
    cout << "Unable to find subsequence {8,3}" << endl;
}
 
// Find the last subsequence (which is the same as the first in this example).
auto it2 { find_end(beginIter, endIter, cbegin(sub), cend(sub)) };
if (it != it2) {
    cout << "Error: search and find_end found different subsequences "
         << "even though there is only one match." << endl;
}
 
// Find the first subsequence of two consecutive 8s.
it = search_n(beginIter, endIter, 2, 8);
if (it != endIter) {
    cout << "Found two consecutive 8s" << endl;
} else {
    cout << "Unable to find two consecutive 8s" << endl;
}

Here is the output:

First element not < 8 is 9
Found two consecutive equal elements with value 8
Found one of 8 or 9: 9
Found subsequence {8,3}
Found two consecutive 8s

(continued)
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NOTE Remember that some of the containers have methods equivalent to generic 
algorithms. If that’s the case, it’s recommended to use the methods instead of the 
generic algorithms, because the methods are more efficient.

Specialized Searchers
Since C++17, an optional parameter to the search() algorithm allows you to specify which search 
algorithm to use. You have three options—default_searcher, boyer_moore_searcher, or  
boyer_moore_horspool_searcher—all defined in <functional>. The last two options implement 
the well-known Boyer-Moore and Boyer-Moore-Horspool search algorithms. These are more efficient 
than the default searcher and can be used to find a substring in a larger piece of text. The complexity 
of the Boyer-Moore searchers is as follows (N is the size of the sequence to search in, the haystack, 
and M is the size of the pattern to find, the needle):

➤➤ If the pattern is not found, the worst-case complexity is O(N+M).

➤➤ If the pattern is found, the worst-case complexity is O(N*M).

These are the theoretical worst-case complexities. In practice, these specialized searchers are sublinear, 
better than O(N), which means they are much faster than the default one! They are sublinear because 
they are able to skip characters instead of looking at each single character in the haystack. They also 
have an interesting property that the longer the needle is, the faster they work, as they will be able to 
skip more characters in the haystack. The difference between the Boyer-Moore and the Boyer-Moore-
Horspool algorithm is that the latter has less constant overhead for its initialization and in each loop 
iteration of its algorithm; however, its worst-case complexity can be significantly higher than for the 
Boyer-Moore algorithm. So, which one to choose depends on your specific use case.

Here is an example of using a Boyer-Moore searcher:

string text { "This is the haystack to search a needle in." };
string toSearchFor { "needle" };
boyer_moore_searcher searcher { cbegin(toSearchFor), cend(toSearchFor) };
auto result { search(cbegin(text), cend(text), searcher) };
if (result != cend(text)) {
    cout << "Found the needle." << endl;
} else {
    cout << "Needle not found." << endl;
}

Comparison Algorithms
You can compare entire ranges of elements in four different ways: equal(), mismatch(),  
lexicographical_compare(), and lexicographical_compare_three_way() (C++20). These algo-
rithms have the advantage that you can compare sequences from different containers. For example, 
you can compare the contents of a vector with the contents of a list. In general, these algorithms 



734 ❘ CHAPTER 20  Mastering standard Library aLgorithMs

work best with sequential containers. They work by comparing the values in corresponding positions 
of the two collections to each other. The following list describes how each algorithm works:

➤➤ equal() returns true if all corresponding elements are equal. Originally, equal() accepted 
three iterators: begin and end iterators for the first range, and a begin iterator for the second 
range. This version required both ranges to have the same number of elements. Since C++14, 
there is an overload accepting four iterators: begin and end iterators for the first range, and 
begin and end iterators for the second range. This version can cope with ranges of different 
sizes. It’s recommended to always use the four-iterator version because it’s safer!

➤➤ mismatch() returns iterators, one iterator for each range, to indicate where in the range the 
corresponding elements mismatch. There are three-iterator and four-iterator versions avail-
able, just as with equal(). It’s again recommended to use the four-iterator version, because 
of safety!

➤➤ lexicographical_compare() compares the elements that have the same position in both 
supplied ranges against each other (sequentially). It returns true if the first unequal element 
in the first range is less than its corresponding element in the second range, or if the first 
range has fewer elements than the second and all elements in the first range are equal to their 
corresponding initial subsequence in the second set. lexicographical_compare() gets its 
name because it resembles the rules for comparing strings in dictionaries, but extends this set 
of rules to deal with objects of any type.

➤➤ lexicographical_compare_three_way() is similar to lexicographical_compare() 
except that it performs a C++20 three-way comparison and returns a comparison category 
type (strong_ordering, weak_ordering, or partial_ordering, discussed in Chapter 1) 
instead of a Boolean.

NOTE If you want to compare all elements of two containers of the same type, 
you can just use operator== or operator< instead of one of these algorithms. The 
algorithms are useful for comparing subranges, C-style arrays, sequences of ele-
ments from different container types, and so on.

Here are some examples of these algorithms in action:

// Function template to populate a container of ints.
// The container must support push_back().
template <typename Container>
void populateContainer(Container& cont)
{
    while (true) {
        cout << "Enter a number (0 to quit): ";
        int value;
        cin >> value;
        if (value == 0) { break; }
        cont.push_back(value);
    }
}
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int main()
{
    vector<int> myVector;
    list<int> myList;
 
    cout << "Populate the vector:" << endl;
    populateContainer(myVector);
    cout << "Populate the list:" << endl;
    populateContainer(myList);
 
    // Compare the two containers
    if (equal(cbegin(myVector), cend(myVector),
              cbegin(myList), cend(myList))) {
        cout << "The two containers have equal elements" << endl;
    } else {
        // If the containers were not equal, find out why not
        auto miss { mismatch(cbegin(myVector), cend(myVector),
                             cbegin(myList), cend(myList)) };
        cout << "The following initial elements are the same in "
            << "the vector and the list:" << endl;
        for (auto i { cbegin(myVector) }; i != miss.first; ++i) {
            cout << *i << '\t';
        }
        cout << endl;
    }
 
    // Now order them.
    if (lexicographical_compare(cbegin(myVector), cend(myVector),
                                cbegin(myList), cend(myList))) {
        cout << "The vector is lexicographically first." << endl;
    } else {
        cout << "The list is lexicographically first." << endl;
    }
}

Here is a sample run of the program:

Populate the vector:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 0
Populate the list:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 9
Enter a number (0 to quit): 8
Enter a number (0 to quit): 0
The following initial elements are the same in the vector and the list:
5      6
The vector is lexicographically first.
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Counting Algorithms
The non-modifying counting algorithms are all_of(), any_of(), none_of(), count(), and  
count_if(). Here are some examples of the first three algorithms:

// all_of()
vector vec2 { 1, 1, 1, 1 };
if (all_of(cbegin(vec2), cend(vec2), [](int i){ return i == 1; })) {
    cout << "All elements are == 1" << endl;
} else {
    cout << "Not all elements are == 1" << endl;
}
 
// any_of()
vector vec3 { 0, 0, 1, 0 };
if (any_of(cbegin(vec3), cend(vec3), [](int i){ return i == 1; })) {
    cout << "At least one element == 1" << endl;
} else {
    cout << "No elements are == 1" << endl;
}
 
// none_of()
vector vec4 { 0, 0, 0, 0 };
if (none_of(cbegin(vec4), cend(vec4), [](int i){ return i == 1; })) {
    cout << "All elements are != 1" << endl;
} else {
    cout << "Some elements are == 1" << endl;
}

The output is as follows:

All elements are == 1
At least one element == 1
All elements are != 1

The following example uses the count_if() algorithm to count the number of elements in a  
vector that satisfy a certain condition. The condition is given in the form of a lambda expression, 
which captures the value variable from its enclosing scope by value:

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int value { 3 };
auto tally { count_if(cbegin(values), cend(values),
    [value](int i){ return i > value; }) };
cout << format("Found {} values > {}.", tally, value) << endl;

The output is as follows:

Found 6 values > 3

The example can be extended to demonstrate capturing variables by reference. The following lambda 
expression counts the number of times it is called by incrementing a variable in the enclosing scope 
that is captured by reference:

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int value { 3 };
int callCounter { 0 };
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auto tally { count_if(cbegin(values), cend(values),
    [value, &callCounter](int i){ ++callCounter; return i > value; }) };
cout << "The lambda expression was called " << callCounter
     << " times." << endl;
cout << format("Found {} values > {}.", tally, value) << endl;

The output is as follows:

The lambda expression was called 9 times.
Found 6 values > 3

Modifying Sequence Algorithms
The Standard Library provides a variety of modifying sequence algorithms that perform tasks such 
as copying elements from one range to another, removing elements, or reversing the order of elements 
in a range.

Some modifying algorithms use the concept of a source and a destination range. The elements are 
read from the source range and modified in the destination range. An example of such an algorithm 
is copy().

Other algorithms perform their work in-place; that is, they require only one range, for example the 
generate() algorithm.

WARNING The modifying algorithms cannot insert elements into a destination. 
They can only overwrite/modify whatever elements are in the destination already. 
Chapter 17 describes how iterator adapters can be used to really insert elements 
into a destination.

NOTE Ranges from maps and multimaps cannot be used as destinations of modi-
fying algorithms. These algorithms overwrite entire elements, which in a map con-
sist of key/value pairs. However, maps and multimaps mark the key as const, so it 
cannot be assigned to. The same holds for set and multiset. Your alternative is 
to use an insert iterator, described in Chapter 17.

The section “Modifying Sequence Algorithms” in Chapter 16 lists all available modifying algorithms 
with a description of each one. This section provides code examples for a selection of those algo-
rithms. If you understand how to use the algorithms explained in this section, you should not have 
any problems using the other algorithms for which no examples are given.

generate
The generate() algorithm requires an iterator range and replaces the values in that range with the 
values returned from the function callback given as third argument. The following example uses the 



738 ❘ CHAPTER 20  Mastering standard Library aLgorithMs

generate() algorithm together with a lambda expression to put the numbers 2, 4, 8, 16, and so on, 
in a vector:

vector<int> values(10); // Create a vector of 10 elements.
int value { 1 };
generate(begin(values), end(values), [&value]{ value *= 2; return value; });
for (const auto& i : values) { cout << i << " "; }

The output is as follows:

2 4 8 16 32 64 128 256 512 1024

transform
There are multiple overloads of the transform() algorithm. One overload applies a callback to each 
element in a range and expects the callback to generate a new element, which it stores in the speci-
fied destination range. The source and destination ranges can be the same if you want transform() 
to work in-place. The parameters are a begin and end iterator of the source sequence, a begin itera-
tor of the destination sequence, and the callback. For example, the following code snippet adds 100 
to each element in a vector. The populateContainer() function is the same as defined earlier in 
this chapter.

vector<int> myVector;
populateContainer(myVector);
 
cout << "The vector contains:" << endl;
for (const auto& i : myVector) { cout << i << " "; }
cout << endl;
 
transform(begin(myVector), end(myVector), begin(myVector),
    [](int i){ return i + 100;});
 
cout << "The vector contains:" << endl;
for (const auto& i : myVector) { cout << i << " "; }

Another overload of transform() calls a binary function on pairs of elements from two ranges. It 
requires a begin and end iterator of the first range, a begin iterator of the second range, and a begin 
iterator of the destination range. The following example creates two vectors and uses transform() 
to calculate the sum of pairs of elements and to store the result back in the first vector:

vector<int> vec1, vec2;
cout << "Vector1:" << endl; populateContainer(vec1);
cout << "Vector2:" << endl; populateContainer(vec2);
if (vec2.size() < vec1.size())
{
    cout << "Vector2 should be at least the same size as vector1." << endl;
    return 1;
}
 
// Create a lambda to print the contents of a container
auto printContainer { [](const auto& container) {
    for (auto& i : container) { cout << i << " "; }
    cout << endl;
} };
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cout << "Vector1: "; printContainer(vec1);
cout << "Vector2: "; printContainer(vec2);
 
transform(begin(vec1), end(vec1), begin(vec2), begin(vec1),
    [](int a, int b){return a + b;});
 
cout << "Vector1: "; printContainer(vec1);
cout << "Vector2: "; printContainer(vec2);

The output could look like this:

Vector1:
Enter a number (0 to quit): 1
Enter a number (0 to quit): 2
Enter a number (0 to quit): 0
Vector2:
Enter a number (0 to quit): 11
Enter a number (0 to quit): 22
Enter a number (0 to quit): 33
Enter a number (0 to quit): 0
Vector1: 1 2
Vector2: 11 22 33
Vector1: 12 24
Vector2: 11 22 33

NOTE transform() and the other modifying algorithms often return an iterator 
referring to the past-the-end value of the destination range. The examples in this 
book usually ignore that return value.

copy
The copy() algorithm allows you to copy elements from one range to another, starting with the first 
element and proceeding to the last element in the range. The source and destination ranges must be 
different, but, with restrictions, they can overlap. The restrictions are as follows: for copy(b,e,d), 
overlapping is fine if d is before b; however, if d is within [b,e), then the behavior is undefined. As 
with all modifying algorithms, copy() cannot insert elements into the destination. It just overwrites 
whatever elements are there already. Chapter 17 describes how to use iterator adapters to insert ele-
ments into a container or stream with copy().

Here is a simple example of copy() that uses the resize() method on a vector to ensure that there 
is enough space in the destination container. It copies all elements from vec1 to vec2.

vector<int> vec1, vec2;
populateContainer(vec1);
vec2.resize(size(vec1));
copy(cbegin(vec1), cend(vec1), begin(vec2));
for (const auto& i : vec2) { cout << i << " "; }

There is also a copy_backward() algorithm, which copies the elements from the source backward to 
the destination. In other words, it starts with the last element of the source, puts it in the last position 
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in the destination range, and then moves backward after each copy. Also for copy_backward(), the 
source and destination ranges must be different, but, with restrictions, they can again overlap. The 
restrictions this time are as follows: for copy_backward(b,e,d), overlapping is fine if d is after e, 
however, if d is within (b,e], then the behavior is undefined. The preceding example can be modified 
to use copy_backward() instead of copy(), as follows. Note that you need to specify end(vec2) as 
a third argument instead of begin(vec2). The output is the same as the version using copy().

copy_backward(cbegin(vec1), cend(vec1), end(vec2));

copy_if() works by having an input range specified by two iterators, an output destination speci-
fied by one iterator, and a predicate (for example, a function or lambda expression). The algorithm 
copies all elements that satisfy the given predicate to the destination. Remember, copy does not create 
or extend containers; it merely replaces existing elements, so the destination should be big enough to 
hold all elements to be copied. Of course, after copying the elements, it might be desirable to remove 
the space “beyond” where the last element was copied to. To facilitate this, copy_if() returns an 
iterator to the one-past-the-last-copied element in the destination range. This can be used to deter-
mine how many elements should be removed from the destination container. The following example 
demonstrates this by copying only the even numbers to vec2:

vector<int> vec1, vec2;
populateContainer(vec1);
vec2.resize(size(vec1));
auto endIterator { copy_if(cbegin(vec1), cend(vec1),
         begin(vec2), [](int i){ return i % 2 == 0; }) };
vec2.erase(endIterator, end(vec2));
for (const auto& i : vec2) { cout << i << " "; }

copy_n() copies n elements from the source to the destination. The first parameter of copy_n() is 
the start iterator. The second parameter is an integer specifying the number of elements to copy, and 
the third parameter is the destination iterator. The copy_n() algorithm does not perform any bounds 
checking, so you must make sure that the start iterator, incremented by the number of elements to 
copy, does not exceed the end() of the collection or your program will have undefined behavior. Here 
is an example:

vector<int> vec1, vec2;
populateContainer(vec1);
size_t tally { 0 };
cout << "Enter number of elements you want to copy: ";
cin >> tally;
tally = min(tally, size(vec1));
vec2.resize(tally);
copy_n(cbegin(vec1), tally, begin(vec2));
for (const auto& i : vec2) { cout << i << " "; }

move
There are two move-related algorithms: move() and move_backward(). They both use move 
semantics, discussed in Chapter 9, “Mastering Classes and Objects.” You have to provide a move 
assignment operator in your element classes if you want to use these algorithms on containers with 
elements of your own types, as demonstrated in the following example. The main() function creates 
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a vector with three MyClass objects and then moves those elements from vecSrc to vecDst. Note 
that the code includes two different uses of move(). The move() function accepting a single argu-
ment converts an lvalue into an rvalue and is defined in <utility>, while move() accepting three 
arguments is the Standard Library move() algorithm to move elements between containers. Consult 
Chapter 9 for details on implementing move assignment operators and the use of the single parameter 
version of std::move().

class MyClass
{
    public:
        MyClass() = default;
        MyClass(const MyClass& src) = default;
        MyClass(string str) : m_str { move(str) } {}
        virtual ~MyClass() = default;
 
        // Move assignment operator
        MyClass& operator=(MyClass&& rhs) noexcept {
            if (this == &rhs) { return *this; }
            m_str = move(rhs.m_str);
            cout << format("Move operator= (m_str={})", m_str) << endl;
            return *this;
        }
 
        void setString(string str) { m_str = move(str); }
        const string& getString() const { return m_str; }
    private:
        string m_str;
};
 
int main()
{
    vector<MyClass> vecSrc { MyClass { "a" }, MyClass { "b" }, MyClass { "c" } };
    vector<MyClass> vecDst(vecSrc.size());
    move(begin(vecSrc), end(vecSrc), begin(vecDst));
    for (const auto& c : vecDst) { cout << c.getString() << " "; }
}

The output is as follows:

Move operator= (m_str=a)
Move operator= (m_str=b)
Move operator= (m_str=c)
a b c

NOTE Chapter 9 explains that source objects in a move operation are left in some 
valid but otherwise indeterminate state. For the previous example, this means you 
should not use the elements from vecSrc anymore after the move operation, unless 
you bring them back to a determinate state, for example by calling a method on 
them without any preconditions, such as setString().
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move_backward() uses the same move mechanism as move(), but it moves the elements starting 
from the last to the first element. For both move() and move_backward(), the source and destination 
ranges are allowed to overlap with the same restrictions as for copy() and copy_backward().

replace
The replace() and replace_if() algorithms replace elements in a range matching a value or predi-
cate, respectively, with a new value. Take replace_if() as an example. Its first and second param-
eters specify the range of elements in a container. The third parameter is a callback that returns true 
or false. If it returns true, the value in the container is replaced with the value given for the fourth 
parameter; if it returns false, it leaves the original value.

For example, you might want to replace all odd values in a container with the value zero:

vector<int> values;
populateContainer(values);
replace_if(begin(values), end(values), [](int i){ return i % 2 != 0; }, 0);
for (const auto& i : values) { cout << i << " "; }

There are also variants of replace() and replace_if() called replace_copy() and  
replace_copy_if() that copy the results to a different destination range. They are similar to 
copy(), in that the destination range must already be large enough to hold the new elements.

erase
As introduced in Chapter 18, C++20 supports std::erase() and std::erase_if() for almost all 
Standard Library containers. Officially, these operations are called uniform container erasure. The 
erase() function deletes all elements matching a given value from a container, while erase_if() 
deletes all elements matching a given predicate. Note that these algorithms require a reference to a 
container, instead of an iterator range. Starting with C++20, using one of these functions is the pre-
ferred way to erase elements from containers.

For example, the following removeEmptyStrings() function removes all empty strings from a  
vector of strings and uses erase_if() to do all the work, turning the function into a simple 
one-liner:

void removeEmptyStrings(vector<string>& strings)
{
    erase_if(strings, [](const string& str){ return str.empty(); });
}
int main()
{
    vector<string> myVector {"", "one", "", "two", "three", "four"};
    for (auto& str : myVector) { cout << "\"" << str << "\"  "; }
    cout << endl;
    removeEmptyStrings(myVector);
    for (auto& str : myVector) { cout << "\"" << str << "\"  "; }
    cout << endl;
}

C++20
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The output is as follows:

""  "one"  ""  "two"  "three"  "four"
"one"  "two"  "three"  "four"

NOTE std::erase() does not work with ordered and unordered associative con-
tainers, because these containers have a method called erase(key), which is much 
more performant and should be used instead. On the other hand, the erase_if() 
function works with all containers.

remove
If your compiler does not yet support the C++20 erase() and erase_if() algorithms discussed in 
the previous section, then you’ll have to resort to other options. The first solution that you might 
think of is to check the documentation to see whether your container has an erase() method and 
then iterate over all the elements and call erase() for each element that matches the condition. The 
vector is an example of a container that has such an erase() method. However, if applied to the 
vector container, this solution is inefficient as it will cause a lot of memory operations to keep the 
vector contiguous in memory, resulting in a quadratic complexity. This solution is also error-prone, 
because you need to be careful that you keep your iterators valid after a call to erase(). For exam-
ple, here is a function that removes empty strings from a vector of strings without using algo-
rithms. Note how iter is carefully manipulated inside the for loop.

void removeEmptyStringsWithoutAlgorithms(vector<string>& strings)
{
    for (auto iter { begin(strings) }; iter != end(strings); ) {
        if (iter->empty()) {
            iter = strings.erase(iter);
        } else {
            ++iter;
        }
    }
}

NOTE Quadratic complexity means that the running time is a function of the 
square of the input size, O(n2).

This solution is inefficient and not recommended. A much better solution for this problem is the  
so-called remove-erase-idiom, which runs in linear time and is explained next.

The remove algorithms have access only to the iterator abstraction, not to the container. Thus, 
they cannot really remove elements from the underlying container. Instead, the algorithms work by 
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replacing the elements that match a given value or predicate with the next element that does not 
match the given value or predicate. It does so using move assignments. The result is that all elements 
to be kept are moved toward the beginning of the range; hence, the range becomes partitioned into 
two sets: the elements to be kept and the elements to be erased. An iterator is returned that points 
to the first element in the range of elements to be erased. If you want to actually erase these ele-
ments from the container, you must first use the remove() or remove_if() algorithm and then call 
erase() on the container to erase all the elements from the returned iterator up to the end of the 
range. This is the remove-erase-idiom. Here is an implementation of the removeEmptyStrings() 
function using this idiom:

void removeEmptyStrings(vector<string>& strings)
{
    auto it { remove_if(begin(strings), end(strings),
        [](const string& str){ return str.empty(); }) };
    // Erase the removed elements.
    strings.erase(it, end(strings));
}

WARNING When using the remove-erase-idiom, make sure not to forget the sec-
ond argument to erase()! If you forget this second argument, erase() will erase 
only a single element from the container, that is, the element referred to by the 
iterator passed as the first argument.

The remove_copy() and remove_copy_if() variations of remove() and remove_if() do not 
change the source range. Instead, they copy all kept elements to a different destination range. 
They are similar to copy(), in that the destination range must already be large enough to hold the 
new elements.

NOTE The remove() family of functions are stable; i.e., they maintain the order 
of elements remaining in the container even while moving the retained elements 
toward the beginning.

NOTE It’s recommended to use the C++20 std::erase_if() and std::erase() 
algorithms (or the erase(key) method for associative containers) over the 
remove-erase-idiom, and definitely over handwritten loops.

unique
The unique() algorithm is a special case of remove() that removes all duplicate contiguous ele-
ments. The list container provides its own unique() method that implements the same semantics. 
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You should generally use unique() on sorted sequences, but nothing prevents you from running it on 
unsorted sequences.

The basic form of unique() runs in place, but there is also a version of the algorithm called  
unique_copy() that copies its results to a new destination range.

Chapter 18 shows an example of the list::unique() algorithm in the section “list Example: Deter-
mining Enrollment,” so an example of the general form is omitted here.

shuffle
shuffle() rearranges the elements of a range in a random order with a linear complexity. It’s useful 
for implementing tasks like shuffling a deck of cards. shuffle() requires a start and end iterator 
for the range that you want to shuffle and a uniform random number generator object that specifies 
how the random numbers should be generated. Here is an example (details on how to use random 
number generation engines and how to “seed” them are explained in Chapter 23, “Random Number 
Facilities”):

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 
random_device seeder;
const auto seed { seeder.entropy() ? seeder() : time(nullptr) };
default_random_engine engine {
    static_cast<default_random_engine::result_type>(seed) };
 
for (int i { 0 }; i < 6; ++i) {
    shuffle(begin(values), end(values), engine);
    for (const auto& value : values) { cout << value << " "; }
    cout << endl;
}

Here is some possible output:

2 5 6 9 7 8 4 3 10 1
8 5 6 4 3 1 2 9 7 10
10 8 3 9 7 2 1 6 4 5
7 3 2 10 4 5 9 8 6 1
1 5 9 6 8 10 7 4 2 3
3 6 8 9 4 7 1 2 5 10

sample
The sample() algorithm returns a selection of n randomly chosen elements from a given source range 
and stores them in a destination range. It requires five parameters:

➤➤ A begin and end iterator of the range to sample

➤➤ A begin iterator of the destination range where you want to store the randomly 
selected elements

➤➤ The number of elements to select

➤➤ A random number generation engine
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Here is an example (details on how to use random number generation engines and how to “seed” 
them are explained in Chapter 23):

vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
const size_t numberOfSamples { 5 };
vector<int> samples(numberOfSamples);
 
random_device seeder;
const auto seed { seeder.entropy() ? seeder() : time(nullptr) };
default_random_engine engine { 
    static_cast<default_random_engine::result_type>(seed) };
 
for (int i { 0 }; i < 6; ++i) {
    sample(cbegin(values), cend(values), begin(samples), numberOfSamples, engine);
    for (const auto& sample : samples) { cout << sample << " "; }
    cout << endl;
}

Here is some possible output:

1 2 5 8 10
1 2 4 5 7
5 6 8 9 10
2 3 4 6 7
2 5 7 8 10
1 2 5 6 7 

reverse
The reverse() algorithm reverses the order of the elements in a range. The first element in the range 
is swapped with the last, the second with the second-to-last, and so on.

The basic form of reverse() runs in place and requires two arguments: a start and end iterator for 
the range. There is also a version of the algorithm called reverse_copy() that copies its results to a 
new destination range and requires three arguments: a start and end iterator for the source range, and 
a start iterator for the destination range. The destination range must already be large enough to hold 
the new elements.

Here is an example using reverse():

vector<int> values;
populateContainer(values);
reverse(begin(values), end(values));
for (const auto& i : values) { cout << i << " "; }

Shifting Elements
C++20 introduces shift_left() and shift_right() algorithms to shift elements in a given range, 
by moving them to their new position. Elements that fall off either end of the range are removed. 
shift_left() returns an iterator to the end of the new range, while shift_right() returns an 
iterator to the beginning of the new range. Here is an example:

vector values { 11, 22, 33, 44, 55 };
for (const auto& value : values) { cout << value << " "; }
cout << endl;
 

C++20
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// Shift elements to the left by 2 positions.
auto newEnd { shift_left(begin(values), end(values), 2) };
// Resize the vector to its proper size.
values.erase(newEnd, end(values));
for (const auto& value : values) { cout << value << " "; }
cout << endl;
 
// Shift elements to the right by 2 positions.
auto newBegin { shift_right(begin(values), end(values), 2) };
// Resize the vector to its proper size.
values.erase(begin(values), newBegin);
for (const auto& value : values) { cout << value << " "; }
cout << endl;

The output is as follows:

11 22 33 44 55
33 44 55
33

Operational Algorithms
There are only two algorithms in this category: for_each() and for_each_n(). They execute a call-
back on each element of a range, for_each(), or on the first n elements of a range, for_each_n(). 
The callback can modify elements in the range if the given iterator type is non-const. The algorithms 
are mentioned here so you know they exist; however, it’s often easier and more readable to use a 
simple range-based for loop instead.

for_each

The following is an example using a generic lambda expression, printing the elements from a map:

map<int, int> myMap { { 4, 40 }, { 5, 50 }, { 6, 60 } };
for_each(cbegin(myMap), cend(myMap), [](const auto& p)
    { cout << p.first << "->" << p.second << endl; });

The type of p is const pair<int, int>&. The output is as follows:

4->40
5->50
6->60

The following example shows how to use the for_each() algorithm and a lambda expression to cal-
culate the sum and the product of a range of elements at the same time. Note that the lambda expres-
sion explicitly captures only those variables it needs. It captures them by reference; otherwise, changes 
made to sum and product in the lambda expression would not be visible outside the lambda.

vector<int> myVector;
populateContainer(myVector);
 
int sum { 0 };
int product { 1 };
for_each(cbegin(myVector), cend(myVector),
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    [&sum, &product](int i){
        sum += i;
        product *= i;
});
cout << "The sum is " << sum << endl;
cout << "The product is " << product << endl;

This example can also be written with a functor in which you accumulate information that you can 
retrieve after for_each() has finished processing all the elements. For example, you could calculate 
both the sum and product of the elements in one pass by writing a functor SumAndProduct that 
tracks both at the same time:

class SumAndProduct
{
    public:
        void operator()(int value)
        {
            m_sum += value;
            m_product *= value;
        }
 
        int getSum() const { return m_sum; }
        int getProduct() const { return m_product; }
    private:
        int m_sum { 0 };
        int m_product { 1 };
};
 
int main()
{
    vector<int> myVector;
    populateContainer(myVector);
 
    SumAndProduct calculator;
    calculator = for_each(cbegin(myVector), cend(myVector), calculator);
    cout << "The sum is " << calculator.getSum() << endl;
    cout << "The product is " << calculator.getProduct() << endl;
}

You might be tempted to ignore the return value of for_each() yet still try to read information from 
calculator after the algorithm is finished. However, that doesn’t work because for_each() copies 
the functor, and at the end, this copy is returned from the call. You must capture the return value to 
ensure correct behavior.

A final point about for_each() (and for_each_n() discussed in the next section) is that the call-
back is allowed to have a reference-to-non-const as parameter and modify it. That has the effect of 
changing values in the actual iterator range. Here is an example:

vector values { 11, 22, 33, 44 };
// Double each element in the values vector.
for_each(begin(values), end(values), [](auto& value) { value *= 2; });
// Print all the elements of the values vector.
for_each(cbegin(values), cend(values),
    [](const auto& value) { cout << value << endl; });
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for_each_n
The for_each_n() algorithm requires a begin iterator of the range, the number of elements to iter-
ate over, and a callback. It returns an iterator equal to begin + n. As usual, it does not perform any 
bounds checking. Here is an example that only iterates over the first two elements of a map:

map<int, int> myMap { { 4, 40 }, { 5, 50 }, { 6, 60 } };
for_each_n(cbegin(myMap), 2, [](const auto& p)
    { cout << p.first << "->" << p.second << endl; });

Partition Algorithms
partition_copy() copies elements from a source to two different destinations. The destination for 
each element is selected based on the result of a predicate, either true or false. The returned value 
of partition_copy() is a pair of iterators: iterators referring to one-past-the-last-copied element 
in the first and second destination range. These returned iterators can be used in combination with 
erase() to remove excess elements from the two destination ranges, just as in the earlier copy_if() 
example. The following example asks the user to enter a number of integers, which are then  
partitioned into two destination vectors: one for the even numbers and one for the odd numbers:

vector<int> vec1, vecOdd, vecEven;
populateContainer(vec1);
vecOdd.resize(size(vec1));
vecEven.resize(size(vec1));
 
auto pairIters { partition_copy(cbegin(vec1), cend(vec1),
    begin(vecEven), begin(vecOdd),
    [](int i){ return i % 2 == 0; }) };
 
vecEven.erase(pairIters.first, end(vecEven));
vecOdd.erase(pairIters.second, end(vecOdd));
 
cout << "Even numbers: ";
for (const auto& i : vecEven) { cout << i << " "; }
cout << endl << "Odd numbers: ";
for (const auto& i : vecOdd) { cout << i << " "; }

The output can be as follows:

Enter a number (0 to quit): 11
Enter a number (0 to quit): 22
Enter a number (0 to quit): 33
Enter a number (0 to quit): 44
Enter a number (0 to quit): 0
Even numbers: 22 44
Odd numbers: 11 33

The partition() algorithm sorts a sequence such that all elements for which a predicate returns 
true are before all elements for which it returns false, without preserving the original order of the 
elements within each partition. The following example demonstrates how to partition a vector into 
all even numbers followed by all odd numbers:

vector<int> values;
populateContainer(values);

continues



750 ❘ CHAPTER 20  Mastering standard Library aLgorithMs

partition(begin(values), end(values), [](int i){ return i % 2 == 0; });
cout << "Partitioned result: ";
for (const auto& i : values) { cout << i << " "; }

The output can be as follows:

Enter a number (0 to quit): 55
Enter a number (0 to quit): 44
Enter a number (0 to quit): 33
Enter a number (0 to quit): 22
Enter a number (0 to quit): 11
Enter a number (0 to quit): 0
Partitioned result: 22 44 33 55 11

A couple of other partition algorithms are available. See Chapter 16 for a list.

Sorting Algorithms
The Standard Library provides several variations of sorting algorithms. A sorting algorithm reorders 
the contents of a container such that an ordering is maintained between sequential elements of the 
collection. Thus, it applies only to sequential collections. Sorting is not relevant for ordered associa-
tive containers because they already maintain elements in a sorted order. Sorting is not relevant to the 
unordered associative containers either, because they have no concept of ordering. Some containers, 
such as list and forward_list, provide their own sorting methods, because these methods can be 
implemented more efficiently than a generic sorting mechanism. Consequently, the generic sorting 
algorithms are most useful for vectors, deques, arrays, and C-style arrays.

The sort() algorithm sorts a range of elements in O(N log N) time in general. Following the applica-
tion of sort() to a range, the elements in the range are in nondecreasing order (lowest to highest), 
according to operator<. If you don’t like that order, you can specify a different comparator, such 
as greater.

A variant of sort(), called stable_sort(), maintains the relative order of equal elements in a range, 
which means that it is less efficient than the sort() algorithm.

Here is an example of sort() using a transparent greater<> comparator:

vector<int> values;
populateContainer(values);
sort(begin(values), end(values), greater<>{});

There is also is_sorted(), returning true if a given range is sorted, and is_sorted_until(), 
returning an iterator such that everything before this iterator is sorted.

nth_element() is a powerful, so-called selection algorithm. Given a range of elements and an itera-
tor to the nth element in that range, the algorithm rearranges the elements in the range such that the 
element in the position pointed to by nth is the element that would be in that position if the whole 
range were sorted. Additionally, it rearranges all elements such that all elements preceding the nth ele-
ment are less than the new nth element, and the ones following it are greater than the new nth element. 
The interesting thing about this algorithm is that it does all this in linear time, O(n). Instead of using  
nth_element(), you could also just sort the whole range and then retrieve the data you are inter-
ested in, but that would result in a complexity that is linear logarithmic, O(n log n).

(continued)
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All this sounds complicated, so let’s see this algorithm in action. A first example is to find the third 
largest element in a given range. It assumes the user enters at least three values.

vector<int> values;
populateContainer(values);
// Find the third largest value.
nth_element(begin(values), begin(values) + 2, end(values), greater<>{});
cout << "3rd largest value: " << values[2] << endl;

Another example is to get the five largest elements from a range in sorted order. It assumes the user 
enters at least five values.

vector<int> values;
populateContainer(values);
// Get the 5 largest elements in sorted order.
nth_element(begin(values), begin(values) + 4, end(values), greater<>{});
// nth_element() has partitioned the elements, now sort the first subrange.
sort(begin(values), begin(values) + 5);
// And finally, output the sorted subrange.
for_each_n(begin(values), 5, [](const auto& element) { cout << element << "  "; });

Binary Search Algorithms
There are several search algorithms that work only on sequences that are sorted or that are at  
least partitioned on the element that is searched for. These algorithms are binary_search(),  
lower_bound(), upper_bound(), and equal_range(). Note that the associative containers, such as 
map and set, have equivalent methods that you should use instead. See Chapter 18 for an example on 
how to use these methods on such containers.

The lower_bound() algorithm finds the first element in a sorted range not less than (that is greater 
or equal to) a given value. It is often used to find at which position in a sorted vector a new value 
should be inserted so that the vector remains sorted. Here is an example:

vector<int> values;
populateContainer(values);
 
// Sort the container
sort(begin(values), end(values));
 
cout << "Sorted vector: ";
for (const auto& i : values) { cout << i << " "; }
cout << endl;
 
while (true) {
    int number;
    cout << "Enter a number to insert (0 to quit): ";
    cin >> number;
    if (number == 0) { break; }
 
    auto iter { lower_bound(begin(values), end(values), number) };
    values.insert(iter, number);
 
    cout << "New vector: ";
    for (const auto& i : values) { cout << i << " "; }
    cout << endl;
}
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The binary_search() algorithm finds a matching element in logarithmic time instead of linear time. 
It requires a start and end iterator specifying the range to search in, a value to search, and optionally 
a comparison callback. It returns true if the value is found in the specified range, false otherwise. 
Binary search requires the range to be sorted and works by first comparing the middle element of the 
range. Depending on whether that middle element is greater than or less than the value to search, it 
continues by comparing the middle element of the left or right half of the range, respectively. This 
continues until the element is found. Basically, on each iteration, the range is halved, hence the loga-
rithmic complexity. The following example demonstrates this algorithm:

vector<int> values;
populateContainer(values);
 
// Sort the container
sort(begin(values), end(values));
 
while (true) {
    int number;
    cout << "Enter a number to find (0 to quit): ";
    cin >> number;
    if (number == 0) { break; }
    if (binary_search(cbegin(values), cend(values), number)) {
        cout << "That number is in the vector." << endl;
    } else {
        cout << "That number is not in the vector." << endl;
    }
}

Set Algorithms
The set algorithms work on any sorted range. The includes() algorithm implements standard subset 
determination, checking whether all the elements of one sorted range are included in another sorted 
range, in any order.

The set_union(), set_intersection(), set_difference(), and set_symmetric_difference() 
algorithms implement the standard semantics of those operations. In set theory, the result of a union 
is all the elements in either set. The result of an intersection is all the elements that are in both sets. 
The result of a difference is all the elements in the first set but not the second. The result of a symmet-
ric difference is the “exclusive or” of sets: all the elements in one, but not both, sets.

WARNING Make sure that your result range is large enough to hold the  
result of the operations. For set_union() and set_symmetric_difference(), 
the result is at most the sum of the sizes of the two input ranges. For set_ 
intersection(), the result is at most the minimum size of the two input ranges, 
and for set_difference() it’s at most the size of the first range.
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WARNING You can’t use iterator ranges from associative containers, including 
sets, to store the results because they don’t allow changes to their keys.

Let’s look at these set algorithms in action. First, a DumpRange() helper function template is defined 
to write elements of a given range to the standard output stream; it is implemented as follows:

template <typename Iterator>
void DumpRange(string_view message, Iterator begin, Iterator end)
{
    cout << message;
    for_each(begin, end, [](const auto& element) { cout << element << " "; });
    cout << endl;
}

With this helper function defined, here are examples on using the set algorithms:

vector<int> vec1, vec2, result;
cout << "Enter elements for set 1:" << endl;
populateContainer(vec1);
cout << "Enter elements for set 2:" << endl;
populateContainer(vec2);
 
// set algorithms require sorted ranges
sort(begin(vec1), end(vec1));
sort(begin(vec2), end(vec2));
 
DumpRange("Set 1: ", cbegin(vec1), cend(vec1));
DumpRange("Set 2: ", cbegin(vec2), cend(vec2)); 
 
if (includes(cbegin(vec1), cend(vec1), cbegin(vec2), cend(vec2))) {
    cout << "The second set is a subset of the first." << endl;
}
if (includes(cbegin(vec2), cend(vec2), cbegin(vec1), cend(vec1))) {
    cout << "The first set is a subset of the second" << endl;
}
 
result.resize(size(vec1) + size(vec2));
auto newEnd { set_union(cbegin(vec1), cend(vec1), cbegin(vec2),
    cend(vec2), begin(result)) };
DumpRange("The union is: ", begin(result), newEnd);
 
newEnd = set_intersection(cbegin(vec1), cend(vec1), cbegin(vec2),
    cend(vec2), begin(result));
DumpRange("The intersection is: ", begin(result), newEnd);
 
newEnd = set_difference(cbegin(vec1), cend(vec1), cbegin(vec2),
    cend(vec2), begin(result));
DumpRange("The difference between set 1 and 2 is: ", begin(result), newEnd);
 

continues
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newEnd = set_symmetric_difference(cbegin(vec1), cend(vec1),
    cbegin(vec2), cend(vec2), begin(result));
DumpRange("The symmetric difference is: ", begin(result), newEnd);

Here is a sample run of the program:

Enter elements for set 1:
Enter a number (0 to quit): 5
Enter a number (0 to quit): 6
Enter a number (0 to quit): 7
Enter a number (0 to quit): 8
Enter a number (0 to quit): 0
Enter elements for set 2:
Enter a number (0 to quit): 8
Enter a number (0 to quit): 9
Enter a number (0 to quit): 10
Enter a number (0 to quit): 0
Set 1: 5 6 7 8
Set 2: 8 9 10
The union is: 5 6 7 8 9 10
The intersection is: 8
The difference between set 1 and set 2 is: 5 6 7
The symmetric difference is: 5 6 7 9 10

The merge() algorithm allows you to merge two sorted ranges together, while maintaining the sorted 
order. The result is a sorted range containing all the elements of the two source ranges. It works in 
linear time. The following parameters are required:

➤➤ Start and end iterator of the first source range

➤➤ Start and end iterator of the second source range

➤➤ Start iterator of the destination range

➤➤ Optionally, a comparison callback

Without merge(), you could still achieve the same effect by concatenating the two ranges and apply-
ing sort() to the result, but that would be less efficient, O(N log N) instead of the linear complexity 
of merge().

WARNING Always ensure that you supply a big enough destination range to store 
the result of the merge!

The following example demonstrates merge():

vector<int> vectorOne, vectorTwo, vectorMerged;
cout << "Enter values for first vector:" << endl;
populateContainer(vectorOne);
cout << "Enter values for second vector:" << endl;
populateContainer(vectorTwo);
 

(continued)
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// Sort both containers
sort(begin(vectorOne), end(vectorOne));
sort(begin(vectorTwo), end(vectorTwo));
 
// Make sure the destination vector is large enough to hold the values
// from both source vectors.
vectorMerged.resize(size(vectorOne) + size(vectorTwo));
 
merge(cbegin(vectorOne), cend(vectorOne),
      cbegin(vectorTwo), cend(vectorTwo), begin(vectorMerged));
 
DumpRange("Merged vector: ", cbegin(vectorMerged), cend(vectorMerged));

Minimum/Maximum Algorithms
The min() and max() algorithms compare two or more elements of any type using operator< or 
a user-supplied binary predicate, returning a reference-to-const to the smallest or largest element, 
respectively. The minmax() algorithm returns a pair containing the minimum and maximum of two 
or more elements. These algorithms do not work with iterator ranges.

The min_element() and max_element() algorithms work with iterator ranges and return an itera-
tor to the smallest or largest element in a range, respectively. The minmax_element() algorithm also 
works with an iterator range and returns a pair containing iterators to the smallest and largest ele-
ment in a range.

The following program gives some examples:

int x { 4 }, y { 5 };
cout << format("x is {} and y is {}", x, y) << endl;
cout << "Max is " << max(x, y) << endl;
cout << "Min is " << min(x, y) << endl;
 
// Using max() and min() on more than two values.
int x1 { 2 }, x2 { 9 }, x3 { 3 }, x4 { 12 };
cout << "Max of 4 elements is " << max({ x1, x2, x3, x4 }) << endl;
cout << "Min of 4 elements is " << min({ x1, x2, x3, x4 }) << endl;
 
// Using minmax().
auto p2 { minmax({ x1, x2, x3, x4 }) }; // p2 is of type pair<int, int>.
cout << format("Minmax of 4 elements is <{},{}>", p2.first, p2.second) << endl;
 
// Using minmax() + C++17 structured bindings.
auto [min1, max1] { minmax({ x1, x2, x3, x4 }) };
cout << format("Minmax of 4 elements is <{},{}>", min1, max1) << endl;
 
// Using minmax_element() + C++17 structured bindings.
vector values { 11, 33, 22 };
auto [min2, max2] { minmax_element(cbegin(values), cend(values)) };
cout << format("minmax_element() result: <{},{}>", *min2, *max2) << endl;
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Here is the program output:

x is 4 and y is 5
Max is 5
Min is 4
Max of 4 elements is 12
Min of 4 elements is 2
Minmax of 4 elements is <2,12>
Minmax of 4 elements is <2,12>
minmax_element() result: <11,33>

NOTE Sometimes you might encounter non-standard macros to find the minimum 
and maximum. For example, the GNU C Library (glibc) has macros MIN() and 
MAX(), while the Windows.h header file defines min() and max() macros. Because 
these are macros, they have the potential to evaluate one of their arguments twice, 
whereas std::min() and std::max() evaluate each argument exactly once. Make 
sure you always use the C++ versions, std::min() and std::max().

Such min() and max() macros might interfere with using std::min() and 
std::max(). In that case, you can prevent the use of the macros by using an extra 
set of parentheses, as follows:

    auto maxValue { (std::max)(1, 2) };

On Windows you can also prevent the Windows min() and max() macros by add-
ing a #define NOMINMAX before you include Windows.h.

std::clamp() is a little helper function, defined in <algorithm>, that you can use to make sure that 
a value (v) is between a given minimum (lo) and maximum (hi). It returns a reference to lo if v < lo, 
returns a reference to hi if v > hi, and otherwise returns a reference to v. Here is an example:

cout << clamp(-3, 1, 10) << endl;
cout << clamp(3, 1, 10) << endl;
cout << clamp(22, 1, 10) << endl;

The output is as follows:

1
3
10

Parallel Algorithms
C++ supports executing more than 60 Standard Library algorithms in parallel to improve their 
performance. Examples include for_each(), all_of(), copy(), count_if(), find(), replace(), 
search(), sort(), transform(), and many more.

Algorithms that support parallel execution have an optional execution policy as their first parameter. 
The execution policy allows you to specify whether an algorithm is allowed to be vectorized and/or  
executed in parallel. When a compiler vectorizes code, it replaces several CPU instructions with a 
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single so-called vector CPU instruction. A vector instruction performs some operation on multiple 
pieces of data with a single hardware instruction. These are also known as single instruction multiple 
data (SIMD) instructions. There are four standard execution policy types, and corresponding global 
instances of those types, all defined in <execution> in the std::execution namespace:

EXECUTION POLICY TYPE GLOBAL INSTANCE DESCRIPTION

sequenced_policy seq The algorithm is not allowed to 
parallelize or vectorize its execution.

parallel_policy par The algorithm is allowed to parallelize 
but not vectorize its execution.

parallel_unsequenced_policy par_unseq The algorithm is allowed to parallelize 
and vectorize its execution. It’s also 
allowed to migrate its execution 
across threads.

unsequenced_policy unseq The algorithm is allowed to vectorize 
but not parallelize its execution.

A Standard Library implementation is free to add additional execution policies.

Let’s look at how you can specify an execution policy for an algorithm. Here is an example of sorting 
the contents of a vector using a parallel policy:

sort(execution::par, begin(myVector), end(myVector));

WARNING Callbacks passed to parallel algorithms are not allowed to throw any 
uncaught exceptions. Doing so will trigger a call to std::terminate() to termi-
nate the application.

For algorithms executing with parallel_unsequenced_policy or unsequenced_policy, function 
calls to callbacks are allowed to get interleaved; that is, they are unsequenced. This helps the compiler 
to vectorize the code. However, this also means there are a lot of restrictions on what a function call-
back can do. For example, it cannot allocate/deallocate memory, acquire mutexes, use non-lock free 
std::atomics (see Chapter 27, “Multithreaded Programming with C++”), and more. For the other 
standard policies, the function calls are sequenced, but in an indeterminate sequence. Such policies do 
not impose restrictions on what the function callbacks can do.

Parallel algorithms do not take any measures to prevent data races and deadlocks, so it is your 
responsibility to avoid them when executing an algorithm in parallel. Data race and deadlock preven-
tion are discussed in detail in Chapter 27 in the context of multithreaded programming.

Parallel versions of algorithms are not constexpr, even if the non-parallel versions are.

The return type of some of the parallel versions of algorithms can be slightly different compared to 
the non-parallel versions. For example, the non-parallel version of for_each() returns the supplied 

C++20
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callback, while the parallel version does not return anything. Consult your favorite Standard Library 
Reference for a complete overview of all algorithms, including their parameter and return types, for 
both the parallel and non-parallel overloads.

NOTE When working with large datasets or when you have to perform a large 
amount of work on each individual element in a dataset, use the parallel versions 
of algorithms to increase performance.

Constrained Algorithms
Most of the algorithms have so-called constrained versions in the std::ranges namespace. These 
algorithms are also defined in <algorithm>, but unlike the equivalent algorithms in the std names-
pace, the constrained versions use concepts (see Chapter 12, “Writing Generic Code with Templates”) 
to constrain their template type parameters. This means you normally will get better error messages 
from your compiler if you pass invalid arguments. For example, the sort() algorithm requires 
random-access iterators. Passing a pair of std::list iterators as arguments to sort() can result in a 
bunch of cryptic errors from your compiler. With the constrained sort() algorithm, the compiler can 
tell you that the passed iterators are not random access.

Another benefit of these constrained algorithms is that they can work on a sequence of elements 
given as either a begin and end iterator pair, or as a range. Additionally, they can support projections. 
Ranges and projections are discussed in Chapter 17.

For example, the std::ranges::find() algorithm can be called in the same way as std::find(), 
that is, with a pair of iterators:

vector values {1, 2, 3};
auto result { ranges::find(cbegin(values), cend(values), 2) };
if (result != cend(values)) { cout << *result << endl; }

However, if you want to apply an algorithm on all elements of a container, as is often the case, it’s 
rather tedious to always have to specify a begin/end iterator pair to define your sequence. With ranges 
support, you can just specify a range with a single argument. The previous call to find() can be writ-
ten more readable and less error prone as follows:

auto result { ranges::find(values, 2) };

These constrained algorithms do not support parallel execution, so they do not accept a parallel 
execution policy as argument.

Numerical Processing Algorithms
You’ve already seen an example of one numerical processing algorithm: accumulate(). The follow-
ing sections give examples of some more numerical algorithms.

C++20
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iota
The iota() algorithm, defined in <numeric>, generates a sequence of values in a specified range 
starting with a specified value and applying operator++ to generate each successive value. The fol-
lowing example shows how to use this algorithm on a vector of integers, but note that it works on 
any element type that implements operator++:

vector<int> values(10);
iota(begin(values), end(values), 5);
for (auto& i : values) { cout << i << " "; }

The output is as follows:

5 6 7 8 9 10 11 12 13 14

Reduce Algorithms
The Standard Library has four reduce algorithms: accumulate(), reduce(), inner_product(), and 
transform_reduce(), all defined in <numeric>. The accumulate() algorithm is discussed earlier in 
this chapter. All reduce algorithms repeatedly apply an operator to combine two elements of a given 
range or two given ranges, until only one value remains. These are also called accumulate, aggregate, 
compress, inject, or fold algorithms.

reduce
std::accumulate() is one of the few algorithms that does not support parallel execution. Instead, 
you need to use std::reduce() to calculate a generalized sum with the option to execute it 
in parallel.

For example, the following code calculates the same sum twice, once with accumulate() and once 
with reduce(), with the latter running a parallel and vectorized version and thus being much faster, 
especially on big input ranges:

vector values { 1, 3, 6, 4, 6, 9 };
double result1 { accumulate(cbegin(values), cend(values), 0.0) };
double result2 { reduce(execution::par_unseq, cbegin(values), cend(values)) };

In general, both accumulate() and reduce() calculate the following sum for a range of elements 
[x0, xn), with a given initial value Init, and a given binary operator Ѳ:

Init Ѳ x0 Ѳ x1 Ѳ . . . Ѳ xn−1

By default, the binary operator for accumulate() is operator+, and for reduce() it is std::plus.

inner_product
inner_product() calculates the inner product of two sequences. For example, the inner product in 
the following example is calculated as (1*9)+(2*8)+(3*7)+(4*6), which is 70:

vector v1 { 1, 2, 3, 4 };
vector v2 { 9, 8, 7, 6 };
cout << inner_product(cbegin(v1), cend(v1), cbegin(v2), 0) << endl;

inner_product() requires two binary operators, by default operator+ and operator*, respectively.
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inner_product() is another algorithm that does not support parallel execution. If parallel execution 
is required, use transform_reduce(), discussed next.

transform_reduce
transform_reduce() supports parallel execution and can be executed on a single range of elements 
or on two ranges. In its first version, it calculates the following sum for a range of elements [x0, xn), 
with a given initial value Init, a given unary function f, and a given binary operator Ѳ, std::plus 
by default:

Init Ѳ f(x0) Ѳ f(x1) Ѳ . . . Ѳ f(xn−1)

When executing on two ranges, it behaves the same as inner_product(), except by default it uses 
the binary operators std::plus and std::multiplies, respectively, instead of operator+ and 
operator*.

Scan Algorithms
Scan algorithms are also called prefix sum, cumulative sum, or partial sum algorithms. The result 
of such an algorithm applied to a range is another range containing sums of the elements of the 
source range.

There are five scan algorithms: exclusive_scan(), inclusive_scan()/partial_sum(),  
transform_exclusive_scan(), and transform_inclusive_scan(), all defined in <numeric>.

The following table shows which sums [y0, yn) are calculated by exclusive_scan() and by  
inclusive_scan()/partial_sum() for a range of elements [x0, xn), with a given initial value Init (0 
for partial_sum()), and a given operator Ѳ:

exclusive_scan() inclusive_scan()/partial_sum()

y0 = Init

y1 = Init Ѳ x0

y2 = Init Ѳ x0 Ѳ x1

. . .

yn-1 = Init Ѳ x0 Ѳ x1 Ѳ . . . Ѳ xn-2

y0 = Init Ѳ x0

y1 = Init Ѳ x0 Ѳ x1

. . .

yn-1 = Init Ѳ x0 Ѳ x1 Ѳ . . . Ѳ xn-1

transform_exclusive_scan() and transform_inclusive_scan() both first apply a unary func-
tion to the elements before calculating the generalized sum, similar to how transform_reduce() 
applies a unary function to the elements before reducing.

Note that these scan algorithms, except partial_sum(), can accept an optional execution policy to 
parallelize their execution. The order of evaluation is non-deterministic, while it is from left to  
right for partial_sum() and accumulate(). That’s also the reason why partial_sum() and  
accumulate() cannot be parallelized.
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SUMMARY

This chapter provided coding examples for a selection of Standard Library algorithms. It also showed 
you that combining these algorithms with lambda expressions allows you to write elegant and easy-
to-understand code. Together with the previous chapters, I hope you gained an appreciation for the 
usefulness and the power of the Standard Library containers and algorithms.

The following chapters continue the discussion of other C++ Standard Library functionality.  
Chapter 21 discusses regular expressions. Chapter 22 explains the date and time support.  
Chapter 23 shows how to generate random numbers. Chapter 24 covers a number of additional 
library utilities that are available for you to use. Finally, Chapter 25 gives a taste of some more 
advanced features, such as allocators and how to write your own Standard Library–compliant algo-
rithms and containers.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 20-1: Use your favorite Standard Library Reference to look up the parameters for 
the fill() algorithm. Ask the user for a number, and then use fill() to fill a vector of 10 
integers with the given number. Write the contents of the vector to the standard output for 
verification.

Exercise 20-2: Look back at the “Permutation Algorithms” section in Chapter 16, and use a 
Standard Library Reference to figure out their parameters. Write a program that asks the user 
to enter a few numbers, and then use one of the permutation algorithms to print out all pos-
sible permutations of those numbers.

Exercise 20-3: Write a function called trim() that removes all whitespace at the beginning 
and end of a given string and returns the result. Tip: to check if a character c is a whitespace 
character, you can use std::isspace(c), defined in <cctype>. It returns a non-zero value 
if c is a whitespace character, 0 otherwise. Test your implementation with several strings in 
your main() function.

Exercise 20-4: Use an algorithm to create a vector containing the numbers 1 to 100. Then, 
using a single algorithm, copy all even and odd numbers to evens and odds containers 
without doing any space reservation on those containers, and, still with this single algorithm 
call, make sure the even numbers are in ascending sequence, while the odd numbers are in 
descending sequence. Carefully choose the type for the evens and odds containers.  
Hint: maybe there is something in Chapter 17 that you could use.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e




21
String Localization and Regular 
Expressions

WHAT’S IN THIS CHAPTER?

➤➤ How to localize your applications to reach a worldwide audience

➤➤ How to use regular expressions to do powerful pattern matching

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

This chapter starts with a discussion of localization, which allows you to write software that 
can be localized to different regions around the world.

The second part of this chapter introduces the regular expressions library, which makes it easy 
to perform pattern matching on strings. It allows you to search for substrings matching a given 
pattern, but also to validate, parse, and transform strings. Regular expressions are really 
powerful, and it’s recommended that you start using them instead of manually writing your 
own string processing code.

LOCALIZATION

When you’re learning how to program in C or C++, it’s useful to think of a character as 
equivalent to a byte and to treat all characters as members of the American Standard Code for 
Information Interchange (ASCII) character set. ASCII is a 7-bit set usually stored in an 8-bit 
char type. In reality, experienced C++ programmers recognize that successful programs are used 

http://www.wiley.com/go/proc++5e
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throughout the world. Even if you don’t initially write your program with international audiences 
in mind, you shouldn’t prevent yourself from localizing, or making the software locale aware, at a 
later date.

NOTE This chapter gives you an introduction to localization, different character 
encodings, and string code portability. It is outside the scope of this book to dis-
cuss all these topics in detail, because they each warrant an entire book on their 
own.

Wide Characters
The problem with viewing a character as a byte is that not all languages, or character sets, can be 
fully represented in 8 bits, or 1 byte. C++ has a built-in type called wchar_t that holds a wide  
character. Languages with non-ASCII (US) characters, such as Japanese and Arabic, can be repre-
sented in C++ with wchar_t. However, the C++ standard does not define the size for wchar_t. Some 
compilers use 16 bits, while others use 32 bits. To write cross-platform code, it is not safe to assume 
that wchar_t is of a particular size.

If there is any chance that your program will be used in a non-Western character set context (hint: 
there is!), you should use wide characters from the beginning. When working with wchar_t, string 
and character literals are prefixed with the letter L to indicate that a wide-character encoding should 
be used. For example, to initialize a wchar_t character to the letter m, you write it like this:

wchar_t myWideCharacter { L'm' };

There are wide-character versions of most of your favorite types and classes. The wide string class is 
wstring. The “prefix letter w” pattern applies to streams as well. Wide-character file output streams 
are handled with wofstream, and input is handled with wifstream. The joy of pronouncing these 
class names (woof-stream? whiff-stream?) is reason enough to make your programs locale aware! 
Streams are discussed in detail in Chapter 13, “Demystifying C++ I/O.”

There are also wide-versions of cout, cin, cerr, and clog available, called wcout, wcin, wcerr, and 
wclog. Using them is no different than using the non-wide versions:

wcout << L"I am a wide-character string literal." << endl;

Localizing String Literals
A critical aspect of localization is that you should never put any native-language string literals in your 
source code, except maybe for debug strings targeted at the developer. In Microsoft Windows applica-
tions, this is accomplished by putting all strings for an application in STRINGTABLE resources. Most 
other platforms offer similar capabilities. If you need to translate your application to another lan-
guage, translating those resources should be all you need to do, without requiring any source changes. 
There are tools available that will help you with this translation process.
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To make your source code localizable, you should not compose sentences out of string literals, even if 
the individual literals can be localized. Here is an example:

size_t n { 5 };
wstring filename { L"file1.txt" };
wcout << L"Read " << n << L" bytes from " << filename << endl;

This statement cannot be localized to, for example, Chinese because it requires a reordering of the 
words. The Chinese translation is as follows (whether you will properly see these Chinese characters 
on your standard output console depends on your system’s configuration):

wcout << L"从" << filename << L"中读取" << n << L"个字节" << endl;

To make sure you can properly localize such strings, you could implement it as follows:

wcout << format(loadResource(IDS_TRANSFERRED), n, filename) << endl;

IDS_TRANSFERRED is the name of an entry in a string resource table. For the English version, IDS_
TRANSFERRED could be defined as "Read {0} bytes from {1}", while the Chinese version of the 
resource could be defined as "从{1}中读取{0}个字节". The loadResource() function loads the 
string resource with the given name, and format() substitutes {0} with the value of n and {1} with 
the value of filename.

Non-Western Character Sets
Wide characters are a great step forward because they increase the amount of space available to 
define a single character. The next step is to figure out how that space is used. In wide character sets, 
just like in ASCII, characters are represented by numbers, now called code points. The only difference 
is that each number does not fit in 8 bits. The map of characters to code points is quite a bit larger 
because it handles many different character sets in addition to the characters that English-speaking 
programmers are familiar with.

The Universal Character Set (UCS)—defined by the International Standard ISO 10646—and Unicode 
are both standardized sets of characters. They contain around 100,000 abstract characters, each iden-
tified by an unambiguous name and a code point. The same characters with the same numbers exist 
in both standards. Both have specific encodings that you can use. For example, UTF-8 is an example 
of a Unicode encoding where Unicode characters are encoded using one to four 8-bit bytes. UTF-16 
encodes Unicode characters as one or two 16-bit values, and UTF-32 encodes Unicode characters as 
exactly 32 bits.

Different applications can use different encodings. Unfortunately, as mentioned earlier in this chapter, 
the C++ standard does not specify a size for wide characters (wchar_t). On Windows it is 16 bits, 
while on other platforms it could be 32 bits. You need to be aware of this when using wide charac-
ters for character encoding in cross-platform code. To help solve this issue, there are other character 
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types: char8_t, char16_t, and char32_t. The following list gives an overview of all available char-
acter types:

➤➤ char: Stores 8 bits. This type can be used to store ASCII characters or as a basic building 
block for storing UTF-8 encoded Unicode characters, where one Unicode character is 
encoded with up to four chars.

➤➤ charx_t: Stores at least x bits where x can be 8 (since C++20), 16, or 32. This type can be 
used as the basic building block for UTF-x encoded Unicode characters, encoding one Uni-
code character with up to four char8_ts, up to two char16_ts, or one char32_t.

➤➤ wchar_t: Stores a wide character of a compiler-specific size and encoding.

The benefits of using the charx_t types instead of wchar_t is that the standard guarantees  
minimum sizes for the charx_t types, independent of the compiler. There is no minimum size  
guaranteed for wchar_t.

String literals can have a string prefix to turn them into a specific type. The complete set of supported 
string prefixes is as follows:

➤➤ u8: A char (char8_t since C++20) string literal with UTF-8 encoding

➤➤ u: A char16_t string literal with UTF-16 encoding (guaranteed since C++20)

➤➤ U: A char32_t string literal with UTF-32 encoding (guaranteed since C++20)

➤➤ L: A wchar_t string literal with a compiler-dependent encoding

All of these string literals can be combined with the raw string literal prefix, R, discussed in  
Chapter 2, “Working with Strings and String Views.” Here are some examples:

const char8_t* s1 { u8R"(Raw UTF-8 encoded string literal)" };
const wchar_t* s2 { LR"(Raw wide string literal)" };
const char16_t* s3 { uR"(Raw char16_t string literal)" };
const char32_t* s4 { UR"(Raw char32_t string literal)" };

If you are using Unicode encoding, you can insert a specific Unicode code point in your non-raw 
string literal by using the \uABCD notation. For example, \u03C0 represents the pi character, and  
\u00B2 represents the “squared” character. The following formula string represents π r2:

const char8_t* formula { u8"\u03C0 r\u00B2" };

Similarly, character literals can also have a prefix to turn them into specific types. The prefixes u8, u, 
U, and L are supported, for example: u'a', U'a', L'a', and u8'a'.

Besides the std::string class, there is also support for wstring, u8string (since C++20), 
u16string, and u32string. They are all defined as follows:

➤➤ using string = basic_string<char>;

➤➤ using wstring = basic_string<wchar_t>;

➤➤ using u8string = basic_string<char8_t>;

➤➤ using u16string = basic_string<char16_t>;

➤➤ using u32string = basic_string<char32_t>;
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Similarly, the Standard Library provides std::string_view, wstring_view, u8string_view (since 
C++20), u16string_view, and u32string_view, all based on basic_string_view.

Multibyte strings are strings with characters composed of one or more bytes using a locale-dependent 
encoding. Locales are discussed later in this chapter. A multibyte string could use Unicode encoding, 
or any other kind of encoding such as Shift-JIS, EUC-JP, and so on. Conversion functions are avail-
able to convert between char8_t/char16_t/char32_t and multibyte strings, and vice versa:  
mbrtoc8() and c8rtomb() since C++20, and mbrtoc16(), c16rtomb(), mbrtoc32(), and 
c32rtomb().

Unfortunately, the support for char8_t, char16_t, and char32_t doesn’t go much further. There are 
some conversion classes available (see later in this chapter), but, for example, there is nothing like a 
version of cout or cin that supports these character types; this makes it difficult to print such strings 
to a console or to read them from user input. If you want to do more with such strings, you need to 
resort to third-party libraries. International Components for Unicode (ICU) is one well-known library 
that provides Unicode and globalization support for your applications. (See icu-project.org.)

Locales and Facets
Character sets are only one of the differences in data representation between countries. Even coun-
tries that use similar character sets, such as Great Britain and the United States, still differ in how they 
represent certain data, such as dates and money.

The standard C++ mechanism that groups specific data about a particular set of cultural parameters 
is called a locale. An individual component of a locale, such as date format, time format, number 
format, and so on, is called a facet. An example of a locale is US English. An example of a facet is the 
format used to display a date. Several built-in facets are common to all locales. C++ also provides a 
way to customize or add facets.

There are third-party libraries available that make it easier to work with locales. One example is 
boost.locale (boost.org), which is able to use ICU as its backend, supporting collations and con-
versions, converting strings to uppercase (instead of converting character by character to uppercase), 
and so on.

Using Locales
When using I/O streams, data is formatted according to a particular locale. Locales are objects that 
can be attached to a stream, and they are defined in <locale>. Locale names are implementation 
specific. The POSIX standard is to separate a language and an area into two-letter sections with an 
optional encoding. For example, the locale for the English language as spoken in the United States is 
en_US, while the locale for the English language as spoken in Great Britain is en_GB. The locale for 
Japanese spoken in Japan with Japanese Industrial Standard encoding is ja_JP.jis.

Locale names on Windows can have two formats. The preferred format is similar to the POSIX for-
mat but uses a dash instead of an underscore. The second, old format looks as follows where every-
thing between square brackets is optional:

lang[_country_region[.code_page]]

The following table shows some examples of the POSIX, preferred Windows, and old Windows 
locale formats:

http://www.icu-project.org
http://www.boost.org
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LANGUAGE POSIX WINDOWS WINDOWS OLD

US English en_US en-US English_United States

Great Britain English en_GB en-GB English_Great Britain

Most operating systems have a mechanism to determine the locale as defined by the user. In C++, 
you can pass an empty string to the std::locale object constructor to create a locale from the 
user’s environment. Once this object is created, you can use it to query the locale, possibly making 
programmatic decisions based on it. The following code demonstrates how to use the user’s locale 
for a stream by calling the imbue() method on the stream. The result is that everything that is sent to 
wcout is formatted according to the formatting rules of the user’s environment:

wcout.imbue(locale { "" });
wcout << 32767 << endl;

This means that if your system locale is English United States and you output the number 32767, the 
number is displayed as 32,767; however, if your system locale is Dutch Belgium, the same number is 
displayed as 32.767.

The default locale is the classic/neutral locale, and not the user’s locale. The classic locale uses ANSI 
C conventions and has the name C. The classic C locale is similar to US English, but there are slight 
differences. For example, numbers are handled without any punctuation.

wcout.imbue(locale { "C" });
wcout << 32767 << endl;

The output of this code is as follows:

32767

The following code manually sets the US English locale, so the number 32767 is formatted with US 
English punctuation, independent of your system locale:

wcout.imbue(locale { "en-US" }); // "en_US" for POSIX
wcout << 32767 << endl;

The output of this code is as follows:

32,767

A locale object allows you to query information about the locale. For example, the following 
program creates a locale matching the user’s environment. The name() method is used to get a C++ 
string that describes the locale. Then, the find() method is used on the string object to find a 
given substring, which returns string::npos when the given substring is not found. The code checks 
for the Windows name and the POSIX name. One of two messages is output, depending on whether 
the locale appears to be US English.

locale loc { "" };
if (loc.name().find("en_US") == string::npos &&
    loc.name().find("en-US") == string::npos) {
    wcout << L"Welcome non-US English speaker!" << endl;
} else {
    wcout << L"Welcome US English speaker!" << endl;
}
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NOTE When you have to write data to a file that is supposed to be read back by a 
program, it’s recommended to write it using the neutral "C" locale; otherwise, pars-
ing will be difficult. On the other hand, when displaying data in a user interface, 
it’s recommended to format the data according to the user locale, "".

Global Locale
The std::locale::global() function can be used to replace the global C++ locale in your applica-
tion with a given locale. The default constructor of std::locale returns a copy of this global locale. 
Keep in mind, though, that C++ Standard Library objects that use locales, for example streams such 
as cout, store a copy of the global locale at construction time. Changing the global locale afterward 
does not impact objects that were already created before. If needed, you can use an imbue() method 
on streams to change their locale after construction.

Here is an example outputting a number with the default locale, changing the global locale to US 
English, and outputting the same number again:

void print()
{
    stringstream stream;
    stream << 32767;
    cout << stream.str() << endl;
}
 
int main()
{
    print();
    locale::global(locale { "en-US" }); // "en_US" for POSIX
    print();
}

The output is as follows:

32767
32,767

Character Classification
<locale> contains the following character classification functions: std::isspace(),  
isblank(), iscntrl(), isupper(), islower(), isalpha(), isdigit(), ispunct(), isxdigit(), 
isalnum(), isprint(), and isgraph(). They all accept two parameters: the character to classify 
and the locale to use for the classification. The exact meaning of the different character classes is 
discussed later in this chapter in the context of regular expressions. Here is an example of isupper() 
using a French locale:

bool result { isupper('É', locale { "fr-FR" }) };  // result = true

Character Conversion
<locale> also defines two character conversion functions: std::toupper() and tolower(). They 
accept two parameters: the character to convert and the locale to use for the conversion. Here is 
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an example:

auto upper { toupper('é', locale { "fr-FR" }) };  // É

Using Facets
You can use the std::use_facet() function template to obtain a particular facet for a particular 
locale. The template type argument specifies the facet to retrieve, while the function argument speci-
fies the locale from which to retrieve the facet. For example, the following expression retrieves the 
standard monetary punctuation facet of the British English locale using the POSIX locale name:

use_facet<moneypunct<wchar_t>>(locale { "en_GB" })

Note that the innermost template type determines the character type to use. The use of nested tem-
plate classes is unfortunate, but once you get past the syntax, the result is an object that contains 
all the information you want to know about British money punctuation. The data available in the 
standard facets is defined in <locale>. The following table lists the facet categories defined by the 
standard. Consult a Standard Library reference for details about the individual facets.

FACET DESCRIPTION

ctype Character classification facets

codecvt Conversion facets; see next section

collate Comparing strings lexicographically

time_get Parsing dates and times

time_put Formatting dates and times

num_get Parsing numeric values

num_put Formatting numeric values

numpunct Defines the formatting rules for numeric values

money_get Parsing monetary values

money_put Formatting monetary values

moneypunct Defines the formatting rules for monetary values

The following code snippet brings together locales and facets by printing out the currency symbol in 
both US English and British English. Note that, depending on your environment, the British currency 
symbol may appear as a question mark, a box, or not at all. If your environment is set up to handle it, 
you may actually get the British pound symbol.

locale locUSEng { "en-US" };       // "en_US" for POSIX 
locale locBritEng { "en-GB" };     // "en_GB" for POSIX 
 
wstring dollars { use_facet<moneypunct<wchar_t>>(locUSEng).curr_symbol() };
wstring pounds { use_facet<moneypunct<wchar_t>>(locBritEng).curr_symbol() };
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wcout << L"In the US, the currency symbol is " << dollars << endl;
wcout << L"In Great Britain, the currency symbol is " << pounds << endl;

Conversions
The C++ standard provides the codecvt class template to help with converting between different 
character encodings. <locale> defines the following four encoding conversion classes:

CLASS DESCRIPTION

codecvt<char,char,mbstate_t> Identity conversion, that is, no conversion

codecvt<char16_t,char,mbstate_t>

codecvt<char16_t,char8_t,mbstate_t>

Conversion between UTF-16 and UTF-8

codecvt<char32_t,char,mbstate_t>

codecvt<char32_t,char8_t,mbstate_t>

Conversion between UTF-32 and UTF-8

codecvt<wchar_t,char,mbstate_t> Conversion between wide (implementation-
specific) and narrow character encodings

Unfortunately, these facets are rather complicated to use. As an example, the following code snippet 
converts a narrow string to a wide string:

auto& facet { use_facet<codecvt<wchar_t, char, mbstate_t>>(locale { "" }) };
string narrowString { "Hello" };
mbstate_t mb { };
wstring wideString(narrowString.size(), '\0');
const char* fromNext { nullptr };
wchar_t* toNext { nullptr };
facet.in(mb,
    narrowString.data(), narrowString.data() + narrowString.size(), fromNext,
    wideString.data(), wideString.data() + wideString.size(), toNext);
wideString.resize(toNext - wideString.data());
wcout << wideString << endl;

Before C++17, the following three code conversion facets were defined in <codecvt>: codecvt_utf8, 
codecvt_utf16, and codecvt_utf8_utf16. These could be used with two convenience conversion 
interfaces: wstring_convert and wbuffer_convert. However, C++17 has deprecated those three 
conversion facets (the entirety of <codecvt>) and the two convenience interfaces, so they are not 
further discussed in this book. The C++ Standards Committee decided to deprecate this functionality 
because it does not handle errors very well. Ill-formed Unicode strings are a security risk, and in fact 
can be and have been used as an attack vector to compromise the security of systems. Also, the API 
is too obscure and too hard to understand. I recommend using third-party libraries, such as ICU, to 
work correctly with Unicode strings until the Standards Committee comes up with a suitable, safe, 
and easier-to-use replacement for the deprecated functionality.
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REGULAR EXPRESSIONS

Regular expressions, defined in <regex>, are a powerful string-related feature of the Standard 
Library. They are a special mini-language for string processing. They might seem complicated at first, 
but once you get to know them, they make working with strings easier. Regular expressions can be 
used for several string operations:

➤➤ Validation: Check if an input string is well formed. For example, is the input string a well-
formed phone number?

➤➤ Decision: Check what kind of string an input represents. For example, is the input string the 
name of a JPEG or a PNG file?

➤➤ Parsing: Extract information from an input string. For example, extract the year, month, and 
day from a date.

➤➤ Transformation: Search substrings and replace them with a new formatted substring. For 
example, search all occurrences of “C++20” and replace them with “C++”.

➤➤ Iteration: Search all occurrences of a substring. For example, extract all phone numbers from 
an input string.

➤➤ Tokenization: Split a string into substrings based on a set of delimiters. For example, split a 
string on whitespace, commas, periods, and so on, to extract the individual words.

Of course, you could write your own code to perform any of the preceding operations on your 
strings, but I recommend using the regular expressions functionality, because writing correct and safe 
code to process strings is tricky.

Before going into more detail on regular expressions, there is some important terminology you need 
to know. The following terms are used throughout the discussion:

➤➤ Pattern: The actual regular expression is a pattern represented by a string.

➤➤ Match: This determines whether there is a match between a given regular expression and all 
of the characters in a given sequence [first, last).

➤➤ Search: This determines whether there is some substring within a given sequence [first, last) 
that matches a given regular expression.

➤➤ Replace: This identifies substrings in a given sequence and replaces them with a 
corresponding new substring computed from another pattern, called a substitution pattern.

There are several different grammars for regular expressions. C++ includes support for the follow-
ing grammars:

➤➤ ECMAScript: The grammar based on the ECMAScript standard. ECMAScript is a scripting 
language standardized by ECMA-262. The core of JavaScript, ActionScript, Jscript, and so 
on, all use the ECMAScript language standard.

➤➤ basic: The basic POSIX grammar.
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➤➤ extended: The extended POSIX grammar.

➤➤ awk: The grammar used by the POSIX awk utility.

➤➤ grep: The grammar used by the POSIX grep utility.

➤➤ egrep: The grammar used by the POSIX grep utility with the -E parameter.

If you already know any of these regular expression grammars, you can use it straightaway in C++ by 
telling the regular expression library to use that specific syntax (syntax_option_type). The default 
grammar in C++ is ECMAScript, whose syntax is explained in detail in the following section. It is 
also the most powerful grammar, so it’s recommended to use ECMAScript instead of one of the other 
more limited grammars. Explaining the other regular expression grammars falls outside the scope of 
this book.

NOTE If this is the first time you’re hearing about regular expressions, just use the 
default ECMAScript syntax.

ECMAScript Syntax
A regular expression pattern is a sequence of characters representing what you want to match. Any 
character in the regular expression matches itself except for the following special characters:

^ $ \ . * + ? ( ) [ ] { } |

These special characters are explained throughout the following discussion. If you need to match one 
of these special characters, you need to escape it using the \ character, as in this example:

\[ or \. or \* or \\

Anchors
The special characters ^ and $ are called anchors. The ^ character matches the position immediately 
following a line termination character, and $ matches the position of a line termination character. By 
default, ^ and $ also match the beginning and ending of a string, respectively, but this behavior can 
be disabled.

For example, ^test$ matches only the string test, and not strings that contain test somewhere in 
the line, such as 1test, test2, test abc, and so on.

Wildcards
The wildcard character . can be used to match any character except a newline character. For  
example, the regular expression a.c will match abc, and a5c, but will not match ab5c, ac, and so on.

Alternation
The | character can be used to specify the “or” relationship. For example, a|b matches a or b.
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Grouping
Parentheses, (), are used to mark subexpressions, also called capture groups. Capture groups can be 
used for several purposes:

➤➤ Capture groups can be used to identify individual subsequences of the original string; each 
marked subexpression (capture group) is returned in the result. For example, take the fol-
lowing regular expression: (.)(ab|cd)(.). It has three marked subexpressions. Performing 
a search operation with this regular expression on 1cd4 results in a match with four entries. 
The first entry is the entire match, 1cd4, followed by three entries for the three marked sub-
expressions. These three entries are 1, cd, and 4.

➤➤ Capture groups can be used during matching for a purpose called back references 
(explained later).

➤➤ Capture groups can be used to identify components during replace operations 
(explained later).

Repetition
Parts of a regular expression can be repeated by using one of four repeats:

➤➤ * matches the preceding part zero or more times. For example, a*b matches b, ab, aab, 
aaaab, and so on.

➤➤ + matches the preceding part one or more times. For example, a+b matches ab, aab, aaaab, 
and so on, but not b.

➤➤ ? matches the preceding part zero or one time. For example, a?b matches b and ab, but 
nothing else.

➤➤ {...} represents a bounded repeat. a{n} matches a repeated exactly n times; a{n,} matches 
a repeated n times or more; and a{n,m} matches a repeated between n and m times inclusive. 
For example, a{3,4} matches aaa and aaaa but not a, aa, aaaaa, and so on.

These repeats are called greedy because they find the longest match while still matching the remainder 
of the regular expression. To make them non-greedy, a ? can be added behind the repeat, as in *?, +?, 
??, and {...}?. A non-greedy repetition repeats its pattern as few times as possible while still match-
ing the remainder of the regular expression.

For example, the following table shows the difference between a greedy and a non-greedy regular 
expression, and the resulting submatches when running them on the input sequence aaabbb:

REGULAR EXPRESSION SUBMATCHES

Greedy: (a+)(ab)*(b+) "aaa" "" "bbb"

Non-greedy: (a+?)(ab)*(b+) "aa" "ab" "bb"
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Precedence
Just as with mathematical formulas, it’s important to know the precedence of regular expression ele-
ments. Precedence is as follows:

➤➤ Elements like a are the basic building blocks of a regular expression

➤➤ Quantifiers like +, *, ?, and {...} bind tightly to the element on the left; for example, b+

➤➤ Concatenation like ab+c binds after quantifiers

➤➤ Alternation like | binds last

For example, take the regular expression ab+c|d. This matches abc, abbc, abbbc, and so on, and 
also d. Parentheses can be used to change these precedence rules. For example, ab+(c|d) matches 
abc, abbc, abbbc, . . ., abd, abbd, abbbd, and so on. However, by using parentheses, you also mark 
it as a subexpression or capture group. It is possible to change the precedence rules without creating 
new capture groups by using (?:. . .). For example, ab+(?:c|d) matches the same as the preceding 
ab+(c|d) but does not create an additional capture group.

Character Set Matches
Instead of having to write (a|b|c|. . .|z), which is clumsy and introduces a capture group, a special 
syntax for specifying sets of characters or ranges of characters is available. In addition, a “not” form 
of the match is also available. A character set is specified between square brackets and allows you to 
write [c1c2. . .cn], which matches any of the characters c1, c2 , . . ., or cn. For example, [abc] matches 
any character a, b, or c. If the first character is ^, it means “any but”:

➤➤ ab[cde] matches abc, abd, and abe.

➤➤ ab[^cde] matches abf, abp, and so on, but not abc, abd, and abe.

If you need to match the ^, [, or ] characters themselves, you need to escape them; for example,  
[\[\^\]] matches the characters [, ^, or ].

If you want to specify all letters, you could use a character set like  
[abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ]; however, this is clumsy, and 
doing this several times is awkward, especially if you make a typo and omit one of the letters acciden-
tally. There are two solutions to this.

One solution is to use the range specification in square brackets; this allows you to write [a-zA-Z], 
which recognizes all the letters in the range a to z and A to Z. If you need to match a hyphen, you 
need to escape it; for example, [a-zA-Z\-]+ matches any word including a hyphenated word.

Another solution is to use one of the character classes. These are used to denote specific types of char-
acters and are represented as [:name:]. Which character classes are available depends on the locale, 
but the names listed in the following table are always recognized. The exact meaning of these charac-
ter classes is also dependent on the locale. This table assumes the standard C locale:
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CHARACTER CLASS NAME DESCRIPTION

digit Digits.

d Same as digit.

xdigit Digits (digit) and the following letters used in hexadecimal numbers: 
a, b, c, d, e, f, A, B, C, D, E, F.

alpha Alphabetic characters. For the C locale, these are all lowercase and 
uppercase letters.

alnum A combination of the alpha class and the digit class.

w Same as alnum.

lower Lowercase letters, if applicable to the locale.

upper Uppercase letters, if applicable to the locale.

blank A blank character is a whitespace character used to separate words 
within a line of text. For the C locale, these are space and \t (tab).

space Whitespace characters. For the C locale, these are space, \t, \n, \r, 
\v, and \f.

s Same as space.

print Printable characters. These occupy a printing position—for example, 
on a display—and are the opposite of control characters (cntrl). 
Examples are lowercase letters, uppercase letters, digits, punctuation 
characters, and space characters.

cntrl Control characters. These are the opposite of printable characters 
(print), and don’t occupy a printing position, for example, on a 
display. Some examples for the C locale are \f, \n, and \r.

graph Characters with a graphical representation. These are all characters 
that are printable (print), except the space character ' '.

punct Punctuation characters. For the C locale, these are all graphical 
characters (graph) that are not alphanumeric (alnum). Some examples 
are !, #, @, }, and so on.

Character classes are used within character sets; for example, [[:alpha:]]* in English means the 
same as [a-zA-Z]*.

Because certain concepts like matching digits are so common, there are shorthand patterns for them. 
For example, [:digit:] and [:d:] mean the same thing as [0-9]. Some classes have an even 
shorter pattern using the escape notation \. For example, \d means [:digit:]. Therefore, to recog-
nize a sequence of one or more numbers, you can write any of the following patterns:

➤➤ [0-9]+

➤➤ [[:digit:]]+
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➤➤ [[:d:]]+

➤➤ \d+

The following table lists the available escape notations for character classes:

ESCAPE NOTATION EQUIVALENT TO

\d [[:d:]]

\D [^[:d:]]

\s [[:s:]]

\S [^[:s:]]

\w [_[:w:]]

\W [^_[:w:]]

Here are some examples:

➤➤ Test[5-8] matches Test5, Test6, Test7, and Test8.

➤➤ [[:lower:]] matches a, b, and so on, but not A, B, and so on.

➤➤ [^[:lower:]] matches any character except lowercase letters like a, b, and so on.

➤➤ [[:lower:]5-7] matches any lowercase letter like a, b, and so on, and the numbers 
5, 6, and 7.

Word Boundaries
A word boundary can mean the following:

➤➤ The first character of a word, which is one of the word characters, while the preceding 
character is not a word character. A word character is a letter, digit, or an underscore. For the 
standard C locale, this is equal to [A-Za-z0-9_].

➤➤ The end of a word, which is a non-word character, while the preceding character is a word 
character.

➤➤ The beginning of the source string if the first character of the source string is one of the word 
characters. Matching the beginning of the source string is enabled by default, but you can dis-
able it (regex_constants::match_not_bow, where bow stands for beginning-of-word).

➤➤ The end of the source string if the last character of the source string is one of the word char-
acters. Matching the end of the source string is enabled by default, but you can disable it 
(regex_constants::match_not_eow, where eow stands for end-of-word).

You can use \b to match a word boundary, and you can use \B to match anything except a 
word boundary.
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Back References
Back references allow you to reference a captured group inside the regular expression itself: \n refers 
to the n-th captured group, with n > 0. For example, the regular expression (\d+)-.*-\1 matches a 
string that has the following format:

➤➤ One or more digits captured in a capture group (\d+)

➤➤ Followed by a dash -

➤➤ Followed by zero or more characters .*

➤➤ Followed by another dash -

➤➤ Followed by the same digits captured by the first capture group \1

This regular expression matches 123-abc-123, 1234-a-1234, and so on, but does not match  
123-abc-1234, 123-abc-321, and so on.

Lookahead
Regular expressions support positive lookahead (which uses ?=pattern) and negative lookahead 
(which uses ?!pattern). The characters following the lookahead must match (positive) or not match 
(negative) the lookahead pattern, but those characters are not yet consumed.

For example, the pattern a(?!b) contains a negative lookahead to match a letter a not followed by a 
b. The pattern a(?=b) contains a positive lookahead to match a letter a followed by a b, but b is not 
consumed so it does not become part of the match.

The following is a more complicated example. The regular expression matches an input sequence that 
consists of at least one lowercase letter, at least one uppercase letter, at least one punctuation char-
acter, and it is at least eight characters long. Such a regular expression can, for example, be used to 
enforce that passwords satisfy certain criteria.

(?=.*[[:lower:]])(?=.*[[:upper:]])(?=.*[[:punct:]]).{8,}

In one of the exercises at the end of this chapter, you’ll experiment with this password-validation 
regular expression.

Regular Expressions and Raw String Literals
As you saw in the preceding sections, regular expressions often use special characters that should be 
escaped in normal C++ string literals. For example, if you write \d in a regular expression, it matches 
any digit. However, because \ is a special character in C++, you need to escape it in your regular 
expression string literal as \\d; otherwise, your C++ compiler tries to interpret the \d. It can get more 
complicated if you want your regular expression to match a single backslash character, \. Because \ is 
a special character in the regular expression syntax itself, you need to escape it as \\. The \ character 
is also a special character in C++ string literals, so you need to escape it in your C++ string literal, 
resulting in \\\\.



Regular Expressions ❘ 779

You can use raw string literals to make a complicated regular expression easier to read in your C++ 
source code. (Raw string literals are discussed in Chapter 2.) For example, take the following regular 
expression:

"( |\\n|\\r|\\\\)"

This regular expression matches spaces, newlines, carriage returns, and backslashes. As you can see, 
you need a lot of escape characters. Using raw string literals, this can be replaced with the following 
more readable regular expression:

R"(( |\n|\r|\\))"

The raw string literal starts with R"( and ends with )". Everything in between is the regular expres-
sion. Of course, you still need a double backslash at the end because the backslash needs to be 
escaped in the regular expression itself.

Common Regular Expressions
Writing correct regular expressions is not always trivial. For common patterns such as validating 
passwords, phone numbers, Social Security numbers, IP addresses, email addresses, credit card num-
bers, dates, and so on, you don’t have to. If you use your favorite search engine on the Web to search 
for regular expressions online, you’ll find several websites with collections of predefined patterns. 
Some examples are regexr.com, regex101.com, regextester.com, and many more. Quite a few of 
these sites also allow you to test such predefined patterns and even your own patterns online, so you 
can easily verify whether they are correct before using them in your code.

This concludes a brief description of the ECMAScript grammar. The following sections explain how 
to actually use regular expressions in your C++ code.

The regex Library
Everything for the regular expression library is defined in <regex> and in the std namespace. The 
basic template types defined by the regular expression library are:

➤➤ basic_regex: An object representing a specific regular expression.

➤➤ match_results: A substring that matched a regular expression, including all the captured 
groups. It is a collection of sub_matches.

➤➤ sub_match: An object containing a pair of iterators into the input sequence. These iterators 
represent the matched capture group. The pair is an iterator pointing to the first character 
of a matched capture group and an iterator pointing to one-past-the-last character of the 
matched capture group. It has an str() method that returns the matched capture group 
as a string.

The library provides three key algorithms: regex_match(), regex_search(), and  
regex_replace(). All of these algorithms have different overloads that allow you to specify  

https://regexr.com/
https://regex101.com/
https://www.regextester.com/
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the source string as a string, a C-style string, or as a begin/end iterator pair. The iterators can be any 
of the following:

➤➤ const char*

➤➤ const wchar_t*

➤➤ string::const_iterator

➤➤ wstring::const_iterator

In fact, any iterator that behaves as a bidirectional iterator can be used. See Chapters 17, “Under-
standing Iterators and the Ranges Library,” for details on iterators.

The library also defines the following two types for regular expression iterators, which are important 
if you want to find all occurrences of a pattern in a source string:

➤➤ regex_iterator: This iterates over all the occurrences of a pattern in a source string.

➤➤ regex_token_iterator: This iterates over all the capture groups of all occurrences of a 
pattern in a source string.

To make the library easier to use, the standard defines a number of type aliases for the preceding 
templates:

using regex  = basic_regex<char>;
using wregex = basic_regex<wchar_t>;
 
using csub_match  = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;
using ssub_match  = sub_match<string::const_iterator>;
using wssub_match = sub_match<wstring::const_iterator>;
 
using cmatch  = match_results<const char*>;
using wcmatch = match_results<const wchar_t*>;
using smatch  = match_results<string::const_iterator>;
using wsmatch = match_results<wstring::const_iterator>;
 
using cregex_iterator  = regex_iterator<const char*>;
using wcregex_iterator = regex_iterator<const wchar_t*>;
using sregex_iterator  = regex_iterator<string::const_iterator>;
using wsregex_iterator = regex_iterator<wstring::const_iterator>;
 
using cregex_token_iterator  = regex_token_iterator<const char*>;
using wcregex_token_iterator = regex_token_iterator<const wchar_t*>;
using sregex_token_iterator  = regex_token_iterator<string::const_iterator>;
using wsregex_token_iterator = regex_token_iterator<wstring::const_iterator>;

The following sections explain the regex_match(), regex_search(), and regex_replace() algo-
rithms, and the regex_iterator and regex_token_iterator classes.
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regex_match()
The regex_match() algorithm can be used to compare a given source string with a regular expres-
sion pattern. It returns true if the pattern matches the entire source string, and false otherwise. 
There are six overloads of the regex_match() algorithm accepting different kinds of arguments. 
They all have the following form:

template<...>
bool regex_match(InputSequence[, MatchResults], RegEx[, Flags]);

The InputSequence can be represented as follows:

➤➤ A start and end iterator into a source string

➤➤ An std::string

➤➤ A C-style string

The optional MatchResults parameter is a reference to a match_results and receives the  
match. If regex_match() returns false, you are only allowed to call match_results::empty() 
or match_results::size(); anything else is undefined. If regex_match() returns true, a match 
is found, and you can inspect the match_results object for what exactly got matched. This is 
explained with examples in the following subsections.

The RegEx parameter is the regular expression that needs to be matched. The optional Flags param-
eter specifies options for the matching algorithm. In most cases, you can keep the default. For more 
details, consult a Standard Library Reference; see Appendix B.

regex_match() Example
Suppose you want to write a program that asks the user to enter a date in the format year/month/day, 
where year is four digits, month is a number between 1 and 12, and day is a number between 1 and 
31. You can use a regular expression together with the regex_match() algorithm to validate the user 
input as follows. The details of the regular expression are explained after the code.

regex r { "\\d{4}/(?:0?[1-9]|1[0-2])/(?:0?[1-9]|[1-2][0-9]|3[0-1])" };
while (true) {
    cout << "Enter a date (year/month/day) (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    if (regex_match(str, r)) { cout << "  Valid date." << endl; }
    else { cout << "  Invalid date!" << endl; }
}

The first line creates the regular expression. The expression consists of three parts separated by a 
forward slash (/) character: one part for year, one for month, and one for day. The following list 
explains these parts:

➤➤ \d{4}: This matches any combination of four digits; for example, 1234, 2010, and so on.
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➤➤ (?:0?[1-9]|1[0-2]): This subpart of the regular expression is wrapped inside parentheses 
to make sure the precedence is correct. You don’t need a capture group, so (?:. . .) is used. 
The inner expression consists of an alternation of two parts separated by the | character.

➤➤ 0?[1-9]: This matches any number from 1 to 9 with an optional 0 in front of it. For 
example, it matches 1, 2, 9, 03, 04, and so on. It does not match 0, 10, 11, and so on.

➤➤ 1[0-2]: This matches 10, 11, or 12, and nothing else.

➤➤ (?:0?[1-9]|[1-2][0-9]|3[0-1]): This subpart is also wrapped inside a non-capture 
group and consists of an alternation of three parts.

➤➤ 0?[1-9]: This matches any number from 1 to 9 with an optional 0 in front of it. For 
example, it matches 1, 2, 9, 03, 04, and so on. It does not match 0, 10, 11, and so on.

➤➤ [1-2][0-9]: This matches any number between 10 and 29 inclusive and 
nothing else.

➤➤ 3[0-1]: This matches 30 or 31 and nothing else.

The example then enters an infinite loop to ask the user to enter a date. Each date entered is given to 
the regex_match() algorithm. When regex_match() returns true, the user has entered a date that 
matches the date regular expression pattern.

This example can be extended a bit by asking the regex_match() algorithm to return captured sub-
expressions in a results object. You first have to understand what a capture group does. By specifying 
a match_results object like smatch in a call to regex_match(), the elements of the match_results 
object are filled in when the regular expression matches the input string. To be able to extract these 
substrings, you must create capture groups using parentheses.

The first element, [0], in a match_results object contains the string that matched the entire pattern. 
When using regex_match() and a match is found, this is the entire source sequence. When using 
regex_search(), discussed in the next section, this can be a substring in the source sequence that 
matches the regular expression. Element [1] is the substring matched by the first capture group, [2] 
by the second capture group, and so on. To get a string representation of the ith capture group from a 
match_results object m, you can use m[i] as in the following code, or m[i].str().

The following code extracts the year, month, and day digits into three separate integer variables. The 
regular expression in the revised example has a few small changes. The first part matching the year 
is wrapped in a capture group, while the month and day parts are now also capture groups instead 
of non-capture groups. The call to regex_match() includes a smatch parameter, which receives the 
matched capture groups. Here is the adapted example:

regex r { "(\\d{4})/(0?[1-9]|1[0-2])/(0?[1-9]|[1-2][0-9]|3[0-1])" };
while (true) {
    cout << "Enter a date (year/month/day) (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    if (smatch m; regex_match(str, m, r)) {
        int year { stoi(m[1]) };
        int month { stoi(m[2]) };
        int day { stoi(m[3]) };
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        cout << format("  Valid date: Year={}, month={}, day={}",
            year, month, day) << endl;
    } else {
        cout << "  Invalid date!" << endl;
    }
}

In this example, there are four elements in the smatch results objects:

➤➤ [0]: The string matching the full regular expression, which is the full date in this example

➤➤ [1]: The year

➤➤ [2]: The month

➤➤ [3]: The day

When you execute this example, you can get the following output:

Enter a date (year/month/day) (q=quit): 2011/12/01
  Valid date: Year=2011, month=12, day=1
Enter a date (year/month/day) (q=quit): 11/12/01
  Invalid date!

NOTE These date-matching examples check only if the date consists of a year 
(four digits), a month (1–12), and a day (1–31). They do not perform any valida-
tion for the number of days in a month, leap years, and so on. If you need to do 
that, you have to write code to validate the year, month, and day values that are 
extracted by regex_match(). If you do such validation in code, then the regular 
expression could be simplified to just match 4 digits for the year, 1 or 2 digits for 
the month, and 1 or 2 digits for the day.

    regex r { "(\\d{4})/(\\d{1,2})/(\\d{1,2})" };

regex_search()
The regex_match() algorithm discussed in the previous section returns true if the entire source 
string matches the regular expression and false otherwise. If you want to search for a matching 
substring, you need to use regex_search(). There are six overloads of regex_search(), and they 
all have the following form:

template<...>
bool regex_search(InputSequence[, MatchResults], RegEx[, Flags]);

All variations return true when a match is found somewhere in the input sequence and false other-
wise. The parameters are similar to the parameters for regex_match().

Two versions of the regex_search() algorithm accept a begin and end iterator as the input sequence 
that you want to process. You might be tempted to use this version of regex_search() in a loop to 
find all occurrences of a pattern in a source string by manipulating these begin and end iterators for 
each regex_search() call. Never do this! It can cause problems when your regular expression uses 
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anchors (^ or $), word boundaries, and so on. It can also cause an infinite loop due to empty matches. 
Use a regex_iterator or regex_token_iterator as explained later in this chapter to extract all 
occurrences of a pattern from a source string.

WARNING Never use regex_search() in a loop to find all occurrences of a 
pattern in a source string. Instead, use a regex_iterator or  
regex_token_iterator.

regex_search() Example
The regex_search() algorithm can be used to extract matching substrings from an input sequence. 
The following example extracts code comments from input lines. The regular expression searches 
for a substring that starts with // followed by some optional whitespace \s* followed by one or 
more characters captured in a capture group (.+). This capture group captures only the comment 
substring. The smatch object m receives the search results. If successful, m[1] contains the comment 
that was found. You can check the m[1].first and m[1].second iterators to see where exactly the 
comment was found in the source string.

regex r { "//\\s*(.+)$" };
while (true) {
    cout << "Enter a string with optional code comments (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    if (smatch m; regex_search(str, m, r)) {
        cout << format("  Found comment '{}'", m[1].str()) << endl;
    } else {
        cout << "  No comment found!" << endl;
    }
}

The output of this program can look as follows:

Enter a string (q=quit): std::string str;   // Our source string
  Found comment 'Our source string'
Enter a string (q=quit): int a; // A comment with // in the middle
  Found comment 'A comment with // in the middle'
Enter a string (q=quit): float f; // A comment with a       (tab) character
  Found comment 'A comment with a       (tab) character'

The match_results object also has a prefix() and suffix() method, which return the string  
preceding or following the match, respectively.

regex_iterator
As explained in the previous section, you should never use regex_search() in a loop to extract 
all occurrences of a pattern from a source sequence. Instead, you should use a regex_iterator or 
regex_token_iterator. They work similarly to iterators for Standard Library containers.
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regex_iterator Example
The following example asks the user to enter a source string, extracts every word from the string, and 
prints all words between quotes. The regular expression in this case is [\w]+, which searches for one 
or more word-letters. This example uses std::string as a source, so it uses sregex_iterator for 
the iterators. A standard iterator loop is used, but in this case, the end iterator is done slightly differ-
ently from the end iterators of ordinary Standard Library containers. Normally, you specify an end 
iterator for a particular container, but for regex_iterator, there is only one “end” iterator. You get 
this end iterator by default constructing a regex_iterator.

The for loop creates a start iterator called iter, which accepts a begin iterator and an end iterator 
into the source string together with the regular expression. The loop body is called for every match 
found, which is every word in this example. The sregex_iterator iterates over all the matches. 
By dereferencing a sregex_iterator, you get a smatch object. Accessing the first element of this 
smatch object, [0], gives you the matched substring:

regex reg { "[\\w]+" };
while (true) {
    cout << "Enter a string to split (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    const sregex_iterator end;
    for (sregex_iterator iter { cbegin(str), cend(str), reg };
        iter != end; ++iter) {
        cout << format("\"{}\"", (*iter)[0].str()) << endl;
    }
}

The output of this program can look as follows:

Enter a string to split (q=quit): This, is    a test.
"This"
"is"
"a"
"test"

As this example demonstrates, even simple regular expressions can perform some powerful string 
operations!

Note that both regex_iterator, and regex_token_iterator discussed in the next section, inter-
nally store a pointer to the given regular expression. Hence, they both explicitly delete any construc-
tors accepting rvalue reference regular expressions to prevent you from constructing them with 
temporary regex objects. For example, the following does not compile:

for (sregex_iterator iter { cbegin(str), cend(str), regex { "[\\w]+" } };
    iter != end; ++iter) { ... }

regex_token_iterator
The previous section describes regex_iterator, which iterates through every matched pattern. In 
each iteration of the loop you get a match_results object, which you can use to extract subexpres-
sions for that match that are captured by capture groups.
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A regex_token_iterator can be used to automatically iterate over all or selected capture groups 
across all matched patterns. There are four constructors with the following format:

regex_token_iterator(BidirectionalIterator a,
                     BidirectionalIterator b,
                     const regex_type& re
                     [, SubMatches
                     [, Flags]]);

All of them require a begin and end iterator as input sequence, and a regular expression. The optional 
SubMatches parameter is used to specify which capture groups should be iterated over. SubMatches 
can be specified in four ways:

➤➤ As a single integer representing the index of the capture group that you want to iterate over

➤➤ As a vector with integers representing the indices of the capture groups that you want to 
iterate over

➤➤ As an initializer_list with capture group indices

➤➤ As a C-style array with capture group indices

When you omit SubMatches or when you specify a 0 for SubMatches, you get an iterator that iter-
ates over all capture groups with index 0, which are the substrings matching the full regular expres-
sion. The optional Flags parameter specifies options for the matching algorithm. In most cases, you 
can keep the default. Consult a Standard Library Reference for more details.

regex_token_iterator Examples
The previous regex_iterator example can be rewritten using a regex_token_iterator as  
follows. Note that iter->str() is used in the loop body instead of (*iter)[0].str() as in the 
regex_iterator example, because the token iterator with 0 as the default submatch index automati-
cally iterates over all capture groups with index 0. The output of this code is the same as the output 
generated by the earlier regex_iterator example.

regex reg { "[\\w]+" };
while (true) {
    cout << "Enter a string to split (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    const sregex_token_iterator end;
    for (sregex_token_iterator iter { cbegin(str), cend(str), reg };
        iter != end; ++iter) {
        cout << format("\"{}\"", iter->str()) << endl;
    }
}

The following example asks the user to enter a date and then uses a regex_token_iterator to iter-
ate over the second and third capture groups (month and day), which are specified as a vector of 
integers. The regular expression used for dates is explained earlier in this chapter. The only difference 
is that ^ and $ anchors are added since we want to match the entire source sequence. Earlier, that was 
not necessary, because regex_match() automatically matches the entire input string.
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regex reg { "^(\\d{4})/(0?[1-9]|1[0-2])/(0?[1-9]|[1-2][0-9]|3[0-1])$" };
while (true) {
    cout << "Enter a date (year/month/day) (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    vector indices { 2, 3 };
    const sregex_token_iterator end;
    for (sregex_token_iterator iter { cbegin(str), cend(str), reg, indices };
        iter != end; ++iter) {
        cout << format("\"{}\"", iter->str()) << endl;
    }
}

This code prints only the month and day of valid dates. Output generated by this example can look 
like this:

Enter a date (year/month/day) (q=quit): 2011/1/13
"1"
"13"
Enter a date (year/month/day) (q=quit): 2011/1/32
Enter a date (year/month/day) (q=quit): 2011/12/5
"12"
"5"

The regex_token_iterator can also be used to perform a so-called field splitting or tokenization. 
It is a much safer and more flexible alternative compared to using the old, and not further discussed, 
strtok() function from C. Tokenization is triggered in the regex_token_iterator constructor by 
specifying -1 as the capture group index to iterate over. When in tokenization mode, the iterator iter-
ates over all substrings of the input sequence that do not match the regular expression. The following 
code demonstrates this by tokenizing a string on the delimiters , and ; with zero or more whitespace 
characters before or after the delimiters:

regex reg { R"(\s*[,;]\s*)" };
while (true) {
    cout << "Enter a string to split on ',' and ';' (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    const sregex_token_iterator end;
    for (sregex_token_iterator iter { cbegin(str), cend(str), reg, -1 };
        iter != end; ++iter) {
        cout << format("\"{}\"", iter->str()) << endl;
    }
}

The regular expression in this example is specified as a raw string literal and searches for patterns 
that match the following:

➤➤ Zero or more whitespace characters

➤➤ Followed by a , or ; character

➤➤ Followed by zero or more whitespace characters
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The output can be as follows:

Enter a string to split on ',' and ';' (q=quit): This is,   a; test string.
"This is"
"a"
"test string."

As you can see from this output, the string is split on , and ;. All whitespace characters around the , 
and ; are removed, because the tokenization iterator iterates over all substrings that do not match the 
regular expression and because the regular expression matches , and ; with whitespace around them.

regex_replace()
The regex_replace() algorithm requires a regular expression and a formatting string that is used 
to replace matching substrings. This formatting string can reference part of the matched substrings by 
using the escape sequences in the following table:

ESCAPE SEQUENCE REPLACED WITH

$n The string matching the nth capture group; for example, $1 for the first 
capture group, $2 for the second, and so on. n must be greater than 0.

$& The string matching the entire regular expression.

$` The part of the input sequence that appears to the left of the substring 
matching the regular expression.

$´ The part of the input sequence that appears to the right of the substring 
matching the regular expression.

$$ A single dollar sign.

There are six overloads of regex_replace(). The difference between them is in the type of argu-
ments. Four of them have the following format:

string regex_replace(InputSequence, RegEx, FormatString[, Flags]);

These four overloads return the resulting string after performing the replacement. Both the  
Input Sequence and the FormatString can be an std::string or a C-style string. The RegEx 
parameter is the regular expression that needs to be matched. The optional Flags parameter specifies 
options for the replace algorithm.

Two overloads of regex_replace() have the following format:

OutputIterator regex_replace(OutputIterator,
                             BidirectionalIterator first,
                             BidirectionalIterator last,
                             RegEx, FormatString[, Flags]);

These two overloads write the resulting string to the given output iterator and return this output 
iterator. The input sequence is given as a begin and end iterator. The other parameters are identical to 
the other four overloads of regex_replace().
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regex_replace() Examples
As a first example, take the following HTML source string:

<body><h1>Header</h1><p>Some text</p></body>

and the following regular expression:

<h1>(.*)</h1><p>(.*)</p>

The following table shows the different escape sequences and what they will be replaced with:

ESCAPE SEQUENCE REPLACED WITH

$1 Header

$2 Some text

$& <h1>Header</h1><p>Some text</p>

$` <body>

$´ </body>

The following code demonstrates the use of regex_replace():

const string str { "<body><h1>Header</h1><p>Some text</p></body>" };
regex r { "<h1>(.*)</h1><p>(.*)</p>" };
 
const string replacement { "H1=$1 and P=$2" };  // See earlier table.
string result { regex_replace(str, r, replacement) };
 
cout << format("Original string: '{}'", str) << endl;
cout << format("New string     : '{}'", result) << endl;

The output of this program is as follows:

Original string: '<body><h1>Header</h1><p>Some text</p></body>'
New string     : '<body>H1=Header and P=Some text</body>'

The regex_replace() algorithm accepts a number of flags to change its behavior. The most impor-
tant flags are given in the following table:

FLAG DESCRIPTION

format_default The default is to replace all occurrences of the pattern and to also 
copy everything to the output that does not match the pattern.

format_no_copy Replaces all occurrences of the pattern, but does not copy anything to 
the output that does not match the pattern.

format_first_only Replaces only the first occurrence of the pattern.
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The call to regex_replace() in the previous code snippet can be modified to use the  
format_no_copy flag:

string result { regex_replace(str, r, replacement,
    regex_constants::format_no_copy) };

The output now is as follows:

Original string: '<body><h1>Header</h1><p>Some text</p></body>'
New string     : 'H1=Header and P=Some text'

Another example is to get an input string and replace each word boundary with a newline character 
so that the output contains only one word per line. The following example demonstrates this with-
out using any loops to process a given input string. The code first creates a regular expression that 
matches individual words. When a match is found, it is replaced with $1\n where $1 is replaced with 
the matched word. Note also the use of the format_no_copy flag to prevent copying whitespace and 
other non-word characters from the source string to the output.

regex reg { "([\\w]+)" };
const string replacement { "$1\n" };
while (true) {
    cout << "Enter a string to split over multiple lines (q=quit): ";
    string str;
    if (!getline(cin, str) || str == "q") { break; }
 
    cout << regex_replace(str, reg, replacement,
        regex_constants::format_no_copy) << endl;
}

The output of this program can be as follows:

Enter a string to split over multiple lines (q=quit):   This is   a test.
This
is
a
test

SUMMARY

This chapter gave you an appreciation for coding with localization in mind. As anyone who has been 
through a localization effort will tell you, adding support for a new language or locale is infinitely 
easier if you have planned ahead, for example, by using Unicode characters and being mindful 
of locales.

The second part of this chapter explained the regular expressions library. Once you know the syntax 
of regular expressions, it becomes much easier to work with strings. Regular expressions allow you to 
validate strings, search for substrings inside an input sequence, perform find-and-replace operations, 
and so on. It is highly recommended that you get to know regular expressions and start using them 
instead of writing your own string manipulation routines. They will make your life easier.
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 21-1: Use an appropriate facet to figure out the decimal separator used to format 
numbers according to the user’s environment. You might have to take a look at a Standard 
Library reference to learn about the exact methods of your chosen facet.

Exercise 21-2: Write an application that asks the user to enter a phone number as formatted 
in the United States. Here’s an example: 202-555-0108. Use a regular expression to validate 
the format of the phone number, that is, three digits, followed by a dash, three more digits, 
another dash, and a final four digits. If it’s a valid phone number, print out the three parts on 
separate lines. For example, for the earlier phone number, the result must be this:

202
555
0108

Exercise 21-3: Write an application that asks the user for a piece of source code that can span 
multiple lines and that can contain // style comments. To signal the end of the input, use a 
sentinel character, for example @. You can use std::getline() with '@' as delimiter to read 
in multiple lines of text from the standard input console. Finally, use a regular expression to 
remove comments from all lines of the code snippet. Make sure your code properly works on 
a line such as the following:

string str; // A comment // Some more comments.

The result for this line must be string str;.

Exercise 21-4: The section “Lookahead” earlier in this chapter mentioned a password-valida-
tion regular expression. Write a program to test this regular expression. Ask the user to enter 
a password and validate it. Once you’ve verified that the regular expression works, add one 
more validation rule to it: a password must also consist of at least two digits.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?

➤➤ How to work with compile-time rational numbers

➤➤ How to work with time

➤➤ How to work with dates and calendars

➤➤ How to convert time points between different time zones

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

This chapter discusses the time-related functionality provided by the C++ Standard Library, 
known collectively as the chrono library. It is a collection of classes and functions to work with 
time and dates. The library consists of the following components:

➤➤ Durations

➤➤ Clocks

➤➤ Time points

➤➤ Dates (C++20)

➤➤ Time zones (C++20)

Everything is defined in <chrono> in the std::chrono namespace. However, before we can 
start the discussion of each of these chrono library components, we need a small digression and 
need to take a look at the compile-time rational number support available in C++, as this is 
heavily used by the chrono library.

http://www.wiley.com/go/proc++5e
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COMPILE-TIME RATIONAL NUMBERS

The Ratio library allows you to exactly represent any finite rational number that you can use at  
compile time. Everything is defined in <ratio> and is in the std namespace. The numerator and 
denominator of a rational number are represented as compile-time constants of type std::intmax_t, 
which is a signed integer type with the maximum width supported by a compiler. Because of the 
compile-time nature of these rational numbers, using them might look a bit different than what 
you are used to. You cannot define a ratio object the same way as you define normal objects, and 
you cannot call methods on it. Instead, you need to use type aliases. For example, the following line 
defines a rational compile-time constant representing the fraction 1/60:

using r1 = ratio<1, 60>;

The numerator (num) and denominator (den) of the r1 rational number are compile-time constants 
and can be accessed as follows:

intmax_t num { r1::num };
intmax_t den { r1::den };

Remember that a ratio is a compile-time constant, which means that the numerator and denomina-
tor need to be known at compile time. The following generates a compilation error:

intmax_t n { 1 };          // Numerator
intmax_t d { 60 };         // Denominator
using r1 = ratio<n, d>;    // Error

Making n and d constants works fine:

const intmax_t n { 1 };    // Numerator
const intmax_t d { 60 };   // Denominator
using r1 = ratio<n, d>;    // Ok

Rational numbers are always normalized. For a rational number ratio<n, d>, the greatest common 
divisor, gcd, is calculated, and the numerator, num, and denominator, den, are then defined as follows:

➤➤ num = sign(n)*sign(d)*abs(n)/gcd

➤➤ den = abs(d)/gcd

The library supports adding, subtracting, multiplying, and dividing rational numbers. Because 
all these operations are again happening at compile time, you cannot use the standard arithmetic 
operators. Instead, you need to use specific templates in combination with type aliases. The follow-
ing arithmetic ratio templates are available: ratio_add, ratio_subtract, ratio_multiply, and 
ratio_divide, which perform addition, subtraction, multiplication, and division, respectively. These 
templates calculate the result as a new ratio type. This type can be accessed with the embedded type 
alias called type. For example, the following code first defines two ratios, one representing 1/60 and 
the other representing 1/30. The ratio_add template adds those two rational numbers together to 
produce the result rational number, which, after normalization, is 1/20:

using r1 = ratio<1, 60>;
using r2 = ratio<1, 30>;
using result = ratio_add<r1, r2>::type;
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The standard also defines a number of ratio comparison templates: ratio_equal, ratio_ 
not_equal, ratio_less, ratio_less_equal, ratio_greater, and ratio_greater_equal. Just 
like the arithmetic ratio templates, the ratio comparison templates are all evaluated at compile 
time. These comparison templates define a new type that is an std::bool_constant, represent-
ing the result. bool_constant is an std::integral_constant, a struct template that stores a 
type and a compile-time constant value. For example, integral_constant<int, 15> stores an 
integer with value 15. bool_constant is an integral_constant with type bool. For instance, 
bool_constant<true> is integral_constant<bool, true>, which stores a Boolean with value 
true. The result of the ratio comparison templates is either bool_constant<true> or bool_
constant<false>. The value associated with a bool_constant or an integral_constant can be 
accessed using the value data member. The following example demonstrates the use of ratio_less:

using r1 = ratio<1, 60>;
using r2 = ratio<1, 30>;
using res = ratio_less<r2, r1>;
cout << res::value << endl;

The following example combines everything I have just covered. Note that because ratios are 
compile-time constants, you cannot do something like cout << r1; you need to get the numerator 
and denominator and print them separately.

// Define a compile-time rational number.
using r1 = ratio<1, 60>;
 
// Get numerator and denominator.
intmax_t num { r1::num };
intmax_t den { r1::den };
cout << format("1) r1 = {}/{}", num, den) << endl;
 
// Add two rational numbers.
using r2 = ratio<1, 30>;
cout << format("2) r2 = {}/{}", r2::num, r2::den) << endl;
using result = ratio_add<r1, r2>::type;
cout << format("3) sum = {}/{}", result::num, result::den) << endl;
 
// Compare two rational numbers.
using res = ratio_less<r2, r1>;
cout << format("4) r2 < r1: {}", res::value) << endl;

The output is as follows:

1) r1 = 1/60
2) r2 = 1/30
3) sum = 1/20
4) r2 < r1: false

The library provides a number of SI (Système International) type aliases for your convenience. They 
are as follows:

using yocto = ratio<1, 1'000'000'000'000'000'000'000'000>; // *
using zepto = ratio<1, 1'000'000'000'000'000'000'000>;     // *
using atto  = ratio<1, 1'000'000'000'000'000'000>;

continues
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using femto = ratio<1, 1'000'000'000'000'000>;
using pico  = ratio<1, 1'000'000'000'000>;
using nano  = ratio<1, 1'000'000'000>;
using micro = ratio<1, 1'000'000>;
using milli = ratio<1, 1'000>;
using centi = ratio<1, 100>;
using deci  = ratio<1, 10>;
using deca  = ratio<10, 1>;
using hecto = ratio<100, 1>;
using kilo  = ratio<1'000, 1>;
using mega  = ratio<1'000'000, 1>;
using giga  = ratio<1'000'000'000, 1>;
using tera  = ratio<1'000'000'000'000, 1>;
using peta  = ratio<1'000'000'000'000'000, 1>;
using exa   = ratio<1'000'000'000'000'000'000, 1>;
using zetta = ratio<1'000'000'000'000'000'000'000, 1>;     // *
using yotta = ratio<1'000'000'000'000'000'000'000'000, 1>; // *

The SI units with an asterisk at the end are defined only if your compiler can represent the constant 
numerator and denominator values for those type aliases as an intmax_t. An example of how to use 
these predefined SI units is given during the discussion of durations in the next section.

DURATION

A duration is an interval between two points in time. It is represented by the duration class template, 
which stores a number of ticks and a tick period. The tick period is the time in seconds between two 
ticks and is represented as a compile-time ratio constant, which means it could be a fraction of a 
second. Ratios are discussed in the previous section. The duration template accepts two template 
parameters and is defined as follows:

template <class Rep, class Period = ratio<1>> class duration {...}

The first template parameter, Rep, is the type of variable storing the number of ticks and should be 
an arithmetic type, for example long, double, and so on. The second template parameter, Period, is 
the rational constant representing the period of a tick. If you don’t specify the tick period, the default 
value ratio<1> is used, which represents a tick period of one second.

Three constructors are provided: the default constructor; one that accepts a single value, the number 
of ticks; and one that accepts another duration. The latter constructor can be used to convert from 
one duration to another duration, for example, from minutes to seconds. An example is given later 
in this section.

Durations support arithmetic operations such as +, -, *, /, %, ++, --, +=, -=, *=, /=, and %=, and they 
support the comparison operators == and <=>. The class also contains the methods shown in the  
following table:

(continued)
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METHOD DESCRIPTION

Rep count() const Returns the duration value as the number of ticks. The return 
type is the type specified as the first template type parameter for 
the duration template.

static duration zero() Returns a duration with a duration value equivalent to zero.

static duration min()

static duration max()

Returns a duration with the minimum/maximum possible 
duration value representable by the type specified as the first 
template type parameter for the duration template.

The library supports floor(), ceil(), round(), and abs() operations on durations that behave 
just as they behave with numerical data.

Let’s see how durations can be used in actual code. A duration where each tick is one second can be 
defined as follows:

duration<long> d1;

Because ratio<1> is the default tick period, this is the same as writing the following:

duration<long, ratio<1>> d1;

The following defines a duration in minutes (tick period = 60 seconds):

duration<long, ratio<60>> d2;

To define a duration where each tick period is a sixtieth of a second, use the following:

duration<double, ratio<1, 60>> d3;

As you saw earlier in this chapter, <ratio> defines a number of SI rational constants. These pre-
defined constants come in handy for defining tick periods. For example, the following line of code 
defines a duration where each tick period is one millisecond:

duration<long long, milli> d4;

Let’s see durations in action. The following example demonstrates several aspects of durations. It 
shows you how to define them, how to perform arithmetic operations on them, and how to convert 
one duration to another duration with a different tick period:

// Specify a duration where each tick is 60 seconds.
duration<long, ratio<60>> d1 { 123 };
cout << d1.count() << endl;
 
// Specify a duration represented by a double with each tick
// equal to 1 second and assign the largest possible duration to it.
auto d2 { duration<double>::max() };
cout << d2.count() << endl;
 

continues
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// Define 2 durations:
// For the first duration, each tick is 1 minute.
// For the second duration, each tick is 1 second.
duration<long, ratio<60>> d3 { 10 };  // = 10 minutes
duration<long, ratio<1>> d4 { 14 };   // = 14 seconds
 
// Compare both durations.
if (d3 > d4) { cout << "d3 > d4" << endl; }
else { cout << "d3 <= d4" << endl; }
 
// Increment d4 with 1 resulting in 15 seconds.
++d4;
 
// Multiply d4 by 2 resulting in 30 seconds.
d4 *= 2;
 
// Add both durations and store as minutes.
duration<double, ratio<60>> d5 { d3 + d4 };
 
// Add both durations and store as seconds.
duration<long, ratio<1>> d6 { d3 + d4 };
cout << format("{} minutes + {} seconds = {} minutes or {} seconds",
    d3.count(), d4.count(), d5.count(), d6.count()) << endl;
 
// Create a duration of 30 seconds.
duration<long> d7 { 30 };
 
// Convert the seconds of d7 to minutes.
duration<double, ratio<60>> d8 { d7 };
cout << format("{} seconds = {} minutes", d7.count(), d8.count()) << endl;

The output is as follows:

123
1.79769e+308
d3 > d4
10 minutes + 30 seconds = 10.5 minutes or 630 seconds
30 seconds = 0.5 minutes

NOTE The second line in the output represents the largest possible duration with 
type double. The exact value might be different depending on your compiler.

Pay special attention to the following two lines of code:

duration<double, ratio<60>> d5 { d3 + d4 };
duration<long, ratio<1>> d6 { d3 + d4 };

They both calculate d3+d4, with d3 given in minutes and d4 in seconds, but the first statement stores 
it as a floating-point value representing minutes, while the second statement stores the result as an 
integral value representing seconds. Conversion from minutes to seconds, or vice versa, happens 
automatically.

(continued)
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The following two lines from the preceding example demonstrate how to explicitly convert between 
different units of time:

duration<long> d7 { 30 };               // seconds
duration<double, ratio<60>> d8 { d7 };  // minutes

The first statement defines a duration representing 30 seconds. The second statement converts these 
30 seconds into minutes, resulting in 0.5 minutes. Converting in this direction can result in a non-
integral value and thus requires you to use a duration represented by a floating-point type; other-
wise, you will get some cryptic compilation errors. The following statements, for example, do not 
compile because d8 is using long instead of a floating-point type:

duration<long> d7 { 30 };               // seconds
duration<long, ratio<60>> d8 { d7 };    // minutes   // Error!

You can, however, force this conversion by using duration_cast():

duration<long> d7 { 30 };               // seconds
auto d8 { duration_cast<duration<long, ratio<60>>>(d7) }; // minutes

In this case, d8 will be 0 minutes, because integer division is used to convert 30 seconds to minutes.

Converting in the other direction does not require floating-point types if the source is an integral type, 
because the result is always an integral value if you started with an integral value. For example, the 
following statements convert ten minutes into seconds, both represented by the integral type long:

duration<long, ratio<60>> d9 { 10 };    // minutes
duration<long> d10 { d9 };              // seconds

The library provides the following standard duration types in the std::chrono namespace:

using nanoseconds  = duration<X 64 bits, nano>;
using microseconds = duration<X 55 bits, micro>;
using milliseconds = duration<X 45 bits, milli>;
using seconds      = duration<X 35 bits>;
using minutes      = duration<X 29 bits, ratio<60>>;
using hours        = duration<X 23 bits, ratio<3'600>>;

C++20 adds the following types:

using days   = duration<X 25 bits, ratio_multiply<ratio<24>, hours::period>>;
using weeks  = duration<X 22 bits, ratio_multiply<ratio<7>, days::period>>;
using years  = duration<X 17 bits,
               ratio_multiply<ratio<146'097, 400>, days::period>>;
using months = duration<X 20 bits, ratio_divide<years::period, ratio<12>>>;

The exact type of X depends on your compiler, but the C++ standard requires it to be a signed integer 
type of at least the specified size. The preceding type aliases make use of the predefined SI ratio type 
aliases that are described earlier in this chapter. With these predefined types, instead of writing this:

duration<long, ratio<60>> d9 { 10 };    // minutes

you can simply write this:

minutes d9 { 10 };                      // minutes

C++20
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The following code is another example of how to use these predefined durations. The code first 
defines a variable t, which is the result of 1 hour + 23 minutes + 45 seconds. The auto keyword is 
used to let the compiler automatically figure out the exact type of t. The second statement uses the 
constructor of the predefined seconds duration to convert the value of t to seconds and writes the 
result to the console:

auto t { hours { 1 } + minutes { 23 } + seconds { 45 } };
cout << format("{} seconds", seconds { t }.count()) << endl;

Because the standard requires that the predefined durations use integer types, there can be compila-
tion errors if a conversion could end up with a non-integral value. While integer division normally 
truncates, in the case of durations, which are implemented with ratio types, the compiler declares 
any computation that could result in a non-zero remainder as a compile-time error. For example, the 
following code does not compile because converting 90 seconds to minutes results in 1.5 minutes:

seconds s { 90 };
minutes m { s };

However, the following code does not compile either, even though 60 seconds is exactly 1 minute.  
It is flagged as a compile-time error because converting from seconds to minutes could result in  
non-integral values:

seconds s { 60 };
minutes m { s };

Converting in the other direction works perfectly fine because the minutes duration uses an integral 
type, and converting it to seconds always results in an integral value:

minutes m { 2 };
seconds s { m };

You can use the standard user-defined literals h, min, s, ms, us, and ns for creating durations. Tech-
nically, these are defined in the std::literals::chrono_literals namespace, but just as for the 
standard user-defined string literals discussed in Chapter 2, “Working with Strings and String Views,” 
the chrono_literals namespace is an inline namespace. So, you can make the chrono literals avail-
able with any of the following using directives:

using namespace std;
using namespace std::literals;
using namespace std::chrono_literals;
using namespace std::literals::chrono_literals;

Additionally, the literals are also made available in the std::chrono namespace. Here is an example:

using namespace std::chrono;
// ...
auto myDuration { 42min };    // 42 minutes

C++20 adds the hh_mm_ss class template to the chrono library. Its constructor accepts a Duration 
and splits the given duration into hours, minutes, seconds, and subseconds. It has getters hours(), 
minutes(), seconds(), and subseconds() to retrieve the data, always returning non-negative  
values. The is_negative() method returns true if the duration is a negative duration, false other-
wise. You’ll use the hh_mm_ss class template in one of the exercises at the end of this chapter.

C++20
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CLOCK

A clock is a class consisting of a time_point and a duration. The time_point type is discussed in 
detail in the next section, but those details are not required to understand how clocks work. How-
ever, time_points themselves depend on clocks, so it’s important to know the details of clocks first.

Several clocks are defined by the standard. The three most important ones are system_clock, 
steady_clock, and high_resolution_clock. The first, system_clock, represents the wall clock 
time from the system-wide real-time clock. The second, steady_clock, guarantees its time_point 
will never decrease, which is not guaranteed for system_clock because the system clock can be 
adjusted at any time. The third one, high_resolution_clock, has the shortest possible tick period. 
Depending on your compiler, it is possible for the high_resolution_clock to be a synonym for 
steady_clock or system_clock.

NOTE C++20 adds several new clocks: utc_clock, tai_clock, gps_clock, and 
file_clock. These are more advanced and not further discussed in this text.

Every clock has a static now() method to get the current time as a time_point. The system_clock 
also defines two static helper methods for converting time_points to and from the time_t C-style 
time representation. The first one is called to_time_t(), and it converts a given time_point to a 
time_t; the second one, from_time_t(), performs the opposite conversion. The time_t type is 
defined in the <ctime> header file.

The following example shows a complete program that gets the current time from the system and 
outputs the time in a human-readable format to the console. The localtime() function converts a 
time_t to a local time represented by tm and is defined in the <ctime> header file. The put_time() 
stream manipulator, defined in <iomanip>, is introduced in Chapter 13, “Demystifying C++ I/O.”

// Get current time as a time_point.
system_clock::time_point tpoint { system_clock::now() };
// Convert to a time_t.
time_t tt { system_clock::to_time_t(tpoint) };
// Convert to local time.
tm* t { localtime(&tt) };
// Write the time to the console.
cout << put_time(t, "%H:%M:%S") << endl;

If you want to convert a time to a string, you can use put_time() with an std::stringstream or 
the C-style strftime() function, defined in <ctime>, as follows. Using the strftime() function 
requires you to supply a buffer that is big enough to hold the human-readable representation of the 
given time:

// Convert to readable format.
stringstream ss;
ss << put_time(t, "%H:%M:%S"); // t is a tm*
string stringTime { ss.str() };
cout << stringTime << endl;

C++20
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// Or:
char buffer[80] { 0 };
strftime(buffer, sizeof(buffer), "%H:%M:%S", t); // t is a tm*
cout << buffer << endl;

NOTE These examples might give you a security-related error or warning on the 
call to localtime(). With Microsoft Visual C++ you should use the safe version 
called localtime_s(), while on Linux you should use localtime_r().

The high_resolution_clock can be used to time how long it takes for a piece of code to execute. 
The following code snippet gives an example. The actual type of the variables start and end is 
high_resolution_clock::time_point, and the actual type of diff is a duration.

// Get the start time.
auto start { high_resolution_clock::now() };
// Execute code that you want to time.
double d { 0 };
for (int i { 0 }; i < 1'000'000; ++i) {
    d += sqrt(sin(i) * cos(i));
}
// Get the end time and calculate the difference.
auto end { high_resolution_clock::now() };
auto diff { end – start };
// Convert the difference into milliseconds and output to the console.
cout << duration<double, milli> { diff }.count() << "ms" << endl;

The loop in this example is performing some arithmetic operations with sqrt(), sin(), and cos() 
to make sure the loop doesn’t end too fast. If you get really small values for the difference in millisec-
onds on your system, those values will not be accurate, and you should increase the number of itera-
tions of the loop to make it last longer. Small timings will not be accurate because while timers often 
have a resolution in milliseconds, on most operating systems, this timer is updated infrequently, for 
example, every 10 ms or 15 ms. This induces a phenomenon called gating error, where any event that 
occurs in less than one timer tick appears to take place in zero units of time, and any event between 
one and two timer ticks appears to take place in one timer unit. For example, on a system with a 15 
ms timer update, a loop that takes 44 ms will appear to take only 30 ms. When using such timers to 
time computations, it is important to make sure that the entire computation takes place across a fairly 
large number of basic timer tick units so that these errors are minimized.

TIME POINT

A point in time is represented by the time_point class and stored as a duration relative to an epoch, 
representing the beginning of time. A time_point is always associated with a certain clock, and the 
epoch is the origin of this associated clock. For example, the epoch for the classic Unix/Linux time is 
January 1, 1970, and durations are measured in seconds. The epoch for Windows is January 1, 1601, 

(continued)



Time Point ❘ 803

and durations are measured in 100-nanosecond units. Other operating systems have different epoch 
dates and duration units.

The time_point class contains a function called time_since_epoch(), which returns a duration 
representing the time between the epoch of the associated clock and the stored point in time.

Arithmetic operations of time_points and durations that make sense are supported. The following 
table lists those operations. tp is a time_point, and d is a duration:

tp + d = tp tp – d = tp

d + tp = tp tp – tp = d

tp += d tp -= d

An example of an operation that is not supported is tp+tp.

Comparison operators == and <=> are supported to compare two time points. Two static methods are 
provided: min() and max() returning the smallest and largest possible point in time, respectively.

The time_point class has three constructors:

➤➤ time_point(): This constructs a time_point initialized with duration::zero(). The 
resulting time_point represents the epoch of the associated clock.

➤➤ time_point(const duration& d): This constructs a time_point initialized with the given 
duration. The resulting time_point represents epoch + d.

➤➤ template <class Duration2> time_point(const time_point<clock, Duration2>& t):  
This constructs a time_point initialized with t.time_since_epoch().

Each time_point is associated with a clock. To create a time_point, you specify the clock as the 
template parameter:

time_point<steady_clock> tp1;

Each clock also knows its time_point type, so you can also write it as follows:

steady_clock::time_point tp1;

The following example demonstrates some operations with time_points:

// Create a time_point representing the epoch of the associated steady clock.
time_point<steady_clock> tp1;
// Add 10 minutes to the time_point.
tp1 += minutes { 10 };
// Store the duration between epoch and time_point.
auto d1 { tp1.time_since_epoch() };
// Convert the duration to seconds and output to the console.
duration<double> d2 { d1 };
cout << d2.count() << " seconds" << endl;

The output should be as follows:

600 seconds
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Converting time_points can be done implicitly or explicitly, similar to duration conversions. Here 
is an example of an implicit conversion. The output is 42000ms:

time_point<steady_clock, seconds> tpSeconds { 42s };
// Convert seconds to milliseconds implicitly.
time_point<steady_clock, milliseconds> tpMilliseconds { tpSeconds };
cout << tpMilliseconds.time_since_epoch().count() << "ms" << endl;

If the implicit conversion can result in a loss of data, then you need an explicit conversion using 
time_point_cast(), similar to using duration_cast() for explicit duration casts as discussed ear-
lier in this chapter. The following example outputs 42000ms, even though you start from 42,424ms:

time_point<steady_clock, milliseconds> tpMilliseconds { 42'424ms };
// Convert milliseconds to seconds explicitly.
time_point<steady_clock, seconds> tpSeconds {
    time_point_cast<seconds>(tpMilliseconds) };
// Or:
// auto tpSeconds { time_point_cast<seconds>(tpMilliseconds) };
 
// Convert seconds back to milliseconds and output the result.
milliseconds ms { tpSeconds.time_since_epoch() };
cout << ms.count() << "ms" << endl;

The library supports floor(), ceil(), and round() operations for time_points that behave just as 
they behave with numerical data.

DATE

C++20 adds support to work with calendar dates to the Standard Library. At this moment, only the 
Gregorian calendar is supported, but if need be, you can always implement your own calendars that 
can interoperate with the rest of the <chrono> functionality, such as Coptic and Julian calendars.

The Standard Library provides quite a few classes and functions to work with dates (and time zones 
discussed in the next section). This text discusses the most important classes and functions. Consult a 
Standard Library reference to get a complete overview of everything that’s available.

The following classes are introduced to work with years, months, days, and weekdays, all defined in 
std::chrono:

CLASS DESCRIPTION

year Represents a year in the range [-32767, 32767]. A year has a 
method called is_leap() returning true if a given year is a 
leap year, false otherwise. min() and max() static methods 
return the minimum and maximum year, respectively.

month Represents a month in the range [1, 12]. Additionally, there are 
12 named constants provided for the 12 months, for example: 
std::chrono::January.

day Represents a day in the range [1, 31].

C++20
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CLASS DESCRIPTION

weekday Represents a day of the week in the range [0, 6], where 
0 means Sunday. Additionally, there are six named 
constants provided for the six weekdays, for example: 
std::chrono::Sunday.

weekday_indexed Represents the first, second, third, fourth, or fifth weekday 
of a month. Can easily be constructed from a weekday, for 
example: Monday[2] is the second Monday of a month.

weekday_last Represents the last weekday of some month.

month_day Represents a specific month and day.

month_day_last Represents the last day of a specific month.

month_weekday Represents the nth weekday of a specific month.

month_weekday_last Represents the last weekday of a specific month.

year_month Represents a specific year and month.

year_month_day Represents a specific year, month, and day.

year_month_day_last Represents the last day of a specific year and month.

year_month_weekday Represents the nth weekday of a specific year and month.

year_month_weekday_last Represents the last weekday of a specific year and month.

All of these classes have a method called ok() that returns true if the given object is in a valid 
range, false otherwise. Additionally, two new standard user-defined literals are provided in 
std::literals::chrono_literals: y to create years, and d to create days. Complete dates can be 
constructed using operator/ to specify year, month, and day, in three orders: Y/M/D, M/D/Y, D/M/Y. 
Here are some examples to create dates:

year y1 { 2020 };
auto y2 { 2020y };
 
month m1 { 6 };
auto m2 { June };
 
day d1 { 22 };
auto d2 { 22d };
 
// Create a date for 2020-06-22.
year_month_day fulldate1 { 2020y, June, 22d };
auto fulldate2 { 2020y / June / 22d };
auto fulldate3 { 22d / June / 2020y };
 
// Create a date for the 3rd Monday of June 2020.
year_month_day fulldate4 { Monday[3] / June / 2020 };
 

continues
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// Create a month_day for June 22 of an unspecified year.
auto june22 { June / 22d };
// Create a year_month_day for June 22, 2020.
auto june22_2020 { 2020y / june22 };
 
// Create a month_day_last for the last day of a June of an unspecified year.
auto lastDayOfAJune { June / last };
// Create a year_month_day_last for the last day of June for the year 2020.
auto lastDayOfJune2020 { 2020y / lastDayOfAJune };
 
// Create a year_month_weekday_last for the last Monday of June 2020.
auto lastMondayOfJune2020 { 2020y / June / Monday[last] };

sys_time is a new type alias for a time_point of a system_clock with a certain duration. It’s 
defined as follows:

template <typename Duration>
using sys_time = std::chrono::time_point<std::chrono::system_clock, Duration>;

Based on the sys_time type alias, two additional type aliases are defined to represent a sys_time 
with a precision of seconds, and one with a precision of days:

using sys_seconds = sys_time<std::chrono::seconds>;
using sys_days = sys_time<std::chrono::days>;

sys_days, for example, represents the number of days since the system_clock epoch, and hence, 
it’s a serial-based type; that is, it just contains a single number (days since epoch). On the other hand, 
year_month_day, for example, is a field-based type, it stores a year, a month, and a day in separate 
fields. When doing a lot of arithmetic with dates, a serial-based type will be more performant than a 
field-based type.

Similar type aliases exist to work with local time: local_time, local_seconds, and local_days. 
These are demonstrated in the next section on time zones.

You can create a sys_days representing today as follows. Note that floor() is used to truncate a 
time_point to a precision of days:

auto today { floor<days>(system_clock::now()) };

sys_days can be used to convert a year_month_day to a time_point, for example:

system_clock::time_point t1 { sys_days { 2020y / June / 22d } };

The opposite conversion, converting a time_point to a year_month_day, can be done with a  
year_month_day constructor. The following code snippet gives two examples:

year_month_day yearmonthday { floor<days>(t1) };
year_month_day today2 { floor<days>(system_clock::now()) };

A complete date including a time can be build up as well. Here’s an example:

// Full date with time: 2020-06-22 09:35:10 UTC.
auto t2 { sys_days { 2020y / June / 22d } + 9h + 35min + 10s };

You can perform arithmetic with dates. Here’s an example:

// Add 5 days to t2.
auto t3 { t2 + days { 5 } };

(continued)
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// Add 1 year to t3.
auto t4 { t3 + years { 1 } };

Dates can be written to streams using the familiar insertion operator:

cout << yearmonthday << endl;

If the date is invalid, writing it to a stream will insert an error as well. For example, the string  
"is not a valid date" is appended to an invalid year_month_day written to a stream.

TIME ZONE

To facilitate working with time zones, the C++ Standard Library contains a copy of the Internet 
Assigned Numbers Authority (IANA) time zone database (www.iana.org/time-zones). You can get 
access to this database by calling std::chrono::get_tzdb(), which returns a reference-to-const to 
a single existing instance of type std::chrono::tzdb. This database gives access to all known time 
zones through a public vector called zones. Each entry in this vector is a time_zone, which has a 
name, accessible with name(), and methods to_sys() and to_local() to convert a local time to a 
sys_time, and vice versa.

For example, the following snippet lists all available time zones:

const auto& database { get_tzdb() };
for (const auto& timezone : database.zones) {
    cout << timezone.name() << endl;
}

The std::chrono::locate_zone() function can be used to retrieve a time_zone based on its name 
and throws a runtime_error exception if the requested time zone cannot be found in the database. 
The current_zone() function can be used to get the current time zone. Here’s an example:

auto* brussels { locate_zone("Europe/Brussels") };
auto* gmt { locate_zone("GMT") };
auto* current { current_zone() };

time_zone instances can be used to convert times between different zones. Here are some examples:

// Convert the current system time to GMT.
gmt->to_local(system_clock::now());
 
// Construct a UTC time. (2020-06-22 09:35:10 UTC)
auto t { sys_days { 2020y / June / 22d } + 9h + 35min + 10s };
// Convert UTC time to Brussels' local time.
brussels->to_local(t);

The zoned_time class is used to represent a time_point in a specific time_zone. For example, the 
following snippet constructs a specific time in the Brussels’ time zone and then converts it to New 
York time:

// Construct a local time in the Brussels' time zone.
zoned_time<hours> brusselsTime{ brussels, local_days { 2020y / June / 22d } + 9h };
// Convert to New York time.
zoned_time<hours> newYorkTime { "America/New_York", brusselsTime };

C++20

http://www.iana.org/time-zones
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SUMMARY

This chapter discussed how to use the ratio template to define and work with compile-time rational 
numbers. You also learned how to work with durations, clocks, time points, dates, and time zones 
provided by the C++ Standard Library through the chrono library.

The next chapter focusses on the functionality provided by the Standard Library to generate ran-
dom numbers.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 22-1: Let’s play a bit with durations. Create a duration, d1, with a precision of 
seconds, initialized to 42 seconds. Create a second duration, d2, initialized with 1.5 minutes. 
Calculate the sum of d1 and d2. Write out the result to the standard output, once expressed 
in seconds, once expressed in minutes.

Exercise 22-2: Ask the user to enter a date as yyyy-mm-dd, for example, 2020-06-22. Use a 
regular expression (see Chapter 21, “String Localization and Regular Expressions”) to extract 
the year, month, and day components, and finally, use year_month_day to validate the date.

Exercise 22-3: Write a getNumberOfDaysBetweenDates() function that calculates the num-
ber of days between two given dates. Test your implementation in your main() function.

Exercise 22-4: Write a program that prints out the day of the week of June 22, 2020.

Exercise 22-5: Construct a UTC time. Convert this time to the local time in Tokyo, Japan. 
Further convert the resulting time to New York time. And finally convert the resulting time 
to GMT. Verify that the original UTC time and the final GMT time are equal. Tip: The time 
zone identifier for Tokyo is Asia/Tokyo, for New York it is America/New_York, and for GMT 
it is GMT.

Exercise 22-6: Write a getDurationSinceMidnight() function that returns the duration 
between midnight and the current time. Tip: The function mktime(), defined in <ctime> 
could be useful in your implementation. It accepts a tm* as argument and returns a time_t. 
It’s basically the opposite of what localtime() does. Use your function to print out the 
number of seconds since midnight to the standard output console. Finally, use the hh_mm_ss 
class to convert the duration returned by your function to hours, minutes, and seconds, and 
print the result on standard output.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Random Number Facilities

WHAT’S IN THIS CHAPTER?

➤➤ The concepts of random number engines and engine adapters

➤➤ How to generate random numbers

➤➤ How to change the distribution of random numbers

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the Download  
Code tab.

This chapter discusses how to generate random numbers in C++. Generating good  
random numbers in software is a complex topic. This chapter does not discuss the complex 
mathematical formulas involved in generating the actual random numbers; however, it does 
explain how to generate random numbers using the functionality provided by the 
Standard Library.

The C++ random number generation library can generate random numbers by using different 
algorithms and distributions. The library is defined by <random> in the std namespace. It has 
three big components: engines, engine adapters, and distributions. A random number engine is 
responsible for generating the actual random numbers and storing the state for generating 
subsequent random numbers. The distribution determines the range of the generated random 
numbers and how they are mathematically distributed within that range. A random number 
engine adapter modifies the results of a random number engine you associate it with.

Before delving into this C++ random number generation library, the old C-style mechanism of 
generating random numbers and its problems are briefly explained.

http://www.wiley.com/go/proc++5e
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C-STYLE RANDOM NUMBER GENERATION

Before C++11, the only way to generate random numbers was to use the C-style srand() and rand() 
functions. The srand() function needed to be called once in your application and was used to initial-
ize the random number generator, also called seeding. Usually the current system time would be used 
as a seed.

WARNING You need to make sure that you use a good-quality seed for your  
software-based random number generator. If you initialize the random number 
generator with the same seed every time, you will create the same sequence of 
random numbers every time. This is why the seed is usually the current system 
time.

Once the generator is initialized, random numbers could be generated with rand(). The following 
example shows how to use srand() and rand(). The time() function, defined in <ctime>, returns 
the system time, usually encoded as the number of seconds since the system’s epoch. The epoch repre-
sents the beginning of time.

srand(static_cast<unsigned int>(time(nullptr)));
cout << rand() << endl;

A random number within a certain range could be generated with the following function:

int getRandom(int min, int max)
{
    return static_cast<int>(rand() % (max + 1UL - min)) + min;
}

The old C-style rand() function generates random numbers in the range 0 to RAND_MAX, which is 
defined by the standard to be at least 32,767. You cannot generate random numbers larger than 
RAND_MAX. On some systems, for example GCC, RAND_MAX is 2,147,483,647, which equals the maxi-
mum value of a signed integer. That’s why the formula in getRandom() adds 1UL, an unsigned long 
value, to max to prevent arithmetic overflow.

Additionally, the low-order bits of rand() are often not very random, which means that using the 
previous getRandom() function to generate a random number in a small range, such as 1 to 6, will 
not result in good randomness.

NOTE Software-based random number generators can never generate truly 
random numbers. They are therefore called pseudorandom number generators 
(PRNGs) because they rely on mathematical formulas to give the impression of 
randomness.



Random Number Engines ❘ 811

Besides generating bad-quality random numbers, the old srand() and rand() functions don’t offer 
much in terms of flexibility either. You cannot, for example, change the distribution of the generated 
random numbers. In conclusion, it’s highly recommended to stop using srand() and rand() and 
start using the classes from <random> explained in the upcoming sections.

RANDOM NUMBER ENGINES

The first component of the C++ random number generation library is a random number engine, 
responsible for generating the actual random numbers. As mentioned, everything is defined 
in <random>.

The following random number engines are available:

➤➤ random_device

➤➤ linear_congruential_engine

➤➤ mersenne_twister_engine

➤➤ subtract_with_carry_engine

The random_device engine is not a software-based generator; it is a special engine that requires a 
piece of hardware attached to your computer that generates truly non-deterministic random numbers, 
for example, by using the laws of physics. A classic mechanism measures the decay of a radioactive 
isotope by counting alpha-particles-per-time-interval, but there are many other kinds of physics-based 
random-number generators, including measuring the “noise” of reverse-biased diodes (thus eliminat-
ing the concerns about radioactive sources in your computer). The details of these mechanisms fall 
outside the scope of this book.

According to the specification for random_device, if no such device is attached to the computer, 
the library is free to use one of the software algorithms. The choice of algorithm is up to the 
library designer.

The quality of a random number generator is referred to as its entropy measure. The entropy() 
method of the random_device engine returns 0.0 if it is using a software-based pseudorandom num-
ber generator and returns a non-zero value if it is using a hardware device. The non-zero value is an 
estimate of the entropy of the hardware device.

Using a random_device engine is rather straightforward:

random_device rnd;
cout << "Entropy: " << rnd.entropy() << endl;
cout << "Min value: " << rnd.min()
     << ", Max value: " << rnd.max() << endl;
cout << "Random number: " << rnd() << endl;

A possible output of this program could be as follows:

Entropy: 32
Min value: 0, Max value: 4294967295
Random number: 3590924439
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A random_device is usually slower than a pseudorandom number engine. Therefore, if you need to 
generate a lot of random numbers, I recommend using a pseudorandom number engine and using a 
random_device to generate a seed for the pseudorandom number engine. This is demonstrated in the 
section “Generating Random Numbers” later in this chapter.

Next to the random_device engine, there are three pseudorandom number engines:

➤➤ Linear congruential engine: Requires a minimal amount of memory to store its state. The 
state is a single integer containing the last generated random number or the initial seed if no 
random number has been generated yet. The period of this engine depends on an algorithmic 
parameter and can be up to 264 but is usually less. For this reason, the linear congruential 
engine should not be used when you need a high-quality random number sequence.

➤➤ Mersenne twister: Of the three pseudorandom number engines, this one generates the highest 
quality of random numbers. The period of a Mersenne twister is a so-called Mersenne prime, 
which is a prime number one less than a power of two. This period is much bigger than the 
period of a linear congruential engine. The memory required to store the state of a Mersenne 
twister also depends on its parameters but is much larger than the single integer state of the 
linear congruential engine. For example, the predefined Mersenne twister mt19937 has a 
period of 219937−1, while the state contains 625 integers or 2.5 kilobytes. It is also one of the 
fastest engines.

➤➤ Subtract with carry engine: Requires a state of around 100 bytes; however, the quality of 
the generated random numbers is less than that of the numbers generated by the Mersenne 
twister, and it is also slower than the Mersenne twister.

The mathematical details of the engines and of the quality of random numbers fall outside the scope 
of this book. If you want to know more about these topics, you can consult a reference from the 
“Random Numbers” section in Appendix B.

The random_device engine is easy to use and doesn’t require any parameters. However, creating an 
instance of one of the three pseudorandom number generators requires you to specify a number of 
mathematical parameters, which can be daunting. The selection of parameters greatly  
influences the quality of the generated random numbers. For example, the definition of the 
mersenne_twister_engine class template looks like this:

template<class UIntType, size_t w, size_t n, size_t m, size_t r,
         UIntType a, size_t u, UIntType d, size_t s,
         UIntType b, size_t t, UIntType c, size_t l, UIntType f>
    class mersenne_twister_engine {...}

It requires 14 parameters. The linear_congruential_engine and subtract_with_carry_engine 
class templates also require a number of such mathematical parameters. For this reason, the stand-
ard defines a couple of predefined engines. One example is the mt19937 Mersenne twister, which is 
defined as follows:

using mt19937 = mersenne_twister_engine<uint_fast32_t, 32, 624, 397, 31,
    0x9908b0df, 11, 0xffffffff, 7, 0x9d2c5680, 15, 0xefc60000, 18,
    1812433253>;
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These parameters are all magic, unless you understand the details of the Mersenne twister algorithm. 
In general, you do not want to modify any of these parameters unless you are a specialist in the math-
ematics of pseudorandom number generators. Instead, I recommend using one of the predefined type 
aliases such as mt19937. A complete list of predefined engines is given in a later section.

RANDOM NUMBER ENGINE ADAPTERS

A random number engine adapter modifies the result of a random number engine you associate it 
with, which is called the base engine. This is an example of the adapter pattern (see Chapter 33, 
“Applying design patterns”). The following three adapter templates are defined:

template<class Engine, size_t p, size_t r> class discard_block_engine {...}
template<class Engine, size_t w, class UIntT> class independent_bits_engine {...}
template<class Engine, size_t k> class shuffle_order_engine {...}

The discard_block_engine adapter generates random numbers by discarding some of the values 
generated by its base engine. It requires three parameters: the engine to adapt, the block size p, and 
the used block size r. The base engine is used to generate p random numbers. The adapter then dis-
cards p-r of those numbers and returns the remaining r numbers.

The independent_bits_engine adapter generates random numbers with a given number of bits w 
by combining several random numbers generated by the base engine.

The shuffle_order_engine adapter generates the same random numbers that are generated by the 
base engine but delivers them in a different order. The template parameter k is the size of an internal 
table used by the adapter. A random number is randomly selected from this table upon request, and 
then replaced with a new random number generated by the base engine.

How these adapters internally work depends on mathematics and falls outside the scope of this book. 
Just as with random number engines, a number of predefined engine adapters are available. The next 
section gives an overview of the predefined engines and engine adapters.

PREDEFINED ENGINES AND ENGINE ADAPTERS

As mentioned earlier, it is not recommended to specify your own parameters for pseudorandom num-
ber engines and engine adapters, but instead to use one of the standard ones. C++ defines the follow-
ing predefined generators, all in <random>. They all have complicated template arguments, but it is 
not necessary to understand those arguments to be able to use them.

PREDEFINED GENERATOR CLASS TEMPLATE

minstd_rand0 linear_congruential_engine

minstd_rand linear_congruential_engine

mt19937 mersenne_twister_engine

mt19937_64 mersenne_twister_engine

continues
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PREDEFINED GENERATOR CLASS TEMPLATE

ranlux24_base subtract_with_carry_engine

ranlux48_base subtract_with_carry_engine

ranlux24 discard_block_engine

ranlux48 discard_block_engine

knuth_b shuffle_order_engine

default_random_engine Implementation-defined

The default_random_engine is compiler dependent.

The following section gives an example of how to use these predefined engines.

GENERATING RANDOM NUMBERS

Before you can generate any random number, you first need to create an instance of an engine. If you 
use a software-based engine, you also need to define a distribution. A distribution is a mathematical 
formula describing how numbers are distributed within a certain range. The recommended way to 
create an engine is to use one of the predefined engines discussed in the previous section.

The following example uses the predefined engine called mt19937, using a Mersenne twister engine. 
This is a software-based generator. Just as with the old rand() generator, a software-based engine 
should be initialized with a seed. The seed used with srand() was often the current time. In modern 
C++, it’s recommended to use a random_device to generate a seed and to use a time-based seed as a 
fallback in case the random_device does not have any entropy:

random_device seeder;
const auto seed { seeder.entropy() ? seeder() : time(nullptr) };
mt19937 engine { static_cast<mt19937::result_type>(seed) };

Next, a distribution is defined. This example uses a uniform integer distribution, for the range 1 
to 99. Distributions are explained in detail in the next section, but the uniform distribution is easy 
enough to use for this example:

uniform_int_distribution<int> distribution { 1, 99 };

Once the engine and distribution are defined, random numbers can be generated by calling the func-
tion call operator of the distribution and passing the engine as an argument. For this example, this is 
written as distribution(engine):

cout << distribution(engine) << endl;

As you can see, to generate a random number using a software-based engine, you always need to 
specify the engine and distribution. The std::bind() utility, introduced in Chapter 19, “Function 
Pointers, Function Objects, and Lambda Expressions,” and defined in <functional>, can be used to 
remove the need to specify both the distribution and the engine when generating a random number. 

TABLE (continued)
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The following example uses the same mt19937 engine and uniform distribution as the previous exam-
ple, but it defines generator by using std::bind() to bind engine as the first argument to dis-
tribution(). This way, you can call generator() without any argument to generate a new random 
number. The example then demonstrates the use of generator() in combination with the gener-
ate() algorithm to fill a vector of ten elements with random numbers. The generate() algorithm 
is discussed in Chapter 20, “Mastering Standard Library Algorithms,” and is defined in <algorithm>.

auto generator { bind(distribution, engine) };
 
vector<int> values(10);
generate(begin(values), end(values), generator);
 
for (auto i : values) { cout << i << "  "; }

NOTE Remember that the generate() algorithm overwrites existing elements 
and does not insert new elements. This means you first need to size the vector to 
hold the number of elements you need and then call the generate() algorithm. 
The previous example sizes the vector by specifying the size as argument to the 
constructor.

Even though you don’t know the exact type of generator, it’s still possible to pass generator to 
another function that wants to use that generator. You have several options: use a parameter of 
type std::function<int()> or use a function template. The previous example can be adapted 
to generate random numbers in a function called fillVector(). Here is an implementation using 
std::function:

void fillVector(vector<int>& values, const function<int()>& generator)
{
    generate(begin(values), end(values), generator);
}

Here is a function template version:

template <typename T>
void fillVector(vector<int>& values, const T& generator)
{
    generate(begin(values), end(values), generator);
}

This can be simplified using the C++20 abbreviated function template syntax:

void fillVector(vector<int>& values, const auto& generator)
{
    generate(begin(values), end(values), generator);
}

Finally, this function can be used as follows:

vector<int> values(10);
fillVector(values, generator);
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RANDOM NUMBER DISTRIBUTIONS

A distribution is a mathematical formula describing how numbers are distributed within a certain 
range. The random number generator library comes with the following distributions that can be used 
with pseudorandom number engines to define the distribution of the generated random numbers. It’s 
a compacted representation. The first line of each distribution is the name and class template param-
eters, if any. The next lines are a constructor for the distribution. Only one constructor for each distri-
bution is shown to give you an idea of the class. Consult a Standard Library Reference (see Appendix 
B) for a detailed list of all constructors and methods of each distribution.

These are the available uniform distributions:

template<class IntType = int> class uniform_int_distribution
    uniform_int_distribution(IntType a = 0,
                             IntType b = numeric_limits<IntType>::max());
template<class RealType = double> class uniform_real_distribution
    uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);

These are the available Bernoulli distributions (generate random Boolean values according to the 
discrete probability distribution):

class bernoulli_distribution
    bernoulli_distribution(double p = 0.5);
template<class IntType = int> class binomial_distribution
    binomial_distribution(IntType t = 1, double p = 0.5);
template<class IntType = int> class geometric_distribution
    geometric_distribution(double p = 0.5);
template<class IntType = int> class negative_binomial_distribution
    negative_binomial_distribution(IntType k = 1, double p = 0.5);

These are the available Poisson distributions (generate random non-negative integer values according 
to the discrete probability distribution):

template<class IntType = int> class poisson_distribution
    poisson_distribution(double mean = 1.0);
template<class RealType = double> class exponential_distribution
    exponential_distribution(RealType lambda = 1.0);
template<class RealType = double> class gamma_distribution
    gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
template<class RealType = double> class weibull_distribution
    weibull_distribution(RealType a = 1.0, RealType b = 1.0);
template<class RealType = double> class extreme_value_distribution
    extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);

These are the available normal distributions:

template<class RealType = double> class normal_distribution
    normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
template<class RealType = double> class lognormal_distribution
    lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
template<class RealType = double> class chi_squared_distribution
    chi_squared_distribution(RealType n = 1);
template<class RealType = double> class cauchy_distribution
    cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
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template<class RealType = double> class fisher_f_distribution
    fisher_f_distribution(RealType m = 1, RealType n = 1);
template<class RealType = double> class student_t_distribution
    student_t_distribution(RealType n = 1);

These are the available sampling distributions:

template<class IntType = int> class discrete_distribution
    discrete_distribution(initializer_list<double> wl);
template<class RealType = double> class piecewise_constant_distribution
    template<class UnaryOperation>
        piecewise_constant_distribution(initializer_list<RealType> bl,
            UnaryOperation fw);
template<class RealType = double> class piecewise_linear_distribution
    template<class UnaryOperation>
        piecewise_linear_distribution(initializer_list<RealType> bl,
            UnaryOperation fw);

Each distribution requires a set of parameters. Explaining all these mathematical parameters is 
outside the scope of this book. The rest of this section includes a couple of examples to explain the 
impact of a distribution on the generated random numbers.

Distributions are easiest to understand when you look at a graphical representation of them. For 
example, the following code generates one million random numbers between 1 and 99 and keeps 
track of how many times a certain number is randomly generated in a histogram. The counters are 
stored in a map where the key is a number between 1 and 99, and the value associated with a key is 
the number of times that that key has been selected randomly. After the loop, the results are written 
to a semicolon-separated values file (CSV), which can be opened in a spreadsheet application.

const unsigned int Start { 1 };
const unsigned int End { 99 };
const unsigned int Iterations { 1'000'000 };
 
// Uniform Mersenne Twister.
random_device seeder;
const auto seed { seeder.entropy() ? seeder() : time(nullptr) };
mt19937 engine { static_cast<mt19937::result_type>(seed) };
uniform_int_distribution<int> distribution { Start, End };
auto generator { bind(distribution, engine) };
map<int, int> histogram;
for (unsigned int i { 0 }; i < Iterations; ++i) {
    int randomNumber { generator() };
    // Search map for a key=randomNumber. If found, add 1 to the value associated
    // with that key. If not found, add the key to the map with value 1.
    ++(histogram[randomNumber]);
}
 
// Write to a CSV file.
ofstream of { "res.csv" };
for (unsigned int i { Start }; i <= End; ++i) {
    of << i << ";" << histogram[i] << endl;
}

The resulting data can then be used to generate a graphical representation. Figure 23-1 shows a graph 
of the generated histogram.
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The horizontal axis represents the range in which random numbers are generated. The graph clearly 
shows that all numbers in the range 1 to 99 are randomly chosen around 10,000 times and that the 
distribution of the generated random numbers is uniform across the entire range.

The example can be modified to generate random numbers according to a normal distribution instead 
of a uniform distribution. Only two small changes are required. First, you need to modify the creation 
of the distribution as follows:

normal_distribution<double> distribution { 50, 10 };

Because normal distributions use doubles instead of integers, you also need to modify the call to 
generator():

int randomNumber { static_cast<int>(generator()) };

Figure 23-2 shows a graphical representation of the random numbers generated according to this 
normal distribution.
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The graph clearly shows that most of the generated random numbers are around the center of the 
range. In this example, the value 50 is randomly chosen around 40,000 times, while values like 20 
and 80 are chosen only around 500 times.

SUMMARY

In this chapter, you learned how to use the C++ random number generation library provided by the 
Standard Library to generate good-quality random numbers. You also saw how you can manipulate 
the distribution of the generated numbers over a given range.

The next and last chapter of Part 3 of the book introduces a few smaller Standard Library features 
that are worth discussing.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 23-1: Write a loop asking the user if dice should be thrown or not. If yes, throw a 
die twice using a uniform distribution and print the two numbers to the console. If no, stop 
the program. Use the standard mt19937 Mersenne twister engine.

Exercise 23-2: Modify your solution to Exercise 23-1 to use a ranlux48 engine instead of the 
Mersenne twister.

Exercise 23-3: Modify your solution to Exercise 23-1. Instead of directly using the mt19937 
Mersenne twister engine, adapt the engine with a shuffle_order_engine adapter.

Exercise 23-4: Modify your solution to Exercise 23-1. Instead of using a uniform distribu-
tion, use a negative_binomial_distribution.

Exercise 23-5: Take the source code from earlier in this chapter used to generate histograms 
to make graphs of a distribution, and experiment a bit with different distributions. Try to 
plot the graphs in a spreadsheet application to see the effects of a distribution. The code can 
be found in the downloadable source code archive in the folder c23_code\01_Random. You 
can take either the 06_uniform_int_distribution.cpp or the 07_normal_distribution 
.cpp file depending on whether your distribution uses integers or doubles.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Additional Library Utilities

WHAT’S IN THIS CHAPTER?

➤➤ How to use the variant and any data types

➤➤ What tuples are and how to use them

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

This chapter discusses some additional library functionality provided by the C++ Standard 
Library that’s worth looking at. It starts the discussion with two more vocabulary types, 
variant and any, that complement the optional vocabulary type discussed in Chapter 1,  
“A Crash Course in C++ and the Standard Library.” The chapter finishes with a discussion of 
tuples, a generalization of pairs.

VOCABULARY TYPES

This section examines the vocabulary types variant and any.

variant
std::variant, defined in <variant>, can hold a single value of one of a given set of types. 
When you define a variant, you have to specify the types it can potentially contain. For  
example, the following code defines a variant that can contain an integer, a string, or a 
floating-point value, one at a time:

variant<int, string, float> v;

http://www.wiley.com/go/proc++5e
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The template type arguments for a variant must be unique; for example, variant<int,int> is 
invalid. A default-constructed variant contains a default-constructed value of its first type, int in 
the case of the variant v. If you want to be able to default construct a variant, you have to make 
sure that the first type of the variant is default constructible. For example, the following does not 
compile because Foo is not default constructible:

class Foo { public: Foo() = delete; Foo(int) {} };
class Bar { public: Bar() = delete; Bar(int) {} };
...
variant<Foo, Bar> v;

In fact, neither Foo nor Bar is default constructible. If you still want to be able to default construct 
such a variant, then you can use std::monostate, a well-behaved empty alternative, as the first 
type of the variant:

variant<monostate, Foo, Bar> v;

You can use the assignment operator to store something in a variant:

variant<int, string, float> v;
v = 12;
v = 12.5f;
v = "An std::string"s;

A variant can contain only one value at any given time. So, with these three assignment statements, 
first the integer 12 is stored in the variant, then the variant is modified to contain a single floating-
point value, and lastly, the variant is modified again to contain a single string value.

You can use the index() method to get the zero-based index of the value’s type that is currently 
stored in the variant, and you can use the std::holds_alternative() function template to figure 
out whether a variant currently contains a value of a certain type:

cout << "Type index: " << v.index() << endl;
cout << "Contains an int: " << holds_alternative<int>(v) << endl;

The output is as follows:

Type index: 1
Contains an int: 0

Use std::get<index>() or get<T>() to retrieve the value from a variant, where index is the zero-
based index of the type you want to retrieve, and T is the type you want to retrieve. These functions 
throw a bad_variant_access exception if you are using the index of a type, or a type, that does not 
match the current value in the variant:

cout << get<string>(v) << endl;
try {
    cout << get<0>(v) << endl;
} catch (const bad_variant_access& ex) {
    cout << "Exception: " << ex.what() << endl;
}

This is the output:

An std::string
Exception: bad variant access
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To avoid exceptions, use the std::get_if<index>() or get_if<T>() helper function. These func-
tions accept a pointer to a variant and return a pointer to the requested value, or nullptr on error:

string* theString { get_if<string>(&v) };
int* theInt { get_if<int>(&v) };
cout << "Retrieved string: " << (theString ? *theString : "null") << endl;
cout << "Retrieved int: " << (theInt ? *theInt : 0) << endl;

Here is the output:

Retrieved string: An std::string
Retrieved int: 0

There is an std::visit() helper function that you can use to apply the so-called visitor pattern  
to a variant. A visitor has to be a callable that can accept any type that may be stored in the  
variant. Suppose you have the following visitor class that defines a number of overloaded function 
call operators, one for each possible type in the variant:

class MyVisitor
{
    public:
        void operator()(int i) { cout << "int " << i << endl; }
        void operator()(const string& s) { cout << "string " << s << endl; }
        void operator()(float f) { cout << "float " << f << endl; }
};

You can use this with std::visit() as follows:

visit(MyVisitor{}, v);

The result is that the appropriate overloaded function call operator is called based on the current 
value stored in the variant. The output for this example is as follows:

string An std::string

A variant cannot store an array, and as with optional introduced in Chapter 1, “A Crash Course in 
C++ and the Standard Library,” it cannot store references. You can store either pointers or instances 
of reference_wrapper<T> or reference_wrapper<const T> (see Chapter 18, “Standard Library 
Containers”).

any
std::any, defined in <any>, is a class that can contain a single value of any type. You can create an 
instance with an any constructor or with the std::make_any() helper function. Once it is con-
structed, you can ask an any instance whether it contains a value and what the type of the contained 
value is. To get access to the contained value, you need to use any_cast(), which throws an excep-
tion of type bad_any_cast in the case of failure. Here is an example:

any empty;
any anInt { 3 };
any aString { "An std::string."s };
 
cout << "empty.has_value = " << empty.has_value() << endl;
cout << "anInt.has_value = " << anInt.has_value() << endl << endl;
 
cout << "anInt wrapped type = " << anInt.type().name() << endl;
cout << "aString wrapped type = " << aString.type().name() << endl << endl;

continues
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int theInt { any_cast<int>(anInt) };
cout << theInt << endl;
try {
    int test { any_cast<int>(aString) };
    cout << test << endl;
} catch (const bad_any_cast& ex) {
    cout << "Exception: " << ex.what() << endl;
}

The output is as follows. Note that the wrapped type of aString is compiler dependent.

empty.has_value = 0
anInt.has_value = 1
 
anInt wrapped type = int
aString wrapped type = class std::basic_string<char,struct std::char_
traits<char>,class std::allocator<char> >
 
3
Exception: Bad any_cast

You can assign a new value to an any instance and even assign a new value of a different type:

any something { 3 };              // Now it contains an integer.
something = "An std::string"s;    // Now the same instance contains a string.

Instances of any can be stored in Standard Library containers. This allows you to have heterogene-
ous data in a single container. The only downside is that you have to perform explicit any_casts to 
retrieve specific values, as in this example:

vector<any> v;
v.push_back(42);
v.push_back("An std::string"s);
 
cout << any_cast<string>(v[1]) << endl;

As with optional and variant, you cannot store references in an any instance. You can again store 
either pointers or instances of reference_wrapper<T> or reference_wrapper<const T>.

TUPLES

The std::pair class, defined in <utility> and introduced in Chapter 1, can store exactly two 
values, each with a specific type. The type of each value should be known at compile time. Here is a 
short reminder:

pair<int, string> p1 { 16, "Hello World" };
pair p2 { true, 0.123f };  // Using CTAD.
cout << format("p1 = ({}, {})", p1.first, p1.second) << endl;
cout << format("p2 = ({}, {})", p2.first, p2.second) << endl;

The output is as follows:

p1 = (16, Hello World)
p2 = (1, 0.123)

(continued)
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An std::tuple, defined in <tuple>, is a generalization of a pair. It allows you to store any number 
of values, each with its own specific type. Just like a pair, a tuple has a fixed size and fixed value 
types, which are determined at compile time.

A tuple can be created with a tuple constructor, specifying both the template types and the actual 
values. For example, the following code creates a tuple where the first element is an integer, the sec-
ond element is a string, and the last element is a Boolean:

using MyTuple = tuple<int, string, bool>;
MyTuple t1 { 16, "Test", true };

std::get<i>() is used to get the ith element from a tuple, where i is a zero-based index; that is, <0> 
is the first element of the tuple, <1> is the second element of the tuple, and so on. The value returned 
has the correct type for that index in the tuple:

cout << format("t1 = ({}, {}, {})", get<0>(t1), get<1>(t1), get<2>(t1)) << endl;
// Outputs: t1 = (16, Test, 1)

You can check that get<i>() returns the correct type by using typeid(), from <typeinfo>. 
The output of the following code confirms that the value returned by get<1>(t1) is indeed an 
std::string (as mentioned before, the exact string returned by typeid().name() is compiler 
dependent):

cout << "Type of get<1>(t1) = " << typeid(get<1>(t1)).name() << endl;
// Outputs: Type of get<1>(t1) = class std::basic_string<char,
//          struct std::char_traits<char>,class std::allocator<char> >

You can use the std::tuple_element class template to get the type of an element based on the ele-
ment’s index at compile time. tuple_element requires you to specify the type of the tuple (MyTuple 
in this case) and not an actual tuple instance like t1. Here is an example:

cout << "Type of element with index 2 = "
     << typeid(tuple_element<2, MyTuple>::type).name() << endl;
// Outputs: Type of element with index 2 = bool

You can also retrieve an element from a tuple based on its type with std::get<T>(), where T is the 
type of the element you want to retrieve instead of the index. The compiler generates an error if the 
tuple has several elements with the requested type. For example, you can retrieve the string element 
from t1 as follows:

cout << "String = " << get<string>(t1) << endl;
// Outputs: String = Test

Iterating over the values of a tuple is unfortunately not straightforward. You cannot write a simple 
loop and call something like get<i>(mytuple) because the value of i must be known at compile 
time. A possible solution is to use template metaprogramming, which is discussed in detail in  
Chapter 26, “Advanced Templates,” together with an example on how to print tuple values.

The size of a tuple can be queried with the std::tuple_size class template. As with  
tuple_element, tuple_size requires you to specify the type of the tuple, not an actual tuple:

cout << "Tuple Size = " << tuple_size<MyTuple>::value << endl;
// Outputs: Tuple Size = 3
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If you don’t know a tuple’s exact type, you can always use decltype() to query for its type 
as follows:

cout << "Tuple Size = " << tuple_size<decltype(t1)>::value << endl;
// Outputs: Tuple Size = 3

With class template argument deduction (CTAD) you can omit the template type parameters when 
constructing a tuple and let the compiler deduce them automatically based on the types of the argu-
ments passed to the constructor. For example, the following defines the same t1 tuple consisting of 
an integer, a string, and a Boolean. Note that you now have to specify "Test"s to make sure it’s an 
std::string:

tuple t1 { 16, "Test"s, true };

Because of the automatic deduction of types, you cannot use & to specify a reference. If you want  
to use class template argument deduction to generate a tuple containing a reference-to-non-const  
or a reference-to-const, then you need to use ref() or cref(), respectively, both defined in  
<functional>. For example, the following statements result in a tuple of type tuple<int,  
double&, const double&, string&>:

double d { 3.14 };
string str1 { "Test" };
tuple t2 { 16, ref(d), cref(d), ref(str1) };

To test the double reference in the t2 tuple, the following code first writes the value of the double 
variable to the console. The call to get<1>(t2) returns a reference to d because ref(d) is used for 
the second (index 1) tuple element. The second statement changes the value of the variable refer-
enced, and the last statement shows that the value of d is indeed changed through the reference stored 
in the tuple. Note that the third line fails to compile because cref(d) is used for the third tuple 
element; that is, it is a reference-to-const to d:

cout << "d = " << d << endl;
get<1>(t2) *= 2;
//get<2>(t2) *= 2;    // ERROR because of cref().
cout << "d = " << d << endl;
// Outputs: d = 3.14
//          d = 6.28

Without class template argument deduction, you can use the std::make_tuple() function template 
to create a tuple. Since it is a function template, it supports function template argument deduc-
tion and hence also allows you to create a tuple by only specifying the actual values. The types are 
deduced automatically at compile time. Here’s an example:

auto t2 { make_tuple(16, ref(d), cref(d), ref(str1)) };

Decompose Tuples
There are two ways in which you can decompose a tuple into its individual elements: structured 
bindings and std::tie().



Tuples ❘ 827

Structured Bindings
Structured bindings, available since C++17, make it easy to decompose a tuple into separate vari-
ables. For example, the following code defines a tuple consisting of an integer, a string, and a 
Boolean value, and then uses a structured binding to decompose it into three distinct variables:

tuple t1 { 16, "Test"s, true };
auto [i, str, b] { t1 };
cout << format("Decomposed: i = {}, str = \"{}\", b = {}", i, str, b) << endl;

You can also decompose a tuple into references, allowing you to modify the contents of the tuple 
through those references. Here’s an example:

auto& [i2, str2, b2] { t1 };
i2 *= 2;
str2 = "Hello World";
b2 = !b2;

With structured bindings, you cannot ignore specific elements while decomposing a tuple. If your 
tuple has three elements, then your structured binding needs three variables. If you want to ignore 
elements, you can use tie(), explained next.

tie
If you want to decompose a tuple without structured bindings, you can use the std::tie() utility 
function, which generates a tuple of references. The following example first creates a tuple consist-
ing of an integer, a string, and a Boolean value. It then creates three variables—an integer, a string, 
and a Boolean—and writes the values of those variables to the console. The tie(i, str, b) call 
creates a tuple containing a reference to i, a reference to str, and a reference to b. The assignment 
operator is used to assign tuple t1 to the result of tie(). Because the result of tie() is a tuple of 
references, the assignment actually changes the values in the three separate variables, as is shown by 
the output of the values after the assignment:

tuple t1 { 16, "Test"s, true };
int i { 0 };
string str;
bool b { false };
cout << format("Before: i = {}, str = \"{}\", b = {}", i, str, b) << endl;
tie(i, str, b) = t1;
cout << format("After: i = {}, str = \"{}\", b = {}", i, str, b) << endl;

The result is as follows:

Before: i = 0, str = "", b = false
After:  i = 16, str = "Test", b = true

With tie() you can ignore certain elements that you do not want to be decomposed. Instead of a 
variable name for the decomposed element, you use the special std::ignore value. For example, the 
string element of the t1 tuple can be ignored by replacing the tie() statement from the previous 
example with the following:

tie(i, ignore, b) = t1;
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Concatenation
You can use std::tuple_cat() to concatenate two tuples into one. In the following example, the 
type of t3 is tuple<int, string, bool, double, string>:

tuple t1 { 16, "Test"s, true };
tuple t2 { 3.14, "string 2"s };
auto t3 { tuple_cat(t1, t2) };

Comparisons
Tuples support all comparison operators. For the comparison operators to work, the element types 
stored in the tuple should support them as well. Here is an example:

tuple t1 { 123, "def"s };
tuple t2 { 123, "abc"s };
if (t1 < t2) {
    cout << "t1 < t2" << endl;
} else {
    cout << "t1 >= t2" << endl;
}

The output is as follows:

t1 >= t2

Tuple comparisons can be used to easily implement lexicographical comparison operators for custom 
types that have several data members. For example, suppose you have the following class with three 
data members:

class Foo
{
    public:
        Foo(int i, string s, bool b) : m_int { i }, m_str { move(s) }, m_bool { b }
        {
        }
    private:
        int m_int;
        string m_str;
        bool m_bool;
};

Correctly implementing a full set of comparison operators for this class is not trivial! However, with 
std::tie() and the C++20 three-way comparison operator (operator<=>) it becomes a simple one-
liner. The following is the implementation of an operator<=> method for the Foo class:

auto operator<=>(const Foo& rhs)
{
    return tie(m_int, m_str, m_bool) <=>
           tie(rhs.m_int, rhs.m_str, rhs.m_bool);
}

Here is an example of its use:

Foo f1 { 42, "Hello", false };
Foo f2 { 42, "World", false };
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cout << (f1 < f2) << endl;  // Outputs 1
cout << (f2 > f1) << endl;  // Outputs 1

make_from_tuple
std::make_from_tuple<T>() constructs an object of a given type T, passing the elements of a given 
tuple as arguments to the constructor of T. For example, suppose you have the following class:

class Foo
{
    public:
        Foo(string str, int i) : m_str { move(str) }, m_int { i } {}
    private:
        string m_str;
        int m_int;
};

You can use make_from_tuple() as follows:

tuple myTuple { "Hello world.", 42 };
auto foo { make_from_tuple<Foo>(myTuple) };

Technically, the argument to make_from_tuple() does not have to be a tuple, but it has to be 
something that supports std::get<>() and tuple_size. Both std::array and pair satisfy these 
requirements as well.

This function is not that practical for everyday use, but it comes in handy when writing generic code 
using templates and template metaprogramming.

apply
std::apply() calls a given callable (function, lambda expression, function object, and so on), pass-
ing the elements of a given tuple as arguments. Here is an example:

int add(int a, int b) { return a + b; }
...
cout << apply(add, tuple { 39, 3 }) << endl;

As with make_from_tuple(), this function is also more useful when writing generic code using tem-
plates and template metaprogramming than for everyday use.

SUMMARY

This chapter gave an overview of additional functionality provided by the C++ Standard Library. You 
learned how to use the variant and any vocabulary data types, which complement the optional 
vocabulary type. You also learned about tuples, which are a generalization of pairs.

This chapter concludes Part 3 of the book. The next part discusses some more advanced topics and 
starts with a chapter showing you how to customize and extend the functionality provided by the 
C++ Standard Library by implementing your own Standard Library–compliant algorithms and data 
structures.
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 24-1: Chapter 14, “Handling Errors,” explains error handling in C++ and explains 
that there are basically two major options: either you work with error codes or you work 
with exceptions. I recommend using exceptions for error handling, but for this exercise, you’ll 
use error codes. Write a simple Error class that just stores a single message, has a constructor 
to set the message, and has a getter to retrieve the message. Next, write a getData() function 
with a single parameter called fail. If fail is false, the function returns a vector of some 
data; otherwise, it returns an instance of Error. You are not allowed to use reference-to-non-
const output parameters. Test your implementation in your main() function.

Exercise 24-2: Most command-line applications accept command-line parameters. In most, if 
not all, of the sample code in this book the main function is simply main(). However, main() 
can also accept parameters: main(int argc, char** argv) where argc is the number of 
command-line parameters, and argv is an array of strings, one string for each parameter. 
Assume for this exercise that a command-line parameter is of the form name=value. Write 
a function that can parse a single parameter and that returns a pair containing the name of 
the parameter and a variant containing the value as a Boolean if the value can be parsed as 
a Boolean (true or false), an integer if the value can be parsed as an integer, or a string 
otherwise. To split the name=value string, you can use a regular expression (see Chapter 21, 
“String Localization and Regular Expressions”). To parse integers, you can use one of the 
functions explained in Chapter 2, “Working with Strings and String Views.” In your main() 
function, loop over all command-line parameters, parse them, and output the parsed results 
to the standard output using holds_alternative().

Exercise 24-3: Modify your solution to Exercise 24-2. Instead of using  
holds_alternative(), use a visitor to output the parsed results to the standard output.

Exercise 24-4: Modify your solution to Exercise 24-3 to use tuples instead of pairs.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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WHAT’S IN THIS CHAPTER?

➤➤ What allocators are

➤➤ How to extend the Standard Library by writing custom algorithms, 
containers, and iterators

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Chapters 16, “Overview of the C++ Standard Library,” 18, “Standard Library Containers,” and 
20, “Mastering Standard Library Algorithms,” show that the Standard Library contains a pow-
erful general-purpose collection of containers and algorithms. The information covered so far 
should be sufficient for most applications. However, those chapters show only the functionality of 
the library that is available out of the box. The Standard Library can be customized and extended 
however you like. For example, you can write your own Standard Library–compliant containers, 
algorithms, and iterators, compatible with existing Standard Library functionality. You can even 
specify your own memory allocation schemes for containers to use. This chapter provides a taste 
of these advanced features, primarily through the development of a directed_graph container.

NOTE Customizing and extending the Standard Library is rarely necessary. If 
you’re happy with the Standard Library containers and algorithms, you can skip 
this chapter. However, if you really want to understand the Standard Library, not 
just use it, give this chapter a chance. You should be comfortable with the operator-
overloading material in Chapter 15, “Overloading C++ Operators,” and because 
this chapter uses templates extensively, you should also be comfortable with the 
template material from Chapter 12, “Writing Generic Code with Templates,” 
before continuing.

http://www.wiley.com/go/proc++5e
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ALLOCATORS

Every Standard Library container takes an Allocator type as a template parameter, for which the 
default usually suffices. For example, the vector template definition looks like this:

template <class T, class Allocator = allocator<T>> class vector;

The container constructors then allow you to specify an object of type Allocator. This permits 
you to customize the way the containers allocate memory. Every memory allocation performed by a 
container is made with a call to the allocate() method of the Allocator object. Conversely, every 
deallocation is performed with a call to the deallocate() method of the Allocator object. The 
Standard Library provides a default Allocator class called std::allocator, defined in <memory>, 
which implements these methods as wrappers for operator new and operator delete.

Keep in mind that allocate() simply allocates a big-enough block of uninitialized memory and does 
not call any object constructor. Similarly, deallocate() simply frees the memory block and does  
not call any destructor. Once a memory block has been allocated, a placement new operator  
(see Chapter 15) can be used to construct an object in place. The following code snippet shows a 
contrived example. Chapter 29, “Writing Efficient C++,” shows a more realistic use of an allocator 
for the implementation of an object pool.

class MyClass {};
int main()
{
    // Create an allocator to use.
    allocator<MyClass> alloc;
    // Allocate uninitialized memory block for 1 instance of MyClass.
    auto* memory { alloc.allocate(1) };
    // Use placement new operator to construct a MyClass in place.
    new(memory) MyClass{};
    // Destroy MyClass instance.
    destroy_at(memory);
    // Deallocate memory block.
    alloc.deallocate(memory, 1);
    memory = nullptr;
}

If you want containers in your program to use a custom memory allocation and deallocation scheme, 
you can write your own Allocator class. There are several reasons for using custom allocators. For 
example, if the underlying allocator has unacceptable performance, there are alternatives that can be 
constructed. When OS-specific capabilities, such as shared memory segments, must be allocated, using 
custom allocators allows the use of Standard Library containers in those shared memory segments. 
The use of custom allocators is complex, and there are many potential problems if you are not care-
ful, so this should not be approached lightly.

Any class that provides allocate(), deallocate(), and several other required methods and type 
aliases can be used in place of the default allocator class.

C++17 introduced the concept of polymorphic memory allocators. Basically, the problem with 
the allocator for a container being specified as a template type parameter is that two containers 
that are similar but have different allocator types are completely different types. For example, two 
vector<int> containers with different Allocator template type parameters are different and so can-
not be assigned to one another.
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The polymorphic memory allocators, defined in <memory_resource> in the std::pmr namespace, 
help to solve this problem. The class std::pmr::polymorphic_allocator is a proper Allocator 
class because it satisfies all the allocator requirements, such as having an allocate() and  
deallocate() method. The allocation behavior of a polymorphic_allocator depends on the 
memory_resource it’s given during construction, and not on any template type parameters. As such, 
different polymorphic_allocators can behave in completely different ways when allocating and 
deallocating memory, even though they all have the same type, that is, polymorphic_allocator. 
The standard provides some built-in memory resources that you can use to initialize a polymorphic 
memory allocator: synchronized_pool_resource, unsynchronized_pool_resource, and  
monotonic_buffer_resource.

However, in my experience, both custom allocators and polymorphic memory allocators are rather 
advanced and rarely used features. I’ve never used them myself, so a detailed discussion falls outside 
the scope of this book. For more information, consult one of the books listed in Appendix B that 
specifically covers the C++ Standard Library.

EXTENDING THE STANDARD LIBRARY

The Standard Library includes many useful containers, algorithms, and iterators that you can use 
in your applications. It is impossible, however, for any library to include all possible utilities that all 
potential clients might need. Thus, the best libraries are extensible: they allow clients to adapt and 
add to the basic capabilities to obtain exactly the functionality they require. The Standard Library 
is inherently extensible because of its fundamental structure of separating data from the algorithms 
that operate on them. You can write your own containers that can work with the Standard Library 
algorithms by providing iterators that conform to the Standard Library guidelines. Similarly, you 
can write your own algorithms that work with iterators from the standard containers. Keep in mind, 
though, that you are not allowed to put your own containers and algorithms in the std namespace.

NOTE This book usually uses the convention to name functions and methods 
without any underscores and where each word of the name is capitalized, except 
for the first word, for example: getIndex(). However, this chapter talks about 
extending the Standard Library, hence it uses the naming conventions used by the 
Standard Library. This means function and method names are all lowercase with 
underscores separating the words, for example get_index(). Class names are also 
using the Standard Library naming conventions.

Why Extend the Standard Library?
If you sit down to write an algorithm or container in C++, you can either make it adhere to the 
Standard Library conventions or not. For simple containers and algorithms, it might not be worth the 
extra effort to follow the Standard Library requirements. However, for substantial code that you plan 
to reuse, the effort pays off. First, the code will be easier for other C++ programmers to understand, 
because you follow well-established interface guidelines. Second, you will be able to use your con-
tainer or algorithm with the other parts of the Standard Library (algorithms or containers) without 
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needing to provide special hacks or adapters. Finally, it will force you to employ the necessary rigor 
required to develop solid code.

Writing a Standard Library Algorithm
Chapters 16 and 20 describe a useful set of algorithms that is part of the Standard Library, but you 
will inevitably encounter situations in your programs for which you need new algorithms. When that 
happens, it is usually not difficult to write your own algorithm that works with Standard Library 
iterators just like the standard algorithms.

find_all()
Suppose that you want to find all elements, including their position, matching a predicate in a given 
range. The find() and find_if() algorithms are the most likely candidates, but each returns an 
iterator referring to only one element. You can use copy_if() to find all elements matching a given 
predicate, but it fills the output with copies of the found elements, so you lose their position. If you 
want to avoid copies, you can use copy_if() with a back_insert_iterator (see Chapter 17, 
“Understanding Iterators and the Ranges Library”) into a vector<reference_wrapper<T>>, but 
this does not give you the position of the found elements either. In fact, there is no standard algorithm 
to get iterators to all the elements matching a predicate. However, you can write your own version of 
this functionality called, for example, find_all().

The first task is to define the function prototype. You can follow the model established by  
copy_if(), that is, a function template with three template type parameters: the input iterator type, 
the output iterator type, and the predicate type. The parameters of the function are start and end 
iterators of the input sequence, a start iterator of the output sequence, and a predicate object. As with 
copy_if(), the algorithm returns an iterator into the output sequence that is one-past-the-last ele-
ment stored in the output sequence. Here is the prototype:

template <typename InputIterator, typename OutputIterator, typename Predicate>
OutputIterator find_all(InputIterator first, InputIterator last,
                        OutputIterator dest, Predicate pred);

Another option would be to omit the output iterator and return an iterator into the input sequence 
that iterates over all the matching elements in the input sequence. This would require you to write 
your own iterator class, which is discussed later in this chapter.

The next task is to write the implementation. The find_all() algorithm iterates over all elements in 
the input sequence, calls the predicate on each element, and stores iterators of matching elements in 
the output sequence. Here is the implementation:

template <typename InputIterator, typename OutputIterator, typename Predicate>
OutputIterator find_all(InputIterator first, InputIterator last,
                        OutputIterator dest, Predicate pred)
{
    while (first != last) {
        if (pred(*first)) {
            *dest = first;
            ++dest;
        }
        ++first;
    }
    return dest;
}
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Similar to copy_if(), the algorithm only overwrites existing elements in the output sequence, so 
make sure the output sequence is large enough to hold the result, or use an iterator adapter such as 
back_insert_iterator, as demonstrated in the following code. After finding all matching elements, 
the code counts the number of elements found, which is the number of iterators in matches. Then, it 
iterates through the result, printing each element.

vector vec { 3, 4, 5, 4, 5, 6, 5, 8 };
vector<vector<int>::iterator> matches;
 
find_all(begin(vec), end(vec), back_inserter(matches),
    [](int i){ return i == 5; });
 
cout << format("Found {} matching elements: ", matches.size()) << endl;
for (const auto& it : matches) {
    cout << format("{} at position {}", *it, distance(begin(vec), it)) << endl;
}

The output is as follows:

Found 3 matching elements:
5 at position 2
5 at position 4
5 at position 6

Writing a Standard Library Container
The C++ standard contains a list of requirements that any container must fulfill to qualify as a 
Standard Library container. Additionally, if you want your container to be sequential (like a vector), 
ordered associative (like a map), or unordered associative (like an unordered_map), it must conform 
to supplementary requirements.

My suggestion when writing a custom container is to write the basic container first, following the 
general Standard Library rules such as making it a class template, but without worrying too much yet 
about the specific details of Standard Library conformity. After developing the basic implementation, 
add iterator support so that it can work with the Standard Library framework. Next, add methods 
and type aliases to fulfill all basic container requirements, and finally, fulfill any additional container 
requirements. This chapter takes that approach to develop a directed graph data structure, also called 
a digraph.

A Basic Directed Graph
Certain C++ Standard Library containers definitely use a 
graph in their implementation, but the standard does not 
make any graph-like data structures available to the user. So, 
implementing your own graph sounds like a perfect example 
of writing your own Standard Library–compliant container.

Before starting with writing any code, let’s first take a look 
at what kind of data structure a directed graph is and how to 
represent its data in memory. Figure 25-1 shows a visual rep-
resentation of a directed graph example. Basically, a directed 
graph consists of a set of nodes, also called vertices, which are 

FIGURE 25-1 
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connected by edges. Additionally, every edge has a direction, indicated by the 
arrows, which is why it’s called a directed graph.

There are multiple ways to store such a data structure in memory, such as 
edge lists, adjacency matrices, and adjacency lists. This implementation uses 
adjacency lists. Nodes are stored in a vector with each node having an adja-
cency list listing its neighboring nodes. Let’s look at an example. Suppose 
you have the directed graph from Figure 25-2.

Representing this graph with adjacency lists results in the following data 
structure:

NODE ADJACENCY LIST

A B, C

B C

C

This can be stored as a vector where each element in the vector represents one row of the table; 
that is, each vector element represents a single node and its corresponding adjacency list. Let’s start 
with a basic implementation without worrying too much about Standard Library compliancy. This 
first section implements a simple, but fully functional, directed_graph. Note that this might not 
be the best or most performant implementation of a directed graph, but that’s not the point of this 
chapter. The point is to walk through the process of making a data structure following the Standard 
Library philosophy.

The graph_node Class Template
The directed_graph implementation uses the concept of nodes, so the first piece of code to imple-
ment is a data structure representing a single node of a graph. A node has a value and a list of 
adjacent nodes, stored as a set of indices to those adjacent nodes. Using a set makes sure that no 
duplicate adjacent indices are stored in the list. The class has constructors to construct a new  
graph_node for a given value, has value() methods to retrieve the value of the node, and supports 
equality operations. The definition is in a directed_graph:node module implementation  
partition file called graph_node.cpp, inside a namespace called details, and is not exported from 
the module, as users of directed_graphs should not directly use graph_nodes themselves. The 
directed_graph class template will need access to the list of adjacent nodes, so it is made a friend 
of graph_node. Here is the interface of graph_node. Note the use of the [[nodiscard]] attribute, 
introduced in Chapter  1, “A Crash Course in C++ and the Standard Library”:

module directed_graph:node;
...
namespace details
{
    template <typename T>
    class graph_node
    {

FIGURE 25-2 



Extending the Standard Library ❘ 839

        public:
            // Constructs a graph_node for the given value.
            graph_node(directed_graph<T>* graph, const T& t);
            graph_node(directed_graph<T>* graph, T&& t);
 
            // Returns a reference to the stored value.
            [[nodiscard]] T& value() noexcept;
            [[nodiscard]] const T& value() const noexcept;
 
            // C++20 defaulted operator==.
            bool operator==(const graph_node&) const = default; 
 
        private:
            friend class directed_graph<T>;
 
            // A pointer to the graph this node is in.
            directed_graph<T>* m_graph;
 
            // Type alias for the container type used to store the adjacency list.
            using adjacency_list_type = std::set<size_t>;
 
            // Returns a reference to the adjacency list.
            [[nodiscard]] adjacency_list_type& get_adjacent_nodes_indices();
            [[nodiscard]] const adjacency_list_type&
                get_adjacent_nodes_indices() const;
 
            T m_data;
            adjacency_list_type m_adjacentNodeIndices;
    };
}

The implementations of the methods are straightforward:

namespace details
{
    template <typename T>
    graph_node<T>::graph_node(directed_graph<T>* graph, const T& t)
        : m_graph { graph }, m_data { t } { }
 
    template <typename T>
    graph_node<T>::graph_node(directed_graph<T>* graph, T&& t)
        : m_graph { graph }, m_data { std::move(t) } { }
 
    template <typename T>
    T& graph_node<T>::value() noexcept { return m_data; }
 
    template <typename T>
    const T& graph_node<T>::value() const noexcept { return m_data; }
 
    template <typename T>
    typename graph_node<T>::adjacency_list_type&
        graph_node<T>::get_adjacent_nodes_indices()
    {
        return m_adjacentNodeIndices;
    }
 

continues
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    template <typename T>
    const typename graph_node<T>::adjacency_list_type&
        graph_node<T>::get_adjacent_nodes_indices() const
    {
        return m_adjacentNodeIndices;
    }
}

Notice that the m_graph data member is a pointer. You could modify the implementation to make it a 
reference. When doing that, you will have to provide an implementation for the copy/move construc-
tors and copy/move assignment operators as well, because the compiler-generated ones are automati-
cally deleted once you have a reference data member.

This implementation explicitly defaults operator==, which automatically defaults operator!=. This 
is a C++20 feature. If your compiler does not yet support this, you have to provide your own imple-
mentations for both operators that simply compare all data members.

Now that we have our graph_node implementation, let’s look at the directed_graph class itself.

The directed_graph Interface
A directed_graph supports three basic operations: insertion, deletion, and lookup; additionally,  
it is swappable. It is defined in a directed_graph module. Here is the public portion of the 
directed_graph class template:

export module directed_graph;
...
export template <typename T>
class directed_graph
{
    public:
        // For insert to be successful, the value shall not be in the graph yet.
        // Returns true if a new node with given value has been added to
        // the graph, and false if there was already a node with the given value.
        bool insert(const T& node_value);
        bool insert(T&& node_value);
 
        // Returns true if the given node value was erased, false otherwise.
        bool erase(const T& node_value);
 
        // Returns true if the edge was successfully created, false otherwise.
        bool insert_edge(const T& from_node_value, const T& to_node_value);
 
        // Returns true if the given edge was erased, false otherwise.
        bool erase_edge(const T& from_node_value, const T& to_node_value);
 
        // Removes all nodes from the graph.
        void clear() noexcept;
 
        // Returns a reference to the node with given index.
        // No bounds checking is done.
        T& operator[](size_t index);
        const T& operator[](size_t index) const;
 

(continued)



Extending the Standard Library ❘ 841

        // Two directed graphs are equal if they have the same nodes and edges.
        // The order in which the nodes and edges have been added does not
        // affect equality.
        bool operator==(const directed_graph& rhs) const;
        bool operator!=(const directed_graph& rhs) const;
 
        // Swaps all nodes between this graph and the given graph.
        void swap(directed_graph& other_graph) noexcept;
 
        // Returns the number of nodes in the graph.
        [[nodiscard]] size_t size() const noexcept;
 
        // Returns a set with the adjacent nodes of a given node.
        // If the given node does not exist, an empty set is returned.
        [[nodiscard]] std::set<T> get_adjacent_nodes_values(
            const T& node_value) const;
    private:
        // Implementation details not shown yet.
};

As you can see, the value type is a template type parameter, similar to the Standard Library  
vector container. This interface looks straightforward. Note that this interface does not define any 
user-defined copy and move constructors, copy and move assignment operators, and destructor; i.e., 
the class follows the Rule of Zero as discussed in Chapter  9, “Mastering Classes and Objects.”

Let’s now look at concrete implementations of the public methods.

The Implementation
After you finalize the directed_graph interface, you need to choose the implementation model. 
As discussed earlier, this implementation stores a directed graph as a list of nodes where each node 
contains its value and its set of adjacent node indices. Since the adjacent nodes lists contain indices to 
other nodes, nodes should be accessible based on their indices. Thus, a vector is the most  
appropriate container for storing the nodes. Each node is represented as a graph_node instance.  
Thus, the final structure is a vector of graph_nodes. Here are the first private members of the 
directed_graph class:

private:
    using nodes_container_type = std::vector<details::graph_node<T>>;
    nodes_container_type m_nodes;

Searching Nodes

Insert and delete operations on a graph require code to find an element with a given node value. 
Thus, it is helpful to have a private helper method that performs this task. Both a const and a  
non-const version are provided:

// Helper method to return an iterator to the given node, or the end iterator
// if the given node is not in the graph.
typename nodes_container_type::iterator findNode(const T& node_value);
typename nodes_container_type::const_iterator findNode(const T& node_value) const;
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The implementation of the non-const version of findNode() is as follows:

template <typename T>
typename directed_graph<T>::nodes_container_type::iterator
    directed_graph<T>::findNode(const T& node_value)
{
    return std::find_if(std::begin(m_nodes), std::end(m_nodes),
        [&node_value](const auto& node) { return node.value() == node_value; });
}

The body of the method is not too complicated. It uses the find_if() algorithm from the Standard 
Library, discussed in Chapter 20, to search all the nodes in the graph for a node with a value equal to 
the node_value parameter. If such a node is found in the graph, an iterator to that node is returned; 
otherwise, an end iterator is returned.

The syntax in the function header of this method is somewhat confusing, particularly the use of the 
typename keyword. You must use the typename keyword whenever you are using a type that is 
dependent on a template parameter. Specifically, the type nodes_container_type::iterator, which 
is vector<details::graph_node<T>>::iterator, is dependent on the T template parameter.

The const version of the method simply forwards to the non-const version to avoid code 
duplication:

template <typename T>
typename directed_graph<T>::nodes_container_type::const_iterator
    directed_graph<T>::findNode(const T& node_value) const
{
    return const_cast<directed_graph<T>*>(this)->findNode(node_value);
}

Inserting Nodes

insert() must first check whether a node with a given value already exists in the graph. If it doesn’t 
exist yet, a new node can be created for the given value. The public interface provides both an 
insert() method accepting a reference-to-const and an overload accepting an rvalue reference. 
The implementation of the former forwards the work to the rvalue-reference overload. The call to 
emplace_back() constructs a new graph_node by passing a pointer to the directed_graph and the 
node’s value to the graph_node constructor:

template <typename T>
bool directed_graph<T>::insert(T&& node_value)
{
    auto iter { findNode(node_value) };
    if (iter != std::end(m_nodes)) {
        // Value is already in the graph, return false.
        return false;
    }
    m_nodes.emplace_back(this, std::move(node_value));
    // Value successfully added to the graph, return true.
    return true;
}
 
template <typename T>
bool directed_graph<T>::insert(const T& node_value)
{
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    T copy { node_value };
    return insert(std::move(copy));
}

Inserting Edges

Once nodes have been added to the graph, edges between those nodes can be constructed to build 
up a directed graph. For this, an insert_edge() method is provided that requires two parameters: 
the value of the node from which the edge should start, and the value of the node to which the edge 
should point. The first thing the method does is to search the graph for the from and to nodes. If 
either one of them is not found in the graph, the method returns false. If both are found, then the 
code calculates the index of the node containing to_node_value by calling get_index_of_node(), 
a private helper function, and finally adds this index to the adjacency list of the node contain-
ing from_node_value. Remember from Chapter 18 that the insert() method on a set returns a 
pair<iterator,bool>, where the Boolean represents whether the insert was successful, which is 
why .second is used on the result of insert() in the return statement.

template <typename T>
bool directed_graph<T>::insert_edge(const T& from_node_value,
    const T& to_node_value)
{
    const auto from { findNode(from_node_value) };
    const auto to { findNode(to_node_value) };
    if (from == std::end(m_nodes) || to == std::end(m_nodes)) {
        return false;
    }
    const size_t to_index { get_index_of_node(to) };
    return from->get_adjacent_nodes_indices().insert(to_index).second;
}

The get_index_of_node() helper method is implemented as follows:

template <typename T>
size_t directed_graph<T>::get_index_of_node(
    const typename nodes_container_type::const_iterator& node) const noexcept
{
    const auto index { std::distance(std::cbegin(m_nodes), node) };
    return static_cast<size_t>(index);
}

Deleting Nodes

erase() follows the same pattern as insert(): it first attempts to find the given node by calling 
findNode(). If the node exists, it erases it from the graph. Otherwise, it does nothing. Removing an 
existing node from the graph is a two-step procedure:

1. Remove the to-be-deleted node from all adjacency lists of all other nodes.

2. Remove the actual node from the list of nodes.

For the first step, a private helper method remove_all_links_to() is provided. This method has 
to update remaining adjacent node indices to account for the removal of a node from the graph. First, 
it calculates node_index, the index of the given node in the vector of nodes. Then, it iterates over 
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the adjacency lists of all nodes, removing node_index from each list and updating the remaining 
indices to account for the shift in indices. One tricky part is that the adjacency list is a set, and a set 
does not allow modifications to its values. Instead, the second step in the implementation converts 
the set into a vector, uses a for_each() algorithm to update all indices that require updating, and 
finally clears the set and inserts the updated indices. Again, this might not be the most performant 
implementation, but, as mentioned earlier, that’s not the point of this discussion.

template <typename T>
void directed_graph<T>::remove_all_links_to(
    typename nodes_container_type::const_iterator node_iter)
{
    const size_t node_index { get_index_of_node(node_iter) };
 
    // Iterate over all adjacency lists of all nodes.
    for (auto&& node : m_nodes) {
        auto& adjacencyIndices { node.get_adjacent_nodes_indices() };
        // First, remove references to the to-be-deleted node.
        adjacencyIndices.erase(node_index);
        // Second, modify all adjacency indices to account for removal of a node.
        std::vector<size_t> indices(std::begin(adjacencyIndices),
            std::end(adjacencyIndices));
        std::for_each(std::begin(indices), std::end(indices),
            [node_index](size_t& index) {
                if (index > node_index) { --index; }
            });
        adjacencyIndices.clear();
        adjacencyIndices.insert(std::begin(indices), std::end(indices));
    }
}

With this helper method, the implementation of the actual erase() method becomes easy:

template <typename T>
bool directed_graph<T>::erase(const T& node_value)
{
    auto iter { findNode(node_value) };
    if (iter == std::end(m_nodes)) {
        return false;
    }
    remove_all_links_to(iter);
    m_nodes.erase(iter);
    return true;
}

Deleting Edges

The procedure to remove edges is quite similar to adding them. If either the from or to node is not 
found, nothing is done; otherwise, the index of the node with value to_node_value is removed from 
the adjacency list of the node with value from_node_value:

template <typename T>
bool directed_graph<T>::erase_edge(const T& from_node_value,
    const T& to_node_value)
{
    const auto from { findNode(from_node_value) };
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    const auto to { findNode(to_node_value) };
    if (from == std::end(m_nodes) || to == std::end(m_nodes)) {
        return false; // nothing to erase
    }
    const size_t to_index { get_index_of_node(to) };
    from->get_adjacent_nodes_indices().erase(to_index);
    return true;
}

Removing All Elements

clear() simply clears the entire graph:

template <typename T>
void directed_graph<T>::clear() noexcept
{
    m_nodes.clear();
}

Swapping Graphs

Since directed_graph has only one data member, a vector container, swapping two  
directed_graphs just means swapping their single data member:

template <typename T>
void directed_graph<T>::swap(directed_graph& other_graph) noexcept
{
    m_nodes.swap(other_graph.m_nodes);
}

The following stand-alone exported swap() function is also provided, which simply forwards to the 
public swap() method:

export template <typename T>
void swap(directed_graph<T>& first, directed_graph<T>& second)
{
    first.swap(second);
}

Accessing Nodes

The public interface of directed_graph supports accessing nodes based on their index with over-
loads of operator[]. Their implementations are straightforward. Just as with vector, the over-
loaded operator[] does not perform any bounds checking on the requested index:

template <typename T>
T& directed_graph<T>::operator[](size_t index)
{
    return m_nodes[index].value();
}
 
template <typename T>
const T& directed_graph<T>::operator[](size_t index) const
{
    return m_nodes[index].value();
}
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Comparing Graphs

Two directed_graphs are equal if and only if they contain the same set of nodes and the same set of 
edges between all the nodes. A slight complication arises from the fact that the two directed_graphs 
could have been created by adding nodes to them in slightly different order; as such, the implementa-
tion cannot just compare the m_nodes data member but instead needs to do a bit more work.

The code first checks the size of both directed_graphs. If the size is different, both graphs cannot 
be the same. If they have the same size, the code iterates over all the nodes of one of the graphs. For 
each node, it tries to find the same node in the other graph. If it doesn’t find such a node, the graphs 
are not equal. If it does find such a node, the adjacent node indices are converted to adjacent node 
values using a get_adjacent_nodes_values() helper method, and those values are then compared 
for equality.

template <typename T>
bool directed_graph<T>::operator==(const directed_graph& rhs) const
{
    if (m_nodes.size() != rhs.m_nodes.size()) { return false; }
 
    for (auto&& node : m_nodes) {
        const auto rhsNodeIter { rhs.findNode(node.value()) };
        if (rhsNodeIter == std::end(rhs.m_nodes)) { return false; }
 
        const auto adjacent_values_lhs {
            get_adjacent_nodes_values(node.get_adjacent_nodes_indices()) };
        const auto adjacent_values_rhs {rhs.get_adjacent_nodes_values(
            rhsNodeIter->get_adjacent_nodes_indices()) };
        if (adjacent_values_lhs != adjacent_values_rhs) { return false; }
    }
    return true;
}
 
template <typename T>
std::set<T> directed_graph<T>::get_adjacent_nodes_values(
    const typename details::graph_node<T>::adjacency_list_type& indices) const
{
    std::set<T> values;
    for (auto&& index : indices) { values.insert(m_nodes[index].value()); }
    return values;
}

The operator!= implementation just forwards to operator==:

template <typename T>
bool directed_graph<T>::operator!=(const directed_graph& rhs) const
{
    return !(*this == rhs);
}

Getting Adjacent Nodes

The public interface provides a get_adjacent_nodes_values() method accepting a node_value 
of type reference-to-const T as parameter. It returns a set containing the values of the nodes 
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adjacent to the given node. If the given node does not exist, an empty set is returned. The implemen-
tation uses the get_adjacent_nodes_values() overload accepting a list of indices as implemented 
in the previous section:

template <typename T>
std::set<T> directed_graph<T>::get_adjacent_nodes_values(const T& node_value) const
{
    auto iter { findNode(node_value) };
    if (iter == std::end(m_nodes)) { return std::set<T>{}; }
    return get_adjacent_nodes_values(iter->get_adjacent_nodes_indices());
}

Querying the Graph Size

Finally, the size() method returns the number of nodes in the graph:

template <typename T>
size_t directed_graph<T>::size() const noexcept
{
    return m_nodes.size();
}

Printing Graphs

Graphs can be printed in a standard format called DOT, a graph description language. There are 
tools available that understand DOT-formatted graphs and that can convert them into graphical rep-
resentations. To make it easier to test the directed_graph code, the following to_dot() conversion 
function can be used. An example of its use is given in the next section.

// Returns a given graph in DOT format.
export template <typename T>
std::wstring to_dot(const directed_graph<T>& graph, std::wstring_view graph_name)
{
    std::wstringstream wss;
    wss << format(L"digraph {} {{", graph_name.data()) << std::endl;
    for (size_t index { 0 }; index < graph.size(); ++index) {
        const auto& node_value { graph[index] };
        const auto adjacent_nodes { graph.get_adjacent_nodes_values(node_value) };
        if (adjacent_nodes.empty()) {
            wss << node_value << std::endl;
        } else {
            for (auto&& node : adjacent_nodes) {
                wss << format(L"{} -> {}", node_value, node) << std::endl;
            }
        }
    }
    wss << "}" << std::endl;
    return wss.str();
}
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Using the Basic Directed Graph
We have now completed the full implementation of a basic directed graph class. It’s high time 
to give this class a test drive. Here is a small program demonstrating the basic directed_graph 
class template:

directed_graph<int> graph;
// Insert some nodes and edges.
graph.insert(11);
graph.insert(22);
graph.insert(33);
graph.insert(44);
graph.insert(55);
graph.insert_edge(11, 33);
graph.insert_edge(22, 33);
graph.insert_edge(22, 44);
graph.insert_edge(22, 55);
graph.insert_edge(33, 44);
graph.insert_edge(44, 55);
wcout << to_dot(graph, L"Graph1");
 
// Remove an edge and a node.
graph.erase_edge(22, 44);
graph.erase(44);
wcout << to_dot(graph, L"Graph1");
 
// Print the size of the graph.
cout << "Size: " << graph.size() << endl;
 

The output is as follows:

digraph Graph1 {
11 -> 33
22 -> 33
22 -> 44
22 -> 55
33 -> 44
44 -> 55
55
}
digraph Graph1 {
11 -> 33
22 -> 33
22 -> 55
33
55
}
Size: 4

Making directed_graph a Standard Library Container
The basic directed_graph implemented in the previous sections follows the spirit, but not the letter, 
of the Standard Library. For most purposes, the preceding implementation is good enough. However, 
if you want to use the Standard Library algorithms on your directed_graph, you must do a bit 
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more work. The C++ standard specifies methods and type aliases that a data structure must provide 
to qualify as a Standard Library container.

Required Type Aliases
The C++ standard requires that every Standard Library container provides the following public 
type aliases:

TYPE NAME DESCRIPTION

value_type The element type stored in the container

reference A reference to the element type stored in the container

const_reference A reference-to-const to the element type stored in the container

iterator The type for iterating over elements of the container

const_iterator A version of iterator for iterating over const elements of the container

size_type A type that can represent the number of elements in the container; this is 
usually just size_t (from <cstddef>)

difference_type A type that can represent the difference of two iterators for the 
container; this is usually just ptrdiff_t (from <cstddef>)

Here are the definitions for the directed_graph class template of all these type aliases except  
iterator and const_iterator. Writing iterators is covered in detail later in this chapter.

export template <typename T>
class directed_graph
{
    public:
        using value_type = T;
        using reference = value_type&;
        using const_reference = const value_type&;
        using size_type = size_t;
        using difference_type = ptrdiff_t;
        // Remainder of class definition omitted for brevity.
};

With these type aliases, some methods can be slightly modified. Here are the earlier definitions for 
operator[]:

T& operator[](size_t index);
const T& operator[](size_t index) const;

With the new type aliases, these can be written as follows:

reference operator[](size_type index);
const_reference operator[](size_type index) const;
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Required Methods
In addition to the obligatory type aliases, every container must provide the following methods:

METHOD DESCRIPTION WORST-CASE  

COMPLEXITY

Default constructor Constructs an empty container Constant

Copy constructor Performs a deep copy of the container Linear

Move constructor Performs a move constructing operation Constant

Copy assignment operator Performs a deep copy of the container Linear

Move assignment operator Performs a move assignment operation Constant

Destructor Destroys dynamically allocated memory; 
this method calls the destructor on all 
elements left in the container

Linear

iterator begin();

const_iterator

    begin() const;

Returns an iterator referring to the first 
element in the container

Constant

iterator end();

const_iterator

    end() const;

Returns an iterator referring to one-
past-the-last element in the container

Constant

const_iterator

    cbegin() const;

Returns a const iterator referring to the 
first element in the container

Constant

const_iterator

    cend() const;

Returns a const iterator referring 
to one-past-the-last element in 
the container

Constant

operator==

operator!=

Comparison operators that compare 
two containers

Linear

void swap(Container&)

    noexcept;

Swaps the contents of the container 
passed to the method with the object 
on which the method is called

Constant

size_type size() const; Returns the number of elements in 
the container

Constant

size_type max_size() const; Returns the maximum number of 
elements the container can hold

Constant

bool empty() const; Returns whether the container has 
any elements

Constant
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As discussed earlier, the directed_graph implementation follows the rule of zero (see Chapter 9); 
that is, it does not need an explicit copy/move constructor, copy/move assignment operator, or 
destructor.

The following code snippet shows the declarations of the size(), max_size(), and empty() meth-
ods. The iterator-related methods, begin(), end(), cbegin(), and cend(), are covered in the next 
section on writing iterators.

export template <typename T>
class directed_graph
{
    public:
        [[nodiscard]] size_type size() const noexcept;
        [[nodiscard]] size_type max_size() const noexcept;
        [[nodiscard]] bool empty() const noexcept;
        // Other methods omitted for brevity.
};

The implementations of these three methods are easy because they can simply forward to the similarly 
named methods of the m_nodes container. Note that size_type is one of the type aliases defined in 
the class template. Because it is a member of the class template, such a return type in the implementa-
tion must be fully qualified with typename directed_graph<T>.

template <typename T>
typename directed_graph<T>::size_type directed_graph<T>::size() const noexcept
{
    return m_nodes.size();
}
 
template <typename T>
typename directed_graph<T>::size_type directed_graph<T>::max_size() const noexcept
{
    return m_nodes.max_size();
}
 
template <typename T>
bool directed_graph<T>::empty() const noexcept
{
    return m_nodes.empty();
}

The current implementation of directed_graph has operator[] to get access to a node based on its 
index. This operator, just as with operator[] for vector, does not perform any bounds checking. Pass-
ing an out-of-bounds index could make your application crash. As for vector, directed_graph can be 
augmented with at() methods that do bounds checking and that throw an std::out_of_range  
exception if the passed index is out of bounds. Here are the definitions:

reference at(size_type index);
const_reference at(size_type index) const;

The implementations just forward to the m_nodes vector:

template <typename T>
typename directed_graph<T>::reference
    directed_graph<T>::at(size_type index) 
{

continues
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    return m_nodes.at(index).value();
}
 
template <typename T>
typename directed_graph<T>::const_reference
    directed_graph<T>::at(size_type index) const
{
    return m_nodes.at(index).value();
}

Writing an Iterator
The most important container requirement is the iterator. To work with the generic algorithms, every 
container must provide an iterator for accessing the elements in the container. Your iterator should 
generally provide overloaded operator* and operator->, plus some other operations depending 
on its specific behavior. As long as your iterator provides the basic iteration operations, everything 
should be fine.

The first decision to make about your iterator is what kind it will be: forward, bidirectional, or ran-
dom access. Bidirectional iterator support seems like a good choice for a directed_graph iterator. 
That means you must provide operator++, operator--, operator==, and operator!=. Another 
option would be to implement random-access iterators for directed_graph, which involves adding 
the operators +, -, +=, -=, <, >, <=, >=, and []. This could be a good exercise to practice writing itera-
tors. Consult Chapter 17 for more details on the requirements for the different iterators.

The second decision is how to order the elements of your container. The directed_graph is 
unsorted, so iterating in a sorted order would not be efficient. Instead, the directed_graph iterator 
can just step through the nodes in the order in which they were added to the graph.

The third decision is how to represent your iterator internally. The implementation is usually quite 
dependent on the internal implementation of the container. The first purpose of an iterator is to refer 
to a single element in the container. In the case of a directed_graph, all nodes are stored in the 
m_nodes vector, so perhaps a directed_graph iterator can be a wrapper around a vector iterator 
referring to the element in question.

Once you’ve chosen your implementation, you must decide on a consistent representation for the end 
iterator. Recall that the end iterator should really be the “past-the-end” marker: the iterator  
that’s reached by applying ++ to an iterator referring to the final element in the container. A 
directed_graph iterator can use as its end iterator the end iterator of the m_nodes vector.

Finally, a container needs to provide both const and non-const iterators. A non-const iterator must 
be convertible to a const iterator. This implementation defines a const_directed_graph_iterator 
class template with directed_graph_iterator deriving from it.

The const_directed_graph_iterator Class Template

Given the decisions made in the previous section, it’s time to define the  
const_directed_graph_iterator class template. The first thing to note is that each const_
directed_graph_iterator object is an iterator for a specific instantiation of directed_graph. 
To provide this one-to-one mapping, the const_directed_graph_iterator must also be a class 
template with the directed graph type as a template type parameter called DirectedGraph.

(continued)
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The main question is how to conform to the bidirectional iterator requirements. Recall that anything 
that behaves like an iterator is an iterator. Your iterator is not required to derive from another class 
to qualify as a bidirectional iterator. However, if you want your iterator to be usable by the generic 
algorithms, you must specify its traits. Chapter 17 explains that iterator_traits is a class  
template that defines, for each iterator type, five type aliases: value_type, difference_type,  
iterator_category, pointer, and reference. The iterator_traits class template could be par-
tially specialized for a new iterator type if you want. Alternatively, the default implementation of the 
iterator_traits class template just grabs the five type aliases out of the iterator itself. Thus, you 
can simply define those type aliases directly for your iterator. The const_directed_graph_iterator 
is a bidirectional iterator, so you specify bidirectional_iterator_tag as the iterator  
category. Other legal iterator categories are input_iterator_tag, output_iterator_tag,  
forward_iterator_tag, random_access_iterator_tag, and contiguous_iterator_tag 
(C++20). A contiguous iterator is a random-access iterator for which adjacent elements are also 
adjacent in memory. For the const_directed_graph_iterator, the element type (value_type) is 
typename DirectedGraph::value_type.

NOTE In the past, it was recommended to derive custom iterators from the 
std::iterator class template, defined in <iterator>. This class template has 
been deprecated and should not be used anymore.

Here is the const_directed_graph_iterator class template definition:

template <typename DirectedGraph>
class const_directed_graph_iterator
{
    public:
        using value_type = typename DirectedGraph::value_type;
        using difference_type = ptrdiff_t;
        using iterator_category = std::bidirectional_iterator_tag;
        using pointer = const value_type*;
        using reference = const value_type&;
        using iterator_type =
            typename DirectedGraph::nodes_container_type::const_iterator;
 
        // Bidirectional iterators must supply a default constructor.
        // Using an iterator constructed with the default constructor
        // is undefined, so it doesn't matter how it's initialized.
        const_directed_graph_iterator() = default;
 
        // No transfer of ownership of graph.
        const_directed_graph_iterator(iterator_type it,
            const DirectedGraph* graph);
 
        reference operator*() const;
 
        // Return type must be something to which -> can be applied.
        // So, return a pointer.
        pointer operator->() const;
 

continues
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        const_directed_graph_iterator& operator++();
        const_directed_graph_iterator operator++(int);
 
        const_directed_graph_iterator& operator--();
        const_directed_graph_iterator operator--(int);
 
        // C++20 defaulted operator==.
        bool operator==(const const_directed_graph_iterator&) const = default;
 
    protected:
        friend class directed_graph<value_type>;
 
        iterator_type m_nodeIterator;
        const DirectedGraph* m_graph { nullptr };
 
        // Helper methods for operator++ and operator--
        void increment();
        void decrement();
};

Consult Chapter 15 for details on operator overloading if the definitions and implementations 
(shown in the next section) of the overloaded operators confuse you. The const_directed_ 
graph_iterator implementation does not need copy/move constructors and copy/move assignment 
operators, as the default behavior is what we want. The class also does not need an explicit destruc-
tor, as the default behavior, i.e., not deleting m_graph, is exactly what we want. Hence, this class also 
follows the rule of zero.

The const_directed_graph_iterator Method Implementations

The const_directed_graph_iterator constructor initializes the two data members:

template <typename DirectedGraph>
const_directed_graph_iterator<DirectedGraph>::const_directed_graph_iterator(
    iterator_type it, const DirectedGraph* graph)
    : m_nodeIterator { it }, m_graph { graph } { }

The default constructor is defaulted so that clients can declare const_directed_graph_iterator 
variables without initializing them. An iterator constructed with the default constructor does not need 
to refer to any value, and attempting any operations on it is allowed to have undefined results.

The implementations of the dereferencing operators are concise but can look tricky. Chapter 15 
explains that operator* and -> are asymmetric:

➤➤ operator* returns a reference to the actual underlying value, which in this case is the 
element to which the iterator refers.

➤➤ operator-> must return something to which the arrow operator can be applied again, and 
thus returns a pointer to the element. The compiler then applies -> to the pointer, which 
results in accessing a field or method of the element.

// Return a reference to the actual element.
template <typename DirectedGraph>
typename const_directed_graph_iterator<DirectedGraph>::reference
    const_directed_graph_iterator<DirectedGraph>::operator*() const
{

(continued)
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    return m_nodeIterator->value();
}
 
// Return a pointer to the actual element, so the compiler can
// apply -> to it to access the actual desired field.
template <typename DirectedGraph>
typename const_directed_graph_iterator<DirectedGraph>::pointer
    const_directed_graph_iterator<DirectedGraph>::operator->() const
{
    return &(m_nodeIterator->value());
}

The increment operators are implemented as follows. They defer the actual incrementing to the 
increment() helper method. The decrement operators are not shown as they are implemented 
analogously.

// Defer the details to the increment() helper.
template <typename DirectedGraph>
const_directed_graph_iterator<DirectedGraph>&
    const_directed_graph_iterator<DirectedGraph>::operator++()
{
    increment();
    return *this;
}
 
// Defer the details to the increment() helper.
template <typename DirectedGraph>
const_directed_graph_iterator<DirectedGraph>
    const_directed_graph_iterator<DirectedGraph>::operator++(int)
{
    auto oldIt { *this };
    increment();
    return oldIt;
}

Incrementing a const_directed_graph_iterator tells it to refer to the next element in the con-
tainer, while decrementing it tells it to refer to the previous element. Since the directed_graph 
implementation uses a vector to store its nodes, incrementing and decrementing is easy.

// Behavior is undefined if m_nodeIterator already refers to the past-the-end
// element, or is otherwise invalid.
template <typename DirectedGraph>
void const_directed_graph_iterator<DirectedGraph>::increment()
{
    ++m_nodeIterator;
}
 
// Behavior is undefined if m_nodeIterator already refers to the first
// element, or is otherwise invalid.
template <typename DirectedGraph>
void const_directed_graph_iterator<DirectedGraph>::decrement()
{
    --m_nodeIterator;
}
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Iterators are not required to be any safer than raw pointers, so error-checking for things like incre-
menting an iterator already at the end is not required.

If your compiler does not yet have support for explicitly defaulted operator== (C++20), then you 
can provide your own implementations for operator== and != as follows. They just compare each of 
the two data members of the objects:

template <typename DirectedGraph>
bool const_directed_graph_iterator<DirectedGraph>::operator==(
    const const_directed_graph_iterator<DirectedGraph>& rhs) const
{
    // All fields, including the directed_graph to which the iterators refer,
    // must be equal.
    return (m_graph == rhs.m_graph && m_nodeIterator == rhs.m_nodeIterator);
}
 
template <typename DirectedGraph>
bool const_directed_graph_iterator<DirectedGraph>::operator!=(
    const const_directed_graph_iterator<DirectedGraph>& rhs) const
{
    return !(*this == rhs);
}

Note that the iterator_type type alias of const_directed_graph_iterator uses the private 
nodes_container_type type alias of directed_graph. Thus, the directed_graph class template 
must declare const_directed_graph_iterator to be a friend:

export template <typename T>
class directed_graph
{
    // Other methods omitted for brevity.
    private:
        friend class const_directed_graph_iterator<directed_graph>;
};

The directed_graph_iterator Class Template

The directed_graph_iterator class template derives from const_directed_graph_iterator. It 
does not need to override operator==, increment(), and decrement() because the base class ver-
sions are just fine. The directed_graph_iterator definition is as follows. Comments are omitted, 
as they are the same as the comments in the base class. The following are the main differences with 
const_directed_graph_iterator:

➤➤ The pointer, reference, and iterator_type type aliases are non-const.

➤➤ operator* and operator-> are not marked as const.

➤➤ The return types of the ++ and -- operators are different.

template <typename DirectedGraph>
class directed_graph_iterator : public const_directed_graph_iterator<DirectedGraph>
{
    public:
        using value_type = typename DirectedGraph::value_type;
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        using difference_type = ptrdiff_t;
        using iterator_category = std::bidirectional_iterator_tag;
        using pointer = value_type*;
        using reference = value_type&;
        using iterator_type =
            typename DirectedGraph::nodes_container_type::iterator;
 
        directed_graph_iterator() = default;
        directed_graph_iterator(iterator_type it, const DirectedGraph* graph);
 
        reference operator*();
        pointer operator->();
 
        directed_graph_iterator& operator++();
        directed_graph_iterator operator++(int);
 
        directed_graph_iterator& operator--();
        directed_graph_iterator operator--(int);
};

The directed_graph_iterator Method Implementations

The implementations of the directed_graph_iterator methods are rather straightforward. The 
constructor just calls the base class template constructor. operator* and -> use const_cast to 
return a non-const type. operator++ and -- just use increment() and decrement() from the base 
class template, but return a directed_graph_iterator instead of a const_directed_graph_ 
iterator. Note that one of the vagaries of C++ is that the C++ name lookup rules require you to 
explicitly use this-> or const_directed_graph_iterator<DirectedGraph>:: to refer to data 
members and methods in the base class template.

template <typename DirectedGraph>
directed_graph_iterator<DirectedGraph>::directed_graph_iterator(
    iterator_type it, const DirectedGraph* graph)
    : const_directed_graph_iterator<DirectedGraph> { it, graph } { }
 
// Return a reference to the actual element.
template <typename DirectedGraph>
typename directed_graph_iterator<DirectedGraph>::reference
    directed_graph_iterator<DirectedGraph>::operator*()
{
    return const_cast<reference>(this->m_nodeIterator->value());
}
 
// Return a pointer to the actual element, so the compiler can
// apply -> to it to access the actual desired field.
template <typename DirectedGraph>
typename directed_graph_iterator<DirectedGraph>::pointer
    directed_graph_iterator<DirectedGraph>::operator->()
{
    return const_cast<pointer>(&(this->m_nodeIterator->value()));
}
 

continues
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// Defer the details to the increment() helper in the base class.
template <typename DirectedGraph>
directed_graph_iterator<DirectedGraph>&
    directed_graph_iterator<DirectedGraph>::operator++()
{
    this->increment();
    return *this;
}
 
// Defer the details to the increment() helper in the base class.
template <typename DirectedGraph>
directed_graph_iterator<DirectedGraph>
    directed_graph_iterator<DirectedGraph>::operator++(int)
{
    auto oldIt { *this };
    this->increment();
    return oldIt;
}
// operator-- not shown as the implementation is analogous to operator++.

Just as with const_directed_graph_iterator, the directed_graph class template must declare 
directed_graph_iterator to be a friend.

Iterator Type Aliases and Access Methods

The final piece involved in providing iterator support for directed_graph is to supply the necessary 
type aliases in the directed_graph class template, and to write the begin(), end(), cbegin(), and 
cend() methods. The type aliases and method prototypes look like this:

export template <typename T>
class directed_graph
{
    public:
        // Other type aliases omitted for brevity.
        using iterator = const_directed_graph_iterator<directed_graph>;
        using const_iterator = const_directed_graph_iterator<directed_graph>;
 
        // Iterator methods.
        iterator begin() noexcept;
        iterator end() noexcept;
        const_iterator begin() const noexcept;
        const_iterator end() const noexcept;
        const_iterator cbegin() const noexcept;
        const_iterator cend() const noexcept;
        // Remainder of class definition omitted for brevity.
};

Note that both iterator and const_iterator are type aliases for const_directed_graph_ 
iterator, which means users cannot modify the values to which directed_graph iterators refer. 
This follows the same principle as std::set in which you can also not modify elements. It is a 
requirement due to the current implementation of directed_graph because it uses indices in the 
adjacency lists. If the implementation is modified to become tolerant to modifications to nodes, then 
the iterator type alias could become a directed_graph_iterator.

(continued)
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The directed_graph class template stores all its nodes in a simple vector. As such, begin() and 
end() can simply forward their work to the identically named methods on vector and wrap those 
results in an iterator, a type alias for const_directed_graph_iterator:

template <typename T>
typename directed_graph<T>::iterator
    directed_graph<T>::begin() noexcept
{
    return iterator { std::begin(m_nodes), this };
}
 
template <typename T>
typename directed_graph<T>::iterator
    directed_graph<T>::end() noexcept
{
    return iterator { std::end(m_nodes), this };
}

The implementations of the const versions of begin() and end() use Scott Meyers’  
const_cast() pattern (see Chapter 9) to call the non-const versions:

template <typename T>
typename directed_graph<T>::const_iterator
    directed_graph<T>::begin() const noexcept
{
    return const_cast<directed_graph*>(this)->begin();
}
 
template <typename T>
typename directed_graph<T>::const_iterator
    directed_graph<T>::end() const noexcept
{
    return const_cast<directed_graph*>(this)->end();
}

The cbegin() and cend() methods forward the request to the const versions of begin() 
and end():

template <typename T>
typename directed_graph<T>::const_iterator
    directed_graph<T>::cbegin() const noexcept { return begin(); }
 
template <typename T>
typename directed_graph<T>::const_iterator
    directed_graph<T>::cend() const noexcept { return end(); }

Modifying Other Methods to Use Iterators

Now that directed_graph supports iterators, other methods can be slightly modified to work with 
iterators so that they follow the Standard Library guidelines. Let’s look at the insert() methods 
first. In the earlier basic implementation, these are defined as follows:

// For an insert to be successful, the value shall not be in the graph yet. 
// Returns true if a new node with given value has been added to

continues
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// the graph, and false if there was already a node with the given value.
bool insert(const T& node_value);
bool insert(T&& node_value);

To follow more closely the spirit of the Standard Library, these can be modified to return an 
std::pair<iterator, bool> where the Boolean is true if the element was added to the graph, and 
false if the element was already in the graph. The iterator of the pair refers to the newly added ele-
ment or the element that was already in the graph.

std::pair<iterator, bool> insert(const T& node_value);
std::pair<iterator, bool> insert(T&& node_value);

The implementations are as follows. The changes compared to the version returning a simple bool 
are highlighted.

template <typename T>
std::pair<typename directed_graph<T>::iterator, bool>
    directed_graph<T>::insert(const T& node_value)
{
    T copy { node_value };
    return insert(std::move(copy));
}
 
template <typename T>
std::pair<typename directed_graph<T>::iterator, bool>
    directed_graph<T>::insert(T&& node_value)
{
    auto iter { findNode(node_value) };
    if (iter != std::end(m_nodes)) {
        // Value is already in the graph.
        return { iterator { iter, this }, false };
    }
    m_nodes.emplace_back(this, std::move(node_value));
    // Value successfully added to the graph.
    return { iterator { --std::end(m_nodes), this }, true };
}

Additionally, overloads of insert() are provided that accept an iterator hint. This hint is useless for 
a directed_graph, but it is provided for symmetry with other Standard Library containers, such as 
std::set. The hint is ignored, and it merely calls the version of insert() without the hint.

template <typename T>
typename directed_graph<T>::iterator
    directed_graph<T>::insert(const_iterator hint, const T& node_value)
{
    // Ignore the hint, just forward to another insert().
    return insert(node_value).first;
}
 
template <typename T>
typename directed_graph<T>::iterator
    directed_graph<T>::insert(const_iterator hint, T&& node_value)
{
    // Ignore the hint, just forward to another insert().
    return insert(std::move(node_value)).first;
}

(continued)
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A last version of insert() accepts an iterator range. This version is a method template so that it can 
take an iterator range from any container, not just other directed_graphs. The actual implementa-
tion uses an insert_iterator, described Chapter 17.

template <typename T>
template <typename Iter>
void directed_graph<T>::insert(Iter first, Iter last)
{
    // Copy each element in the range by using an insert_iterator adapter.
    // Give begin() as a dummy position -- insert ignores it anyway.
    std::copy(first, last, std::insert_iterator { *this, begin() });
}

The erase() methods should be modified to work with iterators. The earlier definition has a node 
value as parameter and returns a bool:

// Returns true if the given node value was erased, false otherwise.
bool erase(const T& node_value);

To follow Standard Library principles, directed_graph is modified to provide two erase() meth-
ods: one erasing a node to which an iterator refers and another one erasing a range of nodes given as 
an iterator range. Both return an iterator to the node after the last deleted node:

// Returns an iterator to the element after the last deleted element.
iterator erase(const_iterator pos);
iterator erase(const_iterator first, const_iterator last);

Here are the implementations:

template <typename T>
typename directed_graph<T>::iterator
    directed_graph<T>::erase(const_iterator pos)
{
    if (pos.m_nodeIterator == std::end(m_nodes)) {
        return iterator { std::end(m_nodes), this };
    }
    remove_all_links_to(pos.m_nodeIterator);
    return iterator { m_nodes.erase(pos.m_nodeIterator), this };
}
 
template <typename T>
typename directed_graph<T>::iterator
    directed_graph<T>::erase(const_iterator first, const_iterator last)
{
    for (auto iter { first }; iter != last; ++iter) {
        if (iter.m_nodeIterator != std::end(m_nodes)) {
            remove_all_links_to(iter.m_nodeIterator);
        }
    }
    return iterator { 
        m_nodes.erase(first.m_nodeIterator, last.m_nodeIterator), this };
}

Finally, the following two public find() methods can be implemented returning iterators. The imple-
mentation is left as an exercise at the end of this chapter.
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iterator find(const T& node_value);
const_iterator find(const T& node_value) const;

Using the directed_graph Iterators

Now that directed_graph supports iterators, you can iterate over its elements just as you would 
with any other Standard Library container, and you can pass the iterators to methods and functions. 
Here are some examples:

// Try to insert a duplicate, and use structured bindings for the result.
auto [iter22, inserted] { graph.insert(22) };
if (!inserted) { std::cout << "Duplicate element.\n"; }
 
// Print nodes using a for loop and iterators.
for (auto iter { graph.cbegin() }; iter != graph.cend(); ++iter) {
    std::cout << *iter << " ";
}
std::cout << std::endl;
 
// Print nodes using a for loop and iterators retrieved with the non-member
// functions std::cbegin() and std::cend().
for (auto iter { std::cbegin(graph) }; iter != std::cend(graph); ++iter) {
    std::cout << *iter << " ";
}
std::cout << std::endl;
 
// Print nodes using a range-based for loop.
for (auto& node : graph) { std::cout << node << std::endl; }
std::cout << std::endl;
 
// Search a node using the std::find() Standard Library algorithm.
auto result { std::find(std::begin(graph), std::end(graph), 22) };
if (result != std::end(graph)) {
    std::cout << "Node 22 found." << std::endl;
} else {
    std::cout << "Node 22 NOT found." << std::endl;
}
 
// Count all nodes with values > 22.
auto count { std::count_if(std::begin(graph), std::end(graph),
    [](const auto& node) { return node > 22; }) };
 
// Use the iterator-based erase() method in combination with std::find().
graph.erase(std::find(std::begin(graph), std::end(graph), 44));

This code snippet also shows that, thanks to the support for iterators, Standard Library algorithms 
can be used with a directed_graph. However, since directed_graph supports only const iterators, 
only non-modifying Standard Library algorithms are supported, just as with std::set. For example, 
the following code snippet using the remove-erase idiom does not compile:

graph.erase(std::remove_if(std::begin(graph), std::end(graph),
    [](const auto& node) { return node > 22; }), std::end(graph));
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Adding Support for Reverse Iterators

If your container supplies a bidirectional or random-access iterator, it is considered reversible. Revers-
ible containers should have two additional type aliases:

TYPE NAME DESCRIPTION

reverse_iterator The type for iterating over elements of the container in 
reverse order

const_reverse_iterator A version of reverse_iterator for iterating over const 
elements of the container in reverse order

Additionally, the container should provide rbegin() and rend(), which are symmetric with begin() 
and end(); and it should provide crbegin() and crend(), which are symmetric with cbegin() 
and cend().

The directed_graph iterators are bidirectional, which means they should support reverse itera-
tion. The following code snippet highlights the necessary changes. The two new type aliases use the 
std::reverse_iterator adapter provided by the Standard Library and described in Chapter 17 to 
convert the directed_graph iterators to behave as reverse iterators.

export template <typename T>
class directed_graph
{
    public:
        // Other type aliases omitted for brevity.
        using reverse_iterator = std::reverse_iterator<iterator>;
        using const_reverse_iterator = std::reverse_iterator<const_iterator>;
 
        // Reverse iterator methods.
        reverse_iterator rbegin() noexcept;
        reverse_iterator rend() noexcept;
        const_reverse_iterator rbegin() const noexcept;
        const_reverse_iterator rend() const noexcept;
        const_reverse_iterator crbegin() const noexcept;
        const_reverse_iterator crend() const noexcept;
        // Remainder of class definition omitted for brevity.
};

The implementations of the reverse iterator methods are as follows. Note the use of the  
reverse_iterator adapter.

template <typename T>
typename directed_graph<T>::reverse_iterator
    directed_graph<T>::rbegin() noexcept { return reverse_iterator { end() }; }
 
template <typename T>
typename directed_graph<T>::reverse_iterator
    directed_graph<T>::rend() noexcept { return reverse_iterator { begin() }; }
 

continues
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template <typename T>
typename directed_graph<T>::const_reverse_iterator
    directed_graph<T>::rbegin() const noexcept
{ return const_reverse_iterator { end() }; }
 
template <typename T>
typename directed_graph<T>::const_reverse_iterator
    directed_graph<T>::rend() const noexcept
{ return const_reverse_iterator { begin() }; }
 
template <typename T>
typename directed_graph<T>::const_reverse_iterator
    directed_graph<T>::crbegin() const noexcept { return rbegin(); }
 
template <typename T>
typename directed_graph<T>::const_reverse_iterator
    directed_graph<T>::crend() const noexcept { return rend(); }

The following code snippet shows how to print all the nodes of a graph in reverse order:

for (auto iter { graph.rbegin() }; iter != graph.rend(); ++iter) {
    std::cout << *iter << " ";
}

Iterating over Adjacent Nodes

A directed_graph keeps a vector of nodes, where each node contains the node’s value and a  
list of adjacent nodes. Let’s improve the directed_graph interface to support iteration over the 
adjacent nodes of a given node. The first thing to add are const_adjacent_nodes_iterator 
and adjacent_nodes_iterator class templates. They follow the same principles as the const_
directed_graph_iterator and directed_graph_iterator class templates so the code is not 
shown. Consult the downloadable source code archive to see the full code.

The next step is to add new type aliases and methods to the directed_graph interface to get access 
to adjacent node iterators:

export template <typename T>
class directed_graph
{
    public:
        // Other type aliases omitted for brevity.
        using iterator_adjacent_nodes = adjacent_nodes_iterator<directed_graph>;
        using const_iterator_adjacent_nodes =
            const_adjacent_nodes_iterator<directed_graph>;
        using reverse_iterator_adjacent_nodes =
            std::reverse_iterator<iterator_adjacent_nodes>;
        using const_reverse_iterator_adjacent_nodes =
            std::reverse_iterator<const_iterator_adjacent_nodes>;
 
        // Return iterators to the list of adjacent nodes for a given node.
        // Return a default constructed one as end iterator if value is not found.
        iterator_adjacent_nodes begin(const T& node_value) noexcept;
        iterator_adjacent_nodes end(const T& node_value) noexcept;
        const_iterator_adjacent_nodes begin(const T& node_value) const noexcept;

(continued)
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        const_iterator_adjacent_nodes end(const T& node_value) const noexcept;
        const_iterator_adjacent_nodes cbegin(const T& node_value) const noexcept;
        const_iterator_adjacent_nodes cend(const T& node_value) const noexcept;
 
        // Return reverse iterators to the list of adjacent nodes for a given node.
        // Return a default constructed one as end iterator if value is not found.
        reverse_iterator_adjacent_nodes rbegin(const T& node_value) noexcept;
        reverse_iterator_adjacent_nodes rend(const T& node_value) noexcept;
        const_reverse_iterator_adjacent_nodes rbegin(const T& node_value)
            const noexcept;
        const_reverse_iterator_adjacent_nodes rend(const T& node_value)
            const noexcept;
        const_reverse_iterator_adjacent_nodes crbegin(const T& node_value)
            const noexcept;
        const_reverse_iterator_adjacent_nodes crend(const T& node_value)
            const noexcept;
        // Remainder of class definition omitted for brevity.
};

Here is the implementation of the begin(const T&) method:

template <typename T>
typename directed_graph<T>::iterator_adjacent_nodes
    directed_graph<T>::begin(const T& node_value) noexcept
{
    auto iter { findNode(node_value) };
    if (iter == std::end(m_nodes)) {
        // Return a default constructed end iterator.
        return iterator_adjacent_nodes {};
    }
    return iterator_adjacent_nodes {
        std::begin(iter->get_adjacent_nodes_indices()), this };
}

The other methods related to adjacent node iterators are either similar to the implementation for 
begin(const T&) or forward their work to other methods. Consult the downloadable source code 
archive to see the full code.

With support for these adjacent node iterators, accessing all adjacent nodes of a given node becomes 
trivial. Here is an example to print all adjacent nodes of the node with value 22. Remember, a default-
constructed adjacent node iterator serves as the end iterator.

std::cout << "Adjacency list for node 22: ";
 
auto iterBegin { graph.cbegin(22) };
auto iterEnd { graph.cend(22) };
 
if (iterBegin == directed_graph<int>::const_iterator_adjacent_nodes{}) {
   std::cout << "Value 22 not found." << std::endl;
} else {
   for (auto iter { iterBegin }; iter != iterEnd; ++iter) {
      std::cout << *iter << " ";
   }
}
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Printing Graphs

Now that a directed_graph supports iterators for both its nodes and their adjacent nodes, the  
to_dot() helper function template to print a graph can be changed to use iterators:

export template <typename T>
std::wstring to_dot(const directed_graph<T>& graph, std::wstring_view graph_name)
{
    std::wstringstream wss;
    wss << format(L"digraph {} {{", graph_name.data()) << std::endl;
    for (auto&& node : graph) {
        const auto b { graph.cbegin(node) };
        const auto e { graph.cend(node) };
        if (b == e) {
            wss << node << std::endl;
        } else {
            for (auto iter { b }; iter != e; ++iter) {
                wss << format(L"{} -> {}", node, *iter) << std::endl;
            }
        }
    }
    wss << "}" << std::endl;
    return wss.str();
}

Adding Support for Allocators
As described earlier in this chapter, all the Standard Library containers allow you to specify a custom 
memory allocator. A “good citizen” directed_graph implementation should do the same. Let’s look 
at what changes need to be made to support custom allocators. The allocator support will be imple-
mented in two phases, first a naïve version, followed by a proper final version.

Changes to graph_node
The first class template that needs to be modified is graph_node. The following changes are needed:

➤➤ A second template type parameter to specify the type of allocator to use.

➤➤ Two new constructors to pass in a specific allocator.

➤➤ Copy/move constructors, and copy/move assignment operators because the default ones are 
not suitable when using custom allocators.

➤➤ The constructors need to be modified to do allocation for a node using the given allocator.

➤➤ A destructor is needed to deallocate the memory for a node using the given allocator.

➤➤ A data member is needed to store the allocator.

➤➤ m_data should now be a pointer instead of a value.

➤➤ operator== cannot be defaulted any longer, so explicit implementations of operator== and 
!= are needed.

Here is the graph_node class template definition with changes highlighted:

template <typename T, typename A = std::allocator<T>>
class graph_node
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{
    public:
        // Constructs a graph_node for the given value.
        graph_node(directed_graph<T, A>* graph, const T& t);
        graph_node(directed_graph<T, A>* graph, T&& t);
 
        // Constructs a graph_node for the given value and with given allocator.
        graph_node(directed_graph<T, A>* graph, const T& t, const A& allocator);
        graph_node(directed_graph<T, A>* graph, T&& t, const A& allocator);
 
        ~graph_node();
 
        // Copy and move constructors.
        graph_node(const graph_node& src);
        graph_node(graph_node&& src) noexcept;
 
        // Copy and move assignment operators.
        graph_node& operator=(const graph_node& rhs);
        graph_node& operator=(graph_node&& rhs) noexcept;
 
        // Remainder of public part not shown, remains unchanged.
    private:
        friend class directed_graph<T, A>;
 
        // A pointer to the graph this node is in.
        directed_graph<T, A>* m_graph;
        // ... unchanged part omitted ...
        A m_allocator;
        T* m_data{ nullptr };
        adjacency_list_type m_adjacentNodeIndices;
};

The constructors accepting an allocator use that allocator to allocate enough memory for a new node 
by calling allocate(). This only allocates enough memory to hold an instance of type T; it does not 
construct a T. Construction of a T happens with a placement new operator. As Chapter 15 explains, 
with a placement new operator you can construct an object in a pre-allocated memory block.

template <typename T, typename A>
graph_node<T, A>::graph_node(directed_graph<T, A>* graph, const T& t,
    const A& allocator) : m_graph { graph }, m_allocator { allocator }
{
    m_data = m_allocator.allocate(1);
    new(m_data) T { t };
}
 
template <typename T, typename A>
graph_node<T, A>::graph_node(directed_graph<T, A>* graph, T&& t,
    const A& allocator) : m_graph { graph }, m_allocator { allocator }
{
    m_data = m_allocator.allocate(1);
    new(m_data) T { std::move(t) };
}
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The constructors without an allocator parameter forward their work to the constructors with an 
allocator parameter by passing in a default constructed allocator:

template <typename T, typename A>
graph_node<T, A>::graph_node(directed_graph<T, A>* graph, const T& t)
    : graph_node<T, A> { graph, t, A{} } { }
 
template <typename T, typename A>
graph_node<T, A>::graph_node(directed_graph<T, A>* graph, T&& t)
    : graph_node<T, A> { graph, std::move(t), A{} } { }

The destructor explicitly calls the destructor of T to destroy the T instance and then uses the allocator 
to deallocate the memory block:

template <typename T, typename A>
graph_node<T, A>::~graph_node()
{
    if (m_data) {
        m_data->~T();
        m_allocator.deallocate(m_data, 1);
        m_data = nullptr;
    }
}

The copy/move constructors and copy/move assignment operators are left as an exercise to the reader. 
See the downloadable source code archive for the full code.

Finally, the value() methods and operator== have to dereference m_data as it is now a pointer.

Changes to directed_graph
The directed_graph class template definition needs the following additions:

➤➤ A second template type parameter to specify the type of allocator to use

➤➤ An allocator_type type alias

➤➤ A default constructor and a constructor accepting a specific allocator to use

➤➤ A member to store the allocator

Here are the changes to the definition, highlighted:

export template <typename T, typename A = std::allocator<T>>
class directed_graph
{
    public:
        using allocator_type = A;
 
        directed_graph() noexcept(noexcept(A{})) = default;
        explicit directed_graph(const A& allocator) noexcept;
        // Remainder of public part not shown, remains unchanged.
    private:
        friend class details::graph_node<T, A>;
 
        using nodes_container_type = std::vector<details::graph_node<T, A>>;
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        nodes_container_type m_nodes;
        A m_allocator;
        // ... unchanged part omitted ...
        [[nodiscard]] std::set<T, std::less<>, A> get_adjacent_nodes_values(
                const typename details::graph_node<T, A>::adjacency_list_type&
                    indices) const;
};

The default constructor is defaulted, using a slightly complicated syntax. Basically, this syntax 
marks the default constructor as noexcept, but only when the default constructor for the allocator 
is noexcept.

All method implementations need to use template<typename T, typename A> instead of 
template<typename T>, and <T, A> instead of <T>.

The new constructor is straightforward:

template <typename T, typename A>
directed_graph<T, A>::directed_graph(const A& allocator) noexcept
    : m_nodes { allocator }, m_allocator { allocator } { }

The call to emplace_back() in the insert(T&&) method should be changed as follows:

m_nodes.emplace_back(this, std::move(node_value), m_allocator);

The definition of the values variable in the get_adjacent_nodes_values() method should be 
changed as follows. Unfortunately, because the allocator is the third template type parameter, we have 
to explicitly mention std::less<>.

std::set<T, std::less<>, A> values(m_allocator);

The swap() method should be changed as follows:

template <typename T, typename A>
void directed_graph<T, A>::swap(directed_graph& other_graph) noexcept
{
    using std::swap;
    m_nodes.swap(other_graph.m_nodes);
    swap(m_allocator, other_graph.m_allocator);
}

Those are all the changes necessary for the directed_graph class.

Exception Safety
Unfortunately, there is a problem with the above naïve version. Take a look at the following  
graph_node constructor:

template <typename T, typename A>
graph_node<T, A>::graph_node(directed_graph<T, A>* graph, const T& t,
    const A& allocator) : m_graph { graph }, m_allocator { allocator }
{
    m_data = m_allocator.allocate(1);
    new(m_data) T { t };
}

What’s wrong with this piece of code? It might be hard to see, but this code is not exception safe. If 
m_data is properly allocated, but the constructor of T throws an exception, then the destructor of 
graph_node will never get called and we leak m_data.
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A possible solution to this exception-safety problem is to do the allocation in a base class and the 
construction in a derived class. The base class, graph_node_allocator, is responsible only for allo-
cating the memory to hold an instance of T. The m_allocator and m_data members of the origi-
nal graph_node are pushed to this new base class. This base class doesn’t need a copy constructor 
and copy/move assignment operators, so these are deleted. Here is the entire code of the base class. 
The important bits are highlighted: allocation and deallocation of the memory. Also note the use of 
std::exchange() to move m_data in the move constructor.

template <typename T, typename A = std::allocator<T>>
class graph_node_allocator
{
    protected:
        explicit graph_node_allocator(const A& allocator);
 
        // Copy and move constructors.
        graph_node_allocator(const graph_node_allocator&) = delete;
        graph_node_allocator(graph_node_allocator&& src) noexcept;
 
        // Copy and move assignment operators.
        graph_node_allocator& operator=(const graph_node_allocator&) = delete;
        graph_node_allocator& operator=(graph_node_allocator&&) noexcept = delete;
 
        ~graph_node_allocator();
 
        A m_allocator;
        T* m_data{ nullptr };
};
 
template <typename T, typename A>
graph_node_allocator<T, A>::graph_node_allocator(const A& allocator)
    : m_allocator { allocator }
{ m_data = m_allocator.allocate(1); }
 
template <typename T, typename A>
graph_node_allocator<T, A>::graph_node_allocator(graph_node_allocator&& src)
    noexcept
    : m_allocator { std::move(src.m_allocator) }
    , m_data { std::exchange(src.m_data, nullptr) } { }
 
template <typename T, typename A>
graph_node_allocator<T, A>::~graph_node_allocator()
{
    m_allocator.deallocate(m_data, 1);
    m_data = nullptr;
}

Next, the graph_node class template is modified to derive privately from graph_node_allocator:

template <typename T, typename A = std::allocator<T>>
class graph_node : private graph_node_allocator<T, A> { /* ... */ };
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Besides this change, the m_allocator and m_data members should be removed as these are moved to 
the base class. The constructors of graph_node need to be adapted to properly call the constructor in 
the base class. Here’s one example:

template <typename T, typename A>
graph_node<T, A>::graph_node(directed_graph<T, A>* graph, const T& t,
    const A& allocator)
    : m_graph { graph }, graph_node_allocator<T, A> { allocator }
{ new(this->m_data) T { t }; }

Now, suppose that allocation in the base class succeeds, but the constructor of T called in the  
graph_node constructor throws an exception. With this new implementation, everything will still 
nicely be deallocated because C++ guarantees that the destructor is called for every fully constructed 
object, in this case our base class object.

Similar changes are needed in the implementation for the constructor accepting a T&&, and the copy 
and move constructors, so these are not shown.

Finally, the destructor needs to be modified as well, as the deallocation itself happens in the base class 
destructor. Hence, the graph_node destructor should only destroy m_data, not deallocate it:

template <typename T, typename A>
graph_node<T, A>::~graph_node()
{
    if (this->m_data) { this->m_data->~T(); }
}

Improving graph_node
As discussed earlier in this chapter, the current implementation of graph_node uses a pointer for the 
m_graph data member. This can be changed to a reference, but as hinted earlier, this involves adding 
copy/move constructors and copy/move assignment operators, as the compiler-generated versions of 
these are automatically deleted when there is a reference data member in a class. Good news, though: 
the graph_node with custom allocator support already has copy/move constructors and copy/move 
assignment operators, which means switching to a reference for m_graph is not that much work. Here 
are the necessary changes to the graph_node interface:

template <typename T, typename A = std::allocator<T>>
class graph_node : private graph_node_allocator<T, A>
{
    public:
        // Constructs a graph_node for the given value.
        graph_node(directed_graph<T, A>& graph, const T& t);
        graph_node(directed_graph<T, A>& graph, T&& t);
 
        // Constructs a graph_node for the given value and with given allocator.
        graph_node(directed_graph<T, A>& graph, const T& t, const A& allocator);
        graph_node(directed_graph<T, A>& graph, T&& t, const A& allocator);
        // Remainder of public part not shown, remains unchanged.
    private:
        // A reference to the graph this node is in.
        directed_graph<T, A>& m_graph;
        // ... unchanged part omitted ...
};
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The implementations of these four constructors, the copy/move constructors, and the copy/move 
assignment operators need to change slightly, but those changes are straightforward and hence not 
shown in detail in this text. Consult the downloadable source code archive to see the final code.

Additionally, there is one method in the directed_graph class template that needs a slight modifica-
tion. The insert(T&&) method previously contained the following line of code:

m_nodes.emplace_back(this, std::move(node_value), m_allocator);

This needs to be replaced with the following:

m_nodes.emplace_back(*this, std::move(node_value), m_allocator);

Additional Standard Library–Like Functionality
A few more Standard Library–like features can be added to the directed_graph class template. 
First, let’s add assign() methods like vector has. The assign() method accepting an iterator 
range is again a method template, just like the iterator-based insert() method discussed earlier in 
this chapter:

template <typename Iter>
void assign(Iter first, Iter last);
 
void assign(std::initializer_list<T> init);

These allow you to assign all elements of a given iterator range or an initializer_list, discussed 
in Chapter 1, to a directed graph. Assignment means that the current graph is cleared, and new nodes 
are inserted. Despite the syntax, the implementations are easy:

template <typename T, typename A>
template <typename Iter>
void directed_graph<T, A>::assign(Iter first, Iter last)
{
    clear();
    for (auto iter { first }; iter != last; ++iter) { insert(*iter); }
}
 
template <typename T, typename A>
void directed_graph<T, A>::assign(std::initializer_list<T> init)
{
    assign(std::begin(init), std::end(init));
}

An initializer_list overload of insert() is provided as well:

template <typename T, typename A>
void directed_graph<T, A>::insert(std::initializer_list<T> init)
{
    insert(std::begin(init), std::end(init));
}

With this overload of insert(), nodes can be added as follows:

graph.insert({ 66, 77, 88 });

Next, an initializer_list constructor and assignment operator can be added:

template <typename T, typename A>
directed_graph<T, A>::directed_graph(std::initializer_list<T> init,
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    const A& allocator) : m_allocator { allocator }
{
    assign(std::begin(init), std::end(init));
}
 
template <typename T, typename A>
directed_graph<T, A>& directed_graph<T, A>::operator=(
    std::initializer_list<T> init)
{
    // Use a copy-and-swap-like algorithm to guarantee strong exception safety.
    // Do all the work in a temporary instance.
    directed_graph new_graph { init };
    swap(new_graph); // Commit the work with only non-throwing operations.
    return *this;
}

With these in place, a directed_graph can be constructed using uniform initialization, as follows:

directed_graph<int> graph { 11, 22, 33 };

instead of the following:

directed_graph<int> graph;
graph.insert(11);
graph.insert(22);
graph.insert(33);

And you can assign to a graph as follows:

graph = { 66, 77, 88 };

Thanks to the initializer_list constructor and class template argument deduction (CTAD), you 
can even drop the element type when constructing a directed_graph, just as with vector:

directed_graph graph { 11, 22, 33 };

A constructor accepting an iterator range of elements can be added as well. This is again a method 
template, similar to the assign() method accepting an iterator range. The implementation simply 
forwards the work to assign():

template <typename T, typename A>
template <typename Iter>
directed_graph<T, A>::directed_graph(Iter first, Iter last, const A& allocator)
    : m_allocator { allocator }
{
    assign(first, last);
}

Finally, an extra overload of erase() accepting a node value can be added. Similar to std::set, it 
returns the number of nodes erased, which is always 0 or 1 for directed_graph.

template <typename T, typename A>
typename directed_graph<T, A>::size_type directed_graph<T, A>::erase(
    const T& node_value)
{
    const auto iter { findNode(node_value) };
    if (iter != std::end(m_nodes)) {

continues
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        remove_all_links_to(iter);
        m_nodes.erase(iter);
        return 1;
    }
    return 0;
}

Emplace Operations
Emplace operations construct objects in place and are discussed in Chapter 18. The emplace methods 
for directed_graph look like this:

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);
 
template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

The ... in these lines are not typos. These are so-called variadic function templates, that is, function 
templates with a variable number of template type parameters and a variable number of function 
parameters. Variadic templates are discussed in Chapter 26, “Advanced Templates.” This directed_
graph implementation omits emplace operations.

Further Improvements
There are several improvements that can be made to the directed_graph class template. Here 
are a few:

➤➤ The current implementation does not allow changes to nodes due to the use of node indices 
in the adjacency lists. The code can be improved to allow such modifications. The  
directed_graph<T>::iterator type alias can then become a non-const iterator.

➤➤ The current implementation does not check for cycles in the graph. By adding such a check, 
the graph becomes a directed acyclic graph.

➤➤ Instead of bidirectional iterator support, the code can be improved to support random-access 
iterators.

➤➤ C++17 added node-related functionality to the Standard Library associative containers, see 
Chapter 18. The directed_graph class template can be improved to include a node_type 
type alias and methods such as extract().

Other Container Types
The directed_graph class template is basically a sequential container, but due to the nature of 
graphs, it does implement certain functionality from associative containers, such as the return types of 
the insert() methods.

You could also write a pure sequential container, unordered associative container, or ordered associa-
tive container. In that case, you would need to follow a specific set of requirements mandated by the 
Standard Library. Instead of listing them here, it’s easier to point out that the deque container follows 
the prescribed sequential container requirements almost exactly. The only difference is that it provides 

(continued)
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an extra resize() method (not required by the standard). An example of an ordered associative con-
tainer is map, on which you can model your own ordered associative containers. And unordered_map 
is an example of an unordered associative container.

SUMMARY

This chapter introduced you to the concept of allocators that allow you to customize how memory is 
allocated and deallocated for containers. It also showed you how to write your own algorithms that 
can work with data from Standard Library containers. Finally, the major part of this chapter showed 
almost the complete development of a Standard Library–compliant directed_graph container. 
Thanks to its iterator support, directed_graph is compatible with Standard Library algorithms.

In the process of reading this chapter, you ideally gained an appreciation for the steps involved in 
developing algorithms and containers. Even if you never write another Standard Library algorithm or 
container, you understand better the Standard Library’s mentality and capabilities, and you can put it 
to better use.

This chapter concludes the tour of the C++ Standard Library. Even with all the details given in this 
book, some features are still omitted. If this material excited you, and you would like more infor-
mation, consult some of the resources in Appendix B. Don’t feel compelled to use all the features 
discussed in these chapters. Forcing them into your programs without a true need will just complicate 
your code. However, I encourage you to consider incorporating aspects of the Standard Library into 
your programs where they make sense. Start with the containers, maybe throw in an algorithm or 
two, and before you know it, you’ll be a convert!

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 25-1: Write an algorithm called transform_if(), similar to the Standard Library’s 
transform(), discussed in Chapter 20. The difference is that transform_if() should accept 
an extra predicate and that it only transforms elements for which the predicate returns true. 
Other elements are left untouched. To test your algorithm, create a vector of integers and 
multiply all odd values in the vector by 2.

Exercise 25-2: Write an algorithm called generate_fibonacci(), which fills a given range 
with a Fibonacci series of numbers.1 The Fibonacci series starts with 0 and 1, and any 

1 The ratio of two successive Fibonacci numbers converges to the so-called golden ratio, 1.618034. . . The Fibonacci 
numbers and the golden ratio often occur in nature, such as branching in trees, flowering of artichokes, flower petals, 
shells, and many more. The golden ratio is artistically attractive for humans, and hence is often used by architects to 
design rooms, for the arrangements of plants in gardens, and more.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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subsequent value is the sum of the two previous values, so: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 
89, and so on. Your implementation is not allowed to contain any manually written loops or 
be implemented using a recursive algorithm. Instead, you should use the Standard Library’s 
generate() algorithm to do most of the work.

Exercise 25-3: Implement the const and non-const overloads of the find(const T&) 
method for the directed_graph class template.

Exercise 25-4: C++20 adds a contains() method to all associative containers, returning 
true if a given element is in the container, false otherwise. As this could be useful for a 
directed_graph as well, add an implementation of contains() to directed_graph.



26
Advanced Templates

WHAT’S IN THIS CHAPTER?

➤➤ The different kinds of template parameters

➤➤ How to use partial specialization

➤➤ How to write recursive templates

➤➤ What variadic templates are

➤➤ How to write type-safe variable argument functions using  
variadic templates

➤➤ What constexpr if statements are

➤➤ How to use fold expressions

➤➤ What metaprogramming is and how to use it

➤➤ What type traits can be used for

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Chapter 12, “Writing Generic Code with Templates,” covers the most widely used features of 
class and function templates. If you are interested in only a basic knowledge of templates so 
that you can better understand how the Standard Library works, or perhaps write your own 
simple class and function templates, you can skip this chapter on advanced templates. However, 
if templates interest you and you want to uncover their full power, continue reading this chapter 
to learn about some of the more obscure, but fascinating, details.

http://www.wiley.com/go/proc++5e


878 ❘ CHAPTER 26  AdvAnced TemplATes

MORE ABOUT TEMPLATE PARAMETERS

There are actually three kinds of template parameters: type, non-type, and template template (no, 
you’re not seeing double: that really is the name). So far, you’ve seen examples of type and non-type 
parameters (in Chapter 12), but not template template parameters. There are also some tricky aspects 
to both type and non-type parameters that are not covered in Chapter 12. This section goes deeper 
into all three types of template parameters.

More About Template Type Parameters
Template type parameters are the main purpose of templates. You can declare as many type  
parameters as you want. For example, you could add to the grid template from Chapter 12 a second 
type parameter specifying another templatized class container on which to build the grid. The Stand-
ard Library defines several templatized container classes, including vector and deque. The original 
grid class uses a vector of vectors to store the elements of a grid. A user of the Grid class might 
want to use a vector of deques instead. With another template type parameter, you can allow the 
user to specify whether they want the underlying container to be a vector or a deque. The imple-
mentation uses the resize() method of the container and the container’s value_type type alias, so 
a concept (see Chapter 12) is used to enforce that the given container type supports these. Here is the 
concept and the class template definition with the additional template type parameter. Changes are 
highlighted.

template <typename Container>
concept ContainerType = requires(Container c)
{
    c.resize(1);
    typename Container::value_type;
};
 
export template <typename T, ContainerType Container>
class Grid
{
    public:
        explicit Grid(size_t width = DefaultWidth, size_t height = DefaultHeight);
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        // Explicitly default a move constructor and assignment operator.
        Grid(Grid&& src) = default;
        Grid& operator=(Grid&& rhs) = default;
 
        typename Container::value_type& at(size_t x, size_t y);
        const typename Container::value_type& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return m_height; }
        size_t getWidth() const { return m_width; }
 
        static const size_t DefaultWidth { 10 };
        static const size_t DefaultHeight { 10 };
 



More About Template Parameters ❘ 879

    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::vector<Container> m_cells;
        size_t m_width { 0 }, m_height { 0 };
};

This template now has two parameters: T and Container. Thus, wherever you previously referred 
to Grid<T>, you must now refer to Grid<T, Container> to specify both template parameters. Note 
that m_cells is now a vector of Containers instead of a vector of vectors. The return type of the 
at() methods is the type of the elements that is stored inside the given container type. You can access 
this type with typename Container::value_type.

Here is the constructor definition:

template <typename T, ContainerType Container>
Grid<T, Container>::Grid(size_t width, size_t height)
    : m_width { width }, m_height { height }
{
    m_cells.resize(m_width);
    for (auto& column : m_cells) {
        column.resize(m_height);
    }
}

Here are the implementations of the remaining methods:

template <typename T, ContainerType Container>
void Grid<T, Container>::verifyCoordinate(size_t x, size_t y) const
{
    if (x >= m_width) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", x, m_width) };
    }
    if (y >= m_height) {
        throw std::out_of_range {
            std::format("{} must be less than {}.", y, m_height) };
    }
}
 
template <typename T, ContainerType Container>
const typename Container::value_type&
    Grid<T, Container>::at(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}
 
template <typename T, ContainerType Container>
typename Container::value_type&
    Grid<T, Container>::at(size_t x, size_t y)
{
    return const_cast<typename Container::value_type&>(
        std::as_const(*this).at(x, y));
}



880 ❘ CHAPTER 26  AdvAnced TemplATes

Now you can instantiate and use Grid objects like this:

Grid<int, vector<optional<int>>> myIntVectorGrid;
Grid<int, deque<optional<int>>> myIntDequeGrid;
 
myIntVectorGrid.at(3, 4) = 5;
cout << myIntVectorGrid.at(3, 4).value_or(0) << endl;
 
myIntDequeGrid.at(1, 2) = 3;
cout << myIntDequeGrid.at(1, 2).value_or(0) << endl;
 
Grid<int, vector<optional<int>>> grid2 { myIntVectorGrid };
grid2 = myIntVectorGrid;

You could try to instantiate the Grid class template with double for the Container template type 
parameter:

Grid<int, double> test; // WILL NOT COMPILE

This line does not compile. The compiler complains that the type double does not satisfy the con-
straints of the concept associated with the Container template type parameter.

Just as with function parameters, you can give template parameters default values. For example, you 
might want to say that the default container for your Grid is a vector. The class template definition 
would look like this:

export template <typename T,
    ContainerType Container = std::vector<std::optional<T>>>
class Grid
{
    // Everything else is the same as before.
};

You can use the type T from the first template parameter as the argument to the optional template 
in the default value for the second template parameter. The C++ syntax requires that you do not 
repeat the default value in the template header line for method definitions. With this default argu-
ment, clients can now instantiate a Grid and optionally specify an underlying container. Here are 
some examples:

Grid<int, deque<optional<int>>> myDequeGrid;
Grid<int, vector<optional<int>>> myVectorGrid;
Grid<int> myVectorGrid2 { myVectorGrid };

This approach is used by the Standard Library. The stack, queue, and priority_queue class tem-
plates all take a Container template type parameter, with a default value, specifying the underlying 
container.

Introducing Template Template Parameters
There is one problem with the Container parameter in the previous section. When you instantiate 
the class template, you write something like this:

Grid<int, vector<optional<int>>> myIntGrid;
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Note the repetition of the int type. You must specify that it’s the element type both of the Grid and 
of the optional inside the vector. What if you wrote this instead:

Grid<int, vector<optional<SpreadsheetCell>>> myIntGrid;

that wouldn’t work very well. It would be nice to be able to write the following, so that you couldn’t 
make that mistake:

Grid<int, vector> myIntGrid;

The Grid class should be able to figure out that it wants a vector of optionals of ints. The com-
piler won’t allow you to pass that argument to a normal type parameter, though, because vector by 
itself is not a type but a template.

If you want to take a template as a template parameter, you must use a special kind of parameter 
called a template template parameter. Specifying a template template parameter is sort of like specify-
ing a function pointer parameter in a normal function. Function pointer types include the return type 
and parameter types of a function. Similarly, when you specify a template template parameter, the full 
specification of the template template parameter includes the parameters to that template.

For example, containers such as vector and deque have a template parameter list that looks some-
thing like the following. The E parameter is the element type. The Allocator parameter is covered in 
Chapter 25, “Customizing and Extending the Standard Library.”

template <typename E, typename Allocator = std::allocator<E>>
class vector { /* Vector definition */ };

To pass such a container as a template template parameter, all you have to do is copy and paste the 
declaration of the class template (in this example, template <typename E, typename Allocator 
= std::allocator<E>> class vector), replace the class name (vector) with a parameter name 
(Container), and use that as the template template parameter of another template declaration—Grid 
in this example—instead of a simple type name. Given the preceding template specification, here is 
the class template definition for the Grid class that takes a container template as its second template 
parameter:

export template <typename T,
  template <typename E, typename Allocator = std::allocator<E>> class Container
    = std::vector>
class Grid
{
    public:
        // Omitted code that is the same as before.
        std::optional<T>& at(size_t x, size_t y);
        const std::optional<T>& at(size_t x, size_t y) const;
        // Omitted code that is the same as before.
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::vector<Container<std::optional<T>>> m_cells;
        size_t m_width { 0 }, m_height { 0 };
};
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What is going on here? The first template parameter is the same as before: the element type T. The 
second template parameter is now a template itself for a container such as vector or deque. As you 
saw earlier, this “template type” must take two parameters: an element type E and an allocator type. 
Note the repetition of the word class after the nested template parameter list. The name of this 
parameter in the Grid template is Container (as before). The default value is now vector, instead of 
vector<T>, because the Container parameter is now a template instead of an actual type.

The syntax rule for a template template parameter, more generically, is this:

template <..., template <TemplateTypeParams> class ParameterName, ...>

NOTE Since C++17, you can also use the typename keyword instead of class, as 
in the following example:

template <..., template <Params> typename ParameterName, ...>

Instead of using Container by itself in the code, you must specify Container<std::optional<T>> 
as the container type. For example, the declaration of m_cells is now as follows:

std::vector<Container<std::optional<T>>> m_cells;

The method definitions don’t need to change, except that you must change the template lines, 
for example:

template <typename T,
  template <typename E, typename Allocator = std::allocator<E>> class Container>
void Grid<T, Container>::verifyCoordinate(size_t x, size_t y) const
{
    // Same implementation as before...
}

This Grid template can be used as follows:

Grid<int, vector> myGrid;
myGrid.at(1, 2) = 3;
cout << myGrid.at(1, 2).value_or(0) << endl;
Grid<int, vector> myGrid2 { myGrid };
Grid<int, deque> myDequeGrid;

This C++ syntax is a bit convoluted because it is trying to allow for maximum flexibility. Try not to 
get bogged down in the syntax here, and keep the main concept in mind: you can pass templates as 
type parameters to other templates.

More About Non-type Template Parameters
You might want to allow the user to specify a default element used to initialize each cell in the grid. 
Here is a perfectly reasonable approach to implement this goal. It uses the zero-initialization syntax, 
T{}, as the default value for the second template parameter.

export template <typename T, const T DEFAULT = T{}>
class Grid
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{
    // Identical as before.
};

This definition is legal. You can use the type T from the first parameter as the type for the second 
parameter, and non-type parameters can be const just like function parameters. You can use this 
initial value for T to initialize each cell in the grid:

template <typename T, const T DEFAULT>
Grid<T, DEFAULT>::Grid(size_t width, size_t height)
    : m_width { width }, m_height { height }
{
    m_cells.resize(m_width);
    for (auto& column : m_cells) {
        column.resize(m_height);
        for (auto& element : column) {
            element = DEFAULT;
        }
    }
}

The other method definitions stay the same, except that you must add the second template parameter 
to the template lines, and all the instances of Grid<T> become Grid<T, DEFAULT>. After making 
those changes, you can instantiate grids with an initial value for all the elements:

Grid<int> myIntGrid;       // Initial value is 0
Grid<int, 10> myIntGrid2;  // Initial value is 10

The initial value can be any integer you want. However, suppose that you try to create a Grid for 
SpreadsheetCells as follows:

SpreadsheetCell defaultCell;
Grid<SpreadsheetCell, defaultCell> mySpreadsheet; // WILL NOT COMPILE

That line leads to a compilation error because you cannot pass such objects as arguments to non-type 
template parameters.

WARNING Up until C++20, non-type template parameters cannot be objects, or 
even doubles or floats. They are restricted to integral types, enums, pointers, and 
references. C++20 relaxes these restrictions a bit and allows non-type template 
parameters of floating-point types, and even certain class types. However, such 
class types have a lot of restrictions, not further discussed in this book. Suffice to 
say, the SpreadsheetCell class does not adhere to those restrictions.

This example illustrates one of the vagaries of class templates: they can work correctly on one type 
but fail to compile for another type.

A more comprehensive way of allowing the user to specify an initial element value for a grid uses a 
reference to a T as the non-type template parameter. Here is the new class definition:

export template <typename T, const T& DEFAULT>
class Grid

continues
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{
    // Everything else is the same as the previous example.
};

Now you can instantiate this class template for any type. However, the reference you pass as the sec-
ond template argument must have linkage (external or internal). The following example declares int 
and SpreadsheetCell grids using initial values with internal linkage:

namespace {
    int defaultInt { 11 };
    SpreadsheetCell defaultCell { 1.2 };
}
 
int main()
{
    Grid<int, defaultInt> myIntGrid;
    Grid<SpreadsheetCell, defaultCell> mySpreadsheet;
}

CLASS TEMPLATE PARTIAL SPECIALIZATION

The const char* class specialization of the Grid class template shown in Chapter 12 is called a full 
class template specialization because it specializes the Grid template for every template parameter. 
There are no template parameters left in the specialization. That’s not the only way you can special-
ize a class; you can also write a partial class specialization, in which you specialize some template 
parameters but not others. For example, recall the basic version of the Grid template with width and 
height non-type parameters:

export template <typename T, size_t WIDTH, size_t HEIGHT>
class Grid
{
    public:
        Grid() = default;
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        std::optional<T>& at(size_t x, size_t y);
        const std::optional<T>& at(size_t x, size_t y) const; 
 
        size_t getHeight() const { return HEIGHT; }
        size_t getWidth() const { return WIDTH; }
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::optional<T> m_cells[WIDTH][HEIGHT];
};

(continued)
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You could specialize this class template for const char* C-style strings like this:

 
export template <size_t WIDTH, size_t HEIGHT>
class Grid<const char*, WIDTH, HEIGHT>
{
    public:
        Grid() = default;
        virtual ~Grid() = default;
 
        // Explicitly default a copy constructor and assignment operator.
        Grid(const Grid& src) = default;
        Grid& operator=(const Grid& rhs) = default;
 
        std::optional<std::string>& at(size_t x, size_t y);
        const std::optional<std::string>& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return HEIGHT; }
        size_t getWidth() const { return WIDTH; }
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::optional<std::string> m_cells[WIDTH][HEIGHT];
};

In this case, you are not specializing all the template parameters. Therefore, your template line looks 
like this:

export template <size_t WIDTH, size_t HEIGHT>
class Grid<const char*, WIDTH, HEIGHT>

Note that the template has only two parameters: WIDTH and HEIGHT. However, you’re writing a Grid 
class for three arguments: T, WIDTH, and HEIGHT. Thus, your template parameter list contains two 
parameters, and the explicit Grid<const char*, WIDTH, HEIGHT> contains three arguments. When 
you instantiate the template, you must still specify three parameters. You can’t instantiate the tem-
plate with only height and width.

Grid<int, 2, 2> myIntGrid;            // Uses the original Grid
Grid<const char*, 2, 2> myStringGrid; // Uses the partial specialization
Grid<2, 3> test;                      // DOES NOT COMPILE! No type specified.

Yes, the syntax is confusing. And it gets worse. In partial specializations, unlike in full specializations, 
you include the template line in front of every method definition, as in the following example:

template <size_t WIDTH, size_t HEIGHT>
const std::optional<std::string>&
    Grid<const char*, WIDTH, HEIGHT>::at(size_t x, size_t y) const
{
    verifyCoordinate(x, y);
    return m_cells[x][y];
}

You need this template line with two parameters to show that this method is parameterized on  
those two parameters. Note that wherever you refer to the full class name, you must use  
Grid<const char*, WIDTH, HEIGHT>.
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The previous example does not show the true power of partial specialization. You can write special-
ized implementations for a subset of possible types without specializing individual types. For example, 
you can write a specialization of the Grid class template for all pointer types. The copy constructor 
and assignment operator of this specialization could perform deep copies of objects to which pointers 
point, instead of shallow copies.

The following is the class definition, assuming that you’re specializing the initial version of Grid with 
only one template parameter. In this implementation, Grid becomes the owner of supplied data, so it 
automatically frees the memory when necessary. A copy constructor and copy assignment operator 
are required. As usual, the copy assignment operator uses the copy-and-swap idiom as discussed in 
Chapter 9, “Mastering Classes and Objects,” which requires a noexcept swap() method.

export template <typename T>
class Grid<T*>
{
    public:
        explicit Grid(size_t width = DefaultWidth, size_t height = DefaultHeight);
        virtual ~Grid() = default;
 
        // Copy constructor and copy assignment operator.
        Grid(const Grid& src);
        Grid& operator=(const Grid& rhs);
 
        // Explicitly default a move constructor and assignment operator.
        Grid(Grid&& src) = default;
        Grid& operator=(Grid&& rhs) = default;
 
        void swap(Grid& other) noexcept;
 
        std::unique_ptr<T>& at(size_t x, size_t y);
        const std::unique_ptr<T>& at(size_t x, size_t y) const;
 
        size_t getHeight() const { return m_height; }
        size_t getWidth() const { return m_width; }
 
        static const size_t DefaultWidth { 10 };
        static const size_t DefaultHeight { 10 };
 
    private:
        void verifyCoordinate(size_t x, size_t y) const;
 
        std::vector<std::vector<std::unique_ptr<T>>> m_cells;
        size_t m_width { 0 }, m_height { 0 };
};

As usual, these two lines are the crux of the matter:

export template <typename T>
class Grid<T*>

This syntax states that this class template is a specialization of the Grid class template for all pointer 
types. You are providing the implementation only in cases where T is a pointer type. Note that if 
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you instantiate a grid like Grid<int*> myIntGrid, then T will actually be int, not int*. That’s a 
bit unintuitive, but unfortunately, that’s the way it works. Here is an example of using this partial 
specialization:

Grid<int> myIntGrid;        // Uses the non-specialized grid.
Grid<int*> psGrid { 2, 2 }; // Uses the partial specialization for pointer types.
 
psGrid.at(0, 0) = make_unique<int>(1);
psGrid.at(0, 1) = make_unique<int>(2);
psGrid.at(1, 0) = make_unique<int>(3);
 
Grid<int*> psGrid2 { psGrid };
Grid<int*> psGrid3;
psGrid3 = psGrid2;
 
auto& element { psGrid2.at(1, 0) };
if (element) {
    cout << *element << endl;
    *element = 6;
}
cout << *psGrid.at(1, 0) << endl;  // psGrid is not modified.
cout << *psGrid2.at(1, 0) << endl; // psGrid2 is modified.

Here is the output:

3
3
6

The implementations of the methods are rather straightforward, except for the copy constructor, 
which uses the copy constructor of individual elements to make a deep copy of them:

template <typename T>
Grid<T*>::Grid(const Grid& src)
    : Grid { src.m_width, src.m_height }
{
    // The ctor-initializer of this constructor delegates first to the
    // non-copy constructor to allocate the proper amount of memory.
 
    // The next step is to copy the data.
    for (size_t i { 0 }; i < m_width; i++) {
        for (size_t j { 0 }; j < m_height; j++) {
            // Make a deep copy of the element by using its copy constructor.
            if (src.m_cells[i][j]) {
                m_cells[i][j].reset(new T { *(src.m_cells[i][j]) });
            }
        }
    }
}
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EMULATING FUNCTION PARTIAL SPECIALIZATION 
WITH OVERLOADING

The C++ standard does not permit partial template specialization of function templates. Instead, you 
can overload the function template with another function template. Suppose that you want to write a 
specialization of the Find() function template, presented in Chapter 12, that dereferences pointers to 
use operator== directly on the objects pointed to. The correct way to implement this behavior is to 
write a second function template for Find():

template <typename T>
size_t Find(T* value, T* const* arr, size_t size)
{
    for (size_t i { 0 }; i < size; i++) {
        if (*arr[i] == *value) {
            return i; // Found it; return the index
        }
    }
    return NOT_FOUND; // failed to find it; return NOT_FOUND
}

You can define in one program the original Find() template, the overloaded Find() for pointer 
types, and the overloaded Find() just for const char*s. The compiler selects the appropriate ver-
sion to call based on its deduction rules.

NOTE Between all overloaded versions, the compiler always chooses the “most 
specific” one to call. If a non-template version is just as specific as a function tem-
plate instantiation, then the compiler prefers the non-template version.

The following code calls Find() several times. The comments say which version of Find() is called.

size_t res { NOT_FOUND };
 
int myInt { 3 }, intArray[] { 1, 2, 3, 4 };
size_t sizeArray { size(intArray) };
res = Find(myInt, intArray, sizeArray);    // calls Find<int> by deduction
res = Find<int>(myInt, intArray, sizeArray); // calls Find<int> explicitly
 
double myDouble { 5.6 }, doubleArray[] { 1.2, 3.4, 5.7, 7.5 };
sizeArray = size(doubleArray);
// calls Find<double> by deduction
res = Find(myDouble, doubleArray, sizeArray);
// calls Find<double> explicitly
res = Find<double>(myDouble, doubleArray, sizeArray);
 
const char* word { "two" };
const char* words[] { "one", "two", "three", "four" };
sizeArray = size(words);
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// calls Find<const char*> explicitly
res = Find<const char*>(word, words, sizeArray);  
// calls overloaded Find for const char*s
res = Find(word, words, sizeArray);
 
int *intPointer { &myInt }, *pointerArray[] { &myInt, &myInt };
sizeArray = size(pointerArray);
// calls the overloaded Find for pointers
res = Find(intPointer, pointerArray, sizeArray);
 
SpreadsheetCell cell1 { 10 };
SpreadsheetCell cellArray[] { SpreadsheetCell { 4 }, SpreadsheetCell { 10 } };
sizeArray = size(cellArray);
// calls Find<SpreadsheetCell> by deduction
res = Find(cell1, cellArray, sizeArray); 
// calls Find<SpreadsheetCell> explicitly
res = Find<SpreadsheetCell>(cell1, cellArray, sizeArray);
 
SpreadsheetCell *cellPointer { &cell1 };
SpreadsheetCell *cellPointerArray[] { &cell1, &cell1 };
sizeArray = size(cellPointerArray);
// Calls the overloaded Find for pointers
res = Find(cellPointer, cellPointerArray, sizeArray);

TEMPLATE RECURSION

Templates in C++ provide capabilities that go far beyond the simple class and function templates 
you have seen so far in this chapter and Chapter 12. One of these capabilities is template recursion. 
Template recursion is similar to function recursion, which means that a function is defined in terms of 
calling itself with a slightly easier version of the problem. This section first provides a motivation for 
template recursion and then shows how to implement it.

An N-Dimensional Grid: First Attempt
Up to now, the Grid class template example supports only two dimensions, which limits its useful-
ness. What if you want to write a 3-D tic-tac-toe game or write a math program with four-dimen-
sional matrices? You could, of course, write a templated or non-templated class for each of those 
dimensions. However, that would repeat a lot of code. Another approach would be to write only a 
single-dimensional grid. Then, you could create a Grid of any dimension by instantiating the Grid 
with another Grid as its element type. This Grid element type could itself be instantiated with a 
Grid as its element type, and so on. Here is the implementation of the OneDGrid class template. It’s 
simply a one-dimensional version of the Grid template from earlier examples, with the addition of 
a resize() method, and the substitution of operator[] for at(). Just as with Standard Library 
containers such as vector, the operator[] implementation does not perform any bounds checking. 
Also, for this example, m_elements stores instances of T instead of instances of std::optional<T>.

export template <typename T>
class OneDGrid
{
    public:

continues
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        explicit OneDGrid(size_t size = DefaultSize) { resize(size); }
        virtual ~OneDGrid() = default;
 
        T& operator[](size_t x) { return m_elements[x]; }
        const T& operator[](size_t x) const { return m_elements[x]; }
 
        void resize(size_t newSize) { m_elements.resize(newSize); }
        size_t getSize() const { return m_elements.size(); }
 
        static const size_t DefaultSize { 10 };
    private:
        std::vector<T> m_elements;
};

With this implementation of OneDGrid, you can create multidimensional grids like this:

OneDGrid<int> singleDGrid;
OneDGrid<OneDGrid<int>> twoDGrid;
OneDGrid<OneDGrid<OneDGrid<int>>> threeDGrid;
singleDGrid[3] = 5;
twoDGrid[3][3] = 5;
threeDGrid[3][3][3] = 5;

This code works fine, but the declarations are messy. As you will see in the next section, you can 
do better.

A Real N-Dimensional Grid
You can use template recursion to write a “real” N-dimensional grid because dimensionality of grids 
is essentially recursive. You can see that in this declaration:

OneDGrid<OneDGrid<OneDGrid<int>>> threeDGrid;

You can think of each nested OneDGrid as a recursive step, with the OneDGrid of int as the base 
case. In other words, a three-dimensional grid is a single-dimensional grid of single-dimensional grids 
of single-dimensional grids of ints. Instead of requiring the user to do this recursion, you can write a 
class template that does it for you. You can then create N-dimensional grids like this:

NDGrid<int, 1> singleDGrid;
NDGrid<int, 2> twoDGrid;
NDGrid<int, 3> threeDGrid;

The NDGrid class template takes a type for its element and an integer specifying its “dimensional-
ity.” The key insight here is that the element type of the NDGrid is not the element type specified in 
the template parameter list, but is in fact another NDGrid of dimensionality one less than the current 
one. In other words, a three-dimensional grid is a vector of two-dimensional grids; the two-dimen-
sional grids are each vectors of one-dimensional grids.

With recursion, you need a base case. You can write a partial specialization of NDGrid for dimension-
ality of 1, in which the element type is not another NDGrid, but is in fact the element type specified by 
the template parameter.

The following shows the NDGrid class template definition and implementation, with highlights 
showing where it differs from the OneDGrid shown in the previous section. The trickiest aspect of 
the implementation, other than the template recursion itself, is appropriately sizing each dimension 

(continued)
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of the grid. This implementation creates the N-dimensional grid with every dimension of equal size. 
It’s significantly more difficult to specify a separate size for each dimension. Nevertheless, even with 
this simplification, there is still a problem: the user should have the ability to create the array with 
a specified size, such as 20 or 50. Thus, the constructor takes an integer size parameter. However, 
when you dynamically resize a vector of subgrids, you cannot pass this size value on to the subgrid 
elements because vectors create objects using their default constructor. Hence, you must explicitly 
call resize() on each grid element of the vector. Note that m_elements is a vector of NDGrid<T, 
N-1>; this is the recursive step. Also, operator[] returns a reference to the element type, which is 
again NDGrid<T, N-1>, not T.

export template <typename T, size_t N>
class NDGrid
{
    public:
        explicit NDGrid(size_t size = DefaultSize) { resize(size); }
        virtual ~NDGrid() = default;
 
        NDGrid<T, N-1>& operator[](size_t x) { return m_elements[x]; }
        const NDGrid<T, N-1>& operator[](size_t x) const { return m_elements[x]; }
 
        void resize(size_t newSize)
        {
            m_elements.resize(newSize);
            // Resizing the vector calls the 0-argument constructor for
            // the NDGrid<T, N-1> elements, which constructs
            // it with the default size. Thus, we must explicitly call
            // resize() on each of the elements to recursively resize all
            // nested Grid elements.
            for (auto& element : m_elements) {
                element.resize(newSize);
            }
        }
 
        size_t getSize() const { return m_elements.size(); }
 
        static const size_t DefaultSize { 10 };
    private:
        std::vector<NDGrid<T, N-1>> m_elements;
};

The template definition for the base case is a partial specialization for dimension 1. The following 
shows the definition and implementation. Note that you must rewrite a lot of the code because you 
don’t inherit any implementations with specializations. Highlights show the differences from the non-
specialized NDGrid.

export template <typename T>
class NDGrid<T, 1>
{
    public:
        explicit NDGrid(size_t size = DefaultSize) { resize(size); }
        virtual ~NDGrid() = default;
 

continues
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        T& operator[](size_t x) { return m_elements[x]; }
        const T& operator[](size_t x) const { return m_elements[x]; }
 
        void resize(size_t newSize) { m_elements.resize(newSize); }
        size_t getSize() const { return m_elements.size(); }
 
        static const size_t DefaultSize { 10 };
    private:
        std::vector<T> m_elements;
};

Here the recursion ends: the element type is T, not another template instantiation.

Now, you can write code like this:

NDGrid<int, 3> my3DGrid { 4 };
my3DGrid[2][1][2] = 5;
my3DGrid[1][1][1] = 5;
cout << my3DGrid[2][1][2] << endl;

VARIADIC TEMPLATES

Normal templates can take only a fixed number of template parameters. Variadic templates can take 
a variable number of template parameters. For example, the following code defines a template that 
can accept any number of template parameters, using a parameter pack called Types:

template <typename... Types>
class MyVariadicTemplate { };

NOTE The three dots following typename are not an error. This is the syntax to 
define a parameter pack for variadic templates. A parameter pack is something that 
can accept a variable number of arguments. You are allowed to put spaces before 
and after the three dots.

You can instantiate MyVariadicTemplate with any number of types, as in this example:

MyVariadicTemplate<int> instance1;
MyVariadicTemplate<string, double, vector<int>> instance2;

It can even be instantiated with zero template arguments:

MyVariadicTemplate<> instance3;

To disallow instantiating a variadic template with zero template arguments, you can write your  
template as follows:

template <typename T1, typename... Types>
class MyVariadicTemplate { };

With this definition, trying to instantiate MyVariadicTemplate with zero template arguments results 
in a compilation error.

(continued)
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It is not possible to directly iterate over the arguments given to a variadic template. The only way 
you can do this is with the aid of template recursion or fold expressions. The following sections show 
examples of both methods.

Type-Safe Variable-Length Argument Lists
Variadic templates allow you to create type-safe variable-length argument lists. The following exam-
ple defines a variadic template called processValues(), allowing it to accept a variable number of 
arguments with different types in a type-safe manner. The processValues() function processes each 
value in the variable-length argument list and executes a function called handleValue() for each sin-
gle argument. This means you have to write a handleValue() function for each type that you want 
to handle—int, double, and string in this example:

void handleValue(int value) { cout << "Integer: " << value << endl; }
void handleValue(double value) { cout << "Double: " << value << endl; }
void handleValue(string_view value) { cout << "String: " << value << endl; }
 
void processValues() // Base case to stop recursion
{ /* Nothing to do in this base case. */ }
 
template <typename T1, typename... Tn>
void processValues(T1 arg1, Tn... args)
{
    handleValue(arg1);
    processValues(args...);
}

This example demonstrates a double use of the triple dots (...) operator. This operator appears in 
three places and has two different meanings. First, it is used after typename in the template param-
eter list and after type Tn in the function parameter list. In both cases, it denotes a parameter pack. A 
parameter pack can accept a variable number of arguments.

The second use of the ... operator is following the parameter name args in the function body. In 
this case, it means a parameter pack expansion; the operator unpacks/expands the parameter pack 
into separate arguments. It basically takes what is on the left side of the operator and repeats it for 
every template parameter in the pack, separated by commas. Take the following line:

processValues(args...);

This line unpacks/expands the args parameter pack into its separate arguments, separated by com-
mas, and then calls the processValues() function with the list of expanded arguments. The template 
always requires at least one template parameter, T1. The act of recursively calling processValues() 
with args... is that on each call there is one template parameter less.

Because the implementation of the processValues() function is recursive, you need to have a way 
to stop the recursion. This is done by implementing a processValues() function that accepts no 
arguments.

You can test the processValues() variadic template as follows:

processValues(1, 2, 3.56, "test", 1.1f);
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The recursive calls generated by this example are as follows:

processValues(1, 2, 3.56, "test", 1.1f);
  handleValue(1);
  processValues(2, 3.56, "test", 1.1f);
    handleValue(2);
    processValues(3.56, "test", 1.1f);
      handleValue(3.56);
      processValues("test", 1.1f);
        handleValue("test");
        processValues(1.1f);
          handleValue(1.1f);
          processValues();

It is important to remember that this method of variable-length argument lists is fully type-safe. The 
processValues() function automatically calls the correct handleValue() overload based on the 
actual type. Automatic casting can happen as usual in C++. For example, the 1.1f in the preceding 
example is of type float. The processValues() function calls handleValue(double) because con-
version from float to double is without any loss. However, the compiler will issue an error  
when you call processValues() with an argument of a certain type for which there is no  
handleValue() defined.

There is a problem, though, with the preceding implementation. Because it’s a recursive implementa-
tion, the parameters are copied for each recursive call to processValues(). This can become costly 
depending on the type of the arguments. You might think that you can avoid this copying by passing 
references to processValues() instead of using pass-by-value. Unfortunately, that also means that 
you cannot call processValues() with literals anymore, because a reference to a literal value is not 
allowed, unless you use references-to-const.

To use references-to-non-const and still allow literal values, you can use forwarding references. The 
following implementation uses forwarding references, T&&, and uses std::forward() for perfect for-
warding of all parameters. Perfect forwarding means that if an rvalue is passed to processValues(), 
it is forwarded as an rvalue reference. If an lvalue or lvalue reference is passed, it is forwarded as an 
lvalue reference.

void processValues() // Base case to stop recursion
{ /* Nothing to do in this base case.*/ }
 
template <typename T1, typename... Tn>
void processValues(T1&& arg1, Tn&&... args)
{
    handleValue(forward<T1>(arg1));
    processValues(forward<Tn>(args)...);
}

There is one line that needs further explanation:

processValues(forward<Tn>(args)...);

The ... operator is used to unpack the parameter pack. It uses std::forward() on each individual 
argument in the pack and separates them with commas. For example, suppose args is a parameter 
pack with three arguments, a1, a2, and a3, of three types, A1, A2, and A3. The expanded call then 
looks as follows:
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processValues(forward<A1>(a1),
              forward<A2>(a2),
              forward<A3>(a3));

Inside the body of a function using a parameter pack, you can retrieve the number of arguments in 
the pack as follows:

int numberOfArguments { sizeof...(args) };

A practical example of using variadic templates is to write a secure and type-safe printf()-like func-
tion template. This would be a good practice exercise for you to try.

NOTE T&& is only a forwarding reference when it is used as a parameter for a 
function- or method template with T as one of its template parameters. If a class 
method has a T&& parameter, but with T a template parameter of the class and not 
of the method itself, then that T&& is not a forwarding reference, but just an rvalue 
reference. That’s because at the time the compiler starts processing that method 
with a T&& parameter, the class template parameter T has already been resolved 
to a concrete type, for example int, and at that time, that method parameter has 
already been replaced with int&&.

Variable Number of Mixin Classes
Parameter packs can be used almost everywhere. For example, the following code uses a parameter 
pack to define a variable number of mixin classes for MyClass. Chapter 5, “Designing with Objects,” 
discusses the concept of mixin classes.

class Mixin1
{
    public:
        Mixin1(int i) : m_value { i } {}
        virtual void mixin1Func() { cout << "Mixin1: " << m_value << endl; }
    private:
        int m_value;
};
 
class Mixin2
{
    public:
        Mixin2(int i) : m_value { i } {}
        virtual void mixin2Func() { cout << "Mixin2: " << m_value << endl; }
    private:
        int m_value;
};
 
template <typename... Mixins>
class MyClass : public Mixins...
{
    public:
        MyClass(const Mixins&... mixins) : Mixins { mixins }... {}
        virtual ~MyClass() = default;
};
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This code first defines two mixin classes: Mixin1 and Mixin2. They are kept pretty simple for this 
example. Their constructor accepts an integer, which is stored, and they have a function to print 
information about that specific instance of the class. The MyClass variadic template uses a parameter 
pack typename... Mixins to accept a variable number of mixin classes. The class then inherits from 
all those mixin classes, and the constructor accepts the same number of arguments to initialize each 
inherited mixin class. Remember that the ... expansion operator basically takes what is on the left of 
the operator and repeats it for every template parameter in the pack, separated by commas. The class 
can be used as follows:

MyClass<Mixin1, Mixin2> a { Mixin1 { 11 }, Mixin2 { 22 } };
a.mixin1Func();
a.mixin2Func();
 
MyClass<Mixin1> b { Mixin1 { 33 } };
b.mixin1Func();
//b.mixin2Func();    // Error: does not compile.
 
MyClass<> c;
//c.mixin1Func();    // Error: does not compile.
//c.mixin2Func();    // Error: does not compile.

When you try to call mixin2Func() on b, you will get a compilation error because b is not inheriting 
from the Mixin2 class. The output of this program is as follows:

Mixin1: 11
Mixin2: 22
Mixin1: 33

Fold Expressions
C++ supports so-called fold expressions. This makes working with parameter packs in variadic tem-
plates much easier. The following table lists the four types of folds that are supported. In this table, Ѳ 
can be any of the following operators: + - * / % ^ & | << >> += -= *= /= %= ^= &= |= <<= 
>>= = == != < > <= >= && || , .* ->*.

NAME EXPRESSION IS EXPANDED TO

Unary right fold (pack Ѳ . . .) pack0 Ѳ (. . . Ѳ (packn-1 Ѳ packn))

Unary left fold (. . . Ѳ pack) ((pack0 Ѳ pack1) Ѳ . . .) Ѳ packn

Binary right fold (pack Ѳ . . . Ѳ Init) pack0 Ѳ (. . . Ѳ (packn-1 Ѳ (packn Ѳ Init)))

Binary left fold (Init Ѳ . . . Ѳ pack) (((Init Ѳ pack0) Ѳ pack1) Ѳ . . .) Ѳ packn

Let’s look at some examples. Earlier, the processValue() function template was defined recursively 
as follows:

void processValues() { /* Nothing to do in this base case.*/ }
 
template <typename T1, typename... Tn>
void processValues(T1 arg1, Tn... args)
{
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    handleValue(arg1);
    processValues(args...);
}

Because it was defined recursively, it needs a base case to stop the recursion. With fold expressions, 
this can be implemented with a single function template using a unary right fold, where no base case 
is needed:

template <typename... Tn>
void processValues(const Tn&... args)
{
    (handleValue(args), ...);
}

Basically, the three dots in the function body trigger folding. That line is expanded to call  
handleValue() for each argument in the parameter pack, and each call to handleValue() is  
separated by a comma. For example, suppose args is a parameter pack with three arguments, a1, a2, 
and a3. The expansion of the unary right fold then becomes as follows:

(handleValue(a1), (handleValue(a2), handleValue(a3)));

Here is another example. The printValues() function template writes all its arguments to the con-
sole, separated by newlines.

template <typename... Values>
void printValues(const Values&... values)
{
    ((cout << values << endl), ...);
}

Suppose that values is a parameter pack with three arguments, v1, v2, and v3. The expansion of the 
unary right fold then becomes as follows:

((cout << v1 << endl), ((cout << v2 << endl), (cout << v3 << endl)));

You can call printValues() with as many arguments as you want, for example:

printValues(1, "test", 2.34);

In these examples, the folding is used with the comma operator, but it can be used with almost any 
kind of operator. For example, the following code defines a variadic function template using a binary 
left fold to calculate the sum of all the values given to it. A binary left fold always requires an Init 
value (see the overview table earlier). Hence, sumValues() has two template type parameters: a nor-
mal one to specify the type of Init, and a parameter pack that can accept 0 or more arguments.

template <typename T, typename... Values>
double sumValues(const T& init, const Values&... values)
{
    return (init + ... + values);
}

Suppose that values is a parameter pack with three arguments, v1, v2, and v3. Here is the expansion 
of the binary left fold in that case:

return (((init + v1) + v2) + v3);
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The sumValues() function template can be used as follows:

cout << sumValues(1, 2, 3.3) << endl;
cout << sumValues(1) << endl;

The template requires at least one argument, so the following does not compile:

cout << sumValues() << endl;

The sumValues() function template can also be defined in terms of a unary left fold as follows. This 
still requires you to provide at least one argument when calling sumValues().

template <typename... Values>
double sumValues(const Values&... values) { return (... + values); }

Parameter packs with zero length are allowed for unary folds, but only in combination with the logi-
cal AND (&&), logical OR (||), and comma (,) operators. For example:

template <typename... Values>
double allTrue(const Values&... values) { return (... && values); }
 
template <typename... Values>
double anyTrue(const Values&... values) { return (... || values); }
 
int main()
{
    cout << allTrue(1, 1, 0) << allTrue(1, 1) << allTrue() << endl; // 011
    cout << anyTrue(1, 1, 0) << anyTrue(0, 0) << anyTrue() << endl; // 100
} 

METAPROGRAMMING

This section touches on template metaprogramming. It is a complicated subject, and there are books 
written about it explaining all the little details. This book doesn’t have the space to go into all of 
these details. Instead, this section explains the most important concepts, with the aid of a couple 
of examples.

The goal of template metaprogramming is to perform some computation at compile time instead of 
at run time. It is basically a programming language on top of another programming language. The 
following section starts the discussion with a simple example that calculates the factorial of a number 
at compile time and makes the result available as a simple constant at run time.

Factorial at Compile Time
Template metaprogramming allows you to perform calculations at compile time instead of at run 
time. The following code is an example that calculates the factorial of a number at compile time. The 
code uses template recursion, explained earlier in this chapter, which requires a recursive template 
and a base template to stop the recursion. By mathematical definition, the factorial of 0 is 1, so that is 
used as the base case.

template <unsigned char f>
class Factorial
{
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    public:
        static const unsigned long long value { f * Factorial<f - 1>::value };
};
 
template <>
class Factorial<0>
{
    public:
        static const unsigned long long value { 1 };
};
 
int main()
{
    cout << Factorial<6>::value << endl;
}

This calculates the factorial of 6, mathematically written as 6!, which is 1×2×3×4×5×6 or 720.

NOTE It is important to keep in mind that the factorial calculation is happening 
at compile time. At run time, you simply access the compile-time calculated value 
through ::value, which is just a static constant value.

For this specific example of calculating the factorial of a number at compile time, you don’t neces-
sarily need to use template metaprogramming. You can write it as a C++20 consteval immediate 
function, without any templates, though the template implementation still serves as a good example 
on how to implement recursive templates.

consteval unsigned long long factorial(unsigned char f)
{
    if (f == 0) { return 1; }
    else { return f * factorial(f - 1); }
}

You can call factorial() just as you would call any other function, with the difference that the 
consteval function is guaranteed to be executed at compile time.

Loop Unrolling
A second example of template metaprogramming is to unroll loops at compile time instead of execut-
ing the loop at run time. Note that loop unrolling, also known as loop unwinding, should only be 
done when you really need it, for example in performance critical code. The compiler is usually smart 
enough to unroll loops that can be unrolled for you.

This example again uses template recursion because it needs to do something in a loop at compile 
time. On each recursion, the Loop class template instantiates itself with i-1. When it hits 0, the recur-
sion stops.

template <int i>
class Loop
{

continues
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    public:
        template <typename FuncType>
        static inline void run(FuncType func) {
            Loop<i - 1>::run(func);
            func(i);
        }
};
 
template <>
class Loop<0>
{
    public:
        template <typename FuncType>
        static inline void run(FuncType /* func */) { }
};

The Loop template can be used as follows:

void doWork(int i) { cout << "doWork(" << i << ")" << endl; }
 
int main()
{
    Loop<3>::run(doWork);
}

This code causes the compiler to unroll the loop and to call the function doWork() three times in a 
row. The output of the program is as follows:

doWork(1)
doWork(2)
doWork(3)

Printing Tuples
This example uses template metaprogramming to print the individual elements of an std::tuple. 
Tuples are explained in Chapter 24, “Additional Library Utilities.” They allow you to store any 
number of values, each with its own specific type. A tuple has a fixed size and fixed value types, 
determined at compile time. However, tuples don’t have any built-in mechanism to iterate over their 
elements. The following example shows how you could use template metaprogramming to iterate 
over the elements of a tuple at compile time.

As is often the case with template metaprogramming, this example is again using template recursion. 
The TuplePrint class template has two template parameters: the tuple type, and an integer, initial-
ized with the size of the tuple. It then recursively instantiates itself in the constructor and decrements 
the integer on every call. A partial specialization of TuplePrint stops the recursion when this integer 
hits 0. The main() function shows how this TuplePrint class template can be used.

template <typename TupleType, int n>
class TuplePrint
{
    public:
        TuplePrint(const TupleType& t) {
            TuplePrint<TupleType, n - 1> tp { t };
            cout << get<n - 1>(t) << endl;
        }
};

(continued)
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template <typename TupleType>
class TuplePrint<TupleType, 0>
{
    public:
        TuplePrint(const TupleType&) { }
};
 
int main()
{
    using MyTuple = tuple<int, string, bool>;
    MyTuple t1 { 16, "Test", true };
    TuplePrint<MyTuple, tuple_size<MyTuple>::value> tp { t1 };
}

The TuplePrint statement in main() looks a bit complicated because it requires the exact type 
and size of the tuple as template arguments. This can be simplified by introducing a helper func-
tion template that automatically deduces the template parameters. The simplified implementation is 
as follows:

template <typename TupleType, int n>
class TuplePrintHelper
{
    public:
        TuplePrintHelper(const TupleType& t) {
            TuplePrintHelper<TupleType, n - 1> tp { t };
            cout << get<n - 1>(t) << endl;
        }
};
 
template <typename TupleType>
class TuplePrintHelper<TupleType, 0>
{
    public:
        TuplePrintHelper(const TupleType&) { }
};
 
template <typename T>
void tuplePrint(const T& t)
{
    TuplePrintHelper<T, tuple_size<T>::value> tph { t };
}
 
int main()
{
    tuple t1 { 167, "Testing"s, false, 2.3 };
    tuplePrint(t1);
}

The first change made here is renaming the original TuplePrint class template to  
TuplePrintHelper. The code then implements a small function template called tuplePrint(). It 
accepts the tuple’s type as a template type parameter and accepts a reference to the tuple itself as 
a function parameter. The body of that function instantiates the TuplePrintHelper class template. 
The main() function shows how to use this simplified version. You don’t need to specify the function 
template parameter because the compiler can deduce this automatically from the supplied argument.
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constexpr if
C++17 introduced constexpr if. These are if statements executed at compile time, not at run time. 
If a branch of a constexpr if statement is never taken, it is never compiled. This can be used to sim-
plify a lot of template metaprogramming techniques. For example, you can simplify the previous code 
for printing elements of a tuple using constexpr if, as follows. Note that the template recursion 
base case is not needed anymore, because the recursion is stopped with the constexpr if statement.

template <typename TupleType, int n>
class TuplePrintHelper
{
    public:
        TuplePrintHelper(const TupleType& t) {
            if constexpr (n > 1) {
                TuplePrintHelper<TupleType, n - 1> tp { t };
            }
            cout << get<n - 1>(t) << endl;
        }
};
 
template <typename T>
void tuplePrint(const T& t)
{
    TuplePrintHelper<T, tuple_size<T>::value> tph { t };
}

Now we can even get rid of the class template itself and replace it with a simple function template 
called tuplePrintHelper():

template <typename TupleType, int n>
void tuplePrintHelper(const TupleType& t) {
    if constexpr (n > 1) {
        tuplePrintHelper<TupleType, n - 1>(t);
    }
    cout << get<n - 1>(t) << endl;
}
 
template <typename T>
void tuplePrint(const T& t)
{
    tuplePrintHelper<T, tuple_size<T>::value>(t);
}

This can be simplified even more. Both function templates can be combined into one, as follows:

template <typename TupleType, int n = tuple_size<TupleType>::value>
void tuplePrint(const TupleType& t) {
    if constexpr (n > 1) {
        tuplePrint<TupleType, n - 1>(t);
    }
    cout << get<n - 1>(t) << endl;
}
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It can still be called the same as before:

tuple t1 { 167, "Testing"s, false, 2.3 };
tuplePrint(t1);

Using a Compile-Time Integer Sequence with Folding
C++ supports compile-time integer sequences using std::integer_sequence, defined in <utility>. 
A common use case with template metaprogramming is to generate a compile-time sequence of indi-
ces, that is, an integer sequence of type size_t. For this, a helper std::index_sequence is available. 
You can use std::index_sequence_for() to generate an index sequence of the same length as the 
length of a given parameter pack.

The tuple printer could be implemented using variadic templates, compile-time index sequences, and 
fold expressions as follows:

template <typename Tuple, size_t... Indices>
void tuplePrintHelper(const Tuple& t, index_sequence<Indices...>)
{
    ((cout << get<Indices>(t) << endl), ...);
}
 
template <typename... Args>
void tuplePrint(const tuple<Args...>& t)
{
    tuplePrintHelper(t, index_sequence_for<Args...>());
}

It can be called in the same way as before:

tuple t1 { 167, "Testing"s, false, 2.3 };
tuplePrint(t1);

With this call, the unary right fold expression in the tuplePrintHelper() function template expands 
to the following:

(((cout << get<0>(t) << endl),
 ((cout << get<1>(t) << endl),
 ((cout << get<2>(t) << endl),
  (cout << get<3>(t) << endl)))));

Type Traits
Type traits allow you to make decisions based on types at compile time. For example, you can verify 
that a type is derived from another type, is convertible to another type, is integral, and so on. The 
C++ Standard Library comes with a large selection of type traits. All type traits-related functionality 
is defined in <type_traits>. Type traits are divided into separate categories. The following list gives 
a couple of examples of the available type traits in each category. Consult a Standard Library Refer-
ence (see Appendix B) for a complete list.
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 ➤ Primary type categories

 ○ is_void

 ○ is_integral

 ○ is_floating_point

 ○ is_pointer

 ○ is_function

 ○ ...

 ➤ Type properties

 ○ is_const

 ○ is_polymorphic

 ○ is_unsigned

 ○ is_constructible

 ○ is_copy_constructible

 ○ is_move_constructible

 ○ is_assignable

 ○ is_trivially_copyable

 ○ is_swappable

 ○ is_nothrow_swappable

 ○ has_virtual_destructor

 ○ has_unique_object_representations
 ○ ...

 ➤ Property queries

 ○ alignment_of

 ○ rank

 ○ extent

 ➤ Reference modifications

 ○ remove_reference

 ○ add_lvalue_reference

 ○ add_rvalue_reference

 ➤ Pointer modifications

 ○ remove_pointer

 ○ add_pointer

 ➤ Constant evaluation context

 ○ is_constant_evaluated*

 ➤ Composite type categories

 ○ is_reference

 ○ is_object

 ○ is_scalar

 ○ ...

 ➤ Type relationships

 ○ is_same

 ○ is_base_of

 ○ is_convertible

 ○ is_invocable

 ○ is_nothrow_invocable

 ○ ...

 ➤ const-volatile modifications

 ○ remove_const

 ○ add_const

 ○ ...

 ➤ Sign modifications

 ○ make_signed

 ○ make_unsigned

 ➤ Array modifications

 ○ remove_extent

 ○ remove_all_extents

 ➤ Logical operator traits

 ○ conjuction

 ○ disjunction

 ○ negation

 ➤ Other transformations

 ○ enable_if

 ○ conditional

 ○ invoke_result

 ○ type_identity*

 ○ remove_cvref*

 ○ common_reference*

 ○ ...
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The type traits marked with an asterisk (*) are available only since C++20.

Type traits are a pretty advanced C++ feature. By just looking at the preceding list, which is already a 
shortened version of the list from the C++ standard, it is clear that this book cannot explain all details 
about all type traits. This section explains just a couple of use cases to show you how type traits 
can be used.

Using Type Categories
Before an example can be given for a template using type traits, you first need to know a bit more on 
how classes like is_integral work. The C++ standard defines an integral_constant class that 
looks like this:

template <class T, T v>
struct integral_constant {
    static constexpr T value { v };
    using value_type = T;
    using type = integral_constant<T, v>;
    constexpr operator value_type() const noexcept { return value; }
    constexpr value_type operator()() const noexcept { return value; }
};

It also defines bool_constant, true_type, and false_type type aliases:

template <bool B>
using bool_constant = integral_constant<bool, B>; 

using true_type = bool_constant<true>;
using false_type = bool_constant<false>;

What this code defines is two types: true_type and false_type. When you access  
true_type::value, you get the value true, and when you access false_type::value, you get the 
value false. You can also access true_type::type, which results in the type of true_type. The 
same holds for false_type. Classes like is_integral, which checks whether a type is an integral 
type, and is_class, which checks whether a type is a class, inherit from either true_type or  
false_type. For example, is_integral can be specialized for type bool as follows:

template <> struct is_integral<bool> : public true_type { };

This allows you to write is_integral<bool>::value, which results in the value true. Note that 
you don’t need to write these specializations yourself; they are part of the Standard Library.

The following code shows the simplest example of how type categories can be used:

if (is_integral<int>::value) { cout << "int is integral" << endl; }
else { cout << "int is not integral" << endl; } 

if (is_class<string>::value) { cout << "string is a class" << endl; }
else { cout << "string is not a class" << endl; }

The output is as follows:

int is integral
string is a class

For each trait that has a value member, C++ adds a variable template that has the same 
name as the trait followed by _v. Instead of writing some_trait<T>::value, you can write 
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some_trait_v<T>—for example, is_integral_v<T>, is_const_v<T>, and so on. Here is the previ-
ous example written using these helpers:

if (is_integral_v<int>) { cout << "int is integral" << endl; }
else { cout << "int is not integral" << endl; } 

if (is_class_v<string>) { cout << "string is a class" << endl; }
else { cout << "string is not a class" << endl; }

Of course, you will likely never use type traits in this way. They become more useful in combination 
with templates to generate code based on some properties of a type. The following template func-
tions demonstrate this. The code defines two overloaded processHelper() function templates that 
accept a type as template parameter. The first parameter to these functions is a value, and the second 
is an instance of either true_type or false_type. The process() function template accepts a single 
parameter and calls processHelper().

template <typename T>
void processHelper(const T& t, true_type)
{
    cout << t << " is an integral type." << endl;
} 

template <typename T>
void processHelper(const T& t, false_type)
{
    cout << t << " is a non-integral type." << endl;
} 

template <typename T>
void process(const T& t)
{
    processHelper(t, typename is_integral<T>::type{});
}

The second argument in the call to processHelper() is as follows:

typename is_integral<T>::type{}

This argument uses is_integral to figure out if T is an integral type. You use ::type to access the 
resulting integral_constant type, which can be true_type or false_type. The processHelper() 
function needs an instance of true_type or false_type as a second parameter, so that is the reason 
for the {} behind ::type. Note that the two overloaded processHelper() functions use name-
less parameters of type true_type and false_type. They are nameless because they don’t use 
those parameters inside their function body. These parameters are used only for function overload 
resolution.

The code can be tested as follows:

process(123);
process(2.2);
process("Test"s);

Here is the output:

123 is an integral type.
2.2 is a non-integral type.
Test is a non-integral type.
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The previous example could be written as a single function template as follows. However, that doesn’t 
demonstrate how to use type traits to select different overloads based on a type.

template <typename T>
void process(const T& t)
{
    if constexpr (is_integral_v<T>) {
        cout << t << " is an integral type." << endl;
    } else {
        cout << t << " is a non-integral type." << endl;
    }
}

Using Type Relationships
Some examples of type relationships are is_same, is_base_of, and is_convertible. This section 
gives an example of how to use is_same; the other type relationships work similarly.

The following same() function template uses the is_same type trait to figure out whether the two 
given arguments are of the same type and outputs an appropriate message:

template <typename T1, typename T2>
void same(const T1& t1, const T2& t2)
{
    bool areTypesTheSame { is_same_v<T1, T2> };
    cout << format("'{}' and '{}' are {} types.", t1, t2,
        (areTypesTheSame ? "the same" : "different")) << endl;
} 
int main()
{
    same(1, 32);
    same(1, 3.01);
    same(3.01, "Test"s);
}

The output is as follows:

'1' and '32' are the same types.
'1' and '3.01' are different types
'3.01' and 'Test' are different types

Using the conditional Type Trait
Chapter 18, “Standard Library Containers,” explains the Standard Library helper function template 
std::move_if_noexcept(), which can be used to conditionally call either the move constructor or 
the copy constructor depending on whether the former is marked noexcept. The Standard Library 
does not provide a similar helper function template to easily call the move assignment operator or 
copy assignment operator depending on whether the former is noexcept. Now that you know about 
template metaprogramming and type traits, let’s take a look at how to implement a move_assign_
if_noexcept() ourselves.

Remember from Chapter 18 that move_if_noexcept() just converts a given reference to an rvalue 
reference if the move constructor is marked noexcept and to a reference-to-const otherwise.
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move_assign_if_noexcept() needs to do something similar, convert a given reference to an 
rvalue reference if the move assignment operator is marked noexcept, and to a reference-to-const 
otherwise.

The std::conditional type trait can be used to implement the condition, and the  
is_nothrow_move_assignable type trait can be used to figure out whether a certain type has a 
move assignment operator that is marked with noexcept. The conditional type trait has three tem-
plate parameters: a Boolean, a type for when the Boolean is true, and a type for when it is false. Here 
is the entire function template:

template <typename T>
constexpr conditional<is_nothrow_move_assignable_v<T>, T&&, const T&>::type
    move_assign_if_noexcept(T& t) noexcept
{
    return move(t);
}

The C++ standard defines alias templates for traits that have a type member, such as conditional. 
These have the same name as the trait, but are appended with _t. For example, instead of writing this:

conditional<is_nothrow_move_assignable_v<T>, T&&, const T&>::type

you can write this:

conditional_t<is_nothrow_move_assignable_v<T>, T&&, const T&>

The move_assign_if_noexcept() function template can be tested as follows:

class MoveAssignable
{
    public:
        MoveAssignable& operator=(const MoveAssignable&) {
            cout << "copy assign" << endl; return *this; }
        MoveAssignable& operator=(MoveAssignable&&) {
            cout << "move assign" << endl; return *this; }
}; 

class MoveAssignableNoexcept
{
    public:
        MoveAssignableNoexcept& operator=(const MoveAssignableNoexcept&) {
            cout << "copy assign" << endl; return *this; }
        MoveAssignableNoexcept& operator=(MoveAssignableNoexcept&&) noexcept {
            cout << "move assign" << endl; return *this; }
}; 

int main()
{
    MoveAssignable a, b;
    a = move_assign_if_noexcept(b);
    MoveAssignableNoexcept c, d;
    c = move_assign_if_noexcept(d);
}

This outputs the following:

copy assign
move assign
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Using enable_if
The use of enable_if is based on a feature called substitution failure is not an error (SFINAE), an 
advanced feature of C++. It stipulates that a failure to specialize a function template for a given set of 
template parameters should not be seen as a compilation error. Instead, such specializations should 
just be removed from the function overload set. This section explains only the basics of SFINAE.

If you have a set of overloaded functions, you can use enable_if to selectively disable certain over-
loads based on some type traits. The enable_if trait is usually used on the return types for your set 
of overloads. enable_if accepts two template parameters. The first is a Boolean, and the second is a 
type that is void by default. If the Boolean is true, then the enable_if class has a nested type that 
you can access using ::type. The type of this nested type is the type given as the second template 
parameter. If the Boolean is false, then there is no nested type.

The same() function template from an earlier section can be rewritten into overloaded  
checkType() function templates by using enable_if as follows. In this version, the checkType() 
functions return true or false depending on whether or not the types of the given values are the 
same. If you don’t want to return anything from checkType(), you can remove the return statements 
and remove the second template parameter for enable_if or replace it with void.

template <typename T1, typename T2>
enable_if_t<is_same_v<T1, T2>, bool>
    checkType(const T1& t1, const T2& t2)
{
    cout << format("'{}' and '{}' are the same types.", t1, t2) << endl;
    return true;
} 

template <typename T1, typename T2>
enable_if_t<!is_same_v<T1, T2>, bool>
    checkType(const T1& t1, const T2& t2)
{
    cout << format("'{}' and '{}' are different types.", t1, t2) << endl;
    return false;
}  

int main()
{
    checkType(1, 32);
    checkType(1, 3.01);
    checkType(3.01, "Test"s);
}

The output is the same as before:

'1' and '32' are the same types.
'1' and '3.01' are different types.
'3.01' and 'Test' are different types.

The code defines two overloads for checkType(). The return type of both overloads is the nested 
type of enable_if. First, is_same_v is used to check whether the two types are the same. The result 
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is given to enable_if_t. When the first argument to enable_if_t is true, enable_if_t has type 
bool; otherwise, there is no type. This is where SFINAE comes into play.

When the compiler starts to compile the first line of main(), it tries to find a function checkType() 
that accepts two integer values. It finds the first checkType() function template overload and 
deduces that it can use an instance of this function template by making T1 and T2 both integers. It 
then tries to figure out the return type. Because both arguments are integers and thus the same types, 
is_same_v<T1, T2> is true, which causes enable_if_t<true, bool> to be type bool. With this 
instantiation, everything is fine, and the compiler can use that version of checkType().

However, when the compiler tries to compile the second line in main(), it again tries to find a suit-
able checkType() function. It starts with the first checkType() and decides it can use that overload 
by setting T1 to type int and T2 to type double. It then tries to figure out the return type. This time, 
T1 and T2 are different types, which means that is_same_v<T1, T2> is false. Because of this, 
enable_if_t<false, bool> does not represent a type, leaving the function checkType() without a 
return type. The compiler notices this error but does not yet generate a real compilation error because 
of SFINAE. Instead, the compiler gracefully backtracks and tries to find another checkType() func-
tion. In this case, the second checkType() works out perfectly fine because !is_same_v<T1, T2> is 
true, and thus enable_if_t<true, bool> is type bool.

If you want to use enable_if on a set of constructors, you can’t use it with the return type because 
constructors don’t have a return type. In that case, you can use enable_if on an extra constructor 
parameter with a default value.

It is recommended to use enable_if judiciously. Use it only when you need to resolve overload ambi-
guities that you cannot possibly resolve using any other technique, such as specialization, concepts, 
and so on. For example, if you just want compilation to fail when you use a template with the wrong 
types, use concepts, discussed in Chapter 12, or use static_assert(), explained later in this chapter, 
instead of SFINAE. Of course, there are legitimate use cases for enable_if. One such example is 
specializing a copy function for a custom vector-like class to perform bit-wise copying of trivially 
copyable types using enable_if and the is_trivially_copyable type trait. Such a specialized copy 
function could for example use memcpy().

WARNING Relying on SFINAE is tricky and complicated. If your use of SFINAE 
and enable_if selectively disables the wrong overloads in your overload set, you 
will get cryptic compiler errors, which will be hard to track down.

Using constexpr if to Simplify enable_if Constructs
As you can see from the earlier examples, using enable_if can become quite complicated. The 
constexpr if feature, available since C++17, helps to dramatically simplify certain use cases of 
enable_if.

For example, suppose you have the following two classes:

class IsDoable
{
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    public:
        virtual void doit() const { cout << "IsDoable::doit()" << endl; }
}; 
class Derived : public IsDoable { };

You can create a function template, callDoit(), that calls the doit() method if the method is avail-
able; otherwise, it prints an error message to the console. You can do this with enable_if by check-
ing whether the given type is derived from IsDoable:

template <typename T>
enable_if_t<is_base_of_v<IsDoable, T>, void> callDoit(const T& t)
{
    t.doit();
} 

template <typename T>
enable_if_t<!is_base_of_v<IsDoable, T>, void> callDoit(const T&)
{
    cout << "Cannot call doit()!" << endl;
}

The following code tests this implementation:

Derived d;
callDoit(d);
callDoit(123);

Here is the output:

IsDoable::doit()
Cannot call doit()!

You can simplify this enable_if implementation a lot by using constexpr if:

template <typename T>
void callDoit(const T& [[maybe_unused]] t)
{
    if constexpr (is_base_of_v<IsDoable, T>) {
        t.doit();
    } else {
        cout << "Cannot call doit()!" << endl;
    }
}

You cannot accomplish this using a normal if statement. With a normal if statement, both branches 
need to be compiled, and this will fail if you supply a type T that is not derived from IsDoable. In 
that case, the statement t.doit() will fail to compile. However, with the constexpr if statement, 
if a type is supplied that is not derived from IsDoable, then the statement t.doit() won’t even 
be compiled.

Note also the use of the [[maybe_unused]] attribute. Because the statement t.doit() is not com-
piled if the given type T is not derived from IsDoable, the parameter t won’t be used in that instanti-
ation of callDoit(). Most compilers give a warning or even an error if you have unused parameters. 
The attribute prevents such warnings or errors for the parameter t.

Instead of using the is_base_of type trait, you can also use the is_invocable trait, which 
determines whether a given function can be called with a given set of arguments. Here is an 
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implementation of callDoit() using the is_invocable trait:

template <typename T>
void callDoit(const T& [[maybe_unused]] t)
{
    if constexpr (is_invocable_v<decltype(&IsDoable::doit), T>) {
        t.doit();
    } else {
        cout << "Cannot call doit()!" << endl;
    }
}

Logical Operator Traits
There are three logical operator traits: conjunction, disjunction, and negation. Variable tem-
plates, ending with _v, are available as well. These traits accept a variable number of template type 
arguments and can be used to perform logical operations on type traits, as in this example:

cout << conjunction_v<is_integral<int>, is_integral<short>> << " ";
cout << conjunction_v<is_integral<int>, is_integral<double>> << " "; 

cout << disjunction_v<is_integral<int>, is_integral<double>,
                      is_integral<short>> << " "; 

cout << negation_v<is_integral<int>> << " ";

The output is as follows:

1 0 1 0

Static Assertions
static_assert() allows certain conditions to be asserted at compile time. An assertion is something 
that needs to be true. If an assertion is false, the compiler issues an error. A call to static_assert() 
accepts two parameters: an expression to evaluate at compile time and a string. When the expression 
evaluates to false, the compiler issues an error that contains the given string. An example could be 
to check that you are compiling with a 64-bit compiler:

static_assert(sizeof(void*) == 8, "Requires 64-bit compilation.");

If you compile this with a 32-bit compiler where a pointer is four bytes, the compiler issues an error 
that can look like this:

test.cpp(3): error C2338: Requires 64-bit compilation.

Since C++17, the string parameter is optional, as in this example:

static_assert(sizeof(void*) == 8);

In this case, if the expression evaluates to false, you get a compiler-dependent error message. For 
example, Microsoft Visual C++ gives the following error:

test.cpp(3): error C2607: static assertion failed
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static_assert() can be combined with type traits. Here is an example:

template <typename T>
void foo(const T& t)
{
    static_assert(is_integral_v<T>, "T should be an integral type.");
}

However, I recommend using C++20 concepts, as discussed in Chapter 12, instead of such  
static_assert() with type traits. For example:

template <integral T>
void foo(const T& t) { }

Or, using C++20 abbreviated function template syntax:

void foo(const integral auto& t) { }

Metaprogramming Conclusion
As you have seen in this section, template metaprogramming can be a powerful tool, but it can 
also get quite complicated. One problem with template metaprogramming, not mentioned before, 
is that everything happens at compile time so you cannot use a debugger to pinpoint a problem. If 
you decide to use template metaprogramming in your code, make sure you write good comments 
to explain exactly what is going on and why you are doing something a certain way. If you don’t 
properly document your template metaprogramming code, it might be difficult for someone else to 
understand your code, and it might even make it difficult for you to understand your own code in 
the future.

SUMMARY

This chapter is a continuation of the template discussion from Chapter 12. These chapters show 
you how to use templates for generic programming and template metaprogramming for compile-
time computations. Ideally you have gained an appreciation for the power and capabilities of these 
features and an idea of how you could apply these concepts to your own code. Don’t worry if you 
didn’t understand all the syntax, or didn’t follow all the examples, on your first reading. The concepts 
can be difficult to grasp when you are first exposed to them, and the syntax is tricky whenever you 
want to write more complicated templates. When you actually sit down to write a class or function 
template, you can consult this chapter and Chapter 12 for a reference on the proper syntax.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 26-1: In Exercise 12-2, you wrote a full specialization of a KeyValuePair class 
template for const char* keys and values. Replace that full specialization with a partial 
specialization where only the values are of type const char*.

Exercise 26-2: Calculate the nth number in the Fibonacci series at compile time using template 
recursion. The Fibonacci series starts with 0 and 1, and any subsequent value is the sum of 
the two previous values, so: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and so on.

Exercise 26-3: Take your solution to Exercise 26-2 and modify it so that the calculation still 
happens at compile time, but without the use of any template and function recursion.

Exercise 26-4: Write a variadic function template called push_back_values() accepting 
a reference to a vector and a variable number of values. The function should use a fold 
expression to push the variadic number of values into the given vector.
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Multithreaded programming is important on computer systems with multiple processor units. It allows 
you to write a program to use all those processor units in parallel. There are multiple ways for a 
system to have multiple processor units. The system can have multiple discrete processor chips, each 
one an independent central processing unit (CPU). Or, the system can have a single discrete processor 
chip that internally consists of multiple independent CPUs, also called cores. These kinds of processors 
are called multicore processors. A system can also have a combination of both. Systems with multiple 
processor units have existed for a long time; however, they were rarely used in consumer systems. 
Today, all CPU vendors are selling multicore processors. Nowadays, multicore processors are being 
used for everything from servers to consumer computers to even smartphones. Because of this prolif-
eration of multicore processors, it is important to know how to write multithreaded applications. A 
professional C++ programmer needs to know how to write correct multithreaded code to take full 
advantage of all the available processor units. Writing multithreaded applications used to rely  
on platform- and operating system–specific APIs. This made it difficult to write platform- 
independent multithreaded code. C++11 solved this problem by including a standard threading library.

Multithreaded programming is a complicated subject. This chapter introduces you to multithreaded 
programming using the standard threading library, but it cannot go into all of the details due to space 
constraints. Entire books have been written about developing multithreaded programs. If you are 
interested in more details, consult one of the references in the multithreading section in Appendix B.

There are also third-party C++ libraries that try to make multithreaded programming more platform 
independent, such as pthreads and the boost::thread library. However, because these libraries are 
not part of the C++ standard, they are not discussed in this book.

INTRODUCTION

Multithreaded programming allows you to perform multiple calculations in parallel. As a result, you 
can take advantage of the multiple processor units inside virtually all systems today. Two decades 
ago, the processor market was racing for the highest frequency, which is perfect for single-threaded 
applications. Around 2005, this race stopped due to a combination of power and heat management 
problems. Since then, the processor market is racing toward the most cores on a single processor chip. 
Dual- and quad-core processors are common, and even 12-, 16-, 18-, and more core processors are 
available.

Similarly, if you look at the processors on graphics cards, called graphical processing units (GPUs), 
you’ll see that they are massively parallel processors. Today, high-end graphics cards have more than 
10,000 cores, a number that keeps increasing rapidly! These graphics cards are used not only for 
gaming, but also to perform computationally intensive tasks. Examples are image and video manipu-
lation, protein folding (useful for discovering new drugs), processing signals as part of the Search for 
Extraterrestrial Intelligence (SETI) project, and so on.

C++98/03 did not have support for multithreaded programming, and you had to resort to third-party 
libraries or to the multithreading APIs of your target operating system. Since C++11 introduced a 
standard multithreading library, it became easier to write cross-platform multithreaded applications. 
The current C++ standard targets only CPUs and not GPUs. This might change in the future.
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There are two reasons to start writing multithreaded code. First, if you have a computational problem 
and you manage to separate it into small pieces that can be run in parallel independently from each 
other, you can expect a huge performance boost when running it on multiple processor units. Second, 
you can modularize computations along orthogonal axes. For example, you can do long computa-
tions in a thread instead of blocking the UI thread, so the user interface remains responsive while a 
long computation occurs in the background.

Figure 27-1 shows a situation that is perfectly suited for running in parallel. An example could be the 
processing of pixels of an image by an algorithm that does not require information about neighbor-
ing pixels. The algorithm could split the image into four parts. On a single-core processor, each part 
would be processed sequentially; on a dual-core processor, two parts would be processed in parallel; 
and on a quad-core processor, four parts would be processed in parallel, resulting in an almost linear 
scaling of the performance with the number of cores.

Of course, it’s not always possible to split the problem into parts that can be executed indepen-
dently of each other in parallel. However, it can often be made parallel, at least partially, resulting 
in a performance increase. A difficult part of multithreaded programming is making your algorithm 
parallel, which is highly dependent on the type of the algorithm. Other difficulties are preventing 
race conditions, deadlocks, tearing, and false-sharing. These are discussed in the following sections. 
They are usually solved using atomics or explicit synchronization mechanisms, as discussed later in 
this chapter.

NOTE To prevent multithreading problems, try to design your programs so that 
multiple threads need not read and write to shared memory. Or, use a synchroniza-
tion method (as described in the section “Mutual Exclusion”) or atomic operations 
(as described in the section “Atomic Operations Library”).

Process part 1 Process part 2 Process part 3 Process part 4
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Process part 3

Process part 4

Single core

Dual core
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FIGURE 27-1 
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Race Conditions
Race conditions can occur when multiple threads want to access any kind of shared resources. Race 
conditions in the context of shared memory are called data races. A data race can occur when multi-
ple threads access shared memory, and at least one thread writes to the shared memory. For example, 
suppose you have a shared variable and one thread increments this value while another thread decre-
ments it. Incrementing and decrementing the value means that the current value needs to be retrieved 
from memory, incremented or decremented, and stored back in memory. On old architectures, such 
as PDP-11 and VAX, this used to be implemented with an INC processor instruction, which was 
atomic. On modern x86 processors, the INC instruction is not atomic anymore, meaning that other 
instructions can be executed in the middle of this operation, which might cause the code to retrieve a 
wrong value.

The following table shows the result when the increment is finished before the decrement starts and 
assumes that the initial value is 1:

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

increment value (value = 2)

store value (value = 2)

load value (value = 2)

decrement value (value = 1)

store value (value = 1)

The final value stored in memory is 1. When the decrement thread is finished before the increment 
thread starts, the final value is also 1, as shown in the following table:

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

decrement value (value = 0)

store value (value = 0)

load value (value = 0)

increment value (value = 1)

store value (value = 1)
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However, when the instructions are interleaved, the result is different, as shown in the following table:

THREAD 1 (INCREMENT) THREAD 2 (DECREMENT)

load value (value = 1)

increment value (value = 2)

load value (value = 1)

decrement value (value = 0)

store value (value = 2)

store value (value = 0)

The final result in this case is 0. In other words, the effect of the increment operation is lost. This is a 
data race.

Tearing
Tearing is a specific case or consequence of a data race. There are two kinds of tearing: torn read and 
torn write. If a thread has written part of your data to memory, while another part hasn’t been writ-
ten yet by the same thread, any other thread reading that data at that exact moment sees inconsistent 
data, a torn read. If two threads are writing to the data at the same time, one thread might have writ-
ten part of the data, while another thread might have written another part of the data. The final result 
will be inconsistent, a torn write.

Deadlocks
If you opt to solve a race condition by using a synchronization method, such as mutual exclusion, you 
might run into another common problem with multithreaded programming: deadlocks. Two threads 
are deadlocked if they are both waiting for the other thread to do something. This can be extended to 
more than two threads. For example, if two threads want to acquire access to a shared resource, they 
need to ask for permission to access this resource. If one of the threads currently holds the permission 
to access the resource, but is blocked indefinitely for some other reason, then the other thread will 
block indefinitely as well when trying to acquire permission for the same resource. One mechanism 
to acquire permission for a shared resource is called a mutual exclusion object, discussed in detail 
later in this chapter. For example, suppose you have two threads and two resources protected with 
two mutual exclusion objects, A and B. Both threads acquire permission for both resources, but they 
acquire the permission in different order. The following table shows this situation in pseudo-code:

THREAD 1 THREAD 2

Acquire A

Acquire B

// . . . compute

Release B

Release A

Acquire B

Acquire A

// . . . compute

Release A

Release B
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Now, imagine that the code in the two threads is executed in the following order:

➤➤ Thread 1: Acquire A

➤➤ Thread 2: Acquire B

➤➤ Thread 1: Acquire B (waits/blocks, because B is held by thread 2)

➤➤ Thread 2: Acquire A (waits/blocks, because A is held by thread 1)

Both threads are now waiting indefinitely in a deadlock situation. 
Figure 27-2 shows a graphical representation of the deadlock. 
Thread 1 has acquired permission for resource A and is wait-
ing to acquire permission for resource B. Thread 2 has acquired 
permission for resource B and is waiting to acquire permission for 
resource A. In this graphical representation, you see a cycle that 
depicts the deadlock. Both threads will wait indefinitely.

It’s best to always acquire permissions in the same order to avoid 
these kinds of deadlocks. You can also include mechanisms in 
your program to break these deadlocks. One possible solution is 
to try for a certain time to acquire permission for a resource. If the 
permission could not be obtained within a certain time interval, the 
thread could stop waiting and possibly release other permissions it 
is currently holding. The thread might then sleep for a little bit and 
try again later to acquire all the resources it needs. This method might give other threads the oppor-
tunity to acquire necessary permissions and continue their execution. Whether this method works or 
not depends heavily on your specific deadlock case.

Instead of using a workaround as described in the previous paragraph, you should try to avoid any 
possible deadlock situation altogether. If you need to acquire permission to multiple resources pro-
tected with several mutual exclusion objects, instead of acquiring permission for each resource indi-
vidually, the recommended way is to use the standard std::lock() or std::try_lock() functions 
described later in the section “Mutual Exclusion.” These functions obtain or try to obtain permission 
for several resources with one call, without the risk of deadlocks.

False-Sharing
Most caches work with so-called cache lines. For mod-
ern CPUs, cache lines are usually 64 bytes. If something 
needs to be written to a cache line, the entire line needs 
to be locked. This can bring a serious performance pen-
alty for multithreaded code if your data structure is not 
properly designed. For example, if two threads are using 
two different pieces of data, but that data shares a cache 
line, then when one thread writes something, the other 
thread is blocked because the entire cache line is locked. 
Figure 27-3 graphically shows the situation where two 
threads clearly write to two different blocks of memory 
while sharing a cache line.

Thread 1 Thread 2

Resource B

Resource A

FIGURE 27-2 

FIGURE 27-3 
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You can optimize your data structures by using explicit memory alignments to make sure data that 
is worked on by multiple threads does not share any cache lines. To do this in a portable manner, 
C++17 introduced a constant called hardware_destructive_interference_size, defined in 
<new>, which returns you the minimum recommended offset between two concurrently accessed 
objects to avoid cache line sharing. You can use that value in combination with the alignas keyword 
to properly align your data.

THREADS

The C++ threading library, defined in <thread>, makes it easy to launch new threads. You can specify 
what needs to be executed in the new thread in several ways. You can let the new thread execute a 
global function, the operator() of a function object, a lambda expression, or even a member func-
tion of an instance of some class. The following sections give small examples of all these methods.

Thread with Function Pointer
Functions such as CreateThread(), _beginthread(), and so on, on Windows, and  
pthread_create() with the pthreads library, require that the thread function has only one  
parameter. On the other hand, a function that you want to use with the standard C++ std::thread 
class can have as many parameters as you want.

Suppose you have a counter() function accepting two integers: the first representing an ID and the 
second representing the number of iterations that the function should loop. The body of the function 
is a single loop that loops the given number of iterations. On each iteration, a message is printed to 
standard output.

void counter(int id, int numIterations)
{
    for (int i { 0 }; i < numIterations; ++i) {
        cout << "Counter " << id << " has value " << i << endl;
    }
}

You can launch multiple threads executing this function using std::thread. You can create a thread 
t1, executing counter() with arguments 1 and 6 as follows:

thread t1 { counter, 1, 6 };

The constructor of the thread class is a variadic template, which means that it accepts any number of 
arguments. Variadic templates are discussed in detail in Chapter 26, “Advanced Templates.” The first 
argument is the name of the function to execute in the new thread. The subsequent variable number 
of arguments are passed to this function when execution of the thread starts.

A thread object is said to be joinable if it represents or represented an active thread in the system. 
Even when the thread has finished executing, a thread object remains in the joinable state. A default 
constructed thread object is unjoinable. Before a joinable thread object is destroyed, you need to 
make sure to call either join() or detach() on it. A call to join() is a blocking call, it waits until 
the thread has finished its work. A call to detach() detaches a thread object from its underlying 
OS thread, in which case the OS thread keeps running independently. Both methods cause the thread 
to become unjoinable. If a thread object that is still joinable is destroyed, the destructor will call 
std::terminate(), which abruptly terminates all threads and the application itself.
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The following code launches two threads executing the counter() function. After launching the 
threads, main() calls join() on both threads.

thread t1 { counter, 1, 6 };
thread t2 { counter, 2, 4 };
t1.join();
t2.join();

A possible output of this example looks as follows:

Counter 2 has value 0
Counter 1 has value 0
Counter 1 has value 1
Counter 1 has value 2
Counter 1 has value 3
Counter 1 has value 4
Counter 1 has value 5
Counter 2 has value 1
Counter 2 has value 2
Counter 2 has value 3

The output on your system will be different, and it will most likely be different every time you run 
it. This is because two threads are executing the counter() function at the same time, so the output 
depends on the number of processing cores in your machine and on the thread scheduling of the 
operating system.

By default, accessing cout from different threads is thread-safe and doesn’t cause any data races, 
unless you have called cout.sync_with_stdio(false) before the first output or input operation. 
However, even though there are no data races, output from different threads can still be interleaved! 
This means that the output of the previous example can be mixed together as follows:

Counter Counter 2 has value 0
1 has value 0
Counter 1 has value 1
Counter 1 has value 2
...

This can be fixed using synchronization methods, which are discussed later in this chapter.

NOTE Thread function arguments are always copied into some internal storage 
for the thread. Use std::ref() or cref() from <functional> to pass them by 
reference.

Thread with Function Object
Instead of using function pointers, you can also use a function object to execute in a thread. With the 
function pointer technique of the previous section, the only way to pass information to the thread 
is by passing arguments to the function. With function objects, you can add data members to your 
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function object class, which you can initialize and use however you want. The following example first 
defines a class called Counter, which has two data members: an ID and the number of iterations for 
the loop. Both variables are initialized with the constructor. To make the Counter class a function 
object, you need to implement operator(), as discussed in Chapter 19, “Function Pointers, Function 
Objects, and Lambda Expressions.” The implementation of operator() is the same as the  
counter() function from the previous section. Here is the code:

class Counter
{
    public:
        Counter(int id, int numIterations)
            : m_id { id }, m_numIterations { numIterations } { }
 
        void operator()() const
        {
            for (int i { 0 }; i < m_numIterations; ++i) {
                cout << "Counter " << m_id << " has value " << i << endl;
            }
        }
    private:
        int m_id;
        int m_numIterations;
};

Two methods for initializing threads with a function object are demonstrated in the following  
code snippet. The first method uses the uniform initialization syntax. You create an instance of  
Counter with its constructor arguments and give it to the thread constructor between curly braces. 
The second method defines a named instance of Counter and gives this named instance to the  
constructor of the thread class.

// Using uniform initialization syntax.
thread t1 { Counter{ 1, 20 } };
 
// Using named variable.
Counter c { 2, 12 };
thread t2 { c };
 
// Wait for threads to finish.
t1.join();
t2.join();

NOTE Function objects are always copied into some internal storage for the 
thread. If you want to execute operator() on a specific instance of your function 
object instead of on a copy, you should use one of the std::ref() or cref() 
helper functions from <functional> to pass your instance by reference, for 
example:

Counter c { 2, 12 };
thread t2 { ref(c) };
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Thread with Lambda
Lambda expressions fit nicely with the standard C++ threading library. Here is an example that 
launches a thread to execute a given lambda expression:

int main()
{
    int id { 1 };
    int numIterations { 5 };
    thread t1 { [id, numIterations] {
        for (int i { 0 }; i < numIterations; ++i) {
            cout << "Counter " << id << " has value " << i << endl;
        }
    } };
    t1.join();
}

Thread with Member Function
You can specify a member function of a class to be executed in a thread. The following example 
defines a basic Request class with a process() method. The main() function creates an instance of 
the Request class and launches a new thread, which executes the process() method of the Request 
instance req.

class Request
{
    public:
        Request(int id) : m_id { id } { }
        void process() { cout << "Processing request " << m_id << endl; }
    private:
        int m_id;
};
 
int main()
{
    Request req { 100 };
    thread t { &Request::process, &req };
    t.join();
}

With this technique, you are executing a method on a specific object in a separate thread. If other 
threads are accessing the same object, you need to make sure this happens in a thread-safe way to 
avoid data races. Mutual exclusion, discussed later in this chapter, can be used as a synchronization 
mechanism to make it thread-safe.

Thread Local Storage
The C++ standard supports the concept of thread local storage. With a keyword called  
thread_local, you can mark any variable as thread local, which means that each thread will have its 
own unique copy of the variable, and it will last for the entire duration of the thread. For each thread, 
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the variable is initialized exactly once. For example, the following code defines two global variables, 
k and n. Every thread shares one—and only one—copy of k, while each thread has its own unique 
copy of n.

int k;
thread_local int n;

The following code snippet verifies this. threadFunction() outputs the current values for k and n to 
the console and then increments them both. The main() function launches a first thread, waits for it 
to finish, and then launches a second thread.

void threadFunction(int id)
{
    cout << format("Thread {}: k={}, n={}\n", id, k, n);
    ++n;
    ++k;
}
 
int main()
{
    thread t1 { threadFunction, 1 }; t1.join();
    thread t2 { threadFunction, 2 }; t2.join();
}

From the following output, it’s clear that there is only a single instance of k shared across all threads, 
while each thread has its own copy of n.

Thread 1: k=0, n=0
Thread 2: k=1, n=0

Note that if the thread_local variable is declared in the scope of a function, its behavior is as if it 
were declared static, except that every thread has its own unique copy and is initialized exactly 
once per thread, no matter how many times that function is called in that thread.

Canceling Threads
The C++ standard does not include any mechanism for canceling a running thread from another 
thread. One solution is to use the C++20 jthread class instead, discussed in the next section. If that’s 
not an option, then the best way to achieve this is to provide some communication mechanism that 
the two threads agree upon. The simplest mechanism is to have a shared variable, which the target 
thread checks periodically to determine if it should terminate. Other threads can set this shared vari-
able to indirectly instruct the thread to shut down. You have to be careful here, because this shared 
variable is being accessed by multiple threads, of which at least one is writing to the shared variable. 
It’s recommended to use atomic variables or condition variables, both discussed later in this chapter.

Automatically Joining Threads
As discussed earlier, if a thread instance is destroyed that is still joinable, the C++ runtime calls 
std::terminate() to terminate the application. C++20 introduces std::jthread, also defined in 
<thread>. A jthread is virtually identical to a thread, except:

➤➤ It automatically joins in its destructor.

➤➤ It supports so-called cooperative cancellation.

C++20
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It’s called cooperative cancellation, because a thread that supports cancellation needs to periodically 
check if it needs to cancel itself. Before we can give an example, two key classes need to be intro-
duced, both defined in <stop_token>:

➤➤ std::stop_token: Supports actively checking for a cancellation request. A cancellable 
thread needs to periodically call stop_requested() on a stop_token to find out if it needs 
to stop its work. A stop_token can be used with a condition_variable_any so a thread 
can wake up when it needs to stop.

➤➤ std::stop_source: Used to request a thread to cancel its execution. This is done by calling 
the request_stop() method on a stop_source. If a stop_source is used to request a can-
cellation, that stop request is visible to all associated stop_sources and stop_tokens. The 
stop_requested() method can be used to check whether a stop has already been requested.

Let’s look at an example. The following code creates a jthread to execute a given lambda expression. 
The callable passed to jthread can have a stop_token as first parameter. The body of the callable 
can use that stop_token to figure out if it needs to cancel itself.

jthread job { [](stop_token token) {
    while (!token.stop_requested()) {
        //...
    }
} };

In another thread, you can request this thread to cancel itself as follows:

job.request_stop();

To get direct access to the stop_token and stop_source from a jthread, you can use the  
get_stop_token() and get_stop_source() methods.

Retrieving Results from Threads
As you saw in the previous examples, launching a new thread is pretty easy. However, in most cases 
you are probably interested in results produced by the thread. For example, if your thread performs 
some mathematical calculations, you really would like to get the results out of the thread once the 
thread is finished. One way is to pass a pointer or reference to a result variable to the thread in which 
the thread stores the results. Another method is to store the results inside class data members of a 
function object, which you can retrieve later once the thread has finished executing. This works only 
if you use std::ref() to pass your function object by reference to the thread constructor.

However, there is another easier method to obtain a result from threads: futures. Futures also make it 
easier to handle errors that occur inside your threads. They are discussed later in this chapter.

Copying and Rethrowing Exceptions
The whole exception mechanism in C++ works perfectly fine, as long as it stays within one single 
thread. Every thread can throw its own exceptions, but they need to be caught within their own 
thread. If a thread throws an exception and it is not caught inside the thread, the C++ runtime calls 
std::terminate(), which terminates the whole application. Exceptions thrown in one thread 
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cannot be caught in another thread. This introduces quite a few problems when you would like to use 
exception handling in combination with multithreaded programming.

Without the standard threading library, it’s difficult if not impossible to gracefully handle exceptions 
across threads. The standard threading library solves this issue with the following exception-related 
functions. These functions work not only with std::exceptions, but also with other kinds of excep-
tions, ints, strings, custom exceptions, and so on:

➤➤ exception_ptr current_exception() noexcept;

This is intended to be called from inside a catch block. It returns an exception_ptr 
object that refers to the exception currently being handled, or a copy of the currently han-
dled exception. A null exception_ptr object is returned if no exception is being handled. 
This referenced exception object remains valid for as long as there is an object of type 
exception_ptr that is referencing it. exception_ptr is of type NullablePointer, which 
means it can easily be tested with a simple if statement, as the example later in this section 
will demonstrate.

➤➤ [[noreturn]] void rethrow_exception(exception_ptr p);

This function rethrows the exception referenced by the exception_ptr parameter. Rethrow-
ing the referenced exception does not have to be done in the same thread that generated the 
referenced exception in the first place, which makes this feature perfectly suited for handling 
exceptions across different threads. The [[noreturn]] attribute makes it clear that this 
function never returns normally.

➤➤ template<class E> exception_ptr make_exception_ptr(E e) noexcept;

This function creates an exception_ptr object that refers to a copy of the given exception 
object. This is basically a shorthand notation for the following code:

          try { throw e; }
          catch(...) { return current_exception(); }

Let’s see how handling exceptions across different threads can be implemented using these functions. 
The following code defines a function that does some work and throws an exception. This function 
will ultimately be running in a separate thread.

void doSomeWork()
{
    for (int i { 0 }; i < 5; ++i) {
        cout << i << endl;
    }
    cout << "Thread throwing a runtime_error exception..." << endl;
    throw runtime_error { "Exception from thread" };
}

The following threadFunc() function wraps the call to the preceding function in a try/catch  
block, catching all exceptions that doSomeWork() might throw. A single argument is supplied to 
threadFunc(), which is of type exception_ptr&. Once an exception is caught, the function  
current_exception() is used to get a reference to the exception being handled, which is then 
assigned to the exception_ptr parameter. After that, the thread exits normally.
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void threadFunc(exception_ptr& err)
{
    try {
        doSomeWork();
    } catch (...) {
        cout << "Thread caught exception, returning exception..." << endl;
        err = current_exception();
    }
}

The following doWorkInThread() function is called from within the main thread. Its responsibility  
is to create a new thread and start executing threadFunc() in it. A reference to an object of  
type exception_ptr is given as an argument to threadFunc(). Once the thread is created, the 
doWorkInThread() function waits for the thread to finish by using the join() method, after which 
the error object is examined. Because exception_ptr is of type NullablePointer, you can easily 
check it using an if statement. If it’s a non-null value, the exception is rethrown in the current thread, 
which is the main thread in this example. Because you are rethrowing the exception in the main 
thread, the exception has been transferred from one thread to another thread.

void doWorkInThread()
{
    exception_ptr error;
    // Launch thread.
    thread t { threadFunc, ref(error) };
    // Wait for thread to finish.
    t.join();
    // See if thread has thrown any exception.
    if (error) {
        cout << "Main thread received exception, rethrowing it..." << endl;
        rethrow_exception(error);
    } else {
        cout << "Main thread did not receive any exception." << endl;
    }
}

The main() function is pretty straightforward. It calls doWorkInThread() and wraps the call in a 
try/catch block to catch exceptions thrown by the thread spawned by doWorkInThread().

int main()
{
    try {
        doWorkInThread();
    } catch (const exception& e) {
        cout << "Main function caught: '" << e.what() << "'" << endl;
    }
}

The output is as follows:

0
1
2
3
4
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Thread throwing a runtime_error exception...
Thread caught exception, returning exception...
Main thread received exception, rethrowing it...
Main function caught: 'Exception from thread'

To keep the examples in this chapter compact and to the point, their main() functions usually use 
join() to block the main thread and to wait until threads have finished. Of course, in real-world 
applications you do not want to block your main thread. For example, in a GUI application, block-
ing your main thread means that the UI becomes unresponsive. In that case, you can use a messaging 
paradigm to communicate between threads. For example, the earlier threadFunc() function could 
send a message to the UI thread with as argument a copy of the result of current_exception(). 
But even then, you need to make sure to call either join() or detach() on any spawned threads, as 
discussed earlier in this chapter.

ATOMIC OPERATIONS LIBRARY

Atomic types allow atomic access, which means that concurrent reading and writing without addi-
tional synchronization is allowed. Without atomic operations, incrementing a variable is not thread-
safe because the compiler first loads the value from memory into a register, increments it, and then 
stores the result back in memory. Another thread might touch the same memory during this increment 
operation, which is a data race. For example, the following code is not thread-safe and contains a 
data race. This type of data race is discussed in the beginning of this chapter.

int counter { 0 };   // Global variable
...
++counter;           // Executed in multiple threads

You can use an std::atomic type to make this thread-safe without explicitly using any synchroniza-
tion mechanism. Here is the same code using an atomic integer:

atomic<int> counter { 0 } ;  // Global variable
...
++counter;                   // Executed in multiple threads

These atomic types are defined in <atomic>. The C++ standard defines named integral atomic types 
for all primitive types. The following table lists a few:

NAMED ATOMIC TYPE EQUIVALENT STD::ATOMIC TYPE

atomic_bool atomic<bool>

atomic_char atomic<char>

atomic_uchar atomic<unsigned char>

atomic_int atomic<int>

atomic_uint atomic<unsigned int>

atomic_long atomic<long>

continues



930 ❘ CHAPTER 27  Multithreaded PrograMMing with C++

NAMED ATOMIC TYPE EQUIVALENT STD::ATOMIC TYPE

atomic_ulong atomic<unsigned long>

atomic_llong atomic<long long>

atomic_ullong atomic<unsigned long long>

atomic_wchar_t atomic<wchar_t>

atomic_flag (none)

You can use atomic types without explicitly using any synchronization mechanism. However, under-
neath, operations on atomics of a certain type might use a synchronization mechanism such as mutual 
exclusion objects. This might happen, for example, when the hardware you are targeting lacks the 
necessary instructions to perform an operation atomically. You can use the is_lock_free() method 
on an atomic type to query whether it supports lock-free operations, that is, whether its operations 
run without any explicit synchronization mechanism underneath. There is also a static constant 
called atomic<T>::is_always_lock_free, which is true if the atomic<T> is always lock free, and 
false otherwise.

The std::atomic class template can be used with all kinds of types, not only integral types. For 
example, you can create an atomic<double>, or an atomic<MyType>, but only if MyType is trivially 
copyable. Depending on the size of the specified type, underneath these might require explicit syn-
chronization mechanisms. In the following example, both Foo and Bar are trivially copyable, that is, 
std::is_trivially_copyable_v is true for both. However, atomic<Foo> is not lock free, while 
atomic<Bar> is.

class Foo { private: int m_array[123]; };
class Bar { private: int m_int; };
 
int main()
{
    atomic<Foo> f;
    // Outputs: 1 0
    cout << is_trivially_copyable_v<Foo> << " " << f.is_lock_free() << endl;
 
    atomic<Bar> b;
    // Outputs: 1 1
    cout << is_trivially_copyable_v<Bar> << " " << b.is_lock_free() << endl;
}

When accessing a piece of data from multiple threads, atomics also solve problems such as memory 
ordering, compiler optimizations, and so on. Basically, it’s virtually never safe to read and write 
to the same piece of data from multiple threads without using atomics or explicit synchronization 
mechanisms!

TABLE  (continued)
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NOTE Memory ordering is the order in which memory is accessed. In the absence 
of any atomics and other synchronization methods, compilers and hardware are 
allowed to reorder memory accesses as long as this does not affect the outcome, 
also known as the as-if rule. This can cause problems in multithreaded environ-
ments.

atomic_flag is an atomic Boolean, always lock-free, guaranteed by the C++ standard. It differs from 
atomic<bool> in that it does not provide methods to load and store a value. An example of using 
atomic_flag is given in the mutual exclusion section for the implementation of a spinlock later in 
this chapter.

Atomic Operations
The C++ standard defines a number of atomic operations. This section describes a few of those opera-
tions. For a full list, consult a Standard Library Reference (see Appendix B).

A first example of an atomic operation is the following:

bool atomic<T>::compare_exchange_strong(T& expected, T desired);

The logic implemented atomically by this operation is as follows, in pseudo-code:

if (*this == expected) {
    *this = desired;
    return true;
} else {
    expected = *this;
    return false;
}

Although this logic might seem fairly strange on first sight, this operation is a key building block for 
writing lock-free concurrent data structures. Lock-free concurrent data structures allow operations 
on their data without requiring any synchronization mechanisms. However, implementing such data 
structures is an advanced topic, outside the scope of this book.

A second example is atomic<T>::fetch_add(). It fetches the current value of the atomic type, adds 
the given increment to the atomic value, and returns the original non-incremented value. Here is 
an example:

atomic<int> value { 10 };
cout << "Value = " << value << endl;
int fetched { value.fetch_add(4) };
cout << "Fetched = " << fetched << endl;
cout << "Value = " << value << endl;

If no other threads are touching the contents of the fetched and value variables, the output is 
as follows:

Value = 10
Fetched = 10
Value = 14
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Atomic integral types support the following atomic operations: fetch_add(), fetch_sub(),  
fetch_and(), fetch_or(), fetch_xor(), ++, --, +=, -=, &=, ^=, and |=. Atomic pointer types  
support fetch_add(), fetch_sub(), ++, --, +=, and -=.

NOTE Before C++20, using std::atomic with floating-point types, such as 
atomic<float> and atomic<double> provided atomic reading and writing, but 
did not provide atomic arithmetic operations. C++20 adds support for  
fetch_add() and fetch_sub() for floating-point atomic types.

Most of the atomic operations can accept an extra parameter specifying the memory ordering that 
you would like. Here is an example:

T atomic<T>::fetch_add(T value, memory_order = memory_order_seq_cst);

You can change the default memory_order. The C++ standard provides memory_order_relaxed, 
memory_order_consume, memory_order_acquire, memory_order_release, memory_order_acq_rel,  
and memory_order_seq_cst, all of which are defined in the std namespace. However, you will rarely 
want to use them instead of the default. While another memory order may perform better than the 
default, according to some metrics, if you use them in a slightly incorrect way, you will again introduce 
data races or other difficult-to-track threading-related problems. If you do want to know more about 
memory ordering, consult one of the multithreading references in Appendix B.

Atomic Smart Pointers
C++20 introduces support for atomic<std::shared_ptr<T>> through <memory>. This was not 
allowed in earlier versions of the C++ standard because shared_ptr is not trivially copyable. The 
control block, storing the reference count among others, of a shared_ptr has always been thread 
safe, which guarantees that the pointed to object is deleted exactly once. However, anything else from 
a shared_ptr is not thread safe. Using the same shared_ptr instance concurrently from multiple 
threads causes data races if non-const methods, such as reset(), are called on that shared_ptr 
instance. On the other hand, when using the same atomic<shared_ptr<T>> instance from multiple 
threads, even calling non-const shared_ptr methods is thread safe. Note that calling non-const 
methods on the object pointed to by the shared_ptr is still not thread safe and requires manual 
synchronization.

Atomic References
C++20 also introduces std::atomic_ref. It is basically the same as std::atomic, even with the 
same interface, but it works with references, while atomic always makes a copy of the value it is 
provided with. An atomic_ref instance itself should have a shorter lifetime than the object it refer-
ences. An atomic_ref is copyable, and you can create as many atomic_ref instances as you want 
referring to the same object. If you have atomic_ref instances referring to a certain object, you 
are not allowed to touch that object without going through one of the atomic_ref instances. The 

C++20

C++20

C++20
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atomic_ref<T> class template can be used with any trivially copyable type T, just as std::atomic. 
Additionally, the Standard Library provides the following:

➤➤ Partial specializations for pointer types, supporting fetch_add() and fetch_sub()

➤➤ Full specializations for integral types, supporting fetch_add(), fetch_sub(), fetch_and(), 
fetch_or(), and fetch_xor()

➤➤ Full specializations for floating-point types, supporting fetch_add() and fetch_sub()

The following section gives an example on how to use an atomic_ref.

Using Atomic Types
This section explains in more detail why you should use atomic types. Suppose you have the follow-
ing function called increment() that increments an integer reference parameter in a loop. This code 
uses std::this_thread::sleep_for() to introduce a small delay in each loop. The argument to 
sleep_for() is an std::chrono::duration; see Chapter 22, “Date and Time Utilities.”

void increment(int& counter)
{
    for (int i { 0 }; i < 100; ++i) {
        ++counter;
        this_thread::sleep_for(1ms);
    }
}

Now, you would like to run several threads in parallel, all executing this increment() function on 
a shared counter variable. By implementing this naively without atomic types or without any kind 
of thread synchronization, you introduce data races. The following code launches 10 threads, after 
which it waits for all threads to finish by calling join() on each thread:

int main()
{
    int counter { 0 };
    vector<thread> threads;
    for (int i { 0 }; i < 10; ++i) {
        threads.push_back(thread { increment, ref(counter) });
    }
 
    for (auto& t : threads) {
        t.join();
    }
    cout << "Result = " << counter <<endl;
}

Because increment() increments its counter parameter 100 times, and 10 threads are launched, each 
of which executes increment() on the same shared counter, the expected result is 1,000. If you 
execute this program several times, you might get the following output but with different values:

Result = 982
Result = 977
Result = 984
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This code is clearly showing a data race. In this example, you can use an atomic type to fix the code. 
The following code highlights the required changes:

import <atomic>;
 
void increment(atomic<int>& counter)
{
    for (int i { 0 }; i < 100; ++i) {
        ++counter;
        this_thread::sleep_for(1ms);
    }
}
 
int main()
{
    atomic<int> counter { 0 };
    vector<thread> threads;
    for (int i { 0 }; i < 10; ++i) {
        threads.push_back(thread { increment, ref(counter) });
    }
    // Remaining code omitted, same as before...
}

The changes include adding an import for <atomic> and changing the type of the shared counter to 
std::atomic<int> instead of int. When you run this modified version, you always get 1,000 as 
the result:

Result = 1000
Result = 1000
Result = 1000

Without explicitly adding any synchronization mechanism to the code, it is now thread safe and data 
race free because the ++counter operation on an atomic type loads, increments, and stores the value 
in one atomic transaction, which cannot be interrupted.

With C++20’s atomic_ref, you can solve the data race as follows:

void increment(int& counter)
{
    atomic_ref<int> atomicCounter { counter };
    for (int i { 0 }; i < 100; ++i) {
        ++atomicCounter;
        this_thread::sleep_for(1ms);
    }
}
 
int main()
{
    int counter { 0 };
    vector<thread> threads;
    for (int i { 0 }; i < 10; ++i) {
        threads.push_back(thread { increment, ref(counter) });
    }
    // Remaining code omitted, same as before...
}
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However, there is a new problem with both of these modified implementations: a performance prob-
lem. You should try to minimize the amount of synchronization, either atomic or explicit synchroni-
zation, because it lowers performance. For this simple example, the best and recommended solution is 
to let increment() calculate its result in a local variable and only after the loop add it to the coun-
ter reference. Note that it is still required to use an atomic or atomic_ref type, because you are still 
writing to counter from multiple threads.

void increment(atomic<int>& counter)
{
    int result { 0 };
    for (int i { 0 }; i < 100; ++i) {
        ++result;
        this_thread::sleep_for(1ms);
    }
    counter += result;
}

Waiting on Atomic Variables
C++20 adds the following methods to std::atomic and atomic_ref to efficiently wait until an 
atomic variable is modified:

METHOD DESCRIPTION

wait(oldValue) Blocks the thread until another thread calls notify_one() or  
notify_all(), and the value of the atomic variable has changed, that is, is 
not equal to oldValue anymore

notify_one() Wakes up one thread that is blocking on a wait() call

notify_all() Wakes up all threads blocking on a wait() call

Here is an example of how these can be used:

atomic<int> value { 0 };
 
thread job { [&value] {
    cout << "Thread starts waiting." << endl;
    value.wait(0);
    cout << "Thread wakes up, value = " << value << endl;
} };
 
this_thread::sleep_for(2s);
 
cout << "Main thread is going to change value to 1." << endl;
value = 1;
value.notify_all();
 
job.join();

C++20
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The output is as follows:

Thread starts waiting.
Main thread is going to change value to 1.
Thread wakes up, value = 1

MUTUAL EXCLUSION

If you are writing multithreaded applications, you have to be sensitive to the sequencing of opera-
tions. If your threads read and write shared data, this can be a problem. There are many ways to 
avoid this problem, such as never actually sharing data between threads. However, if you can’t 
avoid sharing data, you must provide for synchronization so that only one thread at a time can 
change the data.

Scalars such as Booleans and integers can often be synchronized properly with atomic operations, 
as described earlier; however, when your data is more complex and you need to use that data from 
multiple threads, you must provide explicit synchronization.

The Standard Library has support for mutual exclusion in the form of mutex and lock classes. 
These can be used to implement synchronization between threads and are discussed in the follow-
ing sections.

Mutex Classes
Mutex stands for mutual exclusion. The basic mechanism of using a mutex is as follows:

➤➤ A thread that wants to use (read/write) memory shared with other threads tries to lock a 
mutex object. If another thread is currently holding this lock, the new thread that wants 
to gain access blocks until the lock is released or until a timeout interval expires.

➤➤ Once the thread has obtained the lock, it is free to use the shared memory. Of course, 
this assumes that all threads that want to use the shared data correctly acquire a lock on 
the mutex.

➤➤ After the thread is finished with reading/writing to the shared memory, it releases the lock 
to give some other thread an opportunity to obtain the lock to the shared memory. If two 
or more threads are waiting on the lock, there are no guarantees as to which thread will be 
granted the lock and thus allowed to proceed.

The C++ Standard Library provides non-timed and timed mutex classes, both in a recursive and 
non-recursive flavor. Before we discuss all these options, let’s first have a look at a concept called 
a spinlock.

Spinlock
A spinlock is a form of mutex in which a thread uses a busy loop (spinning) to try to acquire a lock, 
performs its work, and releases the lock. While spinning, the thread remains active but is not doing 
any useful work. Even so, spinlocks can be useful in certain situations because they can be imple-
mented entirely in your own code and do not require any expensive calls to the operating system, nor 
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suffer any overhead of thread switching. As the following code snippet demonstrates, a spinlock can 
be implemented using a single atomic type: atomic_flag. The spinlock-related code is highlighted.

atomic_flag spinlock = ATOMIC_FLAG_INIT; // Uniform initialization is not allowed.
static const size_t NumberOfThreads { 50 };
static const size_t LoopsPerThread { 100 };
 
void dowork(size_t threadNumber, vector<size_t>& data)
{
    for (size_t i { 0 }; i < LoopsPerThread; ++i) {
        while (spinlock.test_and_set()) { }  // Spins until lock is acquired.
        // Save to handle shared data...
        data.push_back(threadNumber);
        spinlock.clear();                    // Releases the acquired lock.
    }
}
 
int main()
{
    vector<size_t> data;
    vector<thread> threads;
    for (size_t i { 0 }; i < NumberOfThreads; ++i) {
        threads.push_back(thread { dowork, i, ref(data) });
    }
    for (auto& t : threads) {
        t.join();
    }
    cout << format("data contains {} elements, expected {}.\n", data.size(),
        NumberOfThreads * LoopsPerThread);
}

In this code, each thread tries to acquire a lock by repeatedly calling test_and_set() on an  
atomic_flag until it succeeds. This is the busy loop.

WARNING As spinlocks use a busy waiting loop, they should be an option only 
when you know for sure that threads will lock the spinlock only for brief moments 
of time.

Let’s now look at which mutex classes the Standard Library provides.

Non-timed Mutex Classes
The Standard Library has three non-timed mutex classes: std::mutex, recursive_mutex, and 
shared_mutex. The first two classes are defined in <mutex>, and the last one in <shared_mutex>. 
Each mutex supports the following methods:

➤➤ lock(): The calling thread tries to obtain the lock and blocks until the lock has been 
acquired. It blocks indefinitely. If there is a desire to limit the amount of time the thread 
blocks, you should use a timed mutex, discussed in the next section.
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➤➤ try_lock(): The calling thread tries to obtain the lock. If the lock is currently held by 
another thread, the call returns immediately. If the lock has been obtained, try_lock() 
returns true; otherwise, it returns false.

➤➤ unlock(): The calling thread releases the lock it currently holds, making it available for 
another thread.

std::mutex is a standard mutual exclusion class with exclusive ownership semantics. There can be 
only one thread owning the mutex. If another thread wants to obtain ownership of this mutex, it 
either blocks when using lock() or fails when using try_lock(). A thread already having owner-
ship of a mutex is not allowed to call lock() or try_lock() again on that mutex. This might lead to 
a deadlock!

std::recursive_mutex behaves almost identically to mutex, except that a thread already having 
ownership of a recursive mutex is allowed to call lock() or try_lock() again on the same recursive 
mutex. The calling thread should call the unlock() method as many times as it obtained a lock on 
the recursive mutex.

The shared_mutex class supports the concept of shared lock ownership, also known as readers-
writers lock. A thread can get either exclusive ownership or shared ownership of the lock. Exclusive 
ownership, also known as a write lock, can be acquired only when there are no other threads having 
exclusive or shared ownership. Shared ownership, also known as a read lock, can be acquired if there 
is no other thread having exclusive ownership, but other threads are allowed to have acquired shared 
ownership. The shared_mutex class supports lock(), try_lock(), and unlock(). These methods 
acquire and release exclusive locks. Additionally, they have the following shared ownership-related 
methods: lock_shared(), try_lock_shared(), and unlock_shared(). These work similarly to the 
other set of methods, but try to acquire or release shared ownership.

A thread already having a lock on a shared_mutex is not allowed to try to acquire a second lock on 
that mutex. This might lead to a deadlock!

Before examples on how to use these mutex classes can be given, a couple of other topics need to 
be discussed first. Hence, examples are discussed in the section “Examples Using Mutual Exclusion 
Objects” later in this chapter.

WARNING Do not manually call the previously discussed lock and unlock 
methods on any of the mutex classes discussed in this section and the next one. 
Mutex locks are resources, and, like all resources, they should almost exclusively 
be acquired using the Resource Acquisition Is Initialization (RAII) paradigm; see 
Chapter 32, “Incorporating Design Techniques and Frameworks.” The C++ Stan-
dard Library provides a number of RAII lock classes, which are discussed in the 
“Locks” section later in this chapter. Using them is critical to avoid deadlocks. 
They automatically unlock a mutex when a lock object goes out of scope, so you 
don’t need to remember to manually call unlock() at the right time.
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Timed Mutex Classes
When calling lock() on any of the previously discussed mutex classes, the call blocks until the lock 
can be obtained. On the other hand, calling try_lock() on those mutex classes tries to acquire a 
lock but returns immediately if not successful. There are also timed mutex classes that can try to 
obtain a lock but give up after a certain amount of time.

The Standard Library provides three timed mutex classes: std::timed_mutex,  
recursive_timed_mutex, and shared_timed_mutex. The first two classes are defined in <mutex>, 
and the last one in <shared_mutex>. They all support the lock(), try_lock(), and unlock()  
methods; and shared_timed_mutex also supports lock_shared(), try_lock_shared(), and 
unlock_shared(). All these methods behave the same as described in the previous section.  
Additionally, they support the following methods:

➤➤ try_lock_for(rel_time): The calling thread tries to obtain the lock for a certain relative 
time. If the lock could not be obtained after the given timeout, the call fails and returns 
false. If the lock could be obtained within the timeout, the call succeeds and returns true. 
The timeout is specified as an std::chrono::duration; see Chapter 22.

➤➤ try_lock_until(abs_time): The calling thread tries to obtain the lock until the system 
time equals or exceeds the specified absolute time. If the lock could be obtained before this 
time, the call returns true. If the system time passes the given absolute time, the function 
stops trying to obtain the lock and returns false. The absolute time is specified as an 
std::chrono::time_point; see Chapter 22.

A shared_timed_mutex also supports try_lock_shared_for() and try_lock_shared_until().

A thread already having ownership of a timed_mutex or a shared_timed_mutex is not allowed to 
acquire the lock a second time on that mutex. This might lead to a deadlock!

A recursive_timed_mutex allows a thread to acquire a lock multiple times, just as with  
recursive_mutex.

Locks
A lock class is an RAII class that makes it easier to correctly obtain and release a lock on a mutex; 
the destructor of the lock class automatically releases the associated mutex. The C++ standard defines 
four types of locks: std::lock_guard, unique_lock, shared_lock, and scoped_lock.

lock_guard
lock_guard, defined in <mutex>, is a simple lock with two constructors:

➤➤ explicit lock_guard(mutex_type& m);

This is a constructor accepting a reference to a mutex. This constructor tries to obtain a lock 
on the mutex and blocks until the lock is obtained. The explicit keyword for constructors 
is discussed in Chapter 8, “Gaining Proficiency with Classes and Objects.”
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➤➤ lock_guard(mutex_type& m, adopt_lock_t);

This is a constructor accepting a reference to a mutex and an instance of  
std::adopt_lock_t. There is a predefined adopt_lock_t instance provided, called 
std::adopt_lock. The lock assumes that the calling thread has already obtained a lock on 
the referenced mutex. The lock “adopts” the mutex and automatically releases the mutex 
when the lock is destroyed.

unique_lock
std::unique_lock, defined in <mutex>, is a more sophisticated lock that allows you to defer lock 
acquisition until later in the execution, long after the declaration. You can use the owns_lock() 
method or the unique_lock’s bool conversion operator to see if the lock has been acquired. An 
example of using this conversion operator is given later in this chapter in the section “Using Timed 
Locks.” unique_lock has several constructors:

➤➤ explicit unique_lock(mutex_type& m);

This constructor accepts a reference to a mutex. It tries to obtain a lock on the mutex and 
blocks until the lock is obtained.

➤➤ unique_lock(mutex_type& m, defer_lock_t) noexcept;

This constructor accepts a reference to a mutex and an instance of std::defer_lock_t. 
There is a predefined defer_lock_t instance provided, called std::defer_lock. The 
unique_lock stores the reference to the mutex, but does not immediately try to obtain a 
lock. A lock can be obtained later.

➤➤ unique_lock(mutex_type& m, try_to_lock_t);

This constructor accepts a reference to a mutex and an instance of std::try_to_lock_t. 
There is a predefined try_to_lock_t instance provided, called std::try_to_lock. The lock 
tries to obtain a lock to the referenced mutex, but if it fails, it does not block, in which case, a 
lock can be obtained later.

➤➤ unique_lock(mutex_type& m, adopt_lock_t);

This constructor accepts a reference to a mutex and an instance of std::adopt_lock_t, for 
example std::adopt_lock. The lock assumes that the calling thread has already obtained 
a lock on the referenced mutex. The lock “adopts” the mutex and automatically releases the 
mutex when the lock is destroyed.

➤➤ unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& 

abs_time);

This constructor accepts a reference to a mutex and an absolute time. The constructor tries 
to obtain a lock until the system time passes the given absolute time. The chrono library is 
discussed in Chapter 22.
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➤➤ unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);

This constructor accepts a reference to a mutex and a relative time. The constructor tries to 
get a lock on the mutex with the given relative timeout.

The unique_lock class also has the methods lock(), try_lock(), try_lock_for(),  
try_lock_until(), and unlock(), which behave as explained in the section “Timed Mutex 
Classes,” earlier in this chapter.

shared_lock
The shared_lock class, defined in <shared_mutex>, has the same type of constructors and the same 
methods as unique_lock. The difference is that the shared_lock class calls the shared ownership-
related methods on the underlying shared mutex. Thus, the methods of shared_lock are called 
lock(), try_lock(), and so on, but on the underlying shared mutex they call lock_shared(),  
try_lock_shared(), and so on. This is done to give shared_lock the same interface as unique_
lock, so it can be used as a stand-in replacement for unique_lock, but acquires a shared lock instead 
of an exclusive lock.

Acquiring Multiple Locks at Once
C++ has two generic lock functions that you can use to obtain locks on multiple mutex objects at 
once without the risk of creating deadlocks. Both functions are defined in the std namespace, and 
both are variadic function templates, as discussed in Chapter 26.

The first function, lock(), locks all the given mutex objects in an unspecified order without the risk 
of deadlocks. If one of the mutex lock calls throws an exception, unlock() is called on all locks that 
have already been obtained. Its prototype is as follows:

template <class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);

try_lock() has a similar prototype, but it tries to obtain a lock on all the given mutex objects by 
calling try_lock() on each of them in sequence. It returns -1 if all calls to try_lock() succeed. If 
any try_lock() fails, unlock() is called on all locks that have already been obtained, and the return 
value is the zero-based index of the parameter position of the mutex on which try_lock() failed.

The following example demonstrates how to use the generic lock() function. The process() 
function first creates two locks, one for each mutex, and gives an instance of std::defer_lock_t 
as a second argument to tell unique_lock not to acquire the lock during construction. The call to 
std::lock() then acquires both locks without the risk of deadlocks.

mutex mut1;
mutex mut2;
 
void process()
{
    unique_lock lock1 { mut1, defer_lock };
    unique_lock lock2 { mut2, defer_lock };
    lock(lock1, lock2);
    // Locks acquired.
} // Locks automatically released.
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scoped_lock
std::scoped_lock, defined in <mutex>, is similar to lock_guard, except that it accepts a variable 
number of mutexes. This greatly simplifies acquiring multiple locks. For instance, the example with 
the process() function in the previous section can be written using a scoped_lock as follows:

mutex mut1;
mutex mut2;
 
void process()
{
    scoped_lock locks { mut1, mut2 };
    // Locks acquired.
} // Locks automatically released.

NOTE scoped_lock not only simplifies acquiring multiple locks, because you 
don’t need to worry about acquiring them in the right order, but it is also more 
performant than manually acquiring the locks.

std::call_once
You can use std::call_once() in combination with std::once_flag to make sure a certain func-
tion or method is called exactly one time, no matter how many threads try to call call_once() with 
the same once_flag. Only one call_once() invocation actually calls the given function or method. 
If the given function does not throw any exceptions, then this invocation is called the effective  
call_once() invocation. If the given function does throw an exception, the exception is propagated 
back to the caller, and another caller is selected to execute the function. The effective invocation  
on a specific once_flag instance finishes before all other call_once() invocations on the same 
once_flag. Other threads calling call_once() on the same once_flag block until the effective 
call is finished. Figure 27-4 illustrates this with three threads. Thread 1 performs the effective call_
once() invocation, thread 2 blocks until the effective invocation is finished, and thread 3 doesn’t 
block because the effective invocation from thread 1 has already finished.

The following example demonstrates the use of call_once(). The example launches three threads 
running processingFunction() that use some shared resources. These shared resources should be 
initialized by calling initializeSharedResources() once. To accomplish this, each thread calls 

Time

call_once → func → func returns → call_once returns   

call_once →  blocks → call_once returns

call_once → call_once returns

Thread 1

Thread 2

Thread 3

FIGURE 27-4 
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call_once() with a global once_flag. The result is that only one thread effectively executes  
initializeSharedResources(), and exactly one time. While this call_once() call is in progress, 
other threads block until initializeSharedResources() returns.

once_flag g_onceFlag;
 
void initializeSharedResources()
{
    // ... Initialize shared resources to be used by multiple threads.
    cout << "Shared resources initialized." << endl;
}
 
void processingFunction()
{
    // Make sure the shared resources are initialized.
    call_once(g_onceFlag, initializeSharedResources);
 
    // ... Do some work, including using the shared resources
    cout << "Processing" << endl;
}
 
int main()
{
    // Launch 3 threads.
    vector<thread> threads { 3 };
    for (auto& t : threads) {
        t = thread { processingFunction };
    }
    // Join on all threads
    for (auto& t : threads) {
        t.join();
    }
} 

The output of this code is as follows:

Shared resources initialized.
Processing
Processing
Processing

Of course, in this example, you could call initializeSharedResources() once in the beginning of 
the main() function before the threads are launched; however, that wouldn’t demonstrate the use of 
call_once().

Examples Using Mutual Exclusion Objects
The following sections give a couple of examples on how to use mutual exclusion objects to synchro-
nize multiple threads.

Thread-Safe Writing to Streams
Earlier in this chapter, in the “Threads” section, there is an example with a class called Counter. That 
example mentions that C++ streams are data-race free by default, but that the output from multiple 
threads can be interleaved. Here are two solutions to solve this interleaving issue:
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➤➤ Use a C++20 synchronized stream.

➤➤ Use a mutual exclusion object to make sure that only one thread at a time is reading/writing 
to the stream object.

Synchronized Streams
C++20 introduces std::basic_osyncstream with predefined type aliases osyncstream and 
wosyncstream for char and wchar_t streams, respectively, all defined in <syncstream>. The O in 
these class names stands for output. These classes guarantee that all output done through them will 
appear in the final output stream the moment the synchronized stream is destroyed. It guarantees that 
the output cannot be interleaved by other output from other threads.

The function call operator of the earlier Counter class can be implemented as follows using an 
osyncstream to prevent interleaved output:

class Counter
{
    public:
        Counter(int id, int numIterations)
            : m_id { id }, m_numIterations { numIterations } { }
 
        void operator()() const
        {
            for (int i { 0 }; i < m_numIterations; ++i) {
                osyncstream { cout } << "Counter "
                    << m_id << " has value " << i << endl;
            }
        }
    private:
        int m_id;
        int m_numIterations;
};
 

Or:

void operator()() const
{
    for (int i { 0 }; i < m_numIterations; ++i) {
        osyncstream syncedCout { cout };
        syncedCout << "Counter " << m_id << " has value " << i << endl;
    }
}

Using Mutex
If you cannot use a synchronized stream, you can use a mutex as demonstrated in the following code 
snippet to synchronize all accesses to cout in the Counter class. For this, a static mutex object is 

C++20
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added. It should be static, because all instances of the class should use the same mutex instance. 
lock_guard is used to obtain a lock on the mutex before writing to cout.

class Counter
{
    public:
        Counter(int id, int numIterations)
            : m_id { id }, m_numIterations { numIterations } { }
 
        void operator()() const
        {
            for (int i { 0 }; i < m_numIterations; ++i) {
                lock_guard lock { ms_mutex };
                cout << "Counter " << m_id << " has value " << i << endl;
            }
        }
    private:
        int m_id;
        int m_numIterations;
        inline static mutex ms_mutex;
};

This code creates a lock_guard instance on each iteration of the for loop. It is recommended to limit 
the time a lock is held as much as possible; otherwise, you are blocking other threads for too long. 
For example, if the lock_guard instance was created once right before the for loop, then you would 
basically lose all multithreading in this code because one thread would hold a lock for the entire 
duration of its for loop, and all other threads would wait for this lock to be released.

Using Timed Locks
The following example demonstrates how to use a timed mutex. It is the same Counter class as 
before, but this time it uses a timed_mutex in combination with a unique_lock. A relative time 
of 200 milliseconds is given to the unique_lock constructor, causing it to try to obtain a lock for 
200 milliseconds. If the lock cannot be obtained within this timeout interval, the constructor returns. 
Afterward, you can check whether the lock has been acquired. You can do this with an if statement 
on the lock variable, because unique_lock defines a bool conversion operator. The timeout is speci-
fied using the chrono library, discussed in Chapter 22.

class Counter
{
    public:
        Counter(int id, int numIterations)
            : m_id { id }, m_numIterations { numIterations } { }
 
        void operator()() const
        {
            for (int i { 0 }; i < m_numIterations; ++i) {
                unique_lock lock { ms_timedMutex, 200ms };
                if (lock) {
                    cout << "Counter " << m_id << " has value " << i << endl;

continues
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                } else {
                    // Lock not acquired in 200ms, skip output.
                }
            }
        }
    private:
        int m_id;
        int m_numIterations;
        inline static timed_mutex ms_timedMutex;
};

Double-Checked Locking
The double-checked locking pattern is actually an anti-pattern, which you should avoid! It is shown 
here because you might come across it in existing code bases. The idea of the double-checked locking 
pattern is to try to avoid the use of mutual exclusion objects. It’s a half-baked attempt at trying to 
write more efficient code than using a mutual exclusion object. It can really go wrong when you try 
to make it faster than demonstrated in the upcoming example, for instance, by using relaxed atomics 
(not further discussed), using a regular Boolean instead of an atomic<bool>, and so on. The pattern 
becomes sensitive to data races, and it is hard to get right. The irony is that using call_once() will 
actually be faster, and using a magic static (if applicable) will be even faster than that.

WARNING Avoid the double-checked locking pattern! Instead, use other mecha-
nisms such as simple locks, atomic variables, call_once(), magic statics, and so 
on.

NOTE Function-local static instances are called magic statics. C++ guarantees 
that such local static instances are initialized in a thread-safe fashion, so you 
don’t need any manual thread synchronization. An example of using a magic static 
is given in Chapter 33, “Applying Design Patterns,” with the discussion of the  
singleton pattern.

Double-checked locking could, for example, be used to make sure that resources are initialized 
exactly once. The following example shows how you can implement this. It is called the double-
checked locking pattern because it is checking the value of the g_initialized variable twice, once 
before acquiring the lock and once right after acquiring the lock. The first g_initialized check is 
used to prevent acquiring a lock when it is not needed. The second check is required to make sure 
that no other thread performed the initialization between the first g_initialized check and acquir-
ing the lock.

void initializeSharedResources()
{
    // ... Initialize shared resources to be used by multiple threads.
    cout << "Shared resources initialized." << endl;
}
 

(continued)
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atomic<bool> g_initialized { false };
mutex g_mutex;
 
void processingFunction()
{
    if (!g_initialized) {
        unique_lock lock { g_mutex };
        if (!g_initialized) {
            initializeSharedResources();
            g_initialized = true;
        }
    }
    cout << "OK" << endl;
}
 
int main()
{
    vector<thread> threads;
    for (int i { 0 }; i < 5; ++i) {
        threads.push_back(thread { processingFunction });
    }
    for (auto& t : threads) {
        t.join();
    }
}

The output clearly shows that only one thread initializes the shared resources:

Shared resources initialized.
OK
OK
OK
OK
OK

NOTE For this example, it’s recommended to use call_once() as demonstrated 
earlier in this chapter, instead of double-checked locking!

CONDITION VARIABLES

Condition variables allow a thread to block until a certain condition is set by another thread or until 
the system time reaches a specified time. These variables allow for explicit inter-thread communica-
tion. If you are familiar with multithreaded programming using the Win32 API, you can compare 
condition variables with event objects in Windows.

Two kinds of condition variables are available, both of which are defined in <condition_variable>:

➤➤ std::condition_variable: A condition variable that can wait only on a unique_
lock<mutex>, which, according to the C++ standard, allows for maximum efficiency on 
certain platforms.

➤➤ std::condition_variable_any: A condition variable that can wait on any kind of object, 
including custom lock types.
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A condition_variable supports the following methods:

➤➤ notify_one();

This method wakes up one of the threads waiting on this condition variable. This is similar to 
an auto-reset event in Windows.

➤➤ notify_all();

This method wakes up all threads waiting on this condition variable.

➤➤ wait(unique_lock<mutex>& lk);

The thread calling wait() should already have acquired a lock on lk. The effect of calling 
wait() is that it atomically calls lk.unlock() and then blocks the thread, waiting for a 
notification. When the thread is unblocked by a notify_one() or notify_all() call in 
another thread, the function calls lk.lock() again, possibly blocking until the lock has been 
acquired, and then returns.

➤➤ wait_for(unique_lock<mutex>& lk, const chrono::duration<Rep, Period>& 

rel_time);

This method is similar to wait(), except that the thread is unblocked by a notify_one() 
call, a notify_all() call, or when the given timeout has expired.

➤➤ wait_until(unique_lock<mutex>& lk, const chrono::time_point<Clock, Dura-

tion>& abs_time);

This method is similar to wait(), except that the thread is unblocked by a notify_one() 
call, a notify_all() call, or when the system time passes the given absolute time.

There are also versions of wait(), wait_for(), and wait_until() that accept an extra predicate 
parameter. For instance, the version of wait() accepting an extra predicate is equivalent to the 
following:

while (!predicate())
    wait(lk);

The condition_variable_any class supports the same methods as condition_variable, except 
that it accepts any kind of lock class instead of only a unique_lock<mutex>. The lock class used 
should have a lock() and unlock() method.

Spurious Wake-Ups
Threads waiting on a condition variable can wake up when another thread calls notify_one() or 
notify_all(), with a relative timeout, or when the system time reaches a certain time. However, 
they can also wake up spuriously. This means that a thread can wake up even if no other thread has 
called any notify method and no timeouts have been reached yet. Thus, when a thread waits on a con-
dition variable and wakes up, it needs to check why it woke up. One way to check for this is by using 
one of the versions of wait() accepting a predicate, as demonstrated in the following section.
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Using Condition Variables
As an example, condition variables can be used for background threads processing items from a 
queue. You can define a queue in which you insert items to be processed. A background thread 
waits until there are items in the queue. When an item is inserted into the queue, the thread wakes 
up, processes the item, and goes back to sleep, waiting for the next item. Suppose you have the fol-
lowing queue:

queue<string> m_queue;

You need to make sure that only one thread is modifying this queue at any given time. You can do 
this with a mutex:

mutex m_mutex;

To be able to notify a background thread when an item is added, you need a condition variable:

condition_variable m_condVar;

A thread that wants to add an item to the queue first acquires a lock on the mutex, then adds the 
item to the queue, and notifies the background thread. You can call notify_one() or notify_all() 
whether you currently have the lock or not; both work.

// Lock mutex and add entry to the queue.
unique_lock lock { m_mutex };
m_queue.push(entry);
// Notify condition variable to wake up thread.
m_condVar.notify_all();

The background thread waits for notifications in an infinite loop, as follows. Note the use of wait() 
accepting a predicate to correctly handle spurious wake-ups. The predicate checks if there really 
is something in the queue. When the call to wait() returns, you are sure there is something in 
the queue.

unique_lock lock { m_mutex };
while (true) {
    // Wait for a notification.
    m_condVar.wait(lock, [this]{ return !m_queue.empty(); });
    // Condition variable is notified, so something is in the queue.
    // Process queue item...
}

The section “Example: Multithreaded Logger Class,” toward the end of this chapter, provides a com-
plete example on how to use condition variables to send notifications to other threads.

The C++ standard also defines a helper function called std::notify_all_at_thread_exit(cond, 
lk) where cond is a condition variable and lk is a unique_lock<mutex> instance. A thread call-
ing this function should already have acquired the lock lk. When the thread exits, it automatically 
executes the following:

lk.unlock();
cond.notify_all();



950 ❘ CHAPTER 27  Multithreaded PrograMMing with C++

NOTE The lock lk stays locked until the thread exits. So, you need to make sure 
that this does not cause any deadlocks in your code, for example, due to wrong 
lock ordering.

LATCHES

A latch is a single-use thread coordination point. A number of threads block at a latch point. Once 
a given number of threads reach the latch point, all threads are unblocked and allowed to continue 
execution. Basically, it’s a counter that’s counting down with each thread arriving at the latch point. 
Once the counter hits zero, the latch remains in a signaled state indefinitely, all blocking threads 
are unblocked, and any threads subsequently arriving at the latch point are immediately allowed 
to continue.

A latch is implemented by std::latch, defined in <latch>. The constructor accepts the required 
number of threads that need to reach the latch point. A thread arriving at the latch point can call 
arrive_and_wait(), which decrements the latch counter and blocks until the latch is signaled. 
Threads can also block on a latch point without decrementing the counter by calling wait(). The 
try_wait() method can be used to check if the counter has reached zero. Finally, if needed, the coun-
ter can also be decremented without blocking by calling count_down().

The following demonstrates a use case for a latch point in which some data needs to be loaded into 
memory (I/O bound) that is subsequently processed in parallel in multiple threads. Suppose further 
that the threads need to perform some CPU-bound initialization when starting up and before they can 
start processing data. By launching the threads first and letting them do their CPU-bound initializa-
tion, and loading the data (I/O bound) in parallel, performance is increased. The code initializes a 
latch object with counter 1 and launches 10 threads that all do some initialization and then block on 
the latch until the latch counter reaches zero. After starting the 10 threads, the code loads some data, 
for example from disk, that is, an I/O-bound step. Once all data has been loaded, the latch counter is 
decremented to 0 which unblocks all 10 waiting threads.

latch startLatch { 1 };
vector<jthread> threads;
 
for (int i { 0 }; i < 10; ++i) {
    threads.push_back(jthread { [&startLatch] {
        // Do some initialization... (CPU bound)
 
        // Wait until the latch counter reaches zero.
        startLatch.wait();
 
        // Process data...
    } });
}
 
// Load data... (I/O bound)
 
// Once all data has been loaded, decrement the latch counter
// which then reaches zero and unblocks all waiting threads.
startLatch.count_down();

C++20
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BARRIERS

A barrier is a reusable thread coordination mechanism consisting of a sequence of phases. A num-
ber of threads block at the barrier point. When a given number of threads reach the barrier, a phase 
completion callback is executed, all blocking threads are unblocked, the thread counter is reset, and 
the next phase starts. During each phase, the number of expected threads for the next phase can be 
adjusted. Barriers are great to perform synchronization between loops. For example, suppose you 
have a number of threads running concurrently and performing some calculations in a loop. Suppose 
further that once those calculations are finished, you need to do something with the results before the 
threads can start a new iteration of their loop. For such a scenario, barriers are perfect. All threads 
block at the barrier. When they all arrive, your phase completion callback processes the results of the 
threads and then unblocks all the threads to start their next iteration.

A barrier is implemented by std::barrier, defined in <barrier>. The most important method of a 
barrier is arrive_and_wait(), which decrements the counter and then blocks the thread until the 
current phase is finished. Consult a Standard Library reference for a full description of other avail-
able methods.

The following code snippet demonstrates the use of a barrier. It launches four threads that continu-
ously do something in a loop. On each iteration, all the threads synchronize using a barrier.

void completionFunction() noexcept { /* ... */ }
 
int main()
{
    const size_t numberOfThreads { 4 };
    barrier barrierPoint { numberOfThreads, completionFunction };
    vector<jthread> threads;
 
    for (int i { 0 }; i < numberOfThreads; ++i) {
        threads.push_back(jthread { [&barrierPoint] (stop_token token) {
            while (!token.stop_requested()) {
                // ... Do some calculations ...
 
                // Synchronize with other threads.
                barrierPoint.arrive_and_wait();
            }
        } });
    }
}

SEMAPHORES

Semaphores are lightweight synchronization primitives that can be used as building blocks for other 
synchronization mechanisms such as mutexes, latches, and barriers. Basically, a semaphore consists of 
a counter representing a number of slots. The counter is initialized in the constructor. If you acquire a 

C++20
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slot, the counter is decremented, while releasing a slot increments the counter. There are two sema-
phore classes defined in <semaphore>: std::counting_semaphore and binary_semaphore. The 
former models a non-negative resource count. The latter has only one slot; hence, the slot is either 
free or not free, perfectly suitable as building block for a mutex. Both provide the following methods:

METHOD DESCRIPTION

acquire() Decrements the counter. When the counter is zero, blocks until the 
counter is incremented again.

try_acquire() Tries to decrement the counter but does not block if the counter is 
already zero. Returns true if the counter could be decremented, 
false otherwise.

try_acquire_for() Same as try_acquire() but tries for a given duration.

try_acquire_until() Same as try_acquire() but tries until the system time reaches a 
given time.

release() Increments the counter by a given number and unblocks threads that 
are blocking in their acquire() call.

A counting semaphore allows you to control exactly how many threads you want to allow to run 
concurrently. For example, the following code snippet allows a maximum of four threads to run 
in parallel:

counting_semaphore semaphore { 4 };
vector<jthread> threads;
for (int i { 0 }; i < 10; ++i) {
    threads.push_back(jthread { [&semaphore] {
        semaphore.acquire();
        // ... Slot acquired ... (at most 4 threads concurrently)
        semaphore.release();
    } });
}

Another use case for semaphores is to implement a notification mechanism for threads, instead of 
condition variables. For example, you could initialize the counter of a semaphore to 0 in its con-
structor. Any thread that calls acquire() will block until some other thread calls release() on the 
semaphore.

FUTURES

As discussed earlier in this chapter, using std::thread to launch a thread that calculates a single 
result does not make it easy to get the computed result back once the thread has finished execut-
ing. Another problem with std::thread is in how it handles errors like exceptions. If a thread 
throws an exception and this exception is not caught by the thread itself, the C++ runtime calls 
std::terminate(), which usually terminates the entire application.
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A future can be used to more easily get the result out of a thread and to transport exceptions from 
one thread to another thread, which can then handle the exception however it wants. Of course, it’s 
still good practice to always try to handle exceptions in the actual threads as much as possible, in 
order to prevent them from leaving the thread.

A promise is something where a thread stores its result. A future is used to get access to the result 
stored in a promise. That is, a promise is the input side for a result, a future is the output side. Once 
a function, running in the same thread or in another thread, has calculated the value that it wants to 
return, it can put this value in a promise. This value can then be retrieved through a future. You can 
think of this mechanism as an inter-thread communication channel for a result.

C++ provides a standard future, called std::future. You can retrieve the result from an 
std::future as follows. T is the type of the calculated result.

future<T> myFuture { ... };   // Is discussed later.
T result { myFuture.get() };

The call to get() retrieves the result and stores it in the variable result. If calculating the result is 
not finished yet, the call to get() blocks until the value becomes available. You can call get() only 
once on a future. The behavior of calling it a second time is undefined by the standard.

If you want to avoid blocking, you can first ask the future if there is a result available:

if (myFuture.wait_for(0)) {  // Value is available.
    T result { myFuture.get() };
} else {                     // Value is not yet available.
    ...
}

std::promise and std::future
C++ provides the std::promise class as one way to implement the concept of a promise. You can 
call set_value() on a promise to store a result, or you can call set_exception() on it to store an 
exception in the promise. Note that you can call set_value() or set_exception() only once on a 
specific promise. If you call it multiple times, an std::future_error exception will be thrown.

A thread A that launches another thread B to calculate something can create an std::promise and 
pass this to the launched thread. Note that a promise cannot be copied, but it can be moved into a 
thread! Thread B uses that promise to store the result. Before moving the promise into thread B, 
thread A calls get_future() on the created promise to be able to get access to the result once B has 
finished. Here is a simple example:

void doWork(promise<int> thePromise)
{
    // ... Do some work ...
    // And ultimately store the result in the promise.
    thePromise.set_value(42);
}
 
int main()
{
    // Create a promise to pass to the thread.
    promise<int> myPromise;

continues
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    // Get the future of the promise.
    auto theFuture { myPromise.get_future() };
    // Create a thread and move the promise into it.
    thread theThread { doWork, move(myPromise) };
 
    // Do some more work...
 
    // Get the result.
    int result { theFuture.get() };
    cout << "Result: " << result << endl;
 
    // Make sure to join the thread.
    theThread.join();
}

NOTE This code is just for demonstration purposes. It starts the calculation in a 
new thread and then calls get() on the future, which blocks until the result is 
calculated. This sounds like an expensive function call. In real-world applications, 
you can use futures by periodically checking if there is a result available or not 
(using wait_for() as discussed earlier) or by using a synchronization mecha-
nism such as a condition variable. When the result is not yet available, you can do 
something else in the meantime, instead of blocking.

std::packaged_task
An std::packaged_task makes it easier to work with promises than explicitly using std::promise, 
as in the previous section. The following code demonstrates this. It creates a packaged_task to exe-
cute calculateSum(). The future is retrieved from the packaged_task by calling get_future(). 
A thread is launched, and the packaged_task is moved into it. A packaged_task cannot be copied! 
After the thread is launched, get() is called on the retrieved future to get the result. This blocks until 
the result is available.

Note that calculateSum() does not need to store anything explicitly in any kind of promise. A 
packaged_task automatically creates a promise, automatically stores the result of the called func-
tion, calculateSum() in this case, in the promise, and automatically stores any exceptions thrown 
from the function in the promise.

int calculateSum(int a, int b) { return a + b; }
 
int main()
{
    // Create a packaged task to run calculateSum.
    packaged_task<int(int, int)> task { calculateSum };
    // Get the future for the result of the packaged task.
    auto theFuture { task.get_future() };
    // Create a thread, move the packaged task into it, and
    // execute the packaged task with the given arguments.
    thread theThread { move(task), 39, 3 };
 

(continued)
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    // Do some more work...
    
    // Get the result.
    int result { theFuture.get() };
    cout << result << endl;
 
    // Make sure to join the thread.
    theThread.join();
}

std::async
If you want to give the C++ runtime more control over whether or not a thread is created to calculate 
something, you can use std::async(). It accepts a function to be executed and returns a future 
that you can use to retrieve the result. There are two ways in which async() can run a function:

➤➤ By running a function on a separate thread asynchronously

➤➤ By running a function on the calling thread synchronously at the time you call get() on the 
returned future

If you call async() without additional arguments, the runtime automatically chooses one of the 
two methods depending on factors such as the number of CPU cores in your system and the amount 
of concurrency already taking place. You can influence the runtime’s behavior by specifying a pol-
icy argument:

➤➤ launch::async: Forces the runtime to execute a function asynchronously on a different thread

➤➤ launch::deferred: Forces the runtime to execute a function synchronously on the calling 
thread when get() is called

➤➤ launch::async | launch::deferred: Lets the runtime choose (= default behavior)

The following example demonstrates the use of async():

int calculate() { return 123; }
 
int main()
{
    auto myFuture { async(calculate) };
    //auto myFuture { async(launch::async, calculate) };
    //auto myFuture { async(launch::deferred, calculate) };
 
    // Do some more work...
 
    // Get the result.
    int result { myFuture.get() };
    cout << result << endl;
}

As you can see in this example, std::async() is one of the easiest methods to perform some calcula-
tions either asynchronously (on a different thread) or synchronously (on the same thread) and retrieve 
the result afterward.
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WARNING A future returned by a call to async() blocks in its destructor until 
the result is available. That means that if you call async() without capturing 
the returned future, the async() call effectively becomes a blocking call! For 
example, the following line synchronously calls calculate():

    async(calculate);

What happens with this statement is that async() creates and returns a future. 
This future is not captured, so it is a temporary future. Because it is a temporary 
future, its destructor is called at the end of this statement, and this destructor will 
block until the result is available.

Exception Handling
A big advantage of using futures is that they can transport exceptions between threads. Calling get() 
on a future either returns the calculated result or rethrows any exception that has been stored in 
the promise linked to the future. When you use packaged_task or async(), any exception thrown 
from the launched function is automatically stored in the promise. If you use std::promise directly 
as your promise, you can call set_exception() to store an exception in it. Here is an example 
using async():

int calculate()
{
    throw runtime_error { "Exception thrown from calculate()." };
}
 
int main()
{
    // Use the launch::async policy to force asynchronous execution.
    auto myFuture { async(launch::async, calculate) };
 
    // Do some more work...
 
    // Get the result.
    try {
        int result { myFuture.get() };
        cout << result << endl;
    } catch (const exception& ex) {
        cout << "Caught exception: " << ex.what() << endl;
    }
}

std::shared_future
std::future<T> only requires T to be move-constructible. When you call get() on a future<T>, the 
result is moved out of the future and returned to you. This means you can call get() only once on a 
future<T>.
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If you want to be able to call get() multiple times, even from multiple threads, then you need to use 
an std::shared_future<T>, in which case T needs to be copy-constructible. A shared_future can 
be created by using std::future::share() or by passing a future to the shared_future construc-
tor. Note that a future is not copyable, so you have to move it into the shared_future constructor.

shared_future can be used to wake up multiple threads at once. For example, the following piece 
of code defines two lambda expressions to be executed asynchronously on different threads. The first 
thing each lambda expression does is set a value to their respective promise to signal that they have 
started. Then they both call get() on signalFuture, which blocks until a parameter is made avail-
able through the future, after which they continue their execution. Each lambda expression captures 
their respective promise by reference and captures signalFuture by value, so both lambda expres-
sions have a copy of signalFuture. The main thread uses async() to execute both lambda expres-
sions asynchronously on different threads, waits until both threads have started, and then sets the 
parameter in the signalPromise, which wakes up both threads.

promise<void> thread1Started, thread2Started;
 
promise<int> signalPromise;
auto signalFuture { signalPromise.get_future().share() };
//shared_future<int> signalFuture { signalPromise.get_future() };
 
auto function1 { [&thread1Started, signalFuture] {
    thread1Started.set_value();
    // Wait until parameter is set.
    int parameter { signalFuture.get() };
    // ...
} };
 
auto function2 { [&thread2Started, signalFuture] {
    thread2Started.set_value();
    // Wait until parameter is set.
    int parameter { signalFuture.get() };
    // ...
} };
 
// Run both lambda expressions asynchronously.
// Remember to capture the future returned by async()!
auto result1 { async(launch::async, function1) };
auto result2 { async(launch::async, function2) };
 
// Wait until both threads have started.
thread1Started.get_future().wait();
thread2Started.get_future().wait();
 
// Both threads are now waiting for the parameter.
// Set the parameter to wake up both of them.
signalPromise.set_value(42);



958 ❘ CHAPTER 27  Multithreaded PrograMMing with C++

EXAMPLE: MULTITHREADED LOGGER CLASS

This section demonstrates how to use threads, mutual exclusion objects, locks, and condition vari-
ables to write a multithreaded Logger class. The class allows log messages to be added to a queue 
from different threads. The Logger class itself processes this queue in a background thread that seri-
ally writes the log messages to a file. The class will be designed in two iterations to show you some 
examples of problems you will encounter when writing multithreaded code.

The C++ standard does not have a thread-safe queue, so it is obvious that you have to protect access 
to the queue with some synchronization mechanism to prevent multiple threads from reading/writing 
to the queue at the same time. This example uses a mutual exclusion object and a condition variable 
to provide the synchronization. Based on that, you might define the Logger class as follows:

export class Logger
{
    public:
        // Starts a background thread writing log entries to a file.
        Logger();
        // Prevent copy construction and assignment.
        Logger(const Logger& src) = delete;
        Logger& operator=(const Logger& rhs) = delete;
        // Add log entry to the queue.
        void log(std::string entry);
    private:
        // The function running in the background thread.
        void processEntries();
        // Helper method to process a queue of entries.
        void processEntriesHelper(std::queue<std::string>& queue,
            std::ofstream& ofs) const;
        // Mutex and condition variable to protect access to the queue.
        std::mutex m_mutex;
        std::condition_variable m_condVar;
        std::queue<std::string> m_queue;
        // The background thread.
        std::thread m_thread;
};

The implementation is as follows. Note that this initial design has a couple of problems, and when 
you try to run it, it might behave strangely or even crash. This is discussed and solved in the next 
iteration of the Logger class. The while loop in the processEntries() method is worth looking 
at. It processes all messages currently in the queue. While having a lock, it swaps the contents of the 
current queue of entries with an empty local queue on the stack. After this, it releases the lock so 
other threads are not blocked anymore to add new entries to the now empty current queue. Once the 
lock is released, all entries in the local queue are processed. This does not require the lock anymore as 
other threads will not touch this local queue.

Logger::Logger()
{
    // Start background thread.
    m_thread = thread { &Logger::processEntries, this };
}
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void Logger::log(string entry)
{
    // Lock mutex and add entry to the queue.
    unique_lock lock { m_mutex };
    m_queue.push(move(entry));
    // Notify condition variable to wake up thread.
    m_condVar.notify_all();
}
 
void Logger::processEntries()
{
    // Open log file.
    ofstream logFile { "log.txt" };
    if (logFile.fail()) {
        cerr << "Failed to open logfile." << endl;
        return;
    }
 
    // Create a lock for m_mutex, but do not yet acquire a lock on it.
    unique_lock lock { m_mutex, defer_lock };
    // Start processing loop.
    while (true) {
        lock.lock();
 
        // Wait for a notification.
        m_condVar.wait(lock);
 
        // Condition variable is notified, so something might be in the queue.
 
        // While we still have the lock, swap the contents of the current queue
        // with an empty local queue on the stack.
        queue<string> localQueue;
        localQueue.swap(m_queue);
 
        // Now that all entries have been moved from the current queue to the
        // local queue, we can release the lock so other threads are not blocked
        // while we process the entries.
        lock.unlock();
 
        // Process the entries in the local queue on the stack. This happens after
        // having released the lock, so other threads are not blocked anymore.
        processEntriesHelper(localQueue, logFile);
    }
}
 
void Logger::processEntriesHelper(queue<string>& queue, ofstream& ofs) const
{
    while (!queue.empty()) {
        ofs << queue.front() << endl;
        queue.pop();
    }
}
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WARNING As you can already see from this rather simple task, writing correct 
multithreaded code is hard! Unfortunately, at this moment, the C++ Standard 
Library does not provide any concurrent data structures, at least not yet.

The Logger class is just an example to show these basic building blocks. For 
production-quality code, I recommend using an appropriate third-party concurrent 
data structure, instead of writing your own. For example, the open-source boost 
C++ libraries (boost.org) have an implementation of a queue that is lock-free and 
allows concurrent use without the need for any explicit synchronization.

The Logger class can be tested with the following test code. It launches a number of threads, all log-
ging a few messages to the same Logger instance.

void logSomeMessages(int id, Logger& logger)
{
    for (int i { 0 }; i < 10; ++i) {
        logger.log(format("Log entry {} from thread {}", i, id));
    }
}
 
int main()
{
    Logger logger;
    vector<thread> threads;
    // Create a few threads all working with the same Logger instance.
    for (int i { 0 }; i < 10; ++i) {
        threads.emplace_back(logSomeMessages, i, ref(logger));
    }
    // Wait for all threads to finish.
    for (auto& t : threads) {
        t.join();
    }
}

If you build and run this naive initial version, you will notice that the application is terminated 
abruptly. That is caused because the application never calls join() or detach() on the background 
thread. Remember from earlier in this chapter that the destructor of a thread object, which is still 
joinable, that is, neither join() nor detach() has been called yet, will call std::terminate() to 
terminate all running threads and the application itself. This means that messages still in the queue 
are not written to the file on disk. Some runtime libraries even issue an error or generate a crash 
dump when the application is terminated like this. You need to add a mechanism to gracefully shut 
down the background thread and wait until the background thread is completely shut down before 
terminating the application. You can do this by adding a destructor and a Boolean data member to 
the class. The new definition of the class is as follows:

export class Logger
{
    public:
        // Gracefully shut down background thread.
        virtual ~Logger();

http://www.boost.org
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        // Other public members omitted for brevity.
    private:
        // Boolean telling the background thread to terminate.
        bool m_exit { false };
        // Other members omitted for brevity.
};

The destructor sets m_exit to true, wakes up the background thread, and then waits until the thread 
is shut down. The destructor acquires a lock on m_mutex before setting m_exit to true. This is to 
prevent a race condition and deadlock with processEntries(), which could be at the beginning 
of its while loop right after having checked m_exit and right before the call to wait(). If the main 
thread calls the Logger destructor at that very moment and the destructor wouldn’t acquire a  
lock on m_mutex, then the destructor could set m_exit to true and calls notify_all() after  
processEntries() has checked m_exit and before processEntries() is waiting on the condi-
tion variable; thus, processEntries() will not see the new value of m_exit, and it will miss the 
notification. In that case, the application is in a deadlock situation, because the destructor is waiting 
on the join() call and the background thread is waiting on the condition variable. Note that the 
destructor can call notify_all() while still holding the lock or after having released it, but the lock 
must certainly have been released before calling join(), which explains the extra code block using 
curly brackets.

Logger::~Logger()
{
    {
        unique_lock lock { m_mutex };
        // Gracefully shut down the thread by setting m_exit to true.
        m_exit = true;
    }
    // Notify condition variable to wake up thread.
    m_condVar.notify_all();
    // Wait until thread is shut down. This should be outside the above code
    // block because the lock must be released before calling join()!
    m_thread.join();
}

The processEntries() method needs to check this Boolean variable and terminate the processing 
loop when it’s true.

void Logger::processEntries()
{
    // Omitted for brevity.
 
    // Create a lock for m_mutex, but do not yet acquire a lock on it.
    unique_lock lock { m_mutex, defer_lock };
    // Start processing loop.
    while (true) {
        lock.lock();
 
        if (!m_exit) { // Only wait for notifications if we don't have to exit.
            m_condVar.wait(lock);
        } else {
            // We have to exit, process the remaining entries in the queue.
            processEntriesHelper(m_queue, logFile);

continues
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            break;
        }
 
        // Condition variable is notified, so something might be in the queue
        // and/or we need to shut down this thread.
 
        // Remaining code omitted, same as before.
    }
}

Note that you cannot just check for m_exit in the condition for the outer while loop because even 
when m_exit is true, there might still be log entries in the queue that need to be written.

You can add artificial delays in specific places in your multithreaded code to trigger certain behavior. 
Note that such delays should only be added for testing and should be removed from your final code! 
For example, to test that the race condition with the destructor is solved, you can remove any calls 
to log() from the main program, causing it to almost immediately call the destructor of the Logger 
class, and add the following delay:

void Logger::processEntries()
{
    // Omitted for brevity.
 
    // Create a lock for m_mutex, but do not yet acquire a lock on it.
    unique_lock lock { m_mutex, defer_lock };
    // Start processing loop.
    while (true) {
        lock.lock();
 
        if (!m_exit) { // Only wait for notifications if we don't have to exit.
            this_thread::sleep_for(1000ms); // Needs import <chrono>;
            m_condVar.wait(lock);
        } else {
            // We have to exit, process the remaining entries in the queue.
            processEntriesHelper(m_queue, logFile);
            break;
        }
        // Remaining code omitted, same as before.
    }
}

THREAD POOLS

Instead of creating and deleting threads dynamically throughout your program’s lifetime, you can cre-
ate a pool of threads that can be used as needed. This technique is often used in programs that want 
to handle some kind of event in a thread. In most environments, the ideal number of threads is equal 
to the number of processing cores. If there are more threads than cores, threads will have to be sus-
pended to allow other threads to run, and this will ultimately add overhead. Note that while the ideal 
number of threads is equal to the number of cores, this applies only in the case where the threads 
are compute bound and cannot block for any other reason, including I/O. When threads can block, 
it is often appropriate to run more threads than there are cores. Determining the optimal number of 
threads in such cases is hard and may involve throughput measurements.

(continued)
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Because not all processing is identical, it is not uncommon to have threads from a thread pool 
receive, as part of their input, a function object or lambda expression that represents the computation 
to be done.

Because threads from a thread pool are pre-existing, it is much more efficient for the operating system 
to schedule a thread from the pool to run than it is to create one in response to an input. Further-
more, the use of a thread pool allows you to manage the number of threads that are created, so, 
depending on the platform, you may have just one thread or thousands of threads.

Several libraries are available that implement thread pools, including Intel Threading Building Blocks 
(TBB), Microsoft Parallel Patterns Library (PPL), and so on. It’s recommended to use such a library 
for your thread pools instead of writing your own implementation. If you do want to implement a 
thread pool yourself, it can be done in a similar way as an object pool. Chapter 29, “Writing Efficient 
C++,” gives an example implementation of an object pool.

COROUTINES

A coroutine is a function that can be suspended in the middle of its execution and resumed at a later 
point in time. Any function with one of the following in its body is a coroutine:

➤➤ co_await: Suspends the execution of a coroutine while waiting for a computation to finish. 
Execution is resumed when the computation is finished.

➤➤ co_return: Returns from a coroutine (just return is not allowed in a coroutine). The corou-
tine cannot be resumed after this.

➤➤ co_yield: Returns a value from a coroutine back to the caller and suspends the coroutine, 
subsequently calling the coroutine again continues its execution at the point where it was 
suspended.

In general, there are two types of coroutines: stackfull and stackless. A stackfull coroutine can be 
suspended from anywhere deep inside a nested call. On the other hand, a stackless coroutine can only 
be suspended from the top stack frame. When a stackless coroutine is suspended, only the variables 
and temporaries with automatic storage duration in the body of the function are saved; the call stack 
is not saved. Hence, memory usage for stackless coroutines is minimal, allowing for millions or even 
billions of coroutines to be running concurrently. C++20 only supports the stackless variant.

Coroutines can be used to implement asynchronous operations using a synchronous programming 
style. Use cases include the following:

➤➤ Generators

➤➤ Asynchronous I/O

➤➤ Lazy computations

➤➤ Event-driven applications

The C++20 standard only provides the coroutine building blocks, i.e., the language additions. 
The C++20 Standard Library does not provide any standardized higher-level coroutines, such as 

C++20
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generators. There are third-party libraries that do provide such coroutines, such as cppcoro. Microsoft 
Visual C++ 2019 also comes with a few higher-level constructs, such as an experimental generator. 
The following code demonstrates the use of the Visual C++ 2019 std::experimental::generator 
coroutine:

experimental::generator<int> getSequenceGenerator(
    int startValue, int numberOfValues)
{
    for (int i { startValue }; i < startValue + numberOfValues; ++i) {
        // Print the local time to standard out, see Chapter 22.
        time_t tt { system_clock::to_time_t(system_clock::now()) };
        tm t;
        localtime_s(&t, &tt);
        cout << put_time(&t, "%H:%M:%S") << ": ";
        // Yield a value to the caller, and suspend the coroutine.
        co_yield i;
    }
}
 
int main()
{
    auto gen { getSequenceGenerator(10, 5) };
    for (const auto& value : gen) {
        cout << value << " (Press enter for next value)";
        cin.ignore();
    }
}

When you run the application, you’ll get the following output:

16:35:42: 10 (Press enter for next value)

Pressing Enter adds another line:

16:35:42: 10 (Press enter for next value)
16:36:03: 11 (Press enter for next value)

Pressing Enter again adds yet another line:

16:35:42: 10 (Press enter for next value)
16:36:03: 11 (Press enter for next value)
16:36:21: 12 (Press enter for next value)

Every time when hitting Enter, a new value is requested from the generator. This causes the coroutine 
to resume, which executes the next iteration of the for loop in getSequenceGenerator() outputting 
the local time, and returning the next value. Returning a value is done with co_yield, which returns 
the value and then suspends the coroutine. The value itself is printed in the main() function, followed 
by the question to press Enter for the next value. The output clearly shows that the coroutines is sus-
pended and resumed multiple times.

Unfortunately, that’s pretty much all there is to say about coroutines in the scope of this book. Writ-
ing coroutines yourself, such as experimental::generator, is rather complicated and way too 
advanced to discuss in this book. I just wanted to mention the concept so that you know it exists, and 
maybe a future C++ standard will introduce standardized coroutines.
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THREADING DESIGN AND BEST PRACTICES

This section briefly lists a few best practices related to multithreaded programming.

➤➤ Use parallel Standard Library algorithms: The Standard Library contains a large collection 
of algorithms. Since C++17, more than 60 of them support parallel execution. Whenever 
possible, use such parallel algorithms instead of writing your own multithreaded code. See 
Chapter 20, “Mastering Standard Library Algorithms,” for details on how to specify parallel-
ization options for algorithms.

➤➤ Before closing the application, make sure all thread objects are unjoinable: Make sure that 
either join() or detach() has been called on all thread objects. Destructors of threads 
that are still joinable will call std::terminate(), which abruptly terminates all threads and 
the application itself. C++20 introduces jthread, which automatically joins in its destructor.

➤➤ The best synchronization is no synchronization: Multithreaded programming becomes much 
easier if you manage to design your different threads in such a way that all threads working 
on shared data read only from that shared data and never write to it, or only write to parts 
never read by other threads. In that case, there is no need for any synchronization, and you 
cannot have problems like data races or deadlocks.

➤➤ Try to use the single-thread ownership pattern: This means that a block of data is owned by 
no more than one thread at a time. Owning the data means that no other thread is allowed 
to read from or write to the data. When the thread is finished with the data, the data can be 
passed off to another thread, which now has sole and complete responsibility/ownership of 
the data. No synchronization is necessary in this case.

➤➤ Use atomic types and operations when possible: Atomic types and atomic operations make it 
easier to write data-race and deadlock-free code, because they handle synchronization auto-
matically. If atomic types and operations are not possible in your multithreaded design and 
you need shared data, you have to use some synchronization mechanism, such as mutual 
exclusion, to ensure proper synchronization.

➤➤ Use locks to protect mutable shared data: If you need mutable shared data to which multiple 
threads can write and you cannot use atomic types and operations, you have to use a locking 
mechanism to make sure that reads and writes between different threads are synchronized.

➤➤ Release locks as soon as possible: When you need to protect your shared data with a lock, 
make sure that you release the lock as soon as possible. While a thread is holding a lock, it is 
blocking other threads waiting for the same lock, possibly hurting performance.

➤➤ Use RAII lock objects: Use the lock_guard, unique_lock, shared_lock, or scoped_lock 
RAII classes to automatically release locks at the right time.

➤➤ Do not manually acquire multiple locks, instead use std::lock(), try_lock(), or a 
scoped_lock: If multiple threads need to acquire multiple locks, they must be acquired in the 
same order in all threads to prevent deadlocks. You should use the generic std::lock() or 
try_lock() functions or the scoped_lock class to acquire multiple locks.
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➤➤ Use a multithreading-aware profiler: This helps to find performance bottlenecks in your mul-
tithreaded applications and to find out if your multiple threads are indeed utilizing all avail-
able processing power in your system. An example of a multithreading-aware profiler is the 
profiler in certain editions of Microsoft Visual Studio.

➤➤ Understand the multithreading support features of your debugger: Most debuggers have at 
least basic support for debugging multithreaded applications. You should be able to get a list 
of all running threads in your application, and you should be able to switch to any one of 
those threads to inspect their call stack. You can use this, for example, to inspect deadlocks 
because you can see exactly what each thread is doing.

➤➤ Use thread pools instead of creating and destroying a lot of threads dynamically: Your 
performance decreases if you dynamically create and destroy a lot of threads. In that case, it’s 
better to use a thread pool to reuse existing threads.

➤➤ Use higher-level multithreading libraries: The C++ standard, at this moment, only provides 
basic building blocks for writing multithreaded code. Using those correctly is not trivial. 
Where possible, use higher-level multithreading libraries such as Intel Threading Building 
Blocks (TBB), Microsoft Parallel Patterns Library (PPL), and so on, rather than reinventing 
the wheel. Multithreaded programming is hard to get right and is error prone. More often 
than not, your wheel may not be as round as you think.

SUMMARY

This chapter gave a brief overview of multithreaded programming using the standard C++ threading 
support library. You learned how to launch threads using std::thread and how C++20 makes it 
easier to write cancellable threads using std::jthread. It explained how you can use atomic types 
and atomic operations to operate on shared data without having to use an explicit synchronization 
mechanism. In case you cannot use these atomic types and operations, you learned how to use mutual 
exclusion mechanisms to ensure proper synchronization between different threads that need read/
write access to shared data. You learned about the new synchronization primitives that C++20 brings 
to the table: semaphores, latches, and barriers. You also saw how promises and futures represent a 
simple inter-thread communication channel; you can use futures to more easily get a result back from 
a thread. The chapter finished with a brief introduction to coroutines and a number of best practices 
for multithreaded application design.

As mentioned in the introduction, this chapter tried to touch on all the basic multithreading building 
blocks provided by the Standard Library, but due to space constraints, it cannot go into all the details 
of multithreaded programming. There are books available that discuss nothing but multithreading. 
See Appendix B for a few references.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 27-1: Write an application that beeps every three seconds indefinitely. Tip: You can 
make your computer beep by writing \a to the standard output.

Exercise 27-2: Modify your solution to Exercise 27-1 so that the application can be stopped 
when the user presses the enter key.

Exercise 27-3: Modify your solution to Exercise 27-1 so that the beeping continues until the 
user presses the Enter key. Once the Enter key is pressed, beeping should be paused, until the 
user presses the Enter key again. The user can pause and resume the beeping as many times as 
she wants.

Exercise 27-4: Write an application that can calculate a number of Fibonacci numbers 
concurrently. For example, your code should be able to calculate the 4th, 9th, 14th, and 17th 
number in the Fibonacci series in parallel. The Fibonacci series starts with 0 and 1, and any 
subsequent value is the sum of the two previous values, so: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 
89, and so on. Once all results are available, output them to the standard output. Finally, 
calculate their sum using a Standard Library algorithm.
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28
Maximizing Software 
Engineering Methods

WHAT’S IN THIS CHAPTER?

➤➤ What a software life cycle model is, with examples of the waterfall 
model, the sashimi model, spiral-like models, and agile

➤➤ What software engineering methodologies are, with examples 
of the Unified Process, Rational Unified Process, Scrum, eXtreme 
Programming, and Software Triage

➤➤ What source code control means

Chapter 28, “Maximizing Software Engineering Methods,” starts the last part of this book, 
which is about software engineering. This part describes software engineering methods, code 
efficiency, testing, debugging, design techniques, design patterns, and how to target multiple 
platforms.

When you first learned how to program, you were probably on your own schedule. You were 
free to do everything at the last minute if you wanted to, and you could radically change your 
design during implementation. When coding in the professional world, however, programmers 
rarely have such flexibility. Even the most liberal engineering managers admit that some amount 
of process is necessary. These days, knowing the software engineering process is as important as 
knowing how to code.

In this chapter, I will survey various approaches to software engineering. I will not go into 
great depth on any one approach—there are plenty of excellent books on software engineering 
processes. My intention is to cover some different types of processes in broad strokes so you 
can compare and contrast them. I will try not to advocate or discourage any particular method-
ology. Rather, I hope that by learning about the trade-offs of several different approaches, you’ll 
be able to construct a process that works for you and the rest of your team. Whether you’re a 
contractor working alone on projects or your team consists of hundreds of engineers on several 
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continents, understanding different approaches to software development will help you with your job 
on a daily basis.

The final part of this chapter discusses source code control solutions that make it easier to manage 
source code and keep track of its history. A source code control solution is mandatory in every com-
pany to avoid a source code maintenance nightmare. Even for one-person projects, I highly recom-
mend you use such a system.

THE NEED FOR PROCESS

The history of software development is filled with tales of failed projects. From over-budget and 
poorly marketed consumer applications to grandiose mega-hyped operating systems, it seems that no 
area of software development is free from this trend.

Even when software successfully reaches users, bugs have become so commonplace that end users are 
often forced to endure constant updates and patches. Sometimes the software does not accomplish the 
tasks it is supposed to do or doesn’t work the way the user would expect. These issues all point to a 
common truism of software: writing software is hard.

You may wonder why software engineering seems to differ from other forms of engineering in its 
frequency of failures. For example, while cars have their share of bugs, you rarely see them stop 
suddenly and demand a reboot due to a buffer overflow (though as more and more car components 
become software-driven, you just may). Your TV may not be perfect, but you don’t have to upgrade 
to version 2.3 to get Channel 6 to work.

Is it the case that other engineering disciplines are just more advanced than software development? 
Is a civil engineer able to construct a working bridge by drawing upon the long history of bridge 
building? Are chemical engineers able to build a compound successfully because most of the bugs 
were worked out in earlier generations? Is software engineering too new, or is it really a different 
type of discipline with inherent qualities contributing to the occurrence of bugs, unusable results, and 
doomed projects?

It certainly seems as if there’s something different about software engineering. For one thing,  
computer technology changes rapidly, creating uncertainty in the software development process. 
Even if an earth-shattering breakthrough does not occur during your project, the pace at which the 
IT industry moves can lead to problems. Software also often needs to be developed quickly because 
competition is fierce.

Software development schedules can also be unpredictable. Accurate scheduling is nearly impossible 
when a single gnarly bug can take days or even weeks to fix. Even when things seem to be going 
according to schedule, the widespread tendency of product definition changes (known as feature or 
scope creep) can throw a wrench in the process. If left unchecked, such scope creep can eventually 
result in software bloat.

Software is often complex. There is no easy and accurate way to prove that a program is bug-free. 
Buggy or messy code can have an impact on software for years if it is maintained through several 
versions. Software systems are often so complex that when staff turnover occurs, nobody wants to 
get anywhere near some legacy messy code. This leads to a cycle of endless patching, hacks, and 
workarounds.
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Of course, standard business risks apply to software as well. Marketing pressures and miscommuni-
cation get in the way. Many programmers try to steer clear of corporate politics, but it’s not uncom-
mon to have adversity between the development and product marketing groups.

All of these factors working against software engineering products indicate the need for some sort of 
process. Software projects are big, complicated, and fast-paced. To avoid failure, engineering groups 
need to adopt a system to control this unwieldy process.

Elegantly designed software with clean and maintainable code can be developed. I’m convinced it 
is possible, but it takes continuous efforts of each individual team member and requires following 
proper software development processes and practices.

SOFTWARE LIFE CYCLE MODELS

Complexity in software isn’t new. The need for a formalized process was recognized decades ago.  
Several approaches to modeling the software life cycle have attempted to bring some order to the 
chaos of software development by defining the software process in terms of steps from the initial idea 
to the final product. These models, refined over the years, guide much of software development today.

The Waterfall Model
A classic life cycle model for software is the waterfall model. This model is based 
on the idea that software can be built almost like following a recipe. There is a 
set of steps that, if followed correctly, will yield a mighty fine chocolate cake or 
program as the case may be. Each stage must be completed before the next stage 
can begin, as shown in Figure 28-1. You can compare this process to a waterfall, 
as you can only go downward to the next phase.

The process starts with formal planning, which includes gathering an exhaus-
tive list of requirements. This list defines feature completeness for the product. 
The more specific the requirements are, the more likely that the project will suc-
ceed. Next, the software is designed and fully specified. The design step, like the 
requirements step, needs to be as specific as possible to maximize the chance of 
success. All design decisions are made at this time, often including pseudo-code 
and the definition of specific subsystems that will need to be written. Subsystem 
owners work out how their code will interact, and the team agrees on the specif-
ics of the architecture. Implementation of the design occurs next. Because the 
design has been fully specified, the code needs to adhere strongly to the design or 
else the pieces won’t fit together. The final four stages are reserved for unit test-
ing, subsystem testing, integration testing, and evaluation.

The main problem with the waterfall model is that, in practice, it is nearly 
impossible to complete one stage without at least exploring the next stage. A 
design cannot be set in stone without at least writing some code. Furthermore, 
what is the point of testing if the model doesn’t provide a way to go back to the 
coding phase?
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974 ❘ CHAPTER 28  MaxiMizing Software engineering MethodS

Various incarnations have refined the process in different ways. For example, some plans include a 
“feasibility” step where experiments are performed before formal requirements are even gathered.

Benefits of the Waterfall Model
The value of the waterfall model lies in its simplicity. You, or your manager, may have followed this 
approach in past projects without formalizing it or recognizing it by name. The underlying assump-
tion behind the waterfall model is that as long as each step is accomplished as completely and accu-
rately as possible, subsequent steps will go smoothly. As long as all of the requirements are carefully 
specified in the first step, and all the design decisions and problems are hashed out in the second step, 
implementation in the third step should be a simple matter of translating the designs into code.

The simplicity of the waterfall model makes project plans based on this system organized and easy 
to manage. Every project is started the same way: by exhaustively listing all the features that are 
necessary. For example, managers using this approach can require that by the end of the design phase, 
all engineers in charge of a subsystem must submit their design as a formal design document or a 
functional subsystem specification. The benefit for the manager is that by having engineers specify 
requirements and designs up front, risks are, ideally, minimized.

From the engineer’s point of view, the waterfall model forces resolution of major issues up front. All 
engineers will need to understand their project and design their subsystem before writing a significant 
amount of code. Ideally, this means that code can be written once instead of being hacked together or 
rewritten when the pieces don’t fit.

For small projects with very specific requirements, the waterfall model can work quite well. Particu-
larly for consulting arrangements, it has the advantage of specifying clearly defined metrics for suc-
cess at the start of the project. Formalizing requirements helps the consultant to produce exactly what 
the client wants and forces the client to be specific about the goals for the project.

Drawbacks of the Waterfall Model
In many organizations, and almost all modern software engineering texts, the waterfall model has 
fallen out of favor. Critics disparage its fundamental premise that software development tasks happen 
in discrete, linear steps. The waterfall model generally does not allow backward movement. Unfortu-
nately, in many projects today, new requirements are introduced throughout the development of the 
product. Often, a potential customer will request a feature that is necessary for the sale, or a competi-
tor’s product will have a new feature that requires parity.

NOTE The up-front specification of all requirements makes the waterfall model 
unusable for many organizations because it is not dynamic enough.

Another drawback is that in an effort to minimize risk by making decisions as formally and early as 
possible, the waterfall model may actually be hiding risk. For example, a major design issue might be 
undiscovered, glossed over, forgotten, or purposely avoided during the design phase. By the time inte-
gration testing reveals the mismatch, it may be too late to save the project. A major design flaw has 
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arisen, but, according to the waterfall model, the product is one step away from shipping! A mistake 
anywhere in the waterfall process will likely lead to failure at the end of the process. Early detection 
is difficult and occurs rarely.

If you do use the waterfall model, it is often necessary to make it more flexible by taking cues from 
other approaches.

Sashimi Model
A number of refinements to the waterfall model have been formalized. One such refinement is called 
the sashimi model. The main advancement that the sashimi model brought was the concept of overlap 
between stages. The name, sashimi model, comes from a Japanese fish dish, called sashimi, in which 
different pieces of fish are overlapping each other. While the model still stresses a rigorous process of 
planning, designing, coding, and testing, successive stages can partially overlap. Figure 28-2 shows 
an example of the sashimi model, illustrating the overlapping of stages. Overlap permits activities in 
two phases to occur simultaneously. This recognizes the fact that one stage can often not be finished 
completely without at least partially looking at the next stage.

Spiral-like Models
The spiral model was proposed by Barry W. Boehm in 1986 as a risk-driven software development 
process. Several derivatives have been formulated, which are called spiral-like models. The model 
discussed in this section is part of a family of techniques known as iterative processes. The fundamen-
tal idea is that it’s okay if something goes wrong because you’ll fix it in the next iteration. Figure 28-3 
shows a single spin through this spiral-like model.

The phases of this model are similar to the steps of the waterfall model. The discovery phase involves 
discovering requirements, determining objectives, determining alternatives (design alternatives, 
reuse, buying third-party libraries, and so on), and determining any constraints. During the evalua-
tion phase, implementation alternatives are evaluated, risks are analyzed, and prototype options are 
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considered. In a spiral-like model, particular attention is paid to evaluating and resolving risks in the 
evaluation phase. The tasks deemed riskiest are the ones that are implemented in the current cycle of 
the spiral. The tasks in the development phase are determined by the risks identified in the evaluation 
phase. For example, if evaluation reveals a risky algorithm that may be impossible to implement, the 
main task for development in the current cycle will be modeling, building, and testing that algorithm. 
The fourth phase is reserved for analysis and planning. Based on the results of the current cycle, a 
plan for the subsequent cycle is formed.

Figure 28-4 shows an example of three cycles through the spiral in the development of an operating 
system. The first cycle yields a plan containing the major requirements for the product. The second 
cycle results in a prototype showing the user experience. The third cycle builds a component that is 
determined to be a high risk.

Benefits of a Spiral-like Model
A spiral-like model can be viewed as the application of an iterative approach to the best that the 
waterfall model has to offer. Figure 28-5 shows a spiral-like model as a waterfall process that has 
been modified to allow iteration. Hidden risks and a linear development path, the main drawbacks of 
the waterfall model, are resolved through iterative cycles.

Performing the riskiest tasks first is another benefit. By bringing risk to the forefront and acknowl-
edging that new conditions can arise at any time, a spiral-like model avoids the hidden time bombs 
that can occur with the waterfall model. When unexpected problems arise, they can be dealt with by 
using the same four-stage approach that works for the rest of the process.

This iterative approach also allows for incorporating feedback from testers. For example, an early 
version of the product can be released for internal or even external evaluation. Testers could, for 
instance, say that a certain feature is missing or an existing feature is not working as expected. A 
spiral-like model has a built-in mechanism to react to such input.
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Finally, by repeatedly analyzing after each cycle and building new designs, the practical difficulties 
with the design-then-implement approach are virtually eliminated. With each cycle, there is more 
knowledge of the system that can influence the design.

Drawbacks of a Spiral-like Model
The main drawback of a spiral-like model is that it can be difficult to scope each iteration small 
enough to gain real benefit. In a worst-case scenario, a spiral-like model can degenerate into a water-
fall model because the iterations are too long. Unfortunately, a spiral-like model only models the soft-
ware life cycle; it cannot prescribe a specific way to break down a project into single-cycle iterations 
because that division varies from project to project.
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Other possible drawbacks are the overhead of repeating all four phases for each cycle and the dif-
ficulty of coordinating cycles. Logistically, it may be difficult to assemble all the group members for 
design discussions at the right time. If different teams are working on different parts of the product 
simultaneously, they are probably operating in parallel cycles, which can get out of sync. For example, 
during the development of an operating system, the user interface group could be ready to start the 
discovery phase of the Window Manager cycle, but the core OS group could still be in the develop-
ment phase of the memory subsystem.

Agile
To address the shortcomings of the waterfall model, the agile model was introduced in 2001 in the 
form of an Agile Manifesto.

As can be understood from this manifesto, the term agile is only a high-level description. Basically, it 
tells you to make the process flexible so that customers’ changes can easily be incorporated into the 
project during development. Scrum is one of the most used agile software development methodologies 
and is discussed in the next section.

SOFTWARE ENGINEERING METHODOLOGIES

Software life cycle models provide a formal way of answering the question, “What do we do next?” 
but are rarely able to contribute an answer to the logical follow-up question, “How do we do it?” 
To provide some answers to the how question, a number of methodologies have been developed that 
provide practical rules of thumb for professional software development. Books and articles on soft-
ware methodologies abound, but a few of these methodologies deserve particular attention: Unified 
Process, Rational Unified Process, Scrum, eXtreme Programming, and Software Triage.

MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT

The entire manifesto, taken from http://agilemanifesto.org/, is as follows:

We are uncovering better ways of developing software by doing it and helping others 
do it. Through this work we have come to value:

➤➤ Individuals and interactions over processes and tools

➤➤ Working software over comprehensive documentation

➤➤ Customer collaboration over contract negotiation

➤➤ Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the 
left more.

http://agilemanifesto.org/
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The Unified Process
The Unified Process (UP) is an iterative and incremental software development process. The UP is not 
set in stone; it’s a framework that you should customize to the specific needs of your project. Accord-
ing to the Unified Process, a project can be split into four phases:

➤➤ Inception: This phase is usually very short. It includes a feasibility study, writing of a business 
case, deciding whether the project should be developed in-house or bought from a third-party 
vendor, defining a rough estimate of the cost and timeline, and defining the scope.

➤➤ Elaboration: Most of the requirements are documented. Risk factors are addressed, and the 
system architecture is validated. To validate the architecture, the most important parts of the 
core of the architecture are built as an executable delivery. This should demonstrate that the 
developed architecture will be able to support the entire system.

➤➤ Construction: All requirements are implemented on top of the executable architecture 
delivery from the elaboration phase.

➤➤ Transition: The product is delivered to the customer. Feedback from the customer is 
addressed in subsequent transition iterations.

The elaboration, construction, and transition phases are split into time-boxed iterations, each having 
a tangible result. In each iteration, the teams are working on several disciplines of the project at the 
same time: business modeling, requirements, analysis and design, implementation, testing, and deploy-
ment. The amount of work done in each discipline changes with each iteration. Figure 28-6 shows 
this iterative and overlapping development approach. In this example, the inception phase is done in 
one iteration, the elaboration phase in two, the construction phase in four, and the transition phase in 
two iterations.
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The Rational Unified Process
The Rational Unified Process (RUP) is one of the best-known refinements of the Unified Process. It is 
a disciplined and formal approach to managing the software development process. The most impor-
tant characteristic of the RUP is that, unlike the spiral model or the waterfall model, RUP is more 
than just a theoretical process model. RUP is actually a software product that is sold by Rational 
Software, a division of IBM. Treating the process itself as software brings about some interesting 
advantages:

➤➤ The process itself can be updated and refined, just as software products periodically 
have updates.

➤➤ Rather than simply suggesting a development framework, RUP includes a set of software 
tools for working with that framework.

➤➤ As a product, RUP can be rolled out to the entire engineering team so that all members are 
using the exact same processes and tools.

➤➤ Like many software products, RUP can be customized to the needs of the users.

RUP as a Product
As a product, RUP takes the form of a suite of software applications that guide developers through 
the software development process. The product also offers specific guidance for other Rational prod-
ucts, such as the Rational Rose visual modeling tool and the Rational ClearCase configuration man-
agement tool. Extensive groupware communication tools are included as part of the “marketplace of 
ideas” that allows developers to share knowledge.

One of the basic principles behind RUP is that each iteration on a development cycle should have a 
tangible result. During the Rational Unified Process, users will create numerous designs, requirement 
documents, reports, and plans. The RUP software provides visualization and development tools for 
the creation of these artifacts.

RUP as a Process
Defining an accurate model is the central principle of RUP. Models, according to RUP, help explain 
the complicated structures and relationships in the software development process. In RUP, models are 
often expressed in Unified Modeling Language (UML) format; see Appendix D.

RUP defines each part of the process as an individual workflow (called discipline in the earlier 
discussion of the Unified Process). Workflows represent each step of a process in terms of who is 
responsible for the step, what tasks are being performed, the artifacts or results of these tasks, and the 
sequence of events that drives the tasks. Almost everything about RUP is customizable, but several 
core process workflows are defined “out of the box” by RUP.

The core process workflows bear some resemblance to the stages of the waterfall model, but each one 
is iterative and more specific in definition. The business modeling workflow models business pro-
cesses, usually with the goal of driving software requirements forward. The requirements workflow 
creates the requirements definition by analyzing the problems in the system and iterating on its 
assumptions. The analysis and design workflow deals with system architecture and subsystem design. 
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The implementation workflow covers the modeling, coding, and integration of software subsystems. 
The testing workflow models the planning, implementation, and evaluation of software quality tests. 
The deployment workflow is a high-level view of overall planning, releasing, supporting, and testing 
workflows. The configuration management workflow goes from new project conception to iteration 
and end-of-product scenarios. Finally, the environment workflow supports the engineering organiza-
tion through the creation and maintenance of development tools.

RUP in Practice
RUP is aimed mainly at larger organizations and offers several advantages over the adoption of 
traditional life cycle models. Once the team has gotten over the learning curve of using the software, 
all members will be using a common platform for designing, communicating, and implementing their 
ideas. The process can be customized to the needs of the team, and each stage reveals a wealth of 
valuable artifacts that document each phase of the development.

A product like RUP can be too heavyweight for some organizations. Teams with diverse development 
environments or tight engineering budgets might not want to, or be able to, standardize on a soft-
ware-based development system. The learning curve can also be a factor; new engineers who aren’t 
familiar with the process software will have to learn how to use it, while at the same time getting up 
to speed on the product and the existing code base.

Scrum
The agile model is just a high-level foundation; it does not specify exactly how the model should be 
implemented in real life. That’s where Scrum comes into play; it’s an agile methodology with precise 
descriptions of how to use it on a daily basis.

Scrum is an iterative process. It is popular as a means to manage software development projects. In 
Scrum, each iteration is called a sprint cycle. The sprint cycle is the central part of the Scrum process. 
The length of sprints, which should be decided at the beginning of the project, is typically between 
two and four weeks. At the end of each sprint, the goal is to have a version of the software available 
that is fully working and tested, and which represents a subset of the customers’ requirements. Scrum 
recognizes that customers will often change their minds during development, so it allows the result 
of each sprint to be shipped to the customer. This gives customers the opportunity to see iterative 
versions of the software, and allows them to give feedback to the development team about poten-
tial issues.

Roles
There are three roles in Scrum. The first role, product owner (PO), is the connection to the customer 
and to other people. The PO writes high-level user stories based on input from the customer, gives 
each user story a priority, and puts the stories in the Scrum product backlog. Actually, everyone on 
the team is allowed to write high-level user stories for the product backlog, but the PO decides which 
user stories are kept and which are removed.

The second role, Scrum master (SM), is responsible for keeping the process running and can be part 
of the team, although not the team leader, because with Scrum the team leads itself. The SM is the 
contact person for the team so that the rest of the team members can concentrate on their tasks. The 



982 ❘ CHAPTER 28  MaxiMizing Software engineering MethodS

SM ensures that the Scrum process is followed correctly by the team, for example, by organizing the 
daily Scrum meetings, discussed in the next section. The Scrum master and product owner should be 
two different people.

The third and final role in the Scrum process is the team itself. Teams develop the software, and 
should be kept small, with preferably fewer than 10 members.

The Process
The Scrum process enforces a daily meeting called the daily Scrum or standup. In this meeting, all 
team members stand together with the SM. According to the Scrum process, this meeting should start 
every day at exactly the same time and location and should be no longer than 15 minutes. During this 
meeting, all team members get to answer these three questions:

➤➤ What did you do since the last daily Scrum?

➤➤ What are you planning to do after the current daily Scrum?

➤➤ What problems are you facing in reaching your goal?

Problems faced by team members should be noted by the SM, who will try to solve them after the 
daily Scrum meeting.

Before the start of each sprint cycle, there is a sprint planning meeting in which team members must 
decide which product features they will implement in the new sprint. This is formalized in a sprint 
backlog. The features are selected from a product backlog containing prioritized user stories, which 
are high-level requirements of new features. User stories from the product backlog are broken down 
into smaller tasks with an effort estimation and are put on the sprint backlog. Once a sprint is in 
progress, the sprint backlog is frozen and cannot be changed during that sprint. The duration of the 
sprint planning meeting depends on the length of the sprints; typically, there are four hours sprint 
planning meeting for each two weeks of a sprint. The sprint planning meeting is usually split into two 
parts: meeting with the PO and the team to discuss the priority of product backlog items, and meeting 
with only the team to complete the sprint backlog.

In a Scrum team you will sometimes find a physical board with three columns: To Do, In Progress, 
and Done. Every task for the sprint is written on a small piece of paper and stuck on the board in the 
correct column. Tasks are not assigned to people during a meeting; instead, every team member can 
go to the board, pick one of the To Do tasks, and move that paper to the In Progress column. When 
the team member is finished with that task, the paper is moved to the Done column. This method 
makes it easy for team members to quickly get an overview of the work that still needs to be done 
and what tasks are in progress or finished. Instead of a physical Scrum board, you can also use a 
software solution to work with a virtual Scrum board.

The three columns, To Do, In Progress, and Done, are not set in stone. Your team can add any 
additional columns to include other steps. For example, a Scrum board could contain the follow-
ing columns:

➤➤ To Do: The tasks planned for the current sprint that have not been started yet

➤➤ In Progress: The tasks that are currently being worked on by developers in a development 
branch (see the “Source Code Control” section later in this chapter)
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➤➤ In Review: The tasks that have been implemented and that are currently waiting to be 
reviewed by another team member, also known as code review

➤➤ In Testing: The tasks that have been implemented and code reviewed and that are waiting to 
be tested by the quality assurance (QA) team for approval

➤➤ In Integration: The tasks for which the code changes have been validated by a code review 
and approved by QA and for which the code from the development branch can be integrated 
into the main code base

➤➤ Done: The tasks that have been fully implemented, reviewed, tested, and integrated

Sometimes, a burn-down chart is also created every day that displays the days of the sprint on the 
horizontal axis and the remaining development hours on the vertical axis. This gives a quick overview 
of the progress made and can be used to determine whether all planned tasks can be completed dur-
ing the sprint.

Once a sprint cycle is finished, there are two meetings: the sprint review and the sprint retrospective. 
The duration of the sprint review meeting again depends on the length of the sprints, typically two 
hours per two weeks of a sprint. During the sprint review meeting, a demo is given to demonstrate 
the sprint results and the current state of the software to all interested stakeholders. The sprint review 
meeting also includes a discussion of the results of the sprint cycle, including what tasks were com-
pleted and what tasks were not completed and why. The sprint retrospective typically takes around 
one-and-a-half hours for each two weeks of a sprint and allows the team to think about how the last 
sprint cycle was executed. For example, the team can identify shortcomings in the process and adapt 
the process for the next sprint. Questions like “What went well?” and “What could be improved?” 
and “What do we want to start, continue, or stop doing?” are answered. This is called continuous 
improvement; that is, after every sprint, the process is examined and improved.

Benefits of Scrum
Scrum is resilient to unforeseen problems that come up during the development stage. When a prob-
lem pops up, it can be handled in one of the following sprints. The team is involved in every step of 
the project. They discuss user stories from the product backlog with the PO and convert these user 
stories into smaller tasks for inclusion in a sprint backlog. The team autonomously assigns work to 
their members with the aid of the Scrum task board. This board makes it easy to quickly see which 
team member is working on which task. And finally, the daily Scrum meeting ensures that everyone 
knows what is happening.

A huge benefit to the paying customer is the demo that follows each sprint, which demonstrates the 
new iterative version of the project. The customer quickly gets a sense of how the project is progress-
ing and can make changes to the requirements, which usually can be incorporated into a future sprint.

Drawbacks of Scrum
Some companies might find it difficult to accept that the team itself decides who is doing what. Tasks 
are not assigned to team members by a manager or a team leader. All members pick their own tasks 
from the Scrum task board.
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The SM is a key person to make sure the team stays on track. It is important that the SM trusts the 
team. Having too tight a control over the team members will cause the Scrum process to fail.

A possible problem with Scrum is called feature creep. Scrum allows new user stories to be added to 
the product backlog during development. There is a danger that project managers will keep adding 
new features to the product backlog. This problem is best solved by deciding on a final release date or 
the end date of the last sprint.

eXtreme Programming
When a friend of mine arrived home from work years ago and told his wife that his company had 
adopted some of the principles of eXtreme Programming, she joked, “I hope you wear a safety har-
ness for that.” Despite the somewhat hokey name, eXtreme Programming (XP) effectively bundles up 
the best of other software development guidelines and adds some new material.

XP, popularized by Kent Beck in eXtreme Programming eXplained (Addison-Wesley, 1999), claims to 
take the best practices of good software development and turn them up a notch. For example, most 
programmers would agree that testing is a good thing. In XP, testing is deemed so good that you’re 
supposed to write the tests before you write the code.

XP in Theory
The XP methodology is made up of twelve main guiding principles, grouped into four categories. 
These principles are manifested throughout all phases of the software development process and have 
a direct impact on the daily tasks of engineers.

Fine-Scale Feedback
XP provides four fine-grained guidelines related to coding, planning, and testing.

Code in Pairs

XP suggests that all production code should be written by two people working side-by-side, a tech-
nique called pair programming. Obviously, only one person can actually be in control of the key-
board. The other person reviews the code his peer is writing and takes a high-level approach, thinking 
about issues such as testing, necessary refactoring, and the overall model of the project.

As an example, if you are in charge of writing the user interface for a particular feature of your appli-
cation, you might want to ask the original author of the feature to sit down with you. He can advise 
you about the correct use of the feature, warn you about any “gotchas” you should watch out for, 
and help oversee your efforts at a high level. Even if you can’t acquire the help of the original author, 
just grabbing another member of the team can help. The theory is that working in pairs builds shared 
knowledge, ensures proper design, and puts an informal system of checks and balances in place.

Planning Game

In the waterfall model, planning happens once, at the beginning of the process. Under the spiral 
model, planning is the first phase of each iteration. Under XP, planning is more than just a step—it’s 
a never-ending task. XP teams start with a rough plan that captures the major points of the product 
being developed. During each iteration of the process, there is a so-called planning game meeting. 
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Throughout the development process, the plan is refined and modified as necessary. The theory is that 
conditions are constantly changing and new information is obtained all the time. There are two major 
parts in the planning process:

➤➤ Release planning: This happens with the developers and the customers, and its goal is to 
determine which requirements need to be included in which upcoming releases.

➤➤ Iteration planning: This happens only with the developers, and it plans the actual tasks for 
the developers.

Under XP, estimates for a given feature are always made by the person who will be implementing 
that particular feature. This helps to avoid situations where the implementer is forced to adhere to an 
unrealistic and artificial schedule. Initially, estimates are very rough, perhaps on the order of weeks 
for a feature. As the time horizon shortens, the estimates become more granular. Features are broken 
down into tasks taking no more than five days.

Test Constantly

According to eXtreme Programming eXplained, “Any program feature without an automated test 
simply doesn’t exist.” XP is zealous about testing. Part of your responsibility as an XP engineer is 
to write the unit tests that accompany your code. A unit test is generally a small piece of code that 
makes sure that an individual piece of functionality works. For example, individual unit tests for a 
file-based object store may include testSaveObject, testLoadObject, and testDeleteObject.

XP takes unit testing one step further by suggesting that unit tests should be written before the actual 
code is written. Of course, the tests won’t pass because the code hasn’t been written yet. In theory, if 
your tests are thorough, you should know when your code is complete because all the tests will run 
successfully. This is called test-driven development (TDD). I told you it was “extreme.”

Have a Customer On-Site

Because an XP-savvy engineering group constantly refines its product plan and builds only what is 
currently necessary, having a customer contribute to the process is valuable. Although it is not always 
possible to convince a customer to be physically present during development, the idea that there 
should be communication between engineering and the end user is clearly a valuable notion. In addi-
tion to assisting with the design of individual features, customers can help prioritize tasks by convey-
ing their individual needs.

Continuous Process
XP advocates that you should continuously integrate subsystems so that mismatches between subsys-
tems can be detected early. You should also refactor code whenever necessary and aim to build and 
deploy small incremental releases.

Integrate Continuously

All programmers are familiar with the dreaded chore of integrating code. This task becomes neces-
sary when you discover that your view of the object store is a complete mismatch with the way it was 
actually written. When subsystems come together, problems are exposed. XP recognizes this phenom-
enon and advocates integrating code into the project frequently as it is being developed.
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XP suggests a specific method for integration. Two programmers (the pair that developed the code) sit 
down at a designated “integration station” and merge the code in together. The code is not checked in 
until it passes 100 percent of the tests. By having a single station, conflicts are avoided, and integra-
tion is clearly defined as a step that must occur before a check-in.

A similar approach can still work on an individual level. Engineers run tests individually or in pairs 
before checking code into the repository. A designated machine continually runs automated tests. 
When the automated tests fail, the team receives an e-mail indicating the problem and listing the most 
recent check-ins.

Refactor When Necessary

Most programmers refactor their code from time to time. Refactoring is the process of redesigning 
existing working code to take into account new knowledge or alternate uses that have been discov-
ered since the code was written. Refactoring is difficult to build into a traditional software engineer-
ing schedule because its results are not as tangible as implementing a new feature. Good managers, 
however, recognize its importance for long-term code maintainability.

The extreme way of refactoring is to recognize situations during development when refactoring is use-
ful and to do the refactoring at that time. Instead of deciding at the start of a release which existing 
parts of the product need design work, XP programmers learn to recognize the signs of code that is 
ready to be refactored. While this practice will almost certainly result in unexpected and unscheduled 
tasks, restructuring the code when appropriate should make future development easier.

Build Small Releases

One of the theories of XP is that software projects grow risky and unwieldy when they try to accom-
plish too much at one time. Instead of massive software releases that involve core changes and several 
pages of release notes, XP advocates smaller releases with a timeframe closer to two months than 
eighteen months. With such a short release cycle, only the most important features can make it into 
the product. This forces engineering and marketing to agree on what features are truly important.

Shared Understanding
Software is developed by a team. Any code written is not owned by individuals but by the team as a 
whole. XP gives a couple of guidelines to make sure sharing the code and ideas is possible.

Share Common Coding Standards

Because of the collective ownership guideline and the practice of pair programming, coding in an 
extreme environment can be difficult if each engineer has their own naming and indenting conven-
tions. XP doesn’t advocate any particular style but recommends that if you can look at a piece of 
code and immediately identify the author, your group probably needs a better definition of its coding 
standards.

For additional information on various approaches to coding style, see Chapter 3, “Coding with Style.”

Share the Code

In many traditional development environments, code ownership is strongly defined and often 
enforced. A friend of mine once worked in an environment where the manager explicitly forbade 
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checking in changes to code written by any other member of the team. XP takes the extreme opposite 
approach by declaring that the code is collectively owned by everybody.

Collective ownership is practical for a number of reasons. From a management point of view, it is less 
detrimental when a single engineer leaves suddenly because there are others who understand that part 
of the code. From an engineer’s point of view, collective ownership builds a common view of how the 
system works. This helps with design tasks and frees the individual programmer to make any changes 
that will add value to the overall project.

One important note about collective ownership is that it is not necessary for every programmer to 
be familiar with every single line of code. It is more of a mindset that the project is a team effort, and 
there is no reason for any one person to hoard knowledge.

Simplify Your Designs

A mantra frequently sung by XP-savvy engineers is “avoid speculative generality.” This goes against 
the natural inclinations of many programmers. If you are given the task of designing a file-based 
object store, you may start down the path of creating the be-all, end-all solution to all file-based stor-
age problems. Your design might quickly evolve to cover multiple languages and any type of object. 
XP says you should lean toward the other end of the generality continuum. Instead of making the 
ideal object store that will win awards and be celebrated by your peers, design the simplest possible 
object store that gets the job done. You should understand the current requirements and write your 
code to those specifications to avoid overly complex code.

It may be hard to get used to simplicity in design. Depending on the type of work you do, your code 
may need to exist for years and be used by other parts of the code that you haven’t even dreamed of. 
As discussed in Chapter 6, “Designing for Reuse,” the problem with building in functionality that 
may be useful in the future is that you don’t know what those hypothetical use cases are, and there is 
no way to craft a good design that is purely speculative. Instead, XP says you should build something 
that is useful today and leave open the opportunity to modify it later.

Share a Common Metaphor

XP uses the term metaphor for the idea that all members of the team (including customers and 
managers) should share a common high-level view of the system. This does not refer to the specif-
ics of how objects will communicate or the exact APIs that will be written. Rather, the metaphor is 
the mental model and naming model for the components of the system. Each component should be 
given a descriptive name so that each member of the team can guess its functionality simply based 
on its name. Team members should use the metaphor to drive shared terminology when discussing 
the project.

Programmer Welfare
Obviously, the welfare of the developers is important. So, the final guideline of XP is a guidance on 
working sane hours.

Work Sane Hours

XP has a thing or two to say about the hours you’ve been putting in. The claim is that a well-rested 
programmer is a happy and productive programmer. XP advocates a workweek of approximately 40 
hours and warns against putting in overtime for more than two consecutive weeks.
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Of course, different people need different amounts of rest. The main idea, though, is that if you sit 
down to write code without a clear head, you’re going to write poor code and abandon many of the 
XP principles.

XP in Practice
XP purists claim that the twelve tenets of eXtreme Programming are so intertwined that adopting 
some of them without others would largely ruin the methodology. For example, pair programming is 
vital to testing because if you can’t determine how to test a particular piece of code, your partner can 
help. Also, if you’re tired one day and decide to skip the testing, your partner will be there to evoke 
feelings of guilt.

Some of the XP guidelines, however, can prove difficult to implement. To some engineers, the idea 
of writing tests before code is too abstract. For those engineers, it may be sufficient to design the 
tests without actually writing them until there is code to test. Many of the XP principles are rigidly 
defined, but if you understand the theory behind them, you may be able to find ways to adapt the 
guidelines to the needs of your project.

The collaborative aspects of XP can be challenging as well. Pair programming has measurable ben-
efits, but it may be difficult for a manager to rationalize having half as many people actually writing 
code each day. Some members of the team may even feel uncomfortable with such close collabora-
tion, perhaps finding it difficult to type while others are watching. Pair programming also has obvi-
ous challenges if the team is geographically spread out or if members tend to telecommute regularly.

For some organizations, eXtreme Programming may be too radical. Large, established companies 
with formal policies in place for engineering may be slow to adopt approaches like XP. However, even 
if your company is resistant to the implementation of XP, you can still improve your own productiv-
ity by understanding the theory behind it.

Software Triage
In the fatalistically named book Death March (Prentice Hall, 1997), Edward Yourdon describes 
the frequent and scary condition of software that is behind schedule, short on staff, over budget, or 
poorly designed. Yourdon’s theory is that when software projects get into this state, even the best 
modern software development methodologies will no longer apply. As you have learned in this chap-
ter, many approaches to software development are built around formalized documents or taking a 
user-centered approach to design. In a project that’s already in “death march” mode, there simply isn’t 
time for these approaches.

The idea behind Software Triage is that when a project is already in a bad state, resources are scarce. 
Time is scarce, engineers are scarce, and money may be scarce. The main mental obstacle that 
managers and developers need to overcome when a project is way behind schedule is that it will be 
impossible to satisfy the original requirements in the allotted time. The task then becomes organizing 
remaining functionality into must-have, should-have, and nice-to-have lists.

Software Triage is a daunting and delicate process. It often requires the leadership of an outside 
seasoned veteran of “death march” projects to make the tough decisions. For the engineer, the most 
important point is that in certain conditions, it may be necessary to throw familiar processes out the 
window (along with some existing code, unfortunately) to finish a project on time.
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BUILDING YOUR OWN PROCESS AND METHODOLOGY

It’s unlikely that any book or engineering theory will perfectly match the needs of your project or 
organization. I recommend that you learn from as many approaches as you can and design your own 
process. Combining concepts from different approaches may be easier than you think. For example, 
RUP optionally supports an XP-like approach. Here are some tips for building the software engineer-
ing process of your dreams.

Be Open to New Ideas
Some engineering techniques seem crazy at first or unlikely to work. Look at new innovations in 
software engineering methodologies as a way to refine your existing process. Try things out when you 
can. If XP sounds intriguing, but you’re not sure if it will work in your organization, see if you can 
work it in slowly, taking a few of the principles at a time or trying it out with a smaller pilot project.

Bring New Ideas to the Table
Most likely, your engineering team is made up of people from varying backgrounds. You may have 
people who are veterans of startups, long-time consultants, recent graduates, and PhDs on your team. 
You all have a different set of experiences and your own ideas of how a software project should be 
run. Sometimes the best processes turn out to be a combination of the way things are typically done 
in these very different environments.

Recognize What Works and What Doesn’t Work
At the end of a project (or better yet, during the project, as with the sprint retrospective of the Scrum 
methodology), get the team together to evaluate the process. Sometimes there’s a major problem that 
nobody notices until the entire team stops to think about it. Perhaps there’s a problem that everybody 
knows about but nobody has discussed.

Consider what isn’t working and see how those parts can be fixed. Some organizations require formal 
code reviews prior to any source code check-in. If code reviews are so long and boring that nobody 
does a good job, discuss code-reviewing techniques as a group.

Also consider what is going well and see how those parts can be extended. For example, if maintain-
ing the feature tasks as a group-editable website is working, then maybe devote some time to making 
the website even better.

Don’t Be a Renegade
Whether a process is mandated by your manager or custom-built by the team, it’s there for a reason. 
If your process involves writing formal design documents, make sure you write them. If you think 
that the process is broken or too complex, talk to your manager about it. Don’t just avoid the  
process—it will come back to haunt you.
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SOURCE CODE CONTROL

Managing all source code is important for any company, big or small, even for one-person projects. 
In a company, for example, it would be impractical to store all the source code on the machines of 
individual developers who are not managed by any source code control software. This would result 
in a maintenance nightmare because not everyone would always have the latest code. All source code 
must be managed by source code control software. There are three kinds of such software solutions:

➤➤ Local: These solutions store all source code files and their history locally on your machine 
and are not really suitable for use in a team. These are solutions from the ’70s and ’80s and 
shouldn’t be used anymore. They are not discussed further.

➤➤ Client/Server: These solutions are split into a client component and a server component. 
For a personal developer, the client and server components can run on the same machine, 
but the separation makes it easy to move the server component to a dedicated physical 
server machine if the need arises.

➤➤ Distributed: These solutions go one step further than the client/server model. There is no 
central place where everything is stored. Every developer has a copy of all the files, including 
all the history. A peer-to-peer approach is used instead of a client/server approach. Code is 
synchronized between peers by exchanging patches.

The client/server solution consists of two parts. The first part is the server software, which is software 
running on the central server and which is responsible for keeping track of all source code files and 
their history. The second part is the client software. This client software should be installed on every 
developer’s machine and is responsible for communicating with the server software to get the latest  
version of a source file, get a previous version of a source file, commit local changes back to the 
server, roll back changes to a previous version, and so on.

A distributed solution doesn’t use a central server. The client software uses peer-to-peer protocols 
to synchronize with other peers by exchanging patches. Common operations such as committing 
changes, rolling back changes, and so on, are fast because no network access to a central server is 
involved. The disadvantage is that it requires more space on the client machine because it needs to 
store all the files, including the entire history.

Most source code control systems have a special terminology, but unfortunately, not all systems use 
the same terms. The following list explains a number of terms that are commonly used:

➤➤ Branch: The source code can be branched, which means that multiple versions can be devel-
oped side by side. For example, one branch can be created for every released version. On 
those branches, bug fixes can be implemented for those released versions, while new features 
are added to the main branch. Bug fixes created for released versions can also be merged back 
to the main branch.

➤➤ Checkout: This is the action of creating a local copy on the developer’s machine, coming 
either from a central server or from peers.

➤➤ Check in, commit, or merge: A developer should make changes to the local copy of the  
source code. When everything works correctly on the local machine, the developer can 
check in/commit/merge those local changes back to the central server or exchange patches 
with peers.
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➤➤ Conflict: When multiple developers make changes to the same source file, a conflict might 
occur when committing that source file. The source code control software often tries to auto-
matically resolve these conflicts. If that is not possible, the client software asks the user to 
resolve any conflicts manually.

➤➤ Label or tag: A label or tag can be attached to all files or to a specific commit at any given 
time. This makes it easy to jump back to the version of the source code at that time.

➤➤ Repository: The collection of all files managed by the source code control software, including 
their history, is called the repository. This also includes metadata about those files, such as 
commit comments.

➤➤ Resolve: When commit conflicts occur, the user has to resolve them before committing 
can continue.

➤➤ Revision or version: A revision, or version, is a snapshot of the contents of a file at a specific 
point in time. Versions represent specific points that the code can be reverted to or com-
pared against.

➤➤ Update or sync: Updating or synchronizing means that the local copy on the developer’s 
machine is synchronized with a version on the central server or with peers. Note that this 
may require a merge, which may result in a conflict that needs to be resolved.

➤➤ Working copy: The working copy is the local copy on the individual developer’s machine.

Several source code control software solutions are available. Some of them are free, and some are 
commercial. The following table lists a few available solutions:

FREE/OPEN-SOURCE COMMERCIAL

Local Only SCCS, RCS PVCS

Client/Server CVS, Subversion IBM Rational ClearCase, Azure DevOps 
Server, Perforce

Distributed Git, Mercurial,  
Bazaar

TeamWare, BitKeeper, Plastic SCM

NOTE The preceding list is definitely not an exhaustive one. It’s just a small  
selection to give you an idea of what’s available.

This book does not recommend a particular software solution. Most software companies these days 
have a source code control solution already in place, which every developer needs to adopt. If this is 
not the case, the company should definitely invest some time into researching the available solutions 
and pick one that suits them. The bottom line is that it will be a maintenance nightmare without any 
source code control solution in place. Even for your personal projects, I recommend you investigate 
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the available solutions. If you find one that you like, it will make your life easier. It will automatically 
keep track of different versions and a history of your changes. This makes it easy for you to roll back 
to an older version if a change didn’t work out the way it was supposed to.

SUMMARY

This chapter introduced you to several models and methodologies for the software development 
process. There are certainly many other ways of building software, both formalized and informal. 
There probably isn’t a single correct method for developing software except the method that works 
for your team. The best way to find this method is to do your own research, learn what you can from 
various methods, talk to your peers about their experiences, and iterate on your process. Remember, 
the only metric that matters when examining a process methodology is how much it helps your team 
to write code.

The final part of this chapter briefly touched on the concept of source code control solutions. This 
should be an integral part of any software company, big or small, and is even beneficial for personal 
projects at home. There are several source code control software solutions available, both free and 
commercial, so it is recommended that you try a few and see which one of them works for you.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 28-1: Give a few examples of software life cycle models and of software engineering 
methodologies.

Exercise 28-2: If the continuous integration of XP sounds extreme to you, in recent years, 
some companies go even a step further with so-called continuous deployment. Do some 
research into continuous deployment to find out what it means.

Exercise 28-3: Next to the continuous deployment from Exercise 28-2, there is also  
continuous delivery. Do some research into continuous delivery and contrast it with  
continuous deployment.

Exercise 28-4: Research the term rapid application development (RAD). How does it relate to 
the contents in this chapter?

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Writing Efficient C++

WHAT’S IN THIS CHAPTER?

➤➤ What efficiency and performance mean

➤➤ What kind of language-level optimizations you can use

➤➤ Which design-level guidelines you can follow to design efficient  
programs

➤➤ What profiling tools are

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the Download  
Code tab.

The efficiency of your programs is important regardless of your application domain. If your 
product competes with others in the marketplace, speed can be a major differentiator: given the 
choice between a slower and a faster program, which one would you choose? No one would 
buy an operating system that takes two weeks to boot up, unless it was the only option. Even if 
you don’t intend to sell your products, they will have users. Those users will not be happy with 
you if they end up wasting time waiting for your programs to complete tasks.

Now that you understand the concepts of professional C++ design and coding and have tackled 
some of the more complex facilities that the language provides, you are ready to incorporate 
performance into your programs. Writing efficient programs involves thought at the design 
level, as well as details at the implementation level. Although this chapter falls late in this book, 
remember to consider performance from the beginning of your projects.

http://www.wiley.com/go/proc++5e
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OVERVIEW OF PERFORMANCE AND EFFICIENCY

Before delving further into the details, it’s helpful to define the terms performance and efficiency, as 
used in this book. The performance of a program can refer to several areas, such as speed, memory 
usage, disk access, and network use. This chapter focuses on speed performance. The term efficiency, 
when applied to programs, means running without wasted effort. An efficient program completes its 
tasks as quickly as possible within the given circumstances. A program can be efficient without being 
fast, if the application domain is inherently prohibitive to quick execution.

NOTE An efficient, or high-performance, program runs as fast as is possible for 
the particular tasks.

Note that the title of this chapter, “Writing Efficient C++,” means writing programs that run  
efficiently, not efficiently writing programs. That is, the time you learn to save by reading this chapter 
will be your users’, not your own!

Two Approaches to Efficiency
Language-level efficiency involves using the language as efficiently as possible, for example, passing 
objects by reference instead of by value. However, this will only get you so far. Much more important 
is design-level efficiency, which includes choosing efficient algorithms, avoiding unnecessary steps and 
computations, and selecting appropriate design optimizations. More often than not, optimizing exist-
ing code involves replacing a bad algorithm or data structure with a better, more efficient one.

Two Kinds of Programs
As I’ve noted, efficiency is important for all application domains. Additionally, there is a small subset 
of programs, such as system-level software, embedded systems, intensive computational applications, 
and real-time games, that require extremely high levels of efficiency. Most programs don’t. Unless you 
write those types of high-performance applications, you probably don’t need to worry about squeez-
ing every ounce of speed out of your C++ code. Think of it as the difference between building normal 
family cars and building sports cars. Every car must be reasonably efficient, but sports cars require 
extremely high performance. You wouldn’t want to waste your time optimizing family cars for speed 
when they’ll never go faster than 70 miles per hour.

Is C++ an Inefficient Language?
C programmers often resist using C++ for high-performance applications. They claim that the 
language is inherently less efficient than C or a similar procedural language because C++ includes 
high-level concepts, such as exceptions and virtual methods. However, there are problems with 
this argument.

When discussing the efficiency of a language, you must separate the performance capabilities of 
the language itself from the effectiveness of its compilers at optimizing it; that is, you cannot ignore 
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the effect of compilers. Recall that the C or C++ code you write is not the code that the computer 
executes. A compiler first translates that code into machine language, applying optimizations in the 
process. This means that you can’t simply run benchmarks of C and C++ programs and compare 
the results. You’re really comparing the compiler optimizations of the languages, not the languages 
themselves. C++ compilers can optimize away many of the high-level constructs in the language to 
generate machine code similar to, or even better than, the machine code generated from a comparable 
C program. These days, much more research and development is poured into C++ compilers than into 
C compilers, so C++ code might actually get better optimized and might run faster than C code.

Critics, however, still maintain that some features of C++ cannot be optimized away. For example, 
as Chapter 10, “Discovering Inheritance Techniques,” explains, virtual methods require the existence 
of a vtable, also known as virtual table, and an additional level of indirection at run time, possibly 
making them slower than regular nonvirtual function calls. However, when you really think about it, 
this argument is unconvincing. Virtual method calls provide more than just a function call: they also 
give you a run-time choice of which function to call. A comparable non-virtual function call would 
need a conditional statement to decide which function to call. If you don’t need those extra semantics, 
you can use a non-virtual function. A general design rule in the C++ language is that “if you don’t 
use a feature, you don’t need to pay for it.” If you don’t use virtual methods, you pay no performance 
penalty for the fact that you could use them. Thus, non-virtual function calls in C++ are identical to 
function calls in C in terms of performance. However, because virtual function calls have such a tiny 
overhead, I recommend making all your class methods, including destructors but not constructors, 
virtual for all your non-final classes.

Far more important, the high-level constructs of C++ enable you to write cleaner programs that are 
more efficient at the design level, are more readable, are more easily maintained, and avoid accumu-
lating unnecessary and dead code.

I believe that you will be better served in your development, performance, and code maintenance by 
choosing C++ instead of a procedural language such as C.

There are also other higher-level object-oriented languages such as C# and Java, both of which run on 
top of a virtual machine. C++ code is executed directly by a CPU; there is no such thing as a virtual 
machine to run your code. C++ is closer to the hardware, which means that in most cases it runs 
faster than languages such as C# and Java.

LANGUAGE-LEVEL EFFICIENCY

Many books, articles, and programmers spend a lot of time trying to convince you to apply language-
level optimizations to your code. These tips and tricks are important and can speed up your programs 
in some cases. However, they are far less important than the overall design and algorithm choices in 
your program. You can pass-by-reference all you want, but it won’t make your program fast if you 
perform twice as many disk writes as you need to. It’s easy to get bogged down in references and 
pointers and forget about the big picture.

Furthermore, some of these language-level tricks can be performed automatically by good optimizing 
compilers. A rule of thumb is that you should never spend time optimizing a particular area, unless a 
profiler, discussed later in this chapter, tells you that that particular area is a bottleneck.
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That being said, using certain language-level optimizations, such as pass-by-reference, is just consid-
ered good coding style.

In this book, I’ve tried to present a balance of strategies. So, I’ve included here what I feel are the 
most useful language-level optimizations. This list is not comprehensive but is a good start to write 
optimized code. However, make sure to read, and practice, the design-level efficiency advice that I 
offer later in this chapter as well.

WARNING Apply language-level optimizations thoughtfully. I recommend mak-
ing a clean, well-structured design and implementation first. Then use a profiler, 
and only invest time optimizing those parts that are flagged by a profiler as being a 
performance bottleneck.

Handle Objects Efficiently
C++ does a lot of work for you behind the scenes, particularly with regard to objects. You should 
always be aware of the performance impact of the code you write. If you follow a few simple guide-
lines, your code will become more efficient. Note that these guidelines are only relevant for objects, 
and not for primitive types such as bool, int, float, and so on.

Pass-by-Value or Pass-by-Reference
Chapters 1, “A Crash Course in C++ and the Standard Library,” and 9, “Mastering Classes and 
Objects,” discuss a rule to decide when to use pass-by-value and when to use pass-by-reference. The 
rule is worth repeating here.

WARNING Prefer pass-by-value parameters for parameters that a function inher-
ently would copy, but only if the parameter is of a type that supports move seman-
tics. Otherwise, use reference-to-const parameters.

With pass-by-value parameters, you have to keep a few things in mind. When you pass an object of a 
derived class by value as an argument for a function parameter that has one of the base classes as its 
type, then the derived object is sliced to fit into the base class type. This causes information to be lost; 
see Chapter 10 for details. Pass-by-value could also incur copying costs that are avoided with pass-
by-reference.

However, in certain cases, pass-by-value is actually the optimal way to pass an argument to a func-
tion. Consider a class to represent a person that looks as follows:

class Person
{
    public:
        Person() = default;
        Person(string firstName, string lastName, int age)
            : m_firstName { move(firstName) }, m_lastName { move(lastName) }
            , m_age { age } { }
        virtual ~Person() = default;



Language-Level Efficiency ❘ 997

 
        const string& getFirstName() const { return m_firstName; }
        const string& getLastName() const { return m_lastName; }
        int getAge() const { return m_age; }
 
     private:
        string m_firstName, m_lastName;
        int m_age { 0 };
};

As the rule recommends, the Person constructor accepts firstName and lastName by value and then 
moves them to m_firstName and m_lastName, respectively, because it would make a copy of those 
anyway. See Chapter 9 for an explanation of this idiom.

Now, take a look at the following function accepting a Person object by value:

void processPerson(Person p) { /* Process the person. */ }

You can call this function like this:

Person me { "Marc", "Gregoire", 42 }; 
processPerson(me);

This doesn’t look like there’s more code than if you write the function like this instead:

void processPerson(const Person& p) { /* Process the person. */ }

The call to the function remains the same. However, consider what happens when you pass-by-
value in the first version of the function. To initialize the p parameter of processPerson(), me must 
be copied with a call to its copy constructor. Even though you didn’t write a copy constructor for the 
Person class, the compiler generates one that copies each of the data members. That still doesn’t look 
so bad: there are only three data members. However, two of them are strings, which are themselves 
objects with copy constructors. So, each of their copy constructors will be called as well. The version 
of processPerson() that takes p by reference incurs no such copying costs. Thus, pass-by-reference 
in this example avoids three copy constructor calls when the code enters the function.

And you’re still not done. Remember that p in the first version of processPerson() is a local vari-
able to the processPerson() function, and so must be destroyed when the function exits. This 
destruction requires a call to the Person destructor, which will call the destructor of all the data 
members. strings have destructors, so exiting this function (if you passed by value) incurs calls to 
three destructors. None of those calls is needed if the Person object is passed by reference.

NOTE If a function must modify an object, pass the object by reference-to-non-
const. If the function should not modify the object, pass it by value or by refer-
ence-to-const, as in the preceding example. See Chapter 1 for details on references 
and const.

NOTE Avoid using pass-by-pointer, which is a relatively obsolete method for pass-
by-reference. It is a throwback to the C language and thus rarely suitable in C++ 
(unless passing nullptr has meaning in your design).



998 ❘ CHAPTER 29  Writing EfficiEnt c++

Return-by-Value or Return-by-Reference
You could return objects by reference from functions to avoid copying the objects unnecessarily. 
Unfortunately, it is sometimes impossible to return objects by reference, such as when you write over-
loaded operator+ and other similar operators. And, you should never return a reference or a pointer 
to a local object that will be destroyed when the function exits!

However, returning objects by value is usually fine. This is due to (named) return value optimization 
and move semantics, both of which optimize returning objects by value, and both are discussed in 
upcoming sections.

Catch Exceptions by Reference
As noted in Chapter 14, “Handling Errors,” you should catch exceptions by reference to avoid slicing 
and unnecessary copying. Throwing exceptions is heavy in terms of performance, so any little thing 
you can do to improve their efficiency will help.

Use Move Semantics
You should make sure your classes support move semantics (see Chapter 9), either through the 
compiler-generated move constructor and move assignment operator or by implementing them 
yourself. According to the rule of zero (see Chapter 9), you should try to design your classes such that 
the compiler-generated copy and move constructors and copy and move assignment operators are suf-
ficient. If the compiler cannot implicitly define these for a class, try to explicitly default them if that 
works for your class. If that is also not an option, you should implement them yourself. With move 
semantics for your objects, lots of operations will be more efficient, especially in combination with 
Standard Library containers and algorithms.

Avoid Creating Temporary Objects
The compiler creates temporary, unnamed objects in several circumstances. Chapter 9 explains that 
after writing a global operator+ for a class, you can add objects of that class to other types, as long 
as those types can be converted to objects of that class. For example, the SpreadsheetCell class 
definition from Chapter 9, which includes support for the arithmetic operators, looks in part like this:

export class SpreadsheetCell
{
    public:
        // Other constructors omitted for brevity.
        SpreadsheetCell(double initialValue);
        // Remainder omitted for brevity.
};
 
export SpreadsheetCell operator+(const SpreadsheetCell& lhs,
    const SpreadsheetCell& rhs);

The constructor that takes a double allows you to write code like this:

SpreadsheetCell myCell { 4 }, aThirdCell;
aThirdCell = myCell + 5.6;
aThirdCell = myCell + 4;
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The second statement constructs a temporary SpreadsheetCell object from the 5.6 argument; it 
then calls the operator+ with myCell and this temporary object as arguments. The result is stored in 
aThirdCell. The third statement does the same thing, except that 4 must be coerced to a double to 
call the double constructor of the SpreadsheetCell.

The important point in this example is that the compiler generates code to create an extra, unnamed 
SpreadsheetCell object for both addition operations in this example. That object must be con-
structed and destructed with calls to its constructor and destructor. If you’re still skeptical, try insert-
ing cout statements in your constructor and destructor, and watch the printout.

In general, the compiler constructs a temporary object whenever your code converts a variable of 
one type to another type for use in a larger expression. This rule applies mostly to function calls. For 
example, suppose that you write a function with the following prototype:

void doSomething(const SpreadsheetCell& s);

You can call this function like this:

doSomething(5.56);

The compiler constructs a temporary SpreadsheetCell object from 5.56 using the double construc-
tor. This temporary object is then passed to doSomething(). Note that if you remove the const from 
the s parameter, you can no longer call doSomething() with a constant; you must pass a variable.

You should generally attempt to avoid cases in which the compiler is forced to construct temporary 
objects. Although it is impossible to avoid in some situations, you should at least be aware of the 
existence of this “feature” so you aren’t surprised by performance and profiling results.

Move semantics is used by the compiler to make working with temporary objects more efficient. 
That’s another reason to make sure your classes support move semantics. See Chapter 9 for details.

Return-Value Optimization
A function that returns an object by value can cause the creation of a temporary object. Continuing 
with the Person example from earlier, consider this function:

Person createPerson()
{
    Person newP { "Marc", "Gregoire", 42 };
    return newP;
}

Suppose that you call it like this (assuming that operator<< is implemented for the Person class):

cout << createPerson();

Even though this call does not store the result of createPerson() anywhere, the result must  
be stored somewhere to pass it to operator<<. To generate code for this behavior, the compiler is 
allowed to create a temporary variable in which to store the Person object returned from  
createPerson().
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Even if the result of the function is not used anywhere, the compiler might still generate code to create 
the temporary object. For example, suppose you have this code:

createPerson();

The compiler might generate code to create a temporary object for the return value, even though it 
is not used.

However, you usually don’t need to worry about this issue because in most cases, the compiler 
optimizes away the temporary variable to avoid all copying and moving. For the createPerson() 
example, this optimization is called named return value optimization (NRVO) because the return 
statement returns a named local variable. In case the return statement has as an argument a nameless 
temporary value or the name of a parameter to the function, then this optimization is called return 
value optimization (RVO). These kinds of optimizations are usually only enabled for release builds. 
Both NRVO and RVO are forms of copy elision, allowing compilers to avoid any copying and mov-
ing of objects that are returned from a function. This results in zero-copy pass-by-value semantics. For 
NRVO to work, the argument to the return statement must be a single local variable. For example, in 
the following case, the compiler cannot do NRVO:

Person createPerson()
{
    Person person1;
    Person person2;
    return someCondition() ? person1 : person2;
}

Based on the result of calling someCondition(), either person1 or person2 is returned. Since this 
is not of the form return object;, NRVO does not apply, and even worse, this expression is an 
lvalue, so it will not be treated as an rvalue expression. This means that either person1 or person2 is 
copied! You might think to fix this issue by rewriting it as follows:

return someCondition() ? move(person1) : move(person2);

However, by doing so, the compiler still cannot apply (N)RVO, and you actually force it to use move 
semantics. If the object doesn’t support move semantics, the compiler falls back to copying.

The recommended way to avoid all copying and moving is not by using std::move(), but instead to 
write the code as follows, which allows NRVO:

if (someCondition()) {
    return person1;
} else {
    return person2;
}

If NRVO and RVO are not applicable, then copying or moving will happen. If the object you want 
to return from a function supports move semantics, then it is moved out of the function instead 
of copied.

Pre-allocate Memory
One of the main advantages of using containers such as those from the C++ Standard Library dis-
cussed in Chapter 18, “Standard Library Containers,” is that they handle all memory management 
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for you. The containers grow automatically when you add more elements to them. However, some-
times this causes a performance penalty. For example, an std::vector container stores its elements 
contiguously in memory. If it needs to grow in size, it needs to allocate a new block of memory and 
then move (or copy) all elements to this new memory. This has serious performance implications, for 
example, if you use push_back() in a loop to add millions of elements to a vector.

If you know in advance how many elements you are going to add to a vector or if you have a rough 
estimate, you should pre-allocate enough memory before starting to add your elements. A vector 
has a capacity, that is, the number of elements that can be added without reallocation, and a size, 
that is, the actual number of elements in the container. You can pre-allocate memory by changing the 
capacity using the reserve() method or by resizing the vector using resize(). See Chapter 18 
for details.

Use Inline Methods and Functions
As described in Chapter 9, the code for an inline method or function is inserted directly into the 
code where it is called, avoiding the overhead of a function call. You should mark as inline all 
functions and methods that you think can qualify for this optimization. However, do not overuse this 
feature, because it basically throws away a fundamental design principle, which states that the inter-
face and the implementation should be separated, such that the implementation can evolve without 
any changes to the interface. Consider using this feature only for often-used, fundamental classes. 
Also, remember that inlining requests are only a recommendation to the compiler, which is allowed to 
refuse them.

On the other hand, some compilers inline appropriate functions and methods during their optimiza-
tion steps, even if those functions aren’t marked with the inline keyword and even if those functions 
are implemented in a source file. Thus, you should read your compiler documentation before wasting 
a lot of effort deciding which functions to inline. In Visual C++, for example, this feature is called 
link-time code generation (LTCG) and supports cross-module inlining. The GCC compiler calls it link 
time optimization (LTO).

DESIGN-LEVEL EFFICIENCY

The design choices in your program affect its performance far more than do language details such as 
pass-by-reference. For example, if you choose an algorithm for a fundamental task in your applica-
tion that runs in O(n2) time instead of a simpler one that runs in O(n) time, you could potentially per-
form the square of the number of operations that you really need. To put numbers on that, a task that 
uses an O(n2) algorithm and performs 1 million operations would perform only 1,000 with an O(n) 
algorithm. Even if that operation is optimized beyond recognition at the language level, the simple 
fact that you perform 1 million operations when a better algorithm would use only 1,000 will make 
your program very inefficient. Always choose your algorithms carefully. Refer to Part II, specifically 
Chapter 4, “Designing Professional C++ Programs,” of this book for a detailed discussion of algo-
rithm design choices and big-O notation.

In addition to your choice of algorithms, design-level efficiency includes specific tips and tricks. 
Instead of writing your own data structures and algorithms, you should use existing ones, such as 
those from the C++ Standard Library, the Boost libraries (boost.org), or other libraries, as much as 

http://www.boost.org
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possible because they are written by experts. These libraries have been, and are being, used a lot, so 
you can expect most bugs to have been discovered and fixed. You should also think about incorpo-
rating multithreading in your design to take full advantage of all processing power available on the 
machine. See Chapter 27, “Multithreaded Programming with C++,” for more details. The remainder 
of this section presents two more design techniques for optimizing your program: caching and using 
object pools.

Cache Where Necessary
Caching means storing items for future use to avoid retrieving or recalculating them. You might be 
familiar with the principle from its use in computer hardware. Modern computer processors are built 
with memory caches that store recently and frequently accessed memory values in a location that is 
quicker to access than main memory. Most memory locations that are accessed at all are accessed 
more than once in a short time period, so caching at the hardware level can significantly speed up 
computations.

Caching in software follows the same approach. If a task or computation is particularly slow, you 
should make sure that you are not performing it more than necessary. Store the results in memory the 
first time you perform the task so that they are available for future needs. Here is a list of tasks that 
are usually slow:

➤➤ Disk access: You should avoid opening and reading the same file more than once in your 
program. If memory is available, save the file contents in RAM if you need to access 
it frequently.

➤➤ Network communication: Whenever you need to communicate over a network, your 
program is subject to the vagaries of the network load. Treat network accesses like file 
accesses, and cache as much static information as possible.

➤➤ Mathematical computations: If you need the result of a complex computation in more than 
one place, perform the calculation once and share the result. However, if it’s not very com-
plex, then it’s probably faster to just calculate it instead of retrieving it from a cache. Use a 
profiler to be sure.

➤➤ Object allocation: If you need to create and use a large number of short-lived objects in your 
program, consider using an object pool, described later in this chapter.

➤➤ Thread creation: Creating threads is slow. You can “cache” threads in a thread pool, similar 
to caching objects in an object pool.

One common problem with caching is that the data you store often comprises only copies of the 
underlying information. The original data might change during the lifetime of the cache. For example, 
you might want to cache the values in a configuration file so that you don’t need to read it repeatedly. 
However, the user might be allowed to change the configuration file while your program is running, 
which would make your cached version of the information obsolete. In cases like this, you need a 
mechanism for cache invalidation: when the underlying data changes, you must either stop using your 
cached information or repopulate your cache.

One technique for cache invalidation is to request that the entity managing the underlying data noti-
fies your program of the data change. It could do this through a callback that your program registers 
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with the manager. Alternatively, your program could poll for certain events that would trigger it to 
repopulate the cache automatically. Regardless of your specific cache invalidation technique, make 
sure that you think about these issues before relying on a cache in your program.

NOTE Always keep in mind that maintaining caches takes code, memory, and 
processing time. On top of that, caches can be a source of subtle bugs. You should 
only add caching to a particular area when a profiler clearly shows that that area 
is a performance bottleneck. First write clean and correct code, then profile it, and 
only then optimize parts of it.

Use Object Pools
There are different kinds of object pools. This section discusses one kind of object pool where it 
allocates a large chunk of memory at once, in which the pool creates smaller objects in-place. These 
objects can be handed out to clients and reused when clients are done with them, without incurring 
any additional calls to the memory manager to allocate or deallocate memory for individual objects.

Where the following object pool implementation shines, as will be demonstrated with benchmarks, is 
for objects with big data members. Whether or not an object pool is the right solution for a specific 
use case can only be decided by profiling your code.

An Object Pool Implementation
This section provides an implementation of an object pool class template that you can use in your 
programs. The implementation keeps a vector of chunks of objects of type T. Additionally, it also 
keeps track of free objects in a vector that contains pointers to all free objects. The pool hands out 
objects via the acquireObject() method. If acquireObject() is called but there are no free objects 
anymore, then the pool allocates another chunk of objects. acquireObject() returns a shared_ptr.

Note that this implementation is using the vector Standard Library container without any synchro-
nization. As such, this version is not thread-safe. See Chapter 27 for a discussion on multithreaded 
programming.

Here is the class definition with comments explaining the details. The class template is parameterized 
on the type that is to be stored in the pool and on the type of allocator to use for allocating and deal-
locating chunks of memory.

// Provides an object pool that can be used with any class that provides a
// default constructor.
//
// acquireObject() returns an object from the list of free objects. If
// there are no more free objects, acquireObject() creates a new chunk
// of objects.
// The pool only grows: objects are never removed from the pool, until
// the pool is destroyed.
// acquireObject() returns an std::shared_ptr with a custom deleter that

continues
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// automatically puts the object back into the object pool when the
// shared_ptr is destroyed and its reference count reaches 0.
export
template <typename T, typename Allocator = std::allocator<T>>
class ObjectPool
{
    public:
        ObjectPool() = default;
        explicit ObjectPool(const Allocator& allocator);
        virtual ~ObjectPool();
 
        // Allow move construction and move assignment.
        ObjectPool(ObjectPool&& src) noexcept = default;
        ObjectPool& operator=(ObjectPool&& rhs) noexcept = default;
 
        // Prevent copy construction and copy assignment.
        ObjectPool(const ObjectPool& src) = delete;
        ObjectPool& operator=(const ObjectPool& rhs) = delete;
 
        // Reserves and returns an object from the pool. Arguments can be
        // provided which are perfectly forwarded to a constructor of T.
        template<typename... Args>
        std::shared_ptr<T> acquireObject(Args... args);
 
    private:
        // Contains chunks of memory in which instances of T will be created.
        // For each chunk, the pointer to its first object is stored.
        std::vector<T*> m_pool;
        // Contains pointers to all free instances of T that
        // are available in the pool.
        std::vector<T*> m_freeObjects;
        // The number of T instances that should fit in the first allocated chunk.
        static const size_t ms_initialChunkSize { 5 };
        // The number of T instances that should fit in a newly allocated chunk.
        // This value is doubled after each newly created chunk.
        size_t m_newChunkSize { ms_initialChunkSize };
        // Creates a new block of uninitialized memory, big enough to hold
        // m_newChunkSize instances of T.
        void addChunk();
        // The allocator to use for allocating and deallocating chunks.
        Allocator m_allocator;
};

When using this object pool, you have to make sure that the object pool itself outlives all the objects 
handed out by the pool.

The constructor is trivial and just stores the given allocator in a data member:

template <typename T, typename Allocator>
ObjectPool<T, Allocator>::ObjectPool(const Allocator& allocator)
    : m_allocator { allocator }
{
}

(continued)
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The addChunk() method to allocate a new chunk is implemented as follows. The first part of  
addChunk() does the actual allocation of a new chunk. A “chunk” is just a block of uninitialized 
memory, allocated using an allocator and big enough to hold m_newChunkSize instances of T. By  
adding a chunk of objects, no objects are actually constructed yet; i.e., no object constructors are 
called. That is done later in acquireObject() when instances are handed out. The second part 
of addChunk() creates pointers to the new instances of T. It uses the iota() algorithm, defined 
<numeric>. To refresh your memory, iota() fills a range given by its first two arguments with values. 
The values start with the value of the third argument and are incremented by one for each subsequent 
value. Since we are working with T* pointers, incrementing a T* pointer by one jumps ahead to the 
next T in the memory block. Finally, the m_newChunkSize value is doubled so that the next block that 
will be added is double the size of the currently added block. This is done for performance reasons 
and follows the principle of std::vector. Here is the implementation:

template <typename T, typename Allocator>
void ObjectPool<T, Allocator>::addChunk()
{
    std::cout << "Allocating new chunk..." << std::endl;
 
    // Allocate a new chunk of uninitialized memory big enough to hold
    // m_newChunkSize instances of T, and add the chunk to the pool.
    auto* firstNewObject { m_allocator.allocate(m_newChunkSize) };
    m_pool.push_back(firstNewObject);
 
    // Create pointers to each individual object in the new chunk
    // and store them in the list of free objects.
    auto oldFreeObjectsSize { m_freeObjects.size() };
    m_freeObjects.resize(oldFreeObjectsSize + m_newChunkSize);
    std::iota(begin(m_freeObjects) + oldFreeObjectsSize, end(m_freeObjects),
        firstNewObject);
 
    // Double the chunk size for next time.
    m_newChunkSize *= 2;
}

acquireObject(), a variadic method template, returns a free object from the pool, allocating a 
new chunk if there are no more free objects available. As explained earlier, adding a new chunk just 
allocates a block of uninitialized memory. It is the responsibility of acquireObject() to properly 
construct a new instance of T at the right place in memory. This is done use a placement new operator. 
Any arguments passed to acquireObject() are perfectly forwarded to a constructor of T. Finally, 
the T* pointer is wrapped in a shared_ptr with a custom deleter. This deleter does not deallocate 
any memory; instead, it manually calls the destructor by using std::destroy_at() and then puts the 
pointer back on the list of available objects.

template <typename T, typename Allocator>
template <typename... Args>
std::shared_ptr<T> ObjectPool<T, Allocator>::acquireObject(Args... args)
{
    // If there are no free objects, allocate a new chunk.
    if (m_freeObjects.empty()) { addChunk(); }
 

continues
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    // Get a free object.
    T* object { m_freeObjects.back() };
 
    // Initialize, i.e. construct, an instance of T in an
    // uninitialized block of memory using placement new, and
    // perfectly forward any provided arguments to the constructor.
    new(object) T { std::forward<Args>(args)... };
 
    // Remove the object from the list of free objects.
    m_freeObjects.pop_back();
 
    // Wrap the initialized object and return it.
    return std::shared_ptr<T> { object, [this](T* object) {
        // Destroy object.
        std::destroy_at(object);
        // Put the object back in the list of free objects.
        m_freeObjects.push_back(object);
    } };
}

Finally, the destructor of the pool must deallocate any allocated memory using the given allocator:

template <typename T, typename Allocator>
ObjectPool<T, Allocator>::~ObjectPool()
{
    // Note: this implementation assumes that all objects handed out by this
    //       pool have been returned to the pool before the pool is destroyed.
    //       The following statement asserts if that is not the case.
    assert(m_freeObjects.size() ==
        ms_initialChunkSize * (std::pow(2, m_pool.size()) - 1));
 
    // Deallocate all allocated memory.
    size_t chunkSize { ms_initialChunkSize };
    for (auto* chunk : m_pool) {
        m_allocator.deallocate(chunk, chunkSize);
        chunkSize *= 2;
    }
    m_pool.clear();
}

Using the Object Pool
Consider an application that uses a lot of short-lived objects with big data members and hence 
are expensive to allocate. Let’s assume we have an ExpensiveObject class definition that looks 
as follows:

class ExpensiveObject
{
    public:
        ExpensiveObject() { /* ... */ }
        virtual ~ExpensiveObject() = default;
        // Methods to populate the object with specific information.
        // Methods to retrieve the object data.
        // (not shown)

(continued)
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    private:
        // An expensive data member.
        array<double, 4 * 1024 * 1024> m_data;
        // Other data members (not shown)
};

Instead of allocating and deallocating large numbers of such objects throughout the lifetime of your 
program, you can use the object pool developed in the previous section. We can benchmark the pool 
using the chrono library (see Chapter 22, “Date and Time Utilities”) as follows:

using MyPool = ObjectPool<ExpensiveObject>;
 
shared_ptr<ExpensiveObject> getExpensiveObject(MyPool& pool)
{
    // Obtain an ExpensiveObject object from the pool.
    auto object { pool.acquireObject() };
    // Populate the object. (not shown)
    return object;
}
 
void processExpensiveObject(ExpensiveObject* object) { /* ... */ }
 
int main()
{
    const size_t NumberOfIterations { 500'000 };
 
    cout << "Starting loop using pool..." << endl;
    MyPool requestPool;
    auto start1 { chrono::steady_clock::now() };
    for (size_t i { 0 }; i < NumberOfIterations; ++i) {
        auto object { getExpensiveObject(requestPool) };
        processExpensiveObject(object.get());
    }
    auto end1 { chrono::steady_clock::now() };
    auto diff1 { end1 - start1 };
    cout << format("{}ms\n", chrono::duration<double, milli>(diff1).count());
 
 
    cout << "Starting loop using new/delete..." << endl;
    auto start2 { chrono::steady_clock::now() };
    for (size_t i { 0 }; i < NumberOfIterations; ++i) {
        auto object { new ExpensiveObject{} };
        processExpensiveObject(object);
        delete object; object = nullptr;
    }
    auto end2 { chrono::steady_clock::now() };
    auto diff2 { end2 - start2 };
    cout << format("{}ms\n", chrono::duration<double, milli>(diff2).count());
}

The main() function contains a small benchmark of the pool’s performance. It asks for 500,000 
objects in a loop and times how long it takes. The loop is done twice, once using our pool and once 
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using the standard new/delete operators. The results on a test machine with a release build of the 
code are as follows:

Starting loop using pool...
Allocating new chunk...
54.526ms
Starting loop using new/delete...
9463.2393ms

In this example, using the object pool is around 170 times faster. Keep in mind, though, that  
this object pool is tailored to work with objects with big data members. This is the case for 
the ExpensiveObject class used in the example, which contains a 4MB array as one of its 
data members.

PROFILING

It is good to think about efficiency as you design and code. There is no point in writing obviously 
inefficient programs if this can be avoided with some common sense or experience-based intuition. 
However, I urge you not to get too obsessed with performance during the design and coding phases. 
It’s best to first make a clean, well-structured design and implementation, then use a profiler, and 
only optimize parts that are flagged by the profiler as being performance bottlenecks. Remember 
the “90/10” rule, introduced in Chapter 4, which states that 90 percent of the running time of most 
programs is spent in only 10 percent of the code (Hennessy and Patterson, Computer Architecture, A 
Quantitative Approach, Fourth Edition, [Morgan Kaufmann, 2006]). This means you could optimize 
90 percent of your code, but still only improve the running time of the program by 10 percent. Obvi-
ously, you want to optimize the parts of the code that are exercised the most for the specific workload 
that you expect the program to run.

Consequently, it is often helpful to profile your program to determine which parts of the code require 
optimization. There are many profiling tools available that analyze programs as they run to generate 
data about their performance. Most profiling tools provide analysis at the function level by specifying 
the amount of time (or percent of total execution time) spent in each function in the program. After 
running a profiler on your program, you can usually tell immediately which parts of the program 
need optimization. Profiling before and after optimizing is essential to prove that your optimizations 
had an effect.

If you are using Microsoft Visual C++ 2019, you already have a great built-in profiler, which is dis-
cussed later in this chapter. If you are not yet using Visual C++, Microsoft has a Community edition 
available (visualstudio.microsoft.com) that is free of charge for students, open-source develop-
ers, and individual developers to create both free and paid applications. It’s also free of charge for 
up to five users in small organizations. Another great profiling tool is Rational PurifyPlus from IBM 
(www.almtoolbox.com/purify.php). There are also a number of smaller free profiling tools avail-
able: Very Sleepy (www.codersnotes.com/sleepy) and Luke Stackwalker (lukestackwalker.
sourceforge.net) are popular profilers for Windows, Valgrind (valgrind.org) and gprof (GNU 
profiler, sourceware.org/binutils/docs/gprof) are well-known profilers for Unix/Linux systems, 
and there are plenty of other choices. This section demonstrates two profilers: gprof for Linux, and 
the profiler that comes with Visual C++ 2019.

http://visualstudio.microsoft.com
http://www.almtoolbox.com/purify.php
http://www.codersnotes.com/sleepy
http://lukestackwalker.sourceforge.net
http://lukestackwalker.sourceforge.net
http://valgrind.org
http://sourceware.org/binutils/docs/gprof
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Profiling Example with gprof
The power of profiling can best be seen with a real coding example. As a disclaimer, the performance 
bugs in the first implementation shown are not subtle! Real efficiency issues would probably be more 
complex, but a program long enough to demonstrate them would be too lengthy for this book.

Suppose that you work for the US Social Security Administration. Every year the administration puts 
up a website that allows users to look up the popularity of new baby names from the previous year. 
Your job is to write the backend program that looks up names for users. Your input is a file contain-
ing the name of every new baby. This file will obviously contain redundant names. For example, in 
the file for boys for 2003, the name Jacob was the most popular, showing up 29,195 times. Your 
program must read the file to construct an in-memory database. A user may then request the absolute 
number of babies with a given name or the rank of that name among all the babies.

First Design Attempt
A logical design for this program consists of a NameDB class with the following public methods:

export class NameDB
{
    public:
        // Reads list of baby names in nameFile to populate the database.
        // Throws invalid_argument if nameFile cannot be opened or read.
        NameDB(std::string_view nameFile);
 
        // Returns the rank of the name (1st, 2nd, etc).
        // Returns –1 if the name is not found.
        int getNameRank(std::string_view name) const;
 
        // Returns the number of babies with a given name.
        // Returns –1 if the name is not found.
        int getAbsoluteNumber(std::string_view name) const;
 
        // Private members not shown yet ...
};

The hard part is choosing a good data structure for the in-memory database. A first attempt is a  
vector of name/count pairs. Each entry in the vector stores one of the names, along with a count 
of the number of times that name shows up in the raw data file. Here is the complete class definition 
with this design:

export class NameDB
{
    public:
        NameDB(std::string_view nameFile);
        int getNameRank(std::string_view name) const;
        int getAbsoluteNumber(std::string_view name) const;
    private:
        std::vector<std::pair<std::string, int>> m_names;
 

continues
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        // Helper methods
        bool nameExists(std::string_view name) const;
        void incrementNameCount(std::string_view name);
        void addNewName(std::string_view name);
};

Note the use of the Standard Library vector and pair classes, both of which are discussed in  
Chapter 18. A pair is a utility class that combines two values of possibly different types.

Here are the implementations of the constructor and the helper methods nameExists(),  
incrementNameCount(), and addNewName(). The loops in nameExists() and  
incrementNameCount() iterate over all the elements of the vector.

// Reads the names from the file and populates the database.
// The database is a vector of name/count pairs, storing the
// number of times each name shows up in the raw data.
NameDB::NameDB(string_view nameFile)
{
    // Open the file and check for errors.
    ifstream inputFile { nameFile.data() };
    if (!inputFile) {
        throw invalid_argument { "Unable to open file" };
    }
 
    // Read the names one at a time.
    string name;
    while (inputFile >> name) {
        // Look up the name in the database so far.
        if (nameExists(name)) {
            // If the name exists in the database, just increment the count.
            incrementNameCount(name);
        } else {
            // If the name doesn't yet exist, add it with a count of 1.
            addNewName(name);
        }
    }
}
 
// Returns true if the name exists in the database, false otherwise.
bool NameDB::nameExists(string_view name) const
{
    // Iterate through the vector of names looking for the name.
    for (auto& entry : m_names) {
        if (entry.first == name) {
            return true;
        }
    }
    return false;
}
 
// Precondition: name exists in the vector of names.
// Postcondition: the count associated with name is incremented.
void NameDB::incrementNameCount(string_view name)
{

(continued)
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    for (auto& entry : m_names) {
        if (entry.first == name) {
            ++entry.second;
            return;
        }
    }
}
 
// Adds a new name to the database.
void NameDB::addNewName(string_view name)
{
    m_names.push_back(make_pair(name.data(), 1));
}

Note that you could use an algorithm like std::find_if(), discussed in Chapter 20, “Master-
ing Standard Library Algorithms,” to accomplish the same thing as the loops in nameExists() and 
incrementNameCount(). The loops are shown explicitly to emphasize the performance problems.

You might have noticed some performance problems already. What if there are hundreds of thou-
sands of names? The many linear searches involved in populating the database will become slow.

To complete the example, here are the implementations of the two public methods:

// Returns the rank of the name.
// First looks up the name to obtain the number of babies with that name.
// Then iterates through all the names, counting all the names with a higher
// count than the specified name. Returns that count as the rank.
int NameDB::getNameRank(string_view name) const
{
    // Make use of the getAbsoluteNumber() method.
    int num { getAbsoluteNumber(name) };
 
    // Check if we found the name.
    if (num == -1) {
        return -1;
    }
 
    // Now count all the names in the vector that have a
    // count higher than this one. If no name has a higher count,
    // this name is rank number 1. Every name with a higher count
    // decreases the rank of this name by 1.
    int rank { 1 };
    for (auto& entry : m_names) {
        if (entry.second > num) {
            ++rank;
        }
    }
    return rank;
}
 
// Returns the count associated with the given name.
int NameDB::getAbsoluteNumber(string_view name) const
{

continues
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    for (auto& entry : m_names) {
        if (entry.first == name) {
            return entry.second;
        }
    }
    return -1;
}

Profiling the First Design Attempt
To test the program, you need a main() function:

import name_db;
import <iostream>;
using namespace std;
 
int main()
{
    NameDB boys { "boys_long.txt" };
    cout << boys.getNameRank("Daniel") << endl;
    cout << boys.getNameRank("Jacob") << endl;
    cout << boys.getNameRank("William") << endl;
}

This main() function creates one NameDB database called boys, telling it to populate itself with the 
file boys_long.txt, which contains 500,500 names.

There are three steps to using gprof:

1. After having compiled the name_db module, you should compile the main program with a 
special flag that causes it to log raw execution information when it is run. When using GCC 
as your compiler, the flag is -pg, as in this example:

> gcc -lstdc++ -std=c++2a -pg -fmodules-ts -o namedb NameDB.cpp NameDBTest.cpp

NOTE Currently, GCC does not yet have standard support for C++20 modules, 
only through modules-ts. Once GCC fully supports modules, check its documen-
tation to learn how to compile and work with modules.

Additionally, at this moment, you have to specify -std=c++2a to enable C++20 
features. This will change in the future to -std=c++20, and -fmodules-ts might 
change to -fmodules. Check the documentation.

2. Run your program. This should generate a file called gmon.out in the working directory. Be 
patient when you run the program because this first version is slow.

3. Run the gprof command. This final step enables you to analyze the gmon.out profiling 
information and produce a (somewhat) readable report. gprof outputs to standard out, 
so you should redirect the output to a file:

> gprof namedb gmon.out > gprof_analysis.out

(continued)
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Now you can analyze the data. Unfortunately, the output file is somewhat cryptic and intimidating, so 
it takes a little while to learn how to interpret it. gprof provides two separate sets of information. The 
first set summarizes the amount of time spent executing each function in the program. The second 
and more useful set summarizes the amount of time spent executing each function and its descend-
ants; this set is also called a call graph. Here is some of the output from the gprof_analysis.out 
file, edited to make it more readable. Note that the numbers will be different on your machine.

index  %time    self  children    called     name 
[1]    100.0    0.00   14.06                 main [1]
                0.00   14.00       1/1           NameDB::NameDB [2]
                0.00    0.04       3/3           NameDB::getNameRank [25]
                0.00    0.01       1/1           NameDB::~NameDB [28] 

The following list explains the different columns:

➤➤ index: An index to be able to refer to this entry in the call graph.

➤➤ %time: The percentage of the total execution time of the program required by this function 
and its descendants.

➤➤ self: How many seconds the function itself was executing.

➤➤ children: How many seconds the descendants of this function were executing.

➤➤ called: How often this function was called.

➤➤ name: The name of the function. If the name of the function is followed by a number between 
square brackets, that number refers to another index in the call graph.

The preceding extract tells you that main() and its descendants took 100 percent of the total execu-
tion time of the program, for a total of 14.06 seconds. The second line shows that the NameDB 
constructor took 14.00 seconds of the total 14.06 seconds. So, it’s immediately clear where the per-
formance issue is situated. To track down which part of the constructor is taking that long, you need 
to jump to the call graph entry with index 2, because that’s the index in square brackets behind the 
name in the last column. The call graph entry with index 2 is as follows on my test system:

[2] 99.6    0.00   14.00       1         NameDB::NameDB [2]
            1.20    6.14  500500/500500      NameDB::nameExists [3]
            1.24    5.24  499500/499500      NameDB::incrementNameCount [4]
            0.00    0.18    1000/1000        NameDB::addNewName [19]
            0.00    0.00       1/1           vector::vector [69]

The nested entries below NameDB::NameDB show which of its descendants took the most time. Here 
you can see that nameExists() took 6.14 seconds, and incrementNameCount()took 5.24 seconds. 
These times are the sums of all the calls to the functions. The fourth column in those lines shows the 
number of calls to the function (500,500 to nameExists() and 499,500 to incrementNameCount()). 
No other function took a significant amount of time.

Without going any further in this analysis, two things should jump out at you:

➤➤ Taking 14 seconds to populate the database of approximately 500,000 names is slow. Per-
haps you need a better data structure.
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➤➤ nameExists() and incrementNameCount() take an almost identical amount of time and 
are called almost the same number of times. If you think about the application domain, that 
makes sense: most names in the input text file are duplicates, so the vast majority of the calls 
to nameExists() are followed by a call to incrementNameCount(). If you look back at the 
code, you can see that these functions are almost identical; they could probably be combined. 
In addition, most of what they are doing is searching the vector. It would probably be better 
to use a sorted data structure to reduce the searching time.

Second Design Attempt
With these two observations from the gprof output, it’s time to redesign the program. The new design 
uses a map instead of a vector. Chapter 18 explains that the Standard Library map keeps the entries 
sorted and provides O(log n) lookup instead of the O(n) searches in a vector. A good exercise for 
you to try would be to use an std::unordered_map, which has an expected O(1) for lookups, and to 
use a profiler to see if that is faster than std::map for this application.

The new version of the program also combines nameExists() and incrementNameCount() into one 
nameExistsAndIncrement() method.

Here is the new class definition:

export class NameDB
{
    public:
        NameDB(std::string_view nameFile);
        int getNameRank(std::string_view name) const;
        int getAbsoluteNumber(std::string_view name) const;
    private:
        std::map<std::string, int> m_names;
        bool nameExistsAndIncrement(std::string_view name);
        void addNewName(std::string_view name);
};

Here are the new method implementations:

// Reads the names from the file and populates the database.
// The database is a map associating names with their frequency.
NameDB::NameDB(string_view nameFile)
{
    // Open the file and check for errors.
    ifstream inputFile { nameFile.data() };
    if (!inputFile) {
        throw invalid_argument { "Unable to open file" };
    }
 
    // Read the names one at a time.
    string name;
    while (inputFile >> name) {
        // Look up the name in the database so far.
        if (!nameExistsAndIncrement(name)) {
            // If the name exists in the database, the
            // method incremented it, so we just continue.
            // We get here if it didn't exist, in which case
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            // we add it with a count of 1.
            addNewName(name);
        }
    }
}
 
// Returns true if the name exists in the database, false
// otherwise. If it finds it, it increments it.
bool NameDB::nameExistsAndIncrement(string_view name)
{
    // Find the name in the map.
    auto res { m_names.find(name.data()) };
    if (res != end(m_names)) {
        ++res->second;
        return true;
    }
    return false;
}
 
// Adds a new name to the database.
void NameDB::addNewName(string_view name)
{
    m_names[name.data()] = 1;
}
 
int NameDB::getNameRank(string_view name) const
{
    // Implementation omitted, same as before.
}
 
// Returns the count associated with the given name.
int NameDB::getAbsoluteNumber(string_view name) const
{
    auto res { m_names.find(name.data()) };
    if (res != end(m_names)) {
        return res->second;
    }
    return -1;
}

Profiling the Second Design Attempt
By following the same steps shown earlier, you can obtain the gprof performance data on the new 
version of the program. The data is quite encouraging:

index %time  self  children    called        name 
[1]   100.0  0.00    0.21                    main [1]
             0.02    0.18      1/1           NameDB::NameDB [2]
             0.00    0.01      1/1           NameDB::~NameDB [13]
             0.00    0.00      3/3           NameDB::getNameRank [28] 
[2]    95.2  0.02    0.18      1             NameDB::NameDB [2]
             0.02    0.16 500500/500500      NameDB::nameExistsAndIncrement 
[3]          0.00    0.00   1000/1000        NameDB::addNewName [24]
             0.00    0.00      1/1           map::map [87]
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If you run this on your machine, the output will be different. It’s even possible that you will 
not see any data for NameDB methods in your output. Because of the efficiency of this second 
attempt, the timings are getting so small that you might see more map methods in the output than 
NameDB methods.

On my test system, main() now takes only 0.21 seconds—a 67-fold improvement! There are certainly 
further improvements that you could make to this program. For example, the current constructor 
performs a lookup to see if the name is already in the map, and if not, adds it to the map. You could 
combine these two operations simply with the following single line:

++m_names[name];

If the name is already in the map, this statement just increments its counter. If the name is not yet in 
the map, this statement first adds an entry to the map with the given name as key and a zero-initialized 
value and then increments the value, resulting in a counter of 1.

With this improvement, you can remove the nameExistsAndIncrement() and addNewName()  
methods and change the constructor as follows:

NameDB::NameDB(string_view nameFile)
{
    // Open the file and check for errors.
    ifstream inputFile { nameFile.data() };
    if (!inputFile) {
        throw invalid_argument { "Unable to open file" };
    }
 
    // Read the names one at a time.
    string name;
    while (inputFile >> name) {
        ++m_names[name];
    }
}

getNameRank() still uses a loop that iterates over all elements in the map. A good exercise for you 
to try is to come up with another data structure so that the linear iteration in getNameRank() can 
be avoided.

Profiling Example with Visual C++ 2019
Most editions of Microsoft Visual C++ 2019 come with a great built-in profiler, which is briefly dis-
cussed in this section. The VC++ profiler has a complete graphical user interface. This book does not 
recommend one profiler over another, but it is always good to have an idea of what a command line–
based profiler like gprof can provide in comparison with a GUI-based profiler like the one included 
with VC++.

To start profiling an application in Visual C++ 2019, you first need to open the project in Visual 
Studio. This example uses the same NameDB code as in the first inefficient design attempt from the 
previous sections. That code is not repeated here. Once your project is opened in Visual Studio, make 
sure the configuration is set to Release instead of Debug, then click the Analyze menu, and choose 
Performance Profiler. A new window appears, as shown in Figure 29-1.
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Depending on your version of VC++, there will be a number of different analysis tools available from 
this window. The following non-exhaustive list explains two of them:

➤➤ CPU Usage: This tool is used to monitor applications with low overhead. This means that 
the act of profiling the application will not have a big performance impact on the target 
application.

➤➤ Instrumentation: This tool adds extra code to the application to be able to accurately count 
the number of function calls and to time individual function calls. However, this tool has a 
much bigger performance impact on the application. It is recommended to use the CPU Usage 
tool first to get an idea about the bottlenecks in your application. If that tool does not give 
you enough information, you can try the Instrumentation tool.

For this profiling example, enable only the CPU Usage tool and click the Start button. This will start 
executing your program and analyze its CPU usage. When the program execution is finished, Visual 
Studio automatically opens the profiling report. Figure 29-2 shows how this report might look like 
when profiling the first attempt of the NameDB application.

From this report, you can immediately see the hot path. Just like with gprof, it shows that the NameDB 
constructor takes up most of the running time of the program, and that incrementNameCount() and 
nameExists() both roughly take the same time. The Visual Studio profiling report is interactive. For 
example, you can drill down the NameDB constructor by double clicking on it. This results in a drill-
down report for that function, as show in Figure 29-3.

FIGURE 29-1 
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This drill-down view shows a graphical breakdown at the top and the actual code of the method at 
the bottom. The code view shows the percentage of the running time that a line of code needed. The 
lines using up most of the time are shown in shades of red.

FIGURE 29-2 

FIGURE 29-3 
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At the top of this report, there is a drop-down called Current View. Selecting Call Tree from that 
drop-down shows an alternative view of the hot path in your code. Once in the Call Tree view, click 
the Expand Hot Path button to expand the hot path in your code, as shown in Figure 29-4.

Also in this view, you immediately see that main() is calling the NameDB constructor, which is using 
up most of the running time.

SUMMARY

This chapter discussed the key aspects of efficiency and performance in C++ programs and provided 
several specific tips and techniques for designing and writing more efficient applications. Ideally, you 
gained an appreciation for the importance of performance and for the power of profiling tools.

There are two important things to remember from this chapter. The first thing is that you should not 
get too obsessed with performance while designing and coding. It’s recommended to first make a 
correct, well-structured design and implementation, then use a profiler, and only optimize those parts 
that are flagged by a profiler as being a performance bottleneck.

The second and most important thing to remember from this chapter is that design-level efficiency is 
far more important than language-level efficiency. For example, you shouldn’t use algorithms or data 
structures with bad complexity if there are better ones available.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 29-1: Which efficiency problems can you spot in the following code snippet?

FIGURE 29-4 

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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class Bar { };
 
class Foo
{
    public:
        explicit Foo(Bar b) {}
};
 
Foo getFoo(bool condition, Bar b1, Bar b2)
{
    return condition ? Foo { b1 } : Foo { b2 };
}
 
int main()
{
    Bar b1, b2;
    auto foo { getFoo(true, b1, b2) };
}

Exercise 29-2: What are the two most important things to remember from this chapter?

Exercise 29-3: Modify the final NameDB solution from the “Profiling” section to use an 
std::unordered_map instead of a map. Profile your code before and after your changes and 
compare the results.

Exercise 29-4: From the profiling results of Exercise 29-3, it now looks like operator>> in 
the NameDB constructor is the bottleneck. Can you change the implementation to avoid using 
operator>>? Since each line in the input file contains one name, maybe it’s faster to simply 
read names line by line? Try to modify your implementation as such and compare the profil-
ing results before and after your changes.
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Becoming Adept at Testing

WHAT’S IN THIS CHAPTER?

➤➤ What software quality control is and how to track bugs

➤➤ What unit testing means

➤➤ Unit testing in practice using the Visual C++ Testing Framework

➤➤ What fuzz testing or fuzzing means

➤➤ What integration, system, and regression testing means

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

A programmer has overcome a major hurdle in her career when she realizes that testing is part 
of the software development process. Bugs are not an occasional occurrence. They are found in 
every project of significant size. A good quality assurance (QA) team is invaluable, but the full 
burden of testing cannot be placed on QA alone. Your responsibility as a programmer is to 
write code that works and to write tests to prove its correctness.

A distinction is often made between white-box testing, in which the tester is aware of the inner 
workings of the program, and black-box testing, which tests the program’s functionality 
without any knowledge of its implementation. Both forms of testing are important to  
professional-quality projects. Black-box testing is the most fundamental approach because it 
typically models the behavior of a user. For example, a black-box test can examine interface 
components such as buttons. If the tester clicks the button and nothing happens, there is 
obviously a bug in the program.

http://www.wiley.com/go/proc++5e
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Black-box testing cannot cover everything. Modern programs are too large to employ a simulation of 
clicking every button, providing every kind of input, and performing all combinations of commands. 
White-box testing is necessary, because when you know the code when tests are written at the object 
or subsystem level, then it is easier to make sure all code paths in the code are exercised by tests. This 
helps to ensure test coverage. White-box tests are often easier to write and automate than black-box 
tests. This chapter focuses on topics that would generally be considered white-box testing techniques 
because the programmer can use these techniques during the development.

This chapter begins with a high-level discussion of quality control, including some approaches to 
viewing and tracking bugs. A section on unit testing, one of the simplest and most useful types of 
testing, follows this introduction. You then read about the theory and practice of unit testing, as well 
as several examples of unit tests in action. Next, higher-level tests are covered, including integration 
tests, system tests, and regression tests. Finally, this chapter ends with a list of tips for success-
ful testing.

QUALITY CONTROL

Large programming projects are rarely finished when a feature-complete goal is reached. There are 
always bugs to find and fix, both during and after the main development phase. It is essential to 
understand the shared responsibility of quality control and the life cycle of a bug to perform well 
in a group.

Whose Responsibility Is Testing?
Software development organizations have different approaches to testing. In a small startup, there 
may not be a group of people whose full-time job is testing the product. Testing may be the responsi-
bility of the individual developers, or all the employees of the company may be asked to lend a hand 
and try to break the product before its release. In larger organizations, a full-time quality assurance 
staff probably qualifies a release by testing it according to a set of criteria. Nonetheless, some aspects 
of testing may still be the responsibility of the developers. Even in organizations where the developers 
have no role in formal testing, you still need to be aware of what your responsibilities are in the larger 
process of quality assurance.

The Life Cycle of a Bug
All good engineering groups recognize that bugs will occur in software both before and after its 
release. There are many different ways to deal with these problems. Figure 30-1 shows a formal bug 
process, expressed as a flow chart. In this particular process, a bug is always filed by a member of 
the QA team. The bug reporting software sends a notification to the development manager, who sets 
the priority of the bug and assigns the bug to the appropriate module owner. The module owner can 
accept the bug or explain why the bug actually belongs to a different module or is invalid, giving the 
development manager the opportunity to assign it to someone else.

Once the bug has found its rightful owner, a fix is made, and the developer marks the bug as “fixed.” 
At this point, the QA engineer verifies that the bug no longer exists and marks the bug as “closed” or 
reopens the bug if it is still present.
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Figure 30-2 shows a less formal approach. In this workflow, anybody can file a bug and assign an 
initial priority and a module. The module owner receives the bug report and can either accept it or 
reassign it to another engineer or module. When a correction is made, the bug is marked as “fixed.” 
Toward the end of the testing phase, all the developers and QA engineers divide up the fixed bugs and 
verify that each bug is no longer present in the current build. The release is ready when all bugs are 
marked as “closed.”

Bug-Tracking Tools
There are many ways to keep track of software bugs, from informal spreadsheet- or e-mail-based 
schemes to expensive third-party bug-tracking software. The appropriate solution for your organiza-
tion depends on the group’s size, the nature of the software, and the level of formality you want to 
build around bug fixing.
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There are also a number of free open-source bug-tracking solutions available. One of the more 
popular free tools for bug tracking is Bugzilla (bugzilla.org), written by the authors of the Mozilla 
and Firefox web browser. As an open-source project, Bugzilla has gradually accumulated a number of 
useful features to the point where it now rivals expensive bug-tracking software packages. Here are 
just a few of its many features:

➤➤ Customizable settings for a bug, including its priority, associated component, 
status, and so on

➤➤ E-mail notification of new bug reports or changes to an existing report

➤➤ Tracking of dependencies between bugs and resolution of duplicate bugs

➤➤ Reporting and searching tools

➤➤ A web-based interface for filing and updating bugs

Figure 30-3 shows a bug being entered into a Bugzilla project that was set up for the second edition 
of this book. For my purposes, each chapter was input as a Bugzilla component. The filer of the bug 
can specify the severity of the bug (how big of a deal it is). A summary and description are included 
to make it possible to search for the bug or list it in a report format.

FIGURE 30-3 

http://www.bugzilla.org


Unit Testing ❘ 1025

Bug-tracking tools like Bugzilla are essential components of a professional software development 
environment. In addition to supplying a central list of currently open bugs, bug-tracking tools provide 
an important archive of previous bugs and their fixes. A support engineer, for instance, might use the 
tool to search for a problem similar to one reported by a customer. If a fix was made, the support 
person will be able to tell the customer which version they need to update to or how to work around 
the problem.

UNIT TESTING

The only way to find bugs is through testing. One of the most important types of tests from a devel-
oper’s point of view is the unit test. Unit tests are pieces of code that exercise specific functionality 
of a class or subsystem. These are the finest-grained tests that you could possibly write. Ideally, one 
or more unit tests should exist for every low-level task that your code can perform. For example, 
imagine that you are writing a math library that can perform addition and multiplication. Your suite 
of unit tests might contain the following tests:

➤➤ Test a simple addition

➤➤ Test addition of large numbers

➤➤ Test addition of negative numbers

➤➤ Test addition of zero to a number

➤➤ Test the commutative property of addition

➤➤ Test a simple multiplication

➤➤ Test multiplication of large numbers

➤➤ Test multiplication of negative numbers

➤➤ Test multiplication with zero

➤➤ Test the commutative property of multiplication

Well-written unit tests protect you in many ways:

➤➤ They prove that a piece of functionality actually works. Until you have some code that actu-
ally makes use of your class, its behavior is a major unknown.

➤➤ They provide a first alert when a recently introduced change breaks something. This specific 
usage, called a regression test, is covered later in this chapter.

➤➤ When used as part of the development process, they force the developer to fix problems from 
the start. If you are prevented from checking in your code with failed unit tests, then you’re 
forced to address problems right away.
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➤➤ Unit tests let you try code before other code is in place. When you first started programming, 
you could write an entire program and then run it for the first time. Professional programs 
are too big for that approach, so you need to be able to test components in isolation.

➤➤ Last, but certainly not least, they provide an example of usage. Almost as a side effect, unit 
tests make great reference code for other programmers. If a co-worker wants to know how 
to perform matrix multiplication by using your math library, you can point her to the appro-
priate test.

Approaches to Unit Testing
It’s hard to go wrong with unit tests, unless you don’t write them or you write them poorly. In gen-
eral, the more tests you have, the more coverage you have. The more coverage you have, the less likely 
it is for bugs to fall through the cracks and for you to have to tell your boss, or worse, your customer, 
“Oh, we never tested that.”

There are several methodologies for writing unit tests most effectively. The eXtreme Programming 
methodology, explained in Chapter 28, “Maximizing Software Engineering Methods,” instructs its 
followers to write unit tests before writing code.

Writing tests first helps you to solidify the requirements for the component and to provide a metric 
that can be used to determine when coding is done. However, writing tests first can be tricky and 
requires diligence on the part of the programmer. For some programmers, it simply doesn’t mesh well 
with their coding style. A less rigid approach is to design the tests before coding but implement them 
later in the process. This way, the programmer is still forced to understand the requirements of the 
module but doesn’t have to write code that makes use of nonexistent classes.

In some groups, the author of a particular subsystem doesn’t write the unit tests for that subsystem. 
The idea is that if you write the tests for your own code, you might subconsciously work around 
problems that you know about or only cover certain cases that you know your code handles well. 
In addition, it’s sometimes difficult to get excited about finding bugs in code you just wrote, so you 
might only put in a half-hearted effort. Having one developer write unit tests for another developer’s 
code requires a lot of extra overhead and coordination. When such coordination is accomplished, 
however, this approach helps guarantee more effective tests.

Another way to ensure that unit tests are actually testing the right parts of the code is to write them 
so that they maximize code coverage. You can use a code coverage tool, such as gcov (gcc.gnu.org/
onlinedocs/gcc/Gcov.html), that tells you what percentage of the code is called by unit tests. The 
idea is that a properly tested piece of code has unit tests to test all possible code paths that can be 
taken through that piece of code.

The Unit Testing Process
The process of providing unit tests for your code starts from the beginning, long before any code 
is written. Keeping unit testability in mind during the design phase can influence the design deci-
sions you make for your software. Even if you do not subscribe to the methodology of writing unit 
tests before you write code, you should at least take the time to consider what sorts of tests you will 
provide, even while still in the design phase. This way, you can break the task up into well-defined 
chunks, each of which has its own test-validated criteria. For example, if your task is to write a data-
base access class, you might first write the functionality that inserts data into the database. Once that 

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
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is fully tested with a suite of unit tests, you can continue to write the code to support updates, deletes, 
and selects, testing each piece as you go.

The following list of steps is a suggested approach for designing and implementing unit tests. As with 
any programming methodology, the best process is the one that yields the best results. I suggest that 
you experiment with different ways of using unit tests to discover what works best for you.

Define the Granularity of Your Tests
Writing unit tests takes time; there is no way around this. Software developers are often crunched for 
time. To reach deadlines, developers tend to skip writing unit tests, because they think they will finish 
faster that way. Unfortunately, this thinking does not take the whole picture into account. Omitting 
unit tests will backfire in the long run. The earlier a bug is detected in the software development pro-
cess, the less it costs. If a developer finds a bug during unit testing, it can be fixed immediately, before 
anyone else encounters it. However, if the bug is discovered by QA, then it becomes a much costlier 
bug. The bug can cause an extra development cycle, requiring bug management; it has to go back to 
the development team for a fix and then back to QA to verify the fix. If a bug slips through the QA 
process and finds its way to the customer, then it becomes even more expensive.

The granularity of tests refers to their scope. As the following table illustrates, you can initially unit 
test a database class with just a few test functions and then gradually add more tests to ensure that 
everything works as it should:

LARGE-GRAINED  

TESTS

MEDIUM-GRAINED TESTS FINE-GRAINED TESTS

testConnection()

testInsert()

testUpdate()

testDelete()

testSelect()

testConnectionDropped()

testInsertBadData()

testInsertStrings()

testInsertIntegers()

testUpdateStrings()

testUpdateIntegers()

testDeleteNonexistentRow()

testSelectComplicated()

testSelectMalformed()

testConnectionThroughHTTP()

testConnectionLocal()

testConnectionErrorBadHost()

testConnectionErrorServerBusy()

testInsertWideCharacters()

testInsertLargeData()

testInsertMalformed()

testUpdateWideCharacters()

testUpdateLargeData()

testUpdateMalformed()

testDeleteWithoutPermissions()

testDeleteThenUpdate()

testSelectNested()

testSelectWideCharacters()

testSelectLargeData()

As you can see, each successive column brings in more-specific tests. As you move from large-grained 
tests to more finely grained tests, you start to consider error conditions, different input data sets, and 
different modes of operation.
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Of course, the decisions you make initially when choosing the granularity of your tests are not set in 
stone. Perhaps the database class is just being written as a proof of concept and might not even be 
used. A few simple tests may be adequate now, and you can always add more later. Or perhaps the 
use cases will change at a later date. For example, the database class might not initially have been 
written with international characters in mind. Once such features are added, they should be tested 
with specific targeted unit tests.

Consider the unit tests to be part of the actual implementation of a feature. When you make a modi-
fication, don’t just modify the tests so that they continue to work. Write new tests and re-evaluate the 
existing ones. When bugs are uncovered and fixed, add new unit tests that specifically test those fixes.

WARNING Unit tests are part of the subsystem that they are testing. As you 
enhance and refine the subsystem, enhance and refine the tests.

Brainstorm the Individual Tests
Over time, you will gain an intuition for which aspects of a piece of code should turn into a unit test. 
Certain methods or inputs will just feel like they should be tested. This intuition is gained through 
trial and error and by looking at unit tests that other people in your group have written. It should be 
pretty easy to pick out which programmers are the best unit testers. Their tests tend to be organized 
and frequently modified.

Until unit test creation becomes second nature, approach the task of figuring out which tests to write 
by brainstorming. To get some ideas flowing, consider the following questions:

➤➤ What are the things that this piece of code was written to do?

➤➤ What are the typical ways each method would be called?

➤➤ What preconditions of the methods could be violated by the caller?

➤➤ How could each method be misused?

➤➤ What kinds of data are you expecting as input?

➤➤ What kinds of data are you not expecting as input?

➤➤ What are the edge cases or exceptional conditions?

You don’t need to write formal answers to those questions (unless your manager is a particularly 
fervent devotee of this book or of certain testing methodologies), but they should help you generate 
some ideas for unit tests. The table of tests for the database class contained test functions, each of 
which arose from one of these questions.

Once you have generated ideas for some of the tests you would like to use, consider how you might 
organize them into categories; the breakdown of tests will fall into place. In the database class exam-
ple, the tests could be split into the following categories:

➤➤ Basic tests

➤➤ Error tests
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➤➤ Localization tests

➤➤ Bad input tests

➤➤ Complicated tests

Splitting your tests into categories makes them easier to identify and augment. It might also make it 
easier to realize which aspects of the code are well tested and which could use a few more unit tests.

WARNING It’s easy to write a massive number of simple tests, but don’t forget 
about the more complicated cases!

Create Sample Data and Results
The most common trap to fall into when writing unit tests is to match the test to the behavior of the 
code, instead of using the test to validate the code. If you write a unit test that performs a database 
select for a piece of data that is definitely in the database, and the test fails, is it a problem with the 
code or a problem with the test? It’s often easier to assume that the code is right and to modify the 
test to match. This approach is usually wrong.

To avoid this pitfall, you should understand the inputs to the test and the expected output before you 
try it. This is sometimes easier said than done. For example, say you wrote some code to encrypt an 
arbitrary block of text using a particular key. A reasonable unit test would take a fixed string of text 
and pass it in to the encryption module. Then, it would examine the result to see if it was correctly 
encrypted.

When you go to write such a test, it is tempting to try the behavior with the encryption module first 
and see the result. If it looks reasonable, you might write a test to look for that value. Doing so really 
doesn’t prove anything, however! You haven’t actually tested the code; you’ve just written a test that 
guarantees it will continue to return that same value. Oftentimes, writing the test requires some real 
work; you would need to encrypt the text independently of your encryption module to get an accu-
rate result.

WARNING Decide on the correct output for your test before you ever run the 
test.

Write the Tests
The exact code behind a test varies, depending on what type of test framework you have in place. 
One framework, the Microsoft Visual C++ Testing Framework, is discussed later in this chapter.  
Independent of the actual implementation, however, the following guidelines will help ensure  
effective tests:

➤➤ Make sure that you’re testing only one thing in each test. That way, if a test fails, it will point 
to a specific piece of functionality.
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➤➤ Be specific inside the test. Did the test fail because an exception was thrown or because the 
wrong value was returned?

➤➤ Use logging extensively inside of test code. If the test fails someday, you will have some 
insight into what happened.

➤➤ Avoid tests that depend on earlier tests or are otherwise interrelated. Tests should be as 
atomic and isolated as possible.

➤➤ If the test requires the use of other subsystems, consider writing stubs or mocks to simulate 
those subsystems. A stub or mock implements the same interface as the subsystem it simu-
lates. They can then be used in place of any concrete subsystem implementation. For example, 
if a unit test requires a database but that database is not the subsystem being tested by that 
unit test, then a stub or mock can implement the database interface and simulate a real data-
base. This way, running the unit test does not require a connection to a real database, and 
errors in the real database implementation won’t have any impact on this specific unit test.

➤➤ Ask your code reviewers to look at your unit tests as well. When you do a code review, tell 
the other engineer where you think additional tests could be added.

As you will see later in this chapter, unit tests are usually small and simple pieces of code. In most 
cases, writing a single unit test will take only a few minutes, making them one of the most productive 
uses of your time.

Run the Tests
When you’re done writing a test, you should run it right away before the anticipation of the results 
becomes too much to bear. The joy of a screen full of passing unit tests shouldn’t be minimized. For 
most programmers, this is the easiest way to see quantitative data that declares your code useful 
and correct.

Even if you adopt the methodology of writing tests before writing code, you should still run the tests 
immediately after they are written. This way, you can prove to yourself that the tests fail initially. 
Once the code is in place, you have tangible data that shows that it accomplished what it was sup-
posed to accomplish.

It’s unlikely that every test you write will have the expected result the first time. In theory, if you are 
writing tests before writing code, all of your tests should fail. If one passes, either the code magically 
appeared or there is a problem with the test. If the coding is done and tests still fail (some would say 
that if tests fail, the coding is actually not done), there are two possibilities: the code could be wrong, 
or the tests could be wrong.

Running unit tests must be automated. This can be done in several ways. One option is to have a ded-
icated system that automatically runs all unit tests after every continuous integration build, or at least 
once a night. Such a system must send out e-mails to notify developers when unit tests are failing. 
Another option is to set up your local development environment so that unit tests are executed every 
time you compile your code. For this, unit tests should be kept small and very efficient. If you do have 
longer-running unit tests, put these separate, and let these be tested by a dedicated test system.
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Unit Testing in Action
Now that you’ve read about unit testing in theory, it’s time to actually write some tests. The follow-
ing example draws on the object pool implementation from Chapter 29. As a brief recap, the object 
pool is a class that can be used to avoid allocating an excessive number of objects. By keeping track 
of already-allocated objects, the pool acts as a broker between code that needs a certain type of object 
and such objects that already have been allocated.

The public interface for the ObjectPool class template is as follows; consult Chapter 29, “Writing 
Efficient C++,” for all the details:

export
template <typename T, typename Allocator = std::allocator<T>>
class ObjectPool
{
    public:
        ObjectPool() = default;
        explicit ObjectPool(const Allocator& allocator);
        virtual ~ObjectPool();
 
        // Allow move construction and move assignment.
        ObjectPool(ObjectPool&& src) noexcept = default;
        ObjectPool& operator=(ObjectPool&& rhs) noexcept = default;
 
        // Prevent copy construction and copy assignment.
        ObjectPool(const ObjectPool& src) = delete;
        ObjectPool& operator=(const ObjectPool& rhs) = delete;
 
        // Reserves and returns an object from the pool. Arguments can be
        // provided which are perfectly forwarded to a constructor of T.
        template <typename... Args>
        std::shared_ptr<T> acquireObject(Args... args);
};

Introducing the Microsoft Visual C++ Testing Framework
Microsoft Visual C++ comes with a built-in testing framework. The advantage of using a unit testing 
framework is that it allows the developer to focus on writing tests instead of dealing with setting 
up tests, building logic around tests, and gathering results. The following discussion is written for 
Visual C++ 2019.

NOTE If you are not using Visual C++, there are a number of open-source unit 
testing frameworks available. Google Test (github.com/google/googletest) is 
one such framework for C++, and the Boost Test Library (www.boost.org/doc/
libs/1_73_0/libs/test/) is another one. They both include a number of helpful 
utilities for test developers and options to control the automatic output of results.

http://github.com/google/googletest
http://www.boost.org/doc/libs/1_73_0/libs/test/
http://www.boost.org/doc/libs/1_73_0/libs/test/
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To get started with the Visual C++ Testing Framework, you have to create a test project. The follow-
ing steps explain how to test the ObjectPool class template:

1. Start Visual C++, create a new project, select Native Unit Test Project, and click Next.

2. Give the project a name and click Create.

3. The wizard creates a new test project, which includes a file called <ProjectName>.cpp. 
Select this file in the Solution Explorer and delete it, because you will add your own files. If 
the Solution Explorer docking window is not visible, go to View ➪ Solution Explorer.

4. Right-click your project in the Solution Explorer and click Properties. Go to Configuration 
Properties ➪ C/C++ ➪ Precompiled Headers, set the Precompiled Header option to Not 
Using Precompiled Headers, and click OK. Additionally, select the pch.cpp and pch.h files in 
the Solution Explorer and delete them. Using precompiled headers is a feature of Visual C++ 
to improve build times but is not used for this test project.

5. Add empty files called ObjectPoolTest.h and ObjectPoolTest.cpp to the test project.

Now you are ready to start adding unit tests to the code.

The most common way is to divide your unit tests into logical groups of tests, called test classes. You 
will now create a test class called ObjectPoolTest. The basic code in ObjectPoolTest.h for getting 
started is as follows:

#pragma once
#include <CppUnitTest.h>
 
TEST_CLASS(ObjectPoolTest)
{
    public:
};

This code defines a test class called ObjectPoolTest, but the syntax is a bit different compared to 
standard C++. This is so that the framework can automatically discover all the tests.

If you need to perform any tasks that need to happen prior to running the tests defined in a test class 
or to perform any cleanup after the tests have been executed, then you can implement an initialize 
and a cleanup method. Here is an example:

TEST_CLASS(ObjectPoolTest)
{
    public:
        TEST_CLASS_INITIALIZE(setUp);
        TEST_CLASS_CLEANUP(tearDown);
};

Because the tests for the ObjectPool class template are relatively simple and isolated, empty defini-
tions will suffice for setUp() and tearDown(), or you can simply remove them altogether. If you do 
need them, the beginning stage of the ObjectPoolTest.cpp source file is as follows:

#include "ObjectPoolTest.h"
 
void ObjectPoolTest::setUp() { }
void ObjectPoolTest::tearDown() { }
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That’s all the initial code you need to start developing unit tests.

NOTE In real-world scenarios, you usually divide the testing code and the code 
you want to test into separate projects. In the interest of keeping this example suc-
cinct, I have not done this here.

Writing the First Test
Because this may be your first exposure to the Visual C++ Testing Framework, or to unit tests at 
large, the first test will be a simple one. It tests whether 0 < 1.

An individual unit test is just a method of a test class. To create a simple test, add its declaration to 
the ObjectPoolTest.h file:

TEST_CLASS(ObjectPoolTest)
{
    public:
        TEST_CLASS_INITIALIZE(setUp);
        TEST_CLASS_CLEANUP(tearDown);
 
        TEST_METHOD(testSimple);  // Your first test!
};

The implementation of the testSimple test uses Assert::IsTrue(), defined in the Microsoft:: 
VisualStudio::CppUnitTestFramework namespace, to perform the actual test. Assert::IsTrue() 
validates that a given expression returns true. If the expression returns false, the test fails. Assert 
provides many more helper functions, such as AreEqual(), IsNull(), Fail(), ExpectException(), 
and so on. In the testSimple case, the test claims that 0 is less than 1. Here is the updated Object-
PoolTest.cpp file:

#include "ObjectPoolTest.h"
 
using namespace Microsoft::VisualStudio::CppUnitTestFramework;
 
void ObjectPoolTest::setUp() { }
void ObjectPoolTest::tearDown() { }
 
void ObjectPoolTest::testSimple()
{
    Assert::IsTrue(0 < 1);
}

That’s it. Of course, most of your unit tests will do something a bit more interesting than a simple 
assert. As you will see, the common pattern is to perform some sort of calculation and then assert that 
the result is the value you expect. With the Visual C++ Testing Framework, you don’t even need to 
worry about exceptions; the framework catches and reports them as necessary.
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Building and Running Tests
Build your solution by clicking Build ➪ Build Solution, and open the Test Explorer (Test ➪ Windows 
➪ Test Explorer), shown in Figure 30-4.

After having built the solution, the Test Explorer automatically displays all discovered unit tests. In 
this case, it displays the testSimple unit test. You can run all tests by clicking the Run All Tests but-
ton in the upper-left corner of the window. When you do that, the Test Explorer shows whether the 
unit tests succeed or fail. In this case, the single unit test succeeds, as shown in Figure 30-5.

If you modify the code to assert that 1 < 0, the test fails, and the Test Explorer reports the failure, as 
shown in Figure 30-6.

The lower part of the Test Explorer window displays useful information related to the selected unit 
test. In case of a failed unit test, it tells you exactly what failed. In this case, it says that an assertion 
failed. There is also a stack trace that was captured at the time the failure occurred. You can click the 
hyperlinks in that stack trace to jump directly to the offending line—very useful for debugging.

Negative Tests
You can write negative tests, tests that do something that should fail. For example, you can write 
a negative test to test that a certain method throws an expected exception. The Visual C++ Testing 
Framework provides the Assert::ExpectException() function to handle expected exceptions.  
For example, the following unit test uses ExpectException() to execute a lambda expression  
that throws an std::invalid_argument exception. The template type parameter for  
ExpectException() specifies the type of exception to expect.

FIGURE 30-4 FIGURE 30-5 
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void ObjectPoolTest::testException()
{
    Assert::ExpectException<std::invalid_argument>(
        []{ throw std::invalid_argument { "Error" }; },
        L"Unknown exception caught.");
}

Adding the Real Tests
Now that the framework is all set up and a simple test is working, it’s time to turn your attention to 
the ObjectPool class template and write some code that actually tests it. All of the following tests 
will be added to ObjectPoolTest.h and ObjectPoolTest.cpp, just like the earlier initial tests.

First, copy the ObjectPool.cppm module interface file next to the ObjectPoolTest.h file you  
created, and then add it to the project.

Before you can write the tests, you’ll need a helper class to use with the ObjectPool. The  
ObjectPool creates objects of a certain type and hands them out to the caller as requested. Some of 
the tests will need to check if a retrieved object is the same as a previously retrieved object. One way 
to do this is to create a pool of serial objects—objects that have a monotonically increasing serial 
number. The following code shows the Serial.cppm module interface file defining such a class:

module;
#include <cstddef>  // For size_t
 
export module serial;
 
export class Serial
{
    public:
        // A new object gets a next serial number.
        Serial() : m_serialNumber { ms_nextSerial++ } { }

FIGURE 30-6 
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        size_t getSerialNumber() const { return m_serialNumber; }
    private:
        static inline size_t ms_nextSerial { 0 }; // The first serial number is 0.
        size_t m_serialNumber;
};

Now, on to the tests! As an initial sanity check, you might want a test that creates an object pool. If 
any exceptions are thrown during creation, the Visual C++ Testing Framework will report an error. 
The code is written according to the AAA principle: Arrange, Act, Assert; the test first sets up eve-
rything for the test to run, then does some work, and finally asserts the expected result. This is also 
often called the if-when-then principle. I recommend adding comments to your unit test that actually 
start with IF, WHEN, and THEN so the three phases of a test clearly stand out.

void ObjectPoolTest::testCreation()
{
    // IF nothing
 
    // WHEN creating an ObjectPool
    ObjectPool<Serial> myPool;
 
    // THEN no exception is thrown
}

Don’t forget to add a TEST_METHOD(testCreation); statement to the header file. This holds for 
all subsequent tests as well. You also need to add an import declaration for the object_pool and 
serial modules to the ObjectPoolTest.cpp source file.

import object_pool;
import serial;

A second test, testAcquire(), tests a specific piece of public functionality: the ability of the Object-
Pool to give out an object. In this case, there is not much to assert. To prove the validity of the result-
ing Serial reference, the test asserts that its serial number is greater than or equal to zero.

void ObjectPoolTest::testAcquire()
{
    // IF an ObjectPool has been created for Serial objects
    ObjectPool<Serial> myPool;
    // WHEN acquiring an object
    auto serial { myPool.acquireObject() };
    // THEN we get a valid Serial object
    Assert::IsTrue(serial->getSerialNumber() >= 0);
}

The next test is a bit more interesting. The ObjectPool should not give out the same Serial object 
twice. This test checks the exclusivity property of the ObjectPool by retrieving a number of objects 
from the pool. The retrieved objects are stored in a vector to make sure they aren’t automatically 
released back to the pool at the end of each for loop iteration. If the pool is properly dishing out 
unique objects, none of their serial numbers should match. This implementation uses the vector and 
set containers from the Standard Library; see Chapter 18, “Standard Library Containers.” The code 
requires <memory>, <vector>, and <set>.

(continued)
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void ObjectPoolTest::testExclusivity()
{
    // IF an ObjectPool has been created for Serial objects
    ObjectPool<Serial> myPool;
    // WHEN acquiring several objects from the pool
    const size_t numberOfObjectsToRetrieve { 10 };
    vector<shared_ptr<Serial>> retrievedSerials;
    set<size_t> seenSerialNumbers;
 
    for (size_t i { 0 }; i < numberOfObjectsToRetrieve; i++) {
        auto nextSerial { myPool.acquireObject() };
 
        // Add the retrieved Serial to the vector to keep it 'alive',
        // and add the serial number to the set.
        retrievedSerials.push_back(nextSerial);
        seenSerialNumbers.insert(nextSerial->getSerialNumber());
    }
 
    // THEN all retrieved serial numbers are different.
    Assert::AreEqual(numberOfObjectsToRetrieve, seenSerialNumbers.size());
}

The final test (for now) checks the release functionality. Once an object is released, the Object-
Pool can give it out again. The pool shouldn’t allocate additional objects until it has recycled all 
released objects.

The test first acquires 10 Serial objects from the pool, stores them in a vector to keep them alive, 
and records the raw pointer of each acquired Serial. Once all 10 objects have been retrieved, they 
are released back to the pool.

The second phase of the test again retrieves 10 objects from the pool and stores them in a vector to 
keep them alive. All these retrieved objects must have a raw pointer that has already been seen during 
the first phase of the test. This validates that objects are properly reused by the pool. The implementa-
tion uses the std::sort() algorithm that requires <algorithm>.

void ObjectPoolTest::testRelease()
{
    // IF an ObjectPool has been created for Serial objects
    ObjectPool<Serial> myPool;
    // AND we acquired and released 10 objects from the pool, while
    //     remembering their raw pointers
    const size_t numberOfObjectsToRetrieve { 10 };
    // A vector to remember all raw pointers that have been handed out by the pool.
    vector<Serial*> retrievedSerialPointers;
    vector<shared_ptr<Serial>> retrievedSerials;
    for (size_t i { 0 }; i < numberOfObjectsToRetrieve; i++) {
        auto object { myPool.acquireObject() };
        retrievedSerialPointers.push_back(object.get());
        // Add the retrieved Serial to the vector to keep it 'alive'.
        retrievedSerials.push_back(object);
    }
    // Release all objects back to the pool.
    retrievedSerials.clear();
 
    // The above loop has created 10 Serial objects, with 10 different
    // addresses, and released all 10 Serial objects back to the pool.
 continues



1038 ❘ CHAPTER 30  Becoming Adept At testing

    // WHEN again retrieving 10 objects from the pool, and
    //      remembering their raw pointers.
    vector<Serial*> newlyRetrievedSerialPointers;
    for (size_t i { 0 }; i < numberOfObjectsToRetrieve; i++) {
        auto object { myPool.acquireObject() };
        newlyRetrievedSerialPointers.push_back(object.get());
        // Add the retrieved Serial to the vector to keep it 'alive'.
        retrievedSerials.push_back(object);
    }
    // Release all objects back to the pool.
    retrievedSerials.clear();
 
    // THEN all addresses of the 10 newly acquired objects must have been
    //      seen already during the first loop of acquiring 10 objects.
    //      This makes sure objects are properly re-used by the pool.
    sort(begin(retrievedSerialPointers), end(retrievedSerialPointers));
    sort(begin(newlyRetrievedSerialPointers), end(newlyRetrievedSerialPointers));
    Assert::IsTrue(retrievedSerialPointers == newlyRetrievedSerialPointers);
}

If you add all these tests and run them, the Test Explorer should 
look like Figure 30-7. Of course, if one or more tests fail, you 
are presented with the quintessential issue in unit testing: is it 
the test or the code that is broken?

Debugging Tests
The Visual C++ Testing Framework makes it easy to debug 
unit tests that are failing. The Test Explorer shows a stack trace 
captured at the time a unit test failed, containing hyperlinks 
pointing directly to offending lines.

However, sometimes it is useful to run a unit test directly in 
the debugger so that you can inspect variables at run time, step 
through the code line by line, and so on. To do this, you put a 
breakpoint on some line of code in your unit test. Then, you 
right-click the unit test in the Test Explorer and click Debug. 
The testing framework starts running the selected tests in the 
debugger and breaks at your breakpoint. From then on, you can 
step through the code however you want.

Basking in the Glorious Light of Unit Test Results
The tests in the previous section should have given you a good idea of how to start writing profes-
sional-quality tests for real code. It’s just the tip of the iceberg, though. The previous examples should 
help you think of additional tests that you could write for the ObjectPool class template.

For example, you could add a capacity() method to ObjectPool that returns the sum of the num-
ber of objects that have been handed out and the number of objects that are still available without 
allocating a new chunk of memory. This is similar to the capacity() method of vector that returns 

FIGURE 30-7 
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the total number of elements that can be stored in a vector without reallocation. Once you have 
such a method, you can include a test that verifies that the pool always grows by double the number 
of elements compared to the previous time the pool grew.

There is no end to the number of unit tests you could write for a given piece of code, and that’s the 
best thing about unit tests. If you find yourself wondering how your code might react to a certain 
situation, that’s a unit test. If a particular aspect of your subsystem seems to be presenting problems, 
increase unit test coverage of that particular area. Even if you simply want to put yourself in the 
client’s shoes to see what it’s like to work with your class, writing unit tests is a great way to get a 
different perspective.

FUZZ TESTING

Fuzz testing, also known as fuzzing, involves a fuzzer that automatically generates random input data 
for a program or component to try to find unhandled edge cases. Typically, a recipe is provided that 
specifies how input data needs to be structured so it can be used as input for the program. If clearly 
wrongly structured input is provided to a program, its input data parser will likely immediately reject 
it. A fuzzer’s job then is to try to generate input data that is not obviously wrongly structured, so it 
won’t be rejected immediately by the program, but that could trigger some faulty logic further along 
during the execution of the program. Since a fuzzer generates random input data, it requires a lot of 
resources to cover the entire input space. An option is to run such fuzz testing scenarios in a cloud. 
There are several libraries available for implementing fuzz testing, for example libFuzzer (llvm.org/
docs/LibFuzzer.html) and honggfuzz (github.com/google/honggfuzz).

HIGHER-LEVEL TESTING

While unit tests are the best first line of defense against bugs, they are only part of the larger test-
ing process. Higher-level tests focus on how pieces of the product work together, as opposed to the 
relatively narrow focus of unit tests. In a way, higher-level tests are more challenging to write because 
it’s less clear what tests need to be written. Still, you cannot really claim that the program works until 
you have tested how its pieces work together.

Integration Tests
An integration test covers areas where components meet. Unlike a unit test, which generally acts on 
the level of a single class, an integration test usually involves two or more classes. Integration tests 
excel at testing interactions between two components, often written by two different programmers. In 
fact, the process of writing an integration test often reveals important incompatibilities in designs.

Sample Integration Tests
Because there are no hard-and-fast rules to determine what integration tests you should write, some 
examples might help you get a sense of when integration tests are useful. The following scenarios 
depict cases where an integration test is appropriate, but they do not cover every possible case. Just as 
with unit tests, over time you will refine your intuition for useful integration tests.

http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
http://github.com/google/honggfuzz
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A JSON-Based File Serializer
Suppose that your project includes a persistence layer that is used to save certain types of objects to 
disk and to read them back in. The hip way to serialize data is to use the JSON format, so a logical 
breakdown of components might include a JSON conversion layer sitting on top of a custom file 
API. Both of these components can be thoroughly unit tested. The JSON layer can have unit tests that 
ensure that different types of objects are correctly converted to JSON and populated from JSON. The 
file API can have tests that read, write, update, and delete files on disk.

When these modules start to work together, integration tests are appropriate. At the least, you should 
have an integration test that saves an object to disk through the JSON layer and then reads it back 
in and does a comparison to the original. Because the test covers both modules, it is a basic inte-
gration test.

Readers and Writers to a Shared Resource
Imagine a program that contains a data structure shared by different components. For example, a 
stock-trading program can have a queue of buy-and-sell requests. Components related to receiving 
stock transaction requests can add orders to the queue, and components related to performing stock 
trades can take data off the queue. You can unit test the heck out of the queue class, but until it is 
tested with the actual components that will be using it, you really don’t know if any of your assump-
tions are wrong.

A good integration test uses the stock request components and the stock trade components as clients 
of the queue class. You can write some sample orders and make sure that they successfully enter and 
exit the queue through the client components.

Wrapper Around a Third-Party Library
Integration tests do not always need to occur at integration points in your own code. Many times, 
integration tests are written to test the interaction between your code and a third-party library.

For example, you may be using a database connection library to talk to a relational database system. 
Perhaps you built an object-oriented wrapper around the library that adds support for connection 
caching or provides a friendlier interface. This is an important integration point to test because, even 
though the wrapper probably provides a more useful interface to the database, it introduces possible 
misuse of the original library.

In other words, writing a wrapper is a good thing, but writing a wrapper that introduces bugs is 
going to be a disaster.

Methods of Integration Testing
When it comes to actually writing integration tests, there is often a fine line between integration and 
unit tests. If a unit test is modified so that it touches another component, is it suddenly an integration 
test? In a way, the answer is moot because a good test is a good test, regardless of the type of test. 
I recommend you use the concepts of integration and unit testing as two approaches to testing, but 
avoid getting caught up in labeling the category of every single test.
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In terms of implementation, integration tests are often written by using a unit testing framework, fur-
ther blurring their distinction. As it turns out, unit testing frameworks provide an easy way to write a 
yes/no test and produce useful results. Whether the test is looking at a single unit of functionality or 
the intersection of two components hardly makes a difference from the framework’s point of view.

However, for performance and organizational reasons, you may want to attempt to separate unit tests 
from integration tests. For example, your group may decide that everybody must run integration tests 
before checking in new code, but be a bit laxer on running unrelated unit tests. Separating the two 
types of tests also increases the value of results. If a test failure occurs within the JSON class tests, it 
will be clear that it’s a bug in that class, not in the interaction between that class and the file API.

System Tests
System tests operate at an even higher level than integration tests. These tests examine the program as 
a whole. System tests often make use of a virtual user that simulates a human being working with the 
program. Of course, the virtual user must be programmed with a script of actions to perform. Other 
system tests rely on scripts or a fixed set of inputs and expected outputs.

Much like unit and integration tests, an individual system test performs a specific test and expects a 
specific result. It is not uncommon to use system tests to make sure that different features work in 
combination with one another.

In theory, a fully system-tested program would contain a test for every permutation of every feature. 
This approach quickly grows unwieldy, but you should still make an effort to test many features 
in combination. For example, a graphics program could have a system test that imports an image, 
rotates it, performs a blur filter, converts it to black and white, and then saves it. The test would com-
pare the saved image to a file that contains the expected result.

Unfortunately, few specific rules can be stated about system tests because they are highly dependent 
on the actual application. For applications that process files with no user interaction, system tests can 
be written much like unit and integration tests. For graphical programs, a virtual user approach may 
be best. For server applications, you might need to build stub clients that simulate network traffic. 
The important part is that you are actually testing real use of the program, not just a piece of it.

Regression Tests
Regression testing is more of a testing concept than a specific type of test. The idea is that once a 
feature works, developers tend to put it aside and assume that it will continue to work. Unfortunately, 
new features and other code changes often conspire to break previously working functionality.

Regression tests are often put in place as a sanity check for features that are, more or less, complete 
and working. If the regression test is well written, it will cease to pass when a change is introduced 
that breaks the feature.

If your company has an army of quality-assurance testers, regression testing may take the form of 
manual testing. The tester acts as a user would and goes through a series of steps, gradually testing 
every feature that worked in the previous release. This approach is thorough and accurate if carefully 
performed, but is not particularly scalable.
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At the other extreme, you could build a completely automated system that performs each function 
as a virtual user. This would be a scripting challenge, though several commercial and noncommercial 
packages exist to ease the scripting of various types of applications.

A middle ground is known as smoke testing. Some tests will only test a subset of the most important 
features that should work. The idea is that if something is broken, it should show up right away. If 
smoke tests pass, they could be followed by more rigorous manual or automated testing. The term 
smoke testing was introduced a long time ago, in electronics. After a circuit was built, with different 
components like vacuum tubes, resistors, and so on, the question was, “Is it assembled correctly?” 
A solution was to “plug it in, turn it on, and see if smoke comes out.” If smoke came out, the design 
might be wrong, or the assembly might be wrong. By seeing what part went up in smoke, the error 
could be determined.

Some bugs are like nightmares: they are both terrifying and recurring. Recurring bugs are frustrating 
and a poor use of engineering resources. Even if, for some reason, you decide not to write a suite of 
regression tests, you should still write regression tests for bugs that you fix.

By writing a test for a bug fix, you both prove that the bug is fixed and set up an alert that is trig-
gered if the bug ever comes back (for example, if your change is rolled back or otherwise undone, 
or if two branches are not merged correctly into the main development branch). When a regression 
test of a previously fixed bug fails, it should be easy to fix because the regression test can refer to the 
original bug number and describe how it was fixed the first time.

TIPS FOR SUCCESSFUL TESTING

As a software engineer, your role in testing may range anywhere from basic unit testing responsibility 
to complete management of an automated test system. Because testing roles and styles vary so much, 
here are several tips from my experience that may help you in different testing situations:

➤➤ Spend some time designing your automated test system. A system that runs constantly 
throughout the day will detect failures quickly. A system that sends e-mails to engineers auto-
matically, or sits in the middle of the room loudly playing show tunes when a failure occurs, 
will result in increased visibility of problems.

➤➤ Don’t forget about stress testing. Even if a full suite of unit tests passes for your database 
access class, it could still fall down when used by several dozen threads simultaneously. You 
should test your product under the most extreme conditions it could face in the real world.

➤➤ Test on a variety of platforms or a platform that closely mirrors the customer’s system. One 
method of testing on multiple operating systems is to use a virtual machine environment that 
allows you to run several different operating systems on the same physical machine.

➤➤ Some tests can be written to intentionally inject faults in a system. For example, you could 
write a test that deletes a file while it is being read, or that simulates a network outage during 
a network operation.
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➤➤ Bugs and tests are closely related. Bug fixes should be proven by writing regression tests. A 
comment with a test could refer to the original bug number.

➤➤ Don’t remove tests that are failing. When a co-worker is slaving over a bug and finds out you 
removed tests, he will come looking for you.

The most important tip I can give you is to remember that testing is part of software development. If 
you agree with that and accept it before you start coding, it won’t be quite as unexpected when the 
feature is finished, but there is still more work to do to prove that it works.

SUMMARY

This chapter covered the basic information that all professional programmers should know about 
testing. Unit testing in particular is the easiest and most effective way to increase the quality of your 
own code. Higher-level tests provide coverage of use cases, synchronicity between modules, and 
protection against regressions. No matter what your role is with regard to testing, you should now be 
able to confidently design, create, and review tests at various levels.

Now that you know how to find bugs, it’s time to learn how to fix them. To that end, Chapter 31, 
“Conquering Debugging,” covers techniques and strategies for effective debugging.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 30-1: What are the three types of testing?

Exercise 30-2: Make a list of unit tests that you can think of for the following piece of code:

export class Foo
{
    public:
        // Constructs a Foo. Throws invalid_argument if a >= b.
        Foo(int a, int b) : m_a { a }, m_b { b }
        {
            if (a >= b) {
                throw std::invalid_argument { "a should be less than b." };
            }
        }
 
        int getA() const { return m_a; }
        int getB() const { return m_b; }
 
    private:
        int m_a, m_b;
};

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 30-3: If you are using Visual C++, implement the unit tests that you’ve listed in Exer-
cise 30-2 using the Visual C++ Testing Framework.

Exercise 30-4: Suppose you have written a function to calculate the factorial of a number. 
The factorial of a number n, written as n!, is the product of all numbers 1 to n. For example, 
3!=1×2×3. You decided to follow the advice given in this chapter and to write unit tests for 
your code. You run the code to calculate 5! and then write a unit tests that verifies that the 
code produces the calculated number when asked to calculate the factorial of 5. What do you 
think of such a unit test?
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Conquering Debugging

WHAT’S IN THIS CHAPTER?

➤➤ The fundamental law of debugging, and bug taxonomies

➤➤ Tips for avoiding bugs

➤➤ How to plan for bugs

➤➤ The different kinds of memory errors

➤➤ How to use a debugger to pinpoint code causing a bug

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

Your code will contain bugs. Every professional programmer would like to write bug-free code, 
but the reality is that few software engineers succeed in this endeavor. As computer users know, 
bugs are endemic in computer software. The software that you write is probably no exception. 
Therefore, unless you plan to bribe your co-workers into fixing all your bugs, you cannot be a 
professional C++ programmer without knowing how to debug C++ code. One factor that often 
distinguishes experienced programmers from novices is their debugging skills.

Despite the obvious importance of debugging, it is rarely given enough attention in courses and 
books. Debugging seems to be the type of skill that everyone wants you to know, but no one 
knows how to teach. This chapter attempts to provide concrete debugging guidelines and 
techniques.

This chapter starts with the fundamental law of debugging and bug taxonomies, followed by 
tips for avoiding bugs. Techniques for planning for bugs include error logging, debug traces, 
assertions, and crash dumps. Specific tips are given for debugging the problems that arise, 
including techniques for reproducing bugs, debugging reproducible bugs, debugging 

http://www.wiley.com/go/proc++5e
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nonreproducible bugs, debugging memory errors, and debugging multithreaded programs. The 
chapter concludes with a step-by-step debugging example.

THE FUNDAMENTAL LAW OF DEBUGGING

The first rule of debugging is to be honest with yourself and admit that your code will contain bugs! 
This realistic assessment enables you to put your best effort into preventing bugs from crawling  
into your code in the first place, while you simultaneously include the necessary features to make 
debugging as easy as possible.

WARNING The fundamental law of debugging states that you should avoid bugs 
when you’re coding, but plan for bugs in your code.

BUG TAXONOMIES

A bug in a computer program is incorrect run-time behavior. This undesirable behavior includes 
both catastrophic and noncatastrophic bugs. Examples of catastrophic bugs are program death, 
data corruption, operating system failures, or some other horrific outcome. A catastrophic bug can 
also manifest itself external to the software or computer system running the software; for example, 
medical software might contain a catastrophic bug causing a massive radiation overdose to a patient. 
Noncatastrophic bugs are bugs that cause the program to behave incorrectly in more subtle ways; for 
example, a web browser might return the wrong web page, or a spreadsheet application might calcu-
late the standard deviation of a column incorrectly. These are also called logical bugs.

There are also so-called cosmetic bugs, where something is visually not correct, but otherwise works 
correctly. For example, a button in a user interface is kept enabled when it shouldn’t be, but clicking 
it does nothing. All computations are perfectly correct, the program does not crash, but it doesn’t 
look as “nice” as it should.

The underlying cause, or root cause, of a bug is the mistake in the program that causes this incorrect 
behavior. The process of debugging a program includes both determining the root cause of the bug 
and fixing the code so that the bug will not occur again.

AVOIDING BUGS

It’s impossible to write completely bug-free code, so debugging skills are important. However, a few 
tips can help you to minimize the number of bugs:

➤➤ Read this book from cover to cover: Learn the C++ language intimately, especially pointers 
and memory management. Then, recommend this book to your friends and co-workers so 
they avoid bugs too.

➤➤ Design before you code: Designing while you code tends to lead to convoluted designs that 
are harder to understand and are more error-prone. It also makes you more likely to omit 
possible edge cases and error conditions.
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➤➤ Do code reviews: In a professional environment, every single line of code should be peer-
reviewed. Sometimes it takes a fresh perspective to notice problems.

➤➤ Test, test, and test again: Thoroughly test your code, and have others test your code! They are 
more likely to find problems you haven’t thought of.

➤➤ Write automated unit tests: Unit tests are designed to test isolated functionality. You should 
write unit tests for all implemented features. Run these unit tests automatically as part of 
your continuous integration setup, or automatically after each local compilation. Chapter 30, 
“Becoming Adept at Testing,” discusses unit testing in detail.

➤➤ Expect error conditions, and handle them appropriately: In particular, plan for and handle 
errors when working with files and network connections. They will occur. See chapters 13, 
“Demystifying C++ I/O,” and 14, “Handling Errors.”

➤➤ Use smart pointers to avoid memory leaks: Smart pointers automatically free resources when 
they are not needed anymore.

➤➤ Don’t ignore compiler warnings: Configure your compiler to compile with a high warning 
level. Do not blindly ignore warnings. Ideally, you should enable an option in your compiler 
to treat warnings as errors. This forces you to address each warning immediately. With GCC 
you can pass ‑Werror to the compiler to treat all warnings as errors. In Visual C++, open the 
properties of your project, go to Configuration Properties ➪ C/C++ ➪ General, and enable 
the option Treat Warnings As Errors.

➤➤ Use static code analysis: A static code analyzer helps you to pinpoint problems in your code 
by analyzing your source code. Ideally, static code analysis is done in real time while typing 
code in your integrated development environment (IDE) to detect problems early. It can also 
be set up to run automatically by your build process. There are quite a few different analyzers 
available on the Internet, both free and commercial.

➤➤ Use good coding style: Strive for readability and clarity, use meaningful names, don’t use 
abbreviations, add code comments (not only interface comments), use the override key-
word, and so on. This makes it easier for other people to understand your code.

PLANNING FOR BUGS

Your programs should contain features that enable easier debugging when the inevitable bugs arise. 
This section describes these features and presents sample implementations, where appropriate, that 
you can incorporate into your own programs.

Error Logging
Imagine this scenario: You have just released a new version of your flagship product, and one of 
the first users reports that the program “stopped working.” You attempt to pry more information 
from the user and eventually discover that the program died in the middle of an operation. The user 
can’t quite remember what he was doing or if there were any error messages. How will you debug 
this problem?

Now imagine the same scenario, but in addition to the limited information from the user, you are also 
able to examine the error log on the user’s computer. In the log you see a message from your program 
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that says, “Error: unable to open config.xml file.” Looking at the code near the spot where that error 
message was generated, you find a line in which you read from the file without checking whether the 
file was opened successfully. You’ve found the root cause of your bug!

Error logging is the process of writing error messages to persistent storage so that they will be avail-
able following an application, or even machine, death. Despite the example scenario, you might still 
have doubts about this strategy. Won’t it be obvious by your program’s behavior if it encounters 
errors? Won’t the user notice if something goes wrong? As the preceding example shows, user reports 
are not always accurate or complete. In addition, many programs, such as the operating system kernel 
and long-running daemons like inetd (internet service daemon) or syslogd on Unix, are not interac-
tive and run unattended on a machine. The only way these programs can communicate with users 
is through error logging. In many cases, a program might also want to automatically recover from 
certain errors and hide those errors from the user. Still, having logs of those errors available can be 
invaluable to improve the overall stability of the program.

Thus, your program should log errors as it encounters them. That way, if a user reports a bug, you 
will be able to examine the log files on the machine to see if your program reported any errors prior 
to encountering the bug. Unfortunately, error logging is platform dependent: C++ does not contain a 
standard logging mechanism. Examples of platform-specific logging mechanisms include the syslog 
facility in Unix and the event reporting API in Windows. You should consult the documentation for 
your development platform. There are also some open-source implementations of cross-platform log-
ging frameworks. Here are two examples:

➤➤ log4cpp at log4cpp.sourceforge.net

➤➤ Boost.Log at boost.org

Now that you’re convinced that logging is a great feature to add to your programs, you might be 
tempted to log messages every few lines in your code so that, in the event of any bug, you’ll be able to 
trace the code path that was executing. These types of log messages are appropriately called traces.

However, you should not write these traces to log files for two reasons. First, writing to persistent 
storage is slow. Even on systems that write the logs asynchronously, logging that much information 
will slow down your program. Second, and most important, most of the information that you would 
put in your traces is not appropriate for the end user to see. It will just confuse the user, leading to 
unwarranted service calls. That said, tracing is an important debugging technique under the correct 
circumstances, as described in the next section.

Here are some specific guidelines for the types of errors you should log:

➤➤ Unrecoverable errors, such as a system call failing unexpectedly.

➤➤ Errors for which an administrator can take action, such as low memory, an incorrectly for-
matted data file, an inability to write to disk, or a network connection being down.

➤➤ Unexpected errors such as a code path that you never expected to take or variables with 
unexpected values. Note that your code should “expect” users to enter invalid data and 
should handle it appropriately. An unexpected error represents a bug in your program.

➤➤ Potential security breaches, such as a network connection attempted from an unauthorized 
address, or too many network connections attempted (denial of service).

http://log4cpp.sourceforge.net
http://www.boost.org
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It is also useful to log warnings, or recoverable errors, which allows you to investigate if you can pos-
sibly avoid them.

Most logging APIs allow you to specify a log level or error level, typically error, warning, and info. 
You can log non-error conditions under a log level that is less severe than “error.” For example, you 
might want to log significant state changes in your application, or startup and shutdown of the pro-
gram. You also might consider giving your users a way to adjust the log level of your program at run 
time so that they can customize the amount of logging that occurs.

Debug Traces
When debugging complicated problems, public error messages generally do not contain enough infor-
mation. You often need a complete trace of the code path taken, or values of variables before the bug 
showed up. In addition to basic messages, it’s sometimes helpful to include the following information 
in debug traces:

➤➤ The thread ID, if it’s a multithreaded program

➤➤ The name of the function that generates the trace

➤➤ The source filename in which the code that generates the trace lives

You can add this tracing to your program through a special debug mode, or via a ring buffer. Both of 
these methods are explained in detail in the following sections. Note that in multithreaded programs 
you have to make your trace logging thread-safe. See Chapter 27, “Multithreaded Programming with 
C++,” for details on multithreaded programming.

WARNING Trace files can be written in text format, but if you do, be careful with 
logging too much detail. You don’t want to leak intellectual property through your 
log files! An alternative is to write the files in a binary format that only you can 
read.

Debug Mode
A first technique to add debug traces is to provide a debug mode for your program. In debug mode, 
the program writes trace output to standard error or to a file, and perhaps does extra checking during 
execution. There are several ways to add a debug mode to your program. Note that all these exam-
ples are writing traces in text format.

Start-Time Debug Mode
Start-time debug mode allows your application to run with or without debug mode depending on 
a command-line argument. This strategy includes the debug code in the “release” binary and allows 
debug mode to be enabled at a customer site. However, it does require users to restart the program to 
run it in debug mode, which may prevent you from obtaining useful information about certain bugs.

The following example is a simple program implementing a start-time debug mode. This program 
doesn’t do anything useful; it is only for demonstrating the technique.
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All logging functionality is wrapped in a Logger class. This class has two static data members: 
the name of the log file and a Boolean saying whether logging is enabled or disabled. The class has 
a static public log() variadic template method. Variadic templates are discussed in Chapter 26, 
“Advanced Templates.” Note that the log file is opened, flushed, and closed on each call to log(). 
This might lower performance a bit; however, it does guarantee correct logging, which is more 
important.

class Logger
{
    public:
        static void enableLogging(bool enable) { ms_loggingEnabled = enable; }
        static bool isLoggingEnabled() { return ms_loggingEnabled; }
 
        template<typename... Args>
        static void log(const Args&... args)
        {
            if (!ms_loggingEnabled) { return; }
 
            ofstream logfile { ms_debugFilename, ios_base::app };
            if (logfile.fail()) {
                cerr << "Unable to open debug file!" << endl;
                return;
            }
            // Use a C++17 unary right fold, see Chapter 26.
            ((logfile << args),...);
            logfile << endl;
        }
    private:
        static inline const string ms_debugFilename { "debugfile.out" };
        static inline bool ms_loggingEnabled { false };
};

The following helper macro is defined to make it easy to log something. It uses __func__, a prede-
fined variable defined by the C++ standard that contains the name of the current function.

#define log(...) Logger::log(__func__, "(): ", __VA_ARGS__)

This macro replaces every call to log() in your code with a call to Logger::log(). The macro auto-
matically includes the function name as first argument to Logger::log(). For example, suppose you 
call the macro as follows:

log("The value is: ", value);

The log() macro replaces this with the following:

Logger::log(__func__, "(): ", "The value is: ", value);

Start-time debug mode needs to parse the command-line arguments to find out whether it should ena-
ble debug mode. Unfortunately, there is no standard functionality in C++ for parsing command-line 
arguments. This program uses a simple isDebugSet() function to check for the debug flag among all 
the command-line arguments, but a function to parse all command-line arguments would need to be 
more sophisticated.

bool isDebugSet(int argc, char* argv[])
{
    for (int i { 0 }; i < argc; i++) {
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        if (strcmp(argv[i], "‑d") == 0) {
            return true;
        }
    }
    return false;
}

Some arbitrary test code is used to exercise the debug mode in this example. Two classes are defined, 
ComplicatedClass and UserCommand. Both classes define an operator<< to write instances of them 
to a stream. The Logger class uses this operator to dump objects to the log file.

class ComplicatedClass { /* ... */ };
ostream& operator<<(ostream& ostr, const ComplicatedClass& src)
{
    ostr << "ComplicatedClass";
    return ostr;
}
 
class UserCommand { /* ... */ };
ostream& operator<<(ostream& ostr, const UserCommand& src)
{
    ostr << "UserCommand";
    return ostr;
}

Here is some test code with a number of log calls:

UserCommand getNextCommand(ComplicatedClass* obj)
{
    UserCommand cmd;
    return cmd;
}
 
void processUserCommand(UserCommand& cmd)
{
    // Details omitted for brevity.
}
 
void trickyFunction(ComplicatedClass* obj)
{
    log("given argument: ", *obj);
 
    for (size_t i { 0 }; i < 100; ++i) {
        UserCommand cmd { getNextCommand(obj) };
        log("retrieved cmd ", i, ": ", cmd);
 
        try {
            processUserCommand(cmd);
        } catch (const exception& e) {
            log("exception from processUserCommand(): ", e.what());
        }
    }
}
 
int main(int argc, char* argv[])
{

continues
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    Logger::enableLogging(isDebugSet(argc, argv));
 
    if (Logger::isLoggingEnabled()) {
        // Print the command‑line arguments to the trace.
        for (int i { 0 }; i < argc; i++) {
            log("Argument: ", argv[i]);
        }
    }
 
    ComplicatedClass obj;
    trickyFunction(&obj);
 
    // Rest of the function not shown.
}

There are two ways to run this application:

> STDebug
> STDebug ‑d

Debug mode is activated only when the ‑d argument is specified on the command line.

WARNING Macros in C++ should be avoided as much as possible because they 
can be hard to debug. However, for logging purposes, using a simple macro can 
be acceptable, and it makes using the logging code much easier. Even so, with the 
C++20 std::source_location class, the example can be modified to avoid the 
use of a macro. This is the topic of one of the exercises at the end of this chapter.

Compile-Time Debug Mode
Instead of enabling or disabling debug mode through a command-line argument, you could also 
use a preprocessor symbol such as DEBUG_MODE and #ifdefs to selectively compile the debug code 
into your program. To generate a debug version of this program, you would have to compile it with 
the symbol DEBUG_MODE defined. Your compiler allows you to define symbols during compilation; 
consult your compiler’s documentation for details. For example, GCC allows you to specify –Dsym‑
bol through the command line. Microsoft Visual C++ allows you to specify the symbols through the 
Visual Studio IDE or by specifying /D symbol if you use the Visual C++ command-line tools. Visual 
C++ automatically defines the _DEBUG symbol for debug builds. However, that symbol is Visual C++ 
specific, so the example in this section uses a custom symbol called DEBUG_MODE.

The advantage of this method is that your debug code is not compiled into the “release” binary and 
so does not increase its size. The disadvantage is that there is no way to enable debugging at a cus-
tomer site for testing or following the discovery of a bug.

An example implementation is given in CTDebug.cpp in the downloadable source code archive. 
One important remark on this implementation is that it contains the following definition for the 
log() macro:

#ifdef DEBUG_MODE
    #define log(...) Logger::log(__func__, "(): ", __VA_ARGS__)

(continued)
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#else
    #define log(...)
#endif

That is, if DEBUG_MODE is not defined, then all calls to log() are replaced with nothing, called no-ops.

WARNING Be careful not to put any code that must be executed for correct 
program functioning inside your log() calls. For example, the following line of 
code could be asking for trouble:

    log("Result: ", myFunctionCall());

If DEBUG_MODE is not defined, the preprocessor replaces all log() calls with no-
ops, which means that the call to myFunctionCall() is removed as well!

Run-Time Debug Mode
The most flexible way to provide a debug mode is to allow it to be enabled or disabled at run time. 
One way to provide this feature is to supply an asynchronous interface that controls debug mode on 
the fly. This interface could be an asynchronous command that makes an interprocess call into the 
application (for example, using sockets, signals, or remote procedure calls). This interface could also 
take the form of a menu command in the user interface. C++ provides no standard way to perform 
interprocess communication or to implement user interfaces, so an example of this technique is 
not shown.

Ring Buffers
Debug mode is useful for debugging reproducible problems and for running tests. However, bugs 
often appear when the program is running in non-debug mode, and by the time you or the customer 
enables debug mode, it is too late to gain any information about the bug. One solution to this prob-
lem is to enable tracing in your program at all times. You usually need only the most recent traces to 
debug a program, so you should store only the most recent traces at any point in a program’s execu-
tion. One way to provide for this is through careful use of log file rotations.

However, for performance reasons, it’s better that you don’t log these traces continuously to disk. 
Instead, store them in memory and provide a mechanism to dump all the trace messages to standard 
error or to a log file if the need arises.

A common technique is to use a ring buffer, or circular buffer, to store a fixed number of messages, 
or messages in a fixed amount of memory. When the buffer fills up, it starts writing messages at the 
beginning of the buffer again, overwriting the older messages. This cycle can repeat indefinitely. The 
following sections provide an implementation of a ring buffer and show you how you can use it in 
your programs.

Ring Buffer Interface
The following RingBuffer class provides a simple debug ring buffer. The client specifies the number 
of entries in the constructor and adds messages with the addEntry() method. Once the number of 
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entries exceeds the number allowed, new entries overwrite the oldest entries in the buffer. The buffer 
also provides the option to output entries to a stream as they are added to the buffer. The client can 
specify an output stream in the constructor and can reset it with the setOutput() method. Finally, 
the operator<< streams the entire buffer to an output stream. This implementation uses a variadic 
template method, discussed in Chapter 26.

export class RingBuffer
{
    public:
        // Constructs a ring buffer with space for numEntries.
        // Entries are written to *ostr as they are queued (optional).
        explicit RingBuffer(size_t numEntries = DefaultNumEntries,
            std::ostream* ostr = nullptr);
        virtual ~RingBuffer() = default;
 
        // Adds an entry to the ring buffer, possibly overwriting the
        // oldest entry in the buffer (if the buffer is full).
        template<typename... Args>
        void addEntry(const Args&... args)
        {
            std::ostringstream os;
            // Use a C++17 unary right fold, see Chapter 26.
            ((os << args), ...);
            addStringEntry(os.str());
        }
 
        // Streams the buffer entries, separated by newlines, to ostr.
        friend std::ostream& operator<<(std::ostream& ostr, RingBuffer& rb);
 
        // Streams entries as they are added to the given stream.
        // Specify nullptr to disable this feature.
        // Returns the old output stream.
        std::ostream* setOutput(std::ostream* newOstr);
 
    private:
        std::vector<std::string> m_entries;
        std::vector<std::string>::iterator m_next;
 
        std::ostream* m_ostr { nullptr };
        bool m_wrapped { false };
 
        static const size_t DefaultNumEntries { 500 };
 
        void addStringEntry(std::string&& entry);
};

Ring Buffer Implementation
This implementation of the ring buffer stores a fixed number of string objects. This approach 
certainly is not the most efficient solution. Other possibilities would be to provide a fixed number of 
bytes of memory for the buffer. However, this implementation should be sufficient unless you’re writ-
ing a high-performance application.
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For multithreaded programs, it’s useful to add the ID of the thread and a timestamp to each trace 
entry. Of course, the ring buffer has to be made thread-safe before using it in a multithreaded applica-
tion. See Chapter 27 for multithreaded programming.

Here are the implementations:

// Initialize the vector to hold exactly numEntries. The vector size
// does not need to change during the lifetime of the object.
// Initialize the other members.
RingBuffer::RingBuffer(size_t numEntries, ostream* ostr)
    : m_entries { numEntries }, m_ostr { ostr }, m_wrapped { false }
{
    if (numEntries == 0) {
        throw invalid_argument { "Number of entries must be > 0." };
    }
    m_next = begin(m_entries);
}
 
// The addStringEntry algorithm is pretty simple: add the entry to the next
// free spot, then reset m_next to indicate the free spot after
// that. If m_next reaches the end of the vector, it starts over at 0.
//
// The buffer needs to know if the buffer has wrapped or not so
// that it knows whether to print the entries past m_next in operator<<.
void RingBuffer::addStringEntry(string&& entry)
{
    // If there is a valid ostream, write this entry to it.
    if (m_ostr) { *m_ostr << entry << endl; }
 
    // Move the entry to the next free spot and increment
    // m_next to point to the free spot after that.
    *m_next = move(entry);
    ++m_next;
 
    // Check if we've reached the end of the buffer. If so, we need to wrap.
    if (m_next == end(m_entries)) {
        m_next = begin(m_entries);
        m_wrapped = true;
    }
}
 
// Set the output stream.
ostream* RingBuffer::setOutput(ostream* newOstr)
{
    return exchange(m_ostr, newOstr);
}
 
// operator<< uses an ostream_iterator to "copy" entries directly
// from the vector to the output stream.
//
// operator<< must print the entries in order. If the buffer has wrapped,
// the earliest entry is one past the most recent entry, which is the entry
// indicated by m_next. So, first print from entry m_next to the end.
//

continues
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// Then (even if the buffer hasn't wrapped) print from beginning to m_next‑1.
ostream& operator<<(ostream& ostr, RingBuffer& rb)
{
    if (rb.m_wrapped) {
        // If the buffer has wrapped, print the elements from
        // the earliest entry to the end.
        copy(rb.m_next, end(rb.m_entries), ostream_iterator<string>{ ostr, "\n" });
    }
 
    // Now, print up to the most recent entry.
    // Go up to m_next because the range is not inclusive on the right side.
    copy(begin(rb.m_entries), rb.m_next, ostream_iterator<string>{ ostr, "\n" });
 
    return ostr;
}

Using the Ring Buffer
To use the ring buffer, you can create an instance of it and start adding messages to it. When you 
want to print the buffer, just use operator<< to print it to the appropriate ostream. Here is the 
earlier start-time debug mode program modified to use a ring buffer instead. Changes are highlighted. 
The definitions of the ComplicatedClass and UserCommand classes, and the functions getNext‑
Command(), processUserCommand(), and trickyFunction() are not shown. They are the same 
as before.

RingBuffer debugBuffer;
 
#define log(...) debugBuffer.addEntry(__func__, "(): ", __VA_ARGS__)
 
int main(int argc, char* argv[])
{
    // Log the command‑line arguments.
    for (int i { 0 }; i < argc; i++) {
        log("Argument: ", argv[i]);
    }
 
    ComplicatedClass obj;
    trickyFunction(&obj);
 
    // Print the current contents of the debug buffer to cout.
    cout << debugBuffer;
}

Displaying the Ring Buffer Contents
Storing trace debug messages in memory is a great start, but for them to be useful, you need a way to 
access these traces for debugging.

Your program should provide a “hook” to tell it to export the messages. This hook could be simi-
lar to the interface you would use to enable debugging at run time. Additionally, if your program 
encounters a fatal error that causes it to exit, it could export the ring buffer automatically to a log file 
before exiting.

Another way to retrieve these messages is to obtain a memory dump of the program. Each platform 
handles memory dumps differently, so you should consult a reference or expert for your platform.

(continued)
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Assertions
The <cassert> header defines an assert() macro. It takes a Boolean expression and, if the expres-
sion evaluates to false, prints an error message and terminates the program. If the expression evalu-
ates to true, it does nothing.

WARNING Normally, you should avoid any library functions or macros that can 
terminate your program. The assert() macro is an exception. If an assertion trig-
gers, it means that some assumption is wrong or that something is catastrophically, 
unrecoverably wrong, and the only sane thing to do is to terminate the application 
at that very moment, instead of continuing.

Assertions allow you to “force” your program to exhibit a bug at the exact point where that bug 
originates. If you didn’t assert at that point, your program might proceed with those incorrect values, 
and the bug might not show up until much later. Thus, assertions allow you to detect bugs earlier 
than you otherwise would.

NOTE The behavior of the standard assert() macro depends on the NDEBUG pre-
processor symbol: if the symbol is not defined, the assertion takes place; otherwise, 
it is ignored. Compilers often define this symbol when compiling “release” builds. 
If you want to leave assertions in release builds, you may have to change your 
compiler settings or write your own version of assert() that isn’t affected by the 
value of NDEBUG.

You could use assertions in your code whenever you are “assuming” something about the state of 
your variables. For example, if you call a library function that is supposed to return a pointer and 
claims never to return nullptr, throw in an assert() after the function call to make sure that the 
pointer isn’t nullptr.

Note that you should assume as little as possible. For example, if you are writing a library function, 
don’t assert that the parameters are valid. Instead, check the parameters, and return an error code or 
throw an exception if they are invalid.

As a rule, assertions should be used only for cases that are truly problematic and should therefore 
never be ignored when they occur during development. If you hit an assertion during development, 
fix it, don’t just disable the assertion.

Let’s look at a couple of examples on how to use assert(). Here is a process() function that 
requires three elements in a vector passed to the function:

void process(const vector<int>& coordinate)
{
    assert(coordinate.size() == 3);
    // ...
}
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If the process() function is called with a vector that has less or more elements than three, the  
assertion fails and generates a message similar to the following (the exact message depends on the 
compiler that is used):

Assertion failed: coordinate.size() == 3, file D:\test\test.cpp, line 12

If you want a custom error message, you can use the following trick using the comma operator and a 
set of extra parentheses:

assert(("A custom message...", coordinate.size() == 3));

The output then will be something as follows:

Assertion failed: ("A custom message...", coordinate.size() == 3), file D:\test\
test.cpp, line 106

If at some point in your code you want that an assert always fails with a certain error message, you 
can use the following trick:

assert(!"This should never happen.");

WARNING Be careful not to put any code that must be executed for correct 
program functioning inside assertions. For example, the following line of code 
could be asking for trouble:

    assert(myFunctionCall() != nullptr);

If a release build of your code strips assertions, then the call to myFunctionCall() 
is stripped as well!

Crash Dumps
Make sure your programs create crash dumps, also called memory dumps or core dumps. A crash 
dump is a dump file that is created when your application crashes. It contains information about 
which threads were running at the time of the crash, a call stack of all the threads, and so on. How 
you create such dumps is platform dependent, so you should consult the documentation of your 
platform or use a third-party library that takes care of it for you. Breakpad (github.com/google/
breakpad/) is an example of such an open-source cross-platform library that can write and process 
crash dumps.

Also make sure you set up a symbol server and a source code control server. The symbol server is 
used to store debugging symbols of released binaries of your software. These symbols are used later 
to interpret crash dumps received from customers. The source code control server, discussed in Chap-
ter 28, “Maximizing Software Engineering Methods,” stores all revisions of your source code. When 
debugging crash dumps, this source code control server is used to download the correct source code 
for the revision of your software that  
created the crash dump.

The exact procedure of analyzing crash dumps depends on your platform and compiler, so consult 
their documentation.

From my personal experience, I have found that a crash dump is often worth more than a thousand 
bug reports.

http://github.com/google/breakpad
http://github.com/google/breakpad
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DEBUGGING TECHNIQUES

Debugging a program can be incredibly frustrating. However, with a systematic approach it becomes 
significantly easier. Your first step in trying to debug a program should always be to reproduce the 
bug. Depending on whether you can reproduce the bug, your subsequent approach will differ. The 
next four sections explain how to reproduce bugs, how to debug reproducible bugs, how to debug 
nonreproducible bugs, and how to debug regressions. Additional sections explain details about 
debugging memory errors and debugging multithreaded programs. The final sections show a  
step-by-step debugging example.

Reproducing Bugs
If you can reproduce the bug consistently, it will be much easier to determine the root cause. Finding 
the root cause of bugs that are not reproducible is difficult, if not impossible.

As a first step to reproduce the bug, run the program on a similar environment (hardware, operat-
ing system, and so on) and with the same inputs as the run when the bug first appeared. Be sure to 
include all inputs, from the program’s startup to the time of the bug’s appearance. A common mistake 
is to attempt to reproduce the bug by performing only the triggering action. This technique may not 
reproduce the bug because the bug might be caused by an entire sequence of actions.

For example, if your web browser program dies when you request a certain web page, it may be due 
to memory corruption triggered by that particular request’s network address. On the other hand, 
it may be because your program records all requests in a queue, with space for one million entries, 
and this entry was number 1,000,001. Starting the program over and sending one request certainly 
wouldn’t trigger the bug in that case.

Sometimes it is impossible to emulate the entire sequence of events that leads to the bug. Perhaps the 
bug was reported by someone who can’t remember everything that she did. Alternatively, maybe the 
program was running for too long to emulate every input. In that case, do your best to reproduce the 
bug. It takes some guesswork and can be time-consuming, but effort at this point will save time later 
in the debugging process. Here are some techniques you can try:

➤➤ Repeat the triggering action in the correct environment and with as many inputs as possible 
similar to the initial report.

➤➤ Do a quick review of the code related to the bug. More often than not, you’ll find a likely 
cause that will guide you in reproducing the problem.

➤➤ Run automated tests that exercise similar functionality. Reproducing bugs is one benefit of 
automated tests. If it takes 24 hours of testing before the bug shows up, it’s preferable to 
let those tests run on their own rather than spend 24 hours of your time trying to repro-
duce the bug.

➤➤ If you have the necessary hardware available, running slight variations of tests concurrently 
on different machines can sometimes save time.

➤➤ Run stress tests that exercise similar functionality. If your program is a web server that died 
on a particular request, try running as many browsers as possible simultaneously that make 
that request.
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After you are able to reproduce the bug consistently, you should attempt to find the smallest sequence 
that triggers the bug. You can start with the minimum sequence, containing only the triggering action, 
and slowly expand the sequence to cover the entire sequence from startup until the bug is triggered. 
This will result in the simplest and most efficient test case to reproduce it, which makes it simpler to 
find the root cause of the problem and easier to verify the fix.

Debugging Reproducible Bugs
When you can reproduce a bug consistently and efficiently, it’s time to figure out the problem in the 
code that causes the bug. Your goal at this point is to find the exact lines of code that trigger the 
problem. You can use two different strategies:

➤➤ Logging debug messages: By adding enough debug messages to your program and watch-
ing its output when you reproduce the bug, you should be able to pinpoint the exact lines of 
code where the bug occurs. If you have a debugger at your disposal, adding debug messages 
is usually not recommended because it requires modifications to the program and can be 
time-consuming. However, if you have already instrumented your program with debug mes-
sages as described earlier, you might be able to find the root cause of your bug by running 
your program in debug mode while reproducing the bug. Note that bugs sometimes disap-
pear simply when you enable logging because the act of enabling logging can slightly change 
the timings of your application.

➤➤ Using a debugger: Debuggers allow you to step through the execution of your program and 
to view the state of memory and the values of variables at various points. They are often 
indispensable tools for finding the root cause of bugs. When you have access to the source 
code, you will use a symbolic debugger: a debugger that utilizes the variable names, class 
names, and other symbols in your code. To use a symbolic debugger, you must instruct your 
compiler to generate debug symbols. Check the documentation of your compiler for details 
on how to enable symbol generation.

The debugging example at the end of this chapter demonstrates both these approaches.

Debugging Nonreproducible Bugs
Fixing bugs that are not reproducible is significantly more difficult than fixing reproducible bugs. 
You often have little information and must employ a lot of guesswork. Nevertheless, a few strategies 
can aid you:

➤➤ Try to turn a nonreproducible bug into a reproducible bug. By using educated guesses, you 
can often determine approximately where the bug lies. It’s worthwhile to spend some time 
trying to reproduce the bug. Once you have a reproducible bug, you can figure out its root 
cause by using the techniques described earlier.

➤➤ Analyze error logs. This is easy to do if you have instrumented your program with error log 
generation, as described earlier. You should sift through this information because any errors 
that were logged directly before the bug occurred are likely to have contributed to the bug 
itself. If you’re lucky (or if you coded your program well), your program will have logged the 
exact reason for the bug at hand.
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➤➤ Obtain and analyze traces. Again, this is easy to do if you have instrumented your program 
with tracing output, for example, via a ring buffer as described earlier. At the time of the 
bug’s occurrence, you ideally obtained a copy of the traces. These traces should lead you right 
to the location of the bug in your code.

➤➤ Examine a crash/memory dump file, if it exists. Some platforms automatically generate 
memory dump files of applications that terminate abnormally. On Unix and Linux, these 
memory dumps are called core files. Each platform provides tools for analyzing these memory 
dumps. They can, for example, be used to view the stack trace of the application and the con-
tents of its memory before the application died.

➤➤ Inspect the code. Unfortunately, this is often the only strategy to determine the cause of a 
nonreproducible bug. Surprisingly, it often works. When you examine code, even code that 
you wrote yourself, with the perspective of the bug that just occurred, you can often find 
mistakes that you overlooked previously. I don’t recommend spending hours staring at your 
code, but tracing through the code path manually can often lead you directly to the problem.

➤➤ Use a memory-watching tool, such as one of the tools described in the section “Debugging 
Memory Problems,” later in this chapter. Such tools often alert you to memory errors that 
don’t always cause your program to misbehave but could potentially be the cause of the bug 
in question.

➤➤ File or update a bug report. Even if you can’t find the root cause of the bug right away, the 
report will be a useful record of your attempts if the problem is encountered again.

➤➤ If you are unable to find the root cause of the bug, be sure to add extra logging or tracing so 
that you will have a better chance next time the bug occurs.

Once you have found the root cause of a nonreproducible bug, you should create a reproducible test 
case and move it to the “reproducible bugs” category. It is important to be able to reproduce a bug 
before you actually fix it. Otherwise, how will you test the fix? A common mistake when debug-
ging nonreproducible bugs is to fix the wrong problem in the code. Because you can’t reproduce the 
bug, you don’t know if you’ve really fixed it, so you shouldn’t be surprised when it shows up again a 
month later.

Debugging Regressions
If a feature contains a regression bug, it means that the feature used to work correctly, but stopped 
working due to the introduction of a bug.

A useful debugging technique for investigating regressions is to look at the change log of relevant 
files. If you know at what time the feature was still working, look at all the change logs since that 
time. You might notice something suspicious that could lead you to the root cause.

Another approach that can save you a lot of time when debugging regressions is to use a binary 
search approach with older versions of the software to try to figure out when it started to go wrong. 
You can use binaries of older versions if you keep them, or you can revert the source code to an older 
revision. Once you know when it started to go wrong, inspect the change logs to see what changed at 
that time. This mechanism is possible only when you can reproduce the bug.
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Debugging Memory Problems
Most catastrophic bugs, such as application death, are caused by memory errors. Many non-
catastrophic bugs are triggered by memory errors as well. Some memory bugs are obvious. If your 
program attempts to dereference a nullptr pointer, the default action is to terminate the program. 
However, nearly every platform enables you to respond to catastrophic errors and take remedial 
action. The amount of effort you devote to the response depends on the importance of this kind of 
recovery to your end users. For example, a text editor really needs to make a best attempt to save the 
modified buffers (possibly under a “recovered” name), while for other programs, users may find the 
default behavior acceptable, even if it is unpleasant.

Some memory bugs are more insidious. If you write past the end of an array in C++, your program 
will probably not crash at that point. However, if that array was on the stack, you may have writ-
ten into a different variable or array, changing values that won’t show up until later in the program. 
Alternatively, if the array was on the free store, you could cause memory corruption in the free store, 
which will cause errors later when you attempt to allocate or free more memory dynamically.

Chapter 7, “Memory Management,” introduces some of the common memory errors from the  
perspective of what to avoid when you’re coding. This section discusses memory errors from the per-
spective of identifying problems in code that exhibits bugs. You should be familiar with the discussion 
in Chapter 7 before continuing with this section.

WARNING Most, if not all, of the following memory problems can be avoided by 
using smart pointers instead of raw pointers.

Categories of Memory Errors
To debug memory problems, you should be familiar with the types of errors that can occur. This sec-
tion describes the major categories of memory errors. Each category lists different types of memory 
errors, including a small code example demonstrating each error, and a list of possible symptoms that 
you might observe. Note that a symptom is not the same thing as a bug: a symptom is an observable 
behavior caused by a bug.

Memory-Freeing Errors
The following table summarizes five major errors that involve freeing memory:

ERROR TYPE SYMPTOMS EXAMPLE

Memory leak Process memory usage 
grows over time.

Process runs more slowly 
over time.

Eventually, depending on 
the OS, operations and 
system calls fail because 
of lack of memory.

void memoryLeak()
{
  int* p { new int[1000] };
  return; // BUG! Not freeing p
}
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ERROR TYPE SYMPTOMS EXAMPLE

Using 
mismatched 
allocation and 
free operations

Does not usually cause a 
crash immediately.

This type of error can 
cause memory corruption 
on some platforms, which 
might show up as a crash 
later in the program.

Certain mismatches can 
also cause memory leaks.

void mismatchedFree()
{
  int* p1 { (int*)malloc(sizeof(int)) };
  int* p2 { new int };
  int* p3 { new int[1000] };
  delete p1;   // BUG! Should use free()
  delete[] p2; // BUG! Should use delete
  free(p3);    // BUG! Should use delete[]
}

Freeing  
memory 
more than  
once

Can cause a crash if the 
memory at that location 
has been handed out 
in another allocation 
between the two calls 
to delete.

void doubleFree()
{
  int* p1 { new int[1000] };
  delete[] p1;
  int* p2 { new int[1000] };
  delete[] p1; // BUG! freeing p1 twice
} // BUG! Leaking memory of p2

Freeing 
unallocated  
memory

Will usually cause a crash. void freeUnallocated()
{
  int* p{reinterpret_cast<int*>(10000)};
  delete p; // BUG! p not a valid pointer
}

Freeing 
stack memory

Technically a special case 
of freeing unallocated 
memory. This will usually 
cause a crash.

void freeStack()
{
  int x;
  int* p { &x };
  delete p; // BUG! Freeing stack memory
}

The crashes mentioned in this table can have different manifestations depending on your platform, 
such as segmentation faults, bus errors, access violations, and so on.

As you can see, some of the errors do not cause immediate program termination. These bugs are more 
subtle, leading to problems later in the program’s execution.

Memory-Access Errors
Another category of memory errors involves the actual reading and writing of memory:

ERROR TYPE SYMPTOMS EXAMPLE

Accessing 
invalid memory

Almost always 
causes the 
program to crash 
immediately.

void accessInvalid()
{
  int* p { reinterpret_cast<int*>(10000) };
  *p = 5; // BUG! p is not a valid pointer
}

continues
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ERROR TYPE SYMPTOMS EXAMPLE

Accessing 
freed memory

Does not 
usually cause a 
program crash.

If the memory 
has been handed 
out in another 
allocation, this 
error type can 
cause “strange” 
and potentially 
dangerous 
values to appear 
unexpectedly.

void accessFreed()
{
  int* p1 { new int };
  delete p1;
  int* p2 { new int };
  *p1 = 5; // BUG! The memory pointed to
           // by p1 has been freed
}

Accessing memory 
in a different 
allocation

Does not 
cause a crash.

This error type 
can cause 
“strange” and 
potentially 
dangerous 
values to appear 
unexpectedly.

void accessElsewhere()
{
  int x, y[10], z;
  x = 0;
  z = 0;
  for (int i { 0 }; i <= 10; i++) {
    y[i] = 5; // BUG for i==10! element 10
              // is past end of array
  }
}

Reading uninitialized  
memory

Does not cause 
a crash, unless 
you use the 
uninitialized value 
as a pointer and 
dereference it (as 
in the example). 
Even then, it 
will not always 
cause a crash.

void readUninitialized()
{
  int* p;
  cout << *p; // BUG! p is uninitialized
}

Memory-access errors don’t always cause a crash. They can instead lead to subtle errors, in which 
the program does not terminate but instead produces erroneous results. Erroneous results can lead 
to serious consequences, for example, when external devices (such as robotic arms, X-ray machines, 
radiation treatments, life support systems, and so on) are being controlled by the computer.

Note that the symptoms discussed here for both memory-freeing and memory-access errors are the 
default symptoms for release builds of your program. Debug builds will most likely behave differ-
ently, and when you run the program inside a debugger, the debugger might break into the code when 
an error occurs.

TABLE (continued)
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Tips for Debugging Memory Errors
Memory-related bugs often show up in slightly different places in the code each time you run the 
program. This is usually the case with free store memory corruption. Free store memory corruption is 
like a time bomb, ready to explode at some attempt to allocate, free, or use memory on the free store. 
So, when you see a bug that is reproducible but that shows up in slightly different places, you should 
suspect memory corruption.

If you suspect a memory bug, your best option is to use a memory-checking tool for C++. Debuggers 
often provide options to run the program while checking for memory errors. For example, if you run 
a debug build of your application in the Microsoft Visual C++ debugger, it will catch almost all types 
of errors discussed in the previous sections. Additionally, there are some excellent third-party tools 
such as Purify from Rational Software (now owned by IBM) and Valgrind for Linux (discussed in 
Chapter 7). Microsoft also provides a free download called Application Verifier (Part of the Win-
dows 10 SDK, developer.microsoft.com/windows/downloads/windows‑10‑sdk), which can be 
used with release builds of your applications in a Windows environment. It is a run-time verification 
tool to help you find subtle programming errors like the previously discussed memory errors. These 
debuggers and tools work by interposing their own memory-allocation and -freeing routines to check 
for any misuse of dynamic memory, such as freeing unallocated memory, dereferencing unallocated 
memory, or writing off the end of an array.

If you don’t have a memory-checking tool at your disposal and the normal strategies for debugging 
are not helping, you may need to resort to code inspection. First, narrow down the part of the code 
containing the bug. Then, as a general rule, look at all raw pointers. Provided that you work on 
moderate- to good-quality code, most pointers should already be wrapped in smart pointers. If you 
do encounter raw pointers, take a closer look at how they are used, because they might be the cause 
of the error. Here are some more items to look for in your code.

Object and Class-Related Errors
➤➤ Verify that your classes with dynamically allocated memory have destructors that free exactly 

the memory that’s allocated in the object: no more, and no less.

➤➤ Ensure that your classes handle copying and assignment correctly with copy constructors and 
assignment operators, as described in Chapter 9, “Mastering Classes and Objects.” Make sure 
move constructors and move assignment operators properly set pointers in the source object 
to nullptr so that their destructors don’t try to free that memory.

➤➤ Check for suspicious casts. If you are casting a pointer to an object from one type to another, 
make sure that it’s valid. When possible, use dynamic_casts.

WARNING Whenever you see raw pointers being used to handle ownership 
of resources, I highly recommend you replace those raw pointers with smart 
pointers and try to refactor your classes to follow the rule of zero, as discussed in 
Chapter 9. This removes the types of errors explained in the first and second bullet 
points in the preceding list.

http://developer.microsoft.com/windows/downloads/windows-10-sdk
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General Memory Errors
➤➤ Make sure that every call to new is matched with exactly one call to delete and every call 

to new[] is matched with one call to delete[]. Similarly, every call to malloc, alloc, or 
calloc should be matched with one call to free. To avoid freeing memory multiple times 
or using freed memory, it’s recommended to set your pointer to nullptr after freeing its 
memory. Of course, the best solution is to simply avoid using raw pointers to handle owner-
ship of resources and instead use smart pointers.

➤➤ Check for buffer overruns. Whenever you iterate over an array or write into or read from a 
C-style string, verify that you are not accessing memory past the end of the array or string. 
These problems can often be avoided by using Standard Library containers and strings.

➤➤ Check for dereferencing of invalid pointers.

➤➤ When declaring a pointer on the stack, make sure you always initialize it as part of its decla-
ration. For example, use T* p{nullptr}; or T* p{new T}; but never T* p;. Better yet, use 
smart pointers!

➤➤ Similarly, make sure your classes always initialize pointer data members with in-class initial-
izers or in their constructors, by either allocating memory in the constructor or setting the 
pointers to nullptr. Also here, the best solution is to use smart pointers.

Debugging Multithreaded Programs
C++ includes a threading support library that provides mechanisms for threading and synchroniza-
tion between threads. This threading support library is discussed in Chapter 27. Multithreaded C++ 
programs are common, so it is important to think about the special issues involved in debugging a 
multithreaded program. Bugs in multithreaded programs are often caused by variations in timings in 
the operating system scheduling, and can be difficult to reproduce. Thus, debugging multithreaded 
programs requires a special set of techniques:

➤➤ Use a debugger: A debugger makes it relatively easy to diagnose certain multithreaded prob-
lems, for example, deadlocks. When the deadlock appears, break into the debugger and 
inspect the different threads. You will be able to see which threads are blocked and on which 
line in the code they are blocked. Combining this with trace logs that show you how you 
came into the deadlock situation should be enough to fix deadlocks.

➤➤ Use log-based debugging: When debugging multithreaded programs, log-based debugging 
can sometimes be more effective than using a debugger to debug certain problems. You can 
add log statements to your program before and after critical sections, and before acquiring 
and after releasing locks. Log-based debugging is extremely useful in investigating race con-
ditions. However, the act of adding log statements slightly changes run-time timings, which 
might hide the bug.

➤➤ Insert forced sleeps and context switches: If you are having trouble consistently reproducing 
the problem or you have a hunch about the root cause but want to verify it, you can force 
certain thread-scheduling behavior by making your threads sleep for specific amounts of time. 
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<thread> defines sleep_until() and sleep_for() in the std::this_thread namespace, 
which you can use to sleep. The time to sleep is specified as an std::time_point or an 
std::duration respectively, both part of the chrono library discussed in Chapter 22, “Date 
and Time Utilities.” Sleeping for several seconds right before releasing a lock, immediately 
before signaling a condition variable, or directly before accessing shared data can reveal race 
conditions that would otherwise go undetected. If this debugging technique reveals the root 
cause, it must be fixed so that it works correctly after removing these forced sleeps and con-
text switches. Never leave these forced sleeps and context switches in your code! That would 
be the wrong “fix” for the problem.

➤➤ Perform code review: Reviewing your thread synchronization code often helps in finding and 
fixing race conditions. Try to prove over and over that what happened is not possible, until 
you see how it is. It doesn’t hurt to write down these “proofs” in code comments. Also, ask a 
co-worker to do pair debugging; she might see something you are overlooking.

Debugging Example: Article Citations
This section presents a buggy program and shows you the steps to take in order to debug it and fix 
the problem.

Suppose that you’re part of a team writing a web page that allows users to search for the research 
articles that cite a particular paper. This type of service is useful for authors who are trying to find 
work similar to their own. Once they find one paper representing a related work, they can look for 
every paper that cites that one to find other related work.

In this project, you are responsible for the code that reads the raw citation data from text files. For 
simplicity, assume that the citation information for each paper is found in its own file. Furthermore, 
assume that the first line of each file contains the author, title, and publication information for the 
paper; that the second line is always empty; and that all subsequent lines contain the citations from 
the article (one on each line). Here is an example file for one of the most important papers in com-
puter science:

Alan Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem",  
Proceedings of the London Mathematical Society, Series 2, Vol.42 (1936‑37), 230‑265.
 
Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter 
Systeme, I", Monatshefte Math. Phys., 38 (1931), 173‑198.
Alonzo Church. "An unsolvable problem of elementary number theory", American J. of 
Math., 58 (1936), 345‑363.
Alonzo Church. "A note on the Entscheidungsproblem", J. of Symbolic Logic, 1 
(1936), 40‑41.
E.W. Hobson, "Theory of functions of a real variable (2nd ed., 1921)", 87‑88.

Buggy Implementation of an ArticleCitations Class
You may decide to structure your program by writing an ArticleCitations class that reads the file 
and stores the information. This class stores the article information from the first line in one string, 
and the citations in a C-style array of strings.
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WARNING The design decision to use a C-style array is obviously a bad one! You 
should opt for one of the Standard Library containers to store the citations. This 
is just used here as a demonstration of memory problems. There are other obvious 
issues with this implementation, such as using int instead of size_t, and not 
using the copy-and-swap idiom (see Chapter 9) to implement the assignment oper-
ator. But, for the purpose of illustrating a buggy application, it’s perfect.

The ArticleCitations class definition, defined in an article_citations module, looks like this:

export class ArticleCitations
{
    public:
        ArticleCitations(std::string_view filename);
        virtual ~ArticleCitations();
        ArticleCitations(const ArticleCitations& src);
        ArticleCitations& operator=(const ArticleCitations& rhs);
 
        const std::string& getArticle() const;
        int getNumCitations() const;
        const std::string& getCitation(int i) const;
    private:
        void readFile(std::string_view filename);
        void copy(const ArticleCitations& src);
 
        std::string m_article;
        std::string* m_citations;
        int m_numCitations;
};

The implementation is as follows. Keep in mind that this program is buggy! Don’t use it verbatim or 
as a model.

ArticleCitations::ArticleCitations(string_view filename)
{
    // All we have to do is read the file.
    readFile(filename);
}
 
ArticleCitations::ArticleCitations(const ArticleCitations& src)
{
    copy(src);
}
 
ArticleCitations& ArticleCitations::operator=(const ArticleCitations& rhs)
{
    // Check for self‑assignment.
    if (this == &rhs) {
        return *this;
    }
    // Free the old memory.
    delete [] m_citations;
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    // Copy the data.
    copy(rhs);
    return *this;
}
 
void ArticleCitations::copy(const ArticleCitations& src)
{
    // Copy the article name, author, etc.
    m_article = src.m_article;
    // Copy the number of citations.
    m_numCitations = src.m_numCitations;
    // Allocate an array of the correct size.
    m_citations = new string[m_numCitations];
    // Copy each element of the array.
    for (int i { 0 }; i < m_numCitations; i++) {
        m_citations[i] = src.m_citations[i];
    }
}
 
ArticleCitations::~ArticleCitations()
{
    delete [] m_citations;
}
 
void ArticleCitations::readFile(string_view filename)
{
    // Open the file and check for failure.
    ifstream inputFile { filename.data() };
    if (inputFile.fail()) {
        throw invalid_argument { "Unable to open file" };
    }
    // Read the article author, title, etc. line.
    getline(inputFile, m_article);
 
    // Skip the whitespace before the citations start.
    inputFile >> ws;
 
    int count { 0 };
    // Save the current position so we can return to it.
    streampos citationsStart { inputFile.tellg() };
    // First count the number of citations.
    while (!inputFile.eof()) {
        // Skip whitespace before the next entry.
        inputFile >> ws;
        string temp;
        getline(inputFile, temp);
        if (!temp.empty()) {
            ++count;
        }
    }
 
    if (count != 0) {
        // Allocate an array of strings to store the citations.
        m_citations = new string[count];

continues
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        m_numCitations = count;
        // Seek back to the start of the citations.
        inputFile.seekg(citationsStart);
        // Read each citation and store it in the new array.
        for (count = 0; count < m_numCitations; ++count) {
            string temp;
            getline(inputFile, temp);
            if (!temp.empty()) {
                m_citations[count] = temp;
            }
        }
    } else {
        m_numCitations = ‑1;
    }
}
 
const string& ArticleCitations::getArticle() const { return m_article; }
 
int ArticleCitations::getNumCitations() const { return m_numCitations; }
 
const string& ArticleCitations::getCitation(int i) const { return m_citations[i]; }

Testing the ArticleCitations Class
The following program asks the user for a filename, constructs an ArticleCitations instance for 
that file, and passes this instance by value to the processCitations() function, which prints out all 
the information:

void processCitations(ArticleCitations cit)
{
    cout << cit.getArticle() << endl;
    for (int i { 0 }; i < cit.getNumCitations(); i++) {
        cout << cit.getCitation(i) << endl;
    }
}
 
int main()
{
    while (true) {
        cout << "Enter a file name (\"STOP\" to stop): ";
        string filename;
        cin >> filename;
        if (filename == "STOP") { break; }
 
        ArticleCitations cit { filename };
        processCitations(cit);
    }
}

You decide to test the program on the Alan Turing example (stored in a file called paper1.txt). Here 
is the output:

Enter a file name ("STOP" to stop): paper1.txt
Alan Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem",  

(continued)
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Proceedings of the London Mathematical Society, Series 2, Vol.42 (1936‑37), 230‑265.
[ 4 empty lines omitted for brevity ]
Enter a file name ("STOP" to stop): STOP

That doesn’t look right. There are supposed to be four citations printed instead of four blank lines.

Message-Based Debugging
For this bug, you decide to try log-based debugging, and because this is a console application, you 
decide to just print messages to cout. In this case, it makes sense to start by looking at the function 
that reads the citations from the file. If that doesn’t work right, then obviously the object won’t have 
the citations. You can modify readFile() as follows:

void ArticleCitations::readFile(string_view filename)
{
    // Code omitted for brevity.
 
    // First count the number of citations.
    cout << "readFile(): counting number of citations" << endl;
    while (!inputFile.eof()) {
        // Skip whitespace before the next entry.
        inputFile >> ws;
        string temp;
        getline(inputFile, temp);
        if (!temp.empty()) {
            cout << "Citation " << count << ": " << temp << endl;
            ++count;
        }
    }
 
    cout << "Found " << count << " citations" << endl;
    cout << "readFile(): reading citations" << endl;
    if (count != 0) {
        // Allocate an array of strings to store the citations.
        m_citations = new string[count];
        m_numCitations = count;
        // Seek back to the start of the citations.
        inputFile.seekg(citationsStart);
        // Read each citation and store it in the new array.
        for (count = 0; count < m_numCitations; ++count) {
            string temp;
            getline(inputFile, temp);
            if (!temp.empty()) {
                cout << temp << endl;
                m_citations[count] = temp;
            }
        }
    } else {
        m_numCitations = ‑1;
    }
    cout << "readFile(): finished" << endl;
}
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Running the same test with this program gives the following output:

Enter a file name ("STOP" to stop): paper1.txt
readFile(): counting number of citations
Citation 0: Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und 
verwandter Systeme, I", Monatshefte Math. Phys., 38 (1931), 173‑198.
Citation 1: Alonzo Church. "An unsolvable problem of elementary number theory", 
American J. of Math., 58 (1936), 345‑363.
Citation 2: Alonzo Church. "A note on the Entscheidungsproblem", J. of Symbolic 
Logic, 1 (1936), 40‑41.
Citation 3: E.W. Hobson, "Theory of functions of a real variable (2nd ed., 
1921)", 87‑88.
Found 4 citations 
readFile(): reading citations
readFile(): finished
Alan Turing, "On Computable Numbers, with an Application to the Entscheidungsproblem", 
Proceedings of the London Mathematical Society, Series 2, Vol.42 (1936‑37), 230‑265.
[ 4 empty lines omitted for brevity ]
Enter a file name ("STOP" to stop): STOP

As you can see from the output, the first time the program reads the citations from the file, to count 
them, it reads them correctly. However, the second time, they are not read correctly; nothing is 
printed between “readFile(): reading citations” and “readFile(): finished” — why not? One way to 
delve deeper into this issue is to add some debugging code to check the state of the file stream after 
each attempt to read a citation:

void printStreamState(const istream& inputStream)
{
    if (inputStream.good()) { cout << "stream state is good" << endl; }
    if (inputStream.bad()) { cout << "stream state is bad" << endl; }
    if (inputStream.fail()) { cout << "stream state is fail" << endl; }
    if (inputStream.eof()) { cout << "stream state is eof" << endl; }
}
 
void ArticleCitations::readFile(string_view filename)
{
    // Code omitted for brevity.
 
    // First count the number of citations.
    cout << "readFile(): counting number of citations" << endl;
    while (!inputFile.eof()) {
        // Skip whitespace before the next entry.
        inputFile >> ws;
        printStreamState(inputFile);
        string temp;
        getline(inputFile, temp);
        printStreamState(inputFile);
        if (!temp.empty()) {
            cout << "Citation " << count << ": " << temp << endl;
            ++count;
        }
    }
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    cout << "Found " << count << " citations" << endl;
    cout << "readFile(): reading citations" << endl;
    if (count != 0) {
        // Allocate an array of strings to store the citations.
        m_citations = new string[count];
        m_numCitations = count;
        // Seek back to the start of the citations.
        inputFile.seekg(citationsStart);
        // Read each citation and store it in the new array.
        for (count = 0; count < m_numCitations; ++count) {
            string temp;
            getline(inputFile, temp);
            printStreamState(inputFile);
            if (!temp.empty()) {
                cout << temp << endl;
                m_citations[count] = temp;
            }
        }
    } else {
        m_numCitations = ‑1;
    }
    cout << "readFile(): finished" << endl;
}

When you run your program this time, you find some interesting information:

Enter a file name ("STOP" to stop): paper1.txt
readFile(): counting number of citations
stream state is good
stream state is good
Citation 0: Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und 
verwandter Systeme, I", Monatshefte Math. Phys., 38 (1931), 173‑198.
stream state is good
stream state is good
Citation 1: Alonzo Church. "An unsolvable problem of elementary number theory", 
American J. of Math., 58 (1936), 345‑363.
stream state is good
stream state is good
Citation 2: Alonzo Church. "A note on the Entscheidungsproblem", J. of Symbolic 
Logic, 1 (1936), 40‑41.
stream state is good
stream state is good
Citation 3: E.W. Hobson, "Theory of functions of a real variable (2nd ed., 
1921)", 87‑88.
stream state is eof
stream state is fail
stream state is eof
Found 4 citations 
readFile(): reading citations
stream state is fail
stream state is fail
stream state is fail
stream state is fail
readFile(): finished

continues
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Alan Turing, "On Computable Numbers, with an Application to the 
Entscheidungsproblem", Proceedings of the London Mathematical Society, Series 2, 
Vol.42 (1936‑37), 230‑265.
[ 4 empty lines omitted for brevity ]
Enter a file name ("STOP" to stop): STOP

It looks like the stream state is good until after the final citation is read for the first time. Because the 
paper1.txt file contains an empty last line, the while loop is executed one more time after hav-
ing read the last citation. In this last loop, inputFile >> ws reads the whitespace of the last line, 
which causes the stream state to become eof. Then, the code still tries to read a line using getline(), 
which causes the stream state to become fail and eof. That is expected. What is not expected is that 
the stream state remains as fail after all attempts to read the citations a second time. That doesn’t 
appear to make sense at first: the code uses seekg() to seek back to the beginning of the citations 
before reading them a second time.

Chapter 13 explains that streams maintain their error states until you clear them explicitly; seekg() 
doesn’t clear the fail state automatically. When in an error state, streams fail to read data correctly, 
which explains why the stream state is also fail after trying to read the citations a second time. A 
closer look at the code reveals that it fails to call clear() on the istream after reaching the end of 
the file. If you modify the code by adding a call to clear(), it will read the citations properly.

Here is the corrected readFile() method without the debugging cout statements:

void ArticleCitations::readFile(string_view filename)
{
    // Code omitted for brevity.
 
    if (count != 0) {
        // Allocate an array of strings to store the citations.
        m_citations = new string[count];
        m_numCitations = count;
        // Clear the stream state.
        inputFile.clear();
        // Seek back to the start of the citations.
        inputFile.seekg(citationsStart);
        // Read each citation and store it in the new array.
        for (count = 0; count < m_numCitations; ++count) {
            string temp;
            getline(inputFile, temp);
            if (!temp.empty()) {
                m_citations[count] = temp;
            }
        }
    } else {
        m_numCitations = ‑1;
    }
}

Running the same test again on paper1.txt now shows you the correct four citations.

(continued)
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Using the GDB Debugger on Linux
Now that your ArticleCitations class seems to work well on one citations file, you decide to blaze 
ahead and test some special cases, starting with a file with no citations. The file looks like this and is 
stored in a file named paper2.txt:

Author with no citations

When you try to run your program on this file, depending on your version of Linux and your com-
piler, you might get a crash that looks something like the following:

Enter a file name ("STOP" to stop): paper2.txt
terminate called after throwing an instance of 'std::bad_alloc'
  what():  std::bad_alloc
Aborted (core dumped)

The message “core dumped” means that the program crashed. This time you decide to give the 
debugger a shot. The Gnu Debugger (GDB) is widely available on Unix and Linux platforms. First, 
you must compile your program with debugging information (‑g with g++). Then you can launch 
the program under GDB. Here’s an example session using the debugger to find the root cause of this 
problem. This example assumes your compiled executable is called buggyprogram. Text that you 
have to type is shown in bold.

> gdb buggyprogram
[ Start-up messages omitted for brevity ]
Reading symbols from /home/marc/c++/gdb/buggyprogram...done.
(gdb) run
Starting program: buggyprogram
Enter a file name ("STOP" to stop): paper2.txt
terminate called after throwing an instance of 'std::bad_alloc'
  what():  std::bad_alloc
Program received signal SIGABRT, Aborted.
0x00007ffff7535c39 in raise () from /lib64/libc.so.6
(gdb)

When the program crashes, the debugger breaks the execution and allows you to poke around in the 
state of the program at that time. The backtrace or bt command shows the current stack trace. The 
last operation is at the top, with frame number zero (#0).

(gdb) bt
#0  0x00007ffff7535c39 in raise () from /lib64/libc.so.6
#1  0x00007ffff7537348 in abort () from /lib64/libc.so.6
#2  0x00007ffff7b35f85 in __gnu_cxx::__verbose_terminate_handler() () from /lib64/
libstdc++.so.6
#3  0x00007ffff7b33ee6 in ?? () from /lib64/libstdc++.so.6
#4  0x00007ffff7b33f13 in std::terminate() () from /lib64/libstdc++.so.6
#5  0x00007ffff7b3413f in __cxa_throw () from /lib64/libstdc++.so.6
#6  0x00007ffff7b346cd in operator new(unsigned long) () from /lib64/libstdc++.so.6
#7  0x00007ffff7b34769 in operator new[](unsigned long) () from  
/lib64/libstdc++.so.6
#8  0x00000000004016ea in ArticleCitations::copy (this=0x7fffffffe090, src=...) at 
ArticleCitations.cpp:40

continues
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#9  0x00000000004015b5 in ArticleCitations::ArticleCitations 
(this=0x7fffffffe090, src=...)
    at ArticleCitations.cpp:16
#10 0x0000000000401d0c in main () at ArticleCitationsTest.cpp:20

When you get a stack trace like this, you should try to find the first stack frame from the top that 
is in your own code. In this example, this is stack frame #8. From this frame, you can see that there 
seems to be a problem in the copy() method of ArticleCitations. This method is invoked because 
main() calls processCitations() and passes the argument by value, which triggers a call to the 
copy constructor, which calls copy(). Of course, in production code you should pass a reference-to-
const, but pass-by-value is used in this example of a buggy program. You can tell the debugger to 
switch to stack frame #8 with the frame command, which requires the index of the frame that you 
want to jump to:

(gdb) frame 8
#8  0x00000000004016ea in ArticleCitations::copy (this=0x7fffffffe090, src=...) at 
ArticleCitations.cpp:40
40    m_citations = new string[m_numCitations];

This output shows that the following line caused a problem:

m_citations = new string[m_numCitations];

Now, you can use the list command to show the code in the current stack frame around the 
offending line:

(gdb) list
35    // Copy the article name, author, etc.
36    m_article = src.m_article;
37    // Copy the number of citations.
38    m_numCitations = src.m_numCitations;
39    // Allocate an array of the correct size.
40    m_citations = new string[m_numCitations];
41    // Copy each element of the array.
42    for (int i { 0 }; i < m_numCitations; i++) {
43        m_citations[i] = src.m_citations[i];
44    }

In GDB, you can print values available in the current scope with the print command. To find the 
root cause of the problem, you can try printing some of the variables. The error happens inside the 
copy() method, so checking the value of the src parameter is a good start:

(gdb) print src
$1 = (const ArticleCitations &) @0x7fffffffe060: {
  _vptr.ArticleCitations = 0x401fb0 <vtable for ArticleCitations+16>, 
  m_article = "Author with no citations", m_citations = 0x7fffffffe080,
  m_numCitations = ‑1}

A-ha! Here’s the problem. This article isn’t supposed to have any citations. Why is m_numCitations 
set to the strange value ‑1? Take another look at the code in readFile() for the case where there are 
no citations. In that case, it looks like m_numCitations is erroneously set to ‑1. The fix is easy: you 
always need to initialize m_numCitations to 0, instead of setting it to ‑1 when there are no citations. 

(continued)
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Another problem is that readFile() can be called multiple times on the same ArticleCitations 
object, so you also need to free a previously allocated m_citations array. Here is the fixed code:

void ArticleCitations::readFile(string_view filename)
{
    // Code omitted for brevity.
 
    delete [] m_citations;  // Free previously allocated citations.
    m_citations = nullptr;
    m_numCitations = 0;
    if (count != 0) {
        // Allocate an array of strings to store the citations.
        m_citations = new string[count];
        m_numCitations = count;
        // Clear the stream state.
        inputFile.clear();
        // Seek back to the start of the citations.
        inputFile.seekg(citationsStart);
 
        // Code omitted for brevity.
    }
}

As this example shows, bugs don’t always show up right away. It often takes a debugger and some 
persistence to find them.

Using the Visual C++ 2019 Debugger
This section explains the same debugging procedure as described in the previous section but uses the 
Microsoft Visual C++ 2019 debugger instead of GDB.

First, you need to create a project. Either click the Create A New Project button in the Visual Studio 
2019 welcome’s screen, or select File ➪ New ➪ Project. In the Create A New Project dialog, search 
for the Console App project template with tags C++, Windows, and 
Console, and click Next. Enter ArticleCitations as the name for the 
project, choose a folder where to save the project, and click Create. 
Once your project is created, you can see a list of project files in the 
Solution Explorer. If this docking window is not visible, select View 
➪ Solution Explorer. The project will already contain a file called 
ArticleCitations.cpp. Select this file in the Solution Explorer and 
delete it, as you will add your own files.

Now let’s add our files. Right-click the ArticleCitations project in 
the Solution Explorer and select Add ➪ Existing Item. Add all the 
files from the 06_ArticleCitations\06_VisualStudio folder in 
the downloadable source code archive to the project. Your Solution 
Explorer should look similar to Figure 31-1.

This example uses C++20 features which are not yet enabled by default in Visual C++ 2019. To 
enable them, right-click the ArticleCitations project in the Solution Explorer window and click 
Properties. In the Properties window, select Configuration Properties ➪ C/C++ ➪ Language, and set 

FIGURE 31-1 



1078 ❘ CHAPTER 31  Conquering Debugging

the C++ Language Standard option to ISO C++20 Standard or Preview - Features From The Latest 
C++ Working Draft, whichever is available in your version of Visual C++. (The ISO C++20 Standard 
option is not currently there yet, but it will appear in a future update of Visual C++.)

Make sure the configuration is set to Debug and not Release and then compile the whole program. 
Select Build ➪ Build Solution. Then copy the paper1.txt and paper2.txt test files to your Article‑
Citations project folder, which is the folder containing the ArticleCitations.vcxproj file.

Run the application with Debug ➪ Start Debugging, and test the program by first specifying the 
paper1.txt file. It should properly read the file and output the result to the console. Then, test 
paper2.txt. The debugger breaks the execution with a message similar to Figure 31-2.

This shows that an std::bad_array_new_length exception is thrown. However, the code shown is 
not code you have written. To find out your line of code that caused the exception, you can use the 
call stack window (Debug ➪ Windows ➪ Call Stack). In this call stack, you need to find the first line 
that contains code that you wrote. This is shown in Figure 31-3.

Just as with GDB, you see that the problem is in copy(). You can double-click that line in the call 
stack window to jump to the right place in the code.

FIGURE 31-2 

FIGURE 31-3 
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You can now inspect variables by simply hovering your mouse over the name of a variable. If you 
hover over src, you’ll notice that m_numCitations is ‑1. The reason and the fix are the same as in 
the GDB example.

Instead of hovering over variables to inspect their values, you can also use the Debug ➪ Windows 
➪ Autos window, which shows a list of variables. Figure 31-4 shows this list with the src variable 
expanded to show its data members. From this window, you can also see that m_numCitations is ‑1.

Lessons from the ArticleCitations Example
You might be inclined to disregard this example as too small to be representative of real debugging. 
Although the buggy code is not lengthy, many classes that you write will not be much bigger, even 
in large projects. Imagine if you had failed to test this example thoroughly before integrating it with 
the rest of the project. If these bugs showed up later, you and other engineers would spend more time 
narrowing down the problem before you could debug it as shown here. Additionally, the techniques 
shown in this example apply to all debugging, whether on a large or small scale.

SUMMARY

The most important concept in this chapter is the fundamental law of debugging: avoid bugs when 
you’re coding, but plan for bugs in your code. The reality of programming is that bugs will appear. 
If you’ve prepared your program properly, with error logging, debug traces, and assertions, then the 
actual debugging will be significantly easier.

This chapter also presented specific approaches for debugging bugs. The most important rule when 
debugging is to reproduce the problem. Then, you can use a symbolic debugger, or log-based debug-
ging, to track down the root cause. Memory errors present particular difficulties and account for the 
majority of bugs in legacy C++ code. This chapter described various categories of memory bugs and 
their symptoms and showed examples of debugging errors in a program.

Debugging is a hard skill to learn. To take your C++ skills to a professional level, you will have to 
practice debugging a lot.

FIGURE 31-4 
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EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 31-1: What is the fundamental law of debugging?

Exercise 31-2: Can you spot any problems with the following piece of code?

import <iostream>;
using namespace std;
 
int* getData(int value) { return new int { value * 2 }; }
 
int main()
{
    int* data { getData(21) };
    cout << *data << endl;
 
    data = getData(42);
    cout << *data << endl;
}

Exercise 31-3: Given the following code snippet:

import <iostream>;
using namespace std;
 
int sum(int* values, int count)
{
    int total { 0 };
    for (int i { 0 }; i <= count; ++i) { total += values[i]; }
    return total;
}
 
int main()
{
    int values[] { 1, 2, 3 };
    int total { sum(values, size(values)) };
    cout << total << endl;
}

It simply calculates the sum of a set of values. For the values 1, 2, and 3, you expect the sum 
to be 6; however, when running a debug version of the code on my machine, the result is 
-858993454. What’s going on? Use a symbolic debugger and its step-by-step execution mode 
to pinpoint the root cause of the wrong result. Consult the documentation of your debugger 
to learn how to step through individual lines of your code.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 31-4: (advanced) Modify the start-time debug mode example from earlier in 
this chapter to use the C++20 std::source_location class, discussed in Chapter 14, to 
get rid of the old-style log() macro. This is trickier than it sounds. The problem is that 
Logger::log() is a variadic function template, so you cannot just add a named source_
location parameter after the variadic parameter pack. The trick is to use a helper class, for 
example Log. The constructor accepts a variadic parameter pack and a source_location 
and forwards the work to Logger::log(). The final part of the trick is the following deduc-
tion guide; see Chapter 12, “Writing Generic Code with Templates”:

template <typename... Ts>
log(Ts&&...) ‑> log<Ts...>;





32
Incorporating Design 
Techniques and Frameworks

WHAT’S IN THIS CHAPTER?

➤➤ An overview of C++ language features that are common, but for 
which you might have forgotten the syntax

➤➤ What RAII is and why it is a powerful concept

➤➤ What the double dispatch technique is and how to use it

➤➤ How to use mixin classes

➤➤ What frameworks are

➤➤ The model-view-controller paradigm

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the Download  
Code tab.

One of the major themes of this book has been the adoption of reusable techniques and 
patterns. As a programmer, you tend to face similar problems repeatedly. With an arsenal of 
diverse approaches, you can save yourself time by applying the proper technique to a 
given problem.

A design technique is a standard approach for solving a particular problem in C++. Often, a 
design technique aims to overcome an annoying feature or language deficiency. Other times, a 
design technique is a piece of code that you use in many different programs to solve a common 
C++ problem.

http://www.wiley.com/go/proc++5e
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This chapter focuses on design techniques—C++ idioms that aren’t necessarily built-in parts of the 
language but are nonetheless frequently used. The first part of this chapter covers the language 
features in C++ that are common, but for which you might have forgotten the syntax. This material is 
a review, but it is a useful reference tool when the syntax escapes you. The topics covered include the 
following:

➤➤ Starting a class from scratch

➤➤ Extending a class by deriving from it

➤➤ Writing a lambda expression

➤➤ Implementing the copy-and-swap idiom

➤➤ Throwing and catching exceptions

➤➤ Writing to a file

➤➤ Reading from a file

➤➤ Defining a class template

➤➤ Constraining class and function template parameters

The second part of this chapter focuses on higher-level techniques that build upon C++ language 
features. These techniques offer a better way to accomplish everyday programming tasks. Topics 
include the following:

➤➤ Resource Acquisition Is Initialization (RAII)

➤➤ The double dispatch technique

➤➤ Mixin classes

The chapter concludes with an introduction to frameworks, a coding technique that greatly eases the 
development of large applications.

“I CAN NEVER REMEMBER HOW TO. . .”

Chapter 1, “A Crash Course in C++ and the Standard Library,” compares the size of the C standard to 
the size of the C++ standard. It is possible, and somewhat common, for a C programmer to memorize 
the entire C language. The keywords are few, the language features are minimal, and the behaviors 
are well defined. This is not the case with C++. Even C++ experts need to look things up sometimes. 
With that in mind, this section presents examples of coding techniques that are used in almost all C++ 
programs. When you remember the concept but forgot the syntax, turn to the following sections for a 
refresher.

. . .Write a Class
Don’t remember how to get started? No problem—here is the definition of a Simple class defined in 
a C++20 module interface file:

export module simple;
 
// A simple class that illustrates class definition syntax.
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export class Simple
{
    public:
        Simple();                             // Constructor
        virtual ~Simple() = default;          // Defaulted virtual destructor
 
        // Disallow assignment and pass-by-value.
        Simple(const Simple& src) = delete;
        Simple& operator=(const Simple& rhs) = delete;
 
        // Explicitly default move constructor and move assignment operator.
        Simple(Simple&& src) noexcept = default;
        Simple& operator=(Simple&& rhs) noexcept = default;
 
        virtual void publicMethod();          // Public method
        int m_publicInteger;                  // Public data member
 
    protected:
        virtual void protectedMethod();       // Protected method
        int m_protectedInteger { 41 };        // Protected data member
 
    private:
        virtual void privateMethod();         // Private method
        int m_privateInteger { 42 };          // Private data member
        static const int Constant { 2 };      // Private constant
        static inline int ms_staticInt { 3 }; // Private static data member
};

NOTE This class definition shows some things that are possible but not recom-
mended. In your own class definitions, you should avoid having public or  
protected data members. A class should encapsulate its data; hence, you should 
make data members private and provide public or protected getter and setter 
methods.

As Chapter 10, “Discovering Inheritance Techniques,” explains, it’s a good idea to always make at 
least your destructor virtual in case someone wants to derive from your class. It’s allowed to leave 
the destructor non-virtual, but only if you mark your class as final so that no other classes can 
derive from it. If you only want to make your destructor virtual but you don’t need any code inside 
the destructor, then you can explicitly default it, as in the Simple class example.

This example also demonstrates that you can explicitly delete or default special member functions. 
The copy constructor and copy assignment operator are deleted to prevent pass-by-value and assign-
ment, while the move constructor and move assignment operator are explicitly defaulted.

Next, here is the module implementation file:

module simple;
 
Simple::Simple() : m_publicInteger { 40 }
{
    // Implementation of constructor

continues
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}
 
void Simple::publicMethod() { /* Implementation of public method */ }
void Simple::protectedMethod() { /* Implementation of protected method */ }
void Simple::privateMethod() { /* Implementation of private method */ }

NOTE Class method definitions can also appear directly in the module interface 
file as demonstrated in the next section. You are not required to split a class up 
into a module interface file and a module implementation file.

Chapters 8, “Gaining Proficiency with Classes and Objects,” and 9, “Mastering Classes and Objects,” 
provide all the details for writing your own classes.

. . .Derive from an Existing Class
To derive from an existing class, you declare a new class that is an extension of another class.  
Here is the definition for a class called DerivedSimple, deriving from Simple, and defined in a 
derived_simple module:

export module derived_simple;
 
export import simple; 
 
// A class derived from the Simple class.
export class DerivedSimple : public Simple
{
    public:
        DerivedSimple() : Simple{} // Constructor
        { /* Implementation of constructor */ }
 
        void publicMethod() override // Overridden method
        {
            // Implementation of overridden method
            Simple::publicMethod(); // You can access base class implementations.
        }
 
        virtual void anotherMethod() // New method
        { /* Implementation of new method */ }
};

Consult Chapter 10 for details on inheritance techniques.

. . .Write a Lambda Expression
Lambda expressions allow you to write small anonymous inline functions. They are especially power-
ful in combination with the C++ Standard Library algorithms. The following code snippet shows an 
example. It uses the count_if() algorithm and a lambda expression to count the number of even 
values in a vector. Additionally, the lambda expression captures the callCount variable by reference 
from its enclosing scope to keep track of the number of times it gets called.

(continued)
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vector values { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
int callCount { 0 };
auto count { count_if(begin(values), end(values),
    [&callCount](int value) {
        ++callCount; 
        return value % 2 == 0;
    })
};
cout << format("There are {} even elements in the vector.", count) << endl;
cout << format("Lambda was called {} times.", callCount) << endl;

Chapter 19, “Function Pointers, Function Objects, and Lambda Expressions,” discusses lambda 
expressions in detail.

. . .Use the Copy-and-Swap Idiom
The copy-and-swap idiom is discussed in detail in Chapter 9. It’s an idiom to implement a possibly 
throwing operation on an object with a strong exception-safety guarantee, that is, all-or-nothing. You 
simply create a copy of the object, modify that copy (can be a complex algorithm, possibly throw-
ing exceptions), and finally, when no exceptions have been thrown, swap the copy with the original 
object using a non-throwing swap(). An assignment operator is an example of an operation for 
which you can use the copy-and-swap idiom. Your assignment operator first makes a local copy of 
the source object and then swaps this copy with the current object using only a non-throwing swap() 
implementation.

Here is a concise example of the copy-and-swap idiom used for a copy assignment operator. The class 
defines a copy constructor, a copy assignment operator, and a swap() method marked as noexcept.

export module copy_and_swap; 
 
export class CopyAndSwap
{
    public:
        CopyAndSwap() = default;
        virtual ~CopyAndSwap();                         // Virtual destructor
 
        CopyAndSwap(const CopyAndSwap& src);            // Copy constructor
        CopyAndSwap& operator=(const CopyAndSwap& rhs); // Copy assignment operator
 
        void swap(CopyAndSwap& other) noexcept;         // noexcept swap() method
 
    private:
        // Private data members...
};
// Standalone noexcept swap() function
export void swap(CopyAndSwap& first, CopyAndSwap& second) noexcept;

Here are the implementations:

CopyAndSwap::~CopyAndSwap() { /* Implementation of destructor. */ }
 
CopyAndSwap::CopyAndSwap(const CopyAndSwap& src)
{
    // This copy constructor can first delegate to a non-copy constructor
    // if any resource allocations have to be done. See the Spreadsheet

continues
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    // implementation in Chapter 9 for an example.
 
    // Make a copy of all data members...
}
 
void swap(CopyAndSwap& first, CopyAndSwap& second) noexcept
{
    first.swap(second);
}
 
void CopyAndSwap::swap(CopyAndSwap& other) noexcept
{
    using std::swap;  // Requires <utility>
 
    // Swap each data member, for example:
    // swap(m_data, other.m_data);
}
 
CopyAndSwap& CopyAndSwap::operator=(const CopyAndSwap& rhs)
{
    // Copy-and-swap idiom.
    auto copy { rhs };  // Do all the work in a temporary instance.
    swap(copy);         // Commit the work with only non-throwing operations.
    return *this;
}

Consult Chapter 9 for a more detailed discussion.

. . .Throw and Catch Exceptions
If you’ve been working on a team that doesn’t use exceptions (for shame!) or if you’ve gotten used to 
Java-style exceptions, the C++ syntax may escape you. Here’s a refresher that uses the built-in excep-
tion class std::runtime_error. In most larger programs, you will write your own exception classes.

import <stdexcept>;
import <iostream>;
using namespace std;
void throwIf(bool throwIt)
{
    if (throwIt) {
        throw runtime_error { "Here's my exception" };
    }
}
 
int main()
{
    try {
        throwIf(false); // Doesn't throw.
        throwIf(true);  // Throws.
    } catch (const runtime_error& e) {
        cerr << "Caught exception: " << e.what() << endl;
        return 1;
    }
}

Chapter 14, “Handling Errors,” discusses exceptions in more detail.

(continued)
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. . .Write to a File
The following program outputs a message to a file and then reopens the file and appends another 
message. Additional details can be found in Chapter 13, “Demystifying C++ I/O.”

import <iostream>;
import <fstream>;
 
using namespace std;
 
int main()
{
    ofstream outputFile { "FileWrite.out" };
    if (outputFile.fail()) {
        cerr << "Unable to open file for writing." << endl;
        return 1;
    }
    outputFile << "Hello!" << endl;
    outputFile.close();
 
    ofstream appendFile { "FileWrite.out", ios_base::app };
    if (appendFile.fail()) {
        cerr << "Unable to open file for appending." << endl;
        return 2;
    }
    appendFile << "World!" << endl;
}

. . .Read from a File
Complete details for file input are included in Chapter 13. Here is a quick sample program for file 
reading basics. It reads the file written by the program in the previous section and outputs it one 
token at a time.

import <iostream>;
import <fstream>;
import <string>;
 
using namespace std;
 
int main()
{
    ifstream inputFile { "FileWrite.out" };
    if (inputFile.fail()) {
        cerr << "Unable to open file for reading." << endl;
        return 1;
    }
 
    string nextToken;
    while (inputFile >> nextToken) {
        cout << "Token: " << nextToken << endl;
    }
}



1090 ❘ CHAPTER 32  IncorporatIng DesIgn technIques anD Frameworks

. . .Write a Class Template
Template syntax can be confusing. The most forgotten piece of the template puzzle is that code that 
uses a class template needs to be able to see the class template definition as well as the method imple-
mentations. The same holds for function templates. One technique to accomplish this is to simply put 
the class method implementations directly in the interface file containing the class template definition. 
The following example demonstrates this and implements a class template that wraps a reference to 
an object and includes a getter. Here is the module interface file:

export module simple_wrapper;
 
export template <typename T>
class SimpleWrapper
{
    public:
        SimpleWrapper(T& object) : m_object { object } { }
        T& get() { return m_object; }
    private:
        T& m_object;
};

The code can be tested as follows:

import simple_wrapper;
import <iostream>;
import <string>;
 
using namespace std;
 
int main()
{
    // Try wrapping an integer.
    int i { 7 };
    SimpleWrapper intWrapper { i };  // Using CTAD.
    // Or without class template argument deduction (CTAD).
    //SimpleWrapper<int> intWrapper { i };
    i = 2;
    cout << "wrapped value is " << intWrapper.get() << endl;
 
    // Try wrapping a string.
    string str { "test" };
    SimpleWrapper stringWrapper { str };
    str += "!";
    cout << "wrapped value is " << stringWrapper.get() << endl;
}

Details about templates can be found in Chapters 12, “Writing Generic Code with Templates,” and 
26, “Advanced Templates.”

. . .Constrain Template Parameters
With C++20’s concepts, you can put constraints on template parameters of class and function  
templates. For example, the following code snippet constrains the template type parameter T of the 
SimpleWrapper class template from the previous section to be either a floating-point or an integral 
type. Specifying a type for T that does not satisfy these constraints will cause a compilation error.

C++20
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import <concepts>;
 
export template <typename T> requires std::floating_point<T> || std::integral<T>
class SimpleWrapper
{
    public:
        SimpleWrapper(T& object) : m_object { object } { }
        T& get() { return m_object; }
    private:
        T& m_object;
};

Chapter 12 explains concepts in detail.

THERE MUST BE A BETTER WAY

As you read this paragraph, thousands of C++ programmers throughout the world are solving 
problems that have already been solved. Someone in a cubicle in San Jose is writing a smart pointer 
implementation from scratch that uses reference counting. A young programmer on a Mediterranean 
island is designing a class hierarchy that could benefit immensely from the use of mixin classes.

As a professional C++ programmer, you need to spend less of your time reinventing the wheel and 
more of your time adapting reusable concepts in new ways. This section gives some examples of 
general-purpose approaches that you can apply directly to your own programs or customize for 
your needs.

Resource Acquisition Is Initialization
Resource acquisition is initialization (RAII) is a simple yet powerful concept. It is used to acquire 
ownership of some resources and to automatically free these acquired resources when an RAII 
instance goes out of scope. This happens at a deterministic point in time. Basically, the constructor 
of a new RAII instance acquires ownership of a certain resource and initializes the instance with that 
resource, which is why it’s called resource acquisition is initialization. The destructor automatically 
frees the acquired resource when the RAII instance is destroyed.

Here is an example of a File RAII class that safely wraps a C-style file handle (std::FILE) and 
automatically closes the file when the RAII instance goes out of scope. The RAII class also provides 
get(), release(), and reset() methods that behave similarly to the same methods on certain 
Standard Library classes, such as std::unique_ptr. RAII classes usually disallow copy construction 
and copy assignment; hence, this implementation deletes those members.

#include <cstdio>
 
class File final
{
    public:
        explicit File(std::FILE* file) : m_file { file } { }
        ~File() { reset(); }
 

continues
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        // Prevent copy construction and copy assignment.
        File(const File& src) = delete;
        File& operator=(const File& rhs) = delete;
 
        // Allow move construction and move assignment.
        File(File&& src) noexcept = default;
        File& operator=(File&& rhs) noexcept = default;
 
        // get(), release(), and reset()
        std::FILE* get() const noexcept { return m_file; }
 
        [[nodiscard]] std::FILE* release() noexcept
        {
            std::FILE* file { m_file };
            m_file = nullptr;
            return file;
        }
        
        void reset(std::FILE* file = nullptr) noexcept
        {
            if (m_file) { fclose(m_file); }
            m_file = file;
        }
 
    private:
        std::FILE* m_file { nullptr };
};

It can be used as follows:

File myFile { fopen("input.txt", "r") };

As soon as the myFile instance goes out of scope, its destructor is called, and the file is automati-
cally closed.

There is one important pitfall with using RAII classes that you need to be aware of. You can acciden-
tally write a line of code that you think is properly creating an RAII instance within a certain scope, 
but that is instead creating a temporary object, which is immediately destroyed when that one line of 
code finishes. This issue is best explained with an RAII class from the Standard Library that exhibits 
this problem, std::unique_lock (see Chapter 27, “Multithreaded Programming with C++”). Proper 
use of unique_lock is as follows:

class Foo
{
    public:
        void setData()
        {
            unique_lock<mutex> lock(m_mutex);
            // ...
        }
    private:
        mutex m_mutex;
};

The setData() method uses the unique_lock RAII object to construct a local lock object that locks 
the m_mutex data member and automatically unlocks that mutex at the end of the method.

(continued)
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However, because you do not directly use the lock variable after it has been defined, it is easy to 
make the following mistake:

unique_lock<mutex>(m_mutex);

In this code, you accidentally forgot to give the unique_lock a name. This compiles, but it does 
not do what you intended it to do! It actually declares a local variable called m_mutex (hiding the 
m_mutex data member) and initializes it with a call to the unique_lock’s default constructor. The 
result is that the m_mutex data member is not locked! The compiler will give a warning, though, if the 
warning level is set high enough. Something along the lines of:

warning C4458: declaration of 'm_mutex' hides class member

If you use uniform initialization syntax as follows, the compiler doesn’t generate a warning, but it 
also does not do what you want. The following creates a temporary lock for m_mutex, but since it’s  
temporary, the lock is immediately released at the end of this statement:

unique_lock<mutex> { m_mutex };

Additionally, you could make a typo in the name passed as argument, for example as follows:

unique_lock<mutex>(m);

Here you forgot to give a name for the lock, and you made a typo in the name of the argument.  
This code simply declares a local variable called m and initializes it with the default constructor of 
unique_lock. The compiler does not even generate a warning, unless maybe a warning that m is an 
unreferenced local variable. In this case, though, if you would use uniform initialization syntax as  
follows, then the compiler issues an error complaining about an undeclared identifier m:

unique_lock<mutex> { m };

WARNING Make sure you always name your RAII instances! Additionally, it’s 
recommended not to include a default constructor in an RAII class. That avoids 
some of the issues discussed here.

Double Dispatch
Double dispatch is a technique that adds an extra dimension to the concept of polymorphism. As 
described in Chapter 5, “Designing with Objects,” polymorphism lets the program determine behav-
ior based on types at run time. For example, you could have an Animal class with a move() method. 
All Animals move, but they differ in terms of how they move. The move() method is defined for 
every derived class of Animal so that the appropriate method can be called, or dispatched, for the 
appropriate animal at run time without knowing the type of the animal at compile time. Chapter 10 
explains how to use virtual methods to implement this run-time polymorphism.

Sometimes, however, you need a method to behave according to the run-time type of two objects, 
instead of just one. For example, suppose you want to add a method to the Animal class that returns 
true if the animal eats another animal, and false otherwise. The decision is based on two factors: 
the type of animal doing the eating and the type of animal being eaten. Unfortunately, C++ provides 
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no language mechanism to choose a behavior based on the run-time type of more than one object. 
Virtual methods alone are insufficient for modeling this scenario because they determine a method, or 
behavior, depending on the run-time type of only the receiving object.

Some object-oriented languages provide the ability to choose a method at run time based on the run-
time types of two or more objects. They call this feature multimethods. In C++, however, there is no 
core language feature to support multimethods, but you can use the double dispatch technique, which 
provides a way to make functions virtual for more than one object.

NOTE Double dispatch is really a special case of multiple dispatch, in which a 
behavior is chosen depending on the run-time types of two or more objects. In 
practice, double dispatch, which chooses a behavior based on the run-time types of 
exactly two objects, is usually sufficient.

Attempt #1: Brute Force
The most straightforward way to implement a method whose behavior depends on the run-time  
types of two different objects is to take the perspective of one of the objects and use a series of 
if/else constructs to check the type of the other. For example, you could implement a method called 
eats() in each class derived from Animal that takes the other animal as a parameter. The method is 
declared pure virtual in the base class as follows:

class Animal
{
    public:
        virtual bool eats(const Animal& prey) const = 0;
};

Each derived class implements the eats() method and returns the appropriate value based on the 
type of the parameter. The implementation of eats() for several derived classes follows. Note that 
the TRex avoids the series of if/else constructs because—according to the author—a T-rex, like any 
carnivorous dinosaur, eats anything.

bool Bear::eats(const Animal& prey) const
{
    if (typeid(prey) == typeid(Bear)) {
        return false;
    } else if (typeid(prey) == typeid(Fish)) {
        return true;
    } else if (typeid(prey) == typeid(TRex)) {
        return false;
    }
    return false;
}
 
bool Fish::eats(const Animal& prey) const
{
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    if (typeid(prey) == typeid(Bear)) {
        return false;
    } else if (typeid(prey) == typeid(Fish)) {
        return true;
    } else if (typeid(prey) == typeid(TRex)) {
        return false;
    }
    return false;
}
 
bool TRex::eats(const Animal& prey) const
{
    return true;
}

This brute-force approach works, and it’s probably the most straightforward technique for a small 
number of classes. However, there are several reasons why you might want to avoid this approach.

➤➤ Object-oriented programming (OOP) purists often frown upon explicitly querying the type of 
an object because it implies a design that is lacking a proper object-oriented structure.

➤➤ As the number of types grows, such code can become messy and repetitive.

➤➤ This approach does not force derived classes to consider new types. For example, if you 
added a Donkey, the Bear class would continue to compile but would return false when 
told to eat a Donkey, even though everybody knows that bears eat donkeys. A bear would 
refuse to eat a donkey because there is no else if statement checking explicitly for Donkeys.

Attempt #2: Single Polymorphism with Overloading
You could attempt to use polymorphism with overloading to circumvent all of the cascading if/else 
constructs. Instead of giving each class a single eats() method that takes an Animal reference, why 
not overload the method for each derived class of Animal? The base class definition would look 
like this:

class Animal
{
    public:
        virtual bool eats(const Bear&) const = 0;
        virtual bool eats(const Fish&) const = 0;
        virtual bool eats(const TRex&) const = 0;
};

Because the methods are pure virtual in the base class, each derived class is forced to implement the 
behavior for every other type of Animal. For example, the Bear class contains the following methods:

class Bear : public Animal
{
    public:
        bool eats(const Bear&) const override { return false; }
        bool eats(const Fish&) const override { return true; }
        bool eats(const TRex&) const override { return false; }
};
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This approach initially appears to work, but it really solves only half of the problem. To call the 
proper eats() method on an Animal, the compiler needs to know the compile-time type of the ani-
mal being eaten. A call such as the following will be successful because the compile-time types of both 
the animal that eats and the animal that is eaten are known:

Bear myBear;
Fish myFish;
cout << myBear.eats(myFish) << endl;

The missing piece is that the solution is polymorphic in only one direction. You can access myBear 
through an Animal reference, and the correct method will be called:

Bear myBear;
Fish myFish;
Animal& animalRef { myBear };
cout << animalRef.eats(myFish) << endl;

However, the reverse is not true. If you pass an Animal reference to the eats() method, you will get 
a compilation error because there is no eats() method that takes an Animal. The compiler cannot 
determine, at compile time, which version to call. The following example does not compile:

Bear myBear;
Fish myFish;
Animal& animalRef { myFish };
cout << myBear.eats(animalRef) << endl; // BUG! No method Bear::eats(Animal&)

Because the compiler needs to know which overloaded version of the eats() method is going to be 
called at compile time, this solution is not truly polymorphic. It would not work, for example, if you 
were iterating over an array of Animal references and passing each one to a call to eats().

Attempt #3: Double Dispatch
The double dispatch technique is a truly polymorphic solution to the multiple-type problem. In C++, 
polymorphism is achieved by overriding methods in derived classes. At run time, methods are called 
based on the actual type of the object. The preceding single polymorphic attempt didn’t work because 
it attempted to use polymorphism to determine which overloaded version of a method to call instead 
of using it to determine on which class to call the method.

To begin, focus on a single derived class, perhaps the Bear class. The class needs a method with the 
following declaration:

bool eats(const Animal& prey) const override;

The key to double dispatch is to determine the result based on a method call on the argument. Sup-
pose that the Animal class has a method called eatenBy(), which takes an Animal reference as a 
parameter. This method returns true if the current Animal gets eaten by the one passed in. With such 
a method, the definition of eats() becomes simple:

bool Bear::eats(const Animal& prey) const
{
    return prey.eatenBy(*this);
}
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At first, it looks like this solution adds another layer of method calls to the single polymorphic 
method. After all, each derived class still has to implement a version of eatenBy() for every derived 
class of Animal. However, there is a key difference. Polymorphism is occurring twice! When you call 
the eats() method on an Animal, polymorphism determines whether you are calling Bear::eats(), 
Fish::eats(), or one of the others. When you call eatenBy(), polymorphism again determines 
which class’s version of the method to call. It calls eatenBy() on the run-time type of the prey 
object. Note that the run-time type of *this is always the same as the compile-time type so that the 
compiler can call the correct overloaded version of eatenBy() for the argument (in this case Bear).

The following are the class definitions for the Animal hierarchy using double dispatch. The forward 
class declarations are necessary because the base class uses references to the derived classes. Note 
that each Animal-derived class implements the eats() method in the same way, but it cannot be 
factored up into the base class. The reason is that if you attempt to do so, the compiler won’t know 
which overloaded version of the eatenBy() method to call because *this would be an Animal, not a 
particular derived class. Method overload resolution is determined according to the compile-time type 
of the object, not its run-time type.

// Forward declarations.
class Fish;
class Bear;
class TRex;
 
class Animal
{
    public:
        virtual bool eats(const Animal& prey) const = 0;
 
        virtual bool eatenBy(const Bear&) const = 0;
        virtual bool eatenBy(const Fish&) const = 0;
        virtual bool eatenBy(const TRex&) const = 0;
};
 
class Bear : public Animal
{
    public:
        bool eats(const Animal& prey) const override{ return prey.eatenBy(*this); }
 
        bool eatenBy(const Bear&) const override { return false; }
        bool eatenBy(const Fish&) const override { return false; }
        bool eatenBy(const TRex&) const override { return true; }
};
 
class Fish : public Animal
{
    public:
        bool eats(const Animal& prey) const override{ return prey.eatenBy(*this); }
 
        bool eatenBy(const Bear&) const override { return true; }
        bool eatenBy(const Fish&) const override { return true; }
        bool eatenBy(const TRex&) const override { return true; }
};
 

continues
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class TRex : public Animal
{
    public:
        bool eats(const Animal& prey) const override{ return prey.eatenBy(*this); }
 
        bool eatenBy(const Bear&) const override { return false; }
        bool eatenBy(const Fish&) const override { return false; }
        bool eatenBy(const TRex&) const override { return true; }
};

Double dispatch is a concept that takes a bit of getting used to. I suggest playing with this code to 
familiarize yourself with the concept and its implementation.

Mixin Classes
Chapters 5 and 6, “Designing for Reuse,” introduce mixin classes. They answer the question, “What 
else is this class able to do?” and the answer often ends with “-able.” Examples are Clickable,  
Drawable, Printable, Lovable, and so on. Mixin classes are a way that you can add functionality 
to a class without committing to a full is-a relationship. There are two major options to implement 
mixin classes in C++, both discussed in the next sections:

➤➤ Using multiple inheritance

➤➤ Using class templates

Using Multiple Inheritance
This section examines how to design, implement, and use a mixin class using the multiple inheritance 
technique.

Designing a Mixin Class
Mixin classes contain actual code that can be reused by other classes. A single mixin class implements 
a well-defined piece of functionality. For example, you might have a mixin class called Playable that 
is mixed into certain types of media objects. The mixin class could, for example, contain most of the 
code to communicate with the computer’s sound drivers. By mixing in the class, the media object 
would get that functionality for free.

When designing a mixin class, you need to consider what behavior you are adding and whether it 
belongs in the object hierarchy or in a separate class. Using the previous example, if all media classes 
are playable, the base class should derive from Playable instead of mixing the Playable class into 
all of the derived classes. If only certain media classes are playable and they are scattered throughout 
the hierarchy, a mixin class makes sense.

One of the cases where mixin classes are particularly useful is when you have classes organized into a 
hierarchy on one axis, but they also contain similarities on another axis. For example, consider a war 
simulation game played on a grid. Each grid location can contain an Item with attack and defense 
capabilities and other characteristics. Some items, such as a Castle, are stationary. Others, such as 
a Knight or FloatingCastle, can move throughout the grid. When initially designing the object 
hierarchy, you might end up with something like Figure 32-1, which organizes the classes according 
to their attack and defense capabilities.

(continued)
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The hierarchy in Figure 32-1 ignores the movement functionality that certain classes contain. Building 
your hierarchy around movement would result in a structure similar to Figure 32-2.

Of course, the design of Figure 32-2 throws away all the organization of Figure 32-1. What’s a good 
object-oriented programmer to do?

There are two common solutions for this problem. Assuming that you go with the first hierarchy, 
organized around attackers and defenders, you need some way to work movement into the equation. 
One possibility is that, even though only a portion of the derived classes support movement, you 
could add a move() method to the Item base class. The default implementation would do nothing, 
but certain derived classes would override move() to actually change their location on the grid.

The other approach is to write a Movable mixin class. The elegant hierarchy from Figure 32-1 could 
be preserved, but certain classes in the hierarchy would derive from Movable in addition to their par-
ent. Figure 32-3 shows this design.

FIGURE 32-1 

FIGURE 32-2 
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Implementing a Mixin Class
Writing a mixin class is no different from writing a normal class. In fact, it’s usually much simpler. 
Using the earlier war simulation, the Movable mixin class might look as follows:

class Movable
{
    public:
        virtual void move() { /* Implementation to move an item... */ }
};

This Movable mixin class implements the actual code to move an item on the grid. It also provides 
a type for Items that can be moved. This allows you to create, for example, an array of all movable 
items without knowing or caring what actual derived class of Item they belong to.

Using a Mixin Class
The code for using a mixin class is syntactically equivalent to multiple inheritance. In addition to 
deriving from your parent class in the main hierarchy, you also derive from the mixin class. Here’s 
an example:

class FloatingCastle : public Castle, public Movable { /* ... */ };

This mixes in the functionality provided by the Movable mixin class into the FloatingCastle class. 
Now you have a class that exists in the most logical place in the hierarchy, but still shares commonal-
ity with objects elsewhere in the hierarchy.

Using Class Templates
The second option to implement a mixin class in C++ is to use the so-called curiously recurring tem-
plate pattern (CRTP).

The mixin class itself is a class template accepting a template type parameter and derives itself from 
that type, which is why it’s said to be recurring.

Chapter 6 explains the mechanism for implementing a SelfDrivable mixin class template that 
can then be used to create self-drivable cars and trucks. Now that you are fluent in class templates 

FIGURE 32-3 
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(Chapters 12 and 26), the SelfDrivable mixin example from Chapter 6 should hold no surprises 
anymore. The mixin class is defined as follows:

template <typename T>
class SelfDrivable : public T { /* ... */ };

If you then have a Car and a Truck class, you can easily define a self-drivable car and truck 
as follows:

SelfDrivable<Car> selfDrivingCar;
SelfDrivable<Truck> selfDrivingTruck;

This way, functionality can be added to existing classes, Car and Truck, without having to modify 
those classes at all.

OBJECT-ORIENTED FRAMEWORKS

When graphical operating systems first came on the scene in the 1980s, procedural programming 
was the norm. At the time, writing a GUI application usually involved manipulating complex data 
structures and passing them to OS-provided functions. For example, to draw a rectangle in a window, 
you might have had to populate a Window struct with the appropriate information and pass it to a 
drawRect() function.

As object-oriented programming (OOP) grew in popularity, programmers looked for a way to apply 
the OOP paradigm to GUI development. The result is known as an object-oriented framework. 
In general, a framework is a set of classes that are used collectively to provide an object-oriented 
interface to some underlying functionality. When talking about frameworks, programmers are usu-
ally referring to large class libraries that are used for general application development. However, a 
framework can really represent functionality of any size. If you write a suite of classes that provides 
database functionality for your application, those classes could be considered a framework.

Working with Frameworks
The defining characteristic of a framework is that it provides its own set of techniques and patterns. 
Frameworks usually require a bit of learning to get started with because they have their own mental 
model. Before you can work with a large application framework, such as the Microsoft Foundation 
Classes (MFC), you need to understand its view of the world.

Frameworks vary greatly in their abstract ideas and in their actual implementation. Many frame-
works are built on top of legacy procedural APIs, which may affect various aspects of their design. 
Other frameworks are written from the ground up with object-oriented design in mind. Some frame-
works might ideologically oppose certain aspects of the C++ language. For example, a framework 
could consciously shun the notion of multiple inheritance.

When you start working with a new framework, your first task is to find out what makes it tick. To 
what design principles does it subscribe? What mental model are its developers trying to convey? 
What aspects of the language does it use extensively? These are all vital questions, even though they 
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may sound like things that you’ll pick up along the way. If you fail to understand the design, model, 
or language features of the framework, you will quickly get into situations where you overstep the 
bounds of the framework.

An understanding of the framework’s design will also make it possible for you to extend it. For exam-
ple, if the framework omits a feature, such as support for printing, you could write your own printing 
classes using the same model as the framework. By doing so, you retain a consistent model for your 
application, and you have code that can be reused by other applications.

Additionally, a framework might use certain specific data types. For example, the MFC framework 
uses the CString data type to represent strings, instead of using the Standard Library std::string 
class. This does not mean you have to switch to the data types provided by the framework for your 
entire code base. Instead, you should convert the data types on the boundaries between the frame-
work code and the rest of your code.

The Model-View-Controller Paradigm
As I mentioned earlier, frameworks vary in their approaches to object-oriented design. One common 
paradigm is known as model-view-controller (MVC). This paradigm models the notion that many 
applications commonly deal with a set of data, one or more views on that data, and manipulation 
of the data.

In MVC, a set of data is called the model. In a race car simulator, the model would keep track of 
various statistics, such as the current speed of the car and the amount of damage it has sustained. In 
practice, the model often takes the form of a class with many getters and setters. The class definition 
for the model of the race car might look as follows:

class RaceCar
{
    public:
        RaceCar();
        virtual ~RaceCar() = default;
 
        virtual double getSpeed() const;
        virtual void setSpeed(double speed);
 
        virtual double getDamageLevel() const;
        virtual void setDamageLevel(double damage);
    private:
        double m_speed { 0.0 };
        double m_damageLevel { 0.0 };
};

A view is a particular visualization of the model. For example, there could be two views on a  
RaceCar. The first view could be a graphical view of the car, and the second could be a graph that 
shows the level of damage over time. The important point is that both views are operating on the 
same data—they are different ways of looking at the same information. This is one of the main 
advantages of the MVC paradigm: by keeping data separated from its display, you can keep your 
code more organized and easily create additional views.
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The final piece to the MVC paradigm is the controller. The controller is the piece of code that 
changes the model in response to some event. For example, when the driver of the race car simulator 
runs into a concrete barrier, the controller instructs the model to bump up the car’s damage level and 
reduce its speed. The controller can also manipulate the view. For example, when the user scrolls a 
scrollbar in the user interface, the controller instructs the view to scroll its content.

The three components of MVC interact in a feedback loop. Actions are handled by the controller, 
which adjusts the model and/or views. If the model changes, it notifies the views to update them. 
Figure 32-4 shows this interaction.

The model-view-controller paradigm has gained widespread support within many popular frame-
works. Even nontraditional applications, such as web applications, are moving in the direction of 
MVC because it enforces a clear separation between data, the manipulation of data, and the display-
ing of data.

The MVC pattern has evolved into several different variants, such as model-view-presenter (MVP), 
model-view-adapter (MVA), model-view-viewmodel (MVVM), and so on.

SUMMARY

In this chapter, you read about some of the common techniques that professional C++ programmers 
use consistently in their projects. As you advance as a software developer, you will undoubtedly form 
your own collection of reusable classes and libraries. Discovering design techniques opens the door 
to developing and using patterns, which are higher-level reusable constructs. You will experience the 
many applications of patterns next in Chapter 33, “Applying Design Patterns.”

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 32-1: Write an RAII class template, Pointer, that can store a pointer to any type of 
object and automatically deletes the memory when such an RAII instance goes out of scope. 
Provide a reset() and release() method, and an overloaded operator*.

FIGURE 32-4 

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 32-2: Modify your class template from Exercise 32-1 so that it throws an exception 
if the argument given to the constructor is nullptr.

Exercise 32-3: Take your solution from Exercise 32-2 and add a method template called 
assign(), accepting an argument of type E, and assigning this argument to the data to which 
the wrapped pointer is pointing to. Add a constraint to the method template to make sure 
type E is convertible to type T.

Exercise 32-4: Write a lambda expression returning the sum of two parameters. The lambda 
expression should work with all kind of data types, such as integral types and floating-point 
types. Try out your lambda expression by calculating the sum of 11 and 22, and 1.1 and 2.2.



33
Applying Design Patterns

WHAT’S IN THIS CHAPTER?

➤➤ What a pattern is and what the difference is with a 
design technique

➤➤ How to use the following patterns:

➤➤ Dependency injection

➤➤ Abstract factory

➤➤ Factory method

➤➤ Adapter

➤➤ Proxy

➤➤ Iterator

➤➤ Observer

➤➤ Decorator

➤➤ Chain of responsibility

➤➤ Singleton

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of this chapter’s 
code download on the book’s website at www.wiley.com/go/proc++5e on the 
Download Code tab.

A design pattern is a standard approach to program organization that solves a general problem. 
Design patterns are less language-specific than are techniques. The difference between a pattern 

http://www.wiley.com/go/proc++5e
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and a technique is admittedly fuzzy, and different books employ different definitions. This book 
defines a technique as a strategy particular to the C++ language, while a pattern is a more general 
strategy for object-oriented design applicable to any object-oriented language, such as C++, C#, Java, 
or Smalltalk. In fact, if you are familiar with C# or Java programming, you will recognize many of 
these patterns.

Many patterns have several different names. The distinctions between the patterns themselves can be 
somewhat vague, with different sources describing and categorizing them slightly differently. In fact, 
depending on the books or other sources you use, you may find the same name applied to different 
patterns. There is even disagreement as to which design approaches qualify as patterns. With a few 
exceptions, this book follows the terminology used in the seminal book Design Patterns: Elements of 
Reusable Object-Oriented Software, by Erich Gamma et al. (Addison-Wesley Professional, 1994). 
However, other pattern names and variations are noted when appropriate.

The design pattern concept is a simple but powerful idea. Once you are able to recognize the recur-
ring object-oriented interactions that occur in a program, finding an elegant solution often becomes a 
matter of selecting the appropriate pattern to apply. This chapter describes several design patterns in 
detail and presents sample implementations.

Any aspect of design is likely to provoke debate among programmers, and I believe that is a good 
thing. Don’t simply accept these patterns as the only way to accomplish a task—draw on their 
approaches and ideas to refine them and form new patterns.

DEPENDENCY INJECTION

Dependency injection is one way to support the dependency inversion principle (DIP). With  
dependency injection, interfaces are used to invert dependency relationships. Interfaces are created for 
every provided service. If a component needs a set of services, interfaces to those services are injected 
into the component. Dependency injection makes unit testing easier, as you can easily mock services 
away. As an example, this section discusses a logging mechanism implemented with dependency 
injection.

Example: A Logging Mechanism
The dependency injection logger example uses an interface called ILogger. Any code that wants to 
log something uses this ILogger interface. Subsequently, a concrete implementation of this interface 
is then injected into any code that needs to be able to use the logging functionality. With this pattern, 
a unit test can, for example, inject a special mock implementation for the ILogger interface to verify 
that the right information gets logged. Additionally, concrete loggers can easily be swapped without 
having to modify any client code.

Implementation of a Dependency-Injected Logger
This implementation provides a Logger class with the following features:

➤➤ It can log single strings.

➤➤ Each log message has an associated log level, which is prefixed to the log message.
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➤➤ The logger can be set up to only log messages of a certain log level.

➤➤ Every logged message is flushed to disk so that it will appear in the file immediately.

Let’s first define the ILogger interface:

export class ILogger
{
    public:
        virtual ~ILogger() = default; // Virtual destructor.
 
        // Enumeration for the different log levels.
        enum class LogLevel {
            Error,
            Info,
            Debug
        };
 
        // Sets the log level.
        virtual void setLogLevel(LogLevel level) = 0;
 
        // Logs a single message at the given log level.
        virtual void log(std::string_view message, LogLevel logLevel) = 0;
};

Next, the Logger class is implemented as follows:

export class Logger : public ILogger
{
    public:
        explicit Logger(std::string_view logFilename);
        virtual ~Logger();
        void setLogLevel(LogLevel level) override;
        void log(std::string_view message, LogLevel logLevel) override;
    private:
        // Converts a log level to a human readable string.
        std::string_view getLogLevelString(LogLevel level) const;
 
        std::ofstream m_outputStream;
        LogLevel m_logLevel { LogLevel::Error };
};

The implementation of the Logger class is fairly straightforward. Once the log file has been  
opened, each log message is written to it with the log level prepended and then flushed to disk. The 
implementations of the methods are as follows:

Logger::Logger(string_view logFilename)
{
    m_outputStream.open(logFilename.data(), ios_base::app);
    if (!m_outputStream.good()) {
        throw runtime_error { "Unable to initialize the Logger!" };
    }
}
 
Logger::~Logger()
{

continues
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    m_outputStream << "Logger shutting down." << endl;
    m_outputStream.close();
}
 
void Logger::setLogLevel(LogLevel level)
{
    m_logLevel = level;
}
 
string_view Logger::getLogLevelString(LogLevel level) const
{
    switch (level) {
    case LogLevel::Error: return "ERROR";
    case LogLevel::Info: return "INFO";
    case LogLevel::Debug: return "DEBUG";
    }
    throw runtime_error { "Invalid log level." };
}
 
void Logger::log(string_view message, LogLevel logLevel)
{
    if (m_logLevel < logLevel) { return; }
 
    m_outputStream << format("{}: {}", getLogLevelString(logLevel), message)
        << endl;
}

Using Dependency Injection
Suppose you have a class called Foo that wants to use the logging functionality. With the depend-
ency injection pattern, a concrete ILogger instance is injected into the class, for example through the 
constructor:

class Foo
{
    public:
        explicit Foo(ILogger& logger) : m_logger { logger } { }
        void doSomething()
        {
            m_logger.log("Hello dependency injection!", ILogger::LogLevel::Info);
        }
    private:
        ILogger& m_logger;
};

If a Foo instance is created, a concrete ILogger is injected into it:

Logger concreteLogger { "log.out" };
concreteLogger.setLogLevel(ILogger::LogLevel::Debug);
 
Foo f { concreteLogger };
f.doSomething();

(continued)
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THE ABSTRACT FACTORY PATTERN

A factory in real life constructs tangible objects, such as tables or cars. Similarly, a factory in object-
oriented programming constructs objects. When you use factories in your program, portions of code 
that want to create a particular object ask the factory for an instance of the object instead of calling 
the object constructor themselves. For example, an interior decorating program might have a  
FurnitureFactory object. When part of the code needs a piece of furniture such as a table, it calls 
the createTable() method of the FurnitureFactory object, returning a new table.

At first glance, factories seem to lead to complicated designs without clear benefits. It appears that 
you’re only adding another layer of indirection to the program. Instead of calling createTable() 
on a FurnitureFactory, you could simply create a new Table object directly. However, a benefit of 
using factories is that they can be used alongside class hierarchies to construct objects without know-
ing their exact type. As you’ll see in the following example, factories can run parallel to class hierar-
chies. This is not to say they must run parallel to class hierarchies. Factories may as well just create 
any number of concrete types.

Another benefit of factories is that instead of directly creating various objects all over your code, you 
pass around factories that allow different parts of the program to create objects of the same kind for 
a particular domain.

Another reason to use a factory is when the creation of your objects requires certain information, 
states, resources, and so on, owned by the factory, and which clients of the factory should not know 
about. A factory can also be used if creating your objects requires a complex series of steps to be 
executed in the right order, or if all created objects need to be linked to other objects in a correct 
manner, and so on.

One of the main benefits is that factories abstract the object creation process; using dependency injec-
tion, you can easily substitute a different factory in your program. Just as you can use polymorphism 
with the created objects, you can use polymorphism with factories. The following example demon-
strates this.

There are two major types of factory-related patterns in object-oriented programming: the abstract 
factory pattern and the factory method pattern. This section discusses the abstract factory pattern, 
while the next section discusses the factory method pattern.

Example: A Car Factory Simulation
Imagine a factory capable of producing cars. The factory creates the type of car that is requested from 
it. First, a hierarchy is needed to represent several types of cars. Figure 33-1 introduces an ICar inter-
face with a virtual method to retrieve information about a specific car. The Toyota and Ford cars 
derive from ICar, and finally, both Ford and Toyota have a sedan and an SUV model.

Next to the car hierarchy, we need a factory hierarchy. An abstract factory just exposes an interface 
to create a sedan or an SUV independent of the brand, with concrete factories constructing concrete 
models from concrete brands. Figure 33-2 shows this hierarchy.
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Implementation of an Abstract Factory
The implementation of the car hierarchy is straightforward:

export class ICar
{
    public:
        virtual ~ICar() = default;  // Always a virtual destructor!
        virtual std::string info() const = 0;
};
 
export class Ford : public ICar { };
 
export class FordSedan : public Ford
{
    public:
        std::string info() const override { return "Ford Sedan"; }
};
 
export class FordSuv : public Ford
{
    public:
        std::string info() const override { return "Ford Suv"; }
};

FIGURE 33-1 

FIGURE 33-2 
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export class Toyota : public ICar { };
 
export class ToyotaSedan : public Toyota
{
    public:
        std::string info() const override { return "Toyota Sedan"; }
};
 
export class ToyotaSuv : public Toyota
{
    public:
        std::string info() const override { return "Toyota Suv"; }
};

Next up is the IAbstractCarFactory interface. It simply exposes methods to create a sedan or an 
SUV without knowing any concrete factory or car.

export class IAbstractCarFactory
{
    public:
        virtual ~IAbstractCarFactory() = default;  // Always a virtual destructor!
        virtual std::unique_ptr<ICar> makeSuv() = 0;
        virtual std::unique_ptr<ICar> makeSedan() = 0;
};

Then finally we have the concrete factories, creating concrete car models. Only the FordFactory is 
shown, the ToyotaFactory is similar.

export class FordFactory : public IAbstractCarFactory
{
    public:
        std::unique_ptr<ICar> makeSuv() override {
            return std::make_unique<FordSuv>(); }
        std::unique_ptr<ICar> makeSedan() override {
            return std::make_unique<FordSedan>(); }
};

The approach used in this example is called an abstract factory because the type of object created 
depends on which concrete factory is being used.

Using an Abstract Factory
The following example shows how to use the implemented factory. It has a function that accepts an 
abstract car factory and uses that to build both a sedan and an SUV and prints out information about 
each produced car. This function has no idea about any concrete factory or any concrete cars; i.e., it 
only uses interfaces. The main() function creates two factories, one for Fords and one for Toyotas, 
and then asks the createSomeCars() function to use each of these factories to create some cars.

void createSomeCars(IAbstractCarFactory& carFactory)
{
    auto sedan { carFactory.makeSedan() };
    auto suv { carFactory.makeSuv() };
    cout << format("Sedan: {}\n", sedan->info());

continues
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    cout << format("Suv: {}\n", suv->info());
}
 
int main()
{
    FordFactory fordFactory;
    ToyotaFactory toyotaFactory;
    createSomeCars(fordFactory);
    createSomeCars(toyotaFactory);
}

The output of this code snippet is as follows:

Sedan: Ford Sedan
Suv: Ford Suv
Sedan: Toyota Sedan
Suv: Toyota Suv

THE FACTORY METHOD PATTERN

The second type of factory-related pattern is called the factory method pattern. With this pattern, it 
is entirely up to the concrete factory to decide what kind of object to create. In the earlier abstract 
factory example, the IAbstractCarFactory had a method to either create an SUV or create a sedan. 
With the factory method pattern, you just ask for a car from the factory, and the concrete factories 
decide what exactly to build. Let’s look at another car factory simulation.

Example: A Second Car Factory Simulation
In the real world, when you talk about driving a car, you can do so without referring to the specific 
type of car. You could be discussing a Toyota or a Ford. It doesn’t matter, because both Toyotas and 
Fords are drivable. Now, suppose that you want a new car. You would then need to specify whether 
you wanted a Toyota or a Ford, right? Not always. You could just say, “I want a car,” and depend-
ing on where you were, you would get a specific car. If you said, “I want a car,” in a Toyota factory, 
chances are you’d get a Toyota. (Or you’d get arrested, depending on how you asked.) If you said, “I 
want a car,” in a Ford factory, you’d get a Ford.

The same concepts apply to C++ programming. The first concept, a generic car that’s drivable, is 
nothing new; it’s standard polymorphism, described in Chapter 5, “Designing with Objects.” You 
could write an abstract ICar interface that defines a virtual drive() method. Both Toyota and Ford 
could be implementing such an interface.

Your program could drive cars without knowing whether they were really Toyotas or Fords. How-
ever, with standard object-oriented programming, the one place that you’d need to specify Toyota or 
Ford would be when you created the car. Here, you would need to call the constructor for one or the 
other. You couldn’t just say, “I want a car.” However, suppose that you also had a parallel class hier-
archy of car factories. The CarFactory base class could define a public non-virtual requestCar() 
method that forwards the work to a protected virtual createCar() method. The ToyotaFactory 
and FordFactory derived classes override the createCar() method to build a Toyota or a Ford. 
Figure 33-3 shows the ICar and CarFactory hierarchies.

(continued)
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Now, suppose that there is one CarFactory object in a program. When code in the program, such 
as a car dealer, wants a new car, it calls requestCar() on the CarFactory object. Depending on 
whether that car factory is really a ToyotaFactory or a FordFactory, the code gets either a Toyota 
or a Ford. Figure 33-4 shows the objects in a car dealer program using a ToyotaFactory.

Figure 33-5 shows the same program, but with a FordFactory instead of a ToyotaFactory. Note 
that the CarDealer object and its relationship with the factory stay the same.

This example demonstrates using polymorphism with factories. When you ask the car factory for a 
car, you might not know whether it’s a Toyota factory or a Ford factory, but either way it will give 
you a car that you can drive. This approach leads to easily extensible programs; simply changing the 
factory instance can allow the program to work on a completely different set of objects and classes.

FIGURE 33-3 
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FIGURE 33-4 
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FIGURE 33-5 



1114 ❘ CHAPTER 33  Applying Design pAtterns

Implementation of a Factory
One reason for using factories is that the type of the object you want to create may depend on some 
condition. For example, if you want a car, you might want to put your order into the factory that has 
received the fewest requests so far, regardless of whether the car you eventually get is a Toyota or a 
Ford. The following implementation shows how to write such factories in C++.

The first thing we’ll need is the hierarchy of cars. To keep this example concise, the ICar interface 
simply has an abstract method that returns a description of the car.

export class ICar
{
    public:
        virtual ~ICar() = default;  // Always a virtual destructor!
        virtual std::string info() const = 0;
};
 
export class Ford : public ICar
{
    public:
        std::string info() const override { return "Ford"; }
};
 
export class Toyota : public ICar
{
    public:
        std::string info() const override { return "Toyota"; }
};

The CarFactory base class is a bit more interesting. Each factory keeps track of the number of cars 
produced. When the public non-virtual requestCar() method is called, the number of cars  
produced at the factory is increased by one, and the protected pure virtual createCar() method is 
called, which creates and returns a new concrete car. The idea is that individual factories  
override createCar() to return the appropriate type of car. The CarFactory itself implements 
requestCar(), which takes care of updating the number of cars produced. The CarFactory also 
provides a public method to query the number of cars produced at each factory.

The class definitions for the CarFactory class and derived classes are as follows:

export class CarFactory
{
    public:
        virtual ~CarFactory() = default;  // Always a virtual destructor!
 
        std::unique_ptr<ICar> requestCar()
        {
            // Increment the number of cars produced and return the new car.
            ++m_numberOfCarsProduced;
            return createCar();
        }
 
        size_t getNumberOfCarsProduced() const { return m_numberOfCarsProduced; }
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    protected:
        virtual std::unique_ptr<ICar> createCar() = 0;
 
    private:
        size_t m_numberOfCarsProduced { 0 };
};
 
export class FordFactory : public CarFactory
{
    protected:
        std::unique_ptr<ICar> createCar() override {
            return std::make_unique<Ford>(); }
};
 
export class ToyotaFactory : public CarFactory
{
    protected:
        std::unique_ptr<ICar> createCar() override {
            return std::make_unique<Toyota>(); }
};

As you can see, the derived classes simply override createCar() to return the specific type of car that 
they produce.

NOTE Factory methods are one way to implement virtual constructors, which are 
methods that create objects of different types. For example, the requestCar() 
method creates both Toyotas and Fords, depending on the concrete factory object 
on which it is called.

Using a Factory
The simplest way to use a factory is to instantiate it and to call the appropriate method, as in the fol-
lowing piece of code:

ToyotaFactory myFactory;
auto myCar { myFactory.requestCar() };
cout << myCar->info() << endl;    // Outputs Toyota

A more interesting example makes use of the virtual constructor idea to build a car in the  
factory that has the fewest cars produced. To do this, you can create a new factory, called  
LeastBusyFactory, that derives from CarFactory and that accepts a number of other CarFactory 
objects in its constructor. As all CarFactory classes have to do, LeastBusyFactory overrides the 
createCar() method. Its implementation finds the least busy factory in the list of factories passed to 
the constructor and asks that factory to create a car. Here is the implementation of such a factory:

class LeastBusyFactory : public CarFactory
{
    public:
        // Constructs a LeastBusyFactory instance, taking ownership of
        // the given factories.
        explicit LeastBusyFactory(vector<unique_ptr<CarFactory>>&& factories);

continues
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    protected:
        unique_ptr<ICar> createCar() override;
 
    private:
        vector<unique_ptr<CarFactory>> m_factories;
};
 
LeastBusyFactory::LeastBusyFactory(vector<unique_ptr<CarFactory>>&& factories)
    : m_factories { move(factories) }
{
    if (m_factories.empty()) {
        throw runtime_error { "No factories provided." };
    }
}
 
unique_ptr<ICar> LeastBusyFactory::createCar()
{
    CarFactory* bestSoFar { m_factories[0].get() };
 
    for (auto& factory : m_factories) {
        if (factory->getNumberOfCarsProduced() <
            bestSoFar->getNumberOfCarsProduced()) {
            bestSoFar = factory.get();
        }
    }
 
    return bestSoFar->requestCar();
}

The following code makes use of this factory to build 10 cars, whatever brand they might be, from 
the factory that has produced the least number of cars:

vector<unique_ptr<CarFactory>> factories;
 
// Create 3 Ford factories and 1 Toyota factory. 
factories.push_back(make_unique<FordFactory>());
factories.push_back(make_unique<FordFactory>());
factories.push_back(make_unique<FordFactory>());
factories.push_back(make_unique<ToyotaFactory>());
 
// To get more interesting results, preorder some cars.
factories[0]->requestCar();
factories[0]->requestCar();
factories[1]->requestCar();
factories[3]->requestCar();
 
// Create a factory that automatically selects the least busy
// factory from a list of given factories.
LeastBusyFactory leastBusyFactory { move(factories) };
 
// Build 10 cars from the least busy factory.
for (size_t i { 0 }; i < 10; i++) {
    auto theCar { leastBusyFactory.requestCar() };
    cout << theCar->info() << endl;
}

(continued)



The Factory Method Pattern ❘ 1117

When executed, the program prints out the make of each car produced.

Ford
Ford
Ford
Toyota
Ford
Ford
Ford
Toyota
Ford
Ford

The results are rather predictable because the loop effectively iterates through the factories in a 
round-robin fashion. However, one could imagine a scenario where multiple dealers are requesting 
cars, and the current status of each factory isn’t quite so predictable.

Other Types of Factories
A factory can also be implemented in a single class instead of a class hierarchy. In that case, a single 
create() method on the factory takes a type or string parameter from which it decides which object 
to create, instead of delegating that work to concrete subclasses.

Other Uses of Factories
You can also use a factory pattern for more than just modeling real-world factories. For example, 
consider a word processor in which you want to support documents in different languages, where 
each document uses a single language. There are many aspects of the word processor in which the 
choice of document language requires different support: the character set used in the document 
(whether accented characters are needed), the spell checker, the thesaurus, and the way the document 
is displayed, to name just a few. You could use factories to design a clean word processor by writing 
an abstract LanguageFactory base class and concrete factories for each language of interest, such as 
EnglishLanguageFactory and FrenchLanguageFactory. When the user specifies a language for a 
document, the program uses the appropriate LanguageFactory to create language-specific instances 
of certain functionality. For example, it calls the createSpellchecker() method on the factory to 
create a language-specific spell checker. It then replaces the current spell checker for the previous lan-
guage attached to the document with the newly constructed spell checker for the new language.

Another use of the factory method pattern is as an alternative to the pimpl idiom, discussed in 
Chapter 9, “Mastering Classes and Objects.” It provides a wall between the public interface and the 
concrete implementation of the provided functionality. This use of the factory method pattern looks 
as follows. First, the following is publicly exposed:

// Public interface (to be included in the rest of the program,
// shared from a library, ...)
class Foo
{

continues
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    public:
        virtual ~Foo() = default;  // Always a virtual destructor!
        static unique_ptr<Foo> create();  // Factory method.
        // Public functionality...
        virtual void bar() = 0;
    protected:
        Foo() = default; // Protected default constructor.
};

Next, the implementation is hidden from the outside world:

// Implementation
class FooImpl : public Foo
{
    public:
        void bar() override { /* ... */ }
};
 
unique_ptr<Foo> Foo::create()
{
    return make_unique<FooImpl>();
}

Any client code that needs a Foo instance can create one as follows:

auto fooInstance { Foo::create() };

THE ADAPTER PATTERN

Sometimes, the abstraction given by a class doesn’t suit the current design and can’t be changed. In 
this case, you can build an adapter or wrapper class. The adapter provides the abstraction that the 
rest of the code uses and serves as the bridge between the desired abstraction and the actual underly-
ing code. There are two main use cases:

➤➤ Implementing a certain interface by reusing some existing implementation. In this use case, 
the adapter typically creates an instance of the implementation behind the scenes.

➤➤ Allowing existing functionality to be used through a new interface. In this use case, the 
constructor of the adapter typically receives an instance of the underlying object in its 
constructor.

Chapter 18, “Standard Library Containers,” discusses how the Standard Library uses the adapter 
pattern to implement containers like stack and queue in terms of other containers, such as 
deque and list.

Example: Adapting a Logger Class
For this adapter pattern example, let’s assume a very basic Logger class. Here is the class definition:

export class Logger
{
    public:
        enum class LogLevel {
            Error,

(continued)
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            Info,
            Debug
        };
 
        Logger();
        virtual ~Logger() = default;  // Always a virtual destructor!
        void log(LogLevel level, const std::string& message);
    private:
        // Converts a log level to a human readable string.
        std::string_view getLogLevelString(LogLevel level) const;
};

The Logger class has a constructor, which outputs a line of text to the standard console, and a 
method called log() that writes the given message to the console prefixed with a log level. Here are 
the implementations:

Logger::Logger()
{
    cout << "Logger constructor" << endl;
}
 
void Logger::log(LogLevel level, const string& message)
{
    cout << format("{}: {}", getLogLevelString(level), message) << endl;
}
 
string_view Logger::getLogLevelString(LogLevel level) const
{
    // See the Dependency Injection logger earlier in this chapter.
}

One reason why you might want to write a wrapper class around this basic Logger class is to change 
its interface. Maybe you are not interested in the log level and you would like to call the log() 
method with only one argument, the actual message. You might also want to change the interface to 
accept an std::string_view instead of a string as the argument for the log() method.

Implementation of an Adapter
The first step in implementing the adapter pattern is to define the new interface for the underlying 
functionality. This new interface is called INewLoggerInterface and looks like this:

export class INewLoggerInterface
{
    public:
        virtual ~INewLoggerInterface() = default; // Always virtual destructor!
        virtual void log(std::string_view message) = 0;
};

This class is an abstract class, which declares the desired interface that you want for your new logger. 
The interface defines only one abstract method, that is, a log() method accepting only a single argu-
ment of type string_view.
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The next step is to write the actual new logger class, NewLoggerAdapter, which implements  
INewLoggerInterface so that it has the interface that you designed. The implementation wraps a 
Logger instance, i.e., it uses composition.

export class NewLoggerAdapter : public INewLoggerInterface
{
    public:
        NewLoggerAdapter();
        void log(std::string_view message) override;
    private:
        Logger m_logger; 
};

The constructor of the new class writes a line to the standard output to keep track of which construc-
tors are being called. The code then implements the log() method from INewLoggerInterface by 
forwarding the call to the log() method of the Logger instance that is wrapped. In that call, the 
given string_view is converted to a string, and the log level is hard-coded as Info.

NewLoggerAdapter::NewLoggerAdapter()
{
    cout << "NewLoggerAdapter constructor" << endl;
}
 
void NewLoggerAdapter::log(string_view message)
{
    m_logger.log(Logger::LogLevel::Info, message.data());
}

Using an Adapter
Because adapters exist to provide a more appropriate interface for the underlying functionality, their 
use should be straightforward and specific to the particular case. Given the previous implementation, 
the following code snippet uses the new simplified interface for the logging functionality:

NewLoggerAdapter logger;
logger.log("Testing the logger.");

It produces the following output:

Logger constructor
NewLoggerAdapter constructor
INFO: Testing the logger.

THE PROXY PATTERN

The proxy pattern is one of several patterns that divorce the abstraction of a class from its underlying 
representation. A proxy object serves as a stand-in for a real object. Such objects are generally used 
when using the real object would be time-consuming or impossible. For example, take a document 
editor. A document could contain several big objects, such as images. Instead of loading all those 
images when opening the document, the document editor could substitute all images with image 
proxies. These proxies don’t immediately load the images. Only when the user scrolls down in the 
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document and reaches an image does the document editor ask the image proxy to draw itself. At that 
time, the proxy delegates the work to the real image object, which loads the image.

Proxies can also be used to properly shield certain functionality from clients, while at the same time 
making sure that clients can’t even use casts to get around the shielding.

Example: Hiding Network Connectivity Issues
Consider a networked game with a Player class that represents a person on the Internet who has 
joined the game. The Player class includes functionality that requires network connectivity, such as 
an instant messaging feature. If a player’s connection becomes unresponsive, the Player object repre-
senting that person can no longer receive instant messages.

Because you don’t want to expose network problems to the user, it may be desirable to have a sepa-
rate class that hides the networked parts of a Player. This PlayerProxy object would substitute for 
the actual Player object. Either clients of the class would use the PlayerProxy class at all times as 
a gatekeeper to the real Player class, or the system would substitute a PlayerProxy when a Player 
became unavailable. During a network failure, the PlayerProxy object could still display the player’s 
name and last-known state and could continue to function when the original Player object could 
not. Thus, the proxy class hides some undesirable semantics of the underlying Player class.

Implementation of a Proxy
The first step is defining an IPlayer interface containing the public interface for a Player:

class IPlayer
{
    public:
        virtual ~IPlayer() = default; // Always virtual destructor.
        virtual string getName() const = 0;
        // Sends an instant message to the player over the network and
        // returns the reply as a string.
        virtual string sendInstantMessage(string_view message) const = 0;
};

The Player class implements the IPlayer interface as follows. Imagine for this example that  
sendInstantMessage() requires network connectivity to properly function and raises an exception 
if the network connection is down.

class Player : public IPlayer
{
    public:
        string getName() const override;
        // Network connectivity is required.
        // Throws an exception if network connection is down.
        string sendInstantMessage(string_view message) const override;
};

The PlayerProxy class also implements the IPlayer interface and contains another IPlayer 
instance (the “real” Player):

class PlayerProxy : public IPlayer
{

continues
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    public:
        // Create a PlayerProxy, taking ownership of the given player.
        PlayerProxy(unique_ptr<IPlayer> player);
        string getName() const override;
        // Network connectivity is optional.
        string sendInstantMessage(string_view message) const override;
    private:
        unique_ptr<IPlayer> m_player;
};

The constructor takes ownership of the given IPlayer:

PlayerProxy::PlayerProxy(unique_ptr<IPlayer> player)
    : m_player { move(player) }
{
}

The getName() method just forwards to the underlying player:

string PlayerProxy::getName() const { return m_player->getName(); }

The implementation of the PlayerProxy’s sendInstantMessage() method checks the network  
connectivity and either returns a default string or forwards the request. This hides the fact that the 
sendInstantMessage() method on the underlying Player object raises an exception when the net-
work connection is down.

string PlayerProxy::sendInstantMessage(string_view message) const
{
    if (hasNetworkConnectivity()) { return m_player->sendInstantMessage(message); }
    else { return "The player has gone offline."; }
}

Using a Proxy
If a proxy is well written, using it should be no different from using any other object. For the  
PlayerProxy example, the code that uses the proxy could be completely unaware of its existence. 
The following function, designed to be called when the Player has won, could be dealing with an 
actual Player or a PlayerProxy. The code is able to handle both cases in the same way because the 
proxy ensures a valid result.

bool informWinner(const IPlayer& player)
{
    auto result { player.sendInstantMessage("You have won! Play again?") };
    if (result == "yes") {
        cout << player.getName() << " wants to play again." << endl;
        return true;
    } else {
        // The player said no, or is offline.
        cout << player.getName() << " does not want to play again." << endl;
        return false;
    }
}

(continued)
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THE ITERATOR PATTERN

The iterator pattern provides a mechanism for separating algorithms or operations from the structure 
of the data on which they operate. Basically, an iterator allows algorithms to navigate a data structure 
without having to know the actual structure of the data. At first glance, this pattern seems to contra-
dict the fundamental principle in object-oriented programming of grouping together in objects data 
and the behaviors that operate on that data. While that argument is true on a certain level, the itera-
tor pattern does not advocate removing fundamental behaviors from objects. Instead, it solves two 
problems that commonly arise with tight coupling of data and behaviors.

The first problem with tightly coupling data and behaviors is that it precludes generic algorithms 
that work on a variety of objects, not all of which are in the same class hierarchy. To write generic 
algorithms, you need some standard mechanism to navigate/access the contents of a data structure 
without knowledge of the concrete structure.

The second problem with tightly coupled data and behaviors is that it’s sometimes difficult to add 
new behaviors. At the least, you need access to the source code for the data objects. However, what if 
the object hierarchy of interest is part of a third-party framework or library that you cannot change? 
It would be nice to be able to add an algorithm or operation that works on the data without modify-
ing the original object hierarchy of classes that hold the data.

You’ve already seen an example of the iterator pattern in the Standard Library. Conceptually, iterators 
provide a mechanism for an operation or algorithm to access a container of elements in a sequence. 
The name comes from the English word iterate, which means “repeat.” It applies to iterators because 
they repeat the action of moving forward in the sequence to reach each new element. In the Standard 
Library, the generic algorithms use iterators to access the elements of the containers on which they 
operate. By defining a standard iterator interface, the Standard Library allows you to write algorithms 
that can work on any container that supplies an iterator with the appropriate interface. You can even 
provide several different iterators for a single data structure. This allows an algorithm to navigate 
that data in different ways, for example, top-down and bottom-up traversal for a tree data structure. 
Thus, iterators allow you to write generic algorithms that can traverse the contents of a data structure 
without having to know anything about the structure. Figure 33-6 shows an iterator as the central 
coordinator; operations depend on iterators, and data objects provide iterators.

Chapter 25, “Customizing and Extending the Standard Library,” illustrates a detailed example of how 
to implement a Standard Library-compliant iterator for a data structure, which means that the itera-
tor can be used by the generic Standard Library algorithms.

Data Object Iterator Operation

FIGURE 33-6 
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THE OBSERVER PATTERN

The observer pattern is used to have observers be notified by observable objects (= subjects). Con-
crete observers are registered with the observable object they are interested in. When the observable 
object’s state changes, it notifies all registered observers of this change. The main benefit of using the 
observer pattern is that it decreases coupling. The observable class does not need to know the con-
crete observer types that are observing it.

Example: Exposing Events from Subjects
This example consists of generic-purpose events with a variadic number of arguments. Subjects can 
expose specific events, for example an event raised when the subject’s data is modified, an event 
raised when the subject’s data is deleted, and so on.

Implementation of an Observable
First, a variadic class template Event is defined. Variadic class templates are discussed in Chapter 26, 
“Advanced Templates.” The class stores a map of functions with a variadic number of arguments. An 
overloaded operator+= is provided to register a new observer in the form of a function that should 
be notified when this event is raised. The operator returns an EventHandle that subsequently can be 
passed to the overloaded operator-= to unregister the observer. This EventHandle is just a number 
that is increased with every registered observer. Finally, the raise() method notifies all registered 
observers that the event has been raised.

using EventHandle = size_t;
 
template <typename... Args>
class Event
{
    public:
        virtual ~Event() = default; // Always a virtual destructor!
 
        // Adds an observer. Returns an EventHandle to unregister the observer.
        [[nodiscard]] EventHandle operator+=(function<void(Args...)> observer)
        {
            auto number { ++m_counter };
            m_observers[number] = observer;
            return number;
        }
 
        // Unregisters the observer pointed to by the given handle.
        Event& operator-=(EventHandle handle)
        {
            m_observers.erase(handle);
            return *this;
        }
 
        // Raise event: notifies all registered observers.
        void raise(Args... args)
        {
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            for (auto& observer : m_observers) { (observer.second)(args...); }
        }
    private:
        size_t m_counter { 0 };
        map<EventHandle, function<void(Args...)>> m_observers;
};

Any object that wants to expose events on which observers can register themselves just needs to 
expose instances of the Event variadic class template. Thanks to the use of a variadic class template, 
Event instances can be created with any number of parameters. This allows an observable object to 
pass any relevant information to observers. Here is an example:

class ObservableSubject
{
    public:
        auto& getEventDataModified() { return m_eventDataModified; }
        auto& getEventDataDeleted() { return m_eventDataDeleted; }
        
        void modifyData()
        {
            // ...
            getEventDataModified().raise(1, 2.3);
        }
 
        void deleteData()
        {
            // ...
            getEventDataDeleted().raise();
        }
    private:
        Event<int, double> m_eventDataModified;
        Event<> m_eventDataDeleted;
};

Using an Observer
The following is some test code that demonstrates how to use the implemented observer pattern. 
Suppose we have the following stand-alone global function modified() that can handle modifica-
tion events:

void modified(int, double) { cout << "modified" << endl; }

Suppose that we also have a class Observer capable of handling modification events:

class Observer
{
    public:
        Observer(ObservableSubject& subject) : m_subject { subject }
        {
            m_subjectModifiedHandle = m_subject.getEventDataModified() +=
                [this](int i, double d) { onSubjectModified(i, d); };
        }
 
        virtual ~Observer()
        {

continues
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            m_subject.getEventDataModified() -= m_subjectModifiedHandle;
        }
    private:
        void onSubjectModified(int, double)
        {
            cout << "Observer::onSubjectModified()" << endl;
        }
        ObservableSubject& m_subject;
        EventHandle m_subjectModifiedHandle;
};

Finally, we can construct an ObservableSubject instance and register some observers:

ObservableSubject subject;
 
auto handleModified { subject.getEventDataModified() += modified };
auto handleDeleted {
    subject.getEventDataDeleted() += [] { cout << "deleted" << endl; } };
Observer observer { subject };
 
subject.modifyData();
subject.deleteData();
 
cout << endl;
 
subject.getEventDataModified() -= handleModified;
subject.modifyData();
subject.deleteData();

The output is as follows:

modified
Observer::onSubjectModified()
deleted
 
Observer::onSubjectModified()
deleted

THE DECORATOR PATTERN

The decorator pattern is exactly what it sounds like: a “decoration” on an object. It is also often 
called a wrapper. The pattern is used to augment or change the behavior of an object at run time. 
Decorators are a lot like derived classes but are able to dynamically change the behavior. The  
trade-off is that decorators have fewer ways to change behavior compared to derived classes, because, 
for example, a decorator cannot override certain helper methods. On the other hand, a major benefit 
of decorators is that they can easily be composed to accomplish exactly what you need without hav-
ing to write derived classes for each combination.

For example, if you have a stream of data that you are parsing and you reach data that represents  
an image, you could temporarily decorate the stream object with an ImageStream object. The  
ImageStream constructor would take the stream object as a parameter and would have built-in 
knowledge of image parsing. Once the image is parsed, you could continue using the original object 

(continued)
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to parse the remainder of the stream. The ImageStream acts as a decorator because it adds new func-
tionality (image parsing) to an existing object (a stream).

Example: Defining Styles in Web Pages
As you may already know, web pages are written in a simple text-based structure called HyperText 
Markup Language (HTML). In HTML, you can apply styles to a text by using style tags, such as 
<B> and </B> for bold and <I> and </I> for italic. The following line of HTML displays the mes-
sage in bold:

<B>A party? For me? Thanks!</B>

The following line displays the message in bold and italic:

<I><B>A party? For me? Thanks!</B></I>

Paragraphs in HTML are wrapped in <P> and </P> tags. Here’s an example:

<P>This is a paragraph.</P>

Suppose you are writing an HTML editing 
application. Your users will be able to type 
in paragraphs of text and apply one or more 
styles to them. You could make each type of 
paragraph a new derived class, as shown in 
Figure 33-7, but that design could be cumber-
some and would grow exponentially as new 
styles were added.

The alternative is to consider styled paragraphs not as types of 
paragraphs, but as decorated paragraphs. This leads to situations 
like the one shown in Figure 33-8, where an ItalicParagraph 
operates on a BoldParagraph, which in turn operates on a  
Paragraph. The recursive decoration of objects nests the styles in 
code just as they are nested in HTML.

Implementation of a Decorator
To start, you need an IParagraph interface:

class IParagraph
{
    public:
        virtual ~IParagraph() = default;  // Always a virtual destructor!
        virtual std::string getHTML() const = 0;
};

The Paragraph class implements this IParagraph interface:

class Paragraph : public IParagraph
{
    public:
        Paragraph(std::string text) : m_text { std::move(text) } {}

FIGURE 33-7 

Paragraph

BoldParagraph

ItalicParagraph

FIGURE 33-8 

continues
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        std::string getHTML() const override { return "<P>" + m_text + "</P>"; }
    private:
        std::string m_text;
};

To decorate a Paragraph with zero or more styles, you need styled IParagraph classes, each one 
constructible from an existing IParagraph. This way, they can all decorate a Paragraph or a styled 
IParagraph. The BoldParagraph class derives from IParagraph and implements getHTML(). The 
key here is that since you only intend to use it as a decorator, its single public non-copy constructor 
takes a reference-to-const to an IParagraph.

class BoldParagraph : public IParagraph
{
    public:
        BoldParagraph(const IParagraph& paragraph) : m_wrapped { paragraph } {}
 
        std::string getHTML() const override {
            return "<B>" + m_wrapped.getHTML() + "</B>"; }
    private:
        const IParagraph& m_wrapped;
};

The ItalicParagraph class is similar:

class ItalicParagraph : public IParagraph
{
    public:
        ItalicParagraph(const IParagraph& paragraph) : m_wrapped { paragraph } {}
 
        std::string getHTML() const override {
            return "<I>" + m_wrapped.getHTML() + "</I>"; }
    private:
        const IParagraph& m_wrapped;
};

Using a Decorator
From the user’s point of view, the decorator pattern is appealing because it is easy to apply and is 
transparent once applied. The user doesn’t need to know that a decorator has been employed at all. A 
BoldParagraph behaves just like a Paragraph.

Here is an example that creates and outputs a paragraph, first in bold and then in bold and italic:

Paragraph p { "A party? For me? Thanks!" };
// Bold
std::cout << BoldParagraph{p}.getHTML() << std::endl;
// Bold and Italic
std::cout << ItalicParagraph{BoldParagraph{p}}.getHTML() << std::endl;

The output is as follows:

<B><P>A party? For me? Thanks!</P></B>
<I><B><P>A party? For me? Thanks!</P></B></I>

(continued)
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THE CHAIN OF RESPONSIBILITY PATTERN

A chain of responsibility is used when you want a number of objects to get a crack at performing a 
particular action. Chains of responsibility are perhaps most commonly used for event handling. Many 
modern applications, particularly those with graphical user interfaces, are designed as a series of 
events and responses. For example, when a user clicks the File menu and selects Open, an open event 
has occurred. When the user moves the mouse over the drawable area of a paint program, mouse 
move events are generated continuously. If the user presses down a button on the mouse, a mouse 
down event for that button-press is generated. The program can then start paying attention to the 
mouse move events, allowing the user to “draw” some object and continue doing this until the mouse 
up event occurs. Each operating system has its own way of naming and using these events, but the 
overall idea is the same: when an event occurs, it is somehow propagated to different objects to take 
appropriate action.

As you know, C++ does not have any built-in facilities for graphical programming. It also has no 
notion of events, event transmission, or event handling. A chain of responsibility is a reasonable 
approach to event handling to give different objects a chance to handle certain events.

Example: Event Handling
Consider a drawing program: an application with a window in which shapes can be drawn. The 
user can press a mouse button somewhere in the application’s window. If that happens, the applica-
tion should figure out whether the user clicked a shape. If so, the shape is asked to handle the mouse 
button down event. If it decides it doesn’t need to handle the event, it passes the event to the window, 
which gets the next crack at the event. If the window is also not interested in the event, it forwards 
it to the application itself, which is the final object in the chain to handle the event. It’s a chain of 
responsibility because each handler may either handle the event or pass the event to the next handler 
in the chain.

Implementation of a Chain of Responsibility
Suppose all possible events are defined in an enum class as follows:

enum class Event {
    LeftMouseButtonDown,
    LeftMouseButtonUp,
    RightMouseButtonDown,
    RightMouseButtonUp
};

Next, the following Handler mixin class is defined:

class Handler
{
    public:
        virtual ~Handler() = default;
        explicit Handler(Handler* nextHandler) : m_nextHandler { nextHandler } { }
 

continues
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        virtual void handleMessage(Event message)
        {
            if (m_nextHandler) { m_nextHandler->handleMessage(message); }
        }
    private:
        Handler* m_nextHandler;
};

Next, the Application, Window, and Shape classes are concrete handlers, all deriving from the  
Handler class. In this example, Application handles only RightMouseButtonDown messages,  
Window handles only LeftMouseButtonUp messages, and Shape handles only LeftMouseButtonDown 
messages. If any of the handlers receives a message it doesn’t know about, it calls the next handler in 
the chain.

class Application : public Handler
{
    public:
        explicit Application(Handler* nextHandler) : Handler { nextHandler } { }
 
        void handleMessage(Event message) override
        {
            cout << "Application::handleMessage()" << endl;
            if (message == Event::RightMouseButtonDown) {
                cout << "   Handling message RightMouseButtonDown" << endl;
            } else { Handler::handleMessage(message); }
        }
};
 
class Window : public Handler
{
    public:
        explicit Window(Handler* nextHandler) : Handler { nextHandler } { }
 
        void handleMessage(Event message) override
        {
            cout << "Window::handleMessage()" << endl;
            if (message == Event::LeftMouseButtonUp) {
                cout << "   Handling message LeftMouseButtonUp" << endl;
            } else { Handler::handleMessage(message); }
        }
};
 
class Shape : public Handler
{
    public:
        explicit Shape(Handler* nextHandler) : Handler { nextHandler } { }
 
        void handleMessage(Event message) override
        {
            cout << "Shape::handleMessage()" << endl;
            if (message == Event::LeftMouseButtonDown) {
                cout << "   Handling message LeftMouseButtonDown" << endl;
            } else { Handler::handleMessage(message); }
        }
};

(continued)
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Using a Chain of Responsibility
The chain of responsibility implemented in the previous section can be tested as follows:

Application application { nullptr };
Window window { &application };
Shape shape { &window };
 
shape.handleMessage(Event::LeftMouseButtonDown);
cout << endl;
 
shape.handleMessage(Event::LeftMouseButtonUp);
cout << endl;
 
shape.handleMessage(Event::RightMouseButtonDown);
cout << endl;
 
shape.handleMessage(Event::RightMouseButtonUp);

The output is as follows:

Shape::handleMessage()
   Handling message LeftMouseButtonDown
 
Shape::handleMessage()
Window::handleMessage()
   Handling message LeftMouseButtonUp
 
Shape::handleMessage()
Window::handleMessage()
Application::handleMessage()
   Handling message RightMouseButtonDown
 
Shape::handleMessage()
Window::handleMessage()
Application::handleMessage()

Of course, in a real application there must be some other class that dispatches the events to the 
correct object, i.e., calls handleMessage() on the correct object. Because this task varies greatly by 
framework or platform, the following example shows pseudo-code for handling a left mouse button 
down event, in lieu of platform-specific C++ code:

MouseLocation location { getMouseLocation() };
Shape* clickedShape { findShapeAtLocation(location) };
if (clickedShape) {
    clickedShape->handleMessage(Event::LeftMouseButtonDown);
} else {
    window.handleMessage(Event::LeftMouseButtonDown);
}

The chained approach is flexible and has an appealing structure for object-oriented hierarchies. The 
downside is that it requires diligence on the part of the programmer. If a class forgets to chain to the 
next handler in the chain, events will effectively get lost. Worse, if you chain to the wrong class, you 
could end up in an infinite loop!
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THE SINGLETON PATTERN

The singleton is one of the simplest design patterns. In English, the word singleton means “one of a 
kind” or “individual.” It has a similar meaning in programming. The singleton pattern is a strategy for 
enforcing the existence of exactly one instance of a class in a program. Applying the singleton pattern 
to a class guarantees that only one object of that class will ever be created. The singleton pattern also 
specifies that the one object is globally accessible from anywhere in the program. Programmers usu-
ally refer to a class following the singleton pattern as a singleton class.

If your program relies on the assumption that there will be exactly one instance of a class, you could 
enforce that assumption with the singleton pattern.

However, the singleton pattern has a number of disadvantages that you need to be aware of. If you 
have multiple singletons, it’s not always easy to guarantee that they are initialized in the right order 
at program startup. It’s also not easy to ensure a singleton is still there when callers need it during 
program shutdown. On top of that, singleton classes introduce hidden dependencies, cause tight cou-
pling, and complicate unit testing. In a unit test, for example, you might want to write a mock version 
(see Chapter 30, “Becoming Adept at Testing”) of a singleton that accesses the network or a database, 
but given the nature of a typical singleton implementation, that’s hard to do. A more appropriate 
design pattern could be dependency injection, discussed earlier in this chapter. With dependency injec-
tion, you create an interface for each service you provide and inject the interfaces a component needs 
into the component. Dependency injection allows mocking (stub versions), makes it easier to intro-
duce multiple instances later, allows for more complicated ways of constructing the single instance 
than a typical singleton, for example using factories, and so on. Still, the singleton pattern is discussed 
here because you will encounter it, especially in legacy code bases.

WARNING Avoid using the singleton pattern in new code because of its numerous 
problems. Prefer other patterns, such as dependency injection.

Example: A Logging Mechanism
Many applications have a notion of a logger—a class that is responsible for writing status infor-
mation, debugging data, and errors to a central location. A logging class could have the following 
characteristics:

➤➤ It is available at all times.

➤➤ It is easy to use.

➤➤ There is only one instance.

The singleton pattern could be used to accomplish these requirements. But again, in new code I rec-
ommend avoiding introducing new singletons.
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Implementation of a Singleton
There are two basic ways to implement singleton behavior in C++. The first approach uses a class 
with only static methods. Such a class needs no instantiation and is accessible from anywhere. The 
problem with this method is that it lacks a built-in mechanism for construction and destruction. 
However, technically, a class that uses all static methods isn’t really a singleton: it’s a nothington or 
a static class, to coin new terms. The term singleton implies that there is exactly one instance of the 
class. If all of the methods are static and the class is never instantiated at all, you cannot really call it 
a singleton anymore. So, this is not further discussed in this section.

The second approach uses access control levels to regulate the creation and access of one single 
instance of a class. This is a true singleton and discussed further with an example of a Logger class, 
providing similar features as the dependency-injection Logger discussed earlier in this chapter.

To build a true singleton in C++, you can use the access control mechanisms as well as the static 
keyword. An actual Logger instance exists at run time, and the class enforces that only one instance 
is ever instantiated. Clients can always get a hold of that single instance through a static method 
called instance(). The class definition looks like this:

export class Logger final
{
    public:
        enum class LogLevel {
            Error,
            Info,
            Debug
        };
 
        // Sets the name of the log file.
        // Note: needs to be called before the first call to instance()!
        static void setLogFilename(std::string_view logFilename);
 
        // Returns a reference to the singleton Logger object.
        static Logger& instance();
 
        // Prevent copy/move construction.
        Logger(const Logger&) = delete;
        Logger(Logger&&) = delete;
 
        // Prevent copy/move assignment operations.
        Logger& operator=(const Logger&) = delete;
        Logger& operator=(Logger&&) = delete;
 
        // Sets the log level.
        void setLogLevel(LogLevel level);
 
        // Logs a single message at the given log level.
        void log(std::string_view message, LogLevel logLevel);

continues
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    private:
        // Private constructor and destructor.
        Logger();
        ~Logger();
 
        // Converts a log level to a human readable string.
        std::string_view getLogLevelString(LogLevel level) const;
 
        static std::string ms_logFilename;
        std::ofstream m_outputStream;
        LogLevel m_logLevel { LogLevel::Error };
};

This implementation is based on Scott Meyer’s singleton pattern. This means that the instance() 
method contains a local static instance of the Logger class. C++ guarantees that this local static 
instance is initialized in a thread-safe fashion, so you don’t need any manual thread synchronization 
in this version of the singleton pattern. These are so-called magic statics. Note that only the initializa-
tion is thread safe! If multiple threads are going to call methods on the Logger class, then you should 
make the Logger methods themselves thread safe as well. See Chapter 27, “Multithreaded Program-
ming with C++,” for a detailed discussion on synchronization mechanisms to make a class thread safe.

The implementation of the Logger class is fairly straightforward. Once the log file has been opened, 
each log message is written to it with the log level prepended, and then flushed to disk. The construc-
tor and destructor are called automatically when the static instance of the Logger class in the 
instance() method is created and destroyed. Because the constructor and destructor are private, no 
external code can create or delete a Logger.

Here are the implementations of the setLogFilename() and instance() methods and the construc-
tor. The other methods have the same implementations as in the dependency injection logger example 
earlier in this chapter.

void Logger::setLogFilename(string_view logFilename)
{
    ms_logFilename = logFilename.data();
}
 
Logger& Logger::instance()
{
    static Logger instance; // Magic static.
    return instance;
}
 
Logger::Logger()
{
    m_outputStream.open(ms_logFileName, ios_base::app);
    if (!m_outputStream.good()) {
        throw runtime_error { "Unable to initialize the Logger!" };
    } 
}

(continued)
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Using a Singleton
The singleton Logger class can be tested as follows:

// Set the log filename before the first call to instance().
Logger::setLogFilename("log.out");
// Set log level to Debug.
Logger::instance().setLogLevel(Logger::LogLevel::Debug);
// Log some messages.
Logger::instance().log("test message", Logger::LogLevel::Debug);
// Set log level to Error.
Logger::instance().setLogLevel(Logger::LogLevel::Error);
// Now that the log level is set to Error, logging a Debug
// message will be ignored.
Logger::instance().log("A debug message", Logger::LogLevel::Debug);

After executing, the file log.out contains the following lines:

DEBUG: test message
Logger shutting down.

SUMMARY

This chapter has given you just a taste of how patterns can help you organize object-oriented  
concepts into high-level designs. A lot of design patterns are cataloged and discussed on Wikipedia 
(en.wikipedia.org/wiki/Software_design_pattern). It’s easy to get carried away and spend 
all your time trying to find the specific pattern that applies to your task. Instead, I recommend that 
you concentrate on a few patterns that interest you and focus your learning on how patterns are 
developed, not just the small differences between similar ones. After all, to paraphrase the old saying, 
“Teach me a design pattern, and I’ll code for a day. Teach me how to create design patterns, and I’ll 
code for a lifetime.”

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

The concept of the exercises for this chapter is a bit different compared to other chapters. The follow-
ing exercises briefly introduce new patterns and ask you to do research into those patterns to learn 
more about them.

Exercise 33-1: Although this chapter discussed a nice selection of patterns, there are of course 
much more patterns available. One such pattern is the command pattern. It encapsulates 
an operation or operations in an object. One major use case of this pattern is to implement 

http://en.wikipedia.org/wiki/Software_design_pattern
http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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undoable operations. Use one of the patterns-related references in Appendix B to research 
and learn about the command pattern, or, alternatively, start from the Wikipedia article,  
en.wikipedia.org/wiki/Software_design_pattern, to start your research.

Exercise 33-2: Another often-used pattern is the strategy pattern. With this pattern, you 
define a family of algorithms that are interchangeable at run time. Research the strategy  
pattern to learn more about it.

Exercise 33-3: With the prototype pattern, you specify different kinds of objects that can be 
created by constructing prototypical instances of those objects. These prototypical instances 
are usually registered in some kind of registry. A client can then ask the registry for the 
prototype of a specific kind of object and subsequently clone the prototype for further use. 
Research the prototype pattern to learn more about it.

Exercise 33-4: The mediator pattern is used to control the interactions between a set of 
objects. It advocates loose coupling between the different subsystems in play. Research the 
mediator pattern to learn more about it.

http://en.wikipedia.org/wiki/Software_design_pattern


34
Developing Cross-Platform 
and Cross-Language 
Applications

WHAT’S IN THIS CHAPTER?

➤➤ How to write code that runs on multiple platforms

➤➤ How to mix different programming languages together

WILEY.COM DOWNLOADS FOR THIS CHAPTER

Please note that all the code examples for this chapter are available as part of the chapter’s code 
download on this book’s website at www.wiley.com/go/proc++5e on the Download Code tab.

C++ programs can be compiled to run on a variety of computing platforms, and the language 
has been rigorously defined to ensure that programming in C++ for one platform is similar to 
programming in C++ for another. Yet, despite the standardization of the language, platform 
differences eventually come into play when writing professional-quality programs in C++. Even 
when development is limited to a particular platform, small differences in compilers can elicit 
major programming headaches. This chapter examines the necessary complication of program-
ming in a world with multiple platforms and multiple programming languages.

The first part of this chapter surveys the platform-related issues that C++ programmers encoun-
ter. A platform is the collection of all the details that make up your development and/or 
run-time system. For example, your platform may be the Microsoft Visual C++ 2019 compiler 
running on Windows 10 on an Intel Core i7 processor. Alternatively, your platform might be the 
GCC 10.1 compiler running on Linux on a PowerPC processor. Both of these platforms are able 
to compile and run C++ programs, but there are significant differences between them.

http://www.wiley.com/go/proc++5e
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The second part of this chapter looks at how C++ can interact with other programming languages. 
While C++ is a general-purpose language, it may not always be the right tool for the job. Through a 
variety of mechanisms, you can integrate C++ code with other languages that may better serve 
your needs.

CROSS-PLATFORM DEVELOPMENT

There are several reasons why the C++ language encounters platform issues. C++ is a high-level 
language, and the standard does not specify certain low-level details. For example, the layout of an 
object in memory is undefined by the standard and left to the compiler. Different compilers can  
use different memory layouts for objects. C++ also faces the challenge of providing a standard 
language and a Standard Library without a standard implementation. Varying interpretations of the 
specification among C++ compiler and library vendors can lead to trouble when moving from one 
system to another. Finally, C++ is selective in what the language provides as standard. Despite the 
presence of a Standard Library, programs often need functionality that is not provided by the lan-
guage or the Standard Library. This functionality generally comes from third-party libraries or the 
platform and can vary greatly.

Architecture Issues
The term architecture generally refers to the processor, or family of processors, on which a program 
runs. A standard PC running Windows or Linux generally runs on the x86 or x64 architecture, and 
older versions of macOS were usually found on the PowerPC architecture. As a high-level language, 
C++ shields you from the differences between these architectures. For example, a Core i7 processor 
may have a single instruction that performs the same functionality as six PowerPC instructions. As a 
C++ programmer, you don’t need to know what this difference is or even that it exists. One advantage 
to using a high-level language is that the compiler takes care of converting your code into the proces-
sor’s native assembly code format.

However, processor differences do sometimes rise up to the level of C++ code. The first one discussed, 
the size of integers, is important if you are writing cross-platform code. The others you won’t face 
often, unless you are doing particularly low-level work, but still, you should be aware that they exist.

Size of Integers
The C++ standard does not define the exact size of integer types. The standard just says the following:

There are five standard signed integer types: signed char, short int, int, long 
int, and long long int. In this list, each type provides at least as much storage as 
those preceding it in the list.

The standard does give a few additional hints for the size of these types, but never an exact size. The 
actual size is compiler-dependent. Thus, if you want to write cross-platform code, you cannot really 
rely on these types. One of the exercises at the end of this chapter asks you to investigate this further.
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Besides these standard integer types, the C++ standard does define a number of types that have clearly 
specified sizes, all defined in the <cstdint> header file, although some of the types are optional. Here 
is an overview:

TYPE DESCRIPTION

int8_t

int16_t

int32_t

int64_t

Signed integers of which the size is exactly 8, 16, 32, or 64 bits. This type 
is defined by the standard as being optional, although most compilers 
support it.

int_fast8_t

int_fast16_t

int_fast32_t

int_fast64_t

Signed integers with sizes of at least 8, 16, 32, or 64 bits. For these, 
the compiler should use the fastest integer type it has that satisfies the 
requirements.

int_least8_t

int_least16_t

int_least32_t

int_least64_t

Signed integers with sizes of at least 8, 16, 32, or 64 bits. For these, the 
compiler should use the smallest integer type it has that satisfies the 
requirements.

intmax_t An integer type with the maximum size supported by the compiler.

intptr_t An integer type big enough to store a pointer. This type is also optional, but 
most compilers support it.

There are also unsigned versions available, such as uint8_t, uint_fast8_t, and so on.

NOTE When writing cross-platform code, I recommend using the <cstdint> 
types instead of the basic integer types.

Binary Compatibility
As you probably already know, you cannot take a program written and compiled for a Core i7 com-
puter and run it on a PowerPC-based Mac. These two platforms are not binary compatible because 
their processors do not support the same set of instructions. When you compile a C++ program, 
your source code is turned into binary instructions that the computer executes. That binary format is 
defined by the platform, not by the C++ language.

One solution to support platforms that are not binary compatible is to build each version separately 
with a compiler on each target platform.
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Another solution is cross-compilation. When you are using platform X for your development, but you 
want your program to run on platforms Y and Z, you can use a cross-compiler on your platform X 
that generates binary code for platforms Y and Z.

You can also make your program open source. When you make your source available to the end user, 
she can compile it natively on her system and build a version of the program that is in the correct 
binary format for her machine. As discussed in Chapter 4, “Designing Professional C++ Programs,” 
open-source software has become increasingly popular. One of the major reasons is that it allows 
programmers to collaboratively develop software and increase the number of platforms on which 
it can run.

Address Sizes
When someone describes an architecture as 32-bit, they most likely mean that the address size is  
32 bits, or 4 bytes. In general, a system with a larger address size can handle more memory and might 
operate more quickly on complex programs.

Because pointers are memory addresses, they are inherently tied to address sizes. Many programmers 
are taught that pointers are always 4 bytes, but this is wrong. For example, consider the following 
code snippet, which outputs the size of a pointer:

int *ptr { nullptr };
cout << "ptr size is " << sizeof(ptr) << " bytes" << endl;

If this program is compiled and executed on a 32-bit x86 system, the output will be as follows:

ptr size is 4 bytes

If you compile it with a 64-bit compiler and run it on an x64 system, the output will be as follows:

ptr size is 8 bytes

From a programmer’s point of view, the upshot of varying pointer sizes is that you cannot equate a 
pointer with 4 bytes. More generally, you need to be aware that most sizes are not prescribed by the 
C++ standard. The standard only says that a short integer has as much, or less, space than an integer, 
which has as much, or less, space than a long integer.

The size of a pointer is also not necessarily the same as the size of an integer. For example, on a 64-bit 
platform, pointers are 64 bit, but integers could be 32 bit. Casting a 64-bit pointer to a 32-bit integer 
will result in losing 32 critical bits! The standard does define an std::intptr_t integer type in 
<cstdint> which is an integer type at least big enough to hold a pointer. The definition of this type is 
optional according to the standard, but virtually all compilers support it.

WARNING Never assume that a pointer is 32 bits or 4 bytes. Never cast a pointer 
to an integer, unless you use std::intptr_t.

Byte Order
All modern computers store numbers in a binary representation, but the representation of the same 
number on two platforms may not be identical. This sounds contradictory, but as you’ll see, there are 
two approaches to representing numbers that both make sense.
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Most computers these days are byte addressable, and a single slot in their memory is usually a byte. 
Being byte addressable makes these computers ideal to work with bytes; every byte in memory has a 
unique memory address. Numeric types in C++ usually occupy multiple bytes. For example, a short 
may be 2 bytes. Imagine that your program contains the following line:

short myShort { 513 };

In binary, the number 513 is 0000 0010 0000 0001. This number contains 16 ones and zeros, or  
16 bits. Because there are 8 bits in a byte, the computer needs 2 bytes to store the number. Because 
each individual memory address contains 1 byte, the computer needs to split the number up into 
multiple bytes. Assuming that a short is 2 bytes, the number is split into two even parts. The higher 
part of the number is put into the high-order byte, and the lower part of the number is put into the 
low-order byte. In this case, the high-order byte is 0000 0010 and the low-order byte is 0000 0001.

Now that the number has been split up into memory-sized parts, the only question that remains is 
how to store them in memory. Two bytes are needed, but the order of the bytes is unclear and, in fact, 
depends on the architecture of the system in question.

One way to represent the number is to put the high-order byte first in memory and the low-order 
byte next. This strategy is called big-endian ordering because the bigger part of the number comes 
first. PowerPC and SPARC processors use a big-endian approach. Some other processors, such as x86, 
arrange the bytes in the opposite order, putting the low-order byte first in memory. This approach 
is called little-endian ordering because the smaller part of the number comes first. An architecture 
may choose one approach or the other, usually based on backward compatibility. For the curious, 
the terms big-endian and little-endian predate modern computers by several hundred years. Jonathan 
Swift coined the terms in his eighteenth-century novel Gulliver’s Travels to describe the opposing 
camps of a debate about the proper end on which to break an egg.

Regardless of the ordering a particular architecture uses, your programs can continue to use numeri-
cal values without paying any attention to whether the machine uses big-endian ordering or little-
endian ordering. The ordering only comes into play when data moves between architectures. For 
example, if you are sending binary data across a network, you may need to consider the ordering of 
the other system. One solution is to use the standard network byte ordering, which is always big-
endian. So, before sending data across a network, you convert it to big-endian, and whenever you 
receive data from a network, you convert it from big-endian to the byte ordering of your system.

Similarly, if you are writing binary data to a file, you may need to consider what will happen when 
that file is opened on a system with opposite byte ordering.

The C++20 Standard Library introduces the std::endian enumeration type, defined in <bit>, which 
can be used to determine whether the current system is a big- or little-endian system. The following 
code snippet outputs the native byte ordering of your system:

switch (endian::native)
{
    case endian::little:
        cout << "Native ordering is little-endian." << endl;
        break;
    case endian::big:
        cout << "Native ordering is big-endian." << endl;
        break;
}

C++20
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Implementation Issues
When a C++ compiler is written, it is designed by a human being who attempts to adhere to the C++ 
standard. Unfortunately, the C++ standard is more than 1,000 pages long and written in a combi-
nation of prose, language grammars, and examples. Two human beings implementing a compiler 
according to such a standard are unlikely to interpret every piece of prescribed information in the 
same way or to catch every single edge case. As a result, compilers will have bugs.

Compiler Quirks and Extensions
There is no simple rule for finding or avoiding compiler bugs. The best you can do is to stay up to 
speed on compiler updates and perhaps subscribe to a mailing list or newsgroup for your compiler. If 
you suspect that you have encountered a compiler bug, a simple web search for the error message or 
condition you have witnessed could uncover a workaround or patch.

One area that compilers are notorious for having trouble with is language additions that are added by 
recent updates to the standard. Although in recent years, vendors of major compilers are pretty quick 
in adding support for the latest features.

Another issue to be aware of is that compilers often include their own language extensions without 
making it obvious to the programmer. For example, variable-length stack-based arrays (VLAs) are 
not part of the C++ language; however, they are part of the C language. Some compilers support both 
the C and C++ standards and can allow the use of VLAs in C++ code. One such compiler is g++. The 
following compiles and runs as expected with the g++ compiler:

int i { 4 };
char myStackArray[i];  // Not a standard language feature!

Some compiler extensions may be useful, but if there is a chance that you will switch compilers at 
some point, you should see if your compiler has a strict mode where it avoids using such extensions. 
For example, compiling the previous code with the -pedantic flag passed to g++ yields the  
following warning:

warning: ISO C++ forbids variable length array 'myStackArray' [-Wvla]

The C++ specification allows for a certain type of compiler-defined language extension through the 
#pragma mechanism. #pragma is a preprocessor directive whose behavior is defined by the imple-
mentation. If the implementation does not understand the directive, it ignores it. For example, some 
compilers allow the programmer to turn compiler warnings off temporarily with #pragma.

Library Implementations
Most likely, your compiler includes an implementation of the C++ Standard Library. Because the 
Standard Library is written in C++, however, you aren’t required to use the implementation that came 
bundled with your compiler. You could use a third-party Standard Library that, for example, has been 
optimized for speed, or you could even write your own.

Of course, Standard Library implementers face the same problems that compiler writers face: the 
standard is subject to interpretation. In addition, certain implementations may make trade-offs that 
are incompatible with your needs. For example, one implementation may optimize for speed, while 
another implementation may focus on using as little memory as possible for containers.
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When working with a Standard Library implementation, or indeed any third-party library, it is impor-
tant to consider the trade-offs that the designers made during the development. Chapter 4 contains a 
more detailed discussion of the issues involved in using libraries.

Handling Different Implementations
As discussed in the previous sections, not all compilers and Standard Library implementations behave 
exactly the same. This is something you need to keep in mind when doing cross-platform develop-
ment. Concretely, as a developer, you are most likely using a single toolchain, that is, a single compiler 
with a single Standard Library implementation. It’s unlikely that you will verify all your code changes 
with any other toolchains that your product must build with. However, there is a solution to this 
problem: continuous integration and automated testing.

You should set up a continuous integration environment that automatically builds all code changes 
on all toolchains that you need to support. The moment a build breaks on one of the toolchains, the 
developer who broke the build should automatically be informed.

However, not all development environments use the same project files to describe all the source files, 
compiler switches, and so on. If you need to support multiple environments, manually maintaining 
separate project files for each is a maintenance nightmare. Instead, it’s better to a use a single type of 
project file or single set of build scripts that can then automatically be transformed to concrete pro-
ject files or concrete build scripts for specific toolchains. One such tool is called cmake. The collection 
of source files, compiler switches, libraries to link with, and so on, are described in cmake configura-
tion files, which also have support for scripting. The cmake tool then automatically generates project 
files, for example for Visual C++ for development on Windows, or Xcode for development on macOS.

Once the continuous integration environment produces a build, automated testing should be triggered 
for that build. This should run a suite of test scripts on the produced executable to verify its correct 
behavior. Also in this step, if something goes wrong, the developer should automatically be informed.

Platform-Specific Features
C++ is a great general-purpose language. With the addition of the Standard Library, the language is 
packed full of so many features that a casual programmer could happily code in C++ for years with-
out going beyond what is built in. However, professional programs require facilities that C++ does 
not provide. This section lists several important features that are provided by the platform or third-
party libraries, not by the C++ language or the C++ Standard Library:

➤➤ Graphical user interfaces: Most commercial programs today run on an operating system that 
has a graphical user interface, containing such elements as clickable buttons, movable win-
dows, and hierarchical menus. C++, like the C language, has no notion of these elements. To 
write a graphical application in C++, you can use platform-specific libraries that allow you  
to draw windows, accept input through the mouse, and perform other graphical tasks. A 
better option is to use a third-party library, such as wxWidgets (wxwidgets.org), Qt  
(qt.io), Uno (platform.uno), and many more that provide an abstraction layer for building 
graphical applications. These libraries often provide support for many different target 
platforms.

http://www.wxwidgets.org
http://www.qt.io
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➤➤ Networking: The Internet has changed the way we write applications. These days,  
most applications check for updates through the web, and games provide a networked  
multiplayer mode. C++ does not provide a mechanism for networking yet, though several  
standard libraries exist. The most common means of writing networking software is through 
an abstraction called sockets. A socket library implementation can be found on most plat-
forms, and it provides a simple procedure-oriented way to transfer data over a network. 
Some platforms support a stream-based networking system that operates like I/O streams 
in C++. There are also third-party networking libraries available that provide a networking 
abstraction layer. These libraries often support many different target platforms. IPv6, the  
successor to IPv4, is gaining traction. Therefore, choosing a networking library that is  
IPv-independent would be a better choice than choosing one that only supports IPv4.

➤➤ OS events and application interaction: In pure C++ code, there is little interaction with the 
surrounding operating system and other applications. The command-line arguments are 
about all you get in a standard C++ program without platform extensions. For example, 
operations such as copy and paste are not directly supported in C++. You can either use 
platform-provided libraries or use third-party libraries that support multiple platforms. For 
example, both wxWidgets and Qt are examples of libraries that abstract the copy and paste 
operations and support multiple platforms.

➤➤ Low-level files: Chapter 13, “Demystifying C++ I/O,” explains standard I/O in C++, including 
reading and writing files. Many operating systems provide their own file APIs, which are 
usually incompatible with the standard file classes in C++. These libraries often provide OS-
specific file tools, such as a mechanism to get the home directory of the current user.

➤➤ Threads: Concurrent threads of execution within a single program were not directly sup-
ported in C++03 or earlier. Since C++11, a threading support library has been included with 
the Standard Library, as explained in Chapter 27, “Multithreaded Programming with C++,” 
and C++17 has added parallel algorithms, as discussed in Chapter 20, “Mastering Stan-
dard Library Algorithms.” If you need more powerful threading functionality besides what 
the Standard Library provides, then you need to use third-party libraries. Examples are the 
Intel Threading Building Blocks (TBB), and The STE||AR Group High Performance ParalleX 
(HPX) library.

NOTE If you are doing cross-platform development and you need functionality 
not provided by the C++ language or the C++ Standard Library, you should try 
to find a third-party cross-platform library that provides the functionality you 
require. If, instead, you start using platform-specific APIs directly, then you are 
complicating your cross-platform code a lot, as you will have to implement the 
functionality for each platform you need to support.

NOTE When using third-party libraries, if possible, get these libraries as source 
code and build them yourself with the exact toolchains you need.
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CROSS-LANGUAGE DEVELOPMENT

For certain types of programs, C++ may not be the best tool for the job. For example, if your Unix 
program needs to interact closely with the shell environment, you may be better off writing a shell 
script than a C++ program. If your program performs heavy text processing, you may decide that 
the Perl language is the way to go. If you need a lot of database interaction, then C# or Java might 
be a better choice. C# in combination with the WPF framework or the Uno platform might be bet-
ter suited to write modern graphical user interface applications, and so on. Still, if you do decide to 
use another language, you sometimes might want to be able to call into C++ code, for example, to 
perform some computational-expensive operations; or the other way around, you might want to call 
non-C++ code from C++. Fortunately, there are some techniques you can use to get the best of both 
worlds—the unique specialty of another language combined with the power and flexibility of C++.

Mixing C and C++
As you already know, the C++ language is almost a superset of the C language. That means that 
almost all C programs will compile and run in C++. There are a few exceptions. Some exceptions 
have to do with the fact that a handful of C features are not supported by C++; for example, C sup-
ports variable-length arrays (VLAs), while C++ does not. Other exceptions usually have to do with 
reserved words. In C, for example, the term class has no particular meaning. Thus, it could be used as 
a variable name, as in the following C code:

int class = 1; // Compiles in C, not C++
printf("class is %d\n", class);

This program compiles and runs in C but yields an error when compiled as C++ code. When you 
translate, or port, a program from C to C++, these are the types of errors you will face. Fortunately, 
the fixes are usually quite simple. In this case, rename the class variable to classID and the code 
will compile. The other types of errors you’ll face are the handful of C features that are not supported 
by C++, but these are usually rare.

The ease of incorporating C code in a C++ program comes in handy when you encounter a useful 
library or legacy code that was written in C. Functions and classes, as you’ve seen many times in 
this book, work just fine together. A class method can call a function, and a function can make use 
of objects.

Shifting Paradigms
One of the dangers of mixing C and C++ is that your program may start to lose its object-oriented 
properties. For example, if your object-oriented web browser is implemented with a procedural net-
working library, the program will be mixing these two paradigms. Given the importance and quantity 
of networking tasks in such an application, you might consider writing an object-oriented wrapper 
around the procedural library. A typical design pattern that can be used for this is called the façade.

For example, imagine that you are writing a web browser in C++, but you are using a C networking 
library that contains the functions declared in the following code. Note that the HostHandle and 
ConnectionHandle data structures have been omitted for brevity.

// networklib.h
#include "HostHandle.h"

continues



1146 ❘ CHAPTER 34  Developing Cross-platform anD Cross-language appliCations

#include "ConnectionHandle.h"
 
// Gets the host record for a particular Internet host given
// its hostname (i.e.www.host.com)
HostHandle* lookupHostByName(char* hostName);
// Frees the given HostHandle
void freeHostHandle(HostHandle* host);
 
// Connects to the given host
ConnectionHandle* connectToHost(HostHandle* host);
// Closes the given connection
void closeConnection(ConnectionHandle* connection);
 
// Retrieves a web page from an already-opened connection
char* retrieveWebPage(ConnectionHandle* connection, char* page);
// Frees the memory pointed to by page
void freeWebPage(char* page);

The networklib.h interface is fairly simple and straightforward. However, it is not object-oriented, 
and a C++ programmer who uses such a library is bound to feel icky, to use a technical term. This 
library isn’t organized into a cohesive class, and it isn’t even const-correct. Of course, a talented  
C programmer could have written a better interface, but as the user of a library, you have to accept 
what you are given. Writing a wrapper is your opportunity to customize the interface.

Before you build an object-oriented wrapper for this library, take a look at how it might be used as-is 
to gain an understanding of its actual usage. In the following program, the networklib library is 
used to retrieve the web page at www.wrox.com/index.html:

HostHandle* myHost { lookupHostByName("www.wrox.com") };
ConnectionHandle* myConnection { connectToHost(myHost) };
char* result { retrieveWebPage(myConnection, "/index.html") };
 
cout << "The result is " << result << endl;
 
freeWebPage(result); result = nullptr;
closeConnection(myConnection); myConnection = nullptr;
freeHostHandle(myHost); myHost = nullptr;

A possible way to make the library more object-oriented is to provide a single abstraction that  
recognizes the links between looking up a host, connecting to the host, and retrieving a web page.  
A good object-oriented wrapper hides the needless complexity of the HostHandle and  
ConnectionHandle types.

This example follows the design principles described in Chapters 5, “Designing with Objects,” and 
6, “Designing for Reuse”: the new class should capture the common use case for the library. The 
previous example shows the most frequently used pattern: first a host is looked up, then a connection 
is established, and finally a page is retrieved. It is also likely that subsequent pages will be retrieved 
from the same host, so a good design will accommodate that mode of use as well.

(continued)

http://www.wrox.com/index.html


Cross-Language Development ❘ 1147

To start, the HostRecord class wraps the functionality of looking up a host. It’s an RAII class. Its 
constructor uses lookupHostByName() to perform the lookup, and its destructor automatically frees 
the retrieved HostHandle. Here is the code:

class HostRecord
{
    public:
        // Looks up the host record for the given host.
        explicit HostRecord(std::string_view host)
            : m_hostHandle { lookupHostByName(const_cast<char*>(host.data())) }
        { }
 
        // Frees the host record.
        virtual ~HostRecord() { if (m_hostHandle) freeHostHandle(m_hostHandle); }
 
        // Prevent copy construction and copy assignment.
        HostRecord(const HostRecord&) = delete;
        HostRecord& operator=(const HostRecord&) = delete;
 
        // Returns the underlying handle.
        HostHandle* get() const noexcept { return m_hostHandle; }
 
    private:
        HostHandle* m_hostHandle { nullptr };
};

Because the HostRecord constructor deals with C++ string_views instead of C-style strings, it uses 
the data() method on host to obtain a const char*, and then it performs a const_cast() to 
make up for networklib’s const-incorrectness.

Next, a WebHost class is implemented that uses the HostRecord class. The WebHost class creates a 
connection to a given host and supports retrieving webpages. It’s also an RAII class. When the  
WebHost object is destroyed, it automatically closes the connection to the host. Here is the code:

class WebHost
{
    public:
        // Connects to the given host.
        explicit WebHost(std::string_view host);
        // Closes the connection to the host.
        virtual ~WebHost();
        // Prevent copy construction and copy assignment.
        WebHost(const WebHost&) = delete;
        WebHost& operator=(const WebHost&) = delete;
        // Obtains the given page from this host.
        std::string getPage(std::string_view page);
    private:
        ConnectionHandle* m_connection { nullptr };
};
 
WebHost::WebHost(std::string_view host)
{

continues
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    HostRecord hostRecord { host };
    if (hostRecord.get()) { m_connection = connectToHost(hostRecord.get()); }
}
 
WebHost::~WebHost()
{
    if (m_connection) { closeConnection(m_connection); }
}
 
std::string WebHost::getPage(std::string_view page)
{
    std::string resultAsString;
    if (m_connection) {
        char* result { retrieveWebPage(m_connection,
            const_cast<char*>(page.data())) };
        resultAsString = result;
        freeWebPage(result);
    }
    return resultAsString;
}

The WebHost class effectively encapsulates the behavior of a host and provides useful functionality 
without unnecessary calls and data structures. The implementation of the WebHost class makes exten-
sive use of the networklib library without exposing any of its workings to the user. The constructor 
of WebHost uses a HostRecord RAII object for the specified host. The resulting HostRecord is used 
to set up a connection to the host, which is stored in the m_connection data member for later use. 
The HostRecord RAII object is automatically destroyed at the end of the constructor. The WebHost 
destructor closes the connection. The getPage() method uses retrieveWebPage() to retrieve a web 
page, converts it to an std::string, uses freeWebPage() to free memory, and returns the retrieved 
page as an std::string.

The WebHost class makes the common case easy for the client programmer. Here is an example:

WebHost myHost { "www.wrox.com" };
string result { myHost.getPage("/index.html") };
cout << "The result is " << result << endl;

NOTE Networking-savvy readers may note that keeping a connection open to a 
host indefinitely is considered bad practice and doesn’t adhere to the HTTP spec-
ification. You should not do this in production-quality code. However, for this 
example, I’ve chosen elegance over etiquette.

As you can see, the WebHost class provides an object-oriented wrapper around the C library. By  
providing an abstraction, you can change the underlying implementation without affecting cli-
ent code, and you can provide additional features. These features can include connection reference 
counting, automatically closing connections after a specific time to adhere to the HTTP specification, 
automatically reopening the connection on the next getPage() call, and so on.

You’ll explore writing wrappers a bit more in one of the exercises at the end of this chapter.

(continued)
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Linking with C Code
The previous example assumed that you had the raw C code to work with. The example took advan-
tage of the fact that most C code will successfully compile with a C++ compiler. If you only have com-
piled C code, perhaps in the form of a library, you can still use it in your C++ program, but you need 
to take a few extra steps.

Before you can start using compiled C code in your C++ programs, you first need to know about a 
concept called name mangling. To implement function overloading, the complex C++ namespace is 
“flattened.” For example, if you have a C++ program, it is legitimate to write the following:

void myFunc(double);
void myFunc(int);
void myFunc(int, int);

However, this would mean that the linker would see several different functions, all called myFunc, and 
would not know which one you want to call. Therefore, all C++ compilers perform an operation that 
is referred to as name mangling and is the logical equivalent of generating names, as follows:

myFunc_double
myFunc_int
myFunc_int_int

To avoid conflicts with other names you might have defined, the generated names usually have some 
characters that are legal to the linker but not legal in C++ source code. For example, Microsoft VC++ 
generates names as follows:

?myFunc@@YAXN@Z
?myFunc@@YAXH@Z
?myFunc@@YAXHH@Z

This encoding is complex and often vendor-specific. The C++ standard does not specify how function 
overloading should be implemented on a given platform, so there is no standard for name mangling 
algorithms.

In C, function overloading is not supported (the compiler will complain about duplicate definitions). 
So, names generated by the C compiler are quite simple, for example, _myFunc.

Now, if you compile a simple program with the C++ compiler, even if it has only one instance of the 
myFunc name, it still generates a request to link to a mangled name. However, when you link with the 
C library, it cannot find the desired mangled name, and the linker complains. Therefore, it is neces-
sary to tell the C++ compiler to not mangle that name. This is done by using the extern "language" 
qualification both in the header file (to instruct the client code to create a name compatible with the 
specified language) and, if your library source is in C++, at the definition site (to instruct the library 
code to generate a name compatible with the specified language).

Here is the syntax of extern "language":

extern "language" declaration1();
extern "language" declaration2();
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or it can also be like this:

extern "language" {
    declaration1();
    declaration2();
}

The C++ standard says that any language specification can be used, so in principle, the following 
could be supported by a compiler:

extern "C" myFunc(int i);
extern "Fortran" matrixInvert(Matrix* M);
extern "Pascal" someLegacySubroutine(int n);
extern "Ada" aimMissileDefense(double angle);

In practice, many compilers only support "C". Each compiler vendor will inform you which language 
designators they support.

As an example, the following code specifies the function prototype for cFunction() as an external 
C function:

extern "C" {
    void cFunction(int i);
}
 
int main()
{
    cFunction(8); // Calls the C function.
}

The actual definition for cFunction() is provided in a compiled binary file attached in the link 
phase. The extern keyword informs the compiler that the linked-in code was compiled in C.

A more common pattern for using extern is at the header level. For example, if you are using a 
graphics library written in C, it probably came with an .h file for you to use. You can write another 
header file that wraps the original one in an extern block to specify that the entire header defines 
functions written in C. The wrapper .h file is often named with .hpp to distinguish it from the  
C version of the header.

// graphicslib.hpp
extern "C" {
    #include "graphicslib.h"
}

Another common model is to write a single header file, which is conditioned on whether it is being 
compiled for C or C++. A C++ compiler predefines the symbol __cplusplus if you are compiling 
for C++. The symbol is not defined for C compilations. So, you will often see header files in the fol-
lowing form:

#ifdef __cplusplus
    extern "C" {
#endif
        declaration1();
        declaration2();
#ifdef __cplusplus
    } // matches extern "C"
#endif
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This means that declaration1() and declaration2() are functions that are in a library compiled 
by the C compiler. Using this technique, the same header file can be used in both C and C++ clients.

Whether you are including C code in your C++ program or linking against a compiled C library, 
remember that even though C++ is almost a superset of C, they are different languages with differ-
ent design goals. Adapting C code to work in C++ is quite common, but providing an object-oriented 
C++ wrapper around procedural C code is often much better.

Calling C++ Code from C#
Even though this is a C++ book, I won’t pretend that there aren’t other languages out there. One 
example is C#. By using the Interop services from C#, it’s pretty easy to call C++ code from within 
your C# applications. An example scenario could be that you develop parts of your application, like 
the graphical user interface, in C#, but use C++ to implement certain performance-critical or compu-
tational-expensive components. To make Interop work, you need to write a library in C++, which can 
be called from C#. On Windows, the library will be in a .DLL file. The following C++ example defines 
a functionInDLL() function that is compiled into a library. The function accepts a Unicode string 
and returns an integer. The implementation writes the received string to the console and returns the 
value 42 to the caller:

import <iostream>;
 
using namespace std;
 
extern "C"
{
    __declspec(dllexport) int functionInDLL(const wchar_t* p)
    {
        wcout << L"The following string was received by C++:\n    '";
        wcout << p << L"'" << endl;
        return 42;    // Return some value...
    }
}

Keep in mind that you are implementing a function in a library, not writing a program, so you do not 
need a main() function. How you compile this code depends on your environment. If you are using 
Microsoft Visual C++, you need to go to the properties of your project and select Dynamic Library 
(.dll) as the configuration type. Note that the example uses __declspec(dllexport) to tell the 
linker that this function should be made available to clients of the library. This is the way you do it 
with Microsoft Visual C++. Other linkers might use a different mechanism to export functions.

Once you have the library, you can call it from C# by using the Interop services. First, you need to 
include the Interop namespace:

using System.Runtime.InteropServices;

Next, you define the function prototype and tell C# where it can find the implementation of the func-
tion. This is done with the following line, assuming you have compiled the library as HelloCpp.dll:

[DllImport("HelloCpp.dll", CharSet = CharSet.Unicode)]
public static extern int functionInDLL(String s);
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The first line is saying that C# should import this function from a library called HelloCpp.dll and 
that it should use Unicode strings. The second line specifies the actual prototype of the function, 
which is a function accepting a string as parameter and returning an integer. The following code 
shows a complete example of how to use the C++ library from C#:

using System;
using System.Runtime.InteropServices;
 
namespace HelloCSharp
{
    class Program
    {
        [DllImport("HelloCpp.dll", CharSet = CharSet.Unicode)]
        public static extern int functionInDLL(String s);
 
        static void Main(string[] args)
        {
            Console.WriteLine("Written by C#.");
            int result = functionInDLL("Some string from C#.");
            Console.WriteLine("C++ returned the value " + result);
        }
    }
}

The output is as follows:

Written by C#.
The following string was received by C++:
    'Some string from C#.'
C++ returned the value 42

The details of the C# code are outside the scope of this C++ book, but the general idea should be 
clear with this example.

This section only talked about calling C++ functions from C# and didn’t say anything about using 
C++ classes from C#. That will be remedied in the next section with the introduction of C++/CLI.

C++/CLI to Use C# Code from C++ and C++ from C#
To use C# code from C++, you can use C++/CLI. CLI stands for Common Language Infrastructure 
and is the backbone of all .NET languages such as C#, Visual Basic .NET, and so on. C++/CLI was 
created by Microsoft in 2005 to be a version of C++ that supports the CLI. In December 2005, C++/
CLI has been standardized as the ECMA-372 standard. You can write your C++ programs in C++/
CLI and gain access to any other piece of functionality written in any other language that supports 
the CLI, such as C#. Keep in mind, though, that C++/CLI might lag behind the latest C++ standard, 
meaning that it does not necessarily support all latest C++ features. Discussing the C++/CLI language 
in details is outside the scope of this pure C++ book. Only a few small examples are given.

Suppose you have the following C# class in a C# library:

namespace MyLibrary
{
    public class MyClass
    {
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        public double DoubleIt(double value) { return value * 2.0; }
    }
}

You can consume this C# library from your C++/CLI code as follows. The important bits are high-
lighted. CLI objects are managed by a memory garbage collector that automatically cleans up 
memory when memory is not needed anymore. As such, you cannot just use the standard C++ new 
operator to create managed objects; you have to use gcnew, an abbreviation for “garbage collect 
new.” Instead of storing the resulting pointer in a normal C++ pointer variable such as MyClass* or 
in a smart pointer such as std::unique_ptr<MyClass>, you have to store it using a so-called handle, 
MyClass^, usually pronounced as “MyClass hat.”

#include <iostream>
 
using namespace System;
using namespace MyLibrary;
 
int main(array<System::String^>^ args)
{
    MyClass^ instance { gcnew MyClass() };
    auto result { instance->DoubleIt(1.2) };
    std::cout << result;
}

C++/CLI can also be used in the other direction; you can write so-called managed C++ ref classes, 
which are then accessible by any other CLI language. Here is a simple example of a managed C++ 
ref class:

#pragma once
using namespace System;
 
namespace MyCppLibrary
{
    public ref class MyCppRefClass
    {
        public:
            double TripleIt(double value) { return value * 3.0; }
    };
}

This C++/CLI ref class can then be used from C# as follows:

using MyCppLibrary;
 
namespace MyLibrary
{
    public class MyClass
    {
        public double TripleIt(double value)
        {
            // Ask C++ to triple it.
            MyCppRefClass cppRefClass = new MyCppRefClass();
            return cppRefClass.TripleIt(value);
        }
    }
}
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As you can see, the basics are not that complicated, but these examples all use primitive datatypes, 
such as double. It starts to become more complicated if you need to work with non-primitive data-
types such as strings, vectors, and so on, because then you need to start marshaling objects between 
C# and C++/CLI, and vice versa. However, this would take us too far for this brief introduction 
to C++/CLI.

Calling C++ Code from Java with JNI
The Java Native Interface (JNI) is part of the Java language that allows programmers to access func-
tionality that was not written in Java. Because Java is a cross-platform language, the original intent 
was to make it possible for Java programs to interact with the operating system. JNI also allows 
programmers to make use of libraries written in other languages, such as C++. Access to C++  
libraries may be useful to a Java programmer who has a performance-critical or computational-
expensive piece of code or who needs to use legacy code.

JNI can also be used to execute Java code within a C++ program, but such a use is far less common. 
Because this is a C++ book, I do not include an introduction to the Java language. This section is  
recommended if you already know Java and want to incorporate C++ code into your Java code.

To begin your Java cross-language adventure, start with the Java program. For this example, the sim-
plest of Java programs will suffice:

public class HelloCpp
{
    public static void main(String[] args)
    {
        System.out.println("Hello from Java!");
    }
}

Next, you need to declare a Java method that will be written in another language. To do this, you use 
the native keyword and leave out the implementation:

// This will be implemented in C++.
public static native void callCpp();

The C++ code will eventually be compiled into a shared library that gets dynamically loaded into the 
Java program. You can load this library inside a Java static block so that it is loaded when the  
Java program begins executing. The name of the library can be whatever you want, for example,  
hellocpp.so on Linux systems, or hellocpp.dll on Windows systems.

static { System.loadLibrary("hellocpp"); }

Finally, you need to actually call the C++ code from within the Java program. The callCpp() Java 
method serves as a placeholder for the not-yet-written C++ code. Here is the complete Java program:

public class HelloCpp
{
    static { System.loadLibrary("hellocpp"); }
 
    // This will be implemented in C++.
    public static native void callCpp();
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    public static void main(String[] args)
    {
        System.out.println("Hello from Java!");
        callCpp();
    }
}

That’s all for the Java side. Now, just compile the Java program as you normally would:

javac HelloCpp.java

Then use the javah program (I like to pronounce it as jav-AHH!) to create a header file for the 
native method:

javah HelloCpp

After running javah, you will find a file named HelloCpp.h, which is a fully working (if somewhat 
ugly) C/C++ header file. Inside of that header file is a C function definition for a function called 
Java_HelloCpp_callCpp(). Your C++ program will need to implement this function. The full proto-
type is as follows:

JNIEXPORT void JNICALL Java_HelloCpp_callCpp(JNIEnv*, jclass);

Your C++ implementation of this function can make full use of the C++ language. This example just 
outputs some text from C++. First, you need to include the jni.h header file and the HelloCpp.h file 
that was created by javah. You also need to include any C++ headers that you intend to use.

#include <jni.h>
#include "HelloCpp.h"
#include <iostream>

The C++ function is written as normal. The parameters to the function allow interaction with 
the Java environment and the object that called the native code. They are beyond the scope of 
this example.

JNIEXPORT void JNICALL Java_HelloCpp_callCpp(JNIEnv*, jclass)
{
    std::cout << "Hello from C++!" << std::endl;
}

How to compile this code into a library depends on your environment, but you will most likely need 
to tweak your compiler’s settings to include the JNI headers. Using the GCC compiler on Linux, your 
compile command might look like this:

g++ -shared -I/usr/java/jdk/include/ -I/usr/java/jdk/include/linux \
HelloCpp.cpp -o hellocpp.so

The output from the compiler is the library used by the Java program. As long as the shared library is 
somewhere in the Java class path, you can execute the Java program as you normally would:

java HelloCpp

You should see the following result:

Hello from Java!
Hello from C++!
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Of course, this example just scratches the surface of what is possible through JNI. You could use JNI 
to interface with OS-specific features or hardware drivers. For complete coverage of JNI, you should 
consult a Java text.

Calling Scripts from C++ Code
The original Unix OS included a rather limited C library, which did not support certain common 
operations. Unix programmers therefore developed the habit of launching scripts from applications 
to accomplish tasks that should have had API or library support. Scripts can be written in languages 
such as Perl and Python, but they can also be Shell scripts for executing in a shell such as Bash.

Today, many of these Unix programmers still insist on using scripts as a form of subroutine call. To 
enable these kinds of interoperabilities, C++ provides the std::system() function defined in the 
<cstdlib> header file. It requires only a single argument, a string representing the command you 
want to execute. Here are some examples:

system("python my_python_script.py");  // Launch a Python script.
system("perl my_perl_script.pl");      // Launch a Perl script.
system("my_shell_script.sh");          // Launch a Shell script.

However, there are significant risks to this approach. For example, if there is an error in the script, the 
caller may or may not get a detailed error indication. The system() call is also exceptionally heavy-
duty, because it has to create an entire new process to execute the script. This may ultimately be a 
serious performance bottleneck in your application.

Using system() to launch scripts is not further discussed in this text. In general, you should  
explore the features of C++ libraries to see if there are better ways to do something. There are some 
platform-independent wrappers around a lot of platform-specific libraries, for example, the Boost 
Asio library, which provides portable networking and other low-level I/O, including sockets, timers, 
serial ports, and so on. If you need to work with a filesystem, you can use the platform-independent 
<filesystem> API available as part of the C++ Standard Library since C++17, and discussed in 
Chapter 13. Concepts like launching a Perl script with system() to process some textual data may 
not be the best choice. Using techniques like the regular expressions library of C++ (see Chapter 21, 
“String Localization and Regular Expressions”) might be a better choice for your string pro-
cessing needs.

Calling C++ Code from Scripts
C++ contains a built-in general-purpose mechanism to interface with other languages and environ-
ments. You’ve already used it many times, probably without paying much attention to it—it’s the 
arguments to and return value from the main() function.

C and C++ were designed with command-line interfaces in mind. The main() function receives the 
arguments from the command line and returns a status code that can be interpreted by the caller. In a 
scripting environment, arguments to and status codes from your program can be a powerful mecha-
nism that allows you to interface with the environment.
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A Practical Example: Encrypting Passwords
Assume that you have a system that writes everything a user sees and types to a file for auditing pur-
poses. The file can be read only by the system administrator so that she can figure out who to blame 
if something goes wrong. An excerpt of such a file might look like this:

Login: bucky-bo
Password: feldspar
 
bucky-bo> mail
bucky-bo has no mail
bucky-bo> exit

While the system administrator may want to keep a log of all user activity, she may also want to 
obscure everybody’s passwords in case the file is somehow obtained by a hacker. She decides to write 
a script to parse the log files and to use C++ to perform the actual encryption. The script then calls 
out to a C++ program to perform the encryption.

The following script uses the Perl language, though almost any scripting language could accomplish 
this task. Note also that these days, there are libraries available for Perl that perform encryption, but, 
for the sake of this example, let’s assume the encryption is done in C++. If you don’t know Perl, you 
will still be able to follow along. The most important element of the Perl syntax for this example is 
the ` character. The ` character instructs the Perl script to shell out to an external command. In this 
case, the script will shell out to a C++ program called encryptString.

NOTE Launching an external process causes a big performance overhead because 
a completely new process has to be created. You shouldn’t use it when you need 
to call the external process often. In this password encryption example, it is okay, 
because you can assume that a log file will contain only a few password lines.

The strategy for the script is to loop over every line of a file, userlog.txt, looking for lines that 
contain a password prompt. The script writes a new file, userlog.out, which contains the same 
text as the source file, except that all passwords are encrypted. The first step is to open the input file 
for reading and the output file for writing. Then, the script needs to loop over all the lines in the file. 
Each line in turn is placed in a variable called $line.

open (INPUT, "userlog.txt") or die "Couldn't open input file!";
open (OUTPUT, ">userlog.out") or die "Couldn't open output file!";
while ($line = <INPUT>) {

Next, the current line is checked against a regular expression to see if this particular line contains the 
Password: prompt. If it does, Perl stores the password in the variable $1.

    if ($line =~ m/^Password: (.*)/) {

If a match is found, the script calls the encryptString program with the detected password to 
obtain an encrypted version of it. The output of the program is stored in the $result variable, and 
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the result status code from the program is stored in the variable $?. The script checks $? and quits 
immediately if there is a problem. If everything is okay, the password line is written to the output file 
with the encrypted password instead of the original one.

        $result = `./encryptString $1`;
        if ($? != 0) { exit(-1); }
        print OUTPUT "Password: $result\n";
    } else {

If the current line is not a password prompt, the script writes the line as is to the output file. At the 
end of the loop, it closes both files and exits.

        print OUTPUT "$line";
    }
}
close (INPUT);
close (OUTPUT);

That’s it. The only other required piece is the actual C++ program. Implementation of a cryptographic 
algorithm is beyond the scope of this book. The important piece is the main() function because it 
accepts the string that should be encrypted as an argument.

Arguments are contained in the argv array of C-style strings. You should always check the argc 
parameter before accessing an element of argv. If argc is 1, there is one element in the argument list, 
and it is accessible as argv[0]. The zeroth element of the argv array is generally the name of the 
program, but can be the empty string as well. Actual parameters begin at argv[1].

The following is the main() function for a C++ program that encrypts the input string. Notice that 
the program returns 0 for success and non-0 for failure, as is standard in Linux.

int main(int argc, char* argv[])
{
    if (argc < 2) {
        cerr << "Usage: " << argv[0] << " string-to-be-encrypted" << endl;
        return -1;
    }
    cout << encrypt(argv[1]);
}

NOTE There is actually a blatant security hole in this code. When the to-be-
encrypted string is passed to the C++ program as a command-line argument, it may 
be visible to other users through the process table. One example of a more secure 
way to get the information into the C++ program would be to send it through stan-
dard input.

Now that you’ve seen how easily C++ programs can be incorporated into scripting languages, you 
can combine the strengths of the two languages for your own projects. You can use a scripting 
language to interact with the operating system and control the flow of the script, and a traditional 
programming language like C++ for the heavy lifting.
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NOTE This example is just to demonstrate how to use Perl and C++ together. The 
C++ Standard Library includes regular expressions support, which makes it easy 
to convert this Perl/C++ solution into a pure C++ solution. This pure C++ solution 
will run much faster because it avoids calling an external program. See Chapter 21 
for details on the regular expressions library.

Calling Assembly Code from C++
C++ is considered a fast language, especially relative to other languages. Yet, in some rare cases, 
you might want to use raw assembly code when speed is absolutely critical. The compiler generates 
assembly code from your source files, and this generated assembly code is fast enough for virtually all 
purposes. Both the compiler and the linker (when it supports link time code generation) use optimiza-
tion algorithms to make the generated assembly code as fast as possible. These optimizers are getting 
more and more powerful by using special processor instruction sets such as MMX, SSE, and AVX. 
These days, it’s hard to write your own assembly code that outperforms the code generated by the 
compiler, unless you know all the little details of these enhanced instruction sets.

However, in case you do need it, the keyword asm can be used by a C++ compiler to allow the pro-
grammer to insert raw assembly code. The keyword is part of the C++ standard, but its implementa-
tion is compiler-defined. In some compilers, you can use asm to drop from C++ down to the level of 
assembly right in the middle of your program. Sometimes, the support for the asm keyword depends 
on your target architecture, and sometimes a compiler uses a non-standard keyword instead of the 
asm keyword. For example, Microsoft Visual C++ 2019 does not support the asm keyword. Instead, it 
supports the __asm keyword when compiling in 32-bit mode, but does not support inline assembly at 
all when compiling in 64-bit mode.

Assembly code can be useful in some applications, but I don’t recommend it for most programs. 
There are several reasons to avoid assembly code:

➤➤ Your code is no longer portable to another processor once you start including raw assembly 
code for your platform.

➤➤ Most programmers don’t know assembly languages and won’t be able to modify or maintain 
your code.

➤➤ Assembly code is not known for its readability. It can hurt your program’s use of style.

➤➤ Most of the time, it is not necessary. If your program is slow, look for algorithmic problems, 
or consult some of the other performance suggestions from Chapter 29, “Writing  
Efficient C++.”

WARNING When you encounter performance issues in your application, use a 
profiler to determine the real hotspot, and look into algorithmic speed-ups! Only 
start thinking about using assembly code if you have exhausted all other options, 
and even then, think about the disadvantages of assembly code.
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Practically, if you have a computationally expensive block of code, you should move it to its own 
C++ function. If you determine, using performance profiling (see Chapter 29), that this function is a 
performance bottleneck, and there is no way to write the code smaller and faster, you might use raw 
assembly code to try to increase its performance.

In such a case, one of the first things you want to do is declare the function extern "C" so the C++ 
name mangling is suppressed. Then, you can write a separate module in assembly code that performs 
the function more efficiently. The advantage of a separate module is that there is both a “reference 
implementation” in C++ that is platform-independent, and also a platform-specific high-performance 
implementation in raw assembly code. The use of extern "C" means that the assembly code can use 
a simple naming convention (otherwise, you have to reverse-engineer your compiler’s name mangling 
algorithm). Then, you can link with either the C++ version or the assembly code version.

You would write this module in assembly code and run it through an assembler, rather than using the 
inline asm keyword in C++. This is particularly true in many of the popular x86-compatible 64-bit 
compilers, where the inline asm keyword is not supported.

In conclusion, you should use raw assembly code only if there are significant performance improve-
ments. Increasing the performance by a factor of 2 might possibly justify the effort. A factor of 10 is 
compelling. An improvement of 10 percent is not worth the effort.

SUMMARY

If you take away one point from this chapter, it should be that C++ is a flexible language. It exists in 
the sweet spot between languages that are too tied to a particular platform, and languages that are 
too high-level and generic. Rest assured that when you develop code in C++, you aren’t locking  
yourself into the language forever. C++ can be mixed with other technologies and has a solid history 
and code base that will help guarantee its relevance in the future.

In Part V of this book, I discussed software engineering methods, writing efficient C++, testing and 
debugging techniques, design techniques and patterns, and cross-platform and cross-language applica-
tion development. This is a terrific way to end your journey through professional C++ programming 
because these topics help good C++ programmers become great C++ programmers. By thinking 
through your designs, experimenting with different approaches in object-oriented programming, 
selectively adding new techniques to your coding repertoire, and practicing testing and debugging 
techniques, you’ll be able to take your C++ skills to the professional level.

EXERCISES

By solving the following exercises, you can practice the material discussed in this chapter. Solutions 
to all exercises are available with the code download on the book’s website at www.wiley.com/go/
proc++5e. However, if you are stuck on an exercise, first reread parts of this chapter to try to find an 
answer yourself before looking at the solution from the website.

Exercise 34-1: Write a program that outputs the sizes of all standard C++ integer types. If 
possible, try to compile and execute it with different compilers on different platforms.

http://www.wiley.com/go/proc++5e
http://www.wiley.com/go/proc++5e
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Exercise 34-2: This chapter introduces the concept of big- and little-endian encoding of inte-
ger values. It also explained that over a network, it’s recommended to always use big-endian 
encoding and to convert as necessary. Write a program that can convert 16-bit unsigned 
integers between little- and big-endian encoding in both directions. Pay special attention to 
the data types you use. Write a main() function to test your function.

Bonus exercise: Can you do the same for 32-bit integers?

Exercise 34-3: The networking example in the Shifting Paradigms section combining C and 
C++ is a bit abstract. The implementations of the C functions in that example are left out 
as they require networking code which is neither provided by the C nor the C++ Standard 
Library. In this exercise, let’s look at a much smaller C library that you might want to  
use in your C++ code. The C library basically consists of two functions, a function  
reverseString() which allocates a new string and initializes it with the reverse of a given 
source string. And a second function, freeString(), to free the memory allocated by 
reverseString(). Here are their declarations with descriptive comments:

/// <summary>
/// Allocates a new string and initializes it with the reverse of a given string.
/// </summary>
/// <param name="string">The source string to reverse.</param>
/// <returns>A newly allocated buffer filled with the reverse of the 
/// given string.
/// The returned memory needs to be freed with freeString().</returns>
char* reverseString(char* string);
 
/// <summary>Frees the memory allocated for the given string.</summary>
/// <param name="string">The string to deallocate.</param>
void freeString(char* string);

How would you use this “library” from your C++ code?

Exercise 34-4: All examples about mixing C and C++ code in this chapter have been 
about calling C code from C++. Of course, the opposite is also possible when limiting 
yourself to data types known by C. In this exercise, you’ll combine both directions. Write 
a C function called writeTextFromC(const char*) that calls a C++ function called 
writeTextFromCpp(const char*) that uses cout to print out the given string to the  
standard output. To test your code, write a main() function in C++ that calls the  
C function writeTextFromC().
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Reading this book will surely give your C++ career a kick-start, but employers will want you 
to prove yourself before they offer the big bucks. Interview methodologies vary from company 
to company, but many aspects of technical interviews are predictable. A thorough interviewer 
will want to test your basic coding skills, your debugging skills, your design and style skills, 
and your problem-solving skills. The set of questions you might be asked is quite large. In this 
appendix, you’ll read about some of the different types of questions you may encounter and the 
best tactics for landing that high-paying C++ programming job you’re after.

This appendix iterates through the chapters of the book, discussing the aspects of each  
chapter that are likely to come up in an interview situation. Each section also includes a  
discussion of the types of questions that could be designed to test those skills, and the best 
ways to deal with those questions.

CHAPTER 1: A CRASH COURSE IN C++  
AND THE STANDARD LIBRARY

A technical interview will often include some basic C++ questions to weed out the candidates 
who put C++ on their résumé simply because they’ve heard of the language. These questions 
might be asked during a phone screen, when a developer or recruiter calls you before bring-
ing you in for an in-person interview. They could also be asked via e-mail or in person. When 
answering these questions, remember that the interviewer is just trying to establish that you’ve 
actually learned and used C++. You generally don’t need to get every detail right to earn 
high marks.

Things to Remember
➤➤ Use of functions

➤➤ Uniform initialization

➤➤ Basic use of modules (C++20)

A
C++ Interviews
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➤➤ Header file syntax, including the omission of .h for Standard Library headers

➤➤ Use of namespaces and nested namespaces

➤➤ Language basics, such as loop syntax, including the range-based for loop, conditional state-
ments, the conditional operator, and variables

➤➤ Use of the three-way comparison operator (C++20)

➤➤ Enumerated types

➤➤ The difference between the stack and the free store

➤➤ Dynamically allocated arrays

➤➤ The many uses of const

➤➤ What pointers and references are and their differences

➤➤ The need for references to be bound to a variable when they are declared and that the 
binding cannot be changed

➤➤ The advantages of pass-by-reference over pass-by-value

➤➤ The auto keyword

➤➤ Basic use of Standard Library containers such as std::array and vector

➤➤ Structured bindings

➤➤ Using std::pair and optional

➤➤ How type aliases and typedefs work

➤➤ The general idea behind attributes

Types of Questions
Basic C++ questions will often come in the form of a vocabulary test. The interviewer may ask you 
to define C++ terms, such as auto or enum class. She may be looking for the textbook answer, but 
you can often score extra points by giving sample usage or extra detail. For example, when asked to 
define the auto keyword, you can score extra points by not only explaining the use of auto to define 
variables, but also its use with function return type deduction.

The other form that basic C++ competence questions can take is a short program that you write in 
front of the interviewer. An interviewer may give you a warm-up question, such as, “Write Hello, 
World in C++.” When you get a seemingly simple question like this, make sure that you score all the 
extra points you can by showing that you are namespace-savvy, you use streams instead of printf(), 
and you know which standard modules to import.

Asking a candidate to define const is a classic C++ interview question. The keyword provides a 
sliding scale with which an interviewer can assess an answer. For example, a fair candidate will talk 
about const variables. A good candidate will explain const class methods and const data members. 
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A great candidate will also explain the use of const in combination with references to provide pass-
by-reference-to-const semantics and explain in which cases this is more efficient than pass-by-value.

Certain topics described in this chapter also come in find-the-bug type problems. Be on the lookout 
for misuse of references. For example, imagine a class that contains a reference as a data member:

class Gwenyth
{
    private:
        int& m_caversham;
};

Because m_caversham is a reference, it needs to be bound to a variable when the class is constructed. 
To do that, you’d need to use a constructor initializer. The class could take the variable to be refer-
enced as a parameter to the constructor:

class Gwenyth
{
    public:
        Gwenyth(int& i) : m_caversham { i } { }
    private:
        int& m_caversham;
};

CHAPTERS 2 AND 21: WORKING WITH STRINGS AND STRING 
VIEWS, STRING LOCALIZATION AND REGULAR EXPRESSIONS

Strings are important and are used in almost every kind of application. An interviewer will most 
likely ask at least one question related to string handling in C++.

Things to Remember
➤➤ The std::string and string_view classes

➤➤ To prefer const string& or string as function return type instead of string_view

➤➤ Differences between the C++ std::string class and C-style strings, including why C-style 
strings should be avoided

➤➤ Conversion of strings to numeric types such as integers and floating-point numbers, and 
vice versa

➤➤ String formatting using std::format() (C++20)

➤➤ Raw string literals

➤➤ The importance of localization

➤➤ Ideas behind Unicode
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➤➤ The concepts of locales and facets

➤➤ What regular expressions are

Types of Questions
An interviewer could ask you to explain how you can append two strings together. With this ques-
tion, the interviewer wants to find out whether you are thinking as a professional C++ programmer 
or as a C programmer. If you get such a question, you should explain the std::string class and 
show how to use it to append two strings. It’s also worth mentioning that the string class will han-
dle all memory management for you automatically, and contrasting this to C-style strings.

Your interviewer may not ask specifically about localization, but you can show your worldwide inter-
est by using wchar_t instead of char during the interview. If you do receive a question about your 
experience with localization, be sure to mention the importance of considering worldwide use from 
the beginning of the project.

You may also be asked about the general idea behind locales and facets. Most likely, you will not 
have to explain the exact syntax, but you should explain that they allow you to format text and num-
bers according to the rules of a certain language or country.

You might get a question about Unicode, but almost certainly it will be a question to explain the 
ideas and the basic concepts behind Unicode instead of implementation details. So, make sure you 
understand the high-level concepts of Unicode and that you can explain their use in the context of 
localization. You should also know about the different options for encoding Unicode characters, such 
as UTF-8 and UTF-16, without specific details.

As discussed in Chapter 21, regular expressions can have a daunting syntax. It is unlikely that an 
interviewer will ask you about little details of regular expressions. However, you should be able 
to explain the concept of regular expressions and what kind of string manipulations you can do 
with them.

CHAPTER 3: CODING WITH STYLE

Anybody who’s coded in the professional world has had a co-worker who codes as if they learned 
C++ from the back of a cereal box. Nobody wants to work with someone who writes messy code, so 
interviewers sometimes attempt to determine a candidate’s style skills.

Things to Remember
➤➤ Style matters, even during interview questions that aren’t explicitly style-related.

➤➤ Well-written code doesn’t need extensive comments.

➤➤ Comments can be used to convey meta information.

➤➤ Decomposition is the practice of breaking up code into smaller pieces.
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➤➤ Refactoring is the act of restructuring your code, for example to clean up previously 
written code.

➤➤ Naming techniques are important, so pay attention to how you name your variables, classes, 
and so on.

Types of Questions
Style questions can come in a few different forms. A friend of mine was once asked to write the code 
for a relatively complex algorithm on a whiteboard. As soon as he wrote the first variable name, the 
interviewer stopped him and told him he passed. The question wasn’t about the algorithm; it was just 
a red herring to see how well he named his variables. More commonly, you may be asked to submit 
code that you’ve written or to give your opinions on style.

You need to be careful when a potential employer asks you to submit code. You probably cannot 
legally submit code that you wrote for a previous employer. You also have to find a piece of code that 
shows off your skills without requiring too much background knowledge. For example, you wouldn’t 
want to submit your master’s thesis on high-speed image rendering to a company that is interviewing 
you for a database administration position.

If the company gives you a specific program to write, that’s a perfect opportunity to show off what 
you’ve learned in this book. Even if the potential employer doesn’t specify the program, you should 
consider writing a small program specifically to submit to the company. Instead of selecting some 
code you’ve already written, start from scratch to produce code that is relevant to the job and high-
lights good style.

If you have documentation that you have written and that can be released, meaning it is not confiden-
tial, use it to show your skills to communicate; it will give you extra points. Websites you have built 
or maintained, and articles you have submitted to places like CodeGuru (codeguru.com), CodePro-
ject (codeproject.com), and so on, are useful. This tells the interviewer that you can not only write 
code, but also communicate to others how to use that code effectively. Of course, having a book title 
attached to your name is also a big plus.

If you are contributing to active open-source projects, for example on GitHub (github.com), you can 
score extra points. Even better would be if you have your own open-source project that you actively 
maintain. That’s the perfect opportunity to show off your coding style and your communication skills. 
Profile pages on websites such as GitHub are taken as part of your résumé by certain employers.

CHAPTER 4: DESIGNING PROFESSIONAL C++ PROGRAMS

Your interviewer will want to make sure that in addition to knowing the C++ language, you are 
skilled at applying it. You may not be asked a design question explicitly, but good interviewers have a 
variety of techniques to sneak design into other questions, as you’ll see.

A potential employer will also want to know that you’re able to work with code that you didn’t write 
yourself. If you’ve listed third-party libraries on your résumé, then you should be prepared to answer 
questions about them. If you didn’t list specific libraries, a general understanding of the importance of 
libraries will probably suffice.

http://www.codeguru.com
http://www.codeproject.com
http://github.com
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Things to Remember
➤➤ Design is subjective. Be prepared to defend design decisions you make during the interview.

➤➤ Recall the details of a design you’ve done in the past prior to the interview in case you are 
asked for an example.

➤➤ Be prepared to sketch out a design visually, including class hierarchies.

➤➤ Be prepared to tout the benefits of code reuse.

➤➤ Understand the concept of libraries.

➤➤ Know the trade-offs between building from scratch and reusing existing code.

➤➤ Know the basics of big-O notation, or at least remember that O(n log n) is better than O(n2).

➤➤ Understand the functionality that is included in the C++ Standard Library.

➤➤ Know the high-level definition of design patterns.

Types of Questions
Design questions are hard for an interviewer to come up with; any program that you could design in 
an interview setting is probably too simple to demonstrate real-world design skills. Design questions 
may come in a fuzzier form, such as “Tell me the steps in designing a good program” or “Explain the 
fundamental rule of code reuse.” They can also be less explicit. When discussing your previous job, 
the interviewer may ask, “Can you explain the design of that project to me?” Be careful not to expose 
intellectual property from your previous jobs though.

If the interviewer is asking you about a specific library, he will probably focus on the high-level 
aspects of the library as opposed to technical specifics. For example, you may be asked to explain 
what the strengths and weaknesses of the Standard Library are from a library design point of view. 
The best candidates talk about the Standard Library’s breadth and standardization as strengths and 
its sometimes-complex usage as a drawback.

You may also be asked a design question that initially doesn’t sound as if it’s related to libraries. For 
example, the interviewer could ask how you would go about creating an application that downloads 
MP3 music from the web and plays it on a local computer. This question isn’t explicitly related to 
libraries, but that’s what it’s getting at; the question is really asking about process.

You should begin by talking about how you would gather requirements and do initial prototypes. 
Because the question mentions two specific technologies, the interviewer would like to know how 
you would deal with them. This is where libraries come into play. If you tell the interviewer that you 
would write your own web classes and MP3 playing code, you won’t fail the test, but you will be 
challenged to justify the time and expense of reinventing these tools.

A better answer is to say that you would survey existing libraries that perform web and MP3 func-
tionality to see if one exists that suits the project. You might want to name some technologies that 
you would start with, such as libcurl (curl.haxx.se) for web retrieval in Linux or the Windows 
Media library for music playback in Windows.
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Mentioning some websites with free libraries, and some ideas of what those websites provide, might 
also get you extra points. Some examples are codeguru.com and codeproject.com for Windows 
libraries, boost.org and github.com for platform-independent C++ libraries, and so on. Giving 
examples of some of the licenses that are available for open-source software, such as the GNU Gen-
eral Public License, Boost Software License, Creative Commons license, CodeGuru license, OpenBSD 
license, and so on, might score you extra credit.

CHAPTER 5: DESIGNING WITH OBJECTS

Object-oriented design questions are used to weed out C programmers who merely know what a 
reference is, from C++ programmers who actually use the object-oriented features of the language. 
Interviewers don’t take anything for granted; even if you’ve been using object-oriented languages for 
years, they may still want to see evidence that you understand the methodology.

Things to Remember
➤➤ The differences between the procedural and object-oriented paradigms

➤➤ The differences between a class and an object

➤➤ Expressing classes in terms of components, properties, and behaviors

➤➤ Is-a and has-a relationships

➤➤ The trade-offs involved in multiple inheritance

Types of Questions
There are typically two ways to ask object-oriented design questions: you can be asked to define an 
object-oriented concept, or you can be asked to sketch out an object-oriented hierarchy. The former is 
pretty straightforward. Remember that examples might earn you extra credit.

If you’re asked to sketch out an object-oriented hierarchy, the interviewer will usually provide a sim-
ple application, such as a card game, for which you should design a class hierarchy. Interviewers often 
ask design questions about games because those are applications with which most people are already 
familiar. They also help lighten the mood a bit when compared to questions about things like data-
base implementations. The hierarchy you generate will, of course, vary based on the game or applica-
tion they are asking you to design. Here are some points to consider:

➤➤ The interviewer wants to see your thought process. Think aloud, brainstorm, engage the 
interviewer in a discussion, and don’t be afraid to erase and go in a different direction.

➤➤ The interviewer may assume that you are familiar with the application. If you’ve never 
heard of blackjack and you get a question about it, ask the interviewer to clarify or change 
the question.

http://www.codeguru.com
http://www.codeproject.com
http://www.boost.org
http://www.github.com
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➤➤ Unless the interviewer gives you a specific format to use when describing the hierarchy, it’s 
recommended that your class diagrams take the form of inheritance trees with rough lists of 
methods and data members for each class.

➤➤ You may have to defend your design or revise it to take added requirements into 
consideration. Try to gauge whether the interviewer sees actual flaws in your design, or 
whether she just wants to put you on the defensive to see your skills of persuasion.

CHAPTER 6: DESIGNING FOR REUSE

Interviewers rarely ask questions about designing reusable code. This omission is unfortunate 
because having programmers on staff who can write only single-purpose code can be detrimental to 
a programming organization. Occasionally, you’ll find a company that is savvy on code reuse and 
asks about it in their interviews. Such a question is an indication that it might be a good company 
to work for.

Things to Remember
➤➤ The principle of abstraction

➤➤ The creation of subsystems and class hierarchies

➤➤ The general rules for good interface design, which are interfaces with only public methods 
and no implementation details

➤➤ When to use templates and when to use inheritance

Types of Questions
The interviewer might ask you to explain the principle of abstraction and its benefits and to give 
some concrete examples.

Questions about reuse will almost certainly be about previous projects on which you have worked. 
For example, if you worked at a company that produced both consumer and professional video-edit-
ing applications, the interviewer may ask how code was shared between the two applications. Even if 
you aren’t explicitly asked about code reuse, you might be able to sneak it in. When you’re describing 
some of your past work, tell the interviewer if the modules you wrote were used in other projects. 
Even when answering apparently straight coding questions, make sure to consider and mention the 
interfaces involved. As always, be careful not to expose intellectual property from your previous 
jobs, though.

CHAPTER 7: MEMORY MANAGEMENT

You can be sure that an interviewer will ask you some questions related to memory management, 
including your knowledge of smart pointers. Besides smart pointers, you will also get more low-level 
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questions. The goal is to determine whether the object-oriented aspects of C++ have distanced you 
too much from the underlying implementation details. Memory management questions will give you 
a chance to prove that you know what’s really going on.

Things to Remember
➤➤ Know how to draw the stack and the free store; this can help you understand 

what’s going on.

➤➤ Avoid using low-level memory allocation and deallocation functions. In modern C++, there 
should be no calls to new, delete, new[], delete[], malloc(), free(), and so on. Instead, 
use smart pointers.

➤➤ Understand smart pointers; use std::unique_ptr by default, shared_ptr for shared 
ownership.

➤➤ Use std::make_unique() to create a unique_ptr.

➤➤ Use std::make_shared() to create a shared_ptr.

➤➤ Never use auto_ptr; it has been removed since C++17.

➤➤ If you do need to use low-level memory allocation functions, use new, delete, new[], and 
delete[] instead of malloc() and free().

➤➤ If you have an array of pointers to objects, you still need to allocate memory for each 
individual pointer and delete the memory—the array allocation syntax doesn’t take care 
of pointers.

➤➤ Be aware of the existence of memory allocation problem detectors, such as Valgrind, to 
expose memory problems.

Types of Questions
Find-the-bug questions often contain memory issues, such as double deletion, new/delete/new[]/ 
delete[] mix-up, and memory leaks. When you are tracing through code that makes heavy use 
of pointers and arrays, you should draw and update the state of the memory as you process each 
line of code.

Another good way to find out if a candidate understands memory is to ask how pointers and arrays 
differ. At this point, the differences may be so tacit in your mind that the question catches you off-
guard for a moment. If that’s the case, skim Chapter 7 again for the discussion on pointers and arrays.

When answering questions about memory allocation, it’s always a good idea to mention the con-
cept of smart pointers and their benefits for automatically cleaning up memory and other resources. 
You definitely should also mention that it’s much better to use Standard Library containers, such as 
std::vector, instead of C-style arrays, because the Standard Library containers handle memory 
management for you automatically.
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CHAPTERS 8 AND 9: GAINING PROFICIENCY WITH CLASSES 
AND OBJECTS, AND MASTERING CLASSES AND OBJECTS

There are no bounds to the types of questions you can be asked about classes and objects. Some inter-
viewers are syntax-fixated and might throw some complicated code at you. Others are less concerned 
with the implementation and more interested in your design skills.

Things to Remember
➤➤ Basic class definition syntax.

➤➤ Access specifiers for methods and data members.

➤➤ The use of the this pointer.

➤➤ How name resolution works.

➤➤ Object creation and destruction, both on the stack and the free store.

➤➤ Cases when the compiler generates a constructor for you.

➤➤ Constructor initializers.

➤➤ Copy constructors and assignment operators.

➤➤ Delegating constructors.

➤➤ The mutable keyword.

➤➤ Method overloading and default parameters.

➤➤ const members.

➤➤ Friend classes and methods.

➤➤ Managing dynamically allocated memory in objects.

➤➤ static methods and data members.

➤➤ Inline methods and the fact that the inline keyword is just a hint for the compiler, which 
can ignore the hint.

➤➤ The key idea of separating interface and implementation classes, which says that interfaces 
should only contain public methods, should be as stable as possible, and should not contain 
any data members or private/protected methods. Thus, interfaces can remain stable while 
implementations are free to change under them.

➤➤ In-class member initializers.

➤➤ Explicitly defaulted and deleted special member functions.

➤➤ The difference between rvalues and lvalues.

➤➤ Rvalue references.

➤➤ Move semantics with move constructors and move assignment operators.



Chapters 8 and 9: Gaining Proficiency with Classes and Objects, and Mastering Classes and Objects ❘ 1175

➤➤ The copy-and-swap idiom and what it is used for.

➤➤ The rule of zero versus the rule of five.

➤➤ The three-way comparison operator for classes (C++20).

Types of Questions
Questions such as “What does the keyword mutable mean?” are great for phone screening. A 
recruiter may have a list of C++ terms and will move candidates to the next stage of the process 
based on the number of terms that they get right. You may not know all of the terms thrown at you, 
but keep in mind that other candidates are facing the same questions, and it’s one of the few metrics 
available to a recruiter.

The find-the-bug style of questions is popular among interviewers and course instructors alike. You 
will be presented with some nonsense code and asked to point out its flaws. Interviewers struggle 
to find quantitative ways to analyze candidates, and this is one of the few ways to do it. In general, 
your approach should be to read each line of code and voice your concerns, brainstorming aloud. The 
types of bugs can fall into these categories:

➤➤ Syntax errors: These are rare; interviewers know you can find compile-time bugs with 
a compiler.

➤➤ Memory problems: These include problems such as leaks and double deletion.

➤➤ “You wouldn’t do that” problems: This category includes things that are technically correct 
but are not recommended. For example, you wouldn’t use C-style character arrays; you 
would use std::string instead.

➤➤ Style errors: Even if the interviewer doesn’t count it as a bug, point out poor comments or 
variable names.

Here’s a find-the-bug problem that demonstrates each of these areas:

class Buggy
{
        Buggy(int param);
        ~Buggy();
        double fjord(double val);
        int fjord(double val);
    protected:
        void turtle(int i = 7, int j);
        int param;
        double* m_graphicDimension;
};
 
Buggy::Buggy(int param)
{
    param = param;
    m_graphicDimension = new double;
}
 
Buggy::~Buggy()
{
}

continues
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double Buggy::fjord(double val)
{
    return val * param;
}
 
int Buggy::fjord(double val)
{
    return (int)fjord(val);
}
 
void Buggy::turtle(int i, int j)
{
    cout << "i is " << i << ", j is " << j << endl;
}

Take a careful look at the code, and then consult the following corrected version for the answers:

import <iostream>;          // Streams are used in the implementation.
import <memory>;            // For std::unique_ptr and make_unique().
import <format>;            // For std::format().
 
class Buggy
{
    public:                  // These should most likely be public.
        Buggy(int param);
 
        // Recommended to make destructors virtual. Also, explicitly default
        // it, because this class doesn't need to do anything in it.
        virtual ~Buggy() = default;  
 
        // Disallow copy construction and copy assignment operator.
        Buggy(const Buggy& src) = delete;
        Buggy& operator=(const Buggy& rhs) = delete;
 
        // Explicitly default move constructor and move assignment op.
        Buggy(Buggy&& src) noexcept = default;
        Buggy& operator=(Buggy&& rhs) noexcept = default;
 
        // int version won't compile. Overloaded
        // methods cannot differ only in return type.
        double fjord(double val);
    private:                        // Use private by default.
        void turtle(int i, int j);  // Only last parameters can have defaults.
        int m_param;                                // Data member naming.
        std::unique_ptr<double> m_graphicDimension; // Use smart pointers!
};
 
Buggy::Buggy(int param)             // Prefer using constructor initializer.
    : m_param { param }
    , m_graphicDimension { std::make_unique<double>() } // Avoid use of new.
{
}
 

(continued)
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double Buggy::fjord(double val)
{
    return val * m_param;    // Changed data member name.
}
 
void Buggy::turtle(int i, int j)
{
    // Namespaces + use std::format().
    std::cout << std::format("i is {}, j is {}", i, j) << std::endl; 
}

You should explain why you should never use raw pointers that represent ownership but smart point-
ers instead. You should also explain why you are explicitly defaulting the move constructor and move 
assignment operator and why you opt to delete the copy constructor and copy assignment operator. 
Explain what impact it would have on the class if you do need to implement a copy constructor and a 
copy assignment operator.

CHAPTER 10: DISCOVERING INHERITANCE TECHNIQUES

Questions about inheritance usually come in the same forms as questions about classes. The inter-
viewer might also ask you to implement a class hierarchy to show that you have worked with C++ 
enough to write derived classes without looking it up in a book.

Things to Remember
➤➤ The syntax for deriving a class

➤➤ The difference between private and protected from a derived class point of view

➤➤ Method overriding and virtual

➤➤ The difference between overloading and overriding

➤➤ The reason why destructors should be virtual

➤➤ Chained constructors

➤➤ The ins and outs of upcasting and downcasting

➤➤ The different types of casts in C++

➤➤ The principle of polymorphism

➤➤ Pure virtual methods and abstract base classes

➤➤ Multiple inheritance

➤➤ Run-time type information (RTTI)

➤➤ Inherited constructors

➤➤ The final keyword on classes

➤➤ The override and final keywords on methods
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Types of Questions
Many of the pitfalls in inheritance questions are related to getting the details right. When you are 
writing a base class, don’t forget to make the methods virtual. If you mark all methods virtual, 
be prepared to justify that decision. You should be able to explain what virtual means and how 
it works. Also, don’t forget the public keyword before the name of the parent class in the derived 
class definition (for example, class Derived : public Base). It’s unlikely that you’ll be asked to 
perform nonpublic inheritance during an interview.

More challenging inheritance questions have to do with the relationship between a base class and 
a derived class. Be sure you know how the different access levels work, especially the difference 
between private and protected. Remind yourself of the phenomenon known as slicing, when cer-
tain types of casts cause a class to lose its derived class information.

CHAPTER 11: ODDS AND ENDS

This chapter discusses a couple of features of the C++ language that don’t readily fit in any other 
chapter. Besides the static keyword and the concept of modules, there is not that much that inter-
viewers will ask from this chapter.

Things to Remember
➤➤ The many uses of static

➤➤ What modules are and why their use is preferred over using header files (C++20)

➤➤ The concept of preprocessor macros and their disadvantages

➤➤ Why you shouldn’t use C-style variable-length argument lists

Types of Questions
Asking a candidate to define static is a classic C++ interview question. Because the keyword has 
several uses, it can be used to assess the breadth of your knowledge. You should definitely talk about 
static methods and static data members and give good examples of them. You’ll get extra points 
if you also explain static linkage and static variables in functions.

Modules are the perfect way to make code reusable and bolster clear separation of responsibilities. Be 
sure to know how to consume modules and how to author a basic module.

CHAPTERS 12 AND 26: WRITING GENERIC CODE 
WITH TEMPLATES, AND ADVANCED TEMPLATES

As one of the most arcane parts of C++, templates are a good way for interviewers to separate the 
C++ novices from the pros. While most interviewers will forgive you for not remembering some of the 
advanced template syntax, you should go into an interview knowing the basics.
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Things to Remember
➤➤ How to use a class or function template

➤➤ How to write a basic class or function template

➤➤ The abbreviated function template syntax (C++20)

➤➤ Function template argument deduction

➤➤ Class template argument deduction (CTAD)

➤➤ Alias templates and why they are better than typedefs

➤➤ The ideas behind concepts and basic use (C++20)

➤➤ What variadic templates and fold expressions are

➤➤ The ideas behind template metaprogramming

➤➤ Type traits and what they can be used for

Types of Questions
Many interview questions start out with a simple problem and gradually add complexity. Often, 
interviewers have an endless amount of complexity that they are prepared to add, and they simply 
want to see how far you get. For example, an interviewer might begin a problem by asking you to 
create a class that provides sequential access to a fixed number of ints. Next, the class will need to 
grow to accommodate an arbitrary number of elements. Then, it will need to work with arbitrary 
data types, which is where templates come in. From there, the interviewer could take the problem in a 
number of directions, asking you to use operator overloading to provide array-like syntax or continu-
ing down the template path by asking you to provide a default type for the template type parameters 
or to put type constraints on them.

Templates are more likely to be employed in the solution of another coding problem than to be asked 
about explicitly. You should brush up on the basics in case the subject comes up. However, most 
interviewers understand that the template syntax is difficult, and asking someone to write complex 
template code in an interview is rather cruel.

The interviewer might ask you high-level questions related to template metaprogramming to find out 
whether you have heard about it. While explaining, you could give a small example such as calculat-
ing the factorial of a number at compile time. Don’t worry if the syntax is not entirely correct. As 
long as you explain what it is supposed to do, you should be fine.

CHAPTER 13: DEMYSTIFYING C++ I/O

If you’re interviewing for a job writing GUI applications, you probably won’t get too many questions 
about I/O streams, because GUI applications tend to use other mechanisms for I/O. However, streams 
can come up in other problems, and as a standard part of C++, they are fair game as far as the inter-
viewer is concerned.
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Things to Remember
➤➤ The definition of a stream

➤➤ Basic input and output using streams

➤➤ The concept of manipulators

➤➤ Types of streams (console, file, string, and so on)

➤➤ Error-handling techniques

➤➤ The existence of a standard filesystem API

Types of Questions
I/O may come up in the context of any question. For example, the interviewer could ask you to read 
in a file containing test scores and put them in a vector. This question tests basic C++ skills, basic 
Standard Library, and basic I/O. Even if I/O is only a small part of the problem you’re working on, be 
sure to check for errors. If you don’t, you’re giving the interviewer an opportunity to say something 
negative about your otherwise perfect program.

CHAPTER 14: HANDLING ERRORS

Managers sometimes shy away from hiring recent graduates or novice programmers for vital (and 
high-paying) jobs because it is assumed that they don’t write production-quality code. You can prove 
to an interviewer that your code won’t keel over randomly by demonstrating your error-handling 
skills during an interview.

Things to Remember
➤➤ Syntax of exceptions

➤➤ Catching exceptions as references-to-const

➤➤ Why hierarchies of exceptions are preferable to a few generic ones

➤➤ The basics of how stack unwinding works when an exception gets thrown

➤➤ How to handle errors in constructors and destructors

➤➤ How smart pointers help to avoid memory leaks when exceptions are thrown

➤➤ The std::source_location class as a replacement for certain C-style preprocessor 
macros (C++20)

➤➤ The fact that you must never use the C functions setjmp() and longjmp() in C++

Types of Questions
Interviewers will be on the lookout to see how you report and handle errors. When you are asked 
to write a piece of code, make sure you implement proper error handling. Additionally, you might 



Chapter 15: Overloading C++ Operators ❘ 1181

be asked to give a high-level overview of how stack unwinding works when an exception is thrown, 
without implementation details.

Of course, not all programmers appreciate exceptions. Some may even have a completely unfounded 
bias against them for performance reasons. If the interviewer asks you to do something without 
exceptions, you’ll have to revert to traditional nullptr checks and error codes. That would be a good 
time to demonstrate your knowledge of nothrow new.

Knowledge of the source_location class and its most important use cases will score you 
extra points.

An interviewer can also ask you whether you would avoid using exceptions because of their perfor-
mance impact. You should explain that the beliefs of exceptions having a big performance penalty is a 
misconception. On modern compilers, just having code that can handle potential exceptions has close 
to zero performance penalty.

CHAPTER 15: OVERLOADING C++ OPERATORS

It’s possible, though somewhat unlikely, that you will have to perform something more difficult than 
a simple operator overload during an interview. Some interviewers like to have an advanced ques-
tion on hand that they don’t really expect anybody to answer correctly. The intricacies of operator 
overloading make great, nearly impossible questions because few programmers get the syntax right 
without looking it up. That means it’s a great area to review before an interview.

Things to Remember
➤➤ Overloading stream operators, because they are commonly overloaded operators, and are 

conceptually unique

➤➤ What a functor is and how to create one

➤➤ Choosing between a method operator and a global function

➤➤ How some operators can be expressed in terms of others (for example, operator<= can be 
written by complementing the result of operator>)

➤➤ The fact that you can define your own user-defined literals, but without the syntactical details

Types of Questions
Let’s face it: operator overloading questions (other than the simple ones) can be cruel. Anybody who 
is asking such questions knows this and is going to be impressed when you get it right. It’s impossible 
to predict the exact question that you’ll get, but the number of operators is finite. As long as you’ve 
seen an example of overloading each operator that makes sense to overload, you’ll do fine!

Besides asking you to implement an overloaded operator, you could be asked high-level questions 
about operator overloading. A find-the-bug question could contain an operator that is overloaded to 
do something that is conceptually wrong for that particular operator. In addition to syntax, keep the 
use cases and theory of operator overloading in mind.
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CHAPTERS 16–20 AND 25: THE STANDARD LIBRARY

As you’ve seen, certain aspects of the Standard Library can be difficult to work with. Few interview-
ers would expect you to recite the details of Standard Library classes unless you claim to be a Stand-
ard Library expert. If you know that the job you’re interviewing for makes heavy use of the Standard 
Library, you might want to write some Standard Library code the day before to refresh your memory. 
Otherwise, recalling the high-level design of the Standard Library and its basic usage should suffice.

Things to Remember
➤➤ The different types of containers and their relationships with iterators

➤➤ Use of vector, which is the most frequently used Standard Library class

➤➤ The span class and why you should use it (C++20)

➤➤ Use of associative containers, such as map

➤➤ The differences between associative containers and unordered associative containers, such as 
unordered_map

➤➤ Bit operations provided by <bit> (C++20)

➤➤ How to work with function pointers, function objects, and lambda expressions

➤➤ The purpose of Standard Library algorithms and some of the built-in algorithms

➤➤ The use of lambda expressions in combination with Standard Library algorithms

➤➤ The remove-erase idiom

➤➤ The fact that a lot of Standard Library algorithms have an option to execute them in parallel 
to improve performance

➤➤ The ways in which you can extend the Standard Library (details are most likely unnecessary)

➤➤ The expressiveness of the ranges library (C++20)

➤➤ Your own opinions about the Standard Library

Types of Questions
If interviewers are dead set on asking detailed Standard Library questions, there really are no bounds 
to the types of questions they could ask. If you’re feeling uncertain about syntax, though, you should 
state the obvious during the interview: “In real life, of course, I’d look that up in Professional C++, 
but I’m pretty sure it works like this . . . .” At least that way, the interviewer is reminded that he 
should forgive the details as long as you get the basic idea right.

High-level questions about the Standard Library are often used to gauge how much you’ve used the 
Standard Library without making you recall all the details. For example, casual users of the Standard 
Library may be familiar with associative and non-associative containers. A slightly more advanced 
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user would be able to define an iterator, describe how iterators work with containers, and describe the 
remove-erase idiom. Other high-level questions could ask you about your experience with Standard 
Library algorithms, or whether you’ve customized the Standard Library. An interviewer might also 
gauge your knowledge about function objects and lambda expressions, and their use with Standard 
Library algorithms.

You might also be asked to explain the benefits of using the C++20 ranges library. It basically allows 
you to write code that describes what you want to do instead of how you want to do it.

CHAPTER 22: DATE AND TIME UTILITIES

The C++ Standard Library provides the chrono library, which allows you to work with date and 
times. It is unlikely that an interviewer will ask detailed questions about this functionality, but she 
might gauge whether you’ve heard about this part of the Standard Library.

Things to Remember
➤➤ Compile-time rational numbers

➤➤ What durations, clocks, and time points are

➤➤ What dates and calendars are (C++20)

➤➤ Possibility to convert dates and times between different time zones (C++20)

Types of Questions
Instead of asking you any detailed questions about the chrono library, an interviewer might explain 
a problem involving dates and times and ask you how you would tackle it. If you explain that you 
would implement your own classes to work with dates and times, be prepared to explain why. A 
better approach is to explain that you would use the functionality provided by the chrono library. 
Remember, reuse of code is an important programming paradigm.

CHAPTER 23: RANDOM NUMBER FACILITIES

Generating good random numbers in software is a complex topic, and interviewers know this. They 
will not ask any syntactical details about it, but you need to know the basics and concepts behind the 
<random> library, which is part of the C++ Standard Library.

Things to Remember
➤➤ Using the <random> library as the preferred method of generating random numbers

➤➤ How random number engines, adapters, and distributions work together to generate 
random numbers

➤➤ What seeding means and why it is important
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Types of Questions
An interviewer might show you a piece of code that is using the C functions rand() and srand() 
to generate random numbers and ask you to comment on the code snippet. You should explain that 
those C functions are not recommended anymore and why it’s better to use the functionality provided 
by <random>.

In the context of questions related to random numbers, it is important to explain the differences 
between true random numbers and pseudorandom numbers. You will score extra points if you also 
explain that you can use a random_device to generate a truly random seed for your pseudorandom 
number generator.

CHAPTER 24: ADDITIONAL LIBRARY UTILITIES

This chapter describes some additional functionality provided by the C++ Standard Library that’s 
worth looking at. An interviewer might touch on a few of these topics to get an idea of the breadth of 
your Standard Library knowledge.

Things to Remember
➤➤ The std::variant and any vocabulary data types, and how they complement optional

➤➤ std::tuple as a generalization of pair

Types of Questions
You shouldn’t expect any detailed questions about these topics. However, you might be asked what 
the use cases are for the variant, any, and tuple data structures. While explaining variant and 
any, you can also contrast these with the optional vocabulary type from Chapter 1.

CHAPTER 27: MULTITHREADED PROGRAMMING WITH C++

Multithreaded programming is becoming more and more important with the release of multicore 
processors for everything from servers to consumer computers. Even smartphones have multicore 
processors. An interviewer might ask you a couple of multithreading questions. C++ includes a stand-
ard threading support library, so it’s a good idea to know how it works.

Things to Remember
➤➤ Race conditions and deadlocks and how to prevent them

➤➤ std::thread to spawn threads

➤➤ The extra functionality provided by std::jthread (C++20)

➤➤ The atomic types and atomic operations
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➤➤ The concept of mutual exclusion, including the use of the different mutex and lock classes, to 
provide synchronization between threads

➤➤ Condition variables and how to use them to signal other threads

➤➤ The concepts of semaphores, latches, and barriers (C++20)

➤➤ Futures and promises

➤➤ Copying and rethrowing of exceptions across thread boundaries

Types of Questions
Multithreaded programming is a complicated subject, so you don’t need to expect detailed questions, 
unless you are interviewing for a specific multithreading programming position.

Instead, an interviewer might ask you to explain the different kinds of problems you can encounter 
with multithreaded code: problems such as race conditions, deadlocks, and tearing. She might ask 
you to explain the need for atomic types and atomic operations. You may also be asked to explain the 
general concepts behind multithreaded programming. This is a broad question, but it allows the inter-
viewer to get an idea of your multithreading knowledge. Explaining the concepts of mutual exclusion 
objects, semaphores, latches, and barriers will earn you extra points. You can also mention that a lot 
of the Standard Library algorithms have an option to run in parallel to improve their performance.

CHAPTER 28: MAXIMIZING SOFTWARE 
ENGINEERING METHODS

You should be suspicious if you go through the complete interview process with a company and the 
interviewers do not ask any process questions—it may mean that they don’t have any process in place 
or that they don’t care about it. Alternatively, they might not want to scare you away with their pro-
cess behemoth. Another important aspect of any development process is source code control.

Most of the time, you’ll get a chance to ask questions regarding the company. I suggest you con-
sider asking about engineering processes and source code control solutions as one of your standard 
questions.

Things to Remember
➤➤ Traditional life-cycle models

➤➤ The trade-offs of different models

➤➤ The main principles behind eXtreme Programming

➤➤ Scrum as an example of an agile process

➤➤ Other processes you have used in the past

➤➤ Principles behind source code control solutions
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Types of Questions
The most common question you’ll be asked is to describe the process that your previous employer 
used. Be careful, though, not to disclose any confidential information. When answering, you should 
mention what worked well and what failed, but try not to denounce any particular methodology. The 
methodology you criticize could be the one that your interviewer uses.

Almost every candidate is listing Scrum/agile as a skill these days. If the interviewer asks you about 
Scrum, the person probably doesn’t want you to simply recite the textbook definition—the inter-
viewer knows that you can read the table of contents of a Scrum book. Instead, pick a few ideas from 
Scrum that you find appealing. Explain each one to the interviewer along with your thoughts on it. 
Try to engage the interviewer in a conversation, proceeding in a direction in which he is interested 
based on the cues that he gives.

If you get a question regarding source code control, it will most likely be a high-level question. You 
should explain the general principles behind source code control solutions, mention the fact that 
there are commercial and free open-source solutions available, and possibly explain how source code 
control was implemented by your previous employer.

CHAPTER 29: WRITING EFFICIENT C++

Efficiency questions are quite common in interviews because many organizations are facing scalability 
issues with their code and need programmers who are savvy about performance.

Things to Remember
➤➤ Language-level efficiency is important, but it can only go so far; design-level choices are  

ultimately much more significant.

➤➤ Algorithms with bad complexity, such as quadratic algorithms, should be avoided.

➤➤ Reference parameters are more efficient because they avoid copying.

➤➤ Object pools can help avoid the overhead of creating and destroying objects.

➤➤ Profiling is vital to determine which operations are really consuming the most time, so you 
don’t waste effort trying to optimize code that is not a performance bottleneck.

Types of Questions
Often, the interviewer will use her own product as an example to drive efficiency questions. Some-
times the interviewer will describe an older design and some performance-related symptoms she 
experienced. The candidate is supposed to come up with a new design that alleviates the problem. 
Unfortunately, there is a major problem with a question like this: what are the odds that you’re going 
to come up with the same solution that the company did when the problem was actually solved? 
Because the odds are slim, you need to be extra careful to justify your designs. You may not come 
up with the actual solution, but you could still have an answer that is correct or even better than the 
company’s newer design.
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Other types of efficiency questions may ask you to tweak some C++ code for performance or iterate 
on an algorithm. For example, the interviewer could show you code that contains extraneous copies 
or inefficient loops.

The interviewer might also ask you for a high-level description of profiling tools, what their benefits 
are, and why you should use them.

CHAPTER 30: BECOMING ADEPT AT TESTING

Potential employers value strong testing abilities. Because your résumé probably doesn’t indicate your 
testing skills, unless you have explicit quality assurance (QA) experience, you might face interview 
questions about testing.

Things to Remember
➤➤ The difference between black-box and white-box testing

➤➤ The concept of unit testing, integration testing, system testing, and regression testing

➤➤ Techniques for higher-level tests

➤➤ Testing and QA environments in which you’ve worked before: what worked and what didn’t?

Types of Questions
An interviewer could ask you to write some tests during the interview, but it’s unlikely that a program 
presented during an interview would contain the depth necessary for interesting tests. It’s more likely 
that you will be asked high-level testing questions. Be prepared to describe how testing was done at 
your last job and what you liked and didn’t like about it. Again, be careful not to disclose any confi-
dential information. After you’ve answered the interviewer’s questions about testing, a good question 
for you to ask the interviewer is to ask how testing is done at their company. It might start a conver-
sation about testing and give you a better idea of the environment at your potential job.

CHAPTER 31: CONQUERING DEBUGGING

Engineering organizations look for candidates who are able to debug their own code as well as code 
that they’ve never seen before. Technical interviews often attempt to size up your debugging muscles.

Things to Remember
➤➤ Debugging doesn’t start when bugs appear; you should instrument your code ahead of time, 

so you’re prepared for bugs when they arrive.

➤➤ Logs and debuggers are your best tools.

➤➤ You should know how to use assertions.
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➤➤ The symptoms that a bug exhibits may appear to be unrelated to the actual cause.

➤➤ Object diagrams can be helpful in debugging, especially during an interview.

Types of Questions
During an interview, you might be challenged with an obscure debugging problem. Remember that 
the process is the most important thing, and the interviewer probably knows that. Even if you don’t 
find the bug during the interview, make sure that the interviewer knows what steps you would go 
through to track it down. If the interviewer hands you a function and tells you that it crashes dur-
ing execution, he should award you just as many points or even more if you properly discuss the 
sequence of steps to find the bug, as if you find the bug right away.

CHAPTER 32: INCORPORATING DESIGN TECHNIQUES 
AND FRAMEWORKS

Each of the techniques presented in Chapter 32 makes a fine interview question. Rather than repeat 
what you already read in the chapter, I suggest that you skim over Chapter 32 prior to an interview 
to make sure that you are able to understand each of the techniques.

If you are being interviewed for a GUI-based job, you should know about the existence of  
frameworks such as MFC, Qt, and possibly others.

CHAPTER 33: APPLYING DESIGN PATTERNS

Because design patterns are popular in the professional world (many candidates even list them as 
skills), it’s likely that you’ll encounter an interviewer who wants you to explain a pattern, give a use 
case for a pattern, or implement a pattern.

Things to Remember
➤➤ The basic idea of a pattern as a reusable object-oriented design concept

➤➤ The patterns you have read about in this book, as well as others that you’ve used 
in your work

➤➤ The fact that you and your interviewer may use different words for the same pattern, given 
that there are hundreds of patterns with often-conflicting names

Types of Questions
Answering questions about design patterns is usually a walk in the park, unless the interviewer 
expects you to know the details of every single pattern known to humankind. Luckily, most inter-
viewers who appreciate design patterns will just want to chat with you about them and get your 
opinions. After all, looking up concepts in a book or online instead of memorizing them is a good 
pattern in itself.
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CHAPTER 34: DEVELOPING CROSS-PLATFORM AND CROSS-
LANGUAGE APPLICATIONS

Few programmers submit résumés that list only a single language or technology, and few large appli-
cations rely on only a single language or technology. Even if you’re only interviewing for a C++ posi-
tion, the interviewer may still ask questions about other languages, especially as they relate to C++.

Things to Remember
➤➤ The ways in which platforms can differ (architecture, integer sizes, and so on)

➤➤ The fact that you should try to find a cross-platform library to accomplish a certain task, 
instead of starting to implement the functionality yourself for different kinds of platforms

➤➤ The interactions between C++ and other languages

Types of Questions
The most popular cross-language question is to compare and contrast two different languages. You 
should avoid saying only positive or negative things about a particular language, even if you really 
love or hate that language. The interviewer wants to know that you are able to see trade-offs and 
make decisions based on them.

Cross-platform questions are more likely to be asked while discussing previous work. If your résumé 
indicates that you once wrote C++ applications that ran on a custom hardware platform, you should 
be prepared to talk about the compiler you used and the challenges of that platform.
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One of several books in a series that promote eXtreme Programming as a new approach to 
software development.

➤➤ Robert T. Futrell, Donald F. Shafer, and Linda Isabell Shafer. Quality Software Project 
Management. Prentice Hall, 2002. ISBN: 0-130-91297-2.
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Professional, 2018. ISBN: 0-134-75759-9.
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Best Practices. Addison-Wesley Professional, 2004. ISBN: 0-321-11358-0.
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➤➤ Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison-Wesley 
Professional, 2003. ISBN: 0-201-79940-5.

A unique book that turns the issue of programming style upside down by challenging the 
reader to learn to read code properly in order to become a better programmer.
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➤➤ Dimitri van Heesch. Doxygen. www.doxygen.nl/index.html.

A highly configurable program that generates documentation from source code 
and comments.

➤➤ John Aycock. Reading and Modifying Code. John Aycock, 2008. ISBN 0-980-95550-5.
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reading, modifying, testing, debugging, and writing.

➤➤ Wikipedia. Code refactoring. en.wikipedia.org/wiki/Refactoring.

A discussion of what code refactoring means, including a number of techniques for 
refactoring.

➤➤ Google. Google C++ Style Guide. google.github.io/styleguide/ 
cppguide.html.
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COMPUTER ARCHITECTURE
➤➤ David A. Patterson and John L. Hennessy. Computer Organization and Design: The 

Hardware/Software Interface, 4th ed. Morgan Kaufmann, 2011. ISBN: 0-123-74493-8.

➤➤ John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach, 
5th ed. Morgan Kaufmann, 2011. ISBN: 0-123-83872-X.
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EFFICIENCY
➤➤ Dov Bulka and David Mayhew. Efficient C++: Performance Programming Techniques.  

Addison-Wesley Professional, 1999. ISBN: 0-201-37950-3.

One of the few books to focus exclusively on efficient C++ programming. This book covers 
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➤➤ GNU gprof. sourceware.org/binutils/docs/gprof/.

Information about the gprof profiling tool.

TESTING
➤➤ Elfriede Dustin. Effective Software Testing: 50 Specific Ways to Improve Your Testing.  

Addison-Wesley Professional, 2002. ISBN: 0-201-79429-2.

A book aimed at quality assurance professionals, although any software engineer will benefit 
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DEBUGGING
➤➤ Diomidis Spinellis. Effective Debugging: 66 Specific Ways to Debug Software and Systems. 

Addison-Wesley Professional, 2016. ISBN: 978-0134394794.

This book helps experienced programmers accelerate their journey to mastery, by systemati-
cally categorizing, explaining, and illustrating the most useful debugging methods, strategies, 
techniques, and tools.

➤➤ Microsoft Visual Studio Community Edition. microsoft.com/vs.

The Community Edition of Microsoft Visual Studio is a version of Visual Studio free of 
charge for students, open-source developers, and individual developers to create both free 
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➤➤ The GNU Debugger (GDB). www.gnu.org/software/gdb/gdb.html.
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➤➤ Valgrind. valgrind.org/.

An open-source memory-debugging tool for Linux.

➤➤ Microsoft Application Verifier. Part of the Windows 10 SDK, developer.microsoft.com/
windows/downloads/windows-10-sdk.
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DESIGN PATTERNS
➤➤ Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994. ISBN: 
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➤➤ Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns 
Applied. Addison-Wesley Professional, 2001. ISBN: 0-201-70431-5.
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https://microsoft.com/vs
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A book that goes further than just listing design patterns. The authors show good and bad 
examples of using patterns and give solid reasoning behind each pattern.

➤➤ Wikipedia. Software design pattern. en.wikipedia.org/wiki/Design_
pattern_(computer_science).

Contains descriptions of a large number of design patterns used in computer programming.

OPERATING SYSTEMS
➤➤ Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating System Concepts, 10th 

ed. Wiley, 2018. ISBN: 1-119-45633-9.

A great discussion on operating systems, including multithreading issues such as deadlocks 
and race conditions.

MULTITHREADED PROGRAMMING
➤➤ Anthony Williams. C++ Concurrency in Action, 2nd ed. Manning Publications, 2019. ISBN: 

1-617-29469-1.

An excellent book on practical multithreaded programming, including the C++ thread-
ing library.

➤➤ Cameron Hughes and Tracey Hughes. Professional Multicore Programming: Design and 
Implementation for C++ Developers. Wrox, 2008. ISBN: 0-470-28962-7.

A book for developers of various skill levels who are making the move into multicore 
programming.

➤➤ Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan 
Kaufmann, 2012. ISBN: 0-123-97337-6.

A great book on writing code for multiprocessor and multicore systems.

https://en.wikipedia.org/wiki/Design_pattern_
https://en.wikipedia.org/wiki/Design_pattern_


Standard Library Header Files
The interface to the C++ Standard Library consists of 98 header files, 21 of which present the C 
Standard Library. It’s often difficult to remember which header files you need to include in your 
source code, so this appendix provides a brief description of the most useful functionality of 
each header, organized into eight categories:

➤➤ The C Standard Library

➤➤ Containers

➤➤ Algorithms, iterators, ranges, and allocators

➤➤ General utilities

➤➤ Mathematical utilities

➤➤ Exceptions

➤➤ I/O streams

➤➤ Threading support library

THE C STANDARD LIBRARY

The C++ Standard Library includes almost the entire C Standard Library. The header files are 
generally the same, except for these two points:

➤➤ The header names are <cname> instead of <name.h>.

➤➤ All the names declared in the <cname> header files are in the std namespace.

NOTE For backward compatibility, you can still include <name.h> if you want. 
However, that puts the names into the global namespace instead of the std 
namespace, and on top of that, the use of <name.h> has been deprecated. It is rec-
ommended to avoid this feature.

C
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NOTE These C Standard Library headers are not guaranteed to be importable 
using an import statement. Hence, use “#include <cstdio>” instead of “import 
<cstdio>;”.

The following table lists all C Standard Library headers and provides a summary of their most useful 
functionality. Note that it’s recommended to avoid using C functionality, and instead use equivalent 
C++ features whenever possible:

HEADER CONTENTS

<cassert> assert() macro.

<cctype> Character predicates and manipulation functions, such as isspace() and 
tolower().

<cerrno> Defines errno expression, a macro to get the last error number for certain C 
functions.

<cfenv> Supports the floating-point environment, such as floating-point exceptions, 
rounding, and so on.

<cfloat> C-style defines related to floating-point arithmetic, such as FLT_MAX.

<cinttypes> Defines a number of macros to use with the printf(), scanf(), and similar 
functions. This header also includes a few functions to work with intmax_t.

<climits> C-style limit defines, such as INT_MAX. It is recommended to use the C++ 
equivalents from <limits> instead.

<clocale> A few localization macros and functions like LC_ALL and setlocale(). See 
also the C++ equivalents in <locale>.

<cmath> Math utilities, including trigonometric functions sqrt(), fabs(), and others.

<csetjmp> setjmp() and longjmp(). Never use these in C++!

<csignal> signal() and raise(). Avoid these in C++.

<cstdarg> Macros and types for processing variable-length argument lists.

<cstddef> Important constants such as NULL, and important types such as 
size_t and byte.

<cstdint> Defines a number of standard integer types such as int8_t, int64_t and 
so on. It also includes macros specifying minimum and maximum values of 
those types.
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HEADER CONTENTS

<cstdio> File operations, including fopen() and fclose(). Formatted I/O: printf(), 
scanf(), and family. Character I/O: getc(), putc(), and family. File 
positioning: fseek() and ftell(). It is recommended to use C++ streams 
instead. (See the section “I/O Streams,” later in this appendix.)

<cstdlib> Random numbers with rand() and srand() (deprecated since C++14; use 
the C++ <random> instead). This header includes the abort() and exit() 
functions, which you should avoid; C-style memory allocation functions 
calloc(), malloc(), realloc(), and free(); C-style searching and sorting 
with qsort() and bsearch(); string to number conversions: atof(), atoi(); 
and a set of functions related to multibyte/wide string manipulation.

<cstring> Low-level memory management functions, including memcpy() and memset(). 
This header includes C-style string functions, such as strcpy() and strcmp().

<ctime> Time-related functions, including time() and localtime().

<cuchar> Defines a number of Unicode-related macros, and functions like mbrtoc16().

<cwchar> Versions of string, memory, and I/O functions for wide characters.

<cwctype> Versions of functions in <cctype> for wide characters: iswspace(), 
towlower(), and so on.

The following C Standard Library headers have been removed in C++20:

HEADER CONTENTS

<ccomplex> Only included <complex>. Deprecated since C++17, removed in C++20.

<ciso646> In C, the <iso646.h> file defines macros and, or, and so on. In C++, those are 
keywords, so this header was empty.

<cstdalign> Alignment-related macro __alignas_is_defined. Deprecated since C++17, 
removed in C++20.

<cstdbool> Boolean type-related macro __bool_true_false_are_defined. Deprecated 
since C++17, removed in C++20.

<ctgmath> Only included <complex> and <cmath>. Deprecated since C++17, 
removed in C++20.

CONTAINERS

The definitions for the Standard Library containers can be found in 13 header files:

C++20
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HEADER CONTENTS

<array> The array class template

<bitset> The bitset class template

<deque> The deque class template

<forward_list> The forward_list class template

<list> The list class template

<map> The map and multimap class templates

<queue> The queue and priority_queue class templates

<set> The set and multiset class templates

<span> The span class template (technically not a container, but a view over a 
contiguous sequence of elements stored somewhere else)

<stack> The stack class template

<unordered_map> The unordered_map and unordered_multimap class templates

<unordered_set> The unordered_set and unordered_multiset class templates

<vector> The vector class template and the vector<bool> specialization

Each of these header files contains all the definitions you need to use the specified container, including 
their iterators. Chapter 18, “Standard Library Containers,” describes these containers in detail.

ALGORITHMS, ITERATORS, RANGES, AND ALLOCATORS

The following header files define the available Standard Library algorithms, iterators, and allocators, 
and the ranges library:

HEADER CONTENTS

<algorithm> Prototypes for most of the algorithms in the Standard Library, and 
min(), max(), minmax(), and clamp(). See Chapter 20, “Mastering 
Standard Library Algorithms.”

<bit> Defines the endian class enumeration type, see Chapter 34, 
“Developing Cross-Platform and Cross-Language Applications,” and 
provides function prototypes to perform low-level operations on bit 
sequences, such as bit_ceil(), rotl(), countl_zero(), and more, 
see Chapter 16, “Overview of the C++ Standard Library.”

<execution> Defines the execution policy types for use with the Standard Library 
algorithms. See Chapter 20.

C++20
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HEADER CONTENTS

<functional> Defines the built-in function objects, negators, binders, and adaptors. 
See Chapter 19, “Function Pointers, Function Objects, and Lambda 
Expressions.”

<iterator> Definitions of iterator_traits, iterator tags, iterator,  
reverse_iterator, insert iterators (such as back_insert_
iterator), and stream iterators. See Chapter 17, “Understanding 
Iterators and the Ranges Library.”

<memory> Defines the default allocator and function prototypes for dealing with 
uninitialized memory inside containers. Also provides unique_ptr, 
shared_ptr, weak_ptr, make_unique(), and make_shared(), 
introduced in Chapter 7, “Memory Management.”

<memory_resource> Defines polymorphic allocators and memory resources. See 
Chapter 25, “Customizing and Extending the Standard Library.”

<numeric> Prototypes for some numerical algorithms: accumulate(),  
inner_product(), partial_sum(), adjacent_difference(), 
gcd(), lcm(), and a few others. See Chapter 20.

<ranges> Provides all functionality for the ranges library. See Chapter 17.

<scoped_allocator> An allocator that can be used with nested containers such as a vector 
of strings, or a vector of maps.

GENERAL UTILITIES

The Standard Library contains some general-purpose utilities in several different header files:

HEADER CONTENTS

<any> Defines the any class. See Chapter 24, “Additional Library Utilities.”

<charconv> Defines the chars_format enumeration class, the from_chars() and 
to_chars() functions, and related structs. See Chapter 2, “Working 
with Strings and String Views.”

<chrono> Defines the chrono library. See Chapter 22, “Date and Time Utilities.”

<codecvt> Provides code conversion facets for various character encodings. This 
header is deprecated since C++17.

<compare> Provides classes and functions to support three-way comparisons. See 
Chapters 1, “A Crash Course in C++ and the Standard Library,” and 9, 
“Mastering Classes and Objects.”

C++20
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HEADER CONTENTS

<concepts> Provides standard concepts such as same_as, convertible_to, 
integral, movable, and more. See Chapter 12, “Writing Generic Code 
with Templates.”

<filesystem> Defines all available classes and functions to work with the filesystem. 
See Chapter 13, “Demystifying C++ I/O.”

<format> Provides all functionality for the format library, such as format(), 
format_to(), and so on. See Chapter 2.

<initializer_list> Defines the initializer_list class. See Chapter 1.

<limits> Defines the numeric_limits class template, and specializations for 
most built-in types. See Chapter 1.

<locale> Defines the locale class, the use_facet() and has_facet() function 
templates, and the various facet families. See Chapter 21, “String 
Localization and Regular Expressions.”

<new> Defines the bad_alloc exception and set_new_handler() function. 
This header also defines the prototypes for all six forms of operator new  
and operator delete. See Chapter 15, “Overloading C++ Operators.”

<optional> Defines the optional class. See Chapter 1.

<random> Defines the random number generation library. See Chapter 23, 
“Random Number Facilities.”

<ratio> Defines the ratio library to work with compile-time rational numbers. 
See Chapter 22.

<regex> Defines the regular expressions library. See Chapter 21.

<source_location> Provides the source_location class. See Chapter 14, 
“Handling Errors.”

<string> Defines the basic_string class template and the type aliases string 
and wstring. See Chapter 2.

<string_view> Defines the basic_string_view class template and the type aliases 
string_view and wstring_view. See Chapter 2.

<system_error> Defines error categories and error codes.

<tuple> Defines the tuple class template as a generalization of the pair class 
template. See Chapter 24.

<type_traits> Defines type traits for use with template metaprogramming. See 
Chapter 26, “Advanced Templates.”

C++20
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HEADER CONTENTS

<typeindex> Defines a simple wrapper for type_info, which can be used as an 
index type in associative containers and in unordered associative 
containers.

<typeinfo> Defines the bad_cast and bad_typeid exceptions. Defines the 
type_info class, objects of which are returned by the typeid operator. 
See Chapter 10, “Discovering Inheritance Techniques,” for details 
on typeid.

<utility> Defines the pair class template and make_pair() (see Chapter 1). 
This header also defines utility functions such as swap(), exchange(), 
move(), as_const(), and more.

<variant> Defines the variant class. See Chapter 24.

<version> Provides implementation-dependent information about the C++ 
Standard Library that you are using, and exposes all Standard Library 
feature test macros. See Chapter 16.

MATHEMATICAL UTILITIES

C++ provides some facilities for numeric processing. These capabilities are not described in detail in 
this book; for details, consult one of the Standard Library references listed in Appendix B:

HEADER CONTENTS

<complex> Defines the complex class template for working with complex numbers.

<numbers> Provides several mathematical constants, such as pi, phi, log2e, and more.

<valarray> Defines valarray and related classes and class templates for working with 
mathematical vectors and matrices.

EXCEPTIONS

Exceptions and exception support are covered in Chapter 14. Two header files provide most of 
the requisite definitions, but some exceptions for other domains are defined in the header file for 
that domain:

HEADER CONTENTS

<exception> Defines the exception and bad_exception classes, and the set_terminate() 
and uncaught_exceptions() functions.

<stdexcept> Non-domain-specific exceptions not defined in <exception>.

C++20
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I/O STREAMS

The following table lists all the header files related to I/O streams in C++. However, normally your 
applications only need to include <fstream>, <iomanip>, <iostream>, <istream>, <ostream>, and 
<sstream>. Consult Chapter 13 for details:

HEADER CONTENTS

<fstream> Defines the basic_filebuf, basic_ifstream, basic_ofstream, and basic_
fstream classes. This header declares the filebuf, wfilebuf, ifstream, 
wifstream, ofstream, wofstream, fstream, and wfstream type aliases.

<iomanip> Declares the I/O manipulators not declared elsewhere (mostly in <ios>).

<ios> Defines the ios_base and basic_ios classes. This header declares most of 
the stream manipulators. You rarely have to include this header directly.

<iosfwd> Forward declarations of the templates and type aliases found in the other I/O 
stream header files. You rarely need to include this header directly.

<iostream> Declares cin, cout, cerr, clog, and the wide-character counterparts. Includes 
<istream>, <ostream>, <streambuf>, and <ios>. Note that it’s not just a 
combination of <istream> and <ostream>.

<istream> Defines the basic_istream and basic_iostream classes. This header 
declares the istream, wistream, iostream, and wiostream type aliases.

<ostream> Defines the basic_ostream class. This header declares the ostream and 
wostream type aliases.

<sstream> Defines the basic_stringbuf, basic_istringstream, basic_
ostringstream, and basic_stringstream classes. This header declares 
the stringbuf, wstringbuf, istringstream, wistringstream, 
ostringstream, wostringstream, stringstream, and wstringstream 
type aliases.

<streambuf> Defines the basic_streambuf class. This header declares the type aliases 
streambuf and wstreambuf. You rarely have to include this header directly.

<strstream> Deprecated.

<syncstream> Defines all classes related to synchronized output streams, such as 
osyncstream and wosyncstream. See Chapter 27, “Multithreaded 
Programming with C++.”

THREADING SUPPORT LIBRARY

C++ includes a threading support library, which allows you to write platform-independent multi-
threaded applications. See Chapter 27 for details. The threading support library consists of the follow-
ing header files:

C++20
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HEADER CONTENTS

<atomic> Defines the atomic types, atomic<T>, and atomic operations.

<barrier> Defines the barrier class.

<condition_variable> Defines the condition_variable and condition_variable_
any classes.

<coroutine> Defines all functionality for writing coroutines.

<future> Defines future, promise, packaged_task, and async().

<latch> Defines the latch class.

<mutex> Defines call_once() and the different non-shared mutex and 
lock classes.

<semaphore> Defines the counting_semaphore and binary_semaphore classes.

<shared_mutex> Defines the shared_mutex, shared_timed_mutex, and shared_
lock classes.

<stop_token> Defines the stop_token, stop_source, and stop_
callback classes.

<thread> Defines the thread and jthread classes, and functions yield(), 
get_id(), sleep_for(), and sleep_until().

C++20

C++20

C++20

C++20

C++20





Introduction to UML
The Unified Modeling Language (UML) is the industry standard for diagrams visualizing class 
hierarchies, subsystem interactions, sequence diagrams, and so on. This book uses UML for its 
class diagrams. Explaining the entire UML standard warrants a book in itself, so this appendix 
is just a brief introduction to only those aspects of UML that are used throughout this book. 
There are different versions of the UML standard. This book uses UML 2.

DIAGRAM TYPES

UML defines the following types of diagrams:

➤➤ Structural UML diagrams

➤➤ Class diagram

➤➤ Object diagram

➤➤ Package diagram

➤➤ Composite structure diagram

➤➤ Component diagram

➤➤ Deployment diagram

➤➤ Profile diagram

➤➤ Behavioral UML diagrams

➤➤ Use case diagram

➤➤ Activity diagram

➤➤ State machine diagram

➤➤ Interaction diagram

➤➤ Sequence diagram

➤➤ Communication diagram

D
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➤➤ Timing diagram

➤➤ Interaction overview diagram

Because this book uses only class and sequence diagrams, those are the only diagrams further  
discussed in this appendix.

CLASS DIAGRAMS

Class diagrams are used to visualize individual classes, and can include data members and member 
functions. They are also used to show the relationships between different classes.

Class Representation
A class is represented in UML as a box with a maximum of three compartments, containing the 
following:

➤➤ The name of the class

➤➤ The data members of the class

➤➤ The methods of the class

Figure D‑1 shows an example. MyClass has two data members—one 
of type string, the other of type float—and it has two methods. The 
plus and minus signs in front of each member specify its visibility. The 
following table lists the most commonly used visibilities:

VISIBILITY MEANING

+ public member

- private member

# protected member

Depending on the goal of your class diagram, sometimes details of members are left 
out, in which case a class is represented with a box, as shown in Figure D‑2. This 
can, for example, be used if you are only interested in visualizing the relationships 
between different classes.

Relationship Representation
UML 2 supports six kinds of relationships between classes: inheritance, realization/implementa‑
tion, aggregation, composition, association, and dependency. The following sections introduce these 
relationships.

FIGURE D-1 

FIGURE D-2 
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Inheritance
Inheritance is visualized using a line starting from the derived class 
and going to the base class. The line ends in a hollow triangle on 
the side of the base class, depicting the is‑a relationship. Figure D‑3 
shows an example.

Realization/Implementation

A class implementing a certain interface is basi‑
cally inheriting from that interface (is‑a relation‑
ship). However, to make a distinction between 
generic inheritance and interface realization, 
the latter is visualized similar to inheritance but 
using a dashed instead of a solid line, as shown 
in Figure D‑4. The ListBox class is derived from 
UIElement and implements/realizes the IClick-
able and IScrollable interfaces.

Aggregation
Aggregation represents a has‑a relationship. It is visualized using 
a line with a hollow diamond shape on the side of the class 
that contains the instance or instances of the other class. In an 
aggregation relationship, you can also optionally specify the 
multiplicity of each participant in the relationship. The location 
of the multiplicity, that is, on which side of the line you need to write it, can be confusing at first. For 
example, in Figure D‑5, a Class can contain/aggregate one or more Students, and each Student 
can follow zero or more Classes. An aggregation relationship means that the aggregated object or 
objects can continue to live when the aggregator is destroyed. For example, if a Class is destroyed, its 
Students are not destroyed.

The following table lists a few examples of possible multiplicities:

MULTIPLICITY MEANING

N Exactly N instances

0..1 Zero or one instance

0..* Zero or more instances

N..* N or more instances

FIGURE D-3 

FIGURE D-4 

FIGURE D-5 
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Composition
Composition is similar to aggregation and is visually repre‑
sented almost the same, except that a full diamond is used 
instead of a hollow diamond. With composition, in contrast 
to aggregation, if the class that contains instances of the other 
class is destroyed, those contained instances are destroyed as 
well. Figure D‑6 shows an example. A Window can contain zero or more Buttons, and each Button 
has to be contained by exactly one Window. If the Window is destroyed, all Buttons it contains are 
destroyed as well.

Association
An association is a generalization of an aggregation. It represents 
a binary link between classes, while an aggregation is a unidirec‑
tional link. A binary link can be traversed in both directions. Fig‑
ure D‑7 shows an example. Every Book knows who its authors 
are, and every Author knows which books she wrote.

Dependency
A dependency visualizes that a class depends on another class. It 
is depicted as a dashed line with an arrow pointing toward the 
dependent class. Usually, some text on the dashed line describes 
the dependency. To come back to the car factory example of 
Chapter 33, “Applying Design Patterns,” a CarFactory is 
dependent on a Car because the factory creates the cars. This is visualized in Figure D‑8.

INTERACTION DIAGRAMS

UML 2 supports four types of interaction diagrams: sequence‑, communication‑, timing‑, and inter‑
action overview diagrams. This book uses only sequence diagrams, briefly discussed in the follow‑
ing section.

Sequence Diagrams
A sequence diagram graphically represents which messages are sent between different objects and the 
order in which these are sent. A sequence diagram consists of the following components:

➤➤ Objects: Object instances involved in the interactions.

➤➤ Lifelines: Graphically represent the lifetime of objects.

➤➤ Messages: Messages are sent from one object to another object.

FIGURE D-6 

FIGURE D-7 

FIGURE D-8 
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➤➤ Replies: When an object receives a message from another object, it sends a reply.

➤➤ Self-messages: Messages an object sends to itself.

➤➤ Alternatives: Represent alternative flows, similar to the branching in an if‑then‑else 
statement.

Figure D‑9 shows an example of a sequence diagram. It’s a simplified version of the diagram from 
Chapter 4, “Designing Professional C++ Programs,” but this time with labels indicating the meaning 
of the important parts of the diagram.

FIGURE D-9 
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# character, 105
- operator, 16
-- operator, 17
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>>= operator, 18
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abs() function, 577, 797
abstract classes, 362
abstraction, reusable code and, 189–190
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adaptor function objects

binders, 710–712
member functions, call, calling, 712–713
negators, 712

adaptor patterns, 1118–1120
adjacent_difference() algorithm, 599
adjacent_find() algorithm, 592
aggregate type, 48
Agile Manifesto, 978
<algorithm> header, 726
algorithms

about, 726
accumulate, 729
binary search

about, 751–752
binary_search(), 597
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lower_bound(), 597
upper_bound(), 597

callbacks, 730–731
choosing, 600
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comparison
equal(), 592
lexicographical_compare(),  

593
lexicographical_compare_three_

way(), 593
mismatch(), 593

constrained, 758
counting

all_of(), 593
any_of(), 593
count(), 593
count_if(), 593
none_of(), 593

find(), 726–729
find_all(), 836–837
find_if(), 726–729
header files, 1206–1207
heap

is_heap, 598
is_heap_until(), 598
make_heap(), 598
pop_heap(), 598
push_heap(), 598
sort_heap(), 598

iterators, 604–606, 605
minimum-maximum

about, 755–756
clamp(), 598
max(), 598
max_element(), 598
min(), 598
min_element(), 598
minmax(), 598
minmax_element(), 598

modifying sequence
copy(), 593, 739–740
copy_backward(), 593
copy_if(), 594
copy_n(), 594
erase(), 742–743
fill(), 594
fill_n(), 594
generate(), 594, 737–738
generate_n(), 594

move(), 594, 740–742
move_backward(), 594
random_shuffle(), 595
remove(), 594, 743–744
remove_copy(), 594
remove_copy_if(), 594
remove_if(), 594
replace(), 594, 742
replace_copy(), 594
replace_copy_if(), 594
replace_if(), 594
reverse(), 594, 746
reverse_copy(), 594
rotate(), 594
rotate_copy(), 594
sample(), 594, 745–746
shift_left(), 594, 746–747
shift_right(), 594, 746–747
shuffle(), 595, 745
transform(), 595, 738–739
unique(), 595, 744–745
unique_copy(), 595

move semantics, 730
non-modifying, 591–593
numerical processing

about, 758–760
accumulate(), 599
adjacent_difference(), 599
exclusive_scan(), 599
gcd(), 577
inclusive_scan(), 599
inner-product(), 759–760
inner_product(), 600
iota(), 599, 759
lcm(), 577
partial_sum(), 599
reduce(), 600, 759
transform_exclusive_scan(),  

599
transform_inclusive_scan(),  

599
transform_reduce(), 600, 760

operational
for_each(), 595, 747–748
for_each_n(), 595, 749
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aliases – array container

parallel, 756–758
partition

about, 749–750
is_partitioned(), 596
partition(), 596
partition_copy(), 596
partition_point(), 596
stable_partition(), 596

permutation
is-permutation(), 600
next-permutation(), 600
prev-permutation(), 600

range-based, 617–619
resources, 1196–1197
scan algorithms, 760
search

adjacent_find(), 592
find(), 592
find_end(), 592
find_first_of(), 592
find_if(), 592
find_if_not(), 592
search(), 592
search_n(), 592

sequence algorithms
modifying, 737–747
non-modifying, 731–737

set
about, 752–755
includes(), 597
inplace_merge(), 597
merge(), 597
set_difference(), 598
set_intersection(), 598
set_symmetric_difference(), 598
set_union(), 598

sorting
about, 750–751
is_sorted(), 596
is_sorted_until(), 596
nth-element(), 596
partial_sort(), 597
partial_sort_copy(), 597
sort(), 597
stable_sort(), 597

Standard Library, 574, 591–600
std:list(), 618
std:sort(), 617
swap

iter_swap(), 527
swap_ranges(), 527

writing, 836–837
aliases

alias templates, 447
namespaces, 11

aliasing, 242
allocate() method, 834–835
allocating arrays, dynamically, 51–52
allocating memory, 213–215
Allocator type, 834–835
allocators

about, 835–836
header files, 1206–1207

all_of() algorithm, 593, 736–737
American Standard Code for Information 

Interchange (ASCII), 763–764
anonymous namespaces, 45
<any> header, 823–824
any_of() algorithm, 593, 736–737
application programming interface (APIs),  

199
architecture, crossplatform development and

address sizes, 1140
binary compatibility, 1139–1140
byte order, 1140–1141
integer size, 1138–1139

argument-dependent lookups (ADL), 608
arguments

default, 313–314
types, operator overload, 538–539

arithmetic function objects, 706–707
arithmetic operators

durations and, 797
overloading

about, 324–325
decrement, 547–548
increment, 547–548
unary minus, 547
unary plus, 547

array container, 584, 589, 660–661
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arrays
allocating, dynamically, 51–52
associative arrays, 587
basic types, 215–217
constant expressions and, 33
deleting, 218–219
dynamic, 217
initializing, 34
multi-dimensional

free store, 221–222
stack, 220–221

of objects, 218
one-dimensional, 34–35
as pointers, 224–226
std::array container, 35
std:optional container, 37
std::pair container, 36
std::vector container, 36

assertions, debugging and, 1057–1058
assign() method, 635
assignment operators

about, 289–295
copy, 280
declaring, 278
defaulted, explicit, 280
defining, 278–279
deleted, explicit, 280
move

about, 295, 297–299
objects, as return values, 280–281
swap() function, 300–301

associative arrays, 587
associativity, 545–546
at() function, 424
atan2() function, 577
<atomic> header

atomic operations, 931–932
atomic types, 929–931, 933–935
references, 932–933
smart pointers, 932
variables, 935–936

attributes
[[deprecated]], 32–33
[[fallthrough]], 25
[[maybe_unused]], 31–32, 911

[[nodiscard]], 31, 129
[[noreturn]], 32, 927

auto keyword, 72–74
auto operator, 560
automatic variables, 212
auto_ptr, 245–246

B

bad() method, 470–471
barriers, 951
base classes

about, 177, 338, 361–362
ambiguous, 369–370
virtual, 370, 389–390

base() method, 614
begin() function, 607
behaviors, 172
Bessel functions, 577
beta functions, 577
bidirectional streams, 488–489
big-endian ordering of bytes, 1141
binary logical operators, overloading, 548–549
binary operators, 16
binary_search() algorithm, 597, 751–752
bind() negator adaptor, 710–712
binding

dynamic, 347
early, 346
late, 347
method hiding and, 346
static, 346

bitset container, 588, 590, 693–697
bitwise copying, 289
bitwise function objects, 709
bitwise operators, overloading, 548–549
black-box testing, 1021–1022
Boehm, Barry W., 975
boolalpha input manipulator, 480
boolalpha output manipulator, 471
boyer_moore_horspool_searcher algorithm, 

733
boyer_moore_searcher algorithm,  

733
bridge pattern, 330–331
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bugs. See also debugging – classes

buffered streams, 466, 469–470
bugs. See also debugging

avoiding bugs, 1046–1047
Bugzilla, 1024
life cycle, 1022–1023
root causes, 1046
tracking, 1023–1025

byte order, 1140–1141

C

C++ resources, 1191–1192
C++11, resources, 1196
C++14, resources, 1196
C++17, resources, 1196
C++20, resources, 1196
cache lines, 920
callbacks, 728, 730–731
calling member functions, 712–713
casting

about, 358–359
casting variables, 15–16
pointers and, 224

casts
const_cast(), 394
dynamic_cast(), 393–394
reinterpret_cast(), 391–392
static_cast(), 390–391, 394
std:bit_cast(), 392–393

catch exceptions, object handling and, 998
catching exceptions

about, 499–501, 1088
in class hierarchy, 510–511
const reference, 502–503
multiple, 503–505

cbegin() function, 607
ceil() function, 577, 797
cend() function, 607
cerr stream, 467
chain of responsibility pattern, 1129–1131
chaining constructors, 354
character classification, localization and, 769
character sets

about, 764
non-Western, 765–767

character types, 766
Chrono library

clocks, 801–802
date, 804–807
durations, 796–800
time points, 802–804
time zone, 807

cin stream, 466
clamp() algorithm, 598
class constants, 316–317
class methods, type constraints and, 461–462
class templates

about, 582
alias templates, 447
compiler and

instantiation, 431–432
types and, 432

definitions
in header files, 432–433
in source files, 433

deriving from, 445–446
inheritance, 445–446
instantiation, 426, 430–431
parameters

about, 433
deduction for constructors,  

436–438
default values, 436
non-type parameters, 434–436

type constraints and, 461
writing

coding without templates, 423–426
Grid class, 426–431
Grid template, 430–431

classes
about, 170–171
abstract, 362
access specifiers, 251–252
base

about, 338, 361–362
ambiguous, 369–370
virtual, 370

constructors, 251
data members, 250, 251
declarations, ordering, 252–253
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defining
constructor initializer, 42
constructors, 42–44
data members, 41–42
destructors, 42–44
methods, 41–42

definitions, 250–253
derived

about, 338–341, 363–364
functionality, 351–353
parent constructors, 353–354
parent destructors, 355–356

deriving from existing, 1086
destructors, 251
exceptions, writing, 512–516
friends, 284–285
Grid, 426–431
hierarchies, catching exceptions, 510–511
high_resolution_clock, 802
Impl, 332
implement class, 330–334
instances, 171, 251
interface class, 330–334
interviews, 1174–1177
istream_iterator, 611–612
Logger, 105–10521
member functions, 251
member variables, 251
members, 251, 254
methods, 251
mixin, 184–185
nested, 318–319
opaque, 190
ostream_iterator, 610–611
over-classification, 173–174
pair, 669–670
parent, 338
reference_wrapper, 629
rule of zero, 305–306
std::ostringstream, 482
string, 575–576
string_view, 575–576
superclasses, 338
system_clock, 801
template classes, 1090

time_point, 801, 802–804
types, enumerated, 319–320
using, 44
writing, 1084–1086

cleanup() function, 301
clocks
high_resolution_clock class, 802
system_clock class, 801
time_point class, 801, 802–804

clog stream, 467
clone() method, 423
code

compiled, 5
decomposition, 122–124
reuse

advantages, 147–148
APIs, 147
big-O notation, 150–152
capabilities, 149–150
design, 191–193
design-by-contract, 195
disadvantages, 148–149
error checking, 195
extensibility and, 196–198
frameworks, 146
libraries, 146
licensing and, 153–154
open-source libraries, 155–157
performance and, 150–153
platforms and, 153
versus polymorphism, 178
postconditions, 195
preconditions, 195
prototypes, 154–155
resources, 154
safe code, 195–196
SRP (Single Responsibility 

Principle), 191–192
stand-alone classes, 146
stand-alone functions, 146
Standard Library, 157
support and, 154
templates, 193–195
types of code, 146–147
writing reusable, 144–145
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code points, character sets, 765
coding style. See also design

about, 127
challenges, 132
constants, 128
documentation, comments, 112–122
exceptions, custom, 129
formatting

curly braces { }, 130–131
parentheses, 131
spaces, 131–132
tabs, 131–132

interviews, 1168–1169
planning, 112
references, 128–129

collections, 172
collisions, 684
comments

about, 5
ad hoc, 120–121
complicated code and, 115–116
every line, 117–118
fixed-format, 119–120
meta-information and, 116–117
prefixes, 118–119
self-documenting code, 122
usage explanation, 111–112

comparison algorithms, 592–593, 733–735
comparison function objects, 707–709
comparison operators, overloading, 325–329
compiled code, 5
compiler-generated constructors, 275–276
component interface, 200
components, 171
compound requirements, 456–457
computer architecture, resources, 1200
concatenation, tuples, 828
concepts

about, 454
constraints expression, 455–457
predefined standard, 457–458
syntax, 455
type constraints and class methods, 461–462
type constraints and class templates, 461
type constraints and function templates, 458–461

type constraints and template specialization,  
462

type-constrained auto, 458
condition variables, 947–950
conditional statements

if/else, 23
operator, 25–26
switch, 24–25

<condition_variable> header, 947
console, streams and, 466
const keyword, 55
const methods, 307–308
const reference data members, 317–318
const static data members, 316–317
constant iterators, 605
constants

class constants, 316–317
null pointer, 52–53

const_cast(), 68–69, 394, 424
consteval keyword, 57–58
constexpr keyword, 56–57
constrain template parameters, 1090–1091
constrained algorithms, 758
constraints expression, 455–457
constructors

about, 259
chaining, 354
compiler-generated, 275–276, 280–281
converting constructors, 365–367
copy, 269–271
default

compiler-generated, 263–264
explicitly defaulted, 264–265
explicitly deleted, 264–265
need, 262
writing, 262–263

delegating, 260–261, 273, 291
derived classes, 353–354
error handling, 526–528
on the free store, 260
function-try-blocks, 528–531
inherited, 374–378
initializer-list constructors, 271–272
initializers, 61
move, 297–301
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multiple, 260–261
overloading, 260–261
parent, 353–354
on the stack, 260
typed constructors, 365–367
writing, 259

container adapters
about, 628
priority_queue, 666–668
queue, 663–666
stack, 668–669

containers
Allocator type, 834–835
allocators, 866–871
associative, 628
bitset, 588, 693–697
error checking, 630
hash functions, 684–686
hash map interface

deleting elements, 843–845
inserting elements, 842–843
removing elements, 843–845
searching elements, 841–842
swapping elements, 845

hash maps
buckets, 684
methods, 850–852
type aliases, 849

hash tables, 628, 684–691
header files, 1205–1206
interfaces

about, 582–590
access methods, 858–859
const_directed_graph_iterator 

class, 852–856
iterators, 606–608, 852
type aliases, 858–859
using, 859–862

ordered associative, 669–684
reversible, 863–864
sequential

about, 628
array, 660–661
deque, 653
forwards_list, 657–659

list, 653–657
span, 661–663

standard C-style arrays, 691–692
Standard Library

about, 574, 582–590
array, 584, 589
bitset, 590
deque, 584, 589
forward_list, 584, 589
list, 584, 588
map, 587, 590
multimap, 587, 590
multiset, 586–587, 590
priority_queue, 585, 589
queue, 585, 589
set, 586–587, 590
span, 585
stack, 586, 589
unordered_map, 590
unordered_multimap, 590
unordered_multiset, 590
unordered_set, 590
vector, 583, 588, 590

strings, 692–693
unordered associative containers, 587–588, 628, 

684–691
writing, 837–875

conversions
implicit, 322
localization, 769–771

converting constructors, 365–367
cooked mode literal operators, 570–571
copy() algorithm, 593
copy assignment operator, compiler generated, 

280–281
copy constructors, 269–271, 289–295
copy list initialization, 74
copy-and-swap idiom, 1087–1088
copy_backward() algorithm, 593
copy_if() algorithm, 594
copy_n() algorithm, 594
core dumps, 1058
count() algorithm, 593, 736–737
count_if() algorithm, 593, 736–737
counting algorithms, 593, 736–737
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cout stream, 466, 468
crash dumps, 1058
crbegin() function, 607
createDocArray() function, 217
cref() function, 629
crend() function, 607
cross-language development

C and C++, 1145
C code, 1149–1151
C++ code

calling assembly code from, 1159–1160
calling from C#, 1151–1154
calling from Java with JNI, 1154–1156
calling from scripts, 1156–1159
calling scripts from, 1156

facade, 1145
object-oriented wrapper, 1145–1148

cross-platform development
architecture and

address sizes, 11400
binary compatibility, 1139–1140
byte order, 1140–1141
integer size, 1138–1139

cross-compiling, 114000
implementation

compilers and, 1142
library implementations, 1142–1143
platform-specific features, 1143–1144

<cstdint> header, 581
C-style arrays, 691–692
curiously recurring template pattern (CRTP), 1100
cylindrical Neumann functions, 577

D

dangling pointers, 234, 289
data members

about, 250
moving, 300
mutable, 308
pointers to, 702–705
references, 61
static, 314–316

accessing, 315–316
inline variables, 314–315

data races, 918–919
data structures, resources, 1196–1197
date, 804–807, 1183
day class, 804
deadlocks, multithreaded programming and, 919–920
deallocate() method, 834–835
deallocating memory, 213–215
debugging

article citations example, 1067–1079
assertions, 1057–1058
avoiding bugs, 1046–1047
catastrophic bugs, 1046
cosmetic bugs, 1046
crash dumps, 1058
debug traces

debug mode, 1049–1053
ring buffers, 1053–1056

debugging reproducible, 1060
error logging and, 1047–1049
interviews, 1187–1188
memory problems

about, 1062, 1065–1066
memory-access errors, 1063–1064
memory-freeing errors, 1062–1063

multithreaded programs, 1066–1067
noncatastrophic bugs, 1046
regressions, 1061
reproducing bugs

about, 1059–1060
debugging nonreproducible, 1060–1061

resources, 1201
root causes of bugs, 1046
tests, 1038

dec input manipulator, 480
dec output manipulator, 471
declaring functions, 6, 28–30
decltype keyword, 75
decomposing code, 28–29
decomposition

modular, 124
refactoring

abstraction, 123
breaking code apart, 123
locations, 123
names, 123
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decorator pattern, 1126–1128
default arguments, 313–314
default keyword, 265
default_searcher algorithm, 733
#define directive, 7
delegating constructors, 260–261, 273, 291
delete[ ], 217
delete keyword, deallocating memory,  

213–214
delete() operator, 52, 564–569
Dependency Inversion Principle (DIP), 206
[[deprecated]] attribute, 32–33
deque container, 584, 589, 653
dereferencing operators, overloading
operator *, 558
operator ->, 558–559
operator->*, 559

dereferencing pointers, 50–51, 223–224
derived classes

about, 338–341, 363–364
constructors, parent, 353–354
destructors, parent, 355–356
functionality, 351–353

Derived constructor, 353–354
design. See also reusable code

abstraction and
benefits, 142–143
incorporating, 143

C++
about, 141–142
algorithms, 162–165
chess program, 157–158
class hierarchies, 161–162
classes, 162–165
data structures, 162–165
error handling, 165
patterns, 162–165
subsystems, 158–160
threading models, 160–161

frameworks and, interviews, 1188
functional requirements and, 138
importance of, 139–141
multithreaded programming, 965–966
non-functional requirements and, 138
object-oriented design, interviews, 1171–1172
patterns

about, 141, 145, 1105–1106
adaptor pattern, 1118–1120
chain of responsibility, 1129–1131
decorator pattern, 1126–1128
dependency injection, 1106
factory patterns, 1109–1118
interviews, 1188
iterator pattern, 1123
observer pattern, 1124–1126
proxy pattern, 1120–1122
resources, 1201–1202
singleton, 1132–1135

program design, interviews, 1169–1171
software design, 138
stakeholders and, 138
Standard Library and, 157
techniques, 145, 1084

designated initializers, 48–49
design-level efficiency

caching, 1002–1003
object pools, 1003–1008

destruction, variables, non-local, 415
destructors

about, 276–277, 288
derived classes, 355–356
error handling and, 531
parent, 355–356
virtual keyword, 348–349

direct list initialization, 74
directed graphs, 837–848
directed_graph interface, 840–841, 848–866
directives
#endif, 409
#ifndef, 409
#include, 409
#pragma once, 409
preprocessor, 5–7

directories, iteration, 492–493
documentation

comments
ad hoc, 120–121
complicated code and, 115–116
every line, 117–118
fixed-format, 119–120
meta-information, 116–117
prefixes, 118–119
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self-documenting code, 122
usage explanation, 111–112

man pages, 119
doSomething() function, 518
double dispatch, 1093–1098
double square brackets, 30
double-ended queue, 584
doubleInts(), 225
doubly linked lists, 584
do/while loop, 39
downcasting, 358–359
doWorkInThread() function, 928
DumpRange() function, 753
durations, 796–800
dynamic arrays, 217
dynamic binding, 347
dynamic casts, pointers and, 224
Dynamic Link Library (DLLs),  

701–702
dynamic memory

about, 212–224
allocation, 285–306
SpreadsheetCell class,  

285–288
dynamic strings

about, 88–103
C-style

copyString() function, 88
sizeof() operator, 89
strlen() function, 88–89

nonstandard strings, 102–103
std::string class, 92–96
std::string_view class, 100–102
string literals

assigning, 90
literal pooling, 90
raw string literals, 90–91

dynamically allocating arrays, 51–52
dynamic_cast(), 393–394, 518

E

early binding, 346
edges

deleting, 844–845
inserting, 843

efficiency
design-level, 994, 1001–1008

caching, 1002–1003
object pools, 1003–1008

interviews, 1186–1187
language, 995–1001
language-level

about, 994, 995–1001
inline functions, 1001
inline methods, 1001
memory allocation, 1000–1001
object handling, 996–1000

profiling and
about, 1008–1019
example, Visual C++ 2019, 1016–1019
gprof and, 1009–1016

resources, 1200
elements, value semantics, 628–630
elliptic integrals, 577
emplace() method, 674
emplace operations, containers, 643–644
employee records program

about, 76
Database class

Database.cpp file, 81
Database.cppm file, 80
DatabaseTest.cpp file, 82

Employee class
Employee.cpp file, 78–79
Employee.cppm file, 76–77
EmployeeTest.cpp file, 79

user interface, 82–85
enable_shared_from_this, 244–245
encodings, UCS, 765
end() function, 607
#endif directive, 7
#endif directive, 409
enumerated types

about, 19–21, 319–320
strongly typed enumerations, 19
structs, 22

eof() method, 470–471
equal() algorithm, 592, 733–735
equal_range() algorithm, 597, 751–752
erf() function, 577
error checking, containers, 630
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error handling
about, 496
constructors, 526–528
destructors, 531
exceptions, 496–498
input streams, 475–476
interviews, 1180–1181
memory allocation errors, 523–526
output streams, 470–471

error logging, debugging and,  
1047–1049

exception handling, futures, 956
exceptions

about, 69–70, 496–498
catching

about, 499–501, 1088
in class hierarchy, 510–511
const reference, 502–503
multiple, 503–505

classes, writing, 512–516
cleanup and, 522
copying, 926–929
custom, 129
exception specification, 508–509
header files, 1209
nested, 517–518
noexcept keyword, 507–508
rethrowing, 519–520, 522, 926–929
standard, 509–510
Standard Library, 576
throw list, 508–509
throwing

about, 499–501
multiple, 503–505

throwing exceptions, 1088
types, 501–502
uncaught, 505–507

exclusive_scan() algorithm, 599, 760
execution policy, parallel algorithms,  

757
exp() function, 577
explicit keyword, 438
expressions, folding expressions, 896–898
extern keyword, 413–414
extraction operators, overloading, 549–550

F

factories, 617
factory patterns

implementing, 1110–1111, 1114–1115
other uses, 1117–1118

fail() method, 470–471
[[fallthrough]] attribute, 25
false-sharing, multithreaded programming and, 

920–921
feature test macros, 410–411
fgets() function, 467
file streams

about, 484–488
binary mode, 485
fgets() function and, 467
fprintf() function and, 467
fputs() function and, 467
fread() function and, 467
fscanf() function and, 467
fwrite() function and, 467
ios_base::app constant, 484
ios_base::ate constant, 484
ios_base::binary constant, 484
ios_base::in constant, 484
ios_base::out constant, 484
ios_base::trunc constant, 484
text mode, 485

files
header files, 5
module implementation, 401–402
module interface, 399–401
reading from, 1089
source files, 6
writing to, 1089

filesystem support library
about, 490, 580
directory entry, 491–492
directory iteration, 492–493
helper functions, 492
path, 490–491

fill() algorithm, 594
[fill]align, 105
fill_n() algorithm, 594
find() algorithm, 592, 726–729
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find_end() algorithm, 592
find_first_of() algorithm, 592
find_if() algorithm, 592, 726–729
find_if_not() algorithm, 592
findMatches() function, 700
floating-point numbers, 16
floor() function, 577, 797
flush() method, 466, 469–470
flush-on-access, streams, 487–488
fma() function, 577
folding expressions, 896–898
for loop, 39
for_each() algorithm, 595, 747–748
for_each_n() algorithm, 595, 749
format specifiers, 104–107
forward declarations, 409–410
forward_list container, 584, 589, 657–659
fprintf() function, 467
fputs() function, 467
frameworks, object-oriented

MFC (Microsoft Framework Classes), 1101
MVC (Model-View-Controller), 1102–1103

fread() function, 467
free store

about, 49–50
constructors on, 260
objects, 257–258

freeing memory, 288
friends, 284–285
fscanf() function, 467
full class template specialization, 884–887
function call operator, overloading, 555–556
function objects

about, 580
arithmetic, 706–707
bitwise, 709
comparison, 707–709
invokers, 722
logical, 709
threads and, 922–923
transparent, 707
writing, 705

function pointers
about, 700–702
threads and, 921–922

function templates
class templates and, 449–451
overloading, 449

specialization and, 449
return types, 451–453
specialization, 447–449
type constraints and, 458–461

functional composition, adaptor function objects 
and, 709–710

functional relationships, 181–182
functionality, 177
functions

about, 28–30
abs(), 577
at(), 424
atan2(), 577
begin(), 607
cbegin(), 607
ceil(), 577
cend(), 607
cleanup(), 301
crbegin(), 607
createDocArray(), 217
crend(), 607
current function name, 30
declarations, 6, 28–30
definitions, 6
[[deprecated]] attribute, 32–33
doSomething(), 518
doWorkInThread(), 928
DumpRange(), 753
end(), 607
erf(), 577
exp(), 577
fgets(), 467
findMatches(), 700
floor(), 577
fma(), 577
fprintf(), 467
fputs(), 467
fread(), 467
friends, 284
fscanf(), 467
fwrite(), 467
getValue(), 251
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handleMessage(), 296–297
handleValue(), 894
hash functions, 684–686
increment(), 855
intEqual(), 701
log(), 577, 1053
main(), 8
make_pair(), 436–437
malloc(), 214–215
[[maybe_unused]] attribute,  

31–32, 911
member functions, calling,  

712–713
mem_fn(), 712–713
new handler callback, 524–526
[[nodiscard]] attribute, 31, 129
[[noreturn]] attribute, 32, 927
overloading, 30
polymorphic function wrapper, 703
pow(), 577
predicate function callbacks, 728
processValues(), 893–895
pthread_create(), 921
rand(), 579, 810–811
rbegin(), 607, 614
realloc(), 217
refcall(), 65
remainder(), 577
rend(), 607, 614
rethrow_nested(), 518
return type, deduction, 30
set_terminate(), 507
setValue(), 251–252
sin(), 577
sinh(), 577
sprintf(), 468
sprintf_s(), 468
sqrt(), 577
srand(), 579, 810–811
sscanf(), 468
swap(), 300–301
terminate(), 506–507
tgamma(), 577
threadFunc(), 928–929

function-try-blocks, 528–531

functors, 555. See also function objects
<future> folder, 580–581
futures

about, 952–953
exception handling, 956
promises, 952–953
std::async, 955–956
std::future, 953–954
std::packaged_task, 954–955
std::promise, 953–954
std::shared_future, 956–957

fuzz testing, 1039
fwrite() function, 467

G

generate() algorithm, 594
generate_n() algorithm, 594
generic programming

about, 426
templates and, 574–575

get_money input manipulator, 480
getStatus(), 127
getters, 127
get_time input manipulator, 480
getValue() function, 251
global scope, 44–45
good() method, 470–471
GPUs (graphics cards), 916
granularity of tests, 1027–1028
graph_node, 838–840
Grid class, 426–431

H

handleMessage() function, 296–297
handles, 190
handleValue() function, 894
has-a relationships, 175–176, 178–181
hash functions, 684–686
hash tables, 587–588, 684–691
header files

about, 5, 408–409, 1203–1205
<algorithm>, 726
algorithms, 1206–1207
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allocators, 1206–1207
<any>, 823–824
<array>, 584
<atomic>, 929
<chrono>, 579
<condition_variable>, 947
containers, 1205–1206
<cstdint>, 581
<deque>, 584
duplicate definitions, 409
exceptions, 1209
forward declarations, 409–410
<forward_list>, 584
<future>, 580–581
general utilities, 1207–1209
initializer lists, 40
<initializer_list>, 579
I/O streams, 1210
<iostream>, 5–6, 468
iterators, 1206–1207
<map>, 587
mathematical utilities, 1209
<multimap>, 587
<multiset>, 586–587
<ostream>, 468
<priority_queue>, 585
<queue>, 585
ranges, 1206–1207
<ratio>, 794–796
<set>, 586–587
<stack>, 586
<string>, 575–576
template definitions, 433
<thread>, 580–581
threading support library, 1210–1211
<tuple>, 579–580
<type_traits>, 581
<utility>, 579–580
<variant>, 821–823
<vector>, 583

header units, 408
Hello World, 4–5
helper functions, filesystem support library,  

492
hex input manipulator, 480
hex output manipulator, 471

hierarchies
about, 182–183
catching exceptions, 510–511
standard exceptions, 509–510

high_resolution_clock class, 802
Hungarian Notation, 126

I

_i literal, 570
#ifdef directive, 7
if/else statements, 23
#ifndef directive, 7, 409
Impl class, 332
implementation
directed_graph interface, 841
partitions, 407–408
splitting from interface, 402–403

implementation class, 330–334
implicit conversions, 322
#include directive, 6, 409
includes() algorithm, 597
inclusive_scan() algorithm, 599, 760
increment() function, 855
inheritance

base classes
about, 177
virtual, 389–390

casts, 390–394
constructors, 374–378
derived classes

assignment operator, 385–386
copy constructors, 385–386

extending classes, 338–341
functionality, 177
multiple

about, 183–184, 367–371
base classes, ambiguous, 369–370
naming collisions, 368–371
uses, 371

non-public, 388
overridden methods

base class method, 382–385
base class method overloaded,  

379–380
base class method private, 380–381
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base class method static, 378–379
method return type, 371–373

parent classes, 177
polymorphism and, 360–367
preventing, 341
properties, 177
reuse and, 350–353
RTTI (run-time type information), 386–388
specialization comparison, 446
superclasses, 177
templates, 445–446

inheritance techniques, interviews, 1177–1178
initialization

constructors, 61
RAII (Resource Acquisition is Initialization), 

1091–1093
uniform

about, 45–47
copy list, 74
direct list, 74

variables, non-local, 415
initializer lists, 40
initializer-list constructors, 271–272
<initializer_list> header, 579
inline keyword, 312
inline methods

about, 311–313
efficiency and, 1001

inline variables, static data member access, 314–315
in-memory stream, 482
inner_product() algorithm, 600
inplace_merge() algorithm, 597
input streams
>> operator, 473–474
error handling, 475–476
manipulators, 480
methods

bad(), 475
fail(), 475
get(), 476–477
getline(), 479–480
good(), 475
peek(), 478–479
putback(), 478
unget(), 477–478

objects and, 423–425
as views, 625

insert() method, 612–613, 672–673
insertion operators, overloading, 549–550
insert_or_assign() method, 673
instances, 171
int* type declaration, 70–71
integration

about, 1039–1041
JSON-based file serializer, 1040
shared resources, readers/writers, 1040
wrapper, third-party library, 1040

intEqual() function, 701
interface class, 330–334
Interface Segregation Principle (ISP), 206
interfaces

APIs (application programming interface), 199
audience and, 198–199
component interface, 200
containers, 582–590
libraries, 199
purpose, 199–200
reusable

customizability, 204–205
documentation, 203–204
ease of use and generality, 205
familiarity, 200–202
general-purpose, 204–205
ISP (Interface Segregation Principle), 206
multiple, 206
required functionality, 202–203
uncluttered, 203

splitting from implementation, 402–403
subsystems, 200
utility classes, 199

interviews
applications, 1189
classes, 1174–1177
coding style, 1168–1169
date and time utilities, 1183
debugging, 1187–1188
design

frameworks and, 1188
object-oriented design, 1171–1172
patterns, 1188
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program design, 1169–1171
reuse and, 1172

efficiency, 1186–1187
error handling, 1180–1181
inheritance techniques, 1177–1178
I/O, 1179–1180
library utilities, 1184
memory management, 1172–1173
multithreaded programming, 1184–1185
objects, 1174–1177
obscure questions, 1178
operator overload, 1181
random number facilities, 1183–1184
regular expressions, 1167–1168
software engineering methods, 1185–1186
Standard Library, 1165–1166, 1182–1183
strings

localization, 1167–1168
views, 1167–1168

templates, 1178–1179
testing abilities, 1187

IntPtr, 70–71
invoke() adaptor, 722
I/O

bidirectional, 488–489
interviews, 1179–1180

I/O streams
about, 8–9
header files, 1210
resources, 1194
Standard Library, 576

ios_base::app constant, 484
ios_base::ate constant, file streams,  

484
ios_base::binary constant, file streams,  

484
ios_base::in constant, file streams, 484
ios_base::out constant, file streams, 484
ios_base::trunc constant, file streams,  

484
<iostream> header file, 5–6, 468
iota() algorithm, 599
is-a relationships, 176–178
is_heap() algorithm, 598
is_heap_until() algorithm, 598

is_partitioned() algorithm, 596
is_permutation() algorithm, 600
is_sorted() algorithm, 596
is_sorted_until() algorithm, 596
istream_iterator class, 611–612
iteration, directories, 492–493
iterative processes, 975
iterator adaptors

insert iterators, 612–613
move iterators, 615–616
reverse iterators, 614

iterator design pattern, 1123
iterators

about, 604–606
BidirectionalIterator, 605
constant iterators, 605
containers, 606–608
ContiguousIterator, 605
examples, 609–610
ForwardIterator, 605
header files, 1206–1207
InputIterator, 605
mutable, 605
OutputIterator, 605
RandomAccessIterator, 605
streams

istream_iterator class, 611–612
ostream_iterator class, 610–611

traits, 608–609
iter_swap() algorithm, 595

K

keywords
auto, 72–74
const, 53–56
constexpr, 56–57
decltype, 75
default, 265
explicit, 438
extern, 413–414
inline, 312
new, 213–214
noexcept, 507–508
override, 342–343
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static

data members, 411
linkage, 411–413
methods, 411

throw, 519–520
try, 528–531
virtual, 347–349
virtual, 342–343

L

lambda expressions
assigning, 722
capture expressions, 719–720
copying, 722
default construction, 722
generic expressions, 719
as parameters, 718–719
as return types, 721
Standard Library algorithms

count_if(), 593, 736–737
generate(), 730–731

syntax, 713–718
threads and, 924
in unevaluated contexts, 722
writing, 1086–1087

language, efficiency and, 995–1001
language-level efficiency

about, 994, 995–1001
inline functions, 1001
inline methods, 1001
memory allocation, 1000–1001
object handling

catch exceptions, 998
move semantics, 998
pass-by-reference, 996–997
return-by-reference, 998
return-value optimization, 999–1000
temporary objects, 998–999

latches, 950
late binding, 347
lazy evaluation, 619
Legendre polynomials, 577
lexicographical_compare() algorithm, 593, 

733–735

lexicographical_compare_three_way() 
algorithm, 593, 733–735

libraries
filesystem support

directory entry, 491–492
directory iteration, 492–493
helper functions, 492
path, 490–491

interfaces, 199
open-source

BSD (Berkeley Software Distribution),  
155

CC (Creative Commons) license, 155
GPL (GNU Public License), 155
locating, 156
use guidelines, 156–157

Ratio library, 794–796
library utilities, interviews, 1184
[[likely]] attribute, 33
linked lists, 584
linking streams, 487–488
Liskov Substitution Principle (LSP), 181, 206
list container, 584, 588, 653–657
lists

doubly linked, 584
singly linked, 584

literal operators, 570–572
literals

about, 11–12
_i literal, 570
_s literal, 571
string literals, localization and, 764–765
user-defined, 570–572

little-endian ordering of bytes, 1141
local storage, threads, 924–925
<locale> header, 767
locales

about, 767–769
string literals, 764–765
wide characters, 764

localization
about, 575, 763–764
ASCII characters and, 763–764
character classification, 769
character conversion and, 769–771
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character sets
about, 764
matches, 775–777
non-Western, 765–767

conversions, 769–771
facet categories, 770–771
facets, 767

log() function, 577, 1053
Logger class, 1051–1052
logical evaluation operators

!, 26
!=, 26
&&, 26
==, 26
<, 26
| 
<=, 26
>, 26
>=, 26
<=>, 26

logical expressions, short-circuit logic, 26
logical function objects, 709
loops
for, 39
do/while, 39
while, 38–39

lower_bound() algorithm, 597, 751–752
lvalues, 295–297

M

macros
feature test, 410–411
preprocessor and, 417–418

main() function, 8
make-heap() algorithm, 598
make_pair() function, 436–437
malloc() function, 214–215
man pages, 119
map container

about, 587, 590
element look up, 675
element removal, 675–676
example, 676–679
inserting elements, 671–674

iterators, 674
nodes, 676

mapping, in ranges, 623
mathematical utilities, Standard Library

about, 577–579
Bessel functions, 577
beta functions, 577
complex numbers, 577
cylindrical Neumann functions, 577
elliptic integrals, 577
Legendre polynomials, 577
ratio class, 577
ratio class template, 577
valarray class, 577

max() algorithm, 598, 755–756
max_element() algorithm, 599
[[maybe_unused]] attribute, 31–32, 911
member functions

calling, 712–713
threads and, 924

mem_fn() function, 712–713
memory

allocating
failure, 215
new keyword, 213–214

buffers, underallocating, 229–231
deallocating, delete keyword, 213–214
destructors, 288
double deleting, 234
dynamic, 212–224
freeing, 288
garbage collection, 228–229
handling, 94
leaks, 231–234, 290
low-level operations, 227–229
malloc() function, 214–215
object pools, 229
orphaned, 290
out-of-bounds, accessing, 229–231
pointer arithmetic, 227–228
pointers

about, 49–51
dangling, 234

polymorphic memory wrappers, 834–835
stack, 49–50
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memory allocation
errors, custom failure behavior, 524–526
operators, overloading

delete expression, 564
delete operator, 564–569
new expression, 564
new operator, 564–569

pre-allocating, 1000–1001
memory dumps, 1058
memory management

about, 211–212
custom, 228
interviews, 1172–1173

memory pool, 563
merge() algorithm, 597, 656
meta-information, coding style and, 116–117
metaprogramming templates, 898

loop unrolling, 899–900
tuples, printing

about, 900–903
compile-time integer sequence, 903
constexpr if statement, 902–903

type traits
about, 903–905
constexpr if statement, 910–912
enable_if, 908–910
logical operators, 912
static assertions, 912–913
type categories, 905–907
type relationships, 907

methods
: : (scope resolution operator), 254
about, 469–470
access, 254
allocate(), 834–835
assign(), 635
bad(), 470–471, 475
base(), 614
calling others, 254–255
class methods, type constraints and, 461–462
clone(), 423
const, 307–308
constructors

about, 259
compiler-generated, 275–276

copy, 269–271
default, 261–265
delegating, 260–261, 273
on the free store, 260
initializer-list constructors, 271–272
initializers, 265–268
multiple, 260–261
overloading, 260–261
on the stack, 260
writing, 259

deallocate(), 834–835
destructors, 276–277
emplace(), 674
eof(), 470–471
fail(), 470–471, 475
flush(), 466, 469–470
good(), 470–471, 475
hiding, 346
inline, 311–313
insert(), 612–613, 672–673
insert_or_assign(), 673
method templates, 438–442
moveFrom(), 300
mutable data members, 308
myCopy(), 612–613
operator[ ], 673–674
overloading

const and, 309–310
deleting explicitly, 310

overriding
override keyword, 344–345
preventing, 350
syntax, 342–343

pointers to, 702–705
pure virtual methods, 362
put(), 469
ref-qualifier, 310–311
resize(), 878
seek(), 485–487
static, 306–307
std::as_const(), 69, 310
str(), 482
swap(), 635
tell(), 485–487
this pointer, 255–256
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tie(), 487–488
write(), 469

min() algorithm, 598, 755–756
min_element() algorithm, 599
minimum-maximum algorithms, 755–756
minmax() algorithm, 599
minmax_element() algorithm, 599
mismatch() algorithm, 593, 733–735
mixin classes

about, 184–185, 1098–1101, 1100
designing, 1098–1100
implementing, 1100

modifying sequence algorithms
about, 593–595, 737–747
copy(), 739–740
erase(), 742–743
generate(), 737–738
move(), 740–742
remove(), 743–744
replace(), 742
reverse(), 746
sample(), 745–746
shift_left(), 746–747
shift_right(), 746–747
shuffle(), 595
transform(), 738–739
unique(), 744–745

module declaration, 399
module implementation files, 401–402
module interface files, 399–401
module partitions, 405–408
modules

about, 397–399
submodules, 404–405

month class, 804
move() algorithm, 594
move assignment operators, 295, 297–301,  

544–545
move constructor, 297–301
move semantics

about, 244, 295–305, 615, 730
implementing, 297–299
object handling and, 998

move_backward() algorithm, 594
moveFrom() method, 300

multicore processors, 917
multi-dimensional arrays

free store, 221–222
stack, 220–221

multimap container, 587, 590
multiple inheritance, 183–184, 367–371
multiset container, 586–587, 590
multithreaded programming

about, 916–917
barriers, 951
condition variables, 947–950
coroutines, 963–964
data races, 918–919
deadlocks, 919–920
debugging, 1066–1067
false-sharing, 920–921
<future> header, 580–581
futures

about, 952–953
exception handling, 956
promises, 952–953
std::async, 955–956
std::future, 953–954
std::packaged_task, 954–955
std::promise, 953–954
std::shared_future, 956–957

interviews, 1184–1185
latches, 950
logger class example, 958–962
race conditions, 918–919
resources, 1202
semaphores, 951–952
tearing, 919
thread pools, 962–963
<thread> header, 580–581
threading design, 965–966

mutable data members, 308
mutable iterators, 605
mutex classes

about, 936–939
double-checked locking, 946–947
locks

lock_guard, 939–940
multiple, 941
scoped_lock, 942
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shared_lock, 941
unique_lock, 940

non-timed
exclusive ownership, 938
lock() method, 937
read locks, 938
readers-writers lock, 938
shared lock ownership, 938
shared ownership, 938
shared_mutex class, 938
try_lock() method, 938
unlock() method, 938

std::call_once, 942–943
thread writing, safe streams, 943–945
timed, 939
timed locks, 945–946

mutual exclusion, mutex classes
about, 936
non-timed, 937–938
timed, 939

myCopy() method, 612–613

N

named comparison functions, 28
namespaces

about, 9–11
aliases, 11
anonymous, 45

naming conventions
capitalization, 127
counters, 125
getStatus(), 127
getters, 127
Hungarian Notation, 126
namespaced constants, 127
prefixes, 126
selecting, 124–125
setStatus(), 127
setters, 127

negative tests, 1034–1035
nested, 11
nested classes, 318–319
nested exceptions, 517–518
nested namespaces, 11

nested requirements, 457
new[ ], 217
new handler callback function, 524–526
new keyword, 213–214
new operator, 564–569
next_permutation() algorithm, 600
noboolalpha input manipulator, 480
noboolalpha output manipulator, 471
node handles, 676
node-based data structures, 676
nodes

deleting, 843–844
inserting, 842–843
searching, 841–842

[[nodiscard]] attribute, 31, 129
noexcept keyword, 507–508
none_of() algorithm, 593, 736–737
non-local variables

destruction, 415
initialization order, 415

non-modifying algorithms, 591–593
non-modifying sequence algorithms

comparison algorithms, 733–735
counting algorithms, 736–737
search algorithms, 731–733
specialized searchers, 733

non-timed mutex classes
exclusive ownership, 938
lock() method, 937
read locks, 938
readers-writers lock, 938
shared lock ownership, 938
shared ownership, 938
shared_mutex class, 938
try_lock() method, 938
unlock() method, 938

non-type parameters, templates
about, 434–436
method templates, 440–442

[[noreturn]] attribute, 32, 927
noshowpoint output manipulator, 472
noskipws input manipulator, 480
not1() negator adaptor, 712
not2() negator adaptor, 712
not_fn() negator adaptor, 712



1241

NRVO (named return value optimization) – one-dimensional arrays

NRVO (named return value optimization),  
303–304

nth_element() algorithm, 596
null pointers, 50–51
<numeric> header, 1005

O

object handling
catch exceptions, 998
move semantics, 998
return-by-reference, 998
return-value optimization, 999–1000
temporary objects, 998–999

object-oriented programming (OOP)
about, 41, 170
aggregation, 175
behaviors, 172
classes

about, 170–171
base classes, 177
instances, 171

collections, 172
components, 171
deriving, 176
extending, 176
frameworks, 1101–1102
general, 174–175
hierarchies, 182–183
inheritance

about, 176–178
base classes, 177
functionality, 177
multiple, 183–184
parent classes, 177
properties, 177
superclasses, 177

instances, 171
MVC (Model-View-Controller), 1102–1103
objects, general, 174–175
polymorphism, 178
properties, 171
relationships

functional, 181–182
has-a, 175–176, 178–181

is-a, 178–181
is-a relationship, 176–178
mixin classes, 184–185
shares-with, 185

SOLID principles, 206
subclassing, 176

objects
assignment operators

declaring, 278
defining, 278–279
explicitly defaulted, 280
explicitly deleted, 280

block ends, 276
casting, 358–359
constructors

about, 259
compiler-generated, 275–276
copy, 269–271
default, 261–265
delegating, 260–261, 273
on the free store, 260
initializer-list constructors, 271–272
initializers, 265–268
multiple, 260–261
overloading, 260–261
on the stack, 260
writing, 259

creating, 258–276
data members, moving, 300
destructors, 276–277
on the free store, 257–258
function, 580
functors, 555
input, 481–482
interviews, 1174–1177
out of scope, 276
output, 481–482
passing by reference, 270–271
as return values, 280–281
on the stack, 257

obscure questions in interviews, 1178
observer pattern, 1124–1126
oct input manipulator, 480
oct output manipulator, 471
one-dimensional arrays, 34–35
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opaque classes, 190
Open/Closed Principle (OCP), 206
open-source libraries

BSD (Berkeley Software Distribution),  
155

CC (Creative Commons) license,  
155

GPL (GNU Public License), 155
locating, 156
use guidelines, 156–157

operating systems, resources, 1202
operational algorithms, 747–749
operations, on strings, 94–95
operator[ ] method, 673–674
operator overload
add() method, 320–321
argument types, 538
arithmetic operators

about, 324–325
decrement, 547–548
increment, 547–548
unary minus, 547
unary plus, 547

associativity, 545–546
behavior, 539
binary logical operators, 548–549
bitwise operators, 548–549
comparison, 325–329
conversions, implicit, 322
dereferencing operators

about, 557–559
operator *, 558
operator ->, 558–559
operator->*, 559

extraction operators, 549–550
function call operator, 555–556
global functions, 537–538
insertion operators, 549–550
interviews, 1181
limitations, 526–527
memory allocation operators

about, 564–569
delete expression, 564
delete operator, 564–569
new expression, 564
new operator, 564–569

methods, 537–538
move assignment operators, 544–545
operator+, 321–323
operators not to overload, 539
overloadable operators, 540–544
precedence, 545–546
read-only access, 553–555
reasons, 536
relational operators, 546
return types, 538–539
rvalue references, 544–545
Standard Library, 575
subscripting operator

about, 550–555
non-integral array indices, 555
operator [ ], 553

type building and, 330
operators

arity, 537
assignment operators

about, 291–294
copy, 280
declaring, 278
defaulted, explicit, 280
defining, 278–279
deleted, explicit, 280
move, 295

associativity, 537
binary, 16
conditional statements, 25–26
conversion

about, 559–563
auto, 560
Boolean expressions, 561–563
explicit, 561

delete, 52, 564–569
literal, 570–572
logical evaluation

!, 26
!=, 26
&&, 26
<, 26
==, 26
<=, 26
| , 26
>, 26
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>=, 26
<=>, 26

move assignment operators, 544–545
new, 51–52, 564–569
precedence, 537
relational, 546
spaceship, 27–28
ternary, 16
three-way comparison, 27–28
unary, 16

<optional> header, 37
ordered associative containers
map

constructing, 670–671
element look up, 675
element removal, 675–676
example, 676–679
inserting elements, 671–674
iterators, 674
nodes, 676

multimap, 679–682
multiset, 684
set, 682–684

orphaned memory, 290
orthogonality, 591
<ostream> header file, 468
ostream_iterator class, 610–611
output streams

about, 468–473
cout, 468
error handling, 470–471
manipulators, 471–473
methods

about, 469–470
bad(), 470–471
eof(), 470–471
fail(), 470–471
flush(), 469–470
good(), 470–471
put(), 469
write(), 469

objects and, 481–482
raw output, 469

over-classification, 173–174
overload resolution, 309

overloading
about, 260–261
methods

about, 308–311
const and, 309–310
deleting explicitly, 310

override keyword, 344–345
overriding methods

about, 342–350
override keyword, 344–345
preventing, 350
syntax, 342–343

P

pair class, 669–670
parallel algorithms, 756–758
parameter packs, 894
parameterization, 451
parameters

about, 313
const keyword and, 55
constrain template, 1090–1091
cooked-mode literal operators, 570–571
references

about, 61–63
pass-by-reference, 63
pass-by-value, 63–64

template template parameters, 880–882
templates

about, 433
deduction for constructors, 436–438
default values, 436
non-type parameters, 434–436, 882–884
template parameters, 880–882

parent classes, 177, 338
parent names, 356–358
partial class template specialization, 884–889
partial ordering, 28
partial specialization, templates, 445
partial_sort() algorithm, 597
partial_sort_copy() algorithm, 597
partial_sum() algorithm, 599
partition() algorithm, 596
partition algorithms, 749–750
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partition_copy() algorithm, 596, 749–750
partition_point() algorithm, 596
partitions, module, 405–408
passing, by reference, 270–271
pimpl idiom, 330–331
pipeline, 619
placeholders, 103–104
platform

about, 1137
binary compatibility, 1139–1140

pointer arithmetic, 227–228
pointers

about, 49–51
arrays as, 224–226
casting with, 224
dangling, 234, 289
to data members, 702–705
dereferencing, 50–51, 223–224
free store, 49–50
to methods, 702–705
models, 223–224
null

about, 50–51
constant, 52–53

to references, 60
versus references, 64–68
shared ownership, 235
smart

about, 65
auto_ptr, 245–246
enable_shared_from_this, 244–245
move semantics, 244
referencing counting and, 241–242
shared_ptr, 239–242
unique_ptr, 235–239
weak_ptr, 243–244

smart pointers, 234–246
on the stack, 260
to structures, 51
this, 255–256

polymorphic function wrapper, 703
polymorphic memory wrappers, 834–835
polymorphism

about, 178
inheritance and, 360–367

pop_heap() algorithm, 598
pow() function, 577
#pragma directive, 7
#pragma once directive, 409
precedence, 18–19, 545–546
precision, 107
predefined standard concepts, 457–458
predicate function callbacks, 728
preprocessor

directives, 5–7
macros, 417–418

prev_permutation() algorithm, 600
priority_queue container

about, 585, 589
function objects and, 707–709

private implementation idiom,  
330–331

private nested classes, 319
procedural approach, 170
process, software engineering and,  

972–973
processors, multicore, 917
processValues() function, 893–895
profiling

about, 1008–1019
gprof and, 1009–1016

programming. See also design; object-oriented 
programming (OOP)

generic, 426
multithreaded, 916–917
style, resources, 1199–1200

projection
defined, 617
in range-based algorithms, 618–619

properties, 171, 177
protected nested classes, 319
proxy patterns, 1120–1122
pseudo-random number engines

linear congruential, 812
Mersenne twister, 812
subtract with carry engine, 812

pthread_create() function, 921
pure virtual methods, 362
push_back() call, 615–616
push_heap() algorithm, 598
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put() method, 469
put_money output manipulator, 472
put_time output manipulator, 472

Q

QA (quality assurance), 1021
queue container, 585, 589
quoted input manipulator, 480
quoted output manipulator, 472

R

race conditions, 918–919
rand() function, 579, 810–811
random numbers

distributions
Bernoulli, 816
normal, 816–817
Poisson, 816
uniform, 816

engines
about, 811–813, 816–819
adapter pattern, 813–814
adaptors, 813
linear_congruential_engine,  

811
mersenne_twister_engine, 811
predefined, 813–814
random_device, 811
subtract_with_carry_engine, 811

generate() algorithm, 815
generating, 810–811, 814–815
interviews, 1183–1184
pseudo-random number engines

linear congruential, 812
Mersenne twister, 812
subtract with carry engine, 812

resources, 1197
Standard Library, 579

random_shuffle() algorithm, 595
range adapters, 620–621
range factories, 623–625
range-based algorithms, 617–619
range-based for loop, 39–40

ranges
defined, 617
header files, 1206–1207
range factories, 623–625

ranges library
about, 601, 616–617
range factories, 623–625
range-based algorithms, 617–619

Ratio library, 794–796
<ratio> header, 794–796
raw pointers, 606
raw string literals, 90–91
raw-mode literal operators, 570
rbegin() function, 607, 614
reachability, visibility vs., 403–404
reading from files, 1089
read-only access, 553–555
realloc() function, 217
recursive_directory_iterator,  

492
reduce() algorithm, 600
ref() function, 629
refcall() function, 65
reference data members

about, 61
const, 317–318

reference variables, 58–61
references

about, 58–68
<atomic> header, 932–933
const keyword, 502–503
lvalues, 295–297
modifying, 58–59
parameters

about, 61–63
pass-by-reference, 63
pass-by-value, 63–64

passing by, 270–271
to pointers, 60
versus pointers, 64–68
rvalues, 295–297
structured bindings and, 61

reference_wrapper class, 629
ref-qualifier methods, 310–311
regression testing, 1041–1042
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regular expressions
alternation, 773
anchors, 773
back references, 774, 778
capture groups, 774
character sets

about, 775–777
character classes, 775–776
range specification, 775

decision making and, 772
ECMAScript, 772, 773–779
grammars, 772–773
grouping, 774
interviews, 1167–1168
iteration and, 772
lookahead, 778
matches, 772
parsing and, 772
patterns, 772
precedence, 775
raw string labels, 778–779
regex library, 779–780
regex_iterator() algorithm,  

784–785
regex_match() algorithm, 781–783
regex_replace() algorithm,  

788–790
regex_search() algorithm, 783–784
regex_token_iterator, 785–788
repetition, 774
replace, 772
replace operations, 774
searches, 772
Standard Library, 576
subexpressions, 774
tokenization and, 772
transformation and, 772
validation and, 772
wildcards, 773
word boundaries, 777

reinterpret_cast(), 391–392
relational operators, 546
relationships

functional, 181–182
has-a, 175–176, 178–181

is-a, 176–178
mixin classes, 184–185
shares-with, 185

remainder() function, 577
remove() algorithm, 594
remove_copy() algorithm, 594
remove_copy_if() algorithm, 594
remove-erase-idiom, 744
remove_if() algorithm, 594
rend() function, 607, 614
replace() algorithm, 594
replace_copy() algorithm, 594
replace_copy_if() algorithm, 594
replace_if() algorithm, 594
resize() method, 878
Resource Acquisition Is Initialization (RAII), 

1091–1093
resources

algorithms, 1196–1197
beginning C++, 1191–1192
C++11, 11967
C++14, 11967
C++17, 11967
C++20, 1196
computer architecture, 1200
data structures, 1196–1197
debugging, 1201
design patterns, 1201–1202
efficiency, 1200
general C++, 1192–1194
I/O streams and strings, 1194
multithreaded programming, 1202
operating systems, 1202
programming style, 1199–1200
random numbers, 1197
software

engineering methodology,  
1198–1199

open-source, 1197–1198
Standard Library, 1194–1195
templates, 1195
testing, 1200
UML (Unified Modeling Language), 1196

rethrowing exceptions, 519–520, 522
rethrow_nested() function, 518



1247

return type functions – scope, resolution

return type functions
about, 30
function templates, 451–453

return values, optimization, object handling and, 
999–1000

return-by-reference, object handling and, 998
reusable code

abstraction and, 189–190
advantages, 147–148
APIs, 147
big-O notation, 150–152
capabilities, 149–150
dependency injection, 145
design

aggregation, 192–193
class hierarchies, 191–192
high cohesion, 191–193
interface dependencies, 193
low coupling, 191
subsystems, 191

design reuse, 145
design-by-contract, 195
disadvantages, 148–149
error checking, 195
extensibility and, 196–198
frameworks, 146
inheritance and, WeatherPrediction class, 

350–351
interfaces

customizability, 204–205
documentation, 203–204
ease of use and generality, 205
familiarity, 200–202
general-purpose, 204–205
ISP (Interface Segregation Principle), 206
multiple, 206
required functionality, 202–203
uncluttered, 203

interviews, 1172
libraries, 146
licensing and, 153–154
mottos, 188
open-source libraries

BSD (Berkeley Software Distribution), 155
CC (Creative Commons) license, 155

GPL (GNU Public License), 155
locating, 156
open-source software, 155
use guidelines, 156–157

optimal reuse design, 191–198
performance and, 150–153
platforms and, 153
versus polymorphism, 178
postconditions, 195
preconditions, 195
prototypes, 154–155
resources, 154
safe code, 195–196
SRP (Single Responsibility Principle), 191–192
stand-alone classes, 146
stand-alone functions, 146
Standard Library, 157
support and, 154
templates

benefits, 194
versus inheritance, 195
problems, 194–195
std::vector class, 193

types of code, 146–147
writing reusable code, 144–145

reverse() algorithm, 594
reverse_copy() algorithm, 594
ring buffers, debugging and, 1053–1056
rotate() algorithm, 594
rotate_copy() algorithm, 594
round() function, 797
rule of zero, 305–306
runtime_error, 503–505
rvalues

about, 295–297, 615
operator overload and, 544–545

RVO (Return Value Optimization), 303–304, 1000

S

_s literal, 571
sample() algorithm, 594
Sashimi Model life cycle model, 975
scan algorithms, 760
scope, resolution, 44–45
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search() algorithm, 592
search algorithms

about, 592, 731–733
binary search, 751–752

search_n() algorithm, 592
seek() method, 485–487
semaphores, 951–952
sequence algorithms

modifying, 737–747
non-modifying

comparison algorithms, 733–735
counting algorithms, 736–737
search algorithms, 731–733
specialized searchers, 733

sequential containers
array, 660–661
deque, 653
forwards_list, 657–659
list, 653–657
span, 661–663
vector

algorithmic complexity, 644
assigning, 635
comparing, 635–636
constructors, 633–634
copying, 635
destructors, 633–634
dynamic-length, 644
elements, 640–644
fixed-length, 631–633
iterators, 636–639, 644
memory allocation scheme, 644–646
move semantics, 646–647
reference storage, 639–640
round-robin schedule example, 647–651
vector<bool> specialization, 652

set algorithms, 752–755
set container, 586–587, 590
set symmetric difference() algorithm, 598
set_difference() algorithm, 598, 752–755
setfill output manipulator, 471
set_intersection() algorithm, 598, 752–755
set_new_handler(), 525–526
setprecision output manipulator, 471
setStatus(), 127

set_symmetric_difference() algorithm, 
752–755

set_terminate() function, 507
setters, 127
set_union() algorithm, 598, 752–755
setValue() function, 251–252
setw output manipulator, 471
shallow copying, 289
shared_ptr pointer, 239–242
shares-with relationships, 185
shift_left() algorithm, 594
shift_right() algorithm, 594
short circuit logic, 26
showpoint output manipulator, 472
shuffle() algorithm, 595
sign, 105
simple requirement, 455
sin() function, 577
Single Responsibility Principle (SRP), 191–192, 206
singleton design pattern, 1132–1135
singly linked lists, 584
sinh() function, 577
skipws input manipulator, 480
smart pointers

about, 65, 234–246
<atomic> header, 932
auto_ptr, 245–246
enable_shared_from_this, 244–245
move semantics, 244
reference counting and, 241–242
shared_ptr pointer, 239–242
stack unwinding, 521–522
Standard Library, 576
unique_ptr pointer, 235–239
weak_ptr, 243–244

smoke testing, 1042
software

design, 138
open-source, resources, 1197–1198

software engineering methods
custom, 989
Extreme Programming (XP)

about, 984–988
integration, 985–986
iteration planning, 985
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metaphor, 987
pair programming, 984
refactoring, 986
release planning, 985
small releases, 986
testing, 985

interviews, 1185–1186
process and, 972–973
Rational Unified Process (RUP), 980–981
resources, 1198–1199
Scrum

about, 981
benefits, 983
Daily Scrum, 982
drawbacks, 983–984
effort estimation, 982
PO (Product Owner), 981
product backlog, 982
SM (Scrum Master), 981–982
sprint cycle, 981
Sprint Planning, 983

triage, 988
Unified Process (UP)

construction phase, 979
disciplines, 979
elaboration phase, 979
inception phase, 979
iterations, 979
transition phase, 979

software life cycle
Agile Model, 978
Sashimi Model, 975
Spiral Model, 975–978
spiral-like models, 975–978
Waterfall Model, 973–975

SOLID principles
Dependency Inversion Principle (DIP), 206
Interface Segregation Principle (ISP), 206
Liskov Substitution Principle (LSP), 206
Open/Closed Principle (OCP), 206
Single Responsibility Principle (SRP), 206

sort() algorithm, 597
sort_heap() algorithm, 598
sorting algorithms, 750–751
source code control servers, 1058

Source Code Control software, 990–992
source files

about, 6
template definitions, 433

<source location>, 582
spaceship operator, 27–28
span container, 585, 661–663
specialization versus inheritance, 446
specialized searchers, 733
spinlock, 936–937
Spiral Model life cycle model, 975–978
spiral-like models, life cycle, 975–978
spreadsheet application, 250
SpreadsheetCell class, 285–288
sqrt() function, 577
srand() function, 579, 810–811
stable_partition() algorithm, 596
stable_sort() algorithm, 597
stack

about, 49–50
constructors on, 260
objects, 257

stack container, 586, 589
stack unwinding, 520–523
stakeholders, design and, 138
Standard Library

about, 75, 157
algorithms

about, 574, 591–600
accumulate, 729
binary search, 597
comparison, 592–593
counting, 593
find(), 726–729
find_all(), 836–837
find_if(), 726–729
heap, 598
iterators, 604–606
minimum-maximum, 598–599
modifying sequence, 593–595
move semantics, 730
non-modifying, 591–593
numerical processing, 599–600
operational, 595
partition, 595–596
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permutation, 600
search, 592
set, 597–598
sorting, 596–597
swap, 595
writing, 836–837

C, 6
containers

about, 574, 582–590
adapters, 663–669
allocators, 866–871
array, 584, 589
associative, 628
bitset, 588, 590, 693–697
container adapters, 628
deque, 584, 589
element requirements, 628–630
error checking, 630
forward_list, 584, 589
hash tables, 628, 684–691
iterators, 606–608
list, 584, 588
map, 587, 590
multimap, 587, 590
multiset, 586–587, 590
ordered associative containers,  

669–684
priority_queue, 585, 589
queue, 585, 589
reversible, 863–864
sequential, 628, 631–663
set, 586–587, 590
span, 585
stack, 586, 589
standard C-style arrays, 691–692
strings, 692–693
unordered associative containers, 

628, 684–691
unordered_map, 590
unordered_multimap, 590
unordered_multiset, 590
unordered_set, 590
vector, 583, 588, 590
writing, 837–875

exceptions, 576

extending, 835–875
filesystem support library, 580
function objects, 580
hash tables, 587–588
header files

about, 1203–1205
algorithms, 1206–1207
allocators, 1206–1207
containers, 1205–1206
exceptions, 1209
general utilities, 1207–1209
I/O streams, 1210
iterators, 1206–1207
mathematical utilities, 1209
ranges, 1206–1207
threading support library,  

1210–1211
heterogeneous elements, 579–580
homogeneous elements, 579–580
initializer lists, 579
integer types, standard, 581
interviews, 1165–1166, 1182–1183
I/O streams, 576
mathematical utilities

about, 577–579
abs() function, 577
atan2() function, 577
Bessel functions, 577
beta functions, 577
ceil() function, 577
complex numbers, 577
cylindrical Neumann functions, 577
elliptic integrals, 577
erf() function, 577
exp() function, 577
floor() function, 577
fma() function, 577
Legendre polynomials, 577
log() function, 577
pow() function, 577
ratio class, 577
remainder() function, 577
sin() function, 577
sinh() function, 577
sqrt() function, 577



1251

standard user-defined literals – streams

tgamma() function, 577
valarray class, 577

modifying sequence algorithms, 593–595
multithreading, 580–581
operator overloading, 575
orthogonality, 591
pair template, 579–580
random number library

rand() function, 579
srand() function, 579

regular expressions, 576
resources, 1194–1195
smart pointers, 576
<source location>, 582
stream iterators

istream_iterator class, 611–612
ostream_iterator class, 610–611

streams, 576
strings, 575–576
templated lambda expressions, 720–721
templates, 574–575
time utilities, <chrono> header file, 579
<tuple> header file, 579–580
type aliases, 71
type traits, 581
unordered associative containers,  

587–588
<utility> header, 579–580
<version>, 582

standard user-defined literals,  
571–572

statements, conditional
if/else, 23
operator, 25–26
switch, 24–25

static assertions, 912–913
static binding, 346
static casts, pointers and, 224
static data members

about, 314–316
access, 315–316
const, 316–317
inline variables, 314–315

static keyword
data members, 411

linkage
external, 411–412
internal, 411–412
static, 411–412

methods, 411
static methods, 306–307
static variables, 414
static_cast(), 390–391, 394
std::array container, 35
std::as_const() method, 69, 310
std::atomic type, 929
std::back_inserter, 613
std::bad_cast exception, 359, 393
std:bit_cast(), 392–393
std::condition_variable, 947
std::condition_variable_any, 947
std::exchange, 299–300
std::function, 703–705
std:list() algorithm, 618
std::make_from_tuple(), 829
std::make_move_iterator(), 616
std::make_pair(), 437, 670
std::move(), 303–304
std:optional container, 37
std::ostringstream class, 482
std::pair class, 824–826
std::pair container, 36
std::reverse_iterator, 614
std::shared_future, 956–957
std:sort() algorithm, 617
std::string class

literals, 95–96
numeric conversions

high level, 96–97
low level, 97–99

std::string_view class, 100–102
std::throw_with_nested(), 518
std::tie, 827
std::unique_ptr pointer, 235, 295
std::vector array container, 36, 286
STL (Standard Template Library), 573
str() method, 482
streams

about, 466, 693
bidirectional, 488–489
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buffered, 466, 469–470
cerr, 467
cin, 466
clog, 467
cout, 466
current position, 483
destinations, 467–468
file streams

about, 484–488
fgets() function and, 467
fprintf() function and, 467
fputs() function and, 467
fread() function and, 467
fscanf() function and, 467
fwrite() function and, 467
ios_base::app constant, 484
ios_base::ate constant, 484
ios_base::binary constant, 484
ios_base::in constant, 484
ios_base::out constant, 484
ios_base::trunc constant, 484

flushes, 469–470
flush-on-access, 487–488
input

>> operator, 473–474
error handling, 475–476
manipulators, 480

iterators
istream_iterator class, 611–612
ostream_iterator class, 610–611

linking, 487–488
output

<< operator, 468
about, 468–473
cout, 468
error handling, 470–471
manipulators, 471–473

seek() method, 485–487
sources, 467–468
Standard Library, 576
string

in-memory stream, 482
sprintf() function, 468
sprintf_s() function, 468
sscanf() function, 468

synchronized, 944
tell() method, 485–487
tie() method, 487–488
unbuffered, 466

string class, 575–576
string literals, localizing, 764–765
string streams

in-memory stream, 482
sprintf() function, 468
sprintf_s() function, 468
sscanf() function, 468

<string> header, 575–576
strings

about, 40–41, 692–693
dynamic

C-style, 88–89
nonstandard strings, 102–103
std::string class, 92–96
std::string_view class,  

100–102
string literals, 90–91

formatting, 103–109
interviews, 1167–1168
operations on, 94–95
time point conversion, 802–804

string_view class, 575–576
strong ordering, 27
structured bindings, 38, 61
structures, pointers to, 51
submodules, 404–405
subscripting operator, overloading

about, 550–555
non-integral array indices, 555
operator [ ], 553

subsumption, of constraints,  
460–461

subsystems, interface and, 200
superclasses, 177, 338
swap() method, 300–301, 635
swap_ranges() algorithm, 595
switch statements, 24–25
symbol servers, 1058
synchronized streams, 944
system tests, 1041
system_clock class, 801
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T

tearing, multithreaded programming and, 919
tell() method, 485–487
template classes, writing, 1090
templates

about, 144, 582
class templates

alias templates, 447
compiler and, 431–432
definitions, 432–433
deriving from, 445–446
inheritance, 445–446
instantiation, 426, 430–431
parameters, 433–438
type constraints and, 461
writing, 423–431

constrain template parameters, 1090–1091
function templates

about, 447–453
class templates and, 449–451
overloading, 449
return types, 451–453
specialization, 447–449
type constraints and, 458–461

generic programming and, 574–575
interviews, 1178–1179
metaprogramming

about, 898
factorial at compile time, 898–899
loops, unrolling, 899–900
tuples, printing, 00–903
type traits, 903–905

parameterization, 451
parameters, non-type, 882–884
recursion, 889–892
resources, 1195
reusable code

benefits, 194
versus inheritance, 195
problems, 194–195
std::vector class, 193

specialization
about, 442–445
full class, 884–887

partial class, 884–889
type constraints and, 462

Standard Library, 574–575
template parameters, 880–882
type parameters, 878–880
variable templates, 454
variadic

folding expressions, 896–898
mixin classes, 895–896
type-safe variable-length argument 

lists, 893–895
temporary objects, object handling and,  

998–999
terminate() function, 506–507
ternary operators, 16
testing

black-box, 1021–1022
bugs, 1022–1025
fuzz, 1039
granularity, 1027–1028
integration

about, 1039–1041
JSON-based file serializer, 1040
shared resources, readers/writers, 1040
wrapper, third-party library, 1040

interviews, 1187
regression testing, 1041–1042
resources, 1200
smoke testing, 1042
system tests, 1041
unit testing

about, 1025–1039
approaches, 1026
building, 1034
debugging, 1038
granularity, 1027–1028
negative tests, 1034–1035
planning, 1028–1029
results, 1038–1039
running, 1030, 1034
sample data, 1029
Visual C++ testing framework, 1031–1033
writing, 1029–1030, 1033

white-box, 1021–1022
tgamma() function, 577
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this pointer, 255–256, 279
thread objects, 921
<thread> folder, 580–581, 921
threadFunc() function, 928–929
threading design, 965–966
threading support library, header files, 1210–1211
threads

automatically joining, 925–926
cancelling, 925
exceptions

copying, 926–929
rethrowing, 926–929

function object and, 922–923
function pointer and, 921–922
lambda expressions and, 924
local storage and, 924–925
member function and, 924
results, retrieving, 926

three-way comparison operator, 27–28
throw keyword, 519–520
throwing exceptions

about, 499–501, 1088
multiple, 503–505

tie() method, 487–488
time points, 802–804
time utilities, Standard Library, 579, 1183
time zone, 807
timed mutex classes, 939
time_point class, 801, 802–804
transform() algorithm, 595
transform_exclusive_scan() algorithm, 599, 

760
transform_inclusive_scan() algorithm, 599, 

760
transform_reduce() algorithm, 600
transparent operator functors, 707
try keyword, 528–531
tuples

comparisons, 828–829
concatenation, 828
decompose

std::tie, 827
structured bindings, 827

std::apply, 829
std::make_from_tuple(), 829

std::pair class, 824–826
std::tuple_cat(), 828
<utility> header, 824–826

type, 106
type aliases, 70–71
type building, operator overload and, 330
type constraints

class methods and, 461–462
class templates and, 461
function templates and, 458–461
template specialization and, 462

type inference
auto keyword, 72–74
decltype keyword, 75

type parameters, templates, 878–880
type requirements, 456
type-constrained auto, 458
typed constructors, 365–367
typedefs, 71–72
types

enumerated, 19–21, 319–320
strongly typed enumerations, 19

structs, 22
templates and, 432

<type_traits> header, 581

U

unary operators, 16
unbuffered streams, 466
uncaught exceptions, 505–507
Unicode, 575
Unified Modeling Language (UML), 138, 1196
uniform initialization, 45–47
unique() algorithm, 595
unique_copy() algorithm, 595
unique_ptr pointer, 235–239
unit testing

about, 1025–1039
approaches, 1026
building, 1034
debugging, 1038
granularity, 1027–1028
negative tests, 1034–1035
planning, 1028–1029



1255

Universal Character Set (UCS) – white-box testing

results, 1038–1039
running, 1030, 1034
sample data, 1029
Visual C++ testing framework, 1031–1033
writing, 1029–1030, 1033

Universal Character Set (UCS), 765–767
[[unlikely]] attribute, 33
unordered_map container, 590, 686–690
unordered_multimap container, 590, 690–691
unordered_multiset container, 590, 691
unordered_set container, 590, 691
upcasting, 358–359
upper_bound() algorithm, 597, 751–752
user-defined literals, 570–572
using declaration, 10
utilities

general, header files, 1207–1209
interface, 199
mathematical, header files, 1209
variable-length argument lists

argument access, 416–417
disadvantages, 417

<utility> header
about, 647
tuples, 824–826

V

value semantics, elements, 628–630
variable templates, 454
variables

about, 12–16
<atomic> header, 935–936
automatic variables, 212
casting, 15–16
coerced, 16
condition variables, 947–950
inline, static data member access, 314–315
non-local

destruction, 415
initialization order, 415

static, 414
uninitialized, 50

variadic templates
folding expressions, 896–898

mixin classes, 895–896
parameter packs, 894
type-safe variable-length argument lists, 893–895

<variant> header, 821–823
vector container

about, 583, 588, 590, 631–651
algorithmic complexity, 644
allocators, 631
assigning, 635
comparing, 635–636
constructors, 633–634
copying, 635
destructors, 633–634
dynamic-length, 644
elements, 640–644
fixed-length, 631–633
iterators, 636–639, 644
memory allocation scheme, 644–646
move semantics, 646–647
reference storage, 639–640
round-robin schedule example, 647–651
vector<bool> specialization, 652

<version>, 582
views

defined, 617
ranges and, 619–623

virtual base classes, 370, 389–390
virtual keyword

about, 342–343
destructors, 348–349
implementing, 346–347

virtual methods, 362
visibility, reachability vs., 403–404
Visual C++ testing framework, 1031–1033
vtables, 347

W

Waterfall Model life cycle model, 973–975
weak ordering, 28
weak_ptr, 243–244
WeatherPrediction class, 350–351
weekday class, 805
while loop, 38–39
white-box testing, 1021–1022
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wide characters, localization, 764
width, 104–105
wifstream, 764
Windows, DLL (Dynamic Link Library), 701–702
wofstream, 764
write() method, 469
ws input manipulator, 480

X

xRef, 58–59

Y

year class, 804

Z

zero initialization, 15
zero-initialization constructs, 634
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