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Introduction

On Wall Street, the use of algorithmic trading and other computational techniques has skyrocketed in the 
last few years, as can be seen from the public interest in automated trading as well as the profits generated 
by these strategies. This growing trend demonstrates the importance of using software to analyze and trade 
markets in diverse areas of finance. One particular area that has been growing in importance during the last 
decade is options and derivatives trading.

Initially considered only as a niche investment strategy, derivatives have become one of the most 
common instruments for investors in all areas. Likewise, the interest in automated trading and analysis of 
such instruments has also increased considerably.

Along with scientists and economists, software engineers have greatly contributed to the development 
of advanced computational techniques using financial derivatives. Such techniques have been used at 
banks, hedge funds, pension funds, and other financial institutions. In fact, every day new systems are 
developed to give a trading advantage to the players in this industry.

This book attempts to provide the basic programming knowledge needed by C++ programmers working 
with options and derivatives in the financial industry. This is a hands-on book for programmers who want 
to learn how C++ is used to develop solutions for options and derivatives trading. In the book’s chapters, 
you’ll explore the main algorithms and programming techniques used in the implementation of systems and 
solutions for trading options and other derivatives.

Because of stringent performance characteristics, most of these trading systems are developed using 
C++ as the main implementation language. This makes the topic of this book relevant to everyone interested 
in acquiring the programming skills necessary in the financial industry.

In Options and Derivatives Programming in C++23, I cover the features of the language that are more 
frequently used to write financial software for options and derivatives. These features include the STL, 
templates, functional programming, and support for numerical libraries. New features introduced in the 
latest updates of the C++ standard are also covered, including additional functional techniques such as 
lambda functions, automatic type detection, custom literals, and improved initialization strategies for C++ 
objects.

I also provide how-to examples that cover the major tools and concepts used to build working solutions 
for quantitative finance. The book teaches you how to employ advanced C++ concepts as well as the basic 
building libraries used by modern C++ developers, such as the STL, Boost, and QuantLib. I also discuss how 
to create correct and efficient applications, leveraging knowledge of object-oriented and template-based 
programming. I assume only a basic knowledge of C and C++. Throughout this book, a number of more 
advanced concepts, already mastered by experienced developers, will be introduced as needed.

In the process of writing this book, I was also concerned with providing value for readers who are trying 
to use their current programming knowledge in order to become proficient at the style of programming used 
in large banks, hedge funds, and other investment institutions. Therefore, the topics covered in the book 
are introduced in a logical and structured way. Even novice programmers will be able to absorb the most 
important topics and competencies necessary to develop in C++ for the problems occurring on the analysis 
of options and other financial derivatives.
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In this book, we also discuss features introduced in the latest international standard, C++23. In this 
version of the standard, a number of simplifications and extensions of the core C++ language have been 
approved. You will learn about many of the features in the new standard, with examples to illustrate each 
major concept.

 Audience
This book is intended for readers who already have a working knowledge of programing in C, C++, or 
another mainstream language. These are usually professionals or advanced students in computer science, 
engineering, and mathematics who have interest in learning about options and derivatives programming 
using the C++ language for personal or for professional reasons. The book is also directed at practitioners of 
C++ programming in financial institutions, who would use the book as a ready-to-use reference of software 
development algorithms and best practices for this important area of finance.

Many readers are interested in a book that would describe how modern C++ techniques are used to 
solve practical problems arising when considering options on financial instruments and other derivatives. 
Being a multiparadigm language, C++ usage may be slightly different in each area, so the skills that are useful 
for developing desktop applications, for example, are not necessarily the same ones used to write high-
performance software.

A large part of high-performance financial applications are written in C++, which means that 
programmers who want to enter this lucrative market need to acquire a working knowledge of specific parts 
of the language. This book attempts to give developers who want to develop their knowledge effectively 
this choice, while learning one of the most sought-after and marketable skillsets for modern financial 
applications and high-performance software development.

This book is also targeted at students and new developers who have some experience with the C++ 
language and want to leverage that knowledge into financial software development. This book is written with 
the goal of reaching readers who need a concise, algorithms-based strategy, providing basic information 
through well-targeted examples and ready-to-use solutions. Readers will be able to directly apply the 
concepts and sample code to some of the most common problems faced regarding the analysis of options 
and derivative contracts.

 What You Will Learn
Here is a sample of topics that are covered in the following chapters:

•	 Fundamental problems in the options and derivatives market

•	 Options market models

•	 Derivative valuation problems

•	 Trading strategies for options and derivatives

•	 Pricing algorithms for derivatives

•	 Binomial method

•	 Differential equations method

•	 Black-Scholes model

■ InTroduCTIon
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•	 Quantitative finance algorithms for options and derivatives

•	 Linear algebra techniques

•	 Interpolation

•	 Calculating roots

•	 Numerical solution for partial differential equations (PDEs)

•	 Important features of C++ language as used in quantitative financial 
programming, such as

•	 Templates

•	 STL containers

•	 STL algorithms

•	 Boost libraries

•	 QuantLib

•	 New features of C++23

 Book Contents
Here is a quick overview of the major topics covered in each chapter:

•	 Chapter 1—“Options Concepts”: An option is a standard financial contract that derives 
its value from an underlying asset such as a stock. Options can be used to pursue 
multiple economic objectives, such as hedging against variations on the underlying 
asset, or speculating on the future price of a stock. Chapter 1 presents the basic concepts 
of options, including their advantages and challenges. It also explains how options can 
be modeled using C++. The main topics covered in this chapter are as follows:

•	 Basic definitions of options

•	 An introduction to options strategies

•	 Describing options with Greeks

•	 Sample code for options handling

•	 Chapter 2—“Financial Derivatives”: A derivative is a general term for a contract 
whose price is based on an underlying asset. In the previous decades, the financial 
industry created and popularized a large number of derivatives. Pricing and trading 
these derivatives are a large part of the work performed by trading desks throughout 
the world. Derivatives have been created based on diverse assets such as foreign 
currency, mortgage contracts, and credit default swaps. This chapter explores this 
type of financial instrument and presents a few C++ techniques to model specific 
derivatives. The main topics covered in this chapter are as follows:

•	 Credit default swaps

•	 Forex derivatives

•	 Interest rate derivatives

•	 Exotic derivatives

■ InTroduCTIon
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•	 Chapter 3—“Basic C++ Algorithms”: To become a proficient C++ developer, it is 
essential to have good knowledge of the basic algorithms used in your application 
area. Some basic algorithms for tasks such as vector processing, date and time 
handling, and data access and storage are useful in almost all applications involving 
options and other financial derivatives. This chapter surveys such algorithms and 
their implementation in C++, including the following topics:

•	 Date and time handling

•	 Vector processing

•	 Graphs and networks

•	 Fast data processing

•	 Chapter 4—“Object-Oriented Techniques”: For the last 30 years, object-oriented 
techniques have become the standard for software development. Since C++ fully 
supports OO programming, it is imperative that you have a good understanding of 
OO techniques in order to solve the problems presented by options and derivatives. 
I present a summary of what you need to become proficient in the relevant OO 
techniques used in the financial industry. Some of the topics covered in this chapter 
are as follows:

•	 Problem partitioning

•	 Designing solutions using OO strategies

•	 OO implementation in C++

•	 Reusing OO components

•	 Chapter 5—“Design Patterns for Options Processing”: Design patterns are a set 
of common programming practices that can be used to simplify the solution of 
recurring problems. With the use of OO techniques, design patterns can be cleanly 
implemented as a set of classes that interact toward the solution of a common goal. 
In this chapter, you will learn about the most common design patterns employed 
when working with financial options and derivatives, with specific examples. It 
covers the following topics:

•	 The importance of design patterns

•	 Factory pattern

•	 Visitor pattern

•	 Singleton pattern

•	 Less common patterns

•	 Chapter 6—“Template-Based Techniques”: C++ templates allow programmers to 
write code that works without modification on different data types. Through the 
careful use of templates, C++ programmers can write code with high performance 
and low overhead, without the need to employ more computationally expensive 
object-oriented techniques. This chapter explores a few template-oriented practices 
used in the solution of options- and derivatives-based financial problems:

•	 Motivating the use of templates

•	 Compile-time algorithms
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•	 Containers and smart pointers

•	 Template libraries

•	 Chapter 7—“STL for Derivatives Programming”: Modern financial programming 
in C++ makes heavy use of template-based algorithms. Many of the basic template 
algorithms are implemented in the standard template library (STL). This chapter 
discusses the STL and how it can be used in quantitative finance projects, in 
particular to solve options and financial derivative problems. You will get a clear 
understanding of how the STL interacts with other parts of the system and how it 
imposes a certain structure on classes developed in C++. The following topics are 
covered:

•	 STL-based algorithms

•	 Functional techniques on STL

•	 STL containers

•	 Smart pointers

•	 Chapter 8—“Functional Programming Techniques”: Functional programming is 
a technique that focuses on the direct use of functions as first-class objects. This 
means that you are allowed to create, store, and call functions as if they were just 
another variable of the system. Recently, functional techniques in C++ have been 
greatly improved with the adoption of the new standard (C++23), particularly with 
the introduction of lambda functions. The following topics are explored in this 
chapter:

•	 Lambdas

•	 Functional templates

•	 Functions as first-class objects

•	 Managing state in functional programming

•	 Functional techniques for options processing

•	 Chapter 9—“Linear Algebra Algorithms”: Linear algebra techniques are used 
throughout the area of financial engineering and, in particular, in the analysis of 
options and other financial derivatives. Therefore, it is important to understand how 
the traditional methods of linear algebra can be applied in C++. With this goal in 
mind, I present a few examples that illustrate how to use some of the most common 
linear algebra algorithms. In this chapter, you will also learn how to integrate existing 
LA libraries into your code. Here are the topics covered:

•	 Implementing matrices

•	 Matrix decomposition

•	 Computing determinants

•	 Solving linear systems of equations
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•	 Chapter 10—“Algorithms for Numerical Analysis”: Equations are some of the 
building blocks of financial algorithms for options and financial derivatives, and it 
is important to be able to efficiently calculate the solution for such mathematical 
models. In this chapter, you will see programming recipes for different methods of 
calculating equation roots and integrating functions, along with explanations of how 
they work and when they should be used. I also discuss numerical error and stability 
issues that present a challenge for developers in the area of quantitative financial 
programming. The following topics are covered:

•	 Basic numerical algorithms

•	 Root-finding algorithms

•	 Integration algorithms

•	 Reducing errors in numerical algorithms

•	 Chapter 11—“Models Based on Differential Equations”: Differential equations are 
at the heart of many techniques used in the analysis of derivatives. There are several 
processes for solving and analyzing PDEs that can be implemented in C++. This 
chapter presents programming recipes that cover aspects of PDE-based option 
modeling and application in C++. Topics covered include the following:

•	 Basic techniques for differential equations

•	 Ordinary differential equations

•	 Partial differential equations

•	 Numerical algorithms for differential equations

•	 Chapter 12—“Basic Models for Options Pricing”: Options pricing is the task of 
determining the fair value of a particular option, given a set of parameters that 
exactly determine the option type. This chapter discusses some of the most popular 
models for options pricing. They include tree-based methods, such as binomial 
and trinomial trees. This chapter also discusses the famous Black-Scholes model, 
which is frequently used as the basis for the analysis of most options and derivative 
contracts. We cover the following topics:

•	 Binomial trees

•	 Trinomial trees

•	 Black-Scholes model

•	 Implementation strategies

•	 Chapter 13—“Monte Carlo Methods”: Among other programming techniques 
for equity markets, Monte Carlo simulation has a special place due to its wide 
applicability and easy implementation. These methods can be used to forecast 
prices or to validate options buying strategies, for example. This chapter provides 
programming recipes that can be used as part of simulation-based algorithms 
applied to options pricing. The following topics are covered:

•	 Probability distributions

•	 Random number generation

•	 Stochastic models for options
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•	 Random walks

•	 Improving performance

•	 Chapter 14—“Backtesting Trading Strategies in C++”: This is a new chapter included 
in the third edition. Once a trading strategy is defined, backtesting is one of the 
steps necessary for proper validation of the algorithm. To create valid backtests, one 
needs to employ a well-organized and thorough strategy. We discuss in this chapter 
a few programming techniques that can simplify and improve the performance of 
backtesting procedures. We cover the following topics:

•	 Creating a testing baseline

•	 Clarifying the backtest goals

•	 Implementing a backtesting infrastructure

•	 Plotting data

•	 Interpreting results

•	 Chapter 15—“Using C++ Libraries for Finance”: Writing good financial code is not an 
individual task. You frequently have to use libraries created by other developers and 
integrate them into your own work. In the world of quantitative finance, a number of 
C++ libraries have been used with great success. This chapter reviews some of these 
libraries and explains how they can be integrated into your own derivatives-based 
applications. Some of the topics covered include the following:

•	 Standard library tools

•	 QuantLib

•	 Boost math

•	 Boost lambda

•	 Chapter 16—“Credit Derivatives”: Credit derivatives are an increasingly popular 
type of financial derivative that aims at reducing credit risk, that is, the risk of 
default posed by contracts established with a counterparty. Credit derivatives can 
be modeled using some of the tools already discussed for options, although credit 
derivatives have their own peculiarities. We describe how to create the C++23 code 
needed to quantitatively analyze such financial contracts. Here are some of the 
topics discussed:

•	 General concepts of credit derivatives

•	 Modeling the problem

•	 C++ algorithms for derivative pricing

•	 Improving algorithm efficiency

•	 Chapter 17—“Processing Financial Data”: This is a new chapter that has been 
included in the third edition. A good algorithm for quantitative finance needs to 
access and save data in several formats. In this chapter, we discuss the main formats 
used in financial applications, ranging from standard formats such as XML to more 
specific formats such as HDF5. We present the basic storage techniques along with 
C++ code to manipulate financial data stored in different formats. The following 
topics are covered:
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•	 Financial data APIs

•	 Loading and storing data

•	 XML-based data storage

•	 HDF5 databases

•	 Efficient strategies for data processing

 Example Code
The examples given in this book have all been tested on macOS X using gcc. The code uses only standard 
C++ techniques, so you should be able to build the given examples using any standards-compliant C++ 
compiler that implements the C++23 standard. For example, gcc is available on most platforms, and 
Microsoft Visual Studio will also work on Windows. The clang compiler is another option that is available in 
multiple platforms, including Windows, macOS, and Linux.

If you use macOS X and don’t have Xcode installed in your computer yet, you can download it for free 
from the Apple store or from the Apple developer website at http://developer.apple.com.

If you instead prefer to use gcc on Windows, you can download the Cygwin distribution from the 
website www.cygwin.com.

Once Cygwin is installed, start the command prompt from the Cygwin program group in the Start 
menu. Then, you can type gcc to check that the compiler is properly installed.

To download the source code for all examples in this book, visit my web page at http://coliveira.net.
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CHAPTER 1

Options Concepts

In the last few decades, software development has become an integral part of the financial and investment 
industry. Advances in trading infrastructure, as well as the need for increased volume and liquidity, have 
prompted financial institutions to adopt computational techniques as part of their day-to-day operations. 
This means that there are many opportunities for computer scientists specializing in the design and 
development of automated strategies for trading and analyzing stocks, options, and other financial 
derivatives.

Options are among the several investment vehicles that are currently traded using automated methods, 
as you will learn in the following chapters. Given the mathematical structure and properties of options 
and related derivatives, it is possible to explore their features in a controlled way, which is ideal for the 
application of computational algorithms. In this book, I present many of the computational techniques 
currently used to develop strategies in order to trade options and other derivatives.

An option is a standard financial contract that derives its value from an underlying asset such as 
common stock, foreign currency, a basket of stocks, or a commodity. Options can be used to pursue multiple 
economic objectives, such as hedging against large variations on the underlying asset, or speculating on 
the future price of a stock. This chapter presents the basic concepts of options, along with supporting 
definitions. These concepts will be used in the next few chapters to describe algorithms and strategies with 
their implementation in C++20. In this chapter, I also give an overview of the use of C++ in the financial 
industry and how options can be modeled using this language.

The following concepts are explored in the next sections:

• Basic definitions: You will learn fundamental definitions about option contracts and 
how they are used in the investment industry.

• Fundamental option strategies: Due to their flexibility, options can be combined in a 
surprisingly large number of investment strategies. You will learn about some of the 
most common option strategies and how to model them using C++.

• Option Greeks: One of the advantages of options investing is that it promotes a very 
analytical view of financial decisions. Each option is defined by a set of mathematical 
quantities called Greeks, which reflect the properties of an option contract at each 
moment in time.

• Delta hedging: One of the ways to use options is to create a hedge for some other 
underlying asset positions. This is called delta hedging, and it is widely used in the 
financial industry. You will see how this investment technique works and how it can 
be modeled using C++.

© Carlos Oliveira 2023 
C. Oliveira, Options and Derivatives Programming in C++23,  
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 Basic Definitions
Let’s start with an overview of concepts and programming problems presented by options in the financial 
industry. Options are specialized trading instruments and therefore require their users to be familiar with 
a number of details about their operation. In this section, I introduce some basic definitions about options 
and their associated concepts.

In the financial markets, a basic activity is to buy or sell a financial instrument. These instruments can be 
classified into several types, such as company stock, government bonds, currencies, commodities, or futures, 
among others. Options and derivatives are a class of financial instruments that derive their value from other 
assets. They can only exist in relation to a financial asset that is already traded, hence the name derivative.

Before starting, take a quick look at Table 1-1 for a summary of the most commonly used concepts. 
These concepts are defined in more detail in the remaining parts of this chapter.

Table 1-1. Basic Concepts in Options Trading

Concept Definition
Call option An option contract that gives its owner the right (but not the obligation) to buy the 

underlying asset for a predetermined price during certain time period.

Put option An option contract that gives its owner the right (but not the obligation) to sell the 
underlying asset for a predetermined price during certain time period.

Underlying Asset whose price is used as the base of the option contract.

Strike price The price at which option owners can buy or sell the underlying asset under the 
duration of the option contract.

Expiration The last date of validity for the option contract.

Settlement The act of liquidating the option contract at the expiration date.

Intrinsic value The part of the option value that is directly derived from the underlying price.

Time value The part of the option value that is derived only from the time remaining in the option 
contract.

Break-even price The price of the underlying at which an investor will start to make a profit in the 
option.

Exercise The act of buying or selling the underlying asset under the price determined by the 
option contract.

American option An option style where their owners can exercise the option contract at any moment 
between its purchase and expiration.

European option An option style where option owners can exercise the option contract only at 
expiration time.

ATM (At the money): Term that refers to options that have a strike price close to the current 
price for the underlying.

OTM (Out of the money): Term that refers to options that have a strike price above (for calls) 
or below (for puts) the current price of the underlying asset. These options have no 
intrinsic value.

ITM (In the money): Term that refers to options that have a strike price below (for calls) or 
above (for puts) the current price of the underlying asset. These options have some 
intrinsic value.
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Options can be classified according to several criteria, some of which are listed in Table 1-1. The 
features of these options determine every aspect of how they can be used, such as the quantity of underlying 
assets, the strike price, and the expiration date, among others. There are two main types of option contracts: 
calls and puts. A call is a standard contract that gives its owner the right (but not the obligation) to buy an 
underlying instrument at a particular price. Similarly, a put is a standard contract that gives its owner the 
right (but not the obligation) to sell an underlying instrument at a predetermined price.

The strike price is the price at which the option can be exercised (i.e., the underlying can be bought or 
sold). For example, a call for IBM stock with strike $100 gives its owner the right to buy IBM stock at the price 
of $100. If the current price of IBM is greater than $100, the owner of such an option has the right to buy the 
stock at a price that is lower than the current price, which means that the call has a higher value as the value 
of IBM stock increases. This situation is exemplified in Figure 1-1. On the other hand, if the current price is 
lower than $100 at expiration, then the value of the option is zero, since there is no profit in exercising the 
contract. Clearly, the profit/loss situation will depend on the price originally paid for the option and the final 
price at expiration.

Figure 1-1. Profit chart for a call option

As you have seen in this example, if you buy a call option, your possible gain is unlimited, while your 
losses are limited to the value originally paid. This is advantageous when you’re trying to limit losses in a 
particular investment scenario. As long as you are okay with losing a limited amount of money paid for the 
option, you can profit from the unlimited upside potential of a call (if the underlying grows in price). Put 
options don’t have unlimited profit potential because the maximum gain happens when the underlying 
price is zero. However, they still benefit from the well-defined, limited loss vs. the possible large gains that 
can be incurred.

Expiration: The expiration is the date when the option contract ends its validity and a final value 
exchange can be performed. Each option will have a particular, predefined expiration. For example, certain 
index-based options expire in the morning of the third Friday of the month. Most stock-based options expire 
in practice at the end of the third Friday of the month (although they will frequently list the Saturday as the 
formal expiration day). More recently, several weekly-based option contracts have been made available for 
some of the most traded stocks and indices. And finally, a few highly liquid trading instruments (such as S&P 
index funds) have expirations every day. Each option contract makes it clear when expiration is due, and 
investors need to plan accordingly on what to do before expiration date.

Settlement: The settlement is the agreed-on result of the option transaction at expiration, that is, at 
the specific date when the option contract expires. The particular details of how the settlement happens 
depend on the type of underlying asset. For example, options on common stock settle at expiration day, 
when the owner of the option needs to decide to sell (for puts) or buy (for calls) a certain quantity of stock. 
For index-based options, the settlement is normally performed directly in cash, determined as the cash 
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equivalent for a certain number of units of the index. Some options on futures may require the settlement on 
the underlying commodity, such as grain, oil, or sugar. Investors need to be aware of the required settlement 
for different option contracts. Trading brokerages will typically let investors know about the steps required to 
settle the options they’re currently holding.

Selling options: An investor can buy or sell a call option. When doing so, it is important to understand 
the difference between these two scenarios. For option buyers, the goal is to profit from the possible increase 
(in the case of calls) or decrease (in the case of puts) in value for the underlying asset. For option sellers, 
on the other hand, the goal is to profit from the lack of movement (increase for calls or decrease for puts). 
So, for example, if you sell calls against a stock, the intent is to profit in the case that the stock decreases in 
price or stays at a price lower than the strike price. If you sell a put option, the goal is to profit when the stock 
increases in price or stays higher than the strike price until expiration.

Option exercise: An option contract can be used to buy or sell the underlying asset as dictated by 
the contract specification. This process of using the option to trade the underlying asset is called option 
exercising. If the option is a call, you can exercise it and buy the underlying asset at the specified price. If the 
option is a put, you can use the option to sell the underlying asset at the previously specified price. The price 
at which the option is exercised is defined by the contract. For example, a call option for AAPL stock with a 
$100 strike allows its owner to buy the stock for the strike price, independent of the current price of AAPL.

Exercise style: Option contracts can have different exercise styles based on when exercising is allowed. 
There are two main types:

• American options: Can be exercised at any time until expiration. That is, the owner 
of the option can decide to exercise it at any moment, as long as the option has not 
expired.

• European options: Can be exercised only upon expiration date. This style is more 
common for contracts that are settled directly on cash, such as index-based options.

An option is defined as a derivative of an underlying instrument. The underlying instrument is the asset 
whose price is used as the basic value for the option contract. There is no predefined restriction on the type 
of asset used as the underlying for an option contract, but in practice, options tend to be defined based on 
openly traded securities. Examples of securities that can be used as the underlying asset for commonly 
traded option contracts include the following:

• Common stock: Probably the most common way to use options is to trade call or 
put options on common stock. In this way, you can profit largely from price changes 
in stocks of well-known public companies such as Apple, Alphabet, IBM, Walmart, 
and Ford.

• Indices: An index, such as the Dow Industrials or the NASDAQ 100, can be used as 
the underlying for an option contract. Options based on indices are traditionally 
settled on cash (as previously explained), and each contract unit corresponds to 
multiples of the current index value.

• Currencies: A currency, usually traded using Forex platforms, can also be used as the 
underlying for option contracts. Common currency pairs involving the US Dollar, 
Euro, Japanese Yen, and Swiss Franc are traded 24 hours a day. The related options 
are traded on a lot of currencies, which are defined according to the relative prices of 
the target currencies. Expiration varies similarly to stock options.

• Commodities: Options can also be written on traded commodities. A commodity 
is a common product that can be traded in large quantities, including agricultural 
products such as corn, coffee, and sugar; fuels such as gasoline and crude oil; and 
even index-based underlying assets such as the S&P 500. Options can be used to 
transact such commodities, and trading exchanges now offer standard options for 
many of the commodity types.
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• Futures: These are contracts for the future delivery of a particular asset. Many of the 
commodity types discussed previously are traded using future contracts, including 
gasoline, crude oil, sugar, coffee, precious metals such as gold and silver, and other 
products. The structure of future contracts is created to simplify the trade of products 
that will only be available within a due period, such as next fall, for example.

• ETFs (exchange-traded funds) and ETN (exchange-traded notes): More recently, an 
increasing number of funds have started to trade using the same rules applicable to 
common stocks in standard exchanges. Such funds are responsible for maintaining 
a basket of assets, and their shares are traded daily on exchanges. Examples of 
well-known ETFs include funds that hold components of the S&P 500, sectors of the 
economy, and even commodities and currency.

• Cryptocurrencies or digital currencies: More recently, cryptocurrencies have become 
an important type of asset that is publicly traded around the world. Several types of 
crypto tokens have been established, with Bitcoin being the best known. Options can 
also be used to trade digital currencies in the same way as other assets.

Options trading has traditionally been done on market exchanges, just like other forms of stock and 
future trading. One of the most prominent options exchange is the Chicago Board Options Exchange (CBOE). 
Many other exchanges provide support and liquidity for the trading of options for many of the instruments 
listed previously.

The techniques described in this book are useful for options with any of these underlying instruments. 
Therefore, you don’t need to worry if the algorithms are applied to stock options or futures options, as long 
as you consider the peculiarities of these different contracts, such as their expiration and exercise.

Options can also be classified according to the relation between the strike price and the price of the 
underlying asset. There are three cases that are typically considered:

• An option is said to be out of the money (OTM) when the strike price is above the 
current price of the underlying asset for call options, or when the strike price is below 
the current price of the underlying asset for put options.

• An option is said to be at the money (ATM) when the strike price is close to the 
current price of the underlying asset.

• An option is said to be in the money (ITM) when the strike price is below the current 
price of the underlying asset, for call options, or when the strike price is above the 
current price of the underlying asset, for put options.

Notice that OTM options are cheaper than a similar ATM option, since the OTM options (being away 
from the current price of the underlying) have a lower chance of profit than ATM options. Similarly, ATM 
options are cheaper than ITM options, because ATM options have less probability of making money than 
ITM options. Also notice that, when considering the relation between strike price and underlying price, the 
option price generally reflects the probability that the option will generate any profit.

A related concept is the intrinsic value of an option. The intrinsic value is the part of the value of an 
option that can be derived from the difference between strike price and the price of the underlying asset. 
For example, consider an ITM call option for a particular stock with a strike of $100. Assume that the current 
price for that stock is $102. Therefore, the price of the option must include the $2 difference between the 
strike and the price of the underlying, since the holder of a call option can exercise it and have an immediate 
value of $2. Similarly, ITM put options have intrinsic value when the current price of the underlying is below 
the strike price, using the same reasoning.

The break-even price is the price of the underlying on expiration at which the owner of an option will 
start to make a profit. The break-even price has to include not only the potential profit derived from an 
increase in intrinsic value but also the cost paid for the option. Therefore, for an investor to make a profit on 
a call option at expiration, the price of the underlying asset has to rise above the strike plus any cost paid for 
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the option (and similarly it has to drop below the strike minus the option cost for put options). For example, 
if a $100 MSFT call option has a cost of $1, then the investor will have a net profit at expiration only when the 
price of MSFT rises above $101 (and this without considering transaction costs).

As part of the larger picture of investing, options have assumed an important role due to their flexibility 
and their profit potential. As a result, new programming problems introduced by the use of options and 
related derivatives have come to the forefront of the investment industry, including banks, hedge funds, 
and other financial institutions. As you will see in the next section, C++ is the ideal language to create 
efficient and elegant solutions to the programming problems occurring with options- and derivatives-based 
investing.

 Option Greeks
One of the characteristics of financial derivatives is the use of derived quantitative measures that can be 
essential in the analysis and pricing of the product. In the case of options, a few important quantitative 
metrics are called Greeks, because most of these measures are referred to by Greek letters. These Greek 
quantities correspond to the variation of option price with respect to one or more variables, such as time, 
volatility, or underlying price.

The most well-known option Greek is delta. The delta of an option is defined as the amount of change 
in the price of an option when the underlying changes by one unit. Therefore, delta represents a rate of 
change of the option in relation to the underlying, and it is essential to understand price variation in options. 
Consider, for example, an option for IBM stock that expires in 30 days. The strike price is $100, and the stock 
is currently trading at $100. Suppose that the price of the stock increases by $1. It is an interesting problem to 
calculate the expected change in the option price.

It turns out that when the underlying price is close to the strike price, the delta of a call option is close to 
0.5. One can also think of this in terms of probabilities of the option getting in the money, in which case this 
means that the value of the option is equally probable to go up or down by the same quantity. Therefore, it 
makes sense that the change per unit of price will be just half of the change in the underlying asset.

The value of delta increases as the option becomes more and more in the money. In that case, the delta 
gets close to one, since each dollar of change will have a larger impact in the intrinsic value of the option. 
Conversely, the value of delta decreases as the option becomes more and more out of the money. In that 
case, delta gets closer to zero, since each dollar of change will have less impact on the value of an option that 
is out of the money.

The second important option Greek is called gamma, and it is also related to delta. The gamma of an 
option is described as the rate of change of delta with a unit change in price of the underlying. As you have 
seen, delta changes in different ways when the option is in the money, out of the money, or at the money. 
But the rate of change of delta will also vary depending on other factors. For example, delta will change more 
quickly if the option is close to expiration, because there is so little time for a movement to happen. To see 
why this happens, consider the delta for an option that is 30 days before expiration and for a second option 
that is just one day before expiration. Delta is also dependent on time, because an option closer to expiration 
has less probability of change. As a result, the delta will move from zero to one more slowly if there are 30 
days to go, because there is still plenty of time left for changes to occur. But an option with only one day left 
to expiration will have a delta quickly moving from close to zero to nearly one, since there is no time left for 
future changes. This is described by saying that the first option has lower gamma than the second option. 
Other factors such as volatility can also change an option gamma. Figure 1-2 illustrates the value of gamma 
for a particular option at different times before expiration.
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Figure 1-2. Value of gamma at different dates before expiration

Another option Greek that is closely related to time is theta. The theta of an option varies as a function 
of the time left to expiration, and its value decays when it gets closer to the expiration date. You can think 
of theta as a measure of time potential for the option. For option buyers, higher theta is a desirable feature, 
since buyers want more probability of changes for the options they own. On the other hand, option sellers 
benefit from decreased theta, so short-term options are ideal for sellers due to the lower theta.

Finally, we have an option Greek that is not really named after a Greek letter: vega. The vega of an 
option measures the amount of volatility of the underlying asset that is priced into an option. The higher the 
volatility, the more expensive an option has to be in order to account for the increased possibility of price 
changes. The differential equations that define the price of an option (as you will see in future chapters) 
take into account this volatility. Vega can be used to determine how much relative volatility is embedded 
in the option price. An important use of this measure is to help option buyers and sellers determine if this 
implied volatility is consistent with their expectations for future changes in the price of the underlying. High 
vega means that a large movement is implied by the price of the option. Low vega means that only small 
movements are priced into the option.

There are other option Greeks that have been used in the academic community and in some financial 
applications; however, they are not as widely known as the ones mentioned here and have limited used. You 
can see a summary of the most commonly used option Greeks in Table 1-2.
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Table 1-2. Option Greeks and Their Common Meanings

Greek Meaning
Delta Option price’s rate of change with respect to the price of the underlying asset.

Gamma Option delta’s rate of change with respect to the price of the underlying asset.

Rho Option price’s rate of change with respect to changes in interest rates.

Theta Option price’s rate of change with respect to time left to expiration.

Vega Option price’s rate of change with respect to the volatility of the underlying asset.

Lambda Option price’s rate of change with respect to percentual changes in the price of the 
underlying asset.

 Using C++23 to Analyze Options
C++ has unique features that make it especially useful for programming software for the financial industry. 
With the new standard version of the language, C++23, these advantages became even more pronounced. 
Over the years, developers have migrated to C++ as a practical way to meet the requirements of intensive 
numeric, real-time algorithms used by the investment community. When it comes to creating decision 
support software for fast-paced investment strategies, it is very difficult to beat the C++ programming 
language in the areas of performance and stability. Several financial algorithms and libraries have been 
made available in C++, which makes this language a great choice for the implementation of algorithms used 
in analysis and trading.

While it is true that several newer programming languages may be available for the implementation 
of financial software, very few of them provide the combination of advantages available when using C++. 
Let’s now look at some of the areas where C++ provides a unique advantage when compared to other 
programming languages that could be used to implement financial and investment software.

 Availability
When looking for a programming language to implement investment software, one of the first concerns 
you need to address is the ability to run the code in a variety of computational environments. Targets for 
such investment software can range from small and mobile processors to large-scale parallel systems 
and supercomputers. Moreover, it is not uncommon to have to interact with different operating systems, 
including the common software platforms based on Linux, Windows, and macOS.

Because modern computer systems are so heterogeneous, it makes economic sense to use languages 
that can be deployed in a large variety of hardware and software configurations with little or no source code 
modifications. Programmers for financial firms also work on diverse platforms, which makes it even more 
attractive to use software that can run in different computers and operating systems with little or no changes.

A strong characteristic of C++ is its wide availability over different platforms. Due to its early success as 
a multiparadigm language, C++ has been ported to nearly any imaginable operating system and hardware 
combination. While other mainstream languages such as Java require the implementation of a complex 
runtime environment for proper operation, C++ was designed from the beginning with simplicity and 
portability in mind. The language does not require a runtime system, and only a minimal support system, 
provided by the C++ standard library, needs to work in order to support a new target. Therefore, it is 
relatively easy to port C++ compilers and build systems to new platforms with minimal changes.
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Another advantage is the availability of multiple compilers provided by commercial vendors as well as 
free software. Given the importance of C++ applications, it is possible to find compilers with both free and 
commercial licenses so that you can use the option that best suits your objectives. Open source developers 
can still use state-of-the-art free compilers such as gcc and clang. Commercial groups, on the other hand, 
can take advantage of mature compilers licensed by companies such as Intel and IBM.

 Performance
It is a fact that programmers using C++ benefit from the high performance provided by the language. 
Because C++ was explicitly designed to require a minimum amount of overhead in most platforms, typical 
C++ programs run very efficiently, even without further optimization steps. Moreover, compilers for the 
language are known for their ability to aggressively apply optimizations that further improve performance. 
As a result, programs coded in C++ will frequently outperform code created in most other languages, even 
when the programmer has not spent much time on code optimization.

Part of the performance advantage provided by C++ is the result of mature compilers and other building 
tools. Since C++ is such a well-established language, major companies and well-known open source projects 
have created optimized compilers for practically every major architecture. Common examples include 
GNU gcc, MS Visual C++, LLVM clang, and Intel cc. Such compilers provide huge speed improvements in 
typical running time, frequently beating nonoptimized (and even optimized) code that is produced by other 
languages.

When considering performance, C++ shares the same philosophy of the C programming language. 
The general idea is to provide high-level features while, whenever possible, avoiding any overhead in the 
implementation of such features on standard processors. This means that the features provided by C++ 
generally match very closely with low-level processor instructions.

Other solutions for improved performance in C++ include the use of templates in addition to runtime 
polymorphism. With templates, the compiler can generate code that matches the types used in a particular 
algorithm exactly. In this way, programs can avoid the large overhead of polymorphic code that needs to 
make different runtime decisions depending on the particular type. Programmers can control algorithms in 
a much finer-grained scale when using templates, while still retaining the ability to use high-level types.

Last but not least, C++ simplifies the use of memory and other resources with the help of smart pointers 
and other techniques based on the RAII (Resource Acquisition Is Initialization) technique. These techniques 
allow C++ programs to control memory usage without having to rely on a runtime GC (garbage collection) 
system. Employing such strategies, C++ programmers can considerably reduce the overhead of frequently 
used dynamic allocation algorithms, without the need to resort to manual bookkeeping of memory and 
other resources.

 Standardization
Another great advantage of C++ is that it’s based on an international standard, which is recognized by 
practically every software vendor. While some vendors are not as fast in updating the compiler, they 
definitely move into the direction of the standard. Unlike some languages that are practically defined by an 
actual implementation or controlled by a powerful company, C++ has for decades being defined as the work 
of the C++ committee, which has representatives from major companies and organizations with an interest 
in the future development of the language.

In fact, some of the big financial companies also have representatives in the C++ committee. This means 
that the future of C++ is not controlled by a single institution, such as what happens with Java (controlled 
by Oracle), Go (controlled by Google), C# (controlled by Microsoft), or Objective-C and Swift (controlled by 
Apple). The fact that the standards committee has members from several organizations protects C++ users 
from commercial manipulation that would benefit a single company or operating system, to the detriment of 
the larger community of programmers.
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The C++ standards committee has been effective in improving the language in ways that address many 
of the modern needs of its users. For example, the last three versions of the language standard (C++17, 
C++20, and C++23) introduced many changes that simplify common aspects of programming, such as 
simpler initialization methods, more advanced type detection, and generalized control structures.

The standard library has also been the target of many improvements over the last few years. A 
main focus has been the introduction of containers and smart pointers, which can be used to simplify 
a large part of modern applications. The standard library also has been augmented to support parallel 
and multithreaded algorithms, using primitives that can be reused on different operating systems and 
architectures.

It is necessary to remember that the standardization process has a few drawbacks too. One of the issues 
is the time it takes to introduce new features. Since the standardization process requires a lot of organization 
and formal meetings, it takes a few years before a new version of the standard is approved. This has been 
improved in the last decade, as the committee has decided to create new C++ releases every three years on 
average. Also, there is the risk of including features that go against previous design decisions. In this case, 
however, the committee has been very careful in introducing only features that have been thoroughly tested 
and considered to improve the language according to its design philosophy.

In general, having a standardized language has certainly helped the C++ community to grow and 
improve the whole programming ecosystem over the last few decades. This is just another reason why 
developers in financial institutions have embraced C++ as a language suitable for the implementation of 
options- and derivatives-based financial algorithms.

 Expressiveness
Last but not least, C++ is a multiparadigm language that provides the expressiveness and features necessary 
for the implementation of complex software projects. Unlike some languages, which define themselves as 
following a single programming paradigm (such as object oriented or functional), C++ allows the use of 
multiple paradigms in a single application. In this way, you can use the best approach for problem solving, 
independent of the underlying implementation techniques: object-oriented programming, functional 
programming, template-based programming, or just simple structured programming.

Because C++ allows programmers to express themselves using different paradigms, it makes easier to 
find a solution that matches the problem at hand, instead of demanding changes to the way you think in 
order to match language requirements. For example, a language such as Java, which is designated as object 
oriented, requires programmers to create code based on objects and classes even if this does not match 
directly the fundamental requirements of the problem. In C++, on the other hand, you have a choice of using 
OO techniques as well as functional or even more traditional structured techniques, if this is what your 
algorithm requires.

The fact that you can use different techniques for different parts of your application also improves your 
ability to concentrate on algorithms, instead of on programing techniques. Sometimes, using a template-
based strategy is the easiest way to achieve a particular algorithmic goal, and C++ allows you to do that 
without getting in your way. Other parts of the application may benefit from using objects, such as the GUI 
code. In each case, it is important to be able to express algorithms in the most natural way.

In this book, you will have the opportunity to use many of the features of C++ in different contexts. It will 
become clear that some features such as object-oriented programming are best used with a particular class 
of problems, whereas functional techniques may be the best approach in other situations. The fact that the 
C++ language provides the flexibility to tackle such distinct problems is a clear advantage.
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 Modeling Options in C++
In this section, you will learn how to code a basic class that can later be used as a starting point for more 
complex options analysis and trading. In this first example, you will see a C++ class that can be used as the 
basis for a framework for options value calculation. The class is named GenericOption, since it can be used 
for any type of underlying and for calls and puts. Before I present how the class works, let’s review a basic 
concept of class design that is unique to the C++ language and that will be followed on other examples in 
this book.

 Creating Well-Behaved Classes
One of the most important parts of designing classes in C++ is to make sure that they can combine 
appropriately with other libraries in the system. In particular, the C++ standard library, which includes 
the STL (standard template library), is the most important set of classes that you will encounter when 
developing C++ applications. It is essential that your classes play well with the classes and templates 
provided by the standard library.

To work properly with other parts of the C++ library, classes need to define (or use the default definition 
for) the four special member functions. These member functions are mainly used to create and copy objects 
and are required in general to guarantee their proper behavior. These four special member functions are as 
follows:

• The default constructor: Each class can have one or more constructors that define 
how to initialize objects of the class. The constructor is named after the class, and 
it can be overloaded so that you can create classes with different parameters. The 
constructor that receives no parameters is also known as the default constructor, and 
the compiler automatically creates one if you don’t supply it. Most of the time, you 
should avoid using the default constructor because it doesn’t properly initialize the 
native C++ types, such as the double and int variables. To avoid such initialization 
issues, you should always provide a constructor for new classes.

• The copy constructor: This specialized constructor performs an initialization function 
similar to the default constructor. However, it is called only when creating new 
objects based on a copy of an existing object. The C++ compiler can also generate 
a default copy constructor, which automatically copies the values stored in the 
original object into the new object. However, the default copy constructor also has 
a problem: it doesn’t know the semantic details of some values stored in the object. 
This causes issues when you’re storing a pointer to allocated memory or some object 
that shouldn’t be copied. To avoid such problems, you should provide your own 
definition for the copy constructor; we recommend that you should always write a 
copy constructor for new classes.

• The destructor: A destructor is a member function called when the object is 
deallocated. It defines how data used by the class is released when the object is 
destroyed. Like the other special member functions, the compiler automatically 
generates a default empty constructor. You should add your own constructor to 
properly handle the release of private data, for example. This is especially important 
when a class contains virtual members, in which case the destructor should also be 
marked as virtual. A virtual destructor tells the compiler to adjust the destructor for 
each inherited class. In this way, the compiler guarantees that the inherited objects 
will be properly destructed, even when the destructor is called through a pointer to 
the base class.
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• The assignment operator: When copying data between objects, the assignment 
operator is invoked automatically. Even though this operator appears as a method, 
and therefore not equivalent to a constructor, it does similar work. Consequently, 
you should apply the same strategy when dealing with the assignment operator 
and make sure that it properly handles initialization and copies of the required data 
members.

To avoid potential problems with C++ classes, it is frequently best to include these four member 
functions in the classes you create. They are pretty straightforward. The only member function that 
needs further explanation is the assignment operator. Suppose that you’re implementing a class called 
GenericOption. The assignment operator would read as follows:

GenericOption &GenericOption::operator=(const GenericOption &p)
{
    if (this != &p)
    {
        m_type = p.m_type;
        m_strike = p.m_strike;
    }
    return *this;
}

The first instruction inside the method is an if statement that checks if the “this” pointer is different 
from the pointer for the passed object. The reason for this check is that you don’t want to perform the 
private data member assignment unless the objects in the left and right side of the assignment operator are 
different:

if (this != &p)

While performing the auto-assignment might not be a problem for some types of variables (especially 
for native data types such as int and float), it can be time-consuming for complex objects that need to 
perform several steps during initialization and release. For example, if a member variable contains a large 
matrix, the assignment may trigger an expensive copy operation that would become unnecessary.

 Computing the Option Value at Expiration
Our first example class, GenericOption, provides only the minimum necessary to calculate the value of 
options at expiration. The first thing you should notice about this class is that it follows the recommended 
practice described in the previous section. Therefore, it contains a default constructor, a regular copy 
constructor, a destructor, and an assignment operator.

The main constructor of GenericOption does very little and is responsible only for the initialization 
of private variables. Although this is common in a simple class like this, using constructors with very few 
responsibilities is a pattern that should be adopted in many cases. Since constructors are called in various 
places in a program written in C++, it is important to make them as fast as possible—and relegate any 
complex operations to member functions that can be called after the object is created.

 ■ Tip Avoid designing classes with complex constructors. Constructors are frequently called for the creation 
of temporary objects and used when passing parameters by value, for example. Complex constructors can 
cause your code to run slower and make classes harder to debug and maintain.

CHAPTER 1 ■ OPTiOns COnCEPTs



13

There are two types of options recognized by the GenericOption class. This is defined by the 
enumeration OptionType, which contains the values OptionType_Call and OptionType_Put. Depending 
on the value passed to the constructor, the object will behave accordingly as a call or as a put option. The 
constructor also requires the strike value of the option and the cost of the option when it was bought. You 
will see later in this book how this option cost can be calculated from other parameters, but for now, you can 
assume that the cost of the option is provided by the exchange.

The main functionality of the class is contained in two member functions: valueAtExpiration and 
profitAtExpiration. The first member function simply calculates the value of the option at the time of 
expiration, which in this case is the same as the intrinsic value. To perform this calculation, it needs to know 
the current price of the underlying asset.

The member function valueAtExpiration first needs to determine if the option is a put or a call. In the 
case of a put, it takes the difference between the current price and the strike price as its value, with the value 
being 0 when the strike is lower than the current price. In the case of a call, this calculation is reversed, with 
the value being 0 when the strike price is higher than the current price. The full calculation can be coded as 
follows:

double GenericOption::valueAtExpiration(double underlyingAtExpiration)
{
    auto value = 0.0;
    if (m_type == OptionType_Call)
    {
        if (m_strike < underlyingAtExpiration)
        {
            value = underlyingAtExpiration - m_strike;
        }
    }
    else  // it is an OptionType_Put
    {
        if (m_strike > underlyingAtExpiration)
        {
            value = m_strike - underlyingAtExpiration;
        }
    }
    return value;
}

The profitAtExpiration function is similar to valueAtExpiration, but it also considers the price 
that was paid by the option. Thus, a profit in the option is achieved only after it surpasses the break-even 
price (for call options). The calculation uses the m_cost member variable to determine the price paid by the 
option, and it returns the net profit of the option (without considering transaction costs). The function can 
be coded as follows:

double GenericOption::profitAtExpiration(double underlyingAtExpiration)
{
    auto value = 0.0;
    auto finalValue = valueAtExpiration(underlyingAtExpiration);
    if (finalValue > m_cost)
    {
        value = finalValue - m_cost;
    }
    return value;
}
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 Complete Listing
The complete code for the example described previously is shown in Listings 1-1 and 1-2. The code is split 
into a header file called GenericOption.h and an implementation file called GenericOption.cpp.

Here are some observations:

• The header file contains the interface of the class, which will be exposed to other files 
that need to use GenericOption. The separation of class definition and declaration 
is one of the features of C++ that make your code reusable. The header file has a “.h” 
extension, while the implementation file has a “.cpp” extension.

• The header file is contained inside the “#ifdef” directives, which are interpreted by 
the C++ pre-processor. This is necessary because if a file includes this interface more 
than once, the definition of “__CppOptions__GenericOption__” will prevent the 
content of the file to be added more than once. This is not only good for performance 
but also avoids errors resulting from duplicate definitions.

• The enumeration “enum OptionType” introduces two values used for calls and puts.

• The class declaration is introduced with the “class” keyword.

• The destructor is declared using the notation “~GenericOption()”.

• The public members of the class are declared using the keyword “public”.

• The private members of the class are declared using the keyword “private”.

Listing 1-1. Interface of the GenericOption Class

//
//  GenericOption.h
#ifndef __CppOptions__GenericOption__
#define __CppOptions__GenericOption__
#include <stdio.h>
//
// Option types based on direction: call or put
enum OptionType {
    OptionType_Call,
    OptionType_Put
};
//
// Class that represents a generic option
//
class GenericOption {
public:
    GenericOption(double strike, OptionType type, double cost);
    GenericOption(const GenericOption &p);
    ~GenericOption();
    GenericOption &operator=(const GenericOption &p);
    double valueAtExpiration(double underlyingAtExpiration);
    double profitAtExpiration(double underlyingAtExpiration);
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private:
    double m_strike;
    OptionType m_type;
    double m_cost;
};
#endif /* defined(__CppOptions__GenericOption__) */

The complete implementation of the GenericOption class is displayed in Listing 1-2. Here are some 
observations:

• The file includes the header file as its first line.

• The file also includes the <iostream> header file from the standard library. This is 
necessary to use the output stream “cout”.

• Notice how the constructor initializes the member variables of the class, right before 
the beginning of the constructor body.

Listing 1-2. Implementation of the GenericOption class

//
//  GenericOption.cpp
#include "GenericOption.h"
#include <iostream>
using std::cout;
using std::endl;
// This is a constructor for this class
//
GenericOption::GenericOption(double strike, OptionType type, double cost)
: m_strike(strike),
  m_type(type),
  m_cost(cost)
{
}
GenericOption::GenericOption(const GenericOption &p)
: m_strike(p.m_strike),
  m_type(p.m_type),
  m_cost(p.m_cost)
{
}
GenericOption::~GenericOption()
{
}
//
// Assignment operator
GenericOption &GenericOption::operator=(const GenericOption &p)
{
    if (this != &p)
    {
        m_type = p.m_type;
        m_strike = p.m_strike;
        m_cost = p.m_cost;
    }
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    return *this;
}
//
// Computes the value of the option at expiration date.
// Value depends on the type of option (CALL or PUT) and strike.
//
double GenericOption::valueAtExpiration(double underlyingAtExpiration)
{
    auto value = 0.0;
    if (m_type == OptionType_Call)
    {
        if (m_strike < underlyingAtExpiration)
        {
            value = underlyingAtExpiration - m_strike;
        }
    }
    else  // it is an OptionType_Put
    {
        if (m_strike > underlyingAtExpiration)
        {
            value = m_strike - underlyingAtExpiration;
        }
    }
    return value;
}
//
// Return the profit (value at expiration minus option cost)
//
double GenericOption::profitAtExpiration(double underlyingAtExpiration)
{
    auto value = 0.0;
    auto finalValue = valueAtExpiration(underlyingAtExpiration);
    if (finalValue > m_cost)
    {
        value = finalValue - m_cost;
    }
    return value;
}
int main()
{
    GenericOption option(100.0, OptionType_Put, 1.1);
    auto price1 {120.0};
    auto value = option.valueAtExpiration(price1);
    cout << " For 100PUT, value at expiration for price "
         << price1
         << " is "
         << value << endl;
    auto price2 {85.0};
    value = option.valueAtExpiration(85.0);
    cout << " For 100PUT, value at expiration for price "
         << price2
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         << " is "
         << value << endl;
    // Test profitAtExpiration
    auto limit = 120.0;
    for (auto price = 80.0; price <= limit; price += 0.1)
    {
        value = option.profitAtExpiration(price);
        cout << price << ", "  << value << endl;
    }
    return 0;
}

 Using the auto Keyword
The code in Listing 1-2 gives a good example of using auto variable declarations. When declaring a variable, 
C++ allows you to determine the type of the variable. For example:

float price1 = 120.0;
string name = "test";

The first line declares variable price1 to be of type float. The second line declares variable name 
as a string. C++ also allows the type of the variable to be automatically determine from the content at 
initialization. That is the purpose of the auto keyword:

auto price1 = 120.0;
string name = "test";
auto full_name = name + "_name";

In this example, the type of price1 is now automatically detected using the initialization value. The same 
happens to the string variable full_name, whose type is determined by the given initialization expression.

 Initializing Variables in C++
C++ provides two main ways to initialize variables: the first method is using the assignment syntax. For 
example:

float option_price = 200.0;
int days_to_expiration = 14;

This syntax for variable initialization maintains the ability of conversion between types. For example, 
the second line in the preceding example could be rewritten as

int days_to_expiration = 14.0;

even though 14.0 is a float number. In this case, the compiler will allow the float value to be converted to an 
integer. A second way to initialize variables in C++ is to enclose the initial value in braces:

float option_price {200.0};
int days_to_expiration {14};
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This syntax is stricter and can be used to remove the possibility of type conversion, which can at times 
create confusion and allow conversion bugs that are difficult to track. Using this syntax, it is not possible to 
convert integers to floats, for example:

int days_to_expiration {14.0}; // error: this conversion is not possible

 Printing Values in C++
Another concept demonstrated in Listing 1-2 is printing values through the use of streams. The 
following line:

cout << price << ", "  << value << endl;

will print the price and value to the standard terminal. The cout variable is called a stream and defined in 
the standard library iostream. You can print variables and strings by sending the value to the cout stream, 
using the operator <<. A sequence of values separated by the operator << will result in them being directed to 
the stream, which in this case represents the output terminal.

C++ has many other stream types, including terminals for input and output, files, network interfaces, 
etc. The stream concept is a generic way to represent data input and/or output methods.

Another way of performing data output is using the std::format function. It makes the formatting 
operating explicit, so you can make sure that the output will be displayed as desired:

#include <iostream>
#include <format>

int main() {
    auto value =  "world";
    std::cout << std::format("Hello {}!\n",value);
}

 Building and Testing
To compile the code presented in the previous sections, you need a standards-compliant C++ compiler. I 
have tested this code with gcc and LLVM clang, although most modern compilers should work without any 
problems. Here are the commands that I used to compile this on my machine:

gcc -o GenericOption.o -c GenericOption.cpp
gcc -o GenericOption GenericOption.o    # creates the executable

The executable file can then be used to run the sample application like this (I used the bash shell to run 
the application on UNIX):

$ ./GenericOption
 For 100PUT, value at expiration for price 120 is 0
 For 100PUT, value at expiration for price 85 is 15
80, 20
80.1, 18.8
80.2, 18.7
80.3, 18.6

CHAPTER 1 ■ OPTiOns COnCEPTs



19

80.4, 18.5
80.5, 18.4
...

You can check the output to determine if the results match your expectations. I used the data to create a 
chart with the results, as shown in Figure 1-3. Since the example is a put, notice that the profit is negative for 
any price higher than the break-even price of $98.90. Below that value, the profit rises steadily, attaining its 
maximum value at price $0 (not shown in the chart).

Figure 1-3. Profit chart calculated with the GenericOption class for sample option with strike price $100

 Further References
In this chapter, I provided an introduction to most common concepts of options investing and how C++ 
programmers can model them. You can turn to several other sources for further clarity on the concepts 
introduced in this chapter. If you need additional information on options and related financial investments, 
here are a few books that cover not only the basics but also the mathematical details of options investing:

• Option Volatility & Pricing by Sheldon Natenberg, McGraw Hill, 1994. This is the 
standard reference on options and their properties. This book explains in great 
detail how options are defined, how option Greeks work, and their basic economic 
interpretation.

• Investment Science by David Luenberger, Oxford University Press, 1998. This is an 
undergraduate-level book that describes the basic theory of investment. Most of 
the book explains the fundamentals of fixed income investments, but the included 
algorithms can be used for other common problems in finance.

• Mathematics for Finance by Marek Capinski and Tomasz Zastawniak, Springer Press, 
2011. This book is more for the mathematically inclined. It explains not only the 
basics of fixed income investments but also provides a lot of mathematical methods 
that are useful in their analysis. Many of these techniques are also used in the 
analysis of options-based investments.

• Investments by Zvi Bodie, Alex Kane, and Alan J. Marcus, McGraw Hill/Irwin, 2004. 
This is a standard textbook on investment theory that explains, among other topics, 
the ideas behind equity-based investments and their derivatives.
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 Conclusion
In this chapter, I provided an overview of the themes and ideas that will be discussed in the remainder of 
the book. Options are basic financial vehicles that can serve multiple investment goals such as providing 
risk protection, supplying short-term income, or serving as a speculation method based on perceived future 
prices of a financial instrument. These methods are used throughout the financial industry, including banks, 
hedge funds, and other market institutions.

I started with a basic description of options and how they fit in the landscape of the investment 
industry. You learned the most important properties of options and how they define standard contracts 
that are traded by stock, futures, and commodity exchanges. I also described how this information may be 
useful to software engineers who want to create solutions for the financial industry using C++ as the main 
implementation language.

You have seen how options can be described by option Greeks: a set of standard attributes associated 
with option contracts that can be used to determine properties of the option. In particular, these option 
Greeks are useful for evaluating the price at which options should be bought and sold, as you will see in the 
algorithms introduced in the later part of this book.

This chapter also discussed the advantages of C++23 as a language for financial and options-related 
programming. Many of the features of C++ make it an ideal language to implement algorithms and large-
scale software packages to analyze and trade options. You have seen an example C++ class that can be used 
to compute the profit or loss for a single option contract.

In the next chapter, you will learn about derivatives in general and how they expand on the ideas of 
standard options. You will also see how such financial derivatives can be modeled using the C++ language.
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CHAPTER 2

Financial Derivatives

Derivative is a general term used for contracts that have their price based on the value of an underlying 
asset. In particular, options are a standardized type of derivatives that gives the right to buy or sell the 
underlying asset at a particular price. Unlike options, however, general derivatives include a large number 
of nonstandard features that allow them to be created even for illiquid assets such as corporate credit risk or 
real estate mortgages.

In the last decades, the financial industry has created and popularized a multitude of derivatives 
to collateralize disparate assets, including items such as fixed income instruments, mortgage-backed 
securities, and risk of default. Pricing and trading of these derivatives have become a large part of the work 
performed daily in the trading desks of large banks by analysts and quantitative programmers.

This chapter focuses on characteristics of general derivatives and presents a few C++ techniques that 
are useful to model specific aspects of these financial instruments. This chapter also introduces you to topics 
that you will learn in more depth in the remainder of this book. The main items covered in the chapter are as 
follows:

• Models for derivative pricing: You will learn the basic ideas used to determine the 
price of various derivatives along with a few examples of how they are applied.

• Credit default swaps: A particular type of derivative where investors want to buy 
protection against the default of a third-party institution.

• Interest rate derivatives: A derivative in which the underlying asset is an interest rate 
that is paid in predefined time periods.

• FX derivatives: A quick introduction to some foreign exchange derivative contracts.

• A Monte Carlo model for derivatives: You will explore a simple computation of Monte 
Carlo models for pricing derivatives in C++.

• Using the STL for derivative pricing: Using the STL makes it possible to create fast 
containers for generic objects, without incurring runtime inefficiencies.

 Models for Derivative Pricing
In the last chapter, you learned some basic information about options and how to use C++ to model this type 
of contracts. Recall that an option is a kind of financial derivative that is traded on exchanges and is defined 
by a standard agreement between buyers and sellers. General derivatives, however, are not restricted to 
the fixed requirements of standard option contracts. In this section, you will learn more about generic 
derivatives, including how they are handled in the financial industry.

© Carlos Oliveira 2023 
C. Oliveira, Options and Derivatives Programming in C++23,  
https://doi.org/10.1007/978-1-4842-9827-5_2

https://doi.org/10.1007/978-1-4842-9827-5_2


22

In its general sense, a financial derivative is just a contract that assigns a value to a particular set of 
rights linked to an underlying asset. For example, options give the right to buy or sell an asset such as a stock 
or a commodity. But complex derivatives can be created if you want to perform a more exotic transaction 
between buyers and sellers. For example, credit default swaps are contractual exchanges that require a 
payment to occur only when a particular institution is in default (i.e., bankrupt). For another example, 
collateralized debt obligations will require payments that depend on the risk level of certain borrowers.

The common aspect shared between different derivatives is the way their prices are modeled, that 
is, the mathematical characteristics of price changes for these instruments. All derivatives that are traded 
in the market can be analyzed using a generalized random walk model that was discovered and applied 
in the twentieth century by American economists. Such a model for derivative pricing and its associated 
mathematical equations were developed and popularized by Robert Merton, in a work that was itself a 
generalization of the Nobel prize winning Black-Scholes model for options pricing.

In a random walk model, the prices of securities are studied under the assumption that their changes 
are random. That is, these prices can move up or down by a random value that is given by a normal 
distribution, as shown in Figure 2-1.

Figure 2-1. An example of random walk

While this is only an approximation of the complex market behavior, it is most of the time so close 
to what has been observed in the marketplace that models based on random walks have been extremely 
successful. These models are frequently used in the financial industry to accurately determine prices for 
options and more complex derivatives. As a result, most of what you will learn in this book is in some way or 
another related to this pricing model, whether we’re using it to analyze existing derivatives or to trade them.

The first thing to understand about the random walk model for derivative pricing is that it results in a 
set of equations that determine the behavior of prices as time passes. This equation is, by the nature of its 
assumptions, probabilistic, but it can be solved to give a value for the fair price of a particular investment 
instrument.

The fair price, according to economic conventions, is the price at which neither the sellers nor the 
buyers would have an unfair advantage. In other words, both sides in the transaction are satisfied with the 
result, and there is no known way to extract more value from one of the sides in the transaction without 
breaking this equilibrium. Because the model used is probabilistic, this also means that each side of the 
transaction has the same probability of making money after the transaction is concluded. This fair price 
element of the model allows you to calculate a fixed value using only a probabilistic assumption about future 
expectations. A list of common derivative types is given in Table 2-1.
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Table 2-1. A List of Common Derivatives

Derivative Type Description
Credit default swaps A contract that pays its holder in the case of default (bankruptcy) of a target 

corporation.

Collateralized debt 
obligations

A financial product where debt is paid to investors according to levels of 
collateral risk from borrowers.

FX derivatives A derivative where the underlying asset is composed of foreign currencies, with 
prices varying according to foreign exchange rates.

Interest rate derivatives A derivative in which the underlying asset is an interest rate that is paid in 
predefined time periods.

Mortgage-backed 
security

A type of derivative that is defined in terms of mortgage contracts.

Energy derivative Derivative in which the underlying asset is an energy product or asset, such as 
oil, natural gas, coal, or electricity.

Inflation derivative Derivative contracts that have prices defined by the level of inflation in a 
particular economy.

Another consequence of fair pricing hypothesis is that the resulting theoretical model allows no 
arbitrage. Arbitrage is a method of making money in financial markets where you buy some asset for a 
price and immediately sell it for a higher price for a sure profit. This kind of arbitrage cannot be allowed in 
a financial model, because it indicates that the original price was unfair for at least one of the participants. 
It also corresponds to the known fact that, in liquid and free markets, opportunities for arbitrage will be 
nonexistent or disappear as soon as they are identified.

 Credit Default Swaps
A credit default swap (CDS) is a derivative that allows investors to bet on the solvency of a particular 
institution. In this case, the underlying asset is defined as the value of a business minus the liabilities it 
currently has. Solvency is then defined as the situation in which the value of the business is superior to its 
liabilities.

Credit default swaps have been used as a way to protect large corporations against the risk of default 
of a counterpart, which is a type of risk suffered by contracts with large institutions. For example, the 2008 
financial meltdown proved that counterpart risk is very difficult to avoid when only a few participants 
dominate a large portion of the market. The ability to use mathematical techniques to model this type of risk 
is therefore very important for institutions that deal with such large-scale operations.

In the recent years, most banks and other investment institutions have become active in the 
development of CDS models as a way to mitigate such risks. Much of the software for solving CDS pricing 
models is based on modern C++, which you will learn in the next chapters.

 Collateralized Debt Obligations
A collateralized debt obligation (CDO) is a financial derivative product based on the cash flow of a collection 
of loans. The collateralization process makes it possible to split the cash flows among different investors 
based on the characteristics of individual loan originations.
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In particular, CDOs are used to split cash flows based on the risk of each loan. Parts of the cash flow 
are classified as low risk (e.g., loans that are labeled as AAA by credit rating institutions) and sold for higher 
profit, while other parts of the package are sold as higher-risk investments. CDOs have acquired a bad public 
reputation after the financial crisis of 2008, but they remain a valuable tool for defining the risk associated 
with particular investment classes (see Figure 2-2).

Figure 2-2. Securitization levels of mortgage loans during the 1990s and 2000s (from the official government 
publication, “Financial Crisis Inquiry Commission Report”)

CDO pricing relies heavily on the derivative-pricing techniques that will be discussed in this book. 
The development of Black-Scholes-Merton methods gave institutions the ability to price more complicated 
products using similar ideas. By extending these pricing methods to collateralized loans, quantitative trading 
desks have been able to create a completely new category of financial products that are now used by most 
banks and other financial institutions.

 FX Derivatives
Derivatives based on foreign currencies are a relatively simple extension of the concepts already used on 
options. The underlying price is defined by a foreign currency. The basic difference between such products 
and standard options is that they depend on the price variation of currency pairs, such as USD/EUR.

FX derivatives play an important role in markets that rely on foreign trade. For example, it is used in 
the production planning for companies that need protection against variations in currency prices. Most 
global companies that buy or sell products in a foreign market will use FX derivatives as a tool to avoid the 
unpredictability of currency fluctuations.
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FX derivatives can also be an investment vehicle. Hedge funds have for a long time used foreign 
exchange products as a way to hedge against possible losses in foreign investments. They can also be used 
to speculate on the rise or fall of foreign currencies as compared to local currencies. For all these reasons, 
the pace of development of mathematical models for FX derivatives has been significant in the industry. 
Because of the high volatility and near real-time needs of FX traders, C++ has become the language of choice 
for developing applications that handle FX derivative pricing.

 Equations for Derivative Modeling
The set of equations that has been used to model the future price of derivatives is generally called the Black-
Scholes-Merton equations. These models, which are based on similar differential equations from physics, 
describe the properties of price movements when considering a number of input parameters. Here are the 
most commonly used parameters for these differential equations:

• The price of the underlying asset: This is the price of the asset that is the basis 
for the derivative. In the case of stock options, this is the price of the stock at the 
present time.

• The current interest rates: Interest rates have an important role in the modeling of 
derivatives, because they are the safest way to get a return on your money. The price 
of a derivative has to take into consideration the prevailing interest rates and the 
money that the investor could be earning in a risk-free investment.

• The strike price: The price at which a transfer of value will happen. For call options, 
this is the price above which a profit is made. More complex models will have 
different definitions for the strike price.

• Volatility: The volatility for the underlying asset is very important in derivative 
models, because it determines how fast the underlying prices move. This 
information then can be used to calculate the probabilities that are part of the 
general model for derivative pricing. Volatilities are described in terms of standard 
deviation.

• Time left in the contract: Time is another important variable, because the more time 
is left to expiration, the higher the probability that the underlying asset will move in 
price. This directly affects the probability of profit for the derivative.

These parameters are used as part of the differential equation that determines the price of a derivative. 
Here is the basic equation that is generally called the Black-Scholes model:
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This differential equation determines the relationship between the following quantities:

• V: The price of the derivative

• t: The time to expiration

• σ: The volatility

• S: The price of the underlying asset

• r: The current interest rate
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This equation can be interpreted for different purposes, depending on the type of contract you want to 
price. For example, when working with stock options, this equation will result in a formula that returns the 
price of a call or put option, which will depend on the desired strike. Moreover, the exact formula used will 
change depending on the exercising style: either an American- or European-style option. You will see in later 
chapters a few examples of how this general equation can be used with different derivatives.

 Numerical Models
As discussed in the previous section, the existing models for options pricing are based on the Black-Scholes 
differential equation, which describes the variation of derivative prices with time, along with a number of 
other parameters. Later, Merton successfully expanded this model to deal with other derivative types. All 
these models share in common the fact that prices are assumed to be random and to change according to a 
predefined probability distribution.

In order to solve these models, you have to learn a few techniques to calculate the desired prices, given 
the set of input parameters required by the equations. There are two main strategies that have been devised 
for this purpose: numerical methods and simulation methods.

Numerical methods refer to a set of mathematical and computational techniques to solve, or at least 
approximate, differential equations. While numerical methods were invented to solve problems in physics 
and engineering, they have been recently used with success to solve financial pricing problems for options 
and derivatives. Many of the techniques studied in this book will be used to solve one or more parts of the 
derivative-pricing models previously described.

Examples of mathematical tools that can be used in the numerical solution of complex derivative 
models include linear algebra, optimization, and approximation methods, probability, numerical root 
calculation, and finite difference methods. These mathematical tools can be used in isolation or combined 
to form more complex algorithms for the solution of Black-Scholes equations.

The other side of solving numerical models is the development of fast algorithms. While the 
mathematical tools are important, they need to be implemented in a fast and memory-efficient manner 
to be useful for financial applications. Pricing models normally need to be solved very frequently, and the 
performance and accuracy of solutions can make the difference between a profitable and a losing financial 
transaction.

 Binomial Trees
Another technique used to determine the price of derivatives is the method of binomial trees. A binomial 
tree is a technique to organize the computation necessary to determine derivative prices in a step-by-step 
fashion. The root of the tree is the initial price at the time origin. Starting from each node of the binomial 
tree, there are two possible directions for the new price, which can then be calculated by solving a simple 
equation.

Once the complete tree has been calculated, it is possible to answer questions about the fair price of the 
derivative at particular strike prices and time period. The complete algorithm for binomial trees has three 
main steps:

• The forward phase: This phase happens when the tree is constructed, starting at time 
zero with an initial price. Then, the total time is divided into discrete steps, and at 
each step, a new set of nodes is created. The nodes represent the two directions in 
which the underlying price can change, either going up or down in value. This phase 
ends when the tree nodes reach the maturity or expiration date.

• The payoff phase: In this phase, the profit (payout) of each node is calculated. The 
calculation starts from the maturity date, since the profit in that case is easy to 
calculate.
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• The backward phase: In this phase, the computation of the payout continues moving 
backward in time, using the values calculated in the previous phase as the starting 
point. This process continues until the initial node is reached.

 Simulation Models
Simulation models, also called Monte Carlo models, are a different approach to solve problems involving 
differential equations, such as the equations necessary for derivative pricing. The main motivation behind 
simulation models is that the equations for derivative pricing generally don’t have a closed mathematical 
solution. In that case, instead of finding the exact solution, a possible strategy is to run a simulation of the 
price evolution while considering that price changes can occur according to a random distribution, as 
assumed by the Black-Scholes equations.

Monte Carlo methods have a long history. Since the initial development of probability theory, 
researchers have found that simulating a random event is a good way to learn about certain physical or 
engineering models. With the introduction of digital computers, it is now possible to perform very complex 
simulations in an efficient way. This is an area where using C++ has a big advantage, since simulation 
accuracy is directly related to the number of repetitions of a basic random experiment.

To find the price of a derivative security, the basic step is to develop a random walk model for the 
security. As discussed previously, derivative pricing is based on the idea that underlying prices are always 
moving in an unpredictable, random way. A Monte Carlo algorithm uses this property to simulate the 
movements of the underlying asset for a large number of times. The random fluctuations are determined 
with a random number generator, according to the parameters that have been previously observed for the 
asset, such as volatility, current interest rate, and observed price of the underlying instrument.

If the simulation is properly performed, a Monte Carlo algorithm will converge to a particular value 
of derivative price, according to the assumptions of the Black-Scholes model. The interpretation of these 
simulated runs can then be used to determine the price of a particular contract.

Another consideration is that numeric and Monte Carlo methods are not necessarily exclusive 
choices. You can code numerical methods to solve a particular pricing problem while at the same time 
using Monte Carlo methods for confirmation of the results. You can also start using Monte Carlo methods 
to explore different scenarios and then code a more precise numerical algorithm to find the solution of 
the more interesting and/or important scenarios. Still another possibility is to use numerical algorithms 
to solve particular subproblems and use a Monte Carlo simulation to put these values together in a more 
complicated scenario. In summary, there are many ways to combine numerical algorithms and simulation 
to achieve the desired results.

 Coding in C++ with the STL
One of the main goals of C++ is to act as an efficient and high-level language for application development. 
One of the tools used by programmers to achieve this goal is the standard template library (STL). With the 
STL, it is possible to create fast containers for generic objects, without incurring runtime inefficiencies.

The C++ STL provides a list of software components that you can use in several contexts. The library can 
be described as having three main groups of templates:

• Containers: A container is a template class that provides generic logic to handle 
a group of objects. They typically implement traditional data structures using the 
facilities provided by C++ templates. Table 2-2 displays a quick list of containers 
provided with the STL and a short description of each one.

CHAPTER 2 ■ FinAnCiAl DERivATivEs



28

Table 2-2. List of STL Containers

Container Description
std::vector A dynamically allocated array of elements, where members are guaranteed to be 

allocated contiguously.

std::list A linked list data structure.

std::map An associative data structure, where elements are associated with keys of a particular 
type.

std::multimap A version of std::map template that can also contain repeated elements.

std::queue A first-in last-out data structure.

std::dqueue A double queue, where elements can be added or removed from both sides of the queue.

std::set A data structure that contains ordered values and provides quick lookup functionalities.

std::multiset A data structure similar to set, but where elements can appear more than once.

• Iterators: Along with containers, you also need to manipulate the contents of data 
structures stored in them. This is possible in the STL with the use of iterators. With 
an iterator, you can easily access individual elements in a container and perform 
common operations such as inspecting, adding, removing, and modifying single 
elements.

• Algorithms: The last major piece of the STL is a set of algorithms that have been 
optimized for each container. Because templates are parameterized, the algorithms 
in the STL can be specialized for each container so that users can have the fastest 
algorithm for each data type while using the same interface. This means that you 
just need to learn a small set of algorithms that are applicable to a large class of 
containers. The STL implementation will guarantee that you’re using the most 
efficient version of an algorithm for that particular container. Table 2-3 displays a 
quick list of useful algorithms in the STL.
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Table 2-3. List of STL Algorithms

Algorithm Description

std::for_each Performs a given function for each element of the target container.

std::find Searches the container for a given element, given a range indicating the 
beginning and end of the data sequence.

std::find_if Similar to std::find, but searches the container for a given element satisfying a 
given predicate.

std::find_first_of Searches the container for the first match of a particular element, given a range 
of elements.

std::count Counts the number of elements in the container defined by the given parameter.

std::count_if Counts the number of elements in the container that satisfies a given predicate.

std::copy Copies elements from a given origin position to a destination.

std::move Moves elements from a given origin position to a destination position.

std::reverse Reverses the current order of the container.

std::sort Sorts the container according to a comparison function.

std::binary_search Performs binary search for a particular element on a given container.

 Generating a Random Walk in C++
This section gives an example of using the STL and describes a simple way to generate random walks in 
C++. While the method presented is not optimal, it shows most of the elements necessary to create realistic 
random walks. In the later chapters, you’ll learn about the statistical techniques that can be used to create 
more realistic random walks, suitable for derivative-pricing algorithms.

A random walk is a process that simulates stochastic movement. That is, under a random walk, a certain 
quantity can increase or decrease its value according to a probabilistic rule. Random walks are important in 
the analysis of price movements: if we assume that such movements are random (as we can assume at least 
for relatively small timeframes), then a random walk can be used to model the change in prices for several 
classes of financial assets. For example, the price of a set of stocks can be analyzed as a random walk, from 
which we can derive the probability of its change in the near future. A random walk can be used not only as 
a practical simulation device (as we’ll do in this chapter) but also as a mathematical model, from which one 
can derive rules for derivative pricing.

The class that we create in this section is called RandomWalkGenerator, and it exposes a main member 
function called generateWalk(). This class has the single responsibility of creating a sequence of numbers 
that represent a random walk. This means that starting on a particular value (the initial price), the sequence 
will change according to random increments, as determined by the given step parameter. Finally, the size of 
the sequence (which corresponds to the time to expiration of a contract) is also given as a parameter to the 
class. This results in a class with the following signature to the constructor:

RandomWalkGenerator(int size, double start, double step);
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The class contains three member variables controlling the behavior of the random walk. They are as 
follows:

• m_numSteps: An integer that gives the number of steps desired

• m_stepSize: A double number that gives size of each step (in percentage points)

• m_initialPrice: A double number that specifies the starting price

The main member function, generateWalk(), performs the task of sequentially generating new steps in 
the price simulation. The function receives no parameters and uses the member data already stored in the 
RandomWalkGenerator class.

The way the generateWalk() member function operates is based on the std::vector container, which 
is used to store all the intermediate prices created by this Monte Carlo simulation process. The constructor 
used in this case is the default constructor, which results in an empty vector, called walk.

The walk vector is then populated inside the for loop using vector::push_back, a member function 
of the std::vector container that adds a new element at the end of the vector, resizing the vector if more 
space is necessary. The fragment displayed as follows uses the value returned by the member function 
computeRandomStep(), starting from the previous price stored in the local variable prev:

//
// Generates a random walk and stores the data in a std::vector
// that is returned at the end.
//
std::vector<double> RandomWalkGenerator::generateWalk()
{
    std::vector<double> walk;
    double prev = m_initialPrice;
    for (int i=0; i<m_numSteps; ++i)
    {
        double val =  computeRandomStep(prev);
        walk.push_back(val);
        prev = val;
    }
    return walk;
}

Finally, you can check the computeRandomStep member function, which generates a new random price 
according to the given simulation arguments. The idea used in this example is that there is a 1/3 chance 
that the price will change up, down, or stay the same. I use a simple random number generator to return 
uniformly generated numbers (the standard function rand is not the best choice for such applications, but 
you’ll learn about better options in a latter chapter). The result is that you have a “three-sided dice” that 
determines the direction of the next step in the simulation. Here is the complete code for this member 
function:

//
// Returns a random step size, following the parameters given in the
// constructor.
//
double RandomWalkGenerator::computeRandomStep(double currentPrice)
{
    const int num_directions = 3;
    int r = rand() % num_directions;
    double option_value = currentPrice;
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    if (r == 0)
    {
        option_value += (m_stepSize * val);
    }
    else if (r == 1)
    {
        option_value -= (m_stepSize * val);
    }
    return option_value;
}

Finally, I present next a test stub that can be used to verify the correctness of the code. It is always a 
great idea to perform some testing of the algorithm as you implement it. This kind of testing can be used 
to avoid obvious mistakes as you code a complex algorithm. The test case is to generate a random walk 
starting from price $30, for 100 steps with a step size of $0.01. The first step is to create an object of class 
RandomWalkGenerator, with the described parameters. Then, we call the generateWalk member function to 
calculate each step of the random walk. Finally, we print the results of the random walk using the std::cout 
output stream. Here is the code used:

//
// Test function for RandomWalkGenerator
//
int main()
{
    // 100 steps starting at $30
    RandomWalkGenerator rw(100, 30, 0.01);
    vector<double> walk = rw.generateWalk();
    for (int i=0; i<walk.size(); ++i)
    {
        cout << ", " << i << ", " << walk[i] << std::endl;
    }
    cout << endl;
    return 0;
}

 Complete Listing
The complete code for the example is listed next in Listings 2-1 and 2-2. The code is split into a header file 
called GenericOption.h and an implementation file called GenericOption.cpp.

The header file follows the C++ convention and starts with preprocessor guards to allow multiple 
inclusion. The RandomWalkGenerator class has three member variables: m_numSteps, m_stepSize, and 
m_initialPrice.

Listing 2-1. Interface of the RandomWalkGenerator Class

//
//  RandomWalkGenerator.h
//
// Interface for random walk generator class.
#ifndef __CppOptions__RandomWalkGenerator__
#define __CppOptions__RandomWalkGenerator__
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// The class uses a vector to hold the elements
// of the random walk, so they can be later plotted.
#include <vector>
//
// Simple random walk generating class. This class can be
// used for price simulation purposes.
//
class RandomWalkGenerator {
public:
    //
    // Class constructors
    RandomWalkGenerator(int size, double start, double step);
    RandomWalkGenerator(const RandomWalkGenerator &p);
    // Destructor
    ~RandomWalkGenerator();
    // Assignment operator
    RandomWalkGenerator &operator=(const RandomWalkGenerator &p);
    // Main method that returns a vector with
    // values of the random walk
    std::vector<double> generateWalk();
    // Returns a single step of the random walk
    double computeRandomStep(double currentPrice);
private:
    int m_numSteps;        // the number of steps
    double m_stepSize;     // size of each step (in percentage points)
    double m_initialPrice; // starting price
};
#endif /* defined(__CppOptions__RandomWalkGenerator__) */

Listing 2-2. Implementation of the RandomWalkGenerator Class

//
//  RandomWalkGenerator.cpp
//
//  Simple random walk implementation.
#include "RandomWalkGenerator.h"
#include <cstdlib>
#include <iostream>
using std::vector;
using std::cout;
using std::endl;
//
// Constructor. The supplied parameters represent the number
// of elements in the random walk, the initial price, and the
// step size for the random walk.
//
RandomWalkGenerator::RandomWalkGenerator(int size, double start, double step)
: m_numSteps(size),
m_stepSize(step),
m_initialPrice(start)
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{
}
RandomWalkGenerator::RandomWalkGenerator(
               const RandomWalkGenerator &p)
        : m_numSteps(p.m_numSteps),
m_stepSize(p.m_stepSize),
m_initialPrice(p.m_initialPrice)
{
}
RandomWalkGenerator::~RandomWalkGenerator()
{
}
RandomWalkGenerator &RandomWalkGenerator::operator=(
               const RandomWalkGenerator &p)
{
    if (this != &p)
    {
        m_numSteps = p.m_numSteps;
        m_stepSize = p.m_stepSize;
        m_initialPrice = p.m_initialPrice;
    }
    return *this;
}
//
// Returns a single step of the random walk
//
double RandomWalkGenerator::computeRandomStep(double currentPrice)
{
    const int num_directions = 3;
    int r = rand() % num_directions;
    double val = currentPrice;
    if (r == 0)
    {
        val += (m_stepSize * val);
    }
    else if (r == 1)
    {
        val -= (m_stepSize * val);
    }
    return val;
}

//
// This is the main method in this class. It will generate
// random steps within the constraints set by the constructor.
//
std::vector<double> RandomWalkGenerator::generateWalk()
{
    vector<double> walk;
    double prev = m_initialPrice;
    for (int i=0; i<m_numSteps; ++i)
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    {
        double val =  computeRandomStep(prev);
        walk.push_back(val);
        prev = val;
    }
    return walk;
}
//
// This is a testing stub. It generates a sequence of points
// following a random walk.
//
int main()
{
    // 100 steps starting at $30
    RandomWalkGenerator rw(100, 30, 0.01);
    vector<double> walk = rw.generateWalk();
    for (int i=0; i<walk.size(); ++i)
    {
        cout <<  i << ", " << walk[i] << std::endl;
    }
    cout << endl;
    return 0;
}

 Building and Testing
You can build the code presented in the last section using any standards-compliant C++ compiler. The code 
was tested on Linux and macOS X. You can use a compiler such as gcc, which is freely available on all major 
platforms. The commands used in this case were

cc++ -std=c++2b -o RandomWalkGenerator.o -c RandomWalkGenerator.cpp
cc++ -std=c++2b -o RandomWalkGenerator RandomWalkGenerator.o

The option -std=c++2b is used to select C++23 features in the compiler, since the 2023 standard was still 
not selected by default by the compiler at the time of writing. The code contains a test stub that generates 
a sample random walk. You can run the application to see the sequence of random prices created by the 
RandomWalkGenerator class. Here is sample output from my machine:

$ ./RandomWalkGenerator
0, 29.7,
1, 29.403,
2, 29.403,
3, 29.403,
4, 29.109,
5, 29.109,
6, 29.4001,
7, 29.4001,
8, 29.4001,
9, 29.1061,
10, 29.3971,
...
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Using the data provided in this sample output, it is easy to create a chart that shows the price behavior 
over a simulated period of time, as shown in Figure 2-3. Notice how this simple output already looks similar 
to the behavior of a traded asset. You will later learn to change the parameters in this type of simulation so 
that it more closely resembles a particular asset class.

Figure 2-3. Profit chart for a random walk produced by the application RandomWalkGenerator

 Further References
Derivatives are a broad subject, and several books have been written on theoretical and practical aspects of 
these investment vehicles. Here is a quick list of references that can be used to get additional information on 
this topic:

• Practical C++20 Financial Programming by C. Oliveira. This book covers most of the 
basic algorithms necessary for derivative pricing. Examples in C++20 are provided in 
each chapter.

• The “Financial Crisis Inquiry Commission Report,” which is a publication of the US 
government (available at www.gpo.gov/fdsys/pkg/GPO-FCIC/pdf/GPO-FCIC.pdf), 
provides an overview of derivatives trading activity that led to the financial crisis 
of 2008.

• Options, Futures, and Other Derivatives by John C. Hull. This is the standard textbook 
introduction to derivatives.

• Derivatives Markets by Robert L. McDonald. This book provides an in-depth look at 
the several markets in which financial derivative methods have been applied.

 Conclusion
This chapter introduced the main ideas about generic financial derivatives and their pricing mechanisms. 
Derivatives allow investors and traders to enter into contracts that are based on a particular asset while 
having some of their rights defined by associated price levels of the underlying asset. The prices are set along 
with certain parameters, such as interest rates, volatility, and time to expiration. The concepts behind 
derivatives make it possible to create financial products that uniquely target different patterns of risk and 
reward. Derivatives can be used in practice to mitigate the risk associated with many credit- and asset-based 
transactions. They can also be used to make risky and speculative bets on particular markets.
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In this chapter, you have seen the basic ideas behind the models used for derivative pricing. These 
models are ultimately based on the equations developed by economists Black, Scholes, and Merton. The 
resulting partial differential equations determine with precision the price of the derivative as time passes 
while making a small number of assumptions about the underlying assets. The main assumption used is that 
the changes in the underlying asset are randomly distributed, with known volatility.

I described next the main approaches used to solve derivative-pricing models. In general terms, you 
will be able to apply numerical algorithms, based on the interactive solution of mathematical equations; 
binary tree techniques; or Monte Carlo methods, which are simulation algorithms that replicate the price 
movements of the desired financial asset.

As an example of C++ programming for derivative pricing, I introduced a C++ class that implements a 
random walk. This class illustrates in a simple way how Monte Carlo methods operate and will be later used 
as a basic algorithm for more complex pricing methods.

The next chapter introduces other basic algorithms used in the implementation of option and 
derivative-pricing models. You will see how these algorithms can be efficiently coded in C++23. I will also 
review some of the most used C++ libraries in finance.
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CHAPTER 3

Basic C++ Algorithms

To become a proficient software developer, it is essential to get a solid understanding of the basic algorithms 
used in an application area. This is especially applicable to financial derivatives, where some basic problems 
and algorithms are recurring. In this chapter, I examine some common algorithms encountered in C++ 
applications for analyzing and processing options and derivatives.

The basic algorithms in this area involve frequent tasks such as time series processing, date and time 
handling, and data access and storage. While these algorithms are useful in most applications, they are 
especially important in code that handles financial data, such as options and other financial derivatives. This 
chapter will also prepare you for the type of C++23 coding skills that are necessary for more advanced topics 
covered in the following chapters.

The chapter is organized to survey some basic algorithms and their implementation in C++, including 
the following topics:

• Date and time handling: Date representations are important for many of the 
underlying tasks in financial engineering. You will learn about the main operations 
performed on dates and how they can be implemented in C++23.

• Compact date implementation: Another aspect of date processing is efficient 
memory use for long-time series. I discuss some of the alternative representations 
for date objects and explain how they can be implemented in C++23.

• Networks and graphs: Data elements and their relationships are often described as 
a network of connections. This is true for many of the data entities used in financial 
analysis. You will see a quick overview of networks and their representation using 
C++23 and the STL, along with an example of their use.

 Date and Time Handling
Among the basic algorithms employed on financial applications, date and time handling are some of the 
most commonly used. This happens because dates are needed to process time series, which are used almost 
everywhere in financial applications. These time series can span time periods ranging from a few minutes 
to several years. For this reason, it is important to use date-handling data structures that are efficient and 
accurate so that you don’t need to worry about the correctness of financial calculations depending on dates.

In this section, you’ll learn about the most common ways to represent dates in C++ applications. This 
will also help you choose a date representation that matches the requirements of your particular application.

The first thing is to realize that there are several ways to represent dates in a computer program. The 
simplest technique is to use a class that directly stores the values for day, month, and year. This is the 
representation used for the Date class, as introduced in this section. A more compact representation of dates 
will be presented in the next section. Finally, standard C++ comes already with a few classes that can be used 
to store and manipulate dates. Between these choices, you can select the best one for your particular purpose.
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 Date Operations
A number of operations are commonly required to work on dates. Table 3-1 presents some of the most 
common date operations that will be discussed in this chapter.

Table 3-1. List of Common Operations Performed on Date Objects

Operation Description

add Add a certain number of days to the current date.

subtract Subtract a certain number of days from the current date.

addTradingDays Add a number of trading days to the current date.

subtractTradingDays Subtract a number of trading days from the current date.

dateDifference Return the difference in days from the current date.

tradingDaysDifference Return the difference in trading days between two dates.

dayOfTheWeek Return the day of the week corresponding to the given date.

isWeekDay True if the date is a weekday.

isHoliday True if the date is a holiday.

isTradingDay True if the date is a trading day.

isLeapYear True if the year is a leap year (i.e., it has 366 days).

nextDay Increment the current date to the next valid day.

nextTradingDay Increment the current date to the next valid trading day.

Let’s introduce a Date class that implements the operations described in Table 3-1. The declaration for 
the Date class is the following:

class Date {
public:
    Date(int year, int month, int day);
    Date(const Date &p);
    ~Date();
    Date &operator=(const Date &p);
    void setHolidays(const std::vector<Date> &days);
    std::string month();
    std::string dayOfWeek();
    void add(int numDays);
    void addTradingDays(int numDays);
    void subtract(int numDays);
    void subtractTradingDays(int numDays);
    int dateDifference(const Date &date);
    int tradingDateDifference(const Date &date);
    DayOfTheWeek dayOfTheWeek();
    bool isHoliday();
    bool isWeekDay();
    Date nextTradingDay();
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    bool isLeapYear();
    bool isTradingDay();
    void print();
    Date &operator ++();
    Date &operator --();
    bool operator<(const Date &d) const;
    bool operator==(const Date &d);
private:
    int m_year;
    int m_month;
    int m_day;
    DayOfTheWeek m_weekDay;
    std::vector<Date> m_holidays;
};

Notice that the data members for this class store the year, month, and day, which are passed to the 
constructor. There are two other data members:

• m_weekDay, which stores the current day of the week (if it is known)

• m_holidays, which stores a list of given holidays

 Computing the Day of the Week
First, let’s consider how to calculate the day of the week, given the desired date as input. One way to calculate 
the day of the week is by adding days starting from January 1, 1900, which was a Monday. This process may 
be suboptimal, but it can be improved by storing the result on member variable m_weekDay so that it doesn’t 
need to be recomputed.

The member function, called dayOfTheWeek(), is implemented as follows:

DayOfTheWeek Date::dayOfTheWeek()
{
    if (m_weekDay != DayOfTheWeek_UNKNOWN)
       return m_weekDay;
    int day = 1;  // Monday
    Date d(1900, 1, 1);
    for (;d < *this; ++d)
    {
        if (day == 6) {
           day = 0;
        }
        else {
           day++;
        }
    }
    m_weekDay = static_cast<DayOfTheWeek>(day);
    return m_weekDay;
}

The logic of this method is simple: just iterate through dates, and move from Monday to Tuesday, etc., 
until we get to the current date. The date is increased using the ++ operator.
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 Using the ++ Operator
In C++, operator++ is an increment operator that is used to increase the value of a variable by one. It is also 
known as the "unary increment operator" because it operates on a single operand.

There are two versions of the operator++ in C++: pre-increment and post-increment. The pre-increment 
operator (++variable) increments the value of the variable before its use in an expression, whereas the post-
increment operator (variable++) increments the value of the variable after its use in an expression.

It is important to remember some facts about this C++ operator:

• The operator++ can be used with any numeric data type, including integers, floating-
point numbers, and pointers.

• The pre-increment and post-increment operators have different return types. The 
pre-increment operator returns a reference to the incremented variable, while the 
post-increment operator returns a copy of the original value of the variable.

• The operator++ can be overloaded for user-defined types, which allows the 
programmer to define its behavior for custom classes and structures. For example, 
the operator can be defined to increment a value in the object or to modify some 
other aspect of the object's state.

• The operator++ can also be used in combination with other operators, such as the 
addition operator (+). For example, the expression a = b++ + c will increment the 
value of b after it is used in the addition operation.

The operator++ can be used with great effect in the implementation of the Date class. This member 
function in fact overrides the default autoincrement ++. It will update the object so that it represents the next 
valid date. In most cases, only the m_day field needs to be incremented. However, when the day is 28, 29, 30, 
or 31, both the month and day need to be updated. Then, the right thing to do depends on the month, as 
shown in the following code fragment:

    if (m_day == 31)
    {
        m_day = 1;
        m_month++;
    }
    else if (m_day == 30 &&
             std::find(monthsWithThirtyOneDays.begin(),
                       monthsWithThirtyOneDays.end(), m_month)
                    == monthsWithThirtyOneDays.end())
    {
        m_day = 1;
        m_month++;
    }
    else if (m_day == 29 && m_month == 2)
    {
        m_day = 1;
        m_month++;
    }
    // ...

The logic behind this method is that we need to check the month we’re in, so as to determine the right 
way to increment date. For example, if the date is 30, we need to check if we’re not in a month that has 31 
days, in which case we need to move to day 1 and increase the month.
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In this code, monthsWithThirtyOneDays is an std::vector containing a set of months that have 31 
days. The test performed by the code with std::find checks that the current month is not found in the 
vector. Other tests are analogous to this example. Similarly, operator-- is another operation that adjusts the 
current date to the previous valid date. Its implementation is quite simple: if the current day is 1, it finds the 
right date based on the number of days in the previous month.

 Determining Trading Dates
The isTradingDay member function is very useful when dealing with trading data. It returns true if the 
current date is not a holiday or a day of the weekend:

// Returns true if not a holiday or a day of the weekend.
//
bool Date::isTradingDay()
{
    if (!isWeekDay()) return false;
    if (m_holidays.size() == 0) return true;
    if (isHoliday()) return false;
    return true;
}

 ■ Note Notice that holidays are different per country, and when used in a realistic application, this code 
should be updated to consider international holiday dates.

Most other functions of the Date class are implemented based on these primitive functions. For 
example, here is how you can add days to the current date:

void Date::add(int numDays)
{
    for (int i=0; i<numDays; ++i)
    {
        ++*this;
    }
}

The difficult part was dealt with on the operation++ method. All the code needs to do is iterate through 
dates using the ++ operator to reach the desired date.

And here is how you can add trading days to the current date. Initially, you find the first trading day 
starting from the given date. Then, for each trading day, add one to the current date and skip all upcoming 
nontrading days. The implementation is as follows:

void Date::addTradingDays(int numDays)
{
    while (!isTradingDay())
    {
        ++*this;
    }
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    for (int i=0; i<numDays; ++i)
    {
        ++*this;
        while (!isTradingDay())
        {
            ++*this;
        }
    }
}

 Complete Listing
Here, you can find the complete code for the Date class. Listing 3-1 contains the header file, and Listing 3-2 
shows the implementation file for Date.

The header file contains an enumeration called DayOfTheWeek, which is used to initialize the week day 
more easily. Similarly, the enumeration Month is used to create symbols for each month of the year. The class 
Date contains the member functions discussed in the previous section.

Listing 3-1. Interface of the Date Class

//
//  Date.h
#ifndef __CppOptions__Date__
#define __CppOptions__Date__
#include <vector>
#include <string>
enum DayOfTheWeek {
    DayOfTheWeek_Sunday,
    DayOfTheWeek_Monday,
    DayOfTheWeek_Tuesday,
    DayOfTheWeek_Wednesday,
    DayOfTheWeek_Thursday,
    DayOfTheWeek_Friday,
    DayOfTheWeek_Saturday,
    DayOfTheWeek_UNKNOWN
};
enum Month {
    Month_January = 1,
    Month_February,
    Month_March,
    Month_April,
    Month_May,
    Month_June,
    Month_July,
    Month_August,
    Month_September,
    Month_October,
    Month_November,
    Month_December,
};
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class Date {
public:
    Date(int year, int month, int day);
    Date(const Date &p);
    ~Date();
    Date &operator=(const Date &p);
    void setHolidays(const std::vector<Date> &days);
    std::string month();
    std::string dayOfWeek();
    void add(int numDays);
    void addTradingDays(int numDays);
    void subtract(int numDays);
    void subtractTradingDays(int numDays);
    int dateDifference(const Date &date);
    int tradingDateDifference(const Date &date);
    DayOfTheWeek dayOfTheWeek();
    bool isHoliday();
    bool isWeekDay();
    Date nextTradingDay();
    bool isLeapYear();
    bool isTradingDay();
    void print();
    Date &operator ++();
    Date &operator --();
    bool operator<(const Date &d) const;
    bool operator==(const Date &d);
private:
    int m_year;
    int m_month;
    int m_day;
    DayOfTheWeek m_weekDay;
    std::vector<Date> m_holidays;
};
#endif /* defined(__CppOptions__Date__) */

Listing 3-2. Implementation File of the Date Class

//
//  Date.cpp
//  CppOptions
#include "Date.h"
#include <string>
#include <iostream>
#include <algorithm>
using std::cout;
using std::endl;
using std::string;
Date::Date(int year, int month, int day)
: m_year(year),
  m_month(month),
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  m_day(day),
  m_weekDay(DayOfTheWeek_UNKNOWN)
{
}
Date::~Date()
{
}
Date::Date(const Date &p)
: m_year(p.m_year),
  m_month(p.m_month),
  m_day(p.m_day),
  m_weekDay(p.m_weekDay),
  m_holidays(p.m_holidays)
{
}
Date &Date::operator=(const Date &p)
{
    if (&p != this)
    {
        m_day = p.m_day;
        m_month = p.m_month;
        m_year = p.m_year;
        m_weekDay = p.m_weekDay;
        m_holidays = p.m_holidays;
    }
    return *this;
}
bool Date::operator<(const Date &d) const
{
    if (m_year < d.m_year) return true;
    if (m_year == d.m_year && m_month < d.m_month) return true;
    if (m_year == d.m_year && m_month == d.m_month
                           && m_day < d.m_day) return true;
    return false;
}
bool Date::operator==(const Date &d)
{
    return d.m_day == m_day && d.m_month == m_month
                            && d.m_year == m_year;
}
void Date::setHolidays(const std::vector<Date> &days)
{
    m_holidays = days;
}
bool Date::isHoliday()
{
    return std::find(m_holidays.begin(), m_holidays.end(), *this)
                  != m_holidays.end();
}
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// The member function Date::month() returns a string representation
// for the month stored in the Date object.
// It converts enumeration values to month strings.
//
std::string Date::month()
{
    switch (m_month) {
        case Month_January:  return "January";
        case Month_February: return "February";
        case Month_March:  return "March";
        case Month_April:  return "April";
        case Month_May:    return "May";
        case Month_June:   return "June";
        case Month_July:   return "July";
        case Month_August: return "August";
        case Month_September: return "September";
        case Month_October:   return "October";
        case Month_November:  return "November";
        case Month_December:  return "December";
        default: throw std::runtime_error("unknown month");
    }
    return "";
}
std::string Date::dayOfWeek()
{
    switch (this->dayOfTheWeek()) {
        case DayOfTheWeek_Sunday: return "Sunday";
        case DayOfTheWeek_Monday: return "Monday";
        case DayOfTheWeek_Tuesday: return "Tuesday";
        case DayOfTheWeek_Wednesday: return "Wednesday";
        case DayOfTheWeek_Thursday: return "Thursday";
        case DayOfTheWeek_Friday: return "Friday";
        case DayOfTheWeek_Saturday: return "Saturday";
        default: throw std::runtime_error("unknown day of week");
    }
}
void Date::add(int numDays)
{
    for (int i=0; i<numDays; ++i)
    {
        ++*this;
    }
}
void Date::addTradingDays(int numDays)
{
    while (!isTradingDay())
    {
        ++*this;
    }
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    for (int i=0; i<numDays; ++i)
    {
        ++*this;
        while (!isTradingDay())
        {
            ++*this;
        }
    }
}
void Date::subtract(int numDays)
{
    for (int i=0; i<numDays; ++i)
    {
        --*this;
    }
}
void Date::subtractTradingDays(int numDays)
{
    while (!isTradingDay())
    {
        --*this;
    }
    for (int i=0; i<numDays; ++i)
    {
        --*this;
        while (!isTradingDay())
        {
            --*this;
        }
    }
}

/*
The dateDifference method is responsible for returning the difference between the current 
date and the date passed as a parameter. This is useful to determine the number of days 
since or until a particular target date.
The logic of the method is different if the target date is in the future or in the past. In 
the first case, we create a copy of the current date and increment its value until we reach 
the target date. Then, we return the number of times we had to increment. In the second 
case, the logic is similar, but the algorithm decrements the current date, until the target 
date is reached.
*/

int Date::dateDifference(const Date &date)
{
    Date d = *this;
    if (d < date)
    {
        int diff=0;
        while (d < date)
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        {
            ++d;
            ++diff;
        }
        return diff;
    }
    int diff=0;
    while (date < d)
    {
        --d;
        --diff;
    }
    return diff;
}

/*
The method tradingDateDifference is similar to the previous method, but it only counts the 
number of trading days between two dates. The logic is analogous to what was described 
previously.
*/

int Date::tradingDateDifference(const Date &date)
{
    Date d = *this;
    if (d < date)
    {
        int diff=0;
        while (!d.isTradingDay()) ++d;
        while (d < date)
        {
            ++d;
            ++diff;
            while (!d.isTradingDay()) ++d;
        }
        return diff;
    }
    int diff=0;
    while (!d.isTradingDay()) --d;
    while (date < d)
    {
        --d;
        --diff;
        while (!d.isTradingDay()) --d;
    }
    return diff;
}
DayOfTheWeek Date::dayOfTheWeek()
{
    if (m_weekDay != DayOfTheWeek_UNKNOWN) return m_weekDay;
    int day = 1;
    Date d(1900, 1, 1);
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    for (;d < *this; ++d)
    {
        if (day == 6) day = 0;
        else day++;
    }
    m_weekDay = static_cast<DayOfTheWeek>(day);
    return m_weekDay;
}
bool Date::isWeekDay()
{
    DayOfTheWeek dayOfWeek = dayOfTheWeek();

if (dayOfWeek == DayOfTheWeek_Sunday || dayOfWeek == DayOfTheWeek_Saturday)
    {
        return false;
    }
    return true;
}
bool Date::isTradingDay()
{
    if (!isWeekDay()) return false;
    if (m_holidays.size() == 0) return true;
    if (isHoliday()) return false;
    return true;
}
Date Date::nextTradingDay()
{
    Date d = *this;
    if (d.isTradingDay())
    {
        return ++d;
    }
    while (!d.isTradingDay())
    {
        ++d;
    }
    return d;
}

/*
The method isLeapYear checks if the current year is a leap year. The logic is simple: a year 
is a leap year if it is divisible by 4, unless it is a century year (divisible by 100) and 
this century year is not divisible by 400.
*/
bool Date::isLeapYear()
{
    if (m_year % 4 != 0)   return false;
    if (m_year % 100 != 0) return true;
    if (m_year % 400 != 0) return false;
    return true;
}

CHAPTER 3 ■ BAsiC C++ AlgoRiTHms



49

/*
The next two methods implement the -- and ++ operators. These methods do the work of 
adjusting dates forward and backward, according to the month and year. The tests are 
straightforward, but you need to consider different situations, like leap years, months that 
end on 31 days, etc.
*/

Date &Date::operator--()
{
    if (m_weekDay != DayOfTheWeek_UNKNOWN) // update weekday
    {
        if (m_weekDay == DayOfTheWeek_Sunday)
            m_weekDay = DayOfTheWeek_Saturday;
        else
            m_weekDay = static_cast<DayOfTheWeek>(m_weekDay - 1);
    }
    if (m_day > 1)
    {
        m_day--;
        return *this;
    }
    if (m_month == Month_January)
    {
        m_month = Month_December;
        m_day = 31;
        m_year--;
        return *this;
    }
    m_month--;
    if (m_month == Month_February)
    {
        m_day = isLeapYear() ? 29 : 28;
        return *this;
    }
    // List of months with 31 days
    std::vector<int> monthsWithThirtyOneDays = {
           1, 3, 5, 7, 8, 10, 12
    };
    if (std::find(monthsWithThirtyOneDays.begin(),
                  monthsWithThirtyOneDays.end(), m_month)
               != monthsWithThirtyOneDays.end())
    {
        m_day = 31;
    }
    else
    {
        m_day = 30;
    }
    return *this;
}
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Date &Date::operator++()
{
    // List of months with 31 days
    std::vector<int> monthsWithThirtyOneDays = {
        1, 3, 5, 7, 8, 10, 12
    };
    if (m_day == 31)
    {
        m_day = 1;
        m_month++;
    }
    else if (m_day == 30 &&
             std::find(monthsWithThirtyOneDays.begin(),
                       monthsWithThirtyOneDays.end(), m_month)
                    == monthsWithThirtyOneDays.end())
    {
        m_day = 1;
        m_month++;
    }
    else if (m_day == 29 && m_month == 2)
    {
        m_day = 1;
        m_month++;
    }
    else if (m_day == 28 && m_month == 2  && !isLeapYear())
    {
        m_day = 1;
        m_month++;
    }
    else
    {
        m_day++;
    }
    if (m_month > 12)
    {
        m_month = 1;
        m_year++;
    }
    if (m_weekDay != DayOfTheWeek_UNKNOWN) // update weekday
    {
        if (m_weekDay == DayOfTheWeek_Saturday)
            m_weekDay = DayOfTheWeek_Sunday;
        else
            m_weekDay = static_cast<DayOfTheWeek>(m_weekDay + 1);
    }
    return *this;
}
void Date::print()
{
    cout << m_year << "/" << m_month << "/" << m_day << endl;
}
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// Finally, the following main function performs a basic test of
// the functionality for this class.

int main()
{
    Date d(2015, 9, 12);
    DayOfTheWeek wd = d.dayOfTheWeek();
    cout << " day of the week: " << wd <<  " "
         << d.dayOfWeek() <<   endl;
    d.print();
    d.add(25);
    d.print();
    d.addTradingDays(120);
    d.print();
    cout << " day of the week: " << d.dayOfTheWeek()
         <<  " " << d.dayOfWeek() <<   endl;
    return 0;
}

 A Compact Date Representation
While the Date class presented in the previous section is an adequate implementation of the concept of 
dates in C++, it still may not be perfect for all applications. One problem with it is that you need to use 
integers to store each of the different parts of the date, which include year, month, and day. In today’s 
common 64-bit CPU, this takes 24 bytes, which is a lot of space for such a small piece of information.

There are a few ways that you can improve the memory use for Date objects. In this section, I explain 
how to do this using a simple format for date storage that uses a character string. If you use 4 bytes for the 
year and 2 bytes for the month as well as the day, the required memory is reduced to just 8 bytes. This format 
is also commonly used as a date stamp in several applications, so it is easy to verify the correctness of a 
particular date.

To show how this implementation works, I created a new class called DateCompact, which is a compact 
representation of Date objects. I only present a few of the operations required from this data type to avoid 
duplication of the previous code, but you can implement all other methods provided in the Date class using 
the underlying representation provided by DateCompact.

The only date member of class DateCompact is a string, declared using the old-style array type of C, for 
compactness:

    char m_date[8];

Dates are stored using the following member functions:

    void setYear(int y);
    void setMonth(int m);
    void setDay(int d);

These dates can be retrieved using three corresponding methods:

    int year();
    int month();
    int day();
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For example, to store the year, you just need to convert the given number into a four character string:

void DateCompact::setYear(int year)
{
    m_date[3] = '0' + (year % 10);  year /= 10;
    m_date[2] = '0' + (year % 10);  year /= 10;
    m_date[1] = '0' + (year % 10);  year /= 10;
    m_date[0] = '0' + (year % 10);
}

You need to add each number to the character '0' so that the resulting string is printable. The reverse 
process is easy; you just need to add the characters in the right way:

int DateCompact::year()
{
    // (x - '0')  computes the numeric value
    // corresponding to each character.
    return  1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0')
            + 10 * (m_date[2] - '0') +       (m_date[3] - '0');
}

The comparison operators can be easily implemented with the help of the strncmp function from the C 
string library. The function strncmp returns a negative number if the first argument is lexicographically less 
than the first, a positive number if the first argument is greater than the second, and 0 if the two strings are 
equal. For example, the equality operator can be implemented as follows:

bool DateCompact::operator==(const DateCompact &d) const
{
    return strncmp(m_date, d.m_date, 8) == 0;
}

Similarly, the less than operator has the following implementation:

bool DateCompact::operator<(const DateCompact &d) const
{
    // strcmp returns negative values if the
    // first argument is less than the second.
    return strncmp(m_date, d.m_date, 8) < 0;
}

 Complete Listings
The full code for the DateCompact class, described in the previous section, is presented in Listings 3-3 and 3-4.

Listing 3-3. Interface of the DateCompact Class

//
//  DateCompact.h
#ifndef __CppOptions__DateCompact__
#define __CppOptions__DateCompact__
//
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// A compact representation for dates, using a character string
//
class DateCompact {
public:
    DateCompact(int year, int month, int day);
    DateCompact(const DateCompact &p);
    ~DateCompact();
    DateCompact &operator=(const DateCompact &p);
    void setYear(int y);
    void setMonth(int m);
    void setDay(int d);
    int year();
    int month();
    int day();
    void print();
    bool operator==(const DateCompact &d) const;
    bool operator<(const DateCompact &d) const;
private:
    char m_date[8];
};
#endif /* defined(__CppOptions__DateCompact__) */

Listing 3-4. Implementation of the DateCompact Class

//
//  DateCompact.cpp
//
//  Implementation for the DateCompact class
#include "DateCompact.h"
#include <cstring>
#include <iostream>
using std::cout;
using std::endl;
DateCompact::DateCompact(int year, int month, int day)
{
    setYear(year);
    setMonth(month);
    setDay(day);
}
DateCompact::DateCompact(const DateCompact &p)
{
    strcpy(m_date, p.m_date);
}
DateCompact::~DateCompact()
{
}
DateCompact &DateCompact::operator=(const DateCompact &p)
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{
    if (&p != this)
    {
        strcpy(m_date, p.m_date);
    }
    return *this;
}
//
// Use string comparison to determine if the dates are equal.
//
bool DateCompact::operator==(const DateCompact &d) const
{
    return strncmp(m_date, d.m_date, 8) == 0;
}
// Use the strncmp function to determine if a date is less than the other.
bool DateCompact::operator<(const DateCompact &d) const
{
    // strcmp returns negative values if the first
    // argument is less than the second.
    return strncmp(m_date, d.m_date, 8) < 0;
}
//
// Functions to calculate the year, month, and days as integers,
// based on the characters contained in the string 'm_date'.
//
int DateCompact::year()
{
    // (x - '0')  computes the numeric value
    // corresponding to each character.
    return  1000 * (m_date[0] - '0') + 100 * (m_date[1] - '0')
            + 10 * (m_date[2] - '0') +       (m_date[3] - '0');
}
int DateCompact::month()
{
    return  10 * (m_date[4] - '0') +  (m_date[5] - '0');
}
int DateCompact::day()
{
    return  10 * (m_date[6] - '0') +  (m_date[7] - '0');
}
void DateCompact::print()
{
    // Copy the m_date string into a NULL terminated
    // string (with 9 characters).
    char s[9];
    strncpy(s, m_date, 8);
    s[8] = '\0';             // properly terminate the string
    cout << s << endl;
}
//
// Calculate the string corresponding to the given numeric parameter.
//
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void DateCompact::setYear(int year)
{
    m_date[3] = '0' + (year % 10);
    year /= 10;
    m_date[2] = '0' + (year % 10);
    year /= 10;
    m_date[1] = '0' + (year % 10);
    year /= 10;
    m_date[0] = '0' + (year % 10);
 }
void DateCompact::setMonth(int month)
{
    m_date[5] = '0' + (month % 10);  month /= 10;
    m_date[4] = '0' + (month % 10);  month /= 10;
}
void DateCompact::setDay(int day)
{
    m_date[7] = '0' + (day % 10);  day /= 10;
    m_date[6] = '0' + (day % 10);  day /= 10;
}
#include "Date.h"
int main()
{
    DateCompact d(2008, 3, 17);
    DateCompact e(2008, 5, 11);
    cout << " size of DateCompact: " << sizeof(DateCompact) << endl;
    d.print();
    e.print();
    if (d < e)
    {
        cout << " d is less than e " << endl;
    }
    else
    {
        cout << " d is not less than e " << endl;
    }
    Date date(2008, 3, 17);
    cout << " size of Date: " << sizeof(Date) << endl;
    return 0;
}

 Building and Testing
The previous code can be built using any standards-compliant C++ compiler. Here are the commands used 
to build the application on macOS X using gcc:

cc++ -std=c++2a  –o DateCompact.o –c DateCompact.cpp
cc++ -std=c++2a  –o Date.o –c Date.cpp
cc++ –o main  DateCompact.o Date.o
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The main function provides a quick test of the DateCompact class, which also compares the size of 
the objects created using DateCompact and Date. Notice how Date occupies much more memory than 
DateCompact.

./DateCompact
size of DateCompact: 8
20080317
20080511
 d is less than e
 size of Date: 48

 Using the Standard Chrono Header
In C++23, you can also represent dates using the std::chrono library. Specifically, there are two main classes 
that can be used to represent dates and time intervals. You can use the std::chrono::system_clock class to get 
the current date and time, or the std::chrono::time_point class to represent a specific date and time.

The following example shows how to get the current date and time using the system_clock class:

#include <iostream>
#include <chrono>

int main() {
    auto now = std::chrono::system_clock::now();
    std::time_t current_time = std::chrono::system_clock::to_time_t(now);

    std::cout << "Current date and time: " << std::ctime(&current_time) << std::endl;

    return 0;
}

In this code, the method call std::chrono::system_clock::now() returns an std::chrono::time_
point object representing the current time, which is saved to the current_time variable. We then use the 
std::chrono::system_clock::to_time_t() function to convert this time point to an std::time_t value. 
Next, the code uses the std::ctime() method to get a human-readable string representing the current date 
and time.

If you need to represent a specific date and time, the chrono header file also provides a simple way to do 
that. In this case, you can use the std::chrono::time_point class. Here's an example:

#include <iostream>
#include <chrono>

int main() {
    std::chrono::system_clock::time_point tp = std::chrono::system_clock::now() + 
std::chrono::hours(24);

    std::time_t time = std::chrono::system_clock::to_time_t(tp);

    std::cout << "Date and time in 24 hours: " << std::ctime(&time) << std::endl;
}
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 Working with Networks
As a final example of C++ flexibility, we will discuss an example of handling network structures. Network 
structures commonly appear in many fields of software development. Such networks are ideal for representing 
the connections between entities as diverse as people, investments choices, trading institutions, countries, 
or sale contracts. In financial applications, for example, elements of a network may represent stocks or other 
asset classes. Connections between elements of the network may represent correlation between assets, among 
other uses. This type of algorithm is used in the analysis of investment portfolios, for example.

In this section, I provide an overview of networks and explain how they can be presented in C++ 
applications. The particular example used demonstrates the way in which such algorithms can be designed 
and implemented.

The sample problem presented here is called word production. A word is a sequence of characters, and 
it can represent, among other things, stock tickers in a financial application, for example. Therefore, IBM and 
CAT (stock tickers for companies IBM and Caterpillar) may be viewed as application-specific words. These 
elements are then stored in a dictionary of useful words. The word production problem determines how a 
word can be derived from another using a dictionary. For example, the word CAT can be derived from the 
word CAR by just changing a single character. Complex string production can be performed using multiple 
productions. Therefore, using this rule, it is possible to connect elements of a dictionary using a set of links, 
where each link represents a single word production.

In the string-production problem, you are given a starting and a destination word. You also have a 
dictionary of words (e.g., a set of stock tickers that you may be interested in trading). Then, the goal is to find 
the shortest set of productions that can connect the initial word to the final word. For a concrete example, 
consider the dictionary containing the words LOB, DAG, LOG, CAR, DOG, CAT, COB, CAB, and CAG. If you 
start from the word CAT and end with the word DOG, a possible solution to the problem is this sequence:

CAT, CAG, DAG, and DOG

This is not a unique solution, but it has minimum size (three productions). Another candidate 
solution is

CAT, CAB, COB, LOB, LOG, DOG

This is also valid but is clearly not the shortest solution, since it needs more productions than the 
previous example. For simplicity, it is assumed that all words in the dictionary have the same size.

 Creating a Dictionary Class
The first step to solve this problem is to find an efficient representation for the Dictionary object. For 
this purpose, I created a class that stores the set of words using a vector called m_values. Here is the class 
definition:

class Dictionary {
public:
    Dictionary(int wordSize);
    ~Dictionary() {}
    Dictionary &operator=(const Dictionary &p); // not implemented
    //   ...
    void addElement(const std::string &s);
    void buildAdjancencyMatrix();
    bool contains(const std::string &s);
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    const std::vector<std::vector<bool> > &adjList();
    int elemPosition(const std::string &s);
    int size() { return (int)m_values.size(); }
    std::string elemAtPos(int i);
private:
    std::vector<std::string> m_values;
    std::map<std::string, int> m_valuePositions;
    std::vector<std::vector<bool> > m_adjacencyList;
    int m_wordSize;
};

There are other three member variables used by the class:

• m_wordSize is used to store the size of words in the dictionary.

• m_valuePositions is a variable used to store a mapping between words and numeric 
positions.

• m_adjacencyList, an adjacency list.

The first step in the implementation is to define member functions that add elements to the dictionary. 
For example, this is how you add new words to the dictionary:

void  Dictionary::addElement(const string &s)
{
    if (s.size() != m_wordSize)
    {
        throw std::runtime_error("invalid string size");
    }
    m_values.push_back(s);
    m_valuePositions[s] = (int)m_values.size() - 1;
    cout << " added " << s << endl;
}

You can use member functions in std::vector to interact with the underlying m_values collection. In 
this case, the function uses push_back to add new words of the right size. Notice that when a word is stored, 
the position of the word is also stored in an std::map named m_valuePositions.

The member function elementAtPos returns the word stored in a certain position of the m_
values vector:

string Dictionary::elemAtPos(int i)
{
    return m_values[i];
}

The member function contains returns true if a word is already stored in the dictionary. It uses the find 
member function of std::map, which when given a map m returns the value associated with the given key 
when the element is found, or the value m.end() when the element is not in the map.

bool Dictionary::contains(const string &s)
{
    return m_valuePositions.find(s) != m_valuePositions.end();
}
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Another feature of the Dictionary class is that it returns the position of an element that has been stored 
in the vector m_values. To speed up this process, Dictionary uses std::map m_valuePositions, which 
maps between strings and their respective positions. Using this map, it is possible to define the member 
function elemPosition. The implementation is straightforward:

int Dictionary::elemPosition(const string &s)
{
    return m_valuePositions[s];
}

Finally, the Dictionary class is responsible for building an adjacency matrix, that is, a matrix that stores 
the connectivity information for the network of words stored in this dictionary. The way this works is that the 
matrix has size n by n, where n is the number of words stored. The entries A

ij
 in the matrix are true or false, 

and true means that the words stored at positions i and j differ by just one character.
The first thing that you need to do is create the adjacency matrix for the given set of words stored in the 

dictionary. This is done using the buildAdjacencyMatrix member function:

void Dictionary::buildAdjancencyMatrix()
{
    m_adjacencyList.clear();
    int n = (int)m_values.size();
    for (int i=0; i<n; ++i)
    {
        m_adjacencyList.push_back(vector<bool>(n));
        for (int j=0; j<n; ++j)
        {
            if (diffByOne(m_values[i], m_values[j]))
            {
                m_adjacencyList[i][j] = true;
            }
        }
    }
}

The original adjacency data is cleared, and a loop is run through each pair of words stored in m_values. 
Then, the algorithm checks if the words differ by just one character using the diffByOne member function. 
If that is true, then the algorithm can set the value of the adjacency to true. The diffByOne algorithm is also 
straightforward:

bool diffByOne(const string &a, const string &b)
{
    if (a.size() != b.size()) return false;
    int ndiff = 0;
    for (unsigned i=0; i<a.length(); ++i)
    {
        if (a[i] != b[i]) ndiff++;
    }
    return ndiff == 1;
}

You just need to count the number of different characters occurring in both strings. The function 
returns true only if the number of differences is equal to one.
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 Calculating a Shortest Path
The challenging part of this algorithm is to find the shortest path between the two given nodes of the 
network, represented by the initial and final words. There are a few alternative algorithms to find a shortest 
path, but this implementation uses the well-known Dijkstra’s algorithm.

The central idea of this algorithm is to maintain the known distances starting from the initial node. 
Then, at each iteration, you can look for the neighbors of a node and see if at least one can reduce the known 
shortest path by traversing that node. If that is possible, then the shortest path passing through that node is 
updated. This process continues until all nodes in the network have been considered.

I present a simple implementation of this algorithm in the StringProduction class. The definition of 
the class is as follows:

class StringProduction {
public:
    StringProduction(Dictionary &d);
    StringProduction(const StringProduction &p);
    ~StringProduction();
    StringProduction &operator=(const StringProduction &p);
    bool produces(const std::string &src,const std::string &dest,
                        std::vector<std::string> &path);
    void shortest_path(int v, int dest, int n,
                       std::vector<std::string> &path);
    std::vector<int> recoverPath(int src, int dest,
               const std::vector<int> &P, std::vector<int> &path);
private:
    Dictionary &m_dic;
};

The StringProduction class keeps a reference to a dictionary, which contains all the nodes in the 
network for use by the shortest-path algorithm. The central member function for this class is shortest_path, 
which returns the shortest path between the two given words (which should be part of the underlying 
dictionary). The first part of the function initializes the data structures used by the algorithm:

    // Initialize the set of distances and the set of nodes
    for (int i = 0; i <n; i++) {
        Q.insert(i);
        if (i != v) {
            dist[i] = INF;
        }
    }

The object named Q has type std::set, and it can quickly add and remove elements that will later be 
checked by the algorithm. The loop is just adding all nodes to Q and setting the initial distances in the vector 
dist to a large number (INF). The only exception is the distance between the initial node v and itself, which 
is known to be zero.

Another important part of the algorithm is the so-called relaxation step, where the distance is updated 
to the latest known shortest-path value:

        for (int i=0; i<n; ++i){
            if (A[u][i]) {           // nodes u and i are neighbors
                int d = dist [u] + 1;
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                if (d < dist[i]) {
                    dist[i] = d;
                    prev[i] = u;
                }
            }
        }
    }

The vector prev stores the node that is known to be the previous one in the shortest path sequence. 
The last part of the algorithm is the path-recovery step, where the complete path is retrieved using the 
information stored in prev:

    vector<int> npath;
    recoverPath(v, dest, prev, npath);
    for (auto elem : npath) {
       path.push_back(m_dic.elemAtPos(elem));
    }

This algorithm uses the member function called recoverPath to find the numeric sequence of nodes 
used in the shortest path. The for loop then uses that numeric sequence to recover the words from the 
dictionary. The implementation of the recoverPath method iterates through the previous nodes to construct 
a sequence:

vector<int> StringProduction::recoverPath(
            int src, int dest, const vector<int> &P,
            vector<int> &path){
    int v = dest;
    while (v != src) {
        path.push_back(v);
        v = P[v];
    }
    path.push_back(src);
    std::reverse(path.begin(),path.end());
    return path;
}

Finally, the produces member function uses the algorithm explained previously to find and return the 
shortest production. First, it checks that the initial and destination words are stored in the dictionary. Then, 
the function shortest_path is called with the right parameters. The word sequence is returned using the 
parameter path. The return value is true if there is a valid sequence with size greater than zero.

bool StringProduction::produces(const string &src,
          const string &dest, vector<string> &path) {
    if (!m_dic.contains(src) || !m_dic.contains(dest))
       return false;
    shortest_path(m_dic.elemPosition(src),
                  m_dic.elemPosition(dest), m_dic.size(), path);
    return path.size() > 0;
}
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 Complete Listings
Here is the complete listing for the network-based algorithm described in the preceding section. There are 
five files that contain the full solution. Two files are used for the Dictionary class. Two other files are used 
for the StringProduction class. Finally, a main file is provided so that you can run a test on the two classes. 
The files are displayed in Listings 3-5 to 3-9.

Listing 3-5. Interface of the Dictionary Class

//
//  Dictionary.h
#ifndef __StringProduction__Dictionary__
#define __StringProduction__Dictionary__
#include <string>
#include <vector>
#include <map>
//
// Stores the words in the dictionary and provides an adjacency matrix for the words
class Dictionary {
public:
    Dictionary(int wordSize);
    ~Dictionary() {}
    Dictionary &operator=(const Dictionary &p); // not implemented
private:
    Dictionary(const Dictionary &p);            // not implemented
public:
    void addElement(const std::string &s);
    void buildAdjancencyMatrix();
    bool contains(const std::string &s);
    const std::vector<std::vector<bool> > &adjList();
    int elemPosition(const std::string &s);
    int size() { return (int)m_values.size(); }
    std::string elemAtPos(int i);
private:
    std::vector<std::string> m_values;
    std::map<std::string, int> m_valuePositions;
    std::vector<std::vector<bool> > m_adjacencyList;
    int m_wordSize;
};
#endif /* defined(__StringProduction__Dictionary__) */

Listing 3-6. Implementation of the Dictionary Class

//
//  Dictionary.cpp
#include "Dictionary.h"
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>
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using std::string;
using std::vector;
using std::set;
using std::map;
using std::cout;
using std::endl;
using std::cerr;
Dictionary::Dictionary(int wordSize)
: m_values(),
m_valuePositions(),
m_adjacencyList(),
m_wordSize(wordSize)
{
}
const std::vector<std::vector<bool> > &Dictionary::adjList()
{
    return m_adjacencyList;
}
Dictionary &Dictionary::operator=(const Dictionary &p)
{
    if (&p != this)
    {
        m_adjacencyList = p.m_adjacencyList;
        m_valuePositions = p.m_valuePositions;
        m_values = p.m_values;
        m_wordSize = p.m_wordSize;
    }
    return *this;
}
//
// True if the words a and b differ by just one character
//
bool diffByOne(const string &a, const string &b)
{
    if (a.size() != b.size()) return false;
    int ndiff = 0;
    for (unsigned i=0; i<a.length(); ++i)
    {
        if (a[i] != b[i]) ndiff++;
    }
    return ndiff == 1;
}
bool Dictionary::contains(const string &s)
{
    return m_valuePositions.find(s) != m_valuePositions.end();
}
int Dictionary::elemPosition(const string &s)
{
    return m_valuePositions[s];
}
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void  Dictionary::addElement(const string &s)
{
    if (s.size() != m_wordSize)
    {
        throw std::runtime_error("invalid string size");
    }
    m_values.push_back(s);
    m_valuePositions[s] = (int)m_values.size() - 1;
    cout << " added " << s << endl;
}
string Dictionary::elemAtPos(int i)
{
    return m_values[i];
}
void Dictionary::buildAdjancencyMatrix()
{
    m_adjacencyList.clear();
    int n = (int)m_values.size();
    for (int i=0; i<n; ++i)
    {
        m_adjacencyList.push_back(vector<bool>(n));
        for (int j=0; j<n; ++j)
        {
            if (diffByOne(m_values[i], m_values[j]))
            {
                m_adjacencyList[i][j] = 1;
            }
        }
    }
}

Listing 3-7. Interface of the StringProduction Class

//
//  StringProduction.h
#ifndef __StringProduction__StringProduction__
#define __StringProduction__StringProduction__
#include <vector>
#include <string>
class Dictionary;
class StringProduction {
public:
    StringProduction(Dictionary &d);
    StringProduction(const StringProduction &p);
    ~StringProduction();
    StringProduction &operator=(const StringProduction &p);

bool produces(const std::string &src, const std::string &dest, 
std::vector<std::string> &path);

void shortest_path(int v, int dest, int n, std::vector<std::string> &path);
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std::vector<int> recoverPath(int src, int dest, const std::vector<int> &P, 
std::vector<int> &path);
private:
    Dictionary &m_dic;
};
#endif /* defined(__StringProduction__StringProduction__) */

Listing 3-8. Implementation of the StringProduction Class

//
//  StringProduction.cpp
#include "StringProduction.h"
#include "Dictionary.h"
#include <algorithm>
#include <climits>
#include <map>
#include <set>
using std::vector;
using std::string;
using std::map;
using std::set;
StringProduction::StringProduction(Dictionary &d)
: m_dic(d)
{
}
StringProduction::StringProduction(const StringProduction &p)
: m_dic(p.m_dic)
{
}
StringProduction::~StringProduction()
{
}
StringProduction &StringProduction::operator=(const StringProduction &p)
{
    if (&p != this) {
        m_dic = p.m_dic;
    }
    return *this;
}
//
// Recovers the path from a list of previous nodes (P)
vector<int> StringProduction::recoverPath(int src, int dest, const vector<int> &P, 
vector<int> &path){
    int v = dest;
    while (v != src) {
        path.push_back(v);
        v = P[v];
    }
    path.push_back(src);
    std::reverse(path.begin(),path.end());
    return path;
}
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//
// Computes the shortest path.
// Node v is the source, dest is destination. If the path can be found, it is stored on 
parameter path
void StringProduction::shortest_path(int v, int dest, int n, vector<string> &path)
{
    const std::vector<std::vector<bool> > &A = m_dic.adjList(); //
get the adjacency matrix
    path.clear();
    vector<int> dist(n, 0);
    vector<int> prev(n, 0);
    set<int> Q;              // set of nodes
    const int INF = INT_MAX; // a large number
    // Initialize the set of distances and the set of nodes
    for (int i = 0; i <n; i++) {
        Q.insert(i);
        if (i != v) {
            dist[i] = INF;
        }
    }
    // This is Dijkstra's algorithm
    while (!Q.empty()) {
        int min = INF;
        int u = -1;
        for (set<int>::iterator it = Q.begin(); it != Q.end(); ++it) {
            // Find the minimum value in queue
            if (dist[*it] < min) {
                min = dist[*it];
                u = *it;
            }
        }
        Q.erase(u);   // remove min vertex u from set
        // Relaxation step
        for (int i=0; i<n; ++i){
            if (A[u][i]) {              // this is a neighbor
                int d = dist [u] + 1;
                if (d < dist[i]) {
                    dist[i] = d;
                    prev[i] = u;
                }
            }
        }
    }
    // Recover the path from vector prev
    vector<int> npath;
    recoverPath(v, dest, prev, npath);
    for (auto elem : npath) {
       path.push_back(m_dic.elemAtPos(elem));
    }
}

CHAPTER 3 ■ BAsiC C++ AlgoRiTHms



67

//
// Returns true if the word src produces dest using the
// dictionary dic. If true, then path will contain the path
// between src and dest.
//
bool StringProduction::produces(const string &src,
            const string &dest, vector<string> &path) {
    if (!m_dic.contains(src) || !m_dic.contains(dest)) return false;
    shortest_path(m_dic.elemPosition(src),
                  m_dic.elemPosition(dest), m_dic.size(), path);
    return path.size() > 0;
}

Listing 3-9. The main Function with a Simple Test for the StringProduction Class

//
//  main.cpp
//  StringProduction
//
#include "StringProduction.h"
#include "Dictionary.h"
#include <iostream>
using std::vector;
using std::string;
using std::cout;
using std::endl;
//
// main function is a test case for the algorithm.
//
int main(int argc, const char * argv[]) {
    if (argc != 3) {
        cout << "prog word1 word2" << endl;
        return 1;
    }
    Dictionary dic(3);
    dic.addElement("lob");
    dic.addElement("dag");
    dic.addElement("log");
    dic.addElement("car");
    dic.addElement("dog");
    dic.addElement("cat");
    dic.addElement("cob");
    dic.addElement("cab");
    dic.addElement("cag");
    dic.buildAdjancencyMatrix();
    vector<string> path;
    StringProduction sp(dic);
    if (sp.produces(argv[1], argv[2], path)) {
        cout << " -- the first string produces the second" << endl;
        cout << " -- that path has size " << path.size()   << ":\n";
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        for (unsigned i=0; i<path.size(); ++i) {
            cout << path[i] << "; ";
        }
    } else {
        cout << " the second string does not produce the second"
             << endl;
    }
    return 0;
}

 Building and Testing
You can build the code presented in the last section using any standards-compliant C++ compiler. I tested 
the code on Linux and macOS X. The commands used to build the project in gcc are the following:

gcc -o StringProduction.o -c StringProduction.cpp
gcc -o Dictionary.o –c Dictionary.cpp
gcc -o main.o –c main.cpp
gcc -o StringProduction Dictionary.o StringProduction.o main.o

The main function contains test code that creates a new Dictionary object, inserts a small set of words, 
and uses the StringProduction class to calculate the shortest path. Here is a sample of the generated output 
in my system:

./StringProduction cat dog
added lob
added dag
added log
added car
added dog
added cat
added cob
added cab
added cag
-- the first string produces the second
-- that path has size 4:
cat; cag; dag; dog;

A quick note about the complexity of this algorithm. As explained, the Dijkstra’s algorithm for shortest-
path calculation is used. The current implementation uses a matrix of adjacencies, with complexity O(n2), 
where n is number of words in the dictionary. This could be improved using more complex implementation 
schemes (such as adjacency lists and priority queues); however, I decided to use the simplest data structures 
in order to concentrate on the algorithm itself.
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 Conclusion
In this chapter, I presented a few basic algorithms implemented in C++23. These algorithms provide 
examples of how to solve computational problems using C++ and containers from the STL. You read an 
overview of two interesting problems with financial applications: date calculation and shortest paths on data 
networks.

The first two sections dealt with date representations and their associated operations. Dates are needed 
in nearly all financial- and derivative-related applications. They are an intrinsic part of time series for prices, 
volatility, and other financial information used in the analysis of derivatives. You saw how to implement 
commonly used functions to manipulate dates, such as adding and subtracting dates, finding trade dates, 
and computing date intervals. You have also learned how to design a compact date representation so that 
only a small amount of memory is necessary to store a large number of date objects.

Finally, I discussed the common problem of implementing a network, with nodes that represent 
individual data elements and connections between these nodes. I discussed a simple problem based on a 
dictionary of strings, which can represent stocks from a universe of interest, for example. Then, you learned 
how to create an algorithm that calculates the shortest paths between elements of this basic dataset.

In the next chapter, you will see more examples of using C++ for financial programming. This time, 
you will learn more about object-oriented techniques, including how they can be used to create high-
performance applications to process options and derivative contracts.
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CHAPTER 4

Object-Oriented Techniques

For the last 30 years, object-oriented techniques have become the standard for software design and 
development. Since C++ fully supports OO programming, it is essential that you have a good understanding 
of OO techniques in order to solve many of the challenges presented by options and derivatives 
programming.

This chapter presents a practical summary of the programming topics you need to understand in order 
to become proficient in the relevant OO concepts and techniques used in the field of options and derivatives 
analysis. Some of the topics covered in this chapter include the following:

• Fundamental OO concepts in C++: A quick review of object-oriented concepts as 
implemented in C++, with examples based on derivatives and options

• Problem partitioning: How to partition a problem into classes and related OO 
concepts using specific C++ techniques

• Designing a solution: How to use classes and objects to solve problems in financial 
engineering

• Reusing OO components: How to create reusable C++ components that can 
be integrated to your own full-scale applications, or even distributed as an 
external library

 OO Programming Concepts
Object-oriented programming provides a set of principles that can facilitate the development of computer 
software. Using OO programming techniques, you can easily organize your code and create high-level 
abstractions for application logic and commonly used component libraries. In this way, OO techniques 
can be used to improve and reuse existing components, as well as simplify the overall development. OO 
programming promotes a way of creating software that uses logical elements operating at a higher level of 
abstraction.

When considering different styles of software programming, it is important to use tools and languages 
that provide an adequate level of support for the desired programming style. C++ was designed to be a 
multiparadigm programming language (see Figure 4-1); therefore, it can properly support more than one 
style of programming, including the following:

• Structured programming: In structured programming, code is organized in terms of 
functions and data structures. Each function uses standard control flow structures, 
such as for, while, do, and if/then/else, to organize code. While this programming 
style was previously used in isolation, nowadays it is more commonly used as part of 
an OO or functional approach.
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• Functional programming: In this style of programming, functions are the most 
important element of composition. Functions are also used as first-class citizens: 
they can be stored and passed as parameters to other functions in this programming 
paradigm. The C++11 standard has improved support for functional programming, 
as seen in Chapter 8.

• Generic, or template-based programming: Templates allow programmers to create 
parameterized types. Such types can be used to implement concepts that are 
independent of the specific type employed. A common example is a container class 
such as std::vector, which can be used to store values of any type in a sequence of 
elements stored in contiguous memory.

• Object-oriented programming: A programming style where code is organized in 
classes and shared in the form of objects. In the OO paradigm, objects can respond 
to operations that are implemented as member functions in C++. Encapsulation and 
inheritance are common mechanisms used to support the implementation of OO 
systems.

Figure 4-1. A comparison of concepts used in four programming paradigms enabled by C++

C++ offers complete support for OO concepts. Some of these support elements have already been used 
in the previous chapters of this book, including classes, objects that can be instantiated from these classes, 
as well as their members such as constructors and destructors, among others. In this chapter, you will learn 
more about OO concepts that are frequently used in real-world applications, with examples that are directly 
used in the implementation of options and derivatives in C++.

Remember that the main elements of OO programming can be summarized as follows:

• Encapsulation: This concept refers to the division of programmatic responsibilities 
into different language elements. C++ offers classes that can be used to encapsulate 
desired functionality in a clear way. When planning applications and coding them 
in C++, it is always a good idea to determine the main concepts that need to be 
represented as classes and encapsulate the related procedural code into member 
functions of that class.

• Inheritance: C++ allows programmers to extend a class with new operations. This 
is possible through the concept of inheritance, when a new class assumes all 
operations previously available in an existing class, called its parent. Inheritance 
also allows programmers to add new functionality to existing classes, through the 
inclusion of new member functions that provide the required functionality.
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• Polymorphism: Inherited classes in C++ extend available classes through the 
addition of new member functions. Inherited classes also modify the behavior 
of existing member functions that have been marked with the virtual keyword. 
Polymorphism in C++ is defined through the use of virtual functions, which are then 
dispatched using a virtual function table, as implemented by most compilers.

Although C++ provides much more than pure OO programming, these elements alone can nonetheless 
be used to create very complex and efficient applications in various areas, such as the case of financial 
applications. In the remaining of this chapter, you will see how these OO concepts can be utilized to solve 
problems occurring on financial derivatives.

 ■ Note software development using OO techniques not only allows separation between implementation 
and interface but also requires the clear definition of such concepts. A good C++ programmer will excel at 
decomposing problems into smaller components, which can then be coded into separate classes. While i 
can only give examples of this process in this book, design and analysis of OO software are a complex and 
important phase that should be part of your effort during each software project.

 Encapsulation
The idea of encapsulation is to define abstract operations that can be implemented by a single class. Once 
these operations have been made available through the class interface, clients of a class can use them 
without being exposed to the internal details of the implementation such as variables, constants, and other 
internal code that is only used locally to implement the required features.

The most important aspect of encapsulation is the ability to hide data, which then becomes the member 
variables of the target class. Consider, for example, a class that represents a credit default swap. The class 
should contain enough information to determine how to store and trade such financial instruments. For an 
example of data that must be encapsulated into such a class, you might want to consider the following:

• Underlying instrument: The financial instrument that is the basis for the contract. It 
could be, for example, a set of bonds for a particular company, cash, or some other 
preestablished financial instrument.

• Counterpart: The institution that is the target of the default swap payments. The 
payment is generally made when the target institution defaults.

• Payoff value: The monetary value of the default swap contract. This payoff is 
transferred between institutions if the contract payment condition is triggered.

• Term: The term of the contract, after which it ceases to exist.

• Spread cost: The recurring payment made by the buyer to maintain the contract. 
Many contracts require equal payments of a spread that is due at regular periods, 
such as every month or every year.

By using encapsulation to represent a CDS contract, a C++ developer can simply create a class that 
contains all these data elements. For example, here is a simple CDS class that represents the concepts 
described previously. We first present an enumeration of possible underlying values.
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 ■ Note An enum, such as CDSUnderlying, is a technique used in C and C++ to define related constants 
with different integer values, which can later be reused in the code.

enum CDSUnderlying {
    CDSUnderlying_Bond,
    CDSUnderlying_Cash,
    // Other values here...
};
class CDSContract {
public:
    CDSContract();
    CDSContract(const CDSContract &p);
    ~CDSContract();
    CDSContract &operator=(const CDSContract &p);
    // Other member functions here...
private:
    std::string m_counterpart;
    CDSUnderlying m_underlying;
    double m_payoff;
    int m_term;
    double m_spreadCost;
};

With this definition, you encapsulate all the information that corresponds to a CDS contract into a 
single class. Because the data members are private, this means that only variables and methods internal to 
the class can access elements defined as private. The main advantage of such an arrangement is that no code 
outside the CDSContract class is allowed to access the private data, achieving true encapsulation.

If it is necessary to provide access to one or more data members of a class, there are two options. The 
data member could be moved to the public section of the class, but this would make it possible for the data 
member to change without knowledge of the CDSContract class.

A better way of doing this is to provide an access member function in a case-by-case way. You could, 
for example, allow the counterpart and payoff member variables to be accessed by other objects through 
member functions, as shown here:

class CDSContract {
public:
    CDSContract();
    CDSContract(const CDSContract &p);
    ~CDSContract();
    CDSContract &operator=(const CDSContract &p);
    std::string counterpart() { return m_counterpart; }
    void setCounterpart(const std::string &s) { m_counterpart = s;    }
    double payoff() { return m_payoff;   }
    void setPayoff(double payoff) { m_payoff = payoff; }
private:
    std::string m_counterpart;
    CDSUnderlying m_underlying;
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    double m_payoff;
    int m_term;
    double m_spreadCost;
};

Using this strategy, any change happening to the m_counterpart and m_payoff will occur only through 
an operation on the CDSContract class. This means that the class can react to any changes in these values, 
providing proper encapsulation of that data. For example, suppose that you want to reset the payoff value 
whenever the counterpart for the CDS contracts changes. This could be done the following way:

class CDSContract {
public:
    // ...
    std::string counterpart() { return m_counterpart; }
    void setCounterpart(const std::string &s);
    double payoff() { return m_payoff;   }
    void setPayoff(double payoff) { m_payoff = payoff; }
private:
    std::string m_counterpart;
    CDSUnderlying m_underlying;
    double m_payoff;
    int m_term;
    double m_spreadCost;
    static double kStandardPayoff;
};
void CDSContract::setCounterpart(const std::string &s)
{
    m_counterpart = s;
    setPayoff(kStandardPayoff);
}

Whenever the counterpart for the contract changes, the class reacts by resetting the payoff to a standard 
value (defined by the constant kStandardPayoff). That would not be possible if the m_counterpart data 
member were not properly encapsulated into the CDSContract class.

 Inheritance
The benefits of encapsulation make it easy to implement and maintain code written in C++. However, it is 
commonly necessary to extend that code to handle situations that could not be anticipated by the designer 
of the original class. In that case, you can use inheritance as a powerful way to adapt your classes to new 
requirements.

 ■ Note Although inheritance is a powerful tool, its overuse may result in an implementation that is difficult to 
maintain and extend. The main problem is that it is very easy to create deep hierarchies of classes with different 
behavior at each level. This makes it difficult to analyze the behavior of classes in isolation.
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With the use of inheritance, it is possible to create a new class that contains the same data and behavior 
as an existing class. The new class is called a derived class, and the original class is called a base or parent 
class. For example, a loan-only credit default swap is a CDS where the protection is based on secured loans 
made on the target entity.

This useful type of CDS could be modeled as a new class that inherits from the original CDSContract 
class. If you need to create a derived class LoanOnlyCDSContract from a base class CDSContract, the C++ 
syntax would be the following:

class LoanOnlyCDSContract : public CDSContract {
public:
    // Constructors go here
    void changeLoanSource(const std::string &source);
private:
    std::string m_loanSource;
};

The public keyword is used to indicate that the public interface of the base class CDSContract is still 
available to the new class. The changeLoanSource member function is used to determine the source of the 
loan used by the CDS contract. The loan source is then stored in the m_loanSource member variable.

Notice that inheritance creates a new class that has access to all of the public and protected interfaces 
of the base class. So you still can call any method from the original CDSContract class when working with 
LoanOnlyCDSContract. On the other hand, private functions and data members are not available to the 
derived class. If you envision that a class could be used as the base for a hierarchy, it should provide access 
to some of the nonpublic interface using protected variables and functions. As a result, inheritance also 
requires a certain level of cooperation between base and derived classes.

 ■ Note inheritance requires that the new class be used in a context similar to the original class. Therefore, 
inheritance shouldn’t be used to create classes that have just a superficial similarity to the original class. in 
particular, a class that inherits from a base class could be used in the same code as the original class. if this is 
not true for the new class you need, it is better to create a separate class with a specialized interface.

Inheritance is the base technology used to accomplish many of the other techniques available in OO 
programming. Therefore, ideas such as polymorphism and abstract functions are possible due to the use of 
inheritance.

 Polymorphism
While inheritance in itself provides a useful extension mechanism, its biggest advantage is the possibility 
of changing the original behavior of the base class in specific situations. In C++, this is enabled by using the 
virtual keyword to mark member functions that have polymorphic behavior.

For example, suppose that the CDSContract class is required to calculate the contract value at a 
particular date. This operation can be performed at the class level, but it will be slightly different for each 
particular implementation. Concrete implementations of the class may want to take into consideration 
particular factors that are not available at the base class level, such as differences in underlying, contract 
structures, and calculation models.
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For these and other reasons, determining the best way to calculate the contract value may not be 
possible at the base class, and it must be delegated to derived class. Such derived class will possess 
additional data that can be used to compute the contract price with more precision than what is possible on 
the base class.

This behavioral change can be performed in the derived classes if you use C++ virtual mechanism. 
Syntactically, this polymorphic behavior can be implemented as long as the member function is modified 
with the virtual keyword in the original class. The virtual keyword is a C++ tool that allows functions to 
behave differently according to the concrete instance that is executing the function call.

For example, to support the required polymorphic behavior to calculate the contract value, the 
CDSContract base class should be coded as follows:

class CDSContract {
public:
    CDSContract();
    CDSContract(const CDSContract &p);
    ~CDSContract();
    CDSContract &operator=(const CDSContract &p);
    std::string counterpart() { return m_counterpart; }
    void setCounterpart(const std::string &s);
    double payoff() { return m_payoff;   }
    void setPayoff(double payoff) { m_payoff = payoff; }
    virtual double computeCurrentValue(const Date &d);
private:
    std::string m_counterpart;
    CDSUnderlying m_underlying;
    double m_payoff;
    int m_term;
    double m_spreadCost;
    static double kStandardPayoff;
};

The virtual double computeCurrentValue(const Date &d); line declares a new member function 
that can be overridden by derived classes.

 ■ Note Virtual methods need to be recognized by the compiler. Therefore, the virtual keyword has to 
appear directly in the base class, not only in the derived classes. if a member function is supposed to have 
polymorphic behavior, you have to use virtual to signal this information to the compiler. Overriding a non-
virtual member function doesn’t create a polymorphic object and will result in a warning in most compilers.

The classes derived from CDSContract can implement the virtual member function declared 
previously so that it can be invoked when instances of that derived class are created. Here is how this can be 
done for the LoanOnlyCDSContract subclass.

The isTradingDay member function returns true if the current date is not a holiday or a weekend day:

class LoanOnlyCDSContract : public CDSContract {
public:
    // Constructors go here
    void changeLoanSource(const std::string &s);
    virtual double computeCurrentValue(const Date &d);
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private:
    std::string m_loanSource;
};

The implementation for a virtual function, both in the base class and the derived classes, is not 
different from the syntax used in other member functions. It is used in the compiler to determine the correct 
way to handle virtual functions that are called.

The use of a virtual function is determined by its polymorphic invocation through pointers and 
references. For example, consider the following code using CDSContract and LoanOnlyCDSContract:

void useContract(bool isLOContract, Date &currentDate)
{
    CDSContract *contract = nullptr;
    if (isLOContract)
    {
        contract = new LoanOnlyCDSContract();
    }
    else
    {
        contract = new CDSContract(); // normal CDS contract
    }
    contract->computeCurrentValue(currentDate);
    delete contract;
}

The useContract function is passed two arguments: the Boolean value isLOContract, which indicates 
that the contract used is a loan-only CDS. The second argument is the current date for use of the contract. 
The first line in the function

CDSContract *contract = nullptr;

determines the base class of the object that will be created. As with any OO object in C++, a pointer (or 
reference) to a base class can be used to point to objects of any descent class. In this case, a pointer to the 
CDSContract class (being the base class) can also be used to point to objects of type LoanOnlyCDSContract. 
The pointer is initialized to nullptr.

 ■ Note The keyword nullptr was introduced in the C++11 standard. it provides a way to initialize pointers 
with a null value without the use of a macro such as nuLL (which is used in C but normally avoided in C++), 
or the value 0, which can be easily confused with a numeric expression. The nullptr keyword can be used to 
initialize a pointer so that it contains a known value. in C++, nullptr can also be used when a particular result 
cannot be retrieved or computed.

The next lines determine the exact type that will be instantiated. If the isLOContract flag is set to true, a 
new object of type LoanOnlyCDSContract is created using the new keyword. Otherwise, the function creates 
an object of type CDSContract as the default value. In a more complex application, types should not be 
encoded using flags but passed as a parameter or supplied by some of the part of the application.

The next line

contract->computeCurrentValue(currentDate);
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uses the pointer contract to perform a polymorphic call to computeCurrentValue. The polymorphic call 
mechanism will determine the correct implementation for the member function, depending on the exact 
class of the instance pointed to by the contract pointer. The next section explains how this mechanism 
works in practice and how it affects the creation and use of objects in C++.

 Polymorphism and Virtual Tables
The first step in using polymorphism via virtual functions is to understand how they differ from regular 
member functions. When a virtual function is called, the compiler has to determine the type of call and 
translate it into binary code that will perform the call to the correct implementation. This is done in C++ 
using the so-called virtual table mechanism.

A virtual table is a vector of functions that is created for each class that uses at least one virtual function. 
The virtual table stores the addresses of virtual functions that have been declared for that particular type, as 
shown in Figure 4-2.

Figure 4-2. Virtual functions shared by classes A, B, and C and stored in their respective virtual 
function tables

As shown in Figure 4-2, class A is the base class, and it contains a number of virtual functions, here 
denoted by the names f1 to f5. The slots in these tables store pointers to the implementation used by the 
class. Two other classes—B and C—are declared as derived classes via a public interface. This makes classes 
B and C inherit each a virtual table that contains at least the same function pointers (derived classes can add 
more virtual functions if they wish to do so).

Each class can define its own version of the virtual function, and as a result, the pointer to that function 
is stored in the corresponding location of the virtual table. The virtual table is populated in the compiler as it 
creates the data structures necessary for each class. At execution time, the virtual table is available for code 
executed by each of the classes defined in this example.

During runtime, the code generated by the C++ compiler can retrieve the location in the table where 
the function pointer is stored. Then, the function is called with the given parameters. First, the compiler 
retrieves the location of the virtual table associated with the class. Then, the compiler finds the function 
pointer at a predefined displacement from the beginning of the table. Finally, the program makes an indirect 
call using the function pointer stored at that location.

If you use this information to understand how C++ code works, you can see how the CDSContract 
and its derived class would execute a call to the computeCurrentValue member function, as shown in the 
following line of code:

contract->computeCurrentValue(currentDate);
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The first step performed by the implementation is to find the virtual table for the particular object that is 
stored in the contract pointer. Then, the slot corresponding to the virtual function computeCurrentValue is 
searched, usually at a fixed distance from the beginning of the vector as determined by the compiler. Finally, the 
function pointer retrieved in this way is called indirectly, resulting in a function call to the correct implementation.

Although the sequence of steps necessary to call a virtual function appears to be complex, modern 
compilers can generate very efficient code using the virtual table technique. By means of code optimization, 
virtual function calls frequently end up as just a call to a function pointer.

 Virtual Functions and Virtual Destructors
Another member function that can be annotated with the virtual keyword is the destructor. As you may 
remember, a destructor is called automatically (in the code generated by the compiler) when an object goes 
out of scope, with the objective of reclaiming resources used by the object.

The destructor may also be used through the keyword delete. When a delete is used, the code calls the 
destructor and frees the memory used by the object up to that moment. As a result, the pointer is not valid 
after the delete is called.

It is important to consider the role of the destructor when virtual functions are part of a class. The 
reason is that object cleanup is a class-specific activity, which needs to be overridden for each individual 
derived class that contains additional resources (such as memory, network connections, or graphical 
contexts). As a result, the destructor usually has different implementations that are necessary to perform the 
proper cleanup and deallocation activities.

For these reasons, the correct way to handle destructors in polymorphic classes is to use the virtual 
mechanism in their definition. This provides the means for each subclass to call a specific destructor even 
when called from a base pointer.

For example, consider what happens when the destructor in the base class is not virtual.

class CDSContract {
public:
    CDSContract();
    CDSContract(const CDSContract &p);
    ~CDSContract() { std::cout << " base class delete " << std::endl; }
    CDSContract &operator=(const CDSContract &p);
    std::string counterpart() { return m_counterpart; }
    void setCounterpart(const std::string &s);
    double payoff() { return m_payoff;   }
    void setPayoff(double payoff) { m_payoff = payoff; }
    virtual double computeCurrentValue(const Date &d);
// ...
};

The derived class LoanOnlyCDSContract would have the following simple definition, which just prints 
an informational message:

class LoanOnlyCDSContract : public CDSContract {
public:

LoanOnlyCDSContract() { std::cout << " derived class delete "
<< std::endl; }
    // Constructors go here
    void changeLoanSource(const std::string &s);
    virtual double computeCurrentValue(const Date &d);
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private:
    std::string m_loanSource;
};

If called from client code, these definitions may result in undefined behavior. For example, consider the 
following fragment:

void useBasePtr(CDSContract *contract, Date &currentDate)
{
    contract->computeCurrentValue(currentDate);
    delete contract;
}

This code receives a pointer of type CDSContract, uses it to call a virtual function, and then uses the 
delete operator on it. When called in the following way:

void callBasePtr()
{
    Date date(1,1,2010);
    useBasePtr(new LoanOnlyCDSContract(), date);
}

the code has undefined behavior, because the compiler cannot guarantee that the destructor of the derived 
class will be found and executed. From the compiler point of view, a nonvirtual destructor doesn’t need to 
be called when the object is destroyed.

To fix this problem, the right thing to do is to declare the destructor as virtual in the base class. A simple 
change in this definition can accomplish this:

class CDSContract {
public:
    CDSContract() {}
    CDSContract(const CDSContract &p);
    virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
    CDSContract &operator=(const CDSContract &p);
    // ... other members here
};

Once a virtual destructor has been declared in the base class, all descendant classes will also contain 
a virtual destructor, independent of using the virtual keyword. This is guaranteed by the presence of a 
virtual table containing the address of the destructor, as described in the previous section. The result of the 
callBasePtr function after this change is guaranteed to be the following:

$ ./CDSApp
 derived class delete
 base class delete

CHAPTER 4 ■ ObjECT-ORiEnTEd TECHniquEs



82

 Abstract Functions
Another mechanism used to implement polymorphism in C++ is abstract functions. Such abstract functions 
are closely related to virtual functions, but their presence marks the containing class as an abstract class, 
which cannot be directly instantiated.

An abstract class is frequently used when a function should be provided in derived classes, but there 
is no clear default behavior that could be provided by the base class. This is a common situation when a 
base class provides only the framework for an algorithm, with details that are purposefully left unspecified. 
The idea is that the derived classes will necessarily provide the missing functionality that would make the 
derived classes useful for a particular application.

The syntax for abstract functions is similar to the syntax for virtual functions. The member function is 
preceded with the virtual keyword as previously seen. In addition, the syntax = 0; is used to terminate the 
declaration of the abstract function. Notice that only a declaration is needed, since no implementation is 
necessary for an abstract function (although it can be provided if available).

For an example, consider that the CDSContract class has a member function to process a credit event. 
In the world of credit default swaps, a credit event is what happens when a company calls for bankruptcy. 
Processing this event is different for each entity and CDS type; therefore, I would like to have such a member 
function as an abstract virtual function:

class CDSContract {
public:
    CDSContract() {}
    CDSContract(const CDSContract &p);
    virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
    CDSContract &operator=(const CDSContract &p);
    std::string counterpart() { return m_counterpart; }
    void setCounterpart(const std::string &s);
    double payoff() { return m_payoff;   }
    void setPayoff(double payoff) { m_payoff = payoff; }
    virtual double computeCurrentValue(const Date &d);
    virtual void processCreditEvent() = 0;
    // ...
};

If a base class includes even one abstract virtual function, it becomes an abstract class that cannot be 
itself instantiated. The reason is that the class can be thought of as “incomplete,” since at least one of its 
virtual functions has no implementation. Given these definitions, the following code would become invalid:

CDSContract *createSimpleContract()
{

CDSContract *contract = new CDSContract();   ///
Wrong: CDSContract is now Abstract
    contract->setCounterpart("IBM");
    return contract;
}

Once an abstract member function has been defined, the classes that are direct descents are required 
to implement that function, or else they will become abstract too. For example, the descendant class 
LoanOnlyCDSContract now has to implement processCreditEvent in order to be used by client code. Even a 
trivial implementation would allow LoanOnlyCDSContract to be instantiated.
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class LoanOnlyCDSContract : public CDSContract {
public:

LoanOnlyCDSContract() { std::cout << " derived class delete "
<< std::endl; }
    // Constructors go here
    void changeLoanSource(const std::string &s);
    virtual double computeCurrentValue(const Date &d);
    virtual void processCreditEvent();
private:
    std::string m_loanSource;
};
void LoanOnlyCDSContract::processCreditEvent()
{
}

Abstract member functions can be freely used even inside the abstract class, where the body of that 
member function is not defined. For example, this is a valid definition for the CDSContract::computeCurren
tValue member function:

double CDSContract::computeCurrentValue(const Date &d)
{
    if (!counterpart().empty())
    {
        processCreditEvent(); // make sure there is no credit event;
    }
    return calculateInternalValue();  //
use an internal calculation function
}

 Building Class Hierarchies
One of the advantages of OO code is the ability to organize your application around conceptual frameworks 
defined by classes. A class hierarchy allows the sharing of common logic that can be easily reused in other 
contexts. Proper use of class hierarchy can reduce the amount of code duplication and lead to applications 
that are more understandable and easier to maintain.

A class hierarchy can be developed around important concepts used by the application. For example, 
in a derivatives-based application, the class CDSContract would be a candidate to become the root of a class 
hierarchy. Figure 4-3 shows a possible class hierarchy for CDS contracts, containing derived classes for the 
following types of contracts:

• LoanOnlyCDSContract: CDS contracts that are based on loans to other institutions 
and have special logic for processing these loans

• HedgedCDSContract: A CDS contract type where hedging is performed using other 
asset classes with the goal of reducing contract risk

• NakedCDSContract: A particular CDS contract where the contract seller does not own 
the underlying asset negotiated in the contract
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• FixedInterestCDSContract: A CDS type where the contract requires a fixed interest 
rate for the duration of the specified agreement

• VariableInterestCDSContract: A type of CDS where the contracts are defined using 
variable interest rates, using a well-known benchmark for interest rates

• TaxAdvantagedCDSContract: A particular type of CDS contract that takes advantage 
of a special tax structure

Figure 4-3. A class hierarchy rooted on the base class CDSContract

All these CDS contract derivatives would benefit from code sharing from the base class CDSContract. 
As a result, common functionality such as CDS pricing, contract creation, and contract maintenance can be 
stored in a central place and used by as many different types of CDS contracts as possible.

Although creating class hierarchies is a useful technique for code maintenance and sharing, inheritance 
may not be the best strategy for code organization in some cases. It is important to be able to identify the 
situations in which other approaches would work better. Here are some potential disadvantages of using 
inheritance:

• Increased coupling between classes: Once you decide to use inheritance, there is a 
big interdependence between classes. A small change in the base class can affect all 
descendant classes. If there is a situation where the base class can vary frequently in 
functionality and responsibilities, then inheritance may not be the best solution.

• Physical dependencies at compilation time: In C++, inheritance also creates a 
compile-time dependency between classes. To generate correct code, the C++ 
compiler needs to access the definition of each base class. This may result in 
increased compilation time, which is sometimes undesirable, especially in large 
software projects.

• Increased information coupling: Class hierarchies may also require developers to 
learn the multiple implementations of different classes at different levels. This is 
necessary especially when classes are not well designed and information about their 
operations is not clear.
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 Object Composition
Another strategy to organize and code using OO techniques is object composition. Composition is an 
alternative to inheritance, where you can use the behavior of an object without the dependency caused by 
direct class/subclass relationship.

To use object composition, you need to store the object that has the desired behavior as a member 
variable for the containing object. This is the basic strategy, which can be implemented in at least three 
ways in C++:

• Storing a pointer to an object: In this case, only a pointer to the object is stored as 
part of the class. This option allows an object to be created inside the class or passed 
as a parameter from a user of the class and then stored in a member variable.

• Storing a reference to an object: This option allows the class to receive a reference to 
an existing object but doesn’t allow the object to be created after the constructor is 
executed. A reference in C++ cannot be reassigned, which leads to a requirement 
that the stored object needs to be valid the whole time the container object exists.

• Storing the object directly as a member variable: In this case, the containing class 
assumes complete responsibility for storing the required object. Here, it is also 
necessary for the compiler to know the exact size and type of the object stored as a 
member variable, which reduces the flexibility of this method.

With object composition, a class can use the functionality provided by another class without the use of 
inheritance.

For example, suppose that the CDSContract class needs a fast method for calculating integrals. In this 
case, a good approach is to use an object-composition strategy to access the functionality of integration, 
instead of adding this functionality to the base class. You could do this, for example, by passing to the 
CDSContract constructor a pointer to a MathIntegration object and storing that pointer as a member 
function. The code would look like this:

class MathIntegration;
class CDSContract {
public:
    CDSContract() {}
    CDSContract(MathIntegration *mipt);
    CDSContract(const CDSContract &p);
    virtual ~CDSContract() { std::cout << " base delete " << std::endl; }
    CDSContract &operator=(const CDSContract &p);
    // Other member functions here
private:
    std::string m_counterpart;
    CDSUnderlying m_underlying;
    double m_payoff;
    int m_term;
    double m_spreadCost;
    MathIntegration *m_mipt;
    static double kStandardPayoff;
};

When necessary, the pointer could be used to access the functionality stored in the MathIntegration 
class. The best thing about this kind of design is that there is little coupling between the CDSContract and 
MathIntegration classes. Each one can evolve separately, by adding new functions as necessary, without 
the need for mutual dependencies.
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 When to Use Object-Oriented Features?
Since C++ is a language that can be used with different coding styles, the question arises of when to use 
object-oriented features instead of functional, template-based, or other programming techniques.  
Object-oriented features in C++ should be used when you want to organize your code around objects, 
encapsulate data and behavior, and promote modularity and reusability.

Here are some situations where object-oriented features are particularly beneficial:

• Code organization: Object-oriented programming (OOP) provides a natural way to 
organize code by grouping related data and behavior into objects. This improves 
code readability and maintainability and allows for better organization of complex 
systems.

• Encapsulation: OOP allows you to encapsulate data and behavior within objects, 
providing data hiding and abstraction. Encapsulation helps enforce access control 
and promotes modular design by allowing objects to communicate through well-
defined interfaces.

• Code reuse: Inheritance and polymorphism, key features of OOP, facilitate code 
reuse. Inheritance enables the creation of derived classes that inherit and extend 
the functionality of base classes, promoting code reuse and reducing duplication. 
Polymorphism allows objects of different types to be treated interchangeably, 
enabling flexible and reusable code.

• Modularity and extensibility: OOP promotes modularity, allowing you to break down 
complex systems into smaller, manageable components (objects). This modularity 
facilitates maintenance, testing, and extensibility, as changes in one object have 
limited impact on other parts of the system.

• Design patterns: Object-oriented features align well with common software design 
patterns. Many design patterns, such as Factory, Observer, and Strategy, rely on 
polymorphism and encapsulation to solve recurring design problems. OOP makes it 
easier to implement and understand these patterns.

• Team collaboration: OOP provides a common paradigm and vocabulary for 
developers, making it easier for team members to collaborate and understand each 
other’s code. OOP concepts, such as classes, objects, and inheritance, are widely 
understood and used in industry.

• Modeling real-world entities: Object-oriented programming allows you to model 
real-world entities and their interactions more naturally. By representing objects 
as classes and their relationships as inheritance or composition, you can create 
software that mirrors the real-world problem domain.

 Objects and C++23
Object orientation capabilities in C++ have been enhanced with the new features introduced in the recent 
versions of the standard, particularly with C++23. The trend in the language is to provide strong support for 
compile-time interfaces. This emphasis makes it possible to write software that interacts with objects in a 
safer way while reducing the amount of checking that needs to be done at runtime and, therefore, increasing 
performance.
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One example is the introduction of concepts. The concept feature is complex and its full explanation 
cannot be provided in this chapter, but in a few words, it means that programmers can now request features 
from objects at compilation time. For example, if a function works with objects that contain dates, we can 
write the requirement that any object passed to a certain function contains an is_date member function.

The concept feature of C++23 makes it possible to avoid some runtime checking of object types 
by expressing such requirements at compilation time. Concepts also help in the generation of clear 
requirements, with better error messages produced by compilers.

Here is a simple example of how objects in C++ interact with concepts:

#include <concepts>
#include <vector>
// Simple option contracts class
class OptionContract {
    public:
    virtual void sell() {
        // Sell implementation...
    }
};
template <class OptionContainer>
void sellAllContracts(OptionContainer &oc)
  requires std::same_as<
          typename OptionContainer::value_type, OptionContract *>
{
  std::for_each(oc.begin(), oc.end(),
           [](OptionContract* aContract) { aContract->sell(); } );
}
void useContracts() {
    std::vector<OptionContract*> contracts;
    // ...
    sellAllContracts(contracts);
}

In this code fragment, the concepts header file is used to provide library support for concepts. Then, 
we create a simple class called OptionContract. This class is responsible for holding option contracts of 
a particular type, and it knows how to sell contracts using the sell() member function. Later, a template 
function named sellAllContracts is introduced. The special feature of this function is that it contains a 
requires statement, which can be used to specify clear requirements on types that it manipulates. In this case, 
the code only requires that the parameter be a container that has same value_type as OptionContract *.  
In other words, the parameter must be a container for OptionContract object pointers.

With this requirement in place, the code of the function is now able to safely call the sell() method of 
the OptionContract class, since the compiler already knows that the elements of the oc container must be of 
type OptionContract.

In general, the Concepts feature allows you to define requirements on template arguments, improving 
the readability and expressiveness of generic and object-oriented code. Here is another example of how 
Concepts could be used to check your code:

#include <iostream>
#include <concepts>

// Concept: ArithmeticType
template <typename T>
concept ArithmeticType = std::is_arithmetic_v<T>;
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// Function template
template <ArithmeticType T>
T add(T a, T b) {
    return a + b;
}

int main() {
    int result = add(5, 10);
    std::cout << "Result: " << result << std::endl;

    // Error: 'const char*' does not satisfy the 'ArithmeticType' concept
    // int invalidResult = add("Hello", "World");

    return 0;
}

The preceding code was compiled with gcc using the -std=cxx2a compiler option to activate the 
concepts keyword. In this example, we define a concept ArithmeticType that checks whether a type is an 
arithmetic type using the std::is_arithmetic_v trait. Then, we define a function template add that takes two 
arguments of the same type satisfying the ArithmeticType concept. The function adds the two arguments 
and returns the result.

In the main function, we demonstrate the use of the add function by calling it with two integers. Since 
int satisfies the ArithmeticType concept, the code compiles and executes successfully, printing the result.

If we attempt to call add with arguments that do not satisfy the ArithmeticType concept, such as two 
string literals, the code will fail to compile and produce an error.

 Conclusion
In this chapter, I presented an overview of OO concepts provided in C++ and how they are used in the 
financial development community to solve problems occurring with options and derivatives.

The first part of this chapter summarized the basic characteristics of OO as implemented in C++, 
including the main concepts of encapsulation, inheritance, and polymorphism. You learned about the 
technique used in C++ to implement polymorphic behavior through virtual functions. You also saw how 
virtual functions are stored in virtual tables that are created for each class that contains virtual functions.

This chapter also presented some examples of using OO to efficiently solve common problems in 
financial programming, as applied to options and derivatives. The next chapter proceeds to template-based 
concepts and explains how they can be used to create high-performance solutions to problems in the area of 
financial derivatives processing.
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CHAPTER 5

Design Patterns  
for Options Processing

Design patterns are a set of common programming design elements that can be used to simplify the solution 
of recurring problems. With the use of OO techniques, design patterns can be cleanly implemented as a set 
of classes that work toward the solution of a common goal. These designs can then be reused and shared 
across applications.

Over the last few years, design patterns have been developed for common problems occurring in 
several areas of programming. When designing algorithms for options and other derivatives, design patterns 
can provide solutions that are elegant and reusable (when supporting libraries are employed). Thanks to the 
inherent ability of the C++ language to create efficient code, these solutions also have high performance.

In this chapter, you will learn about the most common design patterns employed when working 
with financial options and derivatives, with specific examples of their usage. The chapter covers the 
following topics:

• Overview of design patterns: You will learn how design patterns can help in the 
development of complex applications, with the ability to reuse common patterns of 
programming behavior. Using design patterns can also make solutions more robust 
and easier to understand, because patterns provide a common language that allows 
developers to discuss complex problems. Such design techniques have also been 
made available through libraries that implement some of the best-known design 
patterns.

• Factory method pattern: A factory method is a design pattern that allows objects to 
be created in a polymorphic way, so the client doesn’t need to know the exact type 
of the returned object, only the base class that provides the desired interface. It also 
helps to hide a complex set of creation steps to instantiate particular classes.

• Singleton pattern: The singleton pattern is used to model situations in which you 
know that only one instance of a particular class can validly exist. This is a situation 
that occurs in several applications, and in finance, I present the example of a clearing 
house for options trading.
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• Observer pattern: Another common application of design patterns is in processing 
financial events such as trades. The observer design patterns allow you to decouple 
the classes that receive trading transactions from the classes that process the 
results, which are the observers. Through the observer design pattern, it is possible 
to simplify the logic and the amount of code necessary to support these common 
operations, such as the development of a trading ledger, for example.

• Visitor pattern: We also investigate the visitor pattern that allows two or more class 
hierarchies to cooperate in performing dynamic method dispatching.

 Introduction to Design Patterns
Design patterns have been introduced as a set of programming practices that simplify the implementation 
of common coding problems. As you study the behavior of OO applications, there are tasks and solution 
strategies that occur frequently and can be captured as a set of reusable classes.

Object-oriented programming provides a set of principles that can facilitate the development of 
computer software. Using OO programming techniques, you can easily organize your code and create high-
level abstractions for application logic and commonly used component libraries. In this way, OO techniques 
can be used to improve and reuse existing components, as well as simplify the overall development. OO 
programming promotes a way of creating software that uses logical elements operating at a higher level of 
abstraction.

Here are some of the most common design patterns that can be used in software development in 
general and for algorithms to process options and derivatives in particular, as viewed in Figure 5-1:

• Factory method: In the factory method design pattern, the objective is to hide the 
complexity and introduce indirection when creating an instance of a particular class. 
Instead of asking clients to perform the initialization steps, factory methods provide 
a simple interface that can be called to create the object and return a reference.

• Singleton: A singleton is a class that can have at most one active instance. The 
singleton design pattern is used to control access to this single object and avoid 
creating copies of this unique instance.

• Observer: The observer pattern allows objects to receive notifications for important 
events occurring in the system. This pattern also reduces the coupling between 
objects in the system, since the generator of notification events doesn’t need to know 
the details of the observers.

• Visitor: The visitor pattern allows a virtual function to be called in response to 
another dynamic invocation in a separate class. The visitor pattern provides a way 
to dispatch messages based on a combination of two objects, instead of the single 
object-based dispatch that is the norm for C++ virtual member functions.
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Figure 5-1. A few common design patterns used in OO programming

In the next few sections, you will see how these design patterns can be implemented in C++, with 
examples of how they occur in options and derivatives applications.

 The Factory Method Design Pattern
A factory design pattern is a technique used to indirectly create objects of a particular class. This pattern is 
important because it is frequently useful to access newly allocated objects without having to directly perform 
the work necessary to create them. For example, using the factory method design pattern, it is possible to 
avoid the use of the new keyword to create an object, along with the parameters required by the constructor. 
You can also define a factory method as creating a family of objects that are of the same class hierarchy.

The factory design pattern allows an object to be created through a member function of the desired 
class so that the client doesn’t need to create the object directly. This can be useful for the following reasons:

• Most of the time, there is no need for the client to provide parameters for construction 
of the object (however, a parameter may be used to determine the type of object to 
create). For example, if the objects require the allocation of additional resources, such 
as a file or a network connection, the client is relieved from acquiring these resources.

• Sometimes, the object depends on internal implementation details, such as a private 
class, that are not available to clients. In this case, providing a factory method is the 
only way to create new instances of the object.

• The exact sequence of events necessary to create an object may change. In that case, 
it is better to provide a factory method that hides this complexity. Users of the class 
will not have to worry if the way the object is created is updated.

• More importantly, factory methods can be used to simplify polymorphic object 
creation. For example, when an object is created using the new operator, the concrete 
type of the returned object has to be known by the client. On some applications, this 
might be undesirable, because the real type of the needed object could be any one 
within a set of derived classes. Using a factory method, it is possible to delegate the 
creation of the object so that the client code doesn’t need to know about the concrete 
type, and only the base class is known by clients. As a result, the returned object may 
be any one of the subtypes of the original type.
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Static member methods can be used to implement the Factory pattern. Such a member function 
doesn’t depend on an instance of the class to be executed. The syntax for member functions is simply 
ClassName::functionName(), with parameters added as needed.

 ■ Note The factory method design pattern is also used as a foundation for more complex design patterns.  
for example, you will notice that other patterns such as singleton use a factory method to control the creation 
of new instances of a particular class.

In options and derivatives applications, the factory method is commonly used. A situation where the 
use of a factory method is desirable is when you need to load data objects. The data source used can vary 
from a local file to a URL, and the parsing of that data is not an important part of the overall algorithm. In 
that case, abstracting the creation of the data source can be an important application of the factory method.

In the example that follows, you can see how a DataSource class can be implemented. The goal of this 
class is to hide the process of creating a new data source, so the clients have no access to the real constructor 
of the class. Instead, clients need to use a factory method, which is implemented as a static member function 
of the DataSource class.

When using factory methods, it is frequently useful to hide the real implementation of the constructor. 
This can be done through careful use of the private modifier. The goal is to grant access to the constructor 
only to the class itself (and to any declared friends of the class). This is done to the standard constructor as 
well as to the copy constructor.

The interface to the DataSource class is presented in Listing 5-1. Both constructors and the assignment 
operator are declared as private. The destructor, however, needs to be accessible so that the delete keyword 
can be called on allocated objects. The readData member function is an interface for the main responsibility 
attributed to this class, and its implementation will vary according to the read data source used. The 
createInstance member function is a static function that creates and returns new instances of the data 
type, functioning as the factory method.

Listing 5-1. Declaration of the DataSource Class

//
//  DataSource.hpp
#ifndef DataSource_hpp
#define DataSource_hpp
#include <string>
class DataSource {
private:
    DataSource(const std::string &name);
    DataSource(const DataSource &p);
    DataSource &operator=(const DataSource &p);
public:
    ~DataSource();  // must be public so clients can use delete
    static DataSource *createInstance();
    void readData();
private:
    std::string m_dataName;
};
#endif
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The implementation of the DataSource class is shown in Listing 5-2. The constructors and destructor 
are standard, considering the fact that the constructor is private. The interesting part of the DataSource 
implementation is the getInstance method, which returns a new data source. This implementation 
receives only one parameter that is created by the method, but consider the general case in which a list of 
complex or implementation-dependent objects needs to be retrieved in order to call the new operator for the 
DataSource class.

 ■ Note At the end of getInstance, the member function returns a pointer to the newly created object. 
Another option is to return a smart pointer, such as std::shared_ptr, which would make it easier to manage 
the lifetime of the allocated object.

Listing 5-2. Implementation of the DataSource Class

//
//  DataSource.cpp
#include "DataSource.hpp"
DataSource::DataSource(const std::string &name)
: m_dataName(name)
{
}
DataSource::DataSource(const DataSource &p)
: m_dataName(p.m_dataName)
{
}
DataSource &DataSource::operator=(const DataSource &p)
{
    if (this != &p)
    {
        m_dataName = p.m_dataName;
    }
    return *this;
}
DataSource::~DataSource()
{
}
// Create the object instance.
// Note: this is not thread safe.
DataSource *DataSource::createInstance()
{
    std::string sourceName;

// Complex method used here to find sourceName and other construction parameters...
    DataSource *ds = new DataSource(sourceName);
    return ds;
}
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void DataSource::readData()
{
    // Read data here...
}
void useDataSource()
{
    // DataSource *source = new DataSource(""); // this will not work!
    DataSource *source = DataSource::createInstance();
    source->readData();
    // Do something else with data
    delete source;
}

 The Singleton Pattern
One of the simplest and most used design patterns is the singleton. With this design pattern, a single object is 
used from each class so that there is a central location where services managed by that class can be directed.

Unlike standard classes, a singleton is a class that will only create one instance and therefore represents 
a single resource that cannot be replicated. Because of this, the singleton pattern restricts the ability to create 
new objects of a particular class, using a few techniques that will be discussed later in this section. C++ 
provides all the features necessary to implement singleton patterns with high performance.

In programming, the notion of an entity that is unique across the application is frequently encountered. 
An example in options programming is an entity called a clearing house. A clearing house is an institution 
that provides clearing services for trades on options and derivatives. The clearing house makes sure that 
every trade has collateral so that counterpart risk is reduced, among other attributions. For example, if a 
trader sells options in a particular instrument, the clearing house will make sure that the trader has enough 
margin to satisfy the requirements of that particular trade.

While a clearing house provides important services in the trading industry, most applications need 
to connect to a single clearing house. Thus, creating a single object to represent the clearing house is an 
obvious implementation technique for this situation. Table 5-1 presents a few examples of objects that could 
be modeled using a singleton.

Table 5-1. Example Objects That Can Be Implemented As a Singleton Design Pattern

Object Notes
Clearing house (finance) A single clearing house is used for all trades.

Root window (GUI) Each GUI application communicates with only one root window.

Operating system An object representing operating system services is unique through the 
application.

Company CEO An object representing the CEO has only one instance.

Memory allocator (system 
services)

Each application uses a single memory allocator, which can be represented 
by a singleton.

To implement a singleton in C++, the first step is to make sure that there is only one object of that class 
in the application. To do this, it is necessary to disallow the creation of new objects of that particular class. 
You can take advantage of the ability provided by C++ to make class members inaccessible to users of the 
class through the private keyword. Users then cannot use the new keyword to generate new objects of that 
particular class.
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On the other hand, it is necessary to create some mechanism for clients to access an instance of the 
singleton class. This is usually done using a static member function that returns the single existing object 
or creates a new object if necessary before returning it. Using such an access member function, clients can 
access the public interface of the singleton object. At the same time, they’re not allowed to create or manage 
the life cycle of that object.

 Using the Singleton Design Pattern
The singleton design pattern is used when you want to ensure that only one instance of a class is created 
and that instance is globally accessible. There are some situations where using the singleton pattern may be 
appropriate.

If you have a limited resource that needs to be shared across different parts of your application, such as 
a database connection, thread pool, or configuration settings, the singleton pattern can be used to manage 
the access and ensure that all components use the same instance.

In another case, when you need a single point of control for coordinating actions in a system, the 
singleton pattern can be helpful, for example, a logging service that needs to be accessed from different parts 
of an application to record events in a centralized manner.

In scenarios where you need to cache objects to improve performance, a Singleton can be used to 
provide a global cache manager. The Singleton can control the creation, storage, and retrieval of cached 
objects.

Moreover, if you want to ensure that only one instance of a class can be created throughout the lifetime 
of an application, the singleton pattern enforces this restriction. This is useful in cases where multiple 
instances could cause issues or conflicts.

However, it’s important to consider the downsides and limitations of the singleton pattern as well. It can 
introduce global state, making your code harder to test and maintain. It can also lead to tight coupling and 
hinder flexibility in the future. Therefore, it’s essential to carefully evaluate whether the singleton pattern is 
the most appropriate solution for your specific use case before implementing it.

 Clearing House Implementation in C++
A clearing house, also known as a clearing corporation or a clearing agency, is a financial institution or entity 
that acts as an intermediary between buyers and sellers in financial markets. Its primary role is to facilitate 
the settlement of trades and ensure the smooth functioning of the market.

When a trade is executed between a buyer and a seller, the clearing house receives trade data from 
the respective parties. It verifies the details of the trade, such as the quantity, price, and terms, to ensure 
accuracy and eliminate discrepancies.

The clearing house becomes the central counterparty to all trades, acting as the buyer to every seller 
and the seller to every buyer. This process helps to mitigate counterparty risk, as the clearing house becomes 
responsible for ensuring the completion of each trade.

The clearing house establishes and enforces margin requirements for market participants. Margin is a 
deposit or collateral that traders must maintain to cover potential losses. By setting margin requirements, 
the clearing house helps manage risk and ensures that market participants have sufficient funds or collateral 
to meet their obligations.

Clearing houses play a crucial role in managing and mitigating risks associated with trading. They 
employ risk management systems and mechanisms to monitor and control potential defaults, market 
volatility, and other risks that could disrupt the settlement process.

The clearing house facilitates the settlement of trades by ensuring the timely and accurate transfer of 
securities and funds between buyers and sellers. It maintains accounts for market participants and facilitates 
the delivery of securities from sellers to buyers and the transfer of funds accordingly.
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Finally, clearing houses employ risk containment measures such as collateral requirements, default 
funds, and loss-sharing arrangements to protect against potential losses. These measures are in place to 
ensure the financial integrity and stability of the clearing house and the broader financial system.

A possible implementation in C++ for the clearing house class using the singleton pattern is presented 
in Listings 5-1 and 5-2. The class has two parts: the first part deals with the management of the singleton 
object. This is done through the definition of private constructor and destructors, as well as the presence of a 
static member function getClearingHouse, which returns a reference to the singleton instance.

The second part of the implementation deals with the responsibilities of the clearing house, 
represented here as the member function clearTrade. This function receives as an argument a Trade object, 
which is not defined here but contains all the data associated with the transaction.

Listing 5-3 shows the interface, which follows the singleton design pattern. Listing 5 4 contains the 
implementation of the member functions declared in the class interface, as well as the static member 
variable s_clearingHouse.

Listing 5-3. Header File for the ClearingHouse Class, Which Implements the Singleton Design Pattern

//
//  DesignPatterns.hpp
//  CppOptions
#ifndef DesignPatterns_hpp
#define DesignPatterns_hpp
class Trade {
    //  ....
};
class ClearingHouse {
private:                   //
These are all private because this is a singleton
    ClearingHouse();
    // The copy constructor is not implemented
    ClearingHouse(const ClearingHouse &p);
    ~ClearingHouse();
    // Assignment operator is not implemented
    ClearingHouse &operator=(const ClearingHouse &p);
public:
    static ClearingHouse &getClearingHouse();
    void clearTrade(const Trade &);
private:
    static ClearingHouse *s_clearingHouse;
};
#endif /* DesignPatterns_hpp */

The implementation file contains the member function ClearingHouse::getClearingHouse. This 
function first checks the static variable s_clearingHouse to determine if it has been previously allocated. If 
the object doesn’t exist, then the static function can create a new object, store it for further use, and return a 
reference. In a real-world case, one needs to make sure that this is done in a single thread in order to avoid 
racing conditions. That can be done using a mutex, for example.

The function useClearingHouse is an example of how the ClearingHouse class can be used. The 
first step is to have a variable hold a reference to the singleton object. Then, by calling the static function 
getClearingHouse, you can access the singleton. In this example, the singleton is used to process another 
trade through the member function clearTrade.
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Listing 5-4. Implementation File for the ClearingHouse Class, Which Uses the Singleton Design Pattern

//
//  DesignPatterns.cpp
#include "DesignPatterns.hpp"
ClearingHouse *ClearingHouse::s_clearingHouse = nullptr;
ClearingHouse::ClearingHouse()   //
private constructor, cannot be used by clients
{
}
ClearingHouse::~ClearingHouse()  //
this is private and cannot be used by clients
{
}
ClearingHouse &ClearingHouse::getClearingHouse()
{
    if (!s_clearingHouse)
    {
        s_clearingHouse = new ClearingHouse();
    }
    return *s_clearingHouse;
}
void ClearingHouse::clearTrade(const Trade &t)
{
     // Trade is processed here
}
void useClearingHouse()
{
    Trade trade;
    ClearingHouse &ch = ClearingHouse::getClearingHouse();
    ch.clearTrade(trade);
}

 The Observer Design Pattern
A frequent situation that happens in complex systems is the occurrence of events that trigger further actions. 
For example, an event that occurs on financial systems is the completion of an options trade. When a new 
trade is completed, several actions need to be performed to update the state of the system and reflect the 
new positions in the ledger.

The observer design pattern is a very powerful strategy to manage event updates. It is based on a 
technique that gives clients the ability to listen to events, perform updates to a particular object, and react 
accordingly.

There are two parts of the observer design pattern (see Figure 5-2). First, there is an observer, which 
implements an abstract interface capable of receiving notifications. The abstract interface consists of a single 
member function, called notify. This member function is called by the second part of the design pattern, 
the Subject, when a new event occurs (the arrow between them means that the observer has a reference to 
the Subject).
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Figure 5-2. Simplified scheme of the observer design pattern

The Subject class has at least three member functions that enable the functionality of the observer 
design pattern. The first function is addObserver, which takes as a parameter a reference to an observer 
object. The addObserver function maintains the reference in an internal list of objects that are interested in 
receiving notifications.

The second member function in the Subject interface is removeObserver, which simply removes a 
given observer from the notification list. Finally, there is a member function called triggerNotifications 
that is used to send the notifications to all objects that registered with the Subject class.

The observer design pattern can readily be implemented in C++ using abstract classes. You can see a 
sample implementation in Listings 5-5 and 5-6. The first class that is considered is the Observer class. This 
class has the purpose of providing a simple interface for the observer. Its only nontrivial member function 
is notify, which is an abstract function called by the subject when a new event occurs. As a result, any class 
deriving from observer needs to process the notification in a user-defined way.

The interface is the following:

class Observer {
public:
    // Constructor and destructor definitions
    virtual void notify() = 0;
};

 ■ Note Consider how the Observer class is independent of any implementation detail for the trading ledger 
system. This definition could be reused as part of a design pattern’s library. similar techniques can be used to 
simplify the creation of other design patterns as well.

Next, it is necessary to define a class that implements the abstract observer interface. In this case, the 
goal is to implement a trade observer, which can be specified in the following way:

class TradeObserver : public Observer {
public:
    TradeObserver(TradingLedger *t);
    TradeObserver(const TradeObserver &p);
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    ~TradeObserver();
    TradeObserver &operator=(const TradeObserver &p);
    void notify();
    void processNewTrade();
private:
    Trade m_trade;
    TradingLedger *m_ledger;
};

The constructor for this class receives as a parameter a pointer to the TradingLedger object, which will 
be defined later. The class provides an implementation for notifications and a member function to process 
new trades. These two member functions are implemented as follows:

void TradeObserver::notify()
{
    this->processNewTrade();
}
void TradeObserver::processNewTrade()
{
    m_trade = m_ledger->getLastTrade();
    // Do trading processing here
}

Here, the notification implementation just calls the processNewTrade function, which stores the trade 
returned by the ledger object.

Finally, you can also see a definition for the TradingLedger class. The class contains the three 
member functions that comply with the subject interface (addObserver, removeObserver, and 
triggerNotifications). The class also contains two simple member functions to add and return trades, as 
shown in the following definitions:

class TradingLedger {
public:
    TradingLedger();
    TradingLedger(const TradingLedger &p);
    ~TradingLedger();
    TradingLedger &operator=(const TradingLedger &p);
    void addObserver(std::shared_ptr<Observer> observer);
    void removeObserver(std::shared_ptr<Observer> observer);
    void triggerNotifications();
    void addTrade(const Trade &t);
    const Trade &getLastTrade();
private:
    std::set<std::shared_ptr<Observer>> m_observers;
    Trade m_trade;
};

The addObserver and removeObserver functions operate with std::shared_ptr templates for the 
observer object. The goal is to avoid unnecessary memory issues by delegating the memory deallocation 
to shared pointers from the standard library. These two functions operate as an interface to the internal 
m_observers container.
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The triggerNotifications function can be implemented as follows:

void TradingLedger::triggerNotifications()
{
    for (auto i : m_observers)
    {
        i->notify();
    }
}

It simply loops through all elements stored in the m_observers set and sends a notification to these 
registered objects. Each such object that implements the observer interface can now respond to the event 
as needed.

 Complete Code
The complete example previously described can be seen in Listings 5-5 and 5-6. The first file contains only 
the interface for the main classes used in the system. Listing 5-6 shows the implementation of these classes, 
along with a sample main function that creates the ledger and two observer objects.

Listing 5-5. Header File Containing Interfaces for the Observer Design Pattern

//
//  Observer.hpp
#ifndef Observer_hpp
#define Observer_hpp
#include <set>
#include <memory>
class Observer {
public:
    Observer();
    Observer(const Observer &p);
    ~Observer();
    Observer &operator=(const Observer &p); // not implemented
    virtual void notify() = 0;
};
class Trade {
    //
    // .... Implementation not shown here
};
class TradingLedger;
class TradeObserver : public Observer {
public:
    TradeObserver(TradingLedger *t);
    TradeObserver(const TradeObserver &p);
    ~TradeObserver();
    TradeObserver &operator=(const TradeObserver &p);
    void notify();
    void processNewTrade();
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private:
    Trade m_trade;
    TradingLedger *m_ledger;
};
class TradingLedger {
public:
    TradingLedger();
    TradingLedger(const TradingLedger &p);
    ~TradingLedger();
    TradingLedger &operator=(const TradingLedger &p);
    void addObserver(std::shared_ptr<Observer> observer);
    void removeObserver(std::shared_ptr<Observer> observer);
    void triggerNotifications();
    void addTrade(const Trade &t);
    const Trade &getLastTrade();
private:
    std::set<std::shared_ptr<Observer>> m_observers;
    Trade m_trade;
};
#endif /* Observer_hpp */

Listing 5-6. Implementation File with C++ Definitions for the Observer Design Pattern

//
//  Observer.cpp
#include "Observer.hpp"
using std::shared_ptr;
typedef shared_ptr<Observer> PObserver;
typedef shared_ptr<TradeObserver> PTradeObserver;
Observer::Observer()
{
}
Observer::Observer(const Observer &p)
{
}
Observer::~Observer()
{
}
void Observer::notify()
{
}
TradeObserver::TradeObserver(TradingLedger *t)
: m_ledger(t)
{
}
TradeObserver::TradeObserver(const TradeObserver &p)
: m_trade(p.m_trade),
  m_ledger(p.m_ledger)
{
}
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TradeObserver::~TradeObserver()
{
}
TradeObserver &TradeObserver::operator=(const TradeObserver &p)
{
    if (this != &p)
    {
        m_trade = p.m_trade;
        m_ledger = p.m_ledger;
    }
    return *this;
}
void TradeObserver::notify()
{
    this->processNewTrade();
}
void TradeObserver::processNewTrade()
{
    m_trade = m_ledger->getLastTrade();
    // Do trading processing here
}
// -- TradingLedger implementation
TradingLedger::TradingLedger()
{
}
TradingLedger::TradingLedger(const TradingLedger &p)
: m_observers(p.m_observers),
  m_trade(p.m_trade)
{
}
TradingLedger::~TradingLedger()
{
}
TradingLedger &TradingLedger::operator=(const TradingLedger &p)
{
    if (this != &p)
    {
        m_observers = p.m_observers;
        m_trade = p.m_trade;
    }
    return *this;
}
void TradingLedger::addObserver(PObserver observer)
{
    m_observers.insert(observer);
}
void TradingLedger::removeObserver(PObserver observer)
{
    if (m_observers.find(observer) != m_observers.end())
    {

CHAPTER 5 ■ DEsign PATTERns foR oPTions PRoCEssing 



103

        m_observers.erase(observer);
    }
}
void TradingLedger::triggerNotifications()
{
    for (auto i : m_observers)
    {
        i->notify();
    }
}
void TradingLedger::addTrade(const Trade &t)
{
    m_trade = t;
    this->triggerNotifications();
}
const Trade &TradingLedger::getLastTrade()
{
    return m_trade;
}
//
//  Simple test stub for the TradingLedger and TradeObserver classes.
int main()
{
    TradingLedger tl;
    PTradeObserver observer1 = PTradeObserver(new TradeObserver(&tl));
    PTradeObserver observer2 = PTradeObserver(new TradeObserver(&tl));
    tl.addObserver(observer1);
    tl.addObserver(observer2);
    // Perform trading system here
    Trade aTrade;
    tl.addTrade(aTrade);
    // Observers should receive a notification at this point
    return 0;
}

 The Visitor Pattern
Another useful pattern that has been used in several real-life applications is the visitor pattern. In this 
pattern, the goal is to allow dynamic dispatching of objects in two separate hierarchies of types. This design 
pattern has application in many common problems occurring in finance.

The problem solved by the visitor pattern is the application of dynamic rules to two or more 
polymorphic objects at the same time. This is necessary because C++, like some other object-oriented 
languages, uses single dispatch to process polymorphic calls.

The visitor design pattern is generally used when you have a complex object structure consisting of 
multiple types of objects and you want to perform operations on those objects without modifying their 
individual classes. There are some situations where using the visitor pattern may be the most appropriate.

If you have a set of classes that represent a structure or hierarchy and you want to add new operations 
or behaviors to these classes without modifying their code, the visitor pattern can be useful. Instead of 
modifying each class individually, you can create a visitor class that defines the new operations, and each 
class can accept the visitor to perform those operations.
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Moreover, when you have a complex object structure with many different types of objects and you 
want to define algorithms that operate on these objects, the visitor pattern can help separate the algorithm 
implementation from the object structure. You can define a visitor class for each algorithm, and the objects 
accept the visitor to perform the algorithm-specific operations.

The visitor pattern is particularly helpful when you need to perform operations based on both the type 
of the object being visited and the type of the visitor. This allows you to achieve double dispatch or multiple 
dispatch, where the specific implementation of the operation is determined at runtime based on both the 
object and the visitor types.

Finally, the visitor pattern supports the open-closed principle, which states that classes should be open 
for extension but closed for modification. With the visitor pattern, you can add new visitors and operations 
to the object structure without modifying the existing classes, promoting extensibility and reducing the risk 
of introducing bugs.

Consider, for example, the case of a class representing derivative contracts. The class can have several 
polymorphic (virtual) methods, including one for displaying the profit/loss chart.

#include <list>
class ChartDisplay;
class SimpleDerivativeContract {
  public:
  virtual void chartProfitLoss(ChartDisplay *c);
};
class ChartDisplay {
public:
   virtual void displayContracts(
                 std::list<SimpleDerivativeContract*> &contracts);
   virtual void addToChart(SimpleDerivativeContract *c);
};

The SimpleDerivativeContract class has a virtual method that is able to present a chart with profit/
loss for the position. But to do this, the derivative object needs to coordinate with a second class, called 
ChartDisplay. Both ChartDisplay and SimpleDerivativeContract have polymorphic methods that interact 
with each other, but in C++, the virtual dispatch is done in just a single method. For example, ChartDisplay 
might have specialized subclasses such as PDFChart and HTMLChart.

To make this possible, the visitor design pattern enables the dynamic interaction of two classes by 
the use of virtual methods that call each other. In summary, one of the objects becomes responsible to 
implement the visitation strategy, by which the virtual method on the second object is called. Here is the 
implementation of our example classes:

void ChartDisplay::displayContracts(
    std::list<SimpleDerivativeContract*> &contracts) {
    for (auto c : contracts) {
        c->chartProfitLoss(this);
    }
}
void SimpleDerivativeContract::chartProfitLoss(ChartDisplay *disp) {
      // ...
      // Use ChartDisplay virtual methods:
      disp->addToChart(this);
}
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The first method, displayContracts, is responsible for displaying each of the contract objects stored 
in the container passed as parameter. To do this, the virtual method chartProfitLoss is called with the 
ChartDisplay as a parameter. On the other hand, the chartProfitLoss method also calls a virtual method 
from ChartDisplay: addToChart. This relation between the two methods is what makes the dual virtual 
dispatch to work, allowing two separate hierarchies to work together in a dynamic fashion:

class PDFDisplay : public ChartDisplay {
public:
    virtual void addToChart(SimpleDerivativeContract *c) {
        // Add contract to a PDF chart here
    }
};
class HTMLDisplay : public ChartDisplay {
public:
    virtual void addToChart(SimpleDerivativeContract *c) {
        // Add contract to an HTML chart here
    }
};

 Conclusion
Design patterns are commonly used to develop reusable code, especially when OO techniques are 
employed. C++ provides strong support for the creation of classes that follow designed patterns such as the 
ones discussed in the preceding sections.

In this chapter, you saw examples and implementation in C++ for three common design patterns. First, 
I presented an overview of design patterns, listing some of the patterns that are most commonly used in 
the implementation of algorithms for options and derivatives. Then, you learned about the factory method 
design pattern, which is one of the easiest and most widely used patterns of OO programming.

The singleton pattern is used when it is necessary to enforce the existence of a single instance for a 
particular class. You saw the example of a clearing house implementation, where the single instance must be 
accessible to all clients in the application.

The observer pattern is a third example of how to implement such designs in C++. You saw how this 
pattern can be employed to solve the problem of trading processing. Using this design pattern, it is possible 
to decouple the classes that receive the events from specific classes that listen to the events and perform 
further processing.

While object-oriented design patterns provide several elegant solutions for commonly found problems 
in financial programming, there are situations in which a non-OO strategy may be a better solution. In 
these situations, C++ promotes the use of templates, an implementation technique in which the compiler is 
allowed to generate code based on parameterized types. In the next chapter, you will see several examples in 
which template-based algorithms can be used to improve the performance and flexibility of algorithms for 
options and derivatives trading.
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CHAPTER 6

Template-Based Techniques

C++ templates allow programmers to write generic code, which works without modification on different 
data types. Through the careful use of templates, C++ programmers can write expressive code with high 
performance and low overhead, without the need to rely exclusively on more computationally expensive 
object-oriented techniques, such as the design patterns presented in the previous chapter.

This chapter explores a few template-based programming practices that can be used to solve options- 
and derivatives-based financial problems. Here are some of the topics discussed in this chapter:

• Understanding the use of templates: You will learn about the basics of templates, 
including their syntax and how they can be implemented as template functions or 
template classes.

• Using compile-time algorithms: This is a quick overview of how compile-time 
algorithms work, with some examples such as recursive algorithms, which allow 
compile-time definitions that depend on themselves recursively.

• Containers and smart pointers: One of the most common uses of templates is to 
maintain containers of objects. Smart pointers are also frequently employed to 
simplify the code necessary for memory management.

• Best practices: You will learn a few best practices that will improve your template-
based code.

• Templates in C++23: You will see how template code has become simpler and more 
powerful in the recent revisions of the C++ standard.

 Introduction to Templates
A template is a mechanism to generate parameterized code so that different versions of the same 
programming definition (a class or a function) can be generated for each given parameter. A combination of 
parameters can also be used when required by the algorithm. In C++, the parameters passed to a template 
may be a concrete data type (native or user-defined data types) or an integer number, as you will see in the 
following examples.

You have already seen how to use basic templates in some of the previous examples that employed 
standard template library containers. Such containers include vectors, maps, and sets, as provided by the 
C++ standard library. In this section, you will learn more about the implementation of new templates and 
the features they can provide to application programmers.
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One of the applications of templates is to perform compile-time computations. Performing some 
operations at compilation time instead of at runtime is a performance enhancing technique that can save a 
lot of CPU and make your application run more smoothly. Examples of such cases include the use of integer 
recursive functions, conditional code that depends on particular data types, and container objects and smart 
pointers.

• Recursive functions: A recursive function based on integer numbers can be easily 
calculated ahead of time using compile-time techniques. For example, some 
numerical algorithms depend on the use of factorials of numbers, which may be 
known at compilation time. Transforming a runtime computation into a compile-
time transformation is an easy way to make your algorithms run faster.

• Compile-time polymorphism: Another example of compile-time performance 
enhancement is the removal of conditional code based on types. When different 
operations need to be performed for different types, the standard procedure in OO 
code is to create a hierarchy that provides a different implementation for each type 
involved. With templates, you can replace this type of runtime polymorphism with 
compilation-time polymorphism. In that case, the right template is executed based 
on the type that is already known at compilation time, and as a result, no decision is 
necessary at runtime, avoiding extra computational effort.

• Container objects: Container objects provide a big advantage to template users. 
They simplify the coding required to maintain and employ commonly used data 
containers. The STL provides several containers based on templates that streamline 
the task of storing objects using different memory allocation strategies. For example, 
std::map allows programmers to map from a key type to a value type in a generic 
way. The use of templates also simplifies common tasks such as iterating through the 
elements of the container. Since templates know the type of objects stored at the time 
of compilation, there is no need to use a cast or other time-consuming polymorphic 
techniques such as is used by OO code.

• Smart pointers: Finally, templates also give C++ the ability to automatically manage 
memory using smart pointers. A smart pointer is a template that has the sole purpose 
of managing an object that has been passed as a pointer. The exact semantics of a 
smart pointer changes according to the particular template and the desired results, 
including, for example, the ability to use reference counting, or to be owned by a 
single client. The standard C++ library provides a small number of smart pointers, 
such as std::auto_ptr, std::unique_ptr, and std::shared_ptr, among others.

 ■ Note A possible disadvantage of templates is the possibility of duplication of generated code in the 
resulting binary application. For example, if a large template has a type parameter, the compiler needs to 
duplicate the generated code for each different type that is used. This has the potential of creating bloated 
executables with several redundant compiled templates. Thankfully, modern computers have enough memory 
that this is not a common concern, but as application sizes grow, software developers need to consider 
this issue.

In the next few sections, you will see some examples of template-based techniques and learn how these 
techniques can be effectively implemented in C++.
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 Compilation-Time Polymorphism
One of the techniques you learned in the previous chapter is the use of polymorphism based on object-
oriented features such as the virtual keyword. One of the advantages of templates is that they can be used 
to work with different types, while at the same time they avoid the need for runtime checking that is inherent 
to the use of polymorphic classes.

With templates, you can use compile-time polymorphism in several situations where types can be 
known by the compiler. This makes it possible to write code that’s independent of the type used while at the 
same time avoiding the expense of runtime lookups.

An example that is commonly used in financial code is applying mathematical operations to different 
datasets. This can be done in several ways, but templates can be used to make the process efficient and 
transparent to the programmer. Consider the operation of normalizing a dataset. To apply such an operation 
to different sets, you could create a Normalize template, as demonstrated in the following code. First, you 
assume that there are two implementations available for the normalization operation: one for vectors and 
another for sets:

void array_normalize(std::vector<double> &array);
void set_normalize(std::set<double> &set);

The next part of this example shows the main template class, called Normalization. This class provides 
the main declaration used. In a more complete implementation, Normalization would also contain a 
number of static definitions other than a single function, but that is enough to demonstrate the usefulness of 
the class template.

The member function normalize performs the work of normalization in a generic way; therefore, it 
must receive as argument a type that is a template parameter:

template <class T>
class Normalization
{
public:
    typedef T Type;
    static void normalize(T &arg);
    // Other methods here...
};

Now, you’re ready to implement as many specializations of the normalize function as necessary.  
I present two specializations here: one using a vector of doubles and another using a set of doubles. 
These two implementations use the regular functions that have been declared previously, and their 
implementations are now shown here.

template <>
void Normalization<std::vector<double>>::normalize(std::vector<double> &a)
{
    array_normalize(a);
}
template <>
void Normalization<std::set<double>>::normalize(std::set<double> &a)
{
    set_normalize(a);
}
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 ■ Note Consider how the parameter list for the template is empty. This syntax indicates that this is a 
specialization of a previously defined member function.

Notice how these definitions are independent of the original class definition. This means that if you 
create a new type of normalization function that can be applied to a particular type, the only thing you 
need to do is declare a new template specialization that uses that function. Therefore, the Normalization 
class is essentially an open definition that can be extended by any library that decides to implement a new 
normalization strategy. And this can be done without any runtime overhead, since the right normalization 
strategy will be chosen during compilation.

Finally, I present a template function that simplifies a call to the normalization member function. This 
template function is called normalize and just calls the desired static member function:

template <class T>
void normalize(T &val)
{
    Normalization<T>::normalize(val);
}

Here is an example of how such a function can be called for different types. The compiler will generate 
optimal code by deciding which specialization of the class to use and will make the call without runtime 
overhead:

void use_normalize()
{
    std::set<double> set;
    std::vector<double> array;
    // Initialize variables here...
    normalize(set);
    normalize(array);
}

 Template Functions
A template function is a C++ function that can be parameterized with the use of one or more types or 
integral values. Using template functions, you can write generic functions that work with any combination 
of the original parameters, expanding the domain of application for the code contained in the original 
implementation.

Consider as a first example the function returning the maximum value between the two given 
parameters. It is easy to write such a function for a particular data type. For example, for integer parameters, 
this function can be written, in a verbose way, as

int int_max(int a, int b)
{
    if (a > b)
    {
        return a;
    }
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    else
    {
        return b;
    }
}

To create a generic version of this function, you just need to create a template function that is 
parameterized on the types used in the parameter list and return values:

template <class T>
T generic_max(T a, T b)
{
    if (a > b)
    {
        return a;
    }
    else
    {
        return b;
    }
}

With this template, you can not only compute the maximum of two integers but can also do the same 
for any type that supports a comparison using the > operator. This even includes nonnumeric types such as 
strings, as you will see next.

The string case is interesting in this example, because it also involves the discussion of partial 
specialization. A partial specialization is a version of a template where one or more of the parameters have 
been substituted by concrete types or values. You can specialize the generic_max template function to 
handle zero-terminated strings using a different implementation, as follows:

template <>
const char * generic_max(const char *a, const char *b)
{
    if (strcmp(a, b) > 0)
    {
        return a;
    }
    else
    {
        return b;
    }
}

This syntax indicates that this is a specialization of the previously defined generic_max function. The 
parameter type const char * is substituted directly in the function implementation. This function in 
particular uses the strcmp function from the C standard library to determine if a string is less than another.
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 Implementing Recursive Functions
One of the applications of compile-time computation through templates is the implementation of recursive 
functions. A recursive function is one in which the result of the operation for a particular value can be 
calculated based on another application of the same function.

The reason why it is possible to use templates for computing recursive functions is the ability of these 
C++ templates to take integral numbers as arguments. For example, a trivial template that prints a static 
value can be defined using the number as a template argument:

template <int N>
void printNumberPlusOne()
{
    int a = N + 1;
    std::cout << a << std::endl;
}
void usePrintTemplate()
{
    printNumberPlusOne<10>();
}

Here, the integer N is passed not as a function argument but as a compile-time parameter. This means 
that during compilation, the value of N is already known as a constant value, which eliminates the need for 
computation during runtime. This makes the operation much more efficient than it would be the case of 
normal parameter passing.

This example can be further expanded using a recursive strategy to print N numbers at compilation 
time. Here is a simple version that does this recursively:

template<int N>
void printNumberRecursive()     // general case
{
    std::cout << N << " ";
    printNumberRecursive<N-1>();
}
template<>
void printNumberRecursive<0>()  //  base case
{
    std::cout << std::endl;
}
void usePrintRecursive()
{
    printNumberRecursive<10>();
}

This template is implemented as a general case and a specialization (base case). The general recursion 
case is what should be done in most cases, which in this case is print the given template parameter N and 
call the same template with a smaller value N-1. The base case is what should happen to cause the recursion 
to stop. In this example, the recursion stops when the value 0 is reached, in which case the template simply 
prints a new line.

Taken together, these two cases for the printNumberRecursive template can print the numbers from N 
to 0 using only compilation-time expressions. This means that all calculations have already been done by the 
compiler, dramatically cutting down the computation effort at runtime.
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You can use the same strategy to compute more complex and useful recursive functions. Table 6-1 
shows a few common recursive functions that involve integer numbers and that can be easily implemented 
using C++ templates. Notice how each of these functions uses its own definitions in order to compute the 
next value.

Table 6-1. Common Integer Recursive Functions

Recursive Function Description
Factorial Calculate factorials of the form 1×2×3×...×n.

Fibonacci Calculate the general recursion F(n) = F(n – 1) + F(n – 2).

Triangular numbers Calculate the number of items in triangular formation.

Binomial coefficients Calculate the coefficients of polynomial equations of the form (ax + b)n.

In a more complete example, consider the implementation of the summation of the first N integer 
values, for a given parameter N. You can do this with a template function that recursively calls itself. 
Thanks to templates, the C++ compiler can calculate such values during compilation time. Here is an 
implementation of such a function:

template <int N>
int intSum()
{
    return N + intSum<N-1>();
}
template <>
int intSum<0>()
{
    return 0;
}
void useIntSum()
{
    std::cout << intSum<20>() << std::endl;
}

As before, there is a general case for most values of N and a base case that is used when the parameter 
is 0. The general case defines the template and its integer parameter. The base case is a template 
specialization, so the exact argument value needs to be provided.

The intSum template in the general case returns the sum of the argument that was originally passed 
and adds to that the value of intSum for N-1. Since all these calculations are based on constant values at 
compilation time, the result is computed using the compiler itself.

The specialization of intSum deals with the base case that terminates the recursion. When the argument 
is 0, the value 0 is returned as the value of the sum. The function useIntSum instantiates the template, 
passing the value 20 as its parameter. The result is then printed to standard output.
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 Recursive Functions and Template Classes
Recursive functions can also be implemented using template classes, instead of simple functions. This 
is recommended when additional information is supposed to be stored with the result of the function. A 
template class can also receive as a parameter an integer number, along with specializations based on that 
template parameter.

Consider an example template class that computes the factorial of a number. The logic of this type of 
computation is very similar to the functions you have seen before. However, it gives you an opportunity to 
see how a template class works in this situation.

template <long N>
class Factorial
{
public:
    enum
    {
        Argument = N
    };
    static long value();
};
template <long N>
long Factorial<N>::value()
{
    return N * Factorial<N-1>::value();
}
template <>
long Factorial<0>::value()
{
    return 1;
}
void useFactorial()
{
    Factorial<8> fact;
    std::cout << " factorial for argument " << fact.Argument << " is "
              <<  fact.value() << std::endl;
}

The class Factorial shows how a template class can store useful values as part of the class definition. 
The enumeration at the beginning of the class definition contains a value called Argument, which stores 
the argument for further use as a value of the enumeration. This exemplifies a feature that cannot be 
achieved by a simple function: the use of a class may allow any value to be stored for further use, either as an 
enumeration or a static variable. The way the template is expanded by the compiler is shown in Figure 6-1.
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Figure 6-1. An example of computation using template specialization. The general case of the Factorial 
template is instantiated with the integer 3, and new instantiations are used until the specialization for 
Factorial<0> is reached

The Factorial class also contains a static function that computes the desired factorial number. As in 
the previous examples, the function is implemented with a general case for any integer number and a base 
case, which is used when the 0 value is passed.

The useFactorial function shows how to invoke the Factorial class for a particular compile-time 
computation. The factorial of the value 8 is desired, so it is passed as the single argument to the template 
class. The next line uses the Argument enumeration value so it can retrieve the passed argument.

The value of the factorial is finally accessed using the value member function. Notice that, as usual with 
templates, the value function is calculated at compilation time and the result is replaced by the compiler at 
that particular point.

 Containers and Smart Pointers
One of the most important applications of templates in C++ is the creation of data containers. A container is 
a template-based object that maintains and provides access to other underlying objects or data structures. 
For example, a common container used in C++ is std::vector, which is a representation of sequential 
memory that can be accessed using a numeric index. Other more complex containers are provided in the 
STL and in third-party libraries that are commonly used in financial applications.

Here are some of the best-known STL containers and the types of arguments that they expect in the 
standard library. A short list of available containers is displayed in Table 6-2.

 ■ Note All sTl containers receive as a parameter a default Allocator type, which determines how objects 
are allocated, such as using the global heap or some other preallocated local memory. if this type is not 
supplied, the standard allocator for the new keyword is used when creating objects.

CHAPTER 6 ■ TEmPlATE-BAsEd TECHniquEs



116

• std::vector<T, Allocator>: The type T passed to std::vector represents the main 
type of each element stored in the vector. This container guarantees that elements 
will be stored sequentially.

• std::map<K, T, Allocator>: This template requires two parameters. The first 
parameter represents the type of the key and should be an immutable object. The 
second type represents the object stored for each key. Maps have variations, such as 
std::unordered_map, where entries are unordered, and std::multimap, where each 
key can have more than one associated entry.

• std::queue<T, Allocator>: An std::queue provides a first-in first-out mechanism, 
and the argument T is the type of elements stored in this container. This container 
also has a variant called std::dequeue, which allows elements to be removed from 
the front or back of the queue.

• std::stack<T, Allocator>: A template object that stores elements in a first-in last-
out mechanism. The elements are typically allocated sequentially.

The second important application of templates in the C++ standard library is in the implementation of 
smart pointers. A smart pointer enables you to manage the memory of objects allocated in the heap. It does 
this through particular strategies such as using reference counting, or restricting the access to the pointer 
and deleting the associated memory at the end of the current scope (as is the case with std::auto_ptr).

Smart pointers are possible due to the ability to generate specific code for each data type passed as 
parameter. Thus, an std::shared_ptr<OptionsContract>, for example, can be created to manage objects of 
type OptionsContract only.

Table 6-3 presents a few of the most common smart pointer templates. Some of these templates have 
been available as part of the standard C++ library since C++11.

Table 6-2. Common STL Containers and Their Parameters

Container Type Description
std::vector Container in which elements are stored in sequential mode. Each element must have 

the same type, as determined by the template parameter.

std::map A container where each element is associated with a unique key. The container allows 
searching by keys.

std::queue A first-in first-out container that has elements of the same type, the type being the 
parameter to the template.

std::array A simple sequential group of elements that can be indexed by a number. The element 
type is passed as a template argument.

std::list A linked list where each object has the same type.

std:set A container that stores an unordered list of objects. Elements of set can be retrieved 
efficiently.

std::stack A first-in last-out container where each element has the same type, as determined by 
the template parameter.
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Table 6-3. Common Smart Pointer Templates

Smart Pointer Description

std:auto_ptr A smart pointer that provides automatic deallocation with single ownership semantics.

std:shared_ptr A smart pointer that provides a reference-counted memory management, with shared 
ownership semantics.

std::unique_ptr A smart pointer that provides unique ownership of an object.

std::weak_ptr A shared pointer that represents a weak reference to an object allocated in the heap.

 Avoiding Lengthy Template Instantiations
C++ templates are a powerful mechanism that can be used to create generic code. With templates, it is 
also possible to remove undesirable code duplication, since the same code can then be applied to data of 
different types.

On the flip side, however, templates can also create problems due to the potential they have to slow 
down compilation times, when complex template rules are processed during compilation. Also, because all 
the code in a template is generally available to the compiler when processing translation units, it is difficult 
to provide separate compilation for templates. An example of a library that is a victim of this behavior is 
boost, where typically all the functionality is included in header files. These header files are then included 
each time the library is referenced in an implementation file, resulting in long build times.

Despite these shortcomings, in some situations, it is possible to reduce the amount of work done by the 
compiler on behalf of templates. This section shows a simple technique that can be used to achieve faster 
template compilation speeds when desired instantiations are known ahead of time.

 Preinstantiating Templates
Certain templates are used in only a reduced number of cases by design. For example, consider a numerical 
library that creates code for different types of floating-point numbers. Each class in the library can be 
instantiated with a particular floating-point type, such as double, long double, or float. Consider, for 
instance, the following definition:

// file mathop.h
//
// The template class for mathematical operations
//
template <class T>
class MathOperations
{
public:
   static T squared(T value)
   {
      return value * value;
   }
  // ...
};
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This class can be used in the following way:

#include "mathop.h"
#include <iostream>
using std::cout;
using std::endl;
MathOperations<double> mathOps;
double value = 2.5;
cout << "result: " << mathOps.squared(2.5) << endl;

Unfortunately, because the MathOperations class is a template class, you have to include its complete 
definition as part of the header file, where it can be found in the compiler whenever the class is instantiated.

One possible way to reduce the size of the header file is to preinstantiate the template for the types that 
you know in advance.

The first step is to remove the implementation from the header file. This is clearly possible, since you 
can implement class member functions outside the class declaration (whether the class is a template or not). 
Then, you need to add the implementation to a separate source file. Once this step is done, client code can 
use the template class interface but will not be able to generate code. Therefore, for this to work, you need to 
instantiate the templates on the implementation file.

// file mathop.h
//
// The template class included by the applications
//
template <class T>
class MathOperations
{
public:
   static T squared(T value);
   // ...
};
// file mathop.cpp
#include "mathop.h"
//
// Template member function definition
//
template <class T>
T MathOperations<T>::squared(T value)
{
   return value * value;
}
//
// Function used to instantiate code for specific datatypes
//
void instantiateMathOps()
{
   double d = MathOperations<double>::squared(2.0);
   float f = MathOperations<float>::squared(2.0);
   int i = MathOperations<int>::squared(2);
   long l = MathOperations<long>::squared(2);
   char c = MathOperations<char>::squared(2);
}
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In this example, I chose to instantiate five versions of the original template for numeric types. The main 
limitation of this technique, as I mentioned, is that your clients will not be able to generate templates for the 
additional types they may want to use. However, in a few situations, you may really want to restrict how these 
templates are used, and this technique works as desired.

 Templates in C++23
The latest updates of the C++ standards, of which C++23 is the newest, have introduced a number of features 
that simplify and improve the use of templates. As usual, with the release of a new version of the standard, 
you can still use every feature that was discussed in the previous sections. However, C++23 adds new ways to 
use templates with easier syntax and expanded functionality.

For example, a great feature that has been added in the last standard is the ability to write template 
functions without the use of the template keyword. This functionality is now available using the auto 
keyword as part of the function declaration.

Here is a case where a template function has become much easier to use:

#include <string>
#include <iostream>
// This is a template that is instantiated depending on
// passed arguments.
auto apply_add_operator(auto x, auto y)
{
    return x + y;
}
int main()
{
    int x = 1, y = 3;
    std::string a{"hello "}, b{"world"};
    std::cout << apply_add_operator(a,b) << "\n";
    int res = apply_add_operator(1,3);
    return 0;
}

The preceding code fragment shows how to create a generic function without the use of the template 
keyword. The function apply_add_operator will take two arguments and apply the operator plus to the two 
arguments, returning the result. This works for any data type that supports the operator plus (“+”). In the 
preceding example, you can see the application of this function to variables of type std::string and int. 
The compiler will take care of choosing the right data types and generating the code as needed.

For comparison, the old way of doing this is to define the generic function using template arguments, in 
the following way:

template <class T>
T apply_add_operator2(T x, T y)
{
    return x + y;
}
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However, since the standard C++17, there is no need to use template arguments when in the presence of 
the automatic deduction keyword auto. This means that you can write shorter function declarations and let 
the compiler do the heavy lifting of defining the exact types of the parameters passed to a generic function. 
Just as with automatic variable declarations, the auto keyword can help you to avoid a large amount of 
boilerplate that was needed in previous versions of C++.

 The constexpr Syntax in C++23
One of the goals of the C++23 programming language standard is to enhance the capabilities of the 
"constexpr" keyword. The "constexpr" keyword is currently used to declare functions and variables that can 
be evaluated at compile-time. It allows computations to be performed during compilation, which can lead to 
performance improvements and better optimization opportunities.

The extended constexpr syntax in C++23 expands the usage of "constexpr" in several ways:
Function parameters: Currently, "constexpr" functions can only have literal types as parameters. The 

new syntax aims to remove this restriction, allowing nonliteral types to be used as parameters in "constexpr" 
functions. This enables more flexible and powerful compile-time computations.

Local variables: Currently, "constexpr" variables must be declared at namespace scope or as static 
members of classes. C++23 allows extending "constexpr" to permit the declaration of local variables, 
enabling compile-time evaluation of local computations.

The proposal also suggests adding "constexpr" support to more Standard Library functions and 
algorithms. This would enable developers to use these functions in constexpr contexts, promoting further 
compile-time evaluation and optimization.

By expanding the usage of "constexpr" in these ways, the new standard seeks to make compile-time 
evaluation more powerful and flexible in C++. This can lead to improved performance, increased code reuse, 
and better opportunities for compile-time optimizations.

Here is some sample code that demonstrates the numerous contexts where constexpr can be used 
in C++23:

#include <iostream>
#include <string>
#include <vector>

constexpr int square(int x) {
    return x * x;
}

constexpr int sum(const std::vector<int>& numbers) {
    int total = 0;
    for (int num : numbers) {
        total += num;
    }
    return total;
}

constexpr char a_digit(int n) {
  static constexpr char all_digits[] = "0123456789abcdef";
  return all_digits[n];
}
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int main() {
    constexpr int result1 = square(5);
    std::cout << "Square of 5: " << result1 << std::endl;

    constexpr int result2 = sum({1, 2, 3, 4, 5});
    std::cout << "Sum of numbers: " << result2 << std::endl;

    return 0;
}

In this example, the square function is declared as constexpr and computes the square of its input 
parameter. The sum function takes a const std::vector<int>& as a parameter and calculates the sum of the 
numbers in the vector. Both functions are evaluated at compile-time because they are marked as constexpr 
and their arguments satisfy the requirements.

In the main function, square is called with a constant expression (5) as an argument, and the result is 
assigned to the constexpr variable result1. The value of result1 is then printed.

Similarly, the sum function is called with a constexpr vector, and the result is assigned to the constexpr 
variable result2. The value of result2 is printed.

Since both computations occur at compile-time, the values of result1 and result2 are known and can 
be used for further compile-time optimizations or as constant expressions. This code was compiled with the 
latest gcc using the -std=c++23 option.

 Conclusion
While object-oriented design patterns provide several elegant methods for the solution of commonly found 
problems in financial programming, there are cases in which a non-OO strategy may be more indicated. In 
these situations, C++ promotes the use of templates, an implementation technique in which the compiler is 
allowed to generate code based on parameterized types.

In this chapter, you learned how to create new template classes and functions that use the template 
facilities of C++. Among other things, you saw how to create functions and classes that compute their results 
at compilation time. Compilation-time polymorphism, an alternative to runtime polymorphism that uses 
the code-generation capabilities of C++ templates, was also discussed.

The next chapter continues exploring templates in C++ with a more detailed view of the standard 
template library and its algorithms.
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CHAPTER 7

STL for Derivatives Programming

Modern financial programming in C++ makes heavy use of template-based algorithms. Many of the basic 
algorithms related to trading options and their derivatives are implemented in terms of function and class 
templates. This is done due to the superior advantages of templates in terms of performance as well as their 
ability to improve code reuse.

Several template-based algorithms are implemented right into the standard template library (STL), 
which is one of the main parts of C++ standard library. Therefore, it is important to become familiar with the 
concepts of algorithms in the STL and to understand how they can be used and extended to more complex 
applications.

In this chapter, I discuss STL algorithms and how they can be employed in quantitative finance and 
other programming projects. In particular, I attempt to cover how these template-based algorithms are 
used in practice to solve common problems with options and other financial derivatives. After reading this 
chapter, you will get a better understanding of how the STL interacts with other parts of the C++ libraries and 
how it imposes a certain structure on classes developed in the language.

Here are some of the concepts discussed in this chapter:

• STL-based algorithms: Here, I present an introduction to the basic concepts 
of algorithms in the STL, how they interact with the container, and their basic 
performance characteristics.

• Functional techniques on STL: The STL algorithms can simplify your code with the 
use of a functional style of programming, whereby you can use functions as a first-
class object of abstraction.

• Working on STL containers: STL algorithms have been developed so that they 
work in tandem with containers. You need to understand the usage patterns of 
STL algorithms and how they can efficiently employ the most common containers 
provided by the standard C++ library.

• Efficient iterators: Another way in which algorithms interact with containers is 
through the use of iterators. Developers can use iterators in flexible ways, thanks to 
the support available in the STL algorithms.

• Improvements in C++23: You will also learn how the latest C++ standard has turned 
the STL into an even more efficient and easy-to-use library.
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 Introduction to Algorithms in the STL
The STL offers a set of templates that can be used to solve some of the most common problems encountered 
in C++ programming. Among such templates, you will find a list of algorithms that implement tasks such as 
copying, sorting, selecting, iterating, and adding elements to generic collections such as vectors, sets, maps, 
and their variations.

With STL algorithms, C++ designers created a set of template functions that manipulate generic 
collections. Once these algorithms have been implemented as templates, developers are free to use them for 
any class that satisfies the functional requirements of its container. For example, based on the STL, you can 
create vectors of any custom class and apply template algorithms such as sort and reverse to manipulate 
these objects, without having to write any additional code. Table 7-1 presents a list of algorithm types 
available in the STL.

Table 7-1. A List of Algorithm Types Available in the STL

Algorithm Type Description
Conditional 
testing

Performs a test of a given condition against elements of a container. Algorithms include 
operations such as all_of (testing if all elements are true), any_of (testing 
if any of the given elements are true), and none_of (testing if none of the 
elements are true).

Iteration Performs an operation for each element of a container, such as the for_each algorithm.

Searching Finds elements in a container: find, find_if, find_if_not, find_first_of, and search.

Counting Returns the number of elements in a container: count and count_if.

Sorting Puts the elements of the container in a defined sorted order: sort, stable_sort, and 
partial_sort.

Partitioning Partitions the container into two ranges according to a given property: partition, 
partition_copy, and partition_stable.

Merge Performs the merge of two containers that have been previously sorted: merge,  
set_union, set_intersection, and set_difference.

Binary search Implements a binary search for each STL container. Examples are lower_bound,  
upper_bound, and binary_search.

The generic algorithms in the STL can be imported into a C++ application using the <algorithm> 
header file. Most of these algorithms are implemented directly as templates in the header file, so they can be 
available to any client code without the need of external binary components.

The next few sections describe a few common tasks that are implemented as STL algorithms and 
explain how they can be used from client code, including financial applications.

 Sorting
Sorting is a basic activity that is common to many algorithms. For this reason, sorting templates have been 
created to deploy high-performance sorting algorithms without much effort. Reusing sorting algorithms also 
allows programmers to avoid re-creating well-known algorithms and the possibility of introducing mistakes 
into the implementation. STL algorithms provide just what you need in order to apply sorting strategies to 
containers and other data structures.
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The STL has a set of template algorithms that can perform sorting on many different types of containers. 
The right algorithm should be selected according to the desired properties of the container and the data 
stored in it. For this purpose, the library gives you several options corresponding to the different desired 
tasks and their properties. As a developer, you should become acquainted with these types of sorting 
algorithms. Table 7-2 lists a set of algorithms commonly available from the STL (specific implementations 
might add their own variants).

Table 7-2. A List of Sorting Algorithms Available in the STL

Sorting Algorithm Description
sort Generic sorting algorithm that can be used on most containers. This should be 

used in the majority of cases.

stable_sort A stable sorting procedure that maintains the relative positions of elements in the 
container.

partial_sort An algorithm that sorts only part of a given container.

partial_sort_copy An algorithm that performs partial sorting on a copy of the original container.

is_sorted Returns true if the given container is already sorted. This is useful when working 
with an unknown container.

nth_element An algorithm that sorts only one of the largest elements of a container.

The first type of sorting template is the generic sort function. This function can be applied to a range of 
values that are stored in the container, given by two iterators: one for the start and another for the end of the 
range. As normally happens in the STL, the container can be anything that can be iterated over, including 
arrays, vectors, maps, sets, and other container templates. This sort of function can also take as a parameter 
a comparison function, which is used to determine the proper order of objects in the collection.

Consider, for example, a date type. The goal is to be able to sort objects of type date, which are stored 
in a standard STL container. To be able to sort based on dates, however, you need to provide a comparison 
function for the underlying date class. In C++, this is done through the use of a C++ class operator that 
overloads the standard comparison operator. Here is a quick example:

class Date {
public:
    // Other public methods here...
    bool operator<(const Date &d);
    int year()  const { return m_year;  }
    int month() const { return m_month; }
    int day()   const { return m_day;   }
private:
    int m_day;
    int m_month;
    int m_year;
};
bool Date::operator<(const Date &d)
{
    if (m_year < d.m_year)
    {
        return true;
    }
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    if (m_year == d.m_year and m_month < d.m_month)
    {
        return true;
    }
    if (m_year == d.m_year and m_month == d.m_month and
        m_day < d.m_day)
    {
        return true;
    }
    return false;
}
bool operator<(const Date &a, const Date &b)
{
    return a < b;
}

Notice that there are two versions of the < operator. The first version is written as a member function. 
This is necessary so that the operator has access to the private member data of the date class. The second 
version of the < operator is a free function, and it is necessary when the first argument is a constant object. 
The implementation of the free function is directly based on the member function.

void sort_dates()
{
    vector<Date> dates;
    // ....  initialize the dates here
    std::sort(dates.begin(), dates.end()); //  perform comparison
}

The sort_dates function provides an example of using the standard sort template. In this version, the 
default comparison is used, which in this case is implemented by the < operator. You can, however, use a 
different comparison function, as shown in the following example:

bool year_comparison(const Date &a, const Date &b)
{
    return a.year() < b.year();
}

Here, the specialized comparison is performed only using the date year fields you stored in each date 
object. The comparison function can be called in the following way:

void sort_dates()
{
    vector<Date> dates;
    // ....
    // Performs comparison by year only
    std::sort(dates.begin(), dates.end(), year_comparison);
}

In this instance, since you are using a specialized method of comparison, you need to provide a 
comparison function explicitly. The result of this sorting procedure is a sequence of dates where the 
elements appear in increasing order of year.
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The preceding case can be used to exemplify the use of stable sorting. In a stable sorting, elements that 
are equal with respect to the sorting strategy appear in the same order as the input. This is an important 
feature in some sorting applications. Therefore, if you want to maintain the relative sorting position of 
dates within a year, you should instead use the stable_sort template function. This is exemplified in the 
modified code:

void stable_sort_dates()
{
    vector<Date> dates;
    // .... initialization here
    // Performs comparison by year only,
    // but relative order is maintained
    std::stable_sort(dates.begin(), dates.end(), year_comparison);
}

 Presenting Frequency Data
A simple application of sorting can be seen in the presentation of frequency data. Suppose that you were 
given a vector of price observations, and the goal is to present this pricing data according to the frequency 
in which it appears. This is an application that is typically described as a data histogram; that is, the data is 
presented according to increasing frequency.

To solve this problem, you can use STL containers and the sorting template algorithm to reorganize 
results. The final function is named compute_frequency. The first step of the algorithm is to calculate the 
number of bins defined by the data interval. To compute this, you’ll use the variables start, end, and step 
size. Here is the implementation:

//
//  stl_alg.cpp
//  Sorting algorithm for price data
#include <algorithm>
#include <vector>
#include <cmath>
#include <iostream>
using std::vector;
using std::cout;
using std::endl;
using std::pair;
void compute_frequency(vector<double> &prices, double start,
                       double end, double step)
{
    int nbins = int(std::abs(end-start)/step);
    vector<pair<int, int>> count(nbins, std::make_pair(0,0));
    for (int i=0; i<nbins; ++i)
    {
        count[i].second = i;
    }
    for (int i=0; i<prices.size(); ++i)
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    {
        if (start <= prices[i]  && prices[i] <= end)
        {
            int pos = int((prices[i] - start)/step);
            count[pos].first++;
        }
    }
    std::sort(count.begin(), count.end());
    for (int i=0; i<nbins; ++i)
    {
        int k = count[i].second;
        cout << start + k * step << "-" << start + (k+1) * step
             << ": "  << count[i].first;
    }
}

The vector count stores the frequency of each data interval. Each element of the count vector has two 
members: the first member is the frequency, and the second member is the relative position of the interval. 
These two values are stored as an STL pair, and the sequence of numbers is initialized in a for loop.

The next step is to store the frequency counts. This is done in a loop that iterates through the given 
range, adding to the frequency of each data point. Finally, after the frequencies are collected, you can sort 
them using the STL sort algorithm, which in this case uses the begin and end functions to define the sorting 
range. Following this, the frequencies are presented to standard output along with the respective ranges, 
which have been saved in the index variable.

// Sample test of histogram algorithm
int frequency_test()
{
    vector<double> prices = {32.3, 34, 35.6, 39.2,
                             38.7, 31.17, 33.14 };
    compute_frequency(prices, 31.0, 39.0, 0.1);
    return 0;
}

To test this code, I created a sample function frequency_test that calls the compute_frequency 
function with a few data points. The output of the code execution should look like the following:

31-31.1: 0
31.2-31.3: 0
31.3-31.4: 0
31.4-31.5: 0
33.3-33.4: 0
// ...  more data here ...
38.9-39: 0
31.1-31.2: 1
32.2-32.3: 1
33.1-33.2: 1
34-34.1: 1
35.6-35.7: 1
38.7-38.8: 1
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Figure 7-1 shows a histogram, computed from sample data processed by the function frequency test. 
This kind of ranking function is useful when working with financial data such as price volatility.

Figure 7-1. Histogram displaying number of values computed in sample data given function frequency_test

 Copying Container Data
Another common application of template algorithms is to copy elements from one container to another. 
This can be easily done using the copy template algorithm. This algorithm can perform copies between 
containers of different types using common conversion techniques already provided by the C++ language.

For example, it is possible to copy a container of integer numbers (int) into a second container that 
maintains only numbers of type double. Consider the following code:

void copy_int_to_double()
{
    vector<int> ivector(100, 1);
    vector<double> dvector(100);
    std::copy(ivector.begin(), ivector.end(), dvector.begin());
}

Here, the vectors ivector and dvector have different types. The fact that you have a template algorithm 
means that you don’t need to write separate functions to handle every combination of types that could be 
presented as an argument to the copy function.

Another useful ability provided by this template is to copy elements from an existing container into 
the standard output. To do this, you need to wrap the standard output (or any other stream for that matter) 
with an std::ostream_iterator object, which allows you to iterate through an output stream. Here is an 
example of a simple way of displaying the contents of an STL container:
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void print_prices()
{
    vector<double> prices(100);
    // Initialize prices here
    std::copy(prices.begin(), prices.end(),
              std::ostream_iterator<double>(cout));
}

The print_prices function creates and initializes a vector of doubles. Then, it passes the begin and 
end iterators for this vector as the first two parameters of find. Finally, the third argument wraps the standard 
output stream into an iterator for data of type double.

If you need to simplify the use of find (and many other similar algorithms), you could implement your 
own template algorithm that extracts the correct begin and end iterators. For an example of how you can do 
this, consider the following template function:

template <class T, class S >
typename T::const_iterator find(const T &a, S val) {
    return std::find (a.begin(), a.end(), val);
}

This template function receives two template parameters: the first is a container class, and the second 
is a value type. The find template presented here will just call std::find and make sure that the first two 
arguments are the begin and end of the passed container. This code could be called in a way similar to the 
previous example:

void find_value()
{
    vector<int> values;
    // ...  initialize the vector
    // Call our template
    vector<int>::const_iterator result = find (values, 42);
    if (result == values.end())
    {
        cout << " the value was not found " << endl;
    }
    else
    {
        cout << " the value found is " << *result << endl;
    }
}

Finally, using std::copy, it is also possible to transform a container template such as list into a 
different container type, such as vector. This kind of transformation allows programmers to easily convert 
containers of one type into another, without having to create custom code for each case. Here is an example:

void from_list_to_vector(const list<int> &l)
{
    vector<int> values;
    // Copy contents to destination array values
    std::copy(l.begin(), l.end(), values.begin());
    // Do something with the vector here
}
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In this example, the function receives an std::list of integers and copies the content stored in the list 
into an std::vector<int>. Since std::copy is a template that works with different container types, you can 
simply rely on the standard library to perform the desired conversions.

 Finding Elements
Finding elements in a container is another common operation that can be performed with the help of STL 
algorithms. The find family of templates allows programmers to search using different options. As usual, the 
find templates are optimized according to the specific container to which they are applied, but this is done 
automatically by the STL.

First, you have the simple find algorithm. This algorithm takes as parameters two iterators that 
specify the start and end of the target data. The next parameter is a value that you want to find in the given 
container. If the value is found, the algorithm returns an iterator pointing to the desired location. If the value 
is not found, the algorithm returns the second iterator, named last. Here is an example of how this works:

void find_value()
{
    vector<int> values;
    // ...  initialize the vector
    auto result = std::find(values.begin(),
                            values.end(), 42);
    if (result == values.end())
    {
        cout << " the value was not found " << endl;
    }
    else
    {
        cout << " the value found is " << *result << endl;
    }
}

The find_value function is responsible for searching for a particular number inside a vector of integers. 
The values variable is declared as a vector container and should be initialized as desired. Next, you need to 
apply the find function using the beginning and end iterators returned by values. Therefore, the previous 
example shows how to search for a constant number. The return value of this function is then stored in 
a vector iterator. If this variable corresponds to the end iterator, you know that the value was not found. 
Otherwise, the value is printed using the contents pointed to by the returned iterator.

Another type of search is necessary if you use a conditional find. In this case, you should use the find_
if template function. This function enables you to use a predicate, in other words, a conditional selection 
statement (also called a filter) that is true only for the desired values.

Suppose, for example, that I try to search for a particular value inside of a container, such that the value 
is greater than 100. This is possible by defining a specific predicate and passing it as the last argument to the 
find_if function template. This can be done as follows:

bool greater_than_100(int num)
{
    return num > 100;
}

CHAPTER 7 ■ STL foR DERivATivES PRogRAmming



132

void conditional_find()
{
    vector<int> values;
    // ...  initialize the vector
    auto result = std::find_if(values.begin(),
                               values.end(), greater_than_100);
    if (result == values.end())
    {
        cout << " the value was not found " << endl;
    }
    else
    {
        cout << " the value found is " << *result << endl;
    }
}

First, I introduce a new predicate function called call_greater_than_100. This function simply returns 
true when the number passed as an argument is above 100. Next, you can see the function conditional_
find. This function is similar to the previous example, but it uses the find_if template function instead. 
The first and second arguments to the find_if function also determine the range of values tested. The last 
argument is simply a pointer to the predicate function that was presented previously.

Another way to do the same thing is to use a lambda function, instead of a normal function. A lambda 
function is a C++ functional element that can be built inline and can be passed to other functions themselves 
as a parameter. For example, instead of creating a separate function such as greater_than_100, one can pass 
the same comparison as a lambda function. The syntax for this is to put square brackets at the beginning of 
the function, instead of a function name:

   [](int num){return num > 100;}

The empty brackets syntax makes it easy to remember that the function name is not required.  
A complete version of the previous function that uses a lambda expression can be written as follows:

void conditional_find2()
{
    std::vector<int> values;
    // ...  initialize the vector
    auto result =  std::find_if(values.begin(), values.end(),
                                [](int num){return num > 100;});
    if (result == values.end())
    {
        std::cout << " the value was not found " << std::endl;
    }
    else
    {
        std::cout << " the value found is " << *result << std::endl;
    }
}
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 ■ Note The last argument of find_if can be a function or a functional object. A functional object 
implements the function call operator and therefore can be called using syntax similar to a call to a normal 
function. Such functional objects are explained in the next chapter. in the case of find_if, the last argument 
can also be a lambda expression.

 Selecting Option Data
This section shows an additional example of how STL functions can be used to speed up option data 
processing. This example shows a simple implementation of options, where one of the data members is the 
number of days until expiration.

Let the option class be defined as follows:

class StandardOption {
public:
    StandardOption() : m_daysToExpiration() {}
    StandardOption(int days);
    StandardOption(const StandardOption &p);
    ~StandardOption();
    StandardOption &operator=(const StandardOption &p);
    int daysToExpiration() const { return m_daysToExpiration; }
    // Other function members here...
private:
    int m_daysToExpiration;
    // Other data members here...
};
StandardOption::StandardOption(int days)
: m_daysToExpiration(days)
{
}
StandardOption::StandardOption(const StandardOption &p)
: m_daysToExpiration(p.m_daysToExpiration)
{
}
StandardOption::~StandardOption()
{
}
StandardOption &StandardOption::operator=(const StandardOption &p)
{
    if (this != &p)
    {
        m_daysToExpiration = p.m_daysToExpiration;
    }
    return *this;
}

CHAPTER 7 ■ STL foR DERivATivES PRogRAmming



134

This class presents a simplified version of a standard option. The number of days to expiration is stored 
in the member variable m_daysToExpiration and is returned by the daysToExpiration member function. 
You can also see a few of the standard member functions provided by the class.

The goal of this example is—given a container of StandardOptions objects—to find a set of options that 
are close to expiration (in this case, closeness is defined as a ten-day period before expiration). The first step 
in this process is to define a predicate function (a function returning a Boolean value), which will be called 
is_expiring.

bool is_expiring(const StandardOption &opt)
{
    return opt.daysToExpiration() < 10;
}

This function simply determines the number of days until expiration, and if it corresponds to the given 
criterion, the predicate returns true.

This predicate can be used to find all the objects of type StandardOption that satisfy the property of 
being close to expiration. Here is how this can be done, with the help of STL algorithms:

vector<StandardOption>
find_expiring_options(vector<StandardOption> &options)
{
    vector<StandardOption> result(options.size());
    std::copy_if(options.begin(), options.end(),
                 result.begin(), is_expiring);
    if (result.size())
    {
        cout << " no expiring option was found " << endl;
    }
    return result;
}

First, a new vector is declared to hold the results. The final size of this vector is at most the size of the 
options vector. To perform the search, you can use the std::copy_if algorithm. This template algorithm 
copies values from the given range into the destination (result), whenever the element satisfies the given 
predicate function. Since you are passing a function that is true only for options close to expiration, the 
resulting vector will contain only near-expiration options, which are returned as the result at the end of the 
function.

 STL Improvements in C++23
The changes in the C++ language introduced with the C++23 standard (as well as C++11 and C++14) have 
made the use of the STL templates much more straightforward. The first feature, introduced in C++11 but 
amplified in the last standard, is the use of the auto keyword. The auto keyword can be used to substitute for 
complex types whenever the true type can be deduced by the compiler. For example, code such as this

std::vector<std::string>::iterator it = std::find_if (myvector.begin(), myvector.end(), 
IsUpperCase);
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can now be substituted by the much simpler version:

auto it = std::find_if (myvector.begin(),
                       myvector.end(), IsUpperCase);

But since C++23, you can also do the same to return types of functions:

auto find_my_value(auto myvector) -> auto {
    return std::find_if (myvector.begin(),
                         myvector.end(), IsUpperCase);
}

This feature makes it much easier to work with the complex data types declared in the STL header files. 
Another simplification that was introduced in C++17 is the ability to deduce types for template classes. For 
example, instead of writing

std::vector<int> int_vector = {1, 2, 3, 4};

one can now simply remove the type specification for the template argument:

std::vector int_vector = {1, 2, 3, 4};

This is possible because the compiler can now easily determine the type of the vector container from 
the type of the initialization expression.

 Array Slices in C++23
Array slices refer to a programming technique that allows you to extract a portion or subrange of elements 
from an array or container. It is a new feature in C++ that allows one to access data from an array without 
incurring in copying.

The idea is to create a view or reference to the subset of elements of a sequence, so to avoid the cost of 
making a copy. This can be useful when you want to work with a portion of an array without modifying the 
original data.

It’s worth noting that some libraries and frameworks, such as the GSL (Guidelines Support Library 
designed by Microsoft) and the proposed Ranges library, provide facilities for working with array slices in 
C++. These libraries offer functions and types to manipulate and work with ranges or views into collections, 
including arrays and vectors.

Here is an example of using the slice feature in C++.

#include <iostream>
#include <valarray>

int main() {
    int arr[] = {1, 2, 3, 4, 5};

    std::valarray<int> my_slice(5);
    for (int i=0; i<5; +i) {
        my_slice[i] = arr[i];
    }
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    // Accessing elements in the slice
    for (auto element : my_slice) {
        std::cout << element << " ";
    }
    std::cout << std::endl;

    // Modifying elements in the slice
    my_slice[1] = 10;

    // Accessing the original array to verify modifications
    for (int element : arr) {
        std::cout << element << " ";
    }
    std::cout << std::endl;

    return 0;
}

This code shows how we can mix arrays and slices in the same function. The original data is stored in 
the arr array. Next, these values are copied to the my_slice valarray.

The type of my_slice is determined as a valarray or integers. The valarray type was created to simplify 
the storage of numbers, along with common math operators associated with them.

Next, the code uses the std::slice function to generate a slice (without performing any copy of the 
elements).

 Conclusion
Templates allow programmers to create concise code that works on different data types. Given the advantage 
of templates, it is possible to create generic algorithms, which are also implemented in the core STL library. 
In this chapter, you learned about several template algorithms available in the C++ standard library. You also 
learned how to combine these algorithms to create efficient code for financial problems.

First, you saw how to use the most basic functional templates found in the STL. These include templates 
for tasks such as sorting, coping, iterating, and accumulating values restored in an STL container.

Later, you saw examples of how to combine those functional templates into working algorithms. 
Template algorithms allow programmers to take full advantage of existing high-performance programming 
techniques coded by implementers of the C++ template library.

The use of template algorithms leads to a different style of programming, which does not rely solely 
on object-oriented features. Newer versions of C++ also support functional programming. In the functional 
programming style, problems are solved using combinations of functions and functional objects. In these 
types of programs, functions are also treated as first-class objects. Treating functions this way can give you a 
more flexible method to organize code and solve problems. In the next chapter, I will explore the functional 
style and show how it can be used to solve financial problems occurring in options and derivatives.
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CHAPTER 8

Functional Programming 
Techniques

Functional programming is an implementation strategy that focuses on the direct use of functions as first-
class objects. This means that in a functional program, you are allowed to create, store, and call functions 
and otherwise use them as if they were just another variable of the system. Functional code also simplifies 
programming decisions because it avoids changing state and reduces mutable data. This type of functional 
manipulation allows programs to more closely express the desired behavior of the system and is particularly 
suitable to some application areas.

Functional programming is especially useful in the development of mathematical software and in the 
processing of large datasets, as is the case in the analysis options and derivatives. It can also be successfully 
used in the development of multithreaded systems, since it helps in the maintenance of lock-free code.

While the practice of functional programming was possible in previous versions of C++, such 
techniques have more recently been greatly improved with the adoption of the new language standards 
(from C++11 to C++23), particularly with the introduction of lambda functions. With lambda functions, 
programmers can now create temporary functions in place and pass them as arguments during the call 
to other functions. Such features have made it easier to apply functional programming techniques to C++ 
applications.

In this chapter, you will learn how to use functional programming strategies to solve typical problems 
that occur in algorithms for trading options and derivatives. The following topics are explored in this 
chapter:

• Functional objects: A functional object allows an instance of a class to be called with 
the same syntax as a function by using the function call operator.

• Functional templates: The STL has support for functional programming through 
the use of functional templates. With them, programmers can pass functions as 
parameters, as well as compose functions.

• Lambda functions: With the introduction of C++11, a new syntax was created to 
represent unnamed functions, also known as lambda functions. You will see how to 
use lambdas in C++ and learn how they simplify the creation and maintenance of 
functional code.

• Functional techniques for options processing: Throughout the chapter, you will see 
examples of how these functional programming techniques can be effectively used 
to solve some problems occurring in the analysis of options and derivatives.

© Carlos Oliveira 2023 
C. Oliveira, Options and Derivatives Programming in C++23,  
https://doi.org/10.1007/978-1-4842-9827-5_8

https://doi.org/10.1007/978-1-4842-9827-5_8


138

 Functional Programming Concepts
Functional programming has its roots in the analysis of mathematical algorithms, where functions are the 
main abstraction. Such functions are typically used to compute results based on mathematical properties 
of numbers. Functions can be used to express mathematical algorithms as well as used as an effective 
abstraction for the creation of complex algorithms in other areas.

In particular, functional programming uses functions as building blocks to create solutions for 
computational problems. Using this programming technique, you can call functions as well as perform 
several operations on them. You will see examples of these operations later in this chapter.

Here are a few advantages of using functional programming in C++:

• It is possible to combine functions to achieve complex behavior, starting from a few 
simple basic functions. The combination of functions can be more easily done when 
functions are treated as objects, instead of isolated elements of the language.

• Functional programming tries to avoid objects that share state (stored in member 
variables). Functions are generally easy to reason about, as they depend only on 
arguments that are passed at each function call. In comparison, traditional objects 
are complex and store a lot of context that may be hard to validate and understand. 
The use of functional programming techniques favors the creation of simpler code 
with less state, since the state needs to be passed at each function call.

• Operations such as memoization can be easily performed when functions are 
first-class objects. With memoization, it is possible to cache the values of function 
calls so that the next time a result can be immediately returned. This can be done 
because functions don’t store any mutable state and their result depends only on the 
parameters passed.

• No complex hierarchy of objects is necessary. Unlike OO programming, functional 
techniques are not based on hierarchies and therefore require no knowledge of the 
internal relationships of classes. Functions are independent of each other and can be 
applied in any sequence.

In the next few sections, you will see examples of these functional concepts applied to C++ through 
different techniques. First, you will see how to use function objects for this purpose. Then, you will see 
how to use external libraries such as boost::lambda. Finally, you will see how to implement functional 
programming techniques using C++ lambda functions.

 Function Objects
The first step toward working with functional programming in C++ is to use a flexible representation for 
functions. One of the most common techniques for doing this is to use function objects. A function object 
(also known as a functor) is a C++ concept that allows programmers to create class instances that behave 
as if they were functions. The key for this concept to work is the overloading of the function call operator 
(represented in C++ by a pair of matching parentheses).

The function call operator can be defined as a member function in each class that needs to simulate 
a function call. The function call operator is called automatically from the compiler when the function call 
syntax is used. Consider the following example of how this process works. The OptionComparison class 
defines instances of a function object that compares two financial option contracts (defined here using the 
class SimpleOption), as defined here:
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// A simple option representation
class SimpleOption {
public:
    // Other definitions here
    int daysToExpiration() const { return m_daysToExpiration; }
private:
    int m_daysToExpiration;
};

The first part of the code declares a class that contains option contracts data. In this example, 
SimpleOption contains only the number of days to expiration. In a normal application, this class would 
contain a complete representation of the attributes of an option.

class OptionComparison {
public:
    OptionComparison(bool directionLess);
    OptionComparison(const OptionComparison &p);
    ~OptionComparison();
    OptionComparison &operator=(const OptionComparison &p);
    bool operator()(const SimpleOption &o1, const SimpleOption &o2);
private:
    bool m_directionLess;
};

The OptionComparison class is the main focus of this example, since it declares a data type that can be 
used as a comparison function.

For the purposes here, the most important part of OptionComparison is the declaration of a member 
function to handle the function call syntax, using operator(). In this example, the arguments passed to the 
function call operator are two objects of type SimpleOption that you want to compare. The following code 
shows the details of the implementation for the OptionComparison class:

OptionComparison::OptionComparison(bool directionLess)
: m_directionLess(directionLess)
{
}
OptionComparison::OptionComparison(const OptionComparison &p)
: m_directionLess(p.m_directionLess)
{
}
OptionComparison::~OptionComparison()
{
}
OptionComparison &OptionComparison::operator=(
                  const OptionComparison &p)
{
    if (this != &p)
    {
        m_directionLess = p.m_directionLess;
    }
    return *this;
}
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bool OptionComparison::operator()(const SimpleOption &o1,
                                  const SimpleOption &o2)
{
    bool result = false;
    // Check components of opt1 and opt2.
    // In practice this could be more complex.
    if (m_directionLess)
    {
        result = o1.daysToExpiration() < o2.daysToExpiration();
    }
    else
    {
        result = o1.daysToExpiration() > o2.daysToExpiration();
    }
    return result;
}

The first part of the implementation contains a few standard member functions that are required by 
C++. The next part of the implementation, containing operator(), shows how the comparison functionality 
is handled by this class. In this simple case, the class considers the m_directionLess flag to determine if a 
less than test should be used. Otherwise, the function uses a greater than test and returns the results.

The following function shows how to use OptionComparison:

void test_compare()
{
    OptionComparison comparison(true);
    SimpleOption a, b;
    // ...
    // Initialize options a and b here...
    if (comparison(a, b))
    {
        std::cout << " a is less than b " << std::endl;
    }
    else
    {
        std::cout << " b is less than a " << std::endl;
    }
}

The first line of test_compare creates a new instance of the comparator object. Then, the code creates 
two SimpleOption objects and initializes them as necessary. The comparison object is then called as if it 
were a function, using operator().

The strategy displayed here can be used to simulate functions with different signatures by creating the 
appropriate version of the operator(). Also, a single class can decide to implement several versions of the 
operator(), depending on the ways in which it expects to be called.
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 Functional Predicates in the STL
As you learned in the previous section, objects can be used to simulate functions in C++ through the 
definition (or overloading) of the function call operator. This flexible mechanism can be used to create code 
that behaves as a function but encapsulates complex properties, as any object can do.

Based on the use of function objects, you can build a different style of programming. To facilitate the 
creation of functional code in this style, the authors of the STL provide a set of basic function templates and 
classes that automate many common tasks. Some of these template functions are listed in Table 8-1.

Table 8-1. List of Functional Templates Provided by the STL

Functional Template Description
equal_to Compares two parameters and determines equality between them.

Greater Compares the two given parameters and returns true if the first parameter is greater 
than the second.

greater_equal Compares the two given parameters and returns true if the first parameter is greater 
than or equal to the second.

Less Compares the two given parameters and returns true if the first parameter is less 
than the second.

less_equal Compares the two given parameters and returns true if the first parameter is less 
than or equal to the second.

logical_and Receives two Boolean parameters and returns true if both parameters evaluate to 
true.

logical_or Receives two Boolean parameters and returns true if at least one of the parameters 
evaluates to true.

logical_not Receives a Boolean parameter and returns true if the parameter evaluates to false.

Plus A functional template that receives two numeric parameters and returns their sum.

Minus A functional template that receives two numeric parameters and returns the first 
minus the second.

Negate A functional template that receives a single numeric parameter and returns the 
negative of that value.

Divides A functional template that receives two numeric parameters and returns the value of 
the first parameter divided by the second.

Bind Receives a function or functional object as a parameter and binds the parameters to 
that function to constant values or to variable placeholders.

The goal of the functional objects included in the STL is to provide a set of basic operations for 
creating new functional objects. Notice that through the combination of the given objects, it is possible to 
create complex functions to encode application dependent logic. You can freely combine these functional 
templates to define larger expressions in a way that represents the desired functionality.
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 ■ Note Be aware of the differences between using functional objects and normal C++ operations. A C++ 
computation specified with operators such as * and + cannot be passed as parameters to other functions, 
because they are immediately executed in place. Functional objects, on the other hand, form expressions 
that can be passed to other functions. moreover, the process of putting these functional objects together is 
performed by the compiler. This ability to create complex expressions and pass them to other functional objects 
and templates makes these sTl templates useful for the purpose of functional programming.

Consider the following examples of using these functional templates in C++. The first example shows 
how to use these functional templates to create a sorting predicate.

#include <functional>
void test_operator()
{
    using namespace std;
    vector<int> numbers = { 3, 4, 2, 1, 6 };
    sort(numbers.begin(), numbers.end(), greater<int>() );
}

Here, you first create a sequence of integer values and store it in the variable numbers. In this case, the 
code is taking advantage of the initialization syntax of C++11, which allows for the sequence type to be left 
unspecified, while the result is stored in an std::vector.

The next step is to call std::sort on the sequence of numbers. As you have seen before, the last 
argument of std::sort is a comparison function. Here, you can pass a functional object declared in 
functional.h, therefore freeing you from having to define a separate function.

Another simple application is to transform two sequences into a third sequence. For example, one can 
use the plus function to add elements from two lists:

void test_transform()
{
    using namespace std;
    auto list1 = { 3, 4, 2, 1, 6 };
    auto list2 = { 4, 1, 5, 3, 2 };
    vector<int> result(list1.size());
    transform(list1.begin(), list1.end(),
              list2.begin(), result.begin(), plus<int>() );
    // Use transformed list here...
    copy(result.begin(), result.end(),
         ostream_iterator<int>(cout, ", "));
    // Prints 7, 5, 7, 4, 8,
}

This example shows you how to take two lists and perform an arithmetic operation with its respective 
elements. The operation in this case is the plus functional template, which adds two values and returns the 
sum. The first step is to create the two sequences. You can use the auto keyword to simplify the declaration 
of these sequences; they will be represented as vectors of integers. A result vector is also necessary, as 
declared in the next line of code.
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The next step is to use the std::transform function to perform a transformation from the two source 
sequences into the destination sequence. Each step of the transformation uses the std::plus function. The 
result of this process is then sent to the standard output using the std::copy template function.

You could modify this example to perform any of the arithmetic or logical operations available in the 
functional header file, including adding, subtracting, multiplying, and dividing. More complex operations 
could be performed by combining these functions.

 ■ Note in general, the transform function template is very useful when you want to perform a common 
action to a list of elements. By using transform, you can reduce the number of explicit for loops in your code, 
making the resulting program easier to understand.

 The Bind Function
In the last section, you saw that several common operations are provided in the standard library using the 
mechanisms of functional programming. With these templates, you can write transformations to lists of data 
without having to program explicit loops or use other imperative programming techniques.

However, just using the primitive operations such as subtract and divide is not enough to create 
complex application logic. Another thing that you can do using the techniques of functional programming is 
bind parameter values for a given function so that you can have a new, modified function as a result.

Consider, for example, the std::plus<T> function provided in the functional header file. It can be 
used to add two numbers and can be applied to members of separate containers using the transform 
function template. A simple modification of this function is to have a constant number as the first 
parameter so that the resulting function is in fact adding a constant value each time it is applied. Functional 
programming allows functions to be modified in this way, before they are applied to the required data.

The solution in the STL is provided through the std::bind function. With std::bind, you can bind a 
particular value to one of the arguments of a given template function. By doing this, you can create as many 
different functions as there are new combinations of arguments.

To use std::bind, you need to determine the function to be modified and specify one or more values 
that will be bound to the function arguments. Among these bound parameters, you can also refer to the 
arguments supplied by the user of the function, at the time that the function is called. These arguments are 
called placeholder arguments and named as the special variables _1, _2, _3, and so on.

Consider the following example of the std::bind function:

void use_bind()
{
    using namespace std;
    using namespace std::placeholders;
    auto list1 = { 3, 4, 2, 1, 6 };
    vector<int> result(list1.size());
    //  Add 3 to each element of the list
    transform(list1.begin(), list1.end(),
              result.begin(), bind(plus<int>(), _1, 3));
    copy(result.begin(), result.end(),
         ostream_iterator<int>(cout, ", "));
    // Prints 6, 7, 5, 4, 9,
}
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In this example, the goal is to use a modification of the std::plus function so that each element of the 
list is added to the value 3, resulting in a new vector with the results. The example is similar to what you have 
seen in the previous code fragment, but the bind template now modifies the plus function.

The first two lines of the example are importing std and std::placeholders namespaces. The 
std::placeholders namespace allows you to write the name of placeholder variable _1 or _2. Then, the 
original list is created, and a result vector is allocated.

The transform function performs the desired changes, and bind is used to create the operation 
applied to each element of the list1 vector. As seen in the previous example, there are two arguments for 
std::plus. These arguments need to be specified in sequence. This is indicated with the second and third 
parameters of std::bind. The first argument is supposed to be the placeholder for the first parameter. The 
second argument is bound to a constant number.

The std::bind template can be used in more complex situations. For example, it can be used to find 
member functions for existing classes. The following example shows how bind can be used to create a 
variation of a member function for the SimpleOption class:

class SimpleOption {
public:
    // Other definitions here

double getInTheMoneyProbability(int numDays, double currentUnderlyingPrice) const;
};
auto computeInTheMoneyProblExample(
     const std::vector<SimpleOption> &options) -> std::vector<double>
{
    using namespace std;
    using namespace std::placeholders;
    double currentPrice = 100.0;
    vector<double> probabilities(options.size());
    auto inTheMoneyCalc = bind(
      &SimpleOption::getInTheMoneyProbability, _1, 2, currentPrice);
    transform(options.begin(), options.end(),
              probabilities.begin(), inTheMoneyCalc);
    return probabilities;
}

This assumes that SimpleOption contains a member function that calculates the probability that 
a particular option will be in the money, given a number of days before expiration and the current 
underlying price. Moreover, the goal is to create a function that will receive a vector of options and return 
the associated probabilities for the specific case of two days before expiration. The function is called 
getInTheMoneyProblExample in the previous fragment.

To do this using the STL functional algorithms, you need to find a way to express the desired condition 
as a functional object and pass the resulting object to std::transform. This can done with the help of 
std::bind. The idea is to use std::bind to bind the value of the first argument, which in this case is the 
number 2. Then, the placeholder _1 indicates that the argument passed to the resulting function is used as 
the second argument to getInTheMoneyProbability. The bound function is then saved to a variable called 
inTheMoneyCalc and used as an argument to transform, applied to the options vector.

CHAPTER 8 ■ FunCTionAl PRogRAmming TECHniquEs



145

 Lambda Functions in C++23
As you saw in the previous sections, classes, templates, and objects can be used to represent functions and 
other functional objects. Unfortunately, using classes for functional programming requires you to define 
a separate function outside of the current place where it is being used, thus making the process more 
difficult than it needs to be. For every single functional argument, you may need to define a separate class 
that implements the desired interface, therefore making code harder to read. Functional templates such as 
std::plus and std::multiplies help make this easier, but it is still not as easy as writing plain C++ code.

Other languages such as Lisp and Python have simplified this task with the concept of unnamed 
functions, also called lambdas. These unmanned functions can be passed as parameters to other functions 
and objects and can be freely combined into more complex functions. This way, functional programming 
techniques become much easier to implement and test, when compared to languages in which functions 
can be created only as a static entity.

One of the big changes since C++11 (and improved in C++23) was the introduction of lambda functions 
as a syntactical element. With the addition of lambda functions, it is now possible to create unnamed 
functions that can be saved as variables or passed as parameters to other functions. This considerably 
simplifies the task of applying functional techniques in C++ programs, as you will see in the next few 
examples.

A C++ lambda is a piece of C++ code that can be assigned to a variable or passed as a parameter to other 
functions. With lambdas, the compiler has enough information to understand that the given C++ code will 
run later, but in an environment that contains the variables passed to and created by the current function.

The syntax of lambda functions starts with a pair of square brackets, followed by arguments and a block 
of code. Here is an example:

void use_lambda()
{
    auto fun = [](double x, double y) { return x + y; };
    double res = fun(4, 5);
    std::cout << " result is "  << res << std::endl;
}

Here, the lambda function is introduced by [], followed by parameters of type double. The function 
simply adds the two given parameters. The compiler can deduce the result type for this lambda function. 
However, you can also declare the return type as part of the code using the -> syntax:

    auto fun = [](double x, double y) -> double { return x + y; };

Lambda functions can also refer to variables that have been declared outside the block of the lambda 
function. This makes them much more convenient than standard functions, which are independent of 
the surrounding variables. The process used by lambda functions is called lambda capture, and it allows a 
lambda function to access the data stored in a local variable of an enclosing function, even after the current 
function has returned.

There are two types of lambda capture:

• Lambda capture by value: Allows lambda functions to use the value stored in a 
variable that is accessible at the moment of the lambda declaration. The value can be 
used even after the original variable no longer exists. This is indicated by adding the 
name of the variable inside the square brackets that introduce the lambda function.

• Lambda capture by reference: This allows a lambda function to modify the variable 
itself, instead of just using its value. This type of capture is indicated with an  
& operator before the name of the desired variable.
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Here is an example of both cases of lambda capture:

void use_lambda2()
{
    int offset = 5;
    auto fun1 = [ offset](double x, double y)
                         { return x + y + offset; };
    auto fun2 = [&offset](double x, double y)
                         { return x + y + offset; };
    double res = fun1(4, 5);
    std::cout << " result is "  << res << std::endl;
    offset = 10;
    std::cout << " result of fun1 is "  << fun1(4, 5) << std::endl;
    std::cout << " result of fun2 is "  << fun2(4, 5) << std::endl;
}

The function named fun1 has been created with a capture of the offset variable. This capture is by 
value only, so it will always reflect the original value of that variable, in this case, the number 5. The second 
lambda function fun2 captures the variable offset by reference. This means that each time fun2 is called, it 
will use a reference to the updated value of the offset. When the variable offset changes from 5 to 10, this will 
change the results produced by fun2 but will not change the results of the application of fun1, as shown in 
the following output:

 result is 14
 result of fun1 is 14
 result of fun2 is 19

A lambda function can also be passed as an argument to other functions. When this happens, the 
compiler creates a template object of type std::function<> that stores all the information used by the 
lambda function. You can create new functions that receive lambdas and freely use them in your code. The 
compiler will automatically convert a lambda into an object during the function call. Consider the following 
example:

void use_function(std::function<int(int,int)> f)
{
    auto res = f(2,3);
    std::cout << " the function returns the value "
              << res << std::endl;
}

This function just receives an std::function object and displays its result when applied to the values 
2 and 3. The important part of this code is noticing that std::function defines both the return type and 
the types for each of the parameters of the given function. You can see how this information is used in the 
compiler with two sample lambda functions that are passed to use_function as follows:

void test_use_function()
{
    auto f1 = [] (int a, int b) { return a + b; };
    auto f2 = [] (int a, int b) { return a * b; };
    use_function(f1);
    use_function(f2);
}
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When called, test_use_function will produce the following results, as expected:

 the function returns the value 5
 the function returns the value 6

 Complete Code
The complete code for this chapter is implemented in the Functional.hpp and Functional.cpp files. The 
functional techniques presented here have as dependencies only the main STL header files.

//
//  Functional.hpp
#ifndef Functional_hpp
#define Functional_hpp
class SimpleOption {
public:
   // Other definitions here
   int daysToExpiration() const { return m_daysToExpiration; }

double getInTheMoneyProbability(int numDays, double currentUnderlyingPrice) const ;
private:
   int m_daysToExpiration;
};
class OptionComparison {
public:
   OptionComparison(bool directionLess);
   OptionComparison(const OptionComparison &p);
   ~OptionComparison();
   OptionComparison &operator=(const OptionComparison &p);
   bool operator()(const SimpleOption &o1, const SimpleOption &o2);
private:
   bool m_directionLess;
};
#endif /* Functional_hpp */
//
//  Functional.cpp
#include "Functional.hpp"
#include <iostream>
#include <vector>
#include <functional>   // for functional STL code
//
// Class SimpleOption
//
double SimpleOption::getInTheMoneyProbability(int numDays, double 
currentUnderlyingPrice) const
{
    return 0; // implementation here
}
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//
//  Class OptionComparison
//
OptionComparison::OptionComparison(bool directionLess)
: m_directionLess(directionLess)
{
}
OptionComparison::OptionComparison(const OptionComparison &p)
: m_directionLess(p.m_directionLess)
{
}
OptionComparison::~OptionComparison()
{
}
OptionComparison &OptionComparison::operator=(const OptionComparison &p)
{
    if (this != &p)
    {
        m_directionLess = p.m_directionLess;
    }
    return *this;
}
bool OptionComparison::operator()(const SimpleOption &o1, const SimpleOption &o2)
{
    bool result = false;

// Check components of opt1 and opt2. In practice this could be more complex.
    if (m_directionLess)
    {
        result = o1.daysToExpiration() < o2.daysToExpiration();
    }
    else
    {
        result = o1.daysToExpiration() > o2.daysToExpiration();
    }
    return result;
}
void test_compare()
{
    OptionComparison comparison(true);
    SimpleOption a, b;
    // ...
    if (comparison(a, b))
    {
        std::cout << " a is less than b " << std::endl;
    }
    else
    {
        std::cout << " b is less than a " << std::endl;
    }
}
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void test_operator()
{
    using namespace std;
    vector<int> numbers = { 3, 4, 2, 1, 6 };
    sort(numbers.begin(), numbers.end(), greater<int>() );
}
void test_transform()
{
    using namespace std;
    auto list1 = { 3, 4, 2, 1, 6 };
    auto list2 = { 4, 1, 5, 3, 2 };
    vector<int> result(list1.size());

transform(list1.begin(), list1.end(), list2.begin(), result.begin(), plus<int>() );
    // Use transformed list here...

copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));
    // Prints 7, 5, 7, 4, 8,
}
void use_bind()
{
    using namespace std;
    using namespace std::placeholders;
    auto list1 = { 3, 4, 2, 1, 6 };
    vector<int> result(list1.size());
    //  Add 3 to each element of the list

transform(list1.begin(), list1.end(), result.begin(),  bind(plus<int>(), _1, 3));
    copy(result.begin(), result.end(), std::ostream_iterator<int>(cout, ", "));
    // Prints 6, 7, 5, 4, 9,
}
auto computeInTheMoneyProblExample(const std::vector<SimpleOption> &options) -> 
std::vector<double>
{
    using namespace std;
    using namespace std::placeholders;
    double currentPrice = 100.0;
    vector<double> probabilities(options.size());

auto inTheMoneyCalc = bind(&SimpleOption::getInTheMoneyProbability, _1, 2, currentPrice);

transform(options.begin(), options.end(), probabilities.begin(), inTheMoneyCalc);
    return probabilities;
}
void use_lambda()
{
    auto fun = [](double x, double y) -> double { return x + y; };
    double res = fun(4, 5);
    std::cout << " result is "  << res << std::endl;
}
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void use_lambda2()
{
    int offset = 5;
    auto fun1 = [ offset](double x, double y) -> double
                         { return x + y + offset; };
    auto fun2 = [&offset](double x, double y) -> double
                         { return x + y + offset; };
    double res = fun1(4, 5);
    std::cout << " result is "  << res << std::endl;
    offset = 10;
    std::cout << " result of fun1 is "  << fun1(4, 5) << std::endl;
    std::cout << " result of fun2 is "  << fun2(4, 5) << std::endl;
}
void use_function(std::function<int(int,int)> f)
{
    auto res = f(2,3);
    std::cout << " the function returns the value "  << res << std::endl;
}
void test_use_function()
{
    auto f1 = [] (int a, int b) { return a + b; };
    auto f2 = [] (int a, int b) { return a * b; };
    use_function(f1);
    use_function(f2);
}
//
// The main entry point for the test application
//
int main()
{
    test_use_function();
    return 0;
}

You can compile this code using any standards-compliant compiler, such as gcc (which is available for 
all major platforms). The following command line can be used to compile the application called Functional:

g++ -std=gnu++11 -o Functional Functional.cpp

 Changes to Lambda Functions in C++23
One of the changes in C++23 was the simplification of lambda syntax, by reducing the amount of parenthesis 
needed in the declaration of simple lambda functions. The goal of the standard committee with this change 
was to allow optional parentheses for lambdas without parameters.

In C++23, the use of empty parentheses for lambda functions without parameters becomes optional. 
Previously, empty parentheses were required for consistency in some cases, such as when using lambda 
template parameters, constexpr, consteval, mutable, noexcept specifiers, attributes, trailing return types, or a 
requires clause. But with the proposed change, empty parentheses can be omitted in those circumstances.
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Here is a quick example:

// Previous syntax (C++20)
auto empty_lambda = [](){};

// New syntax (C++23)
auto empty_lambda = []{};

 Change in the Scope of Lambda Trailing Return Type
Currently, when using a trailing return type in a lambda function, the type deduction considers variables 
from the outer scope instead of the lambda’s capture list. In C++23, the proposed change would modify the 
name lookup rules for trailing return types to prioritize captures before looking outside. This change aims to 
align the behavior with the developer’s intent and provide more intuitive results.

Example:

// C++20: the trailing return type is the type of my_var (double).
double my_var = 50.0;
auto counter = [my_var =0]() mutable -> decltype(my_var) {
    return my_var--;
};

In this example, the trailing return type is that of the variable my_var. Before C++23, my_var would be 
searched in the scope outside the lambda function, resulting in a return type of double.

However, in C++23, the rule was changed so that the variable my_var in the capture list is used instead. 
In that case, the return type of the function will be int. This is a better result because my_var is initialized 
with an integer value in the lambda function.

 Attributes on Lambdas
In C++23, the proposed change allows attributes to be applied directly to the lambda function call 
operator. Currently, attributes are placed in the lambda declarator, either before or after the parameter 
declaration clause, affecting the type of the function call operator. With the change, attributes can be 
declared immediately after the lambda or template parameter list, thus directly affecting the function call 
operator itself.

Here is an example:

// C++23
auto int_func = [][[nodiscard]]()->int { return 3; };
auto res = int_func(); // this compiles because the result is used
int_func();  // but this doesn't compile!

 Conclusion
Using templates is a good way to organize your code into generic functions that work across different data 
types. However, it’s only when you start to compose these functions that you start to reap the benefits of a 
functional programming style. Functional tools in the STL and other libraries allow programmers to use 
functions as first-class objects.
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In this chapter, you learned a few of the techniques available for programmers who want to explore 
functional programming in C++. Some of these techniques include the use of functional objects, which 
implement the function call operator to simulate native functions. The STL provides several template 
functions that support the use of functional objects.

You have also seen how to create and use lambda functions, a new syntactical element introduced in 
C++11. With lambda functions, programmers can create unnamed functions that can be saved as variables 
or passed as parameters to other functions. Even more interestingly, such lambda functions can refer to 
variables that occur in the environment in which they were created. In this way, lambda functions reduce 
the need to create additional classes just for the purpose of simulating function calls.

This chapter concludes the book’s overview of C++ programming techniques used on derivatives 
programming. In the next chapter, you will start to learn about mathematical tools that can be used to price 
and analyze options and other derivatives. In particular, you will learn about linear programming methods 
and their C++ implementations.
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CHAPTER 9

Linear Algebra Algorithms

Linear algebra (LA) techniques are used throughout the area of financial engineering and, in particular, in 
the analysis of options and other financial derivatives. These techniques are used, for example, to calculate 
the value of large portfolios, or to quickly price derivative instruments. This chapter contains an overview of 
LA algorithms and their implementation in C++.

Linear algebra algorithms consist of simple operations on sets of values arranged as vectors or matrices. 
There is a rich mathematical theory behind the use of vectors and matrices. Although it is out of the scope 
here to explain this mathematical theory, it is nonetheless essential to understand how such algorithm can 
be implemented in C++.

It is important to recognize how the traditional methods of linear algebra can be translated to a 
multiparadigm language such as C++. As a high-performance language, C++ has been used by software engineers 
to efficiently encode numerical algorithms, such as the ones used in linear algebra. With this goal in mind, this 
chapter presents a few examples that illustrate how to use some of the most common linear algebra algorithms. In 
this chapter, you will also learn how to integrate the following types of LA algorithms into your code:

• Vector operations: Operations on vectors are some of the most common ways to 
explore linear algebra algorithms.

• Implementing matrices: A matrix is a set of numbers ordered in a two-dimensional 
array. Even though matrices are very common, there is no standard support for 
matrices in the C++ library. In this chapter, you will see how to easily create a Matrix 
class that supports many of the most common matrix operations.

• Using linear algebra libraries: There is a set of LA functions, named BLAS (Basic 
Linear Algebra Subprograms), that have become a de facto standard in the world 
of numerical computing. You will see in this chapter how to use BLAS and similar 
implementations, which provide the basic blocks used by most LA software (both 
free and commercial) available nowadays.

 Vector Operations
As you will see in the following examples, linear algebra is concerned about the mathematical properties of 
vector spaces. Many of the operations either produce vectors or take vectors as their arguments. Therefore, 
the first step to properly use LA algorithms is to have a good implementation of vectors.

Notice that, on the positive side, the C++ standard library already contains an optimized container 
called std::vector, which you have used extensively in the last few chapters. On the other hand, 
std::vector doesn’t implement some of the most important operations that are conventionally used in 
linear algebra algorithms. The first step in implementing such an algorithm is therefore to provide such 
missing operations.
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There are two kinds of mathematical operations that are needed when using vectors:

• Operations between numbers and vectors: Some mathematical operations involve a 
single number (also called a scalar number) and a vector as arguments. For example, 
you may need to multiply a vector by a scalar, or add the same number to each entry 
in the vector. Such operations are not available in std::vector but are so common 
that they should be supported by any linear algebra software package.

• Operations between two or more vectors: Another class or mathematical operations 
take two or more vectors and calculate a result based on their values. A common 
example is a vector product, where all members in both vectors are pairwise 
multiplied and finally added. Other operations like vector summation are also 
commonly used.

The next few examples will show how to implement some of these operations using the existing 
containers of the STL, such as std::vector.

 Scalar-to-Vector Operations
Scalar operations on vectors allow a vector to be modified by a single scalar number. The two most common 
scalar operations are scalar addition and scalar multiplication. You can use these operations as building 
blocks for more complex operations, which will be explored in the following sections.

Because the std::vector class is already part of the STL, the strategy used here is to create free 
functions (not members of a particular class) that operate on vector containers. This way, you are free to 
continue to use the well-known functions available for std::vector when necessary. You can also overload 
these functions with other types if you feel the need to extend these definitions.

The scalar addition to vectors consists in adding the same constant number to each component of the 
vector. The operation of scalar addition is used in many linear algebra algorithms. This can be implemented 
in the following way:

#include <iostream>
#include <vector>
typedef std::vector<double> Vector;
Vector add(double num, const Vector &v)
{
    int n = (int)v.size();
    Vector result(n);
    for (int i=0; i<n; ++i)
    {
        result[i] = v[i] + num;
    }
    return result;
}

The first statement is a typedef that allows you to use the type name Vector instead of std::vector 
in this and the other examples in this chapter. Another advantage of using such a typedef in numerical 
algorithms like this is the possibility of changing the definition of Vector if necessary. In such a case, all the 
code would still compile to comply with another vector type with just a few or no changes.
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The add function creates a new vector with a size equal to the length of the argument vector. Then, it 
fills the resulting vector with the original plus the number in the first argument. Next, you can see the scalar 
multiplication operation:

Vector multiply(double num, const Vector &v)
{
    int n = (int)v.size();
    Vector result(n);
    for (int i=0; i<n; ++i)
    {
        result[i] = v[i] * num;
    }
    return result;
}

The multiply function is implemented similarly to add. It receives a double number and a vector. The 
resulting vector is created as the same size as the argument v. The resultant vector is computed element by 
element to comply with the definition of the scalar product operation.

These two functions create and return a new vector. This is an effective way to perform the operations, 
but it can be less than optimal when used in inner loops of complex algorithms. One way to speed up this 
process is to create a version of these functions that modifies the vector in place. That is, one of the vectors is 
passed using a non-const reference, and it is modified to contain the result of the calculation.

Here is the scalar addition function, implemented as an in-place modifying operation:

void in_place_add(double num, Vector &v)
{
    int n = (int)v.size();
    for (int i=0; i<n; ++i)
    {
        v[i] += num;
    }
}

As you can see, this is the equivalent of the += operator, but applied to a vector and a scalar number 
argument. A similar implementation also works for the scalar product operation:

void in_place_multiply(double num, Vector &v)
{
    int n = (int)v.size();
    for (int i=0; i<n; ++i)
    {
        v[i] *= num;
    }
}

Last, you can take advantage of C++ operator overloading when defining these functions. With operator 
overloading, you can write code much more naturally, so instead of typing

multiply(5, add(10, a));

(assuming that a is a vector), you can type

5 * (10 * a);
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which is much easier to understand and maintain. You can create operator versions of the previous 
functions using the following definitions:

inline Vector operator +(double num, const Vector &v)
{
    return add(num, v);
}
inline Vector operator *(double num, const Vector &v)
{
    return multiply(num, v);
}
inline void operator +=(double num, Vector &v)
{
    in_place_add(num, v);
}
inline void operator *=(double num, Vector &v)
{
    in_place_multiply(num, v);
}

Because these are inline functions, they don’t add any runtime penalty to the functions that have 
already been defined. In fact, you can think about these definitions as shortcuts to the full definition of the 
vector operators so that they are easy to type.

 Vector-to-Vector Operations
The vector-to-vector operations allow you to form mathematical expressions involving two or more vectors. 
The most common such operations are vector addition and vector product. They can be implemented using 
strategies similar to the ones used previously.

First, you will see the implementation of vector addition:

Vector add(const Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    Vector result(n);
    for (int i=0; i<n; ++i)
    {
        result[i] = v1[i] + v2[i];
    }
    return result;
}

Here, the function allocates a resultant vector, which is populated using element-wise addition of vector 
entries.

void  in_place_add(Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
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    {
        v1[i] += v2[i];
    }
}

Next, you can apply the same strategy to the implementation of vector products. The first kind of vector 
product is called inner product, or dot product, and is defined as the sum of products of each correspondent 
element of each vector. Here is a simple implementation in C++:

double prod(const Vector &v1, const Vector &v2)
{
    double result = 0;
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
    {
        result += v1[i] * v2[i];
    }
    return result;
}

Another type of product between two vectors is known as the cross product and has several applications 
in physics and engineering. Unlike the inner product, which returns a single number, the cross product 
results in a new vector. The cross product generates a new vector that is orthogonal to the given parameters. 
Its definition for three dimensional vectors is given using the equations presented in the following function:

Vector cross_prod_3D(const Vector &a, const Vector &b)
{
    assert(a.size()==3); // definition is 3D vectors only
    int n = (int)a.size();
    Vector v(n);  // the resulting vector
    v[0] = (a[1] * b[2] - a[2] * b[1]);
    v[1] = (a[2] * b[0] - a[0] * b[2]);
    v[2] = (a[0] * b[1] - a[1] * b[0]);
    return v;
}

Just as you can use in-place operations for scalar-to-vector functions, you can also implement vector-
to-vector operations in place, therefore saving some of the effort needed to create temporary data structures. 
Here are the versions of these two functions designed for in-place updates:

void  in_place_add(Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
    {
        v1[i] += v2[i];
    }
}
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void  in_place_product(Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
    {
        v1[i] *= v2[i];
    }
}
Vector in_place_cross_prod_3D(const Vector &a, const Vector &b, Vector &v)
{

assert(a.size()==3); // definition is 3D vectors only    int n = (int)a.size();
    v[0] = (a[1] * b[2] - a[2] * b[1]);
    v[1] = (a[2] * b[0] - a[0] * b[2]);
    v[2] = (a[0] * b[1] - a[1] * b[0]);
    return v;
}

Finally, you can also simplify the use of these vector operations with the help of C++ operator 
overloading. Instead of typing a complex set of function calls, it is much more elegant to apply the standard 
addition and multiplication operations whenever possible. Therefore, you can use the following inline 
definitions to call the given vector operations without any runtime performance penalty:

inline Vector operator +(const Vector &v1, const Vector &v2)
{
    return add(v1, v2);
}
inline void  operator +=(Vector &v1, const Vector &v2)
{
    in_place_add(v1, v2);
}
inline double operator *(const Vector &v1, const Vector &v2)
{
    return prod(v1, v2);
}
inline void  operator *=(Vector &v1, const Vector &v2)
{
    in_place_add(v1, v2);
}

The next operation I want to discuss is a very common function defined over a single vector. The norm of 
a vector can be defined as the square root of the vector product of a vector with itself. Basically, the norm of a 
vector is a numeric quantity that can be applied to describe the whole vector. You can very easily implement 
a norm in the following way:

double norm(const Vector &v)
{
    double result = 0;
    int n = (int)v.size();
    for (int i=0; i<n; ++i)
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    {
        result += v[i] * v[i];
    }
    return std::sqrt(result);
}

 Matrix Implementation
In the previous section, you learned about the most basic level of linear algebra functions, dealing with 
single numbers and vectors. A second level of operations is defined on a two-dimensional arrangement of 
numbers, also known as a matrix. Matrices arise naturally as the result of linear algebra calculations, and 
they provide a convenient way to manipulate data.

Matrices are fundamental to the implementation of linear algebra algorithms that are frequently used 
in the analysis of options and other derivatives. Unfortunately, C++ does not support matrices directly. 
Programmers need to create a separate abstraction to represent a matrix or use some third-party library that 
contains such a data type.

For the purpose of illustrating linear algebra and related algorithms, a Matrix class will be introduced 
in this section. This Matrix data type implements some of the most common operations that are needed in a 
financial application. However, the Matrix class presented here doesn’t include all the necessary checks that 
a robust implementation would require, and some of these features are left as exercise for the reader.

In particular, the Matrix class presented in this section offers the following abilities:

• Creation of square and rectangular matrices, which handle the allocation of memory 
for a two-dimensional container of real (floating-point) numbers

• Copy constructor and assignment operator that support the basic copy operations 
used in C++ libraries

• Indexing operator, so that values can be accessed with the familiar square bracket 
notation

• Common linear algebra operations, such as transpose, add, and multiply, 
implemented as member functions

The first step in defining a Matrix class is to define the basic organization of the stored data. In this 
class, the data is stored as a sequence of rows, making maximum use of the existing vector container to help 
manage the data.

The header file is presented in Listing 9-1, and it includes the class declaration and a few free operators 
that simplify the use of the class.

Listing 9-1. Declarations for the Matrix Class

//
//  Matrix.h
//
#ifndef __FinancialSamples__Matrix__
#define __FinancialSamples__Matrix__
#include <vector>
class Matrix {
public:
    typedef std::vector<double> Row;
    Matrix(int size);
    Matrix(int size1, int size2);
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    Matrix(const Matrix &s);
    ~Matrix();
    Matrix &operator=(const Matrix &s);
    void transpose();
    double trace();
    void add(const Matrix &s);
    void subtract(const Matrix &s);
    void multiply(const Matrix &s);
    void multiply(double num);
    Row & operator[](int pos);
    int numRows() const;
private:
    std::vector<Row> m_rows;
};
// Free operators
//
Matrix operator+(const Matrix &s1, const Matrix &s2);
Matrix operator-(const Matrix &s1, const Matrix &s2);
Matrix operator*(const Matrix &s1, const Matrix &s2);
#endif /* defined(__FinancialSamples__Matrix__) */

Notice that a Row is defined as an std::vector of double numbers using a typedef. Next, you see the 
usual definitions for constructors, destructors, and the assignment operator.

The Matrix class contains a few common operations, implemented as member functions. Last, you 
see a few operator overloads so that the class can be comfortably used along with other linear algebra types 
discussed previously.

The first part of the Matrix class implementation is concerned with the constructors. The class has two 
constructors: the first constructor creates a square matrix, that is, one that has the same number of rows and 
columns. This is done by instantiating each row of the matrix and adding it to the top-level m_rows vector, 
until the complete matrix has been allocated.

//
//  Matrix.cpp
//
#include "Matrix.h"
#include <stdexcept>
Matrix::Matrix(int size)
{
    for (int i=0; i<size; ++i )
    {
        std::vector<double> row(size, 0);
        m_rows.push_back(row);
    }
}

CHAPTER 9 ■ LinEAR ALgEbRA ALgoRiTHms



161

The second way to create a matrix is to give a number of rows and a number of columns, therefore 
creating a rectangular matrix. The underlying algorithm is similar to the previous case:

Matrix::Matrix(int size, int size2)
{
    for (int i=0; i<size; ++i )
    {
        std::vector<double> row(size2, 0);
        m_rows.push_back(row);
    }
}

The next constructor allows you to make a copy of an existing matrix. It simply takes advantage of how 
vectors copy all of their contents by default. The destructor is also trivial, because of the use of std::vector 
to manage the data.

Matrix::Matrix(const Matrix &s)
: m_rows(s.m_rows)
{
}
Matrix::~Matrix()
{
}

The assignment operator also takes advantage of the use of an std::vector. The only thing it needs to 
do is copy the underlying m_rows data member.

Matrix &Matrix::operator=(const Matrix &s)
{
    if (this != &s)
    {
        m_rows = s.m_rows;
    }
    return *this;
}

The Matrix class provides an easy way to access elements using square brackets. For this purpose, it 
needs to define the operator[] member function. Because an std::vector is returned, the result can also 
be accessed using square brackets. Therefore, if a is an object of class Matrix, users of this class can just type 
a[2][3] to access the fourth element of the third row.

Matrix::Row &Matrix::operator[](int pos)
{
    return m_rows[pos];
}

Transposition is one of the most common operations in a matrix. The goal of transposition is to convert 
rows into columns, changing the orientation of the data stored. This class does this by creating a new set of 
rows, where each new row contains the elements of the corresponding column. At the end, you just need 
to replace the existing rows with this new set of rows. This is done using the swap member function of the 
underlying std::vector. This way, you don’t need to worry about the details of data allocation, taking full 
advantage of STL data management techniques.
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void Matrix::transpose()
{
    std::vector<Row> rows;
    for (unsigned i=0;i <m_rows[0].size(); ++i)
    {
        std::vector<double> row;
        for (unsigned j=0; j<m_rows.size(); ++j)
        {
            row[j] = m_rows[j][i];
        }
        rows.push_back(row);
    }
    m_rows.swap(rows);
}

Next, the Matrix class contains another very common operation called trace. The trace of a matrix is 
defined as the summation of elements in the diagonal positions of the matrix. That is, for a given matrix a, 
you need to sum all elements a[i][i], or in mathematical notation:
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This function is not defined for nonsquare matrices.

double Matrix::trace()
{
    if (m_rows.size() != m_rows[0].size())
    {
        throw new std::runtime_error("invalid matrix dimensions");
    }
    double total = 0;
    for (unsigned i=0; i<m_rows.size(); ++i)
    {
        total += m_rows[i][i];
    }
    return total;
}

The add member function implements matrix addition. Just as with vector addition, matrix addition 
performs the element-wise summation of entries in the matrix. This operation is defined only when the two 
matrices have the same dimensions; otherwise, a runtime exception is thrown.

void Matrix::add(const Matrix &s)
{
    if (m_rows.size() != s.m_rows.size() ||
        m_rows[0].size() != s.m_rows[0].size())
    {
        throw new std::runtime_error("invalid matrix dimensions");
    }
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    for (unsigned i=0; i<m_rows.size(); ++i)
    {
        for (unsigned j=0; j<m_rows[0].size(); ++j)
        {
            m_rows[i][j] += s.m_rows[i][j];
        }
    }
}

The subtract operation is similar to addition. It is here just to avoid the need to multiply the whole 
matrix by -1 in order to do a simple subtraction.

void Matrix::subtract(const Matrix &s)
{
    if (m_rows.size() != s.m_rows.size() ||
        m_rows[0].size() != s.m_rows[0].size())
    {
        throw new std::runtime_error("invalid matrix dimensions");
    }
    for (unsigned i=0; i<m_rows.size(); ++i)
    {
        for (unsigned j=0; j<m_rows[0].size(); ++j)
        {
            m_rows[i][j] -= s.m_rows[i][j];
        }
    }
}

The product operation is implemented by the member function multiply. When you’re multiplying 
two matrices, the resulting matrix has entries that correspond to the vector product of the ith row and the jth 
column. In mathematical notation, this is represented as
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The multiply member function updates the matrix in place; therefore, it just needs to create a new set 
of rows and swap the results at the end of the function.

void Matrix::multiply(const Matrix &s)
{
    if (m_rows[0].size() != s.m_rows.size())
    {
        throw new std::runtime_error("invalid matrix dimensions");
    }
    std::vector<Row> rows;
    for (unsigned i=0; i<m_rows.size(); ++i)
    {
        std::vector<double> row;
        for (unsigned j=0; j<s.m_rows.size(); ++j)
        {
            double Mij = 0;
            for (unsigned k=0; k<m_rows[0].size(); ++k)
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            {
                Mij += m_rows[i][k] * s.m_rows[k][j];
            }
            row.push_back(Mij);
        }
        rows.push_back(row);
    }
    m_rows.swap(rows);
}

The Matrix class also defines a multiply member function that performs multiplication by a scalar 
number. This is analogous to the scalar multiplication of vectors and multiplies each element of the matrix 
by the same number.

void Matrix::multiply(double num)
{
    for (unsigned i=0; i<m_rows.size(); ++i)
    {
        for (unsigned j=0; j<m_rows[0].size(); ++j)
        {
            m_rows[i][j] *= num;
        }
    }
}

The numRows member function just returns the number of rows in the matrix.

int Matrix::numRows() const
{
    return (int)m_rows.size();
}

Finally, three operators are defined that simplify the use of the class. These operators use the in-place 
implementations you have seen previously, and they allow the use of convenient expressions involving 
matrices. These operators just give you an idea of how this works in practice; you can extend these 
definitions to include other common operators, such as /, +=, and *=.

Matrix operator+(const Matrix &s1, const Matrix &s2)
{
    Matrix s(s1);
    s.subtract(s2);
    return s;
}
Matrix operator-(const Matrix &s1, const Matrix &s2)
{
    Matrix s(s1);
    s.subtract(s2);
    return s;
}
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Matrix operator*(const Matrix &s1, const Matrix &s2)
{
    Matrix s(s1);
    s.multiply(s2);
    return s;
}

 Using the uBLAS Library
In the previous sections, you saw simple implementations of linear algebra concepts in C++. While they are 
useful for the examples provided in this book, sometimes, you will be required to create high-performance 
implementations of complex numerical algorithms involving vectors and matrices. In such cases, it is useful 
to use well-tested and optimized libraries that provide linear algebra–related code.

The most used library for linear algebra algorithms is LAPACK. Originally written in Fortran, LAPACK 
(linear algebra package) aims at providing high-performing and well-tested algorithms for basic operations 
involving vectors and matrices.

One interesting aspect of LAPACK is that it relies on another library called BLAS (Basic Linear Algebra 
Subprograms) to implement basic vector and matrix routines. The result is that BLAS became a standard for 
implementing vector and matrix routines. Several versions of BLAS have been released, providing optimized 
performance for specific architectures. BLAS also has versions targeting C and C++ that are used in many 
commercial products and other applications that need extensive support for numerical algorithms.

BLAS defines three levels of routines for support of linear algebra algorithms:

• BLAS Level 1 supports only vector-to-scalar and vector-to-vector operations. It is the 
most basic level of support, upon which other levels may be built.

• BLAS Level 2 offers optimized routines for vector-to-matrix calculations.

• BLAS Level 3 expands the previous levels to support matrix-to-matrix calculations, 
including operations such as matrix multiplication.

There are several implementations of BLAS, both in Fortran and in C++. Boost uBLAS is an 
implementation that is free and mostly compatible with the original BLAS library. It contains the same three 
support levels listed previously.

For an example of how to use uBLAS, assume that you want to access a fast implementation of the 
premultiply operations. That is, given a vector and a matrix, you want to write an algorithm that multiplies 
the vector by the matrix, giving a vector as a result.

To solve this problem, you can import the uBLAS libraries and create a function that receives two 
arguments: a vector and a matrix object. Here is a possible implementation for this function:

#include "Matrix.h"
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/lu.hpp>
namespace ublas = boost::numeric::ublas;
std::vector<double> preMultiply(const std::vector<double> &v, Matrix &m)
{
    using namespace ublas;
    ublas::vector<double> vec;
    std::copy(v.begin(), v.end(), vec.end());
    int d1 = m.numRows();
    int d2 = (int)m[0].size();
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    ublas::matrix<double> M(d1, d2);
    for (int i = 0; i < d1; ++i)
    {
        for (int j = 0; j < d2; ++j)
        {
            M(i,j) = m[i][j];
        }
    }
    vector<double> pv = prod(vec, M);
    std::vector<double> result;
    std::copy(pv.begin(), pv.end(), result.end());
    return result;
}

The first step is to include the header files for the boost numerical libraries. (You also need to make sure 
that the program will link to the necessary libraries; check your boost documentation for details.) Then, a 
function called preMultiply is defined, receiving a vector and a matrix as its parameters.

 ■ Note For more information about how to install and use boost libraries, check Chapter 14 of this book.

One of the first things this function needs to do is to convert the parameters into types required by the 
uBLAS library. In particular, uBLAS provides the vector<double> and matrix<double> types. You need to 
convert your data to these types before calling any uBLAS functions.

Once the data has been prepared, you may call the prod function from uBLAS, which knows how to 
calculate the product of a vector and a matrix. The result is then saved into an std::vector container and 
returned to the caller.

 Complete Code
This section contains the complete code for the vector operations. These functions may be used as the basis 
for a complete LA package, which is a common requirement in the analysis of options and derivatives.

The code is spread over two source files—LAVectors.hpp is the header file and LAVectors.cpp is the 
implementation file—which you’ll find in Listings 9-2 and 9-3.

Listing 9-2. Header File LAVectors.hpp

//
//  LAVectors.hpp
#ifndef LAVectors_hpp
#define LAVectors_hpp
#include <vector>
typedef std::vector<double> Vector;
// Scalar-to-vector operations
Vector add(double num, const Vector &v);
Vector multiply(double num, const Vector &v);
void in_place_add(double num, Vector &v);
void in_place_multiply(double num, Vector &v);
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inline Vector operator +(double num, const Vector &v)
{
    return add(num, v);
}
inline Vector operator *(double num, const Vector &v)
{
    return multiply(num, v);
}
inline void operator +=(double num, Vector &v)
{
    in_place_add(num, v);
}
inline void operator *=(double num, Vector &v)
{
    in_place_multiply(num, v);
}
// Vector-to-vector operations
Vector add(const Vector &v1, const Vector &v2);
void  in_place_add(Vector &v1, const Vector &v2);
double product(const Vector &v1, const Vector &v2);
void  in_place_product(Vector &v1, const Vector &v2);
inline Vector operator +(const Vector &v1, const Vector &v2)
{
    return add(v1, v2);
}
inline void  operator +=(Vector &v1, const Vector &v2)
{
    in_place_add(v1, v2);
}
inline double operator *(const Vector &v1, const Vector &v2)
{
    return product(v1, v2);
}
inline void  operator *=(Vector &v1, const Vector &v2)
{
    in_place_add(v1, v2);
}
double norm(const Vector &v);
#include <stdio.h>
#endif /* LAVectors_hpp */

Listing 9-3. Implementation File LAVectors.cpp

//
//  LAVectors.cpp
#include "LAVectors.hpp"
#include <cmath>
//
// Adds a scalar number to a vector "v"
//
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Vector add(double num, const Vector &v)
{
    int n = (int)v.size();
    Vector result(n);
    for (int i=0; i<n; ++i)
    {
        result[i] = v[i] + num;
    }
    return result;
}
//
// Premultiply a number "num" by the given vector "v"
//
Vector multiply(double num, const Vector &v)
{
    int n = (int)v.size();
    Vector result(n);
    for (int i=0; i<n; ++i)
    {
        result[i] = v[i] * num;
    }
    return result;
}
//
// Perform vector addition in place (modifying the given vector)
//
void in_place_add(double num, Vector &v)
{
    int n = (int)v.size();
    for (int i=0; i<n; ++i)
    {
        v[i] += num;
    }
}
//
// Perform vector multiplication in place
// (modifying the given vector)
//
void in_place_multiply(double num, Vector &v)
{
    int n = (int)v.size();
    for (int i=0; i<n; ++i)
    {
        v[i] *= num;
    }
}
//
// Perform vector addition of two vectors  (v1 and v2)
//
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Vector add(const Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    Vector result(n);
    for (int i=0; i<n; ++i)
    {
        result[i] = v1[i] + v2[i];
    }
    return result;
}
//
// Perform the vector product of vectors v1 and v2
//
double product(const Vector &v1, const Vector &v2)
{
    double result = 0;
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
    {
        result += v1[i] * v2[i];
    }
    return result;
}
//
// In-place addition of vectors v1 and v2
//
void  in_place_add(Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
    {
        v1[i] += v2[i];
    }
}
//
// In-place product of vectors v1 and v2
//
void  in_place_product(Vector &v1, const Vector &v2)
{
    int n = (int)v1.size();
    for (int i=0; i<n; ++i)
    {
        v1[i] *= v2[i];
    }
}
//
// Computes the cross product for two three-dimensional vectors
//
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Vector cross_prod_3D(const Vector &a, const Vector &b)
{
    assert(a.size()==3); // definition is 3D vectors only
    int n = (int)a.size();
    Vector v(n);  // the resulting vector
    v[0] = (a[1] * b[2] - a[2] * b[1]);
    v[1] = (a[2] * b[0] - a[0] * b[2]);
    v[2] = (a[0] * b[1] - a[1] * b[0]);
    return v;
}
//
// In-place version of cross product for 3D vectors
//
Vector in_place_cross_prod_3D(const Vector &a, const Vector &b, Vector &v)
{
    assert(a.size()==3); // definition is 3D vectors only
    int n = (int)a.size();
    v[0] = (a[1] * b[2] - a[2] * b[1]);
    v[1] = (a[2] * b[0] - a[0] * b[2]);
    v[2] = (a[0] * b[1] - a[1] * b[0]);
    return v;
}
//
// Computes the norm of a vector
//
double norm(const Vector &v)
{
    double result = 0;
    int n = (int)v.size();
    for (int i=0; i<n; ++i)
    {
        result += v[i] * v[i];
    }
    return std::sqrt(result);
}

 Syntax Change in C++23: Multidimensional Subscripts
As you have seen in the examples in this chapter, the syntax for accessing arrays uses the [] operator, which 
receives as argument a single index. This was the only valid syntax until C++20. However, the new C++23 
standard has provided yet another way to work with matrices: using an indexing operator with multiple 
indices.

Here is a quick example of what is now possible:

#include <array>

template <typename T, size_t R, size_t Cols>
struct M_Matrix
{
   T& operator[](size_t const a, size_t const b) noexcept
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    {
    return data_[a * Cols + b];
    }
    T const & operator[](size_t const a, size_t const b) const noexcept
    {
    return data_[a * Cols + b];
    }
   static constexpr size_t Rows = R;
   static constexpr size_t Columns = Cols;
private:
   std::array<T, R* Cols> data_;
};

int call_m_matrix()
{
    M_Matrix<double, 5,6> my_matrix;
    // ...
    my_matrix[3,5] = 1.0;
}

In this example, the type M_Matrix (multidimensional matrix) has an indexing operator with two 
parameters (a and b). This means that we can now pass two indices (separated by comma) to determine the 
exact location of an element in the underlying data, as you can see in the function call_m_matrix.

 Conclusion
In this chapter, you learned about linear algebra algorithms that are commonly used in the development of 
software for the analysis of options and other derivatives. Linear algebra provides many of the techniques 
that are applied to important problems such as options pricing and the numerical approximation of certain 
derivatives occurring in finance.

First, you learned about the basic algorithms that involve a vector and a scalar number. These 
operations can be implemented in C++ using functions that are applied to standard vectors, as you could 
observe in the given examples.

Next, you learned how to implement a useful matrix data type. Matrices are not directly provided by the 
STL, but you can take advantage of existing support to vectors as a building block for matrix representations. 
You also learned about the basic operations that can be performed over matrix objects.

Finally, I discussed linear algebra libraries that provide efficient implementations for some of the 
functionality discussed in the previous sections. In particular, BLAS has been created and improved by some 
of the greatest specialists in the implementation of numerical algorithms. The BLAS library is organized into 
different levels of support for linear algebra algorithms. You saw an example of how to take advantage of this 
highly optimized library to improve the performance of your own linear algebra code.

In the next chapter, you will learn about another building block for financial derivatives: numerical 
algorithms used to solve mathematical equations. This type of algorithms is at the core of many techniques 
used in the pricing of options and more exotic derivatives, as you will see in the next few chapters.

CHAPTER 9 ■ LinEAR ALgEbRA ALgoRiTHms



173

CHAPTER 10

Algorithms for Numerical Analysis

Equation solving is one of the main building blocks for financial algorithms used in the analysis of options 
and financial derivatives. This happens because of the nature of options pricing, which is based on the 
Black-Scholes pricing model. Many of the techniques that involve options pricing require the efficient 
solution of differential equations and other mathematical formulations.

Given the importance of mathematical techniques in the pricing of such derivatives, it is important 
to be able to calculate the solution for particular mathematical models. Although this is a vast area of 
numerical programming, I will present a few illustrations of numerical algorithms that can be used as a 
starting point for developing your own C++ code.

In this chapter, you will see programming examples for a few fundamental algorithms in numerical 
programming. In particular, you will learn techniques to calculate equation roots and integrate functions 
in C++, with a discussion of how they work and how they are applied. The chapter also discusses numerical 
error and stability issues that present a challenge for developers in the area of quantitative financial 
programming.

• Mathematical function representation: I initially discuss a representation for 
mathematical functions that can be used as the starting point for algorithms that 
manipulate these mathematical abstractions.

• Root-finding algorithms: One of the most common types of numerical algorithms, 
root-finding techniques are used to find one or more roots of an equation, which are 
the points where the equations have zero value.

• Integration algorithms: Another common type of numerical algorithms, integration 
techniques are used to calculate the numerical value of an integral (which can also 
be described as the area under a function, for single dimensional equations).

• Numerical examples in C++: This chapter also includes C++ code that implements 
many of these concepts, with concrete examples of how to code these algorithms.

 Representing Mathematical Functions
The first step in this short overview of numerical algorithms is to find a reasonable way to represent 
mathematical functions in C++. As you saw in the previous chapter, functions can be easily represented in 
C++ using functional objects, which declare a function call operator as one of its member functions. Using 
this strategy, it is possible to convert a class instance into a callable object, with semantics similar to native 
functions.
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A similar strategy can be used to represent mathematical functions. The main difference between 
generic C++ and mathematical functions is that the latter operate only over numeric domains, more 
commonly using float or double values.

In the following example, a new MathFunction class is declared using this strategy. The declaration 
of MathFunction as an abstract interface allows programmers to extend this definition as necessary to 
represent concrete functions, as you will see next.

The abstract class can be defined as presented in Listing 10-1.

Listing 10-1. Definition for the Abstract Class MathFunction

#include <iostream>
#include <vector>
using std::cout;
using std::endl;
class MathFunction {
public:
    virtual ~MathFunction() {}
    virtual double operator()(double x) = 0;
private:
    // This is just an interface
};

 ■ Note Because MathFunction is a polymorphic base class, it needs to define its own virtual destructor. 
This is necessary because clients will receive pointers or references to the base class. Without a virtual 
destructor, the compiler cannot determine the right destructor to be called, and as a result, such objects will not 
be properly cleaned up.

The great thing about using this type of interface class is that once you have a class like MathFunction, 
you can start writing code that uses it directly. Your code is insulated from any worries about the exact 
representation of objects. For example, consider a useful class called PolynomialFunction, which 
implements the interface described by MathFunction:

//
//  Polynomial has the form
//    c_1 x^n + c_2 x^n-1 + ....  + c_n-1 x^1 + c_n
//
class PolynomialFunction : public MathFunction {
public:
    PolynomialFunction(const std::vector<double> &coef);
    PolynomialFunction(const PolynomialFunction &p);
    virtual ~PolynomialFunction();
    virtual PolynomialFunction &operator=(const PolynomialFunction &p);
    virtual double operator()(double x) override;
private:
    std::vector<double> m_coefficients;
};
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The PolynomialFunction class derives from MathFunction so that it can implement the same interface. 
However, it is only usable to represent polynomial functions, that is, functions that are determined by a 
polynomial of the form

 f x c x c x c x cn n
n n( ) = + + + +−
−1 2

1
1

1
  

The polynomial is determined using the coefficients passed as vectors to the constructor of 
PolynomialFunction. The constructors are responsible for updating the m_coefficients data member 
using this information.

PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)
: m_coefficients(coef)
{
}
PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)
: m_coefficients(p.m_coefficients)
{
}
PolynomialFunction::~PolynomialFunction()
{
}
PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)
{
    if (this != &p)
    {
        m_coefficients = p.m_coefficients;
    }
    return *this;
}

 Using Horner’s Method
The main part of the PolynomialFunction class is the implementation for the method call operator. Since 
this class represents a polynomial, this operator needs to receive a real number x and evaluate the function 
at that particular point. This is done using the so-called Horner’s method.

Horner’s method is just a quick way to evaluate a polynomial so that you don’t need to explicitly 
evaluate the terms xi, for i from 1 to n. This can be done using a loop, where at each step you add a 
coefficient and multiply the result by x. A simple implementation of this idea can be done as follows:

double PolynomialFunction::operator()(double x)
{
    int n = (int)m_coefficients.size();
    double y = 0;
    int i;
    for (i=0; i<n-1; ++i)
    {
        y += m_coefficients[i];
        y *= x;
    }
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    if (i < n) {
        y += m_coefficients[i];
    }
    return y;
}

To test these classes, you create a sample function that evaluates a polynomial function in a particular 
range. The function tested here is simply x2 in the real range of –2 to 2. The function also prints the results so 
that you can visualize the data.

int test_poly_function()
{
    PolynomialFunction f( { 1, 0, 0 } );
    double begin = -2, end = 2;
    double step = (end - begin) / 100.0;
    for (int i=0; i<100; ++i)
    {
        cout <<  begin + step * i << ", ";
    }
    cout << endl;
    for (int i=0; i<100; ++i)
    {
        cout << f( begin + step * i) << ", ";
    }
    return 0;
}

I ran this function and plotted the results as a graph of the function. Figure 10-1 shows the output of 
the plot.

Figure 10-1. Plot of results printed by the test_poly_function function
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 Finding Roots of Equations
Once you have a good representation for mathematical functions, it becomes possible to solve a few 
numerical problems. The first one I discuss in this section is finding the roots of an equation, a common 
problem that occurs as part of several numerical algorithms. Finding roots of an equation consists of 
determining one or more points in a numerical domain (usually the real numbers) where the equation has a 
value of zero.

This problem has a long history in mathematics, and for some types of equations, it is possible to 
calculate their roots exactly. For example, you can find such roots for polynomials in general. For other 
equations, however, this problem can be too complicated to solve using analytical methods, which leads to 
the need for an algorithm capable of generating approximate solutions to such equations.

A number of numerical algorithms have been proposed in the mathematical literature to find the 
roots of equations. In this section, you see how to do this using Newton’s method, which is one of the most 
common algorithms for this problem, and learn how it can be implemented in C++.

 Newton’s Method
Newton’s method is based on the use of the derivative as an approximation to the function on a particular 
neighborhood. To understand how this method works, notice that the derivative of a function at a particular 
point is known to be the slope of a line segment that is tangent to the function.

Using this property, it is very easy to improve the approximation to the equation root with a new point 
that is determined by the tangent. Newton’s method will essentially iterate through this process, until the 
difference between successive approximations is very small. Figure 10-2 shows an example of finding the 
root of function 5x + cos (9x) − 2 using Newton’s method. The method starts at a given point and at each step 
computes a better approximation, until the root of the equation (represented as a large dot) is found.
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Figure 10-2. Finding the root of a function using Newton’s method (image created with Wolfram 
Mathematica)

This method can be readily implemented in C++ using the tools that you already have. The first part 
consists of creating a class that encapsulates the necessary data for the approximation procedure. Here is the 
definition for the NewtonMethod class:

#include "MathFunction.hpp"
//
// A Newton method implementation
//
class NewtonMethod {
public:
    // Takes as parameter the function and its derivatives
    //
    NewtonMethod(MathFunction &f, MathFunction &derivative);
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    NewtonMethod(MathFunction &f,
                 MathFunction &derivative, double error);
    NewtonMethod(const NewtonMethod &p);
    virtual ~NewtonMethod();
    NewtonMethod &operator=(const NewtonMethod &p);
    double getFunctionRoot(double initialValue);
private:
    MathFunction &m_f;
    MathFunction &m_derivative;
    double m_error;
};

The NewtonMethod class contains the commonly used member functions, and in addition, it provides a 
function called getFunctionRoot, which receives as a parameter an initial value (a first guess that will work 
as a starting point).

The class stores as its data a reference to the function for which you want to find roots and another 
reference to its derivative. Although it is technically possible to find the derivative for most functions, the 
techniques to do this in a generic way are beyond the capabilities of this class, so you need to receive the 
derivative as a constructor parameter and store it.

#include <iostream>
#include <cmath>
using std::endl;
using std::cout;
namespace {
    const double DEFAULT_ERROR = 0.0001;
}
NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative)
: m_f(f),
  m_derivative(derivative),
  m_error(DEFAULT_ERROR)
{
}
NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative, double error)
: m_f(f),
  m_derivative(derivative),
  m_error(error)
{
}
NewtonMethod::NewtonMethod(const NewtonMethod &p)
: m_f(p.m_f),
  m_derivative(p.m_derivative),
  m_error(p.m_error)
{
}
NewtonMethod::~NewtonMethod()
{
}

CHAPTER 10 ■ AlgoRiTHms foR NumERiCAl ANAlysis



180

NewtonMethod &NewtonMethod::operator=(const NewtonMethod &p)
{
    if (this != &p)
    {
        m_f = p.m_f;
        m_derivative = p.m_derivative;
        m_error = p.m_error;
    }
    return *this;
}

These member functions are necessary just to maintain the state of NewtonMethod objects. The m_f 
member stores the function that needs to be solved. The m_derivative member stores a reference to the 
derivative of the main function. You can also tweak the expected error of the solutions found by this class 
using the m_error member function. If the error is not supplied, this class uses the value stored in the 
DEFAULT_ERROR error constant.

Next, you’re ready for the implementation of Newton’s method using the given infrastructure. The 
getFunctionRoot function provides the necessary code for finding the root of the equation. This member 
function is essentially a loop in which at each step a new approximation for the function root is provided. 
The loop ends when the absolute difference between the two last approximations is at least equal to the 
acceptable error:

double NewtonMethod::getFunctionRoot(double x0)
{
    double x1 = x0;
    do
    {
        x0 = x1;

cout << " x0 is " << x0 << endl;  //
this line just for demonstration
        double d = m_derivative(x0);
        double y = m_f(x0);
        x1 = x0 - y / d;
    }
    while (std::abs(x0 - x1) > m_error);
    return x1;
}

Inside the main loop, the steps are as follows:

 1. Find the value at the derivative at the current estimate point using the  
m_derivative member.

 2. Find the value of the function itself at the current estimate using the m_f member.

 3. The derivative gives the slope d of the tangent, which can now be used to 
calculate another estimate point starting from the previous estimate. The 
equation for this new estimate is given by

 

x x
f x

f xo
1 0

0= −
( )
( )′

 

where x
0
 is the previous estimate and x

1
 is the new estimate.

CHAPTER 10 ■ AlgoRiTHms foR NumERiCAl ANAlysis



181

You can use a few sample functions to test the accuracy of this method. I created a SampleFunction 
class for this purpose. This class inherits publicly the MathFunction interface and can be used to compute 
the function f(x) = (x–1)3, which has 1 as a root solution.

class SampleFunction : public MathFunction {
public:
    virtual ~SampleFunction();
    virtual double operator()(double value);
}.
SampleFunction::~SampleFunction()
{
}
double SampleFunction::operator ()(double x)
{
    return (x-1)*(x-1)*(x-1);
}

To use this class with NewtonMethod, you also need to supply its derivative. I have implemented the 
Derivative class, which again is derived from MathFunction. Simple math shows you that the derivative is 
given by f'(x) = 3(x–1)2.

class Derivative : public MathFunction {
public:
    virtual ~Derivative();
    virtual double operator()(double value);
};
// Represents the derivative of the sample function
Derivative::~Derivative()
{
}
double Derivative::operator ()(double x)
{
    return 3*(x-1)*(x-1);
}

With these two classes, you can create a simple main function that puts them together and finds the root 
of the desired function. This code instantiates both SampleFunction and Derivative objects and creates an 
object of the NewtonMethod class. Finally, the code prints the value for a given initial estimate of 100.

int main()
{
    SampleFunction f;
    Derivative df;
    NewtonMethod nm(f, df);
    cout << " the root of the function is "
         << nm.getFunctionRoot(100) << endl;
    return 0;
}

Running this function gives as a result a set of points, each one closer to the desired equation root. You 
can view the sequence of results in Table 10-1.
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Table 10-1. Sequence of Values Found by Newton’s Method  
Applied to Function (x–1)3 and with Initial Guess of 100

Iteration Estimate Difference

1 100

2 67 33.00000

3 45 22.00000

4 30.3333 14.66670

5 20.5556 9.77770

6 14.037 6.51860

7 9.69136 4.34564

8 6.79424 2.89712

9 4.86283 1.93141

10 3.57522 1.28761

11 2.71681 0.85841

12 2.14454 0.57227

13 1.76303 0.38151

14 1.50868 0.25435

15 1.33912 0.16956

16 1.22608 0.11304

17 1.15072 0.07536

18 1.10048 0.05024

19 1.06699 0.03349

20 1.04466 0.02233

21 1.02977 0.01489

22 1.01985 0.00992

23 1.01323 0.00662

24 1.00882 0.00441

25 1.00588 0.00294

26 1.00392 0.00196

27 1.00261 0.00131

28 1.00174 0.00087

29 1.00116 0.00058

(continued)
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Iteration Estimate Difference

30 1.00077 0.00039

31 1.00052 0.00025

32 1.00034 0.00018

33 1.00023 0.00011

34 1.00015 0.00008

Table 10-1. (continued)

 Integration
Another problem that frequently requires the help of mathematical algorithms is the integration of 
functions. The integral of a function can be visualized as the area under its graph, and it has many 
applications in finance, engineering, and physics. Several algorithms used in the analysis of options need to 
evaluate integrals numerically, using techniques similar to the ones covered in this section.

Functions can be integrated analytically or numerically. For some functions, it is possible to find an 
analytic solution, that is, a closed formula that can be directly evaluated to compute the integral of a function 
between two points. For example, polynomial functions can be easily integrated analytically, using the 
antiderivative. For example, if the function is f (x) = x2, the antiderivative

 
F x

x
C( ) = +

3

3  

can be used to calculate the value of the integral between points a and b, which becomes F (b) – F(a).
Many functions, however, are too complicated to be integrated analytically. In these cases, you need to 

use numerical algorithms that slice the function into small parts and calculate the integral while trying to 
reduce the error in this process.

In this section, I present an implementation for one of the simplest integration techniques, known as 
Simpson’s method. Simpson’s method is based on the decomposition of an area that needs to be integrated 
into a large number of very small pieces.

First, you need to define a class that presents the interface for this solution method. The 
SimpsonsIntegration class contains data members such as m_f, a reference to the function that will be 
integrated, and m_numIntervals, the number of intervals used to approximate the integral.

#include "MathFunction.hpp"
class SimpsonsIntegration {
public:
    SimpsonsIntegration(MathFunction &f);
    SimpsonsIntegration(const SimpsonsIntegration &p);
    ~SimpsonsIntegration();
    SimpsonsIntegration &operator=(const SimpsonsIntegration &p);
    double getIntegral(double a, double b);
    void setNumIntervals(int n);
private:
    MathFunction &m_f;
    int m_numIntervals;
};
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The implementation for this class is in the next code fragment. The class uses a default number of 
intervals, in case you don’t want to set up this value. The DEFAULT_NUM_INTERVALS constant is used for this 
purpose.

#include "Integration.hpp"
#include "MathFunction.hpp"
#include <iostream>
#include <cmath>
using std::cout;
using std::endl;
namespace  {
    const int DEFAULT_NUM_INTERVALS = 100;
}
SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)
: m_f(f),
m_numIntervals(DEFAULT_NUM_INTERVALS)
{
}
SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration &p)
: m_f(p.m_f),
m_numIntervals(p.m_numIntervals)
{
}
SimpsonsIntegration::~SimpsonsIntegration()
{
}
SimpsonsIntegration &SimpsonsIntegration::operator=(const SimpsonsIntegration &p)
{
    if (this != &p)
    {
        m_f = p.m_f;
        m_numIntervals = p.m_numIntervals;
    }
    return *this;
}

The main part of this implementation is the getIntegral member function. The two parameters for 
this function define the interval in which the integration will be performed. The intSize variable is used to 
define the size of each interval used for Simpson’s method.

The algorithm operates as follows. For each slice of the required interval, you need to compute the 
approximate area under the function. The formula used by Simpson’s method is
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where a and b are the beginning and end points of the current interval. This rule has been observed as one 
of the most effective for evaluating an integral in a short interval.
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double SimpsonsIntegration::getIntegral(double a, double b)
{
    double S = 0;
    double intSize = (b - a)/m_numIntervals;
    double x = a;
    for (int i=0; i<m_numIntervals; ++i)
    {

S += (intSize / 6) * ( m_f(x) + m_f(x+intSize) + 4* m_f
((x + x+intSize)/2) );
        x += intSize;
    }
    return S;
}

This class also provides a method to change the number of intervals, therefore improving the accuracy 
of the method (at the expense of additional running time).

void SimpsonsIntegration::setNumIntervals(int n)
{
    m_numIntervals = n;
}

To test the results of this integration method, I provide a simple mathematical function as an example. 
The function to be integrated here is sin(x).

// Example function
namespace  {
    class SampleFunc : public MathFunction
    {
    public:
        ~SampleFunc();
        double operator()(double x);
    };
    SampleFunc::~SampleFunc()
    {
    }
    double SampleFunc::operator()(double x)
    {
        return sin(x);
    }
}

The main function can be used as a driver to test the SimpsonsIntegration class. It creates an 
instance of SampleFunc and uses it to initialize a SimpsonsIntegration object. Then, this code will call the 
function getIntegral for the interval 0.5 to 2.5. Next, the number of intervals changes to 200, and the same 
calculation is performed again.
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int main()
{
    SampleFunc f;
    SimpsonsIntegration si(f);
    si.setNumIntervals(200);
    double integral = si.getIntegral(0.5, 2.5);
    cout << " the integral of the function is " << integral << endl;
    si.setNumIntervals(200);
    integral = si.getIntegral(0.5, 2.5);
    cout << " the integral of the function with 200 intervals is "
         << integral << endl;
    return 0;
}

The result of this function is the following:

 the integral of the function is 1.67876
 the integral of the function with 200 intervals is 1.67873

This is a very effective method, and with only four intervals, it is possible to achieve a reasonable 
approximation in this case.

 Complete Code
Here is the code used in this chapter:

//
//  MathFunction.hpp
#ifndef MathFunction_hpp
#define MathFunction_hpp
#include <stdio.h>
#include <vector>
class MathFunction {
public:
    virtual ~MathFunction() {}
    virtual double operator()(double x) = 0;
private:
    // This is just an interface
};
//
//  Polynomial has the form  c_1 x^n + c_2 x^n-1 + ....  + c_n-1 x^1 + c_n
class PolynomialFunction : public MathFunction {
public:
    PolynomialFunction(const std::vector<double> &coef);
    PolynomialFunction(const PolynomialFunction &p);
    virtual ~PolynomialFunction();
    PolynomialFunction &operator=(const PolynomialFunction &p);
    virtual double operator()(double x) override;
private:
    std::vector<double> m_coeficients;
};
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#endif /* MathFunction_hpp */
//
//  MathFunction.cpp
#include "MathFunction.hpp"
#include <iostream>
using std::cout;
using std::endl;
PolynomialFunction::PolynomialFunction(const std::vector<double> &coef)
: m_coeficients(coef)
{
}
PolynomialFunction::PolynomialFunction(const PolynomialFunction &p)
: m_coeficients(p.m_coeficients)
{
}
PolynomialFunction::~PolynomialFunction()
{
}
PolynomialFunction &PolynomialFunction::operator=(const PolynomialFunction &p)
{
    if (this != &p)
    {
        m_coeficients = p.m_coeficients;
    }
    return *this;
}
double PolynomialFunction::operator()(double x)
{
    int n = (int)m_coeficients.size();
    double y = 0;
    int i;
    for (i=0; i<n-1; ++i)
    {
        y += m_coeficients[i];
        y *= x;
    }
    if (i < n) {
        y += m_coeficients[i];
    }
    return y;
}
//
// Test function
int main_afunc()
{
    PolynomialFunction f( { 1, 0, 0 } );
    double begin = -2, end = 2;
    double step = (end - begin) / 100.0;
    for (int i=0; i<100; ++i)
    {
        cout <<  begin + step * i << ", ";
    }
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    cout << endl;
    for (int i=0; i<100; ++i)
    {
        cout << f( begin + step * i) << ", ";
    }
    return 0;
}
//
//  NewtonMethod.hpp
#ifndef NewtonMethod_hpp
#define NewtonMethod_hpp
#include "MathFunction.hpp"
//
// A Newton method implementation
//
class NewtonMethod {
public:
    // Takes as parameter the function and its derivatives
    //
    NewtonMethod(MathFunction &f, MathFunction &derivative);
    NewtonMethod(MathFunction &f, MathFunction &derivative, double error);
    NewtonMethod(const NewtonMethod &p);
    virtual ~NewtonMethod();
    NewtonMethod &operator=(const NewtonMethod &p);
    double getFunctionRoot(double initialValue);
private:
    MathFunction &m_f;
    MathFunction &m_derivative;
    double m_error;
};
#endif /* NewtonMethod_hpp */
//
//  NewtonMethod.cpp
#include "NewtonMethod.hpp"
#include <iostream>
#include <cmath>
using std::endl;
using std::cout;
namespace {
    const double DEFAULT_ERROR = 0.0001;
}
NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative)
: m_f(f),
m_derivative(derivative),
m_error(DEFAULT_ERROR)
{
}
NewtonMethod::NewtonMethod(MathFunction &f, MathFunction &derivative, double error)
: m_f(f),
m_derivative(derivative),
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m_error(error)
{
}
NewtonMethod::NewtonMethod(const NewtonMethod &p)
: m_f(p.m_f),
m_derivative(p.m_derivative),
m_error(p.m_error)
{
}
NewtonMethod::~NewtonMethod()
{
}
NewtonMethod &NewtonMethod::operator=(const NewtonMethod &p)
{
    if (this != &p)
    {
        m_f = p.m_f;
        m_derivative = p.m_derivative;
        m_error = p.m_error;
    }
    return *this;
}
double NewtonMethod::getFunctionRoot(double x0)
{
    double x1 = x0;
    do
    {
        x0 = x1;

cout << " x0 is " << x0 << endl;  //
this line is just for demonstration
        double d = m_derivative(x0);
        double y = m_f(x0);
        x1 = x0 - y / d;
    }
    while (std::abs(x0 - x1) > m_error);
    return x1;
}
// ---- A function used as example
namespace {
    class SampleFunction : public MathFunction {
    public:
        virtual ~SampleFunction();
        virtual double operator()(double value);
    };
    SampleFunction::~SampleFunction()
    {
    }
    double SampleFunction::operator ()(double x)
    {
        return (x-1)*(x-1)*(x-1);
    }
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    class Derivative : public MathFunction {
    public:
        virtual ~Derivative();
        virtual double operator()(double value);
    };
    // Represents the derivative of the sample function
    Derivative::~Derivative()
    {
    }
    double Derivative::operator ()(double x)
    {
        return 3*(x-1)*(x-1);
    }
}
int main()
{
    SampleFunction f;
    Derivative df;
    NewtonMethod nm(f, df);

cout << " the root of the function is " << nm.getFunctionRoot(100) << endl;
    return 0;
}
//
//  Integration.hpp
#ifndef Integration_hpp
#define Integration_hpp
#include "MathFunction.hpp"
class SimpsonsIntegration {
public:
    SimpsonsIntegration(MathFunction &f);
    SimpsonsIntegration(const SimpsonsIntegration &p);
    ~SimpsonsIntegration();
    SimpsonsIntegration &operator=(const SimpsonsIntegration &p);
    double getIntegral(double a, double b);
    void setNumIntervals(int n);
private:
    MathFunction &m_f;
    int m_numIntervals;
};
#endif /* Integration_hpp */
//
//  Integration.cpp
#include "Integration.hpp"
#include "MathFunction.hpp"
#include <iostream>
#include <cmath>
using std::cout;
using std::endl;
namespace  {
    const int DEFAULT_NUM_INTERVALS = 100;
}
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SimpsonsIntegration::SimpsonsIntegration(MathFunction &f)
: m_f(f),
m_numIntervals(DEFAULT_NUM_INTERVALS)
{
}
SimpsonsIntegration::SimpsonsIntegration(const SimpsonsIntegration &p)
: m_f(p.m_f),
m_numIntervals(p.m_numIntervals)
{
}
SimpsonsIntegration::~SimpsonsIntegration()
{
}
SimpsonsIntegration &SimpsonsIntegration::operator=(const SimpsonsIntegration &p)
{
    if (this != &p)
    {
        m_f = p.m_f;
        m_numIntervals = p.m_numIntervals;
    }
    return *this;
}
double SimpsonsIntegration::getIntegral(double a, double b)
{
    double S = 0;
    double intSize = (b - a)/m_numIntervals;
    double x = a;
    for (int i=0; i<m_numIntervals; ++i)
    {
        S += (intSize / 6)
          * ( m_f(x) + m_f(x+intSize) + 4* m_f ((x + x+intSize)/2) );
        x += intSize;
    }
    return S;
}
void SimpsonsIntegration::setNumIntervals(int n)
{
    m_numIntervals = n;
}
// Example function
namespace  {
    class SampleFunc : public MathFunction
    {
    public:
        ~SampleFunc();
        double operator()(double x);
    };
    SampleFunc::~SampleFunc()
    {
    }
    double SampleFunc::operator()(double x)
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    {
        return sin(x);
    }
}
int main()
{
    SampleFunc f;
    SimpsonsIntegration si(f);
    si.setNumIntervals(4);
    double integral = si.getIntegral(0.5, 2.5);
    cout << " the integral of the function is " << integral << endl;
    si.setNumIntervals(100);
    integral = si.getIntegral(0.5, 2.5);

cout << " the integral of the function with 200 intervals is " << integral << endl;
    return 0;
}

 Conclusion
Numerical algorithms are one of the main parts of an analytical system for options and derivatives. These 
algorithms have been refined for decades, and many of them have been implemented in C++ for the purpose 
of options pricing and related tasks.

In this chapter, you saw a few examples of numerical algorithms and learned how they can be efficiently 
implemented. I started with an explanation of how mathematical functions can be modeled as classes that 
are independent of the underlying algorithm. You also learned how to create a generic polynomial function 
class that efficiently computes the value of a function at each point using Horner’s method.

Next, you learned how to find roots of equations using Newton’s method. This traditional method 
employs the derivative of a function to estimate the value of its root and continually improves this estimate 
until a solution is found. You learned how this method can be relatively easily implemented using the tools 
developed in the previous sections.

Finally, this chapter also covered the important problem of function integration. To find the integral of a 
function, you need to evaluate a function in a given range and use those values to estimate the area covered 
by the function graph. Using the algorithmic methods introduced here, you learned how to implement one 
of the most common techniques for integrating functions, known as Simpson’s method.

While this chapter introduced simple numerical techniques, in the next chapter, you will learn how 
these techniques can be combined to solve some of the complex differential equations that occur when 
analyzing options and similar derivatives.
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CHAPTER 11

Models Based  
on Differential Equations

Differential equations are equations that involve in their terms both a function and its mathematical 
derivatives. Many of these equations arise naturally from the analysis of economic models used for the 
pricing of options, such as the Black-Scholes model.

Solving specific partial differential equations (PDEs) is at the core of many techniques used in the 
analysis of options and related financial derivatives. As you will see in this chapter, there are several 
techniques for solving and analyzing the results of PDEs that can be implemented in C++. In the next few 
sections, I present programming examples that cover important aspects of differential equations–based 
option modeling and their applications using C++.

Here are a few of the topics covered in this chapter:

• Basic techniques for solving differential equations (DEs): Several techniques have 
been developed by practitioners in order to find solutions for differential equations. 
I provide a quick summary of these methods and explain how they can be used in 
financial applications.

• Ordinary differential equations: ODEs are equations that contain only functions and 
derivatives of one value. ODEs can be used to represent problems in several areas, 
and solving them gives you an excellent basis for solving more complex differential 
equations.

• Euler’s method for solving ODEs: Euler’s method is a traditional algorithm that can 
be easily implemented in C++, providing a numerical evaluation method for a large 
number of DEs.

• Runge-Kutta (RK) method: The RK method provides a more accurate way to 
determine numerical solutions for differential equations. The RK method uses a 
Taylor expansion as a way to approximate the desired equation, which makes it 
possible to find solutions with fewer iterations of the algorithm.

 General Differential Equations
Differential equations (DEs) are defined as equations that include one or more derivatives of a function. 
They have an important role in modeling several types of phenomena occurring in diverse areas such as 
physics, engineering, social sciences, and economy. In physics, for instance, differential equations are 
typically used to model the dynamics of motion and forces. In economics, it is possible to use DEs to model 
financial systems that involve interest rates and time decay.
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Differential equations are very useful because they encode information about the rate of variation of a 
particular quantity. The derivative is the concept that represents the rate of change of a function with respect 
to a particular variable. The second derivative, in its turn, represents the rate of change of the first derivative 
with respect to the original variable. The same strategy can be used for as many derivatives as needed by the 
application.

Differential equations are classified according to the terms they contain, involving functions and their 
derivatives. Here are some examples of differential equations:

 

dy

dx
x y x+ =2 2

 

This is a differential equation involving quantities x and y, with a first derivative of y with respect to x 
and a few other standard terms.
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This is a differential equation that involves a second derivative of y with respect to x, as well as the first 
derivative.

The order of a differential equation is the maximum order of the derivatives appearing in it. For 
example, a first-order differential equation includes only the first derivative. A second-order differential 
equation may also contain second-order derivatives, such as

 

d x

dt

2

2
 

To solve differential equations, it is frequently useful to separate them into particular categories and 
develop solution techniques that can handle such specific categories. In the next sections, you will see 
specific types of DEs as well as some solution techniques developed for these types of equations.

 Ordinary Differential Equations
An ordinary differential equation is a type of DE in which functions of only a single (ordinary) variable are 
allowed to appear. As with other types of differential equations, ODEs include variables, functions, and their 
derivatives. A formal definition of an ODE is a function

 
F x f x f x f x f xn, , , , ,( ) ( ) ( ) … ( )( )′ ′′

 

that depends on a variable x, a function f (x) of x, and their derivatives. The order of the ODE is the maximum 
order of derivatives appearing in the equation.

You can solve ODEs in two ways:

• Using analytical methods: If the function can be solved explicitly using mathematical 
methods, then a closed expression can be found and used to calculate its value at 
different points. This method is preferred whenever possible, because it produces 
results that are usually easier to calculate and interpret. Unfortunately, it is not 
always possible to find closed solutions to complex differential equations.

• Using numerical methods: More generally, it is difficult to find closed solutions 
for several classes of ODEs. In this case, the analyst may resort to using numerical 
techniques that approximate the value of the ODE for a particular value or range of 
values. These numerical techniques usually involve the approximation of the value 
of a complex function in a piecewise fashion so that the solution of the differential 
equation is found after a large number of small approximation steps.
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Since the goal of this chapter is to consider computational techniques to solve ODEs, you will see a 
few techniques to solve them numerically, using programming strategies. First, you will learn about Euler’s 
method for solving ODEs. Then, you will see how this method can be implemented in C++.

 Euler’s Method
One of the most common methods used for solving ODEs is called Euler’s method. It was one of the first 
algorithms developed for this purpose and was proposed by the famous eighteenth-century mathematician 
Leonhard Euler. The method belongs to a class of ODE algorithms called predictor-corrector, because 
it tries to make a prediction for the next step in the evaluation, followed by successive corrections of the 
current result.

The basic idea behind Euler’s method is to approximate the solution to an ODE by successively 
approximating the derivative of the solution at different points along the domain of interest. The method is 
based on the concept of a tangent line.

Given an initial condition, typically in the form of the solution value and the derivative value at a 
specific point, Euler’s method allows you to compute the approximate solution at subsequent points using a 
step-by-step process.

Euler’s method works by approximating the curve determined by a differential equation through 
sequential steps. First, to start the solution process, you need to represent the ODE in its most generic form:

 
′ = ( )y F x y,

 

Here, y = f(x) is a function that depends on the variable x, and y' is the derivative of f(x) with respect to x.  
The general goal of the method is to improve the approximation step by step, using a simple formula to 
calculate small increments and using the result as the next starting point. Figure 11-1 shows an example of 
how the general approach works, when applied to the sample differential equation dT(t)/dt = -k Δ T.

Figure 11-1. Euler’s method applied to function dT(t)/dt = -k Δ T, with ten steps
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Each step starts at a known place of the solution space and moves into the required direction by a small 
quantity. If you denote by c the desired destination point and start moving from location x

0
 in N steps, then 

the increment h can be calculated as follows:

 
h

c x

N
=

−( )0
 

Now, at each step of this algorithm, you will have the current location (at the beginning, the location 
is (x

0
, y

0
), a given parameter passed to the algorithm), and the goal is to compute the next location that 

approximates the real curve. As long as h is small enough, this new location can be calculated by taking 
the derivative of the curve, given by y', which represents the slope of the equation, and using a simple line 
segment to move in that direction. This is fairly easy to calculate numerically, as you will see next.

The equation needed to implement this idea is the following:

 
y y h

f x y f x h y hf x y
t t
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In other words, at each step, you’re adding to the previous result a quantity that depends on the step 
size and the average value of the target function at two points: the current point and the next incremental 
point. You can think of the averaging (dividing by two) as a correction of the procedure, which will make it 
closer to the real value that needs to be computed.

 Implementing the Method
Euler’s method can be implemented with little effort. First, you need to update the MathFunction class so 
that it can also be used when a variable and an initial condition are provided. This requires that the function 
call operator take two parameters instead of one, such as was presented in the last chapter. I coded this as a 
class called DEMathFunction, with the following interface:

class DEMathFunction   {
public:
    virtual ~DEMathFunction() {}

virtual double operator()(double x, double y) = 0; //
version with two variables
private:
    // This is just an interface.
};

The new version of operator() takes as parameters the value of coordinates x and y. Now, you can 
implement versions of this class for each desired function. Here is an example that will later be used with the 
main implementation:

class EulerMethodSampleFunction : public DEMathFunction {
public:
    double operator()(double x, double y);
};
double EulerMethodSampleFunction::operator()(double x, double y)
{
    return  3 * x + 2 * y + 1;
}
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The main class implementing Euler’s method is presented next. The interface contains a single function 
called solve, which receives four parameters:

• The number of steps used by the algorithm

• The initial x value

• The initial y value (which represents the initial condition of the function)

• The target value for the ODE, which is the coordinate for which the solution is 
required

The class also contains a data member to store the instance of DEMathFunction, which is used to 
compute new values for the desired function.

//
//  EulersMethod.hpp
#ifndef EulersMethod_hpp
#define EulersMethod_hpp
class DEMathFunction  {
public:
    virtual ~DEMathFunction() {}

virtual double operator()(double x, double y) = 0; // version with two variables
private:
    // This is just an interface.
};
class EulersMethod {
public:
    EulersMethod(DEMathFunction &f);
    EulersMethod(const EulersMethod &p);
    ~EulersMethod();
    EulersMethod &operator=(const EulersMethod &p);
    double solve(int n, double x0, double y0, double c);
private:
    DEMathFunction &m_f;
};
#endif /* EulersMethod_hpp */

The implementation of the EulersMethod class contains the steps of the algorithm explained in the 
previous section. First, here are some of the required methods used by the class:

//
//  EulersMethod.cpp
#include "EulersMethod.hpp"
#include <iostream>
using std::cout;
using std::endl;
EulersMethod::EulersMethod(DEMathFunction &f)
: m_f(f)
{
}
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EulersMethod::EulersMethod(const EulersMethod &p)
: m_f(p.m_f)
{
}
EulersMethod::~EulersMethod()
{
}
EulersMethod &EulersMethod::operator=(const EulersMethod &p)
{
    if (this != &p)
    {
        m_f = p.m_f;
    }
    return *this;
}

Next, the solve function contains the main algorithm for Euler’s method. The algorithm assumes that 
x0 is the initial coordinate and y0 is the corresponding initial value for that coordinate.

double EulersMethod::solve(int n, double x0, double y0, double c)
{
    // problem :   y' = f(x,y) ;  y(x0) = y0
    auto x = x0;
    auto y = y0;
    auto h = (c - x0)/n;
    cout << " h is " << h << endl;
    for (int i=0; i<n; ++i)
    {
        double F = m_f(x, y);
        auto G = m_f(x + h, y + h*F);
        cout << " F: " << F << " G: " << G << "";
        // Update values of x, y
        x += h;
        y += h * (F + G)/2;
        cout << " x: " << x << " y: " << y << endl;
    }
    return y;
}

The first part of the algorithm uses the given values to calculate the desired increment h. Then, for each 
step, the algorithm will calculate the function at the current point (x, y), as well as at the next incremental 
point (x + h, y + hF). The values of x and y are then updated according to the equation presented in the 
previous section.

You can quickly test the implementation with the help of the EulerMethodSampleFunction class. Here is 
the sample code necessary to instantiate the class and use it to test the method:

int test_euler()
{
    EulerMethodSampleFunction f;
    EulersMethod m(f);
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    double res = m.solve (100, 0, 0.25, 2);
    cout << " result is " << res << endl;
    return 0;
}

The sample function is instantiated in the first line, and the resulting function object is passed to the 
EulersMethod class. The member function solve is called, with a few initial parameters. The results are 
printed as the last step. Table 11-1 shows the sequence of values obtained when you run the test function.

Table 11-1. Results of Euler’s Method Iterations for the Test Code for the EulersMethod Class

i F x y i F x y i F x y

1 1.5 0.02 0.2812 34 9.72643 0.68 3.57223 67 40.5109 1.34 18.6025

2 1.6224 0.04 0.314897 35 10.1845 0.7 3.7806 68 42.2249 1.36 19.4645

3 1.74979 0.06 0.351193 36 10.6612 0.72 3.99868 69 44.0089 1.38 20.3628

4 1.88239 0.08 0.390193 37 11.1574 0.74 4.2269 70 45.8657 1.4 21.2991

5 2.02039 0.1 0.432009 38 11.6738 0.76 4.46564 71 47.7982 1.42 22.2748

6 2.16402 0.12 0.476755 39 12.2113 0.78 4.71535 72 49.8096 1.44 23.2915

7 2.31351 0.14 0.524551 40 12.7707 0.8 4.97647 73 51.903 1.46 24.3509

8 2.4691 0.16 0.575521 41 13.3529 0.82 5.24947 74 54.0818 1.48 25.4548

9 2.63104 0.18 0.629794 42 13.9589 0.84 5.53484 75 56.3496 1.5 26.6049

10 2.79959 0.2 0.687505 43 14.5897 0.86 5.83306 76 58.7098 1.52 27.8032

11 2.97501 0.22 0.748796 44 15.2461 0.88 6.14469 77 61.1664 1.54 29.0516

12 3.15759 0.24 0.81381 45 15.9294 0.9 6.47025 78 63.7232 1.56 30.3522

13 3.34762 0.26 0.882702 46 16.6405 0.92 6.81031 79 66.3843 1.58 31.707

14 3.5454 0.28 0.955628 47 17.3806 0.94 7.16548 80 69.154 1.6 33.1183

15 3.75126 0.3 1.03275 48 18.151 0.96 7.53636 81 72.0367 1.62 34.5885

16 3.96551 0.32 1.11425 49 18.9527 0.98 7.92359 82 75.037 1.64 36.1198

17 4.1885 0.34 1.2003 50 19.7872 1 8.32785 83 78.1597 1.66 37.7149

18 4.42059 0.36 1.29108 51 20.6557 1.02 8.74983 84 81.4098 1.68 39.3763

19 4.66215 0.38 1.38678 52 21.5597 1.04 9.19024 85 84.7925 1.7 41.1066

20 4.91357 0.4 1.48762 53 22.5005 1.06 9.64985 86 88.3132 1.72 42.9088

21 5.17524 0.42 1.5938 54 23.4797 1.08 10.1294 87 91.9776 1.74 44.7858

22 5.44759 0.44 1.70553 55 24.4989 1.1 10.6298 88 95.7915 1.76 46.7405

23 5.73105 0.46 1.82304 56 25.5596 1.12 11.1518 89 99.761 1.78 48.7762

24 6.02608 0.48 1.94657 57 26.6637 1.14 11.6964 90 103.892 1.8 50.8962

(continued)
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i F x y i F x y i F x y

25 6.33314 0.5 2.07637 58 27.8127 1.16 12.2643 91 108.192 1.82 53.104

26 6.65274 0.52 2.21268 59 29.0087 1.18 12.8567 92 112.668 1.84 55.403

27 6.98537 0.54 2.35578 60 30.2535 1.2 13.4745 93 117.326 1.86 57.797

28 7.33157 0.56 2.50595 61 31.549 1.22 14.1187 94 122.174 1.88 60.29

29 7.6919 0.58 2.66346 62 32.8974 1.24 14.7904 95 127.22 1.9 62.8859

30 8.06693 0.6 2.82863 63 34.3008 1.26 15.4907 96 132.472 1.92 65.5889

31 8.45726 0.62 3.00176 64 35.7615 1.28 16.2209 97 137.938 1.94 68.4034

32 8.86351 0.64 3.18317 65 37.2817 1.3 16.982 98 143.627 1.96 71.334

33 9.28635 0.66 3.37321 66 38.864 1.32 17.7754 99 149.548 1.98 74.3854

Table 11-1. (continued)

Euler’s method is a simple technique that finds solutions to several ODE problems. However, in terms 
of quality of approximation, it requires a large number of steps, which can also cause numerical errors and 
instability. To avoid these problems, more precise methods have been proposed for solving ODEs, as you will 
learn next.

 The Runge-Kutta Method
The next technique for solving ODEs is an extension of Euler’s method called the Runge-Kutta (RK) method 
(named after its inventors). This technique is an effective way to improve the accuracy of Euler’s method and 
reduce the possibility of the numerical errors that are common when using a linear approximation.

The main idea of the RK method is to use a higher-order approximation for the given functions, instead 
of relying on linear interpolation, as you saw with the previous algorithm. By doing this, the RK method can 
achieve faster convergence, in many cases using a smaller number of steps to achieve the same results. This 
is an advantage both in terms of reduced computational time as well as higher accuracy.

As explained in the book Computational Physics: An introductory course by Fitzpatrick:
There are two main reasons why Euler’s method is not generally used in scientific computing. Firstly, 

the truncation error per step associated with this method is far larger than those associated with other, more 
advanced, methods (for a given value of h). Secondly, Euler’s method is too prone to numerical instabilities.

The methods most commonly employed by scientists to integrate ODEs were first developed by the 
German mathematicians C.D.T. Runge and M.W. Kutta in the latter half of the nineteenth century. The basic 
reasoning behind so-called Runge-Kutta methods is outlined in the following.

The main reason that Euler’s method has such a large truncation error per step is that in evolving the 
solution from xn to xn+1 the method only evaluates derivatives at the beginning of the interval: i.e., at xn. The 
method is, therefore, very asymmetric with respect to the beginning and the end of the interval.

We can construct a more symmetric integration method by making an Euler-like trial step to the midpoint 
of the interval, and then using the  values of both x and y at the midpoint to make the real step across the 
interval.

For additional details of the method, remember that to solve an ODE, you have to consider a very 
general form that is amenable to solution, using the following relation:

 
′ = ( )y F x y,
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Here, y’ is the derivative of the function, and f(x, y) is a function of variable x (the independent 
variable) and y.

As before, given a starting point for the calculation and the number of steps, it is possible to easily 
calculate the size of the increment h for each iteration of the RK method, using the equation

 
h

c x

N
=

−( )0
 

In its basic design, the RK method has the same structure of Euler’s algorithm. The main difference 
is how the RK method approximates the function to generate the next step of the algorithm. While Euler’s 
method just uses a linear interpolation, the RK method can use any one of a family of approximating 
equations.

The RK method can be implemented using one of several approximation strategies, but they are 
frequently calculated as a Taylor series applied to the original function. The Taylor method is a basic tool 
from calculus that provides a family of approximations for functions around a particular starting value. 
For example, using the simplest Taylor approximation, you can compute the next (x,y) values in the 
following way:

x x ht t+ = +1

y y hf x h y h f x yt t t t t t+ = + + + ( )
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Another possibility is to use higher-order approximations, that is, versions of the Taylor series that 
contain additional terms. By adding more terms of higher order, it is possible to achieve a more accurate 
result in fewer steps. Here is another commonly used approximation, this time based on a fourth-order 
expansion:
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 Runge-Kutta Implementation
To implement this algorithm, it is possible to extend the Euler’s method class. To avoid dependencies 
between these two methods, I decided to implement a separate class called RungeKuttaMethod.

Here is the interface of the RungeKuttaMethod class. It exposes the solve method, which is used to 
compute the desired value of the function.
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//
//  Class providing an interface for RungeKutta method
class RungeKuttaMethod {
public:
    RungeKuttaMethod(DEMathFunction &f);
    RungeKuttaMethod(const RungeKuttaMethod &p);
    ~RungeKuttaMethod();
    RungeKuttaMethod &operator=(const RungeKuttaMethod &p);
    double solve(int n, double x0, double y0, double c);
private:
    DEMathFunction &m_func;
};

First, the common member functions of RungeKuttaMethod are implemented, including the constructor 
that receives the DEMathFunction reference as a parameter.

//
//  RungeKutta.cpp
#include "RungeKutta.hpp"
#include <iostream>
using std::cout;
using std::endl;
RungeKuttaMethod::RungeKuttaMethod(DEMathFunction &f)
: m_func(f)
{
}
RungeKuttaMethod::RungeKuttaMethod(const RungeKuttaMethod &p)
: m_func(p.m_func)
{
}
RungeKuttaMethod::~RungeKuttaMethod()
{
}
RungeKuttaMethod &RungeKuttaMethod::operator=(
            const RungeKuttaMethod &p)
{
    if (this != &p)
    {
        m_func = p.m_func;
    }
    return *this;
}

The member function solve is used to compute the numerical value of the ODE, given starting 
conditions and a target value. The function implements the Runge-Kutta method with fourth-degree Taylor 
expansion, as described in the previous section.

The parameters for this member function are the following:

• The number of steps in the process, which indirectly also determines the increment 
for each step

• The initial value for the variable x
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• The initial corresponding y for the given value x

• The target value for which the ODE is being calculated

// Runge-Kutta method with fourth-order approximation
//
double RungeKuttaMethod::solve(int n, double x0, double y0, double c)
{
    // Initial conditions
    auto x = x0;
    auto y = y0;
    auto h = (c - x0)/n;
    for (int i=0; i<n; ++i)
    {
        // Compute the intermediary steps
        //
        auto k1 = h * m_func(x, y);
        auto k2 = h * m_func(x + (h/2), y + (k1/2));
        auto k3 = h * m_func(x + (h/2), y + (k2/2));
        auto k4 = h * m_func(x + h, y + k3);
        // Use terms to compute next step
        x += h;
        y += ( k1 + 2*k2 + 2*k3 + k4)/6;
        cout << " x: " << x << " y: " << y << endl;
    }
    return y;
}

As in the previous algorithm, the RK method starts by defining the initial conditions, including the 
values for the variables x and y, and the size of the step determined by h.

The RK method then proceeds to compute each iteration of the algorithm. This consists of successive 
terms of approximation, as described in the previous section. These terms are then used to compute the new 
values for x and y.

To test the results of the RK method implementation, I provide a simple test function. But first it is 
necessary to implement a function that will be later used in the test code:

class RungeKuttaSampleFunc : public DEMathFunction {
public:
    double operator()(double x, double y);
};
double RungeKuttaSampleFunc::operator()(double x, double y)
{
    return  3 * x + 2 * y + 1;
}

The RungeKuttaSampleFunc is derived from DEMathFunction, so it can be passed as a parameter to the 
RungeKuttaMethod class. It is a simple polynomial function. The test function is the following:
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int test_RKMethod()
{
    RungeKuttaSampleFunc f;
    RungeKuttaMethod m(f);
    double res = m.solve (100, 0, 0.25, 2);
    cout << " result is " << res << endl;
    return 0;
}

This test code first instantiates the RungeKuttaSampleFunc class and then uses the resulting instance to 
create a RungeKuttaMethod object. Next, the result of the function is computed for some test parameters.

 Complete Code
The complete listing for the RungeKuttaMethod class is shown in this section. The code is divided into a 
header file and an implementation file, which appear in Listings 11-1 and 11-2, respectively.

Listing 11-1. Header File for the RungeKuttaMethod Class

//
//  RungeKutta.hpp
#ifndef RungeKutta_hpp
#define RungeKutta_hpp
#include "EulersMethod.hpp"
class RungeKuttaMethod {
public:
    RungeKuttaMethod(DEMathFunction &f);
    RungeKuttaMethod(const RungeKuttaMethod &p);
    ~RungeKuttaMethod();
    RungeKuttaMethod &operator=(const RungeKuttaMethod &p);
    double solve(int n, double x0, double y0, double c);
private:
    DEMathFunction &m_func;
};
#endif /* RungeKutta_hpp */

Listing 11-2. Implementation File for the RungeKuttaMethod Class

//
//  RungeKutta.cpp
#include "RungeKutta.hpp"
#include <iostream>
using std::cout;
using std::endl;
RungeKuttaMethod::RungeKuttaMethod(DEMathFunction &f)
: m_func(f)
{
}
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RungeKuttaMethod::RungeKuttaMethod(const RungeKuttaMethod &p)
: m_func(p.m_func)
{
}
RungeKuttaMethod::~RungeKuttaMethod()
{
}
RungeKuttaMethod &RungeKuttaMethod::operator=(
            const RungeKuttaMethod &p)
{
    if (this != &p)
    {
        m_func = p.m_func;
    }
    return *this;
}
// Runge-Kutta method with fourth-order approximation
//
double RungeKuttaMethod::solve(int n, double x0, double y0, double c)
{
    // Initial conditions
    auto x = x0;
    auto y = y0;
    auto h = (c - x0)/n;
    for (int i=0; i<n; ++i)
    {
        // Compute the intermediary steps
        //
        auto k1 = h * m_func(x, y);
        auto k2 = h * m_func(x + (h/2), y + (k1/2));
        auto k3 = h * m_func(x + (h/2), y + (k2/2));
        auto k4 = h * m_func(x + h, y + k3);
        // Use terms to compute next step
        x += h;
        y += ( k1 + 2*k2 + 2*k3 + k4)/6;
        cout << " x: " << x << " y: " << y << endl;
    }
    return y;
}
/// -----
class RungeKuttaSampleFunc : public DEMathFunction {
public:
    double operator()(double x, double y);
};
double RungeKuttaSampleFunc::operator()(double x, double y)
{
    return  3 * x + 2 * y + 1;
}
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int main()
{
    RungeKuttaSampleFunc f;
    RungeKuttaMethod m(f);
    double res = m.solve (100, 0, 0.25, 2);
    cout << " result is " << res << endl;
    return 0;
}

 Conclusion
Solving differential equations is a task commonly required when analyzing complex financial contracts. This 
is true due to the mathematical nature of options and derivatives, which are based on the  
Black-Scholes model.

In this chapter, you saw a few examples of differential equations and learned how they can be effectively 
solved using computational techniques. First, you learned about Euler’s method, the simplest technique 
used to compute numerical solutions for ODEs. Next, you learned about the Runge-Kutta method, a 
commonly used technique that provides improved accuracy over Euler’s method, but still with great 
performance.

This chapter can be used as an overview of the implementation of differential equations in C++. In the 
next chapter, you will take a closer look at how these mathematical models can be directly applied to options 
pricing. In particular, you will see how these techniques can be used when pricing option contracts.
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CHAPTER 12

Basic Models for Options Pricing

Options pricing is the task of determining the fair value of a particular option, given a set of parameters that 
exactly determine the features of the option contracts, such as its expiration date, current volatility, and 
prevailing interest rates. Pricing options requires the use of efficient algorithms, because of frequent changes 
in prices and market volatility. For this reason, a number of models have been employed for this task in the 
area of quantitative finance.

This chapter discusses some of the most popular models for options pricing. First, there are models that 
use tree-based methods, such as binomial and trinomial trees. Second, the most important mathematical 
model uses the Black-Scholes model, which provides the theoretical basis for the analysis of most options 
and derivative contracts.

Here is a summary of the topics discussed in this chapter:

• Binomial trees: A binomial tree is a technique used to compute option prices by 
simulating a number of probabilistic price changes starting from the current stock 
price. Such prices are organized in a tree-based structure and used to compute the 
option’s corresponding price. You will see the calculations necessary to use these 
tree-based algorithms for options pricing.

• Calculating American-style options: Options in the American style give their buyers 
the ability to exercise the option at any time before expiration. This exercise style 
needs to be reflected in the price of the option.

• Black-Scholes method: The most famous method for computing option prices is 
based on the equations developed by Black and Scholes. These differential equations 
can be solved using PDE techniques, which are explored later in this chapter.

• Implementation strategies: You will see examples of implementation techniques for 
the pricing methods described previously.

 Lattice Models
The goal of options pricing is to compute the fair value of an option at a particular time. This problem has 
been solved theoretically by Black and Scholes, the creators of the famous PDE model that defines prices for 
options. However, solving complex PDEs is not an easy job, and for this reason, several methods have been 
developed to perform this computational task in less time.

The Black-Scholes model, also known as the Black-Scholes-Merton model, is a widely used 
mathematical formula for pricing European-style options. It was developed by economists Fischer Black 
and Myron Scholes in collaboration with mathematician Robert Merton in the early 1970s. For their 
contributions to the model, Black, Scholes, and Merton were awarded the Nobel Prize in Economic Sciences 
in 1997.
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The model provides a way to calculate the fair market value of options based on various factors such as 
the underlying asset’s price, the option’s strike price, time to expiration, risk-free interest rate, and market 
volatility. It assumes that the financial markets are efficient and that there are no arbitrage opportunities.

A common class of algorithms for computing option prices is the lattice model. A lattice model is a 
technique of calculating derivative prices that divides the solution space into discrete steps. Each step 
corresponds to a small time increment and corresponding price change. Starting this way from a given 
starting point, this technique results in the creation of a tree of nodes that correspond to possible price 
changes.

There are a few particular methods that have been devised based on the general strategy put forward by 
lattice models. The best-known such methods are as follows:

• Binomial model: In the binomial model, the possible changes are organized in a 
tree rooted at the given starting point (the current price). To each node of the tree, 
two nodes are added, representing two possible directions of movement: up (price 
increases) or down (price decreases). For performance reasons, the binary tree 
can also be created implicitly, where nodes are calculated only as needed for the 
evaluation of the next time period.

• Trinomial model: The trinomial model is an extension of the binomial model, 
and it tries to improve the accuracy by considering nodes where the price is 
unchanged. Depending on the volatility of the underlying, such models can achieve 
higher accuracy than binomial models, at the expense of a slight increase in 
computational time.

Mixed models have also been used that combine features of the binomial and trinomial models, 
producing more complex lattice models for particular uses. In this chapter, you learn how to implement a 
binomial model for options pricing. The complete model is explained along with the equations frequently 
used to evaluate such models.

Later, this general model was extended to handle American-style options, where the owners of the 
option can exercise the option at any time before expiration. These models also show how this type of 
algorithm can be efficiently coded in C++ using OO concepts. In this particular case, you will see how to use 
inheritance to override parts of the class according to the desired pricing strategy.

 Binomial Model
The first model that’s discussed is called the binomial model for options pricing. In this model, option prices 
are evaluated interactively. Possible values are organized in a tree-based structure where the root is the 
original (unknown) price and leaves are the possible prices at a particular target time.

The binomial options pricing model is a popular mathematical method for evaluating option prices. 
It was first introduced by Cox, Ross, and Rubinstein in 1979, and it provides a more intuitive approach to 
valuing options compared to the complex mathematical equations used in the Black-Scholes model. The 
binomial model is based on a discrete-time framework and can be used for both European- and American-
style options.

The basic idea behind the binomial model is to model the price movement of the underlying asset over 
time in a series of discrete steps. The model assumes that during each time step, the underlying asset’s price 
can move up or down by a certain factor. By constructing a binomial tree of possible price movements, the 
option’s value at each node of the tree can be calculated. The model then works backward through the tree 
to determine the option’s value at the initial node (current time).

Using this structure, the binomial model traverses the tree with the goal of computing the desired 
price (the root value) starting from some known prices. The natural way of doing this is to look at the values 
for the option at expiration date and use these prices to compute the value at other times. Remember that 
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at expiration price, the value of an option is defined by contract. For example, if you are given the current 
stock price (denoted by S) and the strike price (denoted by K), then the price of a call option at expiration is 
given by

 p S S Kc ( ) = −( )max 0,  

For a put option, the price is also straightforward and determined by contract as

 
p S K Sp ( ) = −( )max 0,

 

The question, however, is which values of stock prices should be used in a tree-based model to make it 
realistic? A possible answer to this question is that at each time step, the stock price can move either up or 
down. The exact probabilities for this jump can be derived using a few mathematical assumptions, but the 
expressions most commonly used are as follows:

• Change of value for an up move:

 
exp s t( )

 

• Change of value for a down move:

 
exp −( )σ t

 

In these two expressions, σ is a measure of the volatility of the stock (i.e., the typical amount of 
movement), and t is time. These expressions allow you to construct a tree where each node contains 
information about the time and the value of the stock at that moment. The tree can be visualized as shown in 
Figure 12-1.

Figure 12-1. A visualization of the binomial tree determined by possible stock prices

Now consider the task of pricing a call option at a date immediately before expiration. While the price 
is initially unknown, it cannot be very far away from the price at expiration, since the time premium at this 
point is very small. A way to calculate this value is to assume a probability for two events: either going up a 
small amount or going down a small amount. With this probability, you can estimate the value of the option 
as the expected value (the mean) based on these two possibilities.
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Using these observations, you can devise a method for calculating the price of an option. The general 
algorithm can be described in the following way:

• Calculate stock prices for the nodes of the tree, starting from the root node at time 
zero and stock price given by the current known price.

• Apply the equations for price fluctuations to create up and down nodes starting 
from the root. The goal of this phase is to calculate the stock prices for nodes at 
expiration time.

• Start to compute the option prices from the leaves of the tree. These leaves have a 
known price by definition of the option contracts. The value of the option depends 
on three characteristics:

• The strike price

• The stock price

• If the option is a put or a call

• Then, progress from nodes at expiration date toward earlier dates, always using the 
expected value based on the known probabilities. Repeat this process until you reach 
the root node.

 Binomial Model Implementation
To implement an algorithm for the binomial model as previously described, I introduce a class called 
BinomialModel. The class provides all the necessary steps for the calculation of option prices, along with the 
ability to be extended to other open types, as you will see later.

The first step is to provide an interface to the C++ class, as shown in the next code fragment. The class 
contains a number of data members that are necessary for the computation of option prices using the 
binomial model approach. Here are these data members:

• The expiration date, denoted as m_T.

• The initial stock price, that is, the stock price at the root of the binomial tree, 
denoted by m_S.

• The interest rate, which is used as one of the factors necessary to calculate future 
prices and is denoted as m_r.

• The volatility, which is the volatility of the underlying stock, as measured from stock 
prices in the last few days and denoted by m_sigma.

• The dividend yield, which is the amount of dividend paid by the underlying stock 
during the desired period. This quantity is denoted by m_q.

• The number of steps, used by the binomial method to determine the depth of the 
tree. It is denoted by m_n.

• The type of option. This is the class record if the option type is a call or put. This 
information is stored in the member variable m_call, a Boolean value.

The class BinomialModel also offers a member function that can be used to calculate the option price, 
named optionPriceForStrike. This function receives as a parameter a strike value and returns the option 
price corresponding to that strike.

CHAPTER 12 ■ BAsiC ModEls foR oPTions PRiCing



211

A second function, computePriceStep, is used to compute option prices for a single step. You will see 
later how this is implemented and extended for more complex option types.

#include <vector>
#include <cmath>
using vec = std::vector<double>;
class BinomialModel {
public:
    BinomialModel(const BinomialModel &p);
    virtual ~BinomialModel();
    BinomialModel &operator=(const BinomialModel &p);
    BinomialModel(double T, // expiration time
                  double S,   // stock price
                  double r,   // interest rate
                  double sigma,
                  double q,   // dividend yield
                  int n,      // number of steps
                  bool call
    );
    double optionPriceForStrike(double K);
    virtual void computePriceStep(int i, int j, double K, vec &prices,
                                  double p_u, double p_d, double u);
protected:
    double getStockPrice() { return m_S; }
private:
    double m_T;     // expiration time
    double m_S;     // stock price
    double m_r;     // interest rate
    double m_sigma; // volatility
    double m_q;     // dividend yield
    int m_n;        // number of steps
    bool m_call;    // true = call, false = put
};

The next few member functions are part of the constructor and destructor code. They are used to 
properly initialize each of the data members in the BinomialModel class.

BinomialModel::BinomialModel(double T, double S, double r,
              double sigma,
              double q,
              int n, bool call)
: m_T(T),
  m_S(S),
  m_r(r),
  m_sigma(sigma),
  m_n(n),
  m_q(q),
  m_call(call)
{
}
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BinomialModel::BinomialModel(const BinomialModel &p)
: m_T(p.m_T),
  m_S(p.m_S),
  m_r(p.m_r),
  m_sigma(p.m_sigma),
  m_n(p.m_n),
  m_q(p.m_q),
  m_call(p.m_call)
{
}
BinomialModel::~BinomialModel()
{
}
BinomialModel &BinomialModel::operator=(const BinomialModel &p)
{
    if (this != &p)
    {
        m_T = p.m_T;
        m_S = p.m_S;
        m_r = p.m_r;
        m_sigma = p.m_sigma;
        m_n = p.m_n;
        m_q = p.m_q;
        m_call = p.m_call;
    }
    return *this;
}

The computePriceStep member function is used to compute the immediate price for a single step of 
the algorithm. The indices i and j represent the position in the binomial tree. Other arguments are the 
necessary parameters used to calculate the price of this step. Notice that this member function is declared as 
virtual, and it can be later overridden for the use of American-style options.

void BinomialModel::computePriceStep(int i, int j, double K,
                                     vec &prices, double p_u,
                                     double p_d, double u)
{
    prices[i] = p_u * prices[i] + p_d * prices[i+1];
}

The main member function in the BinomialModel class is the function that computes the option price 
for a given strike, determined by the parameter K. The algorithm is essentially a C++ implementation of the 
ideas presented in the previous section. The first step is to calculate the price delta using the period and the 
number of steps. Next, the amount of price changes in the up side is calculated using the exp(m_sigma * 
sqrt(delta)) expression.

Next, the function computes the probabilities of moving up or down in the binomial tree using the 
equations described previously. The probabilities are denoted by p_u and p_d.
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double BinomialModel::optionPriceForStrike(double K)
{
    double delta = m_T / m_n;   // size of each step
    double u = exp(m_sigma * sqrt(delta));
    double p_u = (u * exp(-m_r * delta) - exp(-m_q * delta)) * u / (u*u - 1);
    double p_d = exp(-m_r * delta) - p_u;
    vec prices(m_n);
    //  Compute last day values (leaves of the tree)
    for (int i= 0; i<m_n; ++i)
    {
        if (m_call)
        {
            prices[i] =  std::max(0.0, m_S * pow(u, 2*i - m_n) - K);
        }
        else
        {
            prices[i] =  std::max(0.0, K - m_S * pow(u, 2*i - m_n));
        }
    }
    for (int j = m_n-1; j>=0; --j)
    {
        for (int i = 0; i<j; ++i)
        {
            computePriceStep(i, j, K, prices, p_u, p_d, u);
        }
    }
    return prices[0];
}

The first for loop in this member function is responsible for computing the stock price at the last 
level of the binomial tree. This is done using the property that defines the price of an option at expiration. 
Therefore, there are two cases that need to be handled, depending on if the option is a call or a put.

The last for loop is the main computation that traverses the binomial tree from the last level to the root 
node. The step calculation is performed by the computePriceStep member function. The main idea, which 
you can see by looking at that member function, is to first compute the average (expected) price of the node. 
This is done by taking the expected value of the known prices that have been previously calculated according 
to the probabilities p_u and p_d.

After the option prices have been computed in this way, the algorithm will determine the price at the 
root node. Therefore, the price required is stored in position zero of the prices vector. The last line of this 
member function returns prices[0] as the desired solution.

 ■ Note The pricing strategy presented in this section works for options that cannot be exercised until the 
date of expiration. This type of option is commonly known as a European-style option. for American-style 
options, which can normally be exercised at any time, a slightly different pricing method needs to be used, as 
shown in the next section.
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 Pricing American-Style Options
This section presents a slight modification of the binomial method that can be used to price American-style 
option contracts. An American-style option is defined in such a way that buyers of such options can exercise 
their rights (i.e., buying or selling the underlying) at any time until expiration. This is in contrast to what is 
called European-style options, whereby option rights can be exercised only at expiration.

You can use the AmericanBinomialModel class to price American options. Looking at the code, you can 
see clearly how American options differ from European ones in terms of the option prices. The binomial 
model determines this by checking the possible exercise price of the option and taking that value into 
consideration if it is higher than the expected price.

The class interface is defined as follows. The public inheritance from BinomialModel allows you to share 
the methods defined in that class. The resulting interface is very simple because no additional member 
variables are necessary. It contains the standard copy constructor, a constructor that forwards the received 
parameters to the base class, and a destructor.

#include <vector>
#include <cmath>
using vec = std::vector<double>;
class AmericanBinomialModel : public BinomialModel {
    AmericanBinomialModel(const BinomialModel &p);
    ~AmericanBinomialModel();
    AmericanBinomialModel &operator=(const BinomialModel &p);
    AmericanBinomialModel(double T, // expiration time
                  double S,   // stock price
                  double r,   // interest rate
                  double sigma,
                  double q,   // dividend yield
                  int n,      // number of steps
                  bool call
                  );
    virtual void computePriceStep(int i, int j, double K, vec &prices,
                                  double p_u, double p_d, double u);
};

The constructor just needs to forward the received parameters to the base class BinomialModel.

AmericanBinomialModel::AmericanBinomialModel(const BinomialModel &p)
: BinomialModel(p)
{
}
AmericanBinomialModel::~AmericanBinomialModel()
{
}

Because there are no extra member variables, the assignment operator can use the nice trick of calling 
the operator on the superclass to do the assignment work, as follows:
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AmericanBinomialModel &AmericanBinomialModel::operator=(
                 const BinomialModel &p)
{
    BinomialModel::operator=(p);  // no new data members in this class
    return *this;
}
AmericanBinomialModel::AmericanBinomialModel(double T, // expiration time
                      double S,   // stock price
                      double r,   // interest rate
                      double sigma,
                      double q,   // dividend yield
                      int n,      // number of steps
                      bool call)
: BinomialModel(T, S, r, sigma, q, n, call)
{
}

Next, you can see the real change that characterizes American options. The computePriceStep member 
function overrides the member function in the base class and allows the price of an American option to be 
calculated.

The first thing to do here is to call the member function from the superclass, so you don’t need to repeat 
the same code, with potential duplication errors. Then, the function proceeds to calculate the exercise value. 
This is done by taking the adjusted stock price and subtracting it from the strike price. If the calculated 
exercise price is higher than the calculated price, then the price is updated with this exercise price. In 
other words, at each moment, the price of the option has to be the highest of the potential value and the 
exercise value.

void AmericanBinomialModel::computePriceStep(int i, int j, double K, vec &prices, double 
p_u, double p_d, double u)
{
    BinomialModel::computePriceStep(i, j, K, prices, p_u, p_d, u);
    // Compute exercise price for American option
    //
    double exercise = K - getStockPrice() * pow(u, 2*i - j);
    if (prices[i] < exercise)
    {
        prices[i] = exercise;
    }
}

 Solving the Black-Scholes Model
The previous sections explored discrete methods used to compute the price of options. These methods work 
by approximating the solution through the use of price trees, where each node represents a discrete step into 
the solution of the problem.

While the binomial tree method is appropriate in many situations, it is sometimes necessary to use 
a more rigorous method based on the Black-Scholes partial differential equation (PDE). The model, 
developed by economists F. Black and M. Scholes in the 1970s, provides a full mathematical description of 
how option prices evolve over time and with respect to the changes in the underlying prices.
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The Black-Scholes model uses a few input parameters that describe the option and the conditions 
under which prices evolve. The parameters are

• Expiration date

• Stock price

• Stock volatility

• Interest rates (paid on short-term cash)

• Dividends paid by the underlying stock

Using these parameters, the model provides a partial differential equation that contains the information 
necessary to determine the price of the option. The result from this model can be summarized in the 
following PDE:
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In this differential equation, the quantities represented are as follows:

• V: The price of the desired derivative

• t: The time

• σ: The volatility of the underlying stock

• S: The stock price

• r: The interest rate

If you know the previous information about the underlying security, such as prices, interest rates, 
and previous volatility, the Black-Scholes equation allows you to compute the value of a call or put option 
based on those assumptions. The solution of this equation can be achieved using several methods, such as 
simulation techniques and piecewise integration using numerical approximations. The next section presents 
a simple numerical technique that can be applied to find solutions to the Black-Scholes model.

 Numerical Solution of the Model
To solve the Black-Scholes model computationally, it is necessary to apply numerical techniques to solve 
the associated PDE. It is important to note that there are several methods used to compute this class of 
equations, with results that depend on the required accuracy, computational effort, and implementation 
difficulty.

This section explores a simple strategy to solve the Black-Scholes model. The strategy is based on what 
is called the forward method for the solution of PDEs. The forward method is an extension of Euler’s method 
for the solution of ODEs, as described in the previous chapter. Unlike Euler’s method, the forward method 
needs to find a solution for a differential equation that contains more than one variable.

The forward method (also known as the explicit method or forward Euler method) is a numerical 
technique used to solve partial differential equations (PDEs). It is particularly well suited for solving 
parabolic PDEs, which involve time-dependent problems, such as the heat equation or diffusion equation.

In a PDE problem, the goal is to find a function g(x,t) that satisfies the partial differential equation with 
given initial conditions and boundary conditions. The forward method approximates the solution at discrete 
points in both space and time.

The forward method solves this problem by dividing the domain of the desired equation into smaller, 
rectangular pieces, which can be easily computed. Once this is completed, the algorithm propagates those 
values forward, and at each step, a small area dS is considered.
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For this method to work, it is necessary to provide a set of initial conditions for the PDE. In the case of 
options pricing, the natural set of initial conditions is the price at expiration, which is well known for each 
possible value of the stock. Therefore, the implementation of the forward in fact starts from the expiration 
date and proceeds backward in time to the desired date.

The C++ solution is implemented in the BlackScholesMethod class. This class provides a simple 
interface, where the main member function is called solve, and it returns the price at the desired date and 
under the conditions defined by the given parameters.

class BlackScholesMethod {
public:

BlackScholesMethod(double expiration, double maxPrice, double strike, double intRate);
    BlackScholesMethod(const BlackScholesMethod &p);
    ~BlackScholesMethod();
    BlackScholesMethod &operator=(const BlackScholesMethod &p);
    std::vector<double> solve(double volatility, int nx, int timeSteps);
private:
    double m_expiration;
    double m_maxPrice;
    double m_strike;
    double m_intRate;
};

In the implementation file, which is listed next, you will first find the constructors and assignment 
operator. These member functions just initialize the private variables, which include

• Expiration date, denoted by m_expiration

• Maximum price that will be considered by the algorithm, denoted by m_maxPrice

• Strike price, denoted by m_strike

• Current interest rate, denoted by m_intRate

#include "BlackScholes.hpp"
#include <cmath>
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>
using std::vector;
using std::cout;
using std::endl;
using std::setw;
BlackScholesMethod::BlackScholesMethod(double expiration, double maxPrice,
                                       double strike, double intRate)
: m_expiration(expiration),
m_maxPrice(maxPrice),
m_strike(strike),
m_intRate(intRate)
{
}

CHAPTER 12 ■ BAsiC ModEls foR oPTions PRiCing



218

BlackScholesMethod::BlackScholesMethod(const BlackScholesMethod &p)
: m_expiration(p.m_expiration),
m_maxPrice(p.m_maxPrice),
m_strike(p.m_strike),
m_intRate(p.m_intRate)
{
}
BlackScholesMethod::~BlackScholesMethod()
{
}
BlackScholesMethod &BlackScholesMethod::operator=(const BlackScholesMethod &p)
{
    if (this != &p)
    {
        m_expiration = p.m_expiration;
        m_maxPrice = p.m_maxPrice;
        m_strike = p.m_strike;
        m_intRate = p.m_intRate;
    }
    return *this;
}

The solve method is the heart of the algorithm. The first part of this member function is responsible 
for initializing common expressions that are used throughout the algorithm. These expressions are stored in 
vectors a, b, and c. In mathematical notation, these factors can be presented as

a nrdt nV dtn = −( )( )1

2
2

b rdt nV dtn = − + ( )1
2

c nrdt nV dtn = + ( )( )1

2
2

The third for loop is the place where the initial conditions are prepared, by direct calculation of the 
price at expiration date. The last loop is where the forward algorithm is used. Each step of the loop will 
compute the contributions for that particular time period, assuming that the period j-1 is known. At the 
end, the u vector, where the option prices have been stored, is returned to the caller.

vector<double> BlackScholesMethod::solve(double volatility, int nx, int timeSteps)
{
    double dt = m_expiration /(double)timeSteps;
    double dx = m_maxPrice /(double)nx;
    vector<double> a(nx-1);
    vector<double> b(nx-1);
    vector<double> c(nx-1);
    int i;
    for (i = 0; i < nx - 1; i++)
    {
        b[i] = 1.0 - m_intRate * dt - dt * pow(volatility * (i+1), 2);
    }
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    for (i = 0; i < nx - 2; i++)
    {

c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5 * dt * m_intRate * (i+1);
    }
    for (i = 1; i < nx - 1; i++)
    {

a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5 * dt * m_intRate * (i+1);
    }
    vector<double> u((nx-1)*(timeSteps+1));
    double u0 = 0.0;
    for (i = 0; i < nx - 1; i++)
    {
        u0 += dx;
        u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);
    }
    for (int j = 0; j < timeSteps; j++)
    {
        double t = (double)(j) * m_expiration /(double)timeSteps;
        double p = 0.5 * dt * (nx - 1)
                       * (volatility*volatility * (nx-1) + m_intRate)
                       * (m_maxPrice-m_strike * exp(-m_intRate*t ) );
        for (i = 0; i < nx - 1; i++)
        {
            u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
        }
        for (i = 0; i < nx - 2; i++)
        {
            u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];
        }
        for (i = 1; i < nx - 1; i++)
        {
            u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];
        }
        u[nx-2+(j+1)*(nx-1)] += p;
    }
    return u;
}

Finally, I present a simple test function that can be used to illustrate the use of the BlackScholesMethod 
class. This function first initializes some parameters with reasonable values. Then, it creates a new object of 
type BlackScholesMethod, passing to the constructor some of the previously defined parameters.

The blackScholes object is then used to solve the pricing problem. The result is a vector of prices, 
one for each of the steps used by the algorithm (in practice, only the last value would be used). Finally, the 
function prints the result so that you can inspect the convergence of the algorithm.

void test_bsmethod()
{
    auto strike = 5.0;
    auto intRate = 0.03;
    auto sigma = 0.50;
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    auto t1 = 1.0;
    auto numSteps = 11;
    auto numDays = 29;
    auto maxPrice = 10.0;
    BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);
    vector<double> u = blackScholes.solve(sigma, numSteps, numDays);
    double minPrice = .0;
    for (int  i=0; i < numSteps-1; i++)
    {
        double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)
                 / (double)(numSteps-1);
        cout << "  " << s << "  "
             << u[i+numDays*(numSteps-1)] << endl;
    }
}

 Complete Code
This section presents the complete code for the BlackScholesMethod class. The code depends only on the 
STL and functions in the standard C++ library. As such, it can serve as a first step toward a complete solution 
for options valuation processes.

The code is divided into a header file called BlackScholes.hpp and an associated implementation file. 
These files are presented in Listings 12-1 and 12-2, respectively.

Listing 12-1. Header File for the BlackScholesMethod Class

//
//  BlackScholes.hpp
#ifndef BlackScholes_hpp
#define BlackScholes_hpp
#include <vector>
class BlackScholesMethod {
public:

BlackScholesMethod(double expiration, double maxPrice, double strike, double intRate);
    BlackScholesMethod(const BlackScholesMethod &p);
    ~BlackScholesMethod();
    BlackScholesMethod &operator=(const BlackScholesMethod &p);

std::vector<double> solve(double volatility, int nx, int timeSteps);
private:
    double m_expiration;
    double m_maxPrice;
    double m_strike;
    double m_intRate;
};
#endif /* BlackScholes_hpp */
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Listing 12-2. Implementation File for the BlackScholesMethod Class

//
//  BlackScholes.cpp
#include "BlackScholes.hpp"
#include <cmath>
#include <algorithm>
#include <vector>
#include <iostream>
#include <iomanip>
using std::vector;
using std::cout;
using std::endl;
using std::setw;
BlackScholesMethod::BlackScholesMethod(double expiration, double maxPrice,
                                       double strike, double intRate)
: m_expiration(expiration),
m_maxPrice(maxPrice),
m_strike(strike),
m_intRate(intRate)
{
}
BlackScholesMethod::BlackScholesMethod(const BlackScholesMethod &p)
: m_expiration(p.m_expiration),
m_maxPrice(p.m_maxPrice),
m_strike(p.m_strike),
m_intRate(p.m_intRate)
{
}
BlackScholesMethod::~BlackScholesMethod()
{
}
BlackScholesMethod &BlackScholesMethod::operator=(const BlackScholesMethod &p)
{
    if (this != &p)
    {
        m_expiration = p.m_expiration;
        m_maxPrice = p.m_maxPrice;
        m_strike = p.m_strike;
        m_intRate = p.m_intRate;
    }
    return *this;
}
vector<double> BlackScholesMethod::solve(double volatility, int nx, int timeSteps)
{
    double dt = m_expiration /(double)timeSteps;
    double dx = m_maxPrice /(double)nx;
    vector<double> a(nx-1);
    vector<double> b(nx-1);
    vector<double> c(nx-1);
    int i;
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    for (i = 0; i < nx - 1; i++)
    {
        b[i] = 1.0 - m_intRate * dt - dt
                   * pow(volatility * (i+1), 2);
    }
    for (i = 0; i < nx - 2; i++)
    {
        c[i] = 0.5 * dt * pow(volatility * (i+1), 2) + 0.5
                   * dt * m_intRate * (i+1);
    }
    for (i = 1; i < nx - 1; i++)
    {
        a[i] = 0.5 * dt * pow(volatility * (i+1), 2) - 0.5
                   * dt * m_intRate * (i+1);
    }
    vector<double> u((nx-1)*(timeSteps+1));
    auto u0 = 0.0;
    for (i = 0; i < nx - 1; i++)
    {
        u0 += dx;
        u[i+0*(nx-1)] = std::max(u0 - m_strike, 0.0);
    }
    for (int j = 0; j < timeSteps; j++)
    {
        double t = (double)(j) * m_expiration /(double)timeSteps;
        double p = 0.5 * dt * (nx - 1)
                 * (volatility*volatility * (nx-1) + m_intRate)
                 * (m_maxPrice-m_strike * exp(-m_intRate*t ) );
        for (i = 0; i < nx - 1; i++)
        {
            u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)];
        }
        for (i = 0; i < nx - 2; i++)
        {
            u[i+(j+1)*(nx-1)] += c[i] * u[i+1+j*(nx-1)];
        }
        for (i = 1; i < nx - 1; i++)
        {
            u[i+(j+1)*(nx-1)] += a[i] * u[i-1+j*(nx-1)];
        }
        u[nx-2+(j+1)*(nx-1)] += p;
    }
    return u;
}
int main()
{
    auto strike = 5.0;
    auto intRate = 0.03;
    auto sigma = 0.50;
    auto t1 = 1.0;
    auto numSteps = 11;
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    auto numDays = 29;
    auto maxPrice = 10.0;
    BlackScholesMethod blackScholes(t1, maxPrice, strike, intRate);
    vector<double> u = blackScholes.solve(sigma, numSteps, numDays);
    double minPrice = .0;
    for (int  i=0; i < numSteps-1; i++)
    {
        double s = ((numSteps-i-2) * minPrice+(i+1)*maxPrice)
                 / (double)(numSteps-1);
        cout << "  " << s << "  "
             << u[i+numDays*(numSteps-1)] << endl;
    }
    return 0;
}

 Conclusion
Options pricing is a very common problem that needs to be solved if you need to trade these types of 
financial derivatives. Because underlying prices change so frequently, it is very important that option prices 
be calculated efficiently. C++ is an ideal language for encoding the solution to these pricing problems.

In this chapter, I provided an introduction to the most common strategies for options pricing. The most 
popular techniques can be divided into lattice models, such as binomial trees, and PDE-based algorithms, 
where the Black-Scholes model or some close variation is solved through the use of numerical methods 
for PDEs.

The first sections of this chapter demonstrated the binomial method, with its assumptions and 
mathematical ideas. You learned how these ideas can be used in C++ and encapsulated into a class. The 
model was extended to deal with American-style options, where option buys have the ability to exercise the 
option at any time before the (or at the) expiration date.

You also saw how to represent the options pricing problem in terms of the Black-Scholes model, 
which uses a PDE that describes the changes in options pricing. This model is solved using a method that 
discretizes the domain of the function and calculates the result in a large number of small steps.

In the next chapter, you will learn about Monte Carlo methods, another strategy that is commonly 
used to solve problems in the area of mathematical finance. In particular, Monte Carlo methods can be 
used to efficiently solve some difficult problems of derivative pricing without needing to directly compute 
probabilities, as used by the methods discussed in this chapter.

CHAPTER 12 ■ BAsiC ModEls foR oPTions PRiCing



225

CHAPTER 13

Monte Carlo Methods

Among programming techniques used for trading equity markets, Monte Carlo simulation has a special 
place due to factors such as its wide applicability and easy implementation. These methods can be used to 
implement strategies for market analysis such as price forecasting, or to validate options trading strategies, 
for example.

A great advantage of the Monte Carlo methods is the fact that they can be used to study complex events 
without the need to solve complicated mathematical models and equations. Using the idea of simulation 
through the use of random numbers, Monte Carlo methods offer the ability to study a large class of events, 
which would otherwise be difficult to analyze using exact techniques.

This chapter provides an introduction to stochastic methods and how they can be used as part of 
simulation-based algorithms applied to options pricing. Here are a few of the topics that will be covered in 
this chapter:

• Random number generation: Generating random numbers is a basic step in creating 
algorithms that exploit stochastic behavior. Monte Carlo methods require the use 
of effective random number generation routines, which will be discussed in this 
chapter.

• Probability distributions: Monte Carlo algorithms are based on the properties of 
stochastic events. Many of these events occur according to well-known probability 
distributions. In C++, it is possible to generate numbers according to many popular 
probability distributions, as you will learn.

• Random walks: A random walk is a stochastic process where a certain quantity can 
randomly change with equal probability to positive or negative side. This makes 
random walk very useful for modeling prices in financial markets, as well as for 
simulating trading strategies.

• Stochastic models for options pricing: Another application of random walks is in the 
determination of option prices. Using a stochastic method for this purpose is useful 
if you want to avoid the use of a more complex exact or approximate model, such as 
the algorithms described in the previous chapter.

 Introduction to Monte Carlo Methods
A Monte Carlo algorithm is a computational procedure that uses random numbers to simulate and study 
complex events. It is based on the idea that you can analyze the results of an event by repeating it several 
times in different ways, with the help of a computer or other technique to generate random numbers.
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This idea behind Monte Carlo methods is not new, having been used for as long as probability methods 
have been studied. For example, a well-known randomized procedure to determine the area of a geometric 
shape is to throw darts at the figure. After a while, you can count the percentage of darts inside the shape and 
use that percentage to determine the area.

Despite their simplicity, Monte Carlo methods may be time-consuming, and they require a large 
number of repetitions (sometimes in the order of millions) to achieve their goals. The recent development 
of fast computers, however, made it possible to use such methods in an increasing number of situations, 
making them practical and capable of finding solutions for problems where explicit mathematical analysis is 
very difficult.

In general, Monte Carlo methods have been used for the solution of mathematical and computational 
problems where it is difficult to perform direct observations. Algorithms based on Monte Carlo methods use 
simulation strategies to determine values that normally occur as the result of random events in several areas, 
including the financial markets. In fact, the application of Monte Carlo to finance methods is widespread. 
You will find many algorithms used in the analysis of options and derivatives that exploit Monte Carlo 
techniques, for example:

• Options pricing: It is possible to use randomized algorithms to determine the prices 
of options and other derivatives.

• Trade strategy analysis: Monte Carlo methods can be used to test different trade 
strategies using simulated prices. This type of analysis is invaluable, since it allows 
you to test trading techniques on a large amount of data that is independent of the 
existing market observations.

• Analysis of bonds and other fixed income investments: Bonds and their derivatives 
are tied to fluctuations of interest rates over different time horizons. An effective way 
to study the behavior of bonds is to construct stochastic models and use them to 
perform an analysis.

• Portfolio analysis: Another area where Monte Carlo methods are useful is when 
studying a portfolio of investments. The stochastic algorithm allows analysts to vary 
the rate of exposure to diverse economic scenarios and try to determine the best 
allocation for a portfolio.

In the next few sections, you will first learn the tools necessary to design and implement Monte Carlo 
algorithms using the C++ language. You will also see examples of how these tools can be used to analyze 
options and related instruments.

 Random Number Generation
The first topic that is addressed is random number generation. True random numbers are not possible 
to achieve in digital computers, but there are several techniques to create sequences of pseudorandom 
numbers. These methods have been made available through the standard C++ libraries, as will be covered in 
this section.

For C++ programmers, the main source of random number generation routines is the <random> header 
file provided by the standard library. With these functions, you can generate pseudorandom numbers that 
are well tested and that can be accessed through an easy interface.

The first thing to learn about random number generation in the standard library is the concept of 
generators. A generator can be viewed as a source of pseudorandom bits, that is, an algorithm that is capable 
of returning numbers that are uniformly random. The C++ library offers a small number of generators that 
can be used by programmers. Here are some of the available generators:
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• Mersenne twister: This is one of the most popular generators. It is based on an 
algorithm that uses Mersenne prime numbers as the period length of the sequence 
of pseudorandom numbers. The Mersenne twister algorithm is considered to be one 
of the best general-purpose generators of random numbers, and it is frequently used 
in applications.

• Linear congruential engine: This engine is based on a traditional algorithm that 
uses simple addition, multiplication, and module operations to produce numbers 
that have pseudorandom properties. This generator is indicated when you need 
fast sequences of random numbers, due to its efficiency. However, the linear 
congruential algorithm is known to generate numbers that possess some correlation.

• Subtract with carry: This is still another algorithm that is used to generate random 
numbers in the standard library. The algorithm is called lagged Fibonacci, and it 
uses a numeric sequence that has properties that are similar to the famous Fibonacci 
sequence.

These generators represent three of the most common ways to generate random numbers. Other 
techniques for random number generation have also been proposed in the scientific literature. Table 13-1 
shows some of the most commonly used algorithms for random number generation.

Table 13-1. Algorithm for Pseudorandom Number Generation

Algorithm Description
Linear congruential Traditional method that uses modulo arithmetic.

Inversive congruential Uses the modular multiplicative inverse to generate new elements in the sequence.

Mersenne twister Method developed in 1997; uses Mersenne primes to generate random numbers.

WELL generators Well Equidistributed Long-period Linear, based on the application for operations 
on a binary field.

XorShift generators Fast method that uses exclusive or operations to generate new random numbers.

Linear feedback shift Method that uses a linear function over the existing sequence of values to generate 
the next random number.

Park-Miller generator A linear congruential generator that uses multiplicative groups of integers under 
the modulo operation.

The second part of the random generation library in C++ is the use of engine instantiations. These 
instantiations can be viewed as a concrete implementation of a generic algorithm. For example, consider 
the Mersenne twister engine, which is implemented as a template called mersenne_twister_engine. The 
easiest way to use this engine is to apply an instantiation such as the minstd_rand (minimal standard 
pseudorandom number) generator. This particular instantiation is defined by the C++ standard as

typedef linear_congruential_engine<
          uint_fast32_t,
          48271,
          0,
          2147483647> minstd_rand;
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The linear_congruential_engine is a common random generator engine that is implemented by the 
standard library. A list of known engine instantiations in the C++ standard library is presented in Table 13-2. 
You can choose one of these instantiations as a generator for your own algorithm, or you can create a new 
instantiation.

Table 13-2. A List of Generator Instantiations Available on the Standard Library

Generator Instantiation Parameters
default_random_engine Random engine that is provided as a default option by the library 

implementation.

knuth_b Defined as typedef shuffle_order_engine <minstd_rand0,256> knuth_b;.

minstd_rand Minimal standard generator; it is an instantiation of linear_congruential_
engine.

minstd_rand0 Similar to the engine described previously, with particular parameters.

mt19937 Mersenne twister generator.

mt19937_64 Mersenne twister generator for 64-bit types.

ranlux24 Uses the subtract-with-carry generator and returns values that use a 24-bit 
representation.

 ■ Note Random number generators can be freely instantiated in the standard library. However, you should 
rarely need to define a new instantiation, unless you have good knowledge about how the parameters for each 
generator work together. A careful study of parameters is usually necessary to create a new generator, since 
they are based on statistical properties that have been determined after careful analysis made by researchers in 
the area.

The generators and their instantiations can be thought of as the original source for pseudorandom bits. 
Once you have defined a source, it is possible to generate random numbers according to a given probability 
distribution, as you will see in the next section.

 Probability Distributions
A probability distribution is a family of functions that defines the parameters for a stochastic process. 
For example, the simplest distribution of random numbers is the uniform distribution, where each value 
is generated with equal probability in a given range. A particular case of the uniform distribution is 
Uniform[0,1], where each number is randomly generated with equal probability in the range between 
0 and 1.

There are a small number of probability distributions that occur very frequently in the analysis of 
natural events. These common distributions, which have been studied in several branches of stochastic 
analysis, are now available as part of the C++ <random> header in standard library. For examples of two 
common probability distributions, see Figure 13-1 (which shows the normal distribution with mean 0 and 
standard deviation 1), Figure 13-2 (which shows the exponential distribution with mean 1), and Figure 13-3 
(which shows the chi-squared distribution).
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Figure 13-1. Probabilities defined by the normal distribution, with mean 0 and standard deviation 1

Figure 13-2. Probabilities defined by the exponential distribution, with mean 1

Consider the most common case of generating uniform random integer numbers in a particular range. 
This can be easily handled in the standard library by using the std::uniform_int_distribution template. 
This template is capable of creating integer numbers that have uniform distribution as given by the two 
parameters: the initial and maximum values. Here is an example of how to code a function that returns such 
random integer numbers:

#include <iostream>
#include <random>
using std::cout;
using std::endl;
std::default_random_engine generator;
int get_uniform_int(int max)
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{
    if (max < 1)
    {
        cout  << "invalid parameter max " << max << endl;
        throw std::runtime_error("invalid parameter max");
    }
    std::uniform_int_distribution<int> uint(0,max);
    return uint(generator);
}

The first step is to define a generator to use as the source of random bits. This is done by instantiating 
an engine (done at the file scope). The std::default_random_engine is the default generator selected by the 
compiler’s implementation. It should be a reasonable choice, unless you want to be very specific about the 
generator for your code.

The get_uniform_int function generates a random integer between 0 and max, where max is a 
parameter passed to the function. The function first checks if the parameter is valid and throws an exception 
when that is not the case. The function then uses the parameter to create an object of type uniform_
int_distribution. This object receives two parameters that define the distribution: the minimum and 
maximum values. The resulting object is then used to generate the random number itself.

 ■ Note Traditional C and C++ code used to rely on the rand function to generate random integer numbers. 
This usage is now deprecated because the algorithm used in rand() is known to have weaknesses. In 
particular, the idea of using the expression (rand() % N) to generate random integer numbers in the range 0 
to n-1 has been proved to be unreliable. Even though the numbers seem random enough for most applications, 
it fails when you try to perform more complex statistical analysis.

Figure 13-3. Probabilities defined by the chi-squared distribution
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The sequence of steps to use the random number generators and distributions is therefore summarized 
as follows:

• Find a suitable random engine and a corresponding generator according to the 
needs of your application.

• Select a generator instantiation based on the random engine you selected previously. 
If you don’t have any specific requirements, the default_random_engine could 
be used.

• Select a random distribution according to the needs of your application. A common 
distribution is the uniform, which produces numbers with the same probability in a 
given range.

• Create an object of the type determined by the probability distribution. In the 
previous example, you used uniform_int_distribution as the object type.

• The resulting object can now be called to generate pseudorandom numbers, once 
the generator object is passed as the single parameter for the call. This makes it 
possible to use generators of different types or, more commonly, generators that are 
used for a specific function of a thread.

 Using Common Probability Distributions
This section will show a few examples of common probability distributions and how they can be used in 
C++. As mentioned, random numbers can be generated according to different probability functions. These 
families of functions are grouped according to the parameters and shape of the distribution.

One of the simplest probability distributions is the Bernoulli distribution. This is a family of probability 
distributions that model a yes/no scenario, an event that has only two results. The only parameter for this 
distribution is the probability of the yes result. The simplest example of this type of model is a coin toss, with 
parameter 0.5, representing a fair probability of heads or tails.

In the next code example, the function coin_toss_experiment returns a vector of Boolean values, 
representing the result of a set of fair coin tosses.

#include <iostream>
#include <random>
#include <vector>
using std::cout;
using std::endl;
using std::vector;
std::default_random_engine generator;
vector<bool> coin_toss_experiment(int num_experiments)
{
    if (num_experiments < 1)
    {
        cout  << "invalid number of experiments "
              << num_experiments << endl;
        throw std::runtime_error("invalid number of experiments");
    }
    std::bernoulli_distribution bernoulli(0.5);
    vector<bool> results;
    for (int i=0; i<num_experiments; ++i)
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    {
        results.push_back(bernoulli(generator));
    }
    return results;
}

In this code, the first step is to use a generator, which in this case is std::default_random_engine 
allocated in the file scope, so it is available during the lifetime of the application. The coin_toss_experiment 
function initially checks the validity of the parameter num_experiments, which gives the number of tries in 
this random experiment.

The function then allocates a new object from the Bernoulli distribution, with parameter 0.5, which 
indicates that the yes/no event occurs with even probability for each side. The random values are then 
generated in the loop, where the bernoulli returns Boolean values according to the desired distribution 
behavior. The values are stored in a vector<bool> container.

Another common distribution that is used to model natural events is the Poisson distribution. This 
distribution arises commonly when observing the number of events that occur in a period of time, under the 
assumption that these events are independent. For example, the number of customers arriving at a coffee 
shop during a given period could be modeled as a Poisson distribution. The mathematical expression used 
to model the probability distribution of such events is given by
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Here, k is the number of observed events, and λ is the parameter that determines the results of the 
experiment, which can be interpreted as the average number of events occurring in the given time period.

In the C++ standard library, the Poisson distribution is made available through the std::poisson_
distribution template. The parameter for this distribution is the mean, usually represented as the 
mathematical variable λ as in the previous equation.

The following is an example that can be used to analyze the number of customers buying in a particular 
store in a time period. For instance, financial analysts perform this type of study when they need to study the 
buying patterns at a particular business. The code defines a function named num_customers_experiment:

#include <iostream>
#include <random>
#include <vector>
using std::cout;
using std::endl;
using std::vector;
vector<int> num_customers_experiment(double mean, int max, int num_of_tries)
{
    std::default_random_engine generator;
    vector<int> occurrences(max, 0);
    std::poisson_distribution<int> poisson(mean);
    for (int i=0; i< num_of_tries; ++i)
    {
        int result = poisson(generator);
        if (result < max) {
            occurrences[result] ++;
        }
    }
    return occurrences;
}
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The num_customers_experiment function can generate a sequence of random values based on the 
Poisson distribution and return a histogram of these values; that is, for each value, it returns the number of 
times this value was observed.

The algorithm is similar to what you have seen before with the Bernoulli distribution. The first part 
is used to define the random generator, and it creates an object of type std::poisson_distribution. The 
parameter passed represents the mean of the distribution.

The for loop in the algorithm is used to build the histogram. At each step, a number is generated 
according to the Poisson distribution. Then, if the resulting number is less than the parameter max, that 
value is incremented in the list of occurrences.

The num_customers_experiment function is used in the next code fragment to print the results of the 
calculation. These numbers have been saved and used to create the chart displayed in Figure 13-4, which 
shows the observations between 0 and 20 and the corresponding number of observations for 200 trials.

Figure 13-4. Histogram of the data returned by function num_customers_experiment

int test_experiment()
{
    auto data = num_customers_experiment(10.5, 20, 200);
    for (int i=0; i<int(data.size()); ++i)
    {

cout << " event " << i << " occurred "  << data[i] << " times" << endl;
    }
}

The next example shows how to generate and use random values drawn from the normal distribution. 
The normal distribution, also known as Gaussian distribution, is one of the most common probability 
distributions used to model real-world data. It is employed in data analysis, in areas ranging from drug 
design to sociology. The normal distribution represents the distribution of values that are naturally 
measured in populations. For example, the heights of people living in a particular geographical area follow 
the normal distribution.

The bell-shaped probability graph of the normal distribution is determined by the Gaussian equation, 
which takes as parameters the mean and the standard deviation of a random variable. The equation is 
given by
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In this equation, μ is the mean value of these numbers, and σ is the standard deviation, which is a 
measure of the variability of these random values.

In the following code example, you will see how to generate numbers that follow the normal 
distribution. The get_normal_observations function returns a list of numbers that have been generated 
according to the normal distribution according to the parameters mean and stdev.

#include <iostream>
#include <random>
#include <vector>
#include <assert.h>
using std::cout;
using std::endl;
using std::vector;

auto get_normal_observations(int n, double mean,
                             double stdev) -> vector<double>
{
    std::default_random_engine generator;
    vector<double> values;
    std::normal_distribution<double> normaldist(mean, stdev);
    for (int i=0; i<n; ++i)
    {
        values.push_back(normaldist(generator));
    }
    return values;
}

The next function, test_normal, can be used to verify the correctness of this code. The idea of this 
function is to use the generated values so that it can create a histogram of the normal-distributed data. The 
first step of the algorithm is to call the get_normal_observations function and save the returned data. The 
next step is to get some information about the received data, such as the minimum and maximum values. 
This is done using the std::minmax_element function, which returns a pair of iterators pointing to the 
minimum and maximum values in the given range.

The algorithm creates a vector with elements corresponding to “bins,” that is, smaller ranges where each 
observation is recorded. The size of each such bin is stored as the variable h. The first loop then determines 
the number of elements in each such range so that a histogram can be calculated.

The second loop is responsible for printing the results of the histogram. Each value is printed along with 
the starting point of the corresponding range.

#include <algorithm>

void test_normal()
{
    auto nv = get_normal_observations(1000, 8, 2);
    auto res = std::minmax_element(nv.begin(), nv.end());
    double min = *(res.first);
    double max = *(res.second);
    int N = 100;
    double h = (max - min)/double(N);
    vector<int> values(N, 0);
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    for (int i=0; i<int(nv.size()); ++i)
    {
        double v = nv[i];
        int pos = int((v - min) / h);
        if (pos == N) pos--; // avoid the highest element
        values[pos]++;
    }
    for (int i=0; i<N; ++i)
    {
        cout << min + (i*h) << " " << values[i] << endl;
    }
}

The values created in this way have been plotted and are displayed in Figure 13-5. The horizontal axis 
represents the value of each observation. The vertical axis represents the number of occurrences of each 
observation.

Figure 13-5. Histogram of values observed using the normal distribution with mean 8

 Using Random Walks
One of the main applications of stochastic processes in finance is the study of prices under random 
variations. This random process is called a random walk, since it implies that changes happen at random as 
time passes. A random walk model can be used to simulate market conditions and investigate the behavior 
of trade strategies, portfolios, and market participants in general. In this section, you see how to create a 
simple random walk using some of the facilities provided by C++.

A random walk is a mathematical concept and statistical model used to describe a sequence of steps 
or movements that are determined by random or stochastic processes. The term “random walk” was first 
introduced by mathematician Karl Pearson in the late nineteenth century.

In its simplest form, a random walk takes place on a discrete set of points (such as a grid) and consists of 
a sequence of steps in which the direction and magnitude of each step are determined by random chance. At 
each step, the walker can move to one of several neighboring locations with equal probability.
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The two common types of random walks are as follows:

• One-dimensional random walk: The walker moves along a straight line (often 
represented as the integer number line). At each step, the walker can either move 
one unit to the left or one unit to the right with equal probability.

• Two-dimensional random walk: The walker moves on a two-dimensional grid, such 
as moving on the surface of a chessboard. At each step, the walker can move to one 
of four adjacent grid points (up, down, left, or right) with equal probability.

Random walks have applications in various fields, including physics, finance, biology, and computer 
science. Random walks have been used to model the price movements of financial assets, especially in the 
Efficient Market Hypothesis (EMH). The random walk hypothesis suggests that asset prices fully reflect all 
available information, and future price changes are unpredictable.

 Creating Random Walks
A random walk can be designed with the use of a few simple rules that determine the price fluctuations. 
Notice the exact rules used depend on the kind of market that you need to simulate and the exact conditions 
that need to be replicated. In this example, I use a few computational commands that will simplify the task; 
the framework can be readily extended to implement more complex scenarios.

The random walk starts at an initial price given as a parameter to the algorithm. At each step, there are 
three possibilities for the random walk:

• A price decrease, which occurs with probability 1/3.

• A price increase, also happening with probability 1/3.

• The price remains unchanged.

The amount of increase or decrease is given by a parameter called stepSize.
These rules are implemented in the RandomWalkModel class. The class has an interface that exposes two 

member functions. getWalk returns a vector with a set of steps in the random walk.

//
//  RandomWalk.hpp
#ifndef RandomWalk_hpp
#define RandomWalk_hpp
#include <vector>
// Simple random walk for price simulation
class RandomWalkModel {
public:
    RandomWalkModel(int size, double start, double step);
    RandomWalkModel(const RandomWalkModel &p);
    ~RandomWalkModel();
    RandomWalkModel &operator=(const RandomWalkModel &p);
    std::vector<double> getWalk();
private:
    int random_integer(int max);
    int m_numSteps;      // number of steps
    double m_stepSize;   // size of each step (in percentage)
    double m_startPrice; // starting price
};
#endif /* defined(__FinancialSamples__RandomWalk__) */
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The class interface also contains the following member variables:

• The number of steps, m_numSteps, determines the number of steps (time) in the 
random walk.

• The initial price is defined by the m_stepSize member variable.

• The starting price is defined by the m_startPrice member variable.

These member variables are initialized in the constructor of RandomWalkModel, as shown in this code 
listing:

//
//  RandomWalk.cpp
#include "RandomWalk.hpp"
#include <cstdlib>
#include <iostream>
#include <random>
using std::vector;
using std::cout;
using std::endl;
std::default_random_engine engine;
RandomWalkModel::RandomWalkModel(int size, double start, double step)
: m_numSteps(size),
  m_stepSize(step),
  m_startPrice(start)
{
}
RandomWalkModel::RandomWalkModel(const RandomWalkModel &p)
: m_numSteps(p.m_numSteps),
  m_stepSize(p.m_stepSize),
  m_startPrice(p.m_startPrice)
{
}

RandomWalkModel &RandomWalkModel::operator=(const RandomWalkModel &p)
{
    if (this != &p)
    {
        m_numSteps = p.m_numSteps;
        m_stepSize = p.m_stepSize;
        m_startPrice = p.m_startPrice;
    }
    return *this;
}

The random numbers needed by this code are generated using the random_integer member function. 
This function just uses the standard library random number generator std::default_random_engine. It also 
uses the uniform distribution returning integer values, as provided by the std::uniform_int_distribution 
template class.
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int RandomWalkModel::random_integer(int max)
{
    std::uniform_int_distribution<int> unif(0, max);
    return unif(engine);
}

The random walk sequence is generated by the member function getWalk. The algorithm has a single 
loop that repeats the price generation according to the m_numSteps variable. Inside the loop, the code 
selects a random integer between 0 and 2. Depending on the result, the code makes a decision to increase, 
decrease, or leave the price unchanged. Each price is then added to a vector, and the vector is returned at the 
end of the function.

std::vector<double> RandomWalkModel::getWalk()
{
    vector<double> walk;
    double prev = m_startPrice;
    for (int i=0; i<m_numSteps; ++i)
    {
        int r = random_integer(3);
        cout << r << endl;
        double val = prev;
        if (r == 0) {
           val += (m_stepSize * val);
        }
        else if (r == 1) {
            val -= (m_stepSize * val);
        }
        walk.push_back(val);
        prev = val;
    }
    return walk;
}

This code can be tested using the test_random_walk function. This function simply creates a 
RandomWalkModel object with 200 steps, starting at the $30 price and with steps of $0.01.

int test_random_walk()
{
    RandomWalkModel rw(200, 30, 0.01);
    vector<double> walk = rw.getWalk();
    for (int i=0; i<walk.size(); ++i)
    {
        cout << ", " << walk[i];
    }
    cout << endl;
    return 0;
}
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The random walk generated by the test_random_walk function was saved, and using that data, I plotted 
the results, as shown in Figure 13-6. Notice that, although this model is very simple, the results are not 
very different from what is observed in the market. Using this kind of synthetic data, you can test trading 
strategies and determine if they are profitable in such randomized scenarios.

Figure 13-6. A random walk generated by the RandomWalkModel class with a starting price of $30

 Conclusion
In this chapter, I introduced a few examples of Monte Carlo techniques, which can be used to solve complex 
problems through simulation of random events. These methods are based on the use of pseudorandom 
values as a tool for the probabilistic analysis of events. Such models also support the simulation of complex 
mathematical models, including the evolution of stock prices, as well as their options and related derivative 
instruments.

In the preceding sections, you learned about the building blocks of Monte Carlo methods. First, you 
learned how to generate pseudorandom numbers using the C++ standard library. The random numbers 
can also be generated according to a predefined probability distribution. The C++ standard library contains 
some of the best-known probability distributions, which makes it easy to integrate these features into user 
applications.

You also saw how to implement a simple random walk model. In a random walk, values change by small 
increments in either negative or positive directions. The random walk model can be used to analyze several 
financial instruments, ranging from fixed income instruments to equities and derivatives.

The next chapter will cover additional library functions and classes that are commonly used to analyze 
and develop solutions for options and derivatives.
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CHAPTER 14

Backtesting Trading Strategies 
in C++

Backtesting is a crucial process in the development and evaluation of trading strategies. It involves testing a 
trading algorithm or investment strategy using historical market data (instead of simulated data) to assess its 
performance and potential profitability under different conditions.

Implementing backtesting algorithms in C++ provides the advantage of speed, efficiency, and 
portability, making it an excellent choice for handling large datasets and complex trading strategies. In 
this chapter, we’ll walk you through a step-by-step guide on how to perform backtesting of such trading 
strategies using C++.

This chapter provides an overview of the concepts of backtesting. I also present some sample C++ code 
that can be used to backtest trading strategies.

 Obtaining Historical Market Data
Obtaining high-quality and reliable historical market data is a crucial starting point for backtesting your 
trading strategies effectively. The historical data will serve as the foundation for testing and evaluating the 
performance of your algorithm under past market conditions. Here are some ideas on how to obtain and 
prepare historical market data for backtesting in C++.

The first step is to find a reliable data source. There are several options for obtaining historical market 
data. Some common sources include financial data providers, online platforms, and APIs (Application 
Programming Interfaces) that offer historical market data for various financial instruments. Examples of 
popular financial data providers include Yahoo Finance, Alpha Vantage, Quandl, and Intrinio. Make sure 
to select a reputable data source with accurate and reliable data, since accurate financial data is crucial to 
achieve reliable results.

Consider data frequency and the granularity of your tests. You need to decide on the data frequency 
(e.g., hourly or daily) and granularity (how many data points to collect) in a way that best aligns with your 
trading strategy and objectives. Notice that historical data is available in various timeframes, such as daily, 
hourly, minute, or even tick data. The choice of granularity depends on the frequency of your trading 
strategy. For example, day traders may use minute or tick data, while long-term investors might opt for daily 
or weekly data.

The next issue to consider is the data format(s) used. It is necessary to ensure that the historical market 
data is provided in a format compatible with existing code. The most popular and easily parsable format is 
CSV (comma-separated values). In that case, each row of the CSV file represents a data point, with columns 
for timestamps, asset prices (open, high, low, close), volume, and any additional relevant information.
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 Data Cleaning and Preprocessing
Data cleaning is an important consideration when testing your trading strategies. Raw historical data may 
contain missing values, outliers, or other inconsistencies that could affect the accuracy of your backtesting 
results. Before using the data, it is essential to perform data cleaning and preprocessing. This involves 
handling missing data, smoothing out irregularities, and removing outliers.

This type of data cleaning preprocessing may happen in a different way. One possibility is running an 
automated process, that is, a separate algorithm to check for inconsistencies. For example, one can use this 
method to remove outliers such as stock prices that are higher than expected for a particular stock.

Another way of performing data cleaning is plotting the values and checking if there are data points that 
have incorrect values (e.g., prices that are too high or too low for the interval you’re checking).

 Adjustments for Corporate Actions
When it comes to financial data, it is always important to check for adjustments to the input data. Some 
financial instruments may undergo corporate actions like stock splits, dividends, or mergers, which can 
affect historical prices. It is necessary to ensure that the historical data you obtain has been adjusted for such 
corporate actions to maintain the accuracy and integrity of your backtesting.

An example of this type of adjustment is processing of splits. A split is a corporate active where a 
single share of stock is split into two or more. It is also possible to reverse-split, when two or more shares 
are combined into a single one. When this happens, it is necessary to adjust the past data to represent this 
change in value for a single share of stock.

Another consideration you need to have is in splitting the available data into training and testing sets. 
To avoid data bias and overfitting, split your historical data into training and testing sets. The training set will 
be used for developing and optimizing your trading strategy, while the testing set will be used for the final 
evaluation and validation. The split ratio depends on the size of your dataset and the time period you want 
to test your strategy on.

Data storage and organization are another important consideration when designing a backtesting 
strategy. You need to organize and store the historical market data in a structured manner that is easily 
accessible by your C++ backtesting engine. A simple technique is to create a separate folder or directory for 
each financial instrument and store the data files accordingly.

Finally, it is important to think about continuous data updates. Financial markets are dynamic, and 
historical data may require periodic updates to remain relevant. You need to set up a process for regularly 
updating your historical data to include the latest market information. Depending on your trading 
frequency, you may choose to update the data daily, weekly, or at other intervals.

 How to Design Your Trading Strategy
Designing a trading strategy is a fundamental and creative aspect of backtesting. It involves formulating a 
set of rules and conditions that guide your algorithm’s decision-making process. The strategy should be well 
defined, quantifiable, and based on a robust rationale.

A first step is to define your trading objective. Start by clarifying your trading goals. Are you aiming for 
short-term gains, long-term growth, or risk management? Having a clear objective will guide your strategy’s 
development and help you choose appropriate performance metrics for evaluation.

Next, it is important to select the asset or market you want to backtest. Start determining the financial 
instrument you want to trade. It could be stocks, forex pairs, commodities, cryptocurrencies, or any other 
tradable asset. Different assets may require specific strategies, so consider factors like liquidity, volatility, 
and market hours.
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Next, you need to choose the desired timeframe. Decide on the ideal timeframe for your trading 
strategy. Will it be a day trading strategy (single day), swing trading (a few days), or position trading (several 
days or months)? Each timeframe has its characteristics, and your strategy should align with the frequency 
of your trades.

Technical or fundamental analysis is a factor that can help you make decisions. Therefore, determine 
whether your strategy will be based on technical analysis, fundamental analysis, or a combination of both. 
Technical analysis involves using historical price and volume data, chart patterns, and technical indicators 
to predict future price movements. Fundamental analysis, on the other hand, examines economic, financial, 
and company-specific factors that could influence asset prices.

Defining the entry and exit rules for your trading strategy should be the next step. In particular, you 
need to specify the conditions that will trigger trade entries and exits.

Here is an example of entry and exit rules that you may follow:

• Entry: Buy when the 10-day moving average crosses above the 50-day moving 
average and the Relative Strength Index (RSI) is below 30.

• Exit: Sell when the asset’s price reaches a specific target or the RSI crosses above 70.

The secret is to use realistic and automatic strategies for entry and exist. The combination of these rules 
will guarantee that your simulation is as close as possible to real trading conditions.

Along with entry and exit rules, you should also consider risk management strategies. The idea is to 
implement risk management rules to protect your capital. For example, you can determine the maximum 
percentage of your portfolio that can be allocated to a single trade, as a way to avoid losses from single 
stocks. You may also want to set stop-loss levels to limit potential losses.

 Backtest and Validation Phase
Once you have defined your trading strategy following the methodology described previously, it is time to 
proceed to backtesting and validation. Backtesting your trading strategy will encompass using historical 
market data to validate the trading strategy performance.

Our algorithm will be responsible for analyzing the results and ensuring that the strategy aligns with 
your objectives. Based on the backtesting results, you can make necessary adjustments to improve its 
efficiency and robustness.

Be cautious of overfitting your strategy to historical data. While optimizing parameters can improve 
performance, it’s crucial to strike a balance and avoid curve-fitting the strategy to fit past data too precisely. 
A strategy that performs well historically may not necessarily translate to success in real-time trading.

Finally, after getting the results of the backtesting, you should document your strategy. This means to 
maintain detailed documentation of your trading methods, including the rationale behind each rule, the 
parameters used, and any modifications made during the development process. Proper documentation will 
be valuable for future reference and analysis.

Once you have developed a strategy and backtested it, it may be useful to also paper trade using a demo 
account. The purpose is to compare your live results with the results achieved using backtesting. This way, 
you can also test your strategy in a real-time simulated environment. It will help you gain confidence in its 
performance and familiarize yourself with executing trades based on the strategy’s signals.

 Developing the Backtesting Engine
Developing the backtesting engine involves creating the core functionality that processes historical market 
data and executes trades based on your trading strategy. The engine will read historical data, apply your 
strategy’s rules at each time step, and record the trades and positions. In this section, I provide a simple 
example that you can use to start a backtesting engine.
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 Read Historical Market Data
In this step, you’ll need to read the historical market data from a CSV file or any other suitable format. The 
data should include timestamps, asset prices, and any other relevant information. Here’s a sample C++ 
function to read data from a CSV file assuming the file has columns “Timestamp”, “Open”, “High”, “Low”, and 
“Close”:

#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <sstream>

struct OHLCData {
    std::string timestamp;
    double open;
    double high;
    double low;
    double close;
};

std::vector<OHLCData> readCSV(const std::string& filename) {
    std::vector<OHLCData> data;
    std::ifstream file(filename);
    if (!file.is_open()) {
        std::cerr << "Error opening file: " << filename << std::endl;
        return data;
    }

    std::string line;
    getline(file, line); // Skip the header

    while (getline(file, line)) {
        std::istringstream iss(line);
        OHLCData record;
        getline(iss, record.timestamp, ',');
        iss >> record.open >> record.high >> record.low >> record.close;
        data.push_back(record);
    }

    file.close();
    return data;
}

 Create the Backtesting Engine
Next, implement the backtesting engine that processes the historical data and applies your trading strategy’s 
rules. Here’s a simplified C++ code snippet for the backtesting engine:
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#include <iostream>
#include <string>
#include <vector>
#include <fstream>
#include <sstream>

class YourStrategyClass {
private:
    // Store historical OHLC data for reference
    std::vector<OHLCData> historicalData;
public:
    YourStrategyClass() {
        // Initialize your strategy here, set parameters, etc.
    }

    void processData(const OHLCData& data) {
        // Implement your strategy logic here to process the data
        // For this example, we'll store the historical OHLC data in a vector
        historicalData.push_back(data);
    }

    bool shouldEnterTrade() {
        // Implement your logic to determine if the strategy signals to enter a trade
        //  Return true if the conditions for entering a trade are met, otherwise 

return false
        //  In this example, we'll check if the current closing price is higher than the 

previous close * 1.2
        int min_number_of_points = 2;

        if (historicalData.size() >= min_number_of_points ) {
            double previousClose = historicalData[historicalData.size() - 2].close;
            double currentClose = historicalData.back().close;
            double threshold = previousClose * 1.2;

            if (currentClose > threshold) {
                // Entry condition is met, signal to enter a trade
                 std::cout << "Entry signal: Buy at timestamp: " << historicalData.back().

timestamp << std::endl;
                return true;
            }
        }

        return false;
    }

    bool shouldExitTrade() {
        // Implement your logic to determine if the strategy signals to exit a trade
        // Return true if the conditions for exiting a trade are met, otherwise return false
        //  In this example, we'll check if the current closing price is less than the last 

close * 0.96
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        if (historicalData.size() >= 2) {
            double lastClose = historicalData[historicalData.size() - 2].close;
            double currentClose = historicalData.back().close;
            double threshold = lastClose * 0.96;

            if (currentClose < threshold) {
                // Exit condition is met, signal to exit the trade
                 std::cout << "Exit signal: Sell at timestamp: " << historicalData.back().

timestamp << std::endl;
                return true;
            }
        }

        return false;
    }
};

int main() {
    // Step 1: Read historical market data
    std::vector<OHLCData> historicalData = readCSV("historical_data.csv");

    // Step 2: Initialize your trading strategy
    YourStrategyClass strategy;

    // Step 3: Process historical data and execute trades
    for (size_t i = 0; i < historicalData.size(); ++i) {
        // Extract data for the current timestamp
        const OHLCData& currentData = historicalData[i];

        // Feed data to your strategy class
        strategy.processData(currentData);

        // Check if the strategy signals to enter or exit a trade
        if (strategy.shouldEnterTrade()) {
            // Execute buy order or any other actions
            std::cout << "Buy at timestamp: " << currentData.timestamp << std::endl;
            // ... implement buy order execution code ...
        } else if (strategy.shouldExitTrade()) {
            // Execute sell order or any other actions
            std::cout << "Sell at timestamp: " << currentData.timestamp << std::endl;
            // ... implement sell order execution code ...
        }
    }

    // Step 4: Calculate and display performance metrics
    // ... implement performance metrics calculation ...

    return 0;
}
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In the preceding code snippet, you can replace YourStrategyClass with the actual name of your C++ 
class that represents your trading strategy. Your strategy class should have functions to process data 
(processData()), check entry and exit signals (shouldEnterTrade() and shouldExitTrade()), and handle trade 
execution.

 Conclusion
Backtesting is a vital process in the development and evaluation of trading strategies, allowing traders and 
investors to assess the historical performance of their algorithms based on past market data. When using 
C++ for backtesting, traders can benefit from its speed and efficiency, making it a powerful choice for 
handling large datasets and complex trading strategies.

In this chapter, I introduced the concepts of backtesting and how it can be modeled using the C++ 
language. By following these steps and utilizing C++ for backtesting, traders can gain valuable insights into 
the performance and effectiveness of their trading strategies.

Remember that backtesting is just one component of a comprehensive trading strategy development 
process. A combination of rigorous testing, risk management, and real-world trading experience is essential 
for successful trading in financial markets.

The next chapter will cover additional library functions and classes that are commonly used to analyze 
and develop solutions for options and derivatives trading.
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CHAPTER 15

Using C++ Libraries for Finance

Writing good financial code is a difficult task, one that cannot be done in isolation. As a software engineer, 
you frequently need to collaborate with others to achieve your development goals. You also need to use 
code that has been written by other groups. In particular, developers are constantly using libraries created 
by other companies or open source projects. Integrating these libraries into your own work is a major step to 
improve productivity.

In the world of quantitative finance, a number of C++ libraries have been used with great success. This 
chapter reviews some of these libraries and discusses how they can be integrated into your own applications. 
Some of the topics covered in this chapter include the following:

• Boost introduction: The boost repository provides access to many C++ libraries 
that are based on templates for higher efficiency. You will learn how to install and 
use boost, as well as integrate particular libraries in the repository to your own 
applications.

• Boost odeint: The odeint library is a well-tested and efficient set of algorithms for the 
solution of ordinary differential equations (ODEs). You will learn about the different 
algorithms contained in odeint and the different situations in which they can be 
employed.

• QuantLib: The QuantLib library has been designed as a repository for quantitative 
algorithms and assorted utilities for financial applications. Many parts of this code 
can be used to simplify the process of analyzing options and derivatives. You will 
learn how to use this library and see a few of the most commonly used classes and 
algorithms that are available in the QuantLib repository.

 Boost Libraries
In the last few years, the boost project has become well known for providing high-quality libraries for C++ 
applications. As a result, the boost project is now the de facto repository for extensions to the STL. In fact, 
many of the libraries that started as part of the boost repository have been incorporated to the C++ standard, 
including, for example, std::shared_ptr and std::unique_ptr. A few of the developers working on boost 
libraries have also become part of the standard C++ committee.

The boost project focuses on using the modern features of the C++ language, including, but not exclusively, 
the employment of templates for the implementation of high-performance algorithms. Many of the libraries 
included in boost provide template-based interfaces that make the resulting system much more flexible. 
For example, different algorithms can be specialized at the template level, so that you can combine different 
algorithms through the use of templates, when deciding on the optimal techniques to solve a specific problem. 
This is a much more adaptable strategy, rather than relying on decisions made by library designers.
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Note that boost is not a finance library. Instead, it provides a large number of features that are packaged 
in a few separate libraries. However, many of the components have direct use in the implementation of 
financial applications. Its components can be used to perform and simplify several tasks, such as the 
following:

• Solving ODEs: Ordinary differential equations appear frequently in the solution of 
numerical problems in the area of finance. As you have seen, to solve some options 
analysis models, it is necessary to efficiently compute the value of ODEs. The odeint 
library gives you access to such functionality, as you see in the next section.

• uBLAS: The Basic Linear Algebra Subprograms library provides a C++ interface to 
an advanced linear algebra library. uBLAS can be used to support more complex 
matrix-related code, as well as the solution of systems of equations.

• Multi-array: Many applications require the use of multidimensional arrays when 
working in areas such as 3D animation, weather predictions, and so on. The multi-
array library provides an easy interface for the creation and manipulation of arrays 
that can be indexed using multiple indices.

• Managing file and directories: The <filesystem> header file contains a set of 
templates that can be used to manage files and directories. It handles different 
operating systems so that you don’t need to rely on system-specific libraries for 
common file-based operations.

 ■ Note The filesystem library has become part of the C++ standard library in the C++17 version. 
Previously, filesystem was part of the boost library, which was needed to gain access to this functionality. 
However, you can still access this library using boost, which makes it portable to code written for earlier 
compilers.

The boost repository contains a large set of useful libraries for C++ development, including the ones 
listed previously. In its current version, there are 136 libraries that cover all types of tasks needed in modern 
programing. Table 15-1 shows a list of commonly used libraries contained in the boost project repository, 
including a quick explanation of their usage.
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Table 15-1. List of Commonly Used Boost Libraries

Library Description

odeint Implements algorithms to solve ordinary differential equations (ODEs).

filesystem A set of classes to manipulate files and directories in an OS-independent way.

Multi-array Provides arrays with multiple dimensions; useful for scientific code.

MPI Implements the Message Passing Interface, a standard for parallel processing.

Math A set of mathematical functions not included in the standard library.

Graph A library that extends the STL and provides containers and algorithms to handle graphs.

Functional Provides templates that simplify functional programming techniques.

Algorithm A set of generic algorithms that extends the algorithm header in the STL.

uBLAS A modern C++ implementation of BLAS (Basic Linear Algebra Subprograms).

Variant A container that safely stores a union container, capable of storing different data types.

Sort Implements several sorting strategies using templates for high performance.

Regex Provides support for regular expressions in C++.

Python A set of templates and classes that allows interaction between Python and C++ code.

 Installing Boost
The first step in using the boost libraries is to install them on your machine. Being an open source 
repository, boost packages are made available through the Web and mirrored in several websites. The 
canonical website for the repository is www.boost.org, where you can find instructions for installing boost in 
several architectures and operating systems.

The most common way to install boost is to download the compressed file containing the headers 
and source files. Once the files are uncompressed, you can use the main installation script that is provided, 
bootstrap.sh, to build and install the software on the desired path in the local disk.

Another way to install boost libraries is to use third-party installers or package managers. For example, 
if you use Linux, it is possible to install boost as a package using the local package manager, such as dpkg on 
Debian systems. On Windows systems, you can also install Cygwin, which contains a package manager with 
several common C++ programming packages, including the boost libraries.

Installing from source is also easy. You just need to unzip the source files into a location and use that 
directory as the include path for the compilation process. An advantage of boost is that most of the libraries 
are implemented as header files (this is also true for most of the STL). Therefore, there is no need for any 
compilation. A few libraries, however, require a compilation step that can be performed using the bootstrap 
script. You will need the build step if you need to use one of the following libraries:

• Boost.Filesystem

• Boost.IOStreams

• Boost.ProgramOptions

• Boost.Python

• Boost.Regex
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• Boost.Serialization

• Boost.Signals

• Boost.Thread

• Boost.Wave

Boost libraries are built using a C++ build system called bjam. The build script will try to find bjam 
in your machine or build it. You can also download bjam from its binary distribution located in boost.
org/build.

In the next few sections, you will see how to use a few libraries available from boost. First, you will see 
how to solve ordinary differential equations with the odeint library.

 Solving ODEs with Boost
In the previous chapter, you saw how ordinary differential equations (ODEs) can be implemented directly 
using C++ code. Due to how options are defined and represented, ODE models arise naturally in the design 
of financial algorithms. As a result, being able to quickly implement such methods is a great advantage for 
the quantitative software developer. Moreover, it is much easier to reuse an ODE implementation that has 
already been reviewed and thoroughly tested, especially considering that numerical errors are hard to catch 
in many cases.

One of the components of the boost repository, the odeint library, deals specifically with ODEs. With 
odeint, you can more easily create code to integrate ODEs, choosing from a number of different algorithmic 
strategies. Figure 15-1 shows a screenshot of the current web page for the odeint website, where its 
repository is maintained.

Figure 15-1. Website of the odeint library, where you can download its latest version

CHAPTER 15 ■ Using C++ LibRARiEs foR finAnCE



253

Table 15-2 presents a quick list of the integration techniques available when using odeint. Some of these 
techniques have been discussed in the previous chapter. Others are variations of the best-known algorithms 
and can provide performance advantages for use in particular applications.

Table 15-2. List of Integration Techniques Available When Using odeint

Class Name Description

Euler Original Euler’s algorithm to solve ODEs.

runge_kutta4 Uses the Runge-Kutta method, with fourth-order approximation.

runge_kutta_cash_karp54 Runge-Kutta method.

runge_kutta_fehlberg78 Variation of Runge-Kutta that uses the Fehlberg algorithm.

adams_moulton A multistep algorithm for solving ODEs.

dense_output_runge_kutta An implementation of Runge-Kutta that uses dense output.

bulirsch_stoer Based on the Bulirsch-Stoer algorithm, provides higher accuracy in the 
solution of complex ODEs.

implicit_euler A variation of Euler’s algorithm in which the equation is given in implicit 
form and requires the use of the associated Jacobian.

The algorithms made available in the odeint library are implemented as separate template classes. Each 
class corresponds to an algorithm or algorithmic concept. The odeint library contains a set of integration 
methods that can be parameterized using the provided templates. These templates make it possible to use 
different strategies through the combination of the given algorithms and concepts.

One of the basic types of strategies classes available in odeint is a stepper. A stepper is used to navigate 
through the solution space of the given ODE. This is an important concept because ODEs are solved 
interactively, and the step size and direction determine how a particular solution strategy will behave. 
Depending on the type of stepping strategy used, the resulting algorithm can perform a calculation that is 
faster or more accurate. Here are the known stepper types provided by odeint:

• runge_kutta4

• euler

• runge_kutta_cash_karp54

• runge_kutta_dopri5

• runge_kutta_fehlberg78

• modified_midpoint

• rosenbrock4

 Solving a Simple ODE
In this section, you will see how to use the concepts described previously to solve a simple ODE in the 
standard form given by

 
′ = ( )y f x y,  
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Here, y is a function of x, y' is the first derivative of y, and f(x, y) is a general equation that may depend 
both on x and y.

To use odeint, the first step is to include the main header file containing this library, with

#include <boost/numeric/odeint.hpp>

To solve any ODE, you need first to determine the f(x, y) part of the system, that is, the right side of the 
ODE equation. In this example, you will solve for the simple equation

 
′ = +y

x

y

x

3

2 5 3 22. /  

This is done in the following code fragment:

#include "boosttest.hpp"
#include <iostream>
#include <boost/array.hpp>
#include <boost/numeric/odeint.hpp>
//
// This is the equation at the right side of the ODE   y' = f(x,y)
// It is evaluated in the inner steps of the algorithm.
//
auto right_side_equation(double y, double &dydx, double x) -> void
{
   dydx = 3.0/(2.5*x*x) + y/(1.5*x);
}

An optional feature of the odeint algorithm is the use of an observer. The observer is a function that can 
be used to inspect each step of the algorithm. Using this information, you can record the progression of the 
solution, or you can perform more complex analysis if necessary. In this example, the observer simply prints 
the output, which will later be used to plot the convergence of the solution.

// This function simply prints the current value of the interactive
// solution steps.
void write_cout( const double &x , const double t )
{
   cout << t << '\t' << x << endl;
}

Next, you need to define the stepper algorithm. In this case, the runge_kutta_dopri5, a basic stepper 
based on the Runge-Kutta method, was selected. This can be done with a simple typedef to define the 
stepper_type.

// A stepper based on Runge-Kutta algorithm.
// The state_type use is 'double'
typedef runge_kutta_dopri5<double> stepper_type;

Finally, the main function is used to integrate the ODE under the given initial conditions. The task is 
performed by the integrate_adaptive function, which takes as parameters the stepper, the ODE defining 
equation, state and step parameters, and a function that prints the intermediate results.
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// This solves the ODE described earlier with initial condition x(1) = 0.
//
int main()
{
   double x = 0.0;
   auto n = integrate_adaptive(

make_controlled(1E-12, 1E-12, stepper_type()),  // instantiate the stepper
         right_side_equation,            // equation
         x,                              // initial state
         1.0 , 10.0 , 0.1 ,              // start x, end x, and step size
         write_cout );
   cout << " process completed after "  << n << " steps \n";
   return 0;
}

I ran this code and used the output of the observer function to plot the convergence of the results found 
by the ODE solver. The plot, displayed in Figure 15-2, shows how solution values change as you move from 
1.0 to 10.0 in the solution space.

Figure 15-2. Results of the integrate_adaptive function from the odeint library

 Creating Histograms with Boost
Another useful application for boost is the creation of support code such as histograms. A histogram is a 
useful chart in financial applications that shows the frequency of each particular value in a time sequence. 
This can be applied, for example, to prices of underlying assets for an options analysis package.

The boost library supports the use of histogram with the histogram.hpp template header file and its 
declared classes and functions. The histogram class is the main data type provided by boost for this purpose. 
Let’s consider a sample application of this class:

#include <boost/histogram.hpp>
#include <boost/histogram/ostream.hpp>
#include <cassert>
#include <iostream>
#include <sstream>
#include <string>
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int main() {
  using namespace boost::histogram;
  std::ostringstream os;
  auto h1 = make_histogram(axis::regular<>(5, -1.0, 1.0, "axis 1"));
  h1.at(0) = 2;
  h1.at(1) = 4;
  h1.at(2) = 3;
  h1.at(4) = 1;
  // 1D histograms are rendered as an ASCII drawing
  std::cout << h1;
  return 0;
}

In this sample application, the boost/histogram header file is imported to provide the required class 
and template definitions. The use of this class occurs on function main. The make_histogram function is 
useful to instantiate a histogram class using default value along with the passed parameters.

The parameters specified in the example determine that the axis for the histogram is regular, with five 
partitions (bins), starting on value -1.0 and extending to value 1.0. Then, a few values are added to some of 
the bins maintained by the histogram class.

The output of this sample code can be seen when the main function is executed, as shown in Figure 15-3.

Figure 15-3. Output from histogram example

 The QuantLib Library
The second example of a library that is used in quantitative finance and options analysis is the QuantLib 
library. QuantLib is a well-established repository of quantitative code for C++. The library has been tested 
and used by many developers, which means that you can take advantage of the hard work that went into 
creating and testing the algorithms.

Being an open source project, QuantLib is free and can be used by anyone by just downloading and 
building the source code. The project also accepts contributed code, which means that many people can fix 
bugs and participate in the improvement of the library.

QuantLib contains a wide assortment of classes that simplify certain tasks that are necessary in 
quantitative algorithms for finance. A few areas covered by QuantLib are the following:

• Date handling: Many algorithms for options and derivatives analysis are based on 
dates. Therefore, accurate information about trading dates, holidays, and other 
calendar-specific events is very important for the correct results of such algorithms. 
QuantLib provides a number of classes that encapsulate the concepts needed for 
data handling in financial applications.

CHAPTER 15 ■ Using C++ LibRARiEs foR finAnCE



257

• Design patterns: The QuantLib library puts a lot of effort in following well-established 
design patterns. Most algorithms use design patterns that make them easier to 
understand and to maintain. For this reason, QuantLib has a rich implementation of 
common design patterns, including Singleton, Observer, Composite, and others.

• Monte Carlo methods: A few of the classes provided by QuantLib are used to simplify 
the implementation of Monte Carlo methods. These classes make it easier to create, 
for example, random paths for financial instruments, as well as similar models based 
on Brownian motion.

• Pricing engines: Another area that is covered by QuantLib is the implementation of 
efficient pricing engines for options and derivatives. The library provides several 
techniques for options pricing, which are carefully packaged into C++ classes. These 
pricing engines include barrier option engines, Asian option engines, basket option 
engines, and vanilla option engines.

• Optimizers: Another utility that is frequently employed in financial applications is an 
optimization engine. The QuantLib library contains a few classes dedicated to some 
common optimization strategies. Using such optimization algorithms, it is possible 
to quickly solve complex problems where the objective is to find the minimum or the 
maximum of a given function.

In the remaining of this section, you will see a few examples using classes from QuantLib. You will learn 
how to use some of the main classes available in the library and integrate them to your applications.

 ■ Note on a macos computer, you can easily install QuantLib using the brew package manager with the 
following command:

brew install quantlib

 Handling Dates
One of the most common tasks in financial algorithms is handling dates correctly. You saw in Chapter 3 that 
there are several ways to store and transform values stored as dates. The QuantLib library tries to simplify 
some of these tasks with the introduction of carefully designed date and time classes.

Managing holidays is one of the most difficult problems when using dates in financial applications. 
Since the number of trading days constitutes part of the calculation, when computing the price of an option, 
it becomes very important to have precise representations of date intervals, considering which of those days 
are trading days.

First, let’s consider how to use the Date class provided by QuantLib, along with some of the basic 
operations defined on that class. The basic way to construct an object of type Date is to pass the desired date 
in the day-month-year format. Here is an example:

Date date1(10, Month::April, 2010);

This would create a date representing the 10th day of April 2010. Now, using a date created in this 
way, it is possible to perform operations such as addition or subtraction using the operators that have been 
overloaded by QuantLib.
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void testDates()
{
   Date date(10, Month::April, 2010);
   cout << "original date: " << date << endl;
   date += 2 * Days;
   cout << "after 2 days: " << date << endl;
   date += 3 * Months;
   cout << "after 3 months: " << date << endl;
}

In this code, the operators are used to add a period of two days and three months, respectively, to the 
original date. The Days and Months identifiers are simple data types that concisely represent a time period 
and can be used to simplify the handling of intervals.

Another simple operation on dates is incrementing and decrementing. This allows you to quickly find 
the next or the previous day in a sequence, without needing to check if these dates occur in different months 
or years. The following code shows an example of how this works:

void nextAndPreviousDay()
{
   Date date(28, Month::February, 2010);
   cout << "original date: " << date << endl;
   date++;
   cout << "next day: " << date << endl;
   date--;
   cout << "previous day: " << date << endl;
}

Additional tools are provided to answer common questions related to dates. For example, member 
functions of the Date class are used to determine if a particular date occurs in a leap year, if it occurs at the 
end of the month, or if the date is a weekday. These are exemplified by the code in the following section.

 Working with Calendars
Another aspect of dates that causes a lot of confusion is handling local holidays. Each country has 
nontrading days that are determined by holidays, which also change according to the year in which they 
occur. To handle these issues, QuantLib provides a set of Calendar objects. These calendars are localized 
and can be used to determine if a particular date is a holiday.

The following example shows how to use the Calendar class in a typical C++ application:

auto useCalendar() -> void
{
   Calendar cal = UnitedStates(UnitedStates::NYSE);
   cout << " list of holidays " << endl;
   for (auto date : Calendar::holidayList(cal, Date(1, Month::Jan, 2010),
                                               Date(1, Month::Jan, 2012)))
   {
      cout << " " << date;
   }
   cout << " is Jan 1 2010 a business day?  "
        << cal.isBusinessDay(Date(1, Month::Jan, 2010)) << endl;
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   cout << " is Jan 1 2010 a holiday?  "
        << cal.isHoliday(Date(1, Month::Jan, 2010))     << endl;
   cout << " is Jan 1 2010 end of month?  "
        << cal.isEndOfMonth(Date(1, Month::Jan, 2010))  << endl;
}

The first line of the useCalendar function shows how to create a new calendar for a particular region. In 
this case, the calendar corresponds to the United States and in particular to the New York Stock Exchange.

With this calendar loaded, it is possible to answer a number of questions about dates in the United 
States. For example, the next few lines show how to list all holidays with the holidayList function. The 
function receives as arguments the calendar and the desired start and end date. The result is a container 
with all the holidays for the given period.

The next few lines show how to use QuantLib Calendar object to answer a few common questions 
related to the day of the week and the month. The first call is to isBusinessDay, and it returns true if the 
given date occurs in a business day (usually Monday to Friday in most markets). The second member 
function is isHoliday, which returns true only if the given date is a holiday.

Finally, you can see the member function isEndOfMonth example. This function returns true if the given 
date occurs at the end of a month, which may be an important date in some kinds of financial contracts.

Another interesting feature of the Calendar class is that you can create and manage your own calendars. 
This is necessary when creating code for countries that are not already covered by the library, or when you’re 
working on particular institutions or markets that use a distinct calendar.

The main functions to manage calendar holidays are addHoliday and removeHoliday. With these 
functions, you can create calendars that are specific to your needs. The following example code shows how 
to use them:

Calendar createNewCalendar()
{
   Calendar newCal = UnitedStates(UnitedStates::NYSE);
   // Remove winter holiday
   newCal.removeHoliday(Date(25, Month::December, 2016));
   // Add international workers' day
   newCal.addHoliday   (Date(1,  Month::May, 2016));
   cout << " list of holidays " << endl;
   for (auto date : Calendar::holidayList(newCa l, Date(1,  Month::Jan, 2016),
                                                  Date(31, Month::Dec, 2016)))
   {
      cout << " " << date;
   }
   return newCal;
}

This function starts with the creation of a new calendar object based on the US calendar, more 
specifically using the NYSE list of holidays. The function then proceeds to modify the original calendar, 
adding a common holiday and adding another so the number of holidays remains the same. The code also 
prints the list of holidays for the year 2016 to the standard output. Finally, the createNewCalendar function 
returns the newly created calendar as the result.

Another important feature of the Calendar class provided by QuantLib is the ability to determine the 
number of trading days between two dates. This is done using the businessDaysBetween member function, 
which returns the number of business days in a particular interval given to the function. A simple example 
can demonstrate how this function works:
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int getNumberOfDays(Date d1, Date d2)
{
   Calendar usCal = UnitedStates(UnitedStates::NYSE);
   int nDays = usCal.businessDaysBetween(d1, d2);
   cout << " the interval size is "  << nDays << endl;
   return nDays;
}

In the beginning, the getNumberOfDays function creates a calendar using the US locale. The next step 
is to determine the number of business days between two given dates. Then, the function prints the value of 
this difference and returns that value as the final result.

 Computing Solutions for Black-Scholes Equations
The next example of QuantLib is directly related to the problem of pricing options. The main formula for 
pricing options is derived from the Black-Scholes differential equations. This makes it really important to 
have a library that can quickly solve Black-Scholes models, at least as an initial step for further analysis.

QuantLib provides classes that are specifically designed to solve Black-Scholes models. Unlike other 
ODE and PDE packages that can be used to solve general differential equations (as seen in the previous 
section on boost), the QuantLib classes target efficient techniques to solve a single model in particular. This 
results in a very specialized algorithm that can be relied on for the efficient solution of Black-Scholes models.

To benefit from options models used by QuantLib, you need to instantiate two classes:

• A class representing the option and the associated payoff: QuantLib provides a set of 
classes for this purpose. An example of such a class is PlainVanillaPayoff, which 
represents a common (vanilla) option and its associated payoff.

• A class representing the pricing method: This class encapsulates the algorithm 
that is used to compute the option price. This example is interested in the class 
representing the Black-Scholes algorithm, which is named the BlackScholes 
calculator.

These classes are exemplified in the following sample code, which includes a function that performs the 
computation and an associated test function.

First, you need to create a simple storage area, where the necessary information for the algorithm 
is stored. The BlackScholesParameters structure is used for this purpose. The structure contains the 
following fields:

• The spot price for the underlying instrument

• The strike price for the desired option

• The current interest rate

• The forward interest rate

• The volatility of the underlying instrument

The structure can be represented in the sample C++ code as

struct BlackScholesParameters {
   double S0;
   double K;
   double rd;
   double rf;

CHAPTER 15 ■ Using C++ LibRARiEs foR finAnCE



261

   double tau;
   double vol;
};

Based on this information, it is possible to describe the use of Black-Scholes pricing method using a C++ 
function. The function, called callBlackScholes, receives as a parameter a single reference to a structure of 
type BlackScholesParameters.

void callBlackScholes(BlackScholesParameters  &bp)
{
   // Create a vanilla option (standard option type)
   boost::shared_ptr<PlainVanillaPayoff>
      vanillaPut(new QuantLib::PlainVanillaPayoff(Option::Put,bp.K));
   // Compute discount rates
   double cur_disc = std::exp(-bp.rd  * bp.tau);  // current discount rate
   double for_disc = std::exp(-bp.rf  * bp.tau);  // forward  discount rate
   double stdev    = bp.vol * std::sqrt(bp.tau);  // standard deviation

BlackScholesCalculator putPricer(vanillaPut, bp.S0, for_disc, stdev, cur_disc);
   // Print option Greeks
   cout << "value:" << putPricer.value() << endl;
   cout << "delta:" << putPricer.delta() << endl;
   cout << "gamma:" << putPricer.gamma() << endl;
   cout << "vega:"  << putPricer.vega(bp.tau)  << endl;
   cout << "theta:" << putPricer.theta(bp.tau) << endl;
   cout << "delta Fwd:" << putPricer.deltaForward() << endl;
   cout << "gamma Fwd:" << putPricer.gammaForward() << endl;
}

This code works in the following way. The first instruction is necessary to create a new object describing 
the required option. This is done with the instantiation of an object of class PlainVanillaPayoff, which 
indicates that the new option is of plain vanilla type (i.e., it is a standard option). The arguments passed 
are the type of option (either a call or a put) and the strike. These two parameters determine the type of 
option that you’re handling, independent of the current characteristics of the market. The object of type 
PlainVanillaPayoff is stored in a shared_ptr, which automatically manages the lifetime of the object, 
cleaning up the pointer at the end of the scope of the local variable.

The next part of the callBlackScholes function initializes some of the parameters necessary to use the 
options pricer. The parameters include the current and the forward discount rate, which are computed from 
the given interest rate using an exponential transformation. Another important parameter is the standard 
deviation, which measures the volatility of the underlying instrument.

Once the parameters for the options pricing model are available, you can instantiate the 
BlackScholesCalculator class, passing as parameters the object that describes the option, the current 
price, and the other parameters discussed previously.

Using the object of type BlackScholesCalculator, you can retrieve important information about the 
option price. The most important information is clearly the value of option at a particular date, returned 
by the member function value. The option Greeks also provide key information that can be used to make 
decisions about the option. The Greeks calculated by the BlackScholesCalculator include the following:
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• The delta: Represents the marginal change in value with respect to the price of the 
underlying

• The gamma: Represents the marginal change in delta with respect to the price of the 
underlying

• The vega: Represents the marginal change in value with respect to the change in 
volatility

• The theta: Represents the marginal change in value with respect to the change in 
remaining time

You can test this code using a function that uses a few common values for each of the parameters and 
calls the callBlackScholes function. Here is an example of how this can be done:

void testBlackScholes()
{
   BlackScholesParameters bp;
   bp.S0 = 95.0;     // current price
   bp.K  = 100.0;    // strike
   bp.rd = 0.026;    // current rate of return
   bp.rf = 0.017;    // forward rate of return
   bp.tau= 0.62;     // tau (time greek)
   bp.vol= 0.193;    // volatility
   callBlackScholes(bp);
}

 Creating a C++ Interface
Based on the previous functions, it is easy to create a generic class that encapsulates a vanilla Black-Scholes 
pricing strategy. I called this class BlackScholesPricer, and it presents a simple interface that can be called 
without external references to QuantLib.

The class declaration contains a set of parameters that will be used in the constructor, as shown in the 
next code listing:

class BlackScholesPricer {
public:

BlackScholesPricer(bool call, double price, double strike, double tau, double r, double fr, 
double vol);
   BlackScholesPricer(const BlackScholesPricer &p);
   ~BlackScholesPricer();
   BlackScholesPricer &operator=(const BlackScholesPricer &p);
   double value();
   double delta();
   double gamma();
   double theta();
   double vega();
private:
   double m_price;
   double m_strike;
   double m_tau;
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   double m_rate;
   double m_frate;
   double m_vol;
   double m_isCall;
   boost::shared_ptr<QuantLib::BlackScholesCalculator> m_calc;
};

The constructor for BlackScholesPricer is responsible for initializing all the parameters with the 
passed arguments. Inside the constructor, you can see the code that initializes the payoff class. The option 
payoff can be a put or a call, depending on the value of the first parameter.

Later, you will see these parameters being used to create a new BlackScholesCalculator object. This 
object is stored in a shared pointer so that it can be used to answer questions about the model.

BlackScholesPricer::BlackScholesPricer(bool call, double price, double strike, double tau, 
double r, double fr, double vol)
:m_price(price),
m_strike(strike),
m_tau(tau),
m_rate(r),
m_frate(fr),
m_vol(vol),
m_isCall(call)
{
   boost::shared_ptr<QuantLib::PlainVanillaPayoff>
      m_option (new QuantLib::PlainVanillaPayoff(

call ? QuantLib::Option::Call : QuantLib::Option::Put, strike));
   // Compute discount rates
   double cur_disc = std::exp(-m_rate  * m_tau);  // current discount rate
   double for_disc = std::exp(-m_frate * m_tau);  // forward  discount rate
   double stdev    = m_vol * std::sqrt(m_tau);    // standard deviation

m_calc.reset(new QuantLib::BlackScholesCalculator(m_option, m_price, for_disc, stdev, 
cur_disc));
}
BlackScholesPricer::BlackScholesPricer(const BlackScholesPricer &p)
:m_price(p.m_price),
m_strike(p.m_strike),
m_tau(p.m_tau),
m_rate(p.m_rate),
m_frate(p.m_frate),
m_vol(p.m_vol),
m_isCall(p.m_isCall),
m_calc(p.m_calc)
{}
BlackScholesPricer::~BlackScholesPricer() {}
BlackScholesPricer &BlackScholesPricer::operator=(const BlackScholesPricer &p)
{
   if (this != &p)
   {
      m_price = p.m_price;
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      m_strike = p.m_strike;
      m_tau = p.m_tau;
      m_rate = p.m_rate;
      m_frate = p.m_frate;
      m_vol = p.m_vol;
      m_isCall = p.m_isCall;
      m_calc = p.m_calc;
   }
   return *this;
}

Using these definitions, the following member functions can be used to provide access to the results 
of the pricing algorithm. They rely on the m_calc member variable, which already contains this stored 
information.

double BlackScholesPricer::value() { return m_calc->value(); }
double BlackScholesPricer::delta() { return m_calc->delta(); }
double BlackScholesPricer::gamma() { return m_calc->gamma(); }
double BlackScholesPricer::theta() { return m_calc->theta(m_tau); }
double BlackScholesPricer::vega()  { return m_calc->vega(m_tau);  }

 Complete Code
Listing 15-1 shows the BlackScholesPricer class. It shows an example of how to create an interface for the 
Black-Scholes component in QuantLib.

Listing 15-1. Implementation File for BlackScholesPricer.cpp

#include <ql/quantlib.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
//
// The BlackScholesPricer class provides an interface to the QuantLib
// pricer component
//
class BlackScholesPricer {
public:

BlackScholesPricer(bool call, double price, double strike, double tau, double r, double fr, 
double vol);
   BlackScholesPricer(const BlackScholesPricer &p);
   ~BlackScholesPricer();
   BlackScholesPricer &operator=(const BlackScholesPricer &p);
   double value();
   double delta();
   double gamma();
   double theta();
   double vega();
private:
   double m_price;
   double m_strike;
   double m_tau;
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   double m_rate;
   double m_frate;
   double m_vol;
   double m_isCall;
   boost::shared_ptr<QuantLib::BlackScholesCalculator> m_calc;
};
BlackScholesPricer::BlackScholesPricer(bool call, double price, double strike, double tau, 
double r, double fr, double vol)
:m_price(price),
m_strike(strike),
m_tau(tau),
m_rate(r),
m_frate(fr),
m_vol(vol),
m_isCall(call)
{
   boost::shared_ptr<QuantLib::PlainVanillaPayoff>

m_option (new QuantLib::PlainVanillaPayoff(call ? QuantLib::Option::Call : 
QuantLib::Option::Put, strike));
   // Compute discount rates
   double cur_disc = std::exp(-m_rate  * m_tau);  // current discount rate
   double for_disc = std::exp(-m_frate * m_tau);  // forward discount rate
   double stdev    = m_vol * std::sqrt(m_tau);    // standard deviation

m_calc.reset(new QuantLib::BlackScholesCalculator(m_option, m_price, for_disc, stdev, 
cur_disc));
}
BlackScholesPricer::BlackScholesPricer(const BlackScholesPricer &p)
:m_price(p.m_price),
m_strike(p.m_strike),
m_tau(p.m_tau),
m_rate(p.m_rate),
m_frate(p.m_frate),
m_vol(p.m_vol),
m_isCall(p.m_isCall),
m_calc(p.m_calc)
{}
BlackScholesPricer::~BlackScholesPricer() {}
BlackScholesPricer &BlackScholesPricer::operator=(const BlackScholesPricer &p)
{
   if (this != &p)
   {
      m_price = p.m_price;
      m_strike = p.m_strike;
      m_tau = p.m_tau;
      m_rate = p.m_rate;
      m_frate = p.m_frate;
      m_vol = p.m_vol;
      m_isCall = p.m_isCall;
      m_calc = p.m_calc;

CHAPTER 15 ■ Using C++ LibRARiEs foR finAnCE



266

   }
   return *this;
}
double BlackScholesPricer::value()
{
   return m_calc->value();
}
double BlackScholesPricer::delta()
{
   return m_calc->delta();
}
double BlackScholesPricer::gamma()
{
   return m_calc->gamma();
}
double BlackScholesPricer::theta()
{
   return m_calc->theta(m_tau);
}
double BlackScholesPricer::vega()
{
   return m_calc->vega(m_tau);
}

To compile this code, you need to install the QuantLib library for your platform and add that library to 
the project. For example, using the gcc compiler, you need to use the –lQuantLib option.

 Conclusion
Using good libraries is an important aspect of effective software development. Financial code, especially 
when options and derivatives are involved, requires the use of efficient and well-tested algorithms. For this 
reason, it is important that developers be acquainted with high-quality libraries that can be used to simplify 
the development process.

In this chapter, you learned about some libraries, such as boost and QuantLib, which have been 
successfully used to create financial applications handling options and other derivatives. The first example 
was from the boost repository, which contains several special-purpose libraries that use modern C++ 
features. The odeint library in particular, which is contained in the boost repository, can be used to simplify 
the computation of solutions to ODEs.

Another important library used in the financial software community is QuantLib. This open source 
financial library provides many useful algorithms implemented in modern, efficient C++. You saw examples 
of common utilities provided by QuantLib. The most common classes are for date handling. These utility 
classes can handle business calendars, date intervals, and sequences in a way that makes it possible to 
handle financial applications.

You also saw how to use QuantLib to quickly create options and derivative models. The 
BlackScholesCalculator class encapsulates the solution to the Black-Scholes model. This model is the 
basis for most techniques that can be used to analyze prices and variations of values for financial derivatives.
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CHAPTER 16

Credit Derivatives

A credit derivative is a financial contract that aims at reducing credit risk—that is, the risk of default posed 
by contracts established with a business counterparty. These kinds of derivatives have become increasingly 
popular in the last decade, because they allow the hedging of complex financial positions even in industries 
that are not covered by mainstream markets.

As a financial software engineer, you are interested in modeling and analyzing such credit derivative 
contracts using programming code. Employing some of the methods developed in the previous chapters, 
it becomes possible to write applications that simplify the pricing and evaluation of such derivative 
instruments. In particular, credit derivatives can be modeled using some of the same tools that have already 
been discussed for the analysis of options.

In this chapter, you will learn how to create the C++ code that can be used in the quantitative analysis of 
credit derivative contracts. Here are some of the topics discussed:

• General concepts of credit derivatives: A general exposition of what credit derivatives 
are and the main types of derivatives commonly used in the marketplace.

• Modeling the problem: How to model the problems occurring in the area of credit 
derivatives. I’ll present examples of how such derivatives can be modeled using tools 
that have been previously used for standard options.

• Barrier options: You will learn about barrier options and how they can be used 
to compute prices for large classes of credit derivatives. You will also see coding 
examples of how to handle barrier options in C++.

• Using QuantLib for credit derivatives: You will find a complete example of how to 
use the financial classes contained in QuantLib to implement derivatives-related 
C++ code. I will present the CDSSolver class, which implements a pricing strategy for 
derivatives based on barrier options.

 Introduction to Credit Derivatives
A credit derivative is a type of financial contract that protects participants from credit risk. Credit risk, 
in the large majority of the cases, refers to the risk of default (or lack of payment by other means) from 
a counterpart. For example, consider a company that creates a financial operation that is backed by an 
insurance contract. If this insurance contract is provided by a third party, this presents a risk of bankruptcy. 
The participants of this contract want to protect against the possibility of default, so companies can create 
a credit derivative that will pay a considerable amount of money if the counterpart goes bankrupt. Such 
contracts are signed with another third party, which makes the payment if the bankruptcy occurs.

© Carlos Oliveira 2023 
C. Oliveira, Options and Derivatives Programming in C++23,  
https://doi.org/10.1007/978-1-4842-9827-5_16

https://doi.org/10.1007/978-1-4842-9827-5_16


268

Credit derivatives can be classified according to several categories, which consider how the contract 
is structured and the participants in such a contract. Here are some of the most common types of credit 
derivatives that are traded in the market:

• CDO (collateralized debt obligations): A CDO is a type of credit derivative where the 
obligations paid are collateralized based on some underlying asset. This process of 
collateralization creates a tiered system, where the several payers are pooled and 
graded according to their credit risk. Thus, financial companies can sell different 
tiers, ranging from the highest credit (AAA) to lower level that represent higher 
default risk (e.g., B+).

• CDS (credit default swap): A CDS allows companies to protect themselves against the 
default of a major market player. The buyer of a CDS makes one or more payments 
for a predefined period of time. If a default occurs on the covered asset, the CDS 
buyer is entitled to receive compensation for this credit event.

• Credit default option: A credit default option resembles an option contract, but 
the underlying corresponds to the credit default against which you are seeking 
protection.

• CDN (credit-linked note): A CDN is a financial instrument that allows a particular 
type of credit risk to be transferred to other investors. Usually these notes are 
structured as bonds on lower-risk assets, which are used to pay creditors if the target 
institution defaults.

• CMCDS (constant maturity CDS): A CMCDS works just like a CDS, but it has 
different rules for the amount of the payoff received in the case of a default. With the 
CMCDS, payoffs change based on considerations that are determined between the 
participants of the contract. For example, the payoff may be determined according to 
a particular interest rate index.

• Total return swap: This category of derivative is used to transfer financial results 
between two institutions according to a predefined contract. The buyer makes one or 
more payments, while it expects to receive the total return of a particular investment 
as a payoff. This allows some institutions, such as hedge funds, to receive the return 
of complex financial investment with the help of a second entity that transfers the 
financial return at the end of the covered period.

 Modeling Credit Derivatives
As you saw in the previous section, credit derivatives encompass a large number of financial products that 
have in common the mitigation of credit risk from one entity to another. This makes it difficult to come 
up with general models for such a wide class of financial instruments. In this section, you will see a few 
examples of C++ models applied to a few common classes of credit derivatives.

The first step in creating effective code for credit derivatives is to have a computer model for this type 
of security. Given the diversity of CD contracts, having a proper model becomes even more important so 
that other algorithms can be applied to this type of security without the need to understand the internal 
complexities of each type of credit derivative.

As a first step, you can define a simple class that can be used to store and manipulate the data 
corresponding to a credit default swap. The fields in this class represent the characteristic values that define 
a CDS contract. These values are the following:
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• Notional: This represents the total value of the position encompassed by the 
contract. The notional is usually larger than the payments due to leverage that is 
allowed on derivative contracts.

• Spread: The value paid by the buyer of the CDS. It may be paid in a particular 
schedule, or in a single payment.

• Time period: Defines the time period in which the CDS is valid.

• Pay at default: A Boolean value that determines if the payoff should be made at the 
time of credit default.

• Is long: A Boolean value that is true if the contract is being bought and false if the 
contract is being sold.

In the next few sections, you will see how this information can be used to model CDS contracts with 
standard techniques employed in quantitative finance. In particular, I will discuss how to analyze such 
derivatives using the concept of barrier options. You will also see how to calculate the price for such barrier 
options.

 Using Barrier Options
In this section, I discuss how to use a technique that is frequently employed for the pricing of derivatives in 
general, including credit derivatives. To simplify the discussion, I use the most basic structure for a financial 
derivative so that you don’t need to worry about complex contractual issues. However, the barrier technique 
described in this section can be expanded to solve a large class of commonly traded derivatives.

The first step in understanding the solution method is to define a barrier option. A barrier option is a 
special type of derivative where payoff occurs when a particular price level, or barrier, is crossed. This makes 
it different from a normal option, because common options have a payoff that depends on how much the 
underlying is above or below some threshold. With a barrier option, however, the payoff is paid only as the 
barrier is crossed.

Barrier options work well as a simple model for credit derivatives, because the credit event is frequently 
defined as a particular barrier. For example, if the credit event is the bankruptcy of a company, the barrier to 
be crossed is given by the difference between assets and liabilities in the corporation. When that barrier is 
breached, the company becomes insolvent, and the payoff needs to be made.

There are two main types of barrier options, depending on how the barrier is considered as part of the 
contract:

• Knock-in: This is a barrier option where the payoff is given only when the barrier is 
touched before expiration.

• Knock-out: This is a barrier option where the payoff is given only when the barrier is 
not touched before expiration.

Thus, for example, a barrier option that pays when a company claims bankruptcy is a knock-in option, 
because the payment happens when the default barrier is reached. You can also classify barrier options 
according to the current value in relation to the barrier:

• Down-option: This is a barrier option where the barrier is below the current value of 
the underlying asset.

• Up-option: This is a barrier option where the barrier is above the current value of the 
underlying asset.
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These two classifications can also be combined so that you can have down-in options or up-out options. 
Finally, these options can be calls or puts, depending on whether you are buying the right to sell (put) or the 
right to buy (call) the underlying instrument.

 A Solver Class for Barrier Options
To solve the problem, a new class called CDSSolver is defined in this section. This class contains all the 
elements necessary to define a barrier option, along with the code that solves the pricing problem using 
functions and classes from the QuantLib repository. The definition of the class contains the member 
variables needed by the pricing algorithm:

class CDSSolver : boost::noncopyable {
public:

   // constructor
   CDSSolver(double val, double sigma, double divYield,
             double forwardIR, double strike, double barrier, double rebate);

   // solve the model
   std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>
   solve(QuantLib::Date maturity_date);

   // generate a grid
   void generateGrid(QuantLib::BarrierOption &option,
                     QuantLib::BlackScholesMertonProcess &process,
                     const std::vector<QuantLib::Size> &grid);

private:

   double currentValue;
   double sigma;
   double divYield;
   double forwardInterestRate;
   double strike;
   double barrier;
   double rebate;
};

The first thing to consider when reviewing this class is that the QuantLib code also uses boost libraries 
for basic functionality, such as smart pointers. In this case, the CDSSolver uses boost::noncopyable as a 
base class, which indicates that the class cannot be copied. Therefore, no copy constructor or assignment 
operators are declared in CDSSolver.

 ■ Note Observe that the CDSSolver class uses shared pointers declared in boost. This is necessary because 
QuantLib has boost as a direct dependency, and many of the internal smart pointers are declared in this way. 
Remember, however, that C++11 also has its own version of shared_ptr, which is part of the standard 
namespace. it is important to avoid confusion between shared_ptr declared in boost and in the standard 
library.
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There are two main member functions in the CDSSolver class. The solve function is responsible for 
performing the main tasks associated with the pricing of barrier options. The generateGrid evaluates the 
value of the barrier option at particular time points, as defined by the vector of time points passed as a 
parameter.

The member variables used by the CDSSolver class are the following:

• currentValue: Represents the current value of the underlying instrument

• sigma: Represents the variance of the financial instrument

• divYield: The dividend yield paid annually by the underlying

• forwardInterestRate: The forward interest rate, which is used to determine the return 
of cash that is not invested in the barrier option

• strike: The strike of the barrier option, that is, the price that determines the 
payoff value

• barrier: The price barrier that needs to be crossed to trigger the payout of the option 
contract

• rebate: Contractual rebate defined when the barrier option is created

These variables are later used to solve the pricing problem, as you can see in the following description 
of the associated code. But first, I will provide a short introduction to the classes included in QuantLib that 
are used to solve this kind of pricing problem.

 Barrier Option Classes in QuantLib
QuantLib offers support for pricing credit derivatives and related instruments. In particular, the library 
contains a set of classes that can be used to price barrier options as defined in the previous section. First, I 
will review some of these classes, which will later be used in a complete example of how to compute prices 
for barrier options.

The first class of importance is the Quote class. A quote is defined as one or more values that determine 
the current price of an instrument. The Quote class is just the base for several classes that represent quotes 
for different financial instruments. In this example, I will use a SimpleQuote to initialize the quote for the 
barrier option. The following code shows how this is done:

   Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));

This line of code uses a second class that is frequently used in QuantLib: the Handle class. A handle is a 
simple container that allows objects to be referenced and changed when necessary.

The next class used in the implementation of barrier options is YieldTermStructure. This class 
allows you to specify the yield curve currently used by the markets. The yield curve is a representation of 
the effective interest rates in a particular market, such as US Treasury bonds. The curve is formed as you 
consider the different interest rates for each maturity period, usually measured in years. Figure 16-1 shows 
an example of the yield term structure for Treasury bonds.
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Figure 16-1. Example of yield structure for a US Treasury bond

Using the YieldTermStructure class in QuantLib, it is possible to store and use this information to 
compute barrier options. Depending on how the financial instrument is defined, such a yield term structure 
may be represented by several interest rates, one for each desired time horizon. The YieldTermStructure 
class is abstract and should be instantiated using one of their subclasses, which include the following:

• FlatForward: The simplest cases in which the curve is flat and no variation in 
interest rate is forecasted.

• ForwardCurve: A type of yield curve that can use different rates for each time period. 
This class can be used for the most common case where the interest rates for 
different time periods are known.

• PiecewiseYieldCurve: A yield curve in which the different segments of the curve are 
linearized.

• FittedBondDiscountCurve: A yield curve where interest rates are given indirectly 
and the yield can be fitted to represent a set of bonds.

In the example code of the next section, I use the FlatForward class as a way to represent a simple 
short-term yield structure, with no variation in interest rates. More complex yield term structures can be 
easily accommodated by using one of the previous classes.

A similar class provided by QuantLib is the BlackVolTermStructure. This class represents the volatility 
term structure and allows you to determine a particular curve that represents the implied volatility (also 
known as Black volatility, which is used in the Black-Scholes equation) for the underlying instrument. 
Similarly to the yield term structure, there are several options for the type of volatility term structure. 
They differ in the shape of the curve, as well as in the functions that can be used to represent each part of 
the curve. QuantLib also provides a number of classes that can be used to represent the different types of 
volatility term structure. Here are some of them:

• BlackConstantVol: Used to represent a volatility type that is constant over the 
whole period.

• BlackVarianceCurve: A type of volatility curve where different values of variance are 
used to determine the volatility.

CHAPTER 16 ■ CREdiT dERivATivEs



273

• ImpliedVolTermStructure: A volatility term structure that is defined by the implied 
volatility associated with a particular instrument.

• BlackVarianceSurface: Defines a volatility curve based on a set of data points that 
define a variance surface. These values are interpolated to generate the desired 
variance surface.

Using the information stored in these classes, it is possible to describe the Black-Scholes model using 
the class BlackScholesMertonProcess, which is also part of QuantLib. This class receives as parameters 
the quote, a risk-free yield term structure, and a yield term representing the asset dividend. The class 
constructor also receives a volatility term structure as a parameter that describes the process.

The class StrikedTypePayoff is used to build complex payoffs. It also has a few useful derived classes, 
including the following:

• PlainVanillaPayoff: Represents the most common type of payoff, described by a 
single value and a strike.

• PercentageStrikePayoff: A type of payoff where the strike is given as a percentage 
of the underlying price, instead of as a fixed value.

• AssetOrNothingPayoff: A payoff that is structured as a binary decision. The results 
are either an asset or nothing.

• CashOrNothingPayoff: A payoff that is structured as a binary decision. The results 
are either cash or nothing.

The example code in the next section uses the PlainVanillaPayoff class. The constructor to this class 
uses as parameters the option type (put or call) and a strike.

BarrierOption is the central class used by QuantLib to model barrier options. This class can be used to 
calculate the value of a particular barrier option, given a set of parameters that represent that option.

The first parameter to the constructor of BarrierOption is the type of barrier option. As previously 
described, barrier options can be of four types—UpIn, UpOut, DownIn, and DownOut—depending on the 
underlying price and the type of barrier used. The next parameters are values that correspond to the barrier, 
the rebate, the payoff, and the exercise.

Finally, this example also uses a barrier options engine called FdBlackScholesBarrierEngine. This 
class is used as an implementation for the pricing strategy.

 An Example Using QuantLib
Using the classes presented in the previous section, it is possible to explain the implementation of the class 
CDSSolver. First, consider the first member function, called CDSSolver::solve. This function receives as a 
parameter a Date object that represents the maturity date of the desired barrier option.

The first step is to create a quote for the option, instantiating the SimpleQuote class and using the 
current value of the underling as its single argument. Today’s date is also computed with the help of the 
Date::todaysDate member function.

Next, the code tries to instantiate the two term structure objects: one for the dividend yield and another 
for free cash interest rates. A volatility term structure object is also instantiated using the given volatility, 
which is estimated using the parameter sigma.

// solve the valuation problem using the barrier technique, from today to the maturity date
pair<BarrierOption, BlackScholesMertonProcess>
CDSSolver::solve(Date maturity_date)
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{
   Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));
   Date today = Date::todaysDate();

   auto thirty_360 = Thirty360();
   shared_ptr<YieldTermStructure>   ts1(new FlatForward(today, divYield,  thirty_360));
    shared_ptr<YieldTermStructure>   ts2(new FlatForward(today, forwardInterestRate, 

thirty_360));
    shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today, NullCalendar(),sigma, 

thirty_360));

The next part of the solve function is responsible for instantiating a process object, which uses  
QuantLib::BlackScholesMertonProcess. Such a process requires a quote object, yield term structures for 
interest rates and cash, and a volatility term structure that was previously created.

The function also creates two new objects: a payoff object of type PlainVanillaPayoff that represents 
the desired call option and a given strike. The exercise is established as a EuropeanExercise type, at the 
given maturity date.

auto process = BlackScholesMertonProcess(quote,
         Handle<YieldTermStructure>(ts1),
         Handle<YieldTermStructure>(ts2),
         Handle<BlackVolTermStructure>(vs));

   shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(Option::Type::Call, strike));
   shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

Finally, you’re ready to create a barrier option object, which is an instance of 
QuantLib::BarrierOption. It takes as parameters the type of barrier, the barrier value, a rebate (if it is 
available), and the two objects previously created: payoff and exercise.

The next two steps are to create a generalized Black-Scholes object using the existing process and to set 
the price engine of the barrier option. The price engine algorithm is responsible for price calculation, and 
this example uses AnalyticBarrierEngine, which is a common algorithm available from QuantLib. The 
member function CDSSolver::solve will finally return a pair that contains the option and process objects.

auto option = BarrierOption(Barrier::Type::UpIn,
                               barrier, rebate,
                               payoff,
                               exercise);

   auto proc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

   option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrierEngine(proc)));

   return std::make_pair(option, process);
}

The next member function implemented in the CDSSolver class is generateGrid. This function is 
conceptually simple, and it just prints a grid of prices calculated from the given barrier option, using the 
given BlackScholesMertonProcess and a set of points that determines the option price at a particular date.
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Essentially, the function assumes that the grid points are sorted and selects the maximum value. Then, 
for each element of the grid, a new barrier engine is instantiated and used with the existing barrier option. 
The price is computed using the resulting combination of option and pricing engines. The code then prints 
the ratio of increase for that particular point. A backward computation is also performed for comparison 
purposes.

void CDSSolver::generateGrid(BarrierOption &option, BlackScholesMertonProcess &process, 
const vector<Size> &grid)
{
   double value = option.NPV();
   Size maxG = grid[grid.size()-1];   // find maximum grid value

   for (auto g : grid)
   {
       FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholesProcess>(&process), 

maxG, g);
      option.setPricingEngine(shared_ptr<PricingEngine>(&be));

      cout << std::abs(option.NPV()/value -1);

       FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholesProcess>(&process), 
g, maxG);

      option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

      cout << std::abs(option.NPV()/value -1);
   }
}

 Complete Code
This section contains the complete listing of the CDSSolver class. It contains a header file (Listing 16-1), 
which defines the interface for the class, and an implementation file (Listing 16-2), where the methods solve 
and generateGrid are implemented.

Listing 16-1. Header File for the CDSSolver Class

//
//  CDS.hpp
//  CppOptions

#ifndef CDS_hpp
#define CDS_hpp

#include <stdio.h>

#include <utility>

#include <ql/instruments/barrieroption.hpp>
#include <ql/processes/blackscholesprocess.hpp>
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//
// CDSSolver class, incorporates the solution to Credit Default
class CDSSolver : boost::noncopyable {
public:

   // constructor
   CDSSolver(double val, double sigma, double divYield,
             double forwardIR, double strike, double barrier, double rebate);

   // solve the model
   std::pair<QuantLib::BarrierOption, QuantLib::BlackScholesMertonProcess>
   solve(QuantLib::Date maturity_date);

   // generate a grid
   void generateGrid(QuantLib::BarrierOption &option,
                     QuantLib::BlackScholesMertonProcess &process,
                     const std::vector<QuantLib::Size> &grid);

private:

   double currentValue;
   double sigma;
   double divYield;
   double forwardInterestRate;
   double strike;
   double barrier;
   double rebate;
};

#endif /* CDS_hpp */

Listing 16-2 shows the implementation file for class CDSSolver. It also contains a simple test stub called 
test_CDSSolver, which creates a new instance of CDSSolver using a few test parameters.

Listing 16-2. Implementation File for Class CDSSolver

//
//  CDS.cpp

#include "CDS.h"
#include <iostream>
// include classes from QuantLib
#include <ql/instruments/creditdefaultswap.hpp>
#include <ql/instruments/barrieroption.hpp>
#include <ql/quotes/SimpleQuote.hpp>
#include <ql/time/daycounters/thirty360.hpp>
#include <ql/exercise.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/pricingengines/barrier/analyticbarrierengine.hpp>
#include <ql/pricingengines/barrier/fdblackscholesbarrierengine.hpp>
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using namespace QuantLib;
using std::cout;
using std::vector;
using std::pair;
using boost::shared_ptr;
CDSSolver::CDSSolver(double val, double sigma, double divYield, double forwardIR,
                     double strike, double barrier, double rebate)
:
   currentValue(val),
   sigma(sigma),
   divYield(divYield),
   forwardInterestRate(forwardIR),
   strike(strike),
   barrier(barrier),
   rebate(rebate)
{
}

// solve the valuation problem using the barrier technique,
// from today to the maturity date
pair<BarrierOption, BlackScholesMertonProcess>
CDSSolver::solve(Date maturity_date)
{
   Handle<Quote> quote(boost::shared_ptr<Quote>(new SimpleQuote(currentValue)));
   Date today = Date::todaysDate();

   shared_ptr<YieldTermStructure>   ts1(new FlatForward(today, divYield, Thirty360()));
    shared_ptr<YieldTermStructure>   ts2(new FlatForward(today, forwardInterestRate, 

Thirty360()));
    shared_ptr<BlackVolTermStructure> vs(new BlackConstantVol(today, NullCalendar(),sigma, 

Thirty360()));

   auto process = BlackScholesMertonProcess(quote,
         Handle<YieldTermStructure>(ts1),
         Handle<YieldTermStructure>(ts2),
         Handle<BlackVolTermStructure>(vs));

   shared_ptr<StrikedTypePayoff> payoff(new PlainVanillaPayoff(Option::Type::Call, strike));
   shared_ptr<Exercise> exercise(new EuropeanExercise(maturity_date));

   auto option = BarrierOption(Barrier::Type::UpIn,
                               barrier, rebate,
                               payoff,
                               exercise);

   auto pproc = shared_ptr<GeneralizedBlackScholesProcess>(&process);

   option.setPricingEngine(shared_ptr<PricingEngine>(new AnalyticBarrierEngine(pproc)));

   return std::make_pair(option, process);
}
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void CDSSolver::generateGrid(BarrierOption &option, BlackScholesMertonProcess &process, 
const vector<Size> &grid)
{
   double value = option.NPV();
   Size maxG = grid[grid.size()-1];   // find maximum grid value

   for (auto g : grid)
   {
       FdBlackScholesBarrierEngine be(shared_ptr<GeneralizedBlackScholesProcess>(&process), 

maxG, g);
      option.setPricingEngine(shared_ptr<PricingEngine>(&be));

      cout << std::abs(option.NPV()/value -1);

       FdBlackScholesBarrierEngine be1(shared_ptr<GeneralizedBlackScholesProcess>(&process), 
g, maxG);

      option.setPricingEngine(shared_ptr<PricingEngine>(&be1));

      cout << std::abs(option.NPV()/value -1);
   }
}

void test_CDSSolver()
{
   // use a few test values

   double currentValue = 50.0;
   double sigma = 0.2;
   double divYield = 0.01;
   double forwardIR = 0.05;
   double strike = 104.0;
   double barrier = 85.0;
   double rebate = 0.0;

   CDSSolver solver(currentValue, sigma, divYield, forwardIR, strike, barrier, rebate);

   Date date(10, Month::August, 2016);

   auto result = solver.solve(date);

   std::vector<Size> grid = { 5, 10, 25, 50, 100, 1000, 2000 };
   solver.generateGrid(result.first, result.second, grid);
}

int main()
{
   test_CDSSolver();
   return 0;
}
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 Conclusion
Credit derivatives are one of the most common types of derivatives traded in world markets. In this chapter, 
you learned a little more about such types of derivatives and how they can be modeled using C++.

I initially discussed the concept of credit derivatives and the different types of financial instruments that 
take part in this category of derivatives. You saw that such derivatives can be used to mitigate credit risks, 
such as the bankruptcy of a counterparty or the default of a loan, for example.

You also learned about techniques to model such derivatives. In particular, you saw barrier options as a 
simplified model that can be used to analyze the behavior of such financial instruments.

This chapter presented a complete example of credit derivatives through the use of barrier options 
using QuantLib classes. The QuantLib repository contains a number of algorithms that are readily available 
to analyze credit derivatives. In particular, these classes can be used to determine the fair price of certain 
types of derivatives.

Another task that is frequently necessary when dealing with options and derivatives is the processing 
of input and output data in common formats. The most popular format for this type of application is based 
on XML. However, some other formats offer advantages as well. In the next chapter, you will learn about 
different strategies to process financial data and the common formats used to transfer such information 
across applications.
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CHAPTER 17

Processing Financial Data

Processing financial data in XML involves extracting, parsing, and analyzing information from XML files that 
contain financial data. XML (eXtensible Markup Language) is a popular format for structuring data, and it’s 
commonly used in various industries, including finance.

In this chapter, we share an introductory guide on how to process financial data in the XML format.

 Introduction to XML in Finance
XML stands for “eXtensible Markup Language.” It is a widely used markup language designed to store and 
transport structured data. XML does not dictate what the data means but rather describes its structure. 
It provides a way to define custom tags and elements for organizing and representing data in a human-
readable and machine-readable format.

Key features of XML include the following:

Hierarchical structure: XML documents consist of a hierarchical structure with 
nested elements, similar to HTML or other markup languages. Elements are 
enclosed within start and end tags.

Use of tags and elements: XML uses tags to define elements and their 
relationships. Tags are enclosed in angle brackets (e.g., <tag>). Elements can 
have attributes that provide additional information about the element.

Self-descriptive format: XML documents are self-descriptive, meaning they 
contain both the data and information about the structure of the data. This 
makes it easy for humans and machines to understand the data.

Customizable: Unlike predefined languages like HTML, XML allows users to 
define their own custom tags and elements, making it highly versatile for various 
applications.

Text based: XML files are human readable because they are text based and can be 
edited with a simple text editor.

Platform independent: XML is platform independent and can be used on various 
operating systems and programming languages.

XML is commonly used for data exchange between different systems, applications, and platforms, 
allowing data to be shared and processed across different environments. Data stored in XML format can be 
validated against a Document Type Definition (DTD) or XML Schema, ensuring that the data adheres to a 
predefined structure.

© Carlos Oliveira 2023 
C. Oliveira, Options and Derivatives Programming in C++23,  
https://doi.org/10.1007/978-1-4842-9827-5_17

https://doi.org/10.1007/978-1-4842-9827-5_17


282

The “eXtensible” in XML indicates its extensibility; new tags and elements can be easily added to 
accommodate changing data requirements.

 Using XML in Finance
XML is used in the finance industry for various purposes due to its ability to represent structured data and 
facilitate data interchange between different systems, applications, and organizations. Here are some ways 
XML is used in finance:

Data exchange: Financial institutions often need to exchange data with other 
organizations, such as regulatory bodies, trading partners, and customers. XML 
provides a standardized format for representing data, making it easier to share 
and interpret financial information accurately.

Messaging and protocols: XML-based messaging protocols are used for 
communication in financial services. For example, The FIX (Financial 
Information eXchange) protocol uses XML messages to facilitate communication 
between financial entities like brokers and exchanges for trade execution.

Data integration: Financial organizations deal with a wide range of data from 
various sources, such as market data feeds, trade execution systems, risk 
management systems, and more. XML enables data integration by providing a 
common format for combining and analyzing diverse data types.

Regulatory reporting: Regulatory bodies require financial institutions to report 
data on various financial activities. XML is used to structure and transmit 
regulatory reports accurately, ensuring compliance with regulations like MiFID 
II, Dodd-Frank, and others.

SWIFT messages: SWIFT (Society for Worldwide Interbank Financial 
Telecommunication) messages, used for international financial transactions, are 
often represented in XML format. SWIFT messages are standardized and used for 
various purposes, including funds transfers, securities trading, and documentary 
credits.

Financial statements: XML can be used to represent financial statements and 
reports. Financial organizations often need to generate and exchange financial 
statements with auditors, investors, and other stakeholders.

Data feeds: XML is used in financial data feeds to deliver real-time or historical 
market data to trading systems, analysis tools, and other applications.

Portfolio and account management: XML can be used to represent and exchange 
information about investment portfolios, holdings, and accounts between 
financial institutions and their clients.

Payments and invoicing: XML-based formats like ISO 20022 are used for 
representing payment messages, invoices, and remittance information. This 
facilitates secure and standardized payment processing.

Risk management: XML can be used to represent risk assessment and 
management data, helping financial institutions analyze and mitigate risks 
effectively.
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 Understanding the XML Structure
Understanding the XML structure is a crucial step when processing financial data in XML format. XML 
(eXtensible Markup Language) uses a hierarchical structure to organize data using nested elements, 
attributes, and text content.

Here’s a more detailed look at understanding the XML structure.

 XML Tags and Elements
XML documents consist of elements enclosed within start and end tags. For example:

<Transaction>
                <Date>2023-08-19</Date>
                <Amount>1000.00</Amount>
                <Currency>USD</Currency>
</Transaction>

In this example, <Transaction> is the parent element, and <Date>, <Amount>, and <Currency> are 
child elements.

 Attributes
Elements can also have attributes, which are additional pieces of information associated with the element. 
Attributes provide metadata or properties about an element. For example:

 <Account id="12345" type="Savings">
                <Balance>5000.00</Balance>
 </Account>

In this case, the <Account> element has attributes id and type. The data for balance, on the other hand, 
is stored as a new element.

 Hierarchy and Nesting
XML elements can be nested within other elements to create a hierarchy. This reflects the relationships 
between different data points. For instance:

<Portfolio>
                <Account id="98765" type="Investment">
                    <Balance>100000.00</Balance>
                    <Transactions>
                        <Transaction>
                            <!-- Transaction details here -->
                        </Transaction>
                        <!-- More transactions -->
                    </Transactions>
                </Account>
                <!-- More accounts -->
</Portfolio>
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Elements can contain text content, which represents the actual data associated with that element. For 
example, the <Balance> element in the preceding examples contains the monetary value as text content.

XML documents can also use namespaces to avoid naming conflicts and to categorize elements. 
Namespaces are defined using a namespace declaration, as in the following XML fragment:

<ns:Transaction xmlns:ns="http://example.com/financial">
                <!-- Transaction details here -->
</ns:Transaction>

In this example, the xmlns:ns attribute defines a namespace for the Transaction element.

 XML Schema (XSD) and Document Type Definition (DTD)
XML Schema and DTD are used to define the structure and rules that XML documents should adhere to. 
They specify the valid elements, attributes, data types, and their relationships. Using a schema or DTD can 
ensure consistency and help validate XML data.

Understanding the XML structure is crucial because it guides how you navigate and extract data 
from the XML file. When processing financial data, you need to know which elements contain the 
relevant information, their attributes, and how they are organized hierarchically. This knowledge will be 
instrumental in writing code to parse, extract, and process the financial data effectively.

 XML Parsing in C++
While XML parsing is a complex task, the bulk of XML parsing in modern C++ can be accomplished using 
various libraries. Popular choices include some open source libraries such as RapidXML and pugixml.

In the examples for this chapter, I will consider using the pugixml library, which provides an efficient 
and user-friendly interface for XML parsing. Other libraries are also available and work just as well. In the 
remaining of this section, you’ll see a complete example of XML parsing using pugixml in C++.

 Installing the pugixml Library
First, you need to download and install the pugixml library. You can easily find the library and its 
documentation on its official website: https://pugixml.org/. Follow the steps necessary to install the 
library in your particular operating system.

The next step is to include the necessary header files in your C++ program. Here are the necessary 
include lines you will need for the examples:

#include <iostream>
#include "pugixml.hpp"

 XML Parsing with pugixml
The next step is to perform the parsing of the given XML data using the library. Assume you have the 
following sample XML data in a file named financial_data.xml:

CHAPTER 17 ■ PRoCEssing FinAnCiAl DATA

https://pugixml.org/


285

<Portfolio>
    <Account id="12345" type="Savings">
        <Balance>5000.00</Balance>
    </Account>
</Portfolio>

This example defines a portfolio data entry, with fields consisting of account id, type, and balance. Now, 
let’s parse this XML using the pugixml library:

int main() {
    // Load XML file
    pugi::xml_document doc;
    if (!doc.load_file("financial_data.xml")) {
        std::cerr << "Error loading XML file." << std::endl;
        return 1;
    }

    // Access root node (Portfolio)
    pugi::xml_node portfolioNode = doc.child("Portfolio");

    // Loop through Account nodes
     for (pugi::xml_node accountNode = portfolioNode.child("Account"); accountNode; 

accountNode = accountNode.next_sibling("Account")) {
        // Access attributes
        std::string id = accountNode.attribute("id").as_string();
        std::string type = accountNode.attribute("type").as_string();

        // Access Balance node
        pugi::xml_node balanceNode = accountNode.child("Balance");
        double balance = balanceNode.text().as_double();

        // Print account information
        std::cout << "Account ID: " << id << std::endl;
        std::cout << "Account Type: " << type << std::endl;
        std::cout << "Balance: " << balance << std::endl;
    }

    return 0;
}

In this example, we use the child() function to access the root node (Portfolio) and the next_sibling() 
function to loop through each Account node. Within the loop, we use the attribute() function to access 
attributes and the text() function to retrieve the text content of elements.

A few key functions in the library are used to navigate the XML structure:

• child(“element_name”): Access the child element with the specified name.

• next_sibling(“element_name”): Move to the next sibling element with the 
specified name.

• attribute(“attribute_name”): Access an attribute of the current element.
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• text(): Retrieve the text content of the current element.

• Remember to adjust the code according to your specific XML structure and the data 
you want to extract.

This processing mechanism can be used with any XML data set. You only need to adjust the C++ code 
according to your XML structure, so it can access the data you want to extract.

As you see, the pugixml library simplifies XML parsing by providing a clean and intuitive interface. It 
automatically handles node traversal, attribute access, and text content retrieval. You still need to make sure 
to handle error cases, such as when the XML file cannot be loaded or when nodes are not found.

Keep in mind that C++ also provides other libraries that you can use to process XML data. Examples 
include Boost.PropertyTree and TinyXML2 for XML parsing. Before you start a new project, you need to 
choose an XML library that best suits your needs and the level of complexity required for your financial data 
processing tasks.

 Performing Data Processing and Analysis
After extracting the data, you can perform various types of analysis depending on your goals. This might 
include calculating totals, generating reports, identifying trends, or performing calculations based on the 
financial data.

Here’s an example of XML processing using stock trading data. Suppose you have an XML file named 
trading_data.xml containing information about stock trades:

<Trades>
    <Trade>
        <Symbol>AAPL</Symbol>
        <Price>150.25</Price>
        <Quantity>100</Quantity>
        <Timestamp>2023-08-19T10:15:00</Timestamp>
    </Trade>
    <Trade>
        <Symbol>GOOG</Symbol>
        <Price>2800.50</Price>
        <Quantity>50</Quantity>
        <Timestamp>2023-08-19T11:30:00</Timestamp>
    </Trade>
    <!-- More trade entries -->
</Trades>

Here is a C++ program that demonstrates how to process and analyze this stock trading data using the 
pugixml library:

#include <iostream>
#include "pugixml.hpp"

int main() {
    pugi::xml_document doc;
    if (!doc.load_file("trading_data.xml")) {
        std::cerr << "Error loading XML file." << std::endl;
        return 1;
    }
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    int totalTrades = 0;
    double totalVolumeWeightedPrice = 0.0;

    // Loop through each Trade node and calculate total trades and volume-weighted price
     for (auto tradeNode = doc.child("Trades").child("Trade"); tradeNode; tradeNode = 

tradeNode.next_sibling("Trade")) {
        std::string symbol = tradeNode.child_value("Symbol");
        double price = std::stod(tradeNode.child_value("Price"));
        int quantity = std::stoi(tradeNode.child_value("Quantity"));
        std::string timestamp = tradeNode.child_value("Timestamp");

        double tradeValue = price * quantity;
        totalVolumeWeightedPrice += tradeValue;

        std::cout << "Symbol: " << symbol << std::endl;
        std::cout << "Price: " << price << std::endl;
        std::cout << "Quantity: " << quantity << std::endl;
        std::cout << "Timestamp: " << timestamp << std::endl;
        std::cout << "Trade Value: " << tradeValue << std::endl;
        std::cout << "----------------------" << std::endl;

        totalTrades++;
    }

    double averageVolumeWeightedPrice
           = totalVolumeWeightedPrice / totalTrades;
    std::cout << "Total Trades: " << totalTrades << std::endl;
     std::cout << "Average Volume-Weighted Price: " << averageVolumeWeightedPrice  

<< std::endl;

    return 0;
}

In this example, the program calculates the total trades, volume-weighted price, and average volume-
weighted price for the given stock trading data. This demonstrates how to navigate through the XML 
structure, extract data, and perform calculations. At the end of the calculation, the results are displayed 
using the C++ stdout. You can use this code structure for your own data, after adjusting the code based on 
your actual XML structure and data processing requirements.

 Error Handling
Error handling is an essential aspect of XML processing in C++. It helps your program handle unexpected 
situations, such as malformed XML, missing elements, or invalid data, gracefully.

The pugixml library provides mechanisms to detect and handle errors during XML parsing. Here’s how 
you can perform error handling for XML processing in C++ using the pugixml library.
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 Loading XML File and Checking for Errors
When loading an XML file, check if the file is loaded successfully or not. If the file cannot be loaded, it means 
there’s an error in the XML file itself or the file doesn’t exist.

pugi::xml_document doc;
if (!doc.load_file("financial_data.xml")) {
    std::cerr << "Error loading XML file." << std::endl;
    return 1;
}

 Checking for Node Existence
Before accessing specific elements or attributes, it’s a good practice to check if they exist. This is needed to 
prevent potential crashes due to missing data.

pugi::xml_node accountNode = doc.child("Portfolio").child("Account");
if (!accountNode) {
    std::cerr << "Account node not found." << std::endl;
    return 1;
}

If your XML processing involves data conversions (e.g., converting text content to numbers) or other 
operations that could throw exceptions, always wrap those operations in try-catch blocks to handle 
exceptions gracefully.

try {
    double balance = accountNode.child("Balance").text().as_double();
} catch (const pugi::xml_text::convertor::convertor_error& e) {
    std::cerr << "Error converting text content to double: "
              << e.what() << std::endl;
    return 1;
}

 Handling Missing Attributes
When accessing attributes, use the attribute() function to check for the existence of an attribute and then 
extract its value. This helps avoid errors if an attribute is missing.

pugi::xml_attribute idAttribute = accountNode.attribute("id");
if (idAttribute) {
    std::string id = idAttribute.as_string();
} else {
    std::cerr << "Attribute 'id' not found." << std::endl;
    return 1;
}
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 Other Techniques for Error Checking
If your XML data contains complex structures or follows specific patterns, you might want to perform 
additional validation and error checks to ensure the data conforms to your expectations.

First, you can use std::cerr or another logging mechanism to output error messages. This helps you 
identify and diagnose issues during development and debugging. By incorporating these error handling 
techniques, you can create more robust XML processing code that gracefully handles unexpected situations, 
provides meaningful error messages, and avoids crashes or data corruption.

Depending on your goals, you might want to output the processed data in a different format (e.g., CSV, 
Excel) or visualize it using graphs and charts. Utilize relevant libraries or tools for these tasks.

You may also want to test your code with different XML files to ensure it handles various scenarios 
correctly. This way, you can validate the accuracy of your results against known data.

You can also check the resulting code looking for opportunities for optimization and performance 
improvement. Depending on the size of your XML files and the complexity of your processing tasks, you 
might need to optimize your code for performance and memory usage.

 Using the HDF5 Format
HDF5 (Hierarchical Data Format version 5) is a data model, file format, and software library designed 
for efficient storage and management of large and complex datasets. It’s commonly used in scientific 
computing, engineering, and data-intensive applications where structured data needs to be stored, 
accessed, and shared. HDF5 is particularly well suited for situations where datasets are too large to fit 
entirely in memory or when data needs to be organized hierarchically.

Key features of HDF5 include the following:

• Hierarchical structure: HDF5 files organize data into a hierarchy similar to a file 
system. The structure consists of groups (like directories) and datasets (like files), 
allowing users to create a logical organization for their data.

• Support for various data types: HDF5 supports a wide range of data types, including 
integers, floats, strings, complex numbers, and user-defined types. This flexibility 
makes it suitable for representing diverse scientific and engineering data.

• Compression and chunking: HDF5 provides mechanisms for data compression and 
chunking, which helps reduce storage requirements and improve access times for 
large datasets.

• Efficient I/O: HDF5 is designed for efficient I/O operations, allowing datasets to be 
read and written efficiently, even when dealing with large volumes of data.

• Parallel I/O: HDF5 supports parallel I/O, which is crucial for high-performance 
computing and working with data distributed across multiple processes or nodes.

• Metadata: Metadata can be associated with groups and datasets, providing 
additional information about the data, such as units, labels, descriptions, and more.

• External links: HDF5 supports external links that allow datasets in one file to 
reference datasets in another file. This can be useful for organizing data across 
multiple files.

• Cross-platform compatibility: HDF5 files are designed to be platform independent, 
meaning they can be created on one system and read on another, regardless of the 
underlying hardware and operating system.
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HDF5 is a well-established format, and its core code provides APIs and libraries for various 
programming languages. Interfaces exist for C, C++, Fortran, Python, Java, and more.

HDF5 finds applications in a wide range of domains, including scientific simulations, image and signal 
processing, climate modeling, genomics, and more. It’s particularly beneficial for scenarios where datasets 
are too large to fit in memory, need to be shared between different applications or research groups, or 
require complex hierarchical organization. These are the features that make this format useful for financial 
applications in derivatives trading.

To work with HDF5 files, you typically use an HDF5 library, like the one provided by the HDF Group. 
This library allows you to create, read, write, and manipulate HDF5 files in your programming language 
of choice.

 Using HDF5
Using HDF5 with C++ involves a series of steps, including installing the HDF5 library, creating HDF5 files, 
writing and reading datasets, and managing attributes and groups. In this section, we’ll provide a basic guide 
on how to use HDF5 with C++.

Before you start, make sure you have the HDF5 library installed on your system. You can download 
the library and find installation instructions from the HDF Group’s website: www.hdfgroup.org/
downloads/hdf5/.

Next, you need to include the HDF5 C++ header in your C++ code:

#include <iostream>
#include <H5Cpp.h> // HDF5 C++ header

Next, let’s see how to create an HDF5 file using the H5::H5File class provided by the HDF5 library. We 
consider that you can create datasets and write data to them.

int main() {
H5::H5File file("example.h5", H5F_ACC_TRUNC);

const int data[4][4] = {
    {1, 2, 3, 4},
    {5, 6, 7, 8},
    {9, 10, 11, 12},
    {13, 14, 15, 16}
};

hsize_t dims[2] = {4, 4};
H5::DataSpace dataspace(2, dims);

H5::DataSet dataset = file.createDataSet("my_dataset", H5::PredType::NATIVE_INT, dataspace);
dataset.write(data, H5::PredType::NATIVE_INT);

// Reading Datasets:
//      Use this to read data from a dataset:

int readData[4][4];
dataset.read(readData, H5::PredType::NATIVE_INT);
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// Create and Manage Groups:
// You can create groups to organize your data hierarchically:

H5::Group group = file.createGroup("/my_group");

// Attributes:
// You can attach attributes to datasets and groups:

H5::Attribute attr =
    dataset.createAttribute(
     "units",H5::PredType::C_S1, H5::DataSpace(H5S_SCALAR));
const char* units = "pixels";
attr.write(H5::PredType::C_S1, units);

//            Error Handling:
//            Handle errors using try-catch blocks:

try {
    // HDF5 operations
} catch (H5::Exception& e) {
    e.printErrorStack();
    return -1;
}

// Close Resources:
//  Make sure to close the dataset, dataspace, and file objects
// when you're done:

dataset.close();
dataspace.close();
file.close();

}

 Compile and Run
You can compile the preceding C++ code using the HDF5 library. For example, with g++, you might use

g++ -o hdf5_example hdf5_example.cpp -lhdf5_cpp -lhdf5

This is just a basic example that shows how to use some of the features of HDF5 with C++. The library 
offers many more features for advanced use cases, such as compound data types, chunking, compression, 
parallel I/O, and more.

 HDF5 for Trading Data
Here’s a complete example of using HDF5 for a simple trading application in C++. In this example, we’ll 
create an HDF5 file to store trading data, including stock symbols, prices, quantities, and timestamps.
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#include <iostream>
#include <H5Cpp.h>

int main() {
    // Create an HDF5 file
    H5::H5File file("trading_data.h5", H5F_ACC_TRUNC);

    // Create a group for trades
    H5::Group tradesGroup = file.createGroup("/trades");

    // Sample trading data
    const int numTrades = 3;
    std::string symbols[numTrades] = {"AAPL", "GOOG", "MSFT"};
    double prices[numTrades] = {150.25, 2800.50, 300.75};
    int quantities[numTrades] = {100, 50, 75};
     std::string timestamps[numTrades] = {"2023-08-19T10:15:00", "2023-08-19T11:30:00", 

"2023-08-19T12:45:00"};

    // Create datasets for trading data
    H5::DataSpace dataspace(H5S_SCALAR);
    H5::StrType stringType(H5::PredType::C_S1, H5T_VARIABLE);
    H5::DataSet symbolDataset = tradesGroup.createDataSet("symbols", stringType, dataspace);
     H5::DataSet priceDataset = tradesGroup.createDataSet("prices", H5::PredType::NATIVE_

DOUBLE, dataspace);
     H5::DataSet quantityDataset = tradesGroup.createDataSet("quantities", 

H5::PredType::NATIVE_INT, dataspace);
     H5::DataSet timestampDataset = tradesGroup.createDataSet("timestamps", stringType, 

dataspace);

    // Write data to datasets
    symbolDataset.write(symbols, stringType);
    priceDataset.write(prices, H5::PredType::NATIVE_DOUBLE);
    quantityDataset.write(quantities, H5::PredType::NATIVE_INT);
    timestampDataset.write(timestamps, stringType);

    // Close resources
    symbolDataset.close();
    priceDataset.close();
    quantityDataset.close();
    timestampDataset.close();
    tradesGroup.close();
    file.close();

    std::cout << "Trading data written to trading_data.h5" << std::endl;

    return 0;
}

In this example, we first create an HDF5 file that is named “trading_data.h5”. This file will store the data 
created by the application. Next, we create a group named “trades” to store trading data. We also define 
sample trading data arrays for symbols, prices, quantities, and timestamps.

CHAPTER 17 ■ PRoCEssing FinAnCiAl DATA



293

Next, we create datasets for each type of trading data. We write the trading data arrays to their respective 
datasets. Then, we close the datasets, group, and file.

To compile and run the program, you can use a command like

g++ -o trading_app trading_app.cpp -lhdf5_cpp -lhdf5
./trading_app

This example provides a basic demonstration of using HDF5 for storing trading data. In a real-world 
scenario, you would likely expand this example to handle more complex data structures, error handling, and 
other features of the HDF5 library.

 Conclusion
Financial data storage and processing are an important facet of financial software systems. A lot of the data 
used in derivatives trading is stored in standard formats such as XML and HDF5.

In this chapter, we provided an introduction to data processing using external formats using C++. 
We discussed examples of how to handle data in XML and HDF5 formats. You have learned how to apply 
modern libraries to the processing of XML data. I also explained how to use the C++ library provided by the 
HDF5 project.

While these common formats may be used to store a lot of financial data used by software in the 
options and derivative space, these formats are just the beginning of a complete data infrastructure. In most 
financial firms, this also ranges from data stored in simple text files, comma-separated values (CSV), to more 
traditional database systems such as Oracle and MySQL. In each of these situations, C++ provides you with 
access to libraries to perform the necessary tasks.
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