

Modern CMake for C++
Second Edition

Effortlessly build cutting-edge C++ code and deliver high-quality
solutions

Rafał Świdziński

Modern CMake for C++
Second Edition
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Denim Pinto

Acquisition Editor – Peer Reviews: Gaurav Gavas

Project Editor: Amisha Vathare

Content Development Editor: Tanya D’cruz

Copy Editor: Safis Editing

Technical Editor: Anjitha Murali

Proofreader: Safis Editing

Indexer: Rekha Nair

Presentation Designer: Ganesh Bhadwalkar

Developer Relations Marketing Executive: Vipanshu Parashar

First published: February 2022

Second edition: May 2024

Production reference: 1230524

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80512-180-0

www.packt.com

http://www.packt.com

Foreword

In the ever-evolving landscape of C++, mastering CMake is indispensable for any developer striv-

ing to write efficient, maintainable, and scalable code. Modern CMake for C++ by Rafał Świdziński

serves as a beacon, guiding both novices and seasoned programmers through the intricacies of

CMake.

This book is not just a manual; it is a journey. It starts with the basics, ensuring that even those

new to CMake can grasp its concepts. As the chapters progress, readers are equipped with ad-

vanced techniques, empowering them to harness the full potential of CMake.

What sets this book apart is its pragmatic approach. Real-world examples and best practices are

interwoven throughout the text, ensuring that readers not only understand the concepts but also

know how to apply them effectively in their projects.

By the end of this book, readers will not only have a deep understanding of CMake but also a

newfound confidence in their ability to navigate the complexities of C++ development. They will

be armed with the knowledge and skills needed to write cleaner, more efficient code, setting them

on a path to becoming proficient CMake developers.

Modern CMake for C++ is not just a book; it is a tool that will empower its readers to elevate their

C++ development skills to new heights. Whether you’re a beginner or an expert, this book will help

you unlock the full potential of CMake, making your code more robust, maintainable, and scalable.

Alexander Kushnir

Principal Software Engineer, Biosense Webster

Contributors

About the author
Rafał Świdziński, a seasoned staff engineer at Google, boasts over 12 years of full-stack de-

velopment expertise. With a track record of spearheading projects for industry giants like Cisco

Meraki, Amazon, and Ericsson, he embodies a commitment to innovation. As a Londoner by choice,

he remains at the forefront of technological progress, engaging in a myriad of personal ventures.

His recent pivot toward AI in healthcare reflects his dedication to impactful advancements. Rafał

values top-notch code quality and craftsmanship, sharing insights through his YouTube channel

and published books.

To Zoe – I couldn’t have written this book without you.

About the reviewers
Eric Noulard has an engineering degree from ENSEEIHT and a PhD in computer science from

UVSQ in France. Eric boasts a rich 25-year history in writing and compiling source code across

various languages. A user of CMake since 2006, he has also actively contributed to its evolution.

Eric has served both private companies and government agencies. He currently works at Anti-

dot, a software vendor specialized in semantic search, AI, and content accessibility. Eric is in the

research team, which brings new technology like generative AI and advanced NLP processing to

Antidot’s flagship product, Fluid Topics.

Giovanni Romano has 28 years of experience in IT ranging from software development to

design of apps/components. Currently employed at Leica Geosystem AG as a Senior Software

Engineer, he specializes in designing SDKs, microservices, and low-latency backends. As a Nokia/

Blackberry Qt Ambassador, he believes in open-source software and contributing to the framework.

His interests are cloud-native apps, Kubernetes, Docker, and GitOps. He loves working with the

C language and playing tennis.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://discord.com/invite/vXN53A7ZcA

Table of Contents

Preface xxi

Chapter 1: First Steps with CMake 1

Technical requirements �� 2

Understanding the basics �� 2

What is CMake? • 3

How does it work? • 5

The configuration stage • 5

The generation stage • 6

The building stage • 6

Installing CMake on different platforms ��� 8

Docker • 9

Windows • 10

Linux • 11

macOS • 12

Building from the source • 12

Mastering the command line ��� 13

CMake command line • 13

Generating a project buildsystem • 13

Building a project • 20

Installing a project • 22

Running a script • 24

Table of Contentsviii

Running a command-line tool • 24

Running a workflow preset • 25

Getting help • 25

CTest command line • 25

CPack command line • 26

CMake GUI • 26

CCMake command line • 28

Navigating project directories and files ��� 28

The source tree • 29

The build tree • 29

Listfiles • 30

Project file • 30

Cache file • 31

Package definition file • 32

Generated files • 32

JSON and YAML files • 33

Preset files • 33

File-based API • 34

Configure log • 34

Ignoring files in Git • 34

Discovering scripts and modules �� 35

Scripts • 35

Utility modules • 36

Find-modules • 37

Summary �� 37

Further reading ��� 37

Chapter 2: The CMake Language 39

Technical requirements �� 40

The basics of the CMake language syntax ��� 40

Comments • 41

Table of Contents ix

Command invocations • 43

Command arguments • 44

Bracket arguments • 44

Quoted arguments • 46

Unquoted arguments • 46

Working with variables ��� 48

Variable references • 49

Using environment variables • 50

Using cache variables • 52

How to correctly use variable scopes in CMake • 53

Using lists ��� 55

Understanding control structures in CMake ��� 57

Conditional blocks • 57

The syntax for conditional commands • 57

Loops • 61

while() • 62

foreach() loops • 62

Command definitions • 64

Macros • 64

Functions • 65

The procedural paradigm in CMake • 67

A word on naming conventions • 69

Exploring the frequently used commands �� 69

The message() command • 69

The include() command • 72

The include_guard() command • 72

The file() command • 73

The execute_process() command • 73

Summary �� 74

Further reading ��� 75

Table of Contentsx

Chapter 3: Using CMake in Popular IDEs 77

Getting to know IDEs �� 78

Choosing an IDE • 79

Choose a comprehensive IDE • 79

Choose an IDE that is widely supported in your organization • 80

Don’t pick an IDE based on the target OS and platform • 80

Pick an IDE with remote development support • 80

Installing toolchains • 81

Using this book’s examples with IDEs • 82

Starting with the CLion IDE �� 83

Why you might like it • 84

Take your first steps • 85

Advanced feature: Debugger on steroids • 87

Starting with Visual Studio Code �� 87

Why you might like it • 88

Take your first steps • 89

Advanced feature: Dev Containers • 89

Starting with the Visual Studio IDE �� 90

Why you might like it • 91

Take your first steps • 92

Advanced feature: Hot Reload debugging • 93

Summary �� 94

Further reading ��� 95

Chapter 4: Setting Up Your First CMake Project 97

Technical requirements �� 98

Understanding the basic directives and commands �� 98

Specifying the minimum CMake version • 99

Defining languages and metadata • 100

Partitioning your project ��� 101

Table of Contents xi

Managing scope with subdirectories • 103

When to use nested projects • 105

Keeping external projects external • 106

Thinking about the project structure �� 106

Scoping the environment ��� 112

Detecting the operating system • 112

Cross-compilation – what are host and target systems? • 113

Abbreviated variables • 113

Host system information • 114

Does the platform have 32-bit or 64-bit architecture? • 115

What is the endianness of the system? • 116

Configuring the toolchain �� 116

Setting the C++ standard • 116

Insisting on standard support • 117

Vendor-specific extensions • 118

Interprocedural optimization • 118

Checking for supported compiler features • 119

Compiling a test file • 119

Disabling in-source builds ��� 121

Summary ��� 122

Further reading �� 123

Chapter 5: Working with Targets 125

Technical requirements ��� 126

Understanding the concept of a target ��� 126

Defining executable targets • 127

Defining library targets • 128

Custom targets • 128

Dependency graph • 129

Visualizing dependencies • 131

Setting properties of targets • 133

Table of Contentsxii

What are Transitive Usage Requirements? • 134

Dealing with conflicting propagated properties • 137

Meet the pseudo targets • 138

Imported targets • 139

Alias targets • 139

Interface libraries • 139

Object libraries • 141

Build targets • 141

Writing custom commands �� 142

Using a custom command as a generator • 143

Using a custom command as a target hook • 144

Summary ��� 145

Further reading ��� 146

Chapter 6: Using Generator Expressions 149

Technical requirements �� 150

What are generator expressions? ��� 150

Learning the basic rules of general expression syntax �� 151

Nesting • 152

Conditional expansion ��� 153

Evaluating to Boolean • 154

Logical operators • 154

Comparisons • 154

Queries • 155

Querying and transforming ��� 155

Dealing with strings, lists, and paths • 155

Parametrizing the build configuration and platform • 158

Tuning for toolchain • 158

Querying target-related information • 160

Escaping • 162

Table of Contents xiii

Trying out examples �� 163

Build configurations • 163

System-specific one liners • 163

Interface libraries with compiler-specific flags • 164

Nested generator expressions • 164

The difference between a conditional expression and the evaluation of a BOOL operator • 166

Summary ��� 167

Further reading �� 167

Chapter 7: Compiling C++ Sources with CMake 169

Technical requirements �� 170

The basics of compilation ��� 170

How compilation works • 171

Initial configuration • 173

Requiring specific features from the compiler • 174

Managing sources for targets • 175

Configuring the preprocessor ��� 176

Providing paths to included files • 176

Preprocessor definitions • 177

Avoid accessing private class fields in your unit tests • 179

Using git commit to track a compiled version • 179

Configuring the headers • 180

Configuring the optimizer �� 182

General level • 183

Function inlining • 185

Loop unrolling • 186

Loop vectorization • 187

Managing the process of compilation ��� 188

Reducing compilation time • 188

Precompilation of headers • 189

Unity builds • 191

Table of Contentsxiv

Finding mistakes • 193

Configuring errors and warnings • 193

Debugging the build • 194

Providing information for the debugger • 197

Summary �� 198

Further reading ��� 199

Chapter 8: Linking Executables and Libraries 201

Technical requirements �� 202

Getting the basics of linking right ��� 202

Building different library types ��� 207

Static libraries • 207

Shared libraries • 208

Shared modules • 209

Position-independent code (PIC) • 210

Solving problems with the ODR ��� 211

Sorting out dynamically linked duplicated symbols • 214

Use namespaces – don’t count on the linker • 216

The order of linking and unresolved symbols ��� 216

Dealing with unreferenced symbols • 219

Separating main() for testing �� 220

Summary �� 223

Further reading ��� 224

Chapter 9: Managing Dependencies in CMake 225

Technical requirements �� 226

Using already installed dependencies ��� 226

Finding packages with CMake’s find_package() • 226

Writing your own find modules • 232

Discovering legacy packages with FindPkgConfig • 238

Table of Contents xv

Using dependencies not present in the system ��� 241

FetchContent • 241

Basic example with a YAML reader • 243

Downloading the dependencies • 245

Updating and patching • 248

Using the installed dependency where possible • 249

ExternalProject • 251

Summary �� 253

Further reading ��� 253

Chapter 10: Using the C++20 Modules 255

Technical requirements �� 256

What are the C++20 modules? �� 256

Writing projects with C++20 module support �� 260

Enabling the experimental support in CMake 3.26 and 3.27 • 260

Enabling support for CMake 3.28 and up • 262

Setting the compiler requirements • 262

Declaring a C++ module • 262

Configuring the toolchain ��� 263

Summary �� 265

Further reading ��� 265

Chapter 11: Testing Frameworks 267

Technical requirements �� 268

Why are automated tests worth the trouble? �� 268

Using CTest to standardize testing in CMake �� 269

Build-and-test mode • 270

Test mode • 272

Querying tests • 272

Filtering tests • 273

Shuffling tests • 273

Table of Contentsxvi

Handling failures • 274

Repeating tests • 275

Controlling output • 276

Miscellaneous • 277

Creating the most basic unit test for CTest ��� 277

Structuring our projects for testing �� 282

Unit-testing frameworks �� 286

Catch2 • 287

GoogleTest • 290

Using GTest • 290

GMock • 292

Generating test coverage reports ��� 299

Using LCOV for coverage reports • 300

Avoiding the SEGFAULT gotcha • 305

Summary �� 305

Further reading ��� 306

Chapter 12: Program Analysis Tools 309

Technical requirements �� 310

Enforcing formatting �� 310

Using static checkers �� 314

clang-tidy • 317

Cpplint • 317

Cppcheck • 318

include-what-you-use • 318

Link What You Use • 318

Dynamic analysis with Valgrind �� 319

Memcheck • 320

Memcheck-Cover • 324

Summary �� 326

Further reading ��� 327

Table of Contents xvii

Chapter 13: Generating Documentation 329

Technical requirements �� 330

Adding Doxygen to your project �� 330

Generating documentation with a modern look ��� 336

Enhancing output with custom HTML ��� 338

Summary �� 340

Further reading �� 341

Chapter 14: Installing and Packaging 343

Technical requirements �� 344

Exporting without installation ��� 344

Installing projects on the system �� 347

Installing logical targets • 349

Utilizing the default destination for different platforms • 351

Dealing with public headers • 352

Low-level installation • 354

Installing with install(FILES) and install(PROGRAMS) • 354

Working with entire directories • 357

Invoking scripts during installation • 360

Installing runtime dependencies • 362

Creating reusable packages ��� 363

Understanding the issues with relocatable targets • 363

Installing target export files • 365

Writing basic config files • 366

Creating advanced config files • 369

Generating package version files • 373

Defining components �� 374

How to use components in find_package() • 375

How to use components in the install() command • 375

Managing symbolic links for versioned shared libraries • 377

Table of Contentsxviii

Packaging with CPack ��� 378

Summary �� 380

Further reading ��� 381

Chapter 15: Creating Your Professional Project 383

Technical requirements �� 384

Planning our work �� 384

Project layout �� 388

Shared libraries versus static libraries • 389

Project file structure • 390

Building and managing dependencies �� 392

Building the Calc library • 395

Building the Calc console executable • 397

Testing and program analysis ��� 402

Preparing the Coverage module • 404

Preparing the Memcheck module • 406

Applying testing scenarios • 407

Adding static analysis tools • 409

Installing and packaging �� 411

Installation of the library • 412

Installation of the executable • 414

Packaging with CPack • 414

Providing the documentation �� 415

Generating the technical documentation • 415

Writing non-technical documents for a professional project • 417

Summary �� 420

Further reading �� 421

Table of Contents xix

Chapter 16: Writing CMake Presets 423

Technical requirements �� 424

Using presets defined in a project �� 424

Writing a preset file ��� 425

Defining stage-specific presets �� 426

Common features across presets • 426

Unique name fields • 427

Optional fields • 427

Association with configuration-stage presets • 428

Defining configuration-stage presets • 428

Defining build-stage presets • 430

Defining test-stage presets • 431

Defining package-stage presets • 434

Adding the installation preset • 435

Defining workflow presets �� 437

Adding conditions and macros �� 438

Summary �� 440

Further reading ��� 441

Appendix 443

Miscellaneous commands ��� 443

The string() command �� 443

Search and replace • 444

Manipulation • 445

Comparison • 445

Hashing • 446

Generation • 446

JSON • 447

Table of Contentsxx

The list() command �� 448

Reading • 448

Searching • 448

Modification • 448

Ordering • 449

The file() command �� 450

Reading • 450

Writing • 450

Filesystem • 451

Path conversion • 452

Transfer • 452

Locking • 452

Archiving • 452

The math() command ��� 453

Other Books You May Enjoy 457

Index 461

Preface

Creating top-notch software is no easy task. Developers researching this subject online often

struggle to determine which advice is current and which methods have been superseded by

newer, better practices. Moreover, most resources explain the process chaotically, lacking proper

background, context, and structure.

Modern CMake for C++ provides an end-to-end guide that offers a simpler experience by treating

the building of C++ solutions comprehensively. It not only teaches you how to use CMake in your

projects but also highlights what makes them maintainable, elegant, and clean. The guide walks

you through automating complex tasks common in many projects, including building, testing,

and packaging.

The book instructs you on organizing source directories, building targets, and creating packages.

As you progress, you will learn to compile and link executables and libraries, understand these

processes in detail, and optimize each step for the best results. Additionally, you will discover

how to incorporate external dependencies into your project, such as third-party libraries, testing

frameworks, program analysis tools, and documentation generators. Finally, you’ll learn how to

export, install, and package your solution for both internal and external use.

After completing this book, you’ll be able to use CMake confidently on a professional level.

Who this book is for
After you’ve learned C++, you’ll quickly discover that proficiency with the language alone isn’t

enough to prepare you for delivering projects at the highest standards. This book fills that gap:

it is addressed to anyone aspiring to become a better software developer or even a professional

build engineer!

Read it if you want to learn modern CMake from scratch or elevate and refresh your current

CMake skills. It will help you understand how to make top-notch C++ projects and transition

from other build environments.

Prefacexxii

What this book covers
Chapter 1, First Steps with CMake, covers the installation of CMake, the use of its command line

interface, and introduces the fundamental building blocks necessary for a CMake project.

Chapter 2, The CMake Language, cover the essential concepts of the CMake language, including

command invocations, arguments, variables, control structures, and comments.

Chapter 3, Using CMake in Popular IDEs, emphasizes the importance of Integrated Development

Environments (IDEs), guides you through selecting an IDE, and provides setup instructions for

Clion, Visual Studio Code, and Visual Studio IDE.

Chapter 4, Setting up Your First CMake Project, will teach you how to configure a basic CMake project

in its top-level file, structure the file tree, and prepare the toolchain necessary for development.

Chapter 5, Working with Targets, explores the concept of logical build targets, understand their

properties and different types, and learn how to define custom commands for CMake projects.

Chapter 6, Using Generator Expressions, explains the purpose and syntax of generator expressions,

including how to use them for conditional expansion, queries, and transformations.

Chapter 7, Compiling C++ Sources with CMake, delves into the compilation process, configure the

preprocessor and optimizer, and discover techniques to reduce build time and improve debugging.

Chapter 8, Linking Executables and Libraries, understands the linking mechanism, different types of

libraries, the One Definition Rule, the order of linking, and how to prepare your project for testing.

Chapter 9, Managing Dependencies in CMake, will teach you to manage third-party libraries, add

CMake support for those that lack it, and fetch external dependencies from the internet.

Chapter 10, Using the C++20 Modules, introduces C++20 modules, shows how to enable their

support in CMake, and configure the toolchain accordingly.

Chapter 11, Testing Frameworks, will help you understand the importance of automated testing,

leverage built-in testing support in CMake, and get started with unit testing using popular frame-

works.

Chapter 12, Program Analysis Tools, will show you how to automatically format source code and

detect software errors during both build time and runtime.

Chapter 13, Generating Documentation, presents how to use Doxygen for automating documen-

tation creation from source code and add styling to enhance your documentation’s appearance.

Preface xxiii

Chapter 14, Installing and Packaging, prepares your project for release with and without installation,

create reusable packages, and designate individual components for packaging.

Chapter 15, Creating Your Professional Project, applies all the knowledge acquired throughout the

book to develop a comprehensive, professional-grade project.

Chapter 16, Writing CMake Presets, encapsulates high-level project configurations into workflows

using CMake preset files, making project setup and management more efficient.

Appendix - Miscellaneous Commands, serves as a reference for various CMake commands related

to strings, lists, files, and mathematical operations.

To get the most out of this book
Basic familiarity with C++ and Unix-like systems is assumed throughout the book. Although Unix

knowledge isn’t a strict requirement, it will prove helpful in fully understanding the examples

given in this book.

This book targets CMake 3.26, but most of the techniques described should work from CMake

3.15 (features that were added after are usually highlighted). Some chapters have been updated

to CMake 3.28 to cover the latest features.

Preparation of the environment to run examples is covered in Chapters 1-3, but we specifically

recommend using the Docker image provided with this book if you’re familiar with this tool.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Modern-CMake-for-Cpp-2E. We also have other code bundles from our rich catalog of books and

videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781805121800.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the

downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E
https://github.com/PacktPublishing/
https://packt.link/gbp/9781805121800

Prefacexxiv

A block of code is set as follows:

cmake_minimum_required(VERSION 3.26)

project(Hello)

add_executable(Hello hello.cpp)

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

cmake_minimum_required(VERSION 3.26)

project(Hello)

add_executable(Hello hello.cpp)

add_subdirectory(api)

Any command-line input or output is written as follows:

cmake --build <dir> --parallel [<number-of-jobs>]

cmake --build <dir> -j [<number-of-jobs>]

Bold: Indicates a new term, an important word, or words that you see on the screen. For example:

“Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface xxv

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book we would be grateful if you would report this

to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on

the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Prefacexxvi

Share your thoughts
Once you’ve read Modern CMake for C++, Secon Edition, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://www.packtpub.com/

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781805121800

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781805121800

1
First Steps with CMake

There is something magical about software creation. We’re not only creating a working mechanism

that gets brought to life but we’re also often authoring the very idea behind the functionality of

the solution.

To cast our ideas into existence, we work in the following loop: design, code, and test. We invent

changes, we phrase them in a language that the compiler understands, and we check whether

they work as intended. To create proper, high-quality software from our source code, we need

to meticulously execute repetitive, error-prone tasks: invoking the correct commands, checking

the syntax, linking binary files, running tests, reporting issues, and more.

It takes great effort to remember each step every single time. Instead, we want to stay focused on

the actual coding and delegate everything else to automated tooling. Ideally, this process would

start with a single button, right after we have changed our code. It would be smart, fast, extensi-

ble, and work in the same way across different OSs and environments. It would be supported by

multiple Integrated Development Environments (IDEs). Going even further, we could streamline

this process into Continuous Integration (CI) pipelines that build and test our software every

time a change is submitted to a shared repository.

CMake is the answer to many such needs; however, it requires a bit of work to configure and use

correctly. CMake isn’t the source of the complexity; that stems from the subject that we’re dealing

with here. Don’t worry, we will go through this whole learning process very methodically. Before

you know it, you will become a software-building guru.

I know you’re eager to rush off to start writing your own CMake projects, and this is exactly what

we will be doing for most of this book. But since you’ll be creating your projects primarily for users

(yourself included), it’s important for you to understand their perspective first.

First Steps with CMake2

So, let’s start with just that: becoming a CMake power user. We’ll go through a few basics: what

this tool is, how it works in principle, and how to install it. Then, we’ll do a deep dive into the

command line and modes of operation. Finally, we’ll wrap up with the purposes of different files

in a project, and we’ll explain how to use CMake without creating projects at all.

In this chapter, we’re going to cover the following main topics:

• Understanding the basics

• Installing CMake on different platforms

• Mastering the command line

• Navigating project files

• Discovering scripts and modules

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch01.

To build the examples provided in this book, always execute all the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with the appropriate paths.

As you will learn in this chapter, build tree is the path of your output directory, and source tree

is the path at which your source code is located.

To build C++ programs, you also need a compiler appropriate for your platform. If you’re famil-

iar with Docker, you can use a fully tooled image introduced in the Installing CMake on different

platforms section. If you’d rather set up CMake manually, we’ll explain the installation in the

same section.

Understanding the basics
The compilation of C++ source code appears to be a fairly straightforward process. Let’s start

with the classic Hello World example.

The following code is found in ch01/01-hello/hello.cpp, Hello world in the C++ language:

#include <iostream>

int main() {

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch01
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch01

Chapter 1 3

 std::cout << "Hello World!" << std::endl;

 return 0;

}

To produce an executable, we of course need a C++ compiler. CMake doesn’t come with one, so

you’ll need to pick and install one on your own. Popular choices include:

• Microsoft Visual C++ compiler

• The GNU compiler collection

• Clang/LLVM

Most readers are familiar with a compiler, as it is indispensable when learning C++, so we won’t

go into picking one and installation. Examples in this book will use GNU GCC as it is a well-es-

tablished, open-source software compiler available for free across many platforms.

Assuming that we have our compiler already installed, running it is similar for most vendors and

systems. We should call it with the filename as an argument:

$ g++ hello.cpp -o hello

Our code is correct, so the compiler will silently produce an executable binary file that our ma-

chine can understand. We can run it by calling its name:

$./hello

Hello World!

Running one command to build your program is simple enough; however, as our projects grow,

you will quickly understand that keeping everything in a single file is simply not possible. Clean

code practices recommend that source code files should be kept small and in well-organized

structures. The manual compilation of every file can be a tiresome and fragile process. There

must be a better way.

What is CMake?
Let’s say we automate building by writing a script that goes through our project tree and compiles

everything. To avoid any unnecessary compilations, our script will detect whether the source has

been modified since the last time we ran the script. Now, we’d like a convenient way to manage

arguments that are passed to the compiler for each file – preferably, we’d like to do that based on

configurable criteria. Additionally, our script should know how to link all of the compiled files

into a single binary file or, even better, build whole solutions that can be reused and incorporated

as modules into bigger projects.

First Steps with CMake4

Building software is a very versatile process and can span multiple different aspects:

• Compiling executables and libraries

• Managing dependencies

• Testing

• Installing

• Packaging

• Producing documentation

• Testing some more

It would take a very long time to come up with a truly modular and powerful C++ building utility

that is fit for every purpose. And it did. Bill Hoffman at Kitware implemented the first versions of

CMake over 20 years ago. As you might have already guessed, it was very successful. Today, it has

a lot of features and extensive support from the community. CMake is being actively developed

and has become the industry standard for C and C++ programmers.

The problem of building code in an automated way is much older than CMake, so naturally, there

are plenty of options out there: GNU Make, Autotools, SCons, Ninja, Premake, and more. But why

does CMake have the upper hand?

There are a couple of things about CMake that I find (granted, subjectively) important:

• It stays focused on supporting modern compilers and toolchains.

• CMake is truly cross-platform – it supports building for Windows, Linux, macOS, and

Cygwin.

• It generates project files for popular IDEs: Microsoft Visual Studio, Xcode, and Eclipse

CDT. Additionally, it is a project model for others, like CLion.

• CMake operates on just the right level of abstraction – it allows you to group files in re-

usable targets and projects.

• There are tons of projects that are built with CMake and offer an easy way to plug them

into your project.

• CMake views testing, packaging, and installing as an inherent part of the build process.

• Old, unused features get deprecated to keep CMake lean.

CMake provides a unified, streamlined experience across the board. It doesn’t matter whether

you’re building your software in an IDE or directly from the command line; what’s really important

is that it takes care of post-build stages as well.

Chapter 1 5

Your CI/CD pipeline can easily use the same CMake configuration and build projects using a single

standard even if all of the preceding environments differ.

How does it work?
You might be under the impression that CMake is a tool that reads source code on one end and

produces binaries on the other – while that’s true in principle, it’s not the full picture.

CMake can’t build anything on its own – it relies on other tools in the system to perform the ac-

tual compilation, linking, and other tasks. You can think of it as the orchestrator of your building

process: it knows what steps need to be done, what the end goal is, and how to find the right

workers and materials for the job.

This process has three stages:

• Configuration

• Generation

• Building

Let’s explore them in some detail.

The configuration stage
This stage is about reading project details stored in a directory, called the source tree, and pre-

paring an output directory or build tree for the generation stage.

CMake starts by checking whether the project was configured before and reads cached config-

uration variables from a CMakeCache.txt file. On a first run, this is not the case, so it creates an

empty build tree and collects all of the details about the environment it is working in: for example,

what the architecture is, what compilers are available, and what linkers and archivers are installed.

Additionally, it checks whether a simple test program can be compiled correctly.

Next, the CMakeLists.txt project configuration file is parsed and executed (yes, CMake projects

are configured with CMake’s coding language). This file is the bare minimum of a CMake project

(source files can be added later). It tells CMake about the project structure, its targets, and its

dependencies (libraries and other CMake packages).

During this process, CMake stores collected information in the build tree, such as system de-

tails, project configurations, logs, and temp files, which are used for the next step. Specifically, a

CMakeCache.txt file is created to store more stable information (such as paths to compilers and

other tools), which saves time when the whole build sequence is executed again.

First Steps with CMake6

The generation stage
After reading the project configuration, CMake will generate a buildsystem for the exact environ-

ment it is working in. Buildsystems are simply cut-to-size configuration files for other build tools

(for example, Makefiles for GNU Make or Ninja and IDE project files for Visual Studio). During

this stage, CMake can still apply some final touches to the build configuration by evaluating

generator expressions.

The building stage
To produce the final artifacts specified in our project (like executables and libraries), CMake

has to run the appropriate build tool. This can be invoked directly, through an IDE, or using the

appropriate CMake command. In turn, these build tools will execute steps to produce target

artifacts with compilers, linkers, static and dynamic analysis tools, test frameworks, reporting

tools, and anything else you can think of.

The beauty of this solution lies in the ability to produce buildsystems on demand for every plat-

form with a single configuration (that is, the same project files):

Figure 1.1: The stages of CMake

The generation stage is executed automatically after the configuration stage. For

this reason, this book and other resources sometimes refer to both of these stages

interchangeably when mentioning the “configuration” or “generation” of a buildsys-

tem. To explicitly run just the configuration stage, you can use the cmake-gui utility.

Chapter 1 7

Do you remember our hello.cpp application from the Understanding the basics section? It is

really easy to build it with CMake. All we need is the following CMakeLists.txt file in the same

directory as our source.

ch01/01-hello/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Hello)

add_executable(Hello hello.cpp)

After creating this file, execute the following commands in the same directory:

cmake -B <build tree>

cmake --build <build tree>

Note that <build tree> is a placeholder that should be replaced with a path to a temporary

directory that will hold generated files.

Here is the output from an Ubuntu system running in Docker (Docker is a virtual machine that

can run within other systems; we’ll discuss it in the Installing CMake on different platforms section).

The first command generates a buildsystem:

~/examples/ch01/01-hello# cmake -B ~/build_tree

-- The C compiler identification is GNU 11.3.0

-- The CXX compiler identification is GNU 11.3.0

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working C compiler: /usr/bin/cc - skipped

-- Detecting C compile features

-- Detecting C compile features - done

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Check for working CXX compiler: /usr/bin/c++ - skipped

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Configuring done (1.0s)

-- Generating done (0.1s)

-- Build files have been written to: /root/build_tree

First Steps with CMake8

The second command actually builds the project:

~/examples/ch01/01-hello# cmake --build ~/build_tree

Scanning dependencies of target Hello

[50%] Building CXX object CMakeFiles/Hello.dir/hello.cpp.o

[100%] Linking CXX executable Hello

[100%] Built target Hello

All that’s left is to run the compiled program:

~/examples/ch01/01-hello# ~/build_tree/Hello

Hello World!

Here, we have generated a buildsystem that is stored in the build tree directory. Following this,

we executed the build stage and produced a final binary that we were able to run.

Now you know what the result looks like, I’m sure you will be full of questions: what are the pre-

requisites to this process? What do these commands mean? Why do we need two of them? How

do I write my own project files? Don’t worry – these questions will be answered in the following

sections.

Installing CMake on different platforms
CMake is a cross-platform, open-source software written in C++. That means you can, of course,

compile it yourself; however, the most likely scenario is that you won’t have to. This is because

precompiled binaries are available for you to download from the official web page at https://

cmake.org/download/.

Unix-based systems provide ready-to-install packages directly from the command line.

This book will provide you with the most important information that is relevant to

the current version of CMake (at the time of writing, this is 3.26). To provide you

with the best advice, I have explicitly avoided any deprecated and no longer recom-

mended features and I highly recommend using, at the very least, CMake version 3.15,

which is considered the modern CMake. If you require more information, you can find

the latest, complete documentation online at https://cmake.org/cmake/help/.

https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/cmake/help/

Chapter 1 9

Let’s go through some different environments in which CMake can be used.

Docker
Docker (https://www.docker.com/) is a cross-platform tool that provides OS-level virtualiza-

tion, allowing applications to be shipped in well-defined packages called containers. These are

self-sufficient bundles that contain a piece of software with all of the libraries, dependencies,

and tools required to run it. Docker executes its containers in lightweight environments that are

isolated one from another.

This concept makes it extremely convenient to share whole toolchains that are necessary for a

given process, configured and ready to go. I can’t stress enough how easy things become when

you don’t need to worry about minuscule environmental differences.

The Docker platform has a public repository of container images, https://registry.hub.docker.

com/, that provides millions of ready-to-use images.

For your convenience, I have published two Docker repositories:

• swidzinski/cmake2:base: An Ubuntu-based image that contains the curated tools and

dependencies that are necessary to build with CMake

• swidzinski/cmake2:examples: An image based on the preceding toolchain with all of

the projects and examples from this book

The first option is for readers who simply want a clean-slate image ready to build their own proj-

ects, and the second option is for hands-on practice with examples as we go through the chapters.

Remember that CMake doesn’t come with compilers. If your system doesn’t have

them installed yet, you’ll need to provide them before using CMake. Make sure to

add the paths to their executables to the PATH environment variable so that CMake

can find them.

To avoid facing tooling and dependency problems while learning from this book,

I recommend practicing by following the first installation method: Docker. In a

real-world scenario, you will of course want to use a native version, unless you’re

working in a virtualized environment to begin with.

https://www.docker.com/
https://registry.hub.docker.com/
https://registry.hub.docker.com/

First Steps with CMake10

You can install Docker by following the instructions from its official documentation (please refer

to docs.docker.com/get-docker). Then, execute the following commands in your terminal to

download the image and start the container:

$ docker pull swidzinski/cmake2:examples

$ docker run -it swidzinski/cmake2:examples

root@b55e271a85b2:root@b55e271a85b2:#

Note that examples are available in the directories matching this format:

devuser/examples/examples/ch<N>/<M>-<title>

Here, <N> and <M> are zero-padded chapter and example numbers, respectively (like 01, 08, and 12).

Windows
Installing in Windows is straightforward – simply download the version for 32 or 64 bits from

the official website. You can also pick a portable ZIP or MSI package for Windows Installer, which

will add the CMake bin directory to the PATH environment variable (Figure 1.2) so that you can

use it in any directory without any such errors:

cmake is not recognized as an internal or external command, operable program, or batch file.

If you select the ZIP package, you will have to do it manually. The MSI installer comes with a

convenient GUI:

Figure 1.2: The installation wizard can set up the PATH environment variable for you

http://docs.docker.com/get-docker

Chapter 1 11

As I mentioned earlier, this is open-source software, so it is possible to build CMake yourself.

However, on Windows, you will have to get a binary copy of CMake on your system first. This

scenario is used by CMake contributors to generate newer versions.

The Windows platform is no different from others, and it also requires a build tool that can fi-

nalize the build process started by CMake. A popular choice here is the Visual Studio IDE, which

comes bundled with a C++ compiler. The Community edition is available for free from Microsoft’s

website: https://visualstudio.microsoft.com/downloads/.

Linux
Installing CMake on Linux follows the same process as with any other popular package: call your

package manager from the command line. Package repositories are usually kept up to date with

fairly recent versions of CMake, but usually not the latest. If you’re fine with this and using a

distribution like Debian or Ubuntu, it is simplest to just install the appropriate package:

$ sudo apt-get install cmake

For a Red Hat distribution, use the following command:

$ yum install cmake

To get the latest version, reference the download section of the official CMake website. If you

know the current version number, you can use one of the following commands.

The command for Linux x86_64 is:

$ VER=3.26.0 && wget https://github.com/Kitware/CMake/releases/download/
v$VER/cmake-$VER-linux-x86_64.sh && chmod +x cmake-$VER-linux-x86_64.sh &&
./cmake-$VER-linux-x86_64.sh

The command for Linux AArch64 is:

$ VER=3.26.0 && wget https://github.com/Kitware/CMake/releases/download/
v$VER/cmake-$VER-Linux-aarch64.sh && chmod +x cmake-$VER-Linux-aarch64.sh
&& ./cmake-$VER-Linux-aarch64.sh

Note that when installing a package, your package manager will fetch the latest

available version in the repository configured for your OS. In many cases, package

repositories don’t provide the latest version but, rather, a stable one that has been

proven over time to work reliably. Pick according to your needs, but be aware that

older versions won’t have all the features described in this book.

https://visualstudio.microsoft.com/downloads/

First Steps with CMake12

Alternatively, check out the Building from the source section to learn how to compile CMake on

your platform yourself.

macOS
This platform is also strongly supported by CMake developers. The most popular choice of in-

stallation is through MacPorts with the following command:

$ sudo port install cmake

Do note that at the time of writing, the latest version available in MacPorts was 3.24.4. To get the

latest version, install the cmake-devel package:

$ sudo port install cmake-devel

Alternatively, you can use the Homebrew package manager:

$ brew install cmake

macOS package managers will cover all necessary steps, but be mindful that you might not get

the latest version unless you’re building from the source.

Building from the source
If you’re using another platform, or just want to experience the latest builds that haven’t been

promoted to a release (or adopted by your favorite package repository), download the source

from the official website and compile it yourself:

$ wget https://github.com/Kitware/CMake/releases/
download/v3.26.0/cmake-3.26.0.tar.gz

$ tar xzf cmake-3.26.0.tar.gz

$ cd cmake-3.26.0

$./bootstrap

$ make

$ make install

Building from the source is relatively slow and requires more steps. However, there is no other

way to have the freedom of picking any version of CMake. This is especially useful when packages

that are available in repositories of your operating system are stale: the older the version of the

system, the fewer updates it gets.

Now that we have installed CMake, let’s learn how to use it!

Chapter 1 13

Mastering the command line
The majority of this book will teach you how to prepare CMake projects for your users. To cater

to their needs, we need to thoroughly understand how users interact with CMake in different

scenarios. This will allow you to test your project files and ensure they’re working correctly.

CMake is a family of tools and consists of five executables:

• cmake: The main executable that configures, generates, and builds projects

• ctest: The test driver program used to run and report test results

• cpack: The packaging program used to generate installers and source packages

• cmake-gui: The graphical wrapper around cmake

• ccmake: The console-based GUI wrapper around cmake

Additionally, Kitware, the company behind CMake, offers a separate tool called CDash to provide

advanced oversight over the health of our projects’ builds.

CMake command line
The cmake is the main binary of the CMake suite, and provides a few modes of operation (also

sometimes called actions):

• Generating a project buildsystem

• Building a project

• Installing a project

• Running a script

• Running a command-line tool

• Running a workflow preset

• Getting help

Let’s see how they work.

Generating a project buildsystem
The first step required to build our project is to generate a buildsystem. Here are three forms of

command to execute the CMake generating a project buildsystem action:

cmake [<options>] -S <source tree> -B <build tree>

cmake [<options>] <source tree>

cmake [<options>] <build tree>

First Steps with CMake14

We’ll discuss available <options> in the upcoming sections. Right now, let’s focus on choosing

the right form of the command. One important feature of CMake is the support for out-of-source

builds or the support for storing build artifacts in a directory different from the source tree. This

is a preferred approach to keep the source directory clean from any build-related files and avoid

polluting the Version Control Systems (VCSs) with accidental files or ignore directives.

This is why the first form of command is the most practical. It allows us to specify the paths to

the source tree and the produced buildsystem specified with -S and -B, respectively:

cmake -S ./project -B ./build

CMake will read the project files from the ./project directory and generate a buildsystem in the

./build directory (creating it beforehand if needed).

We can skip one of the arguments and cmake will “guess” that we intended to use the current

directory for it. Note that skipping both will produce an in-source build and store the build artifacts

along with source files, which we don’t want.

Examples
Generate the build tree in the current directory using the source from one directory up:

cmake -S ..

Generate the build tree in the ./build directory using the source from the current directory:

cmake -B build

BE EXPLICIT WHEN RUNNING CMAKE

Do not use the second or third form of the cmake <directory> command, because

they can produce a messy in-source build. In Chapter 4, Setting Up Your First CMake

Project, we’ll learn how to prevent users from doing that.

As hinted in the syntax snippet, the same command behaves differently if a previous

build already exists in <directory>: it will use the cached path to the sources and

rebuild from there. Since we often invoke the same commands from the Terminal

command history, we might get into trouble here; before using this form, always

check whether your shell is currently working in the right directory.

Chapter 1 15

Choosing a generator
As discussed earlier, you can specify a few options during the generation stage. Selecting and

configuring a generator decides which build tool from our system will be used for building in

the subsequent Building a project section, what build files will look like, and what the structure

of the build tree will be.

So, should you care? Luckily, the answer is often “no.” CMake does support multiple native

buildsystems on many platforms; however, unless you have installed a few generators at the same

time, CMake will correctly select one for you. This can be overridden by the CMAKE_GENERATOR

environment variable or by specifying the generator directly on the command line, like so:

cmake -G <generator name> -S <source tree> -B <build tree>

Some generators (such as Visual Studio) support a more in-depth specification of a toolset (com-

piler) and platform (compiler or SDK). Additionally, CMake will scan environment variables that

override the defaults: CMAKE_GENERATOR_TOOLSET and CMAKE_GENERATOR_PLATFORM. Alternatively,

the values can be specified directly in the command line:

cmake -G <generator name>

 -T <toolset spec>

 -A <platform name>

 -S <source tree> -B <build tree>

Windows users usually want to generate a buildsystem for their preferred IDE. On Linux and

macOS, it’s very common to use the Unix Makefiles or Ninja generators.

To check which generators are available on your system, use the following command:

cmake --help

At the end of the help printout, you will get a full list of generators, like this one produced on

Windows 10 (some output was truncated for readability):

The following generators are available on this platform:

Visual Studio 17 2022

Visual Studio 16 2019

Visual Studio 15 2017 [arch]

Visual Studio 14 2015 [arch]

Visual Studio 12 2013 [arch]

First Steps with CMake16

Visual Studio 11 2012 [arch]

Visual Studio 9 2008 [arch]

Borland Makefiles

NMake Makefiles

NMake Makefiles JOM

MSYS Makefiles

MinGW Makefiles

Green Hills MULTI

Unix Makefiles

Ninja

Ninja Multi-Config

Watcom WMake

CodeBlocks - MinGW Makefiles

CodeBlocks - NMake Makefiles

CodeBlocks - NMake Makefiles JOM

CodeBlocks - Ninja

CodeBlocks - Unix Makefiles

CodeLite - MinGW Makefiles

CodeLite - NMake Makefiles

CodeLite - Ninja

CodeLite - Unix Makefiles

Eclipse CDT4 - NMake Makefiles

Eclipse CDT4 - MinGW Makefiles

Eclipse CDT4 - Ninja

Eclipse CDT4 - Unix Makefiles

Kate - MinGW Makefiles

Kate - NMake Makefiles

Kate - Ninja

Kate - Unix Makefiles

Sublime Text 2 - MinGW Makefiles

Sublime Text 2 - NMake Makefiles

Sublime Text 2 - Ninja

Sublime Text 2 - Unix Makefiles

As you can see, CMake supports a lot of different generator flavors and IDEs.

Chapter 1 17

Managing the project cache
CMake queries the system for all kinds of information during the configuration stage. Because

these operations can take a bit of time, the collected information is cached in the CMakeCache.txt

file in the build tree directory. There are a few command-line options that allow you to manage

the behavior of the cache more conveniently.

The first option at our disposal is the ability to prepopulate cached information:

cmake -C <initial cache script> -S <source tree> -B <build tree>

We can provide a path to the CMake listfile, which (only) contains a list of set() commands

to specify variables that will be used to initialize an empty build tree. We’ll discuss writing the

listfiles in the next chapter.

The initialization and modification of existing cache variables can be done in another way (for

instance, when creating a file is a bit much to only set a few variables). You can set them directly

in a command line, as follows:

cmake -D <var>[:<type>]=<value> -S <source tree> -B <build tree>

The :<type> section is optional (it is used by GUIs) and it accepts the following types: BOOL,

FILEPATH, PATH, STRING or INTERNAL. If you omit the type, CMake will check if the variable exists

in the CMakeCache.txt file and use its type; otherwise, it will be set to UNINITIALIZED.

One particularly important variable that we’ll often set through the command line specifies the

build type (CMAKE_BUILD_TYPE). Most CMake projects will use it on numerous occasions to decide

things such as the verbosity of diagnostic messages, the presence of debugging information, and

the level of optimization for created artifacts.

For single-configuration generators (such as GNU Make and Ninja), you should specify the build

type during the configuration phase and generate a separate build tree for each type of config.

Values used here are Debug, Release, MinSizeRel, or RelWithDebInfo. Missing this information

may have undefined effects on projects that rely on it for configuration.

Here’s an example:

cmake -S . -B ../build -D CMAKE_BUILD_TYPE=Release

Note that multi-configuration generators are configured during the build stage.

For diagnostic purposes, we can also list cache variables with the -L option:

cmake -L -S <source tree> -B <build tree>

First Steps with CMake18

Sometimes, project authors may provide insightful help messages with variables – to print them,

add the H modifier:

cmake -LH -S <source tree> -B <build tree>

cmake -LAH -S <source tree> -B <build tree>

Surprisingly, custom variables that are added manually with the -D option won’t be visible in

this printout unless you specify one of the supported types.

The removal of one or more variables can be done with the following option:

cmake -U <globbing_expr> -S <source tree> -B <build tree>

Here, the globbing expression supports the * (wildcard) and ? (any character) symbols. Be careful

when using these, as it is easy to erase more variables than intended.

Both the -U and -D options can be repeated multiple times.

Debugging and tracing
The cmake command can be run with a multitude of options that allow you to peek under the

hood. To get general information about variables, commands, macros, and other settings, run

the following:

cmake --system-information [file]

The optional file argument allows you to store the output in a file. Running it in the build tree

directory will print additional information about the cache variables and build messages from

the log files.

In our projects, we’ll be using message() commands to report details of the build process. CMake

filters the log output of these based on the current log level (by default, this is STATUS). The fol-

lowing line specifies the log level that we’re interested in:

cmake --log-level=<level>

Here, level can be any of the following: ERROR, WARNING, NOTICE, STATUS, VERBOSE, DEBUG, or

TRACE. You can specify this setting permanently in the CMAKE_MESSAGE_LOG_LEVEL cache variable.

Another interesting option allows you to display log context with each message() call. To debug

very complex projects, the CMAKE_MESSAGE_CONTEXT variable can be used like a stack. Whenever

your code enters an interesting context, you can name it descriptively. By doing this, our messages

will be decorated with the current CMAKE_MESSAGE_CONTEXT variable, like so:

[some.context.example] Debug message.

Chapter 1 19

The option to enable this kind of log output is as follows:

cmake --log-context <source tree>

We’ll discuss naming contexts and logging commands in more detail in Chapter 2, The CMake

Language.

If all else fails and we need to use the big guns, there is always trace mode, which will print every

executed command with its filename, the line number it is called from, and a list of passed argu-

ments. You can enable it as follows:

cmake --trace

As you can imagine, it’s not recommended for everyday use, as the output is very long.

Configuring presets
There are many, many options that users can specify to generate a build tree from your project.

When dealing with the build tree path, generator, cache, and environmental variable, it’s easy to

get confused or miss something. Developers can simplify how users interact with their projects

and provide a CMakePresets.json file that specifies some defaults.

To list all of the available presets, execute the following:

cmake --list-presets

You can use one of the available presets as follows:

cmake --preset=<preset> -S <source> -B <build tree>

To learn more, please refer to the Navigating the project files section of this chapter and Chapter

16, Writing CMake Presets.

Cleaning the build tree
Every now and then, we might need to erase generated files. This may be due to some changes

in the environment that were made between builds, or just to ensure that we are working on a

clean slate. We can go ahead and delete the build tree directory manually, or just add the --fresh

parameter to the command line:

cmake --fresh -S <source tree> -B <build tree>

CMake will then erase CMakeCache.txt and CMakeFiles/ in a system-agnostic way and generate

the buildsystem from scratch.

First Steps with CMake20

Building a project
After generating our build tree, we’re ready for the building a project action. Not only does CMake

know how to generate input files for many different builders but it can also run them for us pro-

viding appropriate arguments, as required by our project.

The syntax of build mode is:

cmake --build <build tree> [<options>] [-- <build-tool-options>]

In the majority of cases, it is enough to simply provide the bare minimum to get a successful build:

cmake --build <build tree>

The only required argument is the path to the generated build tree. This is the same path that was

passed with the -B argument in the generation stage.

CMake allows you to specify key build parameters that work for every builder. If you need to

provide special arguments to your chosen native builder, pass them at the end of the command

after the -- token:

cmake --build <build tree> -- <build tool options>

Let’s see what other options are available.

Running parallel builds
By default, many build tools will use multiple concurrent processes to leverage modern proces-

sors and compile your sources in parallel. Builders know the structure of project dependencies,

so they can simultaneously process steps that have their dependencies met to save users’ time.

You might want to override that setting if you’d like to build faster on a multi-core machine (or

to force a single-threaded build for debugging).

AVOID CALLING MAKE DIRECTLY

Many online sources recommend running GNU Make directly after the generation

stage by calling the make command directly. Because GNU Make is a default genera-

tor for Linux and macOS, this recommendation can work. However, use the method

described in this section instead, as it is generator-independent and is officially

supported across all platforms. As a result, you won’t need to worry about the exact

environment of every user of your application.

Chapter 1 21

Simply specify the number of jobs with either of the following options:

cmake --build <build tree> --parallel [<number of jobs>]

cmake --build <build tree> -j [<number of jobs>]

The alternative is to set it with the CMAKE_BUILD_PARALLEL_LEVEL environment variable. The

command-line option will override this variable.

Selecting targets to build and clean
Every project is made up of one or more parts, called targets (we’ll discuss these in the second part

of the book). Usually, we’ll want to build all available targets; however, on occasion, we might be

interested in skipping some or explicitly building a target that was deliberately excluded from

normal builds. We can do this as follows:

cmake --build <build tree> --target <target1> --target <target2> …

We can specify multiple targets to build by repeating the –target argument. Also, there’s a short-

hand version, -t <target>, that can be used instead.

Cleaning the build tree
One special target that isn’t normally built is called clean. Building it has the special effect of

removing all artifacts from the build directory, so everything can be created from scratch later.

You can start this process like this:

cmake --build <build tree> -t clean

Additionally, CMake offers a convenient alias if you’d like to clean first and then implement a

normal build:

cmake --build <build tree> --clean-first

This action is different from cleaning mentioned in the Cleaning the build tree section, as it only

affects target artifacts and nothing else (like the cache).

Configuring the build type for multi-configuration generators
So, we already know a bit about generators: they come in different shapes and sizes. Some of them

offer the ability to build both Debug and Release build types in a single build tree. Generators that

support this feature include Ninja Multi-Config, Xcode, and Visual Studio. Every other generator

is a single-configuration generator, and they require a separate build tree for every config type

we want to build.

First Steps with CMake22

Select Debug, Release, MinSizeRel, or RelWithDebInfo and specify it as follows:

cmake --build <build tree> --config <cfg>

Otherwise, CMake will use Debug as the default.

Debugging the build process
When things go bad, the first thing we should do is check the output messages. However, veteran

developers know that printing all the details all the time is confusing, so they often hide them by

default. When we need to peek under the hood, we can ask for far more detailed logs by telling

CMake to be verbose:

cmake --build <build tree> --verbose

cmake --build <build tree> -v

The same effect can be achieved by setting the CMAKE_VERBOSE_MAKEFILE cached variable.

Installing a project
When artifacts are built, users can install them on the system. Usually, this means copying files

into the correct directories, installing libraries, or running some custom installation logic from

a CMake script.

The syntax of installation mode is:

cmake --install <build tree> [<options>]

As with other modes of operation, CMake requires a path to a generated build tree:

cmake --install <build tree>

The install action also has plenty of additional options. Let’s see what they can do.

Choosing the installation directory
We can prepend the installation path with a prefix of our choice (for example, when we have

limited write access to some directories). The /usr/local path that is prefixed with /home/user

becomes /home/user/usr/local.

The signature for this option is as follows:

cmake --install <build tree> --install-prefix <prefix>

If you use CMake 3.21 or older, you’ll have to use a less explicit option:

cmake --install <build tree> --prefix <prefix>

Chapter 1 23

Note that this won’t work on Windows, as paths on this platform usually start with the drive letter.

Installation for multi-configuration generators
Just like in the build stage, we can specify which build type we want to use for our installation

(for more details, please refer to the Building a project section). The available types include Debug,

Release, MinSizeRel, and RelWithDebInfo. The signature is as follows:

cmake --install <build tree> --config <cfg>

Selecting components to install
As a developer, you might choose to split your project into components that can be installed inde-

pendently. We’ll discuss the concept of components in further detail in Chapter 14, Installing and

Packaging. For now, let’s just assume they represent sets of artifacts that don’t need to be used in

every case. This might be something like application, docs, and extra-tools.

To install a single component, use the following option:

cmake --install <build tree> --component <component>

Setting file permissions
If the installation is performed on a Unix-like platform, you can specify default permissions for

the installed directories with the following option, using the format of u=rwx,g=rx,o=rx:

cmake --install <build tree>

 --default-directory-permissions <permissions>

Debugging the installation process
Similarly to the build stage, we can also choose to view a detailed output of the installation stage.

To do this, use any of the following:

cmake --install <build tree> --verbose

cmake --install <build tree> -v

The same effect can be achieved if the VERBOSE environment variable is set.

First Steps with CMake24

Running a script
CMake projects are configured using CMake’s custom language. It’s cross-platform and quite

powerful. Since it’s already there, why not make it available for other tasks? Sure enough, CMake

can run standalone scripts (more on that in the Discovering scripts and modules section), like so:

cmake [{-D <var>=<value>}...] -P <cmake script file>

 [-- <unparsed options>...]

Running such a script won’t run any configuration or generate stages, and it won’t affect the cache.

There are two ways you can pass values to this script:

• Through variables defined with the -D option

• Through arguments that can be passed after a -- token

CMake will create CMAKE_ARGV<n> variables for all arguments passed to the script with the latter

(including the -- token).

Running a command-line tool
On rare occasions, we might need to run a single command in a platform-independent way – per-

haps copy a file or compute a checksum. Not all platforms were created equal, so not all commands

are available in every system (or they have been named differently).

CMake offers a mode in which most common commands can be executed in the same way across

platforms. Its syntax is:

cmake -E <command> [<options>]

As the use of this particular mode is fairly limited, we won’t cover it in depth. However, if you’re

interested in the details, I recommend calling cmake -E to list all the available commands. To sim-

ply get a glimpse of what’s on offer, CMake 3.26 supports the following commands: capabilities,

cat, chdir, compare_files, copy, copy_directory, copy_directory_if_different, copy_if_

different, echo, echo_append, env, environment, make_directory, md5sum, sha1sum, sha224sum,

sha256sum, sha384sum, sha512sum, remove, remove_directory, rename, rm, sleep, tar, time, touch,

touch_nocreate, create_symlink, create_hardlink, true, and false.

If a command you’d like to use is missing or you need a more complex behavior, consider wrapping

it in a script and running it in -P mode.

Chapter 1 25

Running a workflow preset
We mentioned in the How does it work? section that building with CMake has three stages: configure,

generate, and build. Additionally, we can also run automated tests and even create redistribut-

able packages with CMake. Usually, users need to manually execute every such step separately

by calling the appropriate cmake action through the command line. However, advanced projects

can specify workflow presets that bundle multiple steps into a single action that can be execut-

ed with just one command. For now, we’ll only mention that users can get the list of available

presets by running:

cmake ––workflow --list-presets

They can execute a workflow preset with:

cmake --workflow --preset <name>

This will be explained in depth in Chapter 16, Writing CMake Presets.

Getting help
It isn’t a surprise that CMake offers extensive help that is accessible through its command line.

The syntax of help mode is:

cmake --help

This will print the list of the possible topics to dive deeper into and explain which parameters

need to be added to the command to get more help.

CTest command line
Automated testing is very important in order to produce and maintain high-quality code. The

CMake suite comes with a dedicated command-line tool for this purpose called CTest. It is provided

to standardize the way tests are run and reported. As a CMake user, you don’t need to know the

details of testing this particular project: what framework is used or how to run it. CTest provides

a convenient interface to list, filter, shuffle, retry, and timebox test runs.

To run tests for a built project, we just need to call ctest in the generated build tree:

$ ctest

Test project /tmp/build

Guessing configuration Debug

 Start 1: SystemInformationNew

1/1 Test #1: SystemInformationNew Passed 3.19 sec

First Steps with CMake26

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 3.24 sec

We devoted an entire chapter to this subject: Chapter 11, Testing Frameworks.

CPack command line
After we have built and tested our amazing software, we are ready to share it with the world. The

rare few power users are completely fine with the source code. However, the vast majority of the

world uses precompiled binaries for convenience and time-saving reasons.

CMake doesn’t leave you stranded here; it comes with batteries included. CPack is a tool that will

create redistributable packages for various platforms: compressed archives, executable installers,

wizards, NuGet packages, macOS bundles, DMG packages, RPMs, and more.

CPack works in a very similar way to CMake: it is configured with the CMake language and has

many package generators to pick from (not to be confused with CMake buildsystem generators).

We’ll go through all the details in Chapter 14, Installing and Packaging, as this tool is meant to be

used by mature CMake projects.

CMake GUI
CMake for Windows comes with a GUI version to configure the building process of previously

prepared projects. For Unix-like platforms, there is a version built with Qt libraries. Ubuntu pro-

vides it in the cmake-qt-gui package.

Chapter 1 27

To access the CMake GUI, run the cmake-gui executable:

Figure 1.3: The CMake GUI – the configuring stage for a buildsystem using a generator for
Visual Studio 2019

The GUI application is a convenience for users of your application: it can be useful for those who

aren’t familiar with the command line and would prefer a graphical interface.

USE COMMAND-LINE TOOLS INSTEAD

I would definitely recommend the GUI to end users, but for programmers like you,

I suggest avoiding any manual blocking steps that require clicking on forms every

time you build your programs. This is especially advantageous in mature projects,

where entire builds can be fully executed without any user interaction.

First Steps with CMake28

CCMake command line
The ccmake executable is an interactive text user interface for CMake on Unix-like platforms (it’s

unavailable for Windows unless explicitly built). I’m mentioning it here so you know what it is

when you see it (Figure 1.4, but as with the GUI, developers will benefit more from editing the

CMakeCache.txt file directly.

Figure 1.4: The configuring stage in ccmake

Having this out of the way, we have concluded the basic introduction to the command line of the

CMake suite. It’s time to discover the structure of a typical CMake project.

Navigating project directories and files
Quite a lot of files and directories make up CMake projects. Let’s get a general idea of what each

one does so we can start tinkering with them. There are several general categories:

• Of course, we’ll have project files that we, as developers, prepare and change as our proj-

ect grows.

• There will be files that CMake generates for itself, and even though they will contain CMake

language commands, they aren’t meant for developers to edit. Any manual changes made

there will be overwritten by CMake.

Chapter 1 29

• Some files are meant for advanced users (as in: not project developers) to customize how

CMake builds the project to their individual needs.

• Finally, there are some temporary files that provide valuable information in specific con-

texts.

This section will also suggest which files you can put in the ignore file of your Version Control

System (VCS).

The source tree
This is the directory where your project will live (it is also called the project root). It contains all

of the C++ sources and CMake project files.

Here are the most important takeaways from this directory:

• It requires a CMakeLists.txt configuration file.

• The path to this directory is given by the user with a -S argument of the cmake command

when generating a buildsystem.

• Avoid hardcoding any absolute paths to the source tree in your CMake code – users of your

software will store the project in another path.

It’s a good idea to initialize a repository in this directory, perhaps using a VCS like Git.

The build tree
CMake creates this directory in a path specified by the user. It will store the buildsystem and ev-

erything that gets created during the build: the artifacts of the project, the transient configuration,

the cache, the build logs, and the output of your native build tool (like GNU Make). Alternative

names for this directory include build root and binary tree.

Key things to remember:

• Your build configuration (buildsystem) and build artifacts will be created here (such as

binary files, executables, and libraries, along with object files and archives used for final

linking).

• CMake recommends that this directory be placed outside the source tree directory (a

practice known as out-of-source builds). This way, we can prevent the pollution of our

project (in-source builds).

• It is specified with -B to the cmake command when generating a buildsystem.

First Steps with CMake30

• This directory isn’t meant as a final destination for generated files. Rather, it’s recommend-

ed that your projects include an installation stage that copies the final artifacts where they

should be in the system and removes all temporary files used for building.

Don’t add this directory to your VCS – every user picks one for themselves. If you have a good reason

to do an in-source build, make sure to add this directory to the VCS ignore file (like .gitignore).

Listfiles
Files that contain the CMake language are called listfiles and can be included one in another by

calling include() and find_package(), or indirectly with add_subdirectory(). CMake doesn’t

enforce any naming rules for these files but, by convention, they have a .cmake extension.

Project file
CMake projects are configured with a CMakeLists.txt listfile (notice that due to historical rea-

sons, this file has an unconventional extension). This file is required at the top of the source tree

of every project and is the first to be executed in the configuration stage.

A top-level CMakeLists.txt should contain at least two commands:

• cmake_minimum_required(VERSION <x.xx>): Sets an expected version of CMake and tells

CMake how to handle legacy behaviors with policies

• project(<name> <OPTIONS>): Names the project (the provided name will be stored in the

PROJECT_NAME variable) and specifies the options to configure it (more on this in Chapter

2, The CMake Language)

As your software grows, you might want to partition it into smaller units that can be configured

and reasoned about separately. CMake supports this through the notion of subdirectories with

their own CMakeLists.txt files. Your project structure might look similar to the following example:

myProject/CMakeLists.txt

myProject/api/CMakeLists.txt

myProject/api/api.h

myProject/api/api.cpp

A very simple top-level CMakeLists.txt file can then be used to bring it all together:

cmake_minimum_required(VERSION 3.26)

project(app)

message("Top level CMakeLists.txt")

add_subdirectory(api)

Chapter 1 31

The main aspects of the project are covered in the top-level file: managing the dependencies, stat-

ing the requirements, and detecting the environment. We also have an add_subdirectory(api)

command to include another CMakeListst.txt file from the api subdirectory to perform steps

that are specific to the API part of our application.

Cache file
Cache variables will be generated from the listfiles and stored in CMakeCache.txt when the con-

figure stage is run for the first time. This file resides in the root of the build tree and has a fairly

simple format (some lines removed for brevity):

This is the CMakeCache file.

For build in directory: /root/build tree

It was generated by CMake: /usr/local/bin/cmake

The syntax for the file is as follows:

KEY:TYPE=VALUE

KEY is the name of a variable in the cache.

TYPE is a hint to GUIs for the type of VALUE, DO NOT EDIT

 #TYPE!.

VALUE is the current value for the KEY.

########################

EXTERNAL cache entries

########################

Flags used by the CXX compiler during DEBUG builds.

CMAKE_CXX_FLAGS_DEBUG:STRING=/MDd /Zi /Ob0 /Od /RTC1

... more variables here ...

########################

INTERNAL cache entries

########################

Minor version of cmake used to create the current loaded

 cache

CMAKE_CACHE_MINOR_VERSION:INTERNAL=19

... more variables here ...

First Steps with CMake32

As you can see from the header comments, this format is pretty self-explanatory. Cache entries

in the EXTERNAL section are meant for users to modify, while the INTERNAL section is managed

by CMake.

Here are a couple of key takeaways to bear in mind:

• You can manage this file manually, by calling cmake (see Options for caching in the Mastering

the command line section of this chapter), or through ccmake or cmake-gui.

• You can reset the project to its default configuration by deleting this file; it will be regen-

erated from the listfiles.

Cache variables can be read and written from the listfiles. Sometimes, variable reference eval-

uation is a bit complicated; we will cover that in more detail in Chapter 2, The CMake Language.

Package definition file
A big part of the CMake ecosystem is the external packages that projects can depend on. They

provide libraries and tools in a seamless, cross-platform way. Package authors that want to pro-

vide CMake support will ship it with a CMake package configuration file.

We’ll learn how to write those files in Chapter 14, Installing and Packaging. Meanwhile, here’s a

few interesting details to bear in mind:

• Config-files (original spelling) contain information regarding how to use the library bi-

naries, headers, and helper tools. Sometimes, they expose CMake macros and functions

that can be used in your project.

• Config-files are named <PackageName>-config.cmake or <PackageName>Config.cmake.

• Use the find_package() command to include packages.

If a specific version of the package is required, CMake will check this against the associated

<PackageName>-config-version.cmake or <PackageName>ConfigVersion.cmake.

If a vendor doesn’t provide a config file for the package, sometimes, the configuration is bundled

with the CMake itself or can be provided in the project with Find-module (original spelling).

Generated files
Many files are generated in the build tree by the cmake executable in the generation stage. As

such, they shouldn’t be edited manually. CMake uses them as a configuration for the cmake install

action, CTest, and CPack.

Chapter 1 33

Files that you may encounter are:

• cmake_install.cmake

• CTestTestfile.cmake

• CPackConfig.cmake

If you’re implementing an in-source build, it’s probably a good idea to add them to the VCS

ignore file.

JSON and YAML files
Other formats used by CMake are JavaScript Object Notation (JSON) and Yet Another Markup

Language (YAML). These files are introduced as an interface to communicate with external tools

(like IDEs) or to provide configuration that can be easily generated and parsed.

Preset files
The advanced configuration of the projects can become a relatively busy task when we need to be

specific about things such as cache variables, chosen generators, the path of the build tree, and

more – especially when we have more than one way of building our project. This is where the

presets come in – instead of manually configuring these values through the command line, we can

just provide a file that stores all the details and ship it with the project. Since CMake 3.25, presets

also allow us to configure workflows, which tie stages (configure, build, test, and package) into

a named list of steps to execute.

As mentioned in the Mastering the command line section of this chapter, users can choose presets

through the GUI or use the command --list-presets and select a preset for the buildsystem

with the --preset=<preset> option.

Presets are stored in two files:

• CMakePresets.json: This is meant for project authors to provide official presets.

• CMakeUserPresets.json: This is dedicated to users who want to customize the project

configuration to their liking (you can add it to your VCS ignore file).

Presets are not required in projects and only become useful in advanced scenarios. See Chapter

16, Writing CMake Presets, for details.

First Steps with CMake34

File-based API
CMake 3.14 introduced an API that allows external tools to query the buildsystem information:

paths to generated files, cache entries, toolchains, and such. We only mention this very advanced

topic to avoid confusion if you come across a file-based API phrase in the documentation. The

name suggests how it works: a JSON file with a query has to be placed in a special path inside

the build tree. CMake will read this file during the buildsystem generation and write a response

to another file, so it can be parsed by external applications.

The file-based API was introduced to replace a deprecated mechanism called server mode (or

cmake-server), which was finally removed in CMake 3.26.

Configure log
Since version 3.26, CMake will provide a structured log file for really advanced debugging of the

configure stage at:

<build tree>/CMakeFiles/CMakeConfigureLog.yaml

It’s one of these features that you don’t normally need to pay attention to – until you do.

Ignoring files in Git
There are many VCSs; one of the most popular out there is Git. Whenever we start a new project,

it is good to make sure that we only add the necessary files to the repository. Project hygiene is

easier to maintain if we specify unwanted files in the .gitignore file. For example, we might

exclude files that are generated, user-specific, or temporary.

Git will automatically skip them when forming new commits. Here’s the file that I use in my

projects:

ch01/01-hello/�gitignore

CMakeUserPresets.json

If in-source builds are used, exclude their output like so:

build_debug/

build_release/

Generated and user files

**/CMakeCache.txt

**/CMakeUserPresets.json

**/CTestTestfile.cmake

Chapter 1 35

**/CPackConfig.cmake

**/cmake_install.cmake

**/install_manifest.txt

**/compile_commands.json

Now you hold a map to the sea of project files. Some files are very important and you will use

them all the time – others, not so much. While it might seem like a waste to learn about them,

it can be invaluable to know where not to look for answers. In any case, one last question for this

chapter remains: what other self-contained units can you create with CMake?

Discovering scripts and modules
CMake is primarily focused on projects built to produce artifacts that get consumed by other

systems (such as CI/CD pipelines and test platforms, or deployed to machines or stored in artifact

repositories). However, there are two other concepts in CMake that use its language: scripts and

modules. Let’s explain what they are and how they differ.

Scripts
CMake offers a platform-agnostic programming language, which comes with many useful com-

mands. Scripts written in it can be bundled with a bigger project or be completely independent.

Think of it as a consistent way to do cross-platform work. Normally, to perform a task, you would

have to create a separate Bash script for Linux and separate batch files or PowerShell scripts for

Windows, and so on. CMake abstracts this away so you can have one file that works fine on all

platforms. Sure, you could use external tools such as Python, Perl, or Ruby scripts, but that’s an

added dependency and will increase the complexity of your C/C++ projects. So why introduce

another language, when most of the time, you can get the job done with something far simpler?

Use CMake!

We have already learned from the Mastering the command line section that we can execute scripts

using the -P option: cmake -P script.cmake.

But what are the actual requirements for the script file that we want to use? Not that big: the

script can be as complex as you like, or just an empty file. It is still recommended to call the

cmake_minimum_required() command at the beginning of every script though. This command

tells CMake which policies should be applied to subsequent commands in this project (more in

Chapter 4, Setting Up Your First CMake Project).

First Steps with CMake36

Here’s an example of a simple script:

ch01/02-script/script�cmake

An example of a script

cmake_minimum_required(VERSION 3.26.0)

message("Hello world")

file(WRITE Hello.txt "I am writing to a file")

When running scripts, CMake won’t execute any of the usual stages (such as configuration or

generation), and it won’t use the cache, since there is no concept of source tree or build tree in

scripts. This means that project-specific CMake commands are not available/usable in scripting

mode. That’s all. Happy scripting!

Utility modules
CMake projects can use external modules to enhance their functionality. Modules are written

in the CMake language and contain macro definitions, variables, and commands that perform

all kinds of functions. They range from quite complex scripts (like those provided by CPack and

CTest) to fairly simple ones, such as AddFileDependencies or TestBigEndian.

The CMake distribution comes packed with over 80 different utility modules. If that’s not enough,

you can download more from the internet by browsing curated lists, such as the one found at

https://github.com/onqtam/awesome-cmake, or write your own module from scratch.

To use a utility module, we need to call an include(<MODULE>) command. Here’s a simple project

showing this in action:

ch01/03-module/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(ModuleExample)

include (TestBigEndian)

test_big_endian(IS_BIG_ENDIAN)

if(IS_BIG_ENDIAN)

message("BIG_ENDIAN")

else()

message("LITTLE_ENDIAN")

endif()

We’ll learn what modules are available as they become relevant to the subject at hand. If you’re

curious, a full list of bundled modules can be found at https://cmake.org/cmake/help/latest/

manual/cmake-modules.7.html.

https://github.com/onqtam/awesome-cmake
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

Chapter 1 37

Find-modules
In the Package definition File section, I mentioned that CMake has a mechanism to find files be-

longing to external dependencies that don’t support CMake and don’t provide a CMake package

config-file. That’s what find-modules are for. CMake provides over 150 find-modules that are

able to locate those packages if they are installed in the system. As was the case with utility

modules, there are plenty more find-modules available online. As a last resort, you can always

write your own.

You can use them by calling the find_package() command and providing the name of the package

in question. Such a find-module will then play a little game of hide and seek and check all known

locations of the software it is looking for. If the files are found, variables with their path will be

defined (as specified in that module’s manual). Now, CMake can build against that dependency.

For example, the FindCURL module searches for a popular Client URL library and defines the fol-

lowing variables: CURL_FOUND, CURL_INCLUDE_DIRS, CURL_LIBRARIES, and CURL_VERSION_STRING.

We will cover find-modules in more depth in Chapter 9, Managing Dependencies in CMake.

Summary
Now you understand what CMake is and how it works; you learned about the key components

of the CMake tool family and how it is installed on a variety of systems. Like a true power user,

you know all the ways in which to run CMake through the command line: buildsystem genera-

tion, building a project, installing, running scripts, command-line tools, and printing help. You

are aware of the CTest, CPack, and GUI applications. This will help you to create projects with

the right perspective for users and other developers. Additionally, you learned what makes up a

project: directories, listfiles, configs, presets, and helper files, along with what to ignore in your

VCS. Finally, you took a sneak peek at other non-project files: standalone scripts and two kinds

of modules – utility modules and find-modules.

In the next chapter, we will learn how to use the CMake programming language. This will allow

you to write your own listfiles and will open the door to your first script, project, and module.

Further reading
For more information, you can refer to the following resources:

• The official CMake web page and documentation:

https://cmake.org/

https://cmake.org/

First Steps with CMake38

• Single-configuration generators:

https://cgold.readthedocs.io/en/latest/glossary/single-config.html

• The separation of stages in the CMake GUI:

https://stackoverflow.com/questions/39401003/

Leave a review!
Enjoying this book? Help readers like you by leaving an Amazon review. Scan the QR code below

to get a free eBook of your choice.

https://cgold.readthedocs.io/en/latest/glossary/single-config.html
https://stackoverflow.com/questions/39401003/

2
The CMake Language

Writing in the CMake language is trickier than one might expect. When you read a CMake listfile

for the first time, you may be under the impression that the language in it is so simple that it can

be just practiced without any theory. You may then attempt to introduce changes and experiment

with the code without a thorough understanding of how it actually works. I wouldn’t blame

you. We programmers are usually very busy, and build-related issues aren’t usually something

that sounds exciting to invest lots of time in. In an effort to go fast, we tend to make gut-based

changes hoping they just might do the trick. This approach to solving technical problems is called

voodoo programming.

The CMake language appears trivial: after introducing our small extension, fix, hack, or one-liner,

we suddenly realize that something isn’t working. Usually, the duration spent on debugging ex-

ceeds the time required for comprehending the topic itself. Luckily, this won’t be our fate because

this chapter covers most of the critical knowledge needed to use the CMake language in practice.

In this chapter, we’ll not only learn about the building blocks of the CMake language – comments,

commands, variables, and control structures – but we’ll also understand the necessary back-

ground and try out examples following the latest practices.

CMake puts you in a bit of a unique position. On one hand, you perform the role of a build engi-

neer and must have a comprehensive grasp of compilers, platforms, and all related aspects. On

the other hand, you’re a developer who writes the code that generates a buildsystem. Crafting

high-quality code is a challenging task that demands a multifaceted approach. Not only must

the code be functional and legible but it should also be easy to analyze, extend, and maintain.

The CMake Language40

To conclude, we will present a selection of the most practical and frequently utilized commands in

CMake. Commands that are also commonly used, but not to the same extent, will be placed in Ap-

pendix, Miscellaneous Commands (reference guides for the string, list, file, and math commands).

In this chapter, we’re going to cover the following main topics:

• The basics of the CMake language syntax

• Working with variables

• Using lists

• Understanding control structures in CMake

• Exploring the frequently used commands

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch02.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path at

which your source code is located.

The basics of the CMake language syntax
Composing CMake code is very much like writing in any other imperative language: lines are

executed from top to bottom and from left to right, occasionally stepping into an included file or

a called function. The starting point of execution is determined by the mode (see the Mastering

the command line section in Chapter 1, First Steps with CMake), either from the root file of the source

tree (CMakeLists.txt) or a .cmake script file provided as an argument to cmake.

Since CMake scripts offer extensive support for the CMake language, except for project-related

features, we will utilize them to practice CMake syntax in this chapter. Once we become proficient

in composing simple listfiles, we can advance to creating actual project files, which we will cover

in Chapter 4, Setting Up Your First CMake Project.

As a reminder, scripts can be run with the following command: cmake -P script.cmake.

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch02
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch02

Chapter 2 41

Everything in a CMake listfile is either a comment or a command invocation.

Comments
Just like in C++, there are two kinds of comments: single-line comments and bracket (multiline)

comments. But unlike in C++, bracket comments can be nested. Single-line comments start with

a hash sign, #:

they can be placed on an empty line

message("Hi"); # or after a command like here.

Multiline bracket comments get their name from their symbol – they start with # followed by

opening square bracket [, any number of equal signs = (which can also include 0), and another

square bracket [. To close a bracket comment, use the same number of equal signs and reverse

the brackets]:

#[=[

bracket comment

 #[[

 nested bracket comment

 #]]

#]=]

You can deactivate a multiline comment swiftly by adding another # to the initial line of the

bracket comment, as demonstrated in the following:

##[=[this is a single-line comment now

no longer commented

 #[[

 still, a nested comment

 #]]

#]=] this is a single-line comment now

Knowing how to use comments is definitely useful, but it raises another question: when should

we do it? Since writing listfiles is essentially programming, it is a good idea to bring our best

coding practices to them as well.

CMake supports 7-bit ASCII text files for portability across all platforms. You can use

both \n or \r\n line endings. CMake versions above 3.2 support UTF-8 and UTF-16

with optional byte-order markers (BOMs).

The CMake Language42

Code that follows such practices is often called clean code – a term used over the years by software

development gurus like Robert C. Martin, Martin Fowler, and many other authors.

There is often a lot of controversy surrounding which practices are considered beneficial or detri-

mental, and as you might expect, comments have not been exempt from these debates. Everything

should be judged on a case-by-case basis, but generally agreed-upon guidelines say that good

comments provide at least one of the following:

• Information: They can untangle complexities such as regex patterns or formatting strings.

• Intent: They can explain the intent of the code when it is not obvious from the imple-

mentation or interface.

• Clarification: They can explain concepts that can’t be easily refactored or changed.

• Warnings of consequences: They can provide warnings, especially around code that can

break other things.

• Amplification: They can underline the importance of an idea that is hard to express in code.

• Legal clauses: They can add this necessary evil, which is usually not the domain of a

programmer.

It’s best to avoid comments by applying better naming, refactoring or correcting your code. Omit

comments that are:

• Mandated: These are added for completeness but they are not really important.

• Redundant: These repeat what is already clearly written in the code.

• Misleading: These could be outdated or incorrect if they don’t follow code changes.

• Journal: These note what has been changed and when (use Version Control Systems

(VCS) for this instead).

• Dividers: These mark sections.

If you can, avoid adding comments, adopt better naming practices, and refactor or correct your

code. Crafting elegant code is a challenging task but it enhances the reader’s experience. Since

we spend more time reading code than composing it, we should always strive to write code that

is easy to read, instead of just trying to finish it quickly. I recommend checking out the Further

reading section at the end of this chapter for some good references on clean code. If you’re interested

in comments, you’ll find a link to my YouTube video Which comments in your code ARE GOOD?

touching on this subject in depth.

Chapter 2 43

Command invocations
Time for some action! Invoking commands is the bread and butter of CMake listfiles. In order to

run a command, you must specify its name followed by parentheses, in which you can enclose a

list of command arguments separated by whitespace.

Figure 2.1: An example of a command

Command names aren’t case-sensitive, but there is a convention in the CMake community to use

snake_case (that is, lowercase words joined with underscores). You can also define your own com-

mands, which we’ll cover in the Understanding control structures in CMake section of this chapter.

One significant difference between CMake and C++ is that command invocations in CMake are

not expressions. This means that you cannot pass another command as an argument to a called

command because everything inside the parentheses is treated as an argument for that specific

command.

CMake commands are also not followed with semicolons. This is because each line of source code

can only contain one command.

A command can be optionally followed by a comment:

command(argument1 "argument2" argument3) # comment

command2() #[[multiline comment

But not the other way around:

#[[bracket

]] command()

As we said earlier, everything in a CMake listfile is either a comment or a command invocation.

CMake syntax really is that simple, and for the most part, it’s a good thing. While there are some

constraints (for instance, you can’t increment a counter variable using an expression), for the

most part, these limitations are mostly acceptable because CMake is not intended to be a gen-

eral-purpose language.

The CMake Language44

CMake provides commands to manipulate variables, direct the flow of execution, modify files, and

much more. To make things easier, we will be introducing the relevant commands as we progress

through different examples. These commands can be categorized into two groups:

• Scripting commands: These are always available and they change the state of the com-

mand processor and access variables, and affect other commands and the environment.

• Project commands: These are available in projects and they manipulate the project state

and build targets.

Virtually every command relies on other elements of the language in order to function: variables,

conditional statements, and, most importantly, command-line arguments. Now, let’s explore

how we can utilize them.

Command arguments
A number of commands in CMake necessitate whitespace-separated arguments to configure their

behavior. As demonstrated in Figure 2.1, the quotation marks used around the arguments can

be quite peculiar. While certain arguments require quotes, others do not. What’s the reasoning

behind this distinction?

Under the hood, the only data type recognized by CMake is a string. This is why every com-

mand expects zero or more strings for its arguments. CMake will evaluate every argument to a

static string and then pass them into the command. Evaluating means string interpolation, or

substituting parts of a string with another value. This can mean replacing the escape sequences,

expanding the variable references (also called variable interpolation), and unpacking lists.

Depending on the context, we might want to enable such evaluation as needed. For that reason,

CMake offers three types of arguments:

• Bracket arguments

• Quoted arguments

• Unquoted arguments

Every argument type in CMake has its own peculiarities and provides a distinct level of evaluation.

Bracket arguments
Bracket arguments aren’t evaluated because they are used to pass multiline strings, verbatim, as

a single argument to commands. This means that such an argument will include whitespace in

the form of tabs and newlines.

Chapter 2 45

Bracket arguments are formatted identically to comments. They are initiated with [=[and con-

cluded with]=], and the number of equal signs in both the opening and closing tokens must

match (omitting equal signs is permissible as long as they match). The only difference from the

comments is that bracket arguments cannot be nested.

Here’s an example of the use of such an argument with the message() command, which prints

all passed arguments to the screen:

ch02/01-arguments/bracket�cmake

message([[multiline

 bracket

 argument

]])

message([==[

 because we used two equal-signs "=="

 this command receives only a single argument

 even if it includes two square brackets in a row

 { "petsArray" = [["mouse","cat"],["dog"]] }

]==])

In the preceding example, we can see different forms of bracket arguments. Note how putting

closing tags on a separate line in the first call introduces an empty line in the output:

$ cmake -P ch02/01-arguments/bracket.cmake

multiline

bracket

argument

 because we used two equal-signs "=="

 following is still a single argument:

 { "petsArray" = [["mouse","cat"],["dog"]] }

The second form is useful when we’re passing text that contains double brackets (]]) (highlighted

in the code snippet), as they won’t be interpreted as marking the end of the argument.

These kinds of bracket arguments have limited use – typically, they contain lengthier blocks of

text with messages that are displayed to the user. In most cases, we’ll need something more

dynamic, such as quoted arguments.

The CMake Language46

Quoted arguments
Quoted arguments resemble a regular C++ string – these arguments group together multiple

characters, including whitespace, and they will expand escape sequences. Like C++ strings, they

are opened and closed with a double quote character, ", so to include a quote character within

the output string, you have to escape it with a backslash, \". Other well-known escape sequences

are supported as well: \\ denotes a literal backslash, \t is a tab character, \n is a newline, and \r

is a carriage return.

This is where the similarities with C++ strings end. Quoted arguments can span multiple lines,

and they will interpolate variable references. Think of them as having a built-in sprintf function

from C or a std::format function from C++20. To insert a variable reference to your argument,

wrap the name of the variable in a token like so: ${name}. We’ll talk more about variable references

in the Working with variables section of this chapter.

Can you guess how many lines will be in the output of the following script?

ch02/01-arguments/quoted�cmake

message("1. escape sequence: \" \n in a quoted argument")
message("2. multi...
 line")
message("3. and a variable reference: ${CMAKE_VERSION}")

Let’s see it in action:

$ cmake -P ch02/01-arguments/quoted.cmake

1. escape sequence: "

in a quoted argument

2. multi...

line

3. and a variable reference: 3.26.0

That’s right – we have one escaped quote character, one newline escape sequence, and a literal

newline. We also accessed a built-in CMAKE_VERSION variable, which we can see interpolated on

the last line. Let’s take a look at how CMake treats arguments without quotes.

Unquoted arguments
In the programming world, we have gotten used to the fact that strings must be delimited in

one form or another, for example, by using single quotes, double quotes, or a backslash. CMake

deviates from this convention and introduces unquoted arguments. We might argue that dropping

delimiters makes the code easier to read. Is that true? I’ll let you form your own opinion.

Chapter 2 47

Unquoted arguments evaluate both escape sequences and variable references. However, be careful

with semicolons (;) as, in CMake, semicolons are treated as list delimiters. If an argument con-

tains a semicolon, CMake will split it into multiple arguments. If you need to use them, escape

every semicolon with a backslash, \;. We’ll talk more about semicolons in the Using lists section

of this chapter.

You may find that these arguments are the most perplexing to work with, so here’s an illustration

to help clarify how these arguments are partitioned:

Figure 2.2: Escape sequences cause separate tokens to be interpreted as a single argument

It’s always worth being careful with unquoted arguments. Some CMake commands require a

specific number of arguments and ignore any overhead. If your arguments become accidentally

separated, you’ll get hard-to-debug errors.

Unquoted arguments cannot contain unescaped *quotes (“), hashes (#), and backslashes (\).

And if that’s not enough to remember, parentheses, (), are allowed only if they form correct,

matching pairs. That is, you’ll start with an opening parenthesis and close it before closing the

command argument list.

Here are some examples that demonstrate the rules we have discussed:

ch02/01-arguments/unquoted�cmake

message(a\ single\ argument)

message(two arguments)

message(three;separated;arguments)

message(${CMAKE_VERSION}) # a variable reference

message(()()()) # matching parentheses

What will be the output of the preceding? Let’s have a look:

$ cmake -P ch02/01-arguments/unquoted.cmake

a single argument

twoarguments

threeseparatedarguments

3.16.3

()()()

The CMake Language48

Even a simple command such as message() is very particular about separated unquoted argu-

ments. The space in a single argument was correctly printed when it was explicitly escaped.

However, twoarguments and threeseparatearguments were glued together, since message()

doesn’t add any spaces on its own.

Given all these complexities, when is it beneficial to use unquoted arguments? Some CMake

commands allow optional arguments that are preceded by a keyword to signify that an optional

argument will be provided. In such instances, using an unquoted argument for the keyword can

make the code more legible. For example:

project(myProject VERSION 1.2.3)

In this command, the VERSION keyword and the following argument 1.2.3 are optional. As you

can see, both are left unquoted for readability. Note that keywords are case-sensitive.

Now that we understand how to deal with the complexities and quirks of CMake arguments, we

are ready to tackle the next interesting subject – working with all kinds of variables in CMake.

Working with variables
Variables in CMake are a surprisingly complex subject. Not only are there three categories of

variables – normal, cache, and environment – but they also reside in different variable scopes,

with specific rules on how one scope affects the other. Very often, a poor understanding of these

rules becomes a source of bugs and headaches. I recommend you study this section with care

and make sure you understand all of the concepts before moving on.

Let’s start with some key facts about variables in CMake:

• Variable names are case-sensitive and can include almost any character.

• All variables are stored internally as strings, even if some commands can interpret them

as values of other data types (even lists!).

The basic variable manipulation commands are set() and unset(), but there are other commands

that can alter variable values, such as string() and list().

To declare a normal variable, we simply call set(), providing its name and the value:

ch02/02-variables/set�cmake

set(MyString1 "Text1")

set([[My String2]] "Text2")

Chapter 2 49

set("My String 3" "Text3")

message(${MyString1})

message(${My\ String2})

message(${My\ String\ 3})

As you can see, the use of brackets and quoted arguments allows for spaces to be included in

the variable name. However, when referencing it later, we have to escape the whitespace with

a backslash, \. For that reason, it is recommended to use only alphanumeric characters, dashes

(-), and underscores (_) in variable names.

Also avoid reserved names (in uppercase, lowercase, or mixed case) that begin with any of the

following: CMAKE_, _CMAKE_, or an underscore, _, followed by the name of any CMake command.

To unset a variable, we can use unset() in the following way: unset(MyString1).

What would happen if we were to provide a variable wrapped in the ${} syntax to the set() command?

To answer that, we’ll need to understand variable references better.

Variable references
I already mentioned references briefly in the Command arguments section, as they’re evaluated

for quoted and unquoted arguments. We learned that to create a reference to a defined variable,

we need to use the ${} syntax, like so: message(${MyString1}).

On evaluation, CMake will traverse the variable scopes from the innermost scope to the outermost

scope and replace ${MyString1} with a value, or an empty string if no variable is found (CMake

won’t produce any error messages). This process is also called variable evaluation, expansion, or

interpolation.

Interpolation is performed in an inside-out manner, beginning from the innermost curly brace

pair and moving outward. For example, if the ${MyOuter${MyInner}} reference is encountered:

1. CMake will try to evaluate MyInner first, rather than searching for a variable named

MyOuter${MyInner}.

2. If the MyInner variable is successfully expanded, CMake will repeat the expansion process

using the newly formed reference until no further expansion is possible.

The set() command accepts a plain text variable name as its first argument, but the

message() command uses a variable reference wrapped in the ${} syntax.

The CMake Language50

To avoid receiving unexpected outcomes, it is recommended to refrain from storing variable

expansion tokens in variable values.

CMake will perform variable expansion to the full extent, and only after completion will it pass

the resulting values as arguments to the command. This is why when we call set(${MyInner}

"Hi"); we won’t actually be changing the MyInner variable, but instead, we’ll change the variable

named after the value stored in MyInner. Very often, this is not what we want.

Variable references are a bit peculiar in how they work when it comes to variable categories, but

in general, the following applies:

• The ${} syntax is used to reference normal or cache variables.

• The $ENV{} syntax is used to reference environment variables.

• The $CACHE{} syntax is used to reference cache variables.

That’s right, with ${}, you might get a value from one category or the other: the normal variable

will be used if it was set in the current scope, but if it wasn’t set, or was unset, CMake will use

the cache variable with the same name. If there’s no such variable, the reference evaluates to an

empty string.

CMake predefines a lot of built-in normal variables that serve different purposes. For example,

you can pass command-line arguments to scripts after the -- token and they will be stored in the

CMAKE_ARGV<n> variables (the CMAKE_ARGC variable will contain the count).

Let’s introduce other categories of variables so that we understand clearly what they are.

Using environment variables
This is the least complicated kind of variable. CMake makes a copy of the variables that were in

the environment used to start the cmake process and makes them available in a single, global

scope. To reference these variables, use the $ENV{<name>} syntax.

CMake changes these variables, but changes will only be made to a local copy in the running

cmake process and not the actual system environment; moreover, these changes won’t be visible

to subsequent runs of builds or tests, so it is not recommended.

Be aware that there are a few environment variables that affect different aspects of CMake be-

havior. For example, the CXX variable specifies what executable will be used for compiling C++

files. We’ll cover environment variables, as they will become relevant to this book. A full list is

available in the documentation: https://cmake.org/cmake/help/latest/manual/cmake-env-

variables.7.html.

https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html
https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html

Chapter 2 51

For example, take the following project file:

ch02/03-environment/CMakeLists�txt

cmake_minimum_required(VERSION 3.20.0)

project(Environment)

message("generated with " $ENV{myenv})

add_custom_target(EchoEnv ALL COMMAND echo "myenv in build

 is" $ENV{myenv})

The preceding example has two steps: it will print the myenv environment variable during the

configuration, and it will add a build stage through add_custom_target(), which echoes the

same variable as part of the build process. We can test what happens with a bash script that uses

one value for the configuration stage and another for the build stage:

ch02/03-environment/build�sh

#!/bin/bash

export myenv=first

echo myenv is now $myenv

cmake -B build .

cd build

export myenv=second

echo myenv is now $myenv

cmake --build .

Running the preceding code clearly shows that the value set during the configuration is persisted

to the generated buildsystem:

$./build.sh | grep -v "\-\-"

myenv is now first

generated with first

myenv is now second

Scanning dependencies of target EchoEnv

myenv in build is first

Built target EchoEnv

It’s important to realize that if you use ENV variables as arguments to your com-

mands, the values will be interpolated during the generation of the buildsystem.

This means that they will get permanently baked into the build tree, and changing

the environment for the build stage won’t have any effect.

The CMake Language52

This concludes our discussion on environmental variables for the time being. Let us now move

on to the final category of variables: cache variables.

Using cache variables
We first mentioned cache variables when discussing command-line options for cmake in Chapter 1,

First Steps with CMake. Essentially, they’re persistent variables stored in a CMakeCache.txt file in

your build tree. They contain information gathered during the configuration stage of your project.

They originate from the system (path to compilers, linkers, tools, and others) and from the user,

provided through the GUI or from the command line with the -D option. Again, cache variables

are not available in scripts; they only exist in projects.

Cache variables will be used if the ${<name>} reference can’t find a normal variable defined in

the current scope but a cache variable with the same name exists. However, they can also be

explicitly referenced with the $CACHE{<name>} syntax and defined with a special form of the

set() command:

set(<variable> <value> CACHE <type> <docstring> [FORCE])

In contrast to the set() command for normal variables, extra arguments are necessary for cache

variables: <type> and <docstring>. This is because these variables can be configured by the user,

and the GUI requires this information to display them appropriately.

The following types are accepted:

• BOOL: A Boolean on/off value. The GUI will show a checkbox.

• FILEPATH: A path to a file on a disk. The GUI will open a file dialog.

• PATH: A path to a directory on a disk. The GUI will open a directory dialog.

• STRING: A line of text. The GUI offers a text field to be filled. It can be replaced by a drop-

down control by calling set_property(CACHE <variable> STRINGS <values>).

• INTERNAL: A line of text. The GUI skips internal entries. The internal entries may be used to

store variables persistently across runs. Use of this type implicitly adds the FORCE keyword.

The <doctring> value is simply a label that will be displayed by the GUI next to the field to provide

more detail about this setting to the user. It is required even for an INTERNAL type.

Setting cache variables in the code follows the same rules as environmental variables to some

extent – values are overwritten only for the current execution of CMake. However, if the variable

doesn’t exist in the cache file or an optional FORCE argument is specified, the value will be persisted:

set(FOO "BAR" CACHE STRING "interesting value" FORCE)

Chapter 2 53

Similar to C++, CMake supports variable scopes, albeit implemented in a rather specific way.

How to correctly use variable scopes in CMake
Variable scope is probably the strangest concept in the CMake language. This is maybe because

we’re so accustomed to how it is implemented in general-purpose languages. We’re explaining

this early because incorrect understanding of scopes is often a source of bugs that are difficult

to find and fix.

Just to clarify, variable scope as a general concept is meant to separate different layers of ab-

straction expressed with code. Scopes are nested inside one another in a tree-like fashion. The

outermost scope (root) is called the global scope. Any scope can be called the local scope, to in-

dicate the currently executed or discussed scope. Scopes create boundaries between variables, so

that the nested scope can access variables defined in the outer scope, but not the other way around.

CMake has two kinds of variable scopes:

• File: Used when blocks and custom functions are executed within a file

• Directory: Used when the add_subdirectory() command is called to execute another

CMakeLists.txt listfile in a nested directory

So, what’s so different about how a variable scope is implemented in CMake? When a nested scope

is created, CMake simply fills it with copies of all the variables from the outer scope. Subsequent

commands will affect these copies. But as soon as the execution of the nested scope is completed,

all copies are deleted and the original variables from the outer scope are restored.

How the concept of scope works in CMake has interesting implications that aren’t that common

in other languages. When executing in a nested scope, if you unset (unset()) a variable created

in the outer scope, it will disappear, but only in the current nested scope, because the variable is

a local copy. If you now reference this variable, CMake will determine that no such variable is

defined, it will ignore the outer scopes, and continue searching through the cache variables (which

are considered separate). That’s a possible gotcha.

Conditional blocks, loop blocks, and macros don’t create separate scopes.

The CMake Language54

File variable scopes are opened using the block() and function() commands (but not macro()) and

closed with the endblock() and endfunction() commands, respectively. We’ll cover functions

in the Command definitions section of this chapter. For now, let’s see how variable scope works

in practice with the simpler block() command (introduced in CMake 3.25).

Consider the following example:

ch02/04-scope/scope�cmake

cmake_minimum_required(VERSION 3.26)

set(V 1)

message("> Global: ${V}")

block() # outer block

 message(" > Outer: ${V}")

 set(V 2)

 block() # inner block

 message(" > Inner: ${V}")

 set(V 3)

 message(" < Inner: ${V}")

 endblock()

 message(" < Outer: ${V}")

endblock()

message("< Global: ${V}")

We initially set the variable V to 1 in the global scope. After entering the outer and inner blocks,

we immediately change them to 2 and 3, respectively. We also print the variable upon entering

and exiting each scope:

> Global: 1

 > Outer: 1

 > Inner: 2

 < Inner: 3

 < Outer: 2

< Global: 1

As explained previously, as we enter each nested scope, the variable values are temporarily copied

from the outer scope but their original values are restored upon exiting. This is reflected in the

last two lines of the output.

Chapter 2 55

The block() command can also propagate values to outer scopes (like C++ would do by default),

but it has to be explicitly enabled with the PROPAGATE keyword. If we were to enable propagation

for the inner block with block(PROPAGATE V), the output would be as follows:

> Global: 1

 > Outer: 1

 > Inner: 2

 < Inner: 3

 < Outer: 3

< Global: 1

Again, we affected the scope of the outer block but not the global scope.

Another method for modifying a variable in the outer scope is to set the PARENT_SCOPE flag for

the set() and unset() commands:

set(MyVariable "New Value" PARENT_SCOPE)

unset(MyVariable PARENT_SCOPE)

That workaround is a bit limited, as it doesn’t allow accessing variables more than one level up.

Another thing worth noting is the fact that using PARENT_SCOPE doesn’t change variables in the

current scope.

Now that we know how to handle basic variables, let’s take a look at one special case: since all

variables are stored as strings, CMake has to take a more creative approach to more complex data

structures such as lists.

Using lists
To store a list, CMake concatenates all elements into a string, using a semicolon, ;, as a delimit-

er: a;list;of;5;elements. You can escape a semicolon in an element with a backslash, like so:

a\;single\;element.

To create a list, we can use the set() command:

set(myList a list of five elements)

Because of how lists are stored, the following commands will have exactly the same effect:

set(myList "a;list;of;five;elements")

set(myList a list "of;five;elements")

The CMake Language56

CMake automatically unpacks lists in unquoted arguments. By passing an unquoted myList

reference, we effectively send more arguments to the command:

message("the list is:" ${myList})

The message() command will receive six arguments: “the list is:", “a", “list", “of", “five",

and “elements". This may have unintended consequences, as the output will be printed without

any additional spaces between the arguments:

the list is:alistoffiveelements

As you can see, this is a very simple mechanism, and it should be used carefully.

CMake offers a list() command that provides a multitude of subcommands to read, search,

modify, and order lists. Here’s a short summary:

list(LENGTH <list> <out-var>)

list(GET <list> <element index> [<index> ...] <out-var>)

list(JOIN <list> <glue> <out-var>)

list(SUBLIST <list> <begin> <length> <out-var>)

list(FIND <list> <value> <out-var>)

list(APPEND <list> [<element>...])

list(FILTER <list> {INCLUDE | EXCLUDE} REGEX <regex>)

list(INSERT <list> <index> [<element>...])

list(POP_BACK <list> [<out-var>...])

list(POP_FRONT <list> [<out-var>...])

list(PREPEND <list> [<element>...])

list(REMOVE_ITEM <list> <value>...)

list(REMOVE_AT <list> <index>...)

list(REMOVE_DUPLICATES <list>)

list(TRANSFORM <list> <ACTION> [...])

list(REVERSE <list>)

list(SORT <list> [...])

Most of the time, we don’t really need to use lists in our projects. However, if you find yourself in

that rare case where this concept would be convenient, you’ll find a more in-depth reference of

the list() command in Appendix, Miscellaneous Commands.

Now that we know how to work with lists and variables of all kinds, let’s shift our focus to con-

trolling the execution flow and learn about control structures available in CMake.

Chapter 2 57

Understanding control structures in CMake
The CMake language wouldn’t be complete without control structures! Like everything else,

they are provided in the form of a command, and they come in three categories: conditional

blocks, loops, and command definitions. Control structures are executed in scripts and during

buildsystem generation for projects.

Conditional blocks
The only conditional block supported in CMake is the humble if() command. All conditional

blocks have to be closed with an endif() command, and they may have any number of elseif()

commands and one optional else() command in this order:

if(<condition>)

 <commands>

elseif(<condition>) # optional block, can be repeated

 <commands>

else() # optional block

 <commands>

endif()

As in many other imperative languages, the if()-endif() block controls which sets of commands

will be executed:

• If the <condition> expression specified in the if() command is met, the first section

will be executed.

• Otherwise, CMake will execute commands in the section belonging to the first elseif()

command in this block that has met its condition.

• If there are no such commands, CMake will check whether the else() command is pro-

vided and execute any commands in that section of the code.

• If none of the preceding conditions are met, the execution continues after the endif()

command.

Note that no local variable scope is created in any of the conditional blocks.

The provided <condition> expression is evaluated according to a very simple syntax – let’s learn

more about it.

The syntax for conditional commands
The same syntax is valid for if(), elseif(), and while() commands.

The CMake Language58

Logical operators
The if() conditions support the NOT, AND, and OR logical operators:

• NOT <condition>

• <condition> AND <condition>

• <condition> OR <condition>

Also, the nesting of conditions is possible with matching pairs of parentheses (()). As in all decent

languages, the CMake language respects the order of evaluation and starts from the innermost

parenthesis:

(<condition>) AND (<condition> OR (<condition>))

The evaluation of a string and a variable
For legacy reasons (because the variable reference (${}) syntax wasn’t always around), CMake

will try to evaluate unquoted arguments as if they are variable references. In other words, using a

plain variable name (for example, QUX) inside a condition is equal to writing ${QUX}. Here’s an

example for you to consider, and a gotcha:

set(BAZ FALSE)

set(QUX "BAZ")

if(${QUX})

The if() condition works in a bit of a convoluted way here – first, it will evaluate ${QUX} to BAZ,

which is a recognized variable, and this in turn is evaluated to a string containing five characters

spelling FALSE. Strings are considered Boolean true only if they equal any of the following constants

(these comparisons are case-insensitive): ON, Y, YES, TRUE, or a non-zero number.

This brings us to the conclusion that the condition in the preceding example will evaluate to

Boolean false.

However, here’s another catch – what would be the evaluation of a condition with an unquoted

argument with the name of a variable containing a value such as BAR? Consider the following

code example:

set(FOO BAR)

if(FOO)

Chapter 2 59

According to what we have said so far, it would be false, as the BAR string doesn’t meet the criteria

to evaluate to a Boolean true value. That’s unfortunately not the case, because CMake makes an

exception when it comes to unquoted variable references. Unlike quoted arguments, FOO won’t

be evaluated to BAR to produce an if("BAR") statement (which would be false). Instead, CMake

will only evaluate if(FOO) to false if it is any of the following constants (these comparisons are

case-insensitive):

• OFF, NO, FALSE, N, IGNORE, or NOTFOUND

• A string ending with -NOTFOUND

• An empty string

• Zero

So, simply asking for an undefined variable will be evaluated to false:

if (CORGE)

When a variable is defined beforehand, the scenario changes and the condition evaluates to true:

set(CORGE "A VALUE")

if (CORGE)

In other words, CMake assumes that the user passing a variable name to the if() command is

asking whether the variable is defined with a value that does not evaluate to Boolean false. To ex-

plicitly check whether the variable is defined or not (and ignore its value), we can use the following:

if(DEFINED <name>)

if(DEFINED CACHE{<name>})

if(DEFINED ENV{<name>})

Comparing values
Comparison operations are supported with the following operators:

EQUAL, LESS, LESS_EQUAL, GREATER, and GREATER_EQUAL

If you think that the recursive evaluation of unquoted if() arguments is confusing,

wrap variable references in quoted arguments: if("${CORGE}"). This will result in

argument evaluation before the provided argument is passed into the if() command,

and the behavior will be consistent with the evaluation of strings.

The CMake Language60

The usual comparison operators found in other languages do not work in CMake: ==, >, <, !=,

and so on.

They can be used to compare numeric values, like so:

if (1 LESS 2)

You can compare software versions following the major[.minor[.patch[.tweak]]] format by

adding a VERSION_ prefix to any of the operators:

if (1.3.4 VERSION_LESS_EQUAL 1.4)

Omitted components are treated as zeros, and non-integer version components truncate the

compared string at that point.

For lexicographic string comparisons, we need to prepend an operator with the STR prefix (note

the lack of an underscore):

if ("A" STREQUAL "${B}")

We often need more advanced mechanisms than simple equality comparisons. Fortunately, CMake

also supports POSIX regex matching (the CMake documentation hints at an Extended Regular

Expression (ERE) flavor, but no support for specific regex character classes is mentioned). We

can use the MATCHES operator as follows:

<VARIABLE|STRING> MATCHES <regex>

Any matched groups are captured in CMAKE_MATCH_<n> variables.

Simple checks
We already mentioned one simple check, DEFINED, but there are others that simply return true

if a condition is met.

We can check the following:

• Whether a value is in a list: <VARIABLE|STRING> IN_LIST <VARIABLE>

• Whether a command is available for invocation in this version of CMake: COMMAND
<command-name>

• Whether a CMake policy exists: POLICY <policy-id> (this is covered in Chapter 4, Setting

Up Your First CMake Project)

• Whether a CTest test was added with add_test(): TEST <test-name>

• Whether a build target is defined: TARGET <target-name>

Chapter 2 61

We’ll explore build targets in Chapter 5, Working with Targets, but for now, let’s just say that targets

are logical units of a build process in a project created with add_executable(), add_library(),

or add_custom_target() commands.

Examining the filesystem
CMake provides many ways of working with files. We rarely need to manipulate them directly,

and normally, we’d rather use a high-level approach. For reference, this book will provide a short

list of the file-related commands in the Appendix. But most often, only the following operators

will be needed (behavior is well-defined only for absolute paths):

• EXISTS <path-to-file-or-directory>: Checks if a file or directory exists.

• This resolves symbolic links (it returns true if the target of the symbolic link exists).

• <file1> IS_NEWER_THAN <file2>: Checks which file is newer.

This returns true if file1 is newer than (or equal to) file2 or if one of the two files

doesn’t exist.

• IS_DIRECTORY path-to-directory: Checks if a path is a directory.

• IS_SYMLINK file-name: Checks if a path is a symbolic link.

• IS_ABSOLUTE path: Checks if a path is absolute.

Additionally, since 3.24 CMake supports a simple path comparison check, that will collapse

multiple path separators but won’t do any other normalization:

if ("/a////b/c" PATH_EQUAL "/a/b/c") # returns true

For more advanced path manipulation, refer to the documentation on the cmake_path() command.

This completes the syntax for conditional commands; the next control structure we’ll discuss

is a loop.

Loops
Loops in CMake are fairly straightforward – we can use either a while() loop or a foreach()

loop to repeatedly execute the same set of commands. Both of these commands support loop

control mechanisms:

• The break() loop stops the execution of the remaining block and breaks from the en-

closing loop.

• The continue() loop stops the execution of the current iteration and starts at the top of

the next one.

The CMake Language62

Note that no local variable scope is created in any of the loop blocks.

while()
The loop block is opened with a while() command and closed with an endwhile() command.

Any enclosed commands will be executed as long as the <condition> expression provided in

while() is true. The syntax for phrasing the condition is the same as for the if() command:

while(<condition>)

 <commands>

endwhile()

You probably guessed that – with some additional variables – the while loop can replace a for

loop. Actually, it’s way easier to use a foreach() loop for that – let’s take a look.

foreach() loops
There are several variations of the foreach() block, which execute the enclosed commands for

each value in the given list. Like other blocks, it has opening and closing commands: foreach()

and endforeach().

The simplest form of foreach() is meant to provide a C++-style for loop:

foreach(<loop_var> RANGE <max>)

 <commands>

endforeach()

CMake will iterate from 0 to <max> (inclusive). If we need more control, we can use the second

variant, providing <min>, <max>, and, optionally, <step>. All arguments must be non-negative

integers, and <min> has to be smaller than <max>:

foreach(<loop_var> RANGE <min> <max> [<step>])

However, foreach() shows its true colors when it is working with lists:

foreach(<loop_variable> IN [LISTS <lists>] [ITEMS <items>])

CMake will retrieve elements from one or more specified <lists> list variables, as well as a list

of <items> values defined in-line, and put them in <loop variable>. Then, it will execute all

commands for each item in the list. You can choose to provide only lists, only values, or both:

ch02/06-loops/foreach�cmake

set(MyList 1 2 3)

foreach(VAR IN LISTS MyList ITEMS e f)

Chapter 2 63

 message(${VAR})

endforeach()

The preceding code will print the following:

1

2

3

e

f

Or, we can use a short version (skipping the IN keyword) for the same result:

foreach(VAR 1 2 3 e f)

Since version 3.17, foreach() has learned how to zip lists (ZIP_LISTS):

foreach(<loop_var>... IN ZIP_LISTS <lists>)

The process of zipping lists involves iterating through multiple lists and operating on correspond-

ing items that have the same index. Let’s look at an example:

ch02/06-loops/foreach�cmake

set(L1 "one;two;three;four")

set(L2 "1;2;3;4;5")

foreach(num IN ZIP_LISTS L1 L2)

 message("word=${num_0}, num=${num_1}")

endforeach()

CMake will create a num_<N> variable for each list provided, which it will fill with items from

each list.

You can pass multiple variable names (one for every list) and each list will use a separate variable

to store its items:

foreach(word num IN ZIP_LISTS L1 L2)

 message("word=${word}, num=${num}")

Both examples on ZIP_LISTS will produce the same output:

word=one, num=1

word=two, num=2

word=three, num=3

word=four, num=4

The CMake Language64

In the event that the item counts between lists vary, variables for the shorter lists will be empty.

It is worth noting that, as of version 3.21, the loop variables in foreach() are restricted to the

local scope of the loop. This concludes our discussion on loops.

Command definitions
There are two ways to define your own command: you can use the macro() command or the

function() command. The easiest way to explain the differences between these commands is

by comparing them to C-style preprocessor macros and actual C++ functions:

A macro() command works more like a find-and-replace instruction than an actual subroutine

call such as function(). Contrary to functions, macros don’t create a separate entry on a call stack.

This means that calling return() in a macro will return to the calling statement one level higher

than it would for a function (possibly terminating the execution if we’re already in the top scope).

The function() command creates a local scope for its variables, unlike the macro() command,

which works in the variable scope of the caller. This may lead to confusing results. Let’s talk about

these details in the next section.

Both methods of defining commands allow the defining of named arguments that can be referred

to in the local scope of the defined command. Moreover, CMake offers the following variables for

accessing call-related values:

• ${ARGC}: The count of arguments

• ${ARGV}: All arguments as list

• ${ARGV<index>}: The value of an argument at a specific index (starting from 0), regardless

of whether this argument was expected or not

• ${ARGN}: A list of anonymous arguments that were passed by a caller after the last ex-

pected argument

Accessing a numeric argument with an index outside of the ARGC bounds is an undefined behavior.

To handle advanced scenarios (usually with an unknown number of arguments), you may be

interested to read about cmake_parse_arguments() in the official documentation. If you decide

to define a command with named arguments, every call has to pass all of them or it will be invalid.

Macros
Defining a macro is similar to any other block:

macro(<name> [<argument>…])

Chapter 2 65

 <commands>

endmacro()

After this declaration, we may execute our macro by calling its name (function calls are case- in-

sensitive).

As we know, macros don’t create a separate entry on a call stack or a variable scope. The following

example highlights some of the problems relating to this behavior in macros:

ch02/08-definitions/macro.cmake

macro(MyMacro myVar)

 set(myVar "new value")

 message("argument: ${myVar}")

endmacro()

set(myVar "first value")

message("myVar is now: ${myVar}")

MyMacro("called value")

message("myVar is now: ${myVar}")

Here’s the output from this script:

$ cmake -P ch02/08-definitions/macro.cmake

myVar is now: first value

argument: called value

myVar is now: new value

What happened? Despite explicitly setting myVar to new value, it didn’t affect the output for

message("argument: ${myVar}")! This is because arguments passed to macros aren’t treated

as real variables but rather, as constant find-and-replace instructions.

On the other hand, the myVar variable in the global scope was changed from first value to new

value. This behavior is a side effect and is considered a bad practice, as it’s impossible to tell which

global variables will be changed by a macro without reading it. It is advisable to utilize functions

whenever possible, as they are likely to prevent many issues.

Functions
To declare a command as a function, follow this syntax:

function(<name> [<argument>...])

 <commands>

endfunction()

The CMake Language66

A function requires a name and optionally accepts a list of names of expected arguments. As

mentioned before, functions create their own variable scopes. You can call set(), providing one

of the named arguments of the function, and any change will be local to the function (unless

PARENT_SCOPE is specified, as we discussed in the How to correctly use variable scopes in CMake

section).

Functions follow the rules of the call stack, enabling returning to the calling scope with the

return() command. Starting from CMake 3.25, the return() command allows an optional

PROPAGATE keyword followed by a list of variable names. Its purpose is similar to the one in the

block() command – it transfers the values of the specified variables from the local scope to the

scope of the call.

CMake sets the following variables for each function (these have been available since version 3.17):

• CMAKE_CURRENT_FUNCTION

• CMAKE_CURRENT_FUNCTION_LIST_DIR

• CMAKE_CURRENT_FUNCTION_LIST_FILE

• CMAKE_CURRENT_FUNCTION_LIST_LINE

Let’s take a look at these function variables in practice:

ch02/08-definitions/function.cmake

function(MyFunction FirstArg)

 message("Function: ${CMAKE_CURRENT_FUNCTION}")

 message("File: ${CMAKE_CURRENT_FUNCTION_LIST_FILE}")

 message("FirstArg: ${FirstArg}")

 set(FirstArg "new value")

 message("FirstArg again: ${FirstArg}")

 message("ARGV0: ${ARGV0} ARGV1: ${ARGV1} ARGC: ${ARGC}")

endfunction()

set(FirstArg "first value")

MyFunction("Value1" "Value2")

message("FirstArg in global scope: ${FirstArg}")

Running this script with cmake -P function.cmake prints the following output:

Function: MyFunction

File: /root/examples/ch02/08-definitions/function.cmake

FirstArg: Value1

FirstArg again: new value

Chapter 2 67

ARGV0: Value1 ARGV1: Value2 ARGC: 2

FirstArg in global scope: first value

As you can see, the general syntax and concept of the functions are very similar to macros but

less susceptible to implicit errors.

The procedural paradigm in CMake
Let us suppose that we want to write CMake code similar to how we write a program in C++.

We’ll make a CMakeLists.txt listfile that will call three defined commands that may call defined

commands of their own. Figure 2.3 illustrates that:

Figure 2.3: A procedural call graph

In CMake, writing in a procedural style can be problematic since you must provide command

definitions before calling them. The CMake parser will not have it any other way. Your code could

look something like this:

cmake_minimum_required(...)

project(Procedural)

Definitions

function(pull_shared_protobuf)

function(setup_first_target)

function(calculate_version)

function(setup_second_target)

function(setup_tests)

The CMake Language68

Calls

setup_first_target()

setup_second_target()

setup_tests()

What a nightmare! Everything is reversed! It will be very difficult to understand because the code

with the lowest level of abstraction is at the beginning of the file. A correctly structured piece of

code lists the most general steps in the first subroutine, after which it provides the slightly more

detailed subroutines, and keeps the most detailed steps at the very end of the file.

There are solutions to this problem, such as moving command definitions to other files and

partitioning scopes across directories (scoped directories will be explained in detail in Chapter 4,

Setting Up Your First CMake Project). But there is also a simple and elegant approach – declaring

an entry-point macro at the top of the file and calling it at the very end of the file:

macro(main)

 first_step()

 second_step()

 third_step()

endmacro()

function(first_step)

function(second_step)

function(third_step)

main()

With this approach, our code is written with a gradually narrowing scope, and because we’re not

actually calling the main() macro until the very end, CMake won’t complain about the execution

of undefined commands.

Why use a macro over a function in this case? It’s good to have unrestricted access to global

variables, and since we’re not passing any arguments to main(), we don’t need to worry about

the usual caveats.

You’ll find a simple example of this concept in the ch02/09-procedural/CMakeLists.txt listfile

in the GitHub repository for this book.

Chapter 2 69

A word on naming conventions
Naming is famously hard in software development, but nevertheless, it’s very important to main-

tain a solution that is easy to read and understand. When it comes to CMake scripts and projects,

we should follow the rules of the clean code approach, as we would with any software develop-

ment solution:

• Follow a consistent naming style (snake_case is an accepted standard in the CMake

community).

• Use short but meaningful names (for example, avoid func(), f(), and similar).

• Avoid puns and cleverness in your naming.

• Use pronounceable, searchable names that don’t require mental mapping.

Now that we know how to properly invoke the commands with the correct syntax, let’s explore

which commands will be the most beneficial to us to begin with.

Exploring the frequently used commands
CMake offers many scripting commands that allow you to work with variables and the environ-

ment. Some of them have been extensively covered in the Appendix: for example, list(), string(),

and file(). Others, such as find_file(), find_package(), and find_path(), fit better in chapters

that talk about their respective subjects. In this section, we will provide a brief overview of the

common commands that are useful in most situations:

• message()

• include()

• include_guard()

• file()

• execute_process()

Let’s get to it.

The message() command
We already know and love our trusty message() command, which prints text to standard output.

However, there’s a lot more to it than meets the eye. By providing a MODE argument, you can cus-

tomize the behavior of the command like so: message(<MODE> "text to print").

The CMake Language70

The recognized modes are as follows:

• FATAL_ERROR: This stops processing and generation.

• SEND_ERROR: This continues processing but skips generation.

• WARNING: This continues processing.

• AUTHOR_WARNING: A CMake warning. This continues processing.

• DEPRECATION: This works accordingly if either of the CMAKE_ERROR_DEPRECATED or CMAKE_

WARN_DEPRECATED variables are enabled.

• NOTICE or omitted mode (default): This prints a message to stderr to attract the user’s

attention.

• STATUS: This continues processing and is recommended for main messages to users.

• VERBOSE: This continues processing and should be used for more detailed information

that usually isn’t very necessary.

• DEBUG: This continues processing and should contain any fine details that might be helpful

when there’s an issue with a project.

• TRACE: This continues processing and is recommended to print messages during project

development. Usually, these sorts of messages would be removed before publishing the

project.

Picking the right mode is extra work, but it can save debugging time by coloring the output text

based on the severity (since 3.21) or even stop the execution after declaring an irrecoverable error:

ch02/10-useful/message_error�cmake

message(FATAL_ERROR "Stop processing")

message("This won't be printed.")

Messages will be printed depending on the current log level (which is STATUS by default). We dis-

cussed how to change this in the previous chapter in the Options for debugging and tracing section.

In Chapter 1, First Steps with CMake, I mentioned debugging with CMAKE_MESSAGE_CONTEXT, and

now it’s time to delve into it. In the meantime, we have gained insights into three crucial pieces

of this subject: lists, scopes, and functions.

In complex debugging scenarios, it can be extremely useful to indicate in which context the

message is occurring. Consider the following output, where messages printed in the foo function

have the appropriate prefix:

Chapter 2 71

$ cmake -P message_context.cmake --log-context

[top] Before `foo`

[top.foo] foo message

[top] After `foo`

Here’s how this works:

ch02/10-useful/message_context�cmake

function(foo)

 list(APPEND CMAKE_MESSAGE_CONTEXT "foo")

 message("foo message")

endfunction()

list(APPEND CMAKE_MESSAGE_CONTEXT "top")

message("Before `foo`")

foo()

message("After `foo`")

Let’s break this down:

1. First, we append the top to the context-tracking variable CMAKE_MESSAGE_CONTEXT, then

we print the initial Before `foo` message, and the matching prefix [top] will be added

to the output.

2. Next, upon entering the foo() function, we append a new context to the list named foo

after the function it belongs to and output another message, which appears with the

extended [top.foo] prefix in the output.

3. Finally, after function execution has completed, we print the After `foo` message. The

message is printed with the original [foo] scope. Why? Because of the variable scope rules:

the changed CMAKE_MESSAGE_CONTEXT variable only lives until the end of the function

scope, and is then restored to the original unchanged version.

Another cool trick with message() is to add indentation to the CMAKE_MESSAGE_INDENT list (in

exactly the same way as with CMAKE_MESSAGE_CONTEXT):

list(APPEND CMAKE_MESSAGE_INDENT " ")

message("Before `foo`")

foo()

message("After `foo`")

The CMake Language72

The output from our scripts can then look a bit simpler:

Before `foo`

 foo message

After `foo`

Since CMake doesn’t offer any real debugger with breakpoints or other tools, the ability to produce

clean log messages comes in very handy when things don’t go exactly as planned.

The include() command
Partitioning code into different files to keep things ordered and, well, separate, is quite useful.

Then, we can reference them from our parent listfile by calling include(), like so:

include(<file|module> [OPTIONAL] [RESULT_VARIABLE <var>])

If we provide a filename (a path with a .cmake extension), CMake will try to open and execute it.

Note that no nested, separate variable scope will be created, so any changes to variables made in

that file will affect the calling scope.

CMake will raise an error if a file doesn’t exist unless we specify that it is optional with the OPTIONAL

keyword. When we need to know whether include() was successful, we can provide a RESULT_

VARIABLE keyword with the name of the variable. It will be filled with a full path to the included

file on success or not found (NOTFOUND) on failure.

When running in script mode, any relative paths will be resolved from the current working direc-

tory. To force searching in relation to the script itself, provide an absolute path:

include("${CMAKE_CURRENT_LIST_DIR}/<filename>.cmake")

If we don’t provide a path but do provide the name of a module (without .cmake or otherwise),

CMake will try to find a module and include it. CMake will search for a file with the name of

<module>.cmake in CMAKE_MODULE_PATH and then in the CMake module directory.

As CMake walks the source tree and includes different listfiles, the following variables are set:

CMAKE_CURRENT_LIST_DIR, CMAKE_CURRENT_LIST_FILE, CMAKE_PARENT_LIST_FILE, and CMAKE_

CURRENT_LIST_LINE.

The include_guard() command
When we include files that have side effects, we might want to restrict them so that they’re only

included once. This is where include_guard([DIRECTORY|GLOBAL]) comes in.

Chapter 2 73

Put include_guard() at the top of the included file. When CMake encounters it for the first time,

it will make a note of this fact in the current scope. If the file gets included again (maybe because

we don’t control all the files in our project), it won’t be processed any further.

If we want to protect against inclusion in unrelated function scopes that won’t share variables

with each other, we should provide DIRECTORY or GLOBAL arguments. As the names suggest, the

DIRECTORY keyword will apply the protection within the current directory and below it, and the

GLOBAL keyword applies the protection to the whole build.

The file() command
To give you an idea of what you can do with CMake scripts, let’s take a quick look at the most

useful variants of the file manipulation command:

file(READ <filename> <out-var> [...])

file({WRITE | APPEND} <filename> <content>...)

file(DOWNLOAD <url> [<file>] [...])

In short, the file() command will let you read, write, and transfer files and work with the filesys-

tem, file locks, paths, and archives, all in a system-independent manner. Please see the Appendix

for more details.

The execute_process() command
Every now and then, you’ll need to resort to using tools available in the system (after all, CMake

is primarily a buildsystem generator). CMake offers a command for this purpose: you can use

execute_process() to run other processes and collect their output. This command is a great fit

for scripts and it can also be used in projects, but it only works during the configuration stage.

Here’s the general form of the command:

execute_process(COMMAND <cmd1> [<arguments>]... [OPTIONS])

CMake will use the API of the operating system to create a child process (so, shell operators such

as &&, ||, and > won’t work). However, you can still chain commands and pass the output of one

to another simply by providing the COMMAND <cmd> <arguments> arguments more than once.

Optionally, you may use a TIMEOUT <seconds> argument to terminate the process if it hasn’t

finished the task within the required limit, and you can set the WORKING_DIRECTORY <directory>

as you need.

The CMake Language74

The exit codes of all tasks can be collected in a list by providing RESULTS_VARIABLE <variable>

arguments. If you’re only interested in the result of the last executed command, use the singular

form: RESULT_VARIABLE <variable>.

To collect the output, CMake provides two arguments: OUTPUT_VARIABLE and ERROR_VARIABLE

(which are used in a similar fashion). If you would like to merge both stdout and stderr, use the

same variable for both arguments.

Remember that when writing projects for other users, you should make sure that the command

you’re planning to use is available on the platforms you claim to support.

Summary
This chapter opened the door to actual programming with CMake – you’re now able to write great,

informative comments and utilize built-in commands, and you understand how to correctly pro-

vide all kinds of arguments to them. This knowledge alone will help you understand the unusual

syntax of CMake listfiles that you might have seen in projects created by others. We have covered

variables in CMake – specifically, how to reference, set, and unset normal, cache, and environment

variables. We delved into how file and directory variable scopes work, how to create them, and what

issues we might encounter and how to solve them. We also covered lists and control structures.

We examined the syntax of conditions, their logical operations, the evaluation of unquoted ar-

guments, as well as strings and variables. We learned how to compare values, do simple checks,

and examine the state of the files in the system. This allows us to write conditional blocks and

while loops; while we were talking about loops, we also grasped the syntax of foreach loops.

Understanding how to define custom commands using macro and function statements will un-

doubtedly facilitate cleaner, more procedural code. We also discussed strategies for improving

code structure and creating more readable names.

Finally, we formally introduced the message() command and its multiple log levels. We also

studied how to partition and include listfiles, and we discovered a few other useful commands.

With this information, we are well prepared to take on the next chapter, Chapter 3, Using CMake

in Popular IDEs.

Chapter 2 75

Further reading
For more information on the topics covered in this chapter, you can refer to the following links:

• Clean Code: A Handbook of Agile Software Craftsmanship (Robert C. Martin):

https://amzn.to/3cm69DD

• Refactoring: Improving the Design of Existing Code (Martin Fowler):

https://amzn.to/3cmWk8o

• Which comments in your code ARE GOOD? (Rafał Świdzinski):

https://youtu.be/4t9bpo0THb8

• What’s the CMake syntax to set and use variables? (StackOverflow):
https://stackoverflow.com/questions/31037882/whats-the-cmake-syntax-to-

set-and-use-variables

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://www.amazon.co.uk/Clean-Code-Handbook-Software-Craftsmanship/dp/0132350882?&linkCode=sl1&tag=smoku-21&linkId=2bce0992e1e138154bfec781f28805ce&language=en_GB&ref_=as_li_ss_tl
https://amzn.to/3cmWk8o
https://youtu.be/4t9bpo0THb8
https://stackoverflow.com/questions/31037882/whats-the-cmake-syntax-to-set-and-use-variables
https://stackoverflow.com/questions/31037882/whats-the-cmake-syntax-to-set-and-use-variables
https://discord.com/invite/vXN53A7ZcA

3
Using CMake in Popular IDEs
Programming is as much an art as it is a deeply technical process, and as we know all too well,

it’s very difficult. Therefore, we should be looking to optimize this process as much as possible.

There aren’t too many instances where we can just flip a switch and get better outcomes, but using

Integrated Development Environments (IDEs) is definitely one of those rare cases.

If you haven’t worked with a proper IDE before (or you believe that a text processor like Emacs

or Vim is the best you can hope for), this chapter is for you. If you’re a seasoned professional and

are already familiar with the subject, you can use this chapter as a quick overview of the current

top choices and maybe consider a switch or, even better, get clear confirmation that your current

tool is the best.

With an emphasis on accessibility for those new to the field, this chapter provides a gentle in-

troduction to the critical choice of an IDE. We will cover why you’d want one and how to pick

one that best suits your needs. Sure, there are many choices out there, but as usual, some are just

better than others. Unfortunately, this isn’t a universal, one-size-fits-all kind of deal. Many factors

contribute toward the productivity levels that you might get if you choose right. We’ll discuss a

few considerations that might be important if your work is in an organization of a certain size,

ensuring that you grasp the nuances without becoming mired in complexity. This will be followed

by a quick introduction to toolchains, where we’ll discuss available choices.

We will then highlight the distinctive qualities of several popular IDEs, such as the sophisticated

CLion, the adaptable nature of Visual Studio Code, and then the powerhouse that is the Visual

Studio IDE. Each section is tailored to showcase the strengths and advanced features that these

Using CMake in Popular IDEs78

In this chapter, we’re going to cover the following main topics:

• Getting to know IDEs

• Starting with the CLion IDE

• Starting with Visual Studio Code

• Starting with the Visual Studio IDE

Getting to know IDEs
In this section, we will discuss IDEs and how they can significantly enhance development speed

and code quality. Let’s begin by explaining what an IDE is for those new to this topic.

Why and how do you choose an IDE? An IDE, or integrated development environment, is a com-

prehensive tool that combines various specialized tools to simplify the software development

process. The journey of creating a professional project involves numerous steps: designing, coding,

building, testing, packaging, releasing, and maintaining. Each step comprises many smaller tasks,

and the complexity can be overwhelming. IDEs offer a solution by providing a platform with a set

of tools that are curated and configured by the IDE creators. This integration allows you to use

these tools seamlessly without having to set them up individually for each project.

IDEs are mainly centered around the code editor, compiler, and debugger. They are designed

to provide sufficient integration, enabling you to edit code, compile it immediately, and run it

with a debugger attached. IDEs can include build toolchains or allow developers to choose their

preferred compilers and debuggers. Editors are usually a core part of the software but can often

be greatly extended with plugins, like code highlighting, formatting, and more.

More advanced IDEs offer very sophisticated features like Hot Reload debugging (available in

Visual Studio 2022; read on to learn more). This feature lets you run your code in a debugger, edit

it, and continue execution without restarting the program. You will also find refactoring tools

to rename symbols or extract code into a separate function, and static analysis to identify errors

before compilation. Additionally, IDEs provide tools to work with Git and other version control

systems, which are invaluable for resolving conflicts, among other benefits.

I’m sure you can see now how beneficial it can be to learn how to use an IDE early and standardize

this usage in your organization. Let’s find out why choosing an IDE that is right for you is important.

Chapter 3 79

Choosing an IDE
There are plenty of code editors that are on the verge of being recognized by the community

as fully featured IDEs. It’s always recommended to research the space a bit before committing

to a specific choice, especially because of the pace of current software release cycles and rapid

changes in the space.

In my few years of corporate experience, it’s quite uncommon for an IDE to offer a feature com-

pelling enough to make someone switch from one IDE to another. Force of habit is really second

nature to a developer, and it shouldn’t be ignored. Remember that as soon as you feel comfort-

able in an IDE, it’s likely going to be your tool of choice for the considerable future. This is why

you still see developers using Vim (a console-based text editor released in 1991), extended with

a bunch of plugins to make it as powerful as more modern, GUI-based IDEs. No pressure then.

There are varied reasons why programmers choose one IDE over another; some of them are really

important (speed, reliability, comprehensiveness, completeness), while others… not so much. I’d

like to share my subjective perspective on this choice, which I hope you’ll find useful too.

Choose a comprehensive IDE
If you’re just starting out, you might think about using a simple text editor and running a few

commands to build your code. This approach is definitely workable, especially when you’re trying

to understand the basics (I encourage you to use the actual commands to monitor your progress

throughout this book). It also helps you grasp what a beginner might experience without an IDE.

On the other hand, IDEs are created for a purpose. They streamline numerous processes that de-

velopers handle during a project’s lifecycle, which can be extremely valuable. Although it might

seem overwhelming initially, choose a comprehensive IDE that includes all the necessary fea-

tures. Ensure it’s as complete as possible, but be mindful of the cost, as IDEs can be expensive

for small businesses or individual developers. It’s a balance between the time spent on manual

management and the cost of the features provided by the IDE.

Regardless of the cost, always select an IDE with strong community support to assist you if you

encounter issues. Explore community forums and popular Q&A sites like StackOverflow.com

to check if users get their questions answered. Additionally, choose an IDE that is actively devel-

oped by a reputable company. You don’t want to waste your time on something that hasn’t been

updated in a while and might get deprecated or abandoned in the near future. For example, not

so long ago, Atom, an editor created by GitHub, was sunset after 7 years of releases.

http://StackOverflow.com

Using CMake in Popular IDEs80

Choose an IDE that is widely supported in your organization
Counterintuitively, this might not align with every developer’s preference. You may already be

comfortable with a different tool from your university, previous job, or a personal project. Such

a habit, as mentioned earlier, can tempt you to ignore your company’s recommendations and

stick with what you know. Resist this. Such a choice becomes increasingly challenging over time.

From my experiences at Ericsson, Amazon, and Cisco, only once did the effort to configure and

maintain a non-standard IDE prove worthwhile. That was because I managed to get enough

organizational support to address issues collectively.

Your primary goal should be writing code, not struggling with an unsupported IDE. Learning

the recommended software may require effort, but it’s less than what’s needed to go against the

norm (and yes, Vim lost this battle; it’s time to move on).

Don’t pick an IDE based on the target OS and platform
You might think that if you’re developing software for Linux, you need to use a Linux machine

and a Linux-based IDE. However, C++ is a portable language, which means it should compile

and run the same way on any platform, provided you’ve written it correctly. Of course, you might

encounter issues with libraries, as not all of them are installed by default, and some may be

specific to your platform.

Adhering strictly to the target platform isn’t always necessary and can sometimes be counterpro-

ductive. For instance, if you’re targeting an older or Long-Term Support (LTS) version of an OS,

you might not be able to use the latest toolchain versions. If you wish to develop on a different

platform than your target, you can.

In that case, consider cross-compilation or remote development. Cross-compilation involves

using a specialized toolchain that allows a compiler running on one platform (like Windows) to

produce artifacts for another platform (like Linux). This approach is widely used in the industry

and is supported by CMake. Alternatively, I recommend remote development, where you send your

code to the target machine and build it there using the local toolchain. This method is supported

by many IDEs and offers several benefits, which we’ll explore in the next section.

Pick an IDE with remote development support
While it shouldn’t be your primary criterion, considering remote development support in an IDE

is beneficial after meeting other requirements. Over time, even seasoned developers encounter

projects requiring a different target platform than their usual OS due to changing teams, projects,

or even companies.

Chapter 3 81

If your preferred IDE supports remote development, you can continue using it, leveraging the

ability to compile and debug code on a different OS and view results in the IDE’s GUI. The main

advantage of remote development over cross-compilation is its integrated debugger support,

offering a cleaner process without needing CMake project-level configuration. Additionally,

companies often provide powerful remote machines, allowing developers to use less expensive,

lightweight local devices.

Sure, there’s an argument to be made that cross-compilation offers greater control over the devel-

opment environment, allowing temporary changes for testing. It doesn’t necessitate bandwidth

for code transfers, supporting low-end internet connections, or offline work. However, considering

most software development involves internet access for information, this might be a less critical

advantage. Using virtualized environments like Docker enables running a local production copy

and setting up remote development connections, offering security, customizability, and the ability

to build and deploy containers.

The considerations mentioned here are slightly tilted toward working in big corporations, where

things move slower, and it’s difficult to make highly impactful changes. These suggestions don’t

negate the possibility of having a perfectly complete experience with CMake if you decide to

prioritize other aspects of IDEs, as needed by your use case.

Installing toolchains
As we discussed earlier, an IDE integrates all the necessary tools to streamline software develop-

ment. A key part of this process is building binaries, sometimes in the background or on the fly, to

provide additional information to developers. Toolchains are collections of tools like compilers,

linkers, archivers, optimizers, debuggers, and implementations of the standard C++ library. They

may also include other handy utilities like bash, make, gawk, grep, and so on, which are used to

build programs.

Some IDEs come with toolchains or toolchain downloaders, while others do not. It’s best to just

run an installed IDE and check if you’re able to compile a basic test program. CMake typically does

this by default during the configuration stage, which most IDEs execute as part of the initializa-

tion of new projects. If this process fails, you might be prompted by the IDE or the OS’s package

manager to install the necessary tools. Just follow along, as this flow is usually well prepared.

Using CMake in Popular IDEs82

If you’re not prompted, or if you’d like to use a specific toolchain, here are some options based

on your platform:

• GNU GCC (https://gcc.gnu.org/) for Linux, Windows (via MinGW or Cygwin), ma-

cOS, and many others. GCC is one of the most popular and widely used C++ compilers,

supporting a wide range of platforms and architectures.

• Clang/LLVM (https://clang.llvm.org/) for Linux, Windows, macOS, and many others.

Clang is a compiler frontend for the C, C++, and Objective-C programming languages,

utilizing LLVM as its backend.

• Microsoft Visual Studio/MSVC (https://visualstudio.microsoft.com/) for Windows

primarily, with cross-platform support via Visual Studio Code and CMake. MSVC is the

C++ compiler provided by Microsoft, typically used within the Visual Studio IDE.

• MinGW-w64 (http://mingw-w64.org/) for Windows. MinGW-w64 is an advancement

of the original MinGW project, aimed at providing better support for 64-bit Windows

and new APIs.

• Apple Clang (https://developer.apple.com/xcode/cpp/) for macOS, iOS, iPadOS, wa-

tchOS, and tvOS. Apple’s version of Clang, optimized for Apple’s hardware and software

ecosystem, is integrated with Xcode.

• Cygwin (https://www.cygwin.com/) for Windows. Cygwin provides a POSIX-compatible

environment on Windows, allowing the use of GCC and other GNU tools.

If you’re looking to start quickly without delving deeply into the specifics of each toolchain, you

can follow my personal preference: if there’s no toolchain provided by the IDE, go with MinGW

on Windows, Clang/LLVM on Linux, and Apple Clang on macOS. Each of these is well suited to

its primary platform and typically offers the best experience.

Using this book’s examples with IDEs
This book comes with an extensive collection of examples of CMake projects, available in the

official GitHub repository here:

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E.

Naturally, as we explore the subject of IDEs, a question arises: how do we use this repository with

all the IDEs presented here? Well, we need to recognize that the book teaching you how to create

professional projects isn’t a professional project itself. It’s a collection of such projects with varied

levels of completion, reasonably simplified where possible. Unfortunately (or, maybe fortunately?),

IDEs aren’t built to load tens of projects and conveniently manage them. They generally focus

their features on loading one actively edited project.

https://gcc.gnu.org/
https://clang.llvm.org/
https://visualstudio.microsoft.com/
http://mingw-w64.org/
https://developer.apple.com/xcode/cpp/
https://www.cygwin.com/
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E

Chapter 3 83

This puts us in a somewhat awkward position: it’s really difficult to navigate the example set with

IDEs. Upon using an IDE to load the example set, by selecting the example directory to open it,

most IDEs will detect multiple CMakeLists.txt files and ask you to pick one. After doing so, the

usual initialization process will occur, temporary files will be written, and essentially, the CMake

configuration and generation stages will be run to get the project into a state where it can be built.

As you might guess, this only works for the example whose CMakeLists.txt file was selected.

Most IDEs do offer ways to switch between different directories (or projects) in the workspace,

but it might not be as straightforward as we’d like it to be.

If you’re struggling with this, there are two options: either don’t use the IDE to build examples

(and go with console commands instead) or load an example into a fresh project every time. I

would recommend the first option if you’re keen on practicing the commands, as they may come

in handy in the future and will give you a better understanding of what is going on behind the

scenes. This is usually a good choice for build engineers, as this knowledge will be used often.

On the other hand, if you’re working on a single project, mostly as a developer focusing on the

business side of the code, perhaps going with the IDEs early on is the best. In any case, choosing

one doesn’t prevent you from going with the other from time to time.

With this out of the way, let’s focus on reviewing today’s top IDEs and seeing which one might

be the best for you. All of them will serve you well, regardless of whether you work in a corpo-

ration or not.

Starting with the CLion IDE
CLion is a paid, cross-platform IDE available for Windows, macOS, and Linux, developed by

JetBrains. That’s right – this piece of software is subscription-based; starting from $99.00 (early

2024), you can get a one-year license for individual use. Bigger organizations pay more, and

startups pay less. If you’re a student or release an open-source project, you can get a free license.

On top of that, there’s a 30-day trial to test the software. This is the only IDE in this listing that

doesn’t offer a “community” or stripped-down version available free of charge. Regardless, this

is a solid piece of software that is developed by a reputable company, and it very well might be

worth the cost.

Using CMake in Popular IDEs84

Figure 3.1 shows how the IDE looks in light mode (dark mode is the default option):

Figure 3.1: The main window of the CLion IDE

As you can see, this is a fully featured IDE, ready for anything and everything you might throw at

it. Let’s talk about how it stands out.

Why you might like it
Unlike the alternatives, C and C++ are the first and only languages supported by CLion. Many

features of this IDE are specifically designed to support this environment and align with the C/

C++ mindset. This is very visible when we compare features from other IDEs: code analysis, code

navigation, integrated debugger, and refactoring tools can be found in competing software like

the Visual Studio IDE. However, they are not as deeply and robustly oriented toward C/C++. This,

of course, is a very difficult thing to measure objectively.

Chapter 3 85

Regardless, CMake is fully integrated into CLion out of the box and is the primary choice for

the project format in this IDE. However, alternatives like Autotools and Makefile projects are

in early support and can be used to eventually migrate toward CMake. It’s worth noting that

CLion natively supports CMake’s CTest with many unit-testing frameworks and has dedicated

flows to generate code, run tests, and collect and present results. You can use Google Test, Catch,

Boost.Test, and doctest.

A feature I especially like is the ability to work with Docker to develop C++ programs in contain-

ers – more on that later. Meanwhile, let’s see how to start with CLion.

Take your first steps
After downloading CLion from the official website (https://www.jetbrains.com/clion), you

can proceed with the usual installation process on the platform you’re using. CLion comes with

an adequate visual installer on Windows (Figure 3.2) and macOS (Figure 3.3).

Figure 3.2: CLion Setup for Windows

https://www.jetbrains.com/clion

Using CMake in Popular IDEs86

Figure 3.3: CLion Setup for macOS

On Linux, you’ll need to unpack the downloaded archive and run the installation script:

tar -xzf CLion-<version>.tar.gz

./CLion-<version>/bin/CLion.sh

These instructions may be outdated, so make sure to confirm with the CLion website.

On the first run, you’ll be asked to provide a license code or to start a 30-day free trial. Selecting

the second option will allow you to experiment with the IDE and determine if it’s right for you.

Next, you’ll be able to create a new project and select the targeted C++ version. Immediately

after, CLion will detect the available compilers and CMake versions and attempt to build a test

project to confirm everything is set up correctly. On some platforms (like macOS), you may get

an automatic prompt to install developer tools as needed. On others, you may need to set them

up yourself and ensure they’re available in the PATH environment variable.

Next, ensure your toolchain is configured according to your needs. Toolchains are configured per

project, so go ahead and create a default CMake project. Then, navigate to your Settings/Pref-

erences (Ctrl/Command + Alt + S) and select Build, Execution, Deployment > CMake. On this

tab, you can configure the build profile (Figure 3.3). It may be useful to add a Release profile to

build optimized artifacts without the debugging symbols. To add one, simply press the plus icon

above the profile list. CLion will create a default Release profile for you. You can switch between

profiles using the dropdown at the top of the main window.

Chapter 3 87

Now, you can simply press F9 to compile and run the program with the debugger attached. Fol-

low up by reading the official documentation of CLion, as there are plenty of useful features to

explore. I’d like to introduce you to one of my favorites: the debugger.

Advanced feature: Debugger on steroids
The debugging capabilities of CLion are truly cutting-edge and especially designed for C++. I

was very pleased to discover one of the latest additions, CMake debugging, which includes many

standard debugging features: stepping through code, breakpoints, watches, inlined value explo-

ration, and more. The ability to explore variables in different scopes (cache, ENV, and the current

scope) is extremely convenient when things don’t quite work as expected.

For C++ debugging, you will get many standard features provided by the GNU Project Debugger

(GDB), such as assembly view, breakpoints, step through, watchpoints, and so on, but there are

also some major enhancements. In CLion, you’ll find a parallel stack view, which enables you

to see all the threads in a graph-like diagram with all the current stack frames for each thread.

There’s an advanced memory view feature to see the layout of the running program in RAM and

modify the memory on the fly. CLion provides multiple other tools to help you understand what’s

happening: register view, code disassembly, debugger console, core dump debugging, debugging

of arbitrary executables, and many more.

To top it off, CLion has a very well-executed Evaluate Expression feature, which works wonders

and even allows you to modify objects during program execution. Just right-click on a line of code

and select this feature from the menu.

That’s all on CLion; it’s time to take a look at another IDE.

Starting with Visual Studio Code
Visual Studio Code (VS Code) is a free, cross-platform IDE available for Windows, macOS, and

Linux, developed by Microsoft. Don’t confuse it with another Microsoft product, the Visual Studio

IDE (usually named after the year it was released, for example, Visual Studio 2022).

VS Code is favored for its vast extension ecosystem and support for hundreds of programming

languages (an estimated are over 220 different languages!). When GitHub was acquired by Mi-

crosoft, VS Code was introduced as something of a replacement for Atom.

Using CMake in Popular IDEs88

The overall design of the IDE is top-notch, as you can see in Figure 3.4.

Figure 3.4: The main window of VS Code

Now, let’s find out what makes VS Code so special.

Why you might like it
C++ isn’t the priority in terms of languages supported by VSC, but it’s quite close to the top, thanks

to the many sophisticated language extensions available. This trade-off is rewarded with the

ability to switch between many languages as needed while working in the same environment.

There’s a bit of a learning curve to this tool, as most extensions conform to the basic UI functional-

ities provided, rather than implementing advanced interfaces on their own. Many of the features

will be available through the command palette (accessible by pressing F1), which requires you

to type the name of the command instead of clicking an icon or a button. This is a reasonable

sacrifice to keep VSC clean, fast, and free of charge. In fact, this IDE is so quick to load that I prefer

to use it as a general-purpose text editor, even when I’m not working on a project.

Chapter 3 89

That said, VS Code is truly powerful thanks to an enormous library of really good extensions, the

vast majority of which are available for free. There are special extensions available for C++ and

CMake, so let’s see how to configure them in the next section.

Take your first steps
VSC is available from the official website: https://code.visualstudio.com/. The website provide

quite an extensive list of downloads for Windows and macOS, as well as for many Linux distri-

butions: Debian, Ubuntu, Red Hat, Fedora, and SUSE. Follow the usual process on your platform

to install the software. After that, you’ll want to install a bunch of extensions by going to the Ex-

tensions Marketplace (Ctrl/Command + Shift + X). The following are recommended to start with:

• C/C++ by Microsoft

• C/C++ Extension Pack by Microsoft

• CMake by twxs

• CMake Tools by Microsoft

They will provide the usual code highlighting and the ability to compile, run, and debug code

straight from the IDE, but you might need to install the toolchain yourself. Usually, VS Code will

suggest extensions to install in a pop - up window as you start opening relevant files, so you don’t

necessarily need to go out on a hunt.

I also suggest installing the Remote – SSH by Microsoft extension if you’re involved with remote

projects, as this will make the experience much more coherent and comfortable; this extension

not only takes care of file synchronization but will also enable you to remotely debug by attaching

to the debugger on the remote machine.

However, there’s one more interesting extension that shifts the paradigm of working with proj-

ects; let’s see how.

Advanced feature: Dev Containers
If you’re deploying your application to a production environment, whether you’re shipping the

compiled artifact or running a build process, it’s crucial to ensure that all dependencies are present.

Otherwise, you’ll get all sorts of problems. Even with all dependencies accounted for, different

versions or configurations might cause your solution to behave differently from the development

or staging environment. I’ve experienced such cases on numerous occasions. Before virtualization

became prevalent, dealing with environmental issues was just a part of life.

https://code.visualstudio.com/

Using CMake in Popular IDEs90

With the introduction of lightweight containers like Docker, things got much simpler. Suddenly,

you were able to run a minified operating system with your service isolated to its own space. This

isolation allowed all dependencies to be packaged with the container, freeing developers from

a major headache.

Until recently, developing inside a container involved manually building, running, and connecting

to the container with a remote session from the IDE. This process wasn’t overly difficult, but it

required manual steps that could be executed differently by various developers.

In recent years, Microsoft released an open standard called Dev Containers (https://containers.

dev/) to help address this slight inconvenience. The specification mainly consists of a devcontainer.

json file that you can place in your project repository, instructing IDEs on how to set up their

development environment in a container.

To use this feature, simply install the Dev Containers by Microsoft extension and point it to a

repository of an appropriately prepared project. If you’re undeterred by the challenges of switching

the main CMakeLists.txt, feel free to try it with the book’s repository:

git@github.com:PacktPublishing/Modern-CMake-for-Cpp-2E.git

I can confirm that other IDEs, like CLion, are adopting this standard, so it seems like a good prac-

tice to adopt if you’re facing the circumstances described. Time to move on to the next product

from the Microsoft family.

Starting with the Visual Studio IDE
The Visual Studio (VS) IDE is an IDE available for Windows developed by Microsoft. VS was

available for macOS but is being deprecated in August 2024. It’s important to distinguish it from

VS Code, the other IDE by Microsoft.

VS comes in a few flavors: Community, Professional, and Enterprise. The Community version is

free, allowing up to five users in a company. More mature companies will need to pay licensing

fees, which start from $45 per user monthly. Figure 3.5 shows what VS Community looks like:

https://containers.dev/
https://containers.dev/
mailto:git@github.com:PacktPublishing/Modern-CMake-for-Cpp-2E.git

Chapter 3 91

Figure 3.5: The main window of VS 2022

Like the other IDEs discussed in this chapter, you can enable dark mode if you prefer. Let’s move

on to the noteworthy features of this IDE.

Why you might like it
This IDE shares many features with VS Code, offering an experience of a similar flavor but in a

much more refined form. The suite is full of features, many of which utilize GUIs, wizards, and

visual elements. Most of these features are available straight out of the box, rather than through

extensions (although there is still a large and extensive package marketplace for additional func-

tionality). In other words, it’s like VSC but much more advanced.

Depending on the version, your testing tools will cover a wide range of tests: unit testing, per-

formance testing, load testing, manual testing, Test Explorer, test coverage, IntelliTest, and code

profiling. The profiler, in particular, is quite a valuable tool, and it’s available in the Community

edition.

Using CMake in Popular IDEs92

If you’re designing Windows desktop applications, VS provides visual editors and a large collection

of components. There’s extensive support for the Universal Windows Platform (UWP), which is

the UI standard for Windows-based applications introduced in Windows 10. This support allows

for a sleek, modern design, heavily optimized for adaptive controls that scale well on different

screens.

Another thing worth mentioning is that even though VS is a Windows-only IDE, you can develop

projects targeted for Linux and mobile platforms (Android and iOS). There’s also support for game

developers using Windows-native libraries and Unreal Engine.

Ready to see for yourself how it works? Here’s how to start.

Take your first steps
This IDE is only available for Windows, and it follows a standard installation process. Start by

downloading the installer from https://visualstudio.microsoft.com/free-developer-

offers/. After running the installer, you’ll be asked to pick the version (Community, Professional,

or Enterprise) and select the workloads you want:

Figure 3.6: Installer window for the VS IDE

https://visualstudio.microsoft.com/free-developer-offers/
https://visualstudio.microsoft.com/free-developer-offers/

Chapter 3 93

Workloads are simply feature sets that allow VS to support the specific language, environment,

or format of the program. Some workloads include Python, Node.js, or .NET. We’re of course in-

terested in the ones related to C++ (Figure 3.6); there’s extensive support available for different

use cases:

• Desktop development with C++

• Universal Windows Platform development

• Game development with C++

• Mobile development with C++

• Linux development with C++

Pick the ones that fit your desired application and press Install. Don’t worry about installing all

options just in case – you can always modify your selection later by running the installer again. If

you decide to configure the workload components more precisely, ensure to keep the C++ CMake

tools for Windows or C++ CMake tools for Linux option enabled to get access to CMake support.

After installation, you can start the IDE and select Create a new project on the start window. You’ll

be presented with multiple templates based on the workloads you installed previously. To work

with CMake, choose the CMake Project template. Other options don’t necessarily use it. Upon

creating your project, you can start it by pressing the green play button at the top of the window;

the code will compile, and you’ll see the basic program executed with the following output:

Hello CMake.

Now, you’re ready to work with CMake in Visual Studio.

Advanced feature: Hot Reload debugging
While running Visual Studio might be more resource-intensive and take more time to start, it

offers numerous unmatched features. One significant game-changer is Hot Reload. Here’s how it

works: open a C++ project, start it with a debugger attached, make a change in a code file, press the

Hot Reload button (or Alt + F10), and your changes will immediately be reflected in the running

application while maintaining the state.

To ensure Hot Reload support is enabled, set these two options in the Project > Properties > C/

C++ > General menu:

• Debug Information Format must be set to Program Database for Edit and Continue /ZI

• Enable Incremental Linking must be set to Yes /INCREMENTAL

Using CMake in Popular IDEs94

The behind-the-scenes mechanics of Hot Reload might seem like sorcery, but it’s an incredibly

useful feature to have. There are some limitations, such as changes to global/static data, object

layouts, or “time-traveling” changes (like altering the constructor of an already constructed object).

You can find more about Hot Reload in the official documentation here: https://learn.microsoft.

com/en-us/visualstudio/debugger/hot-reload.

This concludes our discovery of the three main IDEs. The initial learning curve might look steep,

but I promise that the effort put in to learn any of these platforms will pay off very quickly when

you move on to more advanced tasks.

Summary
This chapter provides an in-depth look at using IDEs to optimize the programming process, par-

ticularly focusing on IDEs that deeply integrate with CMake. It offers a comprehensive guide for

both beginners and experienced professionals, detailing the benefits of using an IDE and how to

select one that best fits individual or organizational needs.

We started with a discussion on the importance of IDEs in enhancing development speed and code

quality, explaining what an IDE is and how it simplifies the various steps involved in software

development by integrating tools like code editors, compilers, and debuggers. This was followed

by a short reminder about toolchains, where we explained the necessity of their installation if

they aren’t present in the system, and we presented a short list of the most common choices.

We discussed how to start with CLion and its unique features, and we took an advanced look at

its debugging capabilities. VS Code, a free, cross-platform IDE by Microsoft, is recognized for its

vast extension ecosystem and support for numerous programming languages. We guided you

through the initial setup and its key extension installations, and we introduced an advanced

feature called Dev Containers. The VS IDE, exclusive to Windows, provides a refined, feature-rich

environment tailored to various user needs. The setup process, key features, and the advanced

Hot Reload debugging feature were also covered.

Each IDE section provided insights into why you might choose a particular IDE, the steps to

get started, and a look at an advanced feature that sets the IDE apart. We also emphasized the

concept of remote development support, highlighting its growing importance in the industry.

https://learn.microsoft.com/en-us/visualstudio/debugger/hot-reload
https://learn.microsoft.com/en-us/visualstudio/debugger/hot-reload

Chapter 3 95

In summary, this chapter serves as a foundational guide for programmers seeking to understand

and choose an IDE, offering a clear overview of the top options, their unique benefits, and how to

effectively use them in conjunction with CMake to enhance coding efficiency and project man-

agement. In the next chapter, we’ll learn the basics of project setup using CMake.

Further reading
For more information on the topics covered in this chapter, you can refer to the following:

• Qt Creator IDE, another CMake-supporting option to explore:

https://www.qt.io/product/development-tools

• Eclipse IDE for C/C++ developers, which supports CMake as well:
https://www.eclipse.org/downloads/packages/release/2023-12/r/eclipse-ide-

cc-developers

• Xcode for macOS can also be used with CMake:
https://medium.com/practical-coding/migrating-to-cmake-in-c-and-getting-

it-working-with-xcode-50b7bb80ae3d

• CodeLite is another choice, thanks to the CMake plugin:

https://docs.codelite.org/plugins/cmake/

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://www.qt.io/product/development-tools
https://www.eclipse.org/downloads/packages/release/2023-12/r/eclipse-ide-cc-developers
https://www.eclipse.org/downloads/packages/release/2023-12/r/eclipse-ide-cc-developers
https://medium.com/practical-coding/migrating-to-cmake-in-c-and-getting-it-working-with-xcode-50b7bb80ae3d
https://medium.com/practical-coding/migrating-to-cmake-in-c-and-getting-it-working-with-xcode-50b7bb80ae3d
https://docs.codelite.org/plugins/cmake/
https://discord.com/invite/vXN53A7ZcA

4
Setting Up Your First CMake
Project

We have now gathered enough information to start talking about the core function of CMake:

building projects. In CMake, a project contains all the source files and the configuration necessary

to manage the process of bringing our solutions to life. Configuration starts by performing all

the checks: verifying if the target platform is supported, ensuring the presence of all essential

dependencies and tools, and confirming the compatibility of the provided compiler with the

required features.

Once the preliminary checks are completed, CMake proceeds to generate a buildsystem tailored

to the selected build tool. Then, the buildsystem is executed, which means compiling the source

files and linking them together with their respective dependencies to create the output artifacts.

The resulting artifacts can be distributed to consumers in different ways. They can be shared

directly with users as binary packages, allowing them to install them on their systems using pack-

age managers. Alternatively, they can be distributed as single-executable installers. Additionally,

end-users have the option to create the artifacts themselves by accessing projects shared in an

open-source repository. In this scenario, users can utilize CMake to compile the projects on their

own machines and subsequently install them.

Leveraging CMake projects to their fullest extent can significantly enhance the development

experience and the overall quality of the generated code. By harnessing the power of CMake, nu-

merous mundane tasks can be automated, such as executing tests after the build and running code

coverage checkers, formatters, validators, linters, and other tools. This automation not only saves

time but also ensures consistency and promotes code quality throughout the development process.

Setting Up Your First CMake Project98

To unlock the power of CMake projects, we’ll make a few key decisions first: how to correctly

configure the project as a whole and how to partition it and set up the source tree so that all files

are neatly organized in the right directories. By establishing a coherent structure and organiza-

tion from the beginning, the CMake project can be effectively managed and scaled as it evolves.

Next up, we’ll take a look at the project’s build environment. We’ll find out things like the archi-

tecture we’re working with, the tools at our disposal, the features they support, and the language

standard we’re using. To make sure everything is in sync, we’ll compile a test C++ file and see

if our chosen compiler meets the standard requirements we’ve set for our project. It’s all about

ensuring a smooth fit between our project, the tools we’re using, and the standards we’ve chosen.

In this chapter, we’re going to cover the following main topics:

• Understanding the basic directives and commands

• Partitioning your project

• Thinking about the project structure

• Scoping the environment

• Configuring the toolchain

• Disabling in-source builds

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch04.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path at

which your source code is located.

Understanding the basic directives and commands
In Chapter 1, First Steps with CMake, we already looked at a simple project definition. Let’s revisit

it. It is a directory with a CMakeLists.txt file that contains a few commands configuring the

language processor:

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch04
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch04

Chapter 4 99

chapter01/01-hello/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Hello)

add_executable(Hello hello.cpp)

In the same chapter, in the section named Project files, we learned about a few basic commands.

Let’s explain them in depth here.

Specifying the minimum CMake version
It’s important to use the cmake_minimum_required() command at the very top of your project

files and scripts. This command not only verifies if the system has the correct CMake version but

also implicitly triggers another command, cmake_policy(VERSION), which specifies the policies

to be used for the project. These policies define how commands behave within CMake, and they

have been introduced over the course of CMake’s development to accommodate changes and

improvements in the supported languages and CMake itself.

To keep the language clean and simple, the CMake team introduced policies whenever there was

a backward-incompatible change. Each policy enables the new behavior associated with that

change. These policies ensure that projects can adapt to the evolving features and functionalities

of CMake, while preserving compatibility with older codebases.

By calling cmake_minimum_required(), we tell CMake that it needs to apply the default policies

configured at the version provided in the argument. When CMake gets upgraded, we don’t need

to worry about it breaking our project, as the new policies coming with the new version won’t

be enabled.

Policies can affect every single aspect of CMake, including other important commands like

project(). For that reason, it is important to start your CMakeLists.txt file by setting the ver-

sion you’re working with. Otherwise, you will get warnings and errors.

Each CMake version introduces numerous policies. However, it’s not necessary to delve into

details unless you encounter challenges when upgrading older projects to the latest CMake

version. In such cases, it is recommended to refer to the official documentation on policies for

comprehensive information and guidance: https://cmake.org/cmake/help/latest/manual/

cmake-policies.7.html.

https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html
https://cmake.org/cmake/help/latest/manual/cmake-policies.7.html

Setting Up Your First CMake Project100

Defining languages and metadata
It’s recommended to put the project() command just after cmake_minimum_required(), even

though it’s technically not. Doing so will ensure that we use the right policies when configuring

the project. We can use one of its two forms:

project(<PROJECT-NAME> [<language-name>...])

Or:

project(<PROJECT-NAME>

 [VERSION <major>[.<minor>[.<patch>[.<tweak>]]]]

 [DESCRIPTION <project-description-string>]

 [HOMEPAGE_URL <url-string>]

 [LANGUAGES <language-name>...])

We need to specify <PROJECT-NAME>, but the other arguments are optional. Calling this command

will implicitly set the following variables:

PROJECT_NAME

CMAKE_PROJECT_NAME (only in the top-level CMakeLists.txt)

PROJECT_IS_TOP_LEVEL, <PROJECT-NAME>_IS_TOP_LEVEL

PROJECT_SOURCE_DIR, <PROJECT-NAME>_SOURCE_DIR

PROJECT_BINARY_DIR, <PROJECT-NAME>_BINARY_DIR

What languages are supported? Quite a few. And you can use more than one at a time! Here’s a

list of language keywords you can use to configure your project:

• ASM, ASM_NASM, ASM_MASM, ASMMARMASM, ASM-ATT: Dialects of Assembler

• C: C

• CXX: C++

• CUDA: Compute Unified Device Architecture by Nvidia

• OBJC: Objective-C

• OBJCXX: Objective-C++

• Fortran: Fortran

• HIP: Heterogeneous(-compute) Interface for Portability (for Nvidia and AMD platforms)

• ISPC: Implicit SPMD Program Compiler’s language

• CSharp: C#

• Java: Java (requires extra steps, see official documentation)

Chapter 4 101

CMake enables both C and C++ by default, so you may want to explicitly specify only CXX for your

C++ projects. Why? The project() command will detect and test the available compilers for your

chosen language, so stating the required ones will allow you to save time during the configuration

stage, by skipping any checks for unused languages.

Specifying the VERSION keyword will automatically set the variables that can be used to configure

packages, or exposed in the header files to be consumed during the compilation (we’ll cover this

in the Configuring the headers section of Chapter 7, Compiling C++ Sources with CMake):

PROJECT_VERSION, <PROJECT-NAME>_VERSION

CMAKE_PROJECT_VERSION (only in the top-level CMakeLists.txt)

PROJECT_VERSION_MAJOR, <PROJECT-NAME>_VERSION_MAJOR

PROJECT_VERSION_MINOR, <PROJECT-NAME>_VERSION_MINOR

PROJECT_VERSION_PATCH, <PROJECT-NAME>_VERSION_PATCH

PROJECT_VERSION_TWEAK, <PROJECT-NAME>_VERSION_TWEAK

We can also set DESCRIPTION and HOMEPAGE_URL, which will set the following variables for similar

purposes:

PROJECT_DESCRIPTION, <PROJECT-NAME>_DESCRIPTION

PROJECT_HOMEPAGE_URL, <PROJECT-NAME>_HOMEPAGE_URL

The cmake_minimum_required() and project() commands will allow us to create a basic listfile

and initialize an empty project. While the structure may not have been a significant concern for

the small, single-file projects, it becomes crucial as the codebase expands. How do you prepare

for that?

Partitioning your project
As our solutions grow in terms of lines of code and the number of files they contain, it becomes

apparent that we must address the looming challenge: either we begin partitioning the project,

or risk being overwhelmed by its complexity. There are two ways we can tackle this problem:

splitting the CMake code and relocating the source files to subdirectories. In both cases, we aim

to follow the design principle called separation of concerns. Put simply, we break down the code

into smaller parts, grouping together closely related functionality while keeping other pieces of

code separate to establish clear boundaries.

We talked a bit about partitioning CMake code when discussing listfiles in Chapter 1, First Steps

with CMake. We spoke about the include() command, which allows CMake to execute the code

from an external file.

Setting Up Your First CMake Project102

This method helps with the separation of concerns, but only a little – specialized code is extracted
to separate files and can even be shared across unrelated projects, but it can still pollute the global
variable scope with its internal logic, if the author is not careful.

You see, calling include() doesn’t introduce any additional scopes or isolations beyond what is
already defined within the file. Let’s see why this is a potential problem by considering an exam-
ple, a piece of software that supports a small car rental company. It will have many source files
defining different aspects of the software: managing customers, cars, parking spots, long-term
contracts, maintenance records, employee records, and so on. If we were to put all these files in
a single directory, finding anything would be a nightmare. Therefore, we create a number of di-
rectories in the main directory of our project and move the related files inside it. Our CMakeLists.

txt file might look similar to this:

ch04/01-partition/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)
project(Rental CXX)
add_executable(Rental
 main.cpp
 cars/car.cpp
 # more files in other directories
)

That’s all great, but as you can see, we still have the list of source files from the nested directory

in a top-level file! To increase the separation of concerns, we could extract the list of sources to

another listfile and store it in a sources variable:

ch04/02-include/cars/cars�cmake

set(sources
 cars/car.cpp
more files in other directories
)

Now we can reference this file with the include() command to gain access to the sources variable:

ch04/02-include/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)
project(Rental CXX)
include(cars/cars.cmake)
add_executable(Rental
 main.cpp

Chapter 4 103

 ${sources} # for cars/
)

CMake would effectively set sources in the same scope as add_executable, filling the variable

with all the files. This solution works, but it has a few flaws:

• The variables from the nested directory will pollute the top-level scope (and vice versa):

While it’s not an issue in a simple example, in more complex, multi-level trees with mul-

tiple variables used in the process, it can quickly become a hard-to-debug problem. What

if we have multiple included listfiles that define their sources variable?

• All of the directories will share the same configuration:

This issue shows its true colors as projects mature over the years. Without any granularity,

we have to treat every source file the same, and we cannot specify different compilation

flags, choose a newer language version for some parts of the code, and silence warnings

in chosen areas of the code. Everything is global, meaning that we need to introduce

changes to all of the translation units at the same time.

• There are shared compilation triggers:

Any changes to the configuration will mean that all the files will have to be recompiled,

even if the change is meaningless for some of them.

• All the paths are relative to the top level:

Note that in cars.cmake, we had to provide a full path to the cars/car.cpp file. This

results in a lot of repeated text ruining the readability and going against the Don’t Re-

peat Yourself (DRY) principle of clean coding (unnecessary repetition leads to mistakes).

Renaming a directory would be a struggle.

The alternative is to use the add_subdirectory() command, which introduces a variable scope

and more. Let’s take a look.

Managing scope with subdirectories
It’s a common practice to structure your project following the natural structure of the filesystem,

where nested directories represent the discrete elements of the application, the business logic,

GUI, API, and reporting, and finally, separate directories with tests, external dependencies, scripts,

and documentation. To support this concept, CMake offers the following command:

add_subdirectory(source_dir [binary_dir] [EXCLUDE_FROM_ALL])

Setting Up Your First CMake Project104

As already established, this adds a source directory to our build. Optionally, we may provide a path

that built files will be written to (binary_dir or the build tree). The EXCLUDE_FROM_ALL keyword

will disable the automatic building of targets defined in the subdirectory (we’ll cover targets in

the next chapter). This may be useful for separating parts of the project that aren’t needed for

the core functionality (like examples or extensions).

add_subdirectory() will evaluate the source_dir path (relative to the current directory) and

parse the CMakeLists.txt file in it. This file is parsed within the directory scope, eliminating the

issues mentioned in the previous method:

• Variables are isolated to the nested scope.

• The nested artifacts can be configured independently.

• Modifying the nested CMakeLists.txt file doesn’t require rebuilding unrelated targets.

• Paths are localized to the directory and can be added to the parent include path if desired.

This is what the directory structure looks like for our add_subdirectory() example:

├── CMakeLists.txt

├── cars

│ ├── CMakeLists.txt

│ ├── car.cpp

│ └── car.h

└── main.cpp

Here, we have two CMakeLists.txt files. The top-level file will use the nested directory, cars:

ch04/03-add_subdirectory/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(Rental CXX)

add_executable(Rental main.cpp)

add_subdirectory(cars)

target_link_libraries(Rental PRIVATE cars)

The last line is used to link the artifacts from the cars directory to the Rental executable. It is a

target-specific command, which we’ll discuss in depth in the next chapter: Chapter 5, Working

with Targets.

Let’s see what the nested listfile looks like:

ch04/03-add_subdirectory/cars/CMakeLists�txt

Chapter 4 105

add_library(cars OBJECT

 car.cpp

more files in other directories

)

target_include_directories(cars PUBLIC .)

In this example, I have used add_library() to produce a globally visible target cars, and added

the cars directory to its public include directories with target_include_directories(). This

informs CMake where the cars.h resides, so when target_link_libraries() is used, the main.

cpp file can consume the header without providing a relative path:

#include "car.h"

We can see the add_library() command in the nested listfile, so did we start working with li-

braries in this example? Actually, no. Since we used the OBJECT keyword, we’re indicating we’re

only interested in producing the object files (exactly as we did in the previous example). We just

grouped them under a single logical target (cars). You may already have a sense of what a target

is. Hold that thought – we’ll explain the details in the next chapter.

When to use nested projects
In the previous section, we briefly mentioned the EXCLUDE_FROM_ALL argument used in the add_

subdirectory() command to indicate extraneous elements of our codebase. The CMake docu-

mentation suggests that if we have such parts living inside the source tree, they should have their

own project() commands in their CMakeLists.txt files so that they can generate their own

buildsystems and can be built independently.

Are there any other scenarios where this would be useful? Sure. For example, one scenario would

be when you’re working with multiple C++ projects built in one CI/CD pipeline (perhaps when

building a framework or a set of libraries). Alternatively, maybe you’re porting the buildsystem

from a legacy solution, such as GNU Make, which uses plain makefiles. In such a case, you might

want an option to slowly break things down into more independent pieces – possibly to put them

in a separate build pipeline, or just to work on a smaller scope, which could be loaded by an IDE

such as CLion. You can achieve that by adding the project() command to the listfile in the nested

directory. Just don’t forget to prepend it with cmake_minimum_required().

Since project nesting is supported, could we somehow connect related projects that are built

side by side?

Setting Up Your First CMake Project106

Keeping external projects external
While it is technically possible to reference the internals of one project from another in CMake, it

is not a regular or recommended practice. CMake does provide some support for this, including

the load_cache() command to load values from another project’s cache. However, using this

approach can result in problems with cyclical dependencies and project coupling. It’s best to avoid

this command and make a decision: should our related projects be nested, connected through

libraries, or merged into a single project?

These are the partitioning tools at our disposal: including listfiles, adding subdirectories, and nesting

projects. But how should we use them so our projects stay maintainable and easy to navigate and

extend? To do this, we need a well-defined project structure.

Thinking about the project structure
It’s no secret that as a project grows, it becomes harder and harder to find things in it – both in

listfiles and in the source code. Therefore, it is very important to maintain the project hygiene

right from the start.

Imagine a scenario where you need to deliver some important, time-sensitive changes, and they

don’t fit well in either of the two directories in your project. Now, you need to additionally push

a cleanup commit to restructure the file hierarchy to fit your changes neatly. Or, worse, you decide

to just shove them anywhere and add a TODO to deal with the issue later.

Over the course of the year, these problems accumulate, the technical debt grows, and so does

the cost of maintaining the code. This becomes extremely troublesome when there’s a crippling

bug in a live system that needs a quick fix or when people unfamiliar with the codebase need to

introduce occasional changes.

So, we need a good project structure. But what does this mean? There are a few rules that we can

borrow from other areas of software development like system design. The project should have

the following characteristics:

• Easy to navigate and extend

• Well bounded (project-specific files should be contained to the project directory)

• Individual targets follow the hierarchical tree

There isn’t one definitive solution, but out of the various project structure templates available

online, I suggest using this one as it is simple and extensible:

Chapter 4 107

Figure 4.1: An example of a project structure

This project outlines the directories for the following components:

• cmake: Shared macros and functions, find_modules, and one-off scripts

• src: Source and header files for binaries and libraries

• test: Source code for automated tests

In this structure, the CMakeLists.txt file should exist in the following directories: the top-level

project directory, test, and src and all its subdirectories. The main listfile shouldn’t declare any

build steps on its own, but instead, it should configure the general aspects of the project and dele-

gate the responsibility of building to the nested listfiles with the add_subdirectory() command.

In turn, these listfiles may delegate this work to even deeper layers if needed.

Setting Up Your First CMake Project108

Having multiple directories in the src directory comes in handy for bigger projects. But if you’re

building just a single executable or library, you may skip them and store your source files directly

in src. In any case, remember to add a CMakeLists.txt file there and execute any nested listfiles

as well. This is how your file tree might look for a single, simple target:

Figure 4.2: The directory structure of an executable

Some developers suggest separating the executables from the libraries and creating

two top-level directories instead of one: src and lib. CMake treats both artifacts

the same, and separation at this level doesn’t really matter. Feel free to follow that

model if it’s your preference.

Chapter 4 109

In Figure 4.1, we see a CMakeLists.txt file in the root of the src directory – it will configure the

key project settings and include all listfiles from nested directories. The app1 directory (visible

in Figure 4.2) contains another CMakeLists.txt file along with the .cpp implementation files:

class_a.cpp and class_b.cpp. There’s also the main.cpp file with the executable’s entry point.

The CMakeLists.txt file should define a target that uses these sources to build an executable –

again, we’ll learn how to do that in the next chapter.

Our header files are placed in the include directory and can be used to declare symbols for other

C++ translation units.

Next, we have a lib3 directory, which contains a library specific to this executable only (libraries

used elsewhere in the project or exported externally should live in the src directory). This struc-

ture offers great flexibility and allows for easy project extensions. As we continue adding more

classes, we can conveniently group them into libraries to improve compilation speed. Let’s see

what a library looks like:

Figure 4.3: The directory structure of a library

Libraries should adhere to the same structure as executables, with a minor distinction: an option-

al lib1 directory is added to the include directory. This directory is included when the library is

intended for external use beyond the project. It contains public header files that other projects

will consume during compilation. We’ll return to this subject when we start building our own

libraries in Chapter 7, Compiling C++ Sources with CMake.

Setting Up Your First CMake Project110

So, we have discussed how files are laid out in a directory structure. Now, it’s time to take a look

at how individual CMakeLists.txt files come together to form a single project and what their

role is in a bigger scenario.

Figure 4.4: How CMake merges listfiles together in a single project

In the preceding figure, each box represents a CMakeLists.txt listfile residing in each directory,

while the labels in italics represent the actions executed by each file (from top to bottom). Let’s

analyze this project once more from CMake’s perspective (for all the details, look at the example

in the ch04/05-structure directory):

Chapter 4 111

1. The execution starts from the root of the project – that is, from a CMakeLists.txt listfile

residing at the top of the source tree. This file will set the minimum required CMake

version with the appropriate policies, set the project name, supported languages, and

global variables, and include the files from the cmake directory, so that their contents are

available globally.

2. The next step is to enter the scope of the src directory by calling the add_subdirectory(src

bin) command (we’d like to put compiled artifacts in <binary_tree>/bin rather than

<binary_tree>/src).

3. CMake reads the src/CMakeLists.txt file and discovers that its only purpose is to add

four nested subdirectories: app1, app2, lib1, and lib2.

4. CMake enters the variable scope of app1 and learns about another nested library, lib3,

which has its own CMakeLists.txt file; then the scope of lib3 is entered. As you may

have noticed, this is a depth-first traversal of the directory structure.

5. The lib3 library adds a static library target with the same name. CMake returns to the

parent scope of app1.

6. The app1 subdirectory adds an executable that depends on lib3. CMake returns to the

parent scope of src.

7. CMake will continue entering the remaining nested scopes and executing their listfiles

until all add_subdirectory() invocations have been completed.

8. CMake returns to the top-level scope and executes the remaining command add_

subdirectory(test). Each time, CMake enters the new scope and executes commands

from the appropriate listfile.

9. All the targets are collected and checked for their correctness. CMake now has all the

necessary information to generate a buildsystem.

It’s important to note that the previous steps occur in the exact order in which we wrote the

commands in our listfiles. In some cases, this order is significant, while in others, it may not be

as crucial. We will delve deeper into this topic in the next chapter, Chapter 5, Working with Targets,

to understand its implications.

So, when is the right time to create the directories to contain all of the elements of the project?

Should we do it right from the start – create everything needed for the future and keep the di-

rectories empty – or wait until we actually have the files that need to go in their own category?

This is a choice – we could follow the Extreme Programming (XP) rule YAGNI (you aren’t gon-

na need it), or we could try to make our project future-proof and lay good foundations for new

developers to come.

Setting Up Your First CMake Project112

Try to aim for a good balance between these approaches – if you suspect that your project might

someday need an extern directory, then add it (your version control system may require an empty

.keep file to check a directory into the repository).

Another effective approach to guide others in placing their external dependencies is by creating

a README file that outlines the recommended structure. This can be particularly beneficial for less

experienced programmers who will work on the project in the future. You may have observed this

yourself: developers are reluctant to create directories, especially in the root of the project. If we

provide a good project structure, others will be inclined to follow it.

Some projects can be built in almost every environment, while others are quite particular about

their requirements. The top-level listfile is the perfect place to determine the appropriate course

of action. Let’s see how to do this.

Scoping the environment
CMake provides multiple ways of querying the environment with CMAKE_ variables, ENV variables,

and special commands. For example, collected information can be used to support cross-platform

scripts. These mechanisms allow us to avoid using platform-specific shell commands that may

not be easily portable or differ in naming across environments.

For performance-critical applications, it will be useful to know all the features of the building

platform (for example, instruction sets, CPU core count, and more). This information can then

be passed to the compiled binaries so that they can be tuned to perfection (we’ll learn how to do

the passing in the next chapter). Let’s explore the native information provided by CMake.

Detecting the operating system
There are many occasions when it is useful to know what the target operating system is. Even as

mundane a thing as a filesystem differs greatly between Windows and Unix in things such as case

sensitivity, file path structures, the presence of extensions, privileges, and so on. Most commands

present on one system won’t be available on another; they could be named differently (for exam-

ple, ifconfig on Unix and ipconfig on Windows) or produce totally different output altogether.

If you ever need to support multiple target operating systems with a single CMake script, just

check the CMAKE_SYSTEM_NAME variable so that you can act accordingly. Here’s a simple example:

if(CMAKE_SYSTEM_NAME STREQUAL "Linux")

 message(STATUS "Doing things the usual way")

elseif(CMAKE_SYSTEM_NAME STREQUAL "Darwin")

 message(STATUS "Thinking differently")

Chapter 4 113

elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows")

 message(STATUS "I'm supported here too.")

elseif(CMAKE_SYSTEM_NAME STREQUAL "AIX")

 message(STATUS "I buy mainframes.")

else()

 message(STATUS "This is ${CMAKE_SYSTEM_NAME} speaking.")

endif()

If needed, there’s a variable containing the operating system version: CMAKE_SYSTEM_VERSION.

However, my recommendation is to try and make your solutions as system-agnostic as possible

and use the built-in CMake cross-platform functionality. Especially for operations on filesystems,

you should use the file() command described in the Appendix.

Cross-compilation – what are host and target systems?
Cross-compilation refers to the process of compiling code on one machine to be executed on a

different target platform. For example, using the appropriate toolset, it is possible to compile ap-

plications for Android by running CMake on a Windows machine. Although cross-compilation is

beyond the scope of this book, it’s important to understand how it impacts some parts of CMake.

One of the necessary steps to allow cross-compilation is setting the CMAKE_SYSTEM_NAME and

CMAKE_SYSTEM_VERSION variables to the values appropriate for the operating system that you’re

compiling for (the CMake documentation refers to it as the target system). The operating system

used to perform the build is called a host system.

Regardless of the configuration, the information on the host system is always accessible in vari-

ables with the HOST keyword in their name: CMAKE_HOST_SYSTEM, CMAKE_HOST_SYSTEM_NAME,

CMAKE_HOST_SYSTEM_PROCESSOR, and CMAKE_HOST_SYSTEM_VERSION.

There are a few more variables with a HOST keyword in their name, so just keep in mind that they’re

explicitly referencing the host system. Otherwise, all variables reference the target system (which

is normally the host system anyway, unless we’re cross-compiling).

If you’re interested in reading more about cross-compilation, I suggest referencing the CMake

documentation at https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html.

Abbreviated variables
CMake will predefine a few variables that will provide information about the host and target

systems. If a specific system is used, an appropriate variable will be set to a non-false value

(that is, 1 or true):

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html

Setting Up Your First CMake Project114

• ANDROID, APPLE, CYGWIN, UNIX, IOS, WIN32, WINCE, WINDOWS_PHONE

• CMAKE_HOST_APPLE, CMAKE_HOST_SOLARIS, CMAKE_HOST_UNIX, CMAKE_HOST_WIN32

The WIN32 and CMAKE_HOST_WIN32 variables will be true for 32- and 64-bit versions of Windows

and MSYS (this value is kept for legacy reasons). Also, UNIX will be true for Linux, macOS, and

Cygwin.

Host system information
CMake could provide more variables, but to save time, it doesn’t query the environment for rarely

needed information, such as whether a processor supports MMX or what the total physical memory

is. That doesn’t mean this information isn’t available – you just need to ask for it explicitly with

the following command:

cmake_host_system_information(RESULT <VARIABLE> QUERY <KEY>...)

We need to provide a target variable and a list of keys we’re interested in. If we provide just one

key, the variable will contain a single value; otherwise, it will be a list of values. We can ask for

many details about the environment and the OS:

Key Description

HOSTNAME Hostname

FQDN Fully qualified domain name

TOTAL_VIRTUAL_MEMORY Total virtual memory in MiB

AVAILABLE_VIRTUAL_MEMORY Available virtual memory in MiB

TOTAL_PHYSICAL_MEMORY Total physical memory in MiB

AVAILABLE_PHYSICAL_MEMORY Available physical memory in MiB

OS_NAME
Output of uname -s if this command is present; either

Windows, Linux, or Darwin

OS_RELEASE The OS sub-type, such as on Windows Professional

OS_VERSION The OS build ID

OS_PLATFORM
On Windows, $ENV{PROCESSOR_ARCHITECTURE}. On Unix/

macOS, uname -m

http://On

Chapter 4 115

If needed, we can even query processor-specific information:

Key Description

NUMBER_OF_LOGICAL_CORES Number of logical cores

NUMBER_OF_PHYSICAL_CORES Number of physical cores

HAS_SERIAL_NUMBER 1 if the processor has a serial number

PROCESSOR_SERIAL_NUMBER Processor serial number

PROCESSOR_NAME Human-readable processor name

PROCESSOR_DESCRIPTION Human-readable full processor description

IS_64BIT 1 if processor is 64-bit

HAS_FPU 1 if processor has floating-point units

HAS_MMX 1 if processor supports MMX instructions

HAS_MMX_PLUS 1 if processor supports Ext. MMX instructions

HAS_SSE 1 if processor supports SSE instructions

HAS_SSE2 1 if processor supports SSE2 instructions

HAS_SSE_FP 1 if processor supports SSE FP instructions

HAS_SSE_MMX 1 if processor supports SSE MMX instructions

HAS_AMD_3DNOW 1 if processor supports 3DNow instructions

HAS_AMD_3DNOW_PLUS 1 if processor supports 3DNow+ instructions

HAS_IA64 1 if IA64 processor is emulating x86

Does the platform have 32-bit or 64-bit architecture?
In 64-bit architecture, memory addresses, processor registers, processor instructions, address

buses, and data buses are 64 bits wide. While this is a simplified definition, it gives a rough idea

of how 64-bit platforms are different from 32-bit platforms.

In C++, different architectures mean different bit widths for some fundamental data types (int

and long) and pointers. CMake utilizes the pointer size to gather information about the target

machine. This information is available through the CMAKE_SIZEOF_VOID_P variable, and it will

contain a value of 8 for 64 bits (because a pointer is 8 bytes wide) and 4 for 32 bits (4 bytes):

if(CMAKE_SIZEOF_VOID_P EQUAL 8)

 message(STATUS "Target is 64 bits")

endif()

Setting Up Your First CMake Project116

What is the endianness of the system?
Architectures can be categorized as either big-endian or little-endian based on the byte order

within a word or the natural unit of data for a processor. In a big-endian system, the most signif-

icant byte is stored at the lowest memory address, while the least significant byte is stored at the

highest memory address. On the other hand, in a little-endian system, the byte order is reversed,

with the least significant byte stored at the lowest memory address and the most significant byte

at the highest memory address.

In most cases, endianness doesn’t matter, but when you’re writing bit-wise code that needs to

be portable, CMake will provide you with a BIG_ENDIAN or LITTLE_ENDIAN value stored in the

CMAKE_<LANG>_BYTE_ORDER variable, where <LANG> is C, CXX, OBJC, or CUDA.

Now that we know how to query the environment, let’s shift our focus to the key settings of the

project.

Configuring the toolchain
For CMake projects, a toolchain consists of all the tools used in building and running the appli-

cation – for example, the working environment, the generator, the CMake executable itself, and

the compilers.

Imagine what a less-experienced user feels when your build stops with some mysterious compila-

tion and syntax errors. They must dig into the source code and try to understand what happened.

After an hour of debugging, they discover that the correct solution is to update their compiler.

Could we provide a better experience for users and check if all the required functions are present

in the compiler before starting the build?

Sure! There are ways to specify these requirements. If the toolchain doesn’t support all of the

required features, CMake will stop early and show a clear message of what happened, asking

the user to step in.

Setting the C++ standard
One of the initial steps we may consider is specifying the required C++ standard that the compiler

should support for building our project. For new projects, it is recommended to set a minimum of

C++14, but preferably C++17 or C++20. Starting from CMake 3.20, it is possible to set the required

standard to C++23 if the compiler supports it. Additionally, since CMake 3.25, there is an option

to set the standard to C++26, although this is currently a placeholder.

Chapter 4 117

Another reason to stick to old standards is if you are building legacy targets that are too hard to

upgrade. However, the C++ committee works very hard to keep C++ backward compatible, and

in most cases, you won’t have any problems bumping the standard to a higher version.

CMake supports setting the standard on a target-by-target basis (this is useful if parts of your

codebase are really old), but it’s better to converge to a single standard across the project. This

can be done by setting the CMAKE_CXX_STANDARD variable to one of the following values: 98, 11,

14, 17, 20, 23, or 26, like so:

set(CMAKE_CXX_STANDARD 23)

This will be a default value for all subsequently defined targets (so it’s best to set it close to the

top of the root listfile). You can override it on a per-target basis if needed, like so:

set_property(TARGET <target> PROPERTY CXX_STANDARD <version>)

Or:

set_target_properties(<targets> PROPERTIES CXX_STANDARD <version>)

The second version allows us to specify multiple targets if that’s needed.

Insisting on standard support
The CXX_STANDARD property mentioned in the previous section won’t stop CMake from continuing

with the build, even if the compiler isn’t supporting the desired version – it’s treated as a prefer-

ence. CMake doesn’t know if our code actually uses the brand-new features that aren’t available

in the previous compilers, and it will try to work with what it has available.

If we know for certain that this won’t be successful, we can set another variable (which is overrid-

able per target in the same manner as the previous one) to explicitly require the standard we target:

set(CMAKE_CXX_STANDARD_REQUIRED ON)

In this case, if the compiler present in the system doesn’t support the required standard, the user

will see the following message and the build will stop:

It has been over 10 years since the official release of C++11, and it is no longer con-

sidered to be the modern C++ standard. It’s not recommended to start projects with

this version unless your target environment is very old.

Setting Up Your First CMake Project118

Target "Standard" requires the language dialect "CXX23" (with compiler
extensions), but CMake does not know the compile flags to use to enable
it.

Asking for C++23 might be a bit excessive, even for a modern environment. But C++20 should

be fine on up-to-date systems, as it has been generally supported in GCC/Clang/MSVC since

2021/2022.

Vendor-specific extensions
Depending on the policy you implement in your organization, you might be interested in allowing

or disabling vendor-specific extensions. What are these? Well, let’s just say that the C++ stan-

dard is moving a bit slow for the needs of some compiler producers, so they decided to add their

own enhancements to the language – extensions, if you like. For example, C++ Technical Report

1 (TR1) was a library extension that introduced regular expressions, smart pointers, hash tables,

and random number generators before they became commonplace. To support such plugins

released by the GNU project, CMake will substitute the compiler flag responsible for standard

(-std=c++14) with -std=gnu++14.

On the one hand, this may be desired, as it allows for some convenient functionality. On the

other hand, your code will lose portability as it will fail to build if you switch to a different com-

piler (or if your users do!). This is also a per-target property for which there is a default variable,

CMAKE_CXX_EXTENSIONS. CMake is more liberal here, and allows the extensions unless we spe-

cifically tell it not to:

set(CMAKE_CXX_EXTENSIONS OFF)

I recommend doing so, if possible, as this option will insist on having vendor-agnostic code. Such

code won’t impose any unnecessary requirements on the users. Similarly to previous options, you

can use set_property() to change this value on a per-target basis.

Interprocedural optimization
Usually, compilers optimize the code on the level of a single translation unit, which means that

your .cpp file will be preprocessed, compiled, and then optimized. The intermediary files gen-

erated during these operations are then passed to the linker to create a single binary. However,

modern compilers have the capability of performing interprocedural optimization at link time,

also known as link-time optimization. This allows all compilation units to be optimized as a

unified module, which in principle will achieve better results (sometimes at the cost of slower

builds and more memory consumption).

Chapter 4 119

If your compiler supports interprocedural optimization, it may be a good idea to use it. We’ll follow

the same method. The variable responsible for this setting is called CMAKE_INTERPROCEDURAL_

OPTIMIZATION. But before we set it, we need to make sure it is supported to avoid errors:

include(CheckIPOSupported)
check_ipo_supported(RESULT ipo_supported)
set(CMAKE_INTERPROCEDURAL_OPTIMIZATION ${ipo_supported})

As you can see, we had to include a built-in module to get access to the check_ipo_supported()
command. This code will fail gracefully, and fall back to default behavior if the optimization is

not supported.

Checking for supported compiler features
As we discussed earlier, if our build is to fail, it’s best if it fails early, so we can provide a clear

feedback message to the user and shorten the wait. Sometimes we’re specifically interested in

which C++ features are supported (and which aren’t). CMake will question the compiler during the

configuration stage and store a list of the available features in the CMAKE_CXX_COMPILE_FEATURES

variable. We may write a very specific check and ask if a certain feature is available:

ch04/07-features/CMakeLists�txt

list(FIND CMAKE_CXX_COMPILE_FEATURES cxx_variable_templates result)

if(result EQUAL -1)

 message(FATAL_ERROR "Variable templates are required for compilation.")

endif()

As you may guess, writing one for every feature we use is a daunting task. Even the authors of
CMake recommend only checking if certain high-level meta-features are present: cxx_std_98,
cxx_std_11, cxx_std_14, cxx_std_17, cxx_std_20, cxx_std_23, and cxx_std_26. Each meta-fea-
ture indicates that the compiler supports a specific C++ standard. If you wish, you can use them
exactly as we did in the previous example.

A full list of features known to CMake can be found in the documentation: https://cmake.org/

cmake/help/latest/prop_gbl/CMAKE_CXX_KNOWN_FEATURES.html.

Compiling a test file
One particularly interesting scenario occurred to me when I was compiling an application with

GCC 4.7.x. I had manually confirmed in the compiler’s reference that all of the C++11 features we

were using were supported. However, the solution still didn’t work correctly. The code silently

ignored the call to the standard <regex> header. As it turned out, this specific compiler had a bug,

and the regex library wasn’t implemented.

https://cmake.org/cmake/help/latest/prop_gbl/CMAKE_CXX_KNOWN_FEATURES.html
https://cmake.org/cmake/help/latest/prop_gbl/CMAKE_CXX_KNOWN_FEATURES.html

Setting Up Your First CMake Project120

No single check can protect you from such rare bugs (and you shouldn’t need to check for them!),

but there’s a chance you may want to use some cutting-edge experimental feature of the latest

standard, and you’re not sure which compilers support it. You can test if your project is going to

work by creating a test file that uses those specially required features in a small sample that can

be quickly compiled and executed.

CMake provides two configure-time commands, try_compile() and try_run(), to verify that

everything you need is supported on the target platform.

The try_run() command gives you more freedom, as you can ensure that the code is not only

compiling but that it is also executing correctly (you could potentially test if regex is working).

Of course, this won’t work for cross-compilation scenarios (as the host won’t be able to run an

executable built for a different target). Just remember that the aim of this check is to provide a

quick piece of feedback to the user if the compilation is working, so it’s not meant to run any unit

tests or anything complex – keep the file as basic as possible. For example, something like this:

ch04/08-test_run/main�cpp

#include <iostream>

int main()

{

 std::cout << "Quick check if things work." << std::endl;

}

Calling try_run() isn’t very complicated at all. We start by setting the required standard, after

which we call try_run() and print the collected information to the user:

ch04/08-test_run/CMakeLists�txt

set(CMAKE_CXX_STANDARD 20)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

set(CMAKE_CXX_EXTENSIONS OFF)

try_run(run_result compile_result

 ${CMAKE_BINARY_DIR}/test_output

 ${CMAKE_SOURCE_DIR}/main.cpp

 RUN_OUTPUT_VARIABLE output)

message("run_result: ${run_result}")

message("compile_result: ${compile_result}")

message("output:\n" ${output})

Chapter 4 121

This command may seem overwhelming at first, but only a few arguments are actually required

to compile and run a very basic test file. I additionally used the optional RUN_OUTPUT_VARIABLE

keyword to collect the output from stdout.

The next step is to extend our basic test file by using some of the more modern C++ features that

we’re going to use throughout the actual project – perhaps by adding a variadic template to see

if the compiler on the target machine can digest it.

Finally, we can check in the conditional blocks if the collected output is meeting our expecta-

tions and message(SEND_ERROR <error>) is printed when something isn’t right. Remember that

SEND_ERROR keyword will allow CMake to continue through the configuration stage but will pre-

vent the generation of the buildsystem. This is useful to show all the encountered errors before

aborting the build. We now know how to ensure the compilation can complete in full. Let’s move

on to the next subject, disabling in-source builds.

Disabling in-source builds
In Chapter 1, First Steps with CMake, we talked about in-source builds, and how it is recommended

to always specify the build path to be out of source. This not only allows for a cleaner build tree

and a simpler .gitignore file, but it also decreases the chances you’ll accidentally overwrite or

delete any source files.

To stop the build early you may use the following check:

ch04/09-in-source/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(NoInSource CXX)

if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)

 message(FATAL_ERROR "In-source builds are not allowed")

endif()

message("Build successful!")

If you would like more information about the STR prefix and variable references, please revisit

Chapter 2, The CMake Language.

Notice, however, that no matter what you do in the preceding code, it seems like CMake will still

create a CMakeFiles/ directory and a CMakeCache.txt file.

Setting Up Your First CMake Project122

If you’re worried about users leaving those files in the source directory, add them to the .gitignore

(or equivalent), and change the message to request a manual cleanup.

Summary
In this chapter, we covered valuable concepts that lay a strong foundation for building robust

and future-proof projects. We discussed setting the minimum CMake version and configuring

essential project aspects like name, languages, and metadata fields. Establishing these founda-

tions enables our projects to scale effectively.

We explored project partitioning, comparing the use of basic include() with add_subdirectory,

which offers benefits such as scoped variable management, simplified paths, and increased mod-

ularity. The ability to create nested projects and build them separately proved useful in gradually

breaking down code into more independent units. After understanding the available partitioning

mechanisms, we delved into creating transparent, resilient, and extensible project structures.

We examined CMake’s traversal of listfiles and the correct order of configuration steps. Next, we

studied how we can scope the environment of our target and host machines, what the differenc-

es are between them, and what kind of information about the platform and system is available

through different queries. We also covered configuring the toolchain, including specifying the

required C++ version, handling vendor-specific compiler extensions, and enabling important

optimizations. We learned how to test the compiler for required features and execute sample

files to test compilation support.

Although the technical aspects covered so far are essential for a project, they are not sufficient to

make it truly useful. To increase the project’s utility, we need to understand the concept of targets.

We briefly touched on the topic earlier, but now we are ready to approach it in full, as we finally

have a solid understanding of related fundamentals. Targets, introduced in the next chapter, will

play a crucial role in further enhancing the functionality and effectiveness of our projects.

You might find online suggestions to use undocumented variables to make sure

that the user can’t write in the source directory under any circumstances. Relying

on undocumented variables to restrict writing in the source directory is not rec-

ommended. They may not work in all versions and can be subject to removal or

modification without warning.

Chapter 4 123

Further reading
For more information on the topics covered in this chapter, you can refer to the following links:

• Separation of concerns:

https://nalexn.github.io/separation-of-concerns/

• Complete CMake variable reference:

https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html

• try_compile and try_run references:

https://cmake.org/cmake/help/latest/command/try_compile.html,

https://cmake.org/cmake/help/latest/command/try_run.html

• CheckIPOSupported reference:

https://cmake.org/cmake/help/latest/module/CheckIPOSupported.html

Leave a review!
Enjoying this book? Help readers like you by leaving an Amazon review. Scan the QR code below

to get a free eBook of your choice.

https://nalexn.github.io/separation-of-concerns/
https://cmake.org/cmake/help/latest/manual/cmake-variables.7.html
https://cmake.org/cmake/help/latest/command/try_compile.html
https://cmake.org/cmake/help/latest/command/try_run.html
https://cmake.org/cmake/help/latest/module/CheckIPOSupported.html

5
Working with Targets

The entire application in CMake can be built from a single source code file (such as the classic

helloworld.cpp). But it’s equally possible to create a project where the executable is built from

many source files: dozens or even thousands. Many beginners follow this path: they build their

binaries with only a few files and let their projects grow organically without strict planning. They

keep adding files as required and before they know it, everything is linked directly to a single

binary without any structure whatsoever.

As software developers, we deliberately draw boundaries and designate components to group one

or more units of translation (.cpp files). We do it to increase code readability, manage coupling

and connascence, speed up the build process, and finally, discover and extract reusable compo-

nents into autonomic units.

Every big project will push you to introduce some form of partitioning. This is where CMake

targets find their use. A CMake target represents a logical unit that focuses on a specific objective.

Targets can have dependencies on other targets, and their construction follows a declarative

approach. CMake takes care of determining the proper order for building targets, optimizing

with parallel builds where possible, and executing the necessary steps accordingly. As a general

principle, when a target is built, it generates an artifact that can be utilized by other targets or

serve as the final output of the build process.

Notice the usage of the word artifact. I intentionally refrain from using specific terms because

CMake offers flexibility beyond just generating executables or libraries. In practice, we can uti-

lize generated buildsystems to produce various types of outputs: additional source files, headers,

object files, archives, configuration files, and more. The only requirements are a command-line

tool (like a compiler), optional input files, and a designated output path.

Working with Targets126

Targets are an incredibly powerful concept that greatly streamlines the process of building a proj-

ect. Understanding how they function and mastering the art of configuring them in an elegant

and organized manner is crucial. This knowledge ensures a smooth and efficient development

experience.

In this chapter, we’re going to cover the following main topics:

• Understanding the concept of a target

• Setting properties of targets

• Writing custom commands

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch05.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the <build tree> and <source tree> placeholders with appropriate paths.

As a reminder: build tree is the path to the target/output directory, while source tree is the path

at which your source code is located.

Understanding the concept of a target
If you have ever used GNU Make, you have already seen the concept of a target. Essentially, it’s

a recipe that a buildsystem follows to compile a set of files into another file. It can be a .cpp

implementation file compiled into a .o object file or a group of .o files packaged into a .a static

library. There are numerous combinations and possibilities when it comes to targets and their

transformations within a buildsystem.

CMake, however, allows you to save time and skip defining the intermediate steps of those recipes;

it works on a higher level of abstraction. It understands how most languages build an executable

directly from their source files. So, you don’t need to write explicit commands to compile your

C++ object files (as you would using GNU Make). All that’s required is an add_executable()

command with the name of the executable target followed by a list of the source files:

add_executable(app1 a.cpp b.cpp c.cpp)

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch05
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch05

Chapter 5 127

We have used this command in the previous chapters, and we already know how executable

targets are used in practice – during the generation step, CMake will create a buildsystem and

fill it with appropriate recipes to compile each of the source files and link them together into a

single binary executable.

In CMake, we can create a target using these three commands:

• add_executable()

• add_library()

• add_custom_target()

Before building executables or libraries, CMake performs a check to determine whether the gener-

ated output is older than the source files. This mechanism helps CMake avoid recreating artifacts

that are already up to date. By comparing timestamps, CMake efficiently identifies which targets

need to be rebuilt, reducing unnecessary recompilation.

All commands defining targets require the name of the target to be provided as a first argument,

so it can be later referenced in other commands that do things with targets, like target_link_

libraries(), target_sources(), or target_include_directories(). We’ll learn about those

commands later, but for now, let’s take a closer look at what kind of targets we can define.

Defining executable targets
The command to define an executable target, add_executable(), is self-explanatory (we leaned

on this fact and used it already in previous chapters). The formal structure looks like this:

add_executable(<name> [WIN32] [MACOSX_BUNDLE]

 [EXCLUDE_FROM_ALL]

 [source1] [source2 ...])

If we’re compiling for Windows, by adding the optional argument, the WIN32 keyword, we’ll

produce an executable that won’t show the default console window (where we usually see the

output streamed to std::cout). Instead, the application will be expected to generate its own GUI.

The next optional argument, MACOSX_BUNDLE, is quite similar in a way; it makes the applications

produced for macOS/iOS launchable from the Finder as GUI apps.

The EXCLUDE_FROM_ALL keyword, when used, will prevent the executable target from being built

in a regular, default build. Such a target will have to be explicitly mentioned in the build command:

cmake --build -t <target>

Working with Targets128

Finally, we’re expected to provide the list of sources that will be compiled into the target. The

following extensions are supported:

• For C: c, m

• For C++: C, M, c++, cc, cpp, cxx, m, mm, mpp, CPP, ixx, cppm, ccm, cxxm, c++m

Note that we’re not adding any header files to the sources list. That can be done either implicitly,

by providing a path to the directory where those files are with the target_include_directories()

command, or by using a FILE_SET feature of the target_sources() command (added in CMake

3.23). This is an important topic for executables, but since it’s complex and orthogonally related

to targets, we’ll dive into its details in Chapter 7, Compiling C++ Sources with CMake.

Defining library targets
Defining the libraries is very similar to defining executables, but, of course, it doesn’t require

keywords that define how GUI aspects will be handled. Here’s the signature of the command:

add_library(<name> [STATIC | SHARED | MODULE]

 [EXCLUDE_FROM_ALL]

 [<source>...])

Rules regarding the name, exclusion from all, and sources match the executable targets exactly.

The only difference is in the STATIC, SHARED, and MODULE keywords. If you have any experience

with libraries, you’ll know that these define what sort of artifact CMake will generate: statically

linked libraries, shared (dynamic libraries), or modules. Again, it is quite a vast subject, which

will be covered in depth in Chapter 8, Linking Executables and Libraries.

Custom targets
Custom targets are a bit different than executables or libraries. They extend the build function-

ality beyond what CMake provides out of the box by executing explicitly given command lines;

for example, they can be used to:

• Calculate the checksums of other binaries.

• Run the code sanitizer and collect the results.

• Send a compilation report to the metrics pipeline.

As you can guess from this list, custom targets are only useful in quite advanced projects, so we’ll

just cover the basics to move on to more important topics.

Chapter 5 129

To define a custom target, use the following syntax (some options have been removed for brevity):

add_custom_target(Name [ALL] [COMMAND command2 [args2...] ...])

Custom targets have certain drawbacks to consider. Since they involve shell commands, they

can be system specific, potentially limiting portability. Additionally, custom targets may not

provide a straightforward means for CMake to determine the specific artifacts or byproducts

being generated, if any.

Custom targets also don’t apply the staleness check like executables and libraries (they don’t

verify whether the sources are newer than the binaries), because by default they’re not added to

the dependency graph (so the ALL keyword works in opposite to EXCLUDE_FROM_ALL). Let’s find

out what that dependency graph is about.

Dependency graph
Mature applications are often built from many components, specifically, internal libraries. Par-

titioning the project is useful from a structural perspective. When related things are packaged

together in a single logical entity, they can be linked with other targets: another library or an

executable. This is especially convenient when multiple targets are using the same library. Take

a look at Figure 5.1, which describes an exemplary dependency graph:

Figure 5.1: Order of building dependencies in the BankApp project

Working with Targets130

In this project, we have two libraries, two executables, and a custom target. Our use case here is

to provide a banking application with a nice GUI for users (GuiApp) and a command-line ver-

sion to be used as part of an automated script (TerminalApp). Both executables depend on the

same Calculations library, but only one of them needs the Drawing library. To guarantee that

our app’s binaries were downloaded from a genuine source, we’ll also calculate a checksum, and

distribute it through separate secure channels. CMake is pretty flexible when it comes to writing

listfiles for such a solution:

ch05/01-targets/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(BankApp CXX)

add_executable(terminal_app terminal_app.cpp)

add_executable(gui_app gui_app.cpp)

target_link_libraries(terminal_app calculations)

target_link_libraries(gui_app calculations drawing)

add_library(calculations calculations.cpp)

add_library(drawing drawing.cpp)

add_custom_target(checksum ALL

 COMMAND sh -c "cksum terminal_app>terminal.ck"

 COMMAND sh -c "cksum gui_app>gui.ck"

 BYPRODUCTS terminal.ck gui.ck

 COMMENT "Checking the sums..."

)

We link our libraries with executables by using the target_link_libraries() command. Without

it, the building of executables would fail because of undefined symbols. Have you noticed that

we invoked this command before declaring any of the libraries? When CMake configures the

project, it collects information about targets and their properties – their names, dependencies,

source files, and other details.

After parsing all the files, CMake will attempt to build a dependency graph. Like with all valid

dependency graphs, they’re Directed Acyclic Graph (DAGs). This means that there is a clear

direction of which target depends on which, and such dependencies cannot form cycles.

Chapter 5 131

When we execute cmake in build mode, the generated buildsystem will check what top-level

targets we have defined and recursively build their dependencies. Let’s consider our example

from Figure 5.1:

1. Start from the top and build both libraries in group 1.

2. When the Calculations and Drawing libraries are complete, build group 2 – GuiApp and

TerminalApp.

3. Build a checksum target; run specified command lines to generate checksums (cksum is

a Unix checksum tool, which means that this example won’t build on other platforms).

There’s a slight issue, though – the preceding solution doesn’t guarantee that a checksum target

will be built after the executables. CMake doesn’t know that a checksum depends on the execut-

able binaries being present, so it’s free to start building it first. To resolve this problem, we can

put the add_dependencies() command at the end of the file:

add_dependencies(checksum terminal_app gui_app)

This will ensure that CMake understands the relationship between the checksum target and the

executables.

That’s great, but what’s the difference between target_link_libraries() and add_

dependencies()? target_link_libraries() is intended to be used with actual libraries and

allows you to control property propagation. The second is meant to be used only with top-level

targets to set their build order.

As projects grow in complexity, the dependency tree gets harder to understand. How can we

simplify this process?

Visualizing dependencies
Even small projects can be difficult to reason about and share with other developers. A neat dia-

gram will go a long way here. After all, a picture is worth a thousand words. We can do the work

and draw a diagram ourselves, just like I did in Figure 5.1. But this is tedious and requires updates

whenever the project changes. Luckily, CMake has a great module to generate dependency graphs

in the dot/graphviz format, and it supports both internal and external dependencies!

To use it, we can simply execute this command:

cmake --graphviz=test.dot .

Working with Targets132

The module will produce a text file that we can import to the Graphviz visualization software,

which can render an image or produce a PDF or SVG file that can be stored as part of the software

documentation. Everybody loves great documentation, but hardly anyone likes to create it – now,

you don’t need to!

Custom targets are not visible by default and we need to create a special configuration file,

CMakeGraphVizOptions.cmake, that will allow us to customize the graph. Use the set(GRAPHVIZ_

CUSTOM_TARGETS TRUE) command to enable custom targets in your graph:

ch05/01-targets/CMakeGraphVizOptions.cmake

set(GRAPHVIZ_CUSTOM_TARGETS TRUE)

Other options allow the addition of a graph name, a header, and node prefixes and configure

which targets should be included or excluded from the output (by name or type). Visit the official

CMake documentation for the CMakeGraphVizOptions full description of this module.

If you’re in a rush, you can even run Graphviz straight from your browser at this address: https://

dreampuf.github.io/GraphvizOnline/.

All you need to do is copy and paste the contents of the test.dot file into the window on the left

and your project will be visualized (Figure 5.2). Quite convenient, isn’t it?

Figure 5.2: A visualization of the BankApp example in Graphviz

Using this method, we can quickly see all the explicitly defined targets.

https://dreampuf.github.io/GraphvizOnline/
https://dreampuf.github.io/GraphvizOnline/

Chapter 5 133

Now that we understand the concept of a target, we know how to define different types of tar-

gets, including executables, libraries, and custom targets, as well as how to create a dependency

graph and print it. Let’s use this information to do a deeper dive and see how to configure them.

Setting properties of targets
Targets have properties that work in a similar way to fields of C++ objects. Some of these properties

are meant to be modified, and some are read only. CMake defines a large list of “known properties”

(see the Further reading section) that are available depending on the type of the target (executable,

library, or custom). You can also add your own properties if you like. Use the following commands

to manipulate the properties of a target:

get_target_property(<var> <target> <property-name>)

set_target_properties(<target1> <target2> ...

 PROPERTIES <prop1-name> <value1>

 <prop2-name> <value2> ...)

To print a target property on the screen, we first need to store it in the <var> variable and then

message it to the user. Reading of the properties has to be done one by one; setting properties

on a target allows us to specify multiple properties at the same time, on multiple targets.

Generally, it’s better to use as many high-level commands as you can. In some cases, CMake

offers short-hand commands that come with additional mechanisms. For example, add_

dependencies(<target> <dep>) is a shorthand for appending dependencies to the MANUALLY_

ADDED_DEPENDENCIES target property. In this case, we can query it with get_target_property()

exactly as with any other property. However, we can’t use set_target_properties() to change

it (it’s read only), as CMake insists on using the add_dependencies() command to restrict op-

erations to appending only.

The concept of properties isn’t unique to targets; CMake supports setting properties

of other scopes as well: GLOBAL, DIRECTORY, SOURCE, INSTALL, TEST, and CACHE.

To manipulate all kinds of properties, there are general get_property() and set_

property() commands. In some projects, you’ll see these low-level commands

used to do exactly what the set_target_properties() command does, just with

a bit more work:

set_property(TARGET <target> PROPERTY <name> <value>)

Working with Targets134

We’ll introduce more property-setting commands when we discuss compiling and linking in

upcoming chapters. Meanwhile, let’s focus on how the properties of one target can be carried

over to another.

What are Transitive Usage Requirements?
Let’s just agree that naming is hard, and sometimes one ends up with a label that’s difficult to

understand. “Transitive Usage Requirements” is, unfortunately, one of those cryptic titles that

you will encounter in the online CMake documentation. Let’s untangle this strange name and

perhaps propose a term that is easier to understand.

Starting from the middle term: Usage. As we previously discussed, one target may depend on

another. CMake documentation sometimes refers to such dependency as usage, as in one target

uses another.

There will be cases when such a used target sets specific properties or dependencies for itself, which,

in turn, constitute requirements for other targets that use it: link some libraries, include a directory,

or require specific compiler features.

The last part of our puzzle, transitive, describes the behavior correctly (maybe could be a bit sim-

pler). CMake appends some properties/requirements of used targets to properties of using targets.

You can say that some properties can transition (or simply propagate) across targets implicitly,

so it’s easier to express dependencies.

Simplifying this whole concept, I see it as propagated properties between the source target

(targets that get used) and destination targets (targets that use other targets).

Let’s look at a concrete example to understand why it’s there and how it works:

target_compile_definitions(<source> <INTERFACE|PUBLIC|PRIVATE>
[items1...])

This target command will populate the COMPILE_DEFINITIONS property of a <source> target.

Compile definitions are simply -Dname=definition flags passed to the compiler that config-

ure the C++ preprocessor definitions (we’ll get to that in Chapter 7, Compiling C++ Sources with

CMake). The interesting part here is the second argument. We need to specify one of three values,

INTERFACE, PUBLIC, or PRIVATE, to control which targets the property should be passed to. Now,

don’t confuse these with C++ access specifiers – this is a separate concept in its own right.

Propagation keywords work like this:

• PRIVATE sets the property of the source target.

Chapter 5 135

• INTERFACE sets the property of the destination targets.

• PUBLIC sets the property of the source and destination targets.

When a property is not to be transitioned to any destination targets, set it to PRIVATE. When such

a transition is needed, go with PUBLIC. If you’re in a situation where the source target doesn’t use

the property in its implementation (.cpp files) and only in the headers, and these are passed to

the consumer targets, INTERFACE is the keyword to use.

How does this work under the hood? To manage those properties, CMake provides a few com-

mands such as the aforementioned target_compile_definitions(). When you specify a PRIVATE

or PUBLIC keyword, CMake will store provided values in the property of the target, in this case,

COMPILE_DEFINITIONS. Additionally, if a keyword is INTERFACE or PUBLIC, it will store the value

in a property with an INTERFACE_ prefix – INTERFACE_COMPILE_DEFINITIONS. During the con-

figuration stage, CMake will read the interface properties of source targets and append their

contents to destination targets. There you have it – propagated properties, or Transitive Usage

Requirements, as CMake calls them.

Properties managed with the set_target_properties() command can be found at https://

cmake.org/cmake/help/latest/manual/cmake-properties.7.html, in the Properties on Targets

section (not all target properties are transitive). Here are the most important ones:

• COMPILE_DEFINITIONS

• COMPILE_FEATURES

• COMPILE_OPTIONS

• INCLUDE_DIRECTORIES

• LINK_DEPENDS

• LINK_DIRECTORIES

• LINK_LIBRARIES

• LINK_OPTIONS

• POSITION_INDEPENDENT_CODE

• PRECOMPILE_HEADERS

• SOURCES

We’ll discuss most of these options in the following pages, but remember that all of these options

are, of course, described in the CMake manual. Find them described in detail at the following

link (replace <PROPERTY> with a property that interests you): https://cmake.org/cmake/help/
latest/prop_tgt/<PROPERTY>.html

https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html
https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html

Working with Targets136

The next question that comes to mind is how far this propagation goes. Are the properties set

just on the first destination target, or are they sent to the very top of the dependency graph? You

get to decide.

To create a dependency between targets, we use the target_link_libraries() command. The

full signature of this command requires a propagation keyword:

target_link_libraries(<target>

 <PRIVATE|PUBLIC|INTERFACE> <item>...

 [<PRIVATE|PUBLIC|INTERFACE> <item>...]...)

As you can see, this signature also specifies a propagation keyword, and it controls how proper-

ties from the source target get stored in the destination target. Figure 5.3 shows what happens to

a propagated property during the generation stage (after the configuration stage is completed):

Figure 5.3: How properties are propagated to destination targets

Propagation keywords work like this:

• PRIVATE appends the source value to the private property of the source target.

• INTERFACE appends the source value to the interface property of the source target.

• PUBLIC appends to both properties of the source target.

As we discussed before, interface properties are only used to propagate the properties further down

the chain (to the next destination target), and the source target won’t use them in its build process.

The basic target_link_libraries(<target> <item>...) command that we used before im-

plicitly specifies the PUBLIC keyword.

If you correctly set propagation keywords for your source targets, properties will be automatically

placed on destination targets for you – unless there’s a conflict…

Chapter 5 137

Dealing with conflicting propagated properties
When one target depends on multiple other targets, there may be a situation where propagated

properties are in outright conflict with each other. Say that one used target specifies the POSITION_

INDEPENDENT_CODE property as true and the other as false. CMake understands this as a conflict

and will print an error like this:

CMake Error: The INTERFACE_POSITION_INDEPENDENT_CODE property of "source_
target" does not agree with the value of POSITION_INDEPENDENT_CODE already
determined for "destination_target".

It is useful to receive such a message, as we explicitly know that we introduced this conflict,

and we need to resolve it. CMake has its own properties that must “agree” between source and

destination targets.

On rare occasions, this may become important – for example, if you’re building software using

the same library in multiple targets that are then linked to a single executable. If these source

targets are using different versions of the same library, you may run into problems.

To make sure that we’re only using the same specific version, we can create a custom interface

property, INTERFACE_LIB_VERSION, and store the version there. This is not enough to solve the

problem, as CMake won’t propagate custom properties by default (this mechanism works only

on built-in target properties). We must explicitly add a custom property to a list of “compatible”

properties.

Each target has four such lists:

• COMPATIBLE_INTERFACE_BOOL

• COMPATIBLE_INTERFACE_STRING

• COMPATIBLE_INTERFACE_NUMBER_MAX

• COMPATIBLE_INTERFACE_NUMBER_MIN

Appending your property to one of them will trigger propagation and compatibility checks. The

BOOL list will check whether all properties propagated to the destination target evaluate to the

same Boolean value. Analogically, STRING will evaluate to a string. NUMBER_MAX and NUMBER_MIN

are a bit different – propagated values don’t have to match, but the destination target will just

receive the highest or the lowest value instead.

Working with Targets138

This example will help us understand how to apply this in practice:

ch05/02-propagated/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(PropagatedProperties CXX)

add_library(source1 empty.cpp)

set_property(TARGET source1 PROPERTY INTERFACE_LIB_VERSION 4)

set_property(TARGET source1 APPEND PROPERTY

 COMPATIBLE_INTERFACE_STRING LIB_VERSION)

add_library(source2 empty.cpp)

set_property(TARGET source2 PROPERTY INTERFACE_LIB_VERSION 4)

add_library(destination empty.cpp)

target_link_libraries(destination source1 source2)

We create three targets here; for simplicity, all are using the same empty source file. On both

source targets, we specify our custom property with the INTERFACE_ prefix, and we set them to

the same matching library version. Both source targets are linked to the destination target. Final-

ly, we specify a STRING compatibility requirement as a property for source1 (we don’t add the

INTERFACE_ prefix here).

CMake will propagate this custom property to the destination target and check whether the version

of all the source targets is an exact match (the compatibility property can be set on just one target).

Now that we understand what regular targets are, let’s take a look at other things that look like

targets, smell like targets, and sometimes act like targets but, as it turns out, aren’t the real deal.

Meet the pseudo targets
The concept of a target is so useful that it would be great if some of its behaviors could be bor-

rowed for other things too; ones that do not represent outputs of the buildsystem but rather

inputs – external dependencies, aliases, and so on. These are the pseudo targets, or targets that

don’t make it to the generated buildsystem:

• Imported targets

• Alias targets

Chapter 5 139

• Interface libraries

Let’s take a look.

Imported targets
If you skimmed the table of contents of this book, you know that we’ll be talking about how

CMake manages external dependencies – other projects, libraries, and so on. IMPORTED targets

are essentially products of this process. CMake can define them as a result of the find_package()

command.

You can adjust the target properties of such a target: compile definitions, compile options, include

directories, and so on – and they will even support Transitive Usage Requirements. However, you

should treat them as immutable; don’t change their sources or dependencies.

The scope of the definition of an IMPORTED target can be global or local to the directory where it

was defined (visible in subdirectories but not in parent directories).

Alias targets
Alias targets do exactly what you expect – they create another reference to a target under a different

name. You can create alias targets for executables and libraries with the following commands:

add_executable(<name> ALIAS <target>)

add_library(<name> ALIAS <target>)

Properties of alias targets are read only, and you cannot install or export aliases (they aren’t visible

in the generated buildsystem).

So, what is the reason to have aliases at all? They come in handy in scenarios where some part

of a project (such as a subdirectory) requires a target with a specific name, and the actual imple-

mentation may be available under different names depending on circumstances. For example,

you may wish to build a library shipped with your solution or import it based on a user’s choice.

Interface libraries
This is an interesting construct – a library that doesn’t compile anything but instead serves as

a utility target. Its whole concept is built around propagated properties (Transitive Usage Re-

quirements).

Interface libraries have two primary uses – to represent header-only libraries, and to bundle a

bunch of propagated properties into a single logical unit.

Working with Targets140

Header-only libraries are fairly easy to create with add_library(INTERFACE):

add_library(Eigen INTERFACE

 src/eigen.h src/vector.h src/matrix.h

)

target_include_directories(Eigen INTERFACE

 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/src>

 $<INSTALL_INTERFACE:include/Eigen>

)

In the preceding snippet, we created an Eigen interface library with three headers. Next, using

generator expressions (these are indicated with dollar sign and angle brackets, $<...> and will

be explained in the next chapter), we set its include directories to be ${CMAKE_CURRENT_SOURCE_

DIR}/src when a target is exported and include/Eigen when it’s installed (which will also be

explained at the end of this chapter).

To use such a library, we just must link it:

target_link_libraries(executable Eigen)

No actual linking occurs here, but CMake will understand this command as a request to propagate

all the INTERFACE properties to the executable target.

The second use case leverages exactly the same mechanism but for a different purpose – it creates

a logical target that can be a placeholder for propagated properties. We can then use this target as

a dependency for other targets and set properties in a clean, convenient way. Here’s an example:

add_library(warning_properties INTERFACE)

target_compile_options(warning_properties INTERFACE

 -Wall -Wextra -Wpedantic

)

target_link_libraries(executable warning_properties)

The add_library(INTERFACE) command creates a logical warning_properties target that is used

to set compile options specified in the second command on the executable target. I recommend

using these INTERFACE targets, as they improve the readability and reusability of your code. Think

of it as refactoring a bunch of magic values to a well-named variable. I also suggest explicitly

adding a suffix like _properties to easily differentiate interface libraries from the regular ones.

Chapter 5 141

Object libraries
Object libraries are used to group multiple source files under a single logical target and are compile

them into (.o) object files during a build. To create an object library, we follow the same method

as with other libraries, but with the OBJECT keyword:

add_library(<target> OBJECT <sources>)

Object files produced during the build can be incorporated as compiled elements to other targets

with the $<TARGET_OBJECTS:objlib> generator expression:

add_library(... $<TARGET_OBJECTS:objlib> ...)

add_executable(... $<TARGET_OBJECTS:objlib> ...)

Alternatively, you can add them as dependencies with the target_link_libraries() command.

In the context of our Calc library, object libraries will be useful to avoid redundant compilation of

library sources for the static and shared versions of the library. It’s essential to explicitly compile

the object files with POSITION_INDEPENDENT_CODE enabled, a prerequisite for shared libraries.

Returning to the project’s targets: calc_obj will supply compiled object files, which then will be

used for both the calc_static and calc_shared libraries. Let’s explore the practical distinctions

between these two types of libraries and understand why one might opt to create both.

Are pseudo targets exhausting the concept of the target? Of course not! That would simply be

too easy. We still need to understand how these targets are then used to generate buildsystems.

Build targets
The term “target” can have different meanings depending on the context within a project and

the generated buildsystems. In the context of generating a buildsystem, CMake “compiles” the

listfiles written in the CMake language into the language of the selected build tool, such as cre-

ating a Makefile for GNU Make. These generated Makefiles have their own set of targets. Some of

these targets are direct conversions of the targets defined in the listfiles, while others are created

implicitly as part of the buildsystem generation process.

One such buildsystem target is ALL, which CMake generates by default to contain all top-level

listfile targets, such as executables and libraries (not necessarily custom targets). ALL is built

when we run cmake --build <build tree> without choosing any specific target. As you might

remember from the first chapter, you can choose one by adding the --target <name> parameter

to the cmake build command.

Working with Targets142

Some executables or libraries might not be needed in every build, but we’d like to keep them as

part of the project for those rare occasions when they come in useful. To optimize our default

build, we can exclude them from the ALL target like so:

add_executable(<name> EXCLUDE_FROM_ALL [<source>...])

add_library(<name> EXCLUDE_FROM_ALL [<source>...])

Custom targets work the other way around – by default, they’re excluded from the ALL target

unless you explicitly add them with an ALL keyword, as we did in the BankApp example.

Another implicitly defined build target is clean, which simply removes produced artifacts from

the build tree. We use it to get rid of all old files and build everything from scratch. It’s important,

though, to understand that it doesn’t just simply delete everything in the build directory. For

clean to work correctly, you need to manually specify any files that your custom targets might

create as BYPRODUCTS (see the BankApp example).

This concludes our journey through targets and their different aspects: we know how to create

them, configure their properties, use pseudo targets, and decide whether they should be built by

default or not. There’s also an interesting non-target mechanism to create custom artifacts that

can be used in all actual targets – custom commands (not to be confused with custom targets).

Writing custom commands
Using custom targets has one drawback – as soon as you add them to the ALL target or start de-

pending on them for other targets, they will be built every single time. Sometimes, this is what

you want, but there are cases when custom behavior is necessary to produce files that shouldn’t

be recreated without reason:

• Generating a source code file that another target depends on

• Translating another language into C++

• Executing a custom action immediately before or after another target was built

There are two signatures for a custom command. The first one is an extended version of add_

custom_target():

add_custom_command(OUTPUT output1 [output2 ...]

 COMMAND command1 [ARGS] [args1...]

 [COMMAND command2 [ARGS] [args2...] ...]

 [MAIN_DEPENDENCY depend]

 [DEPENDS [depends...]]

Chapter 5 143

 [BYPRODUCTS [files...]]

 [IMPLICIT_DEPENDS <lang1> depend1

 [<lang2> depend2] ...]

 [WORKING_DIRECTORY dir]

 [COMMENT comment]

 [DEPFILE depfile]

 [JOB_POOL job_pool]

 [VERBATIM] [APPEND] [USES_TERMINAL]

 [COMMAND_EXPAND_LISTS])

As you might have guessed, a custom command doesn’t create a logical target, but just like cus-

tom targets, it has to be added to a dependency graph. There are two ways of doing that – using

its output artifact as a source for an executable (or library), or explicitly adding it to a DEPENDS

list for a custom target.

Using a custom command as a generator
Admittedly, not every project needs to generate C++ code from other files. One such occasion might

be a compilation of Google’s Protocol Buffer’s (Protobuf’s) .proto files. If you’re not familiar

with this library, Protobuf is a platform-neutral binary serializer for structured data.

In other words: it can be used to encode objects to and from binary streams: files or network con-

nections. To keep Protobuf cross-platform and fast at the same time, Google’s engineers invented

their own Protobuf language that defines models in .proto files, such as this one:

message Person {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

}

Such a file can be then used to encode data in multiple languages – C++, Ruby, Go, Python, Java,
and so on. Google provides a compiler, protoc, that reads .proto files and outputs structure
and serialization source code valid for the chosen language (that later needs to be compiled or
interpreted). Smart engineers don’t check those generated source files into a repository but will
use the original Protobuf format and add a step to generate the source files to the build chain.

Working with Targets144

We don’t know yet how to detect whether (and where) a Protobuf compiler is available on the
target host (we’ll learn this in Chapter 9, Managing Dependencies in CMake). So, for now, let’s just
assume that the compiler’s protoc command is residing in a location known to the system. We
have prepared a person.proto file and we know that the Protobuf compiler will output person.

pb.h and person.pb.cc files. Here’s how we would define a custom command to compile them:

add_custom_command(OUTPUT person.pb.h person.pb.cc

 COMMAND protoc ARGS person.proto

 DEPENDS person.proto

)

Then, to allow serialization in our executable, we can just add output files to the sources:

add_executable(serializer serializer.cpp person.pb.cc)

Assuming we dealt correctly with the inclusion of header files and linking the Protobuf library,

everything will compile and update automatically when we introduce changes to the .proto file.

A simplified (and much less practical) example would be to create the necessary header by copying

it from another location:

ch05/03-command/CMakeLists�txt

add_executable(main main.cpp constants.h)

target_include_directories(main PRIVATE ${CMAKE_BINARY_DIR})

add_custom_command(OUTPUT constants.h COMMAND cp

 ARGS "${CMAKE_SOURCE_DIR}/template.xyz" constants.h)

Our “compiler”, in this case, is the cp command. It fulfills a dependency of the main target by

creating a constants.h file in the build tree root, simply by copying it from the source tree.

Using a custom command as a target hook
The second version of the add_custom_command() command introduces a mechanism to execute

commands before or after building a target:

add_custom_command(TARGET <target>

 PRE_BUILD | PRE_LINK | POST_BUILD

 COMMAND command1 [ARGS] [args1...]

 [COMMAND command2 [ARGS] [args2...] ...]

 [BYPRODUCTS [files...]]

 [WORKING_DIRECTORY dir]

Chapter 5 145

 [COMMENT comment]

 [VERBATIM] [USES_TERMINAL]

 [COMMAND_EXPAND_LISTS])

We specify what target we’d like to “enhance” with the new behavior in the first argument and

under the following conditions:

• PRE_BUILD will run before any other rules for this target (Visual Studio generators only;

for others, it behaves like PRE_LINK).

• PRE_LINK binds the command to be run just after all sources have been compiled but

before the linking (or archiving) of the target. It doesn’t work for custom targets.

• POST_BUILD will run after all other rules have been executed for this target.

Using this version of add_custom_command(), we can replicate the generation of the checksum

from the previous BankApp example:

ch05/04-command/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Command CXX)

add_executable(main main.cpp)

add_custom_command(TARGET main POST_BUILD

 COMMAND cksum

 ARGS "$<TARGET_FILE:main>" > "main.ck")

After the build of the main executable completes, CMake will execute cksum with the provided

arguments. But what is happening in the first argument? It’s not a variable, as then it would be

wrapped in curly braces (${}), not in angle brackets ($<>). It’s a generator expression evaluating

to a full path to the target’s binary file. This mechanism is useful in the context of many target

properties, which we’ll explain in the next chapter.

Summary
Understanding targets is critical to writing clean, modern CMake projects. In this chapter, we

have not only discussed what constitutes a target and how to define three different types of tar-

gets: executables, libraries, and custom targets. We have also explained how targets depend on

each other through a dependency graph and we learned how to visualize it using the Graphviz

module. With this general understanding, we were able to learn about the key feature of targets –

properties. We not only went through a few commands to set regular properties on targets but we

also solved the mystery of Transitive Usage Requirements also known as propagated properties.

Working with Targets146

This was a hard one to crack, as we had to not only understand how to control which proper-

ties are propagated but also how that propagation affects subsequent targets. Furthermore, we

discovered how to guarantee the compatibility of properties consumed from multiple sources.

We then briefly discussed pseudo targets: imported targets, alias targets, and interface libraries.

All of them will come in handy later in our projects, especially when we know how to connect

them with propagated properties for our benefit. Then, we talked about generated build targets

and how the configuration stage affects them. Afterward, we spent some time looking at a mech-

anism that is similar to targets, but not exactly it: the custom commands. We touched on how

they can generate files consumed by other targets (compiled, translated, and so on) and their

hooking function: executing additional steps when a target is built.

With such a solid foundation, we are ready for the next topic – compiling C++ sources into exe-

cutables and libraries.

Further reading
For more information on the topics covered in this chapter, you can refer to the following:

• Graphviz module documentation:

https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/Graphviz,

https://cmake.org/cmake/help/latest/module/CMakeGraphVizOptions.html

• Graphviz software:

https://graphviz.org

• CMake target properties:
https://cmake.org/cmake/help/latest/manual/cmake-

properties.7.html#properties-on-targets

• Transitive Usage Requirements:
https://cmake.org/cmake/help/latest/manual/cmake-
buildsystem.7.html#transitive-usage-requirements

https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/Graphviz
https://cmake.org/cmake/help/latest/module/CMakeGraphVizOptions.html
https://graphviz.org
https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html#properties-on-targets
https://cmake.org/cmake/help/latest/manual/cmake-properties.7.html#properties-on-targets
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#transitive-usage-requirements
https://cmake.org/cmake/help/latest/manual/cmake-buildsystem.7.html#transitive-usage-requirements

Chapter 5 147

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://discord.com/invite/vXN53A7ZcA

6
Using Generator Expressions

Many CMake users don’t encounter generator expressions in their private explorations as they

are quite advanced concepts. However, they are crucial for projects that are preparing for the

general availability stage, or first release to the wider audience, as they play an important role

in exporting, installing, and packaging. If you’re trying to just learn the basics of CMake quickly

and focus on the C++ aspect, feel free to skip this chapter for now and return to it later. On the

other hand, we discuss generator expressions at this time, because the following chapters will

reference this knowledge when explaining the more in-depth aspects of CMake.

We’ll start by introducing the subject of generator expressions: what they are, what their uses

are, and how they are formed and expanded. This will be followed by a short presentation of the

nesting mechanism and a more thorough description of the conditional expansion, which allows

the use of Boolean logic, comparison operations, and queries. Of course, we’ll do a deep dive into

the vastness of the available expressions.

But first, we’ll study the transformations of strings, lists, and paths, as it’s good to get the basics

out of the way before focusing on the main subject. Ultimately, generator expressions are used

in practice to fetch the information available in later stages of building and present it in the

appropriate context. Determining that context is a huge part of their value. We’ll discover how

to parametrize our build process based on the build configuration selected by the user, the plat-

form at hand, and the current toolchain. That is, what compiler is being used, what its version is,

and which capabilities it has, that’s not all: we’ll figure out how to query the properties of build

targets and their related information.

Using Generator Expressions150

To make sure we can fully appreciate the value of the generator expressions, I have included a few

interesting examples of use as the final part of this chapter. Oh, and there’s a quick explanation

of how to see the output of generator expressions as this is a bit tricky. Don’t worry though, gen-

erator expressions aren’t as complex as they might seem, and you will be using them in no time.

In this chapter, we’re going to cover the following main topics:

• What are generator expressions?

• Learning the basic rules of general expression syntax

• Conditional expansion

• Querying and transforming

• Trying out examples

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch06.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the <build tree> and <source tree> placeholders with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path at

which your source code is located.

What are generator expressions?
CMake is building the solution in three stages: configuration, generation, and running the build

tool. Generally, all the required data is available during the configuration stage. However, occasion-

ally, we encounter a situation similar to the “chicken and the egg” paradox. Take an example from

the Using a custom command as a target hook section in Chapter 5, Working with Targets – where a

target needs to know the path of a binary artifact of another target. Unfortunately, this information

becomes available only after all the listfiles are parsed and the configuration stage is complete.

So, how do we tackle such a problem? One solution could be to create a placeholder for the infor-

mation and delay its evaluation until the next stage – the generation stage.

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch06
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch06

Chapter 6 151

This is precisely what generator expressions (also referred to as “genexes”) do. They are built

around target properties such as LINK_LIBRARIES, INCLUDE_DIRECTORIES, COMPILE_DEFINITIONS,

and propagated properties, although not all. They follow rules similar to the conditional state-

ments and variable evaluation.

There’s a significant number of generator expressions, and in a way, they constitute their own,

domain-specific language – language that supports conditional expressions, logical operations,

comparisons, transformations, queries, and ordering. Utilizing generator expressions enables

manipulation and queries of strings, lists, version numbers, shell paths, configurations, and build

targets. In this chapter, we will provide brief overviews of these concepts, focusing on the essentials

since they are less necessary in most cases. Our primary focus will be on the main application of

generator expressions, which involves gathering information from the generated configuration

of targets and the state of the build environment. For full reference, it’s best to read the official

CMake manual online (see the Further reading section for the URL).

Everything is better explained with an example, so let’s jump right into it, and describe the syntax

of generator expressions.

Learning the basic rules of general expression syntax
To use generator expressions, we’ll need to add them to a CMake listfile through a command that

supports generator expression evaluation. Most of the target-specific commands do, and there

are plenty of others (review the official documentation of a particular command to learn more).

A command that is often used with generator exception is target_compile_definitions(). To

use a generator expression, we’ll need to provide it as a command argument like so:

target_compile_definitions(foo PUBLIC BAR=$<TARGET_FILE:baz>)

This command adds a -D definition flag to the compiler’s arguments (ignore PUBLIC for now)

that sets the BAR preprocessor definition to the path at which the binary artifact of the foo target

will be produced. This works because the generator expression is stored in the current form in

a variable. The expansion is effectively postponed until the generation stage when many things

are fully configured and known.

Generator expressions will be evaluated at the generation stage (when the config-

uration is complete and the buildsystem is created), which means that capturing

their output into a variable and printing it to the console is not straightforward.

Using Generator Expressions152

How is the generator expression formed?

Figure 6.1: The syntax of a generator expression

As you can see in Figure 6.1, the structure seems fairly simple and readable:

• Open with a dollar and a bracket ($<).

• Add the EXPRESSION name.

• If an expression requires arguments, add a colon (:) and provide the arg1, arg2 … argN

values, separated with a comma (,).

• Close the expression with >.

There are expressions that do not require any arguments, such as $<PLATFORM_ID>.

It’s important to note that unless explicitly stated otherwise, expressions are typically evaluat-

ed in the context of the target using the expression. This association is inferred from the com-

mand in which the expression is used. In the previous example, we saw how target_compile_

definitions() provides foo as the target it operates on. The target-specific generator expressions

used in that command will therefore implicitly use foo. Do note, however, that the generator

expression used in the example, $<TARGET_FILE>, requires the target attribute as the context to

operate on. There are other generator expressions that don’t accept targets as arguments (like

$<COMPILE_LANGUAGE>), and will implicitly use the target of the enclosing command. These will

be discussed in more detail later.

Generator expressions can quickly become very confusing and complicated when using their

more advanced features, so it’s important to understand their specifics beforehand.

Nesting
Let’s start with the ability to pass a generator expression as an argument to another generator

expression or, in other words, generator expression nesting:

$<UPPER_CASE:$<PLATFORM_ID>>

This isn’t a very complex example, but it’s easy to imagine what happens when we increase nesting

levels and work with commands using multiple arguments.

Chapter 6 153

To complicate matters even further, it’s possible to add a regular variable expansion to the mix:

$<UPPER_CASE:${my_variable}>

The my_variable variable will be expanded first, at the configuration stage. Subsequently, the

generation expression will be expanded at the generation stage. There are some rare uses for this

feature, but I strongly recommend avoiding it: generator expressions provide virtually all neces-

sary functions. Mixing regular variables into these expressions adds a layer of indirection that is

hard to debug. Additionally, information collected in the config stage will often be outdated, as

users will override values used in generator expressions through command-line parameters at

the build or installation stage.

Having covered the syntax, let’s move on to discuss the fundamental mechanisms available in

generator expressions.

Conditional expansion
Determining whether an expression should be expanded is supported with Boolean logic in gen-

erator expressions. While this is a great feature, its syntax can be inconsistent and difficult to read

due to legacy reasons. It’s available in two forms. The first form supports both happy and sad paths:

$<IF:condition,true_string,false_string>

The IF expression relies on nesting to be useful: you can replace any of the arguments with an-

other expression and produce quite complex evaluations (you can even nest one IF condition in

another). This form requires exactly three arguments, so we can’t omit anything. Our best option

to skip a value in case of an unmet condition is the following:

$<IF:condition,true_string,>

There’s a shorthand version that allows you to skip the IF keyword and the comma:

$<condition:true_string>

As you can see, it breaks the convention of providing the EXPRESSION name as the first token. I

assume that the intention here was to shorten the expression and avoid typing those precious

few characters, but the outcome can be really hard to rationalize. Here’s one example from the

CMake documentation:

$<$<AND:$<COMPILE_LANGUAGE:CXX>,$<CXX_COMPILER_ID:AppleClan

 g,Clang>>:COMPILING_CXX_WITH_CLANG>

Using Generator Expressions154

This expression returns COMPILING_CXX_WITH_CLANG only for C++ code compiled with one of the

Clang compilers. (it returns an empty string in all other cases). I wish the syntax was aligned with

conditions for the regular IF command, but sadly that’s not the case. Now, you can recognize

the second form if you see it somewhere, but you should avoid it in your own projects for the

sake of readability.

Evaluating to Boolean
Generator expressions are evaluated to one of two types – Boolean or string. Boolean is repre-

sented by 1 (true) and 0 (false). There are no dedicated numerical types; everything that isn’t a

Boolean is just a string.

It’s important to remember that nested expressions passed as conditions in conditional expres-

sions are explicitly required to evaluate to Boolean.

Boolean types can be converted to strings implicitly, but you’ll need to use an explicit BOOL op-

erator (explained ahead) to do the opposite.

There are three categories of expressions that get evaluated to Boolean: logical operators, com-

parison expressions, and queries. Let’s take a quick look at these types.

Logical operators
There are four logical operators:

• $<NOT:arg>: This negates the Boolean argument.

• $<AND:arg1,arg2,arg3...>: This returns true if all the arguments are true.

• $<OR:arg1,arg2,arg3...>: This returns true if any of the arguments is true.

• $<BOOL:string_arg>: This converts arguments from a string to a Boolean type.

String conversion with $<BOOL> will evaluate to Boolean true (1) if none of these conditions are met:

• The string is empty.

• The string is a case-insensitive equivalent of 0, FALSE, OFF, N, NO, IGNORE, or NOTFOUND.

• The string ends in the -NOTFOUND suffix (case-sensitive).

Comparisons
Comparisons will evaluate to 1 if their condition is met and 0 otherwise. Here are a few of the

most common operations that you might find useful:

• $<STREQUAL:arg1,arg2>: This compares strings in a case-sensitive fashion.

Chapter 6 155

• $<EQUAL:arg1,arg2>: This converts a string to a number and compares equality.

• $<IN_LIST:arg,list>: This checks whether the arg element is in the list list (case sen-

sitive).

• $<VERSION_EQUAL:v1,v2>, $<VERSION_LESS:v1,v2>, $<VERSION_GREATER:v1,v2>,

$<VERSION_LESS_EQUAL:v1,v2>, and $<VERSION_GREATER_EQUAL:v1,v2> compare ver-

sions in a component-wise fashion.

• $<PATH_EQUAL:path1,path2>: This compares the lexical representations of two paths

without any normalization (since CMake 3.24).

Queries
Queries simply return the Boolean value directly from a variable, or as a result of an operation.

One of the simplest queries is:

$<TARGET_EXISTS:arg>

As you might guess, it returns true if the target was defined in the configuration stage.

Now, you know how to apply conditional expansion, use logical operators, comparison, and basic

queries to evaluate to Boolean. That is useful on its own, but generator expressions have much

more to offer, especially in the context of queries: they can be used in the IF conditional expansion,

or on their own as arguments to commands. It’s time to introduce them in an appropriate context.

Querying and transforming
Many generator expressions are available, but to avoid getting lost in the weeds, let’s focus on the

most common ones. We’ll start with some basic transformations of the available data.

Dealing with strings, lists, and paths
Generator expressions provide only the bare minimum of operations to transform and query data

structures. Working with strings in the generator stage is possible with the following expressions:

• $<LOWER_CASE:string>, $<UPPER_CASE:string>: This converts to string to the required

case.

List operations were fairly limited until recently. Since CMake 3.15, the following operations have

been available:

• $<IN_LIST:string,list>: This returns true if list contains a string value.

• $<JOIN:list,d>: This joins a semicolon-separated list using a d delimiter.

• $<REMOVE_DUPLICATES:list>: This deduplicates list (without sorting).

Using Generator Expressions156

• $<FILTER:list,INCLUDE|EXCLUDE,regex>: This includes/excludes items from list using

a regex.

Since 3.27, the $<LIST:OPERATION> generator expressions were added, where OPERATION is one of:

• LENGTH

• GET

• SUBLIST

• FIND

• JOIN

• APPEND

• PREPEND

• INSERT

• POP_BACK

• POP_FRONT

• REMOVE_ITEM

• REMOVE_AT

• REMOVE_DUPLICATES

• FILTER

• TRANSFORM

• REVERSE

• SORT

It’s rather rare to work with lists in generator expressions, so we’re only indicating what’s pos-

sible. If you find yourself in one of these cases, see the online manual for instructions on how to

use these operations.

Finally, we can query and transform the system paths. It’s a useful addition because of its porta-

bility across different operating systems. The following simple queries have been available since

CMake 3.24:

• $<PATH:HAS_ROOT_NAME,path>

• $<PATH:HAS_ROOT_DIRECTORY,path>

• $<PATH:HAS_ROOT_PATH,path>

• $<PATH:HAS_FILENAME,path>

Chapter 6 157

• $<PATH:HAS_EXTENSION,path>

• $<PATH:HAS_STEM,path>

• $<PATH:HAS_RELATIVE_PART,path>

• $<PATH:HAS_PARENT_PATH,path>

• $<PATH:IS_ABSOLUTE,path>

• $<PATH:IS_RELATIVE,path>

• $<PATH:IS_PREFIX[,NORMALIZE],prefix,path>: This returns true if prefix is the prefix

of path

Analogically, we can retrieve all the path components we were able to check for (since CMake

3.27, it’s been possible to provide a list of paths rather than just one path):

• $<PATH:GET_ROOT_NAME,path...>

• $<PATH:GET_ROOT_DIRECTORY,path...>

• $<PATH:GET_ROOT_PATH,path...>

• $<PATH:GET_FILENAME,path...>

• $<PATH:GET_EXTENSION[,LAST_ONLY],path...>

• $<PATH:GET_STEM[,LAST_ONLY],path...>

• $<PATH:GET_RELATIVE_PART,path...>

• $<PATH:GET_PARENT_PATH,path...>

Additionally, some transform operations were introduced in 3.24; we’ll just list them for com-

pleteness:

• $<PATH:CMAKE_PATH[,NORMALIZE],path...>

• $<PATH:APPEND,path...,input,...>

• $<PATH:REMOVE_FILENAME,path...>

• $<PATH:REPLACE_FILENAME,path...,input>

• $<PATH:REMOVE_EXTENSION[,LAST_ONLY],path...>

• $<PATH:REPLACE_EXTENSION[,LAST_ONLY],path...,input>

• $<PATH:NORMAL_PATH,path...>

• $<PATH:RELATIVE_PATH,path...,base_directory>

• $<PATH:ABSOLUTE_PATH[,NORMALIZE],path...,base_directory>

There’s one more path operation, which formats the provided path to the style supported by the

shell of the host: $<SHELL_PATH:path...>.

Using Generator Expressions158

Again, previous expressions are introduced for later reference, not as information that you need

to memorize right now. The bulk of the recommended practical knowledge is detailed in the

subsequent sections.

Parametrizing the build configuration and platform
One of the key pieces of information that CMake users will provide when building a project is the

desired build configuration. In most cases, it will be Debug or Release. We can use the generator

expressions to access these values through the following statements:

• $<CONFIG>: This returns the current build configuration as a string: Debug, Release, or

another.

• $<CONFIG:configs>: This returns true if configs contains the current build configuration

(case-insensitive comparison).

We discussed the platform in the Chapter 4, Setting Up Your First CMake Project in the Understanding

the build environment section. We can read related information the same way as with configuration:

• $<PLATFORM_ID>: This returns the current platform ID as a string: Linux, Windows, or

Darwin for macOS.

• $<PLATFORM_ID:platform> is true if platform contains the current platform ID.

Such configuration or platform-specific parametrization is a powerful addition to our toolbelt.

We can use it in conjunction with the conditional expansion we discussed earlier:

$<IF:condition,true_string,false_string>

For example, we may apply one compilation flag when building test binaries, and another for

production:

target_compile_definitions(my_target PRIVATE

 $<IF:$<CONFIG:Debug>,Test,Production>

)

But this is just the beginning. There are plenty of other circumstances we can address with gen-

erator expressions. Of course, the next important aspect is the tooling present in the system.

Tuning for toolchain
Toolchains, toolkits, or, simply, compilers and linkers luckily (sadly?) aren’t consistent across

vendors. This has all sorts of consequences. Some of them are great (better performance in special

cases), others not so much (varied configuration flavors, discrepancies in flag naming, and more).

Chapter 6 159

Generator expressions help here by providing sets of queries that can be utilized to alleviate

problems and opportunistically improve user experience where possible.

As with the build configurations and platform, there are multiple expressions that return infor-

mation about the toolchain, both as string and Boolean. However, we’re required to specify which

language we’re interested in (replace #LNG with one of C, CXX, CUDA, OBJC, OBJCXX, Fortran, HIP,

or ISPC). Support for HIP was added in 3.21.

• $<#LNG_COMPILER_ID>: This returns CMake’s compiler ID of the #LNG compiler used.

• $<#LNG_COMPILER_VERSION>: This returns CMake’s compiler version of the #LNG compiler

used.

To check which compiler will execute for C++, we should use the $<CXX_COMPILER_ID> generator

expression. The returned value, the CMake’s compiler ID, is a constant defined for every supported

compiler. You may encounter values like AppleClang, ARMCC, Clang, GNU, Intel, and MSVC. For the

full list, check the official documentation (URL in the Further reading section).

Similarly to the previous section, we can also utilize the toolchain information in conditional ex-

pressions. There are multiple queries that return true if any of the provided arguments matches

a specific value:

• $<#LNG_COMPILER_ID:ids>: This returns true if ids contains CMake’s #LNG compiler ID.

• $<#LNG_COMPILER_VERSION:vers>: This returns true if vers contains the CMake’s #LNG

compiler version.

• $<COMPILE_FEATURES:features>: This returns true if all features provided in features

are supported by the compiler for this target.

Inside commands requiring a target argument, like target_compile_definitions(), we can use

one of the target-specific expressions to get a string value:

• $<COMPILE_LANGUAGE>: This returns the language of source files at the compilation step.

• $<LINK_LANGUAGE>: This returns the language of source files at the link step.

To evaluate a simple Boolean query:

• $<COMPILE_LANGUAGE:langs>: This returns true if langs contains a language used for the

compilation of this target. This can be used to provide language-specific flags to the com-

piler. For example, to compile C++ sources of the target with the -fno-exceptions flag:

target_compile_options(myapp

 PRIVATE $<$<COMPILE_LANGUAGE:CXX>:-fno-exceptions>

)

Using Generator Expressions160

• $<LINK_LANGUAGE:langs> – It follows the same rules as COMPILE_LANGUAGE and returns

true if langs contains a language used for linking of this target.

Or, to query more complex scenarios:

• $<COMPILE_LANG_AND_ID:lang,compiler_ids...>: This returns true if the lang language

is used for this target, and one of the compilers in the compiler_ids list will be used for this

compilation. This expression is useful to specify compile definitions for specific compilers:

target_compile_definitions(myapp PRIVATE

 $<$<COMPILE_LANG_AND_ID:CXX,AppleClang,Clang>:CXX_CLANG>
 $<$<COMPILE_LANG_AND_ID:CXX,Intel>:CXX_INTEL>
 $<$<COMPILE_LANG_AND_ID:C,Clang>:C_CLANG>
)

• In this example, for C++ sources (CXX) compiled with AppleClang or Clang, the -DCXX_

CLANG definition will be set. For the C++ sources compiled with the Intel compiler, the

-DCXX_INTEL definition flag will be set. Lastly, for the C sources (C) compiled with the

Clang compiler, we’ll set a -DC_CLANG definition.

• $<LINK_LANG_AND_ID:lang,compiler_ids...>: This works like COMPILE_LANG_AND_ID,

but checks the language used for the link step instead. Use this expression to specify link

libraries, link options, link directories, and link dependencies of a particular language

and a linker combination in a target.

An important note to make here is that a single target can be combined from sources of multiple

languages. For example, it’s possible to link C artifacts with C++ (but we should declare both

languages in the project() command). Therefore, generator expressions referencing a specific

language will be used for some source files, but not for others.

Let’s move on to the next important category: target-related generator expressions.

Querying target-related information
There are plenty of generator expressions that query target properties and check target-related

information. Note that until CMake 3.19, many target expressions referencing another target

were used to automatically create a dependency between them. This no longer happens in the

latest versions of CMake.

Some generator expressions will infer the target from the command being called; the most com-

monly used is the basic query that returns the target’s property value:

$<TARGET_PROPERTY:prop>

Chapter 6 161

• Less known, but useful in the target_link_libraries() command, is the $<LINK_

ONLY:deps> generator expression. It allows us to store the PRIVATE link dependencies,

which won’t be propagated through transitive usage requirements; these are used in

interface libraries, which we discussed in Chapter 5, Working with Targets, in the Under-

standing the transitive usage requirements section.

There also is a set of install and export-related expressions, which infer their targets from the

context they’re being used. We’ll discuss them in depth in Chapter 14, Installing and Packaging, so

we can just have a quick introduction for now:

• $<INSTALL_PREFIX>: This returns the install prefix when the target is exported with

install(EXPORT) or when evaluated in INSTALL_NAME_DIR; otherwise, it is empty.

• $<INSTALL_INTERFACE:string>: This returns string when the expression is exported

with install(EXPORT).

• $<BUILD_INTERFACE:string>: This returns string when the expression is exported with

the export() command or by another target in the same buildsystem.

• $<BUILD_LOCAL_INTERFACE:string>: This returns string when the expression is exported

by another target in the same buildsystem.

However, most queries require the target name to be explicitly provided as the first argument:

• $<TARGET_EXISTS:target>: This returns true if the target exists.

• $<TARGET_NAME_IF_EXISTS:target>: This returns the target name if the target exists

and an empty string otherwise.

• $<TARGET_PROPERTY:target,prop>: This returns the prop property value for the target.

• $<TARGET_OBJECTS:target>: This returns a list of object files for an object library target.

You can query the path of the target artifact:

• $<TARGET_FILE:target>: This returns the full path.

• $<TARGET_FILE_NAME:target>: This returns just the filename.

• $<TARGET_FILE_BASE_NAME:target>: This returns the base name.

• $<TARGET_FILE_NAME:target>: This returns the base name without the prefix or suffix

(for libmylib.so the base name would be mylib).

• $<TARGET_FILE_PREFIX:target>: This returns just the prefix (for example, lib).

• $<TARGET_FILE_SUFFIX:target>: This returns just the suffix (for example, .so or .exe).

• $<TARGET_FILE_DIR:target>: This returns the directory.

Using Generator Expressions162

There are families of expressions that offer similar functionality as the regular TARGET_FILE ex-

pression (each expression also accepts the _NAME, _BASE_NAME or _DIR suffix):

• TARGET_LINKER_FILE: This queries the path of the file used when linking to the target.

Usually, it is the library produced by the target (.a, .lib, .so). However, on platforms

with Dynamic-Link Libraries (DLLs), it will be a .lib import library associated with

the target’s DLL.

• TARGET_PDB_FILE: This queries the path of the linker-generated program database file

(.pdb).

Managing libraries is a complex topic, and CMake offers a lot of generator expressions to help.

However, we’ll postpone introducing them until they become relevant in Chapter 8, Linking Ex-

ecutables and Libraries.

Finally, there are some Apple package-specific expressions as well:

• $<TARGET_BUNDLE_DIR:target>: This is the full path to the bundle directory (my.app,

my.framework, or my.bundle) for the target.

• $<TARGET_BUNDLE_CONTENT_DIR:target>: This is the full path to the bundle content di-

rectory for the target. On macOS, it’s my.app/Contents, my.framework, or my.bundle/

Contents. Other Software Development Kits (SDKs) (such as iOS) have a flat bundle

structure – my.app, my.framework, or my.bundle.

These are the main generator expressions for dealing with targets. It’s worth knowing, there’s

plenty more. I recommend referring to the official documentation for a complete list.

Escaping
On a rare occasion, you may need to pass a character to a generator expression that has a special

meaning. To escape this behavior, use the following expressions:

• $<ANGLE-R>: This a literal > symbol

• $<COMMA>: This a literal , symbol

• $<SEMICOLON>: This a literal ; symbol

The last expression can be useful to prevent list expansion when an argument containing ; is used.

Now that we have introduced all the queries and transformations, we can see how they work in

practice. Let’s go through some examples of applications.

Chapter 6 163

Trying out examples
Everything is easier to grasp when there’s a good practical example to support the theory. Obvi-

ously, we’d like to write some CMake code and try it out. However, since generator expressions

aren’t evaluated until after the configuration is complete, we cannot use any configuration-time

commands like message() to experiment. We need to use some special tricks instead. To debug

generator expressions, you can use either of these methods:

• Write it to a file (this particular version of the file() command supports generator ex-

pressions): file(GENERATE OUTPUT filename CONTENT "$<...>")

• Add a custom target and build it explicitly from the command line: add_custom_
target(gendbg COMMAND ${CMAKE_COMMAND} -E echo "$<...>")

I recommend the first option for simpler practice. Remember, though, that we won’t be able to

use all the expressions in these commands, as some are target specific. Having covered this, let’s

look at some of the uses for generator expressions.

Build configurations
In Chapter 1, First Steps with CMake, we discussed the build type, specifying which configuration

we are building – Debug, Release, and so on. There may be cases where you’d like to act differ-

ently based on what kind of build you’re making. A simple and easy way to do so is by utilizing

the $<CONFIG> generator expression:

target_compile_options(tgt $<$<CONFIG:DEBUG>:-ginline-points>)

The preceding example checks whether the config equals DEBUG; if that’s the case, the nested

expression is evaluated to 1. The outer shorthand if expression then becomes true, and our

-ginline-points debug flag gets added to the options. It’s important to know this form, so you’ll

be able to understand such expressions in other projects, but I’d recommend using the more

verbose $<IF:...> for better readability.

System-specific one liners
Generator expressions can also be used to compact verbose if commands into neat one liners.

Let’s suppose we have the following code:

if (${CMAKE_SYSTEM_NAME} STREQUAL "Linux")

 target_compile_definitions(myProject PRIVATE LINUX=1)

endif()

Using Generator Expressions164

It tells the compiler to add -DLINUX=1 to the arguments if this is the target system. While this

isn’t terribly long, it could be replaced with a fairly simple expression:

target_compile_definitions(myProject PRIVATE

 $<$<CMAKE_SYSTEM_NAME:LINUX>:LINUX=1>)

Such code works well, but there’s a limit to how much you can pack into a generator expression

until it becomes too hard to read. On top of that, many CMake users postpone learning about

generator expressions and have trouble following what happens. Luckily, we won’t have such

problems after completing this chapter.

Interface libraries with compiler-specific flags
Interface libraries, as we discussed in Chapter 5, Working with Targets, can be used to provide flags

to match the compiler:

add_library(enable_rtti INTERFACE)

target_compile_options(enable_rtti INTERFACE

 $<$<OR:$<COMPILER_ID:GNU>,$<COMPILER_ID:Clang>>:-rtti>

)

Even in such a simple example, we can already see how difficult an expression is to understand

when we nest too many generator expressions. Unfortunately, sometimes this is the only way to

achieve the desired effect. Here’s the explanation of the example:

• We check whether COMPILER_ID is GNU; if that’s the case, we evaluate OR to 1.

• If it’s not, we check whether COMPILER_ID is Clang, and evaluate OR to 1. Otherwise, eval-

uate OR to 0.

• If OR is evaluated to 1, add -rtti to the enable_rtti compile options. Otherwise, do

nothing.

Next, we can link our libraries and executables with the enable_rtti interface library. CMake

will add the -rtti flag if a compiler supports it. Side note: RTTI stands for run-time type infor-

mation and is used in C++ with keywords like typeid to determine the class of an object at run

time; unless your code is using this feature, the flag doesn’t need to be enabled.

Nested generator expressions
Sometimes, it’s not obvious what happens when we try to nest elements in a generator expression.

We can debug the expressions by generating a test output to a debug file.

Chapter 6 165

Let’s try out a few things and see what happens:

ch06/01-nesting/CMakeLists�txt

set(myvar "small text")

set(myvar2 "small text >")

file(GENERATE OUTPUT nesting CONTENT "

 1 $<PLATFORM_ID>

 2 $<UPPER_CASE:$<PLATFORM_ID>>

 3 $<UPPER_CASE:hello world>

 4 $<UPPER_CASE:${myvar}>

 5 $<UPPER_CASE:${myvar2}>

")

After building this project as described in the Technical requirements section of this chapter, we

can read the produced nesting file using the Unix cat command:

cat nesting

 1 Linux

 2 LINUX

 3 HELLO WORLD

 4 SMALL TEXT

 5 SMALL text>

This is how each line works:

1. The PLATFORM_ID output value is LINUX.

2. The output from the nested value will get transformed correctly to uppercase LINUX.

3. We can transform plain strings.

4. We can transform the content of configuration-stage variables.

5. Variables will be interpolated first, and closing angle brackets (>) will be interpreted as

part of the genex, in that only part of the string will get capitalized.

In other words, be aware that the content of variables may affect the behavior of your genex

expansions. If you need an angle bracket in a variable, use $<ANGLE-R>.

Using Generator Expressions166

The difference between a conditional expression and the
evaluation of a BOOL operator
Generator expressions can be a little confusing when it comes to evaluating Boolean types to

strings. It is important to understand how they differ from regular conditional expressions, start-

ing with an explicit IF keyword:

ch06/02-boolean/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Boolean CXX)

file(GENERATE OUTPUT boolean CONTENT "

 1 $<0:TRUE>

 2 $<0:TRUE,FALSE> (won't work)

 3 $<1:TRUE,FALSE>

 4 $<IF:0,TRUE,FALSE>

 5 $<IF:0,TRUE,>

")

Let’s read the produced file using the Linux cat command:

cat boolean

 1

 2 (won't work)

 3 TRUE,FALSE

 4 FALSE

 5

Let’s examine the output for each line:

1. This is a Boolean expansion, where BOOL is 0; therefore, the TRUE string isn’t written.

2. This is a typical mistake – the author intended to print TRUE or FALSE depending on the

BOOL value, but since it is a Boolean false expansion as well, two arguments are treated

as one and not printed.

3. This is the same mistake for a reversed value – it is a Boolean true expansion that has

both arguments written in a single line.

4. This is a proper conditional expression starting with IF – it prints FALSE because the first

argument is 0.

Chapter 6 167

5. This is the correct usage of a conditional expression, however, when we don’t need to

provide values for Boolean false, we should use the form used in the first line.

Generator expressions are notorious for their convoluted syntax. The differences mentioned in this

example can confuse even experienced builders. If in doubt, copy such an expression to another

file and analyze it by adding indentation and whitespace to understand it better.

Seeing examples of how generator expressions work has prepared us to use them in practice.

Upcoming chapters will discuss many topics, where generator expressions will be relevant. In

time, we’ll cover even more of their applications.

Summary
This chapter was all about unpacking the ins and outs of generator expressions, or “genexes.”

We started with the basics of forming and expanding generator expressions and looked at their

nesting mechanism. We dove into the power of conditional expansion, which taps into Boolean

logic, comparison operations, and queries. This aspect of generator expressions shines when

adapting our build process based on factors like user-chosen build configuration, platform, and

the current toolchain.

We have also covered the basic but essential transformations of strings, lists, and paths. A major

highlight was using genexes to query the information gathered at the later build stages and present

it when the context matches the requirements. We also now know how to check our compiler’s

ID, version, and capabilities. We explored querying the build target properties and extracting

the related information using generator expressions. The chapter is wrapped up with practical

examples and guidance on viewing the output where possible. With this, you’re now ready to

use the generator expressions in your projects.

In the next chapter, we’ll learn how to compile programs with CMake. Specifically, we’ll talk

about how to configure and optimize this process.

Further reading
For more information on the topics covered in this chapter, you can refer to the following:

• Generator expressions in the official documentation:
https://cmake.org/cmake/help/latest/manual/cmake-generator-

expressions.7.html

https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html
https://cmake.org/cmake/help/latest/manual/cmake-generator-expressions.7.html

Using Generator Expressions168

• Supported compiler IDs:

https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_COMPILER_ID.html

• Mixing languages in Cmake:
https://stackoverflow.com/questions/8096887/mixing-c-and-c-with-cmake

Leave a review!
Enjoying this book? Help readers like you by leaving an Amazon review. Scan the QR code below

to get a free eBook of your choice.

https://cmake.org/cmake/help/latest/variable/CMAKE_LANG_COMPILER_ID.html
https://stackoverflow.com/questions/8096887/mixing-c-and-c-with-cmake

7
Compiling C++ Sources with
CMake

Simple compilation scenarios are usually handled by a default configuration of a toolchain or

just provided out of the box by an integrated development environment (IDE). However, in a

professional setting, business needs often call for something more advanced. It could be a require-

ment for higher performance, smaller binaries, more portability, automated testing, or extensive

debugging capabilities – you name it. Managing all of these in a coherent, future-proof way quickly

becomes a complex, tangled mess (especially when there are multiple platforms to support).

The process of compilation is often not explained well enough in books on C++ (in-depth subjects

such as virtual base classes seem to be more interesting). In this chapter, we’ll fix that by going

through different aspects of compilation: we’ll discover how compilation works, what its internal

stages are, and how they affect the binary output.

After that, we will focus on the prerequisites – we’ll discuss what commands we can use to fine-

tune the compilation process, how to require specific features from a compiler, and how to correctly

instruct the compiler on which input files to process.

Then, we’ll focus on the first stage of compilation – the preprocessor. We’ll be providing paths

for included headers, and we’ll study how to plug in variables from CMake and the build envi-

ronment with preprocessor definitions. We’ll cover the most interesting use cases and learn how

to expose CMake variables so they can be accessed from C++ code.

Right after that, we’ll talk about the optimizer and how different flags can affect performance.

We’ll also discuss the costs of optimization, specifically how it affects the debuggability of pro-

duced binaries, and what to do if that isn’t desired.

Compiling C++ Sources with CMake170

Lastly, we’ll explain how to manage the compilation process in terms of reducing the compilation

time by using precompiled headers and unity builds. We’ll learn how to debug the build process

and find any mistakes we might’ve made.

In this chapter, we’re going to cover the following main topics:

• The basics of compilation

• Configuring the preprocessor

• Configuring the optimizer

• Managing the process of compilation

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch07.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the <build tree> and <source tree> placeholders with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path at

which your source code is located.

The basics of compilation
Compilation can be roughly described as a process of translating instructions written in a high-lev-

el programming language into low-level machine code. This allows us to create our applications

using abstract concepts such as classes and objects and sparing us the tedious intricacies of

processor-specific assembly languages. We don’t need to work directly with CPU registers, think

about short or long jumps, or manage stack frames. Compiled languages are more expressive,

readable, and secure, and they encourage the creation of maintainable code, all while delivering

as much performance as possible.

In C++, we use static compilation – meaning an entire program must be translated into native

code before it can be executed. This is a different approach compared to languages such as Java

or Python, which interpret and compile the program on the fly each time a user runs it. Each

method has its own unique advantages. C++ aims to offer a multitude of high-level tools, while

simultaneously delivering native performance. A C++ compiler can produce a self-contained

application for almost every architecture out there.

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch07
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch07

Chapter 7 171

Creating and running a C++ program involves several steps:

1. Design your application: This includes planning the application’s functionality, structure,

and behavior. Once your design is finalized, carefully write the source code following best

practices for code readability and maintainability.

2. Compile individual .cpp implementation files, also known as translation units, into

object files: This step involves converting the high-level language code that you’ve written

into low-level machine code.

3. Link object files together into a single executable: During this step, all other depen-

dencies, including dynamic and static libraries, are also linked. This process creates an

executable that can be run on the intended platform.

To run the program, the operating system (OS) will use a tool called loader to map the program’s

machine code and all required dynamic libraries into virtual memory. The loader then reads the

program headers to determine where execution should start and begins running the instructions.

At this stage, the program’s start-up code comes into play. A special function called _start, pro-

vided by the system’s C library, is invoked. The _start function collects command-line arguments

and environment variables, initiates threading, initializes static symbols, and registers cleanup

callbacks. Only after this will it call main(), the function that programmers fill with their own code.

As you can see, a considerable amount of work takes place behind the scenes. This chapter fo-

cuses on the second step from the earlier list. By considering the bigger picture, we can better

understand where potential issues might originate. There’s no such thing as magic in software

development, despite the seeming impenetrability of the complexity involved. Everything has

an explanation and a reason. We need to understand that things can go wrong during the run-

time of a program due to how we compiled it, even if the compilation step itself appeared to be

successful. It’s simply not possible for a compiler to check all edge cases during its operation. So,

let’s find out what actually happens when the compiler does its job.

How compilation works
As mentioned before, compilation is the process of translating a high-level language into a low-lev-

el language. Specifically, this involves generating machine code, which are instructions that a

specific processor can directly execute, in a binary object file format unique to a given platform.

On Linux, the most commonly used format is the Executable and Linkable Format (ELF). Win-

dows uses a PE/COFF format specification, and on macOS, we’ll encounter Mach objects (the

Mach-O format).

Compiling C++ Sources with CMake172

Object files are the direct translation of individual source files. Each of these files must be com-

piled separately and subsequently combined by a linker into a single executable or library. This

modular process can significantly save time when modifying code, as only the files updated by

the programmer need to be recompiled.

The compiler has to execute the following stages to create an object file:

• Preprocessing

• Linguistic analysis

• Assembly

• Optimization

• Code emission

Let’s explain them in more detail.

Preprocessing, although automatically invoked by most compilers, is considered a preparatory

step prior to actual compilation. Its role is to perform rudimentary manipulations on the source

code; it executes #include directives, substitutes identifiers with defined values through #define

directives and -D flags, invokes simple macros, and conditionally includes or excludes parts of

code based on the #if, #elif, and #endif directives. The preprocessor remains blissfully unaware

of the actual C++ code. In essence, it functions as an advanced find-and-replace tool.

Nevertheless, the role of the preprocessor is vital for building advanced programs. The ability to

divide code into parts and share declarations across multiple translation units is the foundation

of code reusability.

Next up is linguistic analysis, where the compiler conducts more intricate operations. It scans

the preprocessed file (which now includes all the headers inserted by the preprocessor) character

by character. Through a process known as lexical analysis, it groups characters into meaningful

tokens – these could be keywords, operators, variable names, and more.

The tokens are then assembled into chains and examined to verify whether their order and pres-

ence adhere to the syntax rules of C++ – a process called syntax analysis or parsing. This is typi-

cally the stage where most of the error messages are generated, as it identifies syntactical issues.

Lastly, the compiler carries out semantic analysis. In this phase, the compiler checks whether the

statements in the file are logically sound. For instance, it ensures that all type correctness checks

are met (you cannot assign an integer to a string variable). This analysis makes sure the program

makes sense within the rules of the programming language.

Chapter 7 173

The assembly phase is essentially a translation of these tokens into CPU-specific instructions

based on the available instruction set for the platform. Some compilers actually generate an as-

sembly output file, which is subsequently passed to a dedicated assembler program. This program

produces the machine code that the CPU can execute. Other compilers produce this machine

code directly in memory. Typically, such compilers also provide an option to generate a textual

output of human-readable assembly code. However, just because this code can be read doesn’t

necessarily mean it’s easy to understand or beneficial to do so.

Optimization is not confined to a single step in the compilation process but occurs incrementally

at each stage. There is, however, a distinct phase after the initial assembly is produced, which

focuses on minimizing register usage and eliminating redundant code.

An interesting and noteworthy optimization technique is inline expansion or inlining. In this

process, the compiler effectively “cuts” the body of a function and “pastes” it in place of its call.

The C++ standard doesn’t explicitly define the circumstances under which this occurs – it is

implementation dependent. Inline expansion can enhance execution speed and reduce memory

usage, but it also poses significant drawbacks for debugging, as the executed code no longer

corresponds to the original line in the source code.

The code emission phase involves writing the optimized machine code into an object file in a

format that aligns with the target platform’s specifications. However, this object file isn’t ready

for execution just yet – it needs to be passed to the next tool in the chain, the linker. The linker’s

job is to appropriately relocate the sections of our object file and resolve references to external

symbols, effectively preparing the file for execution. This step marks the transformation from the

American Standard Code for Information Interchange (ASCII) source code into binary executable

files that can be directly processed by a CPU.

Each of these stages is significant and can be configured to meet our specific needs. Let’s look at

how we can manage this process with CMake.

Initial configuration
CMake provides several commands that can affect each stage of the compilation:

• target_compile_features(): This requires a compiler with specific features to compile

this target.

• target_sources(): This adds sources to an already defined target.

• target_include_directories(): This sets up the preprocessor include paths.

• target_compile_definitions(): The sets up preprocessor definitions.

Compiling C++ Sources with CMake174

• target_compile_options(): This sets compiler-specific command-line options.

• target_precompile_headers(): This sets external header files to be optimized with pre-

compilation.

Each of these commands accepts similar arguments in the following format:

target_...(<target name> <INTERFACE|PUBLIC|PRIVATE> <arguments>)

This means that properties set with this command propagate through transitive usage require-

ments, as discussed in Chapter 5, Working with Targets, in the What are transitive usage requirements?

section and can be utilized for both executables and libraries. Also, it’s worth noting that all these

commands support generator expressions.

Requiring specific features from the compiler
As discussed in the Checking for supported compiler features section in Chapter 4, Setting Up Your

First CMake Project, it’s crucial to anticipate issues and aim to provide your software’s users with a

clear message when something goes wrong – for instance, when an available compiler, X, doesn’t

provide a required feature, Y. This approach is far more user friendly than having users decipher

the errors produced by an incompatible toolchain they might be using. We don’t want users to

misattribute the incompatibility issues to our code instead of their outdated environment.

You can use the following command to specify all the features that your target needs to build:

target_compile_features(<target> <PRIVATE|PUBLIC|INTERFACE>

 <feature> [...])

CMake understands C++ standards and supported compiler features for these compiler_ids:

• AppleClang: Apple Clang for Xcode versions 4.4+

• Clang: Clang Compiler versions 2.9+

• GNU: GNU Compiler versions 4.4+

• MSVC: Microsoft Visual Studio versions 2010+

• SunPro: Oracle Solaris Studio versions 12.4+

• Intel: Intel Compiler versions 12.1+

There are over 60 features supported by CMake, and you’ll find a full list in the official docu-

mentation, on the page explaining the CMAKE_CXX_KNOWN_FEATURES variable. However, unless

you’re after something very specific, I recommend picking a high-level meta feature indicating

the general C++ standard:

Chapter 7 175

• cxx_std_14

• cxx_std_17

• cxx_std_20

• cxx_std_23

• cxx_std_26

Look at the following example:

target_compile_features(my_target PUBLIC cxx_std_26)

This is essentially equal to set(CMAKE_CXX_STANDARD 26) with set(CMAKE_CXX_STANDARD_

REQUIRED ON) introduced in Chapter 4, Setting Up Your First CMake Project. However, the difference

is that target_compile_features() works on a per-target basis and not globally for the project,

which may be cumbersome if you need to add it for all targets in the project.

Find more details on CMake’s supported compilers in the official manual (See the Further reading

section for the URL).

Managing sources for targets
We already know how to tell CMake which source files constitute a single target, whether it’s an

executable or a library. We do this by supplying a list of files when using the add_executable()

or add_library() commands.

As your solution expands, the list of files for each target also grows. This can lead to some rather

lengthy add_...() commands. How do we deal with that? A tempting approach might be to

utilize the file() command in GLOB mode, which can gather all files from subdirectories and

store them in a variable. We could pass it as an argument to the target declaration and not bother

with the file list again:

file(GLOB helloworld_SRC "*.h" "*.cpp")

add_executable(helloworld ${helloworld_SRC})

However, this method is not recommended. Let’s understand why. CMake generates buildsystems

based on the changes in the listfiles. So, if no changes are detected, your builds might fail without

any warning (a developer’s nightmare). Besides, omitting all sources in the target declaration can

disrupt code inspection in IDEs like CLion, which knows how to parse certain CMake commands

to understand your project.

Compiling C++ Sources with CMake176

Using variables in target declarations is not advisable for another reason: it creates a layer of

indirection, causing the developers to have to unpack the target definition when reading the

project. To follow this advice, we’re faced with another question: how do we conditionally add

source files? This is a common scenario when dealing with platform-specific implementation

files, such as gui_linux.cpp and gui_windows.cpp.

The target_sources() command allows us to append source files to a previously created target:

ch07/01-sources/CMakeLists�txt

add_executable(main main.cpp)

if(CMAKE_SYSTEM_NAME STREQUAL "Linux")

 target_sources(main PRIVATE gui_linux.cpp)

elseif(CMAKE_SYSTEM_NAME STREQUAL "Windows")

 target_sources(main PRIVATE gui_windows.cpp)

elseif(CMAKE_SYSTEM_NAME STREQUAL "Darwin")

 target_sources(main PRIVATE gui_macos.cpp)

else()

 message(FATAL_ERROR "CMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} not
supported.")

endif()

This way, each platform gets its own set of compatible files. That’s great, but what about long lists

of sources? Well, we’ll just have to accept that some things aren’t perfect just yet and keep adding

them manually. If you are struggling with a really long list, you’re probably doing something

wrong with the structure of your project: perhaps it could use partitioning sources into libraries.

Now that we’ve covered the essentials of compilation, let’s delve into the first step – preprocessing.

Like all things in computer science, the devil is in the details.

Configuring the preprocessor
The preprocessor plays a huge role in the process of building. Maybe this is a little surprising,

considering its functionality appears rather straightforward and limited. In the following sections,

we’ll cover providing paths to included files and using the preprocessor definitions. We’ll also

explain how we can use CMake to configure included headers.

Providing paths to included files
The most basic feature of the preprocessor is the ability to include .h and .hpp header files with

the #include directive, which exists in two forms:

Chapter 7 177

• Angle-bracket form: #include <path-spec>

• Quoted form: #include "path-spec"

As we know, the preprocessor will replace these directives with the contents of the file specified

in path-spec. Finding these files may be a challenge. Which directories should be searched, and

in what order? Unfortunately, the C++ standard doesn’t specify that exactly. We have to check

the manual for the compiler in use.

Typically, the angle-bracket form will check standard include directories, which include the di-

rectories where standard C++ library and standard C library header files are stored in the system.

The quoted form starts by searching for the included file in the directory of the current file and

then checks the directories for the angle-bracket form.

CMake provides a command to manipulate paths being searched for the included files:

target_include_directories(<target> [SYSTEM] [AFTER|BEFORE]

 <INTERFACE|PUBLIC|PRIVATE> [item1...]

 [<INTERFACE|PUBLIC|PRIVATE> [item2...]

...])

This allows us to add custom paths that we want the compiler to scan. CMake will add them to

compiler invocations in the generated buildsystem. They will be provided with a flag appropriate

for the specific compiler (usually, it’s -I).

The target_include_directories() command modifies the target’s INCLUDE_DIRECTORIES

property by appending or prepending directories to it, based on whether the AFTER or BEFORE

keyword is used. However, it’s still up to the compiler to decide whether the directories provided

here will be checked before or after the default ones (usually, it’s before).

The SYSTEM keyword signifies to the compiler that the given directories should be treated as

standard system directories (to be used with the angle-bracket form). For many compilers, these

directories are passed with the -isystem flag.

Preprocessor definitions
Recall the preprocessor’s #define and #if, #elif, and #endif directives mentioned earlier when

discussing the stages of compilation. Let’s examine the following example:

ch07/02-definitions/definitions.cpp

#include <iostream>

int main() {

Compiling C++ Sources with CMake178

#if defined(ABC)

 std::cout << "ABC is defined!" << std::endl;

#endif

#if (DEF > 2*4-3)

 std::cout << "DEF is greater than 5!" << std::endl;

#endif

}

As it stands, this example accomplishes nothing, as neither ABC nor DEF is defined (DEF would

default to 0 in this example). We can easily change that by adding two lines at the top of this code:

#define ABC

#define DEF 8

After compiling and executing this code, we can see both messages in the console:

ABC is defined!

DEF is greater than 5!

This might seem simple enough, but what if we want to condition these sections based on external

factors, such as an OS, architecture, or something else? The good news is that you can pass values

from CMake to a C++ compiler, and it’s not complicated at all.

The target_compile_definitions() command will suffice:

ch07/02-definitions/CMakeLists.txt

set(VAR 8)

add_executable(defined definitions.cpp)

target_compile_definitions(defined PRIVATE ABC "DEF=${VAR}")

The preceding code will behave exactly like the two #define statements, but we have the flexi-

bility to use CMake’s variables and generator expressions, and we can place the command in a

conditional block.

Traditionally, these definitions are passed to the compiler with the -D flag (for example, -DFOO=1)

and some programmers continue to use this flag in this command:

target_compile_definitions(hello PRIVATE -DFOO)

CMake recognizes this and will automatically remove any leading -D flags. It will also disregard

empty strings, so the following command is perfectly valid:

target_compile_definitions(hello PRIVATE -D FOO)

Chapter 7 179

In this case, -D is a separate argument that becomes an empty string after removal and is subse-

quently ignored, thereby ensuring correct behavior.

Avoid accessing private class fields in your unit tests
Some online resources recommend using a combination of specific -D definitions with #ifdef/

ifndef directives for the purposes of unit testing. The most straightforward application of this

approach is to enclose the public access specifier in conditional inclusions, effectively making

all fields public when UNIT_TEST is defined (class fields are private by default):

class X {

#ifdef UNIT_TEST

 public:

#endif

 int x_;

}

While this technique offers convenience (allowing tests to directly access private members), it

does not result in clean code. Ideally, unit tests should focus on verifying the functionality of

methods within the public interface, treating the underlying implementation as a black box.

Consequently, I suggest using this approach only as a last resort.

Using git commit to track a compiled version
Let’s think about use cases that benefit from knowing details about the environment or filesystem.

A prime example in professional settings might involve passing the revision or commit SHA used

to build the binary. This could be achieved like so:

ch07/03-git/CMakeLists�txt

add_executable(print_commit print_commit.cpp)

execute_process(COMMAND git log -1 --pretty=format:%h

 OUTPUT_VARIABLE SHA)

target_compile_definitions(print_commit

 PRIVATE "SHA=${SHA}")

The SHA could then be utilized in our application as follows:

ch07/03-git/print_commit�cpp

#include <iostream>

// special macros to convert definitions into c-strings:

#define str(s) #s

Compiling C++ Sources with CMake180

#define xstr(s) str(s)

int main()

{

#if defined(SHA)

 std::cout << "GIT commit: " << xstr(SHA) << std::endl;

#endif

}

Of course, the preceding code requires the user to have Git installed and accessible in their PATH.

This feature is particularly useful when the programs running on production servers are the result

of a continuous integration/deployment pipeline. If there’s an issue with our software, we can

quickly check which exact Git commit was used to build the faulty product.

Keeping track of an exact commit is extremely beneficial for debugging purposes. It’s straightfor-

ward to pass a single variable to C++ code, but how would we handle the scenario where dozens

of variables need to be passed to our headers?

Configuring the headers
Passing definitions through target_compile_definitions() can become tedious with numer-

ous variables. Wouldn’t it be easier to provide a header file with placeholders referencing these

variables, and allow CMake to fill them in? Absolutely!

CMake’s configure_file(<input> <output>) command enables you to generate new files from

templates, like the following example:

ch07/04-configure/configure.h.in

#cmakedefine FOO_ENABLE

#cmakedefine FOO_STRING1 "@FOO_STRING1@"

#cmakedefine FOO_STRING2 "${FOO_STRING2}"

#cmakedefine FOO_UNDEFINED "@FOO_UNDEFINED@"

You can utilize this command as follows:

ch07/04-configure/CMakeLists.txt

add_executable(configure configure.cpp)

set(FOO_ENABLE ON)

set(FOO_STRING1 "abc")

set(FOO_STRING2 "def")

Chapter 7 181

configure_file(configure.h.in configured/configure.h)

target_include_directories(configure PRIVATE

 ${CMAKE_CURRENT_BINARY_DIR})

CMake then generates an output file like so:

ch07/04-configure/<build_tree>/configured/configure.h

#define FOO_ENABLE

#define FOO_STRING1 "abc"

#define FOO_STRING2 "def"

/* #undef FOO_UNDEFINED */

As you can see, the @VAR@ and ${VAR} variable placeholders were substituted with the values from

the CMake listfile. Additionally, #cmakedefine was replaced with #define for defined variables

and /* #undef VAR */ for undefined ones. If you require an explicit #define 1 or #define 0 for

#if blocks, use #cmakedefine01 instead.

You can incorporate this configured header in your application by simply including it in your

implementation file:

ch07/04-configure/configure.cpp

#include <iostream>

#include "configured/configure.h"

// special macros to convert definitions into c-strings:

#define str(s) #s

#define xstr(s) str(s)

using namespace std;

int main()

{

#ifdef FOO_ENABLE

 cout << "FOO_ENABLE: ON" << endl;

#endif

 cout << "FOO_STRING1: " << xstr(FOO_STRING1) << endl;

 cout << "FOO_STRING2: " << xstr(FOO_STRING2) << endl;

 cout << "FOO_UNDEFINED: " << xstr(FOO_UNDEFINED) << endl;

}

Compiling C++ Sources with CMake182

By adding the binary tree to our include paths with the target_include_directories() command,

we can compile the example and receive output populated from CMake:

FOO_ENABLE: ON

FOO_STRING1: "abc"

FOO_STRING2: "def"

FOO_UNDEFINED: FOO_UNDEFINED

The configure_file() command also includes a range of formatting and file-permission options,

which we won’t delve into here due to length constraints. If you’re interested, you can refer to the

online documentation for further details (see the Further reading section in this chapter).

Having prepared a complete compilation of our headers and source files, let’s discuss how the

output code is shaped during the subsequent steps. While we don’t have direct influence over the

linguistic analysis or assembling (as these steps adhere to strict standards), we can manipulate

the configuration of the optimizer. Let’s explore how this can impact the end result.

Configuring the optimizer
The optimizer will analyze the output of previous stages and use a multitude of tactics, which

programmers wouldn’t use directly, as they don’t adhere to clean-code principles. But that’s

fine – the optimizer’s essential role is to enhance code performance, striving for low CPU usage,

minimal register usage, and reduced memory footprint. As the optimizer traverses the source code,

it heavily morphs it into an almost unrecognizable form, tailored specifically to the target CPU.

The optimizer will not only decide which functions could be removed or compacted; it will also

move code around or even significantly duplicate it! If it can definitively ascertain that certain

lines of code are redundant, it will wipe them out from the middle of an important function (and

you won’t even notice). It recycles memory so that numerous variables can inhabit the same slot

at different times. It can even remodel your control structures into something entirely different

if that translates into shaving off a few cycles here and there.

If a programmer were to manually apply the aforementioned techniques to source code, it would

transmogrify it into an awful, unreadable mess, difficult to write and reason about. However,

when applied by compilers, these techniques are advantageous as compilers strictly follow the

provided instructions. The optimizer is a relentless beast that serves one purpose: to accelerate

execution speed, regardless of how distorted the output becomes. Such output may contain some

debugging information if we are running it in our test environment, or it may not, in order to

make it difficult for unauthorized people to tamper with it.

Chapter 7 183

Every compiler has its own unique tricks up its sleeve, consistent with the platform it supports

and the philosophy it follows. We’ll take a look at the most common ones, available in GNU GCC

and LLVM Clang, to gain an understanding of what is practical and achievable.

Here’s the thing – many compilers won’t enable any optimization by default (GCC included). This

is okay in some cases but not so much in others. Why go slow when you can go fast? To amend

this, we can use the target_compile_options() command and explicitly state our expectations

from the compiler.

The syntax of this command mirrors others in this chapter:

target_compile_options(<target> [BEFORE]

 <INTERFACE|PUBLIC|PRIVATE> [items1...]

 [<INTERFACE|PUBLIC|PRIVATE> [items2...]

...])

We provide command-line options to use while building the target and we also specify the prop-

agation keyword. When executed, CMake appends the given options to the appropriate COMPILE_

OPTIONS variable of the target. The optional BEFORE keyword may be used if we want to prepend

them instead. The order can be significant in some scenarios, so it’s beneficial to have a choice.

Note that target_compile_options() is a general command. It can also be used to provide other ar-

guments to compiler-like -D definitions, for which CMake offers the target_compile_definition()

command as well. It is always advisable to use the most specialized CMake commands wherever

possible, as they are guaranteed to work the same way across all the supported compilers.

Time to discuss the details. The subsequent sections will introduce various kinds of optimizations

that you can enable in most compilers.

General level
All the different behaviors of the optimizer can be configured in depth by specific flags that we
can pass as compile options. Getting to know all of them is time consuming and requires a lot of
knowledge about the internal workings of compilers, processors, and memory. What can we do
if we just want the best possible scenario that works well in most cases? We can aim for a general
solution – an optimization-level specifier.

Most compilers offer four basic levels of optimization, from 0 to 3. We specify them with the
-O<level> option. -O0 means no optimization and, usually, it’s the default level for compilers. On

the other hand, -O2 is considered a full optimization, one that generates highly optimized code

but at the cost of the slowest compilation time.

Compiling C++ Sources with CMake184

There’s an in-between -O1 level, which (depending on your needs) can be a good compromise –

it enables a reasonable amount of optimization mechanisms without slowing the compilation

too much.

Finally, we can reach for -O3, which is full optimization, like -O2, but with a more aggressive ap-

proach to subprogram inlining and loop vectorization.

There are also some variants of the optimization that will optimize for the size (not necessarily

the speed) of the produced file – -Os. There is a super-aggressive optimization, -Ofast, which is

an -O3 optimization that doesn’t strictly comply with C++ standards. The most obvious difference

is the usage of -ffast-math and -ffinite-math flags, meaning that if your program is about

precise calculations (as most are), you might want to avoid it.

CMake knows that not all compilers are made equal, and for that reason, it standardizes the

experience for developers by providing some default flags for compilers. They are stored in sys-

tem-wide (not target-specific) variables for the language used (CXX for C++) and the build con-

figuration (DEBUG or RELEASE):

• CMAKE_CXX_FLAGS_DEBUG equals -g

• CMAKE_CXX_FLAGS_RELEASE equals -O3 -DNDEBUG

As you can see, the debug configuration doesn’t enable any optimizations and the release config-

uration goes straight for O3. If you like, you can change them directly with the set() command

or just add a target compilation option, which will override this default behavior. The other two

flags (-g, -DNDEBUG) are related to debugging – we’ll discuss them in the Providing information

for the debugger section of this chapter.

Variables such as CMAKE_<LANG>_FLAGS_<CONFIG> are global – they apply to all targets. It is recom-

mended to configure your targets through properties and commands, such as target_compile_

options(), rather than relying on global variables. This way, you can control your targets at

higher granularity.

By choosing an optimization level with -O<level>, we indirectly set a long list of flags, each con-

trolling a specific optimization behavior. We can then fine-tune the optimization by appending

more flags, like so:

• Enable them with an -f option: -finline-functions.

• Disable them with an -fno option: -fno-inline-functions.

Some of these flags are worth understanding better as they will often impact how your program

works and how you can debug it. Let’s have a look.

Chapter 7 185

Function inlining
As you might recall, compilers can be encouraged to inline some functions, either by defining a

function inside a class declaration block or by explicitly using the inline keyword:

struct X {

 void im_inlined(){ cout << "hi\n"; };

 void me_too();

};

inline void X::me_too() { cout << "bye\n"; };

The decision to inline a function ultimately rests with the compiler. If inlining is enabled and the

function is used in a singular place (or a relatively small function used in a few places), inlining

will most likely occur.

Function inlining is an intriguing optimization technique. It operates by extracting the code from

the targeted function and embedding it in all the locations where the function was called. This

process replaces the original call and conserves precious CPU cycles.

Let’s consider the following example using the class we just defined:

int main() {

 X x;

 x.im_inlined();

 x.me_too();

 return 0;

}

Without inlining, the code would execute in the main() frame until a method call. Then, it would

create a new frame for im_inlined(), execute in a separate scope, and return to the main() frame.

The same would happen for the me_too() method.

However, when inlining takes place, the compiler will replace the calls, like so:

int main() {

 X x;

 cout << "hi\n";

 cout << "bye\n";

 return 0;

}

Compiling C++ Sources with CMake186

This isn’t an exact representation because inlining happens at the level of assembly or machine

code (and not the source code), but it does provide a general idea.

The compiler employs inlining to conserve time. It bypasses the creation and teardown of a new

call frame and the need to look up the address of the next instruction to execute (and return to)

and enhances instruction caching as they are in close proximity.

However, inlining does come with some significant side effects. If a function is used more than

once, it must be copied to all locations, resulting in a larger file size and increased memory us-

age. While this may not be as critical today as it once was, it remains relevant, especially when

developing software for low-end devices with limited RAM.

Moreover, inlining critically impacts debugging. Inlined code is no longer at the original line

number, making tracking more difficult, or sometimes impossible. This is why a debugger break-

point placed in a function that was inlined, never gets hit (even though the code is still executed

somehow). To circumvent this problem, you need to disable inlining for debug builds (at the cost

of not testing the exact release build version).

We can do that by specifying the -O0 (o-zero) level for the target or directly addressing the flags

responsible for inlining:

• -finline-functions-called-once: This is only for GCC.

• -finline-functions: This is for both Clang and GCC.

• -finline-hint-functions: This is only for Clang.

Inlining can be explicitly disabled with -fno-inline-..., however, for detailed information, it’s

advisable to refer to the documentation of your specific compiler version.

Loop unrolling
Loop unrolling, also known as loop unwinding, is an optimization technique. This strategy aims

to transform loops into a series of statements that accomplish the same result. Consequently,

this approach exchanges the small size of the program for execution speed, as it eliminates the

loop control instruction, pointer arithmetic, and end-of-loop checks.

Consider the following example:

void func() {

 for(int i = 0; i < 3; i++)

 cout << "hello\n";

}

Chapter 7 187

The previous code will be transformed into something like this:

void func() {

 cout << "hello\n";

 cout << "hello\n";

 cout << "hello\n";

}

The outcome will be the same, but we no longer have to allocate the i variable, increment it, or

compare it three times with a value of 3. If we call func() enough times in the lifetime of the

program, unrolling even such a short and small function will make a significant difference.

However, it is important to understand two limiting factors. Firstly, loop unrolling is only effec-

tive if the compiler knows or can accurately estimate the number of iterations. Secondly, loop

unrolling can lead to undesired consequences on modern CPUs, as an increased code size might

hamper effective caching.

Each compiler provides a slightly different version of this flag:

• -floop-unroll: This is for GCC.

• -funroll-loops: This is for Clang.

If you’re uncertain, test extensively whether this flag is affecting your particular program and

explicitly enable or disable it. Do note that on GCC, it is implicitly enabled with -O3 as part of the

implicitly enabled -floop-unroll-and-jam flag.

Loop vectorization
The mechanism known as single instruction, multiple data (SIMD) was developed in the early

1960s to achieve parallelism. As the name suggests, it is designed to carry out the same operation

on multiple data simultaneously. Let’s look at this in practice through the following example:

int a[128];

int b[128];

// initialize b

for (i = 0; i<128; i++)

 a[i] = b[i] + 5;

Compiling C++ Sources with CMake188

Normally, such code would loop 128 times, but with a capable CPU, the code’s execution can

be significantly accelerated by simultaneously calculating two or more array elements. This is

possible due to the absence of dependency between consecutive elements and data overlap be-

tween arrays. Clever compilers can transform the preceding loop into something like this (which

happens at the assembly level):

for (i = 0; i<32; i+=4) {

 a[i] = b[i] + 5;

 a[i+1] = b[i+1] + 5;

 a[i+2] = b[i+2] + 5;

 a[i+3] = b[i+3] + 5;

}

GCC will enable such automatic vectorization of loops at -O3. Clang enables it by default. Both

compilers offer different flags to enable/disable vectorization in particular:

• -ftree-vectorize -ftree-slp-vectorize: This is for enabling vectorization in GCC.

• -fno-vectorize -fno-slp-vectorize: This is for disabling vectorization in Clang.

The efficiency of vectorization stems from the utilization of special instructions offered by CPU

manufacturers, rather than merely substituting the original form of the loop with an unrolled

version. Hence, it’s not feasible to achieve the same performance level manually (additionally, it

doesn’t result in clean code).

The optimizer plays a vital role in enhancing a program’s runtime performance. By employing its

strategies effectively, we’ll get more bang for our buck. Efficiency matters not only after coding

completion but also during the software development process. If compilation times are lengthy,

we can improve them by better managing the process.

Managing the process of compilation
As programmers and build engineers, we must also consider other aspects of compilation such as

the time it takes to complete and the ease with which we can identify and rectify mistakes made

during the solution-building process.

Reducing compilation time
In busy projects that require frequent recompilations (possibly several times an hour), it’s para-

mount to ensure the compilation process is as quick as possible. This not only affects the efficiency

of your code-compile-test loop but also your concentration and workflow.

Chapter 7 189

Luckily, C++ is already pretty good at managing compilation time, thanks to separate transla-

tion units. CMake will take care to only recompile sources that were impacted by recent changes.

However, if we need to improve things even more, there are a couple of techniques we can use:

header precompilation and unity builds.

Precompilation of headers
Header files (.h) are included in the translation unit by the preprocessor before the actual com-

pilation begins. This means they must be recompiled every time the .cpp implementation files

change. Moreover, if multiple translation files are using the same shared header, it has to be

compiled every time it’s included. This is inefficient, but it has been the standard for a long time.

Luckily, since version 3.16, CMake offers a command to enable header precompilation. This allows

the compiler to process headers separately from the implementation file, thereby speeding up

the compilation process. This is the syntax for the provided command:

target_precompile_headers(<target>

 <INTERFACE|PUBLIC|PRIVATE> [header1...]

 [<INTERFACE|PUBLIC|PRIVATE> [header2...]

...])

The list of added headers is stored in the PRECOMPILE_HEADERS target property. As we discussed

in Chapter 5, Working with Targets, in the What are transitive usage requirements? section, we can

use the propagated properties to share the headers with any depending targets by choosing the

PUBLIC or INTERFACE keyword; however, this shouldn’t be done for targets exported with the

install() command. Other projects shouldn’t be forced to consume our precompiled headers

as this is not a conventional practice.

CMake will put all headers’ names in a cmake_pch.h or cmake_pch.hxx file, which will then be

precompiled to a compiler-specific binary file with a .pch, .gch, or .pchi extension.

Use the $<BUILD_INTERFACE:...> generator expression described in Chapter 6,

Using Generator Expressions, to prevent precompiled headers from appearing in the

usage requirements of targets when they’re installed. However, they will still be

added to targets exported from the build tree with the export() command. Don’t

worry if this seems confusing right now – it will be fully explained in Chapter 14,

Installing and Packaging.

Compiling C++ Sources with CMake190

We can use it in our listfile like so:

ch07/06-precompile/CMakeLists�txt

add_executable(precompiled hello.cpp)

target_precompile_headers(precompiled PRIVATE <iostream>)

We can also use it in the corresponding source file:

ch07/06-precompile/hello�cpp

int main() {

 std::cout << "hello world" << std::endl;

}

Note that in our main.cpp file, we don’t need to include cmake_pch.h or any other header – it will

be included by CMake with compiler-specific command-line options.

In the previous example, I used a built-in header; however, you can easily add your own headers

with class or function definitions. Use one of the two forms to reference the header:

• header.h (a direct path) is interpreted as relative to the current source directory and will

be included with an absolute path.

• The [["header.h"]] (double brackets and quotes) path will be scanned according to the

target’s INCLUDE_DIRECTORIES property, which can be configured with target_include_

directiories().

Some online references may discourage precompiling headers that aren’t part of a standard library,

such as <iostream>, or using precompiled headers altogether. This is because changing the list

or editing a custom header will cause recompilation of all translation units in the target. With

CMake, this concern is not as significant, especially if you structure your project correctly (with

relatively small targets focused on a narrow domain). Each target has a separate precompiled

header file, which limits the impact of the header changes.

If your headers are considered relatively stable, you might decide to reuse precompiled headers

in your targets. For this purpose, CMake provides a convenient command:

target_precompile_headers(<target> REUSE_FROM <other_target>)

This sets the PRECOMPILE_HEADERS_REUSE_FROM property of the target reusing the headers and

creates a dependency between these targets. Using this method, the consuming target can no

longer specify its own precompiled headers. Additionally, all compile options, compile flags, and

compile definitions must match between targets.

Chapter 7 191

Pay attention to requirements, especially if you have any headers that use the double bracket

format ([["header.h"]]). Both targets need to set their include paths appropriately to make sure

those headers are found by the compiler.

Unity builds
CMake 3.16 introduced another compilation time optimization feature – unity builds, also known

as unified builds or jumbo builds. Unity builds work by combining multiple implementation source

files by utilizing the #include directive. This has some interesting implications, some of which

are beneficial, while others could be potentially harmful.

The most obvious advantage is avoiding the recompilation of headers in different translation

units when CMake creates a unified build file:

#include "source_a.cpp"

#include "source_b.cpp"

When both sources contain a #include "header.h" line, the referenced file will be parsed only

once, thanks to include guards (assuming they have been properly added). While not as refined

as precompiled headers, it is an alternative.

The second benefit of this type of build is the fact that the optimizer may now act on a greater

scale and optimize interprocedural calls across all bundled sources. This is similar to link-time

optimization, which we discussed in Chapter 4, Setting Up Your First CMake Project, in the Inter-

procedural optimization section.

However, these benefits come with trade-offs. As we reduced the number of object files and pro-

cessing steps, we also increased the amount of memory needed to process larger files. Additionally,

we reduced the amount of parallelizable work. Compilers aren’t exceptionally good at multi-

threaded compiling, as they don’t typically need to be – the buildsystem will usually start many

compilation tasks to execute all the files simultaneously on different threads. Grouping all files

together complicates this, as CMake now has fewer files to compile in parallel.

With unity builds, you also need to consider some C++ semantic implications that might not

be so obvious to catch – anonymous namespaces hiding symbols across files are now scoped to

the unity file, rather than to an individual translation unit. The same thing happens with static

global variables, functions, and macro definitions. This may cause name collisions, or incorrect

function overloads to be executed.

Compiling C++ Sources with CMake192

Jumbo builds are suboptimal when recompiling, as they will compile many more files than needed.

They work best when the code is meant to compile all files as fast as possible. Tests done on Qt

Creator (a popular GUI library) show that you can expect an improvement anywhere between

20% to 50% (depending on the compiler used).

To enable unity builds, we have two options:

• Set the CMAKE_UNITY_BUILD variable to true – it will initialize the UNITY_BUILD property

on every target defined thereafter.

• Manually set the UNITY_BUILD target property to true on every target that should use

unity builds.

The second option is achieved by calling the following:

set_target_properties(<target1> <target2> ...

 PROPERTIES UNITY_BUILD true)

Manually setting these properties on many targets is of course more work and increases the cost

of maintenance, but you may need to do so to control this setting on a finer level.

By default, CMake will create builds containing eight source files, as specified by the UNITY_BUILD_

BATCH_SIZE property of a target (copied at the creation of a target from the CMAKE_UNITY_BUILD_

BATCH_SIZE variable). You can change the target property or default variable.

Starting from version 3.18, you can explicitly define how files should be bundled with named

groups. To do so, change the target’s UNITY_BUILD_MODE property to GROUP (the default is BATCH).

Then, assign your source files to groups by setting their UNITY_GROUP property to the name of

your choosing:

set_property(SOURCE <src1> <src2> PROPERTY UNITY_GROUP "GroupA")

CMake will then disregard UNITY_BUILD_BATCH_SIZE and add all files from the group to a single

unity build.

CMake’s documentation advises against enabling unity builds for public projects by default. It is

recommended that the end user of your application should be able to decide whether they want

jumbo builds or not by providing the -DCMAKE_UNITY_BUILD command-line argument. If unity

builds cause issues due to the way your code is written, you should explicitly set the target’s

property to false. However, you are free to enable this feature for code that will be used internally,

such as within a company or for your private project.

Chapter 7 193

These are the most important aspects of reducing compilation time with CMake. There are other

aspects of programming that often cost us a lot of time – one of the most notorious is debugging.

Let’s see how we can improve things there.

Finding mistakes
As programmers, we spend a substantial amount of time hunting for bugs. This, sadly, is a fact

of our profession. The process of identifying errors and rectifying them can often get under our

skin, especially when it requires long hours. The difficulty is amplified when we’re left flying

blind, without the necessary tools to help us navigate through these challenging situations. For

this reason, it is crucial that we pay great attention to setting up our environment in a way that

simplifies this process, making it as easy and bearable as possible. One way we can achieve this

is by configuring the compiler with target_compile_options(). So, which compile options could

assist us in this endeavor?

Configuring errors and warnings
There are many stressful things about software development – fixing critical bugs in the middle of

the night, working on high-visibility, costly failures in large systems, and dealing with annoying

compilation errors. Some errors are hard to understand, while others are tediously challenging

to fix. In your quest to simplify your work and reduce the chance of failure, you’ll find many rec-

ommendations on how to configure your compiler’s warnings.

One such fine piece of advice is to enable the -Werror flag as default for all builds. On the surface,

this flag’s function is deceptively simple – it treats all the warnings as errors, preventing the

code from compiling until you resolve each one. While it may seem like a beneficial approach, it

seldom is.

You see, warnings are not classified as errors for a reason: they’re designed to caution you. It’s

up to you to decide how to address these warnings. Having the liberty to overlook a warning,

particularly when you’re experimenting or prototyping your solution, is often invaluable.

On the other hand, if you have a perfect, no-warnings, all-shiny piece of code, it seems a shame

to allow future modifications to tarnish this pristine state. What harm could come from enabling

it and just keeping it there? Seemingly none, at least until your compiler gets upgraded, that is.

New compiler versions tend to be stricter about deprecated features or more adept at offering

improvement suggestions. While this is beneficial when warnings remain as warnings, it can lead

to unexpected build failures with unchanged code or, even more frustratingly, when you need to

quickly rectify a problem unrelated to the new warning.

Compiling C++ Sources with CMake194

So, when is it acceptable to enable all possible warnings? The short answer is when you’re cre-

ating a public library. In these cases, you’ll want to preempt issue tickets that fault your code for

misbehavior in stricter environments than yours. If you opt to enable this setting, ensure you stay

updated with the new compiler versions and the warnings they introduce. It’s also important to

explicitly manage this update process, separately from making any code changes.

Otherwise, let warnings be what they are, and concentrate on errors. If you feel compelled to be

pedantic, use the -Wpedantic flag. This particular flag enables all warnings demanded by strict

ISO C and ISO C++ standards. However, bear in mind that this flag doesn’t confirm conformance

with the standard; it only identifies non-ISO practices that require a diagnostic message.

More lenient and down-to-earth coders will be satisfied with -Wall, optionally coupled with

-Wextra for an extra touch of sophistication, which should suffice. These warnings are considered

genuinely useful, and you should address them in your code when time allows.

There are plenty of other warning flags that may be useful depending on your project type. I

recommend that you read the manual for your chosen compiler to see what options are available.

Debugging the build
Occasionally, the compilation will break. This usually happens when we try to refactor a signifi-

cant amount of code or clean up our buildsystem. At times, issues can be resolved easily; however,

there are more complex problems that require a thorough investigation into the configuration

steps. We already know how to print more verbose CMake outputs (as discussed in Chapter 1, First

Steps with CMake), but how do we analyze what actually happens under the hood at each stage?

Debugging individual stages
The -save-temps, which can be passed to both GCC and Clang compilers, allows us to debug in-

dividual stages of compilation. This flag will instruct the compilers to store the output of certain

compilation stages in files, rather than in memory.

ch07/07-debug/CMakeLists�txt

add_executable(debug hello.cpp)

target_compile_options(debug PRIVATE -save-temps=obj)

Enabling this option will produce two extra files (.ii and .s) per translation unit.

The first one, <build-tree>/CMakeFiles/<target>.dir/<source>.ii, stores the output of the

preprocessing stage, with comments explaining where each part of the source code comes from:

Chapter 7 195

1 "/root/examples/ch07/06-debug/hello.cpp"

1 "<built-in>"

1 "<command-line>"

1 "/usr/include/stdc-predef.h" 1 3 4

/ / / ... removed for brevity ... / / /

252 "/usr/include/x86_64-linux-

 gnu/c++/9/bits/c++config.h" 3

namespace std

{

 typedef long unsigned int size_t;

 typedef long int ptrdiff_t;

 typedef decltype(nullptr) nullptr_t;

}

...

The second one, <build-tree>/CMakeFiles/<target>.dir/<source>.s, contains the output of

the linguistic analysis stage, ready for the assembler stage:

 .file "hello.cpp"

 .text

 .section .rodata

 .type _ZStL19piecewise_construct, @object

 .size _ZStL19piecewise_construct, 1

_ZStL19piecewise_construct:

 .zero 1

 .local _ZStL8__ioinit

 .comm _ZStL8__ioinit,1,1

.LC0:

 .string "hello world"

 .text

 .globl main

 .type main, @function

main:

(...)

Depending on the type of problem, we can often uncover the actual issue. For instance, the prepro-

cessor’s output can help us identify bugs, such as incorrect include paths (which may provide the

wrong version of libraries), or mistakes in definitions that lead to erroneous #ifdef evaluations.

Compiling C++ Sources with CMake196

Meanwhile, the output of the linguistic analysis is particularly beneficial for targeting specific

processors and resolving critical optimization problems.

Debugging issues with header file inclusion
Debugging incorrectly included files can be a challenging task. I should know – in my first corpo-

rate job, I had to port an entire code base from one buildsystem to another. If you ever find your-

self in a situation that requires a precise understanding of the paths used to include a requested

header, consider using the -H compile option:

ch07/07-debug/CMakeLists�txt

add_executable(debug hello.cpp)

target_compile_options(debug PRIVATE -H)

The produced output will look similar to this:

[25%] Building CXX object

 CMakeFiles/inclusion.dir/hello.cpp.o

. /usr/include/c++/9/iostream

.. /usr/include/x86_64-linux-gnu/c++/9/bits/c++config.h

... /usr/include/x86_64-linux-gnu/c++/9/bits/os_defines.h

.... /usr/include/features.h

-- removed for brevity --

.. /usr/include/c++/9/ostream

After the name of the object file, each row in the output contains a path to a header. In this example, a

single dot at the beginning of the line indicates a top-level inclusion (where the #include directive

is in hello.cpp). Two dots signify that this file is included by the subsequent file (<iostream>).

Each additional dot denotes another level of nesting.

At the end of this output, you may also find suggestions for possible improvements to your code:

Multiple include guards may be useful for:

/usr/include/c++/9/clocale

/usr/include/c++/9/cstdio

/usr/include/c++/9/cstdlib

While you’re not required to address issues in the standard library, you may see some of your own

headers listed. In such cases, you might want to consider making corrections.

Chapter 7 197

Providing information for the debugger
Machine code is a cryptic list of instructions and data, encoded in a binary format. It doesn’t

convey any greater meaning or objective. This is because the CPU doesn’t care what the goal of

the program is or what the sense of all of the instructions is. The only requirement is the cor-

rectness of the code. The compiler will translate all of the preceding into numeric identifiers of

CPU instructions, store data to initialize memory where needed, and provide tens of thousands

of memory addresses. In other words, the final binary doesn’t need to contain the actual source

code, variable names, signatures of functions, or any other details that programmers care about.

That’s the default output of the compiler – raw and bare.

This is done primarily to save space and execute without too much overhead. Coincidentally, we

are also somewhat protecting our application from reverse engineering. Yes, you can understand

what each CPU instruction does without the source code (for example, copy this value to that

register). But even basic programs contain too many of these instructions to make sense of them.

If you’re a particularly driven individual, you can use a tool called a disassembler, and with a lot

of knowledge (and a bit of luck), you’ll be able to decipher what might be happening. However,

this approach isn’t very practical, as disassembled code doesn’t have original symbols, making

it incredibly hard and slow to untangle what goes where.

Instead, we can ask the compiler to store the source code in the produced binary along with the

map of references between compiled and original code. Then, we can attach a debugger to a

running program and see which source line is being executed at any given moment. This is in-

dispensable when we’re working on code, such as writing new functionality or correcting errors.

These two use cases are the reason for two build configs: Debug and Release. As we’ve seen earlier,

CMake will provide some flags to the compiler by default to manage this process, storing them

first in global variables:

• CMAKE_CXX_FLAGS_DEBUG contains -g

• CMAKE_CXX_FLAGS_RELEASE contains -DNDEBUG

The -g flag simply means “add debugging information.” It’s provided in the OS’s native format:

stabs, COFF, XCOFF, or DWARF. These formats can then be accessed by debuggers such as gdb

(the GNU debugger). Usually, this is sufficient for IDEs such as CLion (as they use gdb under the

hood). In other cases, refer to the manual of the provided debugger and check what the appro-

priate flag is for the compiler of your choice.

Compiling C++ Sources with CMake198

For the Release configuration, CMake will add the -DNDEBUG flag. It’s a preprocessor definition,

which simply means “not a debug build.” Some debug-oriented macros will be deliberately dis-

abled by this option. One of them is assert, available in the <assert.h> header file. If you decide

to use assertions in your production code, they simply won’t work:

int main(void)

{

 assert(false);

 std::cout << "This shouldn't run. \n";

 return 0;

}

The assert(false) call won’t have any effect in the Release configuration, but it will stop the

execution just fine in Debug. What do you do if you’re practicing assertive programming and still

need to use assert() for release builds? Either change the defaults that are provided by CMake

(remove NDEBUG from CMAKE_CXX_FLAGS_RELEASE) or implement a hardcoded override by unde-

fining the macro before the header inclusion:

#undef NDEBUG

#include <assert.h>

Refer to the assert reference for more information: https://en.cppreference.com/w/c/error/

assert.

You can consider replacing assert() with static_assert(), which was introduced in C++11, if

your assertions can be done during compilation time, as this function isn’t protected with the

#ifndef(NDEBUG) preprocessor directive like assert().

With this, we have learned how to manage the process of compilation.

Summary
We have completed yet another chapter! Undoubtedly, compilation is a complex process. With

all its edge cases and specific requirements, it can be difficult to manage without a robust tool.

Thankfully, CMake does an excellent job supporting us here.

So, what have we learned so far? We began by discussing what compilation is and where it fits

into the broader narrative of building and running applications in the OS. We then examined the

stages of compilation and the internal tools that manage them. This understanding is invaluable

for resolving complex issues that we might encounter in the future.

https://en.cppreference.com/w/c/error/assert
https://en.cppreference.com/w/c/error/assert

Chapter 7 199

Next, we explored how to use CMake to verify whether the compiler available on the host meets

all the necessary requirements for our code to build. As we have already established, it’s a sig-

nificantly better experience for users of our solution to see a friendly message asking them to

upgrade rather than an arcane error printed by an outdated compiler that can’t handle the new

features of the language.

We briefly discussed how to add sources to already defined targets, then moved on to the config-

uration of the preprocessor. This was quite a substantial subject, as this stage brings all the bits

of code together and determines which parts will be ignored. We talked about providing paths

to files and adding custom definitions both individually and in bulk (along with some use cases).

Then, we discussed the optimizer; we explored all the general levels of optimization and what

flags they implicitly add. We also went into detail about a few of them – finline, floop-unroll,

and ftree-vectorize.

Finally, it was time to revisit the bigger picture and study how to manage the viability of compi-

lation. We tackled two main aspects here – reducing the compilation time (which, by extension,

helps maintain the programmer’s focus) and finding mistakes. The latter is extremely important

for identifying what is broken and why. Setting the tools correctly and understanding why things

happen greatly contributes to ensuring the quality of the code (and preserving our mental health).

In the next chapter, we’ll learn about linking and everything we need to consider in order to build

libraries and use them in our projects.

Further reading
For more information, you can refer to the following resources:

• CMake-supported compile features and compilers:
https://cmake.org/cmake/help/latest/manual/cmake-compile-

features.7.html#supported-compilers

• Managing sources for targets:

https://stackoverflow.com/questions/32411963/why-is-cmake-file-glob-evil,

https://cmake.org/cmake/help/latest/command/target_sources.html

• The include keyword:

https://en.cppreference.com/w/cpp/preprocessor/include

• Providing paths to included files:
https://cmake.org/cmake/help/latest/command/target_include_directories.

html

https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html#supported-compilers
https://cmake.org/cmake/help/latest/manual/cmake-compile-features.7.html#supported-compilers
https://stackoverflow.com/questions/32411963/why-is-cmake-file-glob-evil
https://cmake.org/cmake/help/latest/command/target_sources.html
https://en.cppreference.com/w/cpp/preprocessor/include
https://cmake.org/cmake/help/latest/command/target_include_directories.html
https://cmake.org/cmake/help/latest/command/target_include_directories.html

Compiling C++ Sources with CMake200

• Configuring headers:

https://cmake.org/cmake/help/latest/command/configure_file.html

• Pre-compilation of headers:
https://cmake.org/cmake/help/latest/command/target_precompile_headers.

html

• Unity builds:

https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html

• Precompiled headers unity builds:
https://www.qt.io/blog/2019/08/01/precompiled-headers-and-unity-jumbo-

builds-in-upcoming-cmake

• Finding mistakes – compiler flags:
https://interrupt.memfault.com/blog/best-and-worst-gcc-clang-compiler-

flags

• Why use libraries and not object files:
https://stackoverflow.com/questions/23615282/object-files-vs-library-

files-and-why

• Separation of concerns:
https://nalexn.github.io/separation-of-concerns/

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://cmake.org/cmake/help/latest/command/configure_file.html
https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://www.qt.io/blog/2019/08/01/precompiled-headers-and-unity-jumbo-builds-in-upcoming-cmake
https://www.qt.io/blog/2019/08/01/precompiled-headers-and-unity-jumbo-builds-in-upcoming-cmake
https://interrupt.memfault.com/blog/best-and-worst-gcc-clang-compiler-flags
https://interrupt.memfault.com/blog/best-and-worst-gcc-clang-compiler-flags
https://stackoverflow.com/questions/23615282/object-files-vs-library-files-and-why
https://stackoverflow.com/questions/23615282/object-files-vs-library-files-and-why
http://: https://nalexn.github.io/separation-of-concerns/
http://: https://nalexn.github.io/separation-of-concerns/
https://discord.com/invite/vXN53A7ZcA

8
Linking Executables and
Libraries
You might assume that once we’ve successfully compiled the source code into a binary file, our

role as build engineers is complete. However, that’s not entirely true. While binary files do contain

all the necessary code for a CPU to execute, this code can be distributed across multiple files in

a complex manner. We wouldn’t want the CPU to scour different files searching for individual

code snippets. Instead, our goal is to consolidate these separate units into a single file. To achieve

this, we use a process known as linking.

A quick look shows that CMake has few linking commands, with target_link_libraries()

being the main one. Why dedicate a whole chapter to a single command then? Unfortunately,

almost nothing is ever easy in computer science, and linking is no exception: to get the right

results, we need to understand the whole story – we need to know how exactly a linker works

and get the basics right. We’ll talk about the internal structure of object files, how the relocation

and reference resolution mechanisms work, and what are they for. We’ll discuss how the final

executable differs from its components and how the process image is constructed by the system

when loading the program into memory.

Then, we’ll introduce all kinds of libraries to you: static, shared, and shared modules. Even though

they’re all called “libraries,” they’re quite different. Creating a well-linked executable relies on hav-

ing the right configuration and addressing specific details like position-independent code (PIC).

We’ll learn about another nuisance of linking – the One Definition Rule (ODR). It’s crucial to

have the exact number of definitions. Managing duplicate symbols can be particularly challenging,

especially with shared libraries. Additionally, we’ll explore why linkers occasionally fail to locate

external symbols, even if the executable is correctly linked to the relevant library.

Linking Executables and Libraries202

Finally, we’ll discover how to use a linker efficiently, preparing our solution for testing within

specific frameworks.

In this chapter, we’re going to cover the following main topics:

• Getting the basics of linking right

• Building different library types

• Solving problems with the ODR

• The order of linking and unresolved symbols

• Separating main() for testing

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch08.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the <build tree> and <source tree> placeholders with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path in

which your source code is located.

Getting the basics of linking right
We discussed the life cycle of a C++ program in Chapter 7, Compiling C++ Sources with CMake. It

consists of five main stages – writing, compiling, linking, loading, and execution. After correctly

compiling all the sources, we need to put them together into an executable. We said that object

files produced in a compilation can’t be executed by a processor directly. But why?

To answer this, let’s understand that object files are a variant of the widely-used Executable and

Linkable Format (ELF), common in Unix-like systems and many others. Systems like Windows or

macOS have their own formats, but we’ll focus on ELF to explain the principle. Figure 8.1 shows

how a compiler structures these files:

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch08
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch08

Chapter 8 203

Figure 8.1: The structure of an object file

The compiler will prepare an object file for every unit of translation (for every .cpp file). These

files will be used to build an in-memory image of our program. Object files consist of:

• An ELF Header, which identifies the target operating system (OS), file type, target instruc-

tion set architecture, and details on the position and size of two header tables found in

ELF files: the Program Headers table (which isn’t present in object files) and the Section

Headers table.

• Binary sections that group information by type.

• A Section Headers table, containing information about the name, the type, flags, the

destination address in memory, the offset in the file, and other miscellaneous informa-

tion. It is used to understand what sections are in this file and where they are, just like a

table of contents.

When the compiler works through your source code, it categorizes the gathered information into

distinct sections. These sections form the core of the ELF file, positioned between the ELF Header

and the Section Headers. Here are some examples of such sections:

• The .text section contains machine code with all the instructions designated for pro-

cessor execution.

• The .data section holds values for initialized global and static variables.

• The .bss section reserves space for uninitialized global and static variables, which get

initialized to zero at the program’s start.

Linking Executables and Libraries204

• The .rodata section keeps values of constants, making it a read-only data segment.

• The .strtab section is a string table containing constant strings, like “Hello World” from

a basic hello.cpp example.

• The .shstrtab section is a string table holding the names of all other sections.

These sections closely mirror the final version of the executable that gets placed into RAM to run

our application. Yet, we can’t simply concatenate object files together and load the resulting file

into the memory. Merging without caution would lead to a host of complications. For one, we’d

squander both space and time, consuming excessive RAM pages. Transferring instructions and

data to the CPU cache would also become cumbersome. The entire system would have to deal

with increased complexity, burning precious cycles, and jumping between countless .text, .data,

and other sections during execution.

We’ll take a more organized approach: each section of an object file will be grouped with sections

of the same type as other object files. This procedure is called relocation, which is why the ELF

file type for object files is labeled as “Relocatable.” But relocation is more than just assembling

matching sections. It also involves updating internal references in the file, such as addresses of

variables, functions, symbol table indices, and string table indices. Each of these values is local

to its own object file and starts numbering from zero. So, when merging files, it’s imperative to

adjust these values to ensure they reference the right addresses in the consolidated file.

Figure 8.2 shows relocation in action – the .text section is already relocated, the .data is being

assembled from all linked files, and the .rodata and .strtab sections will follow the same process

(for simplicity, the figure doesn’t contain headers):

Chapter 8 205

Figure 8.2: The relocation of the .data section

Next, the linker needs to resolve references. When code from one translation unit refers to a symbol

defined in another, whether by including its header or using the extern keyword, the compiler

acknowledges the declaration, assuming the definition will be provided later. The linker’s role is

mainly to gather these unresolved external symbol references, and then identify and populate the

addresses where they belong in the consolidated executable. Figure 8.3 shows a simple example

of this reference resolution process:

Figure 8.3: A reference resolution

Linking Executables and Libraries206

This part of the linking can be a source of problems if a programmer is unaware of how it works.

We may end up with unresolved references that can’t locate their corresponding external symbols.

Or, the opposite: we have provided too many definitions and the linker doesn’t know which one

to choose.

The final executable file looks very similar to the object file, as it contains relocated sections with

resolved references, a Section Headers table, and of course, the ELF Header describing the whole

file. The main difference is the presence of the Program Header depicted in the following figure:

Figure 8.4: The structure of the executable file in ELF

The Program Header is located right after the ELF Header. The OS’s loader will read this Pro-

gram Header to set up the program, configure the memory layout, and create a process image.

Entries in the Program Header specify which sections will be copied, in what order, and to which

addresses in the virtual memory. They also contain information about their access control flags

(read, write, or execute), and a few other useful details. Each named section will be represented

by one fragment of memory in the created process; such a fragment is called a segment.

Object files may also be bundled in a library, which is an intermediate product that can be used

in a final executable or another library.

Now that we understand how linking works in principle, let’s move on to the next section, where

we’ll discuss three different types of libraries.

Chapter 8 207

Building different library types
After compiling the source code, it’s often desirable to sidestep recompilation for the same plat-

form or even share the compiled output with external projects. One could distribute the individual

object files as initially produced, but this comes with challenges. Distributing multiple files and

integrating them one by one into a buildsystem can be a hassle, particularly when dealing with

a large number. A more efficient approach is to consolidate all object files into a singular unit for

sharing. CMake significantly simplifies this task. We can generate these libraries with a simple

add_library() command (paired with the target_link_libraries() command).

By convention, all the libraries have a common prefix, lib, and use system-specific extensions

that denote what kind of library they are:

• A static library has a .a extension on Unix-like systems and .lib on Windows.

• Shared libraries (and modules) have a .so extension on some Unix-like systems (like

Linux) and .dylib on others (macOS). On Windows, their extension is .dll .

• Shared modules usually use the same extensions as shared libraries, but not always. On

macOS, they can use .so, especially when the module is ported from another Unix platform.

The process of building libraries (static, shared, or shared modules) is by convention called “link-

ing,” as can be seen in the build output of the ch08/01-libraries project:

[33%] Linking CXX static library libmy_static.a

[66%] Linking CXX shared library libmy_shared.so

[100%] Linking CXX shared module libmy_module.so

[100%] Built target module_gui

However, not all of the preceding libraries necessarily use a linker for their creation. The process

might skip certain steps like relocation and reference resolution for some libraries.

Let’s delve into each library type to understand their respective workings.

Static libraries
Static libraries are essentially a collection of raw object files stored in an archive. Sometimes,

they’re extended with an index to speed up linking the process. On Unix-like systems, such ar-

chives can be created by the ar tool, and indexed with ranlib.

During the build process, only necessary symbols from the static library are imported into the

final executable, optimizing its size and memory usage. This selective integration ensures the

executable is self-contained, eliminating the need for external files at runtime.

Linking Executables and Libraries208

To create a static library, we can simply use the command that we have already seen in the pre-

vious chapters:

add_library(<name> [<source>...])

This short-hand code will produce a static library by default. This can be overridden by setting

the BUILD_SHARED_LIBS variable to ON. If we want to build a static library regardless, we can

provide an explicit keyword:

add_library(<name> STATIC [<source>...])

Utilizing static libraries might not always be an ideal option, especially when we aim to share

compiled code among multiple applications running on the same machine.

Shared libraries
Shared libraries differ significantly from static libraries. They are constructed using a linker, which

completes both stages of linking. This results in a file complete with section headers, sections,

and a section header table, as illustrated in Figure 8.1.

Shared libraries, often referred to as shared objects, can be utilized across multiple distinct appli-

cations simultaneously. When the first program uses a shared library, the OS loads one instance

of it into the memory. Subsequent programs are then provided with the same address by the

OS, courtesy of intricate virtual memory mechanisms. However, for every process that uses the

library, the .data and .bss segments of the library are instantiated separately. This ensures that

each process can adjust its variables without influencing other processes.

Thanks to this approach, the overall memory usage in the system is optimized. If we’re using a

widely recognized library, it might not be necessary to include it with our program, as it’s likely

already available on the target machine. However, if it’s not pre-installed, users are expected to

manually install it before running the application. This can lead to potential issues if the installed

version of a library differs from what’s expected. Such problems are referred to as “dependency

hell.” More details can be found in the Further reading section of this chapter.

We can build shared libraries by explicitly using the SHARED keyword:

add_library(<name> SHARED [<source>...])

Since shared libraries are loaded during the program initialization, there’s no association between

the executing program and the actual library file on disk. Instead, the linking is done indirectly.

In Unix-like systems, this is achieved through a shared object name (SONAME), which can be

understood as the “logical name” of the library.

Chapter 8 209

This allows flexibility in library versioning and ensures that backward-compatible changes to

libraries don’t immediately break dependent applications.

We can query some path properties of the produced SONAME file with generator expressions (be

sure to replace target with the name of your target):

• $<TARGET_SONAME_FILE:target> returns the full path (.so.3).

• $<TARGET_SONAME_FILE_NAME:target> returns only the filename.

• $<TARGET_SONAME_FILE_DIR:target> returns the directory.

These come in handy in more advanced scenarios that we’ll cover later in the book, including:

• Correct usage of the generated library during packaging and installation.

• Writing custom CMake rules for dependency management.

• Utilizing SONAME during testing.

• Copying or renaming produced libraries in post-build commands.

You may have similar needs for other OS-specific artifacts; for that purpose, CMake offers two

families of generator expressions that offer the same suffixes as SONAME. For Windows, we have:

• $<TARGET_LINKER_FILE:target> returns the full path to the .lib import library associated

with the produced dynamic-link library (DLL). Note that the.lib extension is the same

as for the static Windows library, but their application is not the same.

• $<TARGET_RUNTIME_DLLS:target> returns a list of DLLs that the target depends on at

runtime.

• $<TARGET_PDB_FILE:target> returns the full path to the .pdb program database file

(used for debugging purposes).

Since shared libraries are loaded into the OS’s memory during the initialization of the program,

they are applicable when knowing upfront which libraries the program will use. What about the

scenarios where this needs to be determined during the runtime?

Shared modules
A shared module, or module library, is a variant of a shared library designed to be used as a

plugin loaded during runtime. Unlike standard shared libraries, which load automatically when

a program starts, a shared module only loads when the program explicitly requests it. This can

be done through the system calls:

• LoadLibrary on Windows

• dlopen() followed by dlsym() on Linux and macOS

Linking Executables and Libraries210

The primary reason for this approach is memory conservation. Many software applications have

advanced features that aren’t utilized throughout the life cycle of every process. Loading such

features into memory every time would be inefficient.

Alternatively, we might want to provide an avenue for extending the main program with special-

ized features that can be sold, delivered, and loaded separately.

To build shared modules, we need to use the MODULE keyword:

add_library(<name> MODULE [<source>...])

You shouldn’t attempt to link your executable with a module, as the module is designed to be

deployed separately from the executable that will utilize it.

Position-independent code (PIC)
Programs today are inherently somewhat position-independent because of the use of virtual

memory. This technology abstracts physical addresses. When calling a function, the CPU uses

the memory management unit (MMU) to translate a virtual address (starting from 0 for every

process) to the corresponding physical address (determined at the time of allocation). Interest-

ingly, these mappings don’t always follow a specific order.

Compiling a library introduces uncertainty: it’s unclear which processes might use the library

or where it will be located in virtual memory. We also can’t predict the addresses of the symbols

or their locations relative to the library’s machine code. To handle this, we need another level of

indirection.

PIC was introduced to map symbols (like references to functions and global variables) to their

runtime addresses. PIC introduces a new section to the binary file: the Global Offset Table (GOT).

During the linking, the relative position of the GOT section to the .text section (the program code)

is calculated. All symbol references will be pointed through an offset to a placeholder in the GOT.

When the program is loaded, the GOT section transforms into a memory segment. Over time, this

segment accumulates the runtime addresses of the symbols. This method, termed “lazy loading,”

ensures that the loader populates specific GOT entries only when required.

All sources for shared libraries and modules must be compiled with a PIC flag activated. By setting

the POSITION_INDEPENDENT_CODE target property to ON, we’ll tell CMake to appropriately add

compiler-specific flags such as -fPIC for GCC or Clang.

Chapter 8 211

This property is automatically enabled for shared libraries. However, if a shared library depends

on another target, such as a static or object library, you must also apply this property to the

dependent target:

set_target_properties(dependency

 PROPERTIES POSITION_INDEPENDENT_CODE ON)

Overlooking this step will cause conflicts in CMake, since it checks this property for inconsisten-

cies. You can find a more thorough exploration of this in the Dealing with conflicting propagated

properties section of Chapter 5, Working with Targets.

Our next discussion point pivots to symbols. Specifically, the subsequent section will explore

the challenges of name collisions, which can lead to ambiguity and definition inconsistencies.

Solving problems with the ODR
Phil Karlton, Netscape’s principal curmudgeon and tech visionary, was right when he said the

following:

Names are difficult for several reasons. They must be precise yet simple, brief yet expressive. This

not only gives them meaning but also enables programmers to grasp the concepts underlying

the raw implementation. C++ and many other languages add another stipulation: most names

must be unique.

This requirement manifests in the form of the ODR: within the scope of a single translation unit (a

single .cpp file), you are required to define a symbol exactly once, even if the same name (whether

for a variable, function, class type, enumeration, concept, or template) is declared multiple times.

To clarify, “declaring” introduces the symbol, while “defining” provides all its details, such as a

value for a variable or a body for a function.

”There are two hard things in computer science: cache invalidation and naming

things.”

Linking Executables and Libraries212

During linking, this rule is extended to the entire program, covering all non-inlined functions

and variables you effectively use in your code. Consider the following example comprising three

source files:

ch08/02-odr-fail/shared�h

int i;

ch08/02-odr-fail/one�cpp

#include <iostream>

#include "shared.h"

int main() {

 std::cout << i << std::endl;

}

ch08/02-odr-fail/two�cpp

#include "shared.h"

It also comprises a listfile:

ch08/02-odr-fail/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(ODR CXX)

set(CMAKE_CXX_STANDARD 20)

add_executable(odr one.cpp two.cpp)

As you can see, the example is very simple – we created a shared.h header file defining the i

variable, which is used in two separate translation units:

• one.cpp simply printing i to the screen

• two.cpp only including the header

But when we try to build the example, the linker produces the following error:

/usr/bin/ld:

CMakeFiles/odr.dir/two.cpp.o:(.bss+0x0): multiple definition of 'i';

CMakeFiles/odr.dir/one.cpp.o:(.bss+0x0): first defined here

collect2: error: ld returned 1 exit status

Chapter 8 213

Symbols cannot be defined more than once. Yet, there’s a significant exception. Types, templates,

and extern inline functions can have repeated definitions across multiple translation units, but

only if these definitions are identical (meaning they have the exact same sequence of tokens).

To demonstrate this, let’s replace the definition of a variable with a definition of a type:

ch08/03-odr-success/shared�h

struct shared {

 static inline int i = 1;

};

Then, we use it like so:

ch08/03-odr-success/one�cpp

#include <iostream>

#include "shared.h"

int main() {

 std::cout << shared::i << std::endl;

}

The other two files, two.cpp and CMakeLists.txt, remain the same as in the 02-odr-fail example.

Such a change will allow the linking to succeed:

[33%] Building CXX object CMakeFiles/odr.dir/one.cpp.o

[66%] Building CXX object CMakeFiles/odr.dir/two.cpp.o

[100%] Linking CXX executable odr

[100%] Built target odr

Alternatively, we can mark the variable as local to a translation unit (it won’t be exported outside

of the object file). To do so, we’ll use the static keyword (this keyword is context specific, so

don’t confuse it with static keyword in classes), like so:

ch08/04-odr-success/shared�h

static int i;

If you try linking this example, you will see it works, which implies that the static variables are

stored separately for each translation unit. Therefore, modifications to one will not impact the

other.

The ODR rule works exactly the same for static libraries as it does for object files, but things aren’t

so clear when we build our code with shared libraries – let’s take a look.

Linking Executables and Libraries214

Sorting out dynamically linked duplicated symbols
The linker will allow duplicated symbols here. In the following example, we’ll create two shared

libraries, A and B, with one duplicated() function and two unique a() and b() functions:

ch08/05-dynamic/a�cpp

#include <iostream>
void a() {
 std::cout << "A" << std::endl;
}
void duplicated() {
 std::cout << "duplicated A" << std::endl;
}

The second implementation file is almost an exact copy of the first:

ch08/05-dynamic/b�cpp

#include <iostream>

void b() {

 std::cout << "B" << std::endl;

}

void duplicated() {

 std::cout << "duplicated B" << std::endl;

}

Now, let’s use each function to see what happens (we’ll declare them locally with extern for

simplicity):

ch08/05-dynamic/main�cpp

extern void a();

extern void b();

extern void duplicated();

int main() {

 a();

 b();

 duplicated();

}

Chapter 8 215

The preceding code will run unique functions from each library and then call a function defined

with the same signature in both dynamic libraries. What do you think will happen? Would the

linking order matter in this case? Let’s test it for two cases:

• main_1 target will be linked with the a library first

• main_2 target will be linked with the b library first

The listfile looks like this:

ch08/05-dynamic/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Dynamic CXX)

add_library(a SHARED a.cpp)

add_library(b SHARED b.cpp)

add_executable(main_1 main.cpp)

target_link_libraries(main_1 a b)

add_executable(main_2 main.cpp)

target_link_libraries(main_2 b a)

After building and running both executables, we’ll see the following output:

root@ce492a7cd64b:/root/examples/ch08/05-dynamic# b/main_1

A

B

duplicated A

root@ce492a7cd64b:/root/examples/ch08/05-dynamic# b/main_2

A

B

duplicated B

Aha! Clearly, the order in which the libraries are linked matters to the linker. This can lead to

confusion if we aren’t vigilant. Contrary to what one might think, naming collisions are not that

uncommon in practice.

If we define locally visible symbols, they will take precedence over those available from DLLs.

Defining the duplicated() function in main.cpp will override the behavior of both targets.

Always take great care when exporting names from libraries, as you’re bound to encounter name

collisions sooner or later.

Linking Executables and Libraries216

Use namespaces – don’t count on the linker
C++ namespaces were invented to avoid such weird problems and deal with the ODR more ef-

fectively. The best practice is to wrap your library code in a namespace named after the library.

This tactic helps to prevent the complications arising from duplicated symbols.

In our projects we might come across cases where one shared library links to another, forming

a long chain. Such situations are not as uncommon as they might seem, especially in intricate

configurations. However, it’s crucial to understand that simply linking one library to another

doesn’t introduce any sort of namespace inheritance. Symbols at each link of this chain stay in

their original namespaces, as they were when compiled.

While the intricacies of linkers are intriguing and occasionally essential, another pressing issue

often crops up: the mysterious disappearance of properly defined symbols. Let’s delve into that

in the next section.

The order of linking and unresolved symbols
The behavior of the linker can sometimes seem capricious, throwing complaints seemingly with-

out cause. This often becomes a particularly vexing challenge for novice programmers unfamiliar

with the intricacies of this tool. Understandably, they often try to steer clear of build configura-

tions for as long as possible. But there comes a time when they need to make a change – perhaps

integrating a library they’ve developed – and all hell breaks loose.

Consider this: a relatively straightforward dependency chain where the main executable relies

on an “outer” library. In turn, this outer library depends on a “nested” library that contains the

essential int b variable. Out of the blue, a cryptic error message confronts the programmer:

outer.cpp:(.text+0x1f): undefined reference to 'b'

Such errors are not particularly uncommon. Typically, they indicate a forgotten library in the

linker. Yet, in this scenario, the library seems to have been correctly added to the target_link_

libraries() command:

ch08/06-unresolved/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Order CXX)

add_library(outer outer.cpp)

add_library(nested nested.cpp)

add_executable(main main.cpp)

target_link_libraries(main nested outer)

Chapter 8 217

What then!? Very few errors can be as infuriating to debug and understand. What we’re seeing

here is an incorrect order of linking. Let’s dive into the source code to figure out the reason:

ch08/06-unresolved/main�cpp

#include <iostream>

extern int a;

int main() {

 std::cout << a << std::endl;

}

The code seems easy enough – we’ll print an external variable a, which can be found in the outer

library. We’re declaring it ahead of time with the extern keyword. Here is the source for that library:

ch08/06-unresolved/outer�cpp

extern int b;

int a = b;

This is quite simple too – outer depends on the nested library to provide the external variable,

b, which gets assigned to the a variable. Let’s see the source of nested to confirm that we’re not

missing the definition:

ch08/06-unresolved/nested�cpp

int b = 123;

Indeed, we have provided the definition for b, and since it’s not marked as local with the static

keyword, it’s correctly exported from the nested target. As we saw previously, this target is linked

with the main executable in CMakeLists.txt:

target_link_libraries(main nested outer)

So, where does the undefined reference to 'b' error come from?

Resolving undefined symbols works like this – a linker processes the binaries from left to right.

As the linker iterates through the binaries, it will do the following:

1. Collect all undefined symbols exported from this binary and store them for later.

2. Try to resolve undefined symbols (collected from all binaries processed so far) with sym-

bols defined in this binary.

3. Repeat this process for the next binary.

Linking Executables and Libraries218

If any symbols remain undefined after the whole operation is completed, the linking fails. This

is the case in our example (CMake prepends the object files of the executable target in front of

the libraries):

1. The linker processed main.o, found an undefined reference to the a variable, and collected

it for future resolution.

2. The linker processed libnested.a, no undefined references were found, and there was

nothing to resolve.

3. The linker processed libouter.a, found an undefined reference to the b variable, and

resolved the reference to the a variable.

We did correctly resolve the reference to the a variable, but not to the b variable. To correct this,

we need to reverse the order of linking so that nested comes after outer:

target_link_libraries(main outer nested)

Sometimes, we’ll encounter cyclic references, where translation units define symbols for each

other, and there’s no single valid order where all references can be satisfied. The only way to solve

this is to process some targets twice:

target_link_libraries(main nested outer nested)

This is a common practice, however slightly inelegant in use. If you have the privilege of using

CMake 3.24 or newer, you can utilize the $<LINK_GROUP> generator expression with the RESCAN

feature that adds linker-specific flags, like --start-group or --end-group, to ensure all symbols

are evaluated:

target_link_libraries(main "$<LINK_GROUP:RESCAN,nested,outer>")

Bear in mind that this mechanism introduces additional processing steps and should be used

only if necessary. There are very rare cases where cyclic references are needed (and justified).

Encountering this issue usually indicates poor design. It’s supported on Linux, BSD, SunOS, and

Windows with a GNU toolchain.

We’re now prepared to deal with ODR issues. What other problems we can encounter? Suspiciously

missing symbols during linking. Let’s find out what that’s about.

Chapter 8 219

Dealing with unreferenced symbols
When libraries, especially static libraries, are created, they are essentially archives that consist of

multiple object files bundled together. We mentioned that some archiving tools might also create

symbol indexes to expedite the linking process. Those indexes provide a mapping between each

symbol and the object files in which they are defined. When a symbol is resolved, the object file

containing it is incorporated into the resulting binary (some linkers further optimize this by only

including specific sections of the file). If no symbols from an object file within a static library are

referenced, that object file might be entirely omitted. Hence, only portions of a static library that

are actually used could appear in the final binary.

However, there are several scenarios where you might need some of the unreferenced symbols:

• Static initialization: If your library has global objects requiring initialization (i.e., their

constructors are executed) before main(), and these objects aren’t directly referenced

elsewhere; the linker might exclude them from the final binary.

• Plugin architectures: If you’re developing a plugin system (with module libraries) where

code needs to be identified and loaded at runtime without direct referencing.

• Unused code in static libraries: If you’re developing a static library containing utility func-

tions or code that isn’t always directly referenced but you still want it in the final binary.

• Template instantiations: For libraries relying heavily on templates; some template in-

stantiations might be overlooked during linking if not explicitly mentioned.

• Linking Issues: Particularly with intricate buildsystems or elaborate codebases, linking

might yield unpredictable outcomes where some symbols or code sections appear to be

absent.

In these instances, forcing the inclusion of all object files during the linking process might be

beneficial. This is often achieved via a mode called whole-archive linking.

Specific compiler linking flags are:

• --whole-archive for GCC

• --force-load for Clang

• /WHOLEARCHIVE for MSVC

Linking Executables and Libraries220

To do so, we can use the target_link_options() command:

target_link_options(tgt INTERFACE

 -Wl,--whole-archive $<TARGET_FILE:lib1> -Wl,--no-whole-archive

)

However, this command is linker specific, so incorporating generator expressions to detect dif-

ferent compilers and provide respective flags is essential. Fortunately, CMake 3.24 introduced a

new generator expression for this purpose:

target_link_libraries(tgt INTERFACE

 "$<LINK_LIBRARY:WHOLE_ARCHIVE,lib1>"

)

Utilizing this method ensures that the tgt target incorporates all object files from the lib1 library.

Nevertheless, a few potential drawbacks need consideration:

• Increased binary size: This flag can substantially enlarge your final binary since all objects

from the specified library are incorporated, whether they’re utilized or not.

• Potential for symbol clashes: Introducing all symbols might cause clashes with others,

leading to linker errors.

• Maintenance overhead: Over-relying on such flags can obscure underlying issues in the

design or structure of your code.

With an understanding of how to address common linking challenges, we can now progress to

preparing our project for tests.

Separating main() for testing
As we’ve established, the linker enforces the ODR and ensures that all external symbols provide

their definitions during the linking process. Another linker-related challenge we might face is

the elegant and efficient testing of the project.

In an ideal scenario, we should be testing the exact same source code that runs in production. A

comprehensive testing pipeline would build the source code, run tests on the resulting binary,

and then package and distribute the executable (optionally excluding the tests themselves).

But how can we implement this? Executables typically have a precise execution flow, often in-

volving the reading of command-line arguments. The compiled nature of C++ doesn’t readily

support pluggable units that can be temporarily injected into the binary just for testing. This

suggests that we may need a nuanced approach to tackle this challenge.

Chapter 8 221

Luckily, we can use a linker to help us deal with this in an elegant manner. Consider extracting

all logic from your program’s main() to an external function, start_program(), like so:

ch08/07-testing/main�cpp

extern int start_program(int, const char**);

int main(int argc, const char** argv) {

 return start_program(argc, argv);

}

It’s reasonable to skip testing this new main() function when it’s written in such form; it is only

forwarding arguments to a function defined elsewhere (in another file). We can then create a li-

brary containing the original source from main() wrapped in a new function – start_program().

In this example, the code checks whether the command-line argument count is higher than 1:

ch08/07-testing/program�cpp

#include <iostream>

int start_program(int argc, const char** argv) {

 if (argc <= 1) {

 std::cout << "Not enough arguments" << std::endl;

 return 1;

 }

 return 0;

}

We can now prepare a project that builds this application and links together those two transla-

tion units:

ch08/07-testing/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Testing CXX)

add_library(program program.cpp)

add_executable(main main.cpp)

target_link_libraries(main program)

The main target is just providing the required main() function. The command-line argument

verification logic is contained in the program target. We can now test it by creating another exe-

cutable with its own main() function, which will host the test cases.

Linking Executables and Libraries222

In a real-world scenario, frameworks such as GoogleTest or Catch2 will provide their own main()

method that can be used to replace your program’s entry point and run all the defined tests. We’ll

dive deep into the subject of actual testing in Chapter 11, Testing Frameworks. For now, let’s focus

on the general principle and write our own test cases directly in the main() function:

ch08/07-testing/test�cpp

#include <iostream>

extern int start_program(int, const char**);

using namespace std;

int main()

{

 cout << "Test 1: Passing zero arguments to start_program:\n";

 auto exit_code = start_program(0, nullptr);

 if (exit_code == 0)

 cout << "Test FAILED: Unexpected zero exit code.\n";

 else

 cout << "Test PASSED: Non-zero exit code returned.\n";

 cout << endl;

 cout << "Test 2: Passing 2 arguments to start_program:\n";

 const char *arguments[2] = {"hello", "world"};

 exit_code = start_program(2, arguments);

 if (exit_code != 0)

 cout << "Test FAILED: Unexpected non-zero exit code\n";

 else

 cout << "Test PASSED\n";

}

The preceding code will call start_program twice, with and without arguments, and check wheth-

er the returned exit codes are correct. Here’s the output you’ll see if tests execute correctly:

./test

Test 1: Passing zero arguments to start_program:

Not enough arguments

Test PASSED: Non-zero exit code returned

Test 2: Passing 2 arguments to start_program:

Test PASSED

Chapter 8 223

The Not enough arguments line is coming from start_program(), and is an expected error mes-

sage (we’re checking whether the program is failing correctly).

This unit test leaves much to be desired in terms of clean code and elegant testing practices, but

it’s a start.

We have now defined main() twice:

• In main.cpp for production use

• In test.cpp for test purposes

Let’s define the testing executable at the bottom of our CMakeLists.txt now:

add_executable(test test.cpp)

target_link_libraries(test program)

This addition creates a new target that links against the same binary code as our production code.

Yet, it gives us the flexibility to call all exported functions as needed. Thanks to this, we can run

all code paths automatically and check whether they work as expected. Great!

Summary
Linking in CMake might initially appear straightforward, but as we dig deeper, we see there’s

much more beneath the surface. After all, linking executables isn’t as simple as piecing puzzle

parts together. When we delve deep into the structure of object files and libraries, it’s clear that

sections, which store various types of data, instructions, symbol names, and the like, need some

reordering. Before a program is runnable, these sections undergo what’s known as relocation.

It’s also crucial to resolve symbols. The linker must sort through references across all translation

units, ensuring nothing’s left out. Once this is settled, the linker then creates the program head-

er and places it into the final executable. This header offers instructions to the system loader,

detailing how to transform consolidated sections into segments that will make up the runtime

memory image of the process. We also discussed the three kinds of libraries: static, shared, and

shared modules. We examined how they differ and which scenarios some might be better suited

for than others. Additionally, we touched on PIC – a powerful concept that facilitates the lazy

binding of symbols.

The ODR is a C++ concept, but as we’ve seen, it’s strongly enforced by linkers. We looked at how

to tackle the most basic symbol duplication in both static and dynamic libraries. We also high-

lighted the value of using namespaces whenever possible and advised against depending too

much on a linker to prevent symbol collisions.

Linking Executables and Libraries224

For a step that might seem straightforward (given CMake’s limited commands dedicated to link-

ing), it certainly has its complexities. One of the trickier aspects is the order of linking, especially

when dealing with libraries that have nested and cyclical dependencies. We now understand

how the linker selects symbols that end up in the final binary file, and how we can override this

behavior if needed.

Lastly, we investigated how to take advantage of a linker to prepare our program for testing – by

separating the main() function into another translation unit. This enabled us to introduce an-

other executable, which ran tests against the exact same machine code that will be executed in

production.

With our newfound knowledge of linking, we’re ready to bring external libraries into our CMake

projects. In the next chapter, we’ll look at how to manage dependencies in CMake.

Further reading
For more information on the topics covered in this chapter, you can refer to the following:

• The structure of ELF files:

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

• The CMake manual for add_library():

https://cmake.org/cmake/help/latest/command/add_library.html

• Dependency hell:

https://en.wikipedia.org/wiki/Dependency_hell

• The differences between modules and shared libraries:
https://stackoverflow.com/questions/4845984/difference-between-modules-

and-shared-libraries

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://cmake.org/cmake/help/latest/command/add_library.html
https://en.wikipedia.org/wiki/Dependency_hell
https://stackoverflow.com/questions/4845984/difference-between-modules-and-shared-libraries
https://stackoverflow.com/questions/4845984/difference-between-modules-and-shared-libraries
https://discord.com/invite/vXN53A7ZcA

9
Managing Dependencies in
CMake
It doesn’t really matter if your solution is large or small; as it grows, you’ll likely choose to rely

on other projects. Avoiding the effort of creating and maintaining boilerplate code is crucial.

This frees up your time for what truly matters: the business logic. External dependencies serve

multiple purposes. They offer frameworks and features, solve complex issues, and play a key role

in building and ensuring code quality. These dependencies can vary, ranging from specialized

compilers like Protocol Buffers (Protobuf) to testing frameworks like Google Test.

When working with open-source projects or in-house code, managing external dependencies

efficiently is essential. Doing this manually would require a lot of setup time and ongoing support.

Luckily, CMake excels at handling various approaches to dependency management while staying

current with industry standards.

We will first learn how to identify and utilize dependencies already present on the host system,

thereby avoiding unnecessary downloads and extended compilation times. This task is relatively

straightforward, as many packages are either CMake-compatible or supported by CMake right out

of the box. We’ll also explore how to instruct CMake to locate and include dependencies that lack

this native support. For legacy packages, an alternative approach can be beneficial in specific sit-

uations: we can employ the once-popular pkg-config tool to handle the more cumbersome tasks.

Additionally, we will delve into managing dependencies that are available online but not yet in-

stalled on the system. We’ll examine how to fetch these from HTTP servers, Git, and other types

of repositories. We will also discuss how to choose the optimal approach: first, searching within

the system and then resorting to fetching if the package is not found. Finally, we’ll review an older

technique for downloading external projects that may be applicable in special cases.

Managing Dependencies in CMake226

In this chapter, we’re going to cover the following main topics:

• Using already installed dependencies

• Using dependencies not present in the system

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch09.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the <build tree> and <source tree> placeholders with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path at

which your source code is located.

Using already installed dependencies
When our project depends on a popular library, it’s likely that the operating system already has

the right package installed. We just have to connect it to our project’s build process. How do we do

that? We need to find out where the package is on the system so CMake can use its files. Doing this

by hand is possible, but every environment is a little different. A path that works on one system

might not work on another. So, we should automatically find these paths when building. There

are different ways to do this, but the best method is usually CMake’s built-in find_package()

command, which knows how to find many commonly used packages.

If our package isn’t supported, we have two options:

• We can write a small plugin called a find-module to help find_package()

• We can use an older method called pkg-config

Let’s start with the recommended option first.

Finding packages with CMake’s find_package()
Let’s start by looking at the following scenario: you want to improve the way you’re doing net-

work communication or data storage. Simple plain-text files or open-text formats like JSON and

XML are too verbose in terms of size. Using a binary format would help things, and a well-known

library like Google’s Protobuf looks like the answer.

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch09
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch09

Chapter 9 227

You’ve read the instructions and installed what you need on your system. Now what? How do

you get CMake’s find_package() to find and use this new library?

To execute this example, we have to install the dependencies we want to use because the find_

package() command only looks for packages that are already on your system. It assumes you’ve

got everything installed, or that users know how to install what’s needed if they’re told to. If you

want to handle other situations, you’ll need a backup plan. You can find more about this in the

Using dependencies not present in the system section.

In the case of Protobuf, the situation is fairly straightforward: you can either download, compile, and

install the library yourself from the official repository (https://github.com/protocolbuffers/

protobuf) or use the package manager in your operating system. If you’re following these exam-

ples using the Docker image mentioned in Chapter 1, First Steps with CMake, your dependencies

are already installed and you don’t need to do anything. However, if you’d like to try installing by

yourself, the commands to install the Protobuf library and compiler for Debian Linux are as follows:

$ apt update

$ apt install protobuf-compiler libprotobuf-dev

Many projects these days choose to support CMake. They do this by creating a config file and

putting it in the appropriate system directory during installation. Config files are an inherent part

of projects opting in to support CMake.

If you want to use a library that doesn’t have a config file, don’t worry. CMake supports an exter-

nal mechanism to find such libraries called find modules. Unlike config files, find modules are

not part of the project they’re helping to locate. In fact, CMake itself often comes with these find

modules for many popular libraries.

If you’re stuck and without either a config file or a find module, you have other choices:

• Write your own find modules for the specific package and include them in your project

• Use a FindPkgConfig module to leverage legacy Unix package definition files

• Write a config file and ask package maintainers to include it

You might think that you’re not quite ready to create such merge requests yourself. That’s okay

because you most likely won’t have to. CMake comes with over 150 find modules that can find

libraries such as Boost, bzip2, curl, curses, GIF, GTK, iconv, ImageMagick, JPEG, Lua, OpenGL,

OpenSSL, PNG, PostgreSQL, Qt, SDL, Threads, XML-RPC, X11, and zlib, as well as the Protobuf

file that we’re going to use in this example. A full list is available in the CMake documentation

(see the Further reading section).

https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf

Managing Dependencies in CMake228

Both find modules and config files can be used with CMake’s find_package() command. CMake

starts by checking its built-in find modules. If it doesn’t find what it needs, it moves on to checking

the config files provided by different packages. CMake scans paths where packages are usually

installed (depending on the operating system). It looks for files that match these patterns:

• <CamelCasePackageName>Config.cmake

• <kebab-case-package-name>-config.cmake

If you want to add external find modules to your project, set the CMAKE_MODULE_PATH variable.

CMake will scan this directory first.

Going back to our example, the goal is simple: I want to show that I can build a project that uses

Protobuf effectively. Don’t worry, you don’t need to know Protobuf to understand what happens.

In basic terms, Protobuf is a library that saves data in a specific binary format. This makes it easy

to write and read C++ objects to and from files or over a network. To set this up, we use a .proto

file to give Protobuf the data structure:

ch09/01-find-package-variables/message.proto

syntax = "proto3";

message Message {

 int32 id = 1;

}

This code is a simple schema definition that includes a single 32-bit integer. The Protobuf package

comes with a binary that will compile these .proto files into C++ sources and headers that our

application can use. We’ll need to add this compilation step to our build process, but we’ll get

back to that later. For now, let’s see how our main.cpp file uses the output generated by Protobuf:

ch09/01-find-package-variables/main.cpp

#include "message.pb.h"

#include <fstream>

using namespace std;

int main()

{

 Message m;

 m.set_id(123);

 m.PrintDebugString();

 fstream fo("./hello.data", ios::binary | ios::out);

 m.SerializeToOstream(&fo);

Chapter 9 229

 fo.close();

 return 0;

}

I’ve included a message.pb.h header that I expect Protobuf to generate. This header will have the

definition for the Message object, as configured in message.proto. In the main() function, I’m

creating a simple Message object. I set its id field to 123 as a random example and then print its

debug information to the standard output. Next, a binary version of this object is written to the

file stream. This is the most basic use case for a serialization library like Protobuf.

The message.pb.h header has to be generated before main.cpp is compiled. This is done by protoc,

the Protobuf compiler, which takes message.proto as input. Managing this process sounds com-

plicated, but it’s really not!

This is where the CMake magic happens:

ch09/01-find-package-variables/CMakeLists.txt

cmake_minimum_required(VERSION 3.26.0)
project(FindPackageProtobufVariables CXX)
find_package(Protobuf REQUIRED)
protobuf_generate_cpp(GENERATED_SRC GENERATED_HEADER
 message.proto)
add_executable(main main.cpp ${GENERATED_SRC} ${GENERATED_HEADER})
target_link_libraries(main PRIVATE ${Protobuf_LIBRARIES})
target_include_directories(main PRIVATE
 ${Protobuf_INCLUDE_DIRS} ${CMAKE_CURRENT_BINARY_DIR}
)

Let’s break this down:

• The first two lines are straightforward: they set up the project and specify that it will use

the C++ language.

• find_package(Protobuf REQUIRED) tells CMake to find the Protobuf library (by executing

the bundled FindProtobuf.cmake find module) and prepare it for use in our project. If it

can’t find the library, the build will stop because we used the REQUIRED keyword.

• protobuf_generate_cpp is a custom function defined in the Protobuf find module. It

automates the process of invoking the protoc compiler. After successful compilation, it

will store paths to the generated sources in variables provided as the first two arguments:

GENERATED_SRC and GENERATED_HEADER. All subsequent arguments will be treated as a list

of files to compile (message.proto).

Managing Dependencies in CMake230

• add_executable creates our executable using main.cpp and Protobuf-generated files.

• target_link_libraries tells CMake to link the Protobuf libraries to our executable.

• target_include_directories() adds to include paths the necessary INCLUDE_DIRS

provided by the package and CMAKE_CURRENT_BINARY_DIR. The latter tells the compiler

where to find the message.pb.h header.

The Protobuf find module provides the following functionalities:

• It finds the Protobuf library and its compiler.

• It provides helper functions to compile the .proto files.

• It sets variables with paths for inclusion and linking.

While not every module comes with convenient helper functions like Protobuf, most modules do

set up a few key variables for you. These are useful for managing the dependency in your project.

Whether you’re using a built-in find module or a config file, after the package is successfully found,

you can expect some or all of the following variables to be set:

• <PKG_NAME>_FOUND: This indicates whether the package was successfully found.

• <PKG_NAME>_INCLUDE_DIRS or <PKG_NAME>_INCLUDES: This points to the directories where

the package’s header files are located.

• <PKG_NAME>_LIBRARIES or <PKG_NAME>_LIBS: These are lists of libraries that you’ll need

to link against.

• <PKG_NAME>_DEFINITIONS: This contains any compiler definitions needed for the package.

After running find_package(), you can immediately check the <PKG_NAME>_FOUND variable to

see whether CMake was successful in locating the package.

If a package module is written for CMake 3.10 or newer, it will also likely provide target definitions.

These targets will be designated as IMPORTED targets to distinguish them as originating from an

external dependency.

Protobuf is a great example to explore when learning about dependencies in CMake, as it defines

module-specific variables and IMPORTED targets. Such targets allow us to write even more concise

code:

ch09/02-find-package-targets/CMakeLists.txt

cmake_minimum_required(VERSION 3.26.0)

project(FindPackageProtobufTargets CXX)

find_package(Protobuf REQUIRED)

Chapter 9 231

protobuf_generate_cpp(GENERATED_SRC GENERATED_HEADER

 message.proto)

add_executable(main main.cpp ${GENERATED_SRC} ${GENERATED_HEADER})

target_link_libraries(main PRIVATE protobuf::libprotobuf)

target_include_directories(main PRIVATE

 ${CMAKE_CURRENT_BINARY_DIR})

Look at how the highlighted code compares with the previous version of this example: instead

of using variables that listfiles and directories, it’s a good idea to use IMPORTED targets. This ap-

proach simplifies the listfile. It also automatically takes care of transient usage requirements, or

propagated properties, as illustrated here with protobuf::libprotobuf target.

To keep things simple, examples in this section will simply fail if the Protobuf library is not found

in the user’s system. But a really robust solution should verify the Protobuf_FOUND variable, and

present a clear diagnostic message for the user (so they can install it) or perform the installation

automatically. We’ll learn how to do this later in this chapter.

The find_package() command has several arguments you can use. While there’s a longer list of

them, we’ll focus on the key ones here. The basic format of the command is:

find_package(<Name> [version] [EXACT] [QUIET] [REQUIRED])

Let’s break down what each of these optional arguments means:

• [version] This specifies the minimum version of the package you need in the major.minor.

patch.tweak format (such as 1.22). You can also specify a range, like 1.22...1.40.1,

using three dots as a separator.

• EXACT: Use this with a non-range [version] to tell CMake you want an exact version and

not a newer one.

• QUIET: This suppresses all messages about whether the package was found or not.

• REQUIRED: This will stop the build if a package is not found and a diagnostic message will

be shown even if QUIET is used.

If you want to know exactly what a specific find module provides, your best resource

is its online documentation. For example, you can find detailed information for

Protobuf on the CMake official website at this link: https://cmake.org/cmake/

help/latest/module/FindProtobuf.html.

https://cmake.org/cmake/help/latest/module/FindProtobuf.html
https://cmake.org/cmake/help/latest/module/FindProtobuf.html

Managing Dependencies in CMake232

If you’re pretty sure that a package should be on your system but find_package() isn’t locating

it, there’s a way to dig deeper. Starting with CMake 3.24, you can run the configure stage in debug

mode to get more information. Use the following command:

cmake -B <build tree> -S <source tree> --debug-find-pkg=<pkg>

Be cautious with this command. Make sure you type the package name exactly as it is because

it’s case-sensitive.

More information on the find_package() command can be found on the documentation page

here: https://cmake.org/cmake/help/latest/command/find_package.html.

Find modules are meant as a very convenient way of providing CMake with information on in-

stalled dependencies. Most popular libraries are widely supported by CMake on all major plat-

forms. What can we do, though, when we want to use a third-party library that doesn’t have a

dedicated find module yet?

Writing your own find modules
On a rare occasion, the library that you really want to use in your project doesn’t provide a config

file and there’s no find module readily available in CMake yet. You can then write a custom find

module for that library and ship it with your project. This situation is not ideal, but in the interest

of taking care of the users of your project, it has to be done.

We can try writing a custom find module for the libpqxx library, a client for the PostgreSQL

database. libpqxx is preinstalled in the Docker image for this book, so there’s no need to worry

if you’re using that. Debian users can install it using the libpqxx-dev package (other operating

systems may require different commands):

apt-get install libpqxx-dev

We’ll begin by writing a new file named FindPQXX.cmake and storing it in the cmake/module di-

rectory within our project’s source tree. To ensure that CMake discovers this find module when

find_package() is called, we’ll add its path to the CMAKE_MODULE_PATH variable in our CMakeLists.

txt using list(APPEND). Just a quick reminder: CMake will first check the directories listed in

CMAKE_MODULE_PATH to find the find modules before searching in other locations. Your complete

listfile should look like this:

ch09/03-find-package-custom/CMakeLists.txt

cmake_minimum_required(VERSION 3.26.0)

project(FindPackageCustom CXX)

https://cmake.org/cmake/help/latest/command/find_package.html

Chapter 9 233

list(APPEND CMAKE_MODULE_PATH

 "${CMAKE_SOURCE_DIR}/cmake/module/")

find_package(PQXX REQUIRED)

add_executable(main main.cpp)

target_link_libraries(main PRIVATE PQXX::PQXX)

With that in place, let’s move on to writing the actual find module. If the FindPQXX.cmake file

is empty, CMake won’t raise any errors, even if you use find_package() with REQUIRED. It’s the

responsibility of the find module’s author to set the correct variables and follow best practices

(like raising errors). According to CMake’s guidelines, here are some key points to note:

• When find_package(<PKG_NAME> REQUIRED) is called, CMake sets a <PKG_NAME>_FIND_

REQUIRED variable to 1. The find module should then use message(FATAL_ERROR) if the

library isn’t found.

• When find_package(<PKG_NAME> QUIET) is used, CMake sets <PKG_NAME>_FIND_QUIETLY

to 1. The find module should avoid displaying any extra messages.

• CMake sets a <PKG_NAME>_FIND_VERSION variable to the version specified in the listfiles.

If the find module can’t locate the right version, it should trigger a FATAL_ERROR.

Of course, it’s best to follow the preceding rules for consistency with other find modules.

To create an elegant find module for PQXX, let’s follow these steps:

1. If the paths to the library and headers are already known (supplied by the user or retrieved

from the cache of a previous run), use these paths to create an IMPORTED target. If this is

done, you can stop here.

2. If the paths are not known, begin by finding the library and headers for the underlying

dependency, which, in this case, is PostgreSQL.

3. Next, search the well-known paths to locate the binary version of the PostgreSQL client

library.

4. Similarly, scan the known paths to find the PostgreSQL client’s include headers.

5. Finally, confirm whether both the library and include headers are located. If they are,

create an IMPORTED target.

To create a robust find module for PQXX, let’s focus on a couple of important tasks. First, the cre-

ation of an IMPORTED target can happen in two scenarios – either the user specifies the library’s

paths or the paths are automatically detected. To keep our code clean and avoid duplication, we’ll

write a function that manages the outcome of our search process.

Managing Dependencies in CMake234

Defining IMPORTED targets
To set up an IMPORTED target, all we really need is a library defined with the IMPORTED keyword.

This will enable us to use the target_link_libraries() command in the calling CMakeLists.

txt listfile. We need to specify the type of the library, and for simplicity, we’ll mark it as UNKNOWN.

This means we’re not concerned about whether the library is static or dynamic; we just want to

pass an argument to the linker.

Next, we set the essential properties for our target – namely, IMPORTED_LOCATION and INTERFACE_

INCLUDE_DIRECTORIES. We use the arguments provided to the function for these settings. It’s pos-

sible to specify additional properties like COMPILE_DEFINITIONS, but they are not needed for PQXX.

After that, to make our find module more efficient, we’ll store the found paths in cache variables.

This way, we won’t have to repeat the search in future runs. It’s worth noting that we explicitly

set PQXX_FOUND in the cache, making it globally accessible and allowing the user’s CMakeLists.

txt to reference it.

Finally, we mark these cache variables as advanced, hiding them in the CMake GUI unless the

advanced option is activated. This is a common best practice that we’ll also adopt.

Here’s how the code looks for these operations:

ch09/03-find-package-custom/cmake/module/FindPQXX.cmake

Defining IMPORTED targets

function(define_imported_target library headers)

 add_library(PQXX::PQXX UNKNOWN IMPORTED)

 set_target_properties(PQXX::PQXX PROPERTIES

 IMPORTED_LOCATION ${library}

 INTERFACE_INCLUDE_DIRECTORIES ${headers}

)

 set(PQXX_FOUND 1 CACHE INTERNAL "PQXX found" FORCE)

 set(PQXX_LIBRARIES ${library}

 CACHE STRING "Path to pqxx library" FORCE)

 set(PQXX_INCLUDES ${headers}

 CACHE STRING "Path to pqxx headers" FORCE)

 mark_as_advanced(FORCE PQXX_LIBRARIES)

 mark_as_advanced(FORCE PQXX_INCLUDES)

endfunction()

Now, we’ll discuss how to use custom or previously stored paths for quicker setup.

Chapter 9 235

Accepting user-provided paths and reusing cached values
Let’s address the situation where a user has installed PQXX in a non-standard location and provides

the needed paths via command-line arguments using -D. If that’s the case, we immediately call

the function we defined earlier and stop the search by using return(). We assume that the user

has provided accurate paths to both the library and its dependencies, like PostgreSQL:

ch09/03-find-package-custom/cmake/module/FindPQXX.cmake (continued)

...

Accepting user-provided paths and reusing cached values

if (PQXX_LIBRARIES AND PQXX_INCLUDES)

 define_imported_target(${PQXX_LIBRARIES} ${PQXX_INCLUDES})

 return()

endif()

This condition will hold true if a configuration was carried out previously, as the variables PQXX_

LIBRARIES and PQXX_INCLUDES are stored in the cache.

It’s time to see how to handle finding the additional libraries that PQXX relies on.

Searching for nested dependencies
To utilize PQXX, the host system must also have PostgreSQL installed. While it’s perfectly fine to

use another find module within our current find module, we should pass along the REQUIRED and

QUIET flags to ensure consistent behavior between the nested search and the main search. To do

so, we’ll set two helper variables to store the keywords we need to pass and fill them according

to arguments received from CMake: PQXX_FIND_QUIETLY and PQXX_FIND_REQUIRED.

Searching for nested dependencies

set(QUIET_ARG)

if(PQXX_FIND_QUIETLY)

 set(QUIET_ARG QUIET)

endif()

set(REQUIRED_ARG)

if(PQXX_FIND_REQUIRED)

 set(REQUIRED_ARG REQUIRED)

endif()

find_package(PostgreSQL ${QUIET_ARG} ${REQUIRED_ARG})

Managing Dependencies in CMake236

Having this done, we’ll dive into the specifics of pinpointing where the PQXX library resides in

the operating system.

Searching for library files
CMake offers the find_library() command to help find library files. This command will accept

the filenames to look for and a list of possible paths, formatted in CMake’s path style:

find_library(<VAR_NAME> NAMES <NAMES> PATHS <PATHS> <...>)

<VAR_NAME> will serve as the name for variables that store the command’s output. If a match-

ing file is found, its path will be stored in the <VAR_NAME> variable. Otherwise, the <VAR_NAME>-

NOTFOUND variable will be set to 1. We’ll use PQXX_LIBRARY_PATH as our VAR_NAME, so we’ll end up

with either a path in PQXX_LIBRARY_PATH or 1 in PQXX_LIBRARY_PATH-NOTFOUND.

The PQXX library often exports its location to an $ENV{PQXX_DIR} environment variable, meaning

the system may already know its whereabouts. We can include this path in our search by first

formatting it using file(TO_CMAKE_PATH):

ch09/03-find-package-custom/cmake/module/FindPQXX.cmake (continued)

...

Searching for library files

file(TO_CMAKE_PATH "$ENV{PQXX_DIR}" _PQXX_DIR)

find_library(PQXX_LIBRARY_PATH NAMES libpqxx pqxx

 PATHS

 ${_PQXX_DIR}/lib/${CMAKE_LIBRARY_ARCHITECTURE}

 # (...) many other paths - removed for brevity

 /usr/lib

 NO_DEFAULT_PATH

)

The NO_DEFAULT_PATH keyword instructs CMake to bypass its standard list of search paths.

While you generally wouldn’t want to do this (since the default paths are often correct), using

NO_DEFAULT_PATH allows you to explicitly specify your own search locations if needed.

Let’s move on to finding the required header files that can be included by users of the library.

Chapter 9 237

Searching for header files
To search for all known header files, we’ll use the find_path() command, which works very simi-

larly to find_library(). The main difference is that find_library() automatically appends sys-

tem-specific extensions for libraries, whereas with find_path(), we need to specify exact names.

Also, don’t get confused here with pqxx/pqxx. It’s an actual header file, but its extension was

intentionally left off by the library creators to align with C++ #include directives. This allows it

to be used with angle brackets, like so: #include <pqxx/pqxx>.

Here’s the snippet:

ch09/03-find-package-custom/cmake/module/FindPQXX.cmake (continued)

...

Searching for header files

find_path(PQXX_HEADER_PATH NAMES pqxx/pqxx

 PATHS

 ${_PQXX_DIR}/include

 # (...) many other paths - removed for brevity

 /usr/include

 NO_DEFAULT_PATH

)

Next, we’ll look at how to finalize the search process, handle any missing paths, and call the

function defining imported targets.

Returning the final results
Now, it’s time to check whether we have any PQXX_LIBRARY_PATH-NOTFOUND or PQXX_HEADER_PATH-

NOTFOUND variables set. We can either manually print diagnostic messages and halt the build,

or we can use the find_package_handle_standard_args() helper function from CMake. This

function sets the <PKG_NAME>_FOUND variable to 1 if the path variables are correctly filled. It also

provides appropriate diagnostic messages (it will respect the QUIET keyword) and will halt exe-

cution with a FATAL_ERROR if a REQUIRED keyword is provided in the find_package() invocation.

Managing Dependencies in CMake238

If a library is found, we’ll call the function we wrote earlier to define the IMPORTED targets and

store the paths in the cache:

ch09/03-find-package-custom/cmake/module/FindPQXX.cmake (continued)

...

Returning the final results

include(FindPackageHandleStandardArgs)

find_package_handle_standard_args(

 PQXX DEFAULT_MSG PQXX_LIBRARY_PATH PQXX_HEADER_PATH

)

if (PQXX_FOUND)

 define_imported_target(

 "${PQXX_LIBRARY_PATH};${POSTGRES_LIBRARIES}"

 "${PQXX_HEADER_PATH};${POSTGRES_INCLUDE_DIRECTORIES}"

)

elseif(PQXX_FIND_REQUIRED)

 message(FATAL_ERROR "Required PQXX library not found")

endif()

That’s it! This find module will find PQXX and create the appropriate PQXX::PQXX targets. The

complete file is available in the book’s examples repository.

For libraries that are well supported and likely already installed, this method is very effective. But

what if you’re dealing with older, less-supported packages? Unix-like systems have a tool called

pkg-config, and CMake has a useful wrapper module to support it as well.

Discovering legacy packages with FindPkgConfig
Managing dependencies and figuring out the necessary compile flags is a challenge as old as

C++ libraries themselves. Various tools have been developed to tackle this issue, from simple

mechanisms to comprehensive solutions integrated into buildsystems and IDEs. PkgConfig

(freedesktop.org/wiki/Software/pkg-config) is one such tool, once very popular and com-

monly found on Unix-like systems, although it’s also available on macOS and Windows.

However, PkgConfig is gradually being replaced by more modern solutions. So, should you still

consider supporting it? Chances are, you probably don’t need to. Here’s why:

• If your library doesn’t provide the .pc PkgConfig files, there’s little value in writing defi-

nition files for an aging tool; opt for newer alternatives instead

http://freedesktop.org/wiki/Software/pkg-config

Chapter 9 239

• If you can pick a newer version of the library that supports CMake (we’ll discuss how to

download dependencies from the internet later in this chapter)

• If the package is widely used, the latest version of CMake might already include a find

module for it

• If a community-created find module is available online and its license allows you to use

it, that’s another good option

• If you can write and maintain a find module yourself

Use PkgConfig only if you’re working with a library version that already provides a PkgConfig

.pc file, and no config module or find module is available. Also, there should be a strong reason

why creating a find module yourself isn’t a viable option. If you’re convinced that you don’t need

PkgConfig, go ahead and skip this section.

Sadly, not all environments can be quickly updated to the latest versions of a library. Many compa-

nies are still using legacy systems in production, which are no longer receiving the latest packages.

If you have a .pc file for a specific library in your system, it will look something like the one for

foobar shown here:

prefix=/usr/local

exec_prefix=${prefix}

includedir=${prefix}/include

libdir=${exec_prefix}/lib

Name: foobar

Description: A foobar library

Version: 1.0.0

Cflags: -I${includedir}/foobar

Libs: -L${libdir} -lfoobar

The format of PkgConfig is simple, and many developers familiar with this tool prefer using it

out of habit over learning more advanced systems like CMake. Despite its simplicity, PkgConfig

can check whether a specific library and its version are available, and it can also get linking flags

and directory information for the library.

To use it with CMake, you need to find the pkg-config tool on your system, run specific commands,

and then store the results for later use by the compiler. Doing all these steps each time you use

PkgConfig can feel like a lot of work. Luckily, CMake provides a FindPkgConfig find module. If

PkgConfig is found, PKG_CONFIG_FOUND will be set. We can then use pkg_check_modules() to

look for the package we need.

Managing Dependencies in CMake240

We have already become familiar with libpqxx in the previous section, and since it offers a .pc

file, let’s try and find it using PkgConfig. To put this in action, let’s write a simple main.cpp file,

which utilizes a placeholder connection class:

ch09/04-find-pkg-config/main.cpp

#include <pqxx/pqxx>

int main()

{

 // We're not actually connecting, but

 // just proving that pqxx is available.

 pqxx::nullconnection connection;

}

In a typical listfile, we usually start with the find_package() function and switch to PkgConfig

if the library isn’t detected. This approach is useful when the environment gets updated, as we

can keep using the main method without altering the code. We’ll skip this part for this example

to keep it short.

ch09/04-find-pkg-config/CMakeLists.txt

cmake_minimum_required(VERSION 3.26.0)

project(FindPkgConfig CXX)

find_package(PkgConfig REQUIRED)

pkg_check_modules(PQXX REQUIRED IMPORTED_TARGET libpqxx)

message("PQXX_FOUND: ${PQXX_FOUND}")

add_executable(main main.cpp)

target_link_libraries(main PRIVATE PkgConfig::PQXX)

Let’s break down what happens:

1. The find_package() command is used to locate PkgConfig. If pkg-config is missing, the

process stops due to the REQUIRED keyword.

2. The pkg_check_modules() custom macro from the FindPkgConfig find module sets up a

new IMPORTED target named PQXX. The find module looks for a libpqxx dependency and

will fail if it’s not there, again because of the REQUIRED keyword. The IMPORTED_TARGET

keyword is crucial; otherwise, we’d need to define the target manually.

3. We validate the setup with a message() function, displaying PQXX_FOUND. If we hadn’t

used REQUIRED earlier, this is where we could check whether the variable was set, maybe

to activate other fallbacks.

Chapter 9 241

4. The main executable is declared with add_executable().

5. Finally, we use target_link_libraries() to link the PkgConfig::PQXX target, imported

by pkg_check_modules(). Note that PkgConfig:: is a fixed prefix and PQXX is derived from

the first argument we passed to the macro.

Using this option is faster than creating a find module for dependencies that don’t have CMake

support. However, it does come with some downsides. One issue is that it relies on the older

pkg-config tool, which may not be available in the operating system that builds the project.

Additionally, this approach creates a special case that needs to be maintained differently from

other methods.

We’ve discussed how to work with dependencies that are already installed on your computer.

However, that’s only part of the story. Many times, your project will go to users who might not

have all the required dependencies on their systems. Let’s see how to handle this situation.

Using dependencies not present in the system
CMake excels at managing dependencies, particularly when they’re not already installed on the

system. There are several approaches you can take. If you’re using CMake version 3.14 or newer, the

FetchContent module is your best choice for managing dependencies. Essentially, FetchContent

is a user-friendly wrapper around another module called ExternalProject. It not only simplifies

the process but also adds some extra features. We’ll dive deeper into ExternalProject later in this

chapter. For now, just know that the main difference between the two is the order of execution:

• FetchContent brings dependencies in during the configuration stage.

• ExternalProject brings dependencies in during the build stage.

This order is significant, as targets defined by FetchContent during the configuration stage will

be in the same namespace, and as such can be easily used by our project. We can link them with

other targets, just as if we had defined them ourselves. There are rare cases when this is not de-

sirable, and that’s when ExternalProject is the necessary choice.

Let’s see how to deal with the majority of the cases first.

FetchContent
The FetchContent module is extremely useful; it offers the following features:

• Management of directory structure for an external project

• Downloading of sources from a URL (and extracting from archives if needed)

Managing Dependencies in CMake242

• Support for Git, Subversion, Mercurial, and CVS (Concurrent Versions System) repositories

• Fetching updates if needed

• Configuring and building the project with CMake, Make, or with a user-specified tool

• Providing nested dependencies on other targets

The usage of the FetchContent module involves three main steps:

1. Add the module to your project with include(FetchContent).

2. Configure the dependencies with the FetchContent_Declare() command. This will in-

struct FetchContent where the dependencies are and which version should be used.

3. Complete the dependency setup using the FetchContent_MakeAvailable() command.

This will download, build, install, and add the listfiles to your main project for parsing.

You might wonder why steps 2 and 3 are separate. The reason is to allow for configuration over-

rides in multi-layered projects. For example, consider a project that depends on external libraries,

A and B. Library A also depends on B, but its authors are using an older version that differs from

the parent project’s version (Figure 9.1):

Figure 9.1: The hierarchical project

If configuration and download were to occur in the same command, the parent project wouldn’t

be able to use a newer version, even if it’s backward compatible, because the dependency has

already configured the imported targets for the older version introducing conflicts to target names

and files of the library.

To specify what version is needed, the top-most project has to call the FetchContent_Declare()

command and provide overridden configuration for B, before library A is fully set up. The sub-

sequent call to FetchContent_Declare() in A will be ignored, as the B dependency was already

configured.

Let’s take a look at the signature of the FetchContent_Declare() command:

FetchContent_Declare(<depName> <contentOptions>...)

The depName is a unique identifier of the dependency and will be later used by the FetchContent_

MakeAvailable() command.

Chapter 9 243

The contentOptions provides a detailed configuration of the dependency, which can get quite

complex. It’s important to realize that, under the hood, FetchContent_Declare() uses the

older ExternalProject_Add() command. As a matter of fact, many arguments provided to

FetchContent_Declare are directly forwarded to that internal call. Before explaining all the

arguments in detail, let’s see a working example that downloads a dependency from GitHub.

Basic example with a YAML reader
I’ve written a tiny program that reads a username from a YAML file and prints it out in a welcome

message. YAML is a great, simple format to store human-readable configuration, but it’s quite

complex to parse by machines. I’ve found a neat, small project that solves this problem called

yaml-cpp by Jesse Beder (https://github.com/jbeder/yaml-cpp).

The example is fairly straightforward. It’s a greeting program that prints a Welcome <name> mes-

sage. The default value of name will be Guest, but we can specify a different name in a YAML

configuration file. Here’s the C++ code:

ch09/05-fetch-content/main�cpp

#include <string>

#include <iostream>

#include "yaml-cpp/yaml.h"

using namespace std;

int main() {

 string name = "Guest";

 YAML::Node config = YAML::LoadFile("config.yaml");

 if (config["name"])

 name = config["name"].as<string>();

 cout << "Welcome " << name << endl;

 return 0;

}

The configuration file for this example is just a single line:

ch09/05-fetch-content/config.yaml

name: Rafal

https://github.com/jbeder/yaml-cpp

Managing Dependencies in CMake244

We’ll reuse this example in other sections, so take a second to understand how it works. Now that

we have the code ready, let’s see how we can build it and get the dependency in:

ch09/05-fetch-content/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(ExternalProjectGit CXX)

add_executable(welcome main.cpp)

configure_file(config.yaml config.yaml COPYONLY)

include(FetchContent)

FetchContent_Declare(external-yaml-cpp

 GIT_REPOSITORY https://github.com/jbeder/yaml-cpp.git

 GIT_TAG 0.8.0

)

FetchContent_MakeAvailable(external-yaml-cpp)

target_link_libraries(welcome PRIVATE yaml-cpp::yaml-cpp)

We can explicitly access the targets created by the yaml-cpp library. To prove it, we’ll use a

CMakePrintHelpers helper module:

include(CMakePrintHelpers)

cmake_print_properties(TARGETS yaml-cpp::yaml-cpp

 PROPERTIES TYPE SOURCE_DIR)

When we build such a project, the configuration stage will print the following output:

Properties for TARGET yaml-cpp::yaml-cpp:

 yaml-cpp.TYPE = "STATIC_LIBRARY"

 yaml-cpp.SOURCE_DIR = "/tmp/b/_deps/external-yaml-cpp-src"

This tells us that the target defined by the external-yaml-cpp dependency exists; it’s a static li-

brary, and its source directory resides inside the build tree. This printout isn’t necessary for real-life

projects, but it helps to debug things if you’re not sure how to correctly include an imported target.

Since we already copied the .yaml file to the output with the configure_file() command, we

can run the program:

~/examples/ch09/05-fetch-content$ /tmp/b/welcome

Welcome Rafal

Everything works like a charm! With hardly any work, we have introduced an external depen-

dency and used it in our project.

Chapter 9 245

If we need more than one dependency, we should write multiple calls to the FetchContent_

Declare() command, each time selecting a unique identifier. But there’s no need to call

FetchContent_MakeAvailable() more than once because it supports multiple identifiers (these

are case-insensitive):

FetchContent_MakeAvailable(lib-A lib-B lib-C)

Now, we’ll learn how to write declarations of dependencies.

Downloading the dependencies
The FetchContent_Declare() command offers a wide range of options, which come from the

ExternalProject module. Essentially, you can perform three main actions:

• Downloading dependencies

• Updating dependencies

• Patching dependencies

Let’s begin by looking at the most common scenario: fetching files from the internet. There are

many download sources supported by CMake:

• HTTP Server (URL)

• Git

• Subversion

• Mercurial

• CVS

Going from the top of the list, we’ll first explore how to download dependencies from URLs and

customize the process to fit our needs.

Downloading from a URL
We can provide a list of URLs to be scanned in sequence until a download succeeds. CMake will

recognize whether the downloaded file is an archive and will unpack it by default.

Basic declaration:

FetchContent_Declare(dependency-id

 URL <url1> [<url2>...]

)

Managing Dependencies in CMake246

Here are some additional options to further customize this method:

• URL_HASH <algo>=<hashValue>: This checks whether a downloaded file’s checksum

generated by <algo> matches the provided <hashValue>. It is recommended to guarantee

the integrity of downloads. The following algorithms are supported: MD5, SHA1, SHA224,

SHA256, SHA384, SHA512, SHA3_224, SHA3_256, SHA3_384, and SHA3_512

• DOWNLOAD_NO_EXTRACT <bool>: This explicitly disables extraction after downloading. We

may consume the filename of downloaded files in the follow-up steps by accessing the

<DOWNLOADED_FILE> variable.

• DOWNLOAD_NO_PROGRESS <bool>: This explicitly disables logging of the download progress.

• TIMEOUT <seconds> and INACTIVITY_TIMEOUT <seconds>: These set timeouts to terminate

the download after a fixed total time or period of inactivity.

• HTTP_USERNAME <username> and HTTP_PASSWORD <password>: These configure HTTP

authentication. Be cautious not to hardcode credentials.

• HTTP_HEADER <header1> [<header2>...]: This adds extra headers to your HTTP request,

which is useful for AWS or custom tokens.

• TLS_VERIFY <bool>: This verifies the SSL certificate. If this is not set, CMake will read this

setting from the CMAKE_TLS_VERIFY variable, which is set to false by default. Skipping

TLS verification is an unsafe, bad practice and should be avoided, especially in production

environments.

• TLS_CAINFO <file>: This provides a path to the authority file; if it isn’t specified, CMake

will read this setting from the CMAKE_TLS_CAINFO variable. It is useful if your company is

issuing self-signed SSL certificates.

The majority of programmers will refer to online repositories like GitHub to grab the latest ver-

sions of libraries. Here’s how.

Downloading from Git
To download dependencies from Git, ensure that the host system has Git version 1.6.5 or later.

The following options are essential for cloning the project from Git:

FetchContent_Declare(dependency-id

 GIT_REPOSITORY <url>

 GIT_TAG <tag>

)

Chapter 9 247

Both <url> and <tag> should be compatible with the git command. In a production environment,

it’s advisable to use a specific git hash (rather than tag) to ensure traceability of the produced

binaries and to avoid unnecessary git fetch operations. If you prefer using a branch, stick to

remote names such as origin/main. This ensures the proper synchronization of the local clone.

Additional options include:

• GIT_REMOTE_NAME <name>: This sets the remote name (origin is the default).

• GIT_SUBMODULES <module>...: This specifies which submodules to update; since 3.16,

this value defaults to none (previously, all submodules were updated).

• GIT_SUBMODULES_RECURSE 1: This enables the recursive updating of submodules.

• GIT_SHALLOW 1: This performs a shallow clone, which is faster as it skips downloading

historical commits.

• TLS_VERIFY <bool>: This verifies the SSL certificate. If this is not set, CMake will read this

setting from the CMAKE_TLS_VERIFY variable, which is set to false by default; skipping

TLS verification is an unsafe, bad practice and should be avoided, especially in production

environments.

If your dependency is stored in Subversion, you can also fetch it with CMake.

Downloading from Subversion
To download from Subversion, we should specify the following options:

FetchContent_Declare(dependency-id

 SVN_REPOSITORY <url>

 SVN_REVISION -r<rev>

)

Additionally, we may provide the following:

• SVN_USERNAME <user> and SVN_PASSWORD <password>: These provide credentials for

checkout and update. Avoid hardcoding these in your projects.

• SVN_TRUST_CERT <bool>: This skips the verification of the Subversion server site certificate.

Use this option only if the network path to the server and its integrity are trustworthy.

Subversion is very easy to use with CMake. So is Mercurial.

Managing Dependencies in CMake248

Downloading from Mercurial
This mode is very straightforward. We need to provide two arguments and we’re done:

FetchContent_Declare(dependency-id

 HG_REPOSITORY <url>

 HG_TAG <tag>

)

Lastly, we can use CVS to provide dependencies.

Downloading from CVS
To check out modules from CVS, we need to provide the following three arguments:

FetchContent_Declare(dependency-id

 CVS_REPOSITORY <cvsroot>

 CVS_MODULE <module>

 CVS_TAG <tag>

)

With that, we covered all the download options for FetchContent_Declare(). CMake supports

additional steps that can be executed after a successful download.

Updating and patching
By default, the update step will re-download the external project’s files if the download method

supports updates, for example, if we configure the Git dependency pointing to the main or master

branch. We can override this behavior in two ways:

• Provide a custom command to be executed during the update with UPDATE_COMMAND <cmd>.

• Completely disable the update step (to allow building with a disconnected network) –

UPDATE_DISCONNECTED <bool>. Do note that dependency will still be downloaded during

the first build.

Patch, on the other hand, is an optional step that will execute after the update is fetched. To

enable it, we need to specify the exact command we want to execute with PATCH_COMMAND <cmd>.

CMake documentation warns that some patches may be more “sticky” than others. For example,

in Git, changed files don’t get restored to the original state during the update, and we need to be

careful to avoid incorrectly patching the file twice. Ideally, the patch command should be robust

and idempotent.

Chapter 9 249

You can chain update and patch commands:

FetchContent_Declare(dependency-id

 GIT_REPOSITORY <url>

 GIT_TAG <tag>

 UPDATE_COMMAND <cmd>

 PATCH_COMMAND <cmd>

)

Downloading dependencies is helpful when they’re not already on the system. But what if they

are? How can we use the local version instead?

Using the installed dependency where possible
Starting with version 3.24, CMake introduced a feature that allows FetchContent to skip down-

loading if the dependencies are already available locally. To enable this, simply add the FIND_

PACKAGE_ARGS keyword to your declaration:

FetchContent_Declare(dependency-id

 GIT_REPOSITORY <url>

 GIT_TAG <tag>

 FIND_PACKAGE_ARGS <args>

)

As you can guess, this keyword instructs the FetchContent module to use the find_package()

function before initiating any downloads. If the package is found locally, it will be used, and no

download or build will occur. Note that this keyword should be the last one in the command, as

it will consume all subsequent arguments.

Here’s how to update the previous example:

ch09/06-fetch-content-find-package/CMakeLists.txt

cmake_minimum_required(VERSION 3.26)

project(ExternalProjectGit CXX)

add_executable(welcome main.cpp)

configure_file(config.yaml config.yaml COPYONLY)

include(FetchContent)

FetchContent_Declare(external-yaml-cpp

 GIT_REPOSITORY https://github.com/jbeder/yaml-cpp.git

Managing Dependencies in CMake250

 GIT_TAG 0.8.0

 FIND_PACKAGE_ARGS NAMES yaml-cpp

)

FetchContent_MakeAvailable(external-yaml-cpp)

target_link_libraries(welcome PRIVATE yaml-cpp::yaml-cpp)

include(CMakePrintHelpers)

cmake_print_properties(TARGETS yaml-cpp::yaml-cpp

 PROPERTIES TYPE SOURCE_DIR

 INTERFACE_INCLUDE_DIRECTORIES

)

We made two key changes:

1. We added FIND_PACKAGE_ARGS with the NAMES keyword to specify that we’re looking for

the yaml-cpp package. Without NAMES, CMake would default to using the dependency-id,

which, in this case, is external-yaml-cpp.

2. We added INTERFACE_INCLUDE_DIRECTORIES in the printed properties. This is a one-off

check so we can manually verify whether we’re using the installed package or if a new

one was downloaded.

Before testing, make sure the package is actually installed on your system. If it’s not, you can

install it using the following commands:

git clone https://github.com/jbeder/yaml-cpp.git

cmake -S yaml-cpp -B build-dir

cmake --build build-dir

cmake --install build-dir

With this setup, we can now build our project. If all goes well, you should see debug output from

the cmake_print_properties() command. This will indicate that we’re using the local version,

as shown in the INTERFACE_INCLUDE_DIRECTORIES property. Keep in mind that this output is

specific to your environment, your mileage may vary.

--

 Properties for TARGET yaml-cpp::yaml-cpp:

 yaml-cpp::yaml-cpp.TYPE = "STATIC_LIBRARY"

 yaml-cpp::yaml-cpp.INTERFACE_INCLUDE_DIRECTORIES =

 "/usr/local/include"

Chapter 9 251

If you’re not using CMake 3.24, or if you want to support users with older versions, you might

consider running the find_package() command manually. This way, you’ll only download pack-

ages that aren’t already installed:

find_package(yaml-cpp QUIET)

if (NOT TARGET yaml-cpp::yaml-cpp)

 # download missing dependency

endif()

Whichever method you choose, trying to use the local version first and downloading only if the

dependency isn’t found is a thoughtful approach that offers the best user experience.

Before the introduction of FetchContent, CMake had a simpler module called ExternalProject.

Although FetchContent is the recommended choice for most situations, ExternalProject still

has its own set of advantages and can be useful in certain cases.

ExternalProject
As mentioned, before FetchContent was introduced to CMake, another module was serving a

similar purpose: ExternalProject (added in 3.0.0). As you can guess, it was used to fetch external

projects from online repositories. Over the years, the module was gradually extended for different

needs, resulting in quite a complicated command: ExternalProject_Add().

The ExternalProject module populates the dependencies during the build stage. That’s quite

different from FetchContent, which executes in the configuration stage. Because of this difference,

ExternalProject cannot import targets into the project like FetchContent does. On the other

hand, ExternalProject can install dependencies directly into the system, execute their tests, and

do other interesting things, like overriding the commands used for configuration and the build.

There is a small set of use cases where this may be necessary. Since there’s a lot of overhead needed

to use this legacy module effectively, treat it as a curiosity. We’re mostly introducing it here to

show how the current method evolved from it.

ExternalProject offers an ExternalProject_Add command that configures the dependency.

Here’s an example:

include(ExternalProject)

ExternalProject_Add(external-yaml-cpp

 GIT_REPOSITORY https://github.com/jbeder/yaml-cpp.git

 GIT_TAG 0.8.0

 INSTALL_COMMAND ""

Managing Dependencies in CMake252

 TEST_COMMAND ""

)

As mentioned, it closely resembles the FetchContent_Declare from FetchContent. You’ll notice

that there are two additional keywords in the example: INSTALL_COMMAND and TEST_COMMAND. In

this case, they are used to suppress the installation and tests of the dependency, as they would

normally execute during the build. ExternalProject executes many steps that are deeply con-

figurable, and they execute in the following order:

1. mkdir: Create a subdirectory for the external project.

2. download: Download the project files from a repository or URL.

3. update: Download updates if supported by the fetch method.

4. patch : Execute a patch command that alters downloaded files.

5. configure: Execute the configure stage.

6. build: Perform the build stage for CMake projects.

7. install: Install CMake projects.

8. test: Execute the tests.

For each of the steps, excluding mkdir, you can override the default behavior by adding a <STEP>_

COMMAND keyword. There are plenty of other options – please refer to the online documentation

for the full reference. If, for some reason, you’d like to use this method over the recommended

FetchContent, there’s an ugly hack that can be applied to import the targets anyway by executing

CMake within CMake. For more details, check out the ch09/05-external-project code example

in the repository for this book.

Typically, we would rely on the library being available in the system. If it’s not, we’d resort to

FetchContent, an approach that is particularly suitable for dependencies that are small and

quick to compile.

However, for more substantial libraries like Qt, this method could be time consuming. In such

cases, package managers offering precompiled libraries tailored to the user’s environment become

advisable. While tools like Apt or Conan provide solutions, they are either too system-specific or

complex to be covered in this book. The good news is that most users can install the dependencies

your project may require, as long as clear installation instructions are provided.

Chapter 9 253

Summary
This chapter has equipped you with the knowledge to identify system-installed packages using

CMake’s find modules and how to utilize the config files that come with the library. For older

libraries that don’t support CMake but include .pc files, the PkgConfig tool and CMake’s bundled

FindPkgConfig find module can be used.

We also explored the capabilities of the FetchContent module. This module allows us to download

dependencies from various sources while configuring CMake to first scan the system, thereby

avoiding unnecessary downloads. We touched upon the historical context of these modules and

discussed the option of using the ExternalProject module for special cases.

CMake is designed to automatically generate build targets when a library is located through most

of the methods we’ve discussed. This adds a layer of convenience and elegance to the process.

With this foundation in place, you’re ready to incorporate standard libraries into your projects.

In the next chapter, we’ll learn how to provide reusable code on a smaller scale with C++20

modules.

Further reading
For more information on the topics covered in this chapter, you can refer to the following:

• CMake documentation – provided find modules:
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find

modules

• CMake documentation – Using Dependencies Guide:

https://cmake.org/cmake/help/latest/guide/using-dependencies/index.html

• CMake and using git-submodule for dependence projects:

https://stackoverflow.com/questions/43761594/

• Piggybacking on PkgConfig:
https://gitlab.kitware.com/cmake/community/-/wikis/doc/tutorials/How-To-

Find-Libraries#piggybacking-on-pkg-config

• How to use ExternalProject:
https://www.jwlawson.co.uk/interest/2020/02/23/cmake-external-project.

html

• CMake FetchContent vs. ExternalProject:

https://www.scivision.dev/cmake-fetchcontent-vs-external-project/

• Using CMake with External Projects:

http://www.saoe.net/blog/using-cmake-with-external-projects/

https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find modules
https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html#find modules
https://cmake.org/cmake/help/latest/guide/using-dependencies/index.html
https://stackoverflow.com/questions/43761594/
https://gitlab.kitware.com/cmake/community/-/wikis/doc/tutorials/How-To-Find-Libraries#piggybacking-on-pkg-config
https://gitlab.kitware.com/cmake/community/-/wikis/doc/tutorials/How-To-Find-Libraries#piggybacking-on-pkg-config
https://www.jwlawson.co.uk/interest/2020/02/23/cmake-external-project.html
https://www.jwlawson.co.uk/interest/2020/02/23/cmake-external-project.html
https://www.scivision.dev/cmake-fetchcontent-vs-external-project/
http://www.saoe.net/blog/using-cmake-with-external-projects/

Managing Dependencies in CMake254

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://discord.com/invite/vXN53A7ZcA

10
Using the C++20 Modules
C++20 introduces a new feature to the language: modules. They replace the plain-text symbol

declarations in header files with a module file that will be precompiled to an intermediary binary

format, greatly reducing the build time.

We will discuss the most essential topics for C++20 modules in CMake, starting with a general

introduction to C++20 modules as a concept: their advantages over standard header files and how

they simplify the management of units in source code. Although the promise of streamlining the

build process is exciting, this chapter highlights how difficult and long the road to their adoption is.

With the theory out of the way, we’ll move on to the practical aspects of implementing the modules

in our projects: we’ll discuss enabling their experimental support in earlier versions of CMake,

and the full release in CMake 3.28.

Our journey through C++20 modules is not just about understanding a new feature—it’s about

rethinking how components interact in large C++ projects. By the end of this chapter, you’ll not

only grasp the theoretical aspects of modules but also gain practical insights through examples,

enhancing your ability to leverage this feature for better project outcomes.

In this chapter, we’re going to cover the following main topics:

• What are the C++20 modules?

• Writing projects with C++20 module support

• Configuring the toolchain

This chapter has different technical requirements than others. Make sure you read

the next section thoroughly.

Using the C++20 Modules256

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch10.

The following toolchain utilities are required to try out the examples in this chapter:

• CMake 3.26 or newer (3.28 recommended)

• Any of the supported generators:

• Ninja 1.11 and newer (Ninja and Ninja Multi-Config)

• Visual Studio 17 2022 and newer

• Any of the supported compilers:

• MSVC toolset 14.34 and newer

• Clang 16 and newer

• GCC 14 (for the in-development branch, after 2023-09-20) and newer

If you’re familiar with Docker, you can use a fully tooled image introduced in the Installing CMake

on different platforms section from Chapter 1, First Steps with CMake.

To build the examples provided in this chapter, use the following command:

cmake -B <build tree> -S <source tree> -G "Ninja" -D CMAKE_CXX_
COMPILER=clang++-18 && cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths.

What are the C++20 modules?
I wanted to write about how to use C++ modules over three years ago. Despite the fact that modules

were already accepted as part of the C++20 specification, the support of the C++ ecosystem was

still nowhere near ready to use this feature. Fortunately, a lot has changed since the first edition

of this book, and with the release of CMake 3.28, the C++20 modules are officially supported

(although experimental support has been available since 3.26).

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch10
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch10

Chapter 10 257

Three years may seem like a long time to implement a single feature, but we need to remember

that it’s not only up to CMake. Many pieces of the puzzle have to come together and work well.

First, we need compilers to understand how to deal with modules, then buildsystems like GNU

Make or Ninja have to be able to work with modules, and only then can CMake use these new

mechanisms to provide its support for modules.

This tells us one thing: not everyone will have the latest compatible tooling, and even then, the

current support is still in an early phase. These limitations make modules unsuitable for a wide

audience. So maybe don’t build production-grade projects depending on them just yet.

Nevertheless, if you are an enthusiast of cutting-edge solutions, you’re in for a treat! If you can

strictly control the build environment of your project, for example, with dedicated machines or

build containerization (Docker et al.), you can effectively use modules internally. Just proceed

with caution and understand that your mileage may vary. There may be a point at which you’ll

need to back out of the modules altogether because of a missing or incorrectly implemented

feature in any of the utilities.

“Module” is quite an overloaded word in the context of C++ builds. We previously discussed

modules in this book in the context of CMake: find modules, utility modules, and such. To clarify,

C++ modules have nothing to do with CMake modules. Instead, they are a native feature of the

language added in the C++20 version.

At its core, a C++ module is a single source file that encapsulates the functionality of headers

and implementation files into one coherent unit of code. It comprises two primary components:

• The Binary Module Interface (BMI) serves a similar purpose to a header file but is in

a binary format, significantly reducing the need for recompilation when consumed by

other translation units.

• The Module Implementation Unit provides the implementation, definitions, and internal

details of the module. Its contents are not directly accessible from outside the module,

effectively encapsulating the implementation details.

Using the C++20 Modules258

Modules were introduced to reduce compilation time and address some problematic aspects of

the preprocessor and traditional header files. Let’s see how multiple translation units are glued

together in a typical, legacy project.

Figure 10.1: Project structure using traditional headers

The preceding figure shows how the preprocessor would traverse the project tree to build the

program. As we learned in Chapter 7, Compiling C++ Sources with CMake, to build each transla-

tion unit, the preprocessor mechanically stitches files together. This means producing a long file

containing all the headers included by preprocessor directives. That way, main.cpp would first

include its own source, then the contents of lib.h, a.h, 1.h, and 2.h. Only then will the compiler

kick in and start parsing every single character to produce binary object files. There’s nothing

wrong with that until we realize that to compile lib.cpp, headers included in main.cpp have to

be compiled again. And this redundancy keeps growing with every translation unit added.

There are other complications with traditional headers:

• Include guards are required, leading to problems when forgotten.

• Symbols with circular references need forward declarations�

• Small changes to headers are required for the recompilation of all translation units.

• Preprocessor macros can be difficult to debug and maintain.

Modules solve many of these problems right off the bat, but some still remain relevant: mod-

ules, like headers, can depend on each other. When one module imports another, we still need

to compile them in the right order, starting from the most nested one first. This usually isn’t a

significant issue, as modules tend to be much larger in size. In many cases, an entire library can

be stored in a single module.

Chapter 10 259

Let’s take a look at how modules are written and used in practice. In this simple example, we’ll

just return the sum of two arguments:

ch10/01-cxx-modules/math�cppm

export module math;

export int add(int a, int b) {

 return a + b;

}

Such a module is self-explanatory: we start with a statement that tells the rest of the program

that this is indeed a module called math. We then follow with a regular function definition that

has been designated with the export keyword as available from outside the module.

To use this module, we need to import it in our program:

ch10/01-cxx-modules/main�cpp

import math;

#include <iostream>

int main() {

 std::cout << "Addition 2 + 2 = " << add(2, 2) << std::endl;

 return 0;

}

The import math statement is enough to bring the symbols exported from the module directly

into the main program. We can now use the add() function in the body of the main() function.

On the surface, modules look very similar to headers. But if we tried to write our CMake listfile as

usual, we wouldn’t have much success with building the project. Time to introduce the necessary

steps to use the C++ modules.

You’ll notice the extension of module files is different than of regular C++ source

code. This is a matter of convention and shouldn’t affect how this code is treated.

My advice is to pick based on the toolchain you’ll be using:

• .ixx is an MSVC extension.

• .cppm is a Clang extension.

• .cxx is a GCC extension.

Using the C++20 Modules260

Writing projects with C++20 module support
This book mainly discusses CMake 3.26, but it’s worth noting that CMake frequently updates,

and version 3.28 was released just before this chapter went to press. If you’re using this version

or newer, you can access the latest features by setting the cmake_minimum_required() command

to VERSION 3.28.0.

On the other hand, if you need to stick with an older version or want to cater to a broader audi-

ence who might not have upgraded, you’ll need to enable experimental support to use C++20

modules in CMake.

Let’s explore how to do that.

Enabling the experimental support in CMake 3.26 and 3.27
Experimental support represents a form of agreement: you, as the developer, acknowledge that

this feature is not yet production-ready and should be used solely for testing purposes. To sign

such an agreement, you’ll need to set the CMAKE_EXPERIMENTAL_CXX_MODULE_CMAKE_API variable

in the project’s listfile to a specific value for the CMake version you’re using.

Here are flags that can be found in the repository and documentation of CMake:

• 3c375311-a3c9-4396-a187-3227ef642046 for 3.25 (undocumented)

• 2182bf5c-ef0d-489a-91da-49dbc3090d2a for 3.26

• aa1f7df0-828a-4fcd-9afc-2dc80491aca7 for 3.27

Unfortunately, if you don’t have access to at least CMake 3.25, you’re out of luck. Modules weren’t

available before that version. Additionally, if CMake is older than 3.27, you’ll need to set one more

variable to enable dynamic dependencies for modules:

set(CMAKE_EXPERIMENTAL_CXX_MODULE_DYNDEP 1)

Here’s how you might automatically pick the correct API key for the current version, and explicitly

disable builds for versions you don’t support (in this example, we’ll only support CMake 3.26

and above).

The official Kitware repository for CMake hosts an issue tracker, where you can search

for the label area:cxxmodules. Until 3.28 was released, only one issue was reported

(in 3.25.0), which is a good indicator of a potentially stable feature. If you decide

to enable the experiment, build your project to confirm it will work for your users.

Chapter 10 261

ch10/01-cxx-modules/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(CXXModules CXX)

turn on the experimental API

if(CMAKE_VERSION VERSION_GREATER_EQUAL 3.28.0)

 # Assume that C++ sources do import modules

 cmake_policy(SET CMP0155 NEW)

elseif(CMAKE_VERSION VERSION_GREATER_EQUAL 3.27.0)

 set(CMAKE_EXPERIMENTAL_CXX_MODULE_CMAKE_API

 "aa1f7df0-828a-4fcd-9afc-2dc80491aca7")

elseif(CMAKE_VERSION VERSION_GREATER_EQUAL 3.26.0)

 set(CMAKE_EXPERIMENTAL_CXX_MODULE_CMAKE_API

 "2182bf5c-ef0d-489a-91da-49dbc3090d2a")

 set(CMAKE_EXPERIMENTAL_CXX_MODULE_DYNDEP 1)

else()

 message(FATAL_ERROR "Version lower than 3.26 not supported")

endif()

Let’s break it down statement by statement:

1. First, we check if the version is 3.28 or newer. This allows us to enable the CMP0155 policy,

with cmake_policy(). This is required if we want to support versions older than 3.28.

2. If that’s not the case, we’ll check if the version is above 3.27. If so, we’ll set the appropriate

API key.

3. If it’s not above 3.27, we’ll check if it’s above 3.26. If that’s the case, set the appropriate

API key and enable the experimental C++20 module dynamic dependency flag.

4. If the version is lower than 3.26, it’s not supported by our project, and a fatal error message

will be printed informing the user.

This allows us to support the range of CMake versions, starting from 3.26. If we have the benefit

of running CMake 3.28 in every environment the project is going to be built in, the above if()

block is not necessary. So, what is?

Using the C++20 Modules262

Enabling support for CMake 3.28 and up
To use C++20 modules since 3.28, you explicitly have to declare this version as minimal. Use a

project header like this:

cmake_minimum_required(VERSION 3.28.0)

project(CXXModules CXX)

It will enable the CMP0155 policy by default if the minimum required version is set to 3.28 or above.

Read on to learn what other aspects we need to configure before defining a module. If you require

3.27 or lower, your build will likely fail, even if the project is being built with CMake 3.28 or newer.

The next thing to consider is the compiler requirements.

Setting the compiler requirements
Regardless of whether we’re building with CMake 3.26, 3.27, 3.28, or newer, to create solutions

using C++ modules, there are two global variables that we need to set. The first disables unsup-

ported C++ extensions, and the second ensures that the compiler supports the required standard.

ch10/01-cxx-modules/CMakeLists�txt (continued)

Libc++ has no support compiler extensions for modules.

set(CMAKE_CXX_EXTENSIONS OFF)

set(CMAKE_CXX_STANDARD 20)

Setting the standard may seem redundant, given that there’s a very limited number of compilers

that support modules. Nonetheless, it’s good practice for future-proofing projects.

The general configuration is quite straightforward and concludes here. We can now proceed to

define a module within CMake.

Declaring a C++ module
CMake module definition leverages the target_sources() command and the FILE_SET keyword:

target_sources(math

 PUBLIC FILE_SET CXX_MODULES TYPE CXX_MODULES FILES math.cppm

)

In the highlighted line above, we introduce a new file set type: CXX_MODULES. This type is support-

ed by default only since CMake 3.28. For 3.26, the experimental API has to be enabled. Without

proper support, an error message like the following will occur:

Chapter 10 263

CMake Error at CMakeLists.txt:25 (target_sources):

 target_sources File set TYPE may only be "HEADERS"

If you see this in the build output, check if your code is correct. This message will also appear if

the API key value is incorrect for the version used.

Defining modules within the same binary where they are used offers benefits, as discussed earlier.

However, the advantages are more pronounced when creating a library. Such libraries can be uti-

lized in other projects or within the same project by other libraries, further enhancing modularity.

To declare the module and link it with the main program, the following CMake configuration is

used:

ch10/01-cxx-modules/CMakeLists�txt (continued)

add_library(math)

target_sources(math

 PUBLIC FILE_SET CXX_MODULES FILES math.cppm

)

target_compile_features(math PUBLIC cxx_std_20)

set_target_properties(math PROPERTIES CXX_EXTENSIONS OFF)

add_executable(main main.cpp)

target_link_libraries(main PRIVATE math)

To ensure that this library can be used in other projects, we must use the target_compile_

features() command and explicitly require cxx_std_20. Additionally, we have to repeat setting

the CXX_EXTENSIONS OFF on the target level. Without this, CMake will generate an error and halt

the build. This seems redundant and will likely be solved in future versions of CMake.

With the project setup complete, it’s time to finally build it.

Configuring the toolchain
According to a blog post on Kitware’s page (see the Further reading section), CMake supports

modules as early as version 3.25. Despite the fact that 3.28 makes the feature officially supported,

this isn’t the only piece of the puzzle that we have to get right to enjoy the convenience of modules.

The next requirement focuses on the buildsystem: it needs to support dynamic dependencies. As

of now, you have only two choices:

• Ninja 1.11 and newer (Ninja and Ninja Multi-Config)

Using the C++20 Modules264

• Visual Studio 17 2022 and newer

Similarly, your compiler needs to produce files that map source dependencies for CMake in a spe-

cific format. This format is described in a paper written by Kitware developers known as p1589r5.

This paper has been submitted to all major compilers for implementation. Currently, only three

compilers have managed to implement the required format:

• Clang 16

• MSVC in Visual Studio 2022 17.4 (19.34)

• GCC 14 (for the in-development branch, after 2023-09-20) and newer

Assuming you have all the necessary tools in your environment (you may use the Docker image

we’re providing for this book), and your CMake project is ready for building, all that remains is

to configure CMake to use the required toolchain. As you may recall from the first chapter, you

can select the buildsystem generator using the -G command-line argument:

cmake -B <build tree> -S <source tree> -G "Ninja"

This command will configure the project to use the Ninja buildsystem. The next step is to set the

compiler. If your default compiler doesn’t support the modules and you have another one installed

to try things out, you can do this by defining the global variable CMAKE_CXX_COMPILER like this:

cmake -B <build tree> -S <source tree> -G "Ninja" -D CMAKE_CXX_
COMPILER=clang++-18

We chose Clang 18 in our example because it’s the latest version available at the time of writing

(bundled in the Docker image). After successfully configuring (you might see some warnings

about experimental features), you need to build the project:

cmake --build <build tree>

As always, be sure to replace the placeholders <build tree> and <source tree> with appropriate

paths. If everything goes smoothly, you can run your program and observe the module function

working as expected:

$./main

Addition 2 + 2 = 4

There you have it, C++20 modules working in practice.

Chapter 10 265

Summary
In this chapter, we’ve delved into C++20 modules, clarifying that they are distinct from CMake

modules and represent a significant advancement in C++ to streamline compilation and address

challenges associated with redundant header compilation and problematic preprocessor macros.

We demonstrated how to write and import a C++20 module using a simple example. We then

explored setting up CMake for C++20 modules. Since this feature is experimental, specific vari-

ables need to be set, and we provided a series of conditional statements to ensure your project is

configured correctly for the CMake version in use.

Regarding the necessary tools, we emphasized that the buildsystem must support dynamic de-

pendencies, with Ninja 1.11 or newer being the current option. For compiler support, Clang 16 and

MSVC in Visual Studio 2022 17.4 (19.34) are suitable for full C++20 module support, while GCC

support is still pending. We additionally guided you through configuring CMake to use the select-

ed toolchain, involving choosing a buildsystem generator and setting the compiler version. After

configuring and building the project, you can run your program to see the C++20 module in action.

In the next chapter, we’ll learn about importance and application of automated testing, and the

available CMake support for testing frameworks.

Further reading
For more information, you can refer to the following resources:

• Blog post describing the new feature:

https://www.kitware.com/import-cmake-c20-modules/

• Proposed source dependency format for C++ compilers:

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1689r5.html

The Further reading section includes a blog post from Kitware and a proposal on

the source de pendency format for C++ compilers, providing more insights into the

implementation and usage of C++20 modules.

https://www.kitware.com/import-cmake-c20-modules/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1689r5.html

Using the C++20 Modules266

Leave a review!
Enjoying this book? Help readers like you by leaving an Amazon review. Scan the QR code below

to get a free eBook of your choice.

11
Testing Frameworks

Tenured professionals know that testing must be automated. Someone explained this to them

years ago or they learned it the hard way. This practice isn’t as obvious to inexperienced program-

mers; it seems like unnecessary, extra work that doesn’t bring much value. It’s understandable:

when someone is just starting to write code, they have yet to create really complex solutions and

work on large code bases. Most likely, they are the sole developer of their pet project. These early

projects rarely take more than a few months to complete, so there’s little chance to see how code

deteriorates over a longer period.

All these factors contribute to the belief that writing tests is a waste of time and effort. The

programming novice may tell themselves that they actually do test their code each time they go

through the build-and-run routine. After all, they have manually confirmed that their code works

and does what’s expected. So, it’s time to move on to the next task, right?

Automated testing ensures that new changes don’t unintentionally break our program. In this

chapter, we’ll learn why tests are important and how to use CTest, a tool bundled with CMake, to

coordinate test execution. CTest can query available tests, filter execution, shuffle, repeat, and set

time limits. We’ll explore how to use these features, control CTest’s output, and handle test failures.

Next, we’ll modify our project’s structure to accommodate testing and create our own test runner.

After covering the basic principles, we’ll proceed to add popular testing frameworks: Catch2 and

GoogleTest, also known as GTest, along with its mocking library. Finally, we’ll introduce detailed

test coverage reporting with LCOV.

Testing Frameworks268

In this chapter, we’re going to cover the following main topics:

• Why are automated tests worth the trouble?

• Using CTest to standardize testing in CMake

• Creating the most basic unit test for CTest

• Unit testing frameworks

• Generating test coverage reports

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch11.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths.

As a reminder, build tree is the path to the target/output directory, and source tree is the path

at which your source code is located.

Why are automated tests worth the trouble?
Imagine a factory line where a machine puts holes in sheets of steel. These holes need to be a

specific size and shape to house bolts for the finished product. The designer of the factory line

will set up the machine, test the holes, and move on. Eventually, something will change: the steel

might be thicker, a worker could adjust the hole size, or more holes may need to be punched be-

cause the design has changed. A smart designer will install quality control checks at key points

to ensure that the product meets the specifications. It doesn’t matter how the holes are made:

drilled, punched, or laser cut, they must meet certain requirements.

The same principle applies to software development. It’s hard to predict which code will remain

stable for years and which will undergo multiple revisions. As software functionality expands, we

must ensure that we don’t inadvertently break things. And we will make mistakes. Even the best

programmers can’t foresee the implications of every change. Developers often work on code they

didn’t originally write and may not understand all the assumptions behind it. They’ll read the

code, form a mental model, make changes, and hope for the best. When this doesn’t work, fixing

the bug can take hours or days and will negatively impact the product and its users.

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch11
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch11

Chapter 11 269

At times, you’ll find code that’s hard to understand. You might even start blaming others for the

mess, only to discover you’re the culprit. This happens when code is written quickly, without

fully grasping the problem.

As developers, we’re not just under pressure from project deadlines or limited budgets; sometimes

we’re awakened at night to fix a critical issue. It’s surprising how some less obvious errors can

slip through code review.

Automated tests can prevent most of these issues. They are code snippets that verify whether

another piece of code behaves correctly. As the name suggests, these tests run automatically

whenever someone makes a change, typically as part of the build process. They’re often added

as a step to ensure code quality before merging it into the repository.

You might be tempted to skip creating automated tests to save time, but that’s a costly mistake. As

Steven Wright said, “Experience is something you don’t get until just after you need it.” Unless you’re

writing a one-use script or experimenting, don’t skip tests. You might initially be frustrated that

your carefully crafted code keeps failing tests. But remember that a failed test means that you just

avoided introducing a major issue into the production environment. The time spent on tests now

will save you time on bug fixes later—and let you sleep better at night. Tests are not as difficult

to add and maintain as you might think.

Using CTest to standardize testing in CMake
Ultimately, automated testing is simply about running an executable that puts your System Under

Test (SUT) in a specific state, performs the operations you want to test, and checks whether the

results meet expectations. You can think of them as a structured way to complete the sentence

GIVEN_<CONDITION>_WHEN_<SCENARIO>_THEN_<EXPECTED-OUTCOME> and verify whether it holds

true for the SUT. Some resources suggest naming your test functions in this very fashion: for

example, GIVEN_4_and_2_WHEN_Sum_THEN_returns_6.

There are many ways to implement and execute these tests, depending on the framework you

choose, how you connect it to your SUT, and its exact setup. For a user who is interacting with

your project for the first time, even small details like the filename of your testing binary will

impact their experience. Because there’s no standard naming convention, one developer might

name their test executable test_my_app, another might choose unit_tests, and a third might

opt for something less straightforward or skip tests entirely. Figuring out which file to run, which

framework is in use, what arguments to pass, and how to collect results are hassles that users

would rather avoid.

Testing Frameworks270

CMake addresses this with a separate ctest command-line tool. Configured by the project’s author

through listfiles, it offers a standardized way to run tests. This uniform interface applies to every

project built with CMake. By following this standard, you’ll enjoy other benefits: integrating the

project into a Continuous Integration/Continuous Deployment (CI/CD) pipeline becomes easier,

and tests will show up more conveniently in IDEs like Visual Studio or CLion. Most importantly,

you get a robust test-running utility with minimal effort.

So, how do you run tests with CTest in an already configured project? You’ll need to choose one

of the following three modes of operation:

• Dashboard

• Test

• Build-and-test

The Dashboard mode allows you to send the test results to a separate tool called CDash, also

from Kitware. CDash collects and presents software quality test results in an easy-to-navigate

dashboard. It’s a topic useful for very large projects, but outside of the scope of this book.

The command line for Test mode is as follows:

ctest [<options>]

In this mode, CTest should be run in the build tree after you’ve built the project with CMake.

There are many options available, but before we dive into them, there’s a minor inconvenience

to address: the ctest binary must be run in the build tree, and only after the project has been

built. This can be a bit awkward during the development cycle as you’ll need to run multiple

commands and toggle between directories.

To make things easier, CTest offers a Build-and-Test mode. We’ll explore this mode first, so we

can give our full attention to the Test mode later.

Build-and-test mode
To use this mode, we need to execute ctest followed with --build-and-test:

ctest --build-and-test <source-tree> <build-tree>

 --build-generator <generator> [<options>...]

 [--build-options <opts>...]

 [--test-command <command> [<args>...]]

Chapter 11 271

Essentially, this is a simple wrapper around the Test mode. It accepts build configuration options

and a test command after the --test-command argument. It’s important to note that no tests will

be run unless you include the ctest keyword after --test-command, as shown here:

ctest --build-and-test project/source-tree /tmp/build-tree --build-
generator "Unix Makefiles" --test-command ctest

In this command, we specify source and build paths, and select a build generator. All three are

required and follow the rules for the cmake command, described in detail in Chapter 1, First Steps

with CMake.

You can add more arguments, which generally fall into one of three categories: configuration

control, build process, or test settings.

Arguments for the configuration stage are as follows:

• --build-options—Include extra options for the cmake configuration. Place them just

before --test-command, which must be last.

• --build-two-config—Run the configuration stage for CMake twice.

• --build-nocmake—Skip the configuration stage.

• --build-generator-platform—Provide a generator-specific platform.

• --build-generator-toolset—Provide a generator-specific toolset.

• --build-makeprogram—Specify a make executable for Make- or Ninja-based generators.

Arguments for the build stage are as follows:

• --build-target—Specify which target to build.

• --build-noclean—Build without building the clean target first.

• --build-project—Name the project that is being built.

The argument for the test stage is as follows:

• --test-timeout—Set a time limit for the tests, in seconds.

Now we can configure Test mode, either by adding arguments after the --test-command cmake

or by running Test mode directly.

Testing Frameworks272

Test mode
After building your project, you can use the ctest command within the build directory to run

your tests. If you’re using Build-and-test mode, this will be done for you. Running ctest without

any extra flags is usually sufficient for most situations. If all tests are successful, ctest will return

an exit code of 0 (on Unix-like systems), which you can verify in your CI/CD pipeline to prevent

merging faulty changes into your production branch.

Writing good tests can be as challenging as writing the production code itself. We set up our SUT

to be in a specific state, run a single test, and then tear down the SUT instance. This process is

rather complex and can generate all sorts of issues: cross-test pollution, timing and concurrency

disruptions, resource contention, frozen execution due to deadlocks, and many others.

Fortunately, CTest offers various options to mitigate these issues. You can control aspects like

which tests to run, their execution order, the output they generate, time constraints, and repeti-

tion rates, among other things. The following sections will provide the necessary context and a

brief overview of the most useful options.

Querying tests
The first thing we might need to do is to understand which tests are actually written for the project.

CTest offers the -N option, which disables execution and only prints a list, as follows:

ctest -N

Test project /tmp/b

 Test #1: SumAddsTwoInts

 Test #2: MultiplyMultipliesTwoInts

Total Tests: 2

You might want to use -N with the filters described in the next section to check which tests would

be executed when a filter is applied.

If you need a JSON format that can be consumed by automated tooling, execute ctest with

--show-only=json-v1.

CTest also offers a mechanism to group tests with the LABELS keyword. To list all available labels

(without actually executing any tests), use --print-labels. This option is helpful when tests are

defined manually with the add_test(<name> <test-command>) command in your listfile, as you

are then able to specify individual labels through test properties, like this:

set_tests_properties(<name> PROPERTIES LABELS "<label>")

Chapter 11 273

However, keep in mind that automated test discovery methods from various frameworks may

not support this level of labeling detail.

Filtering tests
Sometimes you may want to run only specific tests instead of the entire suite. For example, if

you’re debugging a single failing test, there’s no need to run all the others. You can also use this

mechanism to distribute tests across multiple machines for large projects.

These flags will filter tests according to the provided <r> regular expression (regex), as follows:

• -R <r>, --tests-regex <r> - Only run tests with names matching <r>

• -E <r>, --exclude-regex <r> - Skip tests with names matching <r>

• -L <r>, --label-regex <r> - Only run tests with labels matching <r>

• -LE <r>, --label-exclude <regex> - Skip tests with labels matching <r>

Advanced scenarios can be achieved with the --tests-information option (or the shorter form,

-I). This option takes a range in the comma-separated format <start>,<end>,<step>,<test-IDs>.

You can omit any field but keep the commas. The <Test IDs> option is a comma-separated list

of an ordinal number of tests to run. For example:

• -I 3,, will skip tests 1 and 2 (execution starts from the third test)

• -I ,2, will only run the first and second test

• -I 2,,3 will run every third test, starting from the second test in the row

• -I ,0,,3,9,7 will only run the third, ninth, and seventh test

You can also specify these ranges in a file to execute tests on multiple machines in a distributed

fashion for really large test suites. When using -I along with -R, only tests that meet both crite-

ria will run. If you want to run tests that meet either condition, use the -U option. As mentioned

before, you can use the -N option to check the outcome of filtering.

Shuffling tests
Writing unit tests can be tricky. One of the more surprising problems to encounter is test coupling,

which is a situation where one test affects another by incompletely setting or clearing the state

of the SUT. In other words, the first test to execute can “leak” its state and pollute the second

test. Such coupling is bad news because it introduces unknown, implicit relations between tests.

Testing Frameworks274

What’s worse, this kind of error is known to hide really well in the complexities of testing scenarios.

We might detect it when it causes one of the tests to randomly fail, but the opposite is equally

possible: an incorrect state causes the test to pass when it shouldn’t. Such falsely passing tests give

developers an illusion of security, which is even worse than not having tests at all. The assumption

that the code is correctly tested may encourage bolder actions, leading to unexpected outcomes.

One way of discovering such problems is by running each test in isolation. Usually, this is not the

case when executing test runners straight from the testing framework without CTest. To run a

single test, you’ll need to pass a framework-specific argument to the test executable. This allows

you to detect tests that are passing in the suite but are failing when executed on their own.

CTest, on the other hand, effectively removes all memory-based cross-contamination of tests by

implicitly executing every test case in a child CTest instance. You may even go further and add

the --force-new-ctest-process option to enforce separate processes.

Unfortunately, this alone won’t work if your tests are using external, contested resources such as

GPUs, databases, or files. An additional precaution we can take is to simply randomize the order of

test execution. Introducing such variation is often enough to eventually detect spuriously passing

tests. CTest supports this strategy with the --schedule-random option.

Handling failures
Here’s a famous quote from John C. Maxwell: “Fail early, fail often, but always fail forward.” Failing

forward means learning from our mistakes. This is exactly what we want to do when running

unit tests (and perhaps in other areas of life). Unless you’re running your tests with a debugger

attached, it’s not easy to detect where you made a mistake, as CTest will keep things brief and

only list tests that failed, without actually printing any of their output.

Messages printed to stdout by the test case or the SUT might be invaluable to determine exactly

what was wrong. To see them, we can run ctest with --output-on-failure. Alternatively, setting

the CTEST_OUTPUT_ON_FAILURE environment variable will have the same effect.

Depending on the size of the solution, it might make sense to stop execution after any of the tests

fail. This can be done by providing the --stop-on-failure argument to ctest.

CTest stores the names of failed tests. To save time in lengthy test suites, we can focus on these

failed tests and skip running the passing tests until the problem is solved. This feature is enabled

with the --rerun-failed option (any other filters will be ignored). Remember to run all tests

after solving all issues to make sure that no regression has been introduced in the meantime.

Chapter 11 275

When CTest doesn’t detect any tests, it may mean two things: either tests aren’t there or there’s

an issue with the project. By default, ctest will print a warning message and return a 0 exit code,

to avoid muddying the waters. Most users will have enough context to understand which case

they encountered and what to do next. However, in some environments, ctest will always be

executed as part of an automated pipeline. Then, we might need to explicitly say that a lack of

tests should be interpreted as an error (and return a nonzero exit code). We can configure this

behavior by providing the --no-tests=error argument. For the opposite behavior (no warning),

use the --no-tests=ignore option.

Repeating tests
Sooner or later in your career, you’ll encounter tests that work correctly most of the time. I want

to emphasize the word “most.” Once in a blue moon, these tests will fail for environmental rea-

sons: because of incorrectly mocked time, issues with event loops, poor handling of asynchronous

execution, parallelism, hash collisions, and other really complicated scenarios that don’t occur

on every run. These unreliable tests are called flaky tests.

Such inconsistency seems a not-so-important problem. We might say that tests aren’t a real

production environment and this is the ultimate reason why they sometimes fail. There is a grain

of truth in this: tests aren’t meant to replicate every little detail, because it’s not viable. Tests are

a simulation, an approximation of what might happen, and that’s usually good enough. Does it

hurt to rerun tests if they’ll pass on the next execution?

Actually, it does. There are three main concerns, as outlined here:

• If you have gathered enough flaky tests in your code base, they will become a serious

obstacle to the smooth delivery of code changes. It’s especially frustrating when you’re

in a hurry: either getting ready to go home on a Friday afternoon or delivering a critical

fix to a severe issue impacting your customers.

• You can’t be truly sure that your flaky tests are failing because of the inadequacy of the

testing environment. It may be the opposite: they fail because they replicated a rare sce-

nario that already occurs in production. It’s just not obvious enough to raise an alert… yet.

• It’s not the test that’s flaky—it’s your code! The environment is wonky from time to time—

as programmers, we deal with that in a deterministic manner. If the SUT behaves this way,

it’s a sign of a serious error—for example, the code might be reading from uninitialized

memory.

Testing Frameworks276

There isn’t a perfect way to address all of the preceding cases—the multitude of possible reasons

is simply too great. However, we might increase our chance of identifying flaky tests by running

them repeatedly with the –repeat <mode>:<#> option. Three modes are available, as outlined here:

• until-fail—Run test <#> times; all runs have to pass.

• until-pass—Run test up to <#> times; it has to pass at least once. This is useful when

dealing with tests that are known to be flaky but are too difficult and important to debug

or disable.

• after-timeout—Run test up to <#> times but retry only if the test is timing out. Use it

in busy test environments.

A general recommendation is to debug flaky tests as quickly as possible or get rid of them if they

can’t be trusted to produce consistent results.

Controlling output
Printing every piece of information to the screen every time would get incredibly busy. CTest

reduces the noise and collects the outputs of tests it executes to the log files, providing only the

most useful information on regular runs. When things go bad and tests fail, you can expect a

summary and possibly some logs if you enabled --output-on-failure, as mentioned earlier.

I know from experience that “enough information” is enough until it isn’t. Sometimes, we may

want to see the output of passed tests too, perhaps to check if they’re truly working (and not just

silently stopping without an error). To get access to more verbose output, add the -V option (or

--verbose if you want to be explicit in your automated pipelines). If that’s not enough, you might

want -VV or --extra-verbose. For extremely in-depth debugging, use --debug (but be prepared

for walls of text with all the details).

If you’re looking for the opposite, CTest also offers “Zen mode,” enabled with -Q or --quiet. No

output will be printed then (you can stop worrying and learn to love the bug). It seems that this

option has no other use than to confuse people, but be aware that the output will still be stored in

test files (in ./Testing/Temporary by default). Automated pipelines can check if the exit code is

a nonzero value and collect the log files for further processing without littering the main output

with details that may confuse developers not familiar with the product.

To store the logs in a specific path, use the -O <file>, --output-log <file> option. If you’re

suffering from lengthy outputs, there are two limit options to cap them to the given number of

bytes per test: --test-output-size-passed <size> and --test-output-size-failed <size>.

Chapter 11 277

Miscellaneous
There are a few other options that can be useful for your everyday testing needs, as outlined here:

• -C <cfg>, --build-config <cfg>—Specify which configuration to test. The Debug config-

uration usually has debugging symbols, making things easier to understand, but Release

should be tested too, as heavy optimization options could potentially affect the behavior

of SUT. This option is for multi-configuration generators only.

• -j <jobs>, --parallel <jobs>—Sets the number of tests executed in parallel. It’s very

useful to speed up the execution of long tests during development. Be mindful that in a

busy environment (on a shared test runner), it might have an adverse effect due to sched-

uling. This can be slightly mitigated with the next option.

• --test-load <level>—Schedule parallel tests in a fashion that CPU load doesn’t exceed

the <level> value (on a best-effort basis).

• --timeout <seconds>—Specify the default limit of time for a single test.

Now that we understand how to execute ctest in many different scenarios, let’s learn how to

add a simple test.

Creating the most basic unit test for CTest
Writing unit tests is technically possible without any kind of framework. All we have to do is

create an instance of the class we want to test, execute one of its methods, and check if the new

state or value returned meets our expectations. Then, we report the result and delete the object

under test. Let’s try it out.

We’ll use the following structure:

- CMakeLists.txt

- src

 |- CMakeLists.txt

 |- calc.cpp

 |- calc.h

 |- main.cpp

- test

 |- CMakeLists.txt

 |- calc_test.cpp

Testing Frameworks278

Starting from main.cpp, we see that it uses a Calc class:

ch11/01-no-framework/src/main�cpp

#include <iostream>

#include "calc.h"

using namespace std;

int main() {

 Calc c;

 cout << "2 + 2 = " << c.Sum(2, 2) << endl;

 cout << "3 * 3 = " << c.Multiply(3, 3) << endl;

}

Nothing too fancy—main.cpp simply includes the calc.h header and calls two methods of the

Calc object. Let’s quickly glance at the interface of Calc, our SUT:

ch11/01-no-framework/src/calc�h

#pragma once

class Calc {

public:

 int Sum(int a, int b);

 int Multiply(int a, int b);

};

The interface is as simple as possible. We’re using #pragma once here—it works exactly like

common preprocessor include guards and is understood by almost all modern compilers, despite

not being part of the official standard.

Let’s see the class implementation:

ch11/01-no-framework/src/calc�cpp

#include "calc.h"

int Calc::Sum(int a, int b) {

 return a + b;

}

int Calc::Multiply(int a, int b) {

Include guards are short lines in header files that prevent multiple inclusions in

the same parent file.

Chapter 11 279

 return a * a; // a mistake!

}

Uh-oh! We introduced a mistake! Multiply is ignoring the b argument and returning a square of

a instead. That should be detected by correctly written unit tests. So, let’s write some! Here we go:

ch11/01-no-framework/test/calc_test�cpp

#include "calc.h"

#include <cstdlib>

void SumAddsTwoIntegers() {

 Calc sut;

 if (4 != sut.Sum(2, 2))

 std::exit(1);

}

void MultiplyMultipliesTwoIntegers() {

 Calc sut;

 if(3 != sut.Multiply(1, 3))

 std::exit(1);

}

We start our calc_test.cpp file by writing two test methods, one for each tested method of SUT.

If the value returned from the called method doesn’t match expectations, each function will call

std::exit(1). We could use assert(), abort(), or terminate() here, but that would result in a

less explicit Subprocess aborted message in the output of ctest, instead of the more readable

Failed message.

Time to create a test runner. Ours will be as simple as possible to avoid introducing ridiculous

amounts of work. Just look at the main() function we had to write in order to run just two tests:

ch11/01-no-framework/test/unit_tests�cpp

#include <string>

void SumAddsTwoIntegers();

void MultiplyMultipliesTwoIntegers();

int main(int argc, char *argv[]) {

 if (argc < 2 || argv[1] == std::string("1"))

 SumAddsTwoIntegers();

 if (argc < 2 || argv[1] == std::string("2"))

 MultiplyMultipliesTwoIntegers();

}

Testing Frameworks280

Here’s a breakdown of what happens:

1. We declare two external functions that will be linked from another translation unit.

2. If no arguments were provided, execute both tests (the zeroth element in argv[] is always

the program name).

3. If the first argument is an identifier of the test, execute it.

4. If any of the tests fail, it internally calls exit() and returns with a 1 exit code.

5. If no tests were executed or all passed, it implicitly returns with a 0 exit code.

To run the first test, execute:

./unit_tests 1

To run the second, execute:

./unit_tests 2

We simplified the code as much as possible, but it’s still hard to read. Anyone who might need

to maintain this section isn’t going to have an easy time after adding a few more tests. The func-

tionality is pretty raw—debugging such a test suite will be difficult. Nevertheless, let’s see how

we can use it with CTest:

ch11/01-no-framework/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(NoFrameworkTests CXX)

include(CTest)

add_subdirectory(src bin)

add_subdirectory(test)

We start with the usual header and include(CTest). This enables CTest and should be always

done in the top-level CMakeLists.txt. Next, we include two nested listfiles in each of the subdi-

rectories: src and test. The specified bin value indicates that we want the binary output from

the src subdirectory to be placed in <build_tree>/bin. Otherwise, binary files would end up in

<build_tree>/src, which could be confusing for the user, since build artifacts are not source files.

For the src directory, the listfile is straightforward and contains a simple main target definition:

ch11/01-no-framework/src/CMakeLists�txt

add_executable(main main.cpp calc.cpp)

Chapter 11 281

We also need a listfile for the test directory:

ch11/01-no-framework/test/CMakeLists�txt

add_executable(unit_tests

 unit_tests.cpp

 calc_test.cpp

 ../src/calc.cpp)

target_include_directories(unit_tests PRIVATE ../src)

add_test(NAME SumAddsTwoInts COMMAND unit_tests 1)

add_test(NAME MultiplyMultipliesTwoInts COMMAND unit_tests 2)

We have now defined a second unit_tests target that also uses the src/calc.cpp implementa-

tion file and its respective header. Finally, we explicitly add two tests:

• SumAddsTwoInts

• MultiplyMultipliesTwoInts

Each provides its ID as an argument to the add_test() command. CTest will simply take anything

provided after the COMMAND keyword and execute it in a subshell, collecting the output and exit

code. Don’t get too attached to the add_test() method; in the Unit-testing frameworks section

later, we’ll discover a much better way of dealing with test cases.

To run the tests, execute ctest in the build tree:

ctest

Test project /tmp/b

 Start 1: SumAddsTwoInts

1/2 Test #1: SumAddsTwoInts Passed 0.00 sec

 Start 2: MultiplyMultipliesTwoInts

2/2 Test #2: MultiplyMultipliesTwoInts***Failed 0.00 sec

50% tests passed, 1 tests failed out of 2

Total Test time (real) = 0.00 sec

The following tests FAILED:

 2 - MultiplyMultipliesTwoInts (Failed)

Errors while running CTest

Output from these tests are in: /tmp/b/Testing/Temporary/LastTest.log

Use "--rerun-failed --output-on-failure" to re-run the failed cases
verbosely.

Testing Frameworks282

CTest executed both tests and reported that one of them is failing—the returned value from

Calc::Multiply didn’t meet expectations. Very good. We now know that our code has a bug,

and someone should fix it.

I hope it’s now clear that building a testing framework from scratch for your own project is not

advisable. Even the most basic example is hard on the eyes, has a lot of overhead, and doesn’t

add any value. However, before we can adopt a unit-testing framework, we’ll need to rethink the

structure of the project.

Structuring our projects for testing
C++ has some limited introspection capabilities but can’t offer as powerful retrospection features

as Java can. This could be why writing tests and unit-testing frameworks for C++ code is more

challenging than in other, more feature-rich environments. One result of this limited approach

is that the programmer needs to be more involved in crafting testable code. We’ll need to design

our interfaces carefully and consider practical aspects. For example, how can we avoid compiling

code twice and reuse artifacts between tests and production?

Compilation time may not be a big issue for smaller projects, but as projects grow, the need for

short compilation loops remains. In the previous example, we included all the SUT sources in the

unit test executable except the main.cpp file. If you paid close attention, you would have noticed

that some code in that file wasn’t tested (the contents of main() itself). Compiling the code twice

introduces a slight chance that the produced artifacts won’t be identical. These discrepancies can

gradually increase over time, particularly when adding compilation flags and preprocessor direc-

tives, and may be risky when contributors are rushed, inexperienced, or unfamiliar with the project.

Multiple solutions exist for this problem, but the most straightforward is to build your entire

solution as a library and link it with unit tests. You might wonder how to run it then. The answer

is to create a bootstrap executable that links with the library and executes its code.

You may have noticed that in most examples so far, we didn’t necessarily employ the

project structure described in Chapter 4, Setting Up Your First CMake Project. This was

done to keep things brief. This chapter discusses more advanced concepts; therefore,

using a full structure is warranted. In your projects (no matter how small), it’s best

to follow this structure from the start. As a wise man once said: “You step onto the

road, and if you don’t keep your feet, there’s no knowing where you might be swept off to.”

Chapter 11 283

Begin by renaming your current main() function to something like run() or start_program().

Then, create another implementation file (bootstrap.cpp) containing only a new main() func-

tion. This function serves as an adapter: its only role is to provide an entry point and call run(),

passing along any command-line arguments. After linking everything together, you end up with

a testable project.

By renaming main(), you can now link the SUT with tests and test its main functionality as well.

Otherwise, you’d violate the One Definition Rule (ODR) discussed in Chapter 8, Linking Execut-

ables and Libraries, because the test runner also needs its own main() function. As we promised

in the Separating main() for testing section of Chapter 8, we’ll delve into this topic in detail here.

Note also that the testing framework might provide its own main() function by default, so writing

one may not be necessary. Typically, it will automatically detect all linked tests and run them

according to your configuration.

Artifacts produced by this approach can be grouped into the following targets:

• A sut library with production code

• bootstrap with a main() wrapper calling run() from sut

• unit tests with a main() wrapper that runs all the tests on sut

The following diagram shows the symbol relations between targets:

Figure 11.1: Sharing artifacts between test and production executables

Testing Frameworks284

We end up with six implementation files that will produce their respective (.o) object files, as

follows:

• calc.cpp: The Calc class to be unit-tested. This is called a unit under test (UUT) because

UUT is a specialization of SUT.

• run.cpp: Original entry point renamed run(), which can be now tested.

• bootstrap.cpp: New main() entry point calling run().

• calc_test.cpp: Tests the Calc class.

• run_test.cpp: New tests for run() can go here.

• unit_tests.o: Entry point for unit tests, extended to call tests for run().

The library we’re about to build doesn’t necessarily have to be a static or shared library. By opting

for an object library, we can avoid unnecessary archiving or linking. Technically, it’s possible to

save some time by using dynamic linking for the SUT, but we often find ourselves making changes

in both targets: tests and SUT, which negates any time saved.

Let’s examine how our files have changed, starting with the file previously named main.cpp:

ch11/02-structured/src/run�cpp

#include <iostream>

#include "calc.h"

using namespace std;

int run() {

 Calc c;

 cout << "2 + 2 = " << c.Sum(2, 2) << endl;

 cout << "3 * 3 = " << c.Multiply(3, 3) << endl;

 return 0;

}

The changes are minor: the file and function are renamed, and we’ve added a return statement

because the compiler won’t add one implicitly for functions other than main().

The new main() function looks like this:

ch11/02-structured/src/bootstrap�cpp

int run(); // declaration

int main() {

 run();

}

Chapter 11 285

Keeping it simple, we declare that the linker will provide the run() function from another trans-

lation unit, and we call it.

Next up is the src listfile:

ch11/02-structured/src/CMakeLists�txt

add_library(sut STATIC calc.cpp run.cpp)

target_include_directories(sut PUBLIC .)

add_executable(bootstrap bootstrap.cpp)

target_link_libraries(bootstrap PRIVATE sut)

First, we create a SUT library and mark . as a PUBLIC include directory so it will be propagated to all

targets that link with SUT (i.e., bootstrap and unit_tests). Note that include directories are rela-

tive to the listfile, allowing us to use a dot (.) to refer to the current <source_tree>/src directory.

Time to update our unit_tests target. We’ll replace the direct reference to the ../src/calc.cpp

file with a linking reference to sut for the unit_tests target. We’ll also add a new test for the

primary function in the run_test.cpp file. We’ll skip discussing that for brevity, but if you’re

interested, check out the examples in the repository for this book.

Meanwhile, here’s the whole test listfile:

ch11/02-structured/test/CMakeLists�txt

add_executable(unit_tests

 unit_tests.cpp

 calc_test.cpp

 run_test.cpp)

target_link_libraries(unit_tests PRIVATE sut)

ch11/02-structured/test/CMakeLists�txt (continued)

add_test(NAME SumAddsTwoInts COMMAND unit_tests 1)

add_test(NAME MultiplyMultipliesTwoInts COMMAND unit_tests 2)

add_test(NAME RunOutputsCorrectEquations COMMAND unit_tests 3)

Done! We registered the new test, as necessary. By following this practice, you can be sure that

your tests are executed on the very machine code that will be used in production.

Testing Frameworks286

Now that we know how to structure a testable project in appropriate targets, let’s shift our fo-

cus to the testing frameworks themselves. We don’t want to add every test case to our listfiles

manually, do we?

Unit-testing frameworks
The previous section shows that writing a small unit-testing driver isn’t overly complicated. It

may not have been pretty, but believe it or not, some professional developers do like to reinvent

the wheel, thinking their version will be better in every way. Avoid this pitfall: you’ll end up cre-

ating so much boilerplate code that it could become its own project. Using a popular unit-testing

framework aligns your solution with a standard that’s recognized across multiple projects and

companies, and often comes with free updates and extensions. You can’t lose.

How do you incorporate a unit-testing framework into your project? Of course, by implementing

tests according to the rules of the chosen framework, then linking these tests with a test runner

provided by the framework. Test runners initiate the execution of selected tests and collect the

results. Unlike the basic unit_tests.cpp file we looked at earlier, many frameworks will auto-

matically detect all the tests and make them visible for CTest. It’s a much smoother process.

In this chapter, I’ve chosen to introduce two unit-testing frameworks for specific reasons:

• Catch2 is relatively easy to learn and comes with good support and documentation. While

it offers basic test cases, it also includes elegant macros for behavior-driven development

(BDD). While it may lack some features, it can be supplemented with external tools when

needed. Visit its home page here: https://github.com/catchorg/Catch2.

• GoogleTest (GTest) is convenient but also more advanced. It offers a rich set of features

like various assertions, death tests, as well as value- and type-parametrized tests. It even

supports XML test report generation and mocking through its GMock module. Find it

here: https://github.com/google/googletest.

The target names we’re using here, sut and bootstrap, are chosen to make it very

clear what they’re about from the perspective of testing. In real-life projects, you

should pick names that match the context of the production code (rather than tests).

For example, for a FooApp, name your target foo instead of bootstrap, and lib_foo

instead of sut.

https://github.com/catchorg/Catch2
https://github.com/google/googletest

Chapter 11 287

The choice of framework depends on your learning preference and project size. If you like to ease

into things and don’t require a full feature set, Catch2 is a good choice. Those who prefer to dive

in headfirst and need a comprehensive toolset will find GoogleTest more suitable.

Catch2
This framework, maintained by Martin Hořeňovský, is well-suited for beginners and smaller

projects. That’s not to say it can’t accommodate larger applications, but be aware that you may

need additional tools in some areas (exploring this in detail would take us too far off-topic). To

begin, let’s examine a simple unit test implementation for our Calc class:

ch11/03-catch2/test/calc_test�cpp

#include <catch2/catch_test_macros.hpp>

#include "calc.h"

TEST_CASE("SumAddsTwoInts", "[calc]") {

 Calc sut;

 CHECK(4 == sut.Sum(2, 2));

}

TEST_CASE("MultiplyMultipliesTwoInts", "[calc]") {

 Calc sut;

 CHECK(12 == sut.Multiply(3, 4));

}

That’s it. These few lines are more powerful than our previous examples. The CHECK() macros do

more than just verify expectations; they collect all failed assertions and present them together,

helping you avoid constant recompilation.

The best part? You don’t need to manually add these tests to listfiles to inform CMake about them.

Forget about add_test(); you won’t need it anymore. Catch2 will automatically register your tests

with CTest if you allow it. Adding the framework is straightforward once you’ve configured your

project as discussed in the previous section. Use FetchContent() to bring it into your project.

You can choose between two major versions: Catch2 v2 and Catch2 v3. Version 2 is a legacy option

available as a single-header library for C++11. Version 3 compiles as a static library and requires

C++14. It’s recommended to opt for the latest release.

When working with Catch2, make sure to pick a Git tag and pin it in your listfile. Upgrading

through the main branch isn’t guaranteed to be seamless.

Testing Frameworks288

We’ll include version 3.4.0 in our listfile like so:

ch11/03-catch2/test/CMakeLists�txt

include(FetchContent)

FetchContent_Declare(

 Catch2

 GIT_REPOSITORY https://github.com/catchorg/Catch2.git

 GIT_TAG v3.4.0

)

FetchContent_MakeAvailable(Catch2)

Then, we need to define our unit_tests target and link it with sut and with a framework-provided

entry point and Catch2::Catch2WithMain library. Since Catch2 provides its own main() function,

we no longer use the unit_tests.cpp file (this file can be removed). The code is illustrated in

the following snippet:

ch11/03-catch2/test/CMakeLists�txt (continued)

add_executable(unit_tests calc_test.cpp run_test.cpp)

target_link_libraries(unit_tests PRIVATE

 sut Catch2::Catch2WithMain)

Lastly, we use a catch_discover_tests() command defined in the module provided by Catch2

to automatically detect all test cases from unit_tests and register them with CTest, as follows:

ch11/03-catch2/test/CMakeLists�txt (continued)

list(APPEND CMAKE_MODULE_PATH ${catch2_SOURCE_DIR}/extras)

include(Catch)

catch_discover_tests(unit_tests)

In a business setting, you’re likely to be running tests in a CI pipeline. In such cases,

remember to set up your environment so it already has the dependencies installed

in the system, and each build doesn’t need to fetch them every time it runs. As men-

tioned in the section Using the installed dependency where possible in Chapter 9, Man-

aging Dependencies in CMake, you’ll want to extend your FetchContent_Declare()

command with the FIND_PACKAGE_ARGS keyword to use packages from the system.

Chapter 11 289

Done. We just added a unit-testing framework to our solution. Let’s now see it in practice. The

output from the test runner looks like this:

./test/unit_tests

unit_tests is a Catch2 v3.4.0 host application.

Run with -? for options

MultiplyMultipliesTwoInts

/root/examples/ch11/03-catch2/test/calc_test.cpp:9

...

/root/examples/ch11/03-catch2/test/calc_test.cpp:11: FAILED:

 CHECK(12 == sut.Multiply(3, 4))

with expansion:

 12 == 9

===

test cases: 3 | 2 passed | 1 failed

assertions: 3 | 2 passed | 1 failed

Catch2 was able to expand the sut.Multiply(3, 4) expression to 9, giving us more context,

which is really helpful in debugging.

Note that the direct execution of the runner binary (the compiled unit_test executable) may

be slightly faster than using ctest, but the additional advantages offered by CTest are worth

the trade-off.

This wraps up the Catch2 setup. If you need to add more tests in the future, simply create new

implementation files and add their paths to the list of sources for the unit_tests target.

Catch2 offers various features like event listeners, data generators, and micro-benchmarking,

but it lacks built-in mocking functionality. If you’re not familiar with mocks, we’ll cover that in

the next section. You can add mocks to Catch2 with one of the following mocking frameworks:

• FakeIt (https://github.com/eranpeer/FakeIt)

• Hippomocks (https://github.com/dascandy/hippomocks)

• Trompeloeil (https://github.com/rollbear/trompeloeil)

That said, for a more streamlined, advanced experience, there is another framework worth look-

ing at, GoogleTest.

https://github.com/eranpeer/FakeIt
https://github.com/dascandy/hippomocks
https://github.com/rollbear/trompeloeil

Testing Frameworks290

GoogleTest
There are several important advantages to using GoogleTest: it’s been around for a long time and

is highly recognized in the C++ community, so multiple IDEs support it natively. The company

behind the world’s largest search engine maintains and uses it extensively, making it unlikely to

become obsolete or abandoned. It can test C++11 and up, which is good news if you’re working

in an older environment.

The GoogleTest repository contains two projects: GTest (the main testing framework) and GMock

(a library that adds mocking functionality). This means you can download both with a single

FetchContent() call.

Using GTest
To use GTest, our project needs to follow the directions from the Structuring our projects for testing

section. This is how we’d write a unit test in this framework:

ch11/04-gtest/test/calc_test�cpp

#include <gtest/gtest.h>

#include "calc.h"

class CalcTestSuite : public ::testing::Test {

protected:

 Calc sut_;

};

TEST_F(CalcTestSuite, SumAddsTwoInts) {

 EXPECT_EQ(4, sut_.Sum(2, 2));

}

TEST_F(CalcTestSuite, MultiplyMultipliesTwoInts) {

 EXPECT_EQ(12, sut_.Multiply(3, 4));

}

Because this example will also be used in GMock, I chose to place the tests in a single CalcTestSuite

class. Test suites group related tests so they can reuse the same fields, methods, setup, and tear-

down steps. To create a test suite, declare a new class that inherits from ::testing::Test and

place reusable elements in its protected section.

Chapter 11 291

Each test case within a test suite is declared with the TEST_F() macro. A simpler TEST() macro

exists for standalone tests. Since we defined Calc sut_ in the class, each test case can access it

as if test cases were methods of CalcTestSuite. In reality, each test case runs in its own instance

that inherits from CalcTestSuite, which is why the protected keyword is necessary. Note that

reusable fields aren’t meant to share data between consecutive tests; their purpose is to keep

the code DRY.

GTest does not offer the natural syntax for assertions like Catch2. Instead, you use explicit com-

parisons such as EXPECT_EQ(). By convention, the expected value goes first, followed by the

actual value. There are many other types of assertions, helpers, and macros worth exploring. For

detailed information on GTest, see the official reference material (https://google.github.io/

googletest/).

To add this dependency to our project, we need to decide which version to use. Unlike Catch2,

GoogleTest is leaning toward a “live at head” philosophy (originating from the Abseil project

that GTest depends on). It states: “If you build our dependency from source and follow our API, you

shouldn’t have any issues.” (Refer to the Further reading section for more details.) If you’re comfort-

able following this rule (and building from source isn’t an issue), set your Git tag to the master

branch. Otherwise, pick a release from the GoogleTest repository.

In any case, adding a dependency on GTest looks like this:

ch11/04-gtest/test/CMakeLists�txt

include(FetchContent)

FetchContent_Declare(

 googletest

 GIT_REPOSITORY https://github.com/google/googletest.git

 GIT_TAG v1.14.0

)

set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)

FetchContent_MakeAvailable(googletest)

In a business setting, you’re likely to be running tests in a CI pipeline. In such cases,

remember to set up your environment so it already has the dependencies installed

in the system, and each build doesn’t need to fetch them every time it runs. As men-

tioned in the section Using the installed dependency where possible in Chapter 9, Man-

aging Dependencies in CMake, you’ll want to extend your FetchContent_Declare()

command with the FIND_PACKAGE_ARGS keyword to use packages from the system.

https://google.github.io/googletest/
https://google.github.io/googletest/

Testing Frameworks292

We’re following the same method as with Catch2—execute FetchContent() and build the frame-

work from source. The only difference is the addition of the set(gtest...) command, as rec-

ommended by GoogleTest authors to prevent overriding the parent project’s compiler and linker

settings on Windows.

Finally, we can declare our test runner executable, link it with gtest_main, and have our test cases

automatically discovered thanks to the built-in CMake GoogleTest module, as illustrated here:

ch11/04-gtest/test/CMakeLists�txt (continued)

add_executable(unit_tests

 calc_test.cpp

 run_test.cpp)

target_link_libraries(unit_tests PRIVATE sut gtest_main)

include(GoogleTest)

gtest_discover_tests(unit_tests)

This completes the setup of GTest. The output of the directly executed test runner is much more

verbose than that from Catch2, but we can pass --gtest_brief=1 to limit it to failures only, as

follows:

./test/unit_tests --gtest_brief=1

~/examples/ch11/04-gtest/test/calc_test.cpp:15: Failure

Expected equality of these values:

 12

 sut_.Multiply(3, 4)

 Which is: 9

[FAILED] CalcTestSuite.MultiplyMultipliesTwoInts (0 ms)

[==========] 3 tests from 2 test suites ran. (0 ms total)

[PASSED] 2 tests.

Fortunately, even the noisy output will be suppressed when running from CTest (unless we ex-

plicitly enable it with the ctest --output-on-failure command line).

Now that we have the framework in place, let’s discuss mocking. After all, no test can be truly

“unit test” when it’s tightly coupled with other elements.

GMock
Writing pure unit tests is about executing a piece of code in isolation from other pieces of code.

Such a tested unit has to be a self-contained element, either a class or a component. Of course,

hardly any programs written in C++ have all of their units in clear isolation from others.

Chapter 11 293

Most likely, your code will rely heavily on some form of association relationship between classes.

There’s only one problem with that: objects of such a class will require objects of another class,

and those will require yet another. Before you know it, your entire solution is participating in

a “unit test.” Even worse, your code might be coupled to an external system and be dependent

on its state. For example, it might rely closely on specific records in a database, network packets

coming in, or specific files stored on the disk.

To decouple units for the purpose of testing, developers use test doubles or a special version of

classes that are used by a unit under test. Some examples include fakes, stubs, and mocks. Here

are some rough definitions of these terms:

• A fake is a limited implementation of a more complex mechanism. An example could be

an in-memory map instead of an actual database client.

• A stub provides specific, canned answers to method calls, limited to responses used by

tests. It can also record which methods were called and how many times this occurred.

• A mock is a slightly more extended version of a stub. It will additionally verify if methods

were called during the test as expected.

Such a test double is created at the beginning of a test and provided as an argument to the con-

structor of a tested class to be used instead of a real object. This mechanism is called dependency

injesction.

The problem with simple test doubles is that they are too simple. To simulate behaviors for different

test scenarios, we would have to provide many different doubles, one for every state in which the

coupled object can be. This isn’t very practical and would scatter testing code across too many

files. This is where GMock comes in: it allows developers to create a generic test double for a spe-

cific class and define its behavior for every test in line. GMock calls these doubles “mocks,” but

in reality, they’re a mixture of all the aforementioned test doubles, depending on the occasion.

Consider the following example: let’s add a functionality to our Calc class that would add a ran-

dom number to the provided argument. It will be represented by an AddRandomNumber() method

that returns this sum as an int. How would we confirm the fact that the returned value is really

an exact sum of something random and the value provided to the class? As we know, randomly

generated numbers are key to many important processes, and if we’re using them incorrectly,

we might suffer all kinds of consequences. Checking all random numbers until we exhaust all

possibilities isn’t very practical.

Testing Frameworks294

To test it, we need to wrap a random number generator in a class that could be mocked (or, in other

words, replaced with a mock). Mocks will allow us to force a specific response, which is used to

“fake” the generation of a random number. Calc will use that value in AddRandomNumber() and

allow us to check if the returned value from that method meets expectations. The clean separation

of random number generation from another unit is an added value (as we’ll be able to exchange

one type of generator for another).

Let’s start with the public interface for the abstract generator. This header will allow us to imple-

ment it in the actual generator and a mock, enabling us to use them interchangeably:

ch11/05-gmock/src/rng�h

#pragma once

class RandomNumberGenerator {

public:

 virtual int Get() = 0;

 virtual ~RandomNumberGenerator() = default;

};

Classes implementing this interface will provide us with a random number from the Get() meth-

od. Note the virtual keyword—it has to be on all methods to be mocked unless we’d like to

get involved with more complex template-based mocking. We also need to remember to add a

virtual destructor.

Next, we have to extend our Calc class to accept and store the generator, so we can either provide

the real generator for the release build or a mock for tests:

ch11/05-gmock/src/calc�h

#pragma once

#include "rng.h"

class Calc {

 RandomNumberGenerator* rng_;

public:

 Calc(RandomNumberGenerator* rng);

 int Sum(int a, int b);

 int Multiply(int a, int b);

 int AddRandomNumber(int a);

};

Chapter 11 295

We included the header and added a method to provide random additions. Additionally, a field

to store the pointer to the generator was created, along with a parameterized constructor. This

is how dependency injection works in practice. Now, we implement these methods, as follows:

ch11/05-gmock/src/calc�cpp

#include "calc.h"

Calc::Calc(RandomNumberGenerator* rng) {

 rng_ = rng;

}

int Calc::Sum(int a, int b) {

 return a + b;

}

int Calc::Multiply(int a, int b) {

 return a * b; // now corrected

}

int Calc::AddRandomNumber(int a) {

 return a + rng_->Get();

}

In the constructor, we’re assigning the provided pointer to a class field. We’re then using this field

in AddRandomNumber() to fetch the generated value. The production code will use a real number

generator; the tests will use mocks. Remember that we need to dereference pointers to enable

polymorphism. As a bonus, we could possibly create different generator classes for different

implementations. I just need one: a Mersenne Twister pseudo-random generator with uniform

distribution, as illustrated in the following code snippet:

ch11/05-gmock/src/rng_mt19937�cpp

#include <random>

#include "rng_mt19937.h"

int RandomNumberGeneratorMt19937::Get() {

 std::random_device rd;

 std::mt19937 gen(rd());

 std::uniform_int_distribution<> distrib(1, 6);

 return distrib(gen);

}

Creating a new instance on every call isn’t very efficient, but it will suffice for this simple example.

The purpose is to generate numbers from 1 to 6 and return them to the caller.

Testing Frameworks296

The header for this class simply provides the signature of one method:

ch11/05-gmock/src/rng_mt19937�h

#include "rng.h"

class RandomNumberGeneratorMt19937

 : public RandomNumberGenerator {

public:

 int Get() override;

};

And this is how we’re using it in the production code:

ch11/05-gmock/src/run�cpp

#include <iostream>

#include "calc.h"

#include "rng_mt19937.h"

using namespace std;

int run() {

 auto rng = new RandomNumberGeneratorMt19937();

 Calc c(rng);

 cout << "Random dice throw + 1 = "

 << c.AddRandomNumber(1) << endl;

 delete rng;

 return 0;

}

We have created a generator and passed a pointer to it to the constructor of Calc. Everything is

ready and we can start writing our mock. To keep things organized, developers usually put mocks

in a separate test/mocks directory. To prevent ambiguity, the header name has a _mock suffix.

Here is the code:

ch11/05-gmock/test/mocks/rng_mock�h

#pragma once

#include "gmock/gmock.h"

class RandomNumberGeneratorMock : public

RandomNumberGenerator {

public:

 MOCK_METHOD(int, Get, (), (override));

};

Chapter 11 297

After adding the gmock.h header, we can declare our mock. As planned, it’s a class implementing

the RandomNumberGenerator interface. Instead of writing methods ourselves, we need to use

MOCK_METHOD macros provided by GMock. These inform the framework which methods from the

interface should be mocked. Use the following format (the extensive parentheses are required):

MOCK_METHOD(<return type>, <method name>,

 (<argument list>), (<keywords>))

We’re ready to use the mock in our test suite (previous test cases are omitted for brevity), as follows:

ch11/05-gmock/test/calc_test�cpp

#include <gtest/gtest.h>

#include "calc.h"

#include "mocks/rng_mock.h"

using namespace ::testing;

class CalcTestSuite : public Test {

protected:

 RandomNumberGeneratorMock rng_mock_;

 Calc sut_{&rng_mock_};

};

TEST_F(CalcTestSuite, AddRandomNumberAddsThree) {

 EXPECT_CALL(rng_mock_, Get()).Times(1).WillOnce(Return(3));

 EXPECT_EQ(4, sut_.AddRandomNumber(1));

}

Let’s break down the changes: we added the new header and created a new field for rng_mock_

in the test suite. Next, the mock’s address is passed to the constructor of sut_. We can do that

because fields are initialized in the order of declaration (rng_mock_ precedes sut_).

In our test case, we call GMock’s EXPECT_CALL macro on the Get() method of rng_mock_. This

tells the framework to fail the test if the Get() method isn’t called during execution. The chained

Times call explicitly states how many calls must happen for the test to pass. WillOnce determines

what the mocking framework does after the method is called (it returns 3).

By virtue of using GMock, we’re able to express mocked behavior alongside the expected out-

come. This greatly improves readability and eases the maintenance of tests. Most importantly,

though, it provides flexibility in each test case, as we get to differentiate what happens with a

single expressive statement.

Testing Frameworks298

Finally, to build the project, we need to make sure that the gmock library is linked with a test

runner. To achieve that, we add it to the target_link_libraries() list:

ch11/05-gmock/test/CMakeLists�txt

include(FetchContent)

FetchContent_Declare(

 googletest

 GIT_REPOSITORY https://github.com/google/googletest.git

 GIT_TAG release-1.14.0

)

For Windows: Prevent overriding the parent project's

 compiler/linker settings

set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)

FetchContent_MakeAvailable(googletest)

add_executable(unit_tests

 calc_test.cpp

 run_test.cpp)

target_link_libraries(unit_tests PRIVATE sut gtest_main gmock)

include(GoogleTest)

gtest_discover_tests(unit_tests)

Now, we can enjoy all the benefits of the GoogleTest framework. Both GTest and GMock are

advanced tools with a multitude of concepts, utilities, and helpers for different situations. This

example (despite being a bit lengthy) only scratches the surface of what’s possible. I encourage

you to incorporate them into your projects as they will greatly improve the quality of your work. A

good place to start with GMock is the “Mocking for Dummies” page in the official documentation

(you can find a link to this in the Further reading section).

Having tests in place, we should somehow measure what’s tested and what isn’t and strive to

improve the situation. It’s best to use automated tools that will collect and report this information.

Chapter 11 299

Generating test coverage reports
Adding tests to such a small solution isn’t incredibly challenging. The real difficulty comes with

slightly more advanced and longer programs. Over the years, I have found that as I approach

over 1,000 lines of code, it slowly becomes hard to track which lines and branches are executed

during tests and which aren’t. After crossing 3,000 lines, it is nearly impossible. Most profession-

al applications will have much more code than that. What’s more, one of the key metrics many

managers use to negotiate addressing tech debt is code coverage percentage, so knowing how to

generate useful reports is helpful to get the actual data for those discussions. To deal with this

problem, we can use a utility to understand which code lines are “covered” by test cases. Such

code coverage tools hook up to the SUT and gather information on the execution of each line

during tests to present it in a convenient report like the one shown here:

Figure 11.2: Code coverage report generated by LCOV

Testing Frameworks300

These reports will show you which files are covered by tests and which aren’t. More than that, you

can also take a peek inside the details of each file and see exactly which lines of code are executed

and how many times this occurs. In the following screenshot, the Line data column says that the

Calc constructor was run 4 times, one time for each of the tests:

Figure 11.3: Detailed view of a code coverage report

There are multiple ways of generating similar reports and they differ across platforms and com-

pilers, but they generally follow the same procedure: prepare the SUT to be measured and get the

baseline, measure, and report.

The simplest tool for the job is called LCOV. Rather than being an acronym, it’s a graphical fron-

tend for gcov, a coverage utility from the GNU Compiler Collection (GCC). Let’s see how to use

it in practice.

Using LCOV for coverage reports
LCOV will generate HTML coverage reports and internally use gcov to measure coverage. If you’re

using Clang, don’t worry—Clang supports producing metrics in this format. You can get LCOV

from the official repository maintained by the Linux Test Project (https://github.com/linux-

test-project/lcov) or simply use a package manager. As the name suggests, it is a Linux-tar-

geted utility.

https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov

Chapter 11 301

It’s possible to run it on macOS, but the Windows platform is not supported. End users often

don’t care about test coverage, so it’s usually fine to install LCOV manually in your own build

environment instead of incorporating it into the project.

To measure coverage, we’ll need to do the following:

1. Compile in the Debug configuration with compiler flags enabling code coverage. This will

generate coverage note (.gcno) files.

2. Link the test executable with the gcov library.

3. Gather coverage metrics for the baseline, without any tests being run.

4. Run the tests. This will create coverage data (.gcda) files.

5. Collect the metrics into an aggregated information file.

6. Generate a (.html) report.

We should start by explaining why the code has to be compiled in the Debug configuration. The

most important reason is the fact that, usually, Debug configurations have disabled any optimiza-

tion with a -O0 flag. CMake does this by default in the CMAKE_CXX_FLAGS_DEBUG variable (despite

not stating this anywhere in the documentation). Unless you decide to override this variable,

your Debug build should be unoptimized. This is desired to prevent any inlining and other kinds

of implicit code simplification. Otherwise, it would be hard to trace which machine instruction

came from which line of source code.

In the first step, we need to instruct the compiler to add the necessary instrumentation to our

SUT. The exact flag to add is compiler-specific; however, two major compilers (GCC and Clang)

offer the same --coverage flag to enable the coverage instrumentation, producing data in a

GCC-compatible gcov format.

This is how we can add the coverage instrumentation to our exemplary SUT from the previous

section:

ch11/06-coverage/src/CMakeLists�txt

add_library(sut STATIC calc.cpp run.cpp rng_mt19937.cpp)

target_include_directories(sut PUBLIC .)

if (CMAKE_BUILD_TYPE STREQUAL Debug)

 target_compile_options(sut PRIVATE --coverage)

 target_link_options(sut PUBLIC --coverage)

 add_custom_command(TARGET sut PRE_BUILD COMMAND

 find ${CMAKE_BINARY_DIR} -type f

Testing Frameworks302

 -name '*.gcda' -exec rm {} +)

endif()

add_executable(bootstrap bootstrap.cpp)

target_link_libraries(bootstrap PRIVATE sut)

Let’s break this down step by step, as follows:

1. Ensure that we’re running in the Debug configuration with the if(STREQUAL) command.

Remember that you won’t be able to get any coverage unless you run cmake with the

-DCMAKE_BUILD_TYPE=Debug option.

2. Add --coverage to the PRIVATE compile options for all object files that are part of the sut

library.

3. Add --coverage to the PUBLIC linker options: both GCC and Clang interpret this as a

request to link the gcov (or compatible) library with all targets that depend on sut (due

to propagated properties).

4. The add_custom_command() command is introduced to clean any stale .gcda files. Reasons

to add this command are discussed in detail in the Avoiding the SEGFAULT gotcha section.

This is enough to produce code coverage. If you’re using an IDE such as CLion, you’ll be able to

run your unit tests with coverage and get the results in a built-in report view. However, this won’t

work in any automated pipeline that might be run in your CI/CD. To get reports, we’ll need to

generate them ourselves with LCOV.

For this purpose, it’s best to define a new target called coverage. To keep things clean, we’ll

define a separate function, AddCoverage, in another file to be used in the test listfile, as follows:

ch11/06-coverage/cmake/Coverage�cmake

function(AddCoverage target)

 find_program(LCOV_PATH lcov REQUIRED)

 find_program(GENHTML_PATH genhtml REQUIRED)

 add_custom_target(coverage

 COMMENT "Running coverage for ${target}..."

 COMMAND ${LCOV_PATH} -d . --zerocounters

 COMMAND $<TARGET_FILE:${target}>

 COMMAND ${LCOV_PATH} -d . --capture -o coverage.info

 COMMAND ${LCOV_PATH} -r coverage.info '/usr/include/*'

 -o filtered.info

 COMMAND ${GENHTML_PATH} -o coverage filtered.info

 --legend

Chapter 11 303

 COMMAND rm -rf coverage.info filtered.info

 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}

)

endfunction()

In the preceding snippet, we first detect the paths for lcov and genhtml (two command-line tools

from the LCOV package). The REQUIRED keyword instructs CMake to throw an error when they’re

not found. Next, we add a custom coverage target with the following steps:

1. Clear the counters from any previous runs.

2. Run the target executable (using generator expressions to get its path). $<TARGET_

FILE:target> is an exceptional generator expression, and it will implicitly add a depen-

dency on target in this case, causing it to be built before executing all commands. We’ll

provide target as an argument to this function.

3. Collect metrics for the solution from the current directory (-d .) and output to a file (-o

coverage.info).

4. Remove (-r) unwanted coverage data on system headers ('/usr/include/*') and output

to another file (-o filtered.info).

5. Generate an HTML report in the coverage directory, and add a --legend color.

6. Remove temporary .info files.

7. Specifying the WORKING_DIRECTORY keyword sets the binary tree as the working directory

for all commands.

These are the general steps for both GCC and Clang. It’s important to know that the gcov tool’s

version has to match the version of the compiler: you can’t use GCC’s gcov tool for Clang-com-

piled code. To point lcov to Clang’s gcov tool, we can use the --gcov-tool argument. The only

problem here is that it has to be a single executable. To deal with that, we can provide a simple

wrapper script (remember to mark it as an executable with chmod +x), as follows:

cmake/gcov-llvm-wrapper.sh

#!/bin/bash

exec llvm-cov gcov "$@"

Doing so will mean that all of our calls to ${LCOV_PATH} in the previous function will receive the

following flag:

--gcov-tool ${CMAKE_SOURCE_DIR}/cmake/gcov-llvm-wrapper.sh

Testing Frameworks304

Make sure that this function is available for inclusion in the test listfile. We can do this by ex-

tending the include search path in the main listfile, as follows:

ch11/06-coverage/CMakeLists�txt

cmake_minimum_required(VERSION 3.26.0)

project(Coverage CXX)

include(CTest)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")

add_subdirectory(src bin)

add_subdirectory(test)

The highlighted line allows us to include all .cmake files from the cmake directory in our project.

We can now use Coverage.cmake in the test listfile, like so:

ch11/06-coverage/test/CMakeLists�txt (fragment)

... skipped unit_tests target declaration for brevity

include(Coverage)

AddCoverage(unit_tests)

include(GoogleTest)

gtest_discover_tests(unit_tests)

To build the coverage target, use the following commands (notice that the first command ends

with a -DCMAKE_BUILD_TYPE=Debug build type selection):

cmake -B <binary_tree> -S <source_tree> -DCMAKE_BUILD_TYPE=Debug

cmake --build <binary_tree> -t coverage

After executing all of the mentioned steps, you will see a short summary like this:

Writing directory view page.

Overall coverage rate:

 lines......: 95.7% (22 of 23 lines)

 functions..: 75.0% (6 of 8 functions)

[100%] Built target coverage

Next, open the coverage/index.html file in your browser and enjoy the reports! There’s only

one small issue though…

Chapter 11 305

Avoiding the SEGFAULT gotcha
We may get ourselves into trouble when we start editing sources in such a built solution. This is

because the coverage information is split into two parts:

• gcno files, or GNU Coverage Notes, generated during the compilation of the SUT

• gcda files, or GNU Coverage Data, generated and updated during test runs

The “update” functionality is a potential source of segmentation faults. After we run our tests

initially, we’re left with a bunch of gcda files that don’t get removed at any point. If we make some

changes to the source code and recompile the object files, new gcno files will be created. However,

there’s no wipe step—the gcda files from previous test runs follow the stale source. When we

execute the unit_tests binary (it happens in the gtest_discover_tests macro), the coverage

information files won’t match, and we’ll receive a SEGFAULT (segmentation fault) error.

To avoid this problem, we should erase any stale gcda files. Since our sut instance is a STATIC

library, we can hook the add_custom_command(TARGET) command to building events. The clean

will be executed before the rebuild starts.

Find links to more information in the Further reading section.

Summary
On the surface, it may seem that the complexities associated with proper testing are so great that

they aren’t worth the effort. It’s striking how much code out there is running without any tests at

all, the primary argument being that testing your software is a daunting endeavor. I’ll add: even

more so if done manually. Unfortunately, without rigorous automated testing, visibility of any

issues in the code is incomplete or non-existent. Untested code is maybe quicker to write (but

not always); however, it’s definitely much slower to read, refactor, and fix.

In this chapter, we outlined some key reasons for working with tests from the get-go. One of the

most compelling is mental health and a good night’s sleep. Not one developer lies in bed thinking:

I can’t wait to be woken up in a few hours to put out some production fires and fix bugs. But seriously,

catching errors before deploying them to production can be a lifesaver for you (and the company).

When it comes to testing utilities, CMake really shows its true strength here. CTest can do won-

ders in detecting faulty tests: isolation, shuffling, repetition, and timeouts. All these techniques

are extremely handy and available through a convenient command-line flag. We learned how we

can use CTest to list tests, filter them, and control the output of test cases, but most importantly,

we now know the true power of adopting a standard solution across the board. Any project built

with CMake can be tested exactly the same, without investigating any details about its internals.

Testing Frameworks306

Next, we structured our project to simplify the process of testing and reuse the same object files

between production code and test runners. It was interesting to write our own test runner, but

maybe let’s focus on the actual problem our program should solve and invest time in embracing

a popular third-party testing framework.

Speaking of which, we learned the very basics of Catch2 and GoogleTest. We further dove into

details of the GMock library and understood how test doubles work to make true unit tests pos-

sible. Lastly, we set up some reporting with LCOV. After all, there’s nothing better than hard data

to prove that our solution is, in fact, fully tested.

In the next chapter, we’ll discuss more useful tooling to improve the quality of our source code

and find issues we didn’t even know existed.

Further reading
For more information, you can refer to the following links:

• CMake documentation on CTest:

https://cmake.org/cmake/help/latest/manual/ctest.1.html

• Catch2 documentation:

https://github.com/catchorg/Catch2/blob/devel/docs/

• GMock tutorial:

https://google.github.io/googletest/gmock_for_dummies.html

• Abseil:

https://abseil.io/

• Live at head with Abseil:
https://abseil.io/about/philosophy#we-recommend-that-you-choose-to-live-

at-head

• Why Abseil is becoming a dependency of GTest:

https://github.com/google/googletest/issues/2883

• Coverage in GCC:

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html

https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html

• Coverage in Clang:

https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://github.com/catchorg/Catch2/blob/devel/docs/
https://google.github.io/googletest/gmock_for_dummies.html
https://abseil.io/
https://abseil.io/about/philosophy#we-recommend-that-you-choose-to-live-at-head
https://abseil.io/about/philosophy#we-recommend-that-you-choose-to-live-at-head
https://github.com/google/googletest/issues/2883
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov-Data-Files.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html

Chapter 11 307

• LCOV documentation for command-line tools:
https://helpmanual.io/man1/lcov/

• LCOV project repository:

https://github.com/linux-test-project/lcov

• GCOV update functionality:

https://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html#Invoking-Gcov

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://helpmanual.io/man1/lcov/
https://github.com/linux-test-project/lcov
https://gcc.gnu.org/onlinedocs/gcc/Invoking-Gcov.html#Invoking-Gcov
https://discord.com/invite/vXN53A7ZcA

12
Program Analysis Tools

Producing high-quality code is not an easy task, even for highly experienced developers. By in-

cluding tests in our solution, we lower the chance of making basic mistakes in the main code.

But that won’t be enough to avoid more intricate problems. Every piece of software consists of

so many details that keeping track of them all becomes a full-time job. Various conventions and

specific design practices are established by teams responsible for maintaining the product.

Some questions relate to consistent coding style: should we use 80 or 120 columns in our code?

Should we allow std::bind or stick to lambda functions? Is it acceptable to use C-style arrays?

Should small functions be written in a single line? Should we always use auto, or only when it

improves readability? Ideally, we should steer clear of statements known to be generally incor-

rect: infinite loops, the use of identifiers reserved by a standard library, unintended data loss,

unnecessary if statements, and anything else that is not a “best practice” (see the Further reading

section for more information).

Another aspect to consider is code modernization. As C++ evolves, it introduces new features.

Keeping track of all the spots where we can update to the latest standard can be challenging.

Moreover, doing this manually takes time and increases the risk of introducing errors, especially

in a large code base. Finally, we should check how things operate when set into motion: running

the program and checking its memory. Is the memory properly released after use? Are we access-

ing data that was correctly initialized? Or does the code attempt to access non-existent pointers?

Managing all these challenges and questions manually is both time-consuming and prone to

errors. Fortunately, we can use automated tools to inspect and enforce rules, correct mistakes,

and bring our code up to date. It’s time to explore tools for program analysis. Our code will be

scrutinized during every build to make sure it meets industry standards.

Program Analysis Tools310

In this chapter, we’re going to cover the following main topics:

• Enforcing formatting

• Using static checkers

• Dynamic analysis with Valgrind

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch12.

To build the examples provided in this book, always use these recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths. As

a reminder, build tree is the path to target/output directory, and source tree is the path where

your source code is located.

Enforcing formatting
Professional developers usually follow rules. It’s said that senior developers know when to break

them because they can justify the need. On the flip side, very senior developers often avoid break-

ing rules to save time explaining their choices. The key is to focus on issues that genuinely affect

a product, rather than getting caught up in minor details.

When it comes to coding style and formatting, developers face many options: should we use tabs

or spaces for indentation? If spaces, how many? What should be the character limit in a column

or a file? These choices typically don’t change the program’s behavior but can trigger lengthy

discussions that add little value.

Common practices do exist, but debates often center on personal preference and anecdotal ev-

idence. For instance, choosing 80 characters per column over 120 is arbitrary. What matters is

maintaining a consistent style, as inconsistency can hinder the code’s readability. To ensure

consistency, it’s advisable to use a formatting tool like clang-format. This tool can notify us if

the code isn’t formatted correctly and even make corrections. Here’s an example command for

formatting code:

clang-format -i --style=LLVM filename1.cpp filename2.cpp

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch12
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch12

Chapter 12 311

The -i option instructs clang-format to edit files directly, while --style specifies the formatting

style to use, such as LLVM, Google, Chromium, Mozilla, WebKit, or a custom style provided in a file

(more details are available in the Further reading section).

Of course, we don’t want to execute this command manually every time we make a change; CMake

should handle this as part of the building process. We already know how to locate clang-format

on the system (we’ll need to install it manually beforehand). What we haven’t covered is how

to apply this external tool to all our source files. To do it, we’ll create a convenient function that

can be included from the cmake directory:

ch12/01-formatting/cmake/Format�cmake

function(Format target directory)
 find_program(CLANG-FORMAT_PATH clang-format REQUIRED)
 set(EXPRESSION h hpp hh c cc cxx cpp)
 list(TRANSFORM EXPRESSION PREPEND "${directory}/*.")
 file(GLOB_RECURSE SOURCE_FILES FOLLOW_SYMLINKS
 LIST_DIRECTORIES false ${EXPRESSION}
)
 add_custom_command(TARGET ${target} PRE_BUILD COMMAND
 ${CLANG-FORMAT_PATH} -i --style=file ${SOURCE_FILES}
)
endfunction()

The Format function accepts two arguments: target and directory. It will format all source files

from the directory, right before the target is built.

Technically, not all files in the directory must belong to the target, and the target’s sources could

be spread across multiple directories. However, tracking down all the source files and headers

related to the target is complicated, especially when we need to exclude headers from external

libraries. In this case, it’s easier to focus on directories than on logical targets. We can call the

function for each directory that needs formatting.

This function has the following steps:

1. Find the installed clang-format binary. The REQUIRED keyword will halt the configuration

with an error if the binary wasn’t found.

2. Create a list of file extensions to format (to be used as a globbing expression).

3. Prepend each expression with a path to directory.

4. Search recursively for sources and headers (using the previously created list), put found

file paths into the SOURCE_FILES variable (but skip any directory paths found)

Program Analysis Tools312

5. Attach the formatting command to the PRE_BUILD step of target.

This approach works well for small to medium-sized code bases. For larger code bases, we might

need to convert absolute file paths to relative ones and run the formatting command, using the

directory as a working directory. This could be necessary due to character limits in shell commands,

which usually cap at around 13,000 characters.

Let’s explore how to use this function in practice. Here’s our project structure:

- CMakeLists.txt

- .clang-format

- cmake

 |- Format.cmake

- src

 |- CMakeLists.txt

 |- header.h

 |- main.cpp

First, we set up the project and add the cmake directory to the module path for later inclusion:

ch12/01-formatting/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Formatting CXX)

enable_testing()

list(APPEND CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")

add_subdirectory(src bin)

Next, we populate the listfile for the src directory:

ch12/01-formatting/src/CMakeLists�txt

add_executable(main main.cpp)

include(Format)

Format(main .)

This is straightforward. We create an executable target named main, include the Format.cmake

module, and call the Format() function for the main target in the current directory (src).

Now, we need some unformatted source files. The header contains a simple unused function:

ch12/01-formatting/src/header�h

int unused() { return 2 + 2; }

Chapter 12 313

We’ll also include a source file with excessive, incorrect whitespace:

ch12/01-formatting/src/main�cpp

#include <iostream>

 using namespace std;

 int main() {

 cout << "Hello, world!" << endl;

 }

Almost there. We just need the formatter’s configuration file, enabled via the --style=file

command-line argument:

ch12/01-formatting/�clang-format

BasedOnStyle: Google

ColumnLimit: 140

UseTab: Never

AllowShortLoopsOnASingleLine: false

AllowShortFunctionsOnASingleLine: false

AllowShortIfStatementsOnASingleLine: false

ClangFormat will scan the parent directories for the .clang-format file, which specifies the

exact formatting rules. This lets us customize every detail. In my case, I’ve started with Google’s

coding style and made a few adjustments: a 140-character column limit, no tabs, and no short

loops, functions, or if statements on a single line.

After building the project (formatting occurs automatically before compilation), our files look

like this:

ch12/01-formatting/src/header�h (formatted)

int unused() {

 return 2 + 2;

}

The header file was formatted, even though it isn’t used by the target. Short functions can’t be

on a single line, and as expected, new lines were added. The main.cpp file also looks pretty slick

now. Unneeded whitespace is gone, and indentations are standardized:

ch12/01-formatting/src/main�cpp (formatted)

#include <iostream>

using namespace std;

int main() {

Program Analysis Tools314

 cout << "Hello, world!" << endl;

}

Automating formatting saves time during code reviews. If you’ve ever had to amend a commit

just because of whitespace issues, you know the relief this brings. Consistent formatting keeps

your code clean effortlessly.

Although the formatter excels in making code visually consistent, it’s not a comprehensive program

analysis tool. For more advanced needs, other utilities designed for static analysis are necessary.

Using static checkers
Static program analysis involves examining source code without running the compiled version.

Consistently using static checkers can significantly improve code quality by making it more

consistent and less susceptible to bugs and known security vulnerabilities. The C++ community

offers a wide range of static checkers like Astrée, clang-tidy, CLazy, CMetrics, Cppcheck, Cpplint,

CQMetrics, ESBMC, FlawFinder, Flint, IKOS, Joern, PC-Lint, Scan-Build, Vera++, and more.

Many of these tools recognize CMake as an industry standard and offer ready-to-use support or

integration tutorials. Some build engineers prefer not to write CMake code and instead include

static checkers through external modules available online. An example is the collection by Lars

Bilke on his GitHub repository: https://github.com/bilke/cmake-modules.

A common belief is that setting up static checkers is complicated. This perception exists because

static checkers often emulate the behavior of a real compiler to understand the code. But it doesn’t

have to be difficult.

Cppcheck outlines the following simple steps in its manual:

1. Locate the static checker’s executable.

2. Generate a compile database with the following:

• cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON.

Applying formatting to an entire code base will most likely introduce a big one-off

change to the majority of the files in the repository. This may cause a lot of merge

conflicts if you (or your teammates) have some ongoing work. It’s best to coordi-

nate such efforts to happen after all pending changes are done. If this isn’t possible,

consider gradual adoption, perhaps on a per-directory basis. Your teammates will

appreciate it.

https://github.com/bilke/cmake-modules

Chapter 12 315

3. Run the checker using the generated JSON file:

• <path-to-cppcheck> --project=compile_commands.json

These steps should be integrated into the build process to ensure they are not overlooked.

Since CMake knows how to build our targets, can it also support any static checkers? Absolutely,

and it’s easier than you might think. CMake allows you to enable checkers on a per-target basis

for the following tools:

• include-what-you-use (https://include-what-you-use.org)

• clang-tidy (https://clang.llvm.org/extra/clang-tidy)

• Link What You Use (a built-in CMake checker)

• Cpplint (https://github.com/cpplint/cpplint)

• Cppcheck (https://cppcheck.sourceforge.io)

To enable these checkers, set a target property to a semicolon-separated list containing the path

to the checker’s executable and any command-line options to forward:

• <LANG>_CLANG_TIDY

• <LANG>_CPPCHECK

• <LANG>_CPPLINT

• <LANG>_INCLUDE_WHAT_YOU_USE

• LINK_WHAT_YOU_USE

Replace <LANG> with C for C sources and CXX for C++. If you want to enable a checker for all project

targets, set a global variable prefixed with CMAKE_ – for example:

set(CMAKE_CXX_CLANG_TIDY /usr/bin/clang-tidy-3.9;-checks=*)

Any target defined after this statement will have its CXX_CLANG_TIDY property set to this value.

Remember that enabling this analysis may slightly extend your build time. On the other hand,

having more detailed control over how targets are tested by the checker can be useful. We can

create a straightforward function to handle this:

ch12/02-clang-tidy/cmake/ClangTidy�cmake

function(AddClangTidy target)

 find_program(CLANG-TIDY_PATH clang-tidy REQUIRED)

 set_target_properties(${target}

 PROPERTIES CXX_CLANG_TIDY

 "${CLANG-TIDY_PATH};-checks=*;--warnings-as-errors=*"

https://include-what-you-use.org
https://clang.llvm.org/extra/clang-tidy
https://github.com/cpplint/cpplint
https://cppcheck.sourceforge.io

Program Analysis Tools316

)

endfunction()

The AddClangTidy function follows two basic steps:

1. Locate the clang-tidy binary and store its path in CLANG-TIDY_PATH. The REQUIRED key-

word ensures that configuration stops with an error if the binary is not found.

2. Enable clang-tidy for the target by providing the binary path and specific options to

activate all checks and treat warnings as errors.

To use this function, we just need to include the module and call it for the chosen target:

ch12/02-clang-tidy/src/CMakeLists�txt

add_library(sut STATIC calc.cpp run.cpp)

target_include_directories(sut PUBLIC .)

add_executable(bootstrap bootstrap.cpp)

target_link_libraries(bootstrap PRIVATE sut)

include(ClangTidy)

AddClangTidy(sut)

This approach is concise and very effective. When building the solution, the clang-tidy output

will appear as follows:

[6%] Building CXX object bin/CMakeFiles/sut.dir/calc.cpp.o
/root/examples/ch12/04-clang-tidy/src/calc.cpp:3:11: warning: method 'Sum'
can be made static [readability-convert-member-functions-to-static]
int Calc::Sum(int a, int b) {
 ^
[12%] Building CXX object bin/CMakeFiles/sut.dir/run.cpp.o
/root/examples/ch12/04-clang-tidy/src/run.cpp:1:1: warning: #includes are
not sorted properly [llvm-include-order]
#include <iostream>
^ ~~~~~~~~~~
/root/examples/ch12/04-clang-tidy/src/run.cpp:3:1: warning: do not use
namespace using-directives; use using-declarations instead [google-build-
using-namespace]
using namespace std;
^
/root/examples/ch12/04-clang-tidy/src/run.cpp:6:3: warning: initializing
non-owner 'Calc *' with a newly created 'gsl::owner<>' [cppcoreguidelines-
owning-memory]

Chapter 12 317

 auto c = new Calc();

 ^

Note that unless you add the --warnings-as-errors=* option to the command-line arguments,

the build will succeed. Organizations should decide on a set of rules that must be strictly followed

to prevent non-compliant code from entering the repository.

clang-tidy also offers a useful --fix option that automatically corrects your code when possible.

This feature is a valuable time-saver and is particularly helpful when expanding the list of checks.

Just like with formatting, be cautious of merge conflicts when adding changes made by static

analysis tools to existing code bases.

Depending on your situation, the repository size, and team preferences, you should select a handful

of checkers that best suit your needs. Including too many can become disruptive. Here’s a brief

overview of the checkers supported by CMake right out of the box.

clang-tidy
Here’s what the official website says about clang-tidy:

The tool is quite versatile, offering more than 400 checks. It pairs well with ClangFormat, enabling

automatically applied fixes (over 150 are available) to conform to the same format file. The checks

it offers cover performance, readability, modernization, C++ core guidelines, and bug-prone areas.

Cpplint
Here’s a description of Cpplint from its official website:

clang-tidy is a clang-based C++ “linter” tool. Its purpose is to provide an extensible

framework for diagnosing and fixing typical programming errors, like style viola-

tions, interface misuse, or bugs that can be deduced via static analysis. clang-tidy

is modular and provides a convenient interface for writing new checks.

Cpplint is a command-line tool to check C/C++ files for style issues following Goo-

gle’s C++ style guide. Cpplint is developed and maintained by Google Inc. at google/

styleguide.

Program Analysis Tools318

This linter aims to align your code with Google’s style guide. Written in Python, it may introduce

an unwanted dependency for some projects. The fixes are offered in formats consumable by Emacs,

Eclipse, VS7, Junit, and as sed commands.

Cppcheck
Here’s what the official website says about Cppcheck:

This tool is particularly good for minimizing false positives, making it a reliable option for code

analysis. It has been around for over 14 years and is still actively maintained. It’s especially useful

if your code is not compatible with Clang.

include-what-you-use
Here’s a description of include-what-you-use from its official website:

While having too many included headers may not seem like a significant issue in small projects,

the time saved from avoiding needless compilation of header files can quickly accumulate in

larger projects.

Link What You Use
Here is a description of “Link what you use” on CMake's blog:

Cppcheck is a static analysis tool for C/C++ code. It provides unique code analysis

to detect bugs and focuses on detecting undefined behaviour and dangerous coding

constructs. The goal is to have very few false positives. Cppcheck is designed to be

able to analyze your C/C++ code even if it has non-standard syntax (common in

embedded projects).

The main goal of include-what-you-use is to remove superfluous #includes. It does

this both by figuring out what #includes are not actually needed for this file (for

both .cc and .h files), and replacing #includes with forward-declares when possible.

This is a built in CMake feature that uses options of ld and ldd to print out if exe-

cutables link more libraries than they actually require.

Chapter 12 319

Static analysis plays a crucial role in industries like medicine, nuclear power, aviation, automotive,

and machinery, where software errors could be life-threatening. Wise developers also adopt these

practices in less critical environments, especially when the costs are low. Using static analysis

during the build process is not only more cost-effective than manual bug finding and fixing, but

it’s also easy to enable with CMake. I’d go as far as to say that there’s almost no reason to skip

these checks in any quality-sensitive software, which includes any software involving people

other than just the developer.

This feature also helps speed up the build time by focusing on eliminating unneeded binary arti-

facts. Unfortunately, not all bugs can be detected before running a program. Luckily, we can take

additional steps to gain a deeper understanding of our projects, like using Valgrind.

Dynamic analysis with Valgrind
Valgrind (https://www.valgrind.org) is an *nix instrumentation framework for building dy-

namic analysis utilities, which means it performs analysis during a program’s runtime. It comes

with a wide range of tools for various types of investigations and checks. Some of the tools include:

• Memcheck: detects memory management problems

• Cachegrind: profiles CPU caches, and identifies cache misses and other issues

• Callgrind: an extension of Cachegrind that provides extra information on call graphs

• Massif: a heap profiler that shows how different parts of the program use the heap over

time

• Helgrind: a thread debugger for data race issues

• DRD: a lighter, more limited version of Helgrind

Each tool on this list is highly useful when the situation calls for it. Most system package manag-

ers know Valgrind and can install it on your OS with ease. If you’re using Linux, it may already

be installed. Additionally, the official website provides the source code for those who prefer to

build it themselves.

Our discussion will primarily focus on Memcheck, the most commonly used tool in the Valgrind

suite (when developers refer to Valgrind, they often mean Valgrind's Memcheck). We’ll explore

how to use it with CMake, which will make it easier to adopt other tools from the suite if you find

them necessary later on.

https://www.valgrind.org

Program Analysis Tools320

Memcheck
Memcheck is invaluable for debugging memory issues, a topic that can be especially complex in

C++. Programmers have extensive control over memory management, making various mistakes

possible. These can range from reading unallocated or already freed memory to freeing memory

multiple times, and even writing to incorrect addresses. These bugs can easily go unnoticed and

creep into even straightforward programs. Sometimes, a single forgotten variable initialization

is all it takes to run into trouble.

Invoking Memcheck looks like this:

valgrind [valgrind-options] tested-binary [binary-options]

Memcheck is Valgrind's default tool, but you can also explicitly specify it like so:

valgrind --tool=memcheck tested-binary

Running Memcheck can slow down your program considerably; the manual (see the link in Further

reading) says that programs instrumented with it can be 10–15 times slower. To avoid waiting

for Valgrind every time we run tests, we’ll create a separate target that will be called from the

command line whenever we need to test our code. Ideally, this will be done before any new code

is merged into the main code base. You can include this step in an early Git hook or as part of your

Continuous Integration (CI) pipeline.

To create a custom target for Valgrind, you can use this command after the CMake generation stage:

cmake --build <build-tree> -t valgrind

Here’s how you can add such a target in CMake:

ch12/03-valgrind/cmake/Valgrind�cmake

function(AddValgrind target)

 find_program(VALGRIND_PATH valgrind REQUIRED)

 add_custom_target(valgrind

 COMMAND ${VALGRIND_PATH} --leak-check=yes

 $<TARGET_FILE:${target}>

 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}

)

endfunction()

Chapter 12 321

In this example, we define a CMake function named AddValgrind that takes the target to be tested

(we’ll be able to reuse it across projects). Two main things occur here:

1. CMake checks default system paths for the valgrind executable and stores its path in the

VALGRIND_PATH variable. The REQUIRED keyword will halt the configuration with an error

if the binary isn’t found.

2. A custom target, valgrind, is created. It runs Memcheck on the specified binary, with an

option to always check for memory leaks.

Valgrind options can be set in various ways:

• In the ~/.valgrindrc file (in your home directory)

• Through the $VALGRIND_OPTS environment variable

• In the ./.valgrindrc file (in the working directory)

These are checked in that order. Also, note that the last file will only be considered if it belongs to

the current user, is a regular file, and isn’t marked as world-writable. This is a safety mechanism,

as options given to Valgrind can be potentially harmful.

To use the AddValgrind function, we provide it with a unit_tests target, as we want to run it in

a finely controlled environment like unit tests:

ch12/03-valgrind/test/CMakeLists�txt (fragment)

...

add_executable(unit_tests calc_test.cpp run_test.cpp)

...

include(Valgrind)

AddValgrind(unit_tests)

Remember that generating build trees with the Debug config allows Valgrind to tap into the

debug information, making its output much clearer.

Let’s see how this works in practice:

cmake -B <build tree> -S <source tree> -DCMAKE_BUILD_TYPE=Debug

cmake --build <build-tree> -t valgrind

Program Analysis Tools322

This configures the project, builds the sut and unit_tests targets, and starts the execution of

Memcheck, which will provide us with general information:

[100%] Built target unit_tests

==954== Memcheck, a memory error detector

==954== Copyright (C) 2002-2017, and GNU GPL'd, by Julian Seward et al.

==954== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info

==954== Command: ./unit_tests

The ==954== prefix contains the process ID, helping to distinguish Valgrind commentary from

the output of the tested process.

Next, tests are run as usual with gtest:

[==========] Running 3 tests from 2 test suites.

[----------] Global test environment set-up.

...

[==========] 3 tests from 2 test suites ran. (42 ms total)

[PASSED] 3 tests.

At the end, a summary is presented:

==954==

==954== HEAP SUMMARY:

==954== in use at exit: 1 bytes in 1 blocks

==954== total heap usage: 209 allocs, 208 frees, 115,555 bytes allocated

Uh-oh! We are still using at least 1 byte. Allocations made with malloc() and new aren’t matched

with the appropriate free() and delete operations. It seems we have a memory leak in our pro-

gram. Valgrind provides more details to find it:

==954== 1 bytes in 1 blocks are definitely lost in loss record 1 of 1

==954== at 0x483BE63: operator new(unsigned long) (in /usr/lib/x86_64-
linux-gnu/valgrind/vgpreload_memcheck-amd64-linux.so)

==954== by 0x114FC5: run() (run.cpp:6)

==954== by 0x1142B9: RunTest_RunOutputsCorrectEquations_
Test::TestBody() (run_test.cpp:14)

Chapter 12 323

Lines starting with by 0x<address> indicate individual functions in a call stack. I’ve truncated

the output (it had some noise from GTest) to focus on the interesting bit – the topmost function

and source reference, run()(run.cpp:6):

Finally, the summary is found at the bottom:

==954== LEAK SUMMARY:

==954== definitely lost: 1 bytes in 1 blocks

==954== indirectly lost: 0 bytes in 0 blocks

==954== possibly lost: 0 bytes in 0 blocks

==954== still reachable: 0 bytes in 0 blocks

==954== suppressed: 0 bytes in 0 blocks

==954==

==954== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Valgrind is excellent at finding complex issues. Sometimes, it can dig even deeper to find issues

that aren’t easily categorized. These will show up in the “possibly lost" row.

Let’s see what the issue found by Memcheck was in this case:

ch12/03-valgrind/src/run�cpp

#include <iostream>

#include "calc.h"

using namespace std;

int run() {

 auto c = new Calc();

 cout << "2 + 2 = " << c->Sum(2, 2) << endl;

 cout << "3 * 3 = " << c->Multiply(3, 3) << endl;

 return 0;

}

That’s right: the highlighted code is faulty. We do, in fact, create an object that isn’t deleted before

the test ends. This is the exact reason why having extensive test coverage is so important.

Valgrind is a helpful tool, but its output can become overwhelming in complex programs. There

is a way to manage this information more efficiently – it’s the Memcheck-Cover project.

Program Analysis Tools324

Memcheck-Cover
Commercial IDEs like CLion can directly parse Valgrind's output, making it easier to navigate

through a graphical interface without having to scroll in the console. If your editor lacks this

feature, a third-party report generator can offer a clearer view. Memcheck-Cover, developed by

David Garcin, gives a better experience by creating an HTML file, as shown in the following figure:

Figure 12.1: A report generated by Memcheck-Cover

This neat little project is available on GitHub (https://github.com/Farigh/memcheck-cover);

it requires Valgrind and gawk (the GNU AWK tool). To use it, we’ll prepare a setup function in a

separate CMake module. It will consist of two parts:

1. Fetching and configuring the tool

2. Adding a custom target to run Valgrind and generate a report

https://github.com/Farigh/memcheck-cover

Chapter 12 325

Here’s how the configuration looks:

ch12/04-memcheck/cmake/Memcheck�cmake

function(AddMemcheck target)

 include(FetchContent)

 FetchContent_Declare(

 memcheck-cover

 GIT_REPOSITORY https://github.com/Farigh/memcheck-cover.git

 GIT_TAG release-1.2

)

 FetchContent_MakeAvailable(memcheck-cover)

 set(MEMCHECK_PATH ${memcheck-cover_SOURCE_DIR}/bin)

In the first part, we follow the same practices as with a regular dependency: include the

FetchContent module, and specify the project’s repository and desired Git tag with FetchContent_

Declare. Next, we initiate the fetch process and configure the binary path, using the memcheck-

cover_SOURCE_DIR variable set by FetchContent_Populate (called implicitly by FetchContent_

MakeAvailable).

The second part of the function is creating the target to generate reports. We’ll call it memcheck

(so that it doesn’t overlap with the previous valgrind target if we want to keep both options for

some reason):

ch12/04-memcheck/cmake/Memcheck�cmake (continued)

 add_custom_target(memcheck

 COMMAND ${MEMCHECK_PATH}/memcheck_runner.sh -o

 "${CMAKE_BINARY_DIR}/valgrind/report"

 -- $<TARGET_FILE:${target}>

 COMMAND ${MEMCHECK_PATH}/generate_html_report.sh

 -i "${CMAKE_BINARY_DIR}/valgrind"

 -o "${CMAKE_BINARY_DIR}/valgrind"

 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}

)

endfunction()

This happens in two commands:

1. First, we’ll run the memcheck_runner.sh wrapper script, which will execute Valgrind's

Memcheck and collect the output to the file provided with the -o argument.

Program Analysis Tools326

2. Then, we’ll parse the output and create the report with generate_html_report.sh. This

script requires input and output directories provided with the -i and -o arguments.

Both steps should be executed in the CMAKE_BINARY_DIR working directory so that the unit test

binary can access files through relative paths if needed.

The last thing we need to add to our listfiles is, of course, a call to this function:

ch12/04-memcheck/test/CMakeLists�txt (fragment)

include(Memcheck)

AddMemcheck(unit_tests)

After generating a buildsystem with the Debug config, we can build the target with the following:

cmake -B <build tree> -S <source tree> -DCMAKE_BUILD_TYPE=Debug

cmake --build <build-tree> -t memcheck

Then, we can enjoy our formatted report, generated as an HTML page.

Summary
“You’ll spend more time reading code than writing it, so optimize for readability over writability.”

This principle is often echoed in various books on clean code. It’s supported by the experiences of

many software developers, which is why even small details like the number of spaces, newlines,

and the order of #import statements are standardized. This standardization isn’t just for the

sake of being meticulous; it’s about saving time. Following the practices in this chapter, you can

forget about manually formatting code. It gets automatically formatted when you build, a step

you’d do anyway to test the code. With ClangFormat, you can make sure the formatting is up to

the standard of your choosing.

Going beyond simple whitespace adjustments, code should also meet numerous other guidelines.

That’s where clang-tidy comes in. It helps enforce coding that your team or organization agreed

on. We discussed this static checker in depth and also touched on other options like Cpplint,

Cppcheck, include-what-you-use, and Link What You Use. Since static linkers are relatively fast,

we can add them to our builds with little investment, and it will usually be well worth the price.

We also examined Valgrind utilities, focusing on Memcheck to identify issues with memory man-

agement, such as incorrect reads and writes. This tool is invaluable for avoiding hours of manual

debugging and keeping bugs out of a production environment. We introduced a way to make

Valgrind's output more user-friendly with Memcheck-Cover, an HTML report generator. This is

especially useful in environments where running an IDE is not possible, like CI pipelines.

Chapter 12 327

This chapter is just a starting point. Many other tools, both free and commercial, are available to

help you with code quality. Explore them to find what suits you best. In the next chapter, we’ll

dive into generating documentation.

Further reading
For more information, you can refer to the following links:

• C++ Core guidelines, curated by Bjarne Stroustrup, author of C++: https://github.com/

isocpp/CppCoreGuidelines

• The ClangFormat reference: https://clang.llvm.org/docs/ClangFormat.html

• Static analyzers for C++ – a curated list: https://github.com/analysis-tools-dev/

static-analysis#cpp

• Built-in static checker support in CMake: https://blog.kitware.com/static-checks-

with-cmake-cdash-iwyu-clang-tidy-lwyu-cpplint-and-cppcheck/

• A target property enabling clang-tidy: https://cmake.org/cmake/help/latest/prop_

tgt/LANG_CLANG_TIDY.html

• The Valgrind manual: https://www.valgrind.org/docs/manual/manual-core.html

Leave a review!
Enjoying this book? Help readers like you by leaving an Amazon review. Scan the QR code below

to get a free eBook of your choice.

https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://clang.llvm.org/docs/ClangFormat.html
https://github.com/analysis-tools-dev/static-analysis#cpp
https://github.com/analysis-tools-dev/static-analysis#cpp
https://blog.kitware.com/static-checks-with-cmake-cdash-iwyu-clang-tidy-lwyu-cpplint-and-cppcheck/
https://blog.kitware.com/static-checks-with-cmake-cdash-iwyu-clang-tidy-lwyu-cpplint-and-cppcheck/
https://cmake.org/cmake/help/latest/prop_tgt/LANG_CLANG_TIDY.html
https://cmake.org/cmake/help/latest/prop_tgt/LANG_CLANG_TIDY.html
https://www.valgrind.org/docs/manual/manual-core.html

13
Generating Documentation

High-quality code is not only well written, working, and tested—it is also thoroughly document-

ed. Documentation allows us to share information that might otherwise get lost, draw a bigger

picture, give context, reveal intent, and—finally—educate both external users and maintainers.

Do you remember the last time you joined a new project and got lost for hours in a maze of direc-

tories and files? This can be avoided. Truly excellent documentation leads a complete newcomer

to the exact line of code they’re looking for in seconds. Sadly, the issue of missing documentation

is often overlooked. No wonder—it takes considerable skill, and many of us aren’t very good at

it. Furthermore, documentation and code can quickly become outdated. Unless a strict update

and review process is implemented, it’s easy to forget that documentation needs attention too.

Some teams (in the interest of time or because they are encouraged to do so by managers) follow

a practice of writing self-documenting code. By choosing meaningful, readable identifiers for file-

names, functions, variables, and so on, they hope to avoid the chore of documenting. Even the

best function signatures don’t ensure that all necessary information is conveyed—for example,

int removeDuplicates(); is descriptive, but it doesn’t reveal what is returned. It could be the

number of duplicates found, the number of items remaining, or something else—it’s unclear.

While the habit of good naming is absolutely correct, it cannot replace the act of conscientious

documentation. Remember: there’s no such thing as a free lunch.

To make things easier, professionals use automatic documentation generators that analyze code

and comments in source files to produce comprehensive documentation in various formats. Add-

ing such generators to a CMake project is very simple—let’s see how!

Generating Documentation330

In this chapter, we’re going to cover the following main topics:

• Adding Doxygen to your project

• Generating documentation with a modern look

• Enhancing output with custom HTML

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch13.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths.

As a reminder: build tree is the path to the target/output directory, and source tree is the path

at which your source code is located.

Adding Doxygen to your project
One of the most established and popular tools for generating documentation from C++ sources

is Doxygen. And when I say “established,” I mean it: the first version was released by Dimitri van

Heesch in October 1997. Since then, it has grown immensely and is actively supported by almost

250 contributors to its repository (https://github.com/doxygen/doxygen).

You might be concerned about the challenge of incorporating Doxygen into larger projects that

haven’t used documentation generation from the start. Indeed, the task of annotating every func-

tion can appear overwhelming. However, I encourage you to start small. Focus on documenting

elements you’ve recently worked on in your latest commits. Remember, even partially complete

documentation is a step forward compared to none at all, and it gradually helps in building a

more comprehensive understanding of your project.

Doxygen can produce documentation in the following formats:

• HyperText Markup Language (HTML)

• Rich Text Format (RTF)

• Portable Document Format (PDF)

• Lamport TeX (LaTeX)

• PostScript (PS)

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch13
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch13
https://github.com/doxygen/doxygen

Chapter 13 331

• Unix manual (man pages)

• Microsoft Compiled HTML Help (.CHM)

If you annotate your code with comments providing additional information in the format speci-

fied by Doxygen, it will parse them to enrich the output file. Moreover, the code structure will be

analyzed to produce helpful charts and diagrams. The latter is optional, as it requires the external

Graphviz tool (https://graphviz.org/).

The developer should first consider the following question: Will the users of the project only receive

the documentation, or will they generate it themselves (perhaps when building from source)? The first

option implies that documentation is distributed with the binaries, available online, or (less

elegantly) checked in with the source code into the repository.

This consideration matters because if you want users to generate documentation during the build,

they will need the dependencies present in their system. This isn’t a significant problem since

Doxygen and Graphviz are available through most package managers, and all that’s required is

a simple command, such as this one for Debian:

apt-get install doxygen graphviz

Binaries are also available for Windows (check the project’s website in the Further reading section).

However, some users might not be comfortable installing this tooling. We must decide whether

to generate documentation for users or have them add the dependencies if needed. The project
could automatically add them for users as well, as described in Chapter 9, Managing Dependencies
in CMake. Note that Doxygen is built with CMake, so you already know how to compile it from
sources if needed.

When Doxygen and Graphviz are installed in the system, we can add the generation to our project.
Contrary to what some online sources suggest, this isn’t as difficult or involved as it might seem.
We don’t need to create external configuration files, provide paths to the Doxygen executable,
or add custom targets. Since CMake 3.9, we can use the doxygen_add_docs() function from the

FindDoxygen find-module, which sets up the documentation target.

The signature looks like this:

doxygen_add_docs(targetName [sourceFilesOrDirs...]

 [ALL] [WORKING_DIRECTORY dir] [COMMENT comment])

The first argument specifies the target name, which we need to build explicitly with the -t argu-

ment to cmake (after generating a build tree), as follows:

cmake --build <build-tree> -t targetName

https://graphviz.org/

Generating Documentation332

Or, we can ensure that the documentation is always built by adding the ALL argument, although

this is usually not necessary. The WORKING_DIRECTORY option is straightforward; it specifies the

directory where the command should be run. The value set by the COMMENT option is displayed

before the documentation generation starts, providing useful information or instructions.

We’ll follow the practice from previous chapters and create a utility module with a helper function

(so it can be reused in other projects), as follows:

ch13/01-doxygen/cmake/Doxygen�cmake

function(Doxygen input output)

 find_package(Doxygen)

 if (NOT DOXYGEN_FOUND)

 add_custom_target(doxygen COMMAND false

 COMMENT "Doxygen not found")

 return()

 endif()

 set(DOXYGEN_GENERATE_HTML YES)

 set(DOXYGEN_HTML_OUTPUT

 ${PROJECT_BINARY_DIR}/${output})

 doxygen_add_docs(doxygen

 ${PROJECT_SOURCE_DIR}/${input}

 COMMENT "Generate HTML documentation"

)

endfunction()

The function accepts two arguments—input and output directories—and creates a custom

doxygen target. Here’s what happens:

1. First, we use CMake’s built-in Doxygen find-module to determine whether Doxygen is

available in the system.

2. If it isn’t available, we create a dummy doxygen target that informs the user and runs a

false command, which (on Unix-like systems) returns 1, causing the build to fail. We

terminate the function at that point with return().

3. If Doxygen is available, we configure it to generate HTML output in the provided output

directory. Doxygen is extremely configurable (find out more in the official documentation).

To set any option, simply follow the example by calling set() and prepend its name with

DOXYGEN_.

Chapter 13 333

4. Set up the actual doxygen target. All the DOXYGEN_ variables will be forwarded to Doxy-

gen’s configuration file, and documentation will be generated from the provided input

directory in the source tree.

If your documentation is to be generated by users, step 2 should probably involve installing Dox-

ygen instead.

To use this function, we can incorporate it into the main listfile of our project as follows:

ch13/01-doxygen/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Doxygen CXX)

enable_testing()

list(APPEND CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")

add_subdirectory(src bin)

include(Doxygen)

Doxygen(src docs)

Not difficult at all! Building the doxygen target generates HTML documentation that looks like this:

Figure 13.1: Class reference generated with Doxygen

Generating Documentation334

To add important details in Member Function Documentation, we can precede the C++ method

declaration with an appropriate comment in the header file, like so:

ch13/01-doxygen/src/calc�h (fragment)

 /**

 Multiply... Who would have thought?

 @param a the first factor

 @param b the second factor

 @result The product

 */

 int Multiply(int a, int b);

This format is known as Javadoc. It is important to begin the comment block with double aster-

isks: /**. More information can be found in the description of Doxygen’s docblocks (see the link

in the Further reading section). The Multiply function with such annotations will be rendered

as shown in the following figure:

Figure 13.2: Annotations of the parameters and result

Chapter 13 335

As mentioned earlier, if Graphviz is installed, Doxygen will detect it and generate dependency

diagrams, as illustrated here:

Figure 13.3: Inheritance and collaboration diagrams generated by Doxygen

By generating documentation directly from the source code, we establish a process that enables

quick updates in tandem with any code changes during the development cycle. Also, any over-

looked updates in the comments are likely to be noticed during code review.

Many developers express concerns that the design provided by Doxygen appears dated, making

them hesitant to showcase the generated documentation to their clients. However, there is a

simple solution to this issue.

Generating Documentation336

Generating documentation with a modern look
Having your project documented with a clean, fresh design is important. After all, if we put all

this work into writing high-quality documentation for our cutting-edge project, it is imperative

that the user perceives it as such. Although Doxygen is feature-rich, it isn’t renowned for adhering

to the latest visual trends. However, revamping its appearance doesn’t require substantial effort.

Luckily, a developer named jothepro created a theme called doxygen-awesome-css, which offers

a modern, customizable design. This theme is presented in the following screenshot:

Figure 13.4: HTML documentation in doxygen-awesome-css theme

The theme doesn’t require any additional dependencies and can be easily fetched from its GitHub

page at https://github.com/jothepro/doxygen-awesome-css.

While some online sources recommend using a combination of applications, like

transforming Doxygen’s output with Sphinx via Breathe and Exhale extensions, this

method can be complex and dependency-heavy (requiring Python, for example).

A simpler approach is usually more practical, particularly for teams where not all

members are deeply familiar with CMake.

https://github.com/jothepro/doxygen-awesome-css

Chapter 13 337

We can efficiently implement this theme with an automated process. Let’s see how we can extend

our Doxygen.cmake file to use it by adding a new macro:

ch13/02-doxygen-nice/cmake/Doxygen�cmake (fragment)

macro(UseDoxygenAwesomeCss)

 include(FetchContent)

 FetchContent_Declare(doxygen-awesome-css

 GIT_REPOSITORY

 https://github.com/jothepro/doxygen-awesome-css.git

 GIT_TAG

 V2.3.1

)

 FetchContent_MakeAvailable(doxygen-awesome-css)

 set(DOXYGEN_GENERATE_TREEVIEW YES)

 set(DOXYGEN_HAVE_DOT YES)

 set(DOXYGEN_DOT_IMAGE_FORMAT svg)

 set(DOXYGEN_DOT_TRANSPARENT YES)

 set(DOXYGEN_HTML_EXTRA_STYLESHEET

 ${doxygen-awesome-css_SOURCE_DIR}/doxygen-awesome.css)

endmacro()

We already know all of these commands from previous chapters of the book, but let’s reiterate

what happens for perfect clarity:

1. Fetching doxygen-awesome-css from Git using the FetchContent module

2. Configuring extra options for Doxygen (these are specifically recommended by the theme’s

README file)

3. Copying the theme’s css file to Doxygen’s output directory

As you can imagine, it’s best to call this macro in the Doxygen function right before doxygen_add_

docs(), like this:

ch13/02-doxygen-nice/cmake/Doxygen�cmake (fragment)

function(Doxygen input output)

...

 UseDoxygenAwesomeCss()

 doxygen_add_docs (...)

endfunction()

Generating Documentation338

macro(UseDoxygenAwesomeCss)

...

endmacro()

Remember, all variables in macros are set in the scope of the calling function.

We can now enjoy a modern style in our generated HTML documentation and share it proudly

with the world. However, our theme offers some JavaScript modules to enhance the experience.

How do we include them?

Enhancing output with custom HTML
Doxygen Awesome offers a few additional features that can be enabled by including a few JavaS-

cript snippets in the documentation header, within the HTML <head> tags. They can be quite

useful, as they allow switching between light and dark mode, adding a Copy button for code

snippets, paragraph-header permalinks, and an interactive table of contents.

However, implementing these features requires copying additional code to the output directory

and including it in the generated HTML files.

Here is the JavaScript code to be included just before the </head> tag:

ch13/cmake/extra_headers

<script type="text/javascript" src="$relpath^doxygen-awesome-darkmode-
toggle.js"></script>

<script type="text/javascript" src="$relpath^doxygen-awesome-fragment-
copy-button.js"></script>

<script type="text/javascript" src="$relpath^doxygen-awesome-paragraph-
link.js"></script>

<script type="text/javascript" src="$relpath^doxygen-awesome-interactive-
toc.js"></script>

<script type="text/javascript">

 DoxygenAwesomeDarkModeToggle.init()

 DoxygenAwesomeFragmentCopyButton.init()

 DoxygenAwesomeParagraphLink.init()

 DoxygenAwesomeInteractiveToc.init()

</script>

Chapter 13 339

As you can see, this code will first include a few JavaScript files and then initialize different exten-

sions. Unfortunately, this code cannot be simply added to a variable somewhere. Instead, we’ll

need to override the default header with a custom file. Such an override can be done by providing

a path to this file in the Doxygen’s HTML_HEADER configuration variable.

To create a custom header without hardcoding the entire content, you can use Doxygen’s com-

mand-line tool to generate a default header file and edit it before generating the documentation:

doxygen -w html header.html footer.html style.css

Although we won’t be using or changing the footer.html or style.css, they are required argu-

ments, so we need to create them anyway.

Finally, we need to automatically prepend the </head> tag with the contents of the ch13/cmake/

extra_headers file to include the required JavaScript. This can be done with the Unix com-

mand-line tool sed, which will edit the header.html file in place:

sed -i '/<\/head>/r ch13/cmake/extra_headers' header.html

Now we need to codify those steps in CMake language. Here’s the macro that achieves that:

ch13/02-doxygen-nice/cmake/Doxygen�cmake (fragment)

macro(UseDoxygenAwesomeExtensions)

 set(DOXYGEN_HTML_EXTRA_FILES
 ${doxygen-awesome-css_SOURCE_DIR}/doxygen-awesome-darkmode-toggle.js
 ${doxygen-awesome-css_SOURCE_DIR}/doxygen-awesome-fragment-copy-
button.js
 ${doxygen-awesome-css_SOURCE_DIR}/doxygen-awesome-paragraph-link.js
 ${doxygen-awesome-css_SOURCE_DIR}/doxygen-awesome-interactive-toc.js
)

 execute_process(
 COMMAND doxygen -w html header.html footer.html style.css
 WORKING_DIRECTORY ${PROJECT_BINARY_DIR}
)
 execute_process(
 COMMAND sed -i
 "/<\\/head>/r ${PROJECT_SOURCE_DIR}/cmake/extra_headers"
 header.html
 WORKING_DIRECTORY ${PROJECT_BINARY_DIR}
)

Generating Documentation340

 set(DOXYGEN_HTML_HEADER ${PROJECT_BINARY_DIR}/header.html)

endmacro()

This code looks complex, but after a close inspection, you’ll find it’s actually quite straightforward.

Here’s what it does:

1. Copies the four JavaScript files to the output directory

2. Executes the doxygen command to generate the default HTML files

3. Executes the sed command to inject the required JavaScript into the header

4. Overrides the default header with the custom version

To complete the integration, call this macro right after enabling the basic stylesheet:

ch13/02-doxygen-nice/cmake/Doxygen�cmake (fragment)

function(Doxygen input output)

 # …

 UseDoxygenAwesomeCss()

 UseDoxygenAwesomeExtensions()

…

endfunction()

The complete code for this example, along with practical examples, is available in the online

repository for the book. As always, I recommend reviewing and exploring these examples in a

practical environment.

Other documentation generation utilities

 There are dozens of other tools that are not covered in this book, as we’re focusing on

projects supported by CMake. Nevertheless, some of them may be more appropriate

for your use case. If you’re feeling adventurous, visit the websites of two projects I

found interesting:

• Adobe’s Hyde (https://github.com/adobe/hyde): Aimed at the Clang

compiler, Hyde produces Markdown files that can be consumed by tools

such as Jekyll (https://jekyllrb.com/), a static page generator supported

by GitHub

• Standardese (https://github.com/standardese/standardese): This

uses libclang to compile your code and provides output in HTML, Markdown,

LaTex, and man pages. It aims (quite boldly) to be the next Doxygen.

https://github.com/adobe/hyde
https://jekyllrb.com/
https://github.com/standardese/standardese

Chapter 13 341

Summary
In this chapter, we delved into the practicalities of adding Doxygen, a powerful documentation

generation tool, to your CMake project and enhancing its appeal. This task, though seemingly

daunting, is quite manageable and significantly enhances the flow and clarity of information

within your solution. As you’ll find, the time invested in adding and maintaining documenta-

tion is a worthwhile effort, especially when you or your teammates grapple with understanding

complex relationships in the application.

After exploring how to use CMake’s built-in Doxygen support to generate documentation in

practice, we took a slight turn, to ensure not only the readability of the documentation but also

its legibility.

Since dated design can be difficult on the eye, we explored alternative looks of the produced HTML.

This was done using the Doxygen Awesome extension. To enable enhancements it comes with,

we customized the standard header by adding the necessary javascript.

By generating documentation, you ensure its proximity to the actual code, making it easier to

maintain written explanations in sync with the logic, especially if they’re both in the same file.

Also, as a programmer, you’re likely juggling numerous tasks and details. Documentation acts

as a memory aid, helping you retain and recall project intricacies. Keep in mind that even “the

shortest pencil is longer than the longest memory.” Do yourself a favor—write long things down,

and prosper.

Wrapping up, this chapter emphasizes the value of Doxygen in your project management toolkit,

aiding both understanding and communication within your team.

In the next chapter, I’ll take you through automating packaging and the installation of projects

with CMake, further enhancing your project management skills.

Further reading
• Official website of Doxygen:

https://www.doxygen.nl/

• FindDoxygen find-module documentation:

https://cmake.org/cmake/help/latest/module/FindDoxygen.html

• Doxygen’s docblocks:
https://www.doxygen.nl/manual/docblocks.html#specialblock

https://www.doxygen.nl/
https://cmake.org/cmake/help/latest/module/FindDoxygen.html
https://www.doxygen.nl/manual/docblocks.html#specialblock

Generating Documentation342

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://discord.com/invite/vXN53A7ZcA

14
Installing and Packaging

Our project has been built, tested, and documented. Now, it’s finally time to release it to our

users. This chapter primarily focuses on the final two steps we need to take: installation and

packaging. These are advanced techniques that build on top of everything we’ve learned so far:

managing targets and their dependencies, transient usage requirements, generator expressions,

and much more.

Installation allows our project to be discoverable and accessible system-wide. We will cover

how to export targets for use by other projects without needing installation and how to install

our projects for easy system-wide accessibility. We’ll learn how to configure our project to auto-

matically place various artifact types in their appropriate directories. To handle more advanced

scenarios, we’ll introduce low-level commands for installing files and directories, as well as for

executing custom scripts and CMake commands.

Next, we’ll explore setting up reusable CMake packages that other projects can discover using

the find_package() command. We’ll explain how to ensure that targets and their definitions

are not restricted to a specific file system location. We’ll also discuss how to write basic and ad-

vanced config files, along with the version files associated with packages. Then, to make things

modular, we’ll briefly introduce the concept of components, both in terms of CMake packages

and the install() command. All this preparation will pave the way for the final aspect we’ll be

covering in this chapter: using CPack to generate archives, installers, bundles, and packages that

are recognized by all kinds of package managers in different operating systems. These packages

can distribute pre-built artifacts, executables, and libraries. It’s the easiest way for end users to

start using our software.

Installing and Packaging344

In this chapter, we’re going to cover the following main topics:

• Exporting without installation

• Installing projects on the system

• Creating reusable packages

• Defining components

• Packaging with CPack

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch14.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

To install examples, use the following command:

cmake --install <build tree>

Be sure to replace the <build tree> and <source tree> placeholders with appropriate paths.

As a reminder: build tree is the path to the target/output directory and source tree is the path at

which your source code is located.

Exporting without installation
How can we make the targets of project A available to the consuming project, B? Usually, we’d

use the find_package() command, but that requires creating a package and installing it on the

system. While useful, this approach involves some work. Sometimes, we just need a quick way

to build a project and make its targets available for other projects.

One time-saving method is to include in project B the main listfile of A, which already contains

all the target definitions. However, this file might also include global configuration, CMake com-

mands with side effects, additional dependencies, and perhaps unwanted targets for B (like unit

tests). So, this is not the best approach. Instead, we can provide a target export file for the con-

suming project, B, to include with the include() command:

cmake_minimum_required(VERSION 3.26.0)

project(B)

include(/path/to/A/TargetsOfA.cmake)

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch14
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch14

Chapter 14 345

This will define all targets of A with the correct properties set, using commands such as add_

library() and add_executable().

You must specify all targets to export after the TARGETS keyword and provide the destination

filename after FILE. The other arguments are optional:

export(TARGETS [target1 [target2 [...]]]

 [NAMESPACE <namespace>] [APPEND] FILE <path>

 [EXPORT_LINK_INTERFACE_LIBRARIES]

)

Here’s the explanation of the individual arguments:

• NAMESPACE is recommended to indicate that the target has been imported from other

projects.

• APPEND prevents CMake from erasing the file’s contents before writing.

• EXPORT_LINK_INTERFACE_LIBRARIES exports target link dependencies (including imported

and config-specific variants).

Let’s apply this exporting method to the Calc library example, which provides two simple meth-

ods:

ch14/01-export/src/include/calc/basic�h

#pragma once

int Sum(int a, int b);

int Multiply(int a, int b);

We need to declare the Calc target so we have something to export:

ch14/01-export/src/CMakeLists�txt

add_library(calc STATIC basic.cpp)

target_include_directories(calc INTERFACE include)

Then, to generate the export file, we are using the export(TARGETS) command:

ch14/01-export/CMakeLists�txt (fragment)

cmake_minimum_required(VERSION 3.26)

project(ExportCalcCXX)

add_subdirectory(src bin)

set(EXPORT_DIR "${CMAKE_CURRENT_BINARY_DIR}/cmake")

export(TARGETS calc

Installing and Packaging346

 FILE "${EXPORT_DIR}/CalcTargets.cmake"

 NAMESPACE Calc::

)

Our exported target declaration file will be located in the cmake subdirectory of the build tree (fol-

lowing the convention for .cmake files). To avoid repeating this path later, we’re setting it in the

EXPORT_DIR variable. Then, we call export() to generate the target declaration file, CalcTargets.

cmake, with the calc target. For projects including this file, it will be visible as Calc::calc.

Note that this export file isn’t a package yet. More importantly, all paths in this file are absolute

and hardcoded to the build tree, making them non-relocatable (discussed in the Understanding

the issues with relocatable targets section).

The export() command also has a shorter version using the EXPORT keyword:

export(EXPORT <export> [NAMESPACE <namespace>] [FILE <path>])

However, it requires the name of a predefined export rather than a list of exported targets. Such

<export> instances are named lists of targets that are created by install(TARGETS) (we’ll cover

this command in the Installing logical targets section).

Here’s a tiny example demonstrating how this shorthand is used in practice:

ch14/01-export/CMakeLists�txt (continued)

install(TARGETS calc EXPORT CalcTargets)

export(EXPORT CalcTargets

 FILE "${EXPORT_DIR}/CalcTargets2.cmake"

 NAMESPACE Calc::

)

This code works similarly to the previous example, but now it shares a single target list between

the export() and install() commands.

Both methods of generating export files yield similar results. They include some boilerplate code

and a few lines defining the target. With <build-tree> set to the build tree path, they’ll create a

target export file similar to this:

<build-tree>/cmake/CalcTargets.cmake (fragment)

Create imported target Calc::calc

add_library(Calc::calc STATIC IMPORTED)

set_target_properties(Calc::calc PROPERTIES

Chapter 14 347

 INTERFACE_INCLUDE_DIRECTORIES

 "/<source-tree>/include"

)

Import target "Calc::calc" for configuration ""

set_property(TARGET Calc::calc APPEND PROPERTY

 IMPORTED_CONFIGURATIONS NOCONFIG

)

set_target_properties(Calc::calc PROPERTIES

 IMPORTED_LINK_INTERFACE_LANGUAGES_NOCONFIG "CXX"

 IMPORTED_LOCATION_NOCONFIG "/<build-tree>/libcalc.a"

)

Normally, we wouldn’t edit or even open this file, but it’s important to note that the paths will

be hardcoded in it (see the highlighted lines). In its current form, the built project isn’t relocat-

able. To change that, some additional steps are required. In the next section, we’ll explain what

relocation is and why it is important.

Installing projects on the system
In Chapter 1, First Steps with CMake, we indicated that CMake offers a command-line mode for

installing built projects on the system:

cmake --install <dir> [<options>]

Here, <dir> is the path to the generated build tree (required). The <options> include:

• --config <cfg>: This selects the build configuration for multi-configuration generators.

• --component <comp>: This limits the installation to the given component.

• --default-directory-permissions <permissions>: This sets the default permissions

for the installed directories (in <u=rwx,g=rx,o=rx> format).

• --install-prefix <prefix>: This specifies the non-default installation path

(stored in the CMAKE_INSTALL_PREFIX variable). It defaults to /usr/local on

Unix-like systems and to c:/Program Files/${PROJECT_NAME} on Windows.

Before CMake 3.21, you’ll have to use a less-explicit option: --prefix <prefix>.

• -v, --verbose: This increases the verbosity of the output (achievable also by setting the

VERBOSE environment variable).

Installing and Packaging348

Installations typically involve copying generated artifacts and necessary dependencies to a system

directory. Using CMake introduces a convenient installation standard to all CMake projects and

offers several additional benefits:

• It provides platform-specific installation paths for artifacts, depending on their types (by

following GNU coding standards).

• It enhances the installation process by generating target export files, allowing direct reuse

of project targets by other projects.

• It creates discoverable packages through config files, wrapping the target export files and

package-specific CMake macros and functions defined by the author.

These features are quite powerful as they save a lot of time and simplify the usage of projects that

are prepared this way. The first step in performing a basic installation is copying the built artifacts

to their destination directory. This brings us to the install() command and its various modes:

• install(TARGETS): This installs output artifacts such as libraries and executables.

• install(FILES|PROGRAMS): This installs individual files and sets their permissions. These
files don’t need to be part of any logical targets.

• install(DIRECTORY): This installs entire directories.

• install(SCRIPT|CODE): This runs a CMake script or a snippet during installation.

• install(EXPORT): This generates and installs a target export file.

• install(RUNTIME_DEPENDENCY_SET <set-name> [...]): This installs runtime depen-
dency sets defined in the project.

• install(IMPORTED_RUNTIME_ARTIFACTS <target>... [...]): This queries imported

targets for runtime artifacts and installs them.

Adding these commands to your listfile generates a cmake_install.cmake file in your build tree.

While it’s possible to manually invoke this script with cmake -P, this is not recommended. The

file is intended for internal use by CMake when cmake --install is executed.

Every install() mode has a comprehensive set of options, with a few shared across modes:

• DESTINATION: This specifies the installation path. Relative paths are prepended with CMAKE_

INSTALL_PREFIX, while absolute paths are used verbatim (and not supported by cpack).

• PERMISSIONS: This sets file permissions on supported platforms. The available values

include OWNER_READ, OWNER_WRITE, OWNER_EXECUTE, GROUP_READ, GROUP_WRITE, GROUP_

EXECUTE, WORLD_READ, WORLD_WRITE, WORLD_EXECUTE, SETUID, and SETGID. Default directory

permissions created during installation time can be set with the CMAKE_INSTALL_DEFAULT_

DIRECTORY_PERMISSIONS variable.

Chapter 14 349

• CONFIGURATIONS: This specifies configurations (Debug, Release). Options following this

keyword apply only if the current build configuration is in the list.

• OPTIONAL: This prevents errors when the installed files don’t exist.

Two shared options, COMPONENT and EXCLUDE_FROM_ALL, are used in component-specific instal-

lations. These will be discussed in the Defining components section later in the chapter. For now,

let’s take a look at the first installation mode: install(TARGETS).

Installing logical targets
Targets defined by add_library() and add_executable() can easily be installed with the

install(TARGETS) command. This means copying the artifacts that have been produced by the

buildsystem to the appropriate destination directories and setting suitable file permissions for

them. The general signature for this mode is as follows:

install(TARGETS <target>... [EXPORT <export-name>]

 [<output-artifact-configuration> ...]

 [INCLUDES DESTINATION [<dir> ...]]

)

After the initial mode specifier, that is, TARGETS, we must provide a list of targets we’d like to

install. Here, we may optionally assign them to a named export with the EXPORT option, which

can be used in export(EXPORT) and install(EXPORT) to produce a target export file. Then, we

must configure the installation of output artifacts (grouped by type). Optionally, we can provide

a list of directories that will be added to the target export file for each target in its INTERFACE_

INCLUDE_DIRECTORIES property.

[<output-artifact-configuration>...] provides a list of configuration blocks. The full syntax

of a single block is as follows:

<TYPE> [DESTINATION <dir>]

 [PERMISSIONS permissions...]

 [CONFIGURATIONS [Debug|Release|...]]

 [COMPONENT <component>]

 [NAMELINK_COMPONENT <component>]

 [OPTIONAL] [EXCLUDE_FROM_ALL]

 [NAMELINK_ONLY|NAMELINK_SKIP]

Installing and Packaging350

The command mandates that every output artifact block starts with <TYPE> (this is the only

required element). CMake recognizes several of them:

• ARCHIVE: Static libraries (.a) and DLL import libraries for Windows-based systems (.lib).

• LIBRARY: Shared libraries (.so), but not DLLs.

• RUNTIME: Executables and DLLs.

• OBJECTS: Object files from OBJECT libraries.

• FRAMEWORK: Static and shared libraries that have the FRAMEWORK property set (this excludes

them from ARCHIVE and LIBRARY). This is macOS-specific.

• BUNDLE: Executables marked with MACOSX_BUNDLE (also not part of RUNTIME).

• FILE_SET <set>: Files in the <set> file set specified for the target. Either C++ header files

or C++ module headers (since CMake 3.23).

• PUBLIC_HEADER, PRIVATE_HEADER, RESOURCE: Files specified in the target properties with

the same name (on Apple platforms, they should be set on the FRAMEWORK or BUNDLE targets).

The CMake documentation claims that if you only configure one artifact type (for example,

LIBRARY), only this type will be installed. For CMake version 3.26.0, this is not true: all the arti-

facts will be installed as if they were configured with the default options. This can be solved by

specifying <TYPE> EXCLUDE_FROM_ALL for all unwanted artifact types.

You may also omit the type name and specify options for all the artifacts. Installation would then

be then performed for every file that’s produced by these targets, regardless of their type:

install(TARGETS executable, static_lib1

 DESTINATION /tmp

)

In many cases, you don’t need to provide the DESTINATION explicitly, thanks to the built-in defaults,

but there are a few caveats to keep in mind when dealing with different platforms.

A single install(TARGETS) command can have multiple artifact configuration

blocks. However, be aware that you may only specify one of each type per call. That

is, if you’d like to configure different destinations of ARCHIVE artifacts for the Debug

and Release configurations, then you must make two separate install(TARGETS

... ARCHIVE) calls.

Chapter 14 351

Utilizing the default destination for different platforms
When CMake installs your project’s files, it copies them into a specific directory in the system.

Different file types belong in different directories. This directory is determined by the following

formula:

${CMAKE_INSTALL_PREFIX} + ${DESTINATION}

As mentioned in the previous section, you can explicitly provide the DESTINATION component for

installation, or let CMake use a built-in default based on the type of the artifact:

Artifact type Built-in default Install directory variable

RUNTIME bin CMAKE_INSTALL_BINDIR

LIBRARY

ARCHIVE
lib CMAKE_INSTALL_LIBDIR

PUBLIC_HEADER

PRIVATE_HEADER

FILE_SET (type HEADERS)

include CMAKE_INSTALL_INCLUDEDIR

Table 14.1: Default destinations per artifact type

While default paths are useful, they aren’t always appropriate. For example, CMake defaults

the DESTINATION for libraries to lib. The full path for libraries is then computed as /usr/local/

lib for Unix-like systems and something like C:\Program Files (x86)\<project-name>\lib

on Windows. However, this is not ideal for Debian with multi-arch support, which requires an

architecture-specific path (e.g., i386-linux-gnu) when INSTALL_PREFIX is /usr. Determining

the correct path for each platform is a common challenge for Unix-like systems. To address this,

follow the GNU Coding Standards, the link to which is added in the Further reading section at the

end of this chapter.

We can override the default destinations for each value by setting a CMAKE_INSTALL_<DIRTYPE>DIR

variable. Instead of developing an algorithm to detect the platform and assign appropriate paths

to the install directory variables, use the CMake GNUInstallDirs utility module. This module

handles most platforms by setting the install directory variables accordingly. Just include it using

include() before any install() commands, and you’ll be set.

Users needing custom configurations can override the install directory variables via the com-

mand-line argument like so:

-DCMAKE_INSTALL_BINDIR=/path/in/the/system

Installing and Packaging352

However, installing the public headers of libraries still presents challenges. Let’s explore why.

Dealing with public headers
When managing public headers in CMake, it’s best practice to store them in a directory that indi-

cates their origin and introduces namespacing, such as /usr/local/include/calc. This enables

their use in C++ projects with the inclusion directive:

#include <calc/basic.h>

Most preprocessors interpret angle-bracketed directives as requests to scan standard system

directories. We can use the GNUInstallDirs module to automatically populate the DESTINATION

part of the installation path, ensuring headers end up in the include directory.

Since CMake 3.23.0, we can explicitly add headers to be installed to the appropriate target with

the target_sources() command and the FILE_SET keyword. This method is preferred, as it takes

care of the relocation of headers. Here’s the syntax:

target_sources(<target>

 [<PUBLIC|PRIVATE|INTERFACE>

 [FILE_SET <name> TYPE <type> [BASE_DIR <dir>] FILES]

 <files>...

]...

)

Assuming our headers are in the src/include/calc directory, here’s a practical example:

ch14/02-install-targets/src/CMakeLists�txt (fragment)

add_library(calc STATIC basic.cpp)

target_include_directories(calc INTERFACE include)

target_sources(calc PUBLIC FILE_SET HEADERS

 BASE_DIRS include

 FILES include/calc/basic.h

)

The preceding snippet defines a new target file set called HEADERS. We’re using a special case here:

if the name of the file set matches one of the available types, CMake will assume we want the file

set to be of such type, eliminating the need to define the type explicitly. If you use a different name,

remember to define the FILE_SET's type with the appropriate TYPE <TYPE> keyword.

Chapter 14 353

Having defined the file set, we can use it in the installation command like so:

ch14/02-install-targets/src/CMakeLists�txt (continued)

...

include(GNUInstallDirs)

install(TARGETS calc ARCHIVE FILE_SET HEADERS)

We include the GNUInstallDirs module and configure the installation of the calc static library

and its headers. Running cmake in install mode works as expected:

cmake -S <source-tree> -B <build-tree>

cmake --build <build-tree>

cmake --install <build-tree>

-- Install configuration: ""

-- Installing: /usr/local/lib/libcalc.a

-- Installing: /usr/local/include/calc/basic.h

Support for the FILE_SET HEADERS keyword is a relatively recent update, and unfortunately, not

all environments will provide the newer version of CMake�

If you’re stuck on a version older than 3.23, you’ll need to specify public headers (as a semico-

lon-separated list) in the PUBLIC_HEADER property of the library target, and deal with the relocation

manually (more on this in the Understanding the issues with relocatable targets section):

ch14/03-install-targets-legacy/src/CMakeLists�txt (fragment)

add_library(calc STATIC basic.cpp)

target_include_directories(calc INTERFACE include)

set_target_properties(calc PROPERTIES

 PUBLIC_HEADER src/include/calc/basic.h

)

You’ll also need to change the destination directory to include the library name in the include path:

ch14/02-install-targets-legacy/src/CMakeLists�txt (continued)

...

include(GNUInstallDirs)

install(TARGETS calc

 ARCHIVE

Installing and Packaging354

 PUBLIC_HEADER

 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/calc

)

Explicitly inserting /calc in the path is necessary because files specified in the PUBLIC_HEADER

property don’t retain their directory structure. They will all be installed in the same destination,

even if nested in different base directories. This significant drawback led to the development of

FILE_SET.

Now, you know how to address most installation cases, but how should you approach more

advanced scenarios?

Low-level installation
Modern CMake is moving away from directly manipulating files. Ideally, we should add files to

a logical target, using it as a higher level of abstraction to represent all underlying assets: source

files, headers, resources, configuration, and so on. The main advantage is the code’s dryness;

usually, adding a file to the target requires changing no more than one line.

Unfortunately, adding every installed file to a target isn’t always possible or convenient. In such

cases, three options are available: install(FILES), install(PROGRAMS), and install(DIRECTORY).

Installing with install(FILES) and install(PROGRAMS)
The FILES and PROGRAMS modes are very similar. They can be used to install various assets, in-

cluding public header files, documentation, shell scripts, configuration, and runtime assets like

images, audio files, and datasets.

Here’s the command signature:

install(<FILES|PROGRAMS> files...

 TYPE <type> | DESTINATION <dir>

 [PERMISSIONS permissions...]

 [CONFIGURATIONS [Debug|Release|...]]

 [COMPONENT <component>]

 [RENAME <name>] [OPTIONAL] [EXCLUDE_FROM_ALL]

)

The main difference between FILES and PROGRAMS is the default file permissions set on the copied

files. install(PROGRAMS) sets EXECUTE for all users, whereas install(FILES) does not (though

both will set OWNER_WRITE, OWNER_READ, GROUP_READ, and WORLD_READ).

Chapter 14 355

You can modify this behavior by using the optional PERMISSIONS keyword, and then choosing the

leading keyword (FILES or PROGRAMS) as an indicator of what’s installed. We’ve already covered

how PERMISSIONS, CONFIGURATIONS, and OPTIONAL work. COMPONENT and EXCLUDE_FROM_ALL will

be discussed later in the Defining components section.

After the initial keyword, we need to list all the files we want to install. CMake supports relative

and absolute paths, as well as generator expressions. Remember that if your file path starts with

a generator expression, it must be absolute.

The next required keyword is TYPE or DESTINATION. You can either explicitly provide the

DESTINATION path or ask CMake to look it up for a specific TYPE file. Unlike in install(TARGETS),

TYPE in this context does not select any subset of the provided files to be installed. Nevertheless,

the computation of the installation path follows the same pattern (where the + symbol denotes

a platform-specific path separator):

${CMAKE_INSTALL_PREFIX} + ${DESTINATION}

Similarly, every TYPE will have built-in defaults:

File Type Built-In Default Installation Directory Variable

BIN bin CMAKE_INSTALL_BINDIR

SBIN sbin CMAKE_INSTALL_SBINDIR

LIB lib CMAKE_INSTALL_LIBDIR

INCLUDE include CMAKE_INSTALL_INCLUDEDIR

SYSCONF etc CMAKE_INSTALL_SYSCONFDIR

SHAREDSTATE com CMAKE_INSTALL_SHARESTATEDIR

LOCALSTATE var CMAKE_INSTALL_LOCALSTATEDIR

RUNSTATE $LOCALSTATE/run CMAKE_INSTALL_RUNSTATEDIR

DATA $DATAROOT CMAKE_INSTALL_DATADIR

INFO $DATAROOT/info CMAKE_INSTALL_INFODIR

LOCALE $DATAROOT/locale CMAKE_INSTALL_LOCALEDIR

MAN $DATAROOT/man CMAKE_INSTALL_MANDIR

DOC $DATAROOT/doc CMAKE_INSTALL_DOCDIR

Table 14.2: Built-in defaults per file type

The behavior here follows the same principle that was described in the Utilizing the default destina-

tion for different platforms subsection: if no installation directory variable for this TYPE of file is set,

CMake will provide a built-in default path. Again, for portability, we can use the GNUInstallDirs

module.

Installing and Packaging356

Some of the built-in guesses in the table are prefixed with installation directory variables:

• $LOCALSTATE is CMAKE_INSTALL_LOCALSTATEDIR or defaults to var

• $DATAROOT is CMAKE_INSTALL_DATAROOTDIR or defaults to share

As with install(TARGETS), the GNUInstallDirs module will provide platform-specific installa-

tion directory variables. Let’s look at an example:

ch14/04-install-files/CMakeLists.txt

cmake_minimum_required(VERSION 3.26)

project(InstallFiles CXX)

include(GNUInstallDirs)

install(FILES

 src/include/calc/basic.h

 src/include/calc/nested/calc_extended.h

 DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/calc

)

In this case, CMake installs the two header-only libraries, basic.h and nested/calc_extended.h,

into the project-specific subdirectory within the system-wide include directory.

Since CMake 3.20, you can use the RENAME keyword with the install(FILES) and install(PROGRAMS)

commands. This keyword has to be followed by a new filename and only works if the command

installs a single file.

The example in this section demonstrates the ease of installing files in the appropriate directory.

However, there’s one issue – observe the installation output:

cmake -S <source-tree> -B <build-tree>

cmake --build <build-tree>

cmake --install <build-tree>

-- Install configuration: ""

From the GNUInstallDirs source, we know that CMAKE_INSTALL_INCLUDEDIR is the

same for all supported platforms. However, using it is still recommended for read-

ability and consistency with more dynamic variables. For instance, CMAKE_INSTALL_

LIBDIR varies by architecture and distribution – lib, lib64, or lib/<multiarch-

tuple>.

Chapter 14 357

-- Installing: /usr/local/include/calc/basic.h

-- Installing: /usr/local/include/calc/calc_extended.h

Both files are installed in the same directory, regardless of their original nesting. Sometimes, this

isn’t desirable. In the next section, we’ll explore how to handle this situation.

Working with entire directories
If adding individual files to your installation command isn’t suitable, you can opt for a broader

approach and work with entire directories. The install(DIRECTORY) mode is designed for this,

copying the specified directories verbatim to the chosen destination. Here’s how it looks:

install(DIRECTORY dirs...

 TYPE <type> | DESTINATION <dir>

 [FILE_PERMISSIONS permissions...]

 [DIRECTORY_PERMISSIONS permissions...]

 [USE_SOURCE_PERMISSIONS] [OPTIONAL] [MESSAGE_NEVER]

 [CONFIGURATIONS [Debug|Release|...]]

 [COMPONENT <component>] [EXCLUDE_FROM_ALL]

 [FILES_MATCHING]

 [[PATTERN <pattern> | REGEX <regex>] [EXCLUDE]

 [PERMISSIONS permissions...]] [...]

)

Many options here are similar to those in install(FILES) and install(PROGRAMS) and function

in the same manner. One key detail is that if the paths provided after the DIRECTORY keyword

don’t end with /, the last directory of the path is appended to the destination. For example:

install(DIRECTORY aaa DESTINATION /xxx)

This command creates a directory, /xxx/aaa, and copies the contents of aaa to it. In contrast, the

following command copies the contents of aaa directly to /xxx:

install(DIRECTORY aaa/ DESTINATION /xxx)

install(DIRECTORY) also introduces other mechanisms that are not available for files:

• Output silencing

• Extended permission control

• File/directory filtering

Installing and Packaging358

Let’s start with the output silencing option, MESSAGE_NEVER. It disables output diagnostics during

installation. It is very useful when we have many files in the directories we’re installing and it

would be too noisy to print them all.

Regarding permissions, install(DIRECTORY) supports three options:

• USE_SOURCE_PERMISSIONS sets the permissions on installed files that follow the original

files. This only works when FILE_PERMISSIONS is not set.

• FILE_PERMISSIONS allows us to specify the permissions we want to set on installed files

and directories. The default permissions are OWNER_WRITE, OWNER_READ, GROUP_READ, and

WORLD_READ.

• DIRECTORY_PERMISSIONS works similarly to FILE_PERMISSIONS, but it will set additional

EXECUTE permissions for all users (this is because EXECUTE on directories in Unix-like

systems denotes permission to list their contents).

Note that CMake ignores permissions options on platforms that don’t support them. More nu-

anced permission control is achievable by adding the PERMISSIONS keyword after each filtering

expression. Files or directories matched by this will receive the specified permissions.

Let’s talk about filters or “globbing” expressions. They control which files/directories from source

directories are installed and follow this syntax:

PATTERN <pat> | REGEX <reg> [EXCLUDE] [PERMISSIONS <perm>]

There are two matching methods to choose from:

• With PATTERN, which is the simpler option, you can provide a pattern with the ? place-

holders (matching any character) and the * wildcards (matching any string). Only paths

that end with <pat> will be matched.

• The REGEX option is more advanced, supporting regular expressions. It allows the match-

ing of any part of the path, although the ^ and $ anchors can still denote the beginning

and end of the path.

Optionally, the FILES_MATCHING keyword can be set before the first filter, specifying that the filters

will apply to files and not directories.

Remember two caveats:

• FILES_MATCHING requires an inclusive filter. You may exclude some files, but no files will

be copied unless you also include some. However, all directories will be created, regard-

less of filtering.

Chapter 14 359

• All subdirectories are included by default; you can only filter out.

For each filter method, you can choose to exclude matched paths with the EXCLUDE command

(this only works when FILES_MATCHING isn’t used).

Specific permissions for all matched paths can be set by adding the PERMISSIONS keyword and

a list of desired permissions after any filter. Let’s explore this with an example where we install

three directories in different ways. We have some static data files for runtime use:

data

- data.csv

We also need some public headers located in the src directory among other unrelated files:

src

- include

 - calc

 - basic.h

 - ignored

 - empty.file

 - nested

 - calc_extended.h

Finally, we need two configuration files at two levels of nesting. To make things more interesting,

we’ll make /etc/calc/ contents accessible only to the file owner:

etc

- calc

 - nested.conf

- sample.conf

To install the directory with static data files, we start our project with the most basic form of the

install(DIRECTORY) command:

ch14/05-install-directories/CMakeLists�txt (fragment)

cmake_minimum_required(VERSION 3.26)

project(InstallDirectories CXX)

install(DIRECTORY data/ DESTINATION share/calc)

This command will simply take all the contents of our data directory and put it in ${CMAKE_

INSTALL_PREFIX} and share/calc. Note that our source path ends with a / symbol to indicate

we don’t want to copy the data directory itself, only its contents.

Installing and Packaging360

The second case is the opposite: we don’t add the trailing / because the directory should be in-

cluded. This is because we’re relying on a system-specific path for the INCLUDE file type, which is

provided by GNUInstallDirs (note how the INCLUDE and EXCLUDE keywords represent unrelated

concepts):

ch14/05-install-directories/CMakeLists�txt (fragment)

...

include(GNUInstallDirs)

install(DIRECTORY src/include/calc TYPE INCLUDE

 PATTERN "ignored" EXCLUDE

 PATTERN "calc_extended.h" EXCLUDE

)

Additionally, we have excluded two paths from this operation: the entire ignored directory and

all files ending with calc_extended.h (remember how PATTERN works).

The third case installs some default configuration files and sets their permissions:

ch14/05-install-directories/CMakeLists�txt (fragment)

install(DIRECTORY etc/ TYPE SYSCONF

 DIRECTORY_PERMISSIONS

 OWNER_READ OWNER_WRITE OWNER_EXECUTE

 PATTERN "nested.conf"

 PERMISSIONS OWNER_READ OWNER_WRITE

)

We avoid appending etc from the source path to the SYSCONF path (as GNUInstallDirs has already

provided this) to prevent duplication. We set two permission rules: subdirectories are editable

and listable only by the owner, and files ending with nested.conf are editable only by the owner.

Installing directories covers various use cases, but for other advanced scenarios (like post-install

configuration), external tools may be required. How do we integrate them?

Invoking scripts during installation
If you have ever installed a shared library on a Unix-like system, you might recall needing to

instruct the dynamic linker to scan trusted directories and build its cache using ldconfig (refer

to the Further reading section for references). To facilitate fully automatic installations, CMake

provides the install(SCRIPT) and install(CODE) modes. Here is the complete syntax:

Chapter 14 361

install([[SCRIPT <file>] [CODE <code>]]

 [ALL_COMPONENTS | COMPONENT <component>]

 [EXCLUDE_FROM_ALL] [...]

)

Choose between the SCRIPT and CODE modes and provide the necessary arguments – a path to a

CMake script to run or a CMake snippet to execute during installation. To illustrate, let’s modify

the 02-install-targets example to build a shared library:

ch14/06-install-code/src/CMakeLists�txt

add_library(calc SHARED basic.cpp)

target_include_directories(calc INTERFACE include)

target_sources(calc PUBLIC FILE_SET HEADERS

 BASE_DIRS include

 FILES include/calc/basic.h

)

Change the artifact type from ARCHIVE to LIBRARY in the installation script and then add logic to

run ldconfig afterward:

ch14/06-install-code/CMakeLists�txt (fragment)

install(TARGETS calc LIBRARY FILE_SET HEADERS))

if (UNIX)

 install(CODE "execute_process(COMMAND ldconfig)")

endif()

The if() condition ensures the command is appropriate for the operating system (ldconfig

should not be executed on Windows or macOS). The provided code must be syntactically valid

in CMake (errors will only surface during installation).

After running the installation command, confirm its success by printing the cached libraries:

cmake -S <source-tree> -B <build-tree>

cmake --build <build-tree>

cmake --install <build-tree>

-- Install configuration: ""

-- Installing: /usr/local/lib/libcalc.so

-- Installing: /usr/local/include/calc/basic.h

ldconfig -p | grep libcalc

 libcalc.so (libc6,x86-64) => /usr/local/lib/libcalc.so

Installing and Packaging362

Both SCRIPT and CODE modes support generator expressions, adding versatility to this command.

It can be used for various purposes: printing user messages, verifying successful installations,

extensive configuration, file signing, and more.

Next, let’s delve into the aspect of managing runtime dependencies in CMake installations, one

of the newest features of CMake.

Installing runtime dependencies
We’ve covered almost all kinds of installable artifacts and their respective commands. The final

subject to discuss is runtime dependencies. Executables and shared libraries often depend on other

libraries that must be present in the system and are dynamically loaded at program initialization.

Since version 3.21, CMake can build a list of these required libraries for each target and capture

their location at build time by referencing the appropriate sections of the binary file. This list can

then be used to install these runtime artifacts in the system for future use.

For a target defined in the project, this can be achieved in two steps:

install(TARGETS ... RUNTIME_DEPENDENCY_SET <set-name>)

install(RUNTIME_DEPENDENCY_SET <set-name> <arg>...)

Alternatively, this can be accomplished with a single command with the same effect:

install(TARGETS ... RUNTIME_DEPENDENCIES <arg>...)

If a target is imported, rather than defined in the project, its runtime dependencies can be in-

stalled as follows:

install(IMPORTED_RUNTIME_ARTIFACTS <target>...)

The preceding snippet can be extended with the RUNTIME_DEPENDENCY_SET <set-name> argument

to create a named reference that can be later used in the install(RUNTIME_DEPENDENCY_SET)

command.

If this feature sounds beneficial for your project, I recommend checking the official documentation

of the install() command to learn more.

Now that we understand all the different ways we can install files on the system, let’s explore

how to turn them into a natively available package for other CMake projects.

Chapter 14 363

Creating reusable packages
We’ve extensively used find_package() in previous chapters and observed its convenience and

simplicity. To make our project accessible through this command, we need to complete a few

steps so CMake can treat our project as a coherent package:

1. Make our targets relocatable.

2. Install the target export file to a standard location.

3. Create a config file for the package.

4. Generate a version file for the package.

Let’s start from the beginning: why do targets need to be relocatable and how can we do this?

Understanding the issues with relocatable targets
Installation solves many problems but also introduces some complexity. The CMAKE_INSTALL_

PREFIX is platform specific and can be set by the user at the installation stage with the --install-

prefix command-line argument. The challenge is that target export files are generated before

installation, during the build stage, when the final destination of the installed artifacts is unknown.

Consider this code:

ch14/03-install-targets-legacy/src/CMakeLists�txt

add_library(calc STATIC basic.cpp)

target_include_directories(calc INTERFACE include)

set_target_properties(calc PROPERTIES

 PUBLIC_HEADER src/include/calc/basic.h

)

In this example, we specifically add the include directory to the include directories of calc.

Since this is a relative path, CMake’s exported target generation implicitly prepends this path

with the contents of the CMAKE_CURRENT_SOURCE_DIR variable, pointing to the directory where

this listfile is located.

Here’s the problem: after installation, the project mustn’t rely on files from the source or build

tree. Everything, including library headers, is copied to a shared location, like /usr/lib/calc/

on Linux. The target that has been defined in this snippet isn’t suitable for use in another project

since its include directory path still points to its source tree.

Installing and Packaging364

CMake addresses this carriage-before-the-horse problem with generator expressions that are re-

placed with their argument or an empty string, depending on the context:

• $<BUILD_INTERFACE:...>: This evaluates to the ‘...' argument for regular builds but

excludes it for installation.

• $<INSTALL_INTERFACE:...>: This evaluates to the ‘...' argument for installation but

excludes it for regular builds.

• $<BUILD_LOCAL_INTERFACE:...>: This evaluates to the ‘...' argument when used by

another target in the same buildsystem (added in CMake 3.26).

These expressions allow the deferment of the decision of which path to use to the later stages of

the process: building and installation. Here’s how to use them in practice:

ch14/07-install-export-legacy/src/CMakeLists�txt (fragment)

add_library(calc STATIC basic.cpp)

target_include_directories(calc INTERFACE

 "$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>"

 "$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"

)

set_target_properties(calc PROPERTIES

 PUBLIC_HEADER "include/calc/basic.h"

)

In target_include_directories(), we focus on the last two arguments. The used generator

expressions are mutually exclusive, meaning only one of the arguments will be used in the final

step, and the other will be erased.

For regular builds, the INTERFACE_INCLUDE_DIRECTORIES property of the calc target will be

expanded, using the first argument:

"/root/examples/ch14/07-install-export/src/include" ""

On the other hand, when installing, the value will expand with the second argument:

"" "/usr/lib/calc/include"

Quotes are not present in the final value; they’re added here to express empty text

values for clarity.

Chapter 14 365

Regarding CMAKE_INSTALL_PREFIX: it should not be used as a component in paths specified in

targets. It would be evaluated during the build stage, making the path absolute and potentially

different from the one provided during installation (if the --install-prefix option is used).

Instead, use the $<INSTALL_PREFIX> generator expression:

target_include_directories(my_target PUBLIC

 $<INSTALL_INTERFACE:$<INSTALL_PREFIX>/include/MyTarget>

)

Or, even better, you can use relative paths, which will be prepended with the correct installation

prefix:

target_include_directories(my_target PUBLIC

 $<INSTALL_INTERFACE:include/MyTarget>

)

For more examples and information, please consult the official documentation (a link to this can

be found in the Further reading section).

Now that our targets are installation compatible, we can safely generate and install their target

export files.

Installing target export files
We previously touched on target export files in the Exporting without installation section. The

process for installing target export files is quite similar, and so is the command syntax for cre-

ating them:

install(EXPORT <export-name> DESTINATION <dir>

 [NAMESPACE <namespace>] [[FILE <name>.cmake]|
 [PERMISSIONS permissions...]
 [CONFIGURATIONS [Debug|Release|...]]
 [EXPORT_LINK_INTERFACE_LIBRARIES]
 [COMPONENT <component>]
 [EXCLUDE_FROM_ALL])

It’s a blend of the plain export(EXPORT) and other install() commands (its options function

similarly). Remember, it will create and install a target export file for a named export that must

be defined with the install(TARGETS) command. The key difference here is that the generated

export file will contain target paths evaluated in the INSTALL_INTERFACE generator expression,

unlike export(EXPORT), which uses BUILD_INTERFACE. This means we need to be careful about

our include files and other relatively referenced files.

Installing and Packaging366

Again, with CMake 3.23 or newer this won’t be a problem if FILE_SET HEADERS is used correctly.

Let’s see how we can generate and install the export file for the targets from the ch14/02-install-

export example. To do this, we must call install(EXPORT) after the install(TARGETS) command:

ch14/07-install-export/src/CMakeLists�txt

add_library(calc STATIC basic.cpp)

target_sources(calc

 PUBLIC FILE_SET HEADERS BASE_DIRS include

 FILES "include/calc/basic.h"

)

include(GNUInstallDirs)

install(TARGETS calc EXPORT CalcTargets ARCHIVE FILE_SET HEADERS)
install(EXPORT CalcTargets

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

 NAMESPACE Calc::

)

Note the reference to the CalcTargets export name in install(EXPORT). Running cmake

--install in the build tree will result in the export file being generated in the specified destination:

...

-- Installing: /usr/local/lib/calc/cmake/CalcTargets.cmake

-- Installing: /usr/local/lib/calc/cmake/CalcTargets-noconfig.cmake

If you need to override the default target export filename (<export name>.cmake), add the FILE

new-name.cmake argument to change it (the filename must end with .cmake).

Don’t confuse this – the target export file isn’t a config file, so you can’t use find_package() to

consume installed targets just yet. However, it’s possible to include() export files directly if

necessary. So, how do we define a package that can be consumed by other projects? Let’s find out!

Writing basic config files
A complete package definition consists of the target export files, the package’s config file, and

the package’s version file. However, technically, all that’s needed for find_package() to work is

a config file. It acts as a package definition, responsible for providing any package functions and

macros, checking requirements, finding dependencies, and including target export files.

Chapter 14 367

As we mentioned earlier, users can install your package anywhere on their system by using:

cmake --install <build tree> --install-prefix=<path>

This prefix determines where the installed files will be copied. To support this, you must ensure

the following:

• The paths on the target properties are relocatable (as described in the Understanding the

issues with relocatable targets section).

• The paths that are used in your config file are relative to it.

To use such packages that have been installed in non-default locations, the consuming projects

need to provide <installation path> through the CMAKE_PREFIX_PATH variable during the

configuration stage:

cmake -B <build tree> -DCMAKE_PREFIX_PATH=<installation path>

The find_package() command will scan the list of paths that are outlined in the documentation

(see the Further reading section) in a platform-specific manner. One pattern checked on Windows

and Unix-like systems is:

<prefix>/<name>*/(lib/<arch>|lib*|share)/<name>*/(cmake|CMake)

This indicates that installing the config file in a path such as lib/calc/cmake should work.

Additionally, CMake requires that config files be named <PackageName>-config.cmake or

<PackageName>Config.cmake to be found.

Let’s add the installation of the config file to the 06-install-export example:

ch14/09-config-file/CMakeLists.txt (fragment)

...

install(EXPORT CalcTargets

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

 NAMESPACE Calc::

)

install(FILES "CalcConfig.cmake"

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

)

This command installs CalcConfig.cmake from the same source directory (CMAKE_INSTALL_LIBDIR

will be evaluated to the correct lib path for the platform).

Installing and Packaging368

The simplest config file consists of a single line including the target export file:

ch14/09-config-file/CalcConfig.cmake

include("${CMAKE_CURRENT_LIST_DIR}/CalcTargets.cmake")

CMAKE_CURRENT_LIST_DIR refers to the directory where the config file resides. Since CalcConfig.

cmake and CalcTargets.cmake are installed in the same directory in our example (as set by

install(EXPORT)), the target export file will be included correctly.

To verify our package’s usability, we’ll create a simple project with one listfile:

ch14/10-find-package/CMakeLists.txt

cmake_minimum_required(VERSION 3.26)

project(FindCalcPackage CXX)

find_package(Calc REQUIRED)

include(CMakePrintHelpers)

message("CMAKE_PREFIX_PATH: ${CMAKE_PREFIX_PATH}")

message("CALC_FOUND: ${Calc_FOUND}")

cmake_print_properties(TARGETS "Calc::calc" PROPERTIES

 IMPORTED_CONFIGURATIONS

 INTERFACE_INCLUDE_DIRECTORIES

)

To test this, build and install the 09-config-file example to one directory, and then build

10-find-package while referencing it with the DCMAKE_PREFIX_PATH argument:

cmake -S <source-tree-of-08> -B <build-tree-of-08>

cmake --build <build-tree-of-08>

cmake --install <build-tree-of-08>

cmake -S <source-tree-of-09> -B <build-tree-of-09>

 -DCMAKE_PREFIX_PATH=<build-tree-of-08>

This will produce the following output (all the <*_tree-of_> placeholders will be replaced with

real paths):

CMAKE_PREFIX_PATH: <build-tree-of-08>

CALC_FOUND: 1

--

Properties for TARGET Calc::calc:

 Calc::calc.IMPORTED_CONFIGURATIONS = "NOCONFIG"

Chapter 14 369

 Calc::calc.INTERFACE_INCLUDE_DIRECTORIES = "<build-tree-of-08>/include"

-- Configuring done

-- Generating done

-- Build files have been written to: <build-tree-of-09>

This output indicates that the CalcTargets.cmake file was found and included correctly, and

the path to the include directory follows the chosen prefix. This solution is suitable for basic

packaging cases. Now, let’s learn how to handle more advanced scenarios.

Creating advanced config files
If you need to manage more than a single target export file, including a few macros in your con-

fig file can be useful. The CMakePackageConfigHelpers utility module provides access to the

configure_package_config_file() command. To use it, supply a template file that will be

interpolated with CMake variables to generate a config file with two embedded macro definitions:

• set_and_check(<variable> <path>): This works like set(), but it checks that <path>

actually exists and fails with FATAL_ERROR otherwise. This is recommended for use in your

config files to detect incorrect paths early.

• check_required_components(<PackageName>): This is added to the end of the config

file. It verifies whether all components required by the user in find_package(<package>

REQUIRED <component>) have been found.

Paths for complex directory trees can be prepared for installation during config file generation.

Here’s the command signature:

configure_package_config_file(<template> <output>

 INSTALL_DESTINATION <path>

 [PATH_VARS <var1> <var2> ... <varN>]

 [NO_SET_AND_CHECK_MACRO]

 [NO_CHECK_REQUIRED_COMPONENTS_MACRO]

 [INSTALL_PREFIX <path>]

)

The <template> file will be interpolated with variables and stored in the <output> path. The

INSTALL_DESTINATION path is used to transform the paths stored in the PATH_VARS to be relative

to the install destination. The INSTALL_PREFIX can be provided as a base path to indicate that

INSTALL_DESTINATION is relative to it.

Installing and Packaging370

The NO_SET_AND_CHECK_MACRO and NO_CHECK_REQUIRED_COMPONENTS_MACRO options tell CMake

not to add these macro definitions to the generated config file. Let’s see this generation in practice,

extending the 07-install-export example:

ch14/11-advanced-config/CMakeLists.txt (fragment)

...

install(EXPORT CalcTargets

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

 NAMESPACE Calc::

)

include(CMakePackageConfigHelpers)

set(LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR}/calc)

configure_package_config_file(

 ${CMAKE_CURRENT_SOURCE_DIR}/CalcConfig.cmake.in

 "${CMAKE_CURRENT_BINARY_DIR}/CalcConfig.cmake"

 INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

 PATH_VARS LIB_INSTALL_DIR

)

install(FILES "${CMAKE_CURRENT_BINARY_DIR}/CalcConfig.cmake"

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

)

In the preceding code, we:

1. Use include() to include the utility module with helpers.

2. Use set() to set a variable that will be used to make a relocatable path.

3. Generate the CalcConfig.cmake config file for the build tree using the CalcConfig.cmake.

in template, and provide LIB_INSTALL_DIR as a variable name to be computed as relative

to INSTALL_DESTINATION or ${CMAKE_INSTALL_LIBDIR}/calc/cmake.

4. Pass the config file that was generated for the build tree to install(FILE).

Note that the path in DESTINATION in install(FILES) and the path in INSTALL_DESTINATION in

configure_package_config_file() are equal, which ensures correct relative path computation

inside of the configuration file.

Chapter 14 371

Finally, we’ll need a config file template (their names are usually suffixed with .in):

ch14/11-advanced-config/CalcConfig.cmake.in

@PACKAGE_INIT@

set_and_check(CALC_LIB_DIR "@PACKAGE_LIB_INSTALL_DIR@")

include("${CALC_LIB_DIR}/cmake/CalcTargets.cmake")

check_required_components(Calc)

This template begins with a @PACKAGE_INIT@ placeholder. The generator will fill it with the defi-

nitions of the set_and_check and check_required_components macros.

The next line sets CALC_LIB_DIR to the path passed in the @PACKAGE_LIB_INSTALL_DIR@ place-

holder. CMake will fill it with $LIB_INSTALL_DIR, provided in the listfile, but calculated relative to

the installation path. Subsequently, that path is used in the include() command to include the

target export file. Finally, check_required_components() verifies whether all of the components

required by the project using this package have been found. This command is recommended,

even if the package doesn’t have any components to ensure the users are using only supported

requirements. Otherwise, they may incorrectly think they’ve successfully added components

(perhaps only present in newer versions of the package).

The CalcConfig.cmake config file, when generated this way, looks like this:

Expanded from @PACKAGE_INIT@ by

 configure_package_config_file() #######

Any changes to this file will be overwritten by the

 next CMake run ####

The input file was CalcConfig.cmake.in

get_filename_component(PACKAGE_PREFIX_DIR

 "${CMAKE_CURRENT_LIST_DIR}/../../../" ABSOLUTE)

macro(set_and_check _var _file)

 # ... removed for brevity

endmacro()

macro(check_required_components _NAME)

 # ... removed for brevity

endmacro()

Installing and Packaging372

##

set_and_check(CALC_LIB_DIR "${PACKAGE_PREFIX_DIR}/lib/calc")

include("${CALC_LIB_DIR}/cmake/CalcTargets.cmake")

check_required_components(Calc)

The following diagram, which shows how the various package files are related to each other, puts

this into perspective:

Figure 14.1: The file structure for advanced packages

All the required sub-dependencies of a package must also be found in the package config file.

This can be done by calling the find_dependency() macro from the CMakeFindDependencyMacro

helper. We learned how to use it in Chapter 9, Managing Dependencies in CMake.

Definitions for any macros or functions exposed to the consuming project should be in a separate

file included from the package’s config file. Interestingly, CMakePackageConfigHelpers also helps

generate package version files. Let’s explore this next.

Chapter 14 373

Generating package version files
As your package evolves, gaining new features and phasing out older ones, it’s vital to track these

changes in a changelog accessible to developers using your package. When a specific feature is

required, a developer that is using your package can specify the minimum version that supports

it in find_package(), like so:

find_package(Calc 1.2.3 REQUIRED)

CMake will then search for Calc's config file and check whether a version file named <config-

file>-version.cmake or <config-file>Version.cmake is present in the same directory (e.g.,

CalcConfigVersion.cmake). This file contains version information and specifies compatibility

with other versions. For instance, even if you don’t have the exact version 1.2.3 installed, you might

have 1.3.5, which is marked as compatible with older versions. CMake will accept this package,

knowing it’s backward compatible.

You can use the CMakePackageConfigHelpers utility module to generate package version files by

calling write_basic_package_version_file():

write_basic_package_version_file(

 <filename> [VERSION <ver>]

 COMPATIBILITY <AnyNewerVersion | SameMajorVersion |

 SameMinorVersion | ExactVersion>

 [ARCH_INDEPENDENT]

)

First, provide the <filename> for the artifact; ensure it follows the naming rules previously dis-

cussed. Optionally, you can pass an explicit VERSION (in major.minor.patch format). If not pro-

vided, the version specified in the project() command is used (an error will occur if the project

doesn’t specify one).

The COMPATIBILITY keyword indicates:

• ExactVersion must match all three components of the version and doesn’t support ranged

versions: (e.g., find_package(<package> 1.2.8...1.3.4)).

• SameMinorVersion matches if the first two components are the same (ignores patch).

• SameMajorVersion matches if the first component is the same (ignores minor and patch).

• AnyNewerVersion, contrary to its name, matches any older version (e.g., version 1.4.2 is

compatible with find_package(<package> 1.2.8)).

Installing and Packaging374

For architecture-dependent packages, an exact architecture match is required. However, for ar-

chitecture-agnostic packages (like header-only libraries or macro packages), you can specify the

ARCH_INDEPENDENT keyword to skip this check.

The following code shows a practical example of how to provide the version file for the project

that we started in the 07-install-export:

ch14/12-version-file/CMakeLists.txt (fragment)

cmake_minimum_required(VERSION 3.26)

project(VersionFile VERSION 1.2.3 LANGUAGES CXX)

...

include(CMakePackageConfigHelpers)

write_basic_package_version_file(

 "${CMAKE_CURRENT_BINARY_DIR}/CalcConfigVersion.cmake"

 COMPATIBILITY AnyNewerVersion

)

install(FILES "CalcConfig.cmake"

 "${CMAKE_CURRENT_BINARY_DIR}/CalcConfigVersion.cmake"

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

)

For convenience, we configure the version of the package at the top of the file, in the project()

command, switching from the short project(<name> <languages>) syntax to an explicit, full

syntax by adding the LANGUAGE keyword.

After including the helper module, we generate the version file and install it alongside CalcConfig.

cmake. By skipping the VERSION keyword, we use the PROJECT_VERSION variable. The package is

marked as fully backward compatible with COMPATIBILITY AnyNewerVersion. This installs the

package version file to the same destination as CalcConfig.cmake. That’s it – our package is fully

configured.

With this, we concluded the subject of package creation. We now know how to deal with relocation

and why it is important, how to install target export files, and how to write config and version files.

In the next section, we’ll explore components and their use with packages.

Defining components
We’ll begin by addressing potential confusion surrounding the term component. Consider the

full signature for find_package():

Chapter 14 375

find_package(<PackageName>

 [version] [EXACT] [QUIET] [MODULE] [REQUIRED]

 [[COMPONENTS] [components...]]

 [OPTIONAL_COMPONENTS components...]

 [NO_POLICY_SCOPE]

)

It’s important not to confuse the components mentioned here with the COMPONENT keyword that’s

used in the install() command. Despite sharing the same name, they are distinct concepts and

must be understood separately. We’ll explore this further in the following subsections.

How to use components in find_package()
When calling find_package() with a list of COMPONENTS or OPTIONAL_COMPONENTS, we indicate

to CMake that we are only interested in packages that provide these components. However, it’s

crucial to understand that verifying this requirement is the responsibility of the package. If the

package vendor doesn’t implement the necessary checks in the config file, as mentioned in the

Creating advanced config files section, the process will not proceed as expected.

Requested components are passed to the config file via the <package>_FIND_COMPONENTS vari-

able (both optional and non-optional). For every non-optional component, a <package>_FIND_

REQUIRED_<component> variable is set. Package authors could write a macro to scan this list and

verify the provision of all required components, but this is unnecessary. The check_required_

components() function serves this purpose. The config file should set the <package>_<component>_

FOUND variable when a necessary component is found. A macro at the file’s end will then verify

whether all required variables are set.

How to use components in the install() command
Not all produced artifacts need installation in every scenario. For instance, a project might install

static libraries and public headers for development, but by default, it may only need to install a

shared library for runtime. To enable this dual behavior, artifacts can be grouped under a common

name using the COMPONENT keyword, available in all install() commands. Users interested in

limiting installation to specific components can do so by executing the following case-sensitive

command:

cmake --install <build tree>

 --component=<component1 name> --component=<component2 name>

Installing and Packaging376

Assigning the COMPONENT keyword to an artifact doesn’t automatically exclude it from the default

installation. To achieve this exclusion, the EXCLUDE_FROM_ALL keyword must be added.

Let’s explore this concept in a code example:

ch14/13-components/CMakeLists�txt (fragment)

install(TARGETS calc EXPORT CalcTargets

 ARCHIVE

 COMPONENT lib

 FILE_SET HEADERS

 COMPONENT headers

)

install(EXPORT CalcTargets

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

 NAMESPACE Calc::

 COMPONENT lib

)

install(CODE "MESSAGE(\"Installing 'extra' component\")"

 COMPONENT extra

 EXCLUDE_FROM_ALL

)

The preceding install commands define the following components:

• lib: This contains the static library and target export files. It’s installed by default.

• headers: This contains C++ header files. Also installed by default.

• extra: This executes a piece of code to print a message. Not installed by default.

Let’s reiterate:

• cmake --install without the --component argument will install both the lib and headers

components.

• cmake --install --component headers will only install public headers.

• cmake --install --component extra will print a message that’s inaccessible otherwise

(the EXCLUDE_FROM_ALL keyword prevents that).

If the COMPONENT keyword isn’t specified for an installed artifact, it defaults to Unspecified, as

defined by the CMAKE_INSTALL_DEFAULT_COMPONENT_NAME variable.

Chapter 14 377

If cmake is invoked with the --component argument for a non-existent component, the command

will complete successfully without warnings or errors, but it won’t install anything.

Partitioning our installation into components allows users to selectively install parts of the pack-

age. Let’s now turn to managing symbolic links for versioned shared libraries, a useful feature for

optimizing your installation processes.

Managing symbolic links for versioned shared libraries
The target platform for your installation may use symbolic links to help linkers discover the cur-

rently installed version of a shared library. After creating a lib<name>.so symlink to the lib<name>.

so.1 file, it’s possible to link this library by passing the -l<name> argument to the linker.

CMake’s install(TARGETS <target> LIBRARY) block handles the creation of such symlinks

when needed. However, we may decide to move that step to another install() command by

adding NAMELINK_SKIP to this block:

install(TARGETS <target> LIBRARY

 COMPONENT cmp NAMELINK_SKIP)

To assign symlinking to another component (instead of disabling it altogether), we can repeat

the install() command for the same target and specify a different component, followed by the

NAMELINK_ONLY keyword:

install(TARGETS <target> LIBRARY

 COMPONENT lnk NAMELINK_ONLY)

The same effect can be achieved with the NAMELINK_COMPONENT keyword:

install(TARGETS <target> LIBRARY

 COMPONENT cmp NAMELINK_COMPONENT lnk)

Now that we have configured automatic installation, we can provide pre-built artifacts for our

users using the CPack tool, which is included with CMake.

Since there’s no way to list all available components from the cmake command line,

thoroughly documenting your package’s components can be extremely helpful for

users. An INSTALL “READM” file is a good place for this information.

Installing and Packaging378

Packaging with CPack
While building projects from source has its benefits, it can be time-consuming and complex,

which isn’t ideal for end users, especially non-developers. A more convenient distribution method

is using binary packages, containing compiled artifacts and other necessary static files. CMake

supports generating such packages with a command-line tool called cpack.

To generate a package, select an appropriate package generator for your target platform and

package type. Don’t confuse package generators with buildsystem generators like Unix Makefiles

or Visual Studio.

The following table lists the available package generators:

Generator Name Produced File Types Platform

Archive

7Z, 7zip - (.7z)

TBZ2 (.tar.bz2)

TGZ (.tar.gz)

TXZ (.tar.xz)

TZ (.tar.Z)

TZST (.tar.zst)

ZIP (.zip)

Cross-platform

Bundle macOs Bundle (.bundle) macOS

Cygwin Cygwin packages Cygwin

DEB Debian packages (.deb) Linux

External
JSON (.json) file for 3rd party

packagers
Cross-platform

FreeBSD PKG (.pkg) *BSD, Linux, macOS

IFW QT installer binary Linux, Windows, macOS

NSIS Binary (.exe) Windows

NuGet NuGet package (.nupkg) Windows

productbuild PKG (.pkg) macOS

RPM RPM (.rpm) Linux

WIX Microsoft Installer (.msi) Windows

Table 14.3: Available package generators

Chapter 14 379

Most of these generators have extensive configurations. While it’s beyond this book’s scope to

delve into all their details, you can find more information in the Further reading section. We’ll

focus on a general use case.

To use CPack, configure your project’s installation with the necessary install() commands

and build your project. The resulting cmake_install.cmake in the build tree is used by CPack

to prepare binary packages based on the CPackConfig.cmake file. While you can create this file

manually, using include(CPack) in your project’s listfile is easier. It generates the configuration

in the build tree and supplies default values where needed.

Let’s extend the 13-components example for CPack use:

ch14/14-cpack/CMakeLists�txt (fragment)

cmake_minimum_required(VERSION 3.26)

project(CPackPackage VERSION 1.2.3 LANGUAGES CXX)

include(GNUInstallDirs)

add_subdirectory(src bin)

install(...)

install(...)

install(...)

set(CPACK_PACKAGE_VENDOR "Rafal Swidzinski")

set(CPACK_PACKAGE_CONTACT "email@example.com")

set(CPACK_PACKAGE_DESCRIPTION "Simple Calculator")

include(CPack)

The CPack module extracts the following variables from the project() command:

• CPACK_PACKAGE_NAME

• CPACK_PACKAGE_VERSION

• CPACK_PACKAGE_FILE_NAME

The CPACK_PACKAGE_FILE_NAME stores the structure of the package name:

$CPACK_PACKAGE_NAME-$CPACK_PACKAGE_VERSION-$CPACK_SYSTEM_NAME

Here, CPACK_SYSTEM_NAME is the target OS name, like Linux or win32. For example, by executing

a ZIP generator on Debian, CPack will generate a file named CPackPackage-1.2.3-Linux.zip.

To generate packages after building your project, go to the build tree of your project and run:

cpack [<options>]

Installing and Packaging380

CPack reads options from the CPackConfig.cmake file, but you can override these settings:

• -G <generators>: Semicolon-separated list of package generators. The default value can

be specified in the CPackConfig.cmake in the CPACK_GENERATOR variable.

• -C <configs>: Semicolon-separated list of build configurations (debug, release) to generate

packages for (required for multi-configuration buildsystem generators).

• -D <var>=<value>: This overrides a variable that’s set in the CPackConfig.cmake file.

• --config <config-file>: This uses a specified config file instead of the default CPackConfig.

cmake.

• --verbose, -V: This provides verbose output.

• -P <packageName>: This overrides the package name.

• -R <packageVersion>: This overrides the package version.

• --vendor <vendorName>: This overrides the package vendor.

• -B <packageDirectory>: This specifies the output directory for cpack (by default, this

will be the current working directory).

Let’s try generating packages for our 14-cpack example project. We’re going to use ZIP, 7Z, and

the Debian package generator:

cpack -G "ZIP;7Z;DEB" -B packages

You should get these packages:

• CPackPackage-1.2.3-Linux.7z

• CPackPackage-1.2.3-Linux.deb

• CPackPackage-1.2.3-Linux.zip

These binary packages are ready for publication on your project’s website, a GitHub release, or a

package repository for end users.

Summary
Navigating the intricacies of writing cross-platform installation scripts can be daunting, but

CMake significantly simplifies this task. Although it requires some initial setup, CMake streamlines

the process, integrating seamlessly with the concepts and techniques we’ve explored throughout

this book.

Chapter 14 381

We began by understanding how to export CMake targets from projects, enabling their use in

other projects without installation. This was followed by insights into installing projects that are

already configured for export. Delving into installation basics, we focused on a crucial aspect:

installing CMake targets. We now have a grasp of how CMake allocates different destinations

for various artifact types and the special considerations for public headers. We also examined

other modes of the install() command, encompassing the installation of files, programs, and

directories, and executing scripts during installation.

Our journey then led us to CMake’s reusable packages. We explored how to make project targets

relocatable, facilitating user-defined installation locations. This included creating fully defined

packages consumable via find_package(), entailing the preparation of target export files, config files,

and version files. Acknowledging diverse user needs, we learned how to group artifacts and actions

into installation components, distinguishing them from the components of CMake packages. Our

exploration culminated in an introduction to CPack. We discovered how to prepare basic binary

packages, offering an efficient method to distribute pre-compiled software. While mastering

the nuances of installation and packaging in CMake is an ongoing journey, this chapter lays a

robust foundation. It equips us to handle common scenarios and delve deeper with confidence.

In the next chapter, we’ll apply our accumulated knowledge by crafting a cohesive, professional

project, showcasing practical applications of these CMake techniques.

Further reading
• GNU coding standards for destinations:

https://www.gnu.org/prep/standards/html_node/Directory-Variables.html

• Discussion on new public header management with the FILE_SET keyword:

https://gitlab.kitware.com/cmake/cmake/-/issues/22468#note_991860

• How to install a shared library:

https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html

• Creating relocatable packages:
https://cmake.org/cmake/help/latest/guide/importing-exporting/index.

html#creating-relocatable-packages

• List of paths scanned by find_package() to find the config file:
https://cmake.org/cmake/help/latest/command/find_package.html#config-

mode-search-procedure

• Full documentation of CMakePackageConfigHelpers:
https://cmake.org/cmake/help/latest/module/CMakePackageConfigHelpers.html

https://www.gnu.org/prep/standards/html_node/Directory-Variables.html
https://gitlab.kitware.com/cmake/cmake/-/issues/22468#note_991860
https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html#creating-relocatable-packages
https://cmake.org/cmake/help/latest/guide/importing-exporting/index.html#creating-relocatable-packages
https://cmake.org/cmake/help/latest/command/find_package.html#config-mode-search-procedure
https://cmake.org/cmake/help/latest/command/find_package.html#config-mode-search-procedure
https://cmake.org/cmake/help/latest/module/CMakePackageConfigHelpers.html

Installing and Packaging382

• CPack package generators:

https://cmake.org/cmake/help/latest/manual/cpack-generators.7.html

• On preferred package generators for different platforms:

https://stackoverflow.com/a/46013099

• CPack utility module documentation:

https://cmake.org/cmake/help/latest/module/CPack.html

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://cmake.org/cmake/help/latest/manual/cpack-generators.7.html
https://stackoverflow.com/a/46013099
https://cmake.org/cmake/help/latest/module/CPack.html
https://discord.com/invite/vXN53A7ZcA

15
Creating Your Professional
Project

We have gathered all the necessary knowledge to build professional projects, including structuring,

building, dependency management, testing, analyzing, installing, and packaging. Now, it’s time

to apply these skills by creating a coherent, professional project. It’s important to understand

that even trivial programs benefit from automated quality checks and a seamless process that

transforms raw code into a complete solution. It’s true that implementing these checks and pro-

cesses is a significant investment, as it requires many steps to set up everything correctly. This is

especially true when adding these mechanisms to existing code bases, which are often large and

complex. That’s why it’s beneficial to use CMake from the start and establish all the necessary

processes early on. It’s easier to configure and more efficient, as such quality controls and build

automation will eventually need to be integrated into long-term projects anyway.

In this chapter, we will develop a new solution that is as small as possible, while making the most

of the CMake practices we discussed in the book so far. To keep it simple, we will implement only

a single practical function – adding two numbers. Such basic business code will allow us to fo-

cus on the build-related aspects of the project we learned in previous chapters. To tackle a more

challenging problem related to building, this project will include both a library and an executable.

The library will handle the internal business logic and be available as a CMake package for other

projects. The executable, intended for end users, will provide a user interface demonstrating the

library’s functionality.

To sum that up, in this chapter, we’re going to cover the following main topics:

• Planning our work

Creating Your Professional Project384

• Project layout

• Building and managing dependencies

• Testing and program analysis

• Installing and packaging

• Providing the documentation

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch15.

To build the examples provided in this book, always use the recommended commands:

cmake -B <build tree> -S <source tree>

cmake --build <build tree>

Be sure to replace the placeholders <build tree> and <source tree> with appropriate paths.

As a reminder: the build tree is the path to the target/output directory, and the source tree is the

path at which your source code is located.

This chapter is compiled with GCC to provide compatibility between code coverage instrumen-

tation with the lcov tool used to collect the results. If you want to compile with llvm or another

toolchain, be sure to adapt the coverage processing as needed.

To run tests, execute the following command:

ctest --test-dir <build tree>

Or simply execute it from the build tree directory:

ctest

Note that, in this chapter, the tests will be outputted to the test subdirectory.

Planning our work
The software we’ll be building in this chapter isn’t meant to be extremely complex – we’ll create

a simple calculator that adds two numbers together (Figure 15.1). It will be a console application

with a text user interface, utilizing a third-party library and a separate calculation library that

could be used in other projects. Although this project may not have significant practical applica-

tions, its simplicity is perfect for demonstrating the application of various techniques discussed

throughout the book.

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch15
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch15

Chapter 15 385

Figure 15.1: The text user interface of our project executed in a terminal with mouse support

Usually, projects either generate a user-facing executable or a library for developers. It’s less

common for projects to produce both, though it does happen. For instance, some applications

come with standalone SDKs or libraries to help develop plugins. Another example is a library

bundled with usage examples. Our project falls into the latter category, showcasing the library’s

functionalities.

We’ll start planning by reviewing the chapter list, recalling the contents of each chapter, and

selecting the techniques and tools described that we’ll use to build our application:

• Chapter 1, First Steps with CMake:

This chapter provided basic details about CMake, including installation and command-line

usage for building projects. It also covered essential information about project files, such

as their roles, typical naming conventions, and peculiarities.

• Chapter 2, The CMake Language:

We introduced the necessary tools for writing correct CMake listfiles and scripts, covering

code basics like comments, command invocations, and arguments. We explained variables,

lists, and control structures, introducing several useful commands. This foundation will

be crucial throughout our project.

• Chapter 3, Using CMake in Popular IDEs:

We discussed three IDEs – CLion, VS Code, and Visual Studio IDE – highlighting their

strengths. In our final project, choosing an IDE (or not) is up to you. Once decided, you

can start this project in a Dev container to enjoy a fully prepared environment with just a

few steps to build a Docker image (or just get it from the Docker Hub). Running the image

in a container ensures that the development environment mirrors production.

Creating Your Professional Project386

• Chapter 4, Setting Up Your First CMake Project:

Configuring the project is crucial as it determines the CMake policies that will be in effect,

naming, versioning, and programming language. We’ll use this chapter to influence the

fundamental behavior of the build process.

We’ll also follow established project partitioning and structuring to determine the layout

of directories and files, and utilize system discovery variables to adapt to different build

environments. Toolchain configuration is another critical aspect that allows us to man-

date a specific C++ version and the standards supported by the compiler. Following the

chapter’s advice, we will disable in-source builds to maintain a clean workspace.

• Chapter 5, Working with Targets:

Here, we learned how every modern CMake project makes extensive use of targets. We’ll,

of course, apply targets as well to define a few libraries and executables (both for test and

production) that will keep the project organized and ensure we comply with the principle

of DRY (Don’t Repeat Yourself). The acquired knowledge of target properties and transi-

tive usage requirements (propagated properties) will allow us to keep the configuration

close to target definitions.

• Chapter 6, Using Generator Expressions:

Generator expressions are heavily used throughout our project. We’ll aim to keep these

expressions as straightforward as possible. The project will incorporate custom com-

mands to generate files for Valgrind and coverage reports. Additionally, we’ll employ

target hooks, specifically PRE_BUILD, to clean up the .gcda files that are produced by the

coverage instrumentation process.

• Chapter 7, Compiling C++ Sources with CMake:

There’s no C++ project without compilation. The basics are quite simple, but CMake allows

us to tweak this process in so many ways: extend the sources of a target, configure the

optimizer, and provide debugging information. For this project, the default compilation

flags will do just fine, but we’ll go ahead and play a bit with the preprocessor:

• We’ll store build metadata (the project version, build time, and the Git commit

SHA) in the compiled executable and show it to the user.

• We’ll enable the precompilation of headers. It’s not really a necessity in such a

small project, but it will help us practice this concept.

Chapter 15 387

Unity builds won’t be necessary – this project won’t be big enough to make adding them

worthwhile.

• Chapter 8, Linking Executables and Libraries:

We will obtain general information on linking, useful in any project by default. Addition-

ally, since this project includes a library, we will explicitly reference some specific building

instructions for the following:

• Static libraries for testing and development

• Shared libraries for release

This chapter also outlines how to isolate the main() function for testing purposes, a prac-

tice we will adopt.

• Chapter 9, Managing Dependencies in CMake:

To enhance the project’s appeal, we will introduce an external dependency: a text-based UI

library. Chapter 9 explores various methods for managing dependencies. The choice will be

simple: the FetchContent utility module is generally recommended and most convenient.

• Chapter 10, Using C++20 Modules:

Although we have explored the use of C++20 modules and the environment requirements

to support this feature (CMake 3.28, latest compilers), its wide support is still lacking. To

ensure the project’s accessibility, we will not incorporate modules yet.

• Chapter 11, Testing Frameworks:

Implementing proper automated tests is imperative to ensuring the quality of our solution

remains consistent over time. We will integrate CTest and organize our project to facilitate

testing, applying the main() function separation mentioned previously.

This chapter discusses two testing frameworks: Catch2 and GTest with GMock; we will

use the latter. To obtain detailed information on our coverage, we will generate HTML

reports with LCOV.

• Chapter 12, Program Analysis Tools:

For static analysis, we can select from a range of tools: Clang-Tidy, Cpplint, Cppcheck,

include-what-you-use, and link-what-you-use. We will opt for Cppcheck, as Clang-Tidy

is less compatible with precompiled headers built using GCC.

Creating Your Professional Project388

Dynamic analysis will be conducted using Valgrind’s Memcheck tool, complemented by

the Memcheck-cover wrapper to produce HTML reports. Additionally, our source code

will be automatically formatted during the build process with ClangFormat.

• Chapter 13, Generating Documentation:

Providing documentation is essential when offering a library as part of our project. CMake

facilitates the automation of documentation generation using Doxygen. We will adopt

this approach in a refreshed design by incorporating the doxygen-awesome-css theme.

• Chapter 14, Installing and Packaging:

Finally, we’ll configure the installation and packaging of our solution and prepare files

to form the package as described, along with target definitions. We’ll install that and the

artifacts from build targets to appropriate directories by including the GNUInstallDirs

module. We will additionally configure a few components to modularize the solution and

prepare it for use with CPack.

Professional projects also come with a few text files: README, LICENSE, INSTALL, and so on. We

will briefly cover these at the end of the chapter.

To make things simpler, we won’t implement custom logic that checks whether all the required utili-

ties and dependencies are available. We’ll rely on CMake to show its diagnostics and tell users what’s

missing. If your projects get significant traction, you might want to consider adding these mechanisms

to improve the user experience.

Having formed a clear plan, let’s discuss how to actually structure the project, both in terms of

logical targets and directory structure.

Project layout
To build any project, we should start with a clear understanding of what logical targets are going

to be created within it. In this case, we’ll follow the structure shown in the following figure:

Chapter 15 389

Figure 15.2: A structure of logical targets

Let’s explore the structure by following the build order. First, we compile calc_obj, an object

library. For a refresher on object libraries, please check Chapter 5, Working with Targets. We should

then turn our attention to static libraries and shared libraries.

Shared libraries versus static libraries
In Chapter 8, Linking Executables and Libraries, we introduced both shared and static libraries. We

noted that shared libraries can reduce overall memory usage when multiple programs use the

same library. Also, it’s common for users to already have popular libraries installed or to know

how to install them quickly.

Creating Your Professional Project390

More importantly, shared libraries are separate files that must be placed in specific paths for

the dynamic linker to locate them. In contrast, static libraries are embedded directly into the

executable file, which leads to faster usage as there are no additional steps required to locate the

code in memory.

As library authors, we can decide whether we’re providing a static or a shared version of the library,

or we can simply ship both versions and leave this decision to the programmer using our library

in their project. Since we’re exercising our knowledge, we will deliver two versions.

The calc_test target, which includes unit tests to verify the library’s core functionality, will uti-

lize the static library. Although we are building both types of libraries from the same object files,

testing with either library type is acceptable since their functionalities should be identical. The

console app associated with calc_console_static target will use the shared library. This target

also links against an external dependency, the Functional Terminal (X) User Interface (FTXUI)

library by Arthur Sonzogni (there is a link to the GitHub project in the Further reading section).

The last two targets, calc_console and calc_console_test, are designed to tackle a common

issue in testing executables: the clash of multiple entry points provided by both the test frame-

works and the executables. To circumvent this, we have intentionally isolated the main() func-

tion into a bootstrap target, calc_console, which merely invokes the primary function from

calc_console_static.

With an understanding of the necessary targets and their interrelations, our next step is to orga-

nize the project’s structure with appropriate files and directories.

Project file structure
The project consists of two key elements: the calc libraries and the calc_console executable. To

organize our project effectively, we will employ the following directory structure:

• src contains sources for all released targets and library header files.

• test contains tests for the above libraries and executables.

• cmake contains utility modules and helper files used by CMake to build and install the

project.

• root directory contains top-level configuration and documentation files.

This structure (shown in Figure 15.3) ensures a clear separation of concerns, facilitating easier

navigation and maintenance of the project:

Chapter 15 391

Figure 15.3: The directory structure of the project

Here’s the full list of files in each of the four main directories:

Root directory ./test

CHANGELOG CMakeLists.txt

CMakeLists�txt calc/CMakeLists�txt

INSTALL

LICENSE

README.md

calc/calc_test.cpp

calc_console/CMakeLists.txt

calc_console/tui_test.cpp

./src ./cmake

Creating Your Professional Project392

CMakeLists.txt

calc/CMakeLists.txt

calc/CalcConfig.cmake

calc/basic.cpp

calc/include/calc/basic.h

calc_console/CMakeLists.txt

calc_console/bootstrap.cpp

calc_console/include/tui.h

calc_console/tui.cpp

BuildInfo.cmake

Coverage.cmake

CppCheck.cmake

Doxygen.cmake

Format.cmake

GetFTXUI.cmake

Packaging.cmake

Memcheck.cmake

NoInSourceBuilds.cmake

Testing.cmake

buildinfo.h.in

doxygen_extra_headers

Table 15.1: File structure of the project

While it may appear that CMake introduces considerable overhead, with the cmake directory ini-

tially containing more content than the actual business code, this dynamic will shift as the project

expands in functionality. The initial effort to establish a clean and organized project structure is

substantial, but rest assured, this investment will yield significant benefits in the future.

We’ll go through all the files mentioned in Table 15.1 throughout the chapter and see in detail what

they do and what role they play in the project. This will happen in four steps: building, testing,

installing, and providing documentation.

Building and managing dependencies
All build processes follow the same procedure. We begin with the top-level listfile and progress

downward through the project’s source tree. Figure 15.4 illustrates the project files involved in

the build process, with numbers in parentheses indicating the order of CMake script execution.

Chapter 15 393

Figure 15.4: Files used in the build stage

The top-level CMakeLists.txt (1) listfile configures the project:

ch15/01-full-project/CMakeLists�txt

cmake_minimum_required(VERSION 3.26)

project(Calc VERSION 1.1.0 LANGUAGES CXX)

list(APPEND CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")

include(NoInSourceBuilds)

include(CTest)

add_subdirectory(src bin)

add_subdirectory(test)

include(Packaging)

Creating Your Professional Project394

We start by specifying essential project details and setting the path to the CMake utility modules

(the cmake directory in our project). We then prevent in-source builds using a custom module.

Following that, we enable testing with the CTest module (built into CMake). This should be

done at the project’s root level because this command creates the CTestTestfile.cmake file in

the binary tree relative to its location in the source tree. Placing it elsewhere would prevent ctest

from finding it.

Next, we include two key directories:

• src, containing the project source (to be named bin in the build tree)

• test, containing all the testing utilities

Finally, we include the Packaging module, details of which will be discussed in the Installing and

packaging section.

Let’s examine the NoInSourceBuilds utility module to understand its function:

ch15/01-full-project/cmake/NoInSourceBuilds�cmake

if(PROJECT_SOURCE_DIR STREQUAL PROJECT_BINARY_DIR)

 message(FATAL_ERROR

 "\n"

 "In-source builds are not allowed.\n"

 "Instead, provide a path to build tree like so:\n"

 "cmake -B <destination>\n"

 "\n"

 "To remove files you accidentally created execute:\n"

 "rm -rf CMakeFiles CMakeCache.txt\n"

)

endif()

No surprises here, we check if the user has provided a separate destination directory for gener-

ated files using the cmake command. It must differ from the project’s source tree path. If not, we

instruct the user on how to specify it and how to clean up the repository if they made a mistake.

Our top-level listfile then includes the src subdirectory, instructing CMake to process the

listfile within it:

ch15/01-full-project/src/CMakeLists�txt

include(Coverage)

include(Format)

Chapter 15 395

include(CppCheck)

include(Doxygen)

add_subdirectory(calc)

add_subdirectory(calc_console)

This file is straightforward – it includes all the modules from the ./cmake directory we will be

using and directs CMake to the nested directories to execute the listfiles found there.

Next, let’s examine the listfile for the calc library. It’s somewhat complex, so we’ll break it down

and discuss it in sections.

Building the Calc library
The listfile in the calc directory configures various aspects of this library but, for now, we’ll focus

only on the building:

ch15/01-full-project/src/calc/CMakeLists�txt (fragment)

add_library(calc_obj OBJECT basic.cpp)

target_sources(calc_obj

 PUBLIC FILE_SET HEADERS

 BASE_DIRS include

 FILES include/calc/basic.h

)

set_target_properties(calc_obj PROPERTIES

 POSITION_INDEPENDENT_CODE 1

)

... instrumentation of calc_obj for coverage

add_library(calc_shared SHARED)

target_link_libraries(calc_shared calc_obj)

add_library(calc_static STATIC)

target_link_libraries(calc_static calc_obj)

... testing and program analysis modules

... documentation generation

... installation

Creating Your Professional Project396

We define three targets:

• calc_obj, an object library compiling the basic.cpp implementation file. Its basic.h

header file is included using the FILE_SET keyword in the target_sources() command.

This implicitly configures appropriate include directories to be exported correctly for both

building and installation modes. By creating an object library, we prevent redundant compi-

lation for the two library versions, but it’s essential to enable POSITION_INDEPENDENT_CODE

so that the shared library can depend on this target.

• calc_shared, a shared library that depends on calc_obj.

• calc_static, a static library that also depends on calc_obj.

For context, here’s the C++ header for the basic library. This header file simply declares two

functions within the Calc namespace, which helps avoid name collisions:

ch15/01-full-project/src/calc/include/calc/basic�h

#pragma once

namespace Calc {

 int Add(int a, int b);

 int Subtract(int a, int b);

} // namespace Calc

The implementation file is straightforward as well:

ch15/01-full-project/src/calc/basic�cpp

namespace Calc {

 int Add(int a, int b) {

 return a + b;

 }

 int Subtract(int a, int b) {

 return a - b;

 }

} // namespace Calc

This wraps up the explanation of files in the src/calc directory. Next up is the src/calc_console

and building the executable of the console calculator using this library.

Chapter 15 397

Building the Calc console executable
The calc_console directory contains several files: a listfile, two implementation files (the business

logic and a bootstrap file), and a header file. The listfile looks as follows:

ch15/01-full-project/src/calc_console/CMakeLists�txt (fragment)

add_library(calc_console_static STATIC tui.cpp)

target_include_directories(calc_console_static PUBLIC include)

target_precompile_headers(calc_console_static PUBLIC <string>)

include(GetFTXUI)

target_link_libraries(calc_console_static PUBLIC calc_shared

 ftxui::screen ftxui::dom ftxui::component)

include(BuildInfo)

BuildInfo(calc_console_static)

... instrumentation of calc_console_static for coverage

... testing and program analysis modules

... documentation generation

add_executable(calc_console bootstrap.cpp)

target_link_libraries(calc_console calc_console_static)

... installation

Though the listfile appears complex, as seasoned CMake users, we can now easily decipher its

contents:

1. Define the calc_console_static target, containing the business code without the main()

function to allow linking with GTest, which has its own entry point.

2. Configure the include directories. We could add headers individually with FILE_SET, but

since they are internal, we simplify this step.

3. Implement header precompilation, here demonstrated with just the <string> header as

an example, though larger projects might include many more.

4. Include a custom CMake module to fetch the FTXUI dependency.

5. Link the business code with the shared calc_shared library and the FTXUI components.

Creating Your Professional Project398

6. Add a custom module to generate build information and embed it into the artifact.

7. Outline additional steps for this target: coverage instrumentation, testing, program anal-

ysis, and documentation.

8. Create and link the calc_console bootstrap executable, establishing the entry point.

9. Outline the installation.

We will explore testing, documentation, and installation processes in their respective sections later

in this chapter.

We’re including the GetFTXUI utility module rather than looking for config-module in the system

because it’s not very likely that most users have it installed. We’ll just fetch and build it:

ch15/01-full-project/cmake/GetFTXUI�cmake

include(FetchContent)

FetchContent_Declare(

FTXTUI

GIT_REPOSITORY https://github.com/ArthurSonzogni/FTXUI.git

GIT_TAG v0.11

)

option(FTXUI_ENABLE_INSTALL "" OFF)

option(FTXUI_BUILD_EXAMPLES "" OFF)

option(FTXUI_BUILD_DOCS "" OFF)

FetchContent_MakeAvailable(FTXTUI)

We’re using the recommended FetchContent method, described in detail in Chapter 9, Managing

Dependencies in CMake. The only unusual addition is the calls of the option() command, which

lets us bypass the lengthy build steps for FTXUI and prevents its installation steps from affecting

this project’s installation process. For more details, refer to the Further reading section.

The listfile for the calc_console directory includes another custom utility module that is build-re-

lated: BuildInfo. This module will capture three pieces of information to be displayed in the

executable:

• The current Git commit SHA

• The build timestamp

• The project version specified in the top-level listfile

Chapter 15 399

As we learned in Chapter 7, Compiling C++ Sources with CMake, CMake can capture build-time

values and pass them to C++ code via template files, for example, with a struct:

ch15/01-full-project/cmake/buildinfo�h�in

struct BuildInfo {

 static inline const std::string CommitSHA = "@COMMIT_SHA@";

 static inline const std::string Timestamp = "@TIMESTAMP@";

 static inline const std::string Version = "@PROJECT_VERSION@";

};

To fill that structure during the configuration stage, we’ll use the following code:

ch15/01-full-project/cmake/BuildInfo�cmake

set(BUILDINFO_TEMPLATE_DIR ${CMAKE_CURRENT_LIST_DIR})

set(DESTINATION "${CMAKE_CURRENT_BINARY_DIR}/buildinfo")

string(TIMESTAMP TIMESTAMP)

find_program(GIT_PATH git REQUIRED)

execute_process(COMMAND ${GIT_PATH} log --pretty=format:'%h' -n 1

 OUTPUT_VARIABLE COMMIT_SHA)

configure_file(

 "${BUILDINFO_TEMPLATE_DIR}/buildinfo.h.in"

 "${DESTINATION}/buildinfo.h" @ONLY

)

function(BuildInfo target)

 target_include_directories(${target} PRIVATE ${DESTINATION})

endfunction()

After including the module, we have set variables to capture the desired information and use

configure_file() to generate buildinfo.h. The final step was to invoke the BuildInfo function

to include the generated file’s directory in the target’s include directories.

The produced header file can be then shared with multiple different consumers if needed. In

such a case, you’ll probably want to add include_guard(GLOBAL) at the top of the listfile to avoid

running the git command for every target.

Creating Your Professional Project400

Before looking into the implementation of the console calculator, I’d like to emphasize that you

don’t need to deeply understand the intricacies of the tui.cpp file or the FXTUI library, as this

isn’t essential for our purposes. Instead, let’s focus on the highlighted parts of the code:

ch15/01-full-project/src/calc_console/tui�cpp

#include "tui.h"

#include <ftxui/dom/elements.hpp>

#include "buildinfo.h"

#include "calc/basic.h"

using namespace ftxui;

using namespace std;

string a{"12"}, b{"90"};

auto input_a = Input(&a, "");

auto input_b = Input(&b, "");

auto component = Container::Vertical({input_a, input_b});

Component getTui() {

 return Renderer(component, [&] {

 auto sum = Calc::Add(stoi(a), stoi(b));

 return vbox({

 text("CalcConsole " + BuildInfo::Version),

 text("Built: " + BuildInfo::Timestamp),

 text("SHA: " + BuildInfo::CommitSHA),

 separator(),

 input_a->Render(),

 input_b->Render(),

 separator(),

 text("Sum: " + to_string(sum)),

 }) |

 border;

 });

}

Chapter 15 401

This piece of code provides the getTui() function, which returns a ftxui::Component, an object

that encapsulates interactive UI elements like labels, text fields, separators, and a border. For

those curious about the detailed workings of these elements, further materials are available in

the Further reading section.

More importantly, the include directives link to the headers from the calc_obj target and the

BuildInfo module. The interaction begins with the lambda function, invoking Calc::Sum, and

displaying the result using the text() function.

The values from the buildinfo.h collected at build time are used in a similar way and will be

shown to the user at runtime.

Alongside tui.cpp, there’s a header file:

ch15/01-full-project/src/calc_console/include/tui�h

#include <ftxui/component/component.hpp>

ftxui::Component getTui();

This header is used by the bootstrap file in the calc_console target:

ch15/01-full-project/src/calc_console/bootstrap�cpp

#include <ftxui/component/screen_interactive.hpp>

#include "tui.h"

int main(int argc, char** argv) {

 ftxui::ScreenInteractive::FitComponent().Loop(getTui());

}

This brief code initializes an interactive console screen with FTXUI, displaying the Component

object from getTui() and handling keyboard inputs in a loop. With all files in the src directory

addressed, we can now progress to testing and analyzing the program.

Creating Your Professional Project402

Testing and program analysis
Program analysis and testing are essential components that work together to ensure the quality

of our solutions. For instance, using Valgrind is more effective when running test code (because

of its consistency and coverage). Therefore, we will configure testing and program analysis in the

same place. Figure 15.5 illustrates the execution flow and files needed to set them up:

Figure 15.5: Files used to enable testing and program analysis

The numbers in parentheses represent the sequence in which listfiles are processed. Start from

the top-level listfile and add the src and test directories:

• In src, include Coverage, Format, and CppCheck modules, and add the src/calc and src/

calc_console directories.

• In src/calc, define targets and configure them with included modules.

• In src/calc_console, define targets and configure them with included modules.

• In test, include Testing (which includes Memcheck) and add the test/calc and test/

calc_console directories.

Chapter 15 403

• In test/calc, define test targets and configure them with included modules.

• In test/calc_console, define test targets and configure them with included modules.

Let’s examine the listfile for the test directory:

ch15/01-full-project/test/CMakeLists�txt

include(Testing)

add_subdirectory(calc)

add_subdirectory(calc_console)

At this level, the Testing utility module is included to provide functionality for both target groups

(from the calc and calc_console directories):

ch15/01-full-project/cmake/Testing�cmake (fragment)

include(FetchContent)

FetchContent_Declare(

 googletest

 GIT_REPOSITORY https://github.com/google/googletest.git

 GIT_TAG v1.14.0

)

For Windows: Prevent overriding the parent project's

compiler/linker settings

set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)

option(INSTALL_GMOCK "Install GMock" OFF)

option(INSTALL_GTEST "Install GTest" OFF)

FetchContent_MakeAvailable(googletest)

...

We enabled testing and included the FetchContent module to obtain GTest and GMock. Although

GMock isn’t used in this project, it’s included with GTest in the same repository, so we configure

it as well. The key configuration step is preventing the installation of these frameworks from

affecting our project’s installation by using the option() command.

Creating Your Professional Project404

In the same file, we define an AddTests() function to facilitate comprehensive testing of business

targets:

ch15/01-full-project/cmake/Testing�cmake (continued)

...

include(GoogleTest)

include(Coverage)

include(Memcheck)

macro(AddTests target)

 message("Adding tests to ${target}")

 target_link_libraries(${target} PRIVATE gtest_main gmock)

 gtest_discover_tests(${target})

 AddCoverage(${target})

 AddMemcheck(${target})

endmacro()

First, we include the necessary modules: GoogleTest is bundled with CMake, and Coverage and

Memcheck are custom utility modules included in the project. The AddTests macro is then pro-

vided to prepare a target for testing, applying coverage instrumentation, and memory checking.

The AddCoverage() and AddMemcheck() functions are defined in their respective utility modules.

Now, we can proceed to implement them.

Preparing the Coverage module
Adding coverage across various targets involves several steps. The Coverage module provides a

function that defines the coverage target for a specified target:

ch15/01-full-project/cmake/Coverage�cmake (fragment)

function(AddCoverage target)

 find_program(LCOV_PATH lcov REQUIRED)

 find_program(GENHTML_PATH genhtml REQUIRED)

 add_custom_target(coverage-${target}

 COMMAND ${LCOV_PATH} -d . --zerocounters

 COMMAND $<TARGET_FILE:${target}>

 COMMAND ${LCOV_PATH} -d . --capture -o coverage.info

 COMMAND ${LCOV_PATH} -r coverage.info '/usr/include/*'

 -o filtered.info

 COMMAND ${GENHTML_PATH} -o coverage-${target}

Chapter 15 405

 filtered.info --legend

 COMMAND rm -rf coverage.info filtered.info

 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}

)

endfunction()

...

This implementation differs slightly from the one introduced in Chapter 11, Testing Frameworks,

as it now includes the target name in the output path to prevent name conflicts. Next, we need a

function to clear previous coverage results:

ch15/01-full-project/cmake/Coverage�cmake (continued)

...

function(CleanCoverage target)

 add_custom_command(TARGET ${target} PRE_BUILD COMMAND

 find ${CMAKE_BINARY_DIR} -type f

 -name '*.gcda' -exec rm {} +)

endfunction()

...

Additionally, we have a function to prepare a target for coverage analysis:

ch15/01-full-project/cmake/Coverage�cmake (fragment)

...

function(InstrumentForCoverage target)

 if (CMAKE_BUILD_TYPE STREQUAL Debug)

target_compile_options(${target}

 PRIVATE --coverage -fno-inline)

 target_link_options(${target} PUBLIC --coverage)

 endif()

endfunction()

The InstrumentForCoverage() function is applied to src/calc and src/calc_console, enabling

the generation of the coverage data files when targets calc_obj and calc_console_static are

executed.

Creating Your Professional Project406

To generate reports for both test targets, execute the following cmake commands after configuring

the project with the Debug build type:

cmake --build <build-tree> -t coverage-calc_test

cmake --build <build-tree> -t coverage-calc_console_test

Next, we want to perform dynamic program analysis on multiple targets we defined, so to apply

the Memcheck module, introduced in Chapter 12, Program Analysis Tools, we need to tweak it

slightly to scan more than one target.

Preparing the Memcheck module
The generation of Valgrind memory management reports is initiated by AddTests(). We begin

the Memcheck module with its initial setup:

ch15/01-full-project/cmake/Memcheck�cmake (fragment)

include(FetchContent)

FetchContent_Declare(

 memcheck-cover

 GIT_REPOSITORY https://github.com/Farigh/memcheck-cover.git

 GIT_TAG release-1.2

)

FetchContent_MakeAvailable(memcheck-cover)

This code is already familiar to us. Now, let’s examine the function that creates the necessary

targets for generating reports:

ch15/01-full-project/cmake/Memcheck�cmake (continued)

function(AddMemcheck target)

 set(MEMCHECK_PATH ${memcheck-cover_SOURCE_DIR}/bin)

 set(REPORT_PATH "${CMAKE_BINARY_DIR}/valgrind-${target}")

 add_custom_target(memcheck-${target}

 COMMAND ${MEMCHECK_PATH}/memcheck_runner.sh -o

 "${REPORT_PATH}/report"

 -- $<TARGET_FILE:${target}>

 COMMAND ${MEMCHECK_PATH}/generate_html_report.sh

 -i ${REPORT_PATH}

 -o ${REPORT_PATH}

Chapter 15 407

 WORKING_DIRECTORY ${CMAKE_BINARY_DIR}

)

endfunction()

We slightly improved the AddMemcheck() function from Chapter 12 to handle multiple targets. We

made the REPORT_PATH variable target-specific.

To generate Memcheck reports, use the following commands (note that generating reports is

more effective when using the Debug build type for configuration):

cmake --build <build-tree> -t memcheck-calc_test

cmake --build <build-tree> -t memcheck-calc_console_test

Okay, we defined our Coverage and Memcheck modules (they are used in the Testing module),

so let’s see how the actual test targets are configured.

Applying testing scenarios
To implement testing, we’ll follow this scenario:

1. Write unit tests.

2. Define and configure executable targets for tests with AddTests().

3. Instrument the Software Under Test (SUT) to enable coverage collection.

4. Ensure that coverage data is cleared between the builds to prevent segmentation faults.

Let’s start with the unit tests we have to write. To keep things brief, we’ll provide the simplest

(and perhaps a bit incomplete) unit tests possible. First, test the library:

ch15/01-full-project/test/calc/basic_test�cpp

#include "calc/basic.h"

#include <gtest/gtest.h>

TEST(CalcTest, SumAddsTwoInts) {

 EXPECT_EQ(4, Calc::Add(2, 2));

}

TEST(CalcTest, SubtractsTwoInts) {

 EXPECT_EQ(6, Calc::Subtract(8, 2));

}

Creating Your Professional Project408

Follow with the tests for the console – for this purpose, we’ll use the FXTUI library. Again, un-

derstanding the source code completely isn’t necessary; these tests are for illustrative purposes:

ch15/01-full-project/test/calc_console/tui_test�cpp

#include "tui.h"

#include <gmock/gmock.h>

#include <gtest/gtest.h>

#include <ftxui/screen/screen.hpp>

using namespace ::ftxui;

TEST(ConsoleCalcTest, RunWorksWithDefaultValues) {

 auto component = getTui();

 auto document = component->Render();

 auto screen = Screen::Create(Dimension::Fit(document));

 Render(screen, document);

 auto output = screen.ToString();

 ASSERT_THAT(output, testing::HasSubstr("Sum: 102"));

}

This test renders the UI to a static Screen object and checks if the string output contains the

expected sum. Not really a great test, but at least it’s a short one.

Now, let’s configure our tests with two nested listfiles. First, for the library:

ch15/01-full-project/test/calc/CMakeLists�txt

add_executable(calc_test basic_test.cpp)

target_link_libraries(calc_test PRIVATE calc_static)

AddTests(calc_test)

And then for the executable:

ch15/01-full-project/test/calc_console/CMakeLists�txt

add_executable(calc_console_test tui_test.cpp)

target_link_libraries(calc_console_test

 PRIVATE calc_console_static)

AddTests(calc_console_test)

Chapter 15 409

These configurations enable CTest to execute the tests. We also need to prepare the business

logic targets for coverage analysis and ensure that the coverage data is refreshed between builds.

Let’s add the necessary instructions to the calc library target:

ch15/01-full-project/src/calc/CMakeLists�txt (continued)

... calc_obj target definition

InstrumentForCoverage(calc_obj)

... calc_shared target definition

... calc_static target definition

CleanCoverage(calc_static)

Instrumentation is added to the calc_obj with the extra --coverage flag, but CleanCoverage()

is called for the calc_static target. Normally, you’d apply it on the calc_obj for consistency, but

we’re using the PRE_BUILD keyword in CleanCoverage(), and CMake doesn’t allow PRE_BUILD,

PRE_LINK, or POST_BUILD hooks to the object libraries.

Finally, we’ll instrument and clean the console target as well:

ch15/01-full-project/src/calc_console/CMakeLists�txt (continued)

... calc_console_test target definition

... BuildInfo

InstrumentForCoverage(calc_console_static)

CleanCoverage(calc_console_static)

With these steps, CTest is now set up to run our tests and collect coverage. Next, we’ll add in-

structions for enabling static analysis, as we want our project to be of high quality during the

first build and all of the subsequent builds.

Adding static analysis tools
We’re nearing the completion of configuring quality assurance for our targets. The final step

involves enabling automatic formatting and integrating CppCheck:

ch15/01-full-project/src/calc/CMakeLists�txt (continued)

... calc_static target definition

Creating Your Professional Project410

... Coverage instrumentation and cleaning

Format(calc_static .)

AddCppCheck(calc_obj)

We face a minor issue here: calc_obj cannot have a PRE_BUILD hook, so we apply formatting to

calc_static instead. We also make sure that the calc_console_static target is formatted and

checked:

ch15/01-full-project/src/calc_console/CMakeLists�cmake (continued)

... calc_console_test target definition

... BuildInfo

... Coverage instrumentation and cleaning

Format(calc_console_static .)

AddCppCheck(calc_console_static)

We still need to define the Format and CppCheck functions. Starting with Format(), we’re bor-

rowing the code described in Chapter 12, Program Analysis Tools:

ch15/01-full-project/cmake/Format�cmake

function(Format target directory)

 find_program(CLANG-FORMAT_PATH clang-format REQUIRED)

 set(EXPRESSION h hpp hh c cc cxx cpp)

 list(TRANSFORM EXPRESSION PREPEND "${directory}/*.")

 file(GLOB_RECURSE SOURCE_FILES FOLLOW_SYMLINKS

 LIST_DIRECTORIES false ${EXPRESSION}

)

 add_custom_command(TARGET ${target} PRE_BUILD COMMAND

 ${CLANG-FORMAT_PATH} -i --style=file ${SOURCE_FILES}

)

endfunction()

To integrate CppCheck with our sources, we use:

ch15/01-full-project/cmake/CppCheck�cmake

function(AddCppCheck target)

Chapter 15 411

 find_program(CPPCHECK_PATH cppcheck REQUIRED)

 set_target_properties(${target}

 PROPERTIES CXX_CPPCHECK

 "${CPPCHECK_PATH};--enable=warning;--error-exitcode=10"

)

endfunction()

This is simple and convenient. You may see some resemblance to the Clang-Tidy module (from

Chapter 12, Program Analysis Tools) showcasing CMake’s consistency in functionality.

The arguments for cppcheck are as follows:

• --enable=warning: Activates warning messages. To enable additional checks, refer to the

Cppcheck manual (see the Further reading section).

• --error-exitcode=1: Sets the error code returned when cppcheck detects an issue. This

can be any number from 1 to 255 (as 0 indicates success), although some numbers can

be reserved by the system.

With all files in the src and test directories created, our solution is now buildable and fully tested.

We can proceed to the installation and packaging steps.

Installing and packaging
Figure 15.6 shows where we’ll configure our project for installation and packaging:

Figure 15.6: File configuring installation and packaging

Creating Your Professional Project412

The top-level listfile includes the Packaging utility module:

ch15/01-full-project/CMakeLists�txt (fragment)

... configure project

... enable testing

... include src and test subdirectories

include(Packaging)

The Packaging module details the package configuration for the project, which we will explore

in the Packaging with CPack section. Our focus now is on installing three main components:

• The Calc library artifacts: static and shared libraries, header files, and target export files

• The package definition config file for the Calc library

• The Calc console executable

Everything is planned, so it’s time to configure the installation of the library.

Installation of the library
To install the library, we start by defining logical targets and their artifact destinations, utilizing

the GNUInstallDirs module’s default values to avoid manual path specification. Artifacts will

be grouped into components. The default installation will install all files, but you may choose to

only install the runtime component and skip the development artifacts:

ch15/01-full-project/src/calc/CMakeLists�txt (continued)

... calc library targets definition

... configuration, testing, program analysis

Installation

include(GNUInstallDirs)

install(TARGETS calc_obj calc_shared calc_static

 EXPORT CalcLibrary

 ARCHIVE COMPONENT development

 LIBRARY COMPONENT runtime

 FILE_SET HEADERS COMPONENT runtime

)

Chapter 15 413

For UNIX systems, we also configure post-installation registration of the shared library with

ldconfig:

ch15/01-full-project/src/calc/CMakeLists�txt (continued)

if (UNIX)

 install(CODE "execute_process(COMMAND ldconfig)"

 COMPONENT runtime

)

endif()

To enable reusability in other CMake projects, we’ll package the library by generating and install-

ing a target export file and a config file that references it:

ch15/01-full-project/src/calc/CMakeLists�txt (continued)

install(EXPORT CalcLibrary

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

 NAMESPACE Calc::

 COMPONENT runtime

)

install(FILES "CalcConfig.cmake"

 DESTINATION ${CMAKE_INSTALL_LIBDIR}/calc/cmake

)

For simplicity, the CalcConfig.cmake file is kept minimal:

ch15/01-full-project/src/calc/CalcConfig.cmake

include("${CMAKE_CURRENT_LIST_DIR}/CalcLibrary.cmake")

This file is located in src/calc since it only includes the library targets. If there were target defi-

nitions from other directories, like calc_console, you would typically place CalcConfig.cmake

in the top-level or src directory.

Now, the library is prepared to be installed with the cmake --install command after building

the project. However, we still need to configure the installation of the executable.

Creating Your Professional Project414

Installation of the executable
We, of course, want our users to be able to enjoy the executable in their system, so we will install

it with CMake. Preparing the installation of the binary executable is straightforward; to achieve

it, we only need to include GNUInstallDirs and use a single install() command:

ch15/01-full-project/src/calc_console/CMakeLists�txt (continued)

... calc_console_static definition

... configuration, testing, program analysis

... calc_console bootstrap executable definition

Installation

include(GNUInstallDirs)

install(TARGETS calc_console

 RUNTIME COMPONENT runtime

)

With that, the executable is set to be installed. Now, let’s proceed to packaging.

Packaging with CPack
We could go wild and configure a vast multitude of supported package types; for this project,

however, a basic configuration will be enough:

ch15/01-full-project/cmake/Packaging�cmake

CPack configuration

set(CPACK_PACKAGE_VENDOR "Rafal Swidzinski")

set(CPACK_PACKAGE_CONTACT "email@example.com")

set(CPACK_PACKAGE_DESCRIPTION "Simple Calculator")

include(CPack)

Such a minimal setup works well for standard archives, such as ZIP files. To test the installation and

packaging processes after building the project, use the following command within the build tree:

cpack -G TGZ -B packages

CPack: Create package using TGZ

CPack: Install projects

CPack: - Run preinstall target for: Calc

CPack: - Install project: Calc []

CPack: Create package

Chapter 15 415

CPack: - package: .../packages/Calc-1.0.0-Linux.tar.gz generated.

This concludes the installation and packaging; the next order of business is documentation.

Providing the documentation
The final touch to a professional project is the documentation. Undocumented projects are very

difficult to navigate and understand when working in teams and when shared with external au-

diences. I would even go as far as saying that programmers often read their own documentation

after stepping away from a specific file to understand what is happening inside.

Documentation is also important for legal and compliance reasons and to inform the users how to

act with the software. If time permits, we should invest in setting up documentation for our project.

Documentation usually falls into two categories:

• Technical documentation (covering interfaces, designs, classes, and files)

• General documentation (encompassing all other non-technical documents)

As we saw in Chapter 13, Generating Documentation, much of the technical documentation can be

automatically generated with CMake using Doxygen.

Generating the technical documentation
While some projects generate documentation during the build phase and include it in the package,

we’ve chosen not to do so for this project. However, there could be valid reasons to opt otherwise,

like if the documentation needs to be hosted online.

Figure 15.7 provides an overview of the documentation generation process:

Figure 15.7: Files used to generate documentation

Creating Your Professional Project416

To generate documentation, we’ll create another CMake utility module, Doxygen. Start by using

the Doxygen find-module and download the doxygen-awesome-css project for themes:

ch15/01-full-project/cmake/Doxygen�cmake (fragment)

find_package(Doxygen REQUIRED)

include(FetchContent)

FetchContent_Declare(doxygen-awesome-css

 GIT_REPOSITORY

 https://github.com/jothepro/doxygen-awesome-css.git

 GIT_TAG

 v2.3.1

)

FetchContent_MakeAvailable(doxygen-awesome-css)

Then, we’ll need a function to create targets that generate documentation. We’ll adapt the code

introduced in Chapter 13, Generating Documentation, to support multiple targets:

ch15/01-full-project/cmake/Doxygen�cmake (continued)

function(Doxygen target input)

 set(NAME "doxygen-${target}")

 set(DOXYGEN_GENERATE_HTML YES)

 set(DOXYGEN_HTML_OUTPUT ${PROJECT_BINARY_DIR}/${output})

 UseDoxygenAwesomeCss()

 UseDoxygenAwesomeExtensions()

 doxygen_add_docs("doxygen-${target}"

 ${PROJECT_SOURCE_DIR}/${input}

 COMMENT "Generate HTML documentation"

)

endfunction()

... copied from Ch13:

UseDoxygenAwesomeCss

UseDoxygenAwesomeExtensions

Chapter 15 417

Use this function by calling it for the library target:

ch15/01-full-project/src/calc/CMakeLists�txt (fragment)

... calc_static target definition

... testing and program analysis modules

Doxygen(calc src/calc)

... file continues

And for the console executable:

ch15/01-full-project/src/calc_console/CMakeLists�txt (fragment)

... calc_static target definition

... testing and program analysis modules

Doxygen(calc_console src/calc_console)

... file continues

This setup adds two targets to the project: doxygen-calc and doxygen-calc_console, allowing

for the on-demand generation of technical documentation. Now, let’s consider what other doc-

uments should be included.

Writing non-technical documents for a professional project
Professional projects should include a set of non-technical documents stored in the top-level

directory, essential for comprehensive understanding and legal clarity:

• README: Provides a general description of the project

• LICENSE: Details the legal parameters regarding the project’s use and distribution

Additional documents you might consider include:

• INSTALL: Offers step-by-step installation instructions

• CHANGELOG: Presents significant changes across versions

• AUTHORS: Lists contributors and their contact information if the project has multiple con-

tributors

• BUGS: Advises on known issues and details on reporting new ones

Creating Your Professional Project418

CMake doesn’t directly interact with these files, as they don’t involve automated processing or

scripting. Yet, their presence is vital for a well-documented C++ project. Here’s a minimal example

of each document:

ch15/01-full-project/README�md

Calc Console

Calc Console is a calculator that adds two numbers in a

terminal. It does all the math by using a **Calc** library.

This library is also available in this package.

This application is written in C++ and built with CMake.

More information

- Installation instructions are in the INSTALL file

- License is in the LICENSE file

This is short and maybe a little silly. Note the .md extension – it stands for Markdown, which is a

text-based formatting language that is easily readable. Websites such as GitHub and many text

editors will render these files with rich formatting.

Our INSTALL file will look like this:

ch15/01-full-project/INSTALL

To install this software you'll need to provide the following:

- C++ compiler supporting C++17

- CMake >= 3.26

- GIT

- Doxygen + Graphviz

- CPPCheck

- Valgrind

This project also depends on GTest, GMock and FXTUI. This

software is automatically pulled from external repositories

during the installation.

Chapter 15 419

To configure the project type:

cmake -B <temporary-directory>

Then you can build the project:

cmake --build <temporary-directory>

And finally install it:

cmake --install <temporary-directory>

To generate the documentation run:

cmake --build <temporary-directory> -t doxygen-calc

cmake --build <temporary-directory> -t doxygen-calc_console

The LICENSE file is a bit tricky, as it requires some expertise in copyright law (and otherwise).

Instead of writing all the clauses by ourselves, we can do what many other projects do and use

a readily available software license. For this project, we’ll go with the MIT License, which is ex-

tremely permissive. Check the Further reading section for some useful references:

ch15/01-full-project/LICENSE

Copyright 2022 Rafal Swidzinski

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

Creating Your Professional Project420

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Lastly, we have the CHANGELOG. As suggested earlier, it’s good to keep track of changes in a file so

that developers using your project can easily find out which version supports the features they

need. For example, it might be useful to say that a multiplication feature was added to the library

in version 0.8.2. Something as simple as the following is already helpful:

ch15/01-full-project/CHANGELOG

1.1.0 Updated for CMake 3.26 in 2nd edition of the book

1.0.0 Public version with installer

0.8.2 Multiplication added to the Calc Library

0.5.1 Introducing the Calc Console application

0.2.0 Basic Calc library with Sum function

With these documents, the project not only gains an operational structure but also communicates

its usage, changes, and legal considerations effectively, ensuring users and contributors have all

the necessary information at their disposal.

Summary
In this chapter, we put together a professional project based on everything we’ve learned so far.

Let’s do a quick recap.

We started by laying out the project and discussing what files will live in which directory. Based

on previous experience and the desire to practice more advanced scenarios, we delineated a main

application for the users and a library that another developer might use. This shaped the structure

of directories and relations between the CMake targets we want to build. We then followed with

the configuration of individual targets for the build: we provided the source code for the library,

defined its targets, and set it up for consumption with position-independent code parameters.

The user-facing application also had its executable target defined, provided with source code,

and configured its dependency: the FTXUI library.

Armed with artifacts to build, we continued to enhance our project with tests and quality assurance.

We added the coverage module to produce coverage reports, Memcheck to verify the solution with

Valgrind during the runtime, and CppCheck to execute static analysis as well.

Chapter 15 421

Such a project was now ready to be installed, so we created appropriate installation entries for

the library and the executable using the techniques learned so far, and we prepared a package

configuration for CPack. The final task was to ensure that the project was correctly documented, so

we set up automatic documentation generation with Doxygen and wrote a few basic documents

that take care of less technical aspects of the software distribution.

This led us to the completion of the project configuration and we can now easily build it and

install it with just a few precisely used CMake commands. But what if we could just use one

simple command to complete the entire process? Let’s discover how in the final chapter: Chapter

16, Writing CMake Presets.

Further reading
For more information, you can refer to the following links:

• Building both a static library and a shared library:

https://stackoverflow.com/q/2152077

• A FXTUI library project:

https://github.com/ArthurSonzogni/FTXUI

• The documentation of the option() command:

https://cmake.org/cmake/help/latest/command/option.html

• Preparing for release (of open source software) by Google:

https://opensource.google/docs/releasing/preparing/

• Why we can’t use Clang-Tidy for GCC-precompiled headers:

https://gitlab.kitware.com/cmake/cmake/-/issues/22081#note_943104

• Cppcheck manual:

https://cppcheck.sourceforge.io/manual.pdf

• How to write a README:

https://www.freecodecamp.org/news/how-to-write-a-good-readme-file/

• Creative Commons licenses for GitHub projects:

https://github.com/santisoler/cc-licenses

• Commonly used project licenses recognized by GitHub:
https://docs.github.com/en/repositories/managing-your-repositorys-

settings-and-features/customizing-your-repository/licensing-a-repository

https://stackoverflow.com/q/2152077
https://github.com/ArthurSonzogni/FTXUI
https://cmake.org/cmake/help/latest/command/option.html
https://opensource.google/docs/releasing/preparing/
https://gitlab.kitware.com/cmake/cmake/-/issues/22081#note_943104
https://cppcheck.sourceforge.io/manual.pdf
https://www.freecodecamp.org/news/how-to-write-a-good-readme-file/
https://github.com/santisoler/cc-licenses
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository

Creating Your Professional Project422

Leave a review!
Enjoyed this book? Help readers like you by leaving an Amazon review. Scan the QR code below

to get a free eBook of your choice.

16
Writing CMake Presets

Presets were added to CMake in version 3.19 to make it easier to manage project settings. Before

presets, users had to memorize lengthy command-line configurations or set overrides directly

in the project files, which could become complicated and prone to mistakes. Presets let users

handle settings such as the generator used for configuring the project, the number of concurrent

build tasks, and the project components to build or test in a more straightforward manner. With

presets, CMake becomes simpler to use. Users can set up presets once and use them whenever

needed, making each CMake execution more consistent and easier to understand. They also help

standardize settings across different users and computers, simplifying collaborative project work.

Presets are compatible with four primary modes of CMake: configuring the buildsystem, building,

running tests, and packaging. They allow users to link these parts together in workflows, making

the whole process more automatic and organized. Additionally, presets offer features like condi-

tions and macro expressions (or simply macros), granting users greater control.

In this chapter, we’re going to cover the following main topics:

• Using presets defined in a project

• Writing a preset file

• Defining stage-specific presets

• Defining workflow presets

• Adding conditions and macros

Writing CMake Presets424

Technical requirements
You can find the code files that are present in this chapter on GitHub at https://github.com/

PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch16.

The commands needed to execute the examples in this chapter will be provided in each section.

Using presets defined in a project
The configuration of projects can become a complex task when we need to be specific about ele-

ments such as cache variables, chosen generators, and more—especially when there are multiple

ways to build our project. This is where presets come in handy. Instead of memorizing com-

mand-line arguments or writing shell scripts to execute cmake with different arguments, we can

create a preset file and store the required configuration in the project itself.

CMake utilizes two optional files to store project presets:

• CMakePresets.json: Official presets delivered by project authors.

• CMakeUserPresets.json: Dedicated to users who wish to add custom presets to the project.

Projects should add this file to the VCS ignore list to ensure that custom settings don’t

inadvertently get shared in the repository.

Preset files must be placed in the top directory of the project for CMake to recognize them. Each

preset file can define multiple presets for each stage: configure, build, test, package, and workflow

presets that encompass multiple stages. Users can then select a preset to execute through the

IDE, GUI, or command line.

Presets can be listed by adding the --list-presets argument to the command line, specific to

the stage we’re listing for. For example, build presets can be listed with:

cmake --build --list-presets

Test presets can be listed with:

ctest --list-presets

To use a preset, we need to follow the same pattern, and provide the preset name after the --preset

argument.

Additionally, you can’t list package presets with the cmake command; you need to use cpack.

Here’s a command line for the package preset:

cpack --preset <preset-name>

https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch16
https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch16

Chapter 16 425

After picking the preset, you can, of course, add stage-specific command-line arguments, for

example, to specify your build tree or installation path. Added arguments override whatever is

set in the preset.

There’s a special case for workflow presets, which can be listed and applied if the additional

--workflow argument is present when running the cmake command:

$ cmake --workflow --list-presets

Available workflow presets:

 "myWorkflow"

$ cmake --workflow --preset myWorkflow

Executing workflow step 1 of 4: configure preset "myConfigure"

...

That’s how you can apply and review available presets in a project. Now, let’s explore how the

preset file is structured.

Writing a preset file
CMake searches for CMakePresets.json and CMakeUserPresets.json in the top-level directory.

Both files use the same JSON structure to define presets, hence there isn’t much difference between

them to discuss. The format is a JSON object with the following keys:

• version: This is a required integer that specifies the version of the preset JSON schema

• cmakeMinimumRequired: This is an object that specifies the required CMake version

• include: This is an array of strings that includes external presets from file paths provided

in the array (since schema version 4)

• configurePresets: This is an array of objects that defines the configuration stage presets

• buildPresets: This is an array of objects that defines the build stage presets

• testPresets: This is an array of objects that are specific to the test stage presets

• packagePresets: This is an array of objects that are specific to the package stage presets

• workflowPresets: This is an array of objects that are specific to the workflow mode presets

• vendor: This is an object that contains custom settings defined by IDEs and other vendors;

CMake does not process this field

Writing CMake Presets426

When writing a preset, CMake requires the version entry to be present; other values are optional.

Here’s an example preset file (actual presets will be added in subsequent sections):

ch16/01-presets/CMakePresets�json

{

 "version": 6,

 "cmakeMinimumRequired": {

 "major": 3,

 "minor": 26,

 "patch": 0

 },

 "include": [],

 "configurePresets": [],

 "buildPresets": [],

 "testPresets": [],

 "packagePresets": [],

 "workflowPresets": [],

 "vendor": {

 "data": "IDE-specific information"

 }

}

There’s no requirement to add empty arrays like in the preceding example; entries other than

version are optional. Speaking of which, the appropriate schema version for CMake 3.26 is 6.

Now that we understand the structure of the preset file, let’s actually learn how to define the

presets themselves.

Defining stage-specific presets
Stage-specific presets are simply presets that configure individual CMake stages: configure, build,

test, package, and install. They allow for a granular and structured approach to defining build

configurations. Here’s an overview of the common features shared across all preset stages, fol-

lowed by an introduction to defining presets for individual stages.

Common features across presets
There are three features that are used to configure presets regardless of the CMake stage. Namely,

these are unique name fields, optional fields, and associations with configuration presets. The

following sections will cover each, respectively.

Chapter 16 427

Unique name fields
Every preset must have a unique name field within its stage. Given that CMakeUserPresets.json

(if it exists) implicitly includes CMakePresets.json (if it exists), both files share the namespace,

preventing duplicate names across them. For example, you can’t have two package-stage presets

with the name myPreset in both files.

A minimal preset file might look like this:

{

 "version": 6,

 "configurePresets": [

 {

 "name": "myPreset"

 },

 {

 "name": "myPreset2"

 }

]

}

Optional fields
Every stage-specific preset can use the same optional fields:

• displayName: This is a string that provides a user-friendly name for the preset

• description: This is a string that offers an explanation of what the preset does

• inherits: This is a string, or an array of strings, that effectively copies the configuration

of presets named in this field as a base, to be further extended or modified

• hidden: This is a Boolean that hides the preset from the listings; such hidden presets can

only be used through inheritance

• environment: This is an object that overrides ENV variables for this stage; each key identifies

an individual variable, and values can be strings or null; it supports macros

• condition: This is an object that enables or disables this preset (more on this later)

• vendor: This is a custom object that contains vendor-specific values and follows the same

convention as a root-level vendor field

Presets can form a graph-like inheritance structure, provided there are no cyclic dependencies.

CMakeUserPresets.json can inherit from project-level presets but not the other way around.

Writing CMake Presets428

Association with configuration-stage presets
All stage-specific presets must be associated with a configuration preset, as they must know the

location of the build tree. While the configure preset is inherently associated with itself, build,

test, and package presets need to explicitly define this association via the configurePreset field.

Contrary to what you might think, this association doesn’t mean CMake will automatically execute

the configuration preset when you decide to run any of the subsequent presets. You still need to

execute each preset manually, or use a workflow preset (we’ll get to that in a bit).

With these foundational concepts in place, we can continue into the specifics of presets for in-

dividual stages, starting with the configuration stage. As we progress, we’ll explore how these

presets interact and how they can be used to streamline the project configuration and building

process in CMake.

Defining configuration-stage presets
As previously indicated, configuration presets reside within the configurePresets array. They

can be listed by adding the --list-presets argument to the command line, specific to the con-

figuration stage:

cmake --list-presets

To configure a project with a chosen preset, specify its name after the --preset argument, like so:

cmake --preset myConfigurationPreset

The configuration preset has some general fields like name and description, but it also has its

own unique set of optional fields. Here are the simplified descriptions of the most important ones:

• generator: A string that specifies a generator to use for the preset; required for schema

version < 3

• architecture and toolset: A string that configures generators supporting these options

• binaryDir: A string that provides a relative or absolute path to the build tree; required

for schema version < 3; supports macros

• installDir: A string that provides a relative or absolute path to the installation directory;

it is required for schema version < 3 and it supports macros

• cacheVariables: A map that defines cache variables; values support macros

Chapter 16 429

When defining the cacheVariables map, remember the order in which variables are resolved

in the project. As you can see in Figure 16.1, any cache variables defined through the command

line will override preset variables. Any cache or environment preset variables will override those

coming from the cache file or the host environment.

Figure 16.1: How presets override CMakeCache.txt and the system environment variables

Let’s declare a simple myConfigure configuration preset that specifies the generator, build tree,

and installation path:

ch16/01-presets/CMakePresets�json (continued)

...

 "configurePresets": [

 {

 "name": "myConfigure",

 "displayName": "Configure Preset",

Writing CMake Presets430

 "description": "Ninja generator",

 "generator": "Ninja",

 "binaryDir": "${sourceDir}/build",

 "installDir": "${sourceDir}/build/install"

 }

],

...

Our introduction to configure presets is complete, which brings us to build-stage presets.

Defining build-stage presets
You won’t be surprised to learn that build presets reside within the buildPresets array. They can

be listed by adding the --list-presets argument to the command line, specific to the build stage:

cmake --build --list-presets

To build a project with a chosen preset, specify its name after the --preset argument, like so:

cmake --build --preset myBuildingPreset

The build preset also has some general fields like name and description, and it has its unique set

of optional fields. The simplified descriptions of the most important ones are:

• jobs: An integer that sets the number of parallel jobs used to build the project

• targets: A string or string array that sets targets to build and supports macros

• configuration: A string that determines the build type for multi-configuration generators

(Debug, Release, etc.)

• cleanFirst: A Boolean that ensures that the project is always cleaned before the build

That’s it. Now, we can write a build preset like so:

ch16/01-presets/CMakePresets�json (continued)

...

 "buildPresets": [

 {

 "name": "myBuild",

 "displayName": "Build Preset",

 "description": "Four jobs",

 "configurePreset": "myConfigure",

Chapter 16 431

 "jobs": 4

 }

],

...

You’ll notice that the required configurePreset field is set to point to the myConfigure preset we

defined in the previous section. Now, we’re able to move on to the test presets.

Defining test-stage presets
Test presets live within the testPresets array. They can be displayed by adding the --list-

presets argument to the command line, specific to the test stage:

ctest --list-presets

To test a project using a preset, specify its name after the --preset argument, like so:

ctest --preset myTestPreset

The test preset also has its own unique set of optional fields. The simplified descriptions of the

most important ones are:

• configuration: A string that determines the build type for multi-configuration generators

(Debug, Release, etc.)

• output: An object that configures the output

• filter: An object that specifies which tests to run

• execution: An object that configures the execution of tests

Each object maps the appropriate command-line options to configuration values. We’ll highlight

a few essential options, but this isn’t an exhaustive list. Refer to the Further reading section for a

full reference.

Optional entries for the output object include:

• shortProgress: Boolean; progress will be reported within a single line

• verbosity: A string that sets the output verbosity to one of the following levels: default,

verbose, or extra

• outputOnFailure: A Boolean that prints the program output upon test failure

• quiet: Boolean; suppress all output

Writing CMake Presets432

For exclude, some of the accepted entries are:

• name: A string that excludes tests with names matching a regex pattern and supports

macros

• label: A string that excludes tests with labels matching a regex pattern and supports

macros

• fixtures: An object that determines which fixtures to exclude from the test (see official

documentation for more details)

Finally, the execution object accepts the following optional entry:

• outputLogFile: A string that specifies the output logfile path and supports macros

The filter object accepts include and exclude keys to configure the filtering of test cases; here’s

a partially filled structure to illustrate this:

 "testPresets": [

 {

 "name": "myTest",

 "configurePreset": "myConfigure",

 "filter": {

 "include": {

 ... name, label, index, useUnion ...

 },

 "exclude": {

 ... name, label, fixtures ...

 }

 }

 }

],

...

Each key defines its own object of options:

For include, entries include:

• name: A string that includes tests with names matching a regex pattern and supports macros

• label: A string that includes tests with labels matching a regex pattern and supports

macros

Chapter 16 433

• index: An object that selects tests to run with accepting start, end, and stride integers,

and a specificTests array of integers; it supports macros

• useUnion: A Boolean that enables the usage of a union of tests determined by index and

name, rather than the intersection

For exclude, entries include:

• name: A string that excludes tests with names matching a regex pattern and supports

macros

• label: A string that excludes tests with labels matching a regex pattern and supports

macros

• fixtures: An object that determines which fixtures to exclude from the test (see official

documentation for more details)

Finally, the execution object can be added right here:

 "testPresets": [
 {
 "name": "myTest",
 "configurePreset": "myConfigure",
 "execution": {
 ... stopOnFailure, enableFailover, ...
 ... jobs, repeat, scheduleRandom, ...
 ... timeout, noTestsAction ...
 }
 }
],

...

It accepts the following optional entries:

• stopOnFailure: A Boolean that enables halting the tests if any fail

• enableFailover: A Boolean that resumes previously interrupted tests

• jobs: An integer that runs a number of multiple tests in parallel

• repeat: An object that determines how to repeat tests; the object must have the following

fields:

• mode – A string with one of the following values: until-fail, until-pass, after-
timeout

Writing CMake Presets434

• count – An integer that determines the number of repeats

• scheduleRandom: A Boolean that enables a random order of test execution

• timeout: An integer that sets a limit (in seconds) on the total execution time for all tests

• noTestsAction: A string that defines the action if no tests are found, with options like

default, error, and ignore

While there are many configuration options, simple presets are also viable:

ch16/01-presets/CMakePresets�json (continued)

...

 "testPresets": [

 {

 "name": "myTest",

 "displayName": "Test Preset",

 "description": "Output short progress",

 "configurePreset": "myConfigure",

 "output": {

 "shortProgress": true

 }

 }

],

...

As with the build preset, we also set the required configurePreset field for the new test preset to

neatly tie things together. Let’s take a look at the last stage-specific preset type, the package preset.

Defining package-stage presets
Package presets were introduced in schema version 6, meaning you’ll need at least CMake 3.25

to utilize them. These presets should be included in the packagePresets array. They can also

be displayed by appending the --list-presets argument to the command line, specific to the

test stage:

cpack --list-presets

To create a project package using a preset, specify its name after the --preset argument, like so:

cpack --preset myTestPreset

Chapter 16 435

A package preset leverages the same shared fields as other presets while introducing some op-

tional fields specific to itself:

• generators: An array of strings that sets the package generators to use (ZIP, 7Z, DEB, etc.)

• configuration: An array of strings that determines the list of build types for CPack to

package (Debug, Release, etc.)

• filter: An object that specifies which tests to run

• packageName, packageVersion, packageDirectory, and vendorName: Strings that specify

the metadata for the created package

Let’s extend our preset file with a concise package preset as well:

ch16/01-presets/CMakePresets�json (continued)

...

 "packagePresets": [

 {

 "name": "myPackage",

 "displayName": "Package Preset",

 "description": "ZIP generator",

 "configurePreset": "myConfigure",

 "generators": [

 "ZIP"

]

 }

],

...

Such a configuration will allow us to streamline the creation of project packages, but we’re still

missing one key ingredient: project installation. Let’s find out how we can make it work.

Adding the installation preset
You might’ve noticed that the CMakePresets.json object doesn’t support defining

"installPresets". There’s no explicit way to install your project through a preset, which seems

odd since the configure preset provides an installDir field! So, do we have to resort to manual

installation commands?

Writing CMake Presets436

Fortunately, no. There’s a workaround that enables us to use the build preset to achieve our goal.

Take a look:

ch16/01-presets/CMakePresets�json (continued)

...

 "buildPresets": [

 {

 "name": "myBuild",

 ...

 },

 {

 "name": "myInstall",

 "displayName": "Installation",

 "targets" : "install",

 "configurePreset": "myConfigure"

 }

],

...

We can create a build preset with a targets field set to install. The install target is implicitly

defined by the project when we configure the installation correctly. Building with this preset

will execute the necessary steps to install the project to installDir specified in the associated

configure preset (if the installDir field is empty, the default location will be used):

$ cmake --build --preset myInstall

[0/1] Install the project...

-- Install configuration: ""

-- Installing: .../install/include/calc/basic.h

-- Installing: .../install/lib/libcalc_shared.so

-- Installing: .../install/lib/libcalc_static.a

-- Installing: .../install/lib/calc/cmake/CalcLibrary.cmake

-- Installing: .../install/lib/calc/cmake/CalcLibrary-noconfig.cmake

-- Installing: .../install/lib/calc/cmake/CalcConfig.cmake

-- Installing: .../install/bin/calc_console

Chapter 16 437

-- Set non-toolchain portion of runtime path of ".../install/bin/calc_
console" to ""

This neat trick can help us save a few cycles. It would be even better if we could provide a single

command for our end users that takes care of everything, from configuration to installation. Well,

we can, with workflow presets. Let’s take a look.

Defining workflow presets
Workflow presets are the ultimate automation solution for our project. They allow us to auto-

matically execute multiple stage-specific presets in the predetermined order. That way, we can

practically perform an end-to-end build in a single step.

To discover available workflows for a project, we can execute the following command:

cmake --workflow --list-presets

To select and apply a preset, use the following command:

cmake –workflow --preset <preset-name>

Additionally, with the --fresh flag, we can wipe the build tree and clear the cache.

Defining workflow presets is quite simple; we need to define a name and we can optionally provide

displayName and description, just like for stage-specific presets. After that, we must enumerate

all the stage-specific presets the workflow should execute. This is done by providing a steps array

containing objects with type and name properties, as illustrated here:

ch16/01-presets/CMakePresets�json (continued)

...

 "workflowPresets": [

 {

 "name": "myWorkflow",

 "steps": [

 {

 "type": "configure",

 "name": "myConfigure"

 },

 {

 "type": "build",

Writing CMake Presets438

 "name": "myBuild"

 },

 {

 "type": "test",

 "name": "myTest"

 },

 {

 "type": "package",

 "name": "myPackage"

 },

 {

 "type": "build",

 "name": "myInstall"

 }

]

...

Each object in the steps array references a preset we defined earlier in this chapter, indicating

its type (configure, build, test, or package) and a name. These presets collectively execute all

necessary steps to fully build and install a project from scratch with a single command:

cmake --workflow --preset myWorkflow

Workflow presets are the ultimate solution for automating C++ building, testing, packaging,

and installing. Next, let’s explore how to manage some edge cases with conditions and macros.

Adding conditions and macros
When we discussed the general fields for each stage-specific preset, we mentioned the condition

field. It’s time to return to that subject. The condition field enables or disables a preset, revealing

its true potential when integrated with workflows. Essentially, it allows us to bypass presets that

aren’t suitable under certain conditions and create alternative presets that are.

Conditions require preset schema version 3 or above (introduced in CMake 3.22) and are JSON

objects that codify a few simple logical operations that can determine whether circumstances,

like used OS, environment variables, or even chosen generators, fit the scenario of a preset. CMake

provides this data through macros, which are essentially a limited set of read-only variables

usable in the preset file.

Chapter 16 439

The structure of a condition object varies based on the check type. Each condition must include

a type field and additional fields as defined by the type. Recognized basic types include:

• const: This checks whether the value provided in the value field is Boolean true

• equals, notEquals: This compares the lhs field value to the value in the rhs field

• inList and notInList: These check for the presence of the value provided in the string

field within the array in the list field

• matches and notMatches: These evaluate whether the string field’s value aligns with

the pattern defined in the regex field

An example condition looks like this:

"condition": {

 "type": "equals",

 "lhs": "${hostSystemName}",

 "rhs": "Windows"

 }

The const condition’s practical use is primarily for disabling a preset without removing it from

the JSON file. Apart from const, all basic conditions permit the use of macros in the fields they

introduce: lhs, rhs, string, list, and regex.

Advanced condition types, which function like “not”, “and”, and “or” operations, utilize other

conditions as arguments:

• not: A Boolean inversion of the condition provided in the condition field

• anyOf and allOf: These check whether any or all conditions in the conditions array are

true

For instance:

"condition": {

 "type": "anyOf",

 "conditions": [

 {

 "type": "equals",

 "lhs": "${hostSystemName}",

 "rhs": "Windows"

 },{

 "type": "equals",

Writing CMake Presets440

 "lhs": "${hostSystemName}",

 "rhs": "Linux"

 }

]

 }

This condition evaluates as true if the system is either Linux or Windows.

Through these examples, we’ve introduced our first macro: ${hostSystemName}. Macros follow

a simple syntax and are limited to specific instances, like:

• ${sourceDir}: This is the path of the source tree

• ${sourceParentDir}: This is the path of the source tree’s parent directory

• ${sourceDirName}: This is the project’s directory name

• ${presetName}: This is the name of the preset

• ${generator}: This is the generator used to create the buildsystem

• ${hostSystemName}: This is the system name: Linux, Windows, or Darwin on macOS

• ${fileDir}: This is the name of the file containing the current preset (applicable when

an include array is used to import external presets)

• ${dollar}: This is the escaped dollar sign ($)

• ${pathListSep}: This is the environment-specific path separator

• $env{<variable-name>}: This returns the environment variable if specified by the preset

(case-sensitive), or the parent environment value

• $penv{<variable-name>}: This returns the environment variable from the parent envi-

ronment

• $vendor{<macro-name>}: This allows IDE vendors to introduce their own macros

These macros provide sufficient flexibility for use in presets and their conditions, enabling the

effective toggling of workflow steps as needed.

Summary
We have just completed a comprehensive overview of CMake presets, introduced in CMake 3.19,

to streamline project management. Presets allow product authors to provide a neatly prepared

experience for their users by configuring all the stages of the project build and delivery. Presets

not only simplify the usage of CMake but also enhance consistency and allow environment-aware

setups.

Chapter 16 441

We explained the structure and usage of the CMakePresets.json and CMakeUserPresets.json

files, providing insights into defining various types of presets, such as configure presets, build

presets, test presets, package presets, and workflow presets. Each type is described in detail: we

learned about common fields, how to structure presets internally, establish inheritance between

them, and the specific configuration options available for the end user.

For the configure preset, we covered important topics like selecting the generator, build, and in-

stallation directory, and linking presets together with the configurePreset field. We now know

how to handle build presets and set the build job count, targets, and cleaning options. Then, we

learned how the test preset assists with test selection through extensive filtering and ordering

options, output formatting, and execution parameters such as timeouts and fault tolerance. We

understand how to manage package presets by specifying package generators, filtering, and pack-

age metadata. We even introduced a workaround to execute the installation stage through a

specialized build preset application.

Next, we discovered how workflow presets allow the grouping of multiple stage-specific presets.

Finally, we discussed conditions and macro expressions, providing project authors with greater

control over the behavior of individual presets and their integration into a workflow.

Our CMake journey is complete! Congratulations – you now possess all the tools necessary to

develop, test, and package high-quality C++ software. The best way forward is to apply what

you’ve learned and create excellent software for your users. Good luck!

Further reading
For more information, you can refer to the following resource:

• Official documentation for presets:

https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

Writing CMake Presets442

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://discord.com/invite/vXN53A7ZcA

https://discord.com/invite/vXN53A7ZcA

Appendix

Miscellaneous commands
Every language includes utility commands useful for various tasks, and CMake is no exception. It

offers tools for arithmetic, bitwise operations, string manipulations, and list and file operations.

Although the need for these commands has diminished due to enhancements and the develop-

ment of numerous modules, they can still be essential in highly automated projects. Nowadays,

you might find them more useful in CMake scripts invoked with cmake -P <filename>.

Hence, this appendix, which is a summary of miscellaneous CMake commands and their various

modes, acts as a convenient offline reference or a simplified version of the official documentation.

For more detailed information, you should consult the provided links.

This reference is valid for CMake 3.26.6.

In this Appendix, we’re going to cover the following main topics:

• The string() command

• The list() command

• The file() command

• The math() command

The string() command
The string() command is used to manipulate strings. It comes with a variety of modes that

perform different actions on the string: search and replace, manipulation, comparison, hashing,

generation, and JSON operations (the last one available since CMake 3.19).

Appendix444

Full details can be found in the online documentation: https://cmake.org/cmake/help/latest/

command/string.html.

Available string() modes are search and replace, manipulation, comparison, hashing, genera-

tion, and JSON.

Search and replace
The following modes are available:

• string(FIND <haystack> <pattern> <out> [REVERSE]) searches for <pattern> in the

<haystack> string and writes the position found as an integer to the <out> variable. If the

REVERSE flag was used, it searches from the end of the string to the beginning. This works

only for ASCII strings (multibyte support isn’t provided).

• string(REPLACE <pattern> <replace> <out> <input>) replaces all occurrences of

<pattern> in <input> with <replace> and stores them in the <out> variable.

• string(REGEX MATCH <pattern> <out> <input>) regex-matches the first occurrence of

<pattern> in <input> with <replace> and stores it in the <out> variable.

• string(REGEX MATCHALL <pattern> <out> <input>) regex-matches all occurrences of

<pattern> in <input> with <replace> and stores them in the <out> variable as a com-

ma-separated list.

• string(REGEX REPLACE <pattern> <replace> <out> <input>) regex-replaces all oc-

currences of <pattern> in <input> with the <replace> expression and stores them in

the <out> variable.

Regular expression operations follow C++ syntax, as defined in the standard library in the <regex>

header. You can use capturing groups to add matches to the <replace> expression with numeric

placeholders: \\1, \\2... (double backslashes are required so arguments are parsed correctly).

Note that string() modes that accept the <input> argument will accept multiple

<input> values and concatenate them before the execution of the command, so:

string(PREPEND myVariable "a" "b" "c")

is the equivalent of the following:

string(PREPEND myVariable "abc")

https://cmake.org/cmake/help/latest/command/string.html
https://cmake.org/cmake/help/latest/command/string.html

Appendix 445

Manipulation
The following modes are available:

• string(APPEND <out> <input>) mutates strings stored in <out> by appending the <input>

string.

• string(PREPEND <out> <input>) mutates strings stored in <out> by prepending the

<input> string.

• string(CONCAT <out> <input>) concatenates all provided <input> strings and stores

them in the <out> variable.

• string(JOIN <glue> <out> <input>) interleaves all provided <input> strings with a

<glue> value and stores them as a concatenated string in the <out> variable (don’t use

this mode for list variables).

• string(TOLOWER <string> <out>) converts <string> to lowercase and stores it in the

<out> variable.

• string(TOUPPER <string> <out>) converts <string> to uppercase and stores it in the

<out> variable.

• string(LENGTH <string> <out>) counts the bytes of <string> and stores the result in

the <out> variable.

• string(SUBSTRING <string> <begin> <length> <out>) extracts a substring of <string>

of <length> bytes starting at the <begin> byte, and stores it in the <out> variable. Pro-

viding -1 as the length is understood as “till the end of the string.”

• string(STRIP <string> <out>) removes trailing and leading whitespace from <string>

and stores the result in the <out> variable.

• string(GENEX_STRIP <string> <out>) removes all generator expressions used in

<string> and stores the result in the <out> variable.

• string(REPEAT <string> <count> <out>) generates a string containing <count> rep-

etitions of <string> and stores it in the <out> variable.

Comparison
A comparison of strings takes the following form:

string(COMPARE <operation> <stringA> <stringB> <out>)

Appendix446

The <operation> argument is one of the following:

• LESS

• GREATER

• EQUAL

• NOTEQUAL

• LESS_EQUAL

• GREATER_EQUAL

It will be used to compare <stringA> with <stringB> and the result (true or false) will be stored

in the <out> variable.

Hashing
The hashing mode has the following signature:

string(<hashing-algorithm> <out> <string>)

It hashes <string> with <hashing-algorithm> and stores the result in the <out> variable. The

following algorithms are supported:

• MD5: Message-Digest Algorithm 5, RFC 1321

• SHA1: US Secure Hash Algorithm 1, RFC 3174

• SHA224: US Secure Hash Algorithms, RFC 4634

• SHA256: US Secure Hash Algorithms, RFC 4634

• SHA384: US Secure Hash Algorithms, RFC 4634

• SHA512: US Secure Hash Algorithms, RFC 4634

• SHA3_224: Keccak SHA-3

• SHA3_256: Keccak SHA-3

• SHA3_384: Keccak SHA-3

• SHA3_512: Keccak SHA-3

Generation
The following modes are available:

• string(ASCII <number>... <out>) stores ASCII characters of given <number> in the

<out> variable.

Appendix 447

• string(HEX <string> <out>) converts <string> to its hexadecimal representation and

stores it in the <out> variable (since CMake 3.18).

• string(CONFIGURE <string> <out> [@ONLY] [ESCAPE_QUOTES]) works exactly like

configure_file() but for strings. The result is stored in the <out> variable. As a reminder,

using the @ONLY keyword restricts replacements to variables in the form of @VARIABLE@.

• string(MAKE_C_IDENTIFIER <string> <out>) converts non-alphanumeric characters

in <string> to underscores and stores the result in the <out> variable.

• string(RANDOM [LENGTH <len>] [ALPHABET <alphabet>] [RANDOM_SEED <seed>]

<out>)generates a random string of <len> characters (default 5) using the optional

<alphabet> from the random seed, <seed>, and stores the result in the <out> variable.

• string(TIMESTAMP <out> [<format>] [UTC]) generates a string representing the current

date and time and stores it in the <out> variable.

• string(UUID <out> NAMESPACE <ns> NAME <name> TYPE <type>) generates a universally

unique identifier. Application of this mode is a bit complex to use; you need to provide a

namespace (which has to be a UUID), a name (for example, a domain name), and a type

(either MD5 or SHA1).

JSON
Operations on JSON-formatted strings use the following signature:

string(JSON <out> [ERROR_VARIABLE <error>] <operation + args>)

Several operations are available. They all store their results in the <out> variable, and errors in

the <error> variable. Operations and their arguments are as follows:

• GET <json> <member|index>... returns the value of one or more elements from a <json>

string using the <member> path or <index>.

• TYPE <json> <member|index>... returns the type of one or more elements from a <json>

string using the <member> path or <index>.

• MEMBER <json> <member|index>... <array-index> returns the member name of one or

more array-typed elements on the <array-index> position from the <json> string using

the <member> path or <index>.

• LENGTH <json> <member|index>... returns the element count of one or more array-typed

elements from the <json> string using the <member> path or <index>.

• REMOVE <json> <member|index>... returns the result of removal of one or more elements

from the <json> string using the <member> path or <index>.

Appendix448

• SET <json> <member|index>... <value> returns the result of upsertion of <value> to

one or more elements from a <json> string using the <member> path or <index>.

• EQUAL <jsonA> <jsonB> evaluates whether <jsonA> and <jsonB> are equal.

The list() command
This command provides basic operations on lists: reading, searching, modification, and order-

ing. Some modes will change list (mutate the original value). Be sure to copy the original value

if you’ll need it later.

Full details can be found in the online documentation:

https://cmake.org/cmake/help/latest/command/list.html

The categories for the available list() modes are reading, searching, modification, and ordering.

Reading
The following modes are available:

• list(LENGTH <list> <out>) counts the elements in the <list> variable and stores the

result in the <out> variable.

• list(GET <list> <index>... <out>) copies the <list> elements specified with the list

of <index> indexes to the <out> variable.

• list(JOIN <list> <glue> <out>) interleaves <list> elements with the <glue> delimiter

and stores the resulting string in the <out> variable.

• list(SUBLIST <list> <begin> <length> <out>) works like the GET mode but operates

on range instead of explicit indexes. If <length> is -1, elements from the <begin> index

to the end of the list provided in the <list> variable will be returned.

Searching
This mode simply finds the index of the <needle> element in the <list> variable and stores the

result in the <out> variable (or -1 if the element wasn’t found):

list(FIND <list> <needle> <out>)

Modification
The following modes are available:

• list(APPEND <list> <element>...) adds one or more <element> values to the end of

the <list> variable.

https://cmake.org/cmake/help/latest/command/list.html

Appendix 449

• list(PREPEND <list> [<element>...]) works like APPEND but adds elements to the

beginning of the <list> variable.

• list(FILTER <list> {INCLUDE | EXCLUDE} REGEX <pattern>) filters the <list> vari-

able to INCLUDE or EXCLUDE the elements matching the <pattern> value.

• list(INSERT <list> <index> [<element>...]) adds one or more <element> values to

the <list> variable at the given <index>.

• list(POP_BACK <list> [<out>...]) removes an element from the end of the <list>

variable and stores it in the optional <out> variable. If multiple <out> variables were

provided, more elements would be removed to fill them.

• list(POP_FRONT <list> [<out>...]) works like POP_BACK but removes an element from

the beginning of the <list> variable.

• list(REMOVE_ITEM <list> <value>...) is shorthand for FILTER EXCLUDE but without

the support of regular expressions.

• list(REMOVE_AT <list> <index>...) removes elements from <list> at a specific <index>.

• list(REMOVE_DUPLICATES <list>) removes duplicates from <list>.

• list(TRANSFORM <list> <action> [<selector>] [OUTPUT_VARIABLE <out>]) applies

a specific transformation to the <list> elements. By default, the action is applied to all

elements, but we may limit the effect by adding a <selector>. The provided list will be

mutated (changed in place) unless the OUTPUT_VARIABLE keyword is provided, in which

case, the result is stored in the <out> variable.

The following selectors are available: AT <index>, FOR <start> <stop> [<step>], and REGEX

<pattern>.

Actions include APPEND <string>, PREPEND <string>, TOLOWER, TOUPPER, STRIP, GENEX_STRIP,

and REPLACE <pattern> <expression>. They work exactly like the string() modes with the

same name.

Ordering
The following modes are available:

• list(REVERSE <list>) simply reverses the order of <list>.

• list(SORT <list>) sorts the list alphabetically.

Refer to the online manual for more advanced options.

Appendix450

The file() command
This command provides all kinds of operations related to files: reading, transferring, locking, and

archiving. It also provides modes to inspect the filesystem and operations on strings representing

paths.

Full details can be found in the online documentation:

https://cmake.org/cmake/help/latest/command/file.html

The categories for available file() modes are reading, writing, filesystem, path conversion, trans-

fer, locking, and archiving.

Reading
The following modes are available:

• file(READ <filename> <out> [OFFSET <o>] [LIMIT <max>] [HEX]) reads the file from

<filename> to the <out> variable. The read optionally starts at offset <o> and follows the

optional limit of <max> bytes. The HEX flag specifies that output should be converted to

hexadecimal representation.

• file(STRINGS <filename> <out>) reads strings from the file at <filename> to the <out>

variable.

• file(<hashing-algorithm> <filename> <out>) computes the <hashing-algorithm>

hash from the file at <filename> and stores the result in the <out> variable. Available

algorithms are the same as for the string() hashing function.

• file(TIMESTAMP <filename> <out> [<format>]) generates a string representation of

a timestamp of the file at <filename> and stores it in the <out> variable. It optionally

accepts a <format> string.

• file(GET_RUNTIME_DEPENDENCIES [...]) gets runtime dependencies for specified files.

This is an advanced command to be used only in install(CODE) or install(SCRIPT)

scenarios. Available since CMake 3.21.

Writing
The following modes are available:

• file({WRITE | APPEND} <filename> <content>...) writes or appends all <content>

arguments to the file at <filename>. If the provided system path doesn’t exist, it will be

recursively created.

https://cmake.org/cmake/help/latest/command/file.html

Appendix 451

• file({TOUCH | TOUCH_NOCREATE} [<filename>...]) updates the timestamp of the

<filename>. If the file doesn’t exist, it will only be created in the TOUCH mode.

• file(GENERATE OUTPUT <output-file> [...]) is an advanced mode that generates an

output file for each build configuration of the current CMake generator.

• file(CONFIGURE OUTPUT <output-file> CONTENT <content> [...]) works like

GENERATE_OUTPUT but also configures the generated files by substituting variable place-

holders with values.

Filesystem
The following modes are available:

• file({GLOB | GLOB_RECURSE} <out> [...] [<globbing-expression>...]) gener-

ates a list of files matching <globbing-expression> and stores it in the <out> variable.

GLOB_RECURSE mode will also scan nested directories.

• file(RENAME <oldname> <newname>) moves a file from <oldname> to <newname>.

• file({REMOVE | REMOVE_RECURSE } [<files>...]) deletes <files>. REMOVE_RECURSE

will also remove directories.

• file(MAKE_DIRECTORY [<dir>...]) creates a directory.

• file(COPY <file>... DESTINATION <dir> [...]) copies files to the <dir> destination.

It offers options for filtering, setting permissions, symlink chain following, and more.

• file(COPY_FILE <file> <destination> [...]) copies a single file to the <destination>

path. Available since CMake 3.21.

• file(SIZE <filename> <out>) reads the size of <filename> in bytes and stores it in the

<out> variable.

• file(READ_SYMLINK <linkname> <out>) reads the destination path of the <linkname>

symlink and stores it in the <out> variable.

• file(CREATE_LINK <original> <linkname> [...]) creates a symlink to <original>

at <linkname>.

• file({CHMOD|CHMOD_RECURSE} <files>... <directories>... PERMISSIONS

<permissions>... [...]) sets permissions on files and directories.

• file(GET_RUNTIME_DEPENDENCIES [...]) collects the runtime dependencies for various

types of files: executables, libraries, and modules. Use with install(RUNTIME_DEPENDENCY_

SET).

Appendix452

Path conversion
The following modes are available:

• file(REAL_PATH <path> <out> [BASE_DIRECTORY <dir>]) computes the absolute path

from the relative path and stores it in the <out> variable. It optionally accepts the <dir>

base directory. Available since CMake 3.19.

• file(RELATIVE_PATH <out> <directory> <file>) computes the <file> path relative

to <directory> and stores it in the <out> variable.

• file({TO_CMAKE_PATH | TO_NATIVE_PATH} <path> <out>) converts <path> to a CMake

path (directories separated with a forward slash) to the native path of the platform and

back. The result is stored in the <out> variable.

Transfer
The following modes are available:

• file(DOWNLOAD <url> [<path>] [...]) downloads a file from <url> and stores it in

<path>.

• file(UPLOAD <file> <url> [...]) uploads <file> to a URL.

Locking
Locking mode places an advisory lock on the <path> resource:

file(LOCK <path> [DIRECTORY] [RELEASE]

 [GUARD <FUNCTION|FILE|PROCESS>]

 [RESULT_VARIABLE <out>] [TIMEOUT <seconds>]

)

This lock can be optionally scoped to FUNCTION, FILE, or PROCESS and limited with a timeout

of <seconds>. To release the lock, provide the RELEASE keyword. The result will be stored in the

<out> variable.

Archiving
The creation of archives is provided with the following signature:

file(ARCHIVE_CREATE OUTPUT <destination> PATHS <source>...

 [FORMAT <format>]

 [COMPRESSION <type> [COMPRESSION_LEVEL <level>]]

 [MTIME <mtime>] [VERBOSE]

)

Appendix 453

It creates an archive at the <destination> path comprising <source> files in one of the supported

formats: 7zip, gnutar, pax, paxr, raw, or zip (paxr is the default). If the chosen format supports

the compression level, it can be provided as a single-digit integer 0-9, with 0 being the default.

The extraction mode has the following signature:

file(ARCHIVE_EXTRACT INPUT <archive> [DESTINATION <dir>]

 [PATTERNS <patterns>...] [LIST_ONLY] [VERBOSE]

)

It extracts files matching optional <patterns> values from <archive> to the destination <dir>.

If the LIST_ONLY keyword is provided, files won’t be extracted but will only be listed instead.

The math() command
CMake also supports some simple arithmetical operations. See the online documentation for

full details:

https://cmake.org/cmake/help/latest/command/math.html

To evaluate a mathematical expression and store it in the <out> variable as the string in an op-

tional <format> (HEXADECIMAL or DECIMAL), use the following signature:

math(EXPR <out> "<expression>" [OUTPUT_FORMAT <format>])

The <expression> value is a string that supports operators present in C code (they have the same

meaning here):

• Arithmetical: +, -, *, /, and % modulo division

• Bitwise: | or, & and, ^ xor, ~ not, << shift left, and >> shift right

• Parenthesis (...)

Constant values can be provided in decimal or hexadecimal format.

https://cmake.org/cmake/help/latest/command/math.html

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

CMake Best Practices

Dominik Berner

Mustafa Kemal Gilor

ISBN: 978-1-80323-972-9

• Get to grips with architecting a well-structured CMake project

• Modularize and reuse CMake code across projects

• Integrate various tools for static analysis, linting, formatting, and documentation into a

CMake project

• Get hands-on with performing cross-platform builds

• Discover how you can easily use different toolchains with CMake

• Get started with crafting a well-defined and portable build environment for your project

https://www.packtpub.com/product/cmake-best-practices/9781803239729

Other Books You May Enjoy458

Modern C++ Programming Cookbook - Third Edition

Marius Bancila

ISBN: 978-1-83508-054-2

• Explore the new C++23 language and library features

• Become skilled at using the built-in support for threading and concurrency for daily tasks

• Leverage the standard library and work with containers, algorithms, and iterators

• Solve text searching and replacement problems using regular expressions

• Work with different types of strings and learn the various aspects of compilation

• Take advantage of the file system library to work with files and directories

• Implement various useful patterns and idioms

• Explore the widely used testing frameworks for C++

https://www.packtpub.com/product/modern-c-programming-cookbook-third-edition/9781835080542

Other Books You May Enjoy 459

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Other Books You May Enjoy460

Share your thohughts
Now you’ve finished Modern CMake for C++, Second Edition, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1805121804
https://packt.link/r/1805121804

Index

A
actions 13
alias targets 139
American Standard Code for Information

Interchange (ASCII) 173
automated tests

challenges 268, 269

B
behavior-driven development (BDD) 286
big-endian 116
binary artifact 151
Binary Module Interface (BMI) 257
binary tree 29
Boolean

comparisons 154
logical operators 154
queries 155

bracket arguments 45
Build-and-Test mode 270
build configuration and platform

parametrizing 158
build configurations 163
build debugging

individual stages, debugging 194, 196
issues with header file inclusion,

debugging 196
build-stage presets

defining 430, 431

buildsystem 6
build targets 141, 142
build tool 6
build tree 5, 310
byte-order markers (BOMs) 41

C
C++20 modules 256-59

Binary Module Interface (BMI) 257
C++ module, declaring 262, 263
compiler requirements, setting 262
experimental support, enabling in

CMake 3.26 and 3.27 260, 261
experimental support, enabling in

CMake 3.28 262
Module Implementation Unit 257
traditional headers, complications 258
used, for writing projects 260

C++ namespaces 216
C++ program

running, steps 171
C++ source code

basics 2
cache variables

using 52

Calc console executable
building 397-401

Calculations (Calc) library 130
building 395, 396

Catch2 286-289

Index462

CDash 13
Clang/LLVM

URL 82
clang-tidy 317

URL 315
clean code approach 42, 69
CLion IDE 83, 84

Debugger on steroids 87
downloading 85, 86
features 84, 85

CMake 3
building, from source 12
building stage 6-8
command line 13
configuration stage 5
control structures 57
CTest, using to standardize testing 269, 270
features 4
generation stage 6
installing, on different platforms 8
installing, on Docker 9
installing, on Linux 11
installing, on macOS 12
installing, on Windows 10, 11
procedural paradigm 67, 68
variable scope 53-55
working 5

CMake command line 13
command-line tool, running 24
project, building 20
project buildsystem, generating 13
project, installing 22
script, running 24
workflow preset, running 25

CMake GUI 26, 27
CMake language syntax

basics 40, 41
bracket arguments 44, 45
command arguments 44
command invocations 43
comments 41, 42
quoted arguments 46
unquoted arguments 46-48

CMake project 97
directives and commands 98
environment, scoping 112
external projects 106
languages and metadata, defining 100, 101
minimum version, specifying 99
nested projects, using 105
partitioning 101-103
scope, managing with

subdirectories 103-105
structure 106-112

CMake project, environment
32-bit or 64-bit architecture 115
abbreviated variables 113, 114
cross-compilation 113
endianness 116
host system information 114, 115
operating system, detecting 112, 113

command 69
function() command 64-66
macro() command 64, 65

command arguments 43
command line

CCMake command line 28
CMake GUI 26, 27
CPack command line 26
CTest command line 25
mastering 13

comments
bracket (multiline) comments 41

Index 463

single-line comments 41
comparisons 154
compilation 170

build, debugging 194
errors and warnings, configuring 193
features, requiring from compiler 174
information for debugger,

providing 197, 198
initial configuration 173
mistakes, finding 193
sources, managing for targets 175, 176
working 171-173

compilation time
precompilation of headers 189, 191
reducing 188
Unity builds 191, 192

compile definitions 134, 139
compile options 139, 140
compiler stages

assembly phase 173
code emission phase 173
linguistic analysis 172
optimization phase 173
preprocessing 172

components
defining 374
symbolic links, managing for versioned

shared libraries 377
using, in find_package() 375
using, in install() command 375-377

conditional blocks 57
conditional commands, syntax 57

conditional commands, syntax
filesystem, examining 61
logical operators 58
simple checks 60

string and variable, evaluating 58, 59
values, comparing 59, 60

conditional expansion 153
Boolean, evaluating to 154

conditional expression
versus evaluation of BOOL

operator 166, 167
conditions

adding 438, 440
config files 348
configuration-stage presets

defining 428, 429, 430
configure log 34
containers 9
Continuous Integration (CI) pipeline 320
Continuous Integration/Continuous

Deployment (CI/CD) 270
control structures, CMake

command definitions 64
conditional blocks 57
loops 61

coverage module
preparing 404, 405

CPack
used, for packaging 378-380

Cppcheck 318
URL 315

Cpplint 318
URL 315

cross-compilation 80, 113
host system 113
target system 113

CTest
build-and-test mode 271
test mode 272

Index464

unit test, creating 277-282
used, for standardize testing in

CMake 269, 270
CTest command line 25
custom commands

using, as generator 143, 144
using, as target hook 144, 145
writing 142, 143

custom HTML
used, for enhancing output 338-340

custom targets 128, 142
Cygwin

URL 82

D
Dashboard mode 270
dependencies

building 392-395
Calc console executable, building 397-401
Calc library, building 395, 396
managing 392, 394, 395

dependencies, FetchContent
downloading, from CVS 248
downloading, from Git 246, 247
downloading, from Mercurial 248
downloading, from Subversion 247
downloading, from URL 245, 246

dependencies, not present in system
ExternalProject 251, 252
FetchContent 241
handling 241

dependency graph 129, 130
dependency hell 208
dependency injection 293
DevContainers 94

reference link 90

directed acyclic graphs (DAGs) 130
disassembler 197
Docker

CMake, installing on 9
reference link 9

documentation
generating, with modern look 336-338

Don't Repeat Yourself (DRY) 103, 386
Doxygen

adding, to project 330-335
documentation formats 330

Drawing library 130
dynamic-link library (DLL) 209

E
ELF Header 203
endianness 116
environment variables

using 50, 52
escape sequences 44
Executable and Linkable Format

(ELF) 171, 202
executable targets

defining 127
execute_process() command 73
Extended Regular Expression (ERE) 60
ExternalProject 251, 252
Extreme Programming (XP) 111

F
fake 293
FetchContent 242

dependencies, downloading 245
example, with YAML reader 243, 244
installed dependency, using 249-251

Index 465

patching 248
updating 248

file-based API 34
file() command 73, 450

archiving 452, 453
filesystem modes 451
locking mode 452
path conversion 452
reading modes 450
transfer mode 452
writing modes 450

find modules 37, 227
cached values, reusing 235
final results, returning 237, 238
header files, searching for 237
IMPORTED targets, defining 234
library files, searching for 236
nested dependencies, searching for 235
user-provided paths, accepting 235
writing 232, 233

find_package() command 226
components, using in 375
used, for finding packages 226-231

FindPkgConfig
legacy packages, discovering with 238-241

flaky tests 275
foreach() loops 62-64
formatting

enforcing 310-314
forward declarations 258

G
generator expressions 6, 140, 145, 150, 151

behavior, escaping 162
debugging 163
nesting 152

syntax, rules 151, 152
genexes 150
Git

files, ignoring 34
Global Offset Table (GOT) 210
global scope 53
globbing expression 311
GMock 292, 293
GNU Compiler Collection (GCC) 300

URL 82
GNU Coverage Data 305
GNU Coverage Notes 305
GNU Project Debugger (GDB) 87
Google Protocol Buffer's (Protobuf's) 143
GoogleTest (GTest) 222, 286, 290

GMock 292-298
using 290-292

GuiApp 130

H
header files 128

I
imported targets 139
include() command 72
include directories 140
include_guard() command 72
include guards 258, 278
include-what-you-use 318

URL 315
in-source builds 29

disabling 121, 122
install() command

components, using in 375, 376

Index466

installed dependencies
using 226

Integrated Development Environments
(IDEs) 1, 78

choosing, considerations 79, 80
examples, using with 82, 83
toolchains, installing 81, 82

interface libraries 139
with compiler-specific flags 164

interprocedural optimization 118

J
JavaScript Object Notation (JSON) 33
jumbo builds 191

L
LCOV 300

using, for coverage reports 300-304
legacy packages

discovering, with FindPkgConfig 238-241
lexical analysis 172
library types

building 207
object libraries 141

linguistic analysis 172
linking 201

basics 202-206
order 216-218

link-time optimization 118
Link What You Use 319

URL 315
Linux

CMake, installing on 11, 12
Linux Test Project 300

list
operations 155,-157
using 55, 56

list() command 448
modification mode 448, 449
ordering mode 449
reading modes 448
searching mode 448

listfiles 30
cache file 31, 32
generated files 32
package definition file 32
project file 30

little-endian 116
loader tool 171
local scope 53
logical operators 154
logical targets

default destination, utilizing for different
platforms 351

installing 349, 350
public headers, dealing with 352, 353

loops
foreach() loops 62-64
while() command 62

loop unrolling 186
loop unwinding 186
low-level installation 354

entire directories, working with 357-360
scripts, invoking 360-362
with install(FILES) and

install(PROGRAMS) 354-356

M
macOS

CMake, installing on 12

Index 467

macros
adding 438, 440

main()
separating, for testing 220-223

makefiles 105
math() command 453
Member Function Documentation 334
Memcheck 320-323
Memcheck-Cover 324, 326
Memcheck module

preparing 406, 407
memory management unit (MMU) 210
message() command 69-71
meta-feature 119
Microsoft Visual Studio/MSVC

URL 82
MinGW-w64

URL 82
miscellaneous commands 443
mock 293
Module Implementation Unit 257
multiline bracket comments 41

N
naming conventions 69
nested generator expressions 164
normal variable 48

O
object files 126, 171, 172
object library 141, 389
One Definition Rule (ODR) 201, 283

used, for problem solving 211-213

operating system (OS) 203
optimization

process, managing 188
optimizer optimization 182, 183

function inlining 185, 186
general level 183, 184
loop unrolling 186, 187
loop vectorization 187, 188

out-of-source builds 29

P
packages

finding, with find_package() 227-231
package-stage presets

defining 434, 435
paths

dealing with 155-157
PkgConfig 238
position-independent

code (PIC) 201, 210, 211
preprocessing stage 172
preprocessor

configuring 176
defining 177, 178
git commit, using to track

compiled version 179, 180
headers, configuring 180-182
private class fields, avoiding access in unit

tests 179
preprocessor configuration 176

paths, providing to included files 176, 177
preset file 33

writing 425, 426
presets 423

using, in projects 424, 425

Index468

problem, solving with ODR
dynamically linked duplicated symbols,

sorting out 214, 215
namespace, using 216

professional project
configuring, for installation and

packaging 411, 412
documentation, providing 415
executable, installing 414
layout 388, 389
library, installing 412, 413
non-technical documents, writing 417-420
packaging, with CPack 414
program analysis 402-404
technical documentation,

generating 415-417
testing 402-404
work, planning 384-388

professional project layout 388
file structure 390, 392
object library 389
shared libraries 389
static libraries 389

program analysis 402-404
Program Header 206
project building, CMake command line 20

build process, debugging 22
build tree, cleaning 21
build type, configuring for

multi-configuration generators 21
parallel builds, running 20, 21
targets, selecting to build and clean 21

project buildsystem generation, CMake
command line 13

build tree, cleaning 19, 20
debugging and tracing 18, 19
examples 14
generator, selecting 15, 16

presets, configuring 19
project cache, managing 17

project commands 44
project directories and files

build tree 29
JSON and YAML files 33
listfiles 30
navigating 28
source tree 29

project installation, CMake command line 22
components to install, selecting 23
directory, selecting 22
file permissions, setting 23
process, debugging 23

project root 29
projects

installing, on system 347, 348
structuring, for testing 282-285

propagated properties 145
pseudo targets 138

alias targets 139
imported targets 139
interface libraries 139, 140

Q
queries 155
quoted arguments 46

R
regular expression (regex) 273
relocation 204, 223
remote development 80
reusable packages

advanced config files, creating 369-372
basic config files, writing 366-369

Index 469

creating 363
issues, with relocatable targets 363-365
package version files, generating 373, 374
target export files, installing 365, 366

runtime dependencies
installing 362

run-time type information (RTTI) 164

S
scripting commands 44
scripts

discovering 35
SEGFAULT gotcha

avoiding 305
segment 206
separation of concerns 101
shared libraries 208, 209

versus static libraries 390
shared modules 209
shared object name (SONAME) 208
shared objects 208
single instruction, multiple data (SIMD) 187
software development kits (SDKs) 162
source tree 5, 310
stage-specific presets

defining 426
features 426
installation preset, adding 435, 437

stage-specific presets, features
association, with configure presets 428
optional fields 427
unique name fields 427

static analysis tools
adding 409-411

static checkers
clang-tidy 317
Cppcheck 318
Cpplint 317
include-what-you-use 318
Link What You Use 318
using 314-317

static libraries 207, 208
versus shared libraries 390

string() command 443, 444
generation modes 447
hashing mode 446
JSON-formatted strings 447
manipulation modes 445
replace mode 444
search mode 444
string comparison 445

string interpolation 44
strings

dealing with 155-157
stub 293
system-specific one liners 163, 164
System Under Test (SUT) 269

T
target 21, 126, 127

artifacts 6
conflicting propagated properties, dealing

with 137
custom targets 128
dependencies, visualizing 131, 132
dependency graph 129-131
executable targets 127, 128
library targets 128
properties, setting 133
transitive usage requirements 134-136

Index470

target export file 344-347
installing 365, 366

target-related information
querying 160-162
with 137
properties, setting 133
transitive usage requirements 134-136

Technical Report 1 (TR1) 118
TerminalApp 130
test coverage reports

generating 299, 300
LCOV, using for coverage reports 301-304
SEGFAULT gotcha, avoiding 305

test doubles 293
testing scenarios

applying 407-409
test mode 270-272

failures, handling 274
options 277
output, controlling 276
tests, filtering in 273
tests, querying 272
tests, repeating 275
tests, shuffling 273

test-stage presets
defining 431-434

toolchain
configuring 263, 264
tuning for 158-160

toolchain configuration 116
C++ standard, setting 116, 117
interprocedural optimization 118
standard support, insisting on 117, 118
supported compiler features,

checking for 119
test file, compiling 119-121
vendor-specific extensions 118

U
unified builds 191
unit test

creating, for CTest 277-282
unit-testing frameworks 286

Catch2 287-289
GoogleTest 290

unit under test (UUT) 284
Universal Windows Platform (UWP) 92
unquoted arguments 46-48
unreferenced symbols

dealing with 219, 220
unresolved symbols

order 216-218
usage 134
utility modules 36

V
Valgrind

URL 319
used, for dynamic analysis 319

variable interpolation 44
variable references 44
variables 48

normal variable 48, 49
references 49, 50
working with 48

variables categories
cache 48
environment 48
normal 48

variable scope 53
types 53

Version Control Systems (VCSs) 14

Index 471

Visual Studio Code (VS Code) 87
Dev Containers 89
features 88
reference link 89

Visual Studio (VS) IDE 90, 93
features 91
Hot Reload debugging 93
reference link 92

W
while() loop 62
Windows

CMake, installing on 10, 11
workflow presets

defining 437, 438

Y
YAML reader 243-245
Yet Another Markup Language (YAML) 33
you aren't gonna need it (YAGNI) 111

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781805121800

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781805121800

	Cover
	Copyright Page
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: First Steps with CMake
	Technical requirements
	Understanding the basics
	What is CMake?
	How does it work?
	The configuration stage
	The generation stage
	The building stage

	Installing CMake on different platforms
	Docker
	Windows
	Linux
	macOS
	Building from the source

	Mastering the command line
	CMake command line
	Generating a project buildsystem
	Building a project
	Installing a project
	Running a script
	Running a command-line tool
	Running a workflow preset
	Getting help

	CTest command line
	CPack command line
	CMake GUI
	CCMake command line

	Navigating project directories and files
	The source tree
	The build tree
	Listfiles
	Project file
	Cache file
	Package definition file
	Generated files

	JSON and YAML files
	Preset files
	File-based API
	Configure log

	Ignoring files in Git

	Discovering scripts and modules
	Scripts
	Utility modules
	Find-modules

	Summary
	Further reading

	Chapter 2: The CMake Language
	Technical requirements
	The basics of the CMake language syntax
	Comments
	Command invocations
	Command arguments
	Bracket arguments
	Quoted arguments
	Unquoted arguments

	Working with variables
	Variable references
	Using environment variables
	Using cache variables
	How to correctly use variable scopes in CMake

	Using lists
	Understanding control structures in CMake
	Conditional blocks
	The syntax for conditional commands

	Loops
	while()
	foreach() loops

	Command definitions
	Macros
	Functions
	The procedural paradigm in CMake
	A word on naming conventions

	Exploring the frequently used commands
	The message() command
	The include() command
	The include_guard() command
	The file() command
	The execute_process() command

	Summary
	Further reading

	Chapter 3: Using CMake in Popular IDEs
	Getting to know IDEs
	Choosing an IDE
	Choose a comprehensive IDE
	Choose an IDE that is widely supported in your organization
	Don’t pick an IDE based on the target OS and platform
	Pick an IDE with remote development support

	Installing toolchains
	Using this book’s examples with IDEs

	Starting with the CLion IDE
	Why you might like it
	Take your first steps
	Advanced feature: Debugger on steroids

	Starting with Visual Studio Code
	Why you might like it
	Take your first steps
	Advanced feature: Dev Containers

	Starting with the Visual Studio IDE
	Why you might like it
	Take your first steps
	Advanced feature: Hot Reload debugging

	Summary
	Further reading

	Chapter 4: Setting Up Your First CMake Project
	Technical requirements
	Understanding the basic directives and commands
	Specifying the minimum CMake version
	Defining languages and metadata

	Partitioning your project
	Managing scope with subdirectories
	When to use nested projects
	Keeping external projects external

	Thinking about the project structure
	Scoping the environment
	Detecting the operating system
	Cross-compilation – what are host and target systems?
	Abbreviated variables
	Host system information
	Does the platform have 32-bit or 64-bit architecture?
	What is the endianness of the system?

	Configuring the toolchain
	Setting the C++ standard
	Insisting on standard support
	Vendor-specific extensions
	Interprocedural optimization
	Checking for supported compiler features
	Compiling a test file

	Disabling in-source builds
	Summary
	Further reading

	Chapter 5: Working with Targets
	Technical requirements
	Understanding the concept of a target
	Defining executable targets
	Defining library targets
	Custom targets
	Dependency graph
	Visualizing dependencies
	Setting properties of targets
	What are Transitive Usage Requirements?
	Dealing with conflicting propagated properties

	Meet the pseudo targets
	Imported targets
	Alias targets
	Interface libraries

	Object libraries
	Build targets

	Writing custom commands
	Using a custom command as a generator
	Using a custom command as a target hook

	Summary
	Further reading

	Chapter 6: Using Generator Expressions
	Technical requirements
	What are generator expressions?
	Learning the basic rules of general expression syntax
	Nesting

	Conditional expansion
	Evaluating to Boolean
	Logical operators
	Comparisons
	Queries

	Querying and transforming
	Dealing with strings, lists, and paths
	Parametrizing the build configuration and platform
	Tuning for toolchain
	Querying target-related information
	Escaping

	Trying out examples
	Build configurations
	System-specific one liners
	Interface libraries with compiler-specific flags
	Nested generator expressions
	The difference between a conditional expression and the evaluation of a BOOL operator

	Summary
	Further reading

	Chapter 7: Compiling C++ Sources with CMake
	Technical requirements
	The basics of compilation
	How compilation works
	Initial configuration
	Requiring specific features from the compiler

	Managing sources for targets

	Configuring the preprocessor
	Providing paths to included files
	Preprocessor definitions
	Avoid accessing private class fields in your unit tests
	Using git commit to track a compiled version

	Configuring the headers

	Configuring the optimizer
	General level
	Function inlining
	Loop unrolling
	Loop vectorization

	Managing the process of compilation
	Reducing compilation time
	Precompilation of headers
	Unity builds

	Finding mistakes
	Configuring errors and warnings
	Debugging the build
	Providing information for the debugger

	Summary
	Further reading

	Chapter 8: Linking Executables and Libraries
	Technical requirements
	Getting the basics of linking right
	Building different library types
	Static libraries
	Shared libraries
	Shared modules
	Position-independent code (PIC)

	Solving problems with the ODR
	Sorting out dynamically linked duplicated symbols
	Use namespaces – don’t count on the linker

	The order of linking and unresolved symbols
	Dealing with unreferenced symbols

	Separating main() for testing
	Summary
	Further reading

	Chapter 9: Managing Dependencies in CMake
	Technical requirements
	Using already installed dependencies
	Finding packages with CMake’s find_package()
	Writing your own find modules

	Discovering legacy packages with FindPkgConfig

	Using dependencies not present in the system
	FetchContent
	Basic example with a YAML reader
	Downloading the dependencies
	Updating and patching
	Using the installed dependency where possible

	ExternalProject

	Summary
	Further reading

	Chapter 10: Using the C++20 Modules
	Technical requirements
	What are the C++20 modules?
	Writing projects with C++20 module support
	Enabling the experimental support in CMake 3.26 and 3.27
	Enabling support for CMake 3.28 and up
	Setting the compiler requirements
	Declaring a C++ module

	Configuring the toolchain
	Summary
	Further reading

	Chapter 11: Testing Frameworks
	Technical requirements
	Why are automated tests worth the trouble?
	Using CTest to standardize testing in CMake
	Build-and-test mode
	Test mode
	Querying tests
	Filtering tests
	Shuffling tests
	Handling failures
	Repeating tests
	Controlling output
	Miscellaneous

	Creating the most basic unit test for CTest
	Structuring our projects for testing
	Unit-testing frameworks
	Catch2
	GoogleTest
	Using GTest
	GMock

	Generating test coverage reports
	Using LCOV for coverage reports
	Avoiding the SEGFAULT gotcha

	Summary
	Further reading

	Chapter 12: Program Analysis Tools
	Technical requirements
	Enforcing formatting
	Using static checkers
	clang-tidy
	Cpplint
	Cppcheck
	include-what-you-use
	Link What You Use

	Dynamic analysis with Valgrind
	Memcheck
	Memcheck-Cover

	Summary
	Further reading

	Chapter 13: Generating Documentation
	Technical requirements
	Adding Doxygen to your project
	Generating documentation with a modern look
	Enhancing output with custom HTML
	Summary
	Further reading

	Chapter 14: Installing and Packaging
	Technical requirements
	Exporting without installation
	Installing projects on the system
	Installing logical targets
	Utilizing the default destination for different platforms
	Dealing with public headers

	Low-level installation
	Installing with install(FILES) and install(PROGRAMS)
	Working with entire directories

	Invoking scripts during installation
	Installing runtime dependencies

	Creating reusable packages
	Understanding the issues with relocatable targets
	Installing target export files
	Writing basic config files
	Creating advanced config files
	Generating package version files

	Defining components
	How to use components in find_package()
	How to use components in the install() command
	Managing symbolic links for versioned shared libraries

	Packaging with CPack
	Summary
	Further reading

	Chapter 15: Creating Your Professional Project
	Technical requirements
	Planning our work
	Project layout
	Shared libraries versus static libraries
	Project file structure

	Building and managing dependencies
	Building the Calc library
	Building the Calc console executable

	Testing and program analysis
	Preparing the Coverage module
	Preparing the Memcheck module
	Applying testing scenarios
	Adding static analysis tools

	Installing and packaging
	Installation of the library
	Installation of the executable
	Packaging with CPack

	Providing the documentation
	Generating the technical documentation
	Writing non-technical documents for a professional project

	Summary
	Further reading

	Chapter 16: Writing CMake Presets
	Technical requirements
	Using presets defined in a project
	Writing a preset file
	Defining stage-specific presets
	Common features across presets
	Unique name fields
	Optional fields
	Association with configuration-stage presets

	Defining configuration-stage presets
	Defining build-stage presets
	Defining test-stage presets
	Defining package-stage presets
	Adding the installation preset

	Defining workflow presets
	Adding conditions and macros
	Summary
	Further reading

	Appendix
	Miscellaneous commands
	The string() command
	Search and replace
	Manipulation
	Comparison
	Hashing
	Generation
	JSON

	The list() command
	Reading
	Searching
	Modification
	Ordering

	The file() command
	Reading
	Writing
	Filesystem
	Path conversion
	Transfer
	Locking
	Archiving

	The math() command

	PacktPage
	Other Books You May Enjoy
	Index

