Modern C++
for Absolute
Beginners

A Friendly Introduction to G++
Programming Language and
(++11 to (++20 Standards

Slobodan Dmitrovic

ApPress:

Modern C++ for
Absolute Beginners

A Friendly Introduction to
C++ Programming Language
and C++11 to C++20 Standards

Slobodan Dmitrovié

Apress’

Modern C++ for Absolute Beginners: A Friendly Introduction to C++ Programming
Language and C++11 to C++20 Standards

Slobodan Dmitrovic¢
Belgrade, Serbia

ISBN-13 (pbk): 978-1-4842-6046-3 ISBN-13 (electronic): 978-1-4842-6047-0
https://doi.org/10.1007/978-1-4842-6047-0

Copyright © 2020 by Slobodan Dmitrovié

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Ricardo Gomez Angel on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484260463. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6047-0

To M. R., whose work is an inspiration to me.

Table of Contents

About the AULNOFKccceiiiissssnmmsssssnmmsssssnmss s ana s s sannneessnnnnessssnnnnss XV
About the Technical REVIEWETcurussssssmmsssssssnmsssssnsnssssssnssssssssnnssssssssnssssssnnnnssssnnns Xvii
Acknowledgments........ccccuuisssssnmmsnmmmmmmsssssssssssnnnmmesssssssssssnnsnsesssssssssnnnnnsnsessssssnnnnnnns Xix
Chapter 1: IntroducCtion.........ccccciiinsssemmmmmnmnmmmsssssssnss s ssssssssseesssnns 1
Chapter 2: What iS C++7.....ccciuurrmmmssssssmnnmmmmmmmsssssssssssnnssssssssssssssssnsssessssssssssnnnnssnsssssnns 3
2.1 G4+ STANAAIUS......ccecccccer e e 3
Chapter 3: C++ COMPIIErScccerriisssnmnmmssssnnnmmsssssnnssssssssnssssssnnsnsssssnnnnsssssnnnnsssssnnnnsssss 5
3.1 Installing C++ COMPIIEISveveerrrerrreserrese s sse s e ses e srs e sn e e s e ssnssssnssnees 5
20 I 04 T OO S 5

3. 1.2 0N WINUOWS....c.ueiiiieirere s st s d e e s b s b e e e 6
Chapter 4: Our First Programccccinunssemmmmssssnmmmsssssmmssssssssmssssssssessssssssssssssnsnssss 7
4.1 COMMENES...ccviiitriierrie s b e e e b e b e e e e b e e e e e nRe e s 8
4.2 Hello World EXAmPIEoocieercensicse i sse e s ss e s sn e s s sn e sne s s 8
Chapter 5: TYPES ...ccuuiuisemmmimsssnnnmmsssssnnsesssssnssessssssssessssnnnsessssnnnsessssnnnsesssnnnnsssssnnnnsssss 11
5.1 FUNAAMENTAI TYPESveririereererer et st re s e e s e s s s s s e a e sae s s e e s ae s e e sa e e ne s s e e snesnesaennes 11
5,11 BOOIBAN.......cceccceeir e s p e nnn 11

LT I 1 1 =T (T g /o< 12

LT (1 (=T o] 1S 14

5.1.4 FIoating-POINt TYPESeeverierriererirer s s s ses e s e s see s se s s s s e s snesnese s e e snesaenaeans 15
5.1.5 TYPE VOIM....ceeeeereeriersie st res e s e se e s s e s s s s e e e e s a e s e e s e sae s e e e e aeene e e e e e naesaenanans 16

5.2 TYPE MOUITIEIS....ccveerccere st e s 16
5.3 Variable Declaration, Definition, and Initialization...........ccceeoervrvrrencncrrer e 17

TABLE OF CONTENTS

Chapter 6: EXErCiSeS .uuuuummrrmsssnnmrssssnnsssssssnnsssssssnnssessssnnsssssssnnnssssssnnnssssssnnssssssnnnnsssss 19
6.1 Hello World and COMMENTS.........cccovverirenirescre e ses e sse e s e sesesessenens 19
6.2 DECIATALION.......ccveieiirer e e 19
6.3 DEfiNItION.....eieece e ———————————— 20
6.4 INIHANZALION.....cove i ————————— 20

Chapter 7: OPeratorsccccuuseesmmmssssnnmmssssssssessssnsnsessssssssessssnnnssssssnnnsessssnnnsssssnnnnsssss 21
7.1 ASSIGNMENT OPEIALOLcveovrerererieerre s s r e e se e ae s ae e e e e ne s 21
7.2 ArithmetiC OPEIatOrSccveeviererirrrrierere s s s s e s e sre e e e s ae e e e e s sae e e e e e nnees 21
7.3 Compound AsSignment OPErators..........ccuverrrserinieninesesnse s se s sessesessesens 23
7.4 Increment/Decrement OPErators ... s 24

Chapter 8: Standard Inputccciemmmmnismmnmmmmsssmmmmsssmmss s ————————————— 25

Chapter 9: EXErCiSeS uuuuuummmummmrrrsssssssssssnnssssssssssssssnnnsssssssssssssnnnnssssssssssssnnnnnnsssssssssnn 27
9.1 Standard INPUL ..o s 27
9.2 TWO INPUES ... s p e e e n e e ne e s 27
9.3 MUITIPIE INPULS ... sa e e s a s s b e s ae e e e e aesae e e e e nens 28
9.4 Inputs and Arithmetic OPerations........c.ccvvvrvrieriernsnsrsere s eae s 28
9.5 Post-Increment and Compound ASSIGNMENT...........cccvvriernrerrerrerreressessesese s ssessssessessenes 29
9.6 Integral and Floating-point DiViSION............cccvininninn s 29

Chapter 10: ArrayS..ccuuuiseeseemmmmrssssssssssssnnsmesssssssssssssnssesssssssssssnnnsseessssssssnnnnnnnsessssssns 31

Chapter 11: POINtersccccccemmmrrimssssssssssnmmmmsssssssssssssnssessssssssssssnnsseessssssssnnnnnnnsnsssssnnn 33

Chapter 12: ReferencCesccccrrmiissssmssmmmmmmmssssssssssssssessssssssssssssssessssssssssssnnnssesssssnns 37

Chapter 13: Introduction to Strings.........ccccnnnnmmm s ——————— 39
13.1 Defining @ STHNGccovveeerirereserrese e 39
13.2 Concatenating StringS.......ccuvevnernenmrnse s s 40
13.3 ACCESSING CRArACTEIS ...covevrereere s sere s se s s s r e ae e se e aennes 4
13.4 COMPANING SENYS .veererrererrirere s se s s s e e s saesae e s e ssesaesee e esesaesaesaesenaesnes 41
2RI (T T L 42

TABLE OF CONTENTS

13.6 APOINTEr 10 @ STHNG...cocevevirierere e se e s sr e saesr e se e naennen 43
13.7 SUDSIIINGS ...cviuieriee st e e e e e e e e e et 43
13.8 Finding @ SUDSIING ..o e e 44
Chapter 14: Automatic Type Deductioncccceemmmmmnrnnsssssssssnnnnsmsssssssssssssssseessssnns 47
Chapter 15: EXEIrCISeS .uuuumrmssnnmmrssssnnnmsssssnnnssssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnsssssannnsssss 49
15.1 Array Definitionccovceevenereserresr e 49
15.2 Pointer 10 an ODJECT ..o —— 49
15.3 RETEIENCE TYPE...cveererrerieserseresestssesse s sse e s e sse s se e e s s s b e e e s s sae e e e ae s aesa e e e e saesee e e e naenaes 50
T 1 o 50
15.5 Strings from Standard INPUL..........ccorcnr e —————— 51
15.6 Creating @ SUDSTIING ... 51
15.7 Finding @ Single CharaCler ... 52
15.8 FiNdiNg @ SUDSTIING......cocvieriesiririesese s 52
15.9 Automatic Type DedUCTION.......ccevrcriere s s 53
Chapter 16: Statements..........cccurcmmnsmmnsmmmnmmemmsms s ——————————— 55
16.1 Selection StatemMENtS.........ccccvriir s ———— 55
16.1.1 if StAtEMENT ... ——————— 55
16.1.2 Conditional EXPreSSioNnccccceceerermsnssmsesssssssssse s sessssssssssssesssssssaes 57
16.1.3 The LOQICal OPEIatOrS......cvieveererrererersersersessesessessessessssessessessessssessessesssssssessessessssessenes 58
16.1.4 SWitch STAtEMENt ..o ———————— 63

16.2 lteration STAatemMENtS ... s 64
16.2.1 fOr STATEMENT......coviecccr s 64
16.2.2 While STatement ..o 65
16.2.3 d0 STATEMENL ..o s 66
Chapter 17: Constantscccucnssemmssmmmsnmssssmsssnmssnmssssmssssmssssssssssansssnssssnsssansssnsssansss 67
Chapter 18: EXEICiSeS .uuuurussmmrrssanrssssnsrssanssssansessansesssnsesssnsesssnsesssnnssssnnesssnnssssnnssssans 69
18.1 A Simple if-Statement ... ———————— 69
LRI I To oz LI 0] 0T (0] TS 69
18.3 The SWiItCh-Statementccvieiiccr 70

vii

TABLE OF CONTENTS

L2 1T (0] ol 0o o 71
18.5 Array and the fOr-I00p ... 72
18.6 The const Type QUANITIErccccoeviririrrr s e 72
Chapter 19: FUNCHIONScceumiiiiiniisssssssmmmmmisssssssssssssssessssssssssssssssssssssssssssnnsnsesssnsnns 75
eI 10 T0 1 e S 75
19.2 Function DecClaration ... 75
19.3 FUNCLION DEfiNitioN........cceeiririiisrcs s 76
19.4 Return STateMENt...........occcic s 79
19.5 PasSing ArgUMENTScoviiiicicsis s sn s s s r s s s p s s s r e 80
19.5.1 Passing by ValUE/COPY.......ccvmerrinrnerinsesise s ses e sesss s ssssesessssessssesessessssssesssnes 80
19.5.2 Passing by REfErENCEccoevverieererrcer ettt sa e e e 81
19.5.3 Passing by Const REFEIENCEccvevererrererererrererrerse s ssessesesesse e ssssessessessssessessenes 82

19.6 FUNCtion OVErloading ..o e s s sre e 83
Chapter 20: EXEIrCISeS ..ucuurrussssnmmrssssnnnssssssnnnssssssnnnssssssnnnssssssnnnesssssnnnssssssnnnsssssnnnnsssss 85
20.1 FUNCLION DEfINItION.....coeeerereresenerrssesessesess s sese e se s sr e sessssnnsnnens 85
20.2 Separate Declaration and Definitionccvvrernrennenennssnsesese s 85
20.3 FUNCLION PArameters........cocviieiserirnsssse s s s s 86
20.4 PasSiNg ArQUIMENTScccueveririeriee s res e s e s e s sse e s s e s s s st e s s s e s sae s ae s s e e saesae s e s 87
20.5 FUNCLION OVEII0AASc.ceeererreeceresissseese e s 87
Chapter 21: Scope and Lifetime........cccusmmmssmmmsssnsmsssssmsssssssssssesssssssssssssssnssssssnssssans 89
271.1 LOCAI SCOPEL...c.viitiirererie st r et st s b e e e b e e e a e e e e R e e e e ne s 89
21.2 BIOCK SCOPEvetiirerierie sttt s s s e s bbb e e e b e e s 89
21,3 LIfOHIME ..veeetieetsesere e e p e 90
21.4 Automatic Storage DUratioN.........cccvcvererirsnien e e e 90
21.5 Dynamic Storage DUrAtionccccvevrererenienieniesessersesese s sessessssesessessessssessesaessssessesseses 90
21.6 Static Storage DUFAtioN..........ccccvncnncnn e 91
21.7 Operators New and delete.........cucvvrerirnrnin s 91

viil

TABLE OF CONTENTS

Chapter 22: EXEIrCISS .uuuurrrssssnnmrsssssnsssssssnnsssssssnnsssssssnnsssssssnnsssssssnnsssssssnnnsssssnnnnsssss 93
22.1 Automatic Storage DUration...........cccoveererrnccnncrire e e se e 93
22.2 Dynamic Storage DUFALioNcococerceerenererererese e 93
22.3 Automatic and Dynamic Storage DUrationsccoceeeeererernserenesesssesesseseseses e sessesessenens 94

Chapter 23: Classes - Introduction...........ccccunsemmmmnsssnmnmmssssssnmmssssssnmmssssssmssssssnns 95
23.1 Data Member FIelds........c.ouoeiiicerniesnesrisse s s sn s e s e 96
23.2 Member FUNCHIONS ... s s 96
23.3 ACCESS SPECITIEIS .urueruirrrrrrrererertrssrsesseree e s s s s s e s sae e s e s s sae e e e s e s ae s e e e e e e aesae s e e e e e nnenes 99
P T B] 51 11T (0] P 102

23.4.1 Default CONSTIFUCTON ..o s 102
23.4.2 Member INitialization............cccoveierenrnnrree s 104
23.4.3 COPY CONSIIUCTONeuvrereereererrerersesseseressessesessessessessssessessessessssessesaessssessessessensssesseses 104
23.4.4 CopY ASSIGNMENT......cccrvrririeeriresrssese e 107
23.4.5 MOVE CONSIIUCTONccrvreriicceresesses e 109
23.4.6 MOVE ASSIGNIMENTcocriieireriritrrie e s s e e s a e s n e s ne s n 111
23.5 Operator OVErloadingccccccrrererererenernesere s ses et se s e se s e se s e s 112
23.6 DESITUCTOLSeeeeereecrereseree e e n e p e ne e e 118

Chapter 24: EXErCiSeS .uuusssmssnmmmrsssssssssnnssnnsssssssssssssnnssssssssssssssssnnsnsssssssssssssnnnnnnnnsss 121
24.1 Class INSTANCE........c.ueerrrererenernse s s sr e s sr s ne e r s 121
24.2 Class with Data MEMDEIS ... s s 121
24.3 Class with Member FUNCTION ..o sessssees 122
24.4 Class with Data and Function MEMDENScccceeennernnnnsnmsesesssssssse s sesssssneaes 122
24.5 Class ACCESS SPECITIBIS ...cucvererrriirieriese s e e b e s b e s e nan 123
24.6 User-defined Default Constructor and DeStruCtor...........coccoerererennerereserssesessesesesesesenenns 124
24.7 Constructor INIHAlZEr LiSt..........ccoveeeerenernsesrnesesese s ses s sessssesssssssssssenns 125
24.8 User-defined Copy CONSIIUCTONcccvevirreriereresersersese s s e sse s ssssesessessesessesaesnes 126
24.9 User-defined Move CONSIIUCTON ..o e ssnsaes 127
24.10 Overloading Arithmetic OPerators........ccocvvvreriererrrieriesssersere e s sse s ssesessessesaes 128

ix

TABLE OF CONTENTS

Chapter 25: Classes — Inheritance and Polymorphism.........cccccuseemninsssnnnnnsssssnnns 131
25.1 INNEMTANCE ..ot e e r e s enn 131
25.2 POIYMOIPRISIN ... 135

Chapter 26: EXErCiSeS .uuusummemmmmmrrrsssssssnnssnnsssssssssssssssnnssssssssssssssnnnnsssssssssssssnnnnnnnness 141
26.1 INNEITANCE ..ot e s b e e e nas 141

Chapter 27: The static Specifiercccccunmmmmmissmmmmmnssnnmmmssnm———————— 145

Chapter 28: Templates.......ccuccmmmmisnnmnmmnssnnmmmssssnmmmssssmmmssssnss———————————— 149

Chapter 29: ENUMerationsccusumsmsmsmsmsmsmsmsmsmssasasasases 155

Chapter 30: EXEIrCISeS ..uuumrrssssnnmmssssannnssssssnnnssssssnnnsssssnnnnssssssnnnssssssnnnsssssnnnssssssnnnnss 159
30.1 Static Variable ..o ———————————— 159
30.2 Static data MEMDEr ... —————— 160
30.3 Static member fUNCHON ... ——————— 160
30.4 Function TEMPIALE.......cccccvviierisr s s 161
30.5 Class TEMPIALE.........ccceverrire e enn 162
30.6 SCOPEU ENUMS ..ot s ettt b s bbbt 163
30.7 ENUMS iN @ SWILCH....cuiii s e b e e 164

Chapter 31: Organizing COUEcuusssursssanssssanssssanssssansssssnnssssnnssssnsssssnnssssnnssssnnssssns 165
31.1 Header and SOUICE FilES........ccucvreririisirinerine s se s s 165
31.2 HEAUEK GUANTScvveuerirueerieeris e ss e st 166
31.3 NAMESPACESccveeruerrerresirsesse st s e rs e s s re e s e s s b e e s R e be e e e e Re e e e e e e Re b e e n e e nennas 166

Chapter 32: EXEICiSeS .uuuuurussssrrssanssssanssssanssssansessansesssnsesssnsesssnsesssnsesssnnesssnnssssanssssas 171
32.1 Header and SOUICE FlES........coiiiiririiniinsene st se s s 171
32.2 MUultiple SOUICE FIlESccvvveriirsirire st 172
32.3 NAMESPACEScueecverreririresresesses e s s s s e s e s e s s s s e s e e s re s e s e e e r e s Re e e e e e e resae e e nneeneennnnnan 173
32.4 NeSted NAMESPACEScceevererirrrrereriirsessse s s s s e s s e s s e s s se s s s s s e e s re s s e s snesne s e nan s 174

TABLE OF CONTENTS

Chapter 33: CONVErSiONS......uiveurrmssssnnsrsssssnssssssssnssssssssnsssssssssnnssssssnnssssssnnnssssssnnnnss 175
33.1 IMPIICIt CONVEISIONS........coeiueerircreresere st s se e s se s st s e e e ne s 175
33.2 EXPIICIt CONVEISIONS......ccctrierueriesissirses s s b e s s p e e 178

Chapter 34: EXCePLioNS......ccuuseummmssssnsnmsssssnnnmsssssnsnsssssnsnnssssssnnnssssssnnssssssnnnnssssnnnnnss 183

Chapter 35: Smart Pointersccummmmmnnmnmmmmmssssnmmmssssnmmssssnmmsssnnmsssssssssssnm 189
35.1 UNIQUE POINTET ...ttt st s e s bt 189
35.2 ShAred POINTETcoveceerrcirce e nr s 191

Chapter 36: EXEIrCISeS . ..ccumruussammmmmsssannnssssssnnsesssssnnnsssssnnnssssssnnnnssssssnnnsssssnnnsessssnnnnss 193
36.1 Static_Cast CONVEISION.........couuerererensssse s 193
36.2 A Simple UNiQUE POINTEE:.....ccereviererere st se e s se e ses e ssessessesasessesaessssessesaessesessesnesaes 194
36.3 Unique Pointer to an Object 0f @ ClaSS........ccuvrrnnrnneninninsse s s e ssssesens 194
36.4 Shared POINTErS EXEICISEccoveererererreerereserese s e e s e se e ss e s e e sessesenns 195
36.5 Simple PolymOrphiSm ... e 195
36.6 POlyMOrpPhiSM Il ..ot 196
36.7 EXCeption HANAINGcoeoerierererirsere e s s sse e s ss s e s sae e s nnes 198
36.8 MUIIPIE EXCEPLIONS......coveitriererertrsereressssese s e e s s ssese s e s e s sae e sse s e saessssessesaesaesssesaesnes 198

Chapter 37: Input/Output Streams..........ccccrrnnnemmnnnsssnnnmmssssnmmssssns———— 201
37.1 File SIrBAMSc.ceeerereececre e ne e s 201
37.2 SrINQG SIrBAMScveiceecir e b e e b e e nns 204

Chapter 38: C++ Standard Library and Friends.........cccorummssnmmmmnsssssnnmssssssnsssssssnnnss 209
BT 0] o1 2T T S 209

BT T] (0 AT (] SR 210
B I (0 i | T 212
38.1.3 SEA:ISEL....cvivcecererere e 212
38.1.4 SAIMAP ... e e nne s 213
38.1.5 SHAIIPAIN ... e e nae s 216
38.1.6 Other CONTAINEIS.......coceererererreereere s 217
38.2 The Range-Based fOr LOOP........cccvvrerrrrenmrensesesessssesesessesessessssssesessesssssssssssssesssssssssssssssenns 217
B LI (0] SRR 219

xi

TABLE OF CONTENTS

38.4 Algorithms and ULIIIEIEScccevverieereriiniinse s s s 220
38.4.1 SEAISOM ... s 221
38.4.2 SEA:fING ... 222
BT M T [0 b 10) S 224
38.4.4 Min and Max EIBMENTScccccvvernmrnnninisi s sasnans 225

38.5 Lambda EXPreSSIONScccuevuererierieereriersesssesesesseessessesesssessessessesssesaessessssssessessssssesasssesnes 226

Chapter 39: EXEICiSeS .uuuurussurrrssanssssanssssansessansessansessansesssnnesssnsesssnsesssnnssssnnssssanssssan 233

39.1 BASIC VECION ... s 233

39.2 Deleting @ SiNgle VAIUEcccvveererenmrreneressesese e sesssse s sessesssssssssssssesssssssssssssssenns 233

39.3 Deleting @ Range of EIEMENTS.........ccccvivrnennennnse s s 234

39.4 Finding Elements in @ VECION.........ccucviviinine et sss e sse e s snesnes 235

39.5 BASIC SEL ... s 236

39.6 Set Data Manipulation...........ccovcvrnnnnrnene s 236

39.7 Set Member FUNCLIONS.........cco st 237

39.8 Search for Data in @ Set.........coovcvrierrerrrrrre e 237

39.9 BASIC MAP ..cveviiiirere it e e b e e an 238

39.10 InSrting INt0 MaAPcoecrirerr e s r e e s b e e nnn 239

39.11 Searching and Deleting From @ Map.........ccucevivvnnnienennninsenesesessessesessssessessesssssssessesses 240

39.12 Lambda EXPreSSIONSc.cecerverreereriirierssesessesseessessessesssessessessesssessessesssessessessssssssasssssnes 241

Chapter 40: C++ Standardsccussressnsmssnsmsssnsesssnsssssnsesssnsesssnsesssnnssssnnssssnnsessas 243

A0.1 CHHTT e bR R e e 243
40.1.1 Automatic Type DedUCHIONcovccereeereerrcr e 244
40.1.2 Range-Dased LOOPS.......ccvererererercrerenesenesessesessesessesesesesessesessssesessesessssessesesessssenes 244
L I [L =] gl I 3 245
40.1.4 MOVE SEMANTICSccreecereeereesereeeresese e e e se e ses e s e sse e sesssenas 245
40.1.5 Lambda EXPreSSiONScccccvierennninsnenesississessessssessese s s sessesessssessessesssssssessessens 246
40.1.6 The constexpr SPECITIET.......ccucvieriirirerr e ene 247
40.1.7 Scoped ENUMEIALOrScccccvieieriesinere s rs e s sre s e s 247
40.1.8 SMArt POINTEIS......ccueceeecercerese e 248
40.1.9 StA::UNOFAErEd_SElL.....cicirceirciirirr s ———————— 249

xii

TABLE OF CONTENTS

40.1.10 Std::uNOrdered_MaPcccvcererierir s sr e s 250
40.1.11 SEAITUPIE oo 252
40.1.12 STALIC_ASSEI......cce e s 253
40.1.13 Introduction t0 CONCUITENCYeeerverererrerrerseressesessessessessssessessessesessessessessssessessens 254
40.1.14 Deleted and Defaulted FUNCHONSccocorriencnnncs s 259
40.1.15 TYPE AlIASES ...verreererserrererseressessesessessessesessessessessessssessesassssssssessessesessessesasssssensessens 262
B0.2 CHAH14 ettt bbb EnE e e e 262
40.2.1 BiNary LITEralScccceeerieriirieerercersie e seres e sse e s se s e s s s saessae s s sae s saesaesae s 263
40.2.2 Digits SEPAratOrS......ccveerrererrerrerersnsessersessesessersesessesessessessessssessessesssssssessesasssssessessens 264
40.2.3 A0 fOr FUNCLIONS ..o e 264
40.2.4 GENeric Lambaas..........cccovriinnmnnnnssss s sasnns 265
40.2.5 Std:iMAKE_UNIQUE........erierierreereriersie et ressee s s e e e s se e s s sa e sa e s s e s sa e sae s 265
A0.3 CHH17 et d e e R R R e e 266
40.3.1 Nested NAmeSPACES........cccvcviererisiniere e rs e s saesrs e s 266
40.3.2 ConSteXPr LAMDAAS.......covvvrrerrerereeserseressesessersessessesessessesssssssessessesssssssessesssssssessessens 267
40.3.3 Structured BiNAINGS........ccovrerrerererserseriersesessersesessesessessessessssessessesssssssessesssssssessessens 267
40.3.4 Std::fileSYSIBM ..o e e s 269
40.3.5 StA::SIING_VIBW....cceeeecerer et a e s s e sa e e s 272
T T I (0 b 1 S 273
40.3.7 SHAVAMTANT......ccceccec 275
A0.4 CH+H20...ucucuerererrererereresesesesesesesesessssss s s s s s s s s e e e e e e e e e e R R R R R e e 278
40.4.1 MOUUIBS ...t n e ne e e 278
O 004 T 0 OO S 281
40.4.3 Lambda TEMPIALEScoevriericriresinere s s snens 285
40.4.4 [likely] and [unlikely] AFIDULES.......ccccuunmnnnrneere s sssnsanas 286
L S 3T TS 287
40.4.6 COTOULINESocuueeeererrsrescsesesessssss e se s se e sr s e s e sannans 291
T Y (0] 7 291
40.4.8 Mathematical CONSLANTS...........ccccrrrrrrnienmserirrs s 292

xiii

TABLE OF CONTENTS

SUMMAary and AAVICeccceerrrssssnnssssssssnnsssssssnssessssssssssssssnssesssssnnnsssssnnnssssssnnnnssssnnns 295
The go-10 RETEIEINCEcoveciecirerec e s e e e 295
STACKOVEITIOW ...t e 295
Other ONliNg RESOUICEScccoerueerrreresesesresesesesese e sesse e s sss e e sssessssesessssessssesssssenns 296
Other G+ BOOKSuccereeerrecrinesisse e s s e sas e sr s s sn e nense e s 296
AQVICE ...t b e e e e e e e e e R e R e e e e e e Re e nE e 296

INA@X...ciiiiinmnnrssssnnnnsssssnnnnnssssnnnsnssssnnnsnssssnnnsssssnnnnsnsssnnnnsnsssnnnnsnsssnnnnsnsssnnnnnnsssnnnnnnnss 297

Xiv

About the Author

Slobodan Dmitrovi¢ is a software development consultant
and an author from Serbia. He specializes in C++ training,
technical analysis, and software architecture. He is a
highly visible member of the SE European C++ community
and a StackOverflow contributor. Slobodan has gained
international experience working as a software consultant
in Denmark, Poland, Croatia, China, and the Philippines.
Slobodan maintains a website at www.cppandfriends.com.

http://www.cppandfriends.com

About the Technical Reviewer

b e

neural networks for image segmentation and applications in biomedical research and

Chinmaya Patnayak is an embedded software developer at
NVIDIA and is skilled in C++, CUDA, deep learning, Linux,
and file systems. He has been a speaker and instructor for
deep learning at various major technology events across
India. Chinmaya holds an M.Sc. degree in physics and

B.E. in electrical and electronics engineering from BITS
Pilani. He has previously worked with Defence Research

and Development Organization (DRDO) on encryption
algorithms for video streams. His current interest lies in

self-driving cars. Find more about him at chinmayapatnayak.github. io.

xvii

Acknowledgments

I would like to thank my friends and fellow C++ peers who have supported me in writing
this book.

I owe my gratitude to outstanding professionals at Apress for their amazing work and
support during the entire writing and production process.

I am thankful to the StackOverflow and the entire C++ community for their help and
feedback.

My deepest appreciation goes to S. Antonijevi¢, Jovo Arezina, and Sasa Popovi¢ for
their ongoing support.

Xix

CHAPTER 1

Introduction

Dear Reader,

Congratulations on choosing to learn the C++ programming language, and thank
you for picking up this book. My name is Slobodan Dmitrovi¢, I am a software developer
and a technical writer, and I will try to introduce you to a beautiful world of C++ to the
best of my abilities.

This book is an effort to introduce the reader to a C++ programming language in a
structured, straightforward, and friendly manner. We will use the “just enough theory
and plenty of examples” approach whenever possible.

To me, C++ is a wonderful product of the human intellect. Over the years, [have
certainly come to think of it as a thing of beauty and elegance. C++ is a language like no
other, surprising in its complexity, yet wonderfully sleek and elegant in so many ways. It
is also a language that cannot be learned by guessing, one that is easy to get wrong and
challenging to get right.

In this book, we will get familiar with the language basics first. Then, we will move
onto standard-library. Once we got these covered, we will describe the modern C++
standards in more detail.

After each section, there are source code exercises to help us adopt the learned
material more efficiently. Let us get started!

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_1

https://doi.org/10.1007/978-1-4842-6047-0_1#DOI

CHAPTER 2

What is C++?

C++ is a programming language. A standardized, general-purpose, object-oriented,
compiled language. C++ is accompanied by a set of functions and containers called
the C++ Standard-Library. Bjarne Stroustrup created C++ as an extension to a C
programming language. Still, C++ evolved to be a completely different programming
language.

Let us emphasize this: C and C++ are two different languages. C++ started as “C with
classes,” but it is now a completely different language. So, C++ is not C; C++ is not C with
classes; it is just C++. And there is no such thing as a C/C++ programming language.

C++is widely used for the so-called systems programming as well as application
programming. C++ is a language that allows us to get down to the metal where we can
perform low-level routines if needed, or soar high with abstraction mechanisms such as
templates and classes.

2.1 C++ Standards

C++is governed by the ISO C++ standard. There are multiple ISO C++ standards listed
here in chronological order: C++03, C++11, C++14, C++17, and the upcoming C++20
standard.

Every C++ standard starting with the C++11 onwards is referred to as “Modern C++”
And modern C++ is what we will be teaching in this book.

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_2

https://doi.org/10.1007/978-1-4842-6047-0_2#DOI

CHAPTER 3

C++ Compilers

C++ programs are usually a collection of C++ code spread across one or multiple source
files. The C++ compiler compiles these files and turns them into object files. Object files
are linked together by a linker to create an executable file or a library. At the time of the
writing, some of the more popular C++ compilers are:

— The g++ frontend (as part of the GCC)
— Visual C++ (as part of the Visual Studio IDE)

— Clang (as part of the LLVM)

3.1 Installing C++ Compilers

The following sections explain how to install C++ compilers on Linux and Windows and
how to compile and run our C++ programes.

3.1.1 On Linux

To install a C++ compiler on Linux, type the following inside the terminal:
sudo apt-get install build-essential

To compile the C++ source file source.cpp, we type:
g++ source.cpp

This command will produce an executable with the default name of a.out. To run the
executable file, type:

./a.out

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_3

https://doi.org/10.1007/978-1-4842-6047-0_3#DOI

CHAPTER 3 C++ COMPILERS

To compile for a C++11 standard, we add the -std=c++11 flag:
g++ -std=c++11 source.cpp

To enable warnings, we add the -Wall flag:
g++ -std=c++11 -Wall source.cpp

To produce a custom executable name, we add the -o flag followed by an
executable name:

g++ -std=c++11 -Wall source.cpp -o myexe

The same rules apply to the Clang compiler. Substitute g++ with clang++.

3.1.2 On Windows

On Windows, we can install a free copy of Visual Studio.

Choose Create a new project, make sure the C++ language option is selected, and
choose - Empty Project - click Next and click Create. Go to the Solution Explorer panel,
right-click on the project name, choose Add - New Item - C++ File (.cpp), type the name
of a file (source.cpp), and click Add. Press F5 to run the program.

We can also do the following: choose Create a new project, make sure the C++
language option is selected, and choose - Console App - click Next and click Create.

If a Create a new project button is not visible, choose File - New - Project and repeat
the remaining steps.

CHAPTER 4

Our First Program

Let us create a blank text file using the text editor or C++ IDE of our choice and name it
source.cpp. First, let us create an empty C++ program that does nothing. The content of
the source.cpp file is:

int main(){}

The function main is the main program entry point, the start of our program. When
we run our executable, the code inside the main function body gets executed. A function
is of type int (and returns a result to the system, but let us not worry about that just yet).
The reserved name main is a function name. It is followed by a list of parameters inside
the parentheses () followed by a function body marked with braces { }. Braces marking
the beginning and the end of a function body can also be on separate lines:

int main()

{
}

This simple program does nothing, it has no parameters listed inside parentheses,
and there are no statements inside the function body. It is essential to understand that
this is the main program signature.

There is also another main function signature accepting two different parameters
used for manipulating the command line arguments. For now, we will only use the
first form .

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_4

https://doi.org/10.1007/978-1-4842-6047-0_4#DOI

CHAPTER 4 OUR FIRST PROGRAM

4.1 Comments

Single line comments in C++ start with double slashes // and the compiler ignores them.
We use them to comment or document the code or use them as notes:

int main()
{
// this is a comment
}
We can have multiple single-line comments:
int main()
{
// this is a comment
// this is another comment
}

Multi-line comments start with the /* and end with the */. They are also known as
C-style comments. Example:

int main()

{
/* This is a
multi-line comment */

4.2 Hello World Example

Now we are ready to get the first glimpse at our “Hello World” example. The following
program is the simplest “Hello World” example. It prints out Hello World. in the console
window:

#include <iostream>

int main()

{
std::cout << "Hello World.";

CHAPTER 4 OUR FIRST PROGRAM

Believe it or not, the detailed analysis and explanation of this example is 15 pages
long. We can go into it right now, but we will be no wiser at this point as we first need to
know what headers, streams, objects, operators, and string literals are. Do not worry. We
will get there.

A brief(ish) explanation

The #include <iostream> statement includes the iostream header into our source
file via the #include directive. The iostream header is part of the standard library. We
need its inclusion to use the std: : cout object, also known as a standard-output stream.
The << operator inserts our Hello World string literal into that output stream. String

literal is enclosed in double quotes "". The ; marks the end of the statement. Statements
are pieces of the C++program that get executed. Statements end with a semicolon ; in
C++. The std is the standard-library namespace and : : is the scope resolution operator.
Obiject cout is inside the std namespace, and to access it, we need to prepend the call
with the std: :. We will get more familiar with all of these later in the book, especially the
std:: part.

A brief explanation

In a nutshell, the std: :cout << isthe natural way of outputting data to the standard
output/console window in C++.

We can output multiple string literals by separating them with multiple << operators:
#include <iostream>

int main()

{

std::cout << "Some string." << " Another string.";

To output on a new line, we need to output a new-line character \n literal. The
characters are enclosed in single quotes '\n".
Example:

#include <iostream>

int main()

{

std::cout << "First line" << '\n' << "Second line.";

CHAPTER 4 OUR FIRST PROGRAM

The \ represents an escape sequence, a mechanism to output certain special
characters such as new-line character '\n', single quote character '\"' ' or a double

quote character '\"".
Characters can also be part of the single string literal:

#include <iostream>

int main()

{

std::cout << "First line\nSecond line.";

Do not use using namespace std;

Many examples on the web introduce the entire std namespace into the current
scope via the using namespace std; statement only to be able to type cout instead
of the std: : cout. While this might save us from typing five additional characters, it is
wrong for many reasons. We do not want to introduce the entire std namespace into
the current scope because we want to avoid name clashes and ambiguity. Good to
remember: do not introduce the entire std namespace into a current scope via the using
namespace std; statement. So, instead of this wrong approach:

#include <iostream>
using namespace std; // do not use this

int main()

{

cout << "A bad example.";

}

use the following:
#include <iostream>

int main()

{

std::cout << "A good example.";

For calls to objects and functions that reside inside the std namespace, add the
std:: prefix where needed.

10

CHAPTER 5

Types

Every entity has a type. What is a type? A type is a set of possible values and operations.
Instances of types are called objects. An object is some region in memory that has a
value of particular type (not to be confused with an instance of a class which is also
called object).

5.1 Fundamental Types

C++ has some built-in types. We often refer to them as fundamental types. A declaration

is a statement that introduces a name into a current scope.

5.1.1 Boolean

Let us declare a variable b of type bool. This type holds values of true and false.

int main()
{

bool b;
}

This example declares a variable b of type bool. And that is it. The variable is not
initialized, no value has been assigned to it at the time of construction. To initialize a

variable, we use an assignment operator = followed by an initializer:

int main()

{

bool b = true;

11
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_5

https://doi.org/10.1007/978-1-4842-6047-0_5#DOI

CHAPTER5 TYPES
We can also use braces { } for initialization:

int main()

{
bool b{ true };

These examples declare a (local) variable b of type bool and initialize it to a value
of true. Our variable now holds a value of true. All local variables should be initialized.
Accessing uninitialized variables results in Undefined Behavior, abbreviated as UB. More
on this in the following chapters.

5.1.2 Character Type

Type char, referred to as character type, is used to represent a single character. The type
can store characters such as 'a‘, 'Z" etc. The size of a character type is exactly one byte.
Character literals are enclosed in single quotes ' ' in C++. To declare and initialize a
variable of type char, we write:

int main()
{

char ¢ = 'a';
}

Now we can print out the value of our char variable:

#include <iostream>

int main()
{

char ¢ = 'a';

std::cout << "The value of variable c is: " << ¢;
}

12

CHAPTER 5 TYPES
Once declared and initialized, we can access our variable and change its value:

#include <iostream>

int main()
{
char ¢ = 'a';
std::cout << "The value of variable c is: " << c;
c="17"
std::cout << " The new value of variable c is: " << c;

The size of the char type in memory is usually one byte. We obtain the size of the
type through a sizeof operator:

#include <iostream>

int main()

{

std::cout << "The size of type char is:
<< " byte(s)";

<< sizeof(char)

There are other character types such as wchar_t for holding characters of Unicode
character set, char16_t for holding UTF-16 character sets, but for now, let us stick to the
type char.

A character literal is a character enclosed in single quotes. Example: 'a’, 'A', 'z",
X', '0" etc.

Every character is represented by an integer number in the character set. That is why
we can assign both numeric literals (up to a certain number) and character literals to our
char variable:

int main()

{
char ¢ = 'a';
// is the same as if we had
// char c = 97;

13

CHAPTER5 TYPES

We can write: char ¢ = 'a'; or we can write char ¢ = 97; which is (probably) the
same, as the 'a’ character in ASCII table is represented with the number of 97. For the
most part, we will be using character literals to represent the value of a char object.

5.1.3 Integer Types

Another fundamental type is int called integer type. We use it to store integral values
(whole numbers), both negative and positive:

#include <iostream>

int main()
{
int x = 123;
int y = -256;
std::cout << "The value of x is: " << x << ", the value of y is: "
<Y
}

Here we declared and initialized two variables of type int. The size of int is usually 4
bytes. We can also initialize the variable with another variable. It will receive a copy of its
value. We still have two separate objects in memory:

#include <iostream>

int main()
{
int x = 123;
inty = x;
std::cout << "The value of x is: " << x << " ,the value of y is: " << y;
// x is 123
//y is 123
X = 456;
std::cout << "The value of x is: " << x << " ,the value of y is: " << y;
// x is now 456

// y is still 123

14

CHAPTER5 TYPES

Once we declare a variable, we access and manipulate the variable name by its name
only, without the type name.

Integer literals can be decimal, octal, and hexadecimal. Octal literals start with a
prefix of 0, and hexadecimal literals begin with a prefix of Ox.

int main()
{

int x = 10; // decimal literal

int y = 012; // octal literal

int z = OxA; // hexadecimal literal
}

All these variables have been initialized to a value of 10 represented by different
integer literals. For the most part, we will be using decimal literals.

There are also other integer types such as int64_t and others, but we will stick to int
for now.

5.1.4 Floating-Point Types

There are three floating-point types in C++: float, double, long double, but we will
stick to type double (double-precision). We use it for storing floating-point values / real
numbers:

#include <iostream>

int main()
{

double d = 3.14;

std::cout << "The value of d is: " << d;
}

Some of the floating-point literals can be:
int main()
{

double x = 213.456;

double y = 1.;

double z = 0.15;

15

CHAPTER5 TYPES

double w
double d

.15;
3.14e10;

5.1.5 Type void

Type void is a type with no values. Well, what is the purpose of such type if we can not
objects of that type? Good question. While we can not have objects of type void, we can
have functions of type void. Functions that do not return a value. We can also have a
void pointer type marked with void*. More on this in later chapters when we discuss
pointers and functions.

5.2 Type Modifiers

Types can have modifiers. Some of the modifiers are signed and unsigned. The signed
(the default if omitted) means the type can hold both positive and negative values, and
unsigned means the type has unsigned representation. Other modifiers are for the size:
short - type will have the width of at least 16 bits, and long - type will have the width of
at least 32 bits. Furthermore, we can now combine these modifiers:

#include <iostream>

int main()

{
unsigned long int x = 4294967295;
std::cout << "The value of an unsigned long integer variable is: " << Xx;

Type int is signed by default.

16

CHAPTER5 TYPES

5.3 Variable Declaration, Definition, and
Initialization

Introducing a name into a current scope is called a declaration. We are letting the world
know there is a name (a variable, for example) of some type, from now on in the current
scope. In a declaration, we prepend the variable name with a type name. Declaration

examples:
int main()
{
char c;
int x;
double d;
}
We can declare multiple names on the same line:
int main()
{

int x, vy, z;

If there is an initializer for an object present, then we call it an initialization. We
are declaring and initializing an object to a specific value. We can initialize an object in
various ways:

int main()

{

int x = 123;
int y{ 123 };
int z = { 123 };

17

CHAPTER5 TYPES

A variable definition is setting a value in memory for a name. The definition is making
sure we can access and use the name in our program. Roughly speaking, it is a declaration
followed by an initialization (for variables) followed by a semicolon. The definition is also
a declaration. Definition examples:

int main()

{
char ¢ = 'a';
int x = 123;

double d = 456.78;

18

CHAPTER 6

Exercises

6.1 Hello World and Comments

Write a program that has a comment in it, outputs “Hello World.” on one line, and “C++
rocks!” on a new line.

#include <iostream>

int main()

{
// this is a comment
std::cout << "Hello World." << '\n';
std::cout << "C++ rocks!";

6.2 Declaration

Write a program that declares three variables inside the main function. Variables are of
char, int, and type double. The names of the variables are arbitrary. Since we do not
use any input or output, we do not need to include the <iostream> header.

int main()

{
char mychar;
int myint;
double mydouble;

19

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_6

https://doi.org/10.1007/978-1-4842-6047-0_6#DOI

CHAPTER6 EXERCISES

6.3 Definition

Write a program that defines three variables inside the main function. The variables are
of char, int, and type double. The names of the variables are arbitrary. The initializers
are arbitrary.

int main()

{

char mychar = 'a’;
int myint = 123;
double mydouble = 456.78;

6.4 Initialization

Write a program that defines three variables inside the main function. The variables are
of char, int, and type double. The names of the variables are arbitrary. The initializers
are arbitrary. The initialization is performed using the initializer list. Print the values
afterward.

#include <iostream>

int main()
{
char mychar{ 'a' };
int myint{ 123 };
double mydouble{ 456.78 };
std::cout << "The value of a char variable is:
std::cout << "The value of an int variable is:

<< mychar << '\n';
<< myint << "\n';

std::cout << "The value of a double variable is: " << mydouble << '\n';

20

CHAPTER 7

Operators

7.1 Assignment Operator

The assignment operator = assigns a value to a variable / object:

int main()

{
char mychar = 'c'; // define a char variable mychar
mychar = 'd'; // assign a new value to mychar
int x = 123; // define an integer variable x
X = 456; // assign a new value to x
int y = 789; // define a new integer variable y
y = X; // assing a value of x to it

}

7.2 Arithmetic Operators

We can do arithmetic operations using arithmetic operators. Some of them are:

+ // addition
// subtraction
// multiplication

*

~

// division
// modulo

3R

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_7

21

https://doi.org/10.1007/978-1-4842-6047-0_7#DOI

CHAPTER 7 OPERATORS
Example:

#include <iostream>

int main()
{
int x = 123;
int y = 456;
int z = x + y; // addition
z = x -y; // subtraction
z = x *vy; // multiplication
z =x/y; // division

std::cout << "The value of z is: " << z << '"\n';

The integer division, in our example, results in a value of 0. It is because the result of
the integer division where both operands are integers is truncated towards zeros. In the
expression X / Yy, x andy are operands and / is the operator.

If we want a floating-point result, we need to use the type double and make sure at
least one of the division operands is also of type double:

#include <iostream>

int main()

{
int x = 123;
double y = 456;

double z = x / y;
std::cout << "The value of z is:

< z << '\n';

22

CHAPTER 7 OPERATORS

Similarly, we can have:
#include <iostream>

int main()

{
double z = 123 / 456.0;
std::cout << "The value of z is:

<< z << '"\n';

}

and the result would be the same.

7.3 Compound Assignment Operators

Compound assignment operators allow us to perform an arithmetic operation and
assign a result with one operator:

+= // compound addition

-= // compound subtraction

*= // compound multiplication
/= // compound division

%= // compound modulo

Example:

#include <iostream>

int main()
{
int x = 123;
X += 10; // the same as x = x + 10
X -= 10; // the same as x = x - 10
X *= 2; // the same as x = x * 2
X /= 3; // the same as x = x / 3
std::cout << "The value of x is: " << x;

23

CHAPTER 7 OPERATORS

7.4 Increment/Decrement Operators

Increment/decrement operators increment/decrement the value of the object. The
operators are:

++x // pre-increment operator
x++ // post-increment operator
--x // pre-decrement operator
x-- // post-decrement operator

A simple example:
#include <iostream>

int main()
{
int x = 123;
X++; // add 1 to the value of x
++X; // add 1 to the value of x
--X; // decrement the value of x by 1
X--3; // decrement the value of x by 1

std::cout << "The value of x is: " << x;

Both pre-increment and post-increment operators add 1 to the value of our object,
and both pre-decrement and post-decrement operators subtract one from the value of
our object. The difference between the two, apart from the implementation mechanism
(very broadly speaking), is that with the pre-increment operator, a value of 1 is added
first. Then the object is evaluated/accessed in expression. With the post-increment,
the object is evaluated/accessed first, and after that, the value of 1 is added. To the next
statement that follows, it does not make a difference. The value of the object is the same,
no matter what version of the operator was used. The only difference is the timing in the

expression where it is used.

24

CHAPTER 8

Standard Input

C++ provides facilities for accepting input from a user. We can think of the standard
input as our keyboard. A simple example accepting one integer number and printing it
outis:

#include <iostream>

int main()

{

std::cout << "Please enter a number and press enter: ";
int x = 0;

std::cin >> x;

std::cout << "You entered: " << x;

The std: :cinis the standard input stream, and it uses the >> operator to extract
what has been read into our variable. The std: :cin >> x; statement means: read from
a standard input into a x variable. The cin object resides inside the std namespace.

So, std: :cout << isused for outputting data (to a screen) and std::cin >> is used for
inputting the data (from the keyboard).

25

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_8

https://doi.org/10.1007/978-1-4842-6047-0_8#DOI

CHAPTER 8 STANDARD INPUT

We can accept multiple values from the standard input by separating them with
multiple >> operators:

#include <iostream>

int main()
{
std::cout << "Please enter two numbers separated by a space and press
enter: ";
int x = 0;
int y = 0;

std::cin >> x >> y;

std::cout << "You entered: " << x << " and " << y;

We can accept values of different types:

#include <iostream>

int main()

{
std::cout << "Please enter a character, an integer and a double: ";
char c = 0;
int x = 0;

double d = 0.0;
std::cin >> ¢ > x >> d;
std::cout << "You entered: " << c << ", " << x << " and " << d;

26

CHAPTER 9

Exercises

9.1 Standard Input

Write a program that accepts an integer number from the standard input and then print
that number.

#include <iostream>

int main()

{

std::cout << "Please enter a number: ";
int x;

std::cin >»> x;

std::cout << "You entered: " << x;

9.2 Two Inputs

Write a program that accepts two integer numbers from the standard input and then
prints them.

#include <iostream>

int main()

{
std::cout << "Please enter two integer numbers: ";
int x;
int y;

27
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_9

https://doi.org/10.1007/978-1-4842-6047-0_9#DOI

CHAPTER9 EXERCISES

std::cin >> x >> y;

std::cout << "You entered: " << x << " and " << y;

9.3 Multiple Inputs

Write a program that accepts three values of type char, int, and double respectfully from
the standard input. Print out the values afterward.

#include <iostream>

int main()
{
std::cout << "Please enter a char, an int and a double: ";
char c;
int x;
double d;

std::cin >> ¢ >> x >> d;

std::cout << "You entered: " << c << ", "< x < ", and " << d;

9.4 Inputs and Arithmetic Operations

Write a program that accepts two int numbers, sums them up, and assigns a result to a
third integer. Print out the result afterward.

#include <iostream>

int main()

{
std::cout << "Please enter two integer numbers: ";
int x;
int y;

std::cin >> x >> y;
int z = x +y;

std::cout << "The result is: " << z;

28

CHAPTER9 EXERCISES

9.5 Post-Increment and Compound Assignment

Write a program that defines an int variable called x with a value of 123, post-
increments that value in the next statement, and adds the value of 20 in the following
statement using the compound assignment operator. Print out the value afterward.

#include <iostream>

int main()

{
int x = 123;
X++;
X += 20;

std::cout << "The result is: " << x;

9.6 Integral and Floating-point Division

Write a program that divides numbers 9 and 2 and assigns aresult to an int and a
double variable. Then modify one of the operands, so that is of type double and observe
the different outcomes of a floating-point division where at least one of the operands is
of type double. Print out the values afterward.

#include <iostream>

int main()

{
int x =9/ 2;
std::cout << "The result is:
double d = 9 / 2;
std::cout << "The result is:
d =9.0/2;
std::cout << "The result is:

<< X << '\n';

<< d << '\n';

<< d;

29

CHAPTER 10

Arrays

Arrays are sequences of objects of the same type. We can declare an array of type
char as follows:

int main()

{

char arr[5];

This example declares an array of 5 characters. To declare an array of type int which
holds five elements, we would use:

int main()
{
int arr[5];
}
To initialize an array, we can use the initialization list {}:
int main()
{
int arr[5] = { 10, 20, 30, 40, 50 };
}

Initialization list in our example { 10, 20, 30, 40, 50 }is marked with braces
and elements separated by commas. This initialization list initializes our array with the
values in the list. The first array element now has a value of 10; the second array element
now has a value of 20 etc. The last (fifth) array element now has a value of 50.

31
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_10

https://doi.org/10.1007/978-1-4842-6047-0_10#DOI

CHAPTER 10 ARRAYS

We can access individual array elements through a subscript [] operator and an
index. The first array element has an index of 0, and we access it via:

int main()

{
int arr[5] = { 10, 20, 30, 40, 50 };
arr[0] = 100; // change the value of the first array element

}

Since the indexing starts from 0 and not 1, the last array element has an index of 4:
int main()
{

int arr[5] = { 10, 20, 30, 40, 50 };
arr[4] = 500; // change the value of the last array element

So, when declaring an array, we write how many elements we want to declare, but
when accessing array elements, we need to remember that the indexing starts from 0 and
ends with the number-of-elements - 1. That being said, in modern C++, we should prefer
the std: :array and std: :vector containers to raw arrays. More on this in later chapters.

32

CHAPTER 11

Pointers

Objects reside in memory. And so far, we have learned how to access and manipulate
objects through variables. Another way to access an object in memory is through
pointers. Each object in memory has its type and an address. This allows us to access the
object through a pointer. So, pointers are types that can hold the address of a particular
object. For illustrative purposes only, we will declare an unutilized pointer that can point
to an int object:

int main()
{
int* p;
}
We say that p is of type int*.
To declare a pointer that points to a char (object) we declare a pointer of type char*:
int main()
{
char* p;
}

In our first example, we declared a pointer of type int*. To make it point to an
existing int object in memory, we use the address-of operator & We say that p points to x.

int main()
{
int x = 123;
int* p = 8&x;
}

33
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_11

https://doi.org/10.1007/978-1-4842-6047-0_11#DOI

CHAPTER 11 POINTERS
In our second example we declared a pointer of type char* and similarly, we have:

int main()

{
char c = 'a’';
char* p = &c;

}

To initialize a pointer that does not point to any object we can use the nullptr literal:
int main()
{

char* p = nullptr;

Itis said that p is now a null pointer.

Pointers are variables/objects, just like any other type of object. Their value is
the address of an object, a memory location where the object is stored. To access a
value stored in an object pointed to by a pointer, we need to dereference a pointer.
Dereferencing is done by prepending a pointer (variable) name with a dereferencing

operator *:

int main()

{

char ¢ = 'a';
char* p = &c;
char d = *p;

To print out the value of the dereferenced pointer, we can use:
#include <iostream>

int main()
{
char ¢ = 'a';
char* p = &c;
std::cout << "The value of the dereferenced pointer is: " << *p;

34

CHAPTER 11 POINTERS

Now, the value of the dereferenced pointer *p is simply 'a".
Similarly, for an integer pointer we would have:

#include <iostream>

int main()

{
int x = 123;
int* p = 8&x;

std::cout << "The value of the dereferenced pointer is: " << *p;

And the value of the dereferenced pointer, in this case, would be 123.
We can change the value of the pointed-to object through a dereferenced pointer:

#include <iostream>

int main()

{
int x = 123;
int* p = 8&x;

*p = 456; // change the value of pointed-to object

std::cout << "The value of x is: " << x;

We will talk about pointers, and especially about smart pointers when we cover the
concepts such as dynamic memory allocation and lifetime of an object.

35

CHAPTER 12

References

Another (somewhat) similar concept is a reference type. A reference type is an alias to an
existing object in memory. References must be initialized. We describe a reference type
as type name followed by an ampersand &. Example:

int main()
{
int x = 123;
int& y = x;
}

Now we have two different names that refer to the same int object in memory. If we
assign a different value to either one of them, they both change as we have one object in
memory, but we are using two different names:

int main()
{
int x = 123;
int& y = x;
X = 456;
// both x and y now hold the value of 456
y = 789;

// both x and y now hold the value of 789

37
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_12

https://doi.org/10.1007/978-1-4842-6047-0_12#DOI

CHAPTER 12 REFERENCES

Another concept is a const-reference, which is a read-only alias to some object.
Example:

int main()
{
int x = 123;
const int& y = x; // const reference
X = 456;
// both x and y now hold the value of 456

We will discuss references and const-reference in more detail when we learn about
functions and function parameters. For now, let us assume they are an alias, a different
name for an existing object.

It is important not to confuse the use of * in a pointer type declaration such as int*
p; and the use of * when dereferencing a pointer such as *p = 456. Although the same
star character, it is used in two different contexts.

It is important not to confuse the use of ampersand & in reference type declaration
such as int& y = x; and the use of ampersand as an address-of operator int* p =
&x.s The same literal symbol is used for two different things.

38

CHAPTER 13

Introduction to Strings

Earlier, we mentioned printing out a string literal such as "Hello World." to standard
output via:

std::cout << "Hello World.";

We can store these literals inside std: : string type. C++ standard library offers a
compound type called string or rather std: :string as it is part of the std namespace.
We use it for storing and manipulating strings.

13.1 Defining a String

To use the std: : string type, we need to include the <string> header in our program:
#include <string>

int main()

{
std::string s = "Hello World.";

To print out this string on the standard output we use:

#include <iostream>
#include <string>

int main()

{
std::string s = "Hello World.";

std::cout << s;

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_13

https://doi.org/10.1007/978-1-4842-6047-0_13#DOI

CHAPTER 13 INTRODUCTION TO STRINGS

13.2 Concatenating Strings

We can add a string literal to our string using the compound operator +=:

#include <iostream>
#include <string>

int main()

{
std::string s = "Hello ";
s += "World.";
std::cout << s;

We can add a character to our string using the += operator:

#include <iostream>
#include <string>

int main()

{
std::string s = "Hello";
char c = '!'";
S += C;

std::cout << s;

We can add another string to our string using the + operator. We say we concatenate
the strings:

#include <iostream>
#include <string>

int main()

{
std::string s1 = "Hello ";
std::string s2 = "World.";
std::string s3 = s1 + s2;

std::cout << s3;

40

CHAPTER 13 INTRODUCTION TO STRINGS

Type string is the so-called class-template. It is implemented using templates, which
we will discuss later on. For now, we will just mention that this string class offers some
functionality (member functions) for working with strings.

13.3 Accessing Characters

Individual characters of a string can be accessed through a subscript operator [] or via a
member function .at(index). The index starts at 0. Example:

#include <iostream>
#include <string>

int main()

{
std::string s = "Hello World.";
char c1 = s[0]; // 'H'

char c2 = s.at(0); // 'H';
char c3 = s[6]; /W'
char c4 = s.at(6); /7 W'

std::cout << "First character: " << c1 << ", sixth character: " << c3;

13.4 Comparing Strings

A string can be compared to string literals and other strings using the equality ==
operator. Comparing a string to a string literal:

#include <iostream>
#include <string>

int main()

{

std::string s1 = "Hello";
if (s1 == "Hello")

41

CHAPTER 13 INTRODUCTION TO STRINGS

{
std::cout << "The string is equal to \"Hello\"";

Comparing a string to another string is done using the equality operator ==:

#include <iostream>
#include <string>

int main()
{
std::string s1 = "Hello";
std::string s2 = "World.";
if (s1 == s2)
{
std::cout << "The strings are equal.";
}
else
{
std::cout << "The strings are not equal."”;
}

13.5 String Input

Preferred way of accepting a string from the standard input is via the std
function which takes std: : cin and our string as parameters:

#include <iostream>
#include <string>

int main()

{
std::string s;
std::cout << "Please enter a string: ";

42

::getline

CHAPTER 13 INTRODUCTION TO STRINGS

std::getline(std::cin, s);
std::cout << "You entered: " << s;

We use the std: :getline because our string can contain white spaces. And if we
used the std: :cin function alone, it would accept only a part of the string.

The std: :getline function has the following signature: std: :getline(read from,
into); The function reads a line of text from the standard input (std: :cin) into a string
(s) variable.

Arule of thumb: if we need to use the std: : string type, include the <string>
header explicitly.

13.6 A Pointer to a String

A string has a member function .c_str() which returns a pointer to its first element. It is
also said it returns a pointer to a null-terminated character array our string is made of:

#include <iostream>
#include <string>

int main()

{
std::string s = "Hello World.";

std::cout << s.c_str();

This member function is of type const char* and is useful when we want to pass our
std: :string variable to a function accepting a const char* parameter.

13.7 Substrings

To create a substring from a string, we use the .substr() member function. The function
returns a substring that starts at a certain position in the main string and is of a certain
length. The signature of the function is: .substring(starting_position, length). Example:

#include <iostream>
#include <string>

43

CHAPTER 13 INTRODUCTION TO STRINGS

int main()
{
std::string s = "Hello World.";
std::string mysubstring = s.substr(6, 5);
<< mysubstring;

std::cout << "The substring value is:

In this example, we have the main string that holds the value of “Hello World.” Then
we create a substring that only has the “World” value. The substring starts from the sixth
character of the main string, and its length is five characters.

13.8 Finding a Substring

To find a substring in a string, we use the .find() member function. It searches for the
substring in a string. If the substring is found, the function returns the position of the
first found substring. This position is the position of a character where the substring
starts in the main string. If the substring is not found, the function returns a value that is
std::string::npos. The function itself is of type std::string::size_type.

To find a substring “Hello” inside the “This is a Hello World string” string, we write:

#include <iostream>
#include <string>

int main()

{
std::string s = "This is a Hello World string.";
std::string stringtofind = "Hello";
std::string::size type found = s.find(stringtofind);
if (found != std::string::npos)

{
std::cout << "Substring found at position: " << found;
}
else
{
std::cout << "The substring is not found.";
}

44

CHAPTER 13 INTRODUCTION TO STRINGS

Here we have the main string and a substring we want to find. We supply the
substring to the .find() function as an argument. We store the function’s return value
to a variable found. Then we check the value of this variable. If the value is not equal to
std::string::npos, the substring was found. We print the message and the position of a

character in the main string, where our substring was found

45

CHAPTER 14

Automatic Type Deduction

We can automatically deduce the type of an object using the auto specifier. The auto
specifier deduces the type of an object based on the object’s initializer type.
Example:

auto c = 'a’; // char type

This example deduces c to be of type char as the initializer 'a’ is of type char.
Similarly, we can have:

auto x = 123; // int type

Here, the compiler deduces the x to be of type int because an integer literal 123 is of

type int.
The type can also be deduced based on the type of expression:

auto d = 123.456 / 789.10; // double

This example deduces d to be of type double as the type of the entire 123.456 /
789.10 expression is double.
We can use auto as part of the reference type:

int main()
{
int x = 123;
autod y = x; // y is of int& type

47
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_14

https://doi.org/10.1007/978-1-4842-6047-0_14#DOI

CHAPTER 14 AUTOMATIC TYPE DEDUCTION
or as part of the constant type:

int main()

{

const auto x = 123; // x is of const int type

We use the auto specifier when the type (name) is hard to deduce manually or
cumbersome to type due to the length.

48

CHAPTER 15

Exercises

15.1 Array Definition

Write a program that defines and initializes an array of five doubles. Change and print
the values of the first and last array elements.

#include <iostream>

int main()
{
double arr[5] = { 1.23, 2.45, 8.52, 6.3, 10.15 };
arr[0] = 2.56;
arr[4] = 3.14;
std::cout << "The first array element is:
std::cout << "The last array element is:

<< arr[0] << "\n';
<< arr[4] << "\n';

15.2 Pointer to an Object

Write a program that defines an object of type double. Define a pointer that points to that
object. Print the value of the pointed-to object by dereferencing a pointer.

#include <iostream>

int main()

{
double d = 3.14;
double* p = &d;
std::cout << "The value of the pointed-to object is:

<< *p;

49
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_15

https://doi.org/10.1007/978-1-4842-6047-0_15#DOI

CHAPTER 15 EXERCISES

15.3 Reference Type

Write a program that defines an object of type double called mydouble. Define an object

of reference type called myreference and initialize it with mydouble. Change the value of

myreference. Print the object value using both the reference and the original variable.

Change the value of mydouble. Print the value of both objects.

#include <iostream>

int main()
{
double mydouble = 3.14;
doubled myreference = mydouble;

myreference = 6.28;
std::cout << "The values are:
<< "\n';

<< mydouble <<

mydouble = 9.45;
std::cout << "The values are:
<< "\n';

<< mydouble <«

15.4 Strings

and " << myreference

and " << myreference

Write a program that defines two strings. Join them together and assign the result to a

third-string. Print out the value of the resulting string.

#include <iostream>
#include <string>

int main()
{
std::string s1 = "Hello";
std::string s2 = " World!";
std::string s3 = s1 + s2;
std::cout << "The resulting string is:

<< S3;

50

CHAPTER 15 EXERCISES

15.5 Strings from Standard Input

Write a program that accepts the first and the last name from the standard input using
the std: :getline function. Store the input in a single string called fullname. Print out
the string.

#include <iostream>
#include <string>

int main()

{
std::string fullname;

std::cout << "Please enter the first and the last name: ";
std::getline(std::cin, fullname);

<< fullname;

std::cout << "Your name is:

15.6 Creating a Substring

Write a program that creates two substrings from the main string. The main string is
made up of first and last names and is equal to “John Doe.” The first substring is the first
name. The second substring is the last name. Print the main string and two substrings
afterward.

#include <iostream>
#include <iostream>

int main()

{
std::string fullname = "John Doe";
std::string firstname = fullname.substr(0, 4);
std::string lastname = fullname.substr(5, 3);
std::cout << "The full name is: " << fullname << '\n';
std::cout << "The first name is: " << firstname << '\n';

std::cout << "The last name is: " << lastname << '\n';

51

CHAPTER 15 EXERCISES

15.7 Finding a single Character

Write a program that defines the main string with a value of “Hello C++ World.” and
checks if a single character ‘C’ is found in the main string.

#include <iostream>
#include <string>

int main()
{
std::string s = "Hello C++ World.";
char ¢ = 'C';
auto characterfound = s.find(c);
if (characterfound != std::string::npos)

{
std::cout << "Character found at position: " << characterfound <«
l\nl;

}

else

{
std::cout << "Character was not found." << '\n';

}

15.8 Finding a Substring

Write a program that defines the main string with a value of “Hello C++ World.” and
checks if a substring “C++” is found in the main string.

#include <iostream>
#include <string>

int main()

{
std::string s = "Hello C++ World.";
std::string mysubstring = "C++";
auto mysubstringfound = s.find(mysubstring);

52

CHAPTER 15 EXERCISES

if (mysubstringfound != std::string::npos)

{
std::cout << "Substring found at position: " << mysubstringfound <«
l\nl;

}

else

{
std::cout << "Substring was not found." << '\n';

}

Both the ‘C’ character and the “C++” substring start at the same position in our main
string. That is why both examples yield a value of 6.

Instead of typing the lengthy std::string::size_type type for our characterfound
and mysubstringfound variables, we used the auto specifier to deduce the type for us
automatically.

15.9 Automatic Type Deduction

Write a program that automatically deduces the type for char, int, and double objects
based on the initializer used. Print out the values afterward.

#include <iostream>

int main()

{
auto c = 'a';
auto x = 123;
auto d = 3.14;

std::cout << "The type of ¢ is deduced as char, the value is:
<< € << '\n';
std::cout << "The type of x is deduced as int, the value is:
<< X << '\n';

std::cout << "The type of d is deduced as double, the value is:
<< d << '"\n';

53

CHAPTER 16

Statements

Earlier, we described statements as commands, pieces of code that are executed in some
order. Expressions ending with a semicolon are statements. C++ language comes with
some built-in statements. We will start with the selection statements.

16.1 Selection Statements

Selection statements allow us to check to use conditions, and based on that condition,
execute the appropriate statements.

16.1.1 if Statement

When we want to execute a statement or more statements based on some condition, we
use the if-statement. if-statement has the format of:

if (condition) statement
The statement executes only if the condition is true. Example:
#include <iostream>

int main()
{
bool b = true;
if (b) std::cout << "The condition is true.";

55
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_16

https://doi.org/10.1007/978-1-4842-6047-0_16#DOI

CHAPTER 16 ~ STATEMENTS
To execute multiple statements if the condition is true, we use the block scope { }:

#include <iostream>

int main()

{
bool b = true;
if (b)
{

std::cout << "This is a first statement.";
std::cout << "\nThis is a second statement.";

Another form is the if-else statement:
if (condition) statement else statement

If the condition is true, the first statement executes, otherwise the second statement
after the else keyword executes. Example:

#include <iostream>

int m.ain()

{
bool b = false;
if (b) std::cout << "The condition is true.";
else std::cout << "The condition is false.";
}

To execute multiple statements in either if or else branch, we use brace-enclosed
blocks {}:

#include <iostream>

int main()

{
bool b = false;

if (b)

56

CHAPTER 16 ~ STATEMENTS

{
std::cout << "The condition is true.";
std::cout << "\nThis is the second statement.";
}
else
{
std::cout << "The condition is false.";
std::cout << "\nThis is the second statement.";
}

16.1.2 Conditional Expression

A simple if statement can also be written as a conditional expression. The following is a
simple if-statement:

#include <iostream>

int main()

{

bool mycondition = true;
int x = 0;

if (mycondition)

{

X = 1;
}
else
{

X = 0;
}

std::cout << "The value of x is: " << x << '"\n';

57

CHAPTER 16~ STATEMENTS
To rewrite the previous example using a conditional expression, we write:
#include <iostream>

int main()
{
bool mycondition = true;
int x = 0;
x = (mycondition) ? 1 : 0;
std::cout << "The value of x is:

"< x << "\n';
The conditional expression is of the following syntax:
(condition) ? expression 1 : expression 2

The conditional expression uses the unary ? operator, which checks the value of
the condition. If the condition is true, it returns expression_1. If the condition is false, it
returns expression_2. It can be thought of as a way of replacing a simple if-else-statement
with an oneliner.

16.1.3 The Logical Operators

The logical operators perform logical and, or, and negation operations on their operands.
The first is the &8 operator, which is a logical AND operator. The result of a logical AND
condition with two operands is true if both operands are true. Example:

#include <iostream>

int main()

{
bool a = true;
bool b = true;
if (a && b)
{

std::cout << "The entire condition is true.";

58

CHAPTER 16 ~ STATEMENTS

else

{

std::cout << "The entire condition is false.";

The next operator is | | , which is a logical OR operator. The result of a logical OR
expression is always true except when both operands are false. Example:

#include <iostream>

int main()

{

bool a = false;
bool b = false;

if (a || b)
{

std::cout << "The entire condition is true.";
}
else
{

std::cout << "The entire condition is false.";
}

The next logical operator is the negation operator represented by a !. It negates the
value of its only right-hand-side operand. It turns the value of true to false and vice-
versa. Example:

#include <iostream>

int main()

{
bool a = true;
if ('a)
{

std::cout << "The condition is true.";

59

CHAPTER 16 ~ STATEMENTS

else

{

std::cout << "The condition is false.";

}

16.1.3.1 Comparison operators

Comparison operators allow us to compare the values of operands. Comparison
operators are less than <, less than or equal to <=, greater than >, greater than or equal to
>=, equal to ==, not equal to !=.

We can use the equality operator == to check if the values of operands are equal:

#include <iostream>

int main()

{
int x = 5;
if (x == 5)
{

std::cout << "The value of x is equal to 5.";

Use-case for other comparison operators:

#include <iostream>

int main()

{
int x = 10;
if (x > 5)
{

std::cout << "The value of x is greater than 5.";

60

CHAPTER 16 ~ STATEMENTS

if (x »= 10)
{
std::cout << "\nThe value of x is greater than or equal to 10.";
}
if (x = 20)
{
std::cout << "\nThe value of x is not equal to 20.";
}
if (x == 20)
{
std::cout << "\nThe value of x is equal to 20.";
}

Now, we can use both logical and comparison operators in the same condition:

#include <iostream>

int main()

{
int x = 10;
if (x > 5 && x < 15)
{

std::cout << "The value of x is greater than 5 and less than 15.";

}

bool b = true;
if (x >5 & b)
{

std::cout << "\nThe value of x is greater than 5 and b is true.";

61

CHAPTER 16 ~ STATEMENTS

Any literal, object or an expression implicitly convertible to true or false can be

used as a condition:

#include <iostream>

int main()

{

if (1) // literal 1 is convertible to true

{

std::cout << "The condition is true.";

If we used an integer variable with a value other than 0, the result would be true:

#include <iostream>

int main()

{

int x = 10; // if x was 0, the condition would be false

if (x)
{

std::cout << "The condition is true.";
}
else
{

std::cout << "The condition is false.";
}

It is good practice to use the code blocks {} inside the if-statement branches, even if

there is only one statement to be executed.

62

CHAPTER 16 ~ STATEMENTS

16.1.4 switch Statement

The switch statement is similar to having multiple if-statements. It checks the value of
the condition (which must be integral or enum value) and, based on that value, executes
the code inside one of a given set of case labels. If none of the case statements is equal to
the condition, the code inside the default label is executed. General syntax:

switch (condition)

{

case valuel:
statement(s);
break;

case value2etc:
statement(s);
break;

default:
statement(s);
break;

}
A simple example that checks for the value of integer x and executes the appropriate

case label:

#include <iostream>

int main()
{
int x = 3;
switch (x)
{
case 1:
std::cout << "The value of x is 1.";
break;
case 2:

std::cout << "The value of x is 2.";
break;

63

CHAPTER 16 ~ STATEMENTS

case 3:
std::cout << "The value of x is 3."; // this statement will be
// executed
break;
default:
std::cout << "The value is none of the above.";
break;

The break statement exits the switch statement. If there were no break statements,
the code would fall-through to the next case statement and execute the code there
regardless of the x value. We need to put breaks in all the case: and default: switches.

16.2 lteration Statements

If we need some code to execute multiple times, we use the iteration statements.
Iteration statements are statements that execute some code in a loop. The code in the
loop executes 0, 1, or multiple times, depending on the statement and the condition.

16.2.1 for Statement

The for-statement executes code in a loop. The execution depends on the condition.
General syntax of the for-statement is: for (init statement; condition; iteration_
expression) { // execute some code }. A simple example:

#include <iostream>

int ma.in()

{
for (int i = 0; i < 10; i++)
{
std::cout << "The counter is: " << i << '"\n';
}
}

64

CHAPTER 16 ~ STATEMENTS

This example executes the code inside the for loop ten times. The init_statement
isint i = 0; We initialize the counter to 0. The conditionis: 1 < 10; and the
iteration_expression is i++;

A simple explanation:

Initialize a counter to 0, check if the counter is less than 10, execute the std: : cout

<< "The counter is: " << i << '\n'; statement inside the code-block and
increment the counter i by 1. So, the code inside the code block will continue executing
aslongasthei < 10 condition is true. Once the counter becomes 10, the condition is
no longer true, and the for-loop terminates.

If we wanted something to execute 20 times, we would set a different condition:

#include <iostream>

int main()
{
for (int i = 0; i < 20; i++)
{
std::cout << "The counter is: " << i << '\n';
}

16.2.2 while Statement

The while-statement executes code until the condition becomes false. The syntax for
the while-loop is:

while (condition) { // execute some code }

As long as the condition is true, the while-loop will continue executing the code.
When the condition becomes false, the while loop terminates. Example:

#include <iostream>

int main()

{
int x = 0;
while (x < 10)

65

CHAPTER 16 ~ STATEMENTS

{

std::cout << "The value of x is: " << x << '\n';

X++;

The code in this example executes ten times. After each iteration, the condition

X < 10is evaluated, and as long as it is equal to true, the code in the code block will

keep executing. Once the condition becomes false, the while loop terminates. In this

example, we increment the value of x in each iteration. And once it becomes 10, the loop

terminates.

16.2.3 do Statement

The do-statement is similar to while-statement, but the condition comes after the body.

The code inside the do-statement is guaranteed to execute at least once. The syntax is:

do { // execute some code } while (condition);

If we used the previous example, the code would be:

#include <iostream>

int main()

{
int x = 0;
do
{

std::cout << "The value of x is: " << x << '"\n';
X++;

} while (x < 10);

The do-statement is rarely used and better avoided.
Please note that there is also an iteration statement called the range-for statement.

We will talk about it when we get to containers later on.

66

CHAPTER 17

Constants

When we want to have a read-only object or promise not to change the value of some
object in the current scope, we make it a constant. C++ uses the const type qualifier to
mark the object as a read-only. We say that our object is now immutable. To define an
integer constant with a value of 5, for example, we would write:

int main()
{
const int n = 5;
}
We can now use that constant in places such as an array size:
int main()
{
const int n = 5;
int arr[n] = { 10, 20, 30, 40, 50 };
}
Constants are not modifiable, attempt to do so results in a compile-time error:
int main()
{
const int n = 5;
n++; // error, can’t modify a read-only object
}

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_17

https://doi.org/10.1007/978-1-4842-6047-0_17#DOI

CHAPTER 17 CONSTANTS

An object declared const cannot be assigned to; it needs to be initialized. So, we
can’t have:

int main()

{
const int n; // error, no initializer
const int m = 123; // OK

Worth noticing is that const modifies an entire type, not just the object. So, const
int and int are two different types. The first one is said to be const-qualified.

Another const qualifier is the constant expression named constexpr. Itis a constant
that can be evaluated at compile-time. Initializers for constant expressions can be
evaluated at compile-time and must themselves be constant expressions. Example:

int main()
{
constexpr int n = 123; //0K, 123 is a compile-time constant
// expression
constexpr double d = 456.78; //0K, 456.78 is a compile-time constant
// expression

constexpr double d2 = d; //0K, d is a constant expression
int x = 123;
constexpr int n2 = x; //compile-time error

// the value of x is not known during
// compile-time

68

CHAPTER 18

Exercises

18.1 A Simple if-statement

Write a program that defines a boolean variable whose value is false. Use the variable as
the condition inside the if-statement.

#include <iostream>

int main()

{
bool mycondition = false;
if (mycondition)

{
std::cout << "The condition is true." << '\n';
}
else
{
std::cout << "The condition is not true." << '\n';
}

18.2 Logical Operators

Write a program that defines a variable of type int. Assign the value of 256 to the variable.
Check if the value of this variable is greater than 100 and less than 300. Then, define a
boolean variable with a value of true. Check if the int number is greater than 100, or the
value of a bool variable is true. Then define a second bool variable whose value will be
the negation of the first bool variable.

69
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_18

https://doi.org/10.1007/978-1-4842-6047-0_18#DOI

CHAPTER 18 EXERCISES

#include <iostream>

int main()
{
int x = 256;
if (x > 100 && x < 300)
{
std::cout << "The value is greater than 100 and less than 300."
<< '\n';
}
else
{
std::cout << "The value is not inside the (100 .. 300) range."
<< '"\n';
}

bool mycondition = true;
if (x > 100 || mycondition)

{
std::cout << "Either x is greater than 100 or the bool variable is
true." << '\n';

}

else

{
std::cout << "x is not greater than 100 and the bool variable is
false." << '"\n';

}

bool mysecondcondition = !mycondition;

18.3 The switch-statement

Write a program that defines a simple integer variable with a value of 3. Use the switch
statement to check if the value is inside the [1..4] range.

70

CHAPTER 18 EXERCISES

#include <iostream>

int main()
{

int x = 3;

switch (x)

{

case 1:
std::cout << "The value is equal to 1." << '\n';
break;

case 2:
std::cout << "The value is equal to 2." << '\n';
break;

case 3:
std::cout << "The value is equal to 3." << '\n';
break;

case 4:
std::cout << "The value is equal to 4." << '"\n';
break;

default:
std::cout << "The value is not inside the [1..4] range." << '\n';
break;

18.4 The for-loop

Write a program that uses a for-loop to print out the counter 15 times. The counter starts
at0.

#include <iostream>

int main()

{

for (int i = 0; i < 15; i++)

71

CHAPTER 18 EXERCISES

{

std::cout << "The counter is now: " << i << '\n’;

18.5 Array and the for-loop

Write a program that defines an array of 5 integers. Use the for-loop to print the array
elements and their indexes.

#include <iostream>

int main()
{
int arr[s5] = { 3, 20, 8, 15, 10 };
for (int i = 0; i < 5; i++)
{
std::cout << "arr[" << 1 << "] = " << arr[i] << "\n';
}
}

Explanation: here, we defined an array of 5 elements. Arrays are indexed starting
from zero. So the first array element 3 has an index of 0. The last array element of 10 has
an index of 4. We used the for-loop to iterate over array elements and print both their
indexes and values. Our for-loop starts with a counter of 0 and ends with a counter of 4.

18.6 The const Type Qualifier

Write a program that defines three objects of type const int, const double and const
std::string, respectively. Define a fourth const int object and initialize it with a value of
the first const int object. Print out the values of all the variables.

72

CHAPTER 18 EXERCISES
#include <iostream>

int main()
{
const int c1 = 123;
const double d = 456.789;
const std::string s = "Hello World!";
const int c2 = c1;

<< ¢l << "\n';
<< d << '\n';

std::cout << "Constant integer c1 value:
std::cout << "Constant double d value: "
std::cout << "Constant std::string s value:
std::cout << "Constant integer c2 value: "

<< s << "\n';
<< €2 << "\n';

73

CHAPTER 19

Functions

19.1 Introduction

We can break our C++ code into smaller chunks called functions. A function has a return
type, a name, a list of parameters in a declaration, and an additional function body in a
definition. A simple function definition is:

type function_name(arguments) {
statement;
statement;
return something;

19.2 Function Declaration

To declare a function, we need to specify a return type, a name, and a list of parameters,
if any. To declare a function called myfunction of type void that accepts no parameters,

we write:
void myvoidfunction();

int main()

{
}

75
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_19

https://doi.org/10.1007/978-1-4842-6047-0_19#DOI

CHAPTER 19 FUNCTIONS

Type void is a type that represents nothing, an empty set of values. To declare a
function of type int accepting one parameter, we can write:

int mysquarednumber (int x);

int main()

{
}

To declare a function of type int, which accepts, for example, two int parameters,
we can write:

int mysum(int x, int y);

int main()

{
}

In function declaration only, we can omit the parameter names, but we need to
specify their types:
int mysum(int, int);

int main()

{
}

19.3 Function Definition

To be called in a program, a function must be defined first. A function definition has
everything a function declaration has, plus the body of a function. Those are a return type,
a function name, a list of function parameters, if any, and a function body. Example:

#include <iostream>
void myfunction(); // function declaration

int main()

{
}

76

CHAPTER 19 FUNCTIONS

// function definition
void myfunction() {
std::cout << "Hello World from a function.";

To define a function that accepts one parameter, we can write:
int mysquarednumber(int x); // function declaration

int main()

{
}

// function definition
int mysquarednumber(int x) {
return x * x;

To define a function that accepts two parameters, we can write:
int mysquarednumber(int x); // function declaration

int main()

{
}

// function definition
int mysquarednumber(int x) {
return x * x;

To call this function in our program, we specify the function name followed by empty
parentheses as the function has no parameters:

#include <iostream>

void myfunction(); // function declaration

77

CHAPTER 19 FUNCTIONS

int main()

{

myfunction(); // a call to a function

}

// function definition
void myfunction() {
std::cout << "Hello World from a function.";

To call a function that accepts one parameter, we can use:
#include <iostream>
int mysquarednumber(int x); // function declaration

int main()

{
int myresult = mysquarednumber(2); // a call to the function
std::cout << "Number 2 squared is: " << myresult;

}

// function definition
int mysquarednumber(int x) {
return x * x;

We called a function mysquarednumber by its name and supplied a value of 2 in place
of function parameter and assigned the result of a function to our myresult variable.
What we pass into a function is often referred to as a function argument.

To call a function that accepts two or more arguments, we use the function name
followed by an opening parenthesis, followed by a list of arguments separated by
commas and finally closing parentheses. Example:

#include <iostream>

int mysum(int x, int y);

78

CHAPTER 19 FUNCTIONS

int main()

{
int myresult = mysum(5, 10);
std::cout << "The sum of 5 and 10 is:

<< myresult;

}

int mysum(int x, int y) {
return x +vy;

19.4 Return Statement

Functions are of a certain type, also referred to as a refurn type, and they must return a
value. The value returned is specified by a return-statement. Functions of type void do
not need a return statement. Example:

#include <iostream>
void voidfn();

int main()

{
voidfn();

}

void voidfn()

{

std::cout << "This is void function and needs no return.";

Functions of other types (except function main) need a return-statement:
#include <iostream>
int intfn();

int main()

{

std::cout << "The value of a function is: " << intfn();

79

CHAPTER 19 FUNCTIONS

int intfn()
{

return 42; // return statement

A function can have multiple return-statements if required. Once any of the return-
statement is executed, the function stops, and the rest of the code in the function is
ignored:

#include <iostream>

int multiplereturns(int x);

int main()
{

std::cout << "The value of a function is: " << multiplereturns(25);
}
int multiplereturns(int x)
{

if (x »>= 42)

{

return x;

}

return O;
}

19.5 Passing Arguments

There are different ways of passing arguments to a function. Here, we will describe the
three most used.

19.5.1 Passing by Value/Copy

When we pass an argument to a function, a copy of that argument is made and passed to
the function if the function parameter type is not a reference. This means the value of the
original argument does not change. A copy of the argument is made. Example:

80

CHAPTER 19 FUNCTIONS
#include <iostream>

void myfunction(int byvalue)

{
std::cout << "Argument passed by value: " << byvalue;
}
int main()
{
myfunction(123);
}

This is known as passing an argument by value or passing an argument by copy.

19.5.2 Passing by Reference

When a function parameter type is a reference type, then the actual argument is passed
to the function. The function can modify the value of the argument. Example:

#include <iostream>

void myfunction(int& byreference)

{
byreference++; // we can modify the value of the argument
std::cout << "Argument passed by reference: " << byreference;
}
int main()
{
int x = 123;
myfunction(x);
}

Here we passed an argument of a reference type int8g, so the function now works
with the actual argument and can change its value. When passing by reference, we
need to pass the variable itself; we can’t pass in a literal representing a value. Passing by
reference is best avoided.

81

CHAPTER 19 FUNCTIONS

19.5.3 Passing by Const Reference

What is preferred is passing an argument by const reference, also referred to as a reference
to const. It can be more efficient to pass an argument by reference, but to ensure it is not
changed, we make it of const reference type. Example:

#include <iostream>
#include <string>

void myfunction(const std::stringd byconstreference)

{
std::cout << "Arguments passed by const reference: " <<
byconstreference;
}
int main()
{
std::string s = "Hello World!";
myfunction(s);
}

We use passing by const reference for efficiency reasons, and the const modifier
ensures the value of an argument will not be changed.

In the last three examples, we omitted the function declarations and only supplied
the function definitions. Although a function definition is also a declaration, you should
provide both the declaration and a definition as in:

#include <iostream>
#include <string>

void myfunction(const std::stringd byconstreference);

int main()

{
std::string s = "Hello World!";

myfunction(s);

82

CHAPTER 19 FUNCTIONS

void myfunction(const std::stringd byconstreference)

{

std::cout << "Arguments passed by const reference: " <<
byconstreference;

19.6 Function Overloading

We can have multiple functions with the same name but with different parameter types.
This is called function overloading. A simple explanation: when the function names are
the same, but the parameter types differ, then we have overloaded functions. Example of
a function overload declarations:

void myprint(char param);
void myprint(int param);
void myprint(double param);

Then we implement function definitions and call each one:
#include <iostream>

void myprint(char param);
void myprint(int param);
void myprint(double param);

int main()

{
myprint('c'); // calling char overload
myprint(123); // calling integer overload
myprint(456.789); // calling double overload

}

void myprint(char param)

{
std::cout << "Printing a character: " << param << '\n';

}

83

CHAPTER 19 FUNCTIONS

void myprint(int param)

{
std::cout << "Printing an integer: " << param << '\n';
}
void myprint(double param)
{
std::cout << "Printing a double: " << param << '\n';
}

When calling our functions, a proper overload is selected based on the type of
argument we supply. In the first call to myprint('c'), a char overload is selected
because literal 'c' is of type char. In a second function call myprint(123), an integer
overload is selected because the type of an argument 123 is int. And lastly, in our last
function call myprint(456.789), a double overload is selected by a compiler as the
argument 456.789 is of type double.

Yes, literals in C++ also have types, and the C++ Standard precisely defines what type
that is. Some of the literals and their corresponding types:

c' - char

123 - int

456.789 - double

true - boolean
"Hello" - const char[6]

84

CHAPTER 20

Exercises

20.1 Function Definition

Write a program that defines a function of type void called printmessage(). The
function outputs a "Hello World from a function." message on the standard output.
Call the function from main.

#include <iostream>

void printmessage()

{
std::cout << "Hello World from a function.";
}
int main()
{
printmessage();
}

20.2 Separate Declaration and Definition

Write a program that declares and defines a function of type void called
printmessage(). The function outputs a "Hello World from a function." message on
the standard output. Call the function from main.

85
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_20

https://doi.org/10.1007/978-1-4842-6047-0_20#DOI

CHAPTER 20 EXERCISES
#include <iostream>

void printmessage(); // function declaration

int main()
{

printmessage();
}

// function definition
void printmessage()

{

std::cout << "Hello World from a function.";

20.3 Function Parameters

Write a program which has a function of type int called multiplication accepting two
int parameters by value. The function multiplies those two parameters and returns a
result to itself. Invoke the function in main and assign a result of the function to a local
int variable. Print the result in the console.

#include <iostream>

int multiplication(int x, int y)

{ return x * y;
}
int main()
{
int myresult = multiplication(10, 20);
std::cout << "The result is: " << myresult;
}

86

CHAPTER 20 EXERCISES

20.4 Passing Arguments

Write a program which has a function of type void called custommessage. The function
accepts one parameter by reference to const of type std: : string and outputs a custom
message on the standard output using that parameter’s value. Invoke the function in
main with a local string.

#include <iostream>
#include <string>

void custommessage(const std::string® message)

{
std::cout << "The string argument you used is: " << message;
}
int main()
{
std::string mymessage = "My Custom Message.";
custommessage(mymessage);
}

20.5 Function Overloads

Write a program that has two function overloads. The functions are called division,
and both accept two parameters. They divide the parameters and return the result to
themselves. The first function overload is of type int and has two parameters of types
int. The second overload is of type double and accepts two parameters of type double.
Invoke the appropriate overload in main, first by supplying integer arguments and then
the double arguments. Observe different results.

#include <iostream>
#include <string>

int division(int x, int y)

{

return x / vy;

87

CHAPTER 20 EXERCISES

double division(double x, double y)

{
return x / y;
}
int main()
{
std::cout << "Integer division: " << division(9, 2) << '\n';
std::cout << "Floating point division: " << division(9.0, 2.0);
}

88

CHAPTER 21

Scope and Lifetime

When we declare a variable, its name is valid only inside some sections of the source
code. And that section (part, portion, region) of the source code is called scope. It is the
region of code in which the name can be accessed. There are different scopes:

21.1 Local Scope

When we declare a name inside a function, that name has a local scope. Its scope starts
from the point of declaration till the end of the function block marked with }.
Example:

void myfunction()

{

int x = 123; // Here begins the x's scope
} // and here it ends

Our variable x is declared inside a myfunction() body, and it has a local scope.
We say that name x is local to myfunction(). It exists (can be accessed) only inside the
function's scope and nowhere else.

21.2 Block Scope

The block-scope is a section of code marked by a block of code starting with { and ending
with }. Example:

int main()

{

int x = 123; // first x' scope begins here

89
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_21

https://doi.org/10.1007/978-1-4842-6047-0_21#DOI

CHAPTER 21 SCOPE AND LIFETIME

{

int x = 456; // redefinition of x, second x' scope begins here
} // block ends, second x' scope ends here
// the first x resumes here
} // block ends, scope of first x's ends here

There are other scopes as well, which we will cover later in the book. It is important
to introduce the notion of scope at this point to explain the object’s lifetime.

21.3 Lifetime

The lifetime of an object is the time an object spends in memory. The lifetime is
determined by a so-called storage duration. There are different kinds of storage
durations.

21.4 Automatic Storage Duration

The automatic storage duration is a duration where memory for an object is
automatically allocated at the beginning of a block and deallocated when the code
block ends. This is also called a stack memory; objects are allocated on the stack. In this
case, the object’s lifetime is determined by its scope. All local objects have this storage
duration.

21.5 Dynamic Storage Duration

The dynamic storage duration is a duration where memory for an object is manually
allocated and manually deallocated. This kind of storage is often referred to as heap
memory. The user determines when the memory for an object will be allocated, and
when it will be released. The lifetime of an object is not determined by a scope in which
the object was defined. We do it through operator new and smart pointers. In modern
C++, we should prefer the smart pointer facilities to operator new.

90

CHAPTER 21 SCOPE AND LIFETIME

21.6 Static Storage Duration

When an object declaration is prepended with a static specifier, it means the storage
for a static object is allocated when the program starts and deallocated when the
program ends. There is only one instance of such objects, and (with a few exceptions)
their lifetime ends when a program ends. They are objects we can access at any given
time during the execution of a program. We will talk about static specifier and static
initialization later in the book.

21.7 Operators new and delete

We can dynamically allocate and deallocate storage for our object and have pointers
point to this newly allocated memory.

The operator new allocates space for an object. The object is allocated on the free-
store, often called heap or heap memory. The allocated memory must be deallocated
using operator delete. It deallocates the memory previously allocated memory with an
operator new. Example:

#include <iostream>

int main()
{
int* p = new int;
*p = 123;
std::cout << "The pointed-to value is: " << *p;
delete p;

This example allocates space for one integer on the free-store. Pointer p now points
to the newly allocated memory for our integer. We can now assign a value to our newly
allocated integer object by dereferencing a pointer. Finally, we free the memory by
calling the operator delete.

91

CHAPTER 21 SCOPE AND LIFETIME

If we want to allocate memory for an array, we use the operator new(]. To deallocate
amemory allocated for an array, we use the operator delete[]. Pointers and arrays
are similar and can often be used interchangeably. Pointers can be dereferenced by a
subscript operator []. Example:

#include <iostream>

int main()
{
int* p = new int[3];
p[o] = 1;
pl1] = 2;
pl2] = 3;

std::cout << "The values are: " << p[0] <«
delete[] p;

" << opl1] <« << p[2];

This example allocates space for three integers, an array of three integers using
operator new[| . Our pointer p now points at the first element in the array. Then, using a
subscript operator [], we dereference and assign a value to each array element. Finally,
we deallocate the memory using the operator delete[]. Remember: always delete what
you new-ed and always delete[] what you new|[]-ed.

Remember: prefer smart pointers to operator new. The lifetime of objects allocated
on the free-store is not bound by a scope in which the objects were defined. We manually
allocate and manually deallocate the memory for our object, thus controlling when the
object gets created and when it gets destroyed.

92

CHAPTER 22

Exercises

22.1 Automatic Storage Duration

Write a program that defines two variables of type int with automatic storage duration
(placed on the stack) inside the main function scope.

#include <iostream>

int main()
{
int x = 123;
int y = 456;
std::cout << "The values with automatic storage durations are: " << x

<« "and " <« y;

22.2 Dynamic Storage Duration

Write a program which defines a variable of type int* which points to an object with
dynamic storage duration (placed on the heap) :

#include <iostream>

int main()

{
int* p = new int{ 123 };
std::cout << "The value with a dynamic storage duration is:
delete p;

<< *p;

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_22

https://doi.org/10.1007/978-1-4842-6047-0_22#DOI

CHAPTER 22 EXERCISES

Explanation
In this example, the object p only points at the object with dynamic storage duration.

The p object itself has an automatic storage duration. To delete the object on the heap,

we need to use the delete operator.

22.3 Automatic and Dynamic Storage Durations

Write a program that defines a variable of type int called x, automatic storage duration,

and a variable of type int* which points to an object with dynamic storage duration. Both

variables are in the same scope:

#include <iostream>

int main()

{

int x = 123; // automatic storage duration

std::cout << "The value with an automatic storage duration is: " << x
<< "\n';

int* p = new int{ x }; // allocate memory and copy the value from x to it
std::cout << "The value with a dynamic storage duration is: " << *p <«
‘\n';

delete p;

} // end of scope here

94

CHAPTER 23

Classes - Introduction

Class is a user-defined type. A class consists of members. The members are data
members and member functions. A class can be described as data and some
functionality on that data, wrapped into one. An instance of a class is called an object. To
only declare a class name, we write:

class MyClass;

To define an empty class, we add a class body marked by braces { }:
class MyClass{};

To create an instance of the class, an object, we use:

class MyClass{};

int main()
{

MyClass o;
}

Explanation

We defined a class called MyClass. Then we created an object o of type MyClass. It is
said that o is an object, a class instance.

95
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_23

https://doi.org/10.1007/978-1-4842-6047-0_23#DOI

CHAPTER 23 CLASSES - INTRODUCTION

23.1 Data Member Fields

A class can have a set of some data in it. These are called member fields. Let us add one
member field to our class and make it of type char:

class MyClass
{

char c;

};

Now our class has one data member field of type char called c. Let us now add two
more fields of type int and double:

class MyClass

{
char c;
int x;
double d;
};

Now our class has three member fields, and each member field has its name.

23.2 Member Functions

Similarly, a class can store functions. These are called member functions. They are mostly
used to perform some operations on data fields. To declare a member function of type
void called dosomething(), we write:

class MyClass
{

void dosomething();

b

There are two ways to define this member function. The first is to define it inside the
class:

96

CHAPTER 23 CLASSES - INTRODUCTION

class MyClass

{
void dosomething()
{
std::cout << "Hello World from a class.";
}
};

The second one is to define it outside the class. In that case, we write the function
type first, followed by a class name, followed by a scope resolution :: operator followed
by a function name, list of parameters if any and a function body:

class MyClass
{

void dosomething();

s

void MyClass::dosomething()
{

std::cout << "Hello World from a class.";

Here we declared a member function inside the class and defined it outside the class.
We can have multiple members functions in a class. To define them inside a class, we

would write:

class MyClass

{
void dosomething()
{
std::cout << "Hello World from a class.";
}
void dosomethingelse()
{
std::cout << "Hello Universe from a class.";
}
};

97

CHAPTER 23 CLASSES - INTRODUCTION

To declare members functions inside a class and define them outside the class, we
would write:

class MyClass

{
void dosomething();
void dosomethingelse();
};
void MyClass::dosomething()
{
std::cout << "Hello World from a class.";
}
void MyClass::dosomethingelse()
{
std::cout << "Hello Universe from a class.";
}
Now we can create a simple class that has both a data member field and a member
function:

class MyClass

{
int x;
void printx()
{
std::cout << "The value of x is:" << x;
}
};

This class has one data field of type int called x, and it has a member function called
printx(). This member function reads the value of x and prints it out. This example is an
introduction to member access specifiers or class member visibility.

98

CHAPTER 23 CLASSES - INTRODUCTION

23.3 Access Specifiers

Wouldn't it be convenient if there was a way we could disable access to member fields
but allow access to member functions for our object and other entities accessing our
class members? And that is what access specifiers are for. They specify access for class
members. There are three access specifiers/labels: public, protected, and private:

class MyClass
{
public:

// everything in here

// has public access level
protected:

// everything in here

// has protected access level
private:

// everything in here

// has private access level

}s

Default visibility/access specifier for a class is private if none of the access specifiers
is present:

class MyClass
{

// everything in here
// has private access by default

};

Another way to write a class is to write a struct. A struct is also a class in which
members have public access by default. So, a struct is the same thing as a class but
with a public access specifier by default:

struct MyStruct
{

// everything in here
// is public by default

};

99

CHAPTER 23 CLASSES - INTRODUCTION

For now, we will focus only on public and private access specifiers. Public access
members are accessible anywhere. For example, they are accessible to other class
members and to objects of our class. To access a class member from an object, we use
the dot . operator.

Let’s define a class where all the members have public access. To define a class with
public access specifier, we can write:

class MyClass

{
public:
int x;
void printx()
{
std::cout << "The value of x is:" << x;
}
};

Let us instantiate this class and use it in our main program:
#include <iostream>

class MyClass

{
public:
int x;
void printx()
{
std::cout << "The value of data member x is: " << x;
}
};
int main()
{
MyClass o;
0.X = 123; // x is accessible to object o
o.printx(); // printx() is accessible to object o
}

100

CHAPTER 23 CLASSES - INTRODUCTION

Our object 0 now has direct access to all member fields as they are all marked public.
Member fields always have access to each other regardless of the access specifier. That is
why the member function printx() can access the member field x and print or change
its value.

Private access members are accessible only to other class members, not objects.
Example with full commentary:

#include <iostream>

class MyClass

{
private:
int x; // x now has private access
public:
void printx()
{
std::cout << "The value of x is:" << x; // x is accessible to
// printx()
}
};
int main()
{
MyClass o; // Create an object
0.X = 123; // Error, x has private access and is not accessible to
// object o
o.printx(); // printx() is accessible from object o
}

Our object 0 now only has access to a member function printx() in the public
section of the class. It cannot access members in the private section of the class.

If we want the class members to be accessible to our object, then we will put them
inside the public: area. If we want the class members not to be accessible to our object,
then we will put them into the private: area.

We want the data members to have private access and function members to have
public access. This way, our object can access the member functions directly but not the
member fields. There is another access specifier called protected: which we will talk
about later in the book when we learn about inheritance.

101

CHAPTER 23 CLASSES - INTRODUCTION

23.4 Constructors

A constructor is a member function that has the same name as the class. To initialize
an object of a class, we use constructors. Constructor's purpose is to initialize an object
of a class. It constructs an object and can set values to data members. If a class has a
constructor, all objects of that class will be initialized by a constructor call.

23.4.1 Default Constructor

A constructor without parameters or with default parameters set is called a default
constructor. It is a constructor which can be called without arguments:

#include <iostream>

class MyClass

{
public:
MyClass()
{
std::cout << "Default constructor invoked." << '\n';
}
};
int main()
{
MyClass o; // invoke a default constructor
}

Another example of a default constructor, the one with the default arguments:
#include <iostream>

class MyClass

{

public:
MyClass(int x = 123, int y = 456)
{

std::cout << "Default constructor invoked." << '\n';

102

CHAPTER 23 CLASSES - INTRODUCTION

b5
int main()
{
MyClass o; // invoke a default constructor
}

If a default constructor is not explicitly defined in the code, the compiler will
generate a default constructor. But when we define a constructor of our own, the one
that needs parameters, the default constructor gets removed and is not generated by a
compiler.

Constructors are invoked when object initialization takes place. They can’t be
invoked directly.

Constructors can have arbitrary parameters; in which case we can call them user-
provided constructors:

#include <iostream>

class MyClass

{
public:
int x, y;
MyClass(int xx, int yy)
{
X = XX;
=YY
}
};
int main()
{
MyClass o{ 1, 2 }; // invoke a user-provided constructor
std::cout << "User-provided constructor invoked." << "\n';
std::cout << o.x << " ' << 0.y;
}

In this example, our class has two data fields of type int and a constructor. The
constructor accepts two parameters and assigns them to data members. We invoke the
constructor with by providing arguments in the initializer list with MyClass o{ 1, 2 };

103

CHAPTER 23 CLASSES - INTRODUCTION

Constructors do not have a return type, and their purposes are to initialize the object
of its class.

23.4.2 Member Initialization

In our previous example, we used a constructor body and assignments to assign value to
each class member. A better, more efficient way to initialize an object of a class is to use
the constructor’s member initializer list in the definition of the constructor:

#include <iostream>

class MyClass

{
public:
int x, y;
MyClass(int xx, int yy)
:x{ xx }, y{ yy } // member initializer list
{
}
b
int main()
{
MyClass o{ 1, 2 }; // invoke a user-defined constructor
std::cout << 0.x << ' ' << o.y;
}

A member initializer list starts with a colon, followed by member names and their
initializers, where each initialization expression is separated by a comma. This is the

preferred way of initializing class data members.

23.4.3 Copy Constructor

When we initialize an object with another object of the same class, we invoke a copy
constructor. If we do not supply our copy constructor, the compiler generates a default
copy constructor that performs the so-called shallow copy. Example:

104

CHAPTER 23 CLASSES - INTRODUCTION
#include <iostream>

class MyClass

{
private:
int x, y;
public:
MyClass(int xx, int yy) : x{ xx }, y{ yy }
{
}
b
int main()
{
MyClass o1{ 1, 2 };
MyClass 02 = o1; // default copy constructor invoked
}

In this example, we initialize the object 02 with the object 01 of the same type. This
invokes the default copy constructor.

We can provide our own copy constructor. The copy constructor has a special
parameter signature of MyClass(const MyClass& rhs). Example of a user-defined copy
constructor:

#include <iostream>

class MyClass

{
private:
int x, y;
public:
MyClass(int xx, int yy) : x{ xx }, y{ yy }
{
}

// user defined copy constructor
MyClass(const MyClass& rhs)

105

CHAPTER 23 CLASSES - INTRODUCTION

: x{ rhs.x }, y{ rhs.y } // initialize members with other object's

// members
{
std::cout << "User defined copy constructor invoked.";
}
};
int main()
{
MyClass o1{ 1, 2 };
MyClass 02 = o1; // user defined copy constructor invoked
}

Here we defined our own copy constructor in which we explicitly initialized data
members with other objects data members, and we print out a simple message in the
console / standard output.

Please note that the default copy constructor does not correctly copy members of
some types, such as pointers, arrays, etc. In order to properly make copies, we need to
define our own copy logic inside the copy constructor. This is referred to as a deep copy.
For pointers, for example, we need both to create a pointer and assign a value to the
object it points to in our user-defined copy constructor:

#include <iostream>

class MyClass

{

private:
int x;
int* p;

public:

MyClass(int xx, int pp)

: x{ xx }, p{ new int{pp} }
{
}

MyClass(const MyClass& rhs)
: x{ rhs.x }, p{ new int {*rhs.p} }

106

CHAPTER 23 CLASSES - INTRODUCTION

{
std::cout << "User defined copy constructor invoked.";
}
}s
int main()
{
MyClass o1{ 1, 2 };
MyClass 02 = o1; // user defined copy constructor invoked
}

Here we have two constructors, one is a user-provided regular constructor, and the
other is a user-defined copy constructor. The first constructor initializes an object and is
invoked here: MyClass 01{ 1, 2 }; in ourmain function.

The second, the user-defined copy constructor is invoked here: MyClass 02 = o1;
This constructor now properly copies the values from both int and int* member fields.

In this example, we have pointers as member fields. If we had left out the user-
defined copy constructor, and relied on a default copy constructor only the int member
field would be properly copied, the pointer would not. In this example, we rectified that.

In addition to copying, there is also a move semantic, where data is moved from one
object to the other. This semantic is represented through a move constructor and a move
assignment operator.

23.4.4 Copy Assignment

So far, we have used copy constructors to initialize one object with another object. We
can also copy the values to an object after it has been initialized/created. We use a copy
assignment for that. Simply, when we initialize an object with another object using the =
operator on the same line, then the copy operation uses the copy constructor:

MyClass copyfrom;
MyClass copyto = copyfrom; // on the same line, uses a copy constructor

When an object is created on one line and then assigned to in the next line, it then
uses the copy assignment operator to copy the data from another object:

MyClass copyfrom;

107

CHAPTER 23 CLASSES - INTRODUCTION

MyClass copyto;
copyto = copyfrom; // uses a copy assignment operator

A copy assignment operator is of the following signature:
MyClass& operator=(const MyClass& rhs)
To define a user-defined copy assignment operator inside a class we use:

class MyClass

{
public:
MyClass& operator=(const MyClass& rhs)
{
// implement the copy logic here
return *this;
}
};

Notice that the overloaded = operators must return a dereferenced this pointer at the
end. To define a user-defined copy assignment operator outside the class, we use:

class MyClass

{
public:
MyClass& operator=(const MyClass& rhs);
};
MyClass& MyClass::operator=(const MyClass& rhs)
{
// implement the copy logic here
return *this;
}

Similarly, there is a move assignment operator, which we will discuss later in the
book. More on operator overloading in the following chapters.

108

CHAPTER 23 CLASSES - INTRODUCTION

23.4.5 Move Constructor

In addition to copying, we can also move the data from one object to the other. We call

it a move semantics. Move semantics is achieved through a move constructor and move
assignment operator. The object from which the data was moved, is left in some valid but
unspecified state. The move operation is efficient in terms of speed of execution, as we
do not have to make copies.

Move constructor accepts something called rvalue reference as an argument.

Every expression can find itself on the left-hand side or the right-hand side of the
assignment operator. The expressions that can be used on the left-hand side are called
lvalues, such as variables, function calls, class members, etc. The expressions that can be
used on the right-hand side of an assignment operator are called rvalues, such as literals,
and other expressions.

Now the move semantics accepts a reference to that rvalue. The signature of an
rvalue reference type is 7&&, with double reference symbols. So, the signature of a move
constructor is:

MyClass (MyClass&& rhs)

To cast something to an rvalue reference, we use the std::move function. This
function casts the object to an rvalue reference. It does not move anything. An example
where a move constructor is invoked:

#include <iostream>
class MyClass { };

int main()
{
MyClass o1;
MyClass 02 = std::move(ol);
std::cout << "Move constructor invoked.";
// or MyClass o2{std::move(o1)};

In this example, we define an object of type MyClass called 01. Then we initialize the
second object 02 by moving everything from object 01 to 02. To do that, we need to cast
the 02 to rvalue reference with std: :move(01). This, in turn, invokes the MyClass move
constructor for 02.

109

CHAPTER 23 CLASSES - INTRODUCTION

If a user does not provide a move constructor, the compiler provides an implicitly
generated default move constructor.
Let us specify our own, user-defined move constructor:

#include <iostream>
#include <string>

class MyClass

{
private:
int x;
std::string s;
public:
MyClass(int xx, std::string ss) // user provided constructor
:x{ xx }, s{ ss }
{}
MyClass(MyClass&& rhs) // move constructor
x{ std::move(rhs.x) }, s{ std::move(rhs.s) }
{
std::cout << "Move constructor invoked." << '\n';
}
};
int main()
{
MyClass o1{ 1, "Some string value" };
MyClass 02 = std::move(ol);
}

This example defines a class with two data members and two constructors. The first
constructor is some user-provided constructor used to initialize data members with
provided arguments.

The second constructor is a user-defined move constructor accepting an rvalue
reference parameter of type MyClass&& called rhs. This parameter will become our
std: :move(01) argument/object. Then in the constructor initializer list, we also use the
std: :move function to move the data fields from o1 to o02.

110

CHAPTER 23 CLASSES - INTRODUCTION

23.4.6 Move Assignment

Move assignment operator is invoked when we declare an object and then try to assign
an rvalue reference to it. This is done via the move assignment operator. The signature of
the move assignment operator is: MyClass8 operator=(MyClass&& otherobject).

To define a user-defined move assignment operator inside a class we use:

class MyClass

{
public:
MyClass8 operator=(MyClass8& otherobject)
{
// implement the copy logic here
return *this;
}
};

As with any assignment operator overloading, we must return a dereferenced this
pointer at the end. To define a move assignment operator outside the class, we use:

class MyClass

{
public:
MyClass& operator=(const MyClass& rhs);
}s
MyClass& MyClass::operator=(const MyClass& rhs)
{
// implement the copy logic here
return *this;
}
Move assignment operator example adapted from a move constructor example
would be:

#include <iostream>
#include <string>

class MyClass

111

CHAPTER 23 CLASSES - INTRODUCTION

{
private:
int x;
std::string s;
public:
MyClass(int xx, std::string ss) // user provided constructor
:x{ xx }, s{ ss }
)
MyClass& operator=(MyClass&& otherobject) // move assignment operator
{
x = std::move(otherobject.x);
s = std::move(otherobject.s);
return *this;
}
}s
int main()
{
MyClass o1{ 123, "This is currently in object 1." };
MyClass o02{ 456, "This is currently in object 2." };
02 = std::move(ol); // move assignment operator invoked
std::cout << "Move assignment operator used.";
}

Here we defined two objects called 01 and 02. Then we try to move the data from
object 01 to 02 by assigning an rvalue reference (of object 01) using the std: :move(01)
expression to object 02. This invokes the move assignment operator in our object 02. The
move assignment operator implementation itself uses the std: :move() function to cast
each data member to an rvalue reference.

23.5 Operator Overloading

Objects of classes can be used in expression as operands. For example, we can do the
following:

112

CHAPTER 23 CLASSES - INTRODUCTION

myobject

otherobject;
myobject + otherobject;
myobject / otherobject;
myobject++;
++myobject;

Here objects of a class are used as operands. To do that, we need to overload the
operators for complex types such as classes. It is said that we need to overload them to
provide a meaningful operation on objects of a class. Some operators can be overloaded
for classes; some cannot. We can overload the following operators:

Arithmetic operators, binary operators, boolean operators, unary operators,
comparison operators, compound operators, function and subscript operators:

+ -k /5 N& |~ =

<> == l=<=>= 4= -= *= /= U= "= &= |= << 5> >>= «=
88 [++ -, ->* > () []

Each operator carries its signature and set of rules when overloading for classes.
Some operator overloads are implemented as member functions, some as none member
functions. Let us overload a unary prefix ++ operator for classes. It is of signature
MyClass& operator++():

#include <iostream>
class MyClass
{
private:
int x;
double d;

public:
MyClass()
:x{ 0}, d{ 0.0}
{
}

// prefix operator ++
MyClass& operator++()

{
+4X;
++d;

113

CHAPTER 23 CLASSES - INTRODUCTION

std::cout << "Prefix operator ++ invoked." << '\n';
return *this;

}
};
int main()
{
MyClass myobject;
// prefix operator
++myobject;
// the same as:
myobject.operator++();
}

In this example, when invoked in our class, the overloaded prefix increment
++ operator increments each of the member fields by one. We can also invoke an
operator by calling a .operatoractual_operator_name(parameters if any); such as
.operator++();

Often operators depend on each other and can be implemented in terms of other
operators. To implement a postfix operator ++, we will implement it in terms of a prefix
operator:

#include <iostream>
class MyClass
{
private:
int x;
double d;

public:
MyClass()
:x{ 0}, d{ 0.0}
{
}

// prefix operator ++
MyClass& operator++()

{

114

CHAPTER 23 CLASSES - INTRODUCTION

+X;
++d;

std::cout << "Prefix operator ++ invoked." << '\n';
return *this;

}

// postfix operator ++
MyClass operator++(int)

{
MyClass tmp(*this); // create a copy
operator++(); // invoke the prefix operator overload
std::cout << "Postfix operator ++ invoked." << '\n';
return tmp; // return old value
}
}s
int main()
{
MyClass myobject;
// postfix operator
myobject++;
// is the same as if we had:
myobject.operator++(0);
}

Please do not worry too much about the somewhat inconsistent rules for operator
overloading. Remember, each (set of) operator has its own rules for overloading.
Let us overload a binary operator +=:

#include <iostream>
class MyClass

{

private:
int x;
double d;

115

CHAPTER 23 CLASSES - INTRODUCTION

public:
MyClass(int xx, double dd)
:x{ xx }, d{ dd }
{
}

MyClass& operator+=(const MyClass& rhs)
{

this->x += rhs.x;

this->d += rhs.d;

return *this;

}s

int main()
{
MyClass myobject{ 1, 1.0 };
MyClass mysecondobject{ 2, 2.0 };
myobject += mysecondobject;
std::cout << "Used the overloaded += operator.";

Now, myobject member field x has a value of 3, and a member field d has a value of 3.0.
Let us implement arithmetic + operator in terms of += operator:

#include <iostream>
class MyClass
{
private:
int x;
double d;

public:
MyClass(int xx, double dd)
:x{ xx }, d{ dd }

116

CHAPTER 23 CLASSES - INTRODUCTION

MyClass& operator+=(const MyClass& rhs)

{
this->x += rhs.x;
this->d += rhs.d;
return *this;

}

friend MyClass operator+(MyClass lhs, const MyClass& rhs)
{

lhs += rhs;
return lhs;

}
}s
int main()
{
MyClass myobject{ 1, 1.0 };
MyClass mysecondobject{ 2, 2.0 };
MyClass myresult = myobject + mysecondobject;
std::cout << "Used the overloaded + operator.";
}

Summary:

When we need to perform arithmetic, logic, and other operations on our objects of
a class, we need to overload the appropriate operators. There are rules and signatures
for overloading each operator. Some operators can be implemented in terms of other
operators. For a complete list of rules of operator overloading rules, please refer to C++
reference at https://en.cppreference.com/w/cpp/language/operators.

117

https://en.cppreference.com/w/cpp/language/operators

CHAPTER 23 CLASSES - INTRODUCTION

23.6 Destructors

As we saw earlier, a constructor is a member function that gets invoked when the object
is initialized. Similarly, a destructor is a member function that gets invoked when an
object is destroyed. The name of the destructor is tilde ~ followed by a class name:

class MyClass

{
public:
MyClass() {} // constructor
~“MyClass() {} // destructor
};

Destructor takes no parameters, and there is one destructor per class. Example:
#include <iostream>

class MyClass

{
public:
MyClass() {} // constructor
~MyClass()
{
std::cout << "Destructor invoked.";
} // destructor
b
int main()
{

MyClass o;
} // destructor invoked here, when o gets out of scope

Destructors are called when an object goes out of scope or when a pointer to an
object is deleted. We should not call the destructor directly.

118

CHAPTER 23 CLASSES - INTRODUCTION
Destructors can be used to clean up the taken resources. Example:
#include <iostream>

class MyClass

{
private:
int* p;
public:
MyClass()
: p{ new int{123} }
{
std::cout << "Created a pointer in the constructor." << "\n';
}
~MyClass()
{
delete p;
std::cout << "Deleted a pointer in the destructor.” << "\n';
}
}s
int main()
{

MyClass o; // constructor invoked here
} // destructor invoked here

Here we allocate memory for a pointer in the constructor and deallocate the memory
in the destructor. This style of resource allocation/deallocation is called RAII or Resource
Acquisition is Initialization. Destructors should not be called directly.

Important The use of new and delete, as well as the use of raw pointers in
Modern C++, is discouraged. We should use smart pointers instead. We will talk
about them later in the book. Let us do some exercises for the class's introductory
part.

119

CHAPTER 24

Exercises

24.1 Class Instance

Write a program that defines an empty class called MyClass and makes an instance of
MyClass in the main function.

class MyClass

{
}s
int main()
{
MyClass o;
}

24.2 Class with Data Members

Write a program that defines a class called MyClass with three data members of type
char, int, and bool. Make an instance of that class inside the main function.

class MyClass

{
char c;
int x;
bool b;
};

121
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_24

https://doi.org/10.1007/978-1-4842-6047-0_24#DOI

CHAPTER 24 EXERCISES

int main()
{

MyClass o;
}

24.3 Class with Member Function

Write a program that defines a class called MyClass with one member function called
printmessage(). Define the printmessage () member function inside the class and
make it output the “Hello World” string. Create an instance of that class and use the
object to call the class member function.

#include <iostream>

class MyClass

{

public:
void printmessage()
{

std::cout << "Hello World.";

}

b

int main()

{
MyClass o;
o.printmessage();

}

24.4 Class with Data and Function Members

Write a program that defines a class called MyClass with one member function called
printmessage(). Define the printmessage () member function outside the class and
have it output the "Hello World." string. Create an instance of that class and use the
object to call the member function.

122

CHAPTER 24 EXERCISES
#include <iostream>

class MyClass

{
public:
void printmessage();
};
void MyClass::printmessage()
{
std::cout << "Hello World.";
}
int main()
{
MyClass o;
o.printmessage();
}

24.5 Class Access Specifiers

Write a program that defines a class called MyClass with one private data member of
type int called x and two member functions. The first member function called setx(int
myvalue) will set the value of x to its parameter myvalue. The second member function
is called getx(), is of type int and returns a value of x. Make an instance of the class and
use the object to access both member functions.

#include <iostream>

class MyClass

{
private:
int x;
public:
void setx(int myvalue)
{
x = myvalue;
}

123

CHAPTER 24 EXERCISES

int getx()
{
return x;
}
};
int main()
{
MyClass o;
0.setx(123);
std::cout << "The value of x is: " << o.getx();
}

24.6 User-defined Default Constructor
and Destructor

Write a program that defines a class called MyClass with a user-defined default
constructor and user-defined destructor. Define both constructor and destructor outside
the class. Both member functions will output a free to choose the text on the standard
output. Create an object of a class in function main.

#include <iostream>

class MyClass

{
public:
MyClass();
~MyClass();
};
MyClass: :MyClass()
{
std::cout << "Constructor invoked." << '\n';
}
MyClass::~MyClass()
{

124

CHAPTER 24 EXERCISES

std::cout << "Destructor invoked." << '\n';

}
int main()
{
MyClass o;
}

24.7 Constructor Initializer List

Write a program that defines a class called MyClass, which has two private data
members of type int and double. Outside the class, define a user-provided constructor
accepting two parameters. The constructor initializes both data members with
arguments using the initializer. Outside the class, define a function called printdata()
which prints the values of both data members.

#include <iostream>

class MyClass

{
private:
int x;
double d;
public:
MyClass(int xx, double dd);
void printdata();
}s

MyClass::MyClass(int xx, double dd)
s x{ xx }, d{ dd }

125

CHAPTER 24 EXERCISES

void MyClass::printdata()

{
std::cout << " The value of x: " << x << ", the value of d: "
<< d << '\n';
}
int main()
{
MyClass of{ 123, 456.789 };
o.printdata();
}

24.8 User-defined Copy Constructor

Write a program that defines a class called MyClass with arbitrary data fields. Write a
user-defined constructor with parameters that initializes data members. Write a user-
defined copy constructor which copies all the members. Make one object of the class
called o1 and initialize it with values. Make another object of a class called 02 and
initialize it with object o. Print data for both objects.

#include <iostream>

class MyClass

{

private:
int x;
double d;

public:
MyClass(int xx, double dd); // user-provided constructor
MyClass(const MyClass& rhs); // user-defined copy constructor
void printdata();

}s

MyClass::MyClass(int xx, double dd)
: x{ xx }, d{ dd }
{}

126

CHAPTER 24 EXERCISES

MyClass::MyClass(const MyClass& rhs)
: x{ rhs.x }, d{ rhs.d }

{}

void MyClass::printdata()

{
std::cout << "X is: " << x << ", d is: " << d << "\n';

}

int main()

{
MyClass o1{ 123, 456.789 }; // invokes a user-provided constructor
MyClass 02 = o1; // invokes a user-defined copy constructor
ol.printdata();
02.printdata();

}

24.9 User-defined Move Constructor

Write a program that defines a class with two data members, a user-provided
constructor, a user-provided move constructor, and a member function that prints the
data. Invoke the move constructor in the main program. Print the moved-to object data
fields.

#include <iostream>
#include <string>

class MyClass

{
private:
double d;
std::string s;
public:

MyClass(double dd, std::string ss) // user-provided constructor
:d{ dd }, s{ ss }
{}

127

CHAPTER 24 EXERCISES

MyClass(MyClass&8 otherobject) // user-defined move constructor

d{ std::move(otherobject.d) }, s{ std::move(otherobject.s) }

{
std::cout << "Move constructor invoked." << '\n';
}
void printdata()
{
std::cout << "The value of doble is: " << d << ", the value of
string is: " << s << "\n';
}
};
int main()
{
MyClass o1{ 3.14, "This was in object 1" };
MyClass 02 = std::move(ol); // invokes the move constructor
02.printdata();
}

24.10 Overloading Arithmetic Operators

Write a program that overloads arithmetic operator - in terms of a compound arithmetic
operator -=. Print out the values of the resulting object member fields.

#include <iostream>
class MyClass
{
private:
int x;
double d;

public:
MyClass(int xx, double dd)
:x{ xx }, d{ dd }

128

CHAPTER 24 EXERCISES

{
}
void printvalues()
{
std::cout << "The values of x is: " << x << ", the value of d is: "
<< d;
}
MyClass& operator-=(const MyClass& rhs)
{
this->x -= rhs.x;
this->d -= rhs.d;
return *this;
}

friend MyClass operator-(MyClass lhs, const MyClass& rhs)
{

lhs -= rhs;
return lhs;
}
};
int main()
{
MyClass myobject{ 3, 3.0 };
MyClass mysecondobject{ 1, 1.0 };
MyClass myresult = myobject - mysecondobject;
myresult.printvalues();
}

129

CHAPTER 25

Classes - Inheritance
and Polymorphism

In this chapter, we discuss some of the fundamental building blocks of object-oriented
programming, such as inheritance and polymorphism.

25.1 Inheritance

We can build a class from an existing class. It is said that a class can be derived from an
existing class. This is known as inheritance and is one of the pillars of object-oriented
programming, abbreviated as OOP. To derive a class from an existing class, we write:

class MyDerivedClass : public MyBaseClass {};
A simple example would be:

class MyBaseClass

{
b

class MyDerivedClass : public MyBaseClass
{

b

int main()

{
}

In this example, MyDerivedClass inherits the MyBaseClass.

131
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_25

https://doi.org/10.1007/978-1-4842-6047-0_25#DOI

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

Let us get the terminology out of the way. It is said that MyDerivedClass is derived
from MyBaseClass, or MyBaseClass is a base class for MyDerivedClass. It is also said that
MyDerivedClass is MyBaseClass. They all mean the same thing.

Now the two classes have some sort of relationship. This relationship can be
expressed through different naming conventions, but the most important one is
inheritance. Derived class and objects of a derived class can access public members of a
base class:

class MyBaseClass

{
public:
char c;
int x;
};
class MyDerivedClass : public MyBaseClass
{
// c and x also accessible here
};
int main()
{
MyDerivedClass o;
0.c = 'a';
0.X = 123;
}

The following example introduces the new access specifier called protected:. The
derived class itself can access protected members of a base class. The protected access
specifier allows access to the base class and derived class, but not to objects:

class MyBaseClass

{
protected:
char c;
int x;
};

132

CHAPTER 25

class MyDerivedClass : public MyBaseClass

CLASSES — INHERITANCE AND POLYMORPHISM

{
// ¢ and x also accessible here
};
int main()
{
MyDerivedClass o;
o.c = 'a'; // Error, not accessible to object
0.X = 123; // error, not accessible to object
}

The derived class cannot access private members of a base class:

class MyBaseClass

{
private:
char c;
int x;
};
class MyDerivedClass : public MyBaseClass
{
// c and x NOT accessible here
};
int main()
{
MyDerivedClass o;
o.c = 'a'; // Error, not accessible to object
0.X = 123; // error, not accessible to object
}

133

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

The derived class inherits public and protected members of a base class and can
introduce its own members. A simple example:

class MyBaseClass

{
public:
char c;
int x;
};
class MyDerivedClass : public MyBaseClass
{
public:
double d;
};
int main()
{
MyDerivedClass o;
0.c = 'a';
0.X = 123;
0.d = 456.789;
}

Here we inherited everything from the MyBaseClass class and introduced a new member
field in MyDerivedClass called d. So, with MyDerivedClass, we are extending the capability of
MyBaseClass. The field d only exists in MyDerivedClass and is accessible to derived class and
its objects. It is not accessible to MyBaseClass class as it does not exist there.

Please note that there are other ways of inheriting a class such as through protected
and private inheritance, but the public inheritance such as class MyDerivedClass :
public MyBaseClass is the most widely used, and we will stick to that one for now.

A derived class itself can be a base class. Example:

class MyBaseClass

{

public:
char c;
int x;

b

134

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

class MyDerivedClass : public MyBaseClass

{
public:
double d;
b5
class MySecondDerivedClass : public MyDerivedClass
{
public:
bool b;
};
int main()
{
MySecondDerivedClass o;
o.c = 'a';
0.X = 123;
0.d = 456.789;
0.b = true;
}

Now our class has everything MyDerivedClass has, which includes everything
MyBaseClass has, plus an additional bool field. It is said the inheritance produces a
particular hierarchy of classes.

This approach is widely used when we want to extend the functionality of our
classes.

The derived class is compatible with a base class. A pointer to a derived class is
compatible with a pointer to a base class. This allows us to utilize polymorphism, which
we will talk about in the next chapter.

25.2 Polymorphism

It is said that the derived class is a base class. Its type is compatible with the base class
type. Also, a pointer to a derived class is compatible with a pointer to the base class. This
is important, so let’s repeat this: a pointer to a derived class is compatible with a pointer
to a base class. Together with inheritance, this is used to achieve the functionality known

135

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

as polymorphism. Polymorphism means the object can morph into different types.
Polymorphism in C++ is achieved through an interface known as virtual functions.
Avirtual function is a function whose behavior can be overridden in subsequent derived
classes. And our pointer/object morphs into different types to invoke the appropriate
function. Example:

#include <iostream>

class MyBaseClass

{
public:
virtual void dowork()
{
std::cout << "Hello from a base class.” << '\n';
}
};
class MyDerivedClass : public MyBaseClass
{
public:
void dowork()
{
std::cout << "Hello from a derived class." << '\n';
}
};
int main()
{
MyBaseClass* o = new MyDerivedClass;
o->dowork();
delete o;
}

In this example, we have a simple inheritance where MyDerivedClass is derived from
MyBaseClass.

The MyBaseClass class has a function called dowork () with a virtual specifier.
Virtual means this function can be overridden/redefined in subsequent derived classes,
and the appropriate version will be invoked through a polymorphic object. The derived

136

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

class has a function with the same name and same type of arguments (none in our case)
in the derived class.

In our main program, we create an instance of a MyDerivedClass class through a
base class pointer. Using the arrow operator -> we invoke the appropriate version of
the function. Here the o object morphs into different types to invoke the appropriate
function. Here it invokes the derived version. That is why the concept is called
polymorphism.

If there were no dowork () function in the derived class, it would invoke the base class

version:
#include <iostream>

class MyBaseClass

{
public:
virtual void dowork()
{
std::cout << "Hello from a base class." << '\n';
}
};
class MyDerivedClass : public MyBaseClass
{
public:
b
int main()
{
MyBaseClass* o = new MyDerivedClass;
o->dowork();
delete o;
}

Functions can be pure virtual by specifying the = 0; at the end of the function
declaration. Pure virtual functions do not have definitions and are also called interfaces.
Pure virtual functions must be re-defined in the derived class. Classes having at least

137

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

one pure virtual function are called abstract classes and cannot be instantiated. They can
only be used as base classes. Example:

#include <iostream>

class MyAbstractClass
{
public:
virtual void dowork() = 0;

};

class MyDerivedClass : public MyAbstractClass
{
public:

void dowork()

{

std::cout << "Hello from a derived class." << '\n';

};

int main()

{
MyAbstractClass* o = new MyDerivedClass;
o->dowork();

delete o;

}

One important thing to add is that a base class must have a virtual destructor if it
is to be used in a polymorphic scenario. This ensures the proper deallocation of objects
accessed through a base class pointer via the inheritance chain:

class MyBaseClass

{
public:
virtual void dowork() = 0;
virtual ~MyBaseClass() {};
};

138

CHAPTER 25 CLASSES — INHERITANCE AND POLYMORPHISM

Please remember that the use of operator new and raw pointers is discouraged in
modern C++. We should use smart pointers instead. More on this, later in the book.
So, three pillars of object-oriented programming are:

— Encapsulation
— Inheritance
— Polymorphism

Encapsulation is grouping the fields into different visibility zones, hiding
implementation from the user, and exposing the interface, for example.

Inheritance is a mechanism where we can create classes by inheriting from a base
class. Inheritance creates a certain class hierarchy and relationship between them.

Polymorphism is an ability of an object to morph into different types during runtime,
ensuring the proper function is invoked. This is achieved through inheritance, virtual
and overridden functions, and base and derived class pointers.

139

CHAPTER 26

Exercises

26.1 Inheritance

Write a program that defines a base class called Person. The class has the following

members:
— A data member of type std::string called name

— Asingle parameter, user-defined constructor which initializes the
name

— A getter function of type std::string called getname(), which returns
the name’s value

Then, write a class called Student, which inherits from the class Person. The class
Student has the following members:

— Aninteger data member called semester

— Auser-provided constructor that initializes the name and semester
fields

— A getter function of type int called getsemester(), which returns the
semester’s value

In a nutshell, we will have a base class Person and extend its functionality in the
derived Student class:

#include <iostream>
#include <string>

class Person
{
private:
std::string name;

141
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_26

https://doi.org/10.1007/978-1-4842-6047-0_26#DOI

CHAPTER 26 EXERCISES

public:
explicit Person(const std::string® aname)
: name{ aname }

{}
std::string getname() const { return name; }
};
class Student : public Person
{
private:

int semester;
public:
Student(const std::string& aname, int asemester)
: Person::Person{ aname }, semester{ asemester }

{}
int getsemester() const { return semester; }
};
int main()
{
Person person{ "John Doe." };
std::cout << person.getname() << '\n';
Student student{ "Jane Doe", 2 };
std::cout << student.getname() << '\n';
std::cout << "Semester is: " << student.getsemester() << '\n';
}

Explanation: We have two classes, one is a base class (Person), and the other
(Student) is a derived class. Single parameter constructors should be marked with
explicit to prevent the compiler from making implicit conversions. This is the case with
Person’s user-provided single parameter constructor:

explicit Person(const std::string& aname)
: name{ aname }

{}

142

CHAPTER 26 EXERCISES

Member functions that do not modify the member fields should be marked as const.
The const modifier in member functions promises the functions will not modify the data
members and are easier for compiler to optimize the code. This is the case with both
getname():

std::string getname() const { return name; }
and getsemester() member functions:
int getsemester() const { return semester; }

The Student class inherits from the Person class and ads additional data field
semester and member function getsemester(). The Student class has everything a base
class has, plus it extends the functionality of a base class by adding new fields. The
Student’s user provided constructor uses the base class constructor in its initializer list to
initialize a name field:

Student(const std::stringd aname, int asemester)
: Person::Person{ aname }, semester{ asemester }

{}

In the main() program, we instantiate both classes:
Person person{ "John Doe." };
and:
Student student{ "Jane Doe", 2 };

And call their member functions:
person.getname();
and:

student.getname();
student.getsemester();

Important We will make a polymorphism exercise later in the book, when we
cover the smart pointers. This is because we want to depart from the use of new
and delete and raw pointers.

143

CHAPTER 27

The static Specifier

The static specifier says the object will have a static storage duration. The memory
space for static objects is allocated when the program starts and deallocated when
the program ends. Only one instance of a static object exists in the program. If a local
variable is marked as static, the space for it is allocated the first time the program control
encounters its definition and deallocated when the program exits.

To define a local static variable inside a function we use:

#include <iostream>

void myfunction()

{
static int x = 0; // defined only the first time, skipped every other
// time
X++;
std::cout << x << "\n';
}
int main()
{
myfunction(); // x == 1
myfunction(); // x == 2
myfunction(); // x == 3
}

This variable is initialized the first time the program encounters this function. The
value of this variable is preserved across function calls. What does this mean? The last
changes we made to it stays. It will not get initialized to 0 for every function call, only the
first time.

This is convenient as we do not have to store the value inside some global variable x.

145
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_27

https://doi.org/10.1007/978-1-4842-6047-0_27#DOI

CHAPTER 27 THE STATIC SPECIFIER

We can define static class member fields. Static class members are not part of the
object. They live independently of an object of a class. We declare a static data member
inside the class and define it outside the class only once:

#include <iostream>

class MyClass

{
public:

static int x; // declare a static data member
};

int MyClass::x = 123; // define a static data member

int main()

{

MyClass::x = 456; // access a static data member

std::cout << "Static data member value is: " << MyClass::x;

Here we declared a static data member inside a class. Then we defined it outside the
class. When defining a static member outside the class, we do not need to use the static
specifier. Then, we access the data member by using the MyClass: :data_member name
notation.

To define a static member function, we prepend the function declaration with the
static keyword. The function definition outside the class does not use the static keyword:

#include <iostream>

class MyClass

{
public:

static void myfunction(); // declare a static member function
};

146

CHAPTER 27 THE STATIC SPECIFIER

// define a static member function
void MyClass::myfunction()

{
std::cout << "Hello World from a static member function.";
}
int main()
{
MyClass::myfunction(); // call a static member function
}

147

CHAPTER 28

Templates

Templates are mechanisms to support the so-called generic programming. Generic
broadly means we can define a function or a class without worrying about what types it
accepts.

We define those functions and classes using some generic type. And when we
instantiate them, we use a concrete type. So, we can use templates when we want to
define a class or a function that can accept almost any type.

We define a template by typing:

template <typename T>
// the rest of our function or class code

Which is the same as if we used:

template <class T>
// the rest of our function or class code

T here stands for a type name. Which type? Well, any type. Here T means, for all types T.
Let us create a function that can accept any type of argument:

#include <iostream>

template <typename T>
void myfunction(T param)

{
std::cout << "The value of a parameter is: " << param;
}
int main()
{
}

149
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_28

https://doi.org/10.1007/978-1-4842-6047-0_28#DOI

CHAPTER 28 TEMPLATES

To instantiate a function template, we call a function by supplying a specific type
name, surrounded by angle brackets:

#include <iostream>

template <typename T>
void myfunction(T param)

{
std::cout << "The value of a parameter is: " << param;
}
int main()
{
myfunction<int>(123);
myfunction<double>(123.456);
myfunction<char>('A");
}

We can think of T as a placeholder for a specific type, the one we supply when we
instantiate a template. So, in place of T, we now put our specific type. Neat, ha? This way,
we can utilize the same code for different types.

Templates can have more than one parameter. We simply list the template
parameters and separate them using a comma. Example of a function template that
accepts two template parameters:

#include <iostream>

template <typename T, typename U>
void myfunction(T t, U u)

{
std::cout << "The first parameter is: " << t << '\n';
std::cout << "The second parameter is: " << u << '\n';
}
int main()
{
int x = 123;
double d = 456.789;
myfunction<int, double>(x, d);
}

150

CHAPTER 28 TEMPLATES
To define a class template, we use:
#include <iostream>

template <typename T>
class MyClass {

private:
T x;
public:
MyClass(T xx)
:x{ xx }
{
}
T getvalue()
{
return x;
}
b
int main()
{

MyClass<int> o{ 123 };
std::cout << "The value of x is:

<< o.getvalue() << "\n';

MyClass<double> 02{ 456.789 };
std::cout << "The value of x is:

<< 02.getvalue() << "\n';

Here, we defined a simple class template. The class accepts types T. We use those
types wherever we find appropriate in our class. In our main function, we instantiate
those classes with concrete types int and double. Instead of having to write the same
code for two or more different types, we simply use a template.

151

CHAPTER 28 TEMPLATES

To define a class template member functions outside the class, we need to make
them templates themselves by prepending the member function definition with the
appropriate template declaration. In such definitions, a class name must be called with a
template argument. Simple example:

#include <iostream>

template <typename T>
class MyClass {
private:

T x;
public:

MyClass(T xx);
};

template <typename T>
MyClass<T>::MyClass(T xx)

¢ x{xx}
{
std::cout << "Constructor invoked. The value of x is: " << x << '\n';
}
int main()
{
MyClass<int> o{ 123 };
MyClass<double> 02{ 456.789 };
}

Let us make it simpler. If we had a class template with a single void member
function, we would write:

template <typename T>
class MyClass {
public:

void somefunction();

}s

template <typename T>
void MyClass<T>::somefunction()

152

CHAPTER 28 TEMPLATES

// the rest of the code

If we had a class template with a single member function of type T, we would use:

template <typename T>
class MyClass {
public:

T genericfunction();

};

template <typename T>
T MyClass<T>::genericfunction()

{
// the rest of the code

Now, if we had both of them in a single class and we want to define both of them
outside the class scope, we would use:

template <typename T>
class MyClass {
public:
void somefunction();
T genericfunction();

};

template <typename T>
void MyClass<T>::somefunction()

{
// the rest of the code

}

template <typename T>
T MyClass<T>::genericfunction()

{
// the rest of the code

153

CHAPTER 28 TEMPLATES

Template specialization

If we want our template to behave differently for a specific type, we provide the so-
called template specialization. In case the argument is of a certain type, we sometimes
want a different code. To do that, we prepend our function or a class with :

template <>
// the rest of our code

To specialize our template function for type int, we write:
#include <iostream>

template <typename T>
void myfunction(T arg)

{

std::cout << "The value of an argument is: " << arg << '\n';

}

template <>
// the rest of our code
void myfunction(int arg)

{
std::cout << "This is a specialization int. The value is: " << arg <<
"\n';
}
int main()
{
myfunction<char>('A");
myfunction<double>(345.678);
myfunction<int>(123); // invokes specialization
}

154

CHAPTER 29

Enumerations

Enumeration, or enum for short, is a type whose values are user-defined named
constants called enumerators.

There are two kinds of enums: the unscoped enums and scoped enums. The unscoped
enum type can be defined with:

enum MyEnum

{
myfirstvalue,
mysecondvalue,
mythirdvalue
b5

To declare a variable of enumeration type MyEnum we write:

enum MyEnum

{
myfirstvalue,
mysecondvalue,
mythirdvalue
}s
int main()
{
MyEnum myenum = myfirstvalue;
myenum = mysecondvalue; // we can change the value of our enum object
}

155
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_29

https://doi.org/10.1007/978-1-4842-6047-0_29#DOI

CHAPTER 29 ENUMERATIONS

Each enumerator has a value of underlying type. We can change those:

enum MyEnum

{
myfirstvalue = 10,
mysecondvalue,
mythirdvalue

};

These unscoped enums have their enumerators leak into an outside scope, the
scope in which the enum type itself is defined. Old enums are best avoided. Prefer
scoped enums to these old-school, unscoped enums. Scoped enums do not leak their
enumerators into an outer scope and are not implicitly convertible to other types. To
define a scoped enum, we write:

enum class MyEnum

{
myfirstvalue,
mysecondvalue,
mythirdvalue
1

To declare a variable of type enum class (scoped enum) we write:

enum class MyEnum

{
myfirstvalue,
mysecondvalue,
mythirdvalue
};
int main()
{
MyEnum myenum = MyEnum::myfirstvalue;
}

To access an enumerator value, we prepend the enumerator with the enum
name and a scope resolution operator :: such as M\yEnum: :myfirstvalue, MyEnum::
mysecondvalue, etc.

156

CHAPTER 29 ENUMERATIONS

With these enums, the enumerator names are defined only within the enum internal
scope and implicitly convert to underlying types. We can specify the underlying type for
scoped enum:

enum class MyCharEnum : char

{
myfirstvalue,
mysecondvalue,
mythirdvalue
}s

We can also change the initial underlying values of enumerators by specifying the

value:

enum class MyEnum

{
myfirstvalue = 15,
mysecondvalue,
mythirdvalue = 30
}s

Summary: prefer enum class enumerations (scoped enums) to old plain unscoped
enums. Use enumerations when our object is to have one value out of a set of predefined
named values.

157

CHAPTER 30

Exercises

30.1 Static variable

Write a program that checks how many times a function was called from the main
program. To do this, we will use a static variable inside a function which will be
incremented each time the function is called in main():

#include <iostream>

void myfunction()

{
static int counter = 0;
counter++;
std::cout << "The function is called " << counter << " time(s)." <<
‘\n';
}
int main()
{
myfunction();
myfunction();
for (int i = 0; i < 5; i++)
{
myfunction();
}
}

159
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_30

https://doi.org/10.1007/978-1-4842-6047-0_30#DOI

CHAPTER 30 EXERCISES

30.2 Static data member

Write a program that defines a class with one static data member of type std::string.
Make the data member public. Define the static data member outside the class. Change
the static data member value from the main() function:

#include <iostream>
#include <string>

class MyClass
{
public:
static std::string name;
b5

std::string MyClass::name = "John Doe";

int main()

{

std::cout << "Static data member value:
MyClass::name = "Jane Doe";
std::cout << "Static data member value:

<< MyClass::name << '\n';

<< MyClass::name << '\n';

30.3 Static member function

Write a program that defines a class with one static member function and one regular
member function. Make the functions public. Define both member functions outside the
class. Access both functions in the main():

#include <iostream>
#include <string>

class MyClass

{

public:
static void mystaticfunction();
void myfunction();

};

160

CHAPTER 30 EXERCISES

void MyClass::mystaticfunction()

{
std::cout << "Hello World from a static member function." << '\n';
}
void MyClass::myfunction()
{
std::cout << "Hello World from a regular member function." << '\n';
}
int main()
{
MyClass::mystaticfunction();
MyClass myobject;
myobject.myfunction();
}

30.4 Function Template

Write a program that defines a template for a function that sums two numbers. Numbers
are of the same generic type T and are passed to function as arguments. Instantiate the
function in main() using int and double types:

#include <iostream>

template <typename T>
T mysum(T x, Ty)

{
return x + y;
}
int main()
{
int intresult = mysum<int>(10, 20);
std::cout << "The integer sum result is: " << intresult << '\n';
double doubleresult = mysum<double>(123.456, 789.101);
std::cout << "The double sum result is: " << doubleresult << '\n';
}

161

CHAPTER 30 EXERCISES

30.5 Class Template

Write a program that defines a simple class template that has one data member of a

generic type, a constructor, a getter function of a generic type, and a setter member

function. Instantiate a class in the main() function for int and double types:

#include <iostream>

template <typename T>
class MyClass

{
private:
T x;
public:
MyClass(T xx)
:x{ xx }
{3
T getx() const
{
return x;
}
void setx(T ax)
{
X = ax;
}
};
int main()
{

MyClass<int> o{123};

std::cout << "The value of the data member is:

0.setx(456);

std::cout << "The value of the data member is:

MyClass<double> 02{ 4.25 };

std::cout << "The value of the data member is:

162

<< o.getx() << "\n';

<< o.getx() << "\n';

<< 02.getx() << "\n';

CHAPTER 30 EXERCISES

02.setx(6.28);
std::cout << "The value of the data member is:

<< 02.getx() << "\n';

30.6 Scoped Enums

Write a program that defines a scoped enum representing days of the week. Create an
object of that enum, assign it a value, check if the value is Monday, if it is, change the
object value to another enum value:

#include <iostream>

enum class Days

{
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Sunday

};

int main()
{
Days myday = Days::Monday;
std::cout << "The enum value is now Monday." <«

\n';

if (myday == Days::Monday)
{

myday = Days::Friday;
}

std::cout << "Nobody likes Mondays. The value is now Friday.";

163

CHAPTER 30 EXERCISES

30.7 Enums in a switch

Write a program that defines an enum. Create an object of that enum as use it in a switch
statement. Use the switch statement to print the value of an object:

#include <iostream>

enum class Colors

{
Red,
Green,
Blue
};
int main()
{
Colors mycolors = Colors::Green;
switch (mycolors)
{
case Colors::Red:
std::cout << "The color is Red." << "\n';
break;
case Colors::Green:
std::cout << "The color is Green." << '\n';
break;
case Colors::Blue:
std::cout << "The color is Blue." << '\n';
break;
default:
break;
}
}

164

CHAPTER 31

Organizing code

We can split our C++ code into multiple files. By convention, there are two kinds of files
into which we can store our C++ source: header files (headers) and source files.

31.1 Header and Source Files

Header files are source code files where we usually put various declarations. Header
files usually have the .. (or .hpp) extension. Source files are files where we can store our
definitions and the main program. They usually have the .cpp (or .cc) extension.

Then we include the header files into our source files using the #include
preprocessor directive. To include a standard library header, we use the #include
statement followed by a header name without an extension, enclosed in angle brackets
<headername>. Example:

#include <iostream>
#include <string>
// etc

To include user-defined header files, we use the #include statement, followed by a
full header name with extension enclosed in double-quotes. Example:

#include "myheader.h"
#include "otherheader.h"
// etc

The realistic scenario is that sometimes we need to include both standard-library
headers and user-defined headers:

#include <iostream>
#include "myheader.h"
// etc

165
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_31

https://doi.org/10.1007/978-1-4842-6047-0_31#DOI

CHAPTER 31 ORGANIZING CODE

The compiler stitches the code from the header file and the source file together and
produces what is called a translation unit. The compiler then uses this file to create an
object file. A linker then links object files together to create a program.

We should put the declarations and constants into header files and put definitions
and executable code in source files.

31.2 Header Guards

Multiple source files might include the same header file. To ensure that our header is
included only once in the compilation process, we use the mechanism called header
guards. It ensures that our header content is included only once in the compilation
process. We surround the code in our header file with the following macros:

#ifndef MY HEADER H
#define MY HEADER H

// header file source code
// goes here

#endif

This approach ensures the code inside a header file is included only once during the
compilation phase.

31.3 Namespaces

So far, we have seen how to group parts of our C++ code into separate files called headers
and source files. There is another way we can logically group parts of our C++, and that is
through namespaces. A namespace is a scope with a name. To declare a namespace, we
write:

namespace MyNameSpace

{
}

166

CHAPTER 31 ORGANIZING CODE
To declare objects in a namespace, we use:

namespace MyNameSpace

{
int x;
double d;

To refer to these objects outside the namespace, we use their fully qualified names.
This means we use the namespace_name::our_object notation. An example where we
define the objects outside the namespace they were declared in:

namespace MyNameSpace

{
int x;
double d;
}
int main()
{
MyNameSpace::x = 123;
MyNameSpace::d = 456.789;
}
To introduce an entire namespace into the current scope, we can use the using
-directive:

namespace MyNameSpace

{
int x;
double d;
}
using namespace MyNameSpace;
int main()
{
X = 123;
d = 456.789;
}

167

CHAPTER 31 ORGANIZING CODE

If we have several separate namespaces with the same name in our code, this means

we are extending that namespace. Example:

namespace MyNameSpace

{
int x;
double d;
}
namespace MyNameSpace
{
char c;
bool b;
}
int main()
{
MyNameSpace::x = 123;
MyNameSpace: :d = 456.789;
MyNameSpace::c = 'a’;
MyNameSpace::b = true;
}

We now have x, d, ¢, and b inside our MyNameSpace namespace. We are extending the
MyNameSpace, not redefining it.

A namespace can be spread across multiple files, both headers and source files. We
will often see production code wrapped into namespaces. It is an excellent mechanism
to group the code into namespaces logically.

Two namespaces with different names can hold an object with the same name. Since
every namespace is a different scope, they now declare two different unrelated objects
with the same name. It prevents name clashes:

#include <iostream>

namespace MyNameSpace

{

int x;

168

CHAPTER 31 ORGANIZING CODE

namespace MySecondNameSpace

{
int x;
}
int main()
{
MyNameSpace::x = 123;
MySecondNameSpace::x = 456;
std::cout << "1st x: " << MyNameSpace::x << ", 2nd x: " ««
MySecondNameSpace: :x;
}

169

CHAPTER 32

Exercises

32.1 Header and Source Files

Write a program that declares an arbitrary function in a header file. The header file is
called myheader.h Define this function inside the main program source file called source.
cpp. The main function is also located inside a source.cpp file. Include the header into our
source file and invoke the function.

myheader.h:

void myfunction(); //function declaration
source.cpp:

#include "myheader.h" //include the header
#include <iostream>

int main()
{

myfunction();
}

// function definition
void myfunction()

{
std::cout << "Hello World from multiple files.";

171
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_32

https://doi.org/10.1007/978-1-4842-6047-0_32#DOI

CHAPTER 32 EXERCISES

32.2 Multiple Source Files

Write a program that declares an arbitrary function in a header file. The header file is
called mylibrary.h Define a function inside the source file called mylibrary.cpp. The main
function is inside a second source file called source.cpp file. Include the header in both
source files and invoke the function.

mylibrary.h:

void myfunction(); //function declaration
mylibrary.cpp:

#include "mylibrary.h"
#include <iostream>

// function definition
void myfunction()

{
std::cout << "Hello World from multiple files.";

source.cpp:

#include "mylibrary.h"

int main()
{

myfunction();
}

Explanation:

This program has three files:

— Aheader file called mylibrary.h where we put our function
declaration.

— Asource file called mylibrary.cpp where we put our function definition.
We include the header file mylibrary.h into mylibrary.cpp source file.

— Asource file called source.cpp where the main program is. We also
include the mylibrary.h header file into this source file.

172

CHAPTER 32 EXERCISES

Since our header file is included in multiple source files, we should put header guard
macros into it. The mylibrary.h file now looks like:

#ifndef MY LIBRARY H
#define MY _LIBRARY H

void myfunction();
#endif // IMY_LIBRARY H

To compile a program that has multiple source files, with g++ we use:
g++ source.cpp mylibrary.cpp

Visual Studio IDE automatically handles the multiple file compilation.

32.3 Namespaces

Write a program that declares a function inside a namespace and defines the function
outside the namespace. Invoke the function in the main program. Namespace and
function names are arbitrary.

#include <iostream>

namespace MyNameSpace

{

void myfunction();
}
void MyNameSpace::myfunction()
{

std::cout << "Hello World from a function inside a namespace.";
}
int main()
{

MyNameSpace: :myfunction();
}

173

CHAPTER 32 EXERCISES

32.4 Nested Namespaces

Write a program that defines a namespace called A, and another namespace called B,
nested inside the namespace A. Declare a function inside a namespace B and define
the function outside both namespaces. Invoke the function in the main program. Then,
introduce the entire namespace B to the current scope and invoke the function.

#include <iostream>

namespace A

{
namespace B
{

void myfunction();

}

}

void A::B::myfunction()

{
std::cout << "Hello World from a function inside a nested namespace."
<< "\n';

}

int main()

{
A::B::myfunction();
using namespace A::B;
myfunction();

}

174

CHAPTER 33

Conversions

Types can be converted to other types. For example, built-in types can be converted to
other built-in types. Here we will discuss the implicit and explicit conversions.

33.1 Implicit Conversions

Some values can be implicitly converted into each other. This is true for all the built-in
types. We can convert char to int, int to double, etc. Example:

int main()
{
char mychar = 64;
int myint = 123;
double mydouble = 456.789;
bool myboolean = true;

myint = mychar;
mydouble = myint;
mychar = myboolean;

We can also implicitly convert double to int. However, some information is lost, and
the compiler will warn us about this. This is called narrowing conversions:

int main()
{
int myint = 123;
double mydouble = 456.789;

myint = mydouble; // the decimal part is lost

175
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_33

https://doi.org/10.1007/978-1-4842-6047-0_33#DOI

CHAPTER 33 CONVERSIONS

When smaller integer types such as char or short are used in arithmetic operations, they
get promoted/converted to integers. This is referred to as integral promotion. For example, if
we use two chars in an arithmetic operation, both get converted to an integer, and the whole
expression is of type int. This conversion happens only inside the arithmetic expression:

int main()

{
char c1 = 10;
char c2 = 20;

auto result = c1 + c2; // result is of type int

Any built-in type can be converted to boolean. For objects of those types, any value
other than 0, gets converted to a boolean value of true, and values equal to 0, implicitly
convert to a value of false. Example:

int main()
{
char mychar = 64;
int myint = 0;
double mydouble = 3.14;
bool myboolean = true;

myboolean = mychar; // true
myint; // false
mydouble; // true

myboolean
myboolean

Conversely, a boolean type can be converted to int. The value of true converts to
integer value 1 and the value of false converts to integer value of 0.

A pointer of any type can be converted to void* type. An example where we convert
an integer pointer to void pointer:

int main()

{
int x = 123;
int* pint = &x;
void* pvoid = pint;

176

CHAPTER 33 CONVERSIONS

While we can convert any data pointer to a void pointer, we can not dereference the
void pointer. To be able to access the object pointed to by a void pointer, we need to cast
the void pointer to some other pointer type first. To do that, we can use the explicit cast
function static_cast described in the next chapter:

#include <iostream>

int main()
{
int x = 123;
int* pint = &x;
void* pvoid = pint; // convert from int pointer
int* pint2 = static_cast<int*>(pvoid); // cast a void pointer to int
// pointer
std::cout << *pint2; // dereference a pointer

Arrays are implicitly convertible to pointers. When we assign an array name to the
pointer, the pointer points at the first element in an array. Example:

#include <iostream>

int main()

{
int arr[5] ={ 1, 2, 3, 4, 5 };
int* p = arr; // pointer to the first array element
std::cout << *p;

In this case, we have an implicit conversion of type int/] to type int*.

When used as function arguments, the array gets converted to a pointer. More
precisely, it gets converted to a pointer to the first element in an array. In such cases, the
array loses its dimension, and it is said it decays to a pointer. Example:

#include <iostream>

void myfunction(int arg[])

{

std::cout << arg;

177

CHAPTER 33 CONVERSIONS

int main()

{
int arr[5] = { 1, 2, 3, 4, 5 };
myfunction(arr);

Here, the arr argument gets converted to a pointer to the first element in an array.
Since arg is now a pointer, printing it outputs a pointer value similar to the 012FF6D8.
Not the value it points to To output the value it points to we need to dereference the
pointer:

#include <iostream>

void myfunction(int arg[])

{
std::cout << *arg;

}

int main()

{
int arr[5] = {1, 2, 3, 4, 5 };
myfunction(arr);

}

That being said, it is important to adopt the following: prefer std:vector and std::array

containers to raw arrays and pointers.

33.2 Explicit Conversions

We can explicitly convert the value of one type to another. Let us start with the static_
cast function. This function converts between implicitly convertible types. A signature
of the function is:

static_cast<type to _convert to>(value to convert from)

178

CHAPTER 33 CONVERSIONS
If we want to convert from a double to int we write:

int main()

{

auto myinteger = static_cast<int>(123.456);

Prefer this verbose function to implicit conversions, as the static_cast is the
idiomatic way of converting between convertible types. This function performs a
compile-time conversion.

The following explicit conversion functions should be used rarely and carefully.
They are dynamic_cast and reintepret cast. The dynamic_cast function converts
pointers of base class to pointers to derived class and vice versa up the inheritance
chain. Example:

#include <iostream>

class MyBaseClass {
public:
virtual ~MyBaseClass() {}
};
class MyDerivedClass : public MyBaseClass {};

int main()

{
MyBaseClass* base = new MyDerivedClass;
MyDerivedClass* derived = new MyDerivedClass;

// base to derived
if (dynamic_cast<MyDerivedClass*>(base))

{
std::cout << "OK.\n";
}
else
{
std::cout << "Not convertible.\n";
}

179

CHAPTER 33 CONVERSIONS

// derived to base
if (dynamic_cast<MyBaseClass*>(derived))

{
std::cout << "OK.\n";
}
else
{
std::cout << "Not convertible.\n";
}

delete base;
delete derived;

If the conversion succeeds, the result is a pointer to a base or derived class,
depending on our use-case. If the conversion cannot be done, the result is a pointer of
value nullptr.

To use this function, our class must be polymorphic, which means our base class
should have at least one virtual function. To try to convert some unrelated class to one of

our classes in the inheritance chain we would use:
#include <iostream>

class MyBaseClass {
public:
virtual ~MyBaseClass() {}
};
class MyDerivedClass : public MyBaseClass {};
class MyUnrelatedClass {};

int main()

{
MyBaseClass* base = new MyDerivedClass;
MyDerivedClass* derived = new MyDerivedClass;
MyUnrelatedClass* unrelated = new MyUnrelatedClass;

// base to derived
if (dynamic_cast<MyUnrelatedClass*>(base))

180

CHAPTER 33 CONVERSIONS

{
std::cout << "OK.\n";
}
else
{
std::cout << "Not convertible.\n";
}

// derived to base
if (dynamic_cast<MyUnrelatedClass*>(derived))

{
std::cout << "OK.\n";
}
else
{
std::cout << "Not convertible.\n";
}

delete base;
delete derived;
delete unrelated;

This would fail as the dynamic_cast can only convert between related classes inside
the inheritance chain. In reality, we would hardly ever have to use dynamic_cast in the
real world.

The third and most dangerous cast is reintrepret cast. This one is best avoided
as it does not offer guarantees of any kind. With that in mind, we will skip its description
and move on to the next chapter.

Important: the static_cast function is probably the only cast we will be using most
of the time.

181

CHAPTER 34

Exceptions

If an error occurs in our program, we want to be able to handle it in some way. One way

to do this is through exceptions. Exceptions are mechanisms where we try to execute

some code in the try{} block, and if an error occurs, an exception is thrown. The control

is then transferred to a catch clause, which handles that exception. A structure of a try/

catch block would be:

int main()
{
try
{
// your code here
// throw an exception if there is an error

}
catch (type of the exception e)
{
// catch and handle the exception
}

A simple try/catch example would be:

#include <iostream>

int main()
{

try

{

std::cout << "Let's assume some error occurred in our
program.” << '\n';

© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_34

183

https://doi.org/10.1007/978-1-4842-6047-0_34#DOI

CHAPTER 34 EXCEPTIONS

std::cout << "We throw an exception of type int, for
example." << '\n';
std::cout << "This signals that something went wrong." << '\n';

throw 123; // throw an exception if there is an error
}
catch (int e)
{
// catch and handle the exception
std::cout << "Exception raised!." << '\n';
std::cout << "The exception has a value of " << e << '\n';
}

Explanation: here we try to execute code inside the try block. If an error occurs,
we throw an exception that signals something went wrong. The exception in our case
is of type int, but it can be of any type. When the exception is thrown, the control is
transferred to a catch clause, which handles the exception. In our case, it handles the
exception of type int.

We can throw an exception of a different type, std: : string for example:

#include <iostream>
#include <string>

int main()
{

try

{

std::cout << "Let's assume some error occured in our program."

<< '\n';

std::cout << "We throw an exception of type string, for example."
<< '"\n';

std::cout << "This signals that something went wrong." << '\n';

throw std::string{ "Some string error" }; // throw an exception
// if there is an error

}

catch (const std::stringd e)

{

184

CHAPTER 34 EXCEPTIONS

// catch and handle the exception
std::cout << "String exception raised!." << '\n';

std::cout << "The exception has a value of: " << e << "\n';

We can have/raise multiple exceptions. They can be of different types. In this case, we
have one try and multiple catch blocks. Each catch block handles a different exception.

#include <iostream>
#include <string>

int main()
{
try
{
throw 123;

// the following will not execute as
// the control has been transferred to a catch clause
throw std::string{ "Some string error" };

}
catch (int e)
{
std::cout << "Integer exception raised! The value is " << e << '\n';
}
catch (const std::stringd e)
{
// catch and handle the exception
std::cout << "String exception raised!." << '\n';
std::cout << "The exception has a value of: " << e << "\n';
}

Here we throw multiple exceptions in the try block. The first is of type int, and the
second is of std: : string type. The moment the first exception is thrown, the control of
the program is transferred to a catch clause. This means that the remainder of the code
inside the try block will not be executed.

185

CHAPTER 34 EXCEPTIONS
A more realistic scenario would be:

#include <iostream>
#include <string>

int main()
{

try

{

bool someflag = true;
bool someotherflag = true;

std::cout << "We can have multiple throw exceptions." << '\n';

if (someflag)

{
std::cout << "Throwing an int exception." << '\n';
throw 123;
}
if(someotherflag)
{
std::cout << "Throwing a string exception.” << '\n';
throw std::string{ "Some string error" };
}
}
catch (int e)
{
// catch and handle the exception
std::cout << "Integer exception raised!." << '\n';
std::cout << "The exception has a value of: " << e << '"\n';
}
catch (const std::stringd e)
{
// catch and handle the exception
std::cout << "String exception raised!." << '\n';
std::cout << "The exception has a value of: " << e << "\n';
}

186

CHAPTER 34 EXCEPTIONS

Here we throw multiple exceptions inside the try block. They depend on some if
conditions for illustrative purposes. When a first exception is encountered, the control is
transferred to an appropriate catch clause.

187

CHAPTER 35

Smart Pointers

Smart pointers are pointers that own the object they point to and automatically destroy
the object they point to and deallocate the memory once the pointers go out of scope.
This way, we do not have to manually delete the object like it was the case with the new
and delete operators.

Smart pointers are declared in the <memory> header. We will cover the following
smart pointers - unique and shared.

35.1 Unique Pointer

A unique pointer called std: :unique ptr is a pointer that owns an object it points
to. The pointer can not be copied. Unique pointer deletes the object and deallocates
memory for it, once it goes out of scope. To declare a unique pointer to a simple int
object, we write:

#include <iostream>
#include <memory>

int main()

{
std::unique_ptr<int> p(new int{ 123 });
std::cout << *p;

This example creates a pointer to an object of type int and assigns a value of 123 to
the object. A unique pointer can be dereferenced in the same way we as a regular pointer
using the *p notation. The object gets deleted once p goes out of scope, which in this
case, is at the closing brace }. No explicit use of delete operator is required.

189
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_35

https://doi.org/10.1007/978-1-4842-6047-0_35#DOI

CHAPTER 35 SMART POINTERS

A better way to initialize a unique pointer is through an std: :make_unique<some_
type>(some_value) function, where we specify the type for the object in angle brackets
and the value for the object pointer points at in parentheses:

#include <iostream>
#include <memory>

int main()

{
std::unique_ptr<int> p = std::make_unique<int>(123);
std::cout << *p;

The std: :make_unique function was introduced in the C++14 standard. Make sure to
compile with the -std=c++14 flag to be able to use this function.

We can create a unique pointer that points to an object of a class and then use its ->
operator to access object members:

#include <iostream>
#include <memory>

class MyClass

{
public:
void printmessage()
{
std::cout << "Hello from a class.";
}
};
int main()
{
std::unique_ptr<MyClass> p = std::make_unique<MyClass>();
p->printmessage();
}

The object gets destroyed once p goes out of scope. So, prefer a unique pointer to
raw pointer and their new-delete mechanism. Once p goes out of scope, the pointed-to
object of a class gets destroyed.

190

CHAPTER 35 SMART POINTERS
We can utilize polymorphic classes using a unique pointer:

#include <iostream>
#include <memory>

class MyBaseClass

{
public:
virtual void printmessage()
{
std::cout << "Hello from a base class.";
}
}s
class MyderivedClass: public MyBaseClass
{
public:
void printmessage()
{
std::cout << "Hello from a derived class.";
}
};
int main()
{
std::unique_ptr<MyBaseClass> p = std::make unique<MyderivedClass>();
p->printmessage();
}

Neat ha? No need to explicitly delete the allocated memory, the smart pointer does it
for us. Hence the smart part.

35.2 Shared Pointer

We can have multiple pointers point to a single object. We can say that all of them own
our pointed-to object, that is, our object has shared ownership. And only when last of
those pointers get destroyed, our pointed to object gets deleted. This is what a shared

191

CHAPTER 35 SMART POINTERS

pointer is for. Multiple pointers pointing to a single object, and when all of them get out
of scope, the object gets destroyed.

Shared pointer is defined as std: : shared ptr<some_type>. It can be initialized
using the std: :make_shared<some_type>(some_value) function. Shared pointers can be
copied. To have three shared pointers pointing at the same object we can write:

#include <iostream>
#include <memory>

int main()

{

std::shared ptr<int> p1 = std::make_shared<int>(123);

p1;
p1;

std::shared ptr<int> p2
std::shared ptr<int> p3

When all pointers get out of scope, the pointed-to object gets destroyed, and the
memory for it gets deallocated.
The main differences between unique and shared pointers are:

— With unique pointers, we have one pointer pointing at and owning a
single object, whereas with shared pointers we have multiple point-
ers pointing at and owning a single object.

— Unique pointers can not be copied, whereas shared pointers can.

If you wonder which one to use, let us say that 90% of the time, you will be using the
unique pointer. Shared pointers can be used to represent data structures such as graphs.

Smart pointers are class templates themselves, meaning they have member
functions. We will just briefly mention they can also accept custom deleters, a code that
gets executed when they get out of scope.

Notice that with smart pointers, we do not need to specify the <some_type*>, we just
need to specify the <some_type>.

Important!

Prefer smart pointers to raw pointers. With smart pointers, we do not have to worry
if we properly matched calls to new with calls to delete as we do not need them. We let
the smart pointer do all the heavy lifting.

192

CHAPTER 36

Exercises

36.1 static_cast Conversion

Write a program that uses a static_cast function to convert between fundamental types.

#include <iostream>

int main()

{

int x = 123;
double d = 456.789;
bool b = true;

double doubleresult = static_cast<double>(x);
std::cout << "Int to double: " << doubleresult << '\n';

int intresult = static_cast<int>(d); // double to int
std::cout << "Double to int: " << intresult << '\n';

bool boolresult = static cast<bool>(x); // int to bool
std::cout << "Int to bool: " << boolresult << '\n';

193

© Slobodan Dmitrovi¢ 2020
S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_36

https://doi.org/10.1007/978-1-4842-6047-0_36#DOI

CHAPTER 36 EXERCISES

36.2 A Simple Unique Pointer:

Write a program that defines a unique pointer to an integer value. Use the std::make_
unique function to create a pointer.

#include <iostream>
#include <memory>

int main()
{
std::unique_ptr<int> p = std::make_unique<int>(123);

std::cout << "The value of a pointed-to object is: " << *p << '\n';

36.3 Unique Pointer to an Object of a Class

Write a program that defines a class with two data members, a user-defined constructor,
and one member function. Create a unique pointer to an object of a class. Use the smart
pointer to access the member function.

#include <iostream>
#include <memory>

class MyClass

{
private:
int x;
double d;
public:
MyClass(int xx, double dd)
:x{ xx }, d{ dd }
{}
void printdata()
{
std::cout << "Data members values are: " << x << " and: " << d;
}
}s

194

CHAPTER 36 EXERCISES

int main()

{
std::unique ptr<MyClass> p = std::make _unique<MyClass>(123, 456.789);
p->printdata();

36.4 Shared Pointers Exercise

Write a program that defines three shared pointers pointing at the same object of type
int. Create the first pointer through an std::make_shared function. Create the remaining
pointers by copying the first pointer. Access the pointed-to object through all the
pointers.

#include <iostream>
#include <memory>

int main()

{

std: :make_shared<int>(123);
p1;
p1;

std::shared ptr<int> p1
std::shared ptr<int> p2
std::shared ptr<int> p3

std::cout << "Value accessed through a first pointer:
std::cout << "Value accessed through a second pointer:
std::cout << "Value accessed through a third pointer:

<< *pl << "\n';
<< *p2 << "\n';
<< *p3 << "\n';

36.5 Simple Polymorphism

Write a program that defines a base class with a pure virtual member function. Create

a derived class that overrides a virtual function in the base class. Create a polymorphic
object of a derived class through a unique pointer to a base class. Invoke the overridden
member function through a unique pointer.

195

CHAPTER 36 EXERCISES

#include <iostream>
#include <memory>

class BaseClass

{
public:
virtual void dowork() = 0;
virtual ~BaseClass() {}
};
class DerivedClass : public BaseClass
{
public:
void dowork() override
{
std::cout << "Do work from a DerivedClass." << '\n';
}
}s
int main()
{

std::unique_ptr<BaseClass> p = std::make_unique<DerivedClass>();
p->dowork();
} // p1 goes out of scope here

Here the override specifier explicitly states that the dowork() function in the derived
class overrides the virtual function in the base class.

Here we used the unique pointer to create and automatically destroy the object and
deallocate the memory one the pointer goes out of scope in the main() function.

36.6 Polymorphism Il

Write a program that defines a base class with a pure virtual member function. Derive
two classes from the base class and override the virtual function behavior. Create two
unique pointers of base class type to objects of these derived classes. Use the pointers to
invoke the proper polymorphic behavior.

196

CHAPTER 36 EXERCISES

#include <iostream>
#include <memory>

class BaseClass

{
public:
virtual void dowork() = 0;
virtual ~BaseClass() {}
b
class DerivedClass : public BaseClass
{
public:
void dowork() override
{
std::cout << "Do work from a DerivedClass." << '\n';
}
};
class SecondDerivedClass : public BaseClass
{
public:
void dowork() override
{
std::cout << "Do work from a SecondDerivedClass." << '\n';
}
};
int main()
{

std::unique_ptr<BaseClass> p = std::make_unique<DerivedClass>();
p->dowork();

std::unique_ptr<BaseClass> p2 = std::make_unique<SecondDerivedClass>();
p2->dowork();
} // p1 and p2 go out of scope here

197

CHAPTER 36 EXERCISES

36.7 Exception Handling

Write a program that throws and catches an integer exception. Handle the exception and
print its value:

#include <iostream>

int main()
{
try
{
std::cout << "Throwing an integer exception with value of 123..."
<< '"\n';
int x = 123;
throw x;
}
catch (int ex)
{
std::cout << "An integer exception of value: " << ex << " caught
and handled." << '"\n';
}

36.8 Multiple Exceptions

Write a program that can throw integer and double exceptions in the same try block.
Implement the exception handling blocks for both exceptions.

#include <iostream>

int main()
{
try
{
std::cout << "Throwing an int exception..." << "\n';
throw 123;

198

CHAPTER 36 EXERCISES

std::cout << "Throwing a double exception...” << '\n';
throw 456.789;

}

catch (int ex)

{
std::cout << "Integer exception: " << ex << " caught and handled."
<< '\n';

}

catch (double ex)

{
std::cout << "Double exception: " << ex << " caught and handled."
<< '"\n';

}

199

CHAPTER 37

Input/Output Streams

We can convert our objects to streams of bytes. We can also convert streams of bytes
back to objects. The I/0O stream library provides such functionality.

Streams can be output streams and input streams.

Remember the std::cout and std::cin? Those are also streams. For example, the
std::cout is an output stream. It takes whatever objects we supply to it and converts them
to a byte stream, which then goes to our monitor. Conversely, std::cin is an input stream.
It takes the input from the keyboard and converts that input to our objects.

There are different kinds of I/O streams, and here we will explain two kinds: file
streams and string streams.

37.1 File Streams

We can read from a file, and we can write to a file. The standard-library offers such
functionality via file streams. Those files streams are defined inside the <fstream>
header, and they are:

a. std::ifstream-read from a file
b. std::ofstream - write to a file
c. std::fstream- read from and write to a file

The std: : fstream can both read from and write to a file, so let us use that one. To
create an std: : fstream object we use:

#include <fstream>

int main()

{
std::fstream fs{ "myfile.txt" };

201
© Slobodan Dmitrovi¢ 2020

S. Dmitrovié, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_37

https://doi.org/10.1007/978-1-4842-6047-0_37#DOI

CHAPTER 37 INPUT/OUTPUT STREAMS

This example creates a file stream called fs and associates it with a file name
myfile.txt on our disk. To read from such file, line-by-line, we use:

#include <iostream>
#include <fstream>
#include <string>

int main()
{
std::fstream fs{ "myfile.txt" };
std::string s;
while (fs)
{
std::getline(fs, s); // read each line into a string
std::cout << s << '\n';

Once associated with a file name, we use our file stream to read each line of text from
and print it out on a screen. To do that, we declare a string variable s which will hold our
read line of text. Inside the while-loop, we read a line from a file to a string. This is why
the std: :getline function accepts a file stream and a string as arguments. Once read,
we output the text line on a screen. The while loop terminates once we reach the end of
the file.

To read from a file, one character at the time we can use file stream’s >> operator:

#include <iostream>
#include <fstream>

int main()
{
std::fstream fs{ "myfile.txt" };
char c;
while (fs >> ¢)
{

std::cout << c;

202

CHAPTER 37 INPUT/OUTPUT STREAMS

This example reads the file contents one character at the time into our char
variable. By default, this skips the reading of white spaces. To rectify this, we add the
std: :noskipws manipulator to the above example:

#include <iostream>
#include <fstream>

int main()

{
std::fstream fs{ "myfile.txt" };
char c;
while (fs >> std::noskipws >> c)
{

std::cout << c;

To write to a file, we use file stream << operator:
#include <fstream>

int main()
{
std::fstream fs{ "myoutputfile.txt", std::ios::out };
fs << "First line of text." << '\n';
fs << "Second line of text" << '\n';
fs << "Third line of text" << '\n';

We associate an fs object with an output file name and provide an additional
std::ios::out flag which opens a file for writing and overwrites any existing
myoutputfile.txt file. Then we output our text to a file stream using the << operator.

203

CHAPTER 37 INPUT/OUTPUT STREAMS

To append text to an existing file, we include the std: :10s: :app flag inside the file
stream constructor:

#include <fstream>

int main()

{
std::fstream fs{ "myoutputfile.txt", std::ios::app };
fs << "This is appended text" << '\n';
fs << "This is also an appended text." << '\n';

We can also output strings to our file using the file stream’s << operator:

#include <iostream>
#include <fstream>
#include <string>

int main()
{
std::fstream fs{ "myoutputfile.txt", std::ios::out };
std::string s1 = "The first string.\n";
std::string s2 = "The second string.\n";
fs << s1 << s2;

37.2 String Streams

Similarly, there is a stream that allows us to read from and write to a string. It is defined
inside the <sstream> header, and there are three different string streams:

a. std::stringstream - the stream to read from a string
b. std::otringstream - the stream to write to a string

c. std::stringstream - the stream to both read from and write to a
string

204

CHAPTER 37 INPUT/OUTPUT STREAMS

We will describe the std: :stringstream class template as it can both read from and
write to a string. To create a simple string stream, we use:

#include <sstream>

int main()

{

std::stringstream ss;

This example creates a simple string stream using a default constructor. To create a
string stream and initialize it with a string literal, we use:

#include <iostream>
#include <sstream>

int main()

{
std::stringstream ss{ "Hello world." };
std::cout << ss.str();

Here we created a string stream and initialized it with a string literal in a constructor.
Then we used the string stream’s . str () member function to print the content of the
stream. The . str() member function gets the string representation of the stream. To
initialize a string stream with a string we use:

#include <iostream>
#include <sstream>

int main()

{

std::stringstream ss;
ss << "Hello World.";
std::cout << ss.str();

205

CHAPTER 37 INPUT/OUTPUT STREAMS

We use the string stream’s member function .str () to assign the string stream’s
content to a string variable:

#include <iostream>
#include <string>
#include <sstream>

int main()

{
std::stringstream ss{ "Hello World from a string stream." };
std::string s = ss.str();
std::cout << s;

To insert data into a string stream, we use the formatted output operator <<:

#include <iostream>
#include <string>
#include <sstream>

int main()

{
std::string s = "Hello World.";
std::stringstream ss{ s };
std::cout << ss.str();

We can also insert values of fundamental types into a string stream using the
formatted output operator <<:

#include <iostream>
#include <sstream>

int main()
{
char c = 'A";
int x = 123;
double d = 456.78;
std::stringstream ss;

206

CHAPTER 37 INPUT/OUTPUT STREAMS

SS << C << X << d;
std::cout << ss.str();

To make the output more readable, we can insert text between the variables:

#include <iostream>
#include <sstream>

int main()
{
char c = 'A";
int x = 123;
double d = 456.78;
std::stringstream ss;

ss << "The char is: " << c << ", int is: "<< x ««

and double is:
std::cout << ss.str();

To output data from a stream into an object, we use the >> operator:

#include <iostream>
#include <sstream>
#include <string>

int main()

{
std::string s = "A 123 456.78";
std::stringstream ss{ s };

char c;

int x;

double d;

SS >> C > X > d;

std:icout << c <« " "« x << " P wdke '

This example reads/outputs data from a string stream into our variables. String

< d;

streams are useful for formatted input/output and when we want to convert from built-in

types to a string and from a string to built-in types.

207

CHAPTER 38

C++ Standard Library
and Friends

C++ language is accompanied by a library called the C++ Standard Library. Itis a
collection of containers and useful functions that we access by including the proper
header file. The containers and functions inside the C++ standard library are defined in
the std namespace. Remember the std::string type mentioned earlier? It is also a part of
the standard library. The standard library is implemented through class templates. Long
story short: prefer using the standard-library to user-provided libraries for everyday
tasks.

Some functionalities explained in this chapter, such as range-based for loop and
lambda expressions are part of the language itself, not the standard-library. The reason
we put them here is they are mostly used in conjunction with standard-library facilities.

38.1 Containers

A container is a place where we store our objects. There are different categories of
containers, here we mention the two:

— Sequence containers
— Associative containers

Sequential containers store objects in a sequence, one next to the other in memory.

209
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_38

https://doi.org/10.1007/978-1-4842-6047-0_38#DOI

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

38.1.1 std::vector

Vector is a container defined in <vector> header. A vector is a sequence of contiguous
elements. Of what type, you may ask? Of any type. A vector and all other containers are
implemented as class templates allowing for storage of (almost) any type. To define a
vector, we use the following: std: :vector<some_type>. A simple example of initializing
a vector of 5 integers:

#include <vector>

int main()

{

std::vector<int> v = { 1, 2, 3, 4, 5 };

Here, we defined a vector, called v, of 5 integer elements, and we initialized a vector
using the brace initialization. Vector can grow and shrink on its own as we insert and
delete elements into and from a vector. To insert an element at the end of the vector, we
use the vector's .push_back() member function. Example:

#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
v.push_back(10);

This example inserts a value of 10 at the end of our vector. Now we have a container
of 6 elements: 1 2345 10.

Vector elements are indexed, the first element has an index of 0. Individual elements
can be accessed via the subscript operator [element_index] or a member function
at(element_index):

210

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
std::cout << "The third element is:" << v[2] << "\n';
std::cout << "The fourth element is:" << v.at(3) << "\n';

Vector’s size as a number of elements, can be obtained through a .size() member
function:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };

std::cout << "The vector's size is: " << v.size();

A vector is a sequential container. It stores elements in a sequence. Other sequential
containers are:

a. std::list - A doubly linked list
b. std::forward list - A singly linked list
c. std::deque - A double-ended queue

So, which one to use? When in doubt, use a std::vector. Each of these containers
has different insertions and lookup times, and each one serves a different purpose.
Nevertheless, as far as sequence containers go, the std: :vector is the container we want
to be using most of the time.

211

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

38.1.2 std::array

The std::array is a thin wrapper around a C-style array. Arrays get converted to pointers
when used as function arguments, and we should prefer std::array wrapper to old C-style
arrays. The std::array is of the following signature: std::array<type_name, array_size>; A
simple example:

#include <iostream>
#include <array>

int main()

{
std::array<int, 5> arr = { 1, 2, 3, 4, 5 };
for (auto el : arr)

{

std::cout << el << '\n';

This example creates an array of 5 elements using a std::array container and prints
them out. Let us emphasizes this once again: prefer std::array or std::vector to old/raw
C-style arrays.

38.1.3 std::set

Setis a container that holds unique, sorted objects. It is a binary tree of sorted objects. To
use a set, we must include the <set> header. To define a set we use the std: :set<type>
set_name syntax. To initialize a set of 5 integers, we can write:

#include <iostream>
#include <set>

int main()

{
std::set<int> myset = { 1, 2, 3, 4, 5 };
for (auto el : myset)

{

212

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

std::cout << el << '\n';

To insert an element into a set, we use the set’s . insert(value) member function.
To insert two new elements, we use:

#include <iostream>
#include <set>

int main()
{
std::set<int> myset = { 1, 2, 3, 4, 5 };
myset.insert(10);
myset.insert(42);
for (auto el : myset)

std::cout << el << "\n';

Since the set holds unique values, the attempt to insert duplicate values will not
succeed.

38.1.4 std::map

The map is an associative container that holds key-value pairs. Keys are sorted and
unique. A map is also implemented as a balanced binary tree/graph. So now, instead
of one value per element, we have two. To use a map, we need to include the header. To
define a map, we use the std: :map<typel, type2> map_name syntax. Here the typel
represents the type of the key, and type2 represents the type of a value. To initialize a
map of int char pairs, for example, we can write:

#include <map>

int main()

{
std::map<int, char> mymap = { {1, 'a'}, {2, 'b'}, {3,'2'} };

213

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

In this example, integers are keys, and the characters are the values. Every map
element is a pair. The pair’s first element (the key) is accessed through a first() member
variable, the second element (the value) is accessed through a second member funetion

variable. To print out our map, we can use:

#include <iostream>
#include <map>

int main()

{
std::map<int, char> mymap = { {1, 'a'}, {2, 'b'}, {3,'2z'} };
for (auto el : mymap)
{

std::cout << el.first << ' ' << el.second << '\n’';

We can also construct a map through its default constructor and some help from its
key subscript operator []. If the key accessed through a subscript operator does not exist,
the entire key-value pair gets inserted into a map. Example:

#include <iostream>
#include <map>

int main()
{
std::map<int, char> mymap;
mymap[1] = 'a';
mymap[2] = 'b";
mymap[3] = 'z';
for (auto el : mymap)
{
std::cout << el.first << ' ' << el.second << '\n';
}

214

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS
To insert into a map, we can use the .insert() member function:

#include <iostream>
#include <map>

int main()

{
std::map<int, char> mymap = { {1, 'a'}, {2, 'b'}, {3,'z'} };
mymap.insert({ 20, 'c' });

for (auto el : mymap)
{

std::cout << el.first << ' ' << el.second << '\n';

To search for a specific key inside a map, we can use the map’s . find(key value)
member function, which returns an iterator. If the key was not found, this function
returns an iterator with the value of .end(). If the key was found, the function returns the
iterator pointing at the pair containing the searched-for key:

#include <iostream>
#include <map>

int main()

{
std::map<int, char> mymap = { {1, 'a'}, {2, 'b'}, {3,'z'} };
auto it = mymap.find(2);
if (it != mymap.end())

{
std::cout << "Found: " << it->first << " " << it->second << '\n’;
}
else
{
std::cout << "Not found.";
}

215

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

Iterator now points at a map element. Map elements are pairs that consist of the first
element - the key and the second element - the value. To access these using an iterator,
first we must dereference an iterator using the arrow operator ->. Then we call the pair’s
first member variable for a key and second for a value.

38.1.5 std::pair

The std::pair class template is a wrapper that can represent a pair of values. To use the
std::pair, we need to include the <utility> header. To access the first value in a pair, we

use the .first member variable. To access the second value in a pair, we use the .second
member variable. Example:

#include <iostream>
#include <utility>

int main()

{
std::pair<int, double> mypair = { 123, 3.14 };
std::cout << "The first element is: " << mypair.first << '\n';
std::cout << "The second element is: " << mypair.second << '\n';

Another way to create a pair is through a std::make_pair function:

#include <iostream>
#include <utility>

int main()

{
int x = 123;
double d = 3.14;

std::pair<int, double> mypair = std::make pair(x, d);
std::cout << "The first element is: " << mypair.first << '\n';
std::cout << "The second element is: " << mypair.second << '\n';

216

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

38.1.6 Other Containers

There are other, less used containers in the standard library as well. We will mention a
few of them:

a. std::forward_list - a singly linked list
b. std:list - a doubly linked list

c. std::deque - a double ended container that allows insertion and
deletion at both ends

38.2 The Range-Based for Loop

Now is an excellent time to introduce the range-based for loop, which allows us to
iterate over the container/range content. The range-based for loop is of the following
syntax:

for (some_type element_name : container name)

{
}

We read it as: for each element_name of some_type inside the container_name (do
something inside the code block {}). To iterate over the elements of a vector, we can use:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
v.push_back(10);

for (int el : v)
{

std::cout << el << '\n';

217

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

The el name represents a copy of each of the vector’s elements. If we want to operate
on the actual vector elements, we use a reference type:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
v.push_back(10);

for (int& el : v)
{

std::cout << el << '\n';

Now, el is the actual vector element, so any changes we do on el will be the changes
to actual vector elements.
We can also use the auto specifier and let the compiler deduce the type of the

elements in the container:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
v.push _back(10);

for (auto el : v)

{

std::cout << el << '\n';

To iterate over a vector of strings, we would use a const autod specifier, as we should
pass strings via const reference for performance reasons:

218

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

#include <iostream>
#include <vector>
#include <string>

int main()

{

std::vector<std::string> v = { "Hello", "World,", "C++"};
v.push_back("Is great!");

for (const auto& el : v)

{

std::cout << el << "\n';

38.3 Iterators

Containers have iterators. Iterators are like pointers to container elements. Iterator
pointing at the first element of a vector is expressed through a .begin() member
function. Iterator pointing at the (not the last but) one past the last element is expressed
through a .end() member function. Iterators can be incremented or decremented. Let
us print a vector content using iterators:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
for (auto it = v.begin(); it!=v.end(); it++)

{

std::cout << *it << '"\n';

219

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

As long as our vector’s iterator it is not equal to v.end(), we continue iterating
through a vector. When a current iterator it becomes equal to v.end(), the for-loop
terminates. v.end() is a signal that the end of the container (not the last element, it is one
past last) has been reached. One learns to appreciate the ease of use of range-based for
loops instead of this old-school iterator usage in a for-loop.

Now that we know about iterators, we can use them to erase elements from a vector.
Let us say we want to erase the third element. We position the iterator to a third element
and use the .erase(iterator name) member function:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
auto it = v.begin() + 3;
v.erase(it);

for (auto el : v)

{

std::cout << el << "\n';

We also mentioned another group of containers called associative containers. These
containers are implemented as binary trees. They allow for quick search times, and the
data in these containers is sorted. These associative containers are std::set and std::map.
Set holds unique values. Map holds pairs of key-value elements. Maps hold unique
keys. Please note that there is also another group of associative containers that allow for
duplicate values. They are std::multi_set and std::multi_map.

38.4 Algorithms and Utilities

C++ standard library provides a set of useful functions located in the <algorithm>
header. These functions allow us to perform various operations on our containers.

220

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

38.4.1 std::sort

For example, if we want to sort our container, we can use the std: : sort function. To sort

our vector in ascending order, we use:

#include <iostream>
#include <vector>
#include <algorithm>

int main()

{
std::vector<int> v = { 1, 5, 2, 15, 3, 10 };
std::sort(v.begin(), v.end());

for (auto el : v)

{

std::cout << el << "\n';

The std: : sort function sorts a range of elements. It accepts arguments representing
the start and the end of the range (one past the end of the range, to be exact). Here we
passed in the entire vector’s range, where v.begin() represents the beginning and
v.end() represents one past the end of the range.

To sort a container in descending order, we pass in an additional argument called
a comparator. There is a built-in comparator called std: :greater, which does the
comparisons using the operator > and allows the std::sort function to sort the data in
ascending order. Example:

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>

int main()

{
std::vector<int> v = { 1, 5, 2, 15, 3, 10 };
std::sort(v.begin(), v.end(), std::greater<int>());

221

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

for (auto el : v)

{

std::cout << el << '\n';

Comparator or a comparison function is a so-called function object defined inside
the <functional> header. We can define our custom function object via the so-called
unnamed functions called lambda functions or lambdas. More on this later in the book.

The third parameter of the std: : sort function is often called a predicate. A predicate
is a function or a function object returning true or false. Standard-library functions
such as the std::sort accept predicates as one of their arguments. Yes, it is a lot of text
and theory, but do not worry about it for the moment. Just remember there are built-in
functions in the standard library, and learning how to use them is the catch. It will all
become clear through examples.

38.4.2 std::find

To find a certain element by value and return an iterator pointing at that element, we use
the std::find function. To search for a value of 5 in our vector, we use:

#include <iostream>
#include <vector>
#include <algorithm>

int main()

{
std::vector<int> v = { 1, 5, 2, 15, 3, 10 };
auto result = std::find(v.begin(), v.end(), 5);

if (result!=v.end())
{

std::cout << "Element found: " << *result;

}

else

{

222

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

std::cout << "Element not found.";

If the element is found, the function returns an iterator pointing at the first found
element in the container. If the value is not found the function returns an .end() iterator.
Instead of using container’s .begin() and .end() member functions, we can also
use a freestanding std: :begin(container name) and std::end(container name)

functions:

#include <iostream>
#include <vector>

#include <algorithm>
#include <iterator>

int main()

{
std::vector<int> v = { 1, 5, 2, 15, 3, 10 };
auto result = std::find(std::begin(v), std::end(v), 5);

if (result!=std::end(v))

{
std::cout << "Element found: " << *result;
}
else
{
std::cout << "Element not found.";
}

There is also a conditional std: : find_if function which accepts a predicate.
Depending on the predicate value, the function performs a search on elements for which
the predicate returns true. More on this when we discuss lambda-expressions in later
chapters.

223

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

38.4.3 std::copy

The std::copy function copies the elements from one container to another. It can copy
arange of elements marked with [starting poisition_iterator, ending_position_iterator)
from the starting container to a specific position marked with (destination_position_
iterator) in the destination container. The function is declared inside the <algorithm>
header. Before we copy the elements, we need to reserve enough space in the destination
vector by supplying the size to a vector’s constructor. Example:

#include <iostream>
#include <vector>
#include <algorithm>

int main()
{
std::vector<int> copy from v = { 1, 2, 3, 4, 5 };
std::vector<int> copy to v(5); // reserve the space for 5 elements

std: :copy(copy from v.begin(), copy from v.end(), copy to v.begin());

for (auto el : copy to v)
{

std::cout << el << '\n';

Explanation: we define a source vector called copy_from_v and initialize it with
some values. Then we define a copy_to_v destination vector and reserve enough space
for it to hold 5 elements by supplying the number 5 to its constructor. Then we copy
all the elements from the beginning to an end of a source vector to the (beginning of)
destination vector.

To copy only the first 3 elements, we would use the appropriate range marked with
copy_from_v.begin() and copy_from_v.begin() + 3. And we only need to reserve the space
for 3 elements in the destination vector:

#include <iostream>
#include <vector>
#include <algorithm>

224

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

int main()

{
std::vector<int> copy from v = { 1, 2, 3, 4, 5 };
std: :vector<int> copy to v(3);

std: :copy(copy from v.begin(), copy from v.begin() + 3, copy to v.
begin());

for (auto el : copy to_v)
{

std::cout << el << "\n';

38.4.4 Min and Max Elements

To find the greatest element in the container, we use the std::max::element function
declared in the <algorithm> header. This function returns an iterator to the max element
in the container:

#include <iostream>
#include <vector>
#include <algorithm>

int main()
{
std::vector<int> v ={ 1, 2, 3, 4, 5 };
auto it = std::max_element(std::begin(v), std::end(v));

std::cout << "The max element in the vector is: " << *it;

Similarly, to find the smallest element in the container, we use the std::min_element

function, which returns an iterator to the min element in the container or a range:

#include <iostream>
#include <vector>
#include <algorithm>

225

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

int main()
{

std::vector<int> v ={ 1, 2, 3, 4, 5 };

auto it = std::min_element(std::begin(v), std::end(v));
< *it;

std::cout << "The min element in the vector is:

38.5 Lambda Expressions

Lambda expressions, or lambdas for short, are the so-called: anonymous function objects.
A function object, or a functor, is an object of a class that can be called as a function. To
be able to call an object like a function, we must overload the function call operator () for
our class:

#include <iostream>

class MyClass

{
public:
void operator()()
{
std::cout << "Function object called." << '\n';
}
b5
int main()
{
MyClass myobject;
myobject(); // invoke the function object
}

The function object can have one or more parameters; in this case, there is one
parameter called x:

226

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS
#include <iostream>

class MyClass

{
public:
void operator()(int x)
{
std::cout << "Function object with a parameter " << x << "
called."”;
}
};
int main()
{
MyClass myobject;
myobject(123); // invoke the function object
}

The function object can also return a value. For example, the following function
object checks if the parameter is even number:

#include <iostream>

class MyClass

{
public:
bool operator()(int x)
{
if (x % 2 == 0)
{
return true;
}
else
{
return false;
}
}
};

227

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

int main()

{
MyClass myobject;
bool isEven = myobject(123);
if (isEven)

{

std::cout << "The number is even." << '\n';
}
else
{

std::cout << "The number is odd." << '\n';
}

It is said that function objects carry their values. Since they are objects of a class,
they can have data members they carry with them. This separates them from regular
functions.

As we can see, overloading operator () and writing the entire class can be somewhat

cumbersome if all we want is a simple function object. That is where the lambda
expressions come into play. Lambda expressions are anonymous/unnamed function
objects. Lambda expression signature is:

[captures](parameters){lambda body};
To define and invoke a simple lambda, we use:
#include <iostream>

int main()

{
auto mylambda = []() {std::cout << "Hello from a lambda"; };
mylambda();

Here, we assign the result of a lambda expression: []() {std::cout << "Hello
from a lambda"; }to a variable mylambda. Then we invoke this lambda by using the
function call operator (). Since lambdas are unnamed functions, here we gave it the
name of mylambda, to be able to invoke the code from the lambda expression itself.

228

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

To be able to use the variables in the scope in which the lambda was defined, we
need to capture them first. The capture section marked by [] can capturelocal variables

by copy:
#include <iostream>

int main()

{
int x = 123;
auto mylambda = [x]() { std::cout << "The value of x is: " << x; };
mylambda();

Here, we captured the local variable x by value and used it inside our lambda body.
Another way to capture variables is by reference, where we use the [8name] notation.
Example:

#include <iostream>

int main()

{
int x = 123;
auto mylambda = [8x]() {std::cout << "The value of x is: " << ++x; };
mylambda();

To capture more than one variable, we use the comma operator in the capture list:
[vari, var2].For example, to capture two local variables by value, we use:

#include <iostream>

int main()
{
int x = 123;
int y = 456;
auto mylambda = [x, y]() {std::cout << "X is: " << x << ", y is:
"<y b
mylambda();
}

229

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS
To capture both local variables by reference, we use:

#include <iostream>

int main()
{
int x = 123;
int y = 456;
auto mylambda = [&x, 8y]() {std::cout << "X is: " << ++x << ", y is: "
K< A5)
mylambda();
}

Lambdas can have optional parameters inside the parenthesis: [] (param1, param2)
{}. Example:

#include <iostream>

int main()
{
auto mylambda = [](int x, int y)
{
std::cout << "The value of x is: " << x << ", y is: " << y;
b

mylambda (123, 456);

Lambdas are most often used as predicates inside the standard-library algorithm
functions. For example, if we want to count the number of even elements in the

container, we would supply alambda to a std: : count_if function. Example:

#include <iostream>
#include <vector>
#include <algorithm>

int main()

{
std::vector<int> v=4{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30 };
auto counteven = std::count if(std::begin(v), std::end(v),

230

CHAPTER 38 C++ STANDARD LIBRARY AND FRIENDS

[1(int x) {return x % 2 == 0; });
std::cout << "The number of even vector elements is:

<< counteven;

Here we have a lambda function that checks if an argument is an even number and
returns true if it is. This lambda is then used as a predicate inside the std: :count_if
function. This function only counts the numbers for which the predicate (our lambda
expression) returns true. The std: : count_if function iterates through all the vector
elements, and each element becomes a lambda argument.

We can use lambdas in other standard-library algorithm functions accepting
expressions named callables. Examples of callables are lambdas and function objects.

By using lambdas, we can more clearly express ourselves, and we do not have
to write the verbose class function objects. Lambdas were introduced in the C++11
standard.

231

CHAPTER 39

Exercises

39.1 Basic Vector

Write a program that defines a vector of integers. Insert two elements into a vector. Print
out the vector content using the range-based loop.

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 10, 5, 8, 4, 1, 2 };
v.push_back(15); // insert the value 15
v.push_back(30); // insert the value of 30

for (auto el : v)

{

std::cout << el << "\n';

39.2 Deleting a Single Value

Write a program that defines a vector of integers. Erase the second element from the
vector. Print out the vector content using the range-based loop.

#include <iostream>
#include <vector>

233
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_39

https://doi.org/10.1007/978-1-4842-6047-0_39#DOI

CHAPTER 39 EXERCISES

int main()

{
std::vector<int> v = { 10, 5, 8, 4, 1, 2 };
v.erase(v.begin() + 1); // erase the second element which is 5

for (auto el : v)

{

std::cout << el << '\n';

39.3 Deleting a Range of Elements

Write a program that defines a vector of integers. Erase the range of 3 elements starting
from the beginning of the vector. Print out the vector content using the range-based loop.

#include <iostream>
#include <vector>

int main()
{
std::vector<int> v = { 10, 5, 8, 4, 1, 2 };
v.erase(v.begin(), v.begin() + 3); // erase the first 3 elements

for (auto el : v)

{

std::cout << el << '\n';

In this case the .erase() function overload accepts two arguments. One is the
beginning of the range to be deleted. In our case, it is marked with v.begin(). The second
argument is the end of the range to be deleted.In our case, it is the v.begin() + 3 iterator.
Please note that instead of .begin() member function we could have used a freestanding
std::begin(v) function.

234

CHAPTER 39 EXERCISES

39.4 Finding Elements in a Vector

Write a program that searches for a vector element using the std::find() algorithm
function. If the element has been found, delete it. Print out the vector content.

#include <iostream>
#include <vector>
#include <algorithm>

int main()

{

std::vector<int> v = { 10, 5, 8, 4, 1, 2 };
int findnumber = 4;

auto foundit = std::find(std::begin(v), std::end(v), findnumber);
if (foundit != std::end(v))

{
std::cout << "Element found. Deleting the element." << "\n';
v.erase(foundit);
std::cout << "Element deleted." << '\n';
}
else
{
std::cout << "Element not found." << '\n';
}
for (auto el : v)
{
std::cout << el << '"\n';
}

235

CHAPTER 39 EXERCISES

39.5 Basic Set

Write a program that defines a set of integers. Print out the set content and observe
the following: the data is sorted, regardless of how we defined the set. This is because
internally, std::setis a sorted container that holds unique values.

#include <iostream>
#include <set>

int main()

{
std::set<int> myset = { -10, 1, 3, 5, -20, 6, 9, 15 };
for (auto el : myset)
{

std::cout << el << '"\n';

39.6 Set Data Manipulation

Write a program that defines a set and inserts two new values using the set’s .insert()
member function. Then, delete one arbitrary value from a set using the set’s .erase()
member function. Print out the set content afterward.

#include <iostream>
#include <set>

int main()

{
std::set<int> myset = { -10, 1, 3, 5, 6, 9, 15 };
myset.insert(-5); // inserts a value of -5
myset.insert(30); // inserts a value of 30

myset.erase(6); // deletes a value of 6
for (auto el : myset)

{

std::cout << el << '\n';

236

CHAPTER 39 EXERCISES

39.7 Set Member Functions

Write a program that defines a set of integers and utilizes the set’s member function to
check the set’s size, check whether it is empty and clear the set’s content.

#include <iostream>
#include <set>

int main()
{
std::set<int> myset = { -10, 1, 3, 5, 6, 9, 15 };
std::cout << "The set's size is: " << myset.size() << '\n';
std::cout << "Clearing the set..." << '\n';
myset.clear(); // clear the set's content
if (myset.empty())

{
std::cout << "The set is empty." << "\n';
}
else
{
std::cout << "The set is not empty." << '\n';
}

39.8 Search for Data in a Set

Write a program that searches for a particular value in a set using the set’s .find()
member function. If the value is found, delete it. Print out the set content.

#include <iostream>
#include <set>

int main()

{
std::set<int> myset = { -10, 1, 3, 5, 6, 9, 15 };
int findvalue = 5;
auto foundit = myset.find(findvalue);

237

CHAPTER 39 EXERCISES

if (foundit != myset.end())

{
std::cout << "Value found. Deleting the value..." << "\n';
myset.erase(foundit);
std::cout << "Element deleted." << '\n';
}
else
{
std::cout << "Value not found." << '\n';
}
for (auto el : myset)
{
std::cout << el << "\n';
}

39.9 Basic Map

Write a program that defines a map where keys are of type char and values are of type int.
Print out the map content.

#include <iostream>
#include <map>

int main()
{

std::map<char, int> mymap = { {'a", 1}, {'b", 5}, {'e', 10}, {'f', 10}
};

for (auto el : mymap)

{

std::cout << el.first << ' ' << el.second << '\n';

}

}

238

CHAPTER 39 EXERCISES

Explanation. Map elements are key-value pairs. These pairs are represented by
an std::pair class template which can store a pair. So the type of a map element is
std::pair<char, int>.In a map container, keys are unique, and values do not have to be
unique. We initialize the map with our key-value pairs inside the initializer list {}. Using
aranged-based for loop, we iterate over map elements. To access the key in a pair, we
use the pair’s .first member function, which represents the first element in a pair, in our
case - the key. Similarly, we access the second element using the pair’s .second member
function, which represents the map element value.

39.10 Inserting Into Map

Write a program that defines a map of strings and integers. Insert an element into a
map using the map’s .insert() member function. Then use the map’s operator [] to insert
another key-value element into a map. Print the map content afterward.

#include <iostream>
#include <map>
#include <string>

int main()
{
std::map<std::string, int> mymap = { {"red", 1}, {"green", 20},
{"blue", 15} };
mymap.insert({ "magenta", 4 });
mymap["yellow"] = 5;

for (const auto& el : mymap)
{

std::cout << el.first <« << el.second << '\n';

When using the map’s [| operator, there are two scenarios. The key inside the]
operator exists in the map. This means we can use it to change the value of an element.
The key does not exist. In this case, when using the map’s operator [], the key-value gets
inserted into the map. This was the case with our: mymap["yellow"] = 5; statement.

239

CHAPTER 39 EXERCISES

Remember, maps are graphs, and the map’s elements are sorted based on a key. And
since our keys are strings, the order does not necessarily need to be the one we provided
in the initializer list.

If, for example, we have a map of ints and strings, and we provide sorted int keys in
the initializers list, the order would be the same when printing out the elements:

#include <iostream>
#include <map>
#include <string>

int main()

{
std::map<int, std::string> mymap = { {1, "First"}, {2, "Second"},
{3, "Third"}, {4, "Fourth"} };

for (const autod el : mymap)

{

std::cout << el.first << ' ' << el.second << "\n';

39.11 Searching and Deleting From a Map

Write a program that defines a map of integers and strings. Search for an element by key
using the map’s .find() member function. If the element is found, delete it. Print out the

map content.

#include <iostream>
#include <map>
#include <string>

int main()
{
std::map<int, std::string> mymap = { {1, "First"}, {2, "Second"},
{3, "Third"}, {4, "Fourth"} };
int findbykey = 2;
auto foundit = mymap.find(findbykey);

240

CHAPTER 39

if (foundit != mymap.end())

{
std::cout << "Key found." << '\n';
std::cout << "Deleting the element..." << '\n';
mymap.erase(foundit);
}
else
{
std::cout << "Key not found." << "\n';
}
for (const auto& el : mymap)
{
std::cout << el.first << ' ' << el.second << "\n';
}

39.12 Lambda Expressions

Write a program that defines a vector of integers. Sort the vector in a descending order

using the std::sort function, and a user-provided lambda function as a predicate.

#include <iostream>
#include <vector>

#include <algorithm>

int main()

{

std::vector<int> v = { 5, 10, 4, 1, 3, 15 };

EXERCISES

std::sort(std::begin(v), std::end(v), [](int x, int y) {return x > y; });

for (const auto& el : v)

{

std::cout << el << '\n';

241

CHAPTER 39 EXERCISES

Write a program that defines a vector of integers. Use the std::count_iffunction and a
user-provided lambda function to count only even numbers.

#include <iostream>
#include <vector>
#include <algorithm>

int main()

{
std::vector<int> v = { 5, 10, 4, 1, 3, 8 };
int mycount = std::count if(std::begin(v), std::end(v), [](int x)
{return x % 2 == 0; });
std::cout << "The number of even numbers is:

<< mycount;

Write a program that defines a local lambda expression that can capture and modify
the variable defined inside the main() function:

#include <iostream>

int main()

{
int x = 123;
std::cout << "The value of a local variable is:
auto mylambda = [&x](){ x++; };
mylambda();
std::cout << "Lambda captured and changed the local variable to:
<< X << '\n';

<< X << '\n';

242

CHAPTER 40

C++ Standards

C++is an ISO standardized programing language. There are different C++ standards:

- C++98
- C++03
- [C++11
- C++14
- | C++17 - Modern C++
- | C++20

Everything starting with C++11 is referred to as “Modern C++.” These standards define
the language in great technical detail. They also serve as manuals for C++ compiler writers.
It is a mind-boggling set of rules and specifications. The C++ standards can be bought,
or a draft version can be downloaded for free. These drafts closely resemble the final
C++ standard. When C++ code can be successfully transferred and compiled on different
platforms (machines or compilers), and when C++ implementation closely follows the
standard, we say that the code is portable. This is often referred to as portable C++.

The standards surrounded by braces represent the so-called “Modern C++.” Each
standard describes the language and introduces new language and library features. It
may also introduce changes to the existing rules. We will describe notable features in
each of these standards.

40.1 C++11

C++11is an ISO C++ standard, published in 2011. To compile for this standard, add the
-std=c++11 flag to a command-line compilation string if compiling with g++ or clang. If using
Visual Studio, choose Project / Options / Configuration Properties / C/C++ / Language / C++
Language Standard and choose C++11. New Visual Studio versions already support this
standard out of the box. We have already described the notable C++11 features in previous
chapters, and here we will briefly go through them once again and introduce a few new ones:

243
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0_40

https://doi.org/10.1007/978-1-4842-6047-0_40#DOI

CHAPTER 40 C++ STANDARDS

40.1.1 Automatic Type Deduction

This standard introduces the auto keyword which deduces the type of the variable based

on the variable’s initializer:

int main()

{
auto mychar = 'A’;
auto myint = 123 + 456;
auto mydouble = 456.789;

40.1.2 Range-based Loops

The range-based loops allow us to iterate over the range, such as C++ standard-library

containers:

#include <iostream>
#include <vector>

int main()

{
std::vector<int> v = { 10, 20, 40, 5, -20, 75 };
for (auto el : v)

{

std::cout << el << "\n';

The range-based for loop is of the following form: for (type element :
container). This is read as for each element in a container (do something).

244

CHAPTER 40 C++ STANDARDS

40.1.3 Initializer Lists

Initializer lists, represented by braces { } allow us to initialize objects in a uniform way.
We can initialize single objects:

int main()

{
int x{ 123 };
int y = { 456 };
double d{ 3.14 };

And containers:
#include <vector>

int main()

{

std::vector<int> v = { 1, 2, 3, 4, 5 };

List initialization also prevents narrowing conversions. If we tried to initialize our
integer object with a double value inside the initializer list, the compilation would fail:

int main()

{

int x = { 123.45 }; // Error, does not allowing narrowing

When initializing our objects, we should prefer initializer lists {} to old-style
parentheses ().

40.1.4 Move Semantics

C++ 11 standard introduces the move semantics for classes. We can initialize our objects
by moving the data from other objects. This is achieved through move constructors

and move assignment operators. Both accept the so-called rvalue reference as an
argument. Lvalue is an expression that can be used on the left-hand side of the

245

CHAPTER 40 C++ STANDARDS

assignment operation. rvalues are expressions that can be used on the right-hand
side of an assignment. The rvalue reference has the signature of some_type&&. To cast
an expression to an rvalue reference, we use the std::move function. A simple move

constructor and move assignment signature are:

class MyClass

{
public:
MyClass(MyClass&& otherobject) // move constructor
{
//implement the move logic here
}
MyClass& operator=(MyClass&& otherobject) // move assignment operator
{
// implement the copy logic here
return *this;
}
};

40.1.5 Lambda Expressions

Lambda expressions are anonymous function objects. They allow us to write a short
code snippet to be used as a standard-library function predicate. Lambdas have a
capture list, marked by [] where we can capture local variables by reference or copy,
parameter list with optional parameters marked with (), and a lambda body, marked
with { }. An empty lambda looks like [] () {};. A simple example of counting only the even
numbers in a set using the lambda as a predicate:

#include <iostream>
#include <vector>
#include <algorithm>

246

CHAPTER 40 C++ STANDARDS

int main()
{
std::vector<int> v ={1, 2, 3, 4, 5 };
auto counteven = std::count_if(std::begin(v), std::end(v),
[1(int x) {return x % 2 == 0; }); // lambda expression
<< counteven;

std::cout << "The number of even vector elements is:

40.1.6 The constexpr Specifier

The constexpr specifier promises the variable or a function can be evaluated during
compile-time. If the expression can not be evaluated during compile-time, the compiler
emits an error:

int main()
{
constexpr int n = 123; //0K, 123 is a compile-time constant
// expression
constexpr double d = 456.78; //0K, 456.78 is a compile-time constant
// expression

constexpr double d2 = d; //0K, d is a constant expression
int x = 123;
constexpr int n2 = x; //compile-time error

// the value of x is not known during
// compile-time

40.1.7 Scoped Enumerators

The C++11 standard introduces the scoped enumerators. Unlike the old enumerators,
the scoped enumerators do not leak their names into the surrounding scope. Scoped
enums have the following signature: enum class Enumerator_Name {valuel, value2 etc}
signature. A simple example of a scoped enum is:

247

CHAPTER 40 C++ STANDARDS

enum class MyEnum

{
myfirstvalue,
mysecondvalue,
mythirdvalue
}s
int main()
{
MyEnum myenum = MyEnum::myfirstvalue;
}

40.1.8 Smart Pointers

Smart pointers point to objects, and when the pointer goes out of scope, the object
gets destroyed. This makes them smart in the sense that we do not have to worry about
manual deallocation of allocated memory. The smart pointers do all the heavy lifting
for us.

There are two kinds of smart pointers, the unique pointer with an std::unique_
ptr<type> signature and a shared pointer with an std::shared_ptr<type> signature. The
difference between the two is that we can have only one unique pointer pointing at the
object. In contrast, we can have multiple shared pointers pointing at an object. When
the unique pointer goes out of scope, the object gets destroyed, and the memory is
deallocated. When the last of the shared pointers pointing at our object goes out of
scope, the object gets destroyed. The memory gets deallocated.

A unique pointer example:

#include <iostream>
#include <memory>

int main()
{
std::unique_ptr<int> p(new int{ 123 });
std::cout << *p;
} // p goes out of scope here, the memory gets deallocated, the object gets
// destroyed

248

CHAPTER 40 C++ STANDARDS

A unique pointer can not be copied, only moved. To have multiple shared pointers
pointing at the same object, we would write:

#include <iostream>
#include <memory>

int main()
{
std::shared ptr<int> pi(new int{ 123 });
std::shared ptr<int> p2 = pi1;
std::shared_ptr<int> p3 = pi1;
} // when the last shared pointer goes out of scope, the memory gets
// deallocated

Shared pointers can be copied. It is said they share ownership of the object. When
the last shared pointer gets out of scope, the pointed-to object gets destroyed, and the
memory gets deallocated.

40.1.9 std::unordered_set

The std::unordered_set is a container that allows for constant time insertion, searching,
and removal of elements. This container is implemented as an array of buckets of linked
lists. The hash value of each element is calculated, and the object is placed into an
appropriate bucket based on the hash value. The object themselves are not sorted in any
particular order. To define an unordered set, we need to include the <unordered set>
header. Example:

#include <iostream>
#include <unordered set>

int main()

{
std::unordered set<int> myunorderedset = { 1, 2, 5, -4, 7, 10 };
for (auto el : myunorderedset)

{

std::cout << el << '\n';

249

CHAPTER 40 C++ STANDARDS

The values are not sorted but are unique. To insert single or multiple values into an
unordered_set, we use the .insert() member function:

#include <iostream>
#include <unordered set>

int main()

{
std::unordered set<int> myunorderedset = { 1, 2, 5, -4, 7, 10 };
myunorderedset.insert(6); // insert a single value
myunorderedset.insert({ 8, 15, 20 }); // insert multiple values
for (auto el : myunorderedset)

{

std::cout << el << "\n';

To delete a value from an unordered set, we use the .erase() member function:

#include <iostream>
#include <unordered set>

int main()

{
std::unordered set<int> myunorderedset = { 1, 2, 5, -4, 7, 10 };
myunorderedset.erase(-4); // erase a single value
for (auto el : myunorderedset)

{

std::cout << el << '\n';

40.1.10 std::unordered_map

Similar to std::unordered_set, there is also an std::unordered_map, an unordered
container of key-value pairs with unique keys. This container also allows for fast
insertion, searching, and removal of elements. The container is also data is also

250

CHAPTER 40 C++ STANDARDS

implemented as buckets. What element goes into what bucket depends on the element’s
key hash value. To define an unordered map, we include the <unordered map> header.
Example:

#include <iostream>
#include <unordered map>

int main()

{

std: :unordered map<char, int> myunorderedmap = { {'a', 1}, {'b", 2},
{'c’, 5t ks
for (auto el : myunorderedmap)

{

std::cout << el.first << ' '<< el.second << '\n';

Here we initialize an unordered map with key-value pairs. In the range-based for
loop, we print both the key and the value. Map elements are pairs. Pairs have member
functions .first for accessing a key and .second for accessing a value. To insert an element
into a map we can use the member function .insert() member function:

#include <iostream>
#include <unordered map>

int main()

{

std: :unordered map<char, int> myunorderedmap = { {'a', 1}, {'b", 2},
{'c', 5t b

myunorderedmap.insert({ 'd', 10 });

for (auto el : myunorderedmap)

{

std::cout << el.first << ' '<< el.second << '\n’;

251

CHAPTER 40 C++ STANDARDS

We can also use the map’s operator [] to insert an element. Normally, this operator is
used to access an element value by key. However, if the key does not exist, the operator
inserts a new element into the map:

#include <iostream>
#include <unordered map>

int main()

{
std: :unordered map<char, int> myunorderedmap = { {'a', 1}, {'b", 2},
{'c’, 5t b
myunorderedmap['b'] = 4; // key exists, change the value
myunorderedmap['d'] = 10; // key does not exist, insert the new element
for (auto el : myunorderedmap)

{

std::cout << el.first <« << el.second << '\n';

40.1.11 std::tuple

While std::pair can hold only two values, the std::tuple wrapper can hold more than two
values. To use tuples, we need to include the <tuple> header. To access a certain tuple
element, we use the std::get<index_of an_element>(tuple_name) function:

#include <iostream>
#include <utility>
#include <tuple>

int main()

{
std::tuple<char, int, double> mytuple = { 'a', 123, 3.14 };
std::cout << "The first element is: " << std::get<o>(mytuple) << "\n';
std::cout << "The second element is: " << std::get<1i>(mytuple) << '\n';
std::cout << "The third element is: " << std::get<2>(mytuple) << "\n';

252

CHAPTER 40 C++ STANDARDS
We can create a tuple using the std::make_tuple function:

#include <iostream>
#include <tuple>
#include <string>

int main()
{
auto mytuple = std::make tuple<int, double, std::string>(123, 3.14,
"Hello World.");
std::cout << "The first tuple element is:

<< std::get<o>(mytuple)

<< "\n';
std::cout << "The second tuple element is: " << std::get<1>(mytuple)
<< "\n';
std::cout << "The third tuple element is: " << std::get<2>(mytuple)
<< "\n';

Instead of typing a lengthy tuple type, which is std::tuple<int, double, std::string>, we
used the auto specifier to deduce the type name for us.

40.1.12 static_assert

The static_assert directive checks a static (constexpr) condition during compile time. If
the condition is false, the directive fails the compilation and displays an error message.
Example:

int main()
{
constexpr int x = 123;
static_assert(x == 456, "The constexpr value is not 456.");

Here the static_assert checks if the value of x is equal to 456 during compile time.
Since it is not, the compilation will fail with a "The constexpr value is not 456."
message. We can think of the static_assert as a way of testing our code during compile
time. It is also a neat way of testing if the value of a constexpr expression is what we
expect it to be.

253

CHAPTER 40 C++ STANDARDS

40.1.13 Introduction to Concurrency

C++11 standard introduces facilities for working with threads. To enable threading, we
need to add the -pthreads flag when compiling with g++ and clang on the command line.
Example:

g++ -std=c++11 -Wall -pthread source.cpp
With clang it will be:
clang++ -std=c++11 -Wall -pthread source.cpp

When we compile and link our source code program, an executable file is produced.
When we start the executable, the program gets loaded into memory and starts running.
This running program is called a process. When we start multiple executable files, we can
have multiple processes. Each process has its memory, its own address space. Within
a process, there can be multiple threads. What are the threads? Threads or threads
of execution are an OS mechanism that allows us to execute multiple pieces of code
concurrently/simultaneously.

For example, we can execute multiple functions concurrently using threads. In a
broader sense, concurrently can also mean in parallel. A thread is part of the process. A
process can spawn one or more threads. Threads share the same memory and thus can
communicate with each other using this shared memory.

To create a thread object, we use the std::thread class template from a <thread>
header file. Once defined, the thread starts executing. To create a thread that executes
a code inside a function, we supply the function name to the thread constructor as a
parameter. Example:

#include <iostream>
#include <thread>

void functioni()

{
for (int i = 0; i < 10; i++)
{
std::cout << "Executing functioni." << '\n';
}
}

254

CHAPTER 40 C++ STANDARDS

int main()

{
std::thread t1{ function1l }; // create and start a thread
t1.join(); // wait for the t1 thread to finish

Here we have defined a thread called ¢I that executes a function functionl. We
supply the function name to the std::thread constructor as a first parameter. In a way, our
program now has a main thread, which is the main() function itself, and the t1 thread,
which was created from the main thread. The .join() member function says: “hey, main
thread, please wait for me to finish my work before continuing with yours.” If we left out
the .join() function, the main thread would finish executing before the t1 thread has
finished its work. We avoid this by joining the child thread to the main thread.

If our function accepts parameters, we can pass those parameters when constructing
the std::thread object:

#include <iostream>
#include <thread>
#include <string>

void functioni(const std::stringd& param)

{
for (int i = 0; i < 10; i++)
{
std::cout << "Executing functioni, " << param << '\n';
}
}
int main()
{
std::thread t1{ functioni, "Hello World from a thread." };
t1.join();
}

255

CHAPTER 40 C++ STANDARDS

We can spawn multiple threads in our program/process by constructing multiple

std::thread objects. An example where we have two threads executing two different

functions concurrently/simultaneously:

#include <iostream>
#include <thread>

void functioni()

{
for (int i = 0; i < 10; i++)
{
std::cout << "Executing functioni." << '\n';
}
}
void function2()
{
for (int i = 0; i < 10; i++)
{
std::cout << "Executing function2." << '\n';
}
}
int main()
{
std::thread t1{ functioni };
std::thread t2{ function2 };
t1.join();
t2.join();
}

This example creates two threads executing two different functions concurrently.

The functionl code executes in a thread ¢1, and the function2 code executes in a

separate thread called 2.

256

CHAPTER 40 C++ STANDARDS

We can also have multiple threads executing code from the same function
concurrently:

#include <iostream>
#include <thread>
#include <string>

void myfunction(const std::stringd& param)

{
for (int i = 0; i < 10; i++)
{
std::cout << "Executing function from a " << param << '\n';
}
}
int main()
{
std::thread t1{ myfunction, "Thread 1" };
std::thread t2{ myfunction, "Thread 2" };
t1.join();
t2.j0in();
}

Threads sometimes need to access the same object. In our example, both threads are
accessing the global std::cout object in order to output the data. This can be a problem.
Accessing the std::cout object from two different threads at the same time allows one
thread to write a little to it, then another thread jumps in and writes a little to it, and we
can end up with some strange text in the console window:

Executi.Executingng functionl.Executing function2.

This means we need to synchronize the access to a shared std::cout object somehow.
While one thread is writing to it, we need to ensure that the thread does not write to it.

We do so by locking and unlocking mutex-es. A mutex is represented by std::mutex
class template from a <mutex>header. A mutex is a way to synchronize access to shared
objects between multiple threads. A thread owns a mutex once it locks the mutex, then
performs access to shared data and unlocks the mutex when access to shared data is
no longer needed. This ensures only one thread at the time can have access to a shared
object, which is std::cout in our case.

257

CHAPTER 40 C++ STANDARDS

Here is an example where two threads execute the same function and guard access
to std::cout object by locking and unlocking mutexes:

#include <iostream>
#include <thread>
#include <string>
#include <mutex>

std::mutex m; // will guard std::cout

void myfunction(const std::stringd param)

{
for (int i = 0; i < 10; i++)
{
m.lock();
std::cout << "Executing function from a " << param << '\n’;
m.unlock();
}
}
int main()
{
std::thread t1{ myfunction, "Thread 1" };
std::thread t2{ myfunctiosn, "Thread 2" };
t1.join();
t2.j0in();
}

We can forget to unlock the mutex manually. A better approach is to use the
std::lock_guard function instead. It locks the mutex, and once it goes out of scope, it
automatically unlocks the mutex. Example:

#include <iostream>
#include <thread>
#include <string>
#include <mutex>

258

CHAPTER 40 C++ STANDARDS
std::mutex m; // will guard std::cout

void myfunction(const std::stringd param)

{
for (int i = 0; i < 10; i++)
{
std::lock_guard<std::mutex> 1lg(m);
std::cout << "Executing function from a " << param << '\n’;
} // lock _guard goes out of scope here and unlocks the mutex
}
int main()
{
std::thread t1{ myfunction, "Thread 1" };
std::thread t2{ myfunction, "Thread 2" };
t1.join();
t2.join();
}

40.1.14 Deleted and Defaulted Functions

If we do not supply a default constructor, the compiler will generate one for us so that we
can write:

class MyClass

{
b5
int main()
{
MyClass o; // OK, there is an implicitly defined default constructor
}

259

CHAPTER 40 C++ STANDARDS

However, in certain situations, the default constructor will not be implicitly
generated. For example, when we define a copy constructor for our class, the default
constructor is implicitly deleted. Example:

#include <iostream>

class MyClass

{
public:
MyClass(const MyClass& other)
{
std::cout << "Copy constructor invoked.";
}
};
int main()
{
MyClass o; // Error, there is no default constructor
}

To force the instantiation of a default, compiler-generated constructor, we provide
the =default specifier in its declaration. Example:

#include <iostream>

class MyClass

{
public:
MyClass() = default; // defaulted member function
MyClass(const MyClass& other)
{
std::cout << "Copy constructor invoked.";
}
};
int main()
{
MyClass o; // Now OK, the defaulted default constructor is there
MyClass 02 = o; // Invoking the copy constructor
}

260

CHAPTER 40 C++ STANDARDS

The =default specifier, when used on a member function, means: whatever the
language rules, I want this default member function to be there. I do not want it to be
implicitly disabled.

Similarly, if we want to disable a member function from appearing, we use the

=delete specifier. To disable the copy constructor and copy assignment, we would write:
#include <iostream>

class MyClass

{
public:
MyClass()
{
std::cout << "Default constructor invoked.";
}
MyClass(const MyClass& other) = delete; // delete the copy constructor
MyClass& operator=(const MyClass& other) = delete; // delete the copy
// assignment operator
};
int main()
{
MyClass o; // OK
MyClass 02 = o; // Error, a call to deleted copy constructor
MyClass o3;
03 = 0; // Error, a call to deleted copy assignment operator
}

These specifiers are mostly used in situations where we want to:

a. force or the instantiation of implicitly defined member functions
such as constructors and assignment operators, when we use the
=default; expression

b. disable the instantiation of implicitly defined member functions
using the =delete; expression

These expressions can also be used on other functions as well.

261

CHAPTER 40 C++ STANDARDS

40.1.15 Type Aliases

A type alias is a user-provided name for the existing type. If we want to use a different
name for the existing type, we write: using my_type_name = existing_type_name;
Example:

#include <iostream>
#include <string>
#include <vector>

using MyInt = int;
using MyString = std::string;
using MyVector = std::vector<int>;

int main()

{
MyInt x = 123;
MyString s = "Hello World";
MyVector v = { 1, 2, 3, 4, 5 };

40.2 C++14

C++14is an ISO C++ standard published in 2014. It brings some additions to the
language and the standard library, but mainly complements and fixes the C++11
standard. When we say we want to use the C++11 standard, what we actually want is the
C++14 standard. Below are some of the new features for C++14.

To compile for C++14, add the -std=c++14 flag to a command-line compilation string
if using g++ or clang compiler. In Visual Studio, choose Project / Options / Configuration
Properties / C/C++ / Language / C++ Language Standard and choose C++14.

262

CHAPTER 40 C++ STANDARDS

40.2.1 Binary Literals

Values are represented by literals. So far, we have mentioned three different kinds of
binary literals: decimal, hexadecimal, and octal as in the example below:

int main()

{
int x = 10;
int y = OxA;
int z = 012;

}

These three variables have the same value of 10, represented by different number
literals. C++14 standard introduces the fourth kind of integral literals called binary
literals. Using binary literals, we can represent the value in its binary form. The literal has
a 0b prefix, followed by a sequence of ones and zeros representing a value. To represent
the number 10 as a binary literal, we write:

int main()
{
int x = 0b101010;
}
The famous number 42 in binary form would be:
int main()
{
int x = 0b1010;
}

Important to remember Values are values; they are some sequence of bits

and bytes in memory. What can be different is the value representation. There

are decimal, hexadecimal, octal, and binary representations of the value. These
different forms of the same thing can be relevant to us humans. To a machine, it is
all bits and bytes, transistors, and electrical current.

263

CHAPTER 40 C++ STANDARDS

40.2.2 Digits Separators

In C++14, we can separate digits with a single quote to make it more readable:

int main()

{

int x =100'000'000;

The compiler ignores the quotes. The separators are only here for our benefit, for
example, to split a large number into more readable sections.

40.2.3 Auto for Functions

We can deduce the function type based on the return statement value:

auto myintfn() // integer

{ return 123;
}
auto mydoublefn() // double
{
return 3.14;
}
int main()
{
auto x = myintfn(); // int
auto d = mydoublefn(); // double
}

264

CHAPTER 40 C++ STANDARDS

40.2.4 Generic Lambdas

We can use auto parameters in lambda functions now. The type of the parameter will
be deduced from the value supplied to alambda function. This is also called a generic
lambda:

#include <iostream>

int main()
{
auto mylambda = [](auto p) {std::cout << "Lambda parameter: " << p <<
\n'5)
mylambda(123);
mylambda(3.14);

40.2.5 std::make_unique

C++14 introduces a std::make_unique function for creating unique pointers. It is declared
inside a <memory> header. Prefer this function to raw new operator when creating unique

pointers:

#include <iostream>
#include <memory>

class MyClass

{
private:

int x;

double d;
public:

MyClass(int xx, double dd)

:x{ xx }, d{ dd } {}

void printdata() { std::cout << "x: " << x << ", d: " << d; }

};

265

CHAPTER 40 C++ STANDARDS

int main()

{
auto p = std::make unique<MyClass>(123, 456.789);

p->printdata();

40.3 C++17

The C++17 standard introduces new language and library features and changes some of
the language rules.

40.3.1 Nested Namespaces

Remember how we said we could have nested namespaces? We can put a namespace
into another namespace. We used the following the nest namespaces:

namespace MyNameSpacel

{
namespace MyNameSpace2
{
namespace MyNameSpace3
{
// some code
}
}
}

The C++17 standard allows us to nest namespaces using the namespace resolution
operator. The above example can now be rewritten as:

namespace MyNameSpacel::MyNameSpace2: :MyNameSpace3

{

// some code

266

CHAPTER 40 C++ STANDARDS

40.3.2 Constexpr Lambdas

Lambdas can now be a constant expression, meaning they can be evaluated during
compile-time:

int main()

{
constexpr auto mylambda = [](int x, int y) { return x +y; };
static_assert(mylambda(10, 20) == 30, "The lambda condition is not

true.");
}
An equivalent example where we put the constexpr specifier in the lambda itself,
would be:
int main()
{
auto mylambda = [](int x, int y) constexpr { return x + y; };
static_assert(mylambda(10, 20) == 30, "The lambda condition is not
true.");
}

This was not the case in earlier C++ standards.

40.3.3 Structured Bindings

Structured binding binds the variable names to elements of compile-time known
expressions, such as arrays or maps. If we want to have multiple variables taking values
of expression elements, we use the structured bindings. The syntax is:

auto [myvarl, myvar2, myvar3] = some_expression;

A simple example where we bound three variables to be aliases for three array
elements would be:

int main()

{
int arr[] = { 1, 2, 3 };
auto [myvarl, myvar2, myvar3] = arr;

267

CHAPTER 40 C++ STANDARDS

Now we have defined three integer variables. These variables have array elements
values of 1, 2, 3, respectively. These variables are copies of array elements. Making
changes to variables does not affect the array elements themselves:

#include <iostream>

int main()

{
int arr[] = { 1, 2, 3 };
auto [myvarl, myvar2, myvar3] = arr;

myvarl = 10;

myvar2 = 20;

myvar3 = 30;

for (auto el : arr)
{

std::cout << el <« 5

We can make structured bindings of reference type by using the auto& syntax.
This means the variables are now references to array elements and making changes to
variables also changes the array elements:

#include <iostream>

int main()

{
int arr[] = { 1, 2, 3 };
auto8 [myvarl, myvar2, myvar3] = arr;

myvarl = 10;

myvar2 = 20;

myvar3 = 30;

for (auto el : arr)
{

std::cout << el <« 5

268

CHAPTER 40 C++ STANDARDS

It is an excellent way of introducing and binding multiple variables to some
container-like expression elements.

40.3.4 std:filesystem

The std::filesystem library allows us to work with files, paths, and folders on our system.
The library is declared through a <filesystem> header. Paths can represent paths to files
and paths to folders. To check if a given folder exists, we use:

#include <iostream>
#include <filesystem>

int main()

{
std::filesystem::path folderpath = "C:\\MyFolder\\";
if (std::filesystem::exists(folderpath))

{
std::cout << "The path: " << folderpath << " exists.";
}
else
{
std::cout << "The path: " << folderpath << " does not exist.";
}

Similarly, we can use the std::filesystem::path object to check if a file exists:

#include <iostream>
#include <filesystem>

int main()

{
std::filesystem::path folderpath = "C:\\MyFolder\\myfile.txt";
if (std::filesystem::exists(folderpath))
{

std::cout << "The file: " << folderpath << " exists.";

269

CHAPTER 40 C++ STANDARDS

else

{

std::cout << "The file: " << folderpath << " does not exist.";

To iterate over folder elements, we use the std::filesystem::directory_iterator iterator:

#include <iostream>
#include <filesystem>

int main()

{
auto myfolder = "C:\\MyFolder\\";

for (auto el : std::filesystem::directory iterator(myfolder))

{
std::cout << el.path() << "\n';

Here we iterate over the directory entries and print each of the elements full path
using the .path() member function.
For Linux, we need to adjust the path and use the following instead:

#include <iostream>
#include <filesystem>

int main()

{
auto myfolder = "MyFolder/";

for (auto el : std::filesystem::recursive directory iterator(myfolder))

{
std::cout << el.path() << '"\n';

270

CHAPTER 40 C++ STANDARDS

To iterate over folder elements recursively, we use the std::filesystem::recursive_
directory_iterator. This allows us to iterate recursively over all subfolders in a folder. On
Windows, we would use:

#include <iostream>
#include <filesystem>

int main()

{
auto myfolder = "C:\\MyFolder\\";

for (auto el : std::filesystem::recursive directory iterator(myfolder))

{
std::cout << el.path() << '"\n';

On Linux and similar OS-es, we would use the following path:

#include <iostream>
#include <filesystem>

int main()

{
auto myfolder = "MyFolder/";

for (auto el : std::filesystem::directory iterator(myfolder))

{
std::cout << el.path() << "\n';

Below are some useful utility functions inside the std::filesystem namespace:
— std::filesystem::create directory for creating a directory
— std::filesystem: :copy for copying files and directories
— std::filesystem: :remove for removing a file or an empty folder

— std::filesystem::remove_all for removing folders and subfolders

271

CHAPTER 40 C++ STANDARDS

40.3.5 std::string_view

Copying data can be an expensive operation in terms of CPU usage. Passing substrings
as function parameters would require making a copy of substrings. This is a costly
operation. The string_view class template is an attempt to rectify that.

The string_view is a non-owning view of a string or a substring. It is a reference to
something that is already there in the memory. It is implemented as a pointer to some
character sequence plus the size of that sequence. With this kind of structure, we can
parse strings efficiently.

The std::string_view is declared inside the <string view> header file. To create a
string_view from an existing string, we write:

#include <iostream>
#include <string>
#include <string view>

int main()

{
std::string s = "Hello World.";
std::string view sw(s);
std::cout << sw;

To create a string_view for a substring of the first five characters, we use the different
constructor overload. This string_view constructor takes a pointer to the first string
element and the length of the substring:

#include <iostream>
#include <string>
#include <string view>

int main()

{
std::string s = "Hello World.";

std::string view sw(s.c_str() , 5);
std::cout << sw;

272

CHAPTER 40 C++ STANDARDS

Once we create a string_view, we can use its member functions. To create a substring
out of a string_view, we use the . substr() member function. To create a substring,
we supply the starting position index and length. To create a substring of the first five

characters, we use:

#include <iostream>
#include <string>
#include <string view>

int main()

{
std::string s = "Hello World";

std::string view sw(s);
std::cout << sw.substr(o, 5);

A string_view allows us to parse (not change) the data that is already in the memory,
without having to make copies of the data. This data is owned by another string or
character array object.

40.3.6 std::any

The std::any container can hold a single value of any type. This container is declared
inside the header file. Example:

#include <any>

int main()

{
std::any a = 345.678;
std::any b = true;
std::any c = 123;

}

273

CHAPTER 40 C++ STANDARDS

To access the value of an std::any object in a safe manner, we cast it to a type of our
choice using the std::any_cast function:

#include <iostream>
#include <any>

int main()
{
std::any a = 123;
std::cout << "Any accessed as an integer:

<< std::any cast<int>(a)

<< "\n';

a = 456.789;

std::cout << "Any accessed as a double: " << std::any cast<double>(a)
<< "\n';

a = true;

std::cout << "Any accessed as a boolean: " << std::any cast<bool>(a)
<< "\n';

Important, the std::any_cast will throw an exception if we try to convert, for example,
123 to type double. This function performs only the type-safe conversions.Another
std::any member function is .has_value() which checks if the std::any object holds a

value:

#include <iostream>
#include <any>

int main()

{
std::any a = 123;
if (a.has_value())
{

std::cout << "Object a contains a value." << "\n';

274

CHAPTER 40 C++ STANDARDS

std::any b{};
if (b.has value())

{
std::cout << "Object b contains a value." << '\n';
}
else
{
std::cout << "Object b does not contain a value." << '\n';
}

40.3.7 std::variant

There is another type of data in C++ called union. A union is a type whose data members
of different types occupy the same memory. Only one data member can be accessed

at a time. The size of a union in memory is the size of its largest data member. The data
members overlap in a sense. To define a union type in C++, we write:

union MyUnion

{
char c; // one byte
int x; // four bytes
double d; // eight bytes
};

Here we declared a union type that can hold characters or integers or doubles. The
size of this union is the size of its largest data member double, which is probably eight
bytes, depending on the implementation. Although the union declares multiple data
members, it can only hold a value of one member at any given time. This is because
all the data members share the same memory location. And we can only access the
member that was the last written-to. Example:

#include <iostream>

union MyUnion

{

275

CHAPTER 40 C++ STANDARDS

char c; // one byte
int x; // four bytes
double d; // eight bytes
};
int main()
{
MyUnion o;
o.c = 'A';
std::cout << o.c << '"\n';
// accessing o.x or o.d is undefined behavior at this point
0.Xx = 123;
std::cout << o.c;
// accessing o.c or o.d is undefined behavior at this point
0.d = 456.789;
std::cout << o.c;
// accessing o.c or o.x is undefined behavior at this point
}

C++17 introduces a new way of working with unions using the std::variant class
template from a <variant> header. This class template offers a type-safe way of storing
and accessing a union. To declare a variant using a std::variant, we would write:

#include <variant>

int main()

{

std::variant<char, int, double> myvariant;

This example defines a variant that can hold three types. When we initialize or assign
avalue to a variant, an appropriate type is chosen. For example, if we initialize a variant
with a character value, the variant will currently hold a char data member. Accessing
other members at this point will throw an exception. Example:

276

CHAPTER 40 C++ STANDARDS

#include <iostream>
#include <variant>

int main()

{
std::variant<char, int, double> myvariant{ 'a' }; // variant now holds
// a char

std::cout << std::get<o>(myvariant) << '\n'; // obtain a data member by
// index

std::cout << std::get<char>(myvariant) << '\n'; // obtain a data member
// by type

myvariant = 1024; // variant now holds an int
std::cout << std::get<i>(myvariant) << '\n'; // by index
std::cout << std::get<int>(myvariant) << '\n'; // by type

myvariant = 123.456; // variant now holds a double

We can access a variant value by index using the std::get<index_number>(variant _
name) function. Or we can access the variant value by a type name using: std::get<type_
namer>(variant_name). If we tried to access a wrong type or wrong index member, an
exception of type const std::bad_variant_access& would be raised. Example:

#include <iostream>
#include <variant>

int main()
{
std::variant<int, double> myvariant{ 123 }; // variant now holds an int

std::cout << "Current variant: " << std::get<int>(myvariant) << "\n';

try

{
std::cout << std::get<double>(myvariant) << '\n'; // exception is
// raised

}

277

CHAPTER 40 C++ STANDARDS

catch (const std::bad variant access& ex)

{

std::cout << "Exception raised. Description: " << ex.what();

We define a variant that can hold either int or double. We initialize the variant with
a 123 literal of type int. So now our variant holds an int data member. We can access that
member using the index of 0 or a type name which we supply to the std::get function.
Then we try to access the wrong data member of type double. An exception is raised.
And the particular type of that exception is std::bad_variant_access. In the catch block,
we handle the exception by parsing the parameter we named ex. A parameter is of type
std::bad_variant_access, which has a .what() member function that provides a short
description of the exception.

40.4 C++20

The C++ 20 standard promises to bring some big additions to the language. Its impact
on the existing standards is said to be as big as the C++11 was to a C++98/C++03
standard. At the time of writing, the C++20 standard is to be ratified around May 2020.
The full implementation and the support in the compilers should follow. Some of the
following things mayj, at first glance, seem intimidating, especially when beginning

C++. However, do not worry. At the time of writing, none of the compilers fully support
the C++20 standard, but that is about to change. Once the compilers fully support the
C++20 standard, trying out the examples will be much easier. With that in mind, let us go
through some of the most exciting C++20 features.

40.4.1 Modules

Modules are the new C++20 feature, which aims to eliminate the need for the separation
of code into header and source files. So far, in traditional C++, we have organized our
source code using headers files and source files. We keep our declarations/interfaces in
header files. We put our definitions/implementations in source files. For example, we
have a header file with a function declaration:

278

CHAPTER 40 C++ STANDARDS
mylibrary.h

#ifndef MYLIBRARY_H
#define MYLIBRARY H

int myfunction();
#endif // !MYLIBRARY H

Here we declare a function called myfunction(). We surround the code with
header guards, which ensures the header file is not included multiple times during the
compilation. And we have a source file with the function definition. This source file
includes our header file:

mylibrary.cpp

#include "mylibrary.h"

int myfunction()

{

return 123;

In our main.cpp file we also include the above header file and call the function:
#include "mylibrary.h"

int main()

{

int x = myfunction();

We include the same header multiple times. This increases compilation time.
Modules are included only once, and we do not have to separate the code into interface
and implementation. One way is to have a single module file, for example, mymodule.
cpp where we provide the entire implementation and export of this function.

To create a simple module file which implements and exports the above function, we
write:

mymodule.cpp:
export module mymodule;

export int myfunction() { return 123; }
279

CHAPTER 40 C++ STANDARDS

Explanation: the export module mymodule; line says there is a module called
mymodule in this file. In the second line, the export specifier on the function means the
function will be visible once the module is imported into the main program.

We include the module in our main program by writing the import mymodule;
statement.

main.cpp:

import mymodule;

int main()
{
int x = myfunction();
}
In our main program, we import the module and call the exported myfunction()
function.

A module can also provide an implementation but does need to export it. If we do
not want our function to be visible to the main program, we will omit the export specifier
in the module. This makes the implementation private to the module:

export module mymodule;

export int myfunction() { return 123; }
int myprivatefunction() { return 456; }

If we have a module with a namespace in it, and a declaration inside that namespace
is exported, the entire namespace is exported. Within that namespace, only the exported
functions are visible Example:

mymodule2.cpp:

export module mymodule2;

namespace MyModule

{

export int myfunction() { return 123; }

280

CHAPTER 40 C++ STANDARDS

main2.cpp:
import mymodule2;

int main()

{
int x = MyModule: :myfunction();

40.4.2 Concepts

Remember the class templates and function templates providing generic types T? If we
want our template argument T to satisfy certain requirements, then we use concepts. In
other words, we want our T to satisfy certain compile-time criteria. The signature for a
concept is:

template <typename T>
concept concept name = requires (T var_name) { reqirement expression; };

The second line defines a concept name followed by a reserved word requires,
followed by an optional template argument T and a local var_name, followed by a
requirement_expression which is a constexpr of type bool.

In a nutshell, the concept predicate specifies the requirements a template argument
must satisfy in order to be used in a template. Some of the requirements we can write
ourselves, some are already pre-made.

We can say that concepts constrain types to certain requirements. They can also be
seen as a sort of compile-time assertions for our template types.

For example, if we want a template argument to be incrementable by one, we will
specify the concept for it:

template <typename T>
concept MustBeIncrementable = requires (T x) { x += 1; };

281

CHAPTER 40 C++ STANDARDS

To use this concept in a template, we write:

template<MustBeIncrementable T>
void myfunction(T x)

{

// code goes in here

Another way to include the concept into our template is:

template<typename T> requires MustBeIncrementable <T>
void myfunction(T x)

{

// code goes in here

A full working example would be:

#include <iostream>
#include <concepts>

template <typename T>
concept MustBeIncrementable = requires (T x) { x ++; };

template<MustBeIncrementable T>
void myfunction(T x)

{
X += 1;
std::cout << x << "\n';
}
int main()
{
myfunction<char>(42); // OK
myfunction<int>(123); // OK
myfunction<double>(345.678); // OK
}

282

CHAPTER 40 C++ STANDARDS

This concept ensures our argument x of type T must be able to accept operator ++,
and the argument must be able to be incremented by one. This check is performed
during the compile-time. The requirement is indeed true for types char, int, and
double. If we used a type for which the requirement is not fulfilled, the compiler would
issue a compile-time error.

We can combine multiple concepts. Let us, for example, have a concept that requires
the T argument to be an even or an odd number.

template <typename T>
concept MustBeEvenOrOdd = requires (T x) { x % 2; };

Now our template can include both the MustBeIncrementable and MustBeEvenOrOdd
COHCEptSZ

template<typename T> requires MustBeIncrementable<T> &&
MustBeEvenNumber<T>;
void myfunction(T x)

{

// code goes in here

The keyword requires is used both for the expression in the concept and when
including the concept into our template class/function.
The complete program, which includes both concept requirements, would be:

#include <iostream>
#include <concepts>

template <typename T>
concept MustBeIncrementable = requires (T x) { x++; };

template <typename T>
concept MustBeEvenOrOdd = requires (T x) { x % 2; };

template<typename T> requires MustBeIncrementable<T> && MustBeEvenOrOdd<T>
void myfunction(T x)

{

std::cout << "The value conforms to both conditions: " << x << "\n';

283

CHAPTER 40 C++ STANDARDS

int main()
{
myfunction<char>(123); // 0K
myfunction<int>(124); // OK
myfunction<double>(345); // Error, a floating point number is not even
// nor odd

In this example, the template will be instantiated if both concept requirements
are evaluated to true during compile time. Only the myfunction<char>(123); and
myfunction<int>(124); functions can be instantiated and pass the compilation. The
arguments of types char and int are indeed incrementable and can be either even or odd.
However, the statement myfunction<double>(345); does not pass a compilation. The
reason is that the second requirement MustBeEven0r0dd is not fulfilled as floating-point
numbers are neither odd nor even.

Important! Both concepts say: for every x of type T, the statement inside the code-
block { } compiles and nothing more. It just compiles. If it compiles, the requirement for
that type is fulfilled.

If we want our type T to have a member function, for example, .empty() and we want
the result of that function to be convertible to type bool, we write:

template <typename T>
concept HasMemberFunction requires (T x)

{
{ x.empty() } -> std::convertible to(bool);

};

There are multiple predefined concepts in the C++20 standard. They check if the
type fulfills certain requirements. These predefined concepts are located inside the
<concepts> header. Some of them are:

a. std:integral - specifies the type should be an integral type
b. std::boolean - specifies the type can be used as a boolean type

c. std:move_constructible - specifies that the object of a particular
type can be constructed using the move semantics

284

CHAPTER 40 C++ STANDARDS

d. std::movable - specifies that the object of a certain type T can be
moved

e. std:signed_integral - says the type is both integral and is a signed
integral

40.4.3 Lambda Templates

We can now use template syntax in our lambda functions. Example:

auto mylambda = []<typename T>(T param)
{
// code

};

For example, to printout the generic type name, using a templated lambda
expression, we would write:

#include <iostream>
#include <vector>
#include <typeinfo>

int main()
{
auto mylambda = []<typename T>(T param)
{
std::cout << typeid(T).name() << "\n';
};

std::vector<int> v = { 1, 2, 3, 4, 5 };
mylambda(v); // integer

std::vector<double> v2 = { 3.14, 123.456, 7.13 };
mylambda(v2); // double

285

CHAPTER 40 C++ STANDARDS

40.4.4 [likely] and [unlikely] Attributes

If we know that some paths of execution are more likely to be executed than others,
we can help the compiler optimize the code by placing attributes. We use the [[likely]]
attribute before the statement that is more likely to be executed. We can also put the
[[unlikely]] attribute before the statement that is unlikely to be executed. For example,
the attributes can be used on case branches inside the switch statement:

#include <iostream>

void mychoice(int i)

{
switch (1)
{
[[likely]] case 1:
std::cout << "Likely to be executed.";
break;
[[unlikely]] case 2:
std::cout << "Unlikely to be executed.";
break;
default:
break;
}
}
int main()
{
mychoice(1);
}

If we want to use these attributes on the if-else branches, we write:
#include <iostream>

int main()

{

bool choice = true;
if (choice) [[likely]]

286

CHAPTER 40 C++ STANDARDS

{
std::cout << "This statement is likely to be executed.";
}
else [[unlikely]]
{
std::cout << "This statement is unlikely to be executed.";
}

40.4.5 Ranges

A range, in general, is an object that refers to a range of elements. The new C++20 ranges
feature is declared inside a <ranges> header. The ranges themselves are accessed via
the std::ranges name. With classic containers such as an std::vector, if we want to sort the
data, we would use:

#include <iostream>
#include <vector>
#include <algorithm>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
std::sort(v.begin(), v.end());

for (auto el : v)

{

std::cout << el << '"\n';

The std::sort function accepts vector’s .begin() and end() iterators. With ranges, it is
much simpler, we just provide the name of the range, without iterators:

#include <iostream>
#include <ranges>
#include <vector>
#include <algorithm>

287

CHAPTER 40 C++ STANDARDS

int main()

{
std::vector<int> v ={3, 5, 2, 1, 4 };
std::ranges::sort(v);

for (auto el : v)

{

std::cout << el << '\n';

Ranges have a feature called adaptors. One of the range adaptors is views. The views
adaptors are accessed via std: :ranges: :views. Views are not owning. They cannot
change the values of the underlying elements. It is also said they are lazily executed. This
means the code from the views adaptors will not be executed until we iterate over the
result of such views.

Let us create an example which uses range views to filter-out even numbers and

print only the odd numbers from a vector by creating a range view:

#include <iostream>
#include <ranges>
#include <vector>
#include <algorithm>

int main()

{

std::vector<int> v = { 1, 2, 3, 4, 5 };

auto oddnumbersview = v | std::views::filter([](int x) { return x % 2

== 1; });
for (auto el : oddnumbersview)
{
std::cout << el << '\n';
}

288

CHAPTER 40 C++ STANDARDS

Explanation: we have a simple vector with some elements. Then we create a view
range adaptor on that vector, which filters the numbers in the range. For this, we use the
pipe operator |. Only the numbers for which the predicate is true are included. In our
case, this means the even numbers are excluded. Then we iterate over the filtered view
and print out the elements.

Important to note, the underlying vector’s elements are unaffected as we are
operating on a view, not on a vector.

Let us create an example which creates a view that returns only numbers greater
than 2:

#include <iostream>
#include <ranges>
#include <vector>
#include <algorithm>

int main()

{

std::vector<int> v = { 1, 2, 3, 4, 5 };

auto greaterthan2view = v | std::views::filter([](int x) { return x >
2; });
for (auto el : greaterthan2view)

{

std::cout << el << "\n';

Now, let us combine the two views into one big view by separating them with
multiple pipe | operators:

#include <iostream>
#include <ranges>
#include <vector>
#include <algorithm>

289

CHAPTER 40 C++ STANDARDS

int main()

{

std::vector<int> v = { 1, 2, 3, 4, 5 };

auto oddandgreaterthan2 = v | std::views::filter([](int x) { return x %

2 ==1;})
| std::views::filter([](int x) { return x >
2; 1);
for (auto el : oddandgreaterthan2)
{
std::cout << el << '\n';
}

This example creates a view range adaptor containing odd numbers greater than
two. We create this view by combining two different range views into one.

Another ranges adaptors are algorithms. The idea is to have the algorithms
overload for ranges. To call an algorithm adaptor we use: std: :ranges: :algorithm_
name(parameters). Example using the std::ranges::reverse() algorithm:

#include <iostream>
#include <ranges>
#include <vector>
#include <algorithm>

int main()

{
std::vector<int> v = { 1, 2, 3, 4, 5 };
std::ranges::reverse(v);
for (auto el : v)

{

std::cout << el << "\n';

Unlike views, the ranges algorithms modify the actual vector content.

290

CHAPTER 40 C++ STANDARDS

40.4.6 Coroutines

A coroutine is a function that can be suspended and be resumed. The ordinary function
is a coroutine if it uses any of the following operators in its function body:

a. co_await - suspends the execution of the coroutine until some
other computation is performed, that is until the coroutine itself

resumes
b. co_yield - suspends a coroutine and return a value to the caller

C. co_return - returns from a coroutine and stops its execution

40.4.7 std::span

Some containers and types store their elements in a sequence, one next to the other.
This is the case for arrays and vectors. We can represent such containers with a pointer
to their first element plus the length of the container. A std::span class template from a
header is just that. A reference to a span of contiguous container elements. One
reason to use the std::span, is that it is cheap to construct and copy. Span does not own
avector or an array it references. However, it can change the value of the elements. To

create a span from a vector we use:

#include <iostream>
#include <vector>
#include

int main()

{
std::vector<int> v ={ 1, 2, 3 };
std: :span<int> myintspan = v;
myintspan[2] = 256;

for (auto el : v)

{

std::cout << el << '\n';

291

CHAPTER 40 C++ STANDARDS

Here, we created a span that references vector elements. Then we used the span to
change the vector’s third element. With span, we do not have to worry about passing a
pointer and a length around, and we just use the neat syntax of a span wrapper. Since
the size of the vector can change, we say our span has a dynamic extent. We can create
a fixed-size span from a fixed-sized array. We say our span now has a static extent.
Example:

#include <iostream>
#include

int main()

{
int arr[] = {1, 2, 3, 4, 5 };
std::span<int, 5> myintspan = arr;
myintspan[4] = 10;

for (auto el : arr)

{

std::cout << el << "\n';

40.4.8 Mathematical Constants

C++20 standard introduces a way to represent some of the mathematical constants.

To use them, we need to include the <numbers>header. The constants themselves are
inside the std::numbers namespace. The following example shows how to use numbers
pi and e, results of logarithmic functions and square roots of numbers 2 and 3:

#include <iostream>
#include <numbers>

int main()

{

std::cout << "Pi: " << std::numbers::pi << '\n';
std::cout << "e: " << std::numbers::e << '\n';

std::cout << "log2(e): " << std::numbers::log2e << '\n';

292

CHAPTER 40 C++ STANDARDS

std::cout << "loglo(e): " << std::numbers::logl0e << '\n';
std::cout << "In(2): " << std::numbers::1n2 << '\n';
std::cout << "In(10): " << std::numbers::1n10 << '\n';
std::cout << "sqrt(2): " << std::numbers::sqrt2 << '\n';
std::cout << "sqrt(3): " << std::numbers::sqrt3 << '\n';

293

Summary and Advice

Dear reader, congratulations on finishing this book. Hopefully, by now, you are familiar
with the C++ language, the standard library, and various C++ standards basics and
features. Learning C++ is no small task. But, it is an achievable and rewarding task.
My goal was to present a language and standard library backbone, something every
aspiring C++ developer should know.

Where to go from here? I will recommend a few resources and books I feel are
essential for every C++ professional.

The go-to Reference

The go-to reference for the C++ language and the standard library is the cppreference at:
https://www.cppreference.com
Itis the number one resource when it comes to C++ and the library. It is an
exceptionally well written, community-driven, wiki-style C++ reference packed with
theory and examples. It is even said the cppreference is unofficial C++ documentation.
The cppreference should be your number one reference resource.

StackOverflow

StackOverflow is a community-driven programming Q & A site. It has a wealth of up to
date information on a plethora of languages, including C++:
https://stackoverflow.com/questions/tagged/c%2b%2b

295
© Slobodan Dmitrovi¢ 2020

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0

https://doi.org/10.1007/978-1-4842-6047-0#DOI
https://www.cppreference.com
https://stackoverflow.com/questions/tagged/c++

SUMMARY AND ADVICE

Other Online Resources

The Standard C++ Foundation has a C++ super FAQ page at:

https://isocpp.org/faq

This resource has some great articles for C++11, C++14, and the language in general.
It also features a list of nice C++ blogs.

Other C++ Books

StackOverflow maintains a list of C++ books called “The Definitive C++ Book Guide and
List” at:
https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-
and-list
From this collection, I highly recommend the following three books:

— “The C++ Programming Language” by Bjarne Stroustrup
“Effective C++” by Scott Meyers
— “Effective Modern C++” by Scott Meyers

I think every C++ Developer should read these three books. Scott’s books are what
interested me in this wonderful language in the first place.

Advice

To quote my good friend and a fellow C++ developer: “C++ is a fountain of constant
learning.” So, do not get intimidated by the language complexity in the beginning.

C++ is a tool first and foremost. Take from it what you need at first. You do not need to
know every language feature or every language quirk to be a successful developer or an
engineer. Get a 9 to 5 C++ job. Aim to be around knowledgeable people. Get a mentor
and learn from existing, elegant C++ frameworks. Attend C++ conferences if able. And
enjoy yourself. Being a C++ developer is a good career choice. It gets you places, pays

well, and is rewarding in so many ways.

296

https://isocpp.org/faq
https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list

Index

A

Access specifiers/labels, 99-101, 123-124
Algorithms/utilities
std::copy function, 224-225
std::find function, 222-223
std::max::element function, 225-226
std::min_element function, 225-226
std::sort function, 221-222
Anonymous function objects, see Lambda
expressions
Arithmetic operations, 21-23
Arrays
subscript [] operator, 32
char, 31
containers, 212
declaration, 32
definition, 49
for-loop, 72
implicit conversions, 177
initialization (int), 31
Assignment operator (=), 21
Associative containers, 220
Automatic storage duration, 90, 93-94
Automatic type deduction
C++11, 244
constant type, 48
initialization, 53
reference/initializer type, 47

© Slobodan Dmitrovi¢ 2020

B

Block scope, 89

C

C++11
command-line compilation, 243

concurrency, 254-259
constexpr specifier, 247

defaulted/deleted functions, 259-261

g++/clang, 254

lambda expressions, 246-247

list initialization, 245

move semantics, 245-246

processes, 254

range-based loops, 244

rvalue reference, 246

scoped enumerators, 247-248

smart pointers, 248-279

static_assert, 253

threads, 254

tuple element, 252-253

type alias/deduction, 244, 262

unordered set/map, 249-252
C++14, 262

binary literals, 263

digits separators, 264

generic lambda, 265

S. Dmitrovi¢, Modern C++ for Absolute Beginners, https://doi.org/10.1007/978-1-4842-6047-0

297

https://doi.org/10.1007/978-1-4842-6047-0#DOI

INDEX

C++14 (cont.) std::span class template, 291-292
make_unique function, 265-266 switch statement, 286
return statement value, 264 C++ programming language
C++17 approaches, 1
constexpr Lambdas, 267 Book Guide, 296
nested namespaces, 266 definition, 3
std::any container, 273-275 Character type, 12-14
std::filesystem library, 269-271 Classes
std::string_view, 272-273 access specifiers/labels, 99-101,
std::variant, 275-278 123-124
structured binding, 267-269 constructor (see Constructors)
union type, 275 definition, 95
C++20 destructor, 118-119
concepts inheritance, 131-135
even/odd number, 283 instance, 121
requirements, 283-284 member field, 96
template/signature, 281 member function, 96-98, 121-123
working process, 282 polymorphism, 131-135
coroutines, 291 user-defined (see User-defined type)
dynamic/static extent, 292 Code organization
features, 278 header files, 165
lambda functions, 285 header guards, 166
[likely]/[unlikely] attributes, 286-287 namespace, 166-169
mathematical constants, 292 stitches, 166
modules Comparing string (==), 41-42
header file, 278-279 Comparison operators, 60-62
implementation, 280 Compilers
module file, 279 file/library, 5
namespace, 280 Linux, 5-6
std::ranges Windows, 6
adaptors, 288 Compile-time conversion, 179
pipe (|) operators, 289 Compound assignment operators, 23, 29
std::ranges::reverse() Concatenation, 40
algorithm, 290 Concurrency
std::ranges::views, 288 constructor, 255
std::sort function, 287 cout object, 258
std::vector, 287 multiple thread objects, 256-257

298

shared memory, 254
threads, 254
Conditional expression, 57-58
Constants, 67-68
Constructors
copy (assignment operator/
constructor), 104-108
deep copy, 106
default constructor, 102-104
initialization, 102
member initialization, 104
move (assignment operator/
semantics), 109-112
overloading operator, 113-118
user-defined type, 124
Containers
categories, 209
iterators, 219-220
std::array/pointers, 212
std::deque, 217
std::forward_list, 217
std::list, 217
std::map, 213-216
std::pair, 216-217
std::set, 212-213
vector (see std::vector)
Conversions, 175

D

Data manipulation, 236

Data member function, 122-123
Declaration (variable), 17-19
Definition (program), 20

Destructor, 118-119, 124

dowork() function, 196
Dynamic_cast function, 179, 181
Dynamic storage duration, 90, 93-94

INDEX

E

Encapsulation, 139
Enumeration
definition, 155
scoped enums, 156-157, 163
switch statement, 164
underlying type, 156-157
unscoped enums type, 155-156
variable declaration, 155-156
Exception handling
integer exception, 198-199
try/catch (see Try/catch block)
Explicit conversion
dynamic_cast function, 179-180
function signature, 178-179
inheritance chain, 180-181

F

Files streams
char variable, 203
<fstream> header, 201
operator (>>/<<), 202-203
myfile.txt file, 202
std::fstream object, 201
while-loop, 202

Floating-point type/division, 15, 29

for-loop, 71-72

Function
arguments, 78
declaration, 75-76, 85-86
definition, 75-77, 85
empty parentheses, 77
overloading, 83-84, 87
parameters, 78, 86
passing arguments, 87

const reference, 82

299

INDEX

Function (cont.)
reference, 81
value/copy, 80

printmessage(), 85
return-statement, 79-80
Fundamental types
Boolean type, 11-12
character, 12-14
floating-point, 15
integer, 14-15
void type, 16

G

Generic programming/lambda, 149, 265
go-to reference, 295

H

Handling exception, 198
Header/source files, 165-166, 171
Heap memory, see Dynamic storage
duration
Hello World program
comments, 19
console window, 8
escape sequence (), 10
operator (<<), 9
output, 9
standard-library namespace, 9
strings, 39
wrong approach, 10

,J,K
if-statement (selection statement),
55-57, 69
Implicit conversions
arithmetic expression, 176

300

arr argument, 178

array elements, 177

Boolean values, 176

built-in types, 175

integral promotion, 176

narrowing conversions, 175

pointers, 177
Increment/decrement operators, 24
Inheritance

base class, 133-134

base/derived class, 141-142

derived class/objects, 132

existing class, 131

getname()/getsemester(), 143

hierarchy, 135

MyDerivedClass, 132

nutshell, 141

protected members, 132

public/protected members, 134
Initialization, 17, 20
Input/output streams

arithmetic operations, 28

compound assignment operator, 29

files streams, 201-204

floating-point division, 29

multiple inputs, 28

post-increments, 29

standards, 27

string streams, 204-207

two integer numbers, 27
Integer type, 14-15
Integral promotion, 176
Iteration statements

do-statement, 66

for-statement, 64

init_statement, 65

vector content, 219-220

while-loop, 65

L

Lambda expressions
C++11, 246
C++20, 285
callables function, 231
comma operator, 229
definition/invoke code, 228
even numbers, 242
function object, 226
main() function, 242
optional parameters, 230
parameters, 226
returning value, 227
std::count_if function, 230
std::vector, 241
variables/reference, 230
Lifetime, see Storage durations
Linux, 5-6
Local scope function, 89
Logical operators
AND operator, 58
bool variable, 69
comparison operators, 60-62
negation (!), 59
OR operator, 59
switch statement, 63-64

Map
C++11 unordered_map, 250-252
first() member variable, 214
insert() member function, 215, 239
int char pairs, 213
key_value member function, 214, 215
search/delete, 240

INDEX

type (integer), 238
Member functions
data member field, 98
dosomething(), 96-98
inside/outside class, 97
printmessage(), 122
printx(), 98
set’s content, 237
Modern C++, 243
Modifiers, 16
Move constructor/assignment
operator, 109-112
Multi-line comments, 8
Multiple exception handling, 198-199
Multiple source files, 172-173

N

Namespaces

clashes, 168

declaration, 166

directive, 167

function names, 173

objects outside declaration, 167
Narrowing conversions, 175
Nested namespace, 174, 266
null pointer, 34

O

Online resources, 296
Operators
assignment (=), 21
arithmetic operations, 21-23
compound assignment, 23
increment/decrement, 24
Overloading functions, 83, 87

301

INDEX

Overloading operator Predicate function, 222
arithmetic (+) operator, 116 Program execution
binary operator (+=), 115 Hello World
classes, 112 comments, 19
operands/operators, 113 console window, 8
postfix operator, 114-115 escape sequence (), 10
prefix operator, 114 operator (<<), 9
unary prefix ++ operator, 113-114 output, 9
Overloads arithmetic operator, 128-129 standard-library namespace, 9
strings, 39

wrong approach, 10
P’ Q source.cpp file, 7

Passing arguments Pure virtual functions, 137
const reference, 82-83

references, 81, 87

value/copy, 80-81 R
Pointers Range-based loop
dereferencing operator (*), 34 const auto& specifier, 218-219
char (object), 33 container, 218
containers, 212 delete (single value), 233
declaration, 33-34 range of (3 elements), 234
implicit conversions, 177 reference type, 218
integer pointer, 35 syntax, 217
int object, 33 std::vector, 217, 233
nullptr literal, 34 References
object, 49 ampersand (&), 37
smart pointers (see Smart pointers) const-reference, 38
strings, 43 myreference/initialization, 50
Polymorphism read-only alias, 38
abstract classes, 138 reintrepret_cast function, 181

base class pointer, 138
dowork() function, 137

interfaces, 137 S

meaning, 136 Scope

polymorphism II, 196 block-scope, 89-90

virtual member function, 136, 195-196 lifetime (see Lifetime)
Portable C++, 243 local function, 89
Post-increments, 29 Scoped enumerators, 247

302

Selection statements
conditional expression, 57-58
if-statement, 55-57
logical operators, 58-62

Sequential containers, 211

Sets
C++11 unordered_set, 249-250
containers, 212-213
data manipulation, 236
integer sets, 236
member function, 237
searches of, 237

Shared pointers, 192, 195

Single line comments, 8

Smart pointers
C++11, 248
pointers, 35
shared pointer, 191
unique pointer, 189-191

Stack memory, see Automatic storage

duration

StackOverflow, 295

Standard-library
algorithms/utilities, 220-226
containers (see Containers)
lambda expressions, 226-231
range-based loop, 217-219

Standards, 243
C++11 (see C++11)

C++14, 262-266
C++17, 266-278
C++20, 278-293
chronological order, 3
input stream, 25-26
integer number, 27

Static specifier, 145
data member, 146, 160
function definition, 146

INDEX

local function, 145
member functions, 160
variables, 159

static_cast function/conversion, 181, 193

Static storage duration, 145
Storage durations
automatic duration, 90
dynamic duration, 90
operator new/delete, 91
static object, 91
Streams, see Input/output streams
Strings
accessing characters, 41
class-template, 41
comparing operator, 41-42
compound operator (+=), 40
concatenate, 40
definition, 39
find substring, 44-45
Hello World, 39
pointer, 43
resulting string, 50
single character, 52
standard input, 42-43, 51
substrings, 43-44, 51-53
String streams
constructor, 205
formatted output operator (<<), 206
operator (>>), 207
insert values, 206
member function, 206
std::stringstream class, 205
text insertion, 207
types, 204
std::copy function, 224-225
std::cout <<, 9-10
std::filesystem library, 269-271
std::find function, 45, 222-223

303

INDEX

std::numbers namespace, 292 Try/catch block

std::vector catch block exception, 185

brace initialization, 210
delete (single value), 233
finding element, 235
integers, 210

simple code execution, 183
string type, 184-185
structure of, 183

try block exception, 185

.push_back() member function, 210 Tuple element, 252-253

range-based loop, 233

range of (3 elements), 234

sequential containers, 211 U

.size() member function, 211

subscript operator/member
function, 210

switch-statement, 63, 70-71

Unique pointer
access object members, 190
declaration, 189
integer value, 194
object/class, 194
parentheses, 190
T polymorphic classes, 191
User-defined type
copy constructor, 126
initializer list, 125

Templates, 149
angle brackets, 150
argument, 152
classes, 162
constructor, 152
function creation, 149, 161
member function, 152 V
outside class scope, 153
parameters, 150
single member function, 153
specialization, 154
typing, 149

Translation unit, 166

move constructor, 127
object creation, 124

Variable declaration, see Declaration
Variable definition, 18

W XY,Z

Windows, 6

304

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Chapter 2: What is C++?
	2.1 C++ Standards

	Chapter 3: C++ Compilers
	3.1 Installing C++ Compilers
	3.1.1 On Linux
	3.1.2 On Windows

	Chapter 4: Our First Program
	4.1 Comments
	4.2 Hello World Example

	Chapter 5: Types
	5.1 Fundamental Types
	5.1.1 Boolean
	5.1.2 Character Type
	5.1.3 Integer Types
	5.1.4 Floating-Point Types
	5.1.5 Type void

	5.2 Type Modifiers
	5.3 Variable Declaration, Definition, and Initialization

	Chapter 6: Exercises
	6.1 Hello World and Comments
	6.2 Declaration
	6.3 Definition
	6.4 Initialization

	Chapter 7: Operators
	7.1 Assignment Operator
	7.2 Arithmetic Operators
	7.3 Compound Assignment Operators
	7.4 Increment/Decrement Operators

	Chapter 8: Standard Input
	Chapter 9: Exercises
	9.1 Standard Input
	9.2 Two Inputs
	9.3 Multiple Inputs
	9.4 Inputs and Arithmetic Operations
	9.5 Post-Increment and Compound Assignment
	9.6 Integral and Floating-point Division

	Chapter 10: Arrays
	Chapter 11: Pointers
	Chapter 12: References
	Chapter 13: Introduction to Strings
	13.1 Defining a String
	13.2 Concatenating Strings
	13.3 Accessing Characters
	13.4 Comparing Strings
	13.5 String Input
	13.6 A Pointer to a String
	13.7 Substrings
	13.8 Finding a Substring

	Chapter 14: Automatic Type Deduction
	Chapter 15: Exercises
	15.1 Array Definition
	15.2 Pointer to an Object
	15.3 Reference Type
	15.4 Strings
	15.5 Strings from Standard Input
	15.6 Creating a Substring
	15.7 Finding a single Character
	15.8 Finding a Substring
	15.9 Automatic Type Deduction

	Chapter 16: Statements
	16.1 Selection Statements
	16.1.1 if Statement
	16.1.2 Conditional Expression
	16.1.3 The Logical Operators
	16.1.3.1 Comparison operators

	16.1.4 switch Statement

	16.2 Iteration Statements
	16.2.1 for Statement
	16.2.2 while Statement
	16.2.3 do Statement

	Chapter 17: Constants
	Chapter 18: Exercises
	18.1 A Simple if-statement
	18.2 Logical Operators
	18.3 The switch-statement
	18.4 The for-loop
	18.5 Array and the for-loop
	18.6 The const Type Qualifier

	Chapter 19: Functions
	19.1 Introduction
	19.2 Function Declaration
	19.3 Function Definition
	19.4 Return Statement
	19.5 Passing Arguments
	19.5.1 Passing by Value/Copy
	19.5.2 Passing by Reference
	19.5.3 Passing by Const Reference

	19.6 Function Overloading

	Chapter 20: Exercises
	20.1 Function Definition
	20.2 Separate Declaration and Definition
	20.3 Function Parameters
	20.4 Passing Arguments
	20.5 Function Overloads

	Chapter 21: Scope and Lifetime
	21.1 Local Scope
	21.2 Block Scope
	21.3 Lifetime
	21.4 Automatic Storage Duration
	21.5 Dynamic Storage Duration
	21.6 Static Storage Duration
	21.7 Operators new and delete

	Chapter 22: Exercises
	22.1 Automatic Storage Duration
	22.2 Dynamic Storage Duration
	22.3 Automatic and Dynamic Storage Durations

	Chapter 23: Classes - Introduction
	23.1 Data Member Fields
	23.2 Member Functions
	23.3 Access Specifiers
	23.4 Constructors
	23.4.1 Default Constructor
	23.4.2 Member Initialization
	23.4.3 Copy Constructor
	23.4.4 Copy Assignment
	23.4.5 Move Constructor
	23.4.6 Move Assignment

	23.5 Operator Overloading
	23.6 Destructors

	Chapter 24: Exercises
	24.1 Class Instance
	24.2 Class with Data Members
	24.3 Class with Member Function
	24.4 Class with Data and Function Members
	24.5 Class Access Specifiers
	24.6 User-defined Default Constructor and Destructor
	24.7 Constructor Initializer List
	24.8 User-defined Copy Constructor
	24.9 User-defined Move Constructor
	24.10 Overloading Arithmetic Operators

	Chapter 25: Classes – Inheritance and Polymorphism
	25.1 Inheritance
	25.2 Polymorphism

	Chapter 26: Exercises
	26.1 Inheritance

	Chapter 27: The static Specifier
	Chapter 28: Templates
	Chapter 29: Enumerations
	Chapter 30: Exercises
	30.1 Static variable
	30.2 Static data member
	30.3 Static member function
	30.4 Function Template
	30.5 Class Template
	30.6 Scoped Enums
	30.7 Enums in a switch

	Chapter 31: Organizing code
	31.1 Header and Source Files
	31.2 Header Guards
	31.3 Namespaces

	Chapter 32: Exercises
	32.1 Header and Source Files
	32.2 Multiple Source Files
	32.3 Namespaces
	32.4 Nested Namespaces

	Chapter 33: Conversions
	33.1 Implicit Conversions
	33.2 Explicit Conversions

	Chapter 34: Exceptions
	Chapter 35: Smart Pointers
	35.1 Unique Pointer
	35.2 Shared Pointer

	Chapter 36: Exercises
	36.1 static_cast Conversion
	36.2 A Simple Unique Pointer:
	36.3 Unique Pointer to an Object of a Class
	36.4 Shared Pointers Exercise
	36.5 Simple Polymorphism
	36.6 Polymorphism II
	36.7 Exception Handling
	36.8 Multiple Exceptions

	Chapter 37: Input/Output Streams
	37.1 File Streams
	37.2 String Streams

	Chapter 38: C++ Standard Library and Friends
	38.1 Containers
	38.1.1 std::vector
	38.1.2 std::array
	38.1.3 std::set
	38.1.4 std::map
	38.1.5 std::pair
	38.1.6 Other Containers

	38.2 The Range-Based for Loop
	38.3 Iterators
	38.4 Algorithms and Utilities
	38.4.1 std::sort
	38.4.2 std::find
	38.4.3 std::copy
	38.4.4 Min and Max Elements

	38.5 Lambda Expressions

	Chapter 39: Exercises
	39.1 Basic Vector
	39.2 Deleting a Single Value
	39.3 Deleting a Range of Elements
	39.4 Finding Elements in a Vector
	39.5 Basic Set
	39.6 Set Data Manipulation
	39.7 Set Member Functions
	39.8 Search for Data in a Set
	39.9 Basic Map
	39.10 Inserting Into Map
	39.11 Searching and Deleting From a Map
	39.12 Lambda Expressions

	Chapter 40: C++ Standards
	40.1 C++11
	40.1.1 Automatic Type Deduction
	40.1.2 Range-based Loops
	40.1.3 Initializer Lists
	40.1.4 Move Semantics
	40.1.5 Lambda Expressions
	40.1.6 The constexpr Specifier
	40.1.7 Scoped Enumerators
	40.1.8 Smart Pointers
	40.1.9 std::unordered_set
	40.1.10 std::unordered_map
	40.1.11 std::tuple
	40.1.12 static_assert
	40.1.13 Introduction to Concurrency
	40.1.14 Deleted and Defaulted Functions
	40.1.15 Type Aliases

	40.2 C++14
	40.2.1 Binary Literals
	40.2.2 Digits Separators
	40.2.3 Auto for Functions
	40.2.4 Generic Lambdas
	40.2.5 std::make_unique

	40.3 C++17
	40.3.1 Nested Namespaces
	40.3.2 Constexpr Lambdas
	40.3.3 Structured Bindings
	40.3.4 std::filesystem
	40.3.5 std::string_view
	40.3.6 std::any
	40.3.7 std::variant

	40.4 C++20
	40.4.1 Modules
	40.4.2 Concepts
	40.4.3 Lambda Templates
	40.4.4 [likely] and [unlikely] Attributes
	40.4.5 Ranges
	40.4.6 Coroutines
	40.4.7 std::span
	40.4.8 Mathematical Constants

	Summary and Advice
	The go-to Reference
	StackOverflow
	Other Online Resources
	Other C++ Books
	Advice

	Index

