

Learn LLVM 12

A beginner's guide to learning LLVM compiler tools
and core libraries with C++

Kai Nacke

BIRMINGHAM—MUMBAI

Learn LLVM 12
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Shweta Bairoliya
Senior Editor: Ruvika Rao
Content Development Editor: Nithya Sadanandan
Technical Editor: Gaurav Gala
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Roshan Kawale

First published: April 2021
Production reference: 1290421

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-83921-350-2
www.packt.com

http://www.packt.com

Writing a book is a challenging task, especially when you are planning to
move to Canada and suddenly a pandemic hits the world and changes

everything. The team at Packt not only provided guidance on writing, but
also showed understanding for my slow writing, and always motivated me

to carry on. I owe them a great thank you.

Without the support of my family, this book would not have been possible.
Thanks for putting all that faith in me!

Contributors

About the author
Kai Nacke is a professional IT architect currently living in Toronto, Canada. He holds a
diploma in computer science from the Technical University of Dortmund, Germany. His
diploma thesis about universal hash functions was recognized as the best of the semester.

He has been working in the IT industry for more than 20 years and has great experience
in the development and architecture of business and enterprise applications. In his current
role, he evolves an LLVM/Clang-based compiler.

For some years, he was the maintainer of LDC, the LLVM-based D compiler. He is the
author of D Web Development, published by Packt. In the past, he was also a speaker in
the LLVM developer room at the Free and Open Source Software Developers' European
Meeting (FOSDEM).

About the reviewer
Suyog Sarda is a professional software engineer and an open source enthusiast. He focuses
on compiler development and compiler tools. He is an active contributor to the LLVM
open source community. Suyog was also involved in code performance improvements
for the ARM and x86 architectures. He has been a part of the compiler team for the
Tizen project. His interest in compiler development lies more in code optimization and
vectorization. Previously, he has authored a book on LLVM, titled LLVM Cookbook,
published by Packt. Apart from compilers, Suyog is also interested in Linux kernel
development. He published a technical paper titled Secure Co-resident Virtualization
in Multicore Systems by VM Pinning and Page Coloring at the IEEE Proceedings of the
2012 International Conference on Cloud Computing, Technologies, Applications, and
Management at the Birla Institute of Technology, Dubai. He earned a bachelor's degree in
computer technology from the College of Engineering, Pune, India.

Table of Contents
Preface

Section 1 – The Basics of Compiler
Construction with LLVM

1
Installing LLVM

Getting the prerequisites ready� 4
Ubuntu� 5
Fedora and RedHat� 5
FreeBSD� 5
OS X� 6
Windows� 6
Configuring Git� 6

Building with CMake� 7

Cloning the repository� 7
Creating a build directory� 8
Generating the build system files� 8

Customizing the build process� 10
Variables defined by CMake� 11
Variables defined by LLVM� 13

Summary� 15

2
Touring the LLVM Source

Technical requirements� 18
Contents of the LLVM mono
repository� 18
LLVM core libraries and additions� 18
Compilers and tools� 19
Runtime libraries� 20

Layout of an LLVM project� 20
Creating your own project
using LLVM libraries� 23
Creating the directory structure� 23
Adding the CMake files� 24
Adding the C++ source files� 30
Compiling the tinylang application� 32

ii Table of Contents

Targeting a different CPU
architecture� 35

Summary� 39

3
The Structure of a Compiler

Technical requirements� 42
Building blocks of a compiler� 42
An arithmetic expression
language� 43
Formalism for specifying the syntax of
a programming language� 43
How grammar helps the compiler writer� 44

Lexical analysis� 45
A handwritten lexer� 45

Syntactical analysis� 50

A handwritten parser� 51
The abstract syntax tree� 58

Semantic analysis� 61
Generating code with the LLVM
backend� 64
Textual representation of the LLVM IR� 64
Generating the IR from the AST � 66
The missing pieces – the driver and the
runtime library� 71

Summary� 74

Section 2 – From Source to
Machine Code Generation

4
Turning the Source File into an Abstract Syntax Tree

Technical requirements� 78
Defining a real
programming language� 78
Creating the project layout� 81
Managing source files
and user messages� 82
Structuring the lexer� 86

Constructing a recursive
descent parser� 93
Generating a parser
and lexer with bison and flex� 97
Performing semantic analysis� 101
Handling the scope of names� 101
Using LLVM-style RTTI for the AST� 105
Creating the semantic analyzer� 106

Summary� 114

Table of Contents iii

5
Basics of IR Code Generation

Technical requirements� 116
Generating IR from the AST� 116
Understanding the IR code� 116
Knowing the load-and-store approach� 120
Mapping the control flow
to basic blocks� 121

Using AST numbering to
generate IR code in SSA form� 123
Defining the data structure
to hold values� 124
Reading and writing values local
to a basic block� 124
Searching the predecessor blocks
for a value� 125
Optimizing the generated
phi instructions� 127
Sealing a block� 129

Creating IR code for expressions� 129
Emitting the IR code for a function� 131
Controlling visibility with linkage and
name mangling� 131
Converting types from an AST
description to LLVM types� 132
Creating the LLVM IR function� 133
Emitting the function body� 135

Setting up the module
and the driver� 137
Wrapping everything
in the code generator� 137
Initializing the target machine class� 138
Emitting assembler text and
object code� 140

Summary� 144

6
IR Generation for High-Level Language Constructs

Technical requirements� 146
Working with arrays, structs,
and pointers� 146
Getting the application binary
interface right� 150
Creating IR code for classes

and virtual functions� 152
Implementing single inheritance� 152
Extending single inheritance
with interfaces� 156
Adding support for multiple inheritance�158

Summary� 160

7
Advanced IR Generation

Technical requirements� 162 Throwing and catching
exceptions� 162

iv Table of Contents

Raising an exception� 169
Catching an exception� 172
Integrating the exception-handling
code into the application� 175

Generating metadata
for type-based alias analysis� 176
Understanding the need
for additional metadata� 176

Adding TBAA metadata to tinylang� 179

Adding debug metadata� 184
Understanding the general structure
of debug metadata� 184
Tracking variables and their values� 188
Adding line numbers� 192
Adding debug support to tinylang� 192

Summary� 200

8
Optimizing IR

Technical requirements� 202
Introducing the
LLVM Pass manager� 202
Implementing a Pass using
the new Pass manager� 204
Adding a Pass to the LLVM source tree� 204
Adding a new Pass as a plugin� 208

Adapting a Pass for use with
the old Pass manager� 213
Adding an optimization pipeline
to your compiler� 216
Creating an optimization pipeline with
the new Pass manager� 216
Extending the Pass pipeline� 223

Summary� 226

Section 3 – Taking LLVM to the Next Level

9
Instruction Selection

Technical requirements� 230
Understanding the LLVM
target backend structure� 230
Using MIR to test and
debug the backend� 231
How instruction selection works�235
Specifying the target description in
the TableGen language� 235

Instruction selection with
the selection DAG� 240
Fast instruction selection – FastISel� 248
The new global instruction
selection – GlobalISel� 249

Supporting new machine
instructions� 251
Adding a new instruction to the
assembler and code generation� 251

Table of Contents v

Testing the new instruction� 255 Summary� 258

10
JIT Compilation

Technical requirements� 260
Getting an overview of LLVM's
JIT implementation
and use cases� 260
Using JIT compilation for direct
execution� 262
Exploring the lli tool� 262
Implementing our own JIT compiler

with LLJIT� 264
Building a JIT compiler
class from scratch� 271

Utilizing a JIT compiler
for code evaluation� 281
Identifying the language semantics� 283

Summary� 284

11
Debugging Using LLVM Tools

Technical requirements� 286
Instrumenting an application
with sanitizers� 286
Detecting memory access problems
with the address sanitizer� 286
Finding uninitialized memory access
with the memory sanitizer� 289
Pointing out data races with the
thread sanitizer� 290

Finding bugs with libFuzzer� 292
Limitations and alternatives� 296

Performance
profiling with XRay� 296
Checking the source
with the Clang Static Analyzer� 301
Adding a new checker to the Clang
Static Analyzer� 305

Creating your own
Clang-based tool� 314
Summary� 322

12
Create Your Own Backend

Technical requirements� 324
Setting the stage for
a new backend� 324
Adding the new architecture
to the Triple class� 325

Extending the ELF file format
definition in LLVM� 326
Creating the target description� 328
Implementing the top-level file of the
target description� 328

vi Table of Contents

Adding the register definition� 330
Defining the calling convention� 331
Creating the scheduling model� 332
Defining the instruction formats and
the instruction information� 333

Implementing the DAG
instruction
selection classes� 336
Initializing the target machine� 337
Adding the selection DAG

implementation� 339
Supporting target-specific operations� 340
Configuring the target lowering� 344

Generating assembler
instructions� 347
Emitting machine code� 350
Adding support for
disassembling� 353
Piecing it all together� 357
Summary� 360

Other Books You May Enjoy
Index

Preface
Constructing a compiler is a complex and fascinating task. The LLVM project provides
reusable components for your compiler. The LLVM core libraries implement a world-class
optimizing code generator, which translates a source language-independent intermediate
representation of machine code for all popular CPU architectures. The compilers for many
programming languages already take advantage of LLVM technology.

This book teaches you how to implement your own compiler and how to use LLVM
to achieve it. You will learn how the frontend of a compiler turns source code into an
abstract syntax tree, and how to generate intermediate representation (IR) from it.
Adding an optimization pipeline to your compiler, you can compile the IR to performant
machine code.

The LLVM framework can be extended in several ways, and you will learn how to add
new passes, new machine instructions, and even a completely new backend to LLVM.
Advanced topics such as compiling for a different CPU architecture and extending clang
and the clang static analyzer with your own plugins and checkers are also covered. This
book follows a practical approach and is packed with example source code, which makes it
easy to apply the knowledge gained in your own projects.

Who this book is for
This book is for compiler developers, enthusiasts, and engineers who are new to
LLVM and are interested in learning about the LLVM framework. It is also useful for
C++ software engineers looking to use compiler-based tools for code analysis and
improvement, as well as casual users of LLVM libraries who want to gain more knowledge
of LLVM essentials. Intermediate-level experience with C++ programming is mandatory
to understand the concepts covered in this book more effectively.

viii Preface

What this book covers
Chapter 1, Installing LLVM, explains how to set up and use your development
environment. At the end of the chapter, you will have compiled the LLVM libraries and
learned how to customize the build process.

Chapter 2, Touring the LLVM Source, introduces you to the various LLVM projects
and discusses the common directory layout shared by all projects. You will create your
first project using the LLVM core libraries, and you will also compile it for a different
CPU architecture.

Chapter 3, The Structure of a Compiler, gives you an overview of the components of
a compiler. At the end of the chapter, you will have implemented your first compiler
producing LLVM IR.

Chapter 4, Turning the Source File into an Abstract Syntax Tree, teaches you in detail how
to implement the frontend of a compiler. You will create your own frontend for a small
programming language, ending with the construction of an abstract syntax tree.

Chapter 5, Basics of IR Generation, shows you how to generate LLVM IR from an abstract
syntax tree. At the end of the chapter, you will have implemented a compiler for the
example language, emitting assembly text or object code files as a result.

Chapter 6, IR Generation for High-Level Language Constructs, illustrates how you translate
source language features commonly found in high-level programming languages to
LLVM IR. You will learn about the translation of aggregate data types, the various
options to implement class inheritance and virtual functions, and how to comply with the
application binary interface of your system.

Chapter 7, Advanced IR Generation, shows you how to generate LLVM IR for exception-
handling statements in the source language. You will also learn how to add metadata for
type-based alias analysis, and how to add debug information to the generated LLVM IR,
and you will extend your compiler-generated metadata.

Chapter 8, Optimizing IR, explains the LLVM pass manager. You will implement your own
pass, both as part of LLVM and as a plugin, and you will learn how to add your new pass
to the optimizing pass pipeline.

Chapter 9, Instruction Selection, shows how LLVM lowers IR to machine instructions.
You will learn how instructions are defined in LLVM, and you will add a new machine
instruction to LLVM so that instruction selection takes the new instruction into account.

Chapter 10, JIT Compilation, discusses how you can use LLVM to implement a just-in-
time (JIT) compiler. By the end of the chapter, you will have implemented your own JIT
compiler for LLVM IR in two different ways.

Preface ix

Chapter 11, Debugging Using LLVM Tools, explores the details of various libraries and
components of LLVM, which helps you to identify bugs in your application. You will use
the sanitizers to identify buffer overflows and other bugs. With the libFuzzer library, you
will test functions with random data as input, and XRay will help you to find performance
bottlenecks. You will use the clang static analyzer to identify bugs at the source level, and
you will learn that you can add your own checker to the analyzer. You will also learn how
to extend clang with your own plugin.

Chapter 12, Creating Your Own Backend, explains how you can add a new backend to
LLVM. You will implement all the necessary classes, and at the end of the chapter you will
compile LLVM IR to yet another CPU architecture.

To get the most out of this book
You need a computer running Linux, Windows, macOS, or FreeBSD, with the development
toolchain installed for the operating system. Please see the table for the required tools. All
tools should be in the search path of your shell.

To view the DAG visualization in Chapter 9, Instruction Selection, you must have the
Graphviz software from https://graphviz.org/ installed. By default, the generated
image is in PDF format, and you need a PDF viewer to show it.

To create the flame graph in Chapter 11, Debugging Using LLVM Tools, you need to install
the scripts from https://github.com/brendangregg/FlameGraph. To run the
script, you also need a recent version of Perl installed, and to view the graph you need a
web browser capable of displaying SVG files, which all modern browsers do. To see the
Chrome Trace Viewer visualization in the same chapter, you need to have the Chrome
browser installed.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

https://graphviz.org/
https://github.com/brendangregg/FlameGraph

x Preface

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Learn-LLVM-12. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at https://bit.ly/3nllhED

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839213502_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "You can observe in the code that a quantum circuit operation is being
defined and a variable called numOnes."

A block of code is set as follows:

#include "llvm/IR/IRPrintingPasses.h"

#include "llvm/IR/LegacyPassManager.h"

#include "llvm/Support/ToolOutputFile.h"

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 switch (Kind) {

// Many more cases

 case m88k: return "m88k";

 }

https://github.com/PacktPublishing/Learn-LLVM-12
https://github.com/PacktPublishing/Learn-LLVM-12
https://github.com/PacktPublishing/
https://bit.ly/3nllhED
https://static.packt-cdn.com/downloads/9781839213502_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781839213502_ColorImages.pdf

Preface xi

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

Section 1 –
 The Basics

of Compiler
Construction

with LLVM
In this section, you will learn how to compile LLVM by yourself, and how you can tailor
the build to your needs. You will understand how LLVM projects are organized, and you
will create your first project utilizing LLVM. You will also learn how to compile LLVM and
applications using LLVM for a different CPU architecture. Finally, you will explore the
overall structure of a compiler, while creating a small compiler yourself.

This section comprises the following chapters:

•	 Chapter 1, Installing LLVM

•	 Chapter 2, Touring the LLVM Source

•	 Chapter 3, The Structure of a Compiler

1
Installing LLVM

To learn how to work with LLVM, it is best to begin by compiling LLVM from the source.
LLVM is an umbrella project, and its GitHub repository contains the sources for all
the projects that belong to LLVM. Each LLVM project is in a top-level directory of the
repository. Besides cloning the repository, your system must also have all tools that are
required by the build system installed.

In this chapter, you will learn about the following topics:

•	 Getting the prerequisites ready, which will show you how to set up your
build system.

•	 Building with CMake, which will cover how to compile and install the LLVM core
libraries and Clang with CMake and Ninja.

•	 Customizing the build process, which will talk about the various way we can
influence the build process.

4 Installing LLVM

Getting the prerequisites ready
To work with LLVM, your development system must run a common operating system
such as Linux, FreeBSD, macOS, or Windows. Building LLVM and Clang with debug
symbols enabled easily need tens of gigabytes of disk space, so be sure that your system
has plenty of disk space available – in this scenario, you should have 30 GB of free space.

The required disk space depends heavily on the chosen build options. For example,
building only the LLVM core libraries in release mode, while targeting only one platform,
requires about 2 GB of free disk space, which is the bare minimum needed. To reduce
compile times, a fast CPU (such as a quadcore CPU with 2.5 GHz clock speed) and a fast
SSD would also be helpful.

It is even possible to build LLVM on a small device such as a Raspberry Pi – it just takes
a lot of time to do so. I developed the examples in this book on a laptop with an Intel
quadcore CPU running at 2.7 GHz clock speed, with 40 GB RAM and 2.5 TB SSD disk
space. This system is well-suited for the development task at hand.

Your development system must have some prerequisite software installed. Let's review the
minimal required versions of these software packages.

Note
Linux distributions often contain more recent versions that can be used. The
version numbers are suitable for LLVM 12. Later versions of LLVM may
require more recent versions of the packages mentioned here.

To check out the source from GitHub, you need git (https://git-scm.com/). There
is no requirement for a specific version. The GitHub help pages recommend using at least
version 1.17.10.

The LLVM project uses CMake (https://cmake.org/) as the build file generator. At
least version 3.13.4 is required. CMake can generate build files for various build systems.
In this book, Ninja (https://ninja-build.org/) is being used because it is fast
and available on all platforms. The latest version, 1.9.0, is recommended.

Obviously, you also need a C/C++ compiler. The LLVM projects are written in modern
C++, based on the C++14 standard. A conforming compiler and standard library are
required. The following compilers are known to work with LLVM 12:

•	 gcc 5.1.0 or later
•	 Clang 3.5 or later
•	 Apple Clang 6.0 or later
•	 Visual Studio 2017 or later

https://git-scm.com/
https://cmake.org/
https://ninja-build.org/

Getting the prerequisites ready 5

Please be aware that with further development of the LLVM project, the requirements
for the compiler are most likely to change. At the time of writing, there are discussions
to use C++17 and drop Visual Studio 2017 support. In general, you should use the latest
compiler version available for your system.

Python (https://python.org/) is used to generate the build files and to run the test
suite. It should be at least version 3.6.

Although not covered in this book, there may be reasons why you need to use Make
instead of Ninja. In this case, you need to use GNU Make (https://www.gnu.org/
software/make/) version 3.79 or later. The usage of both build tools is very similar.
It is sufficient to replace ninja in each command with make for the scenarios
described here.

To install the prerequisite software, the easiest thing to do is use the package manager
from your operating system. In the following sections, the commands you must enter to
install the software for the most popular operating systems are shown.

Ubuntu
Ubuntu 20.04 uses the APT package manager. Most of the basic utilities are already
installed; only the development tools are missing. To install all the packages at once, type
the following:

$ sudo apt install –y gcc g++ git cmake ninja-build

Fedora and RedHat
The package manager for Fedora 33 and RedHat Enterprise Linux 8.3 is called DNF. Like
Ubuntu, most of the basic utilities are already installed. To install all the packages at once,
type the following:

$ sudo dnf install –y gcc gcc-c++ git cmake ninja-build

FreeBSD
On FreeBSD 12 or later, you must use the PKG package manager. FreeBSD differs from
Linux-based systems in that Clang is the preferred compiler. To install all the packages at
once, type the following:

$ sudo pkg install –y clang git cmake ninja

https://python.org/
https://www.gnu.org/software/make/
https://www.gnu.org/software/make/

6 Installing LLVM

OS X
For development on OS X, it is best to install Xcode from the Apple store. While the
XCode IDE is not used in this book, it comes with the required C/C++ compilers and
supporting utilities. To install the other tools, you can use the Homebrew package
manager (https://brew.sh/). To install all the packages at once, type the following:

$ brew install git cmake ninja

Windows
Like OS X, Windows does not come with a package manager. The easiest way to install
all the software is to use the Chocolately (https://chocolatey.org/) package
manager. To install all the packages at once, type the following:

$ choco install visualstudio2019buildtools cmake ninja git\

 gzip bzip2 gnuwin32-coreutils.install

Please note that this only installs the build tools from Visual Studio 2019. If
you would like to get the Community Edition (which includes the IDE), then
you must install package visualstudio2019community instead of
visualstudio2019buildtools. Part of the Visual Studio 2019 installation is the
x64 Native Tools Command Prompt for VS 2019. Upon using this command prompt, the
compiler is automatically added to the search path.

Configuring Git
The LLVM project uses Git for version control. If you have not used Git before, then
you should do some basic configuration of Git first before continuing; that is, setting a
username and email address. Both pieces of information are used if you commit changes.
In the following commands, replace Jane with your name and jane@email.org with
your email:

$ git config --global user.email "jane@email.org"

$ git config --global user.name "Jane"

By default, Git uses the vi editor for commit messages. If you would prefer using another
editor, then you can change the configuration in a similar way. To use the nano editor,
type the following:

$ git config --global core.editor nano

https://chocolatey.org/

Building with CMake 7

For more information about git, please see the Git Version Control Cookbook -
Second Edition by Packt Publishing (https://www.packtpub.com/product/
git-version-control-cookbook/9781782168454).

Building with CMake
With the build tools ready, you can now check out all the LLVM projects from GitHub.
The command for doing this is essentially the same on all platforms. However, on
Windows, it is recommended to turn off auto-translation for line endings.

Let's review this process in three parts: cloning the repository, creating a build directory,
and generating the build system files.

Cloning the repository
On all non-Windows platforms, type in the following command to clone the repository:

$ git clone https://github.com/llvm/llvm-project.git

On Windows, you must add the option to disable line endings from being auto-translated.
Here, type the following:

$ git clone --config core.autocrlf=false\ https://github.com/
llvm/llvm-project.git

This git command clones the latest source code from GitHub into a local directory
named llvm-project. Now, change the current directory to the new llvm-project
directory with the following command:

$ cd llvm-project

Inside the directory is all the LLVM projects, each in its own directory. Most notably,
the LLVM core libraries are in the llvm subdirectory. The LLVM project uses branches
for subsequent release development ("release/12.x") and tags ("llvmorg-12.0.0") to
mark a certain release. With the preceding clone command, you get the current
development state. This book uses LLVM 12. To check out the first release of LLVM 12,
type the following:

$ git checkout -b llvmorg-12.0.0

With this, you have cloned the whole repository and checked out a tag. This is the most
flexible approach.

https://www.packtpub.com/product/git-version-control-cookbook/9781782168454
https://www.packtpub.com/product/git-version-control-cookbook/9781782168454

8 Installing LLVM

Git also allows you to clone only a branch or a tag (including history). With git clone
--branch llvmorg-12.0.0 https://github.com/llvm/llvm-project,
you check out the same label, as we did previously, but only the history for this tag is
cloned. With the additional–-depth=1 option, you prevent the history from being
cloned too. This saves time and space but obviously limits what you can do locally.

The next step is to create a build directory.

Creating a build directory
Unlike many other projects, LLVM does not support inline builds and requires a separate
build directory. This can easily be created inside the llvm-project directory. Change
into this directory with the following command:

$ cd llvm-project

Then, create a build directory called build for simplicity. Here, the commands
for Unix and Windows systems differ. On Unix-likes system, you should use the
following command:

$ mkdir build

On Windows, you should use the following command:

$ md build

Then, change into the build directory:

$ cd build

Now, you are ready to create the build system files with the CMake tool inside
this directory.

Generating the build system files
To generate the build system files that will compile LLVM and Clang using Ninja, run the
following command:

$ cmake –G Ninja -DLLVM_ENABLE_PROJECTS=clang ../llvm

Building with CMake 9

Tip
On Windows, the backslash character, \, is the directory name separator.
On Windows, CMake automatically translates the Unix separator, /, into the
Windows one.

The -G option tells CMake which system to generate build files for. The most often used
options are as follows:

•	 Ninja: For the Ninja build system

•	 Unix Makefiles: For GNU Make

•	 Visual Studio 15 VS2017 and Visual Studio 16 VS2019: For Visual
Studio and MS Build

•	 Xcode: For XCode projects

The generation process can be influenced by setting various variables with the –D option.
Usually, they are prefixed with CMAKE_ (if defined by CMake) or LLVM_ (if defined by
LLVM). With the LLVM_ENABLE_PROJECTS=clang variable setting, CMake generates
build files for Clang in addition to LLVM. The last part of the command tells CMake
where to find the LLVM core library source. More on that in the next section.

Once the build files have been generated, LLVM and Clang can be compiled with the
following command:

$ ninja

Depending on the hardware resources, this command takes between 15 minutes (a
server with lots of CPU cores and memory and fast storage) and several hours (dual-core
Windows notebook with limited memory) to run. By default, Ninja utilizes all available
CPU cores. This is good for compilation speed but may prevent other tasks from running.
For example, on a Windows-based notebook, it is almost impossible to surf the internet
while Ninja is running. Fortunately, you can limit resource usage with the –j option.

Let's assume you have four CPU cores available and that Ninja should only use two
(because you have parallel tasks to run). Here, you should use the following command
for compilation:

$ ninja –j2

Once compilation is finished, a best practice is to run the test suite to check if everything
works as expected:

$ ninja check-all

10 Installing LLVM

Again, the runtime of this command varies widely due to the available hardware
resources. The Ninja check-all target runs all test cases. Targets are generated for each
directory containing test cases. Using check-llvm, instead of check-all runs the
LLVM tests but not the Clang tests; check-llvm-codegen only runs the tests in the
CodeGen directory from LLVM (that is, the llvm/test/CodeGen directory).

You can also do a quick manual check. One of the LLVM applications you will be using
is llc, the LLVM compiler. If you run it with the -version option, it shows the LLVM
version of it, its host CPU, and all its supported architectures:

$ bin/llc -version

If you have trouble getting LLVM compiled, then you should consult the Common
Problems section of the Getting Started with the LLVM System documentation (https://
llvm.org/docs/GettingStarted.html#common-problems) for solutions to
typical problems.

Finally, install the binaries:

$ ninja install

On a Unix-like system, the install directory is /usr/local. On Windows, C:\Program
Files\LLVM is used. This can be changed, of course. The next section explains how.

Customizing the build process
The CMake system uses a project description in the CMakeLists.txt file. The
top-level file is in the llvm directory; that is, llvm/CMakeLists.txt. Other
directories also contain CMakeLists.txt files, which are recursively included
during the build-file generation.

Based on the information provided in the project description, CMake checks which
compilers have been installed, detects libraries and symbols, and creates the build system
files, such as build.ninja or Makefile (depending on the chosen generator). It is
also possible to define reusable modules, such as a function to detect if LLVM is installed.
These scripts are placed in the special cmake directory (llvm/cmake), which is searched
automatically during the generation process.

https://llvm.org/docs/GettingStarted.html#common-problems
https://llvm.org/docs/GettingStarted.html#common-problems

Customizing the build process 11

The build process can be customized by defining CMake variables. The–D command-
line option is used to set a variable to a value. These variables are used in CMake scripts.
Variables defined by CMake itself are almost always prefixed with CMAKE_, and these
variables can be used in all projects. Variables defined by LLVM are prefixed with LLVM_
but they can only be used if the project definition includes the use of LLVM.

Variables defined by CMake
Some variables are initialized with the values of environment variables. The most notable
are CC and CXX, which define the C and C++ compilers to be used for building. CMake
tries to locate a C and a C++ compiler automatically, using the current shell search path.
It picks the first compiler that's found. If you have several compilers installed, such as gcc
and Clang or different versions of Clang, then this might not be the compiler you want for
building LLVM.

Suppose you like to use clang9 as a C compiler and clang++9 as a C++ compiler. Here,
you can invoke CMake in a Unix shell in the following way:

$ CC=clang9 CXX=clang++9 cmake ../llvm

This sets the value of the environment variables for the invocation of cmake. If necessary,
you can specify an absolute path for the compiler executables.

CC is the default value of the CMAKE_C_COMPILER CMake variable, while CXX is the
default value of the CMAKE_CXX_COMPILER CMake variable. Instead of using the
environment variables, you can set the CMake variables directly. This is equivalent to the
preceding call:

$ cmake –DCMAKE_C_COMPILER=clang9\

 -DCMAKE_CXX_COMPILER=clang++9 ../llvm

Other useful variables defined by CMake are as follows:

•	 CMAKE_INSTALL_PREFIX: A path prefix that is prepended to every path
during installation. The default is /usr/local on Unix and C:\Program
Files\<Project> on Windows. To install LLVM in the /opt/llvm directory,
you must specify -DCMAKE_INSTALL_PREFIX=/opt/llvm. The binaries are
copied to /opt/llvm/bin, the library files are copied to /opt/llvm/lib, and
so on.

12 Installing LLVM

•	 CMAKE_BUILD_TYPE: Different types of builds require different settings. For
example, a debug build needs to specify options for generating debug symbols and
are usually linking against debug versions of system libraries. In contrast, a release
build uses optimization flags and links against production versions of libraries. This
variable is only used for build systems that can only handle one build type, such as
Ninja or Make. For IDE build systems, all variants are generated, and you must use
the mechanism of the IDE to switch between build types. Some possible values are
as follows:

DEBUG: Build with debug symbols

RELEASE: Build with optimization for speed

RELWITHDEBINFO: Release build with debug symbols

MINSIZEREL: Build with optimization for size

 The default build type is DEBUG. To generate build files for a release build, you must
specify -DCMAKE_BUILD_TYPE=RELEASE.

•	 CMAKE_C_FLAGS and CMAKE_CXX_FLAGS: These are extra flags that are used
when we're compiling C and C++ source files. The initial values are taken from the
CFLAGS and CXXFLAGS environment variables, which can be used as alternatives.

•	 CMAKE_MODULE_PATH: Specifies additional directories that are searched for in
CMake modules. The specified directories are searched before the default ones. The
value is a semicolon-separated list of directories.

•	 PYTHON_EXECUTABLE: If the Python interpreter is not found or if the wrong one
is picked if you have installed multiple versions of it, you can set this variable to the
path of the Python binary. This variable only takes effect if the Python module of
CMake is included (which is the case for LLVM).

CMake provides built-in help for variables. The --help-variable var option
prints help for the var variable. For instance, you can type the following to get help for
CMAKE_BUILD_TYPE:

$ cmake --help-variable CMAKE_BUILD_TYPE

You can also list all the variables with the following command:

$ cmake --help-variablelist

This list is very long. You may want to pipe the output to more or a similar program.

Customizing the build process 13

Variables defined by LLVM
The variables defined by LLVM work in the same way as those defined by CMake, except
that there is no built-in help. The most useful variables are as follows:

•	 LLVM_TARGETS_TO_BUILD: LLVM supports code generation for different
CPU architectures. By default, all these targets are built. Use this variable to
specify the list of targets to build, separated by semicolons. The current targets
are AArch64, AMDGPU, ARM, BPF, Hexagon, Lanai, Mips, MSP430, NVPTX,
PowerPC, RISCV, Sparc, SystemZ, WebAssembly, X86, and XCore. all can
be used as shorthand for all targets. The names are case-sensitive. To only enable
PowerPC and the System Z target, you must specify -DLLVM_TARGETS_TO_
BUILD="PowerPC;SystemZ".

•	 LLVM_ENABLE_PROJECTS: This is a list of the projects you want to build,
separated by semicolons. The source for the projects must be at the same level
as the llvm directory (side-by-side layout). The current list is clang, clang-
tools-extra, compiler-rt, debuginfo-tests, lib, libclc, libcxx,
libcxxabi, libunwind, lld, lldb, llgo, mlir, openmp, parallel-libs,
polly, and pstl. all can be used as shorthand for all the projects in this list. To
build Clang and llgo together with LLVM, you must specify -DLLVM_ENABLE_
PROJECT="clang;llgo".

•	 LLVM_ENABLE_ASSERTIONS: If set to ON, then assertion checks are enabled.
These checks help find errors and are very useful during development. The default
value is ON for a DEBUG build and OFF otherwise. To turn assertion checks
on (for example, for a RELEASE build), you must specify –DLLVM_ENABLE_
ASSERTIONS=ON.

•	 LLVM_ENABLE_EXPENSIVE_CHECKS: This enables some expensive checks that
can really slow down your compilation speed or consume large amounts of memory.
The default value is OFF. To turn these checks on, you must specify -DLLVM_
ENABLE_EXPENSIVE_CHECKS=ON.

•	 LLVM_APPEND_VC_REV: LLVM tools such as llc display the LLVM version they
are based on, besides other information if the–version command-line option is
provided. This version information is based on the LLVM_REVISION C macro. By
default, not only the LLVM version but also the Git hash of the latest commit is part
of the version information. This is handy in case you are following the development
of the master branch because it makes it clear which Git commit the tool is based
on. If this isn't required, then this can be turned off with –DLLVM_APPEND_VC_
REV=OFF.

14 Installing LLVM

•	 LLVM_ENABLE_THREADS: LLVM automatically includes thread support if a
threading library is detected (usually, the pthreads library). Furthermore, in this
case, LLVM assumes that the compiler supports thread-local storage (TLS). If you
don't want thread support or your compiler does not support TLS, then you can
turn it off with -DLLVM_ENABLE_THREADS=OFF.

•	 LLVM_ENABLE_EH: The LLVM projects do not use C++ exception handling, so
they turn exception support off by default. This setting can be incompatible with
other libraries your project is linking with. If needed, you can enable exception
support by specifying –DLLVM_ENABLE_EH=ON.

•	 LLVM_ENABLE_RTTI: LVM uses a lightweight, self-built system for runtime type
information. Generating C++ RTTI is turned off by default. Like the exception
handling support, this may be incompatible with other libraries. To turn generation
for C++ RTTI on, you must specify –DLLVM_ENABLE_RTTI=ON.

•	 LLVM_ENABLE_WARNINGS: Compiling LLVM should generate no warning
messages if possible. Due to this, the option to print warning messages is turned on
by default. To turn it off, you must specify –DLLVM_ENABLE_WARNINGS=OFF.

•	 LLVM_ENABLE_PEDANTIC: The LLVM source should be C/C++ language
standard-conforming; hence, pedantic checking of the source is enabled by default.
If possible, compiler-specific extensions are also disabled. To reverse this setting,
you must specify –DLLVM_ENABLE_PEDANTIC=OFF.

•	 LLVM_ENABLE_WERROR: If set to ON, then all the warnings are treated as errors
– the compilation aborts as soon as warnings are found. It helps to find all the
remaining warnings in the source. By default, it is turned off. To turn it on, you
must specify –DLLVM_ENABLE_WERROR=ON.

•	 LLVM_OPTIMIZED_TABLEGEN: Usually, the tablegen tool is built with the same
options as the other parts of LLVM. At the same time, tablegen is used to generate
large parts of the code generator. As a result, tablegen is much slower in a debug
build, thus increasing the compile time noticeably. If this option is set to ON, then
tablegen is compiled with optimization turned on, even for a debug build, possibly
reducing compile time. The default is OFF. To turn this on, you must specify –
DLLVM_OPTIMIZED_TABLEGEN=ON.

•	 LLVM_USE_SPLIT_DWARF: If the build compiler is gcc or Clang, then turning on
this option will instruct the compiler to generate the DWARF debug information
in a separate file. The reduced size of the object files reduces the link time of debug
builds significantly. The default is OFF. To turn this on, you must specify -LLVM_
USE_SPLIT_DWARF=ON.

Summary 15

LLVM defines many more CMake variables. You can find the complete list in the LLVM
documentation of CMake (https://releases.llvm.org/12.0.0/docs/
CMake.html#llvm-specific-variables). The preceding list only contains the
ones you are likely to need.

Summary
In this chapter, you prepared your development machine to compile LLVM. You
cloned the LLVM GitHub repository and compiled your own versions of LLVM and
Clang. The build process can be customized with CMake variables. You also learned about
useful variables and how to change them. Equipped with this knowledge, you can
tweak LLVM for your needs.

In the next chapter, we will take a closer look at the contents of the LLVM mono
repository. You will learn which projects are in it and how the projects are structured. You
will then use this information to create your own project using LLVM libraries. Finally,
you will learn how to compile LLVM for a different CPU architecture.

https://releases.llvm.org/12.0.0/docs/CMake.html#llvm-specific-variables
https://releases.llvm.org/12.0.0/docs/CMake.html#llvm-specific-variables

2
Touring the

LLVM Source
The LLVM mono repository contains all the projects under the llvm-project root
directory. All projects follow a common source layout. To use LLVM effectively, it is
good to know what is available and where to find it. In this chapter, you will learn about
the following:

•	 The contents of the LLVM mono repository, covering the most important
top-level projects

•	 The layout of an LLVM project, showing the common source layout used by
all projects

•	 How to create your own projects using LLVM libraries, covering all the ways you
can use LLVM in your own projects

•	 How to target a different CPU architecture, showing the steps required to cross-
compile to another system

18 Touring the LLVM Source

Technical requirements
The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter02/tinylang

You can find the code in action videos at https://bit.ly/3nllhED

Contents of the LLVM mono repository
In Chapter 1, Installing LLVM, you cloned the LLVM mono repository. This repository
contains all LLVM top-level projects. They can be grouped as follows:

•	 LLVM core libraries and additions

•	 Compilers and tools

•	 Runtime libraries

In the next sections, we will take a closer look at these groups.

LLVM core libraries and additions
The LLVM core libraries are in the llvm directory. This project provides a set of libraries
with optimizers and code generation for well-known CPUs. It also provides tools based on
these libraries. The LLVM static compiler llc takes a file written in LLVM intermediate
representation (IR) as input and compiles it into either bitcode, assembler output, or a
binary object file. Tools such as llvm-objdump and llvm-dwarfdump let you inspect
object files, and those such as llvm-ar let you create an archive file from a set of object
files. It also includes tools that help with the development of LLVM itself. For example, the
bugpoint tool helps to find a minimal test case for a crash inside LLVM. llvm-mc is
the machine code playground: this tool assembles and disassembles machine instructions
and also outputs the encoding, which is a great help when adding new instructions.

The LLVM core libraries are written in C++. Additionally, a C interface and bindings for
Go, Ocaml, and Python are provided.

The Polly project, located in the polly directory, adds another set of optimizations to
LLVM. It is based on a mathematical representation called the polyhedral model. With this
approach, complex optimizations such as loops optimized for cache locality are possible.

The MLIR project aims to provide a multi-level intermediate representation for LLVM.
The LLVM IR is already at a low level, and certain information from the source language
is lost during IR generation in the compiler. The idea of MLIR is to make the LLVM IR
extensible and capture this information in a domain-specific representation. You will find
the source in the mlir directory.

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter02/tinylang
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter02/tinylang
https://bit.ly/3nllhED

Contents of the LLVM mono repository 19

Compilers and tools
A complete C/C++/Objective-C/Object-C++ compiler named clang (http://clang.
llvm.org/) is part of the LLVM project. The source is located in the clang directory. It
provides a set of libraries for lexing, parsing, semantic analysis, and generation of LLVM
IR from C, C++, Objective-C, and Objective-C++ source files. The small tool clang is
the compiler driver, based on these libraries. Another useful tool is clang-format,
which can format C/C++ source files and source fragments according to rules provided by
the user.

Clang aims to be compatible with GCC, the GNU C/C++ compiler, and CL, the Microsoft
C/C++ compiler.

Additional tools for C/C++ are provided by the clang-tools-extra project in the
directory of the same name. Most notable here is clang-tidy which is a Lint style
checker for C/C++. clang-tidy uses the clang libraries to parse the source code and
checks the source with static analysis. The tool can catch more potential errors than the
compiler, at the expense of more runtime.

Llgo is a compiler for the Go programming languages, located in the llgo directory. It
is written in Go and uses the Go bindings from the LLVM core libraries to interface with
LLVM. Llgo aims to be compatible with the reference compiler (https://golang.
org/) but currently, the only supported target is 64-bit x86 Linux. The project seems
unmaintained and may be removed in the future.

The object files created by a compiler must be linked together with runtime libraries to
form an executable. This is the job of lld (http://lld.llvm.org/), the LLVM
linker that is located in the lld directory. The linker supports the ELF, COFF, Mach-O,
and WebAssembly formats.

No compiler toolset is complete without a debugger! The LLVM debugger is called
lldb (http://lldb.llvm.org/) and is located in the directory of the same name.
The interface is similar to GDB, the GNU debugger, and the tool supports C, C++, and
Objective-C out of the box. The debugger is extensible so support for other programming
languages can be added easily.

http://clang.llvm.org/
http://clang.llvm.org/
http://lld.llvm.org/
http://lldb.llvm.org/

20 Touring the LLVM Source

Runtime libraries
In addition to a compiler, runtime libraries are required for complete programming
language support. All the listed projects are located in the top-level directory in a
directory of the same name:

•	 The compiler-rt project provides programming language-independent support
libraries. It includes generic functions, such as a 64-bit division for 32-bit i386,
various sanitizers, the fuzzing library, and the profiling library.

•	 The libunwind library provides helper functions for stack unwinding based on
the DWARF standard. This is usually used for implementing exception handling of
languages such as C++. The library is written in C and the functions are not tied to a
specific exception handling model.

•	 The libcxxabi library implements C++ exception handling on top of
libunwind and provides the standard C++ functions for it.

•	 Finally, libcxx is an implementation of the C++ standard library, including
iostreams and STL. In addition, the pstl project provides a parallel version of the
STL algorithm.

•	 libclc is the runtime library for OpenCL. OpenCL is a standard for
heterogeneous parallel computing and helps with moving computational tasks to
graphics cards.

•	 libc aims to provide a complete C library. This project is still in its early stages.

•	 Support for the OpenMP API is provided by the openmp project. OpenMP helps
with multithreaded programming and can, for instance, parallelize loops based on
annotations in the source.

Even though this is a long list of projects, the good news is that all projects are structured
similarly. We look at the general directory layout in the next section.

Layout of an LLVM project
All LLVM projects follow the same idea of directory layout. To understand the idea, let's
compare LLVM with GCC, the GNU Compiler Collection. GCC has provided mature
compilers for decades for almost every system you can imagine. But, except for the
compilers, there are no tools that take advantage of the code. The reason is that it is not
designed for reuse. This is different with LLVM.

Layout of an LLVM project 21

Every functionality has a clearly defined API and is put in a library of its own. The clang
project has (among others) a library to lex a C/C++ source file into a token stream.
The parser library turns this token stream into an abstract syntax tree (also backed by
a library). Semantic analysis, code generation, and even the compiler driver are
provided as a library. The well-known clang tool is only a small application linked
against these libraries.

The advantage is obvious: when you want to build a tool that requires the abstract syntax
tree (AST) of a C++ file, then you can reuse the functionality from these libraries to
construct the AST. Semantic analysis and code generation are not required and you do not
link against these libraries. This principle is followed by all LLVM projects, including the
core libraries!

Each project has a similar organization. Because CMake is used for build file generation,
each project has a CMakeLists.txt file that describes the building of the projects.
If additional CMake modules or support files are required, then they are stored in the
cmake subdirectory, with modules placed in cmake/modules.

Libraries and tools are mostly written in C++. Source files are placed under the lib
directory and header files under the include directory. Because a project typically
consists of several libraries, there are directories for each library in the lib directory.
If necessary, this repeats. For example, inside the llvm/lib directory is the Target
directory, which holds the code for the target-specific lowering. Besides some source files,
there are again subdirectories for each target that are again compiled into libraries. Each of
these directories has a CMakeLists.txt file that describes how to build the library and
which subdirectories also contain source.

The include directory has an additional level. To make the names of the include files
unique, the path name includes the project name, which is the first subdirectory under
include. Only in this folder is the structure from the lib directory repeated.

The source of applications is inside the tools and utils directories. In the utils
directory are internal applications that are used during compilation or testing. They are
usually not part of a user installation. The tools directory contains applications for the
end user. In both directories, each application has its own subdirectory. As with the lib
directory, each subdirectory that contains source has a CMakeLists.txt file.

22 Touring the LLVM Source

Correct code generation is a must for a compiler. This can only be achieved with a good
test suite. The unittest directory contains unit tests that use the Google Test framework.
This is mainly used for single functions and isolated functionality that can't be tested
otherwise. In the test directory are the LIT tests. These tests use the llvm-lit utility
to execute tests. llvm-lit scans a file for shell commands and executes them. The file
contains the source code used as input for the test, for example, LLVM IR. Embedded
in the file are commands to compile it, executed by llvm-lit. The output of this step
is then verified, often with the help of the FileCheck utility. This utility reads check
statements from one file and matches them against another file. The LIT tests themselves
are in subdirectories under the test directory, loosely following the structure of the
lib directory.

Documentation (usually as reStructuredText) is placed in the docs directory. If a project
provides examples, they are in the examples directory.

Depending on the needs of the project, there can be other directories too. Most notably,
some projects that provide runtime libraries place the source code in a src directory and
use the lib directory for library export definitions. The compiler-rt and libclc projects
contain architecture-dependent code. This is always placed in a subdirectory named after
the target architecture (for example, i386 or ptx).

In summary, the general layout of a project that provides a sample library and has a driver
tool looks like this:

Figure 2.1 – General project directory layout

Creating your own project using LLVM libraries 23

Our own project will follow this organization, too.

Creating your own project
using LLVM libraries
Based on the information in the previous section, you can now create your own project
using LLVM libraries. The following sections introduce a small language called Tiny. The
project will be called tinylang. Here the structure for such a project is defined. Even
though the tool in this section is only a Hello, world application, its structure has all the
parts required for a real-world compiler.

Creating the directory structure
The first question is if the tinylang project should be built together with LLVM (like
clang), or if it should be a standalone project that just uses the LLVM libraries. In the
former case, it is also necessary to decide where to create the project.

Let's first assume that tinylang should be built together with LLVM. There are different
options for where to place the project. The first solution is to create a subdirectory for the
project inside the llvm-projects directory. All projects in this directory are picked up
and built as part of building LLVM. Before the side-by-side project layout was created, this
the standard way to build, for example, clang.

A second option is to place the tinylang project in the top-level directory. Because it
is not an official LLVM project, the CMake script does not know about it. When running
cmake, you need to specify –DLLVM_ENABLE_PROJECTS=tinylang to include the
project in the build.

And the third option is to place the project directory somewhere else, outside the
llvm-project directory. Of course, you need to tell CMake about this location. If the
location is /src/tinylang, for example, then you need to specify –DLLVM_ENABLE_
PROJECTS=tinylang –DLLVM_EXTERNAL_TINYLANG_SOURCE_DIR=/src/
tinylang.

If you want to build the project as a standalone project, then it needs to find the
LLVM libraries. This is done in the CMakeLists.txt file, which is discussed later
in this section.

24 Touring the LLVM Source

After learning about the possible options, which one is the best? Making your project part
of the LLVM source tree is a bit inflexible because of the size. As long as you don't aim to
add your project to the list of top-level projects, I recommend using a separate directory.
You can maintain your project on GitHub or similar services without worrying about how
to sync with the LLVM project. And as shown previously, you can still build it together
with the other LLVM projects.

Let's create a project with a very simple library and application. The first step is to create
the directory layout. Choose a location that's convenient for you. In the following steps,
I assume it is in the same directory in which you cloned the llvm-project directory.
Create the following directories with mkdir (Unix) or md (Windows):

Figure 2.2 – Required directories for the project

Next, we will place the build description and source files in these directories.

Adding the CMake files
You should recognize the basic structure from the last section. Inside the tinylang
directory, create a file called CMakeLists.txt with the following steps:

1.	 The file starts by calling cmake_minimum_required() to declare the minimal
required version of CMake. It is the same version as in Chapter 1, Installing LLVM:

Cmake_minimum_required(VERSION 3.13.4)

Creating your own project using LLVM libraries 25

2.	 The next statement is if(). If the condition is true, then the project is built
standalone, and some additional setup is required. The condition uses two
variables, CMAKE_SOURCE_DIR and CMAKE_CURRENT_SOURCE_DIR. The
CMAKE_SOURCE_DIR variable is the top-level source directory that is given on
the cmake command line. As we saw in the discussion about the directory layout,
each directory with source files has a CMakeLists.txt file. The directory of the
CMakeLists.txt file that CMake currently processes is recorded in the CMAKE_
CURRENT_SOURCE_DIR variable. If both variables have the same string value,
then the project is built standalone. Otherwise, CMAKE_SOURCE_DIR would be the
llvm directory:

if(CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)

The standalone setup is straightforward. Each CMake project needs a name. Here,
we set it to Tinylang:

 project(Tinylang)

3.	 The LLVM package is searched and the found LLVM directory is added to the
CMake module path:

 find_package(LLVM REQUIRED HINTS
 "${LLVM_CMAKE_PATH}")

 list(APPEND CMAKE_MODULE_PATH ${LLVM_DIR})

4.	 Then, three additional CMake modules provided by LLVM are included. The first is
only needed when Visual Studio is used as the build compiler and sets the correct
runtime library to link again. The other two modules add the macros used by LLVM
and configure the build based on the provided options:

 include(ChooseMSVCCRT)

 include(AddLLVM)

 include(HandleLLVMOptions)

5.	 Next, the path of the header files from LLVM is added to the include search path.
Two directories are added. The include directory from the build directory is
added because auto-generated files are saved here. The other include directory is
the one inside the source directory:

 include_directories("${LLVM_BINARY_DIR}/include"
 "${LLVM_INCLUDE_DIR}")

26 Touring the LLVM Source

6.	 With link_directories(), the path of the LLVM libraries is added for
the linker:

 link_directories("${LLVM_LIBRARY_DIR}")

7.	 As a last step, a flag is set to denote that the project is built standalone:

 set(TINYLANG_BUILT_STANDALONE 1)

endif()

8.	 Now follows the common setup. The cmake/modules directory is added to the
CMake modules search path. This allows us to later add our own CMake modules:

list(APPEND CMAKE_MODULE_PATH
 "${CMAKE_CURRENT_SOURCE_DIR}/cmake/modules")

9.	 Next, we check whether the user is performing an out-of-tree build. Like LLVM, we
require that the user uses a separate directory for building the project:

if(CMAKE_SOURCE_DIR STREQUAL CMAKE_BINARY_DIR AND NOT
 MSVC_IDE)

 message(FATAL_ERROR "In-source builds are not
 allowed.")

endif()

10.	 The version number of tinylang is written to a generated file with the
configure_file()command. The version number is taken from the
TINYLANG_VERSION_STRING variable. The configure_file() command
reads an input file, replaces CMake variables with their current value, and writes an
output file. Please note that the input file is read from the source directory and is
written to the build directory:

set(TINYLANG_VERSION_STRING "0.1")

configure_file(${CMAKE_CURRENT_SOURCE_DIR}/include/
tinylang/Basic/Version.inc.in

 ${CMAKE_CURRENT_BINARY_DIR}/include/tinylang/Basic/
Version.inc)

11.	 Next, another CMake module is included. The AddTinylang module has some
helper functionality:

include(AddTinylang)

Creating your own project using LLVM libraries 27

12.	 There follows another include_directories() statement. This adds our own
include directories to the beginning of the search path. As in the standalone
build, two directories are added:

include_directories(BEFORE

 ${CMAKE_CURRENT_BINARY_DIR}/include

 ${CMAKE_CURRENT_SOURCE_DIR}/include

)

13.	 At the end of the file, the lib and the tools directories are declared as further
directories in which CMake finds the CMakeLists.txt file. This is the basic
mechanism to connect the directories. This sample application only has source files
below the lib and the tools directories, so nothing else is needed. More complex
projects will add more directories, for example, for the unit tests:

add_subdirectory(lib)

add_subdirectory(tools)

This is the main description for your project.

The AddTinylang.cmake helper module is placed in the cmake/modules directory.
It has the following content:

macro(add_tinylang_subdirectory name)

 add_llvm_subdirectory(TINYLANG TOOL ${name})

endmacro()

macro(add_tinylang_library name)

 if(BUILD_SHARED_LIBS)

 set(LIBTYPE SHARED)

 else()

 set(LIBTYPE STATIC)

 endif()

 llvm_add_library(${name} ${LIBTYPE} ${ARGN})

 if(TARGET ${name})

 target_link_libraries(${name} INTERFACE

 ${LLVM_COMMON_LIBS})

 install(TARGETS ${name}

 COMPONENT ${name}

 LIBRARY DESTINATION lib${LLVM_LIBDIR_SUFFIX}

28 Touring the LLVM Source

 ARCHIVE DESTINATION lib${LLVM_LIBDIR_SUFFIX}

 RUNTIME DESTINATION bin)

 else()

 add_custom_target(${name})

 endif()

endmacro()

macro(add_tinylang_executable name)

 add_llvm_executable(${name} ${ARGN})

endmacro()

macro(add_tinylang_tool name)

 add_tinylang_executable(${name} ${ARGN})

 install(TARGETS ${name}

 RUNTIME DESTINATION bin

 COMPONENT ${name})

endmacro()

With inclusion of the module, the add_tinylang_subdirectory(), add_
tinylang_library(), add_tinylang_executable(), and add_tinylang_
tool() functions are available for use. Basically, these are wrappers around the
equivalent functions provided by LLVM (in the AddLLVM module). add_tinylang_
subdirectory() adds a new source directory for inclusion in the build. Additionally, a
new CMake option is added. With this option, the user can control whether the content of
the directory should be compiled or not. With add_tinylang_library(), a library
is defined that is also installed. add_tinylang_executable() defines an executable
and add_tinylang_tool() defines an executable that is also installed.

Inside the lib directory, a CMakeLists.txt file is needed even if there is no source.
It must include the source directories of this project's libraries. Open your favorite text
editor and save the following content in the file:

add_subdirectory(Basic)

A large project would create several libraries, and the source would be placed in
subdirectories of lib. Each of these directories would have to be added in the
CMakeLists.txt file. Our small project has only one library called Basic, so only one
line is needed.

Creating your own project using LLVM libraries 29

The Basic library has only one source file, Version.cpp. The CMakeLists.txt file
in this directory is again simple:

add_tinylang_library(tinylangBasic

 Version.cpp

)

A new library called tinylangBasic is defined, and the compiled Version.cpp is
added to this library. An LLVM option controls whether this is a shared or static library.
By default, a static library is created.

The same steps repeat in the tools directory. The CMakeLists.txt file in this folder is
almost as simple as in the lib directory:

create_subdirectory_options(TINYLANG TOOL)

add_tinylang_subdirectory(driver)

First, a CMake option is defined that controls whether the content of this directory
is compiled. Then the only subdirectory, driver, is added, this time with a function
from our own module. Again, this allows us to control if this directory is included in
compilation or not.

The driver directory contains the source of the application, Driver.cpp. The
CMakeLists.txt file in this directory has all the steps to compile and link this
application:

set(LLVM_LINK_COMPONENTS

 Support

)

add_tinylang_tool(tinylang

 Driver.cpp

)

target_link_libraries(tinylang

 PRIVATE

 tinylangBasic

)

30 Touring the LLVM Source

First, the LLVM_LINK_COMPONENTS variable is set to the list of LLVM components that
we need to link our tool against. An LLVM component is a set of one or more libraries.
Obviously, this depends on the implemented functionality of the tools. Here, we need only
the Support component.

With add_tinylang_tool() a new installable application is defined. The name is
tinylang and the only source file is Driver.cpp. To link against our own libraries, we
have to specify them with target_link_libraries(). Here, only tinylangBasic
is needed.

Now the files required for the CMake system are in place. Next, we will add the
source files.

Adding the C++ source files
Let's start in the include/tinylang/Basic directory. First, create the Version.
inc.in template file, which holds the configured version number:

#define TINYLANG_VERSION_STRING "@TINYLANG_VERSION_STRING@"

The @ symbols around TINYLANG_VERSION_STRING denote that this is a CMake
variable that should be replaced with their content.

The Version.h header file only declares a function to retrieve the version string:

#ifndef TINYLANG_BASIC_VERSION_H

#define TINYLANG_BASIC_VERSION_H

#include "tinylang/Basic/Version.inc"

#include <string>

namespace tinylang {

std::string getTinylangVersion();

}

#endif

The implementation for this function is in the lib/Basic/Version.cpp file. It's
similarly simple:

Creating your own project using LLVM libraries 31

#include "tinylang/Basic/Version.h"

std::string tinylang::getTinylangVersion() {

 return TINYLANG_VERSION_STRING;

}

And finally, in the tools/driver/Driver.cpp file there is the application source:

#include "llvm/Support/InitLLVM.h"

#include "llvm/Support/raw_ostream.h"

#include "tinylang/Basic/Version.h"

int main(int argc_, const char **argv_) {

 llvm::InitLLVM X(argc_, argv_);

 llvm::outs() << "Hello, I am Tinylang "
 << tinylang::getTinylangVersion()

 << "\n";

}

Despite being only a friendly tool, the source uses typical LLVM functionality. The
llvm::InitLLVM() call does some basic initialization. On Windows, the arguments
are converted to Unicode for the uniform treatment of command-line parsing. And in the
(hopefully unlikely) case that the application crashes, a pretty print stack trace handler is
installed. It outputs the call hierarchy, beginning with the function inside which the crash
happened. To see the real function names instead of hex addresses, the debug symbols
must be present.

LLVM does not use the iostream classes of the C++ standard library. It comes with its
own implementation. llvm::outs() is the output stream and is used here to send a
friendly message to the user.

32 Touring the LLVM Source

Compiling the tinylang application
Now all files for the first application are in place, the application can be compiled. To
recap, you should have the following directories and files:

Figure 2.3 – All directories and files of the tinylang project

As discussed previously, there are several ways to build tinylang. Here is how to build
tinylang as a part of LLVM:

1.	 Change into the build directory with this:

$ cd build

2.	 Then, run CMake as follows:

$ cmake -G Ninja -DCMAKE_BUILD_TYPE=Release \

 -DLLVM_EXTERNAL_PROJECTS=tinylang \

 -DLLVM_EXTERNAL_TINYLANG_SOURCE_DIR=../tinylang \

 -DCMAKE_INSTALL_PREFIX=../llvm-12 \

 ../llvm-project/llvm

Creating your own project using LLVM libraries 33

With this command, CMake generates build files for Ninja (-G Ninja). The
build type is set to Release, thus producing optimized binaries (-DCMAKE_
BUILD_TYPE=Release). Tinylang is built as an external project alongside
LLVM (-DLLVM_EXTERNAL_PROJECTS=tinylang) and the source is found
in a directory parallel to the build directory (-DLLVM_EXTERNAL_TINYLANG_
SOURCE_DIR=../tinylang). A target directory for the build binaries is also
given (-DCMAKE_INSTALL_PREFIX=../llvm-12). As the last parameter, the
path of the LLVM project directory is specified (../llvm-project/llvm).

3.	 Now, build and install everything:

$ ninja

$ ninja install

4.	 After building and installing, the../llvm-12 directory contains the LLVM and
the tinylang binaries. Please check that you can run the application:

$../llvm-12/bin/tinylang

5.	 You should see the friendly message. Please also check that the Basic library
was installed:

$ ls ../llvm-12/lib/libtinylang*

This will show that there is a libtinylangBasic.a file.
Building together with LLVM is useful when you closely follow LLVM development,
and you want to be aware of API changes as soon as possible. In Chapter 1, Installing
LLVM, we checked out a specific version of LLVM. Therefore, we see no changes to
LLVM sources.

In this scenario, it makes sense to build LLVM once and compile tinylang as
a standalone project using the compiled version of LLVM. Here is how to do it:

1.	 Start again with entering the build directory:

$ cd build

This time, CMake is used only to build LLVM:
$ cmake -G Ninja -DCMAKE_BUILD_TYPE=Release \

 -DCMAKE_INSTALL_PREFIX=../llvm-12 \

 ../llvm-project/llvm

34 Touring the LLVM Source

2.	 Compare this with the preceding CMake command: the parameters referring to
tinylang are missing; everything else is identical.

3.	 Build and install LLVM with Ninja:

$ ninja

$ ninja install

4.	 Now you have an LLVM installation in the llvm-12 directory. Next, the
tinylang project will be built. As it is a standalone build, a new build directory
is required. Leave the LLVM build directory like so:

$ cd ..

5.	 Now create a new build-tinylang directory. On Unix, you use the
following command:

$ mkdir build-tinylang

And on Windows, you would use this command:
$ md build-tinylang

6.	 Enter the new directory with the following command on either operating system:

$ cd build-tinylang

7.	 Now run CMake to create the build files for tinylang. The only peculiarity is how
LLVM is discovered, because CMake does not know the location where we installed
LLVM. The olution is to specify the path to the LLVMConfig.cmake file from
LLVM with the LLVM_DIR variable. The command is as follows:

$ cmake -G Ninja -DCMAKE_BUILD_TYPE=Release \

 -DLLVM_DIR=../llvm-12/lib/cmake/llvm \

 -DCMAKE_INSTALL_PREFIX=../tinylang ../tinylang/

8.	 The installation directory is now separate, too. As usual, build and install with
the following:

$ ninja

$ ninja install

Targeting a different CPU architecture 35

9.	 After the commands are finished, you should run the../tinylang/bin/
tinylang application to check that the application works.

An alternate way to include LLVM
If you do not want to use CMake for your project, then you need to find out where the
include files and libraries are, which libraries to link against, which build mode was used,
and much more. This information is provided by the llvm-config tool, which is in the
bin directory of an LLVM installation. Assuming that this directory is included in your
shell search path, you run $ llvm-config to see all options.

For example, to get the LLVM libraries to link against the support component (which is
used in the preceding example), you run this:

$ llvm-config –libs support

The output is a line with the library names including the link option for the compiler,
for example, -lLLVMSupport –lLLVMDemangle. Obviously, this tool can be easily
integrated with your build system of choice.

With the project layout shown in this section, you have a structure that scales for large
projects such as compilers. The next section lays another foundation: how to cross-
compile for a different target architecture.

Targeting a different CPU architecture
Today, many small computers such as the Raspberry Pi are in use and have only limited
resources. Running a compiler on such a computer is often not possible or takes too much
runtime. Hence, a common requirement for a compiler is to generate code for a different
CPU architecture. The whole process of creating an executable is called cross-compiling.
In the previous section, you created a small example application based on the LLVM
libraries. Now we will take this application and compile it for a different target.

36 Touring the LLVM Source

With cross-compiling, there are two systems involved: the compiler runs on the host
system and produces code for the target system. To denote the systems, the so-called
triple is used. This is a configuration string that usually consists of the CPU architecture,
the vendor, and the operating system. More information about the environment is often
added. For example, the triple x86_64-pc-win32 is used for a Windows system
running on a 64-bit X86 CPU. The CPU architecture is x86_64, pc is a generic vendor,
and win32 is the operating system. The parts are connected by a hyphen. A Linux
system running on an ARMv8 CPU uses aarch64-unknown-linux-gnu as the
triple. aarch64 is the CPU architecture. The operating system is linux, running a gnu
environment. There is no real vendor for a Linux-based system, so this part is unknown.
Parts that are not known or unimportant for a specific purpose are often omitted: the
triple aarch64-linux-gnu describes the same Linux system.

Let's assume your development machine runs Linux on an X86 64-bit CPU and you want
to cross-compile to an ARMv8 CPU system running Linux. The host triple is x86_64-
linux-gnu and the target triple is aarch64-linux-gnu. Different systems have
different characteristics. Your application must be written in a portable fashion, otherwise
you will be surprised by failures. Common pitfalls are as follows:

•	 Endianness: The order in which multi-byte values are stored in memory can
be different.

•	 Pointer size: The size of a pointer varies with the CPU architecture (usually 16, 32,
or 64 bit). The C type int may not be large enough to hold a pointer.

•	 Type differences: Data types are often closely related to the hardware. The type
long double can use 64 bit (ARM), 80 bit (X86), or 128 bit (ARMv8). PowerPC
systems may use double-double arithmetic for long double, which gives more
precision by using a combination of two 64-bit double values.

If you do not pay attention to these points, then your application can act surprisingly
or crash on the target platform even if it runs perfectly on your host system. The LLVM
libraries are tested on different platforms and also contain portable solutions to the
mentioned issues.

For cross-compiling, you need the following tools:

•	 A compiler that generates code for the target

•	 A linker capable of generating binaries for the target

•	 Header files and libraries for the target

Targeting a different CPU architecture 37

Ubuntu and Debian distributions have packages that support cross-compiling. In the
following setup, we take advantage of this. The gcc and g++ compilers, the ld linker,
and the libraries are available as precompiled binaries producing ARMv8 code and
executables. To install all these packages, type the following:

$ sudo apt install gcc-8-aarch64-linux-gnu \

 g++-8-aarch64-linux-gnu binutils-aarch64-linux-gnu \

 libstdc++-8-dev-arm64-cross

The new files are installed under the /usr/aarch64-linux-gnu. directory This
directory is the (logical) root directory of the target system. It contains the usual bin,
lib, and include directories. The cross-compilers (aarch64-linux-gnu-gcc-8
and aarch64-linux-gnu-g++-8) know about this directory.

Cross-compiling on other systems
If your distribution does not come with the required toolchain, then you can
build it from source. The gcc and g++ compilers must be configured to produce
code for the target system and the binutils tools need to handle files for the
target system. Moreover, the C and the C++ library need to be compiled with
this toolchain. The steps vary with the used operating systems and host and
target architecture. On the web, you can find instructions if you search for gcc
cross-compile <architecture>.

With this preparation, you are almost ready to cross-compile the sample application
(including the LLVM libraries) except for one little detail. LLVM uses the tablegen
tool during the build. During cross-compilation, everything is compiled for the target
architecture, including this tool. You can use llvm-tblgen from the build of Chapter 1,
Installing LLVM, or you can compile only this tool. Assuming you are in the directory that
contains the clone of the GitHub repository, type this:

$ mkdir build-host

$ cd build-host

$ cmake -G Ninja \

 -DLLVM_TARGETS_TO_BUILD="X86" \

 -DLLVM_ENABLE_ASSERTIONS=ON \

 -DCMAKE_BUILD_TYPE=Release \

 ../llvm-project/llvm

$ ninja llvm-tblgen

$ cd ..

38 Touring the LLVM Source

These steps should be familiar by now. A build directory is created and entered. The
CMake command creates LLVM build files for the X86 target only. To save space and time,
a release build is done but assertions are enabled to catch possible errors. Only the llvm-
tblgen tool is compiled with Ninja.

With the llvm-tblgen tool at hand, you can now start the cross-compilation. The
CMake command line is very long so you may want to store the command in a script file.
The difference from previous builds is that more information must be provided:

$ mkdir build-target

$ cd build-target

$ cmake -G Ninja \

 -DCMAKE_CROSSCOMPILING=True \

 -DLLVM_TABLEGEN=../build-host/bin/llvm-tblgen \

 -DLLVM_DEFAULT_TARGET_TRIPLE=aarch64-linux-gnu \

 -DLLVM_TARGET_ARCH=AArch64 \

 -DLLVM_TARGETS_TO_BUILD=AArch64 \

 -DLLVM_ENABLE_ASSERTIONS=ON \

 -DLLVM_EXTERNAL_PROJECTS=tinylang \

 -DLLVM_EXTERNAL_TINYLANG_SOURCE_DIR=../tinylang \

 -DCMAKE_INSTALL_PREFIX=../target-tinylang \

 -DCMAKE_BUILD_TYPE=Release \

 -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc-8 \

 -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++-8 \

 ../llvm-project/llvm

$ ninja

Again, you create a build directory and enter it. Some of the CMake parameters have not
been used before and need some explanation:

•	 CMAKE_CROSSCOMPILING set to ON tells CMake that we are cross-compiling.

•	 LLVM_TABLEGEN specifies the path to the llvm-tblgen tool to use. This is the
one from the previous build.

•	 LLVM_DEFAULT_TARGET_TRIPLE is the triple of the target architecture.

•	 LLVM_TARGET_ARCH is used for just-in-time (JIT) code generation. It defaults
to the architecture of the host. For cross-compiling, this must be set to the target
architecture.

Summary 39

•	 LLVM_TARGETS_TO_BUILD is the list of target(s) for which LLVM should include
code generators. The list should at least include the target architecture.

•	 CMAKE_C_COMPILER and CMAKE_CXX_COMPILER specify the C and C++
compilers used for the build. The binaries of the cross-compilers are prefixed with
the target triple and are not found automatically by CMake.

With the other parameters, a release build with assertions enabled is requested and our
tinylang application is built as part of LLVM (as shown in the previous section). After the
compilation process is finished, you can check with the file command that you have
really created a binary for ARMv8. Run $ file bin/tinylang and check that the
output says that it is an ELF 64-bit object for the ARM aarch64 architecture.

Cross-compiling with clang
As LLVM generates code for different architectures, it seems obvious
to use clang to cross-compile. The obstacle here is that LLVM does not
provide all required parts; for example, the C library is missing. Because
of this, you have to use a mix of LLVM and GNU tools, and as a result you
need to tell CMake even more about the environment you are using. As a
minimum, you need to specify the following options for clang and clang++:
--target=<target-triple> (enables code generation for a different
target), --sysroot=<path> (path to the root directory for the target; see
previous), I (search path for header files), and –L (search path for libraries).
During the CMake run, a small application is compiled and CMake complains
if something is wrong with your setup. This step is sufficient to check if you
have a working environment. Common problems include picking the wrong
header files, link failures due to different library names, and the wrong search
path.

Cross-compiling is surprisingly complex. With the instructions from this section, you will
be able to cross-compile your application for a target architecture of your choice.

Summary
In this chapter, you learned about the projects that are part of the LLVM repository and
the common layout used. You replicated this structure for your own small application,
laying the foundation for more complex applications. As the supreme discipline of
compiler construction, you also learned how to cross-compile your application for
another target architecture.

In the next chapter, the sample language tinylang will be outlined. You will learn about
the tasks a compiler has to do and where LLVM library support is available.

3
The Structure
of a Compiler

Compiler technology is a well-studied field of computer science. Its high-level task is to
translate a source language into machine code. Typically, this task is divided into two
parts: the frontend and the backend. The frontend mainly deals with the source language,
while the backend is responsible for generating machine code.

In this chapter, we will cover the following topics:

•	 The building blocks of a compiler, in which you will learn about the components
typically found in a compiler.

•	 An arithmetic expression language, which will introduce you to an example
language. You will learn how grammar is used to define a language.

•	 Lexical analysis, which will discuss how you implement lexers for the language.

•	 Syntactical analysis, which covers how to construct a parser from grammar.

•	 Semantic analysis, in which you will learn how a sematic check can be implemented.

•	 Code generation with the LLVM backend, which will discuss how to interface
with the LLVM backend and how you can glue all the phases together to create a
complete compiler.

42 The Structure of a Compiler

Technical requirements
The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter03/calc

You can find the code in action videos at https://bit.ly/3nllhED

Building blocks of a compiler
After computers became available in the middle of the last century, it quickly became
apparent that a more abstract language than assembler would be useful for programming.
As early as 1957, Fortran was the first available higher programming language. Since then,
thousands of programming languages have been developed. It turns out that all compilers
must solve the same tasks and that the implementation of a compiler is best structured
according to these tasks.

At the highest level, a compiler consists of two parts: the frontend and the backend. The
frontend is responsible for language-specific tasks. It reads a source file and computes a
semantic analyzed representation of it, usually an annotated abstract syntax tree (AST).
The backend creates optimized machine code from the frontend's result. The motivation
behind there being a distinction between the frontend and the backend is reusability. Let's
assume that the interface between the frontend and the backend is well defined. Here, you
can connect a C and a Modula-2 frontend to the same backend. Alternatively, if you have
one backend for X86 and one for Sparc, then you can connect your C++ frontend to both.

The frontend and backend have specific structures. The frontend usually performs the
following tasks:

1.	 The lexer reads the source file and produces a token stream.

2.	 The parser creates an AST from the token stream.

3.	 The semantic analyzer adds semantic information to the AST.

4.	 The code generator produces an intermediate representation (IR) from the AST.

The intermediate representation is the interface of the backend. The backend does the
following tasks:

1.	 The backend performs target-independent optimization on the IR.

2.	 It then selects instructions for the IR code.

3.	 After, it performs target-dependent optimizations on the instructions.

4.	 Finally, it emits assembler code or an object file.

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter03/calc
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter03/calc
https://bit.ly/3nllhED

An arithmetic expression language 43

Of course, these instructions are only at a conceptual level. The implementations vary a
lot. The LLVM core libraries define an intermediate representation as a standard interface
to the backend. Other tools could use the annotated AST. The C preprocessor is a language
of its own. It can be implemented as a standalone application that outputs preprocessed
C source or as an additional component between the lexer and the parser. In some cases,
the AST must not be constructed explicitly. If the language to be implemented is not too
complex, then combining the parser and the semantic analyzer, and then emitting code
while parsing, is a common approach. Even if a given implementation of a programing
language does not explicitly name these components, it is good to remember that the tasks
must still be done.

In the following sections, we will construct a compiler for an expression language that
produces LLVM IR from its input. The LLVM static compiler, llc, which represents the
backend, can then be used to compile the IR into object code. It all begins with defining
the language.

An arithmetic expression language
Arithmetic expressions are part of every programming language. Here is an example of an
arithmetic expression calculation language called calc. calc expressions are compiled into
an application that evaluates the following expression:

with a, b: a * (4 + b)

The variables that are used in the expression must be declared with the with keyword.
This program is compiled into an application, which asks the user for the values of the a
and b variables and prints the result.

Examples are always welcome but as a compiler writer, you need a more thorough
specification than this for implementation and testing. The vehicle for the syntax of the
programming language is its grammar.

Formalism for specifying the syntax of
a programming language
The elements of a language, such as its keywords, identifiers, strings, numbers, and
operators, are called tokens. In this sense, a program is a sequence of tokens, and the
grammar specifies which sequences are valid.

44 The Structure of a Compiler

Usually, grammar is written in the extended Backus-Naur form (EBNF). One of the
rules of grammar is that it has a left-hand side and a right-hand side. The left-hand side
is just a single symbol called a non-terminal. The right-hand side of a rule consists of
non-terminals, tokens, and meta-symbols for alternatives and repetitions. Let's have a
look at the grammar for the calc language:

calc : ("with" ident ("," ident)* ":")? expr ;

expr : term (("+" | "-") term)* ;

term : factor (("*" | "/") factor)* ;

factor : ident | number | "(" expr ")" ;

ident : ([a-zAZ])+ ;

number : ([0-9])+ ;

In the first line, calc is a non-terminal. If not otherwise stated, then the first
non-terminal of grammar is the start symbol. The colon, :, is the separator between the
left-hand side and the right-hand side of the rule. "with", ",", and ":" are tokens
that represent this string. Parentheses are used for grouping. A group can be optional or
repeated. A question mark, ?, after the closing parenthesis denotes an optional group. A
star, *, denotes zero or more repetitions, while a plus, +, denotes one or more repetitions.
ident and expr are non-terminals. For each, another rule exists. The semicolon, ;,
marks the end of a rule. The pipe, |, in the second line, denotes an alternative. Finally,
the brackets, [], in the last two lines denote a character class. The valid characters are
written inside the brackets. For example, the [a-zA-Z] character classes matches an
uppercase or lowercase letter and ([a-zA-Z])+ matches one or more of these letters.
This corresponds to a regular expression.

How grammar helps the compiler writer
Such grammar may look like a theoretical toy, but it is of value to the compiler writer.
First, all the tokens are defined, which is needed to create the lexical analyzer. The rules of
the grammar can be translated into the parser. And of course, if questions arise regarding
whether the parser works correctly, then the grammar serves as a good specification.

However, grammar does not define all the aspects of a programming language. The
meaning – the semantics – of the syntax must also be defined. Formalisms for this
purpose were developed too, but often, it is specified in plain text, similar to when the
language was first introduced.

Equipped with this knowledge, the next two sections will show you how lexical analysis
turns the input into a sequence of tokens and how grammar is coded in C++ for
syntactical analysis.

Lexical analysis 45

Lexical analysis
As we saw in the example in the previous section, a programming language consists of
many elements, such as keywords, identifiers, numbers, operators, and so on. The task of
lexical analysis is to take the textual input and create a sequence of tokens from it. The calc
language consists of the with, :, +, -, *, /, (, and) tokens and the ([a-zA-Z])+ (an
identifier) and ([0-9])+ (a number) regular expressions. We assign a unique number to
each token to make handling them easier.

A handwritten lexer
The implementation of a lexical analyzer is often called a Lexer. Let's create a header file
called Lexer.h and start defining Token. It begins with the usual header guard and the
required headers:

#ifndef LEXER_H

#define LEXER_H

#include "llvm/ADT/StringRef.h"

#include "llvm/Support/MemoryBuffer.h"

The llvm::MemoryBuffer class provides read-only access to a block of memory, filled
with the content of a file. On request, a trailing zero character ('\x00') is added to the
end of the buffer. We use this feature to read through the buffer without checking the
length of the buffer at each access. The llvm::StringRef class encapsulates a pointer
to a C string and its length. Because the length is stored, the string doesn't need to be
terminated with a zero character ('\x00') like normal C strings. This allows an instance
of StringRef to point to the memory managed by MemoryBuffer. Let's take a look at
this in more detail:

1.	 First, the Token class contains the definition of the enumeration for the unique
token numbers mentioned previously:

class Lexer;

class Token {

 friend class Lexer;

public:

 enum TokenKind : unsigned short {

 eoi, unknown, ident, number, comma, colon, plus,

46 The Structure of a Compiler

 minus, star, slash, l_paren, r_paren, KW_with

 };

Besides defining a member for each token, we added two additional values: eoi
and unknown. eoi stands for end of input and is returned if all the characters of
the input are processed. unknown is used in case of an error at the lexical level; for
example, # is not a token of the language, so it would be mapped to unknown.

2.	 In addition to the enumeration, the class has a member, Text, which points to the
start of the text of the token. It uses the StringRef class mentioned previously:

private:

 TokenKind Kind;

 llvm::StringRef Text;

public:

 TokenKind getKind() const { return Kind; }

 llvm::StringRef getText() const { return Text; }

This is useful for semantic processing, in that it is useful to know the identifier's
name.

3.	 The is() and isOneOf() methods are used to test if the token is of a certain
kind. The isOneOf() method uses a variadic template, which allows a variable
number of arguments:

 bool is(TokenKind K) const { return Kind == K; }

 bool isOneOf(TokenKind K1, TokenKind K2) const {

 return is(K1) || is(K2);

 }

 template <typename... Ts>

 bool isOneOf(TokenKind K1, TokenKind K2, Ts... Ks)
const {

 return is(K1) || isOneOf(K2, Ks...);

 }

};

4.	 The Lexer class itself has a similar simple interface and comes next in the
header file:

class Lexer {

 const char *BufferStart;

Lexical analysis 47

 const char *BufferPtr;

public:

 Lexer(const llvm::StringRef &Buffer) {

 BufferStart = Buffer.begin();

 BufferPtr = BufferStart;

 }

 void next(Token &token);

private:

 void formToken(Token &Result, const char *TokEnd,

 Token::TokenKind Kind);

};

#endif

Except for the constructor, the public interface only contains the next() method,
which returns the next token. The method acts like an iterator, always advancing
to the next available token. The only members of the class are pointers to the
beginning of the input and to the next unprocessed character. It is assumed that the
buffer ends with a terminating 0 (like a C string).

5.	 Let's implement the Lexer class in the Lexer.cpp file. It begins with some helper
functions to help classify characters:

#include "Lexer.h"

namespace charinfo {

LLVM_READNONE inline bool isWhitespace(char c) {

 return c == ' ' || c == '\t' || c == '\f' ||
 c == '\v' ||

 c == '\r' || c == '\n';

}

LLVM_READNONE inline bool isDigit(char c) {

 return c >= '0' && c <= '9';

}

48 The Structure of a Compiler

LLVM_READNONE inline bool isLetter(char c) {

 return (c >= 'a' && c <= 'z') ||
 (c >= 'A' && c <= 'Z');

}

}

These functions are used to make conditions more readable.

Note
We are not using the functions provided by the <cctype> standard library
header for two reasons. First, these functions change behavior based on the
locale defined in the environment. For example, if the locale is a German-
language local, then German umlauts can be classified as letters. This is usually
not wanted in a compiler. Second, since the functions have int as a parameter
type, we must convert from the char type. The result of this conversion
depends on whether char is treated as a signed or unsigned type, which
causes portability problems.

6.	 From the grammar in the previous section, we know all the tokens of the language.
But the grammar does not define the characters that should be ignored. For
example, a space or a new line only adds whitespace and is often ignored. The
next() method begins by ignoring these characters:

void Lexer::next(Token &token) {

 while (*BufferPtr &&
 charinfo::isWhitespace(*BufferPtr)) {

 ++BufferPtr;

 }

7.	 Next, make sure that there are still characters left to process:

 if (!*BufferPtr) {

 token.Kind = Token::eoi;

 return;

 }

There is at least one character to process.

Lexical analysis 49

8.	 So, we first check whether the character is lowercase or uppercase. In this case, the
token is either an identifier or the with keyword, because the regular expression
for the identifier also matches the keyword. The common solution is to collect
the characters that are matched by the regular expression and check if the string
happens to be the keyword:

 if (charinfo::isLetter(*BufferPtr)) {

 const char *end = BufferPtr + 1;

 while (charinfo::isLetter(*end))

 ++end;

 llvm::StringRef Name(BufferPtr, end - BufferPtr);

 Token::TokenKind kind =

 Name == "with" ? Token::KW_with : Token::ident;

 formToken(token, end, kind);

 return;

 }

The private formToken() method is used to populate the token.

9.	 Next, we check for a number. The following code is very similar to the code
shown previously:

 else if (charinfo::isDigit(*BufferPtr)) {

 const char *end = BufferPtr + 1;

 while (charinfo::isDigit(*end))

 ++end;

 formToken(token, end, Token::number);

 return;

 }

10.	 Now, only the tokens defined by fixed strings are left. This is done easily with a
switch. Since all these tokens have only one character, the CASE preprocessor
macro is used to reduce typing:

 else {

 switch (*BufferPtr) {

#define CASE(ch, tok) \

case ch: formToken(token, BufferPtr + 1, tok); break

CASE('+', Token::plus);

CASE('-', Token::minus);

50 The Structure of a Compiler

CASE('*', Token::star);

CASE('/', Token::slash);

CASE('(', Token::Token::l_paren);

CASE(')', Token::Token::r_paren);

CASE(':', Token::Token::colon);

CASE(',', Token::Token::comma);

#undef CASE

11.	 Finally, we need to check for unexpected characters:

 default:

 formToken(token, BufferPtr + 1, Token::unknown);

 }

 return;

 }

}

Only the private helper method, formToken(), is still missing.

12.	 This private helper method populates the members of the Token instance and
updates the pointer to the next unprocessed character:

void Lexer::formToken(Token &Tok, const char *TokEnd,

 Token::TokenKind Kind) {

 Tok.Kind = Kind;

 Tok.Text = llvm::StringRef(BufferPtr, TokEnd -
 BufferPtr);

 BufferPtr = TokEnd;

}

In the next section, we'll have a look at how to construct a parser for syntactical analysis.

Syntactical analysis
Syntactical analysis is done by the parser, which we will implement next. Its base is the
grammar and the lexer from the previous sections. The result of the parsing process
is a dynamic data structure called an abstract syntax tree (AST). The AST is a very
condensed representation of the input and is well-suited for semantic analysis. First, we
will implement the parser. After that, we will have a look at the AST.

Syntactical analysis 51

A handwritten parser
The interface of the parser is defined in the Parser.h header file. It begins with some
include statements:

#ifndef PARSER_H

#define PARSER_H

#include "AST.h"

#include "Lexer.h"

#include "llvm/Support/raw_ostream.h"

The AST.h header file declares the interface for the AST and will be shown later. The
coding guidelines from LLVM forbid the use of the <iostream> library, so the header
of the equivalent LLVM functionality must be included. It is required to emit an error
message. Let's take a look at this in more detail:

1.	 First, the Parser class declares some private members:

class Parser {

 Lexer &Lex;

 Token Tok;

 bool HasError;

Lex and Tok are instances of the classes from the previous section. Tok stores the
next token (the look-ahead), while Lex is used to retrieve the next token from the
input. The HasError flag indicates if an error was detected.

2.	 A couple of methods deal with the token:

 void error() {

 llvm::errs() << "Unexpected: " << Tok.getText()

 << "\n";

 HasError = true;

 }

 void advance() { Lex.next(Tok); }

 bool expect(Token::TokenKind Kind) {

 if (Tok.getKind() != Kind) {

 error();

52 The Structure of a Compiler

 return true;

 }

 return false;

 }

 bool consume(Token::TokenKind Kind) {

 if (expect(Kind))

 return true;

 advance();

 return false;

 }

advance() retrieves the next token from the lexer. expect() tests whether
the look-ahead is of the expected kind and emits an error message if not. Finally,
consume() retrieves the next token if the look-ahead is of the expected kind. If an
error message is emitted, the HasError flag is set to true.

3.	 For each non-terminal in the grammar, a method to parse the rule is declared:

 AST *parseCalc();

 Expr *parseExpr();

 Expr *parseTerm();

 Expr *parseFactor();

Note
There are no methods for ident and number. Those rules only return the
token and are replaced by the corresponding token.

4.	 The public interface follows. The constructor initializes all the members and
retrieves the first token from the lexer:

public:

 Parser(Lexer &Lex) : Lex(Lex), HasError(false) {

 advance();

 }

5.	 A function is required to get the value of the error flag:

 bool hasError() { return HasError; }

Syntactical analysis 53

6.	 Finally, the parse() method is the main entry point into parsing:

 AST *parse();

};

#endif

In the next section, we will learn to implement the parser.

Parser implementation
Let's dive into the implementation of the parser:

1.	 The implementation of the parser can be found in the Parser.cpp file and begins
with the parse() method:

#include "Parser.h"

AST *Parser::parse() {

 AST *Res = parseCalc();

 expect(Token::eoi);

 return Res;

}

The main point of the parse() method is that the whole input has been
consumed. Do you remember that the parsing example in the first section added a
special symbol to denote the end of the input? We'll check this here.

2.	 The parseCalc() method implements the corresponding rule. It's worth having
a closer look at this method as the other parsing methods follow the same patterns.
Let's recall the rule from the first section:

calc : ("with" ident ("," ident)* ":")? expr ;

3.	 The method begins by declaring some local variables:

AST *Parser::parseCalc() {

 Expr *E;

 llvm::SmallVector<llvm::StringRef, 8> Vars;

54 The Structure of a Compiler

4.	 The first decision to be made is whether the optional group must be parsed or not.
The group begins with the with token, so we compare the token to this value:

 if (Tok.is(Token::KW_with)) {

 advance();

5.	 Next, we expect an identifier:

 if (expect(Token::ident))

 goto _error;

 Vars.push_back(Tok.getText());

 advance();

If there is an identifier, then we save it in the Vars vector. Otherwise, it is a syntax
error, which is handled separately.

6.	 In the grammar now follows a repeating group, which parses more identifiers, it's
separated by a comma:

 while (Tok.is(Token::comma)) {

 advance();

 if (expect(Token::ident))

 goto _error;

 Vars.push_back(Tok.getText());

 advance();

 }

At this point, this should not be surprising to you. The repetition group begins
with the, token. The test for the token becomes the condition of the while loop,
implementing zero or more repetition. The identifier inside the loop is treated as it
was previously.

7.	 Finally, the optional group requires a colon at the end:

 if (consume(Token::colon))

 goto _error;

 }

8.	 Now, the rule for expr must be parsed:

 E = parseExpr();

Syntactical analysis 55

9.	 With this call, the rule has been parsed successfully. The information that we've
collected is now used to create the AST node for this rule:

 if (Vars.empty()) return E;

 else return new WithDecl(Vars, E);

Now, only the error handling code is missing. Detecting a syntax error is easy but
recovering from it is surprisingly complicated. Here, a simple approach called panic mode
must be used.

In panic mode, tokens are deleted from the token stream until one is found that the parser
can use to continue its work. Most programming languages have symbols that denote an
end; for example, in C++, we can use ; (end of a statement) or } (end of a block). Such
tokens are good candidates to look for.

On the other hand, the error can be that the symbol we are looking for is missing. In this
case, a lot of tokens are probably deleted before the parser can continue. This is not as bad
as it sounds. Today, it is more important that a compiler is fast. In case of an error, the
developer looks at the first error message, fixes it, and restarts the compiler. This is quite
different from using punch cards, where it was important to get as many error messages as
possible, since the next run of the compiler would only be possible on the next day.

Error handling
Instead of using some arbitrary tokens, another set of tokens is used. For each
non-terminal, there is a set of tokens that can follow this non-terminal in a rule. Let's take
a look:

1.	 In the case of calc, only the end of the input follows this non-terminal. Its
implementation is trivial:

_error:

 while (!Tok.is(Token::eoi))

 advance();

 return nullptr;

}

2.	 The other parsing methods are constructed in a similar fashion. parseExpr() is
the translation of the rule for expr:

Expr *Parser::parseExpr() {

 Expr *Left = parseTerm();

 while (Tok.isOneOf(Token::plus, Token::minus)) {

56 The Structure of a Compiler

 BinaryOp::Operator Op =

 Tok.is(Token::plus) ? BinaryOp::Plus :

 BinaryOp::Minus;

 advance();

 Expr *Right = parseTerm();

 Left = new BinaryOp(Op, Left, Right);

 }

 return Left;

}

The repeated group inside the rule is translated into a while loop. Note how the
use of the isOneOf() method simplifies the check for several tokens.

3.	 The coding of the term rule looks the same:

Expr *Parser::parseTerm() {

 Expr *Left = parseFactor();

 while (Tok.isOneOf(Token::star, Token::slash)) {

 BinaryOp::Operator Op =

 Tok.is(Token::star) ? BinaryOp::Mul :

 BinaryOp::Div;

 advance();

 Expr *Right = parseFactor();

 Left = new BinaryOp(Op, Left, Right);

 }

 return Left;

}

This method is strikingly similar to parseExpr(), and you may be tempted to
combine them into one. In grammar, it is possible to have one rule that deals with
multiplicative and additive operators. The advantage of using two rules instead of
one is that the precedence of the operators fits well with the mathematical order of
evaluation. If you combine both rules, then you need to figure out the evaluation
order somewhere else.

4.	 Finally, you need to implement the rule for factor:

Expr *Parser::parseFactor() {

 Expr *Res = nullptr;

 switch (Tok.getKind()) {

Syntactical analysis 57

 case Token::number:

 Res = new Factor(Factor::Number, Tok.getText());

 advance(); break;

Instead of using a chain of if and else if statements, a switch statement seems
more suitable here, because each alternative begins with just one token. In general,
you should think about which translation patterns you like to use. If you need to
change the parsing methods later, then it is an advantage if not every method has a
different way of implementing a grammar rule.

5.	 If you use a switch statement, then error handling happens in the default case:

 case Token::ident:

 Res = new Factor(Factor::Ident, Tok.getText());

 advance(); break;

 case Token::l_paren:

 advance();

 Res = parseExpr();

 if (!consume(Token::r_paren)) break;

 default:

 if (!Res) error();

We guard emitting the error message here because of the fall-through.

6.	 If there was a syntax error in the parenthesis expression, then an error message
would have been emitted. The guard prevents a second error message from
being emitted:

 while (!Tok.isOneOf(Token::r_paren, Token::star,

 Token::plus, Token::minus,

 Token::slash, Token::eoi))

 advance();

 }

 return Res;

}

That was easy, wasn't it? As soon as you have memorized the used patterns, it is almost
tedious to code the parser based on the grammar rules. This type of parser is called a
recursive descent parser.

58 The Structure of a Compiler

A recursive descent parser can't be constructed from all grammar
Grammar must satisfy certain conditions to be suitable for constructing a
recursive descent parser. This class of grammar is called LL(1). In fact, most
grammar that you can find on the internet does not belong to this class of
grammar. Most books about the theory of compiler construction explain the
reason for this. The classic book on this topic is the so-called "dragon book",
Compilers: Principles, Techniques, and Tools by Aho, Lam, Sethi, and Ullman.

The abstract syntax tree
The result of the parsing process is an AST. The AST is another compact representation
of the input program. It captures essential information. Many programming languages
have symbols that are needed as separators and that do not carry further meaning.
For example, in C++, a semicolon, ;, denotes the end of a single statement. Of course,
this information is important for the parser. As soon as we turn the statement into an
in-memory representation, the semicolon is not important anymore and can be dropped.

If you look at the first rule of the example expression language, then it is clear that the
with keyword, the comma, ,, and the colon, :, are not really important for the meaning
of a program. What is important is the list of declared variables that could be used
in the expression. The result is that only a couple of classes are required to record the
information: Factor holds a number or an identifier, BinaryOp holds the arithmetic
operator and the left-hand and right-hand sides of an expression, and WithDecl stores
the list of declared variables and the expression. AST and Expr are only used to create a
common class hierarchy.

In addition to the information from the parsed input, tree traversal while using the visitor
pattern is also supported. It's all in the AST.h header file. Let's take a look:

1.	 It begins with the visitor interface:

#ifndef AST_H

#define AST_H

#include "llvm/ADT/SmallVector.h"

#include "llvm/ADT/StringRef.h"

class AST;

class Expr;

class Factor;

class BinaryOp;

Syntactical analysis 59

class WithDecl;

class ASTVisitor {

public:

 virtual void visit(AST &){};

 virtual void visit(Expr &){};

 virtual void visit(Factor &) = 0;

 virtual void visit(BinaryOp &) = 0;

 virtual void visit(WithDecl &) = 0;

};

The visitor pattern needs to know each class it must visit. Because each class also refers to
the visitor, we declare all the classes at the top of the file. Please note that the visit()
methods for AST and Expr have a default implementation, which does nothing.

2.	 The AST class is the root of the hierarchy:

class AST {

public:

 virtual ~AST() {}

 virtual void accept(ASTVisitor &V) = 0;

};

3.	 Similarly, Expr is the root for the AST classes related to expressions:

class Expr : public AST {

public:

 Expr() {}

};

4.	 The Factor class stores a number or the name of a variable:

class Factor : public Expr {

public:

 enum ValueKind { Ident, Number };

private:

 ValueKind Kind;

 llvm::StringRef Val;

60 The Structure of a Compiler

public:

 Factor(ValueKind Kind, llvm::StringRef Val)

 : Kind(Kind), Val(Val) {}

 ValueKind getKind() { return Kind; }

 llvm::StringRef getVal() { return Val; }

 virtual void accept(ASTVisitor &V) override {

 V.visit(*this);

 }

};

In this example, numbers and variables are treated almost identically, so we decided
to create only one AST node class to represent them. The Kind member tells us
which of both cases the instances represent. In more complex languages, you usually
want to have different AST classes, such as a NumberLiteral class for numbers
and a VariableAccess class for a reference to a variable.

5.	 The BinaryOp class holds the data that's needed to evaluate an expression:

class BinaryOp : public Expr {

public:

 enum Operator { Plus, Minus, Mul, Div };

private:

 Expr *Left;

 Expr *Right;

 Operator Op;

public:

 BinaryOp(Operator Op, Expr *L, Expr *R)

 : Op(Op), Left(L), Right(R) {}

 Expr *getLeft() { return Left; }

 Expr *getRight() { return Right; }

 Operator getOperator() { return Op; }

 virtual void accept(ASTVisitor &V) override {

 V.visit(*this);

 }

};

Semantic analysis 61

In contrast to the parser, the BinaryOp class makes no distinction between
multiplicative and additive operators. The precedence of the operators is implicitly
available in the tree structure.

6.	 Finally, WithDecl stores the declared variables and the expression:

class WithDecl : public AST {

 using VarVector =
 llvm::SmallVector<llvm::StringRef, 8>;

 VarVector Vars;

 Expr *E;

public:

 WithDecl(llvm::SmallVector<llvm::StringRef, 8> Vars,

 Expr *E)

 : Vars(Vars), E(E) {}

 VarVector::const_iterator begin()
 { return Vars.begin(); }

 VarVector::const_iterator end() { return Vars.end(); }

 Expr *getExpr() { return E; }

 virtual void accept(ASTVisitor &V) override {

 V.visit(*this);

 }

};

#endif

The AST is constructed during parsing. The semantic analysis checks that the tree adheres
to the meaning of the language (for example, that used variables are declared) and possibly
augments the tree. After that, the tree is used for code generation.

Semantic analysis
The semantic analyzer walks the AST and checks for various semantic rules of the
language; for example, a variable must be declared before use or types of variables must be
compatible in an expression. The semantic analyzer can also print out warnings if it finds a
situation that can be improved. For the example expression language, the sematic analyzer
must check that each used variable is declared, because that is what the language requires.
A possible extension (which will not be implemented here) is to print a warning message
if a declared variable is not used.

62 The Structure of a Compiler

The semantic analyzer is implemented in the Sema class, and semantic analysis is
performed by the semantic() method. Here is the complete Sema.h header file:

#ifndef SEMA_H

#define SEMA_H

#include "AST.h"

#include "Lexer.h"

class Sema {

public:

 bool semantic(AST *Tree);

};

#endif

The implementation is in the Sema.cpp file. The interesting part is the semantic analysis,
which is implemented using a visitor. The basic idea is that the name of each declared
variable is stored in a set. While the set it being created, we can check that each name is
unique and then check that the name is in the set later:

#include "Sema.h"

#include "llvm/ADT/StringSet.h"

namespace {

class DeclCheck : public ASTVisitor {

 llvm::StringSet<> Scope;

 bool HasError;

 enum ErrorType { Twice, Not };

 void error(ErrorType ET, llvm::StringRef V) {

 llvm::errs() << "Variable " << V << " "

 << (ET == Twice ? "already" : "not")

 << " declared\n";

 HasError = true;

 }

Semantic analysis 63

public:

 DeclCheck() : HasError(false) {}

 bool hasError() { return HasError; }

Like in the Parser class, a flag is used to indicate that an error occurred. The names are
stored in a set called Scope. In a Factor node that holds a variable name, we check that
the variable name is in the set:

 virtual void visit(Factor &Node) override {

 if (Node.getKind() == Factor::Ident) {

 if (Scope.find(Node.getVal()) == Scope.end())

 error(Not, Node.getVal());

 }

 };

For a BinaryOp node, we only need to check that both sides exist and have been visited:

 virtual void visit(BinaryOp &Node) override {

 if (Node.getLeft())

 Node.getLeft()->accept(*this);

 else

 HasError = true;

 if (Node.getRight())

 Node.getRight()->accept(*this);

 else

 HasError = true;

 };

In a WithDecl node, the set is populated and the walk over the expression is started:

 virtual void visit(WithDecl &Node) override {

 for (auto I = Node.begin(), E = Node.end(); I != E;

 ++I) {

 if (!Scope.insert(*I).second)

 error(Twice, *I);

 }

 if (Node.getExpr())

 Node.getExpr()->accept(*this);

64 The Structure of a Compiler

 else

 HasError = true;

 };

};

}

The semantic() method only starts the tree walk and returns an error flag:

bool Sema::semantic(AST *Tree) {

 if (!Tree)

 return false;

 DeclCheck Check;

 Tree->accept(Check);

 return Check.hasError();

}

If required, much more could be done here. It would also be possible to print a warning
message if a declared variable is not used. We leave it to you to implement this. If the
semantic analysis finishes without error, then we can generate the LLVM IR from the AST.
We will do this in the next section.

Generating code with the LLVM backend
The backend's task is to create optimized machine code from an IR of a module. The IR is
the interface to the backend and can be created using a C++ interface or in textual form.
Again, the IR is generated from the AST.

Textual representation of the LLVM IR
Before trying to generate the LLVM IR, we need to understand what we want to generate.
For the example expression language, the high-level plan is as follows:

1.	 Ask the user for the value of each variable.

2.	 Calculate the value of the expression.

3.	 Print the result.

Generating code with the LLVM backend 65

To ask the user to provide a value for a variable and to print the result, two library
functions, calc_read() and calc_write(), are used. For the with a: 3*a
expression, the generated IR is as follows:

1.	 The library functions must be declared, like in C. The syntax also resembles C. The
type before the function name is the return type. The type names surrounded by
parenthesis are the argument types. The declaration can appear anywhere in the file:

declare i32 @calc_read(i8*)

declare void @calc_write(i32)

2.	 The calc_read() function takes the variable name as a parameter. The following
construct defines a constant, holding a and the null byte that's used as a string
terminator in C:

@a.str = private constant [2 x i8] c"a\00"

3.	 It follows the main() function. The parameter's names are omitted because they
are not used. Like in C, the body of the function is enclosed in braces:

define i32 @main(i32, i8**) {

4.	 Each basic block must have a label. Because this is the first basic block of the
function, we name it entry:

entry:

5.	 The calc_read() function is called to read the value for the a variable. The
nested getelemenptr instruction performs an index calculation to compute the
pointer to the first element of the string constant. The function's result is assigned to
the unnamed %2 variable:

 %2 = call i32 @calc_read(i8* getelementptr inbounds

 ([2 x i8], [2 x i8]* @a.str, i32 0, i32
0))

6.	 Next, the variable is multiplied by 3:

 %3 = mul nsw i32 3, %2

66 The Structure of a Compiler

7.	 The result is printed to the console via a call to the calc_write() function:

 call void @calc_write(i32 %3)

8.	 Finally, the main() function returns 0 to indicate successful execution:

 ret i32 0

}

Each value in LLVM IR is typed, with i32 denoting the 32-bit bit integer type and
i8* denoting a pointer to a byte. IR code is very readable (maybe except for the
getelementptr operation, which will be explained in detail in Chapter 5, Basics of IR
Generation). Since it is now clear what the IR looks like, let's generate it from the AST.

Generating the IR from the AST
The interface, which is provided in the CodeGen.h header file, is very small:

#ifndef CODEGEN_H

#define CODEGEN_H

#include "AST.h"

class CodeGen

{

public:

 void compile(AST *Tree);

};

#endif

Because the AST contains the information from semantic analysis phase, the basic idea is
to use a visitor to walk the AST. The CodeGen.cpp file is implemented as follows:

1.	 The required includes are at the top of the file:

#include "CodeGen.h"

#include "llvm/ADT/StringMap.h"

#include "llvm/IR/IRBuilder.h"

#include "llvm/IR/LLVMContext.h"

#include "llvm/Support/raw_ostream.h"

Generating code with the LLVM backend 67

2.	 The namespace of the LLVM libraries is used for name lookups:

using namespace llvm;

3.	 First, some private members are declared in the visitor. Each compilation unit
is represented in LLVM by the Module class and the visitor has a pointer to
the module call, M. For easy IR generation, the Builder (of the IRBuilder<>
type) is used. LLVM has a class hierarchy to represent types in IR. You can look
up the instances for basic types such as i32 in the LLVM context. These basic
types are used often. To avoid repeated lookup, we cache the needed type instance,
which can be either VoidTy, Int32Ty, Int8PtrTy, Int8PtrPtrTy, or
Int32Zero. V is the current calculated value, which is updated through tree
traversal. Finally, nameMap maps a variable name to the value that's returned by
the calc_read() function:

namespace {

class ToIRVisitor : public ASTVisitor {

 Module *M;

 IRBuilder<> Builder;

 Type *VoidTy;

 Type *Int32Ty;

 Type *Int8PtrTy;

 Type *Int8PtrPtrTy;

 Constant *Int32Zero;

 Value *V;

 StringMap<Value *> nameMap;

4.	 The constructor initializes all the members:

public:

 ToIRVisitor(Module *M) : M(M), Builder(M->getContext())

 {

 VoidTy = Type::getVoidTy(M->getContext());

 Int32Ty = Type::getInt32Ty(M->getContext());

 Int8PtrTy = Type::getInt8PtrTy(M->getContext());

 Int8PtrPtrTy = Int8PtrTy->getPointerTo();

 Int32Zero = ConstantInt::get(Int32Ty, 0, true);

 }

68 The Structure of a Compiler

5.	 For each function, a FunctionType instance must be created. In C++
terminology, this is a function prototype. A function itself is defined with a
Function instance. First, the run() method defines the main() function in
LLVM IR:

 void run(AST *Tree) {

 FunctionType *MainFty = FunctionType::get(

 Int32Ty, {Int32Ty, Int8PtrPtrTy}, false);

 Function *MainFn = Function::Create(

 MainFty, GlobalValue::ExternalLinkage,

 "main", M);

6.	 Then, we create the BB basic block with the entry label and attach it to the
IR builder:

 BasicBlock *BB = BasicBlock::Create(M->getContext(),

 "entry", MainFn);

 Builder.SetInsertPoint(BB);

7.	 With this preparation done, tree traversal can begin:

 Tree->accept(*this);

8.	 After tree traversal, the computed value is printed via a call to the calc_write()
function. Again, a function prototype (an instance of FunctionType) must be
created. The only parameter is the current value, V:

 FunctionType *CalcWriteFnTy =

 FunctionType::get(VoidTy, {Int32Ty}, false);

 Function *CalcWriteFn = Function::Create(

 CalcWriteFnTy, GlobalValue::ExternalLinkage,

 "calc_write", M);

 Builder.CreateCall(CalcWriteFnTy, CalcWriteFn, {V});

9.	 The generation finishes by returning a 0 from the main() function:

 Builder.CreateRet(Int32Zero);

 }

Generating code with the LLVM backend 69

10.	 A WithDecl node holds the names of the declared variables. First, we must create
a function prototype for the calc_read() function:

 virtual void visit(WithDecl &Node) override {

 FunctionType *ReadFty =

 FunctionType::get(Int32Ty, {Int8PtrTy}, false);

 Function *ReadFn = Function::Create(

 ReadFty, GlobalValue::ExternalLinkage,

 "calc_read", M);

11.	 The method loops through the variable names:

 for (auto I = Node.begin(), E = Node.end(); I != E;

 ++I) {

12.	 For each variable, a string with a variable name is created:

 StringRef Var = *I;

 Constant *StrText = ConstantDataArray::getString(

 M->getContext(), Var);

 GlobalVariable *Str = new GlobalVariable(

 *M, StrText->getType(),

 /*isConstant=*/true,

 GlobalValue::PrivateLinkage,

 StrText, Twine(Var).concat(".str"));

13.	 Then, the IR code to call the calc_read() function is created. The string that we
created in the previous step is passed as a parameter:

 Value *Ptr = Builder.CreateInBoundsGEP(

 Str, {Int32Zero, Int32Zero}, "ptr");

 CallInst *Call =

 Builder.CreateCall(ReadFty, ReadFn, {Ptr});

14.	 The returned value is stored in the mapNames map for later use:

 nameMap[Var] = Call;

 }

70 The Structure of a Compiler

15.	 Tree traversal continues with the expression:

 Node.getExpr()->accept(*this);

 };

16.	 A Factor node is either a variable name or a number. For a variable name, the
value is looked up in the mapNames map. For a number, the value is converted into
an integer and turned into a constant value:

 virtual void visit(Factor &Node) override {

 if (Node.getKind() == Factor::Ident) {

 V = nameMap[Node.getVal()];

 } else {

 int intval;

 Node.getVal().getAsInteger(10, intval);

 V = ConstantInt::get(Int32Ty, intval, true);

 }

 };

17.	 Finally, for a BinaryOp node, the right calculation operation must be used:

 virtual void visit(BinaryOp &Node) override {

 Node.getLeft()->accept(*this);

 Value *Left = V;

 Node.getRight()->accept(*this);

 Value *Right = V;

 switch (Node.getOperator()) {

 case BinaryOp::Plus:

 V = Builder.CreateNSWAdd(Left, Right); break;

 case BinaryOp::Minus:

 V = Builder.CreateNSWSub(Left, Right); break;

 case BinaryOp::Mul:

 V = Builder.CreateNSWMul(Left, Right); break;

 case BinaryOp::Div:

 V = Builder.CreateSDiv(Left, Right); break;

 }

 };

};

}

Generating code with the LLVM backend 71

18.	 With this, the visitor class is complete. The compile() method creates the global
context and the module, runs the tree traversal, and dumps the generated IR to the
console:

void CodeGen::compile(AST *Tree) {

 LLVMContext Ctx;

 Module *M = new Module("calc.expr", Ctx);

 ToIRVisitor ToIR(M);

 ToIR.run(Tree);

 M->print(outs(), nullptr);

}

With that, we have implemented the frontend of the compiler, from reading the source
to generating the IR. Of course, all these components must work together on user input,
which is the task of the compiler driver. We also need to implement the functions that are
required at runtime. We will cover both of these in the next section.

The missing pieces – the driver and the runtime library
All the phases from the previous sections are glued together by the Calc.cpp driver,
which we will implement here. At this point, a parameter for the input expression is
declared, the LLVM is initialized, and all the phases from the previous sections are called.
Let's take a look:

1.	 First, we must include the required header files:

#include "CodeGen.h"

#include "Parser.h"

#include "Sema.h"

#include "llvm/Support/CommandLine.h"

#include "llvm/Support/InitLLVM.h"

#include "llvm/Support/raw_ostream.h"

2.	 LLVM comes with its own system for declaring command-line options. You only
need to declare a static variable for each option you need. In doing so, the option is
registered with a global command-line parser. The advantage of this approach is that
each component can add command-line options when needed. We must declare an
option for the input expression:

static llvm::cl::opt<std::string>

 Input(llvm::cl::Positional,

72 The Structure of a Compiler

 llvm::cl::desc("<input expression>"),

 llvm::cl::init(""));

3.	 Inside the main() function, the LLVM libraries are initialized. You need to call
ParseCommandLineOptions to handle the options on the command line. This
also handles printing help information. In the case of an error, this method exits the
application:

int main(int argc, const char **argv) {

 llvm::InitLLVM X(argc, argv);

 llvm::cl::ParseCommandLineOptions(

 argc, argv, "calc - the expression compiler\n");

4.	 Next, we call the lexer and the parser. After syntactical analysis, we check if errors
occurred. If this is the case, then we exit the compiler with a return code, indicating
a failure:

 Lexer Lex(Input);

 Parser Parser(Lex);

 AST *Tree = Parser.parse();

 if (!Tree || Parser.hasError()) {

 llvm::errs() << "Syntax errors occured\n";

 return 1;

 }

5.	 And we do the same if there was a semantic error:

 Sema Semantic;

 if (Semantic.semantic(Tree)) {

 llvm::errs() << "Semantic errors occured\n";

 return 1;

 }

6.	 Finally, in the driver, the code generator is called:

 CodeGen CodeGenerator;

 CodeGenerator.compile(Tree);

 return 0;

}

Generating code with the LLVM backend 73

With that, we have successfully created IR code for the user input. We delegated the object
code generation to the LLVM static compiler, llc, so this finishes the implementation of
our compiler. We must link all the components together to create the calc application.

The runtime library consists of a single file called rtcalc.c. It contains the
implementation of the calc_read() and calc_write() functions, written in C:

#include <stdio.h>

#include <stdlib.h>

void calc_write(int v)

{

 printf("The result is: %d\n", v);

}

calc_write() only writes the resulting value to the terminal:

int calc_read(char *s)

{

 char buf[64];

 int val;

 printf("Enter a value for %s: ", s);

 fgets(buf, sizeof(buf), stdin);

 if (EOF == sscanf(buf, "%d", &val))

 {

 printf("Value %s is invalid\n", buf);

 exit(1);

 }

 return val;

}

calc_read() reads an integer number from the terminal. Nothing prevents the user
from entering letters or other characters, so we must carefully check the input. If the input
is not a number, we exit the application. A more complex approach would be to make the
user aware of the problem and ask for a number again.

74 The Structure of a Compiler

Now, we can try out our compiler. The calc application creates IR from an expression.
The LLVM static compiler, llc, compiles the IR as an object file. Then, you can use your
favorite C compiler to link against the small runtime library. On Unix, you can type the
following:

$ calc "with a: a*3" | llc –filetype=obj –o=expr.o

$ clang –o expr expr.o rtcalc.c

$ expr

Enter a value for a: 4

The result is: 12

On Windows, you will most likely use the cl compiler:

$ calc "with a: a*3" | llc –filetype=obj –o=expr.obj

$ cl expr.obj rtcalc.c

$ expr

Enter a value for a: 4

The result is: 12

With that, you have created your first LLVM-based compiler! Please take some time to
play around with the various expressions. Also check that multiplicative operators are
evaluated before additive operators and that using parentheses changes the evaluation
order, as we expect from a basic calculator.

Summary
In this chapter, you learned about the typical components of a compiler. An arithmetic
expression language was used to introduce you to grammar for programming languages.
You then learned how to develop the typical components of a frontend for this language:
a lexer, a parser, a semantic analyzer, and a code generator. The code generator only
produced LLVM IR, and the LLVM static compiler, llc, was used to create object files
from it. Finally, you developed your first LLVM-based compiler!

In the next chapter, you will deepen this knowledge to construct the frontend for a
programming language.

Section 2 –
From Source to

Machine Code
Generation

In this section, you will learn how to develop your own compiler. You will begin by
constructing the frontend, which reads the source file and creates an abstract syntax
tree of it. Then, you will learn how to generate LLVM IR from the source file. Using the
optimization capabilities of LLVM, you will then create optimized machine code. You will
also learn about a number of advanced topics, including generating LLVM IR for object-
oriented language constructs, and how to add debug metadata.

This section comprises the following chapters:

•	 Chapter 4, Turning the Source File into an Abstract Syntax Tree

•	 Chapter 5, Basics of IR Generation

•	 Chapter 6, IR Generation for High-Level Language Constructs

•	 Chapter 7, Advanced IR Generation

•	 Chapter 8, Optimizing IR

4
Turning the Source

File into an Abstract
Syntax Tree

A compiler is typically divided into two parts: the frontend and the backend. In this
chapter, we will implement the frontend of a programming language; that is, the part that
deals with the source language. We will learn about the techniques real-world compilers
use and apply them to our own programming languages.

We'll begin our journey by defining our programming language's grammar and end it
with an abstract syntax tree (AST), which will become the basis for code generation. You
can use this approach for every programming language that you would like to implement
a compiler for.

In this chapter, you will learn about the following topics:

•	 Defining a real programming language introduces you to the tinylang
language, which is a subset of a real programming language, and for which
you must implement a compiler frontend.

•	 Creating the project layout, in which you will create the project layout for
the compiler.

78 Turning the Source File into an Abstract Syntax Tree

•	 Managing source files and user messages, which gives you knowledge of how
to handle several input files and how to inform the user about problems in
a pleasant way.

•	 Structuring the lexer, which discusses how the lexer is broken down into
modular pieces.

•	 Constructing a recursive descent parser, which will talk about the rules you can use
to derive a parser from grammar to perform syntax analysis.

•	 Generating a parser and lexer with bison and flex, in which you will use tools to
comfortably generate parsers and lexers from a specification.

•	 Performing semantic analysis, in which you will create the AST and evaluate its
attributes, which will be intertwined with the parser.

With the skills you will acquire in this chapter, you will be able to build a compiler
frontend for any programming language.

Technical requirements
The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter04

You can find the code in action videos at https://bit.ly/3nllhED

Defining a real programming language
A real programming language brings up more challenges than the simple calc language
from the previous chapter. To look at this in more detail, I will be using a tiny subset of
Modula-2 in this and the following chapters. Modula-2 is well-designed and optionally
supports generics and object-oriented programming (OOP). I don't claim to create a
complete Modula-2 compiler in this book. Therefore, I will call my subset tinylang.

Let's take a quick tour of subset of the tinylang grammar that will be used in
this chapter. In the upcoming sections, we will derive the lexer and the parser from
this grammar:

compilationUnit

 : "MODULE" identifier ";" (import)* block identifier "." ;

Import : ("FROM" identifier)? "IMPORT" identList ";" ;

Block

 : (declaration)* ("BEGIN" statementSequence)? "END" ;

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter04
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter04
https://bit.ly/3nllhED

Defining a real programming language 79

A compilation unit in Modula-2 begins with the MODULE keyword, followed by the name
of the module. The content of a module can be a list of imported modules, declarations,
and a block containing statements that run at initialization time:

declaration

 : "CONST" (constantDeclaration ";")*

 | "VAR" (variableDeclaration ";")*

 | procedureDeclaration ";" ;

A declaration introduces constants, variables, and procedures. Constants that have been
declared are prefixed with the CONST keyword. Similarly, variable declarations begin with
the VAR keyword. Declaring a constant is very simple:

constantDeclaration : identifier "=" expression ;

The identifier is the name of the constant. The value is derived from an expression, which
must be computable at compile time. Declaring variables is a bit more complex:

variableDeclaration : identList ":" qualident ;

qualident : identifier ("." identifier)* ;

identList : identifier ("," identifier)* ;

To be able to declare more than one variable in one go, a list of identifiers must be used.
The type's name can potentially come from another module and is prefixed with the
module name in this case. This is called a qualified identifier. A procedure requires the
most details:

procedureDeclaration

 : "PROCEDURE" identifier (formalParameters)? ";"

 block identifier ;

formalParameters

 : "(" (formalParameterList)? ")" (":" qualident)? ;

formalParameterList

 : formalParameter (";" formalParameter)* ;

formalParameter : ("VAR")? identList ":" qualident ;

80 Turning the Source File into an Abstract Syntax Tree

In the preceding code, you can see how constants, variables, and procedures are declared.
Procedures can have parameters and a return type. Normal parameters are passed as
values, while VAR parameters are passed by reference. The other part missing from the
preceding block rule is statementSequence, which is only a list of single statements:

statementSequence

 : statement (";" statement)* ;

A statement is delimited by a semicolon if it is followed by another statement. Again, only
a subset of the Modula-2 statements is supported:

statement

 : qualident (":=" expression | ("(" (expList)? ")")?)

 | ifStatement | whileStatement | "RETURN" (expression)? ;

The first part of this rule describes an assignment or procedure call. A qualified identifier
followed by := is an assignment. On the other hand, if it is followed by (, then it is a
procedure call. The other statements are the usual control statements:

ifStatement

 : "IF" expression "THEN" statementSequence

 ("ELSE" statementSequence)? "END" ;

The IF statement has a simplified syntax too, since it can only have a single ELSE block.
With that statement, we can conditionally guard a statement:

whileStatement

 : "WHILE" expression "DO" statementSequence "END" ;

The WHILE statement describes a loop, guarded by a condition. Together with the IF
statement, this enables us to write simple algorithms in tinylang. Finally, the definition
of an expression is missing:

expList

 : expression ("," expression)* ;

expression

 : simpleExpression (relation simpleExpression)? ;

relation

 : "=" | "#" | "<" | "<=" | ">" | ">=" ;

simpleExpression

 : ("+" | "-")? term (addOperator term)* ;

Creating the project layout 81

addOperator

 : "+" | "-" | "OR" ;

term

 : factor (mulOperator factor)* ;

mulOperator

 : "*" | "/" | "DIV" | "MOD" | "AND" ;

factor

 : integer_literal | "(" expression ")" | "NOT" factor

 | qualident ("(" (expList)? ")")? ;

The expression syntax is very similar to that of calc in the previous chapter. Only the
INTEGER and BOOLEAN data types are supported.

Additionally, the identifier and integer_literal tokens are used. An identifier
is a name that begins with a letter or an underscore, followed by letters, digits, and
underscores. An integer literal is either a sequence of decimal digits or a sequence of
hexadecimal digits, followed by the letter H.

That's already a lot of rules, and we're only covering a part of Modula-2 here!
Nevertheless, it is possible to write small applications in this subset. Let's implement
a compiler for tinylang!

Creating the project layout
The project layout for tinylang follows the approach we laid out in Chapter 2, Touring
the LLVM Source. The source code for each component is in a subdirectory of the lib
directory, while the header files are in a subdirectory of include/tinylang. The
subdirectory is named after the component. In Chapter 2, Touring the LLVM Source, we
only created the Basic component.

82 Turning the Source File into an Abstract Syntax Tree

From the previous chapter, we know that we need to implement a lexer, a parser, an AST,
and a semantic analyzer. Each is a component of its own, called Lexer, Parser, AST,
and Sema. The directory layout that was used in the previous chapter looks like this:

Figure 4.1 – The directory layout of the tinylang project

The components have clearly defined dependencies. Here, Lexer only depends
on Basic. Parser depends on Basic, Lexer, AST, and Sema. Finally, Sema
only depends on Basic and AST. These well-defined dependencies help with
reusing components.

Let's have a closer look at their implementation!

Managing source files and user messages
A real compiler must deal with many files. Usually, the developer calls the compiler with
the name of the main compilation unit. This compilation unit can refer to other files, for
example, via #include directives in C or import statements in Python or Modula-2.
An imported module can import other modules and so on. All these files must be loaded
into memory and run through the analysis stages of the compiler. During development,
a developer may make syntactical or semantical errors. When detected, an error message,
including the source line and a marker, should be printed. At this point, it should be
obvious that this essential component is not trivial.

Managing source files and user messages 83

Luckily, LLVM comes with a solution: the llvm::SourceMgr class. A new source
file is added to SourceMgr with a call to the AddNewSourceBuffer() method.
Alternatively, a file can be loaded with a call to the AddIncludeFile() method.
Both methods return an ID to identify the buffer. You use this ID to retrieve a
pointer to the memory buffer of the associated file. To define a location in the file, the
llvm::SMLoc class must be used. This class encapsulates a pointer into the buffer.
Various PrintMessage() methods allow us to emit errors and other informational
messages to the user.

Only a way to centrally define messages is missing. In a large piece of software (such as
a compiler), you do not want to sprinkle message strings all over the place. If there is a
request to change messages or translate them into another language, then you'd better
have them in a central place!

A simple approach is that each message has an ID (an enum member), a severity level,
and a string containing the messages. In your code, you only refer to the message ID. The
severity level and message string are only used when the message is printed. These three
items (the ID, the security level, and the message) must be managed consistently. The
LLVM libraries use a preprocessor to solve this. The data is stored in a file with a.def
suffix and is wrapped in a macro name. That file is usually included several times, with
different definitions for the macro. The definition of this is in the include/tinylang/
Basic/Diagnostic.def file path and looks as follows:

#ifndef DIAG

#define DIAG(ID, Level, Msg)

#endif

DIAG(err_sym_declared, Error, "symbol {0} already declared")

#undef DIAG

The first macro parameter, ID, is the enumeration label, the second parameter, Level,
is the severity, and the third parameter, Msg, is the message text. With this definition at
hand, we can define a DiagnosticsEngine class to emit error messages. The interface
is in the include/tinylang/Basic/Diagnostic.h file:

#ifndef TINYLANG_BASIC_DIAGNOSTIC_H

#define TINYLANG_BASIC_DIAGNOSTIC_H

#include "tinylang/Basic/LLVM.h"

#include "llvm/ADT/StringRef.h"

#include "llvm/Support/FormatVariadic.h"

84 Turning the Source File into an Abstract Syntax Tree

#include "llvm/Support/SMLoc.h"

#include "llvm/Support/SourceMgr.h"

#include "llvm/Support/raw_ostream.h"

#include <utility>

namespace tinylang {

After including the necessary header files, Diagnostic.def is now used to define
the enumeration. To not pollute the global namespace, a nested namespace, diag, must
be used:

namespace diag {

enum {

#define DIAG(ID, Level, Msg) ID,

#include "tinylang/Basic/Diagnostic.def"

};

} // namespace diag

The DiagnosticsEngine class uses a SourceMgr instance to emit the messages via
the report() method. Messages can have parameters. To implement this facility, the
variadic-format support from LLVM must be used. The message text and the severity level
are retrieved with the help of the static method. As a bonus, the number of emitted
error messages is also counted:

class DiagnosticsEngine {

 static const char *getDiagnosticText(unsigned DiagID);

 static SourceMgr::DiagKind

 getDiagnosticKind(unsigned DiagID);

The message string is returned by getDiagnosticText(), while the level is returned
by getDiagnosticKind(). Both methods will be implemented in the .cpp file later:

 SourceMgr &SrcMgr;

 unsigned NumErrors;

public:

 DiagnosticsEngine(SourceMgr &SrcMgr)

 : SrcMgr(SrcMgr), NumErrors(0) {}

 unsigned nunErrors() { return NumErrors; }

Managing source files and user messages 85

Since messages can have a variable number of parameters, the solution in C++ is to use
a variadic template. Of course, this is also used by the formatv() function provided by
LLVM. To get the formatted message, we need only to forward the template parameters:

 template <typename... Args>

 void report(SMLoc Loc, unsigned DiagID,

 Args &&... Arguments) {

 std::string Msg =

 llvm::formatv(getDiagnosticText(DiagID),

 std::forward<Args>(Arguments)...)

 .str();

 SourceMgr::DiagKind Kind = getDiagnosticKind(DiagID);

 SrcMgr.PrintMessage(Loc, Kind, Msg);

 NumErrors += (Kind == SourceMgr::DK_Error);

 }

};

} // namespace tinylang

#endif

With that, we have implemented most of the class. Only getDiagnosticText()
and getDiagnosticKind() are missing. They are defined in the lib/Basic/
Diagnostic.cpp file and also make use of the Diagnostic.def file:

#include "tinylang/Basic/Diagnostic.h"

using namespace tinylang;

namespace {

const char *DiagnosticText[] = {

#define DIAG(ID, Level, Msg) Msg,

#include "tinylang/Basic/Diagnostic.def"

};

86 Turning the Source File into an Abstract Syntax Tree

As in the header file, the DIAG macro is defined to retrieve the desired part. Here, we will
define an array that will hold the text messages. Therefore, the DIAG macro only returns
the Msg part. We will use the same approach for the level:

SourceMgr::DiagKind DiagnosticKind[] = {

#define DIAG(ID, Level, Msg) SourceMgr::DK_##Level,

#include "tinylang/Basic/Diagnostic.def"

};

} // namespace

Not surprisingly, both functions simply index the array to return the desired data:

const char *

DiagnosticsEngine::getDiagnosticText(unsigned DiagID) {

 return DiagnosticText[DiagID];

}

SourceMgr::DiagKind

DiagnosticsEngine::getDiagnosticKind(unsigned DiagID) {

 return DiagnosticKind[DiagID];

}

This combination of the SourceMgr and DiagnosticsEngine classes provides a
good basis for the other components. Let's use them in the lexer first!

Structuring the lexer
As we know from the previous chapter, we need a Token class and a Lexer class.
Additionally, a TokenKind enumeration is required to give each token class a unique
number. Having an all-in-one header and an implementation file does not scale, so let's
restructure things. The TokenKind enumeration can be used universally and is placed in
the Basic component. The Token and Lexer classes belong to the Lexer component
but are placed in different header and implementation files.

There are three different classes of tokens: keywords, punctuators, and the tokens
representing sets of many values. Examples include the CONST keyword, the ; delimiter,
and the ident token, which represent the identifiers in the source. Each token needs
a member name for the enumeration. Keywords and punctuators have natural display
names that can be used for messages.

Structuring the lexer 87

Like in many programming languages, the keywords are a subset of the identifiers. To
classify a token as a keyword, we need a keyword filter, which checks if the identifier
that's been found is indeed a keyword. This is the same behavior as in C or C++, where
keywords are also a subset of identifiers. Programming languages evolve over time and
new keywords may be introduced. As an example, the original K&R C language had no
enumerations defined with the enum keyword. Due to this, a flag indicating the language
level of a keyword should be present.

We've collected several pieces of information, all of which belong to a member of the
TokenKind enumeration: the label for the enumeration member, the spelling of the
punctuators, and a flag for the keywords. As for the diagnostic messages, we centrally store
the information in a .def file called include/tinylang/Basic/TokenKinds.
def, which looks as follows. One thing to note is that keywords are prefixed with kw_:

#ifndef TOK

#define TOK(ID)

#endif

#ifndef PUNCTUATOR

#define PUNCTUATOR(ID, SP) TOK(ID)

#endif

#ifndef KEYWORD

#define KEYWORD(ID, FLAG) TOK(kw_ ## ID)

#endif

TOK(unknown)

TOK(eof)

TOK(identifier)

TOK(integer_literal)

PUNCTUATOR(plus, "+")

PUNCTUATOR(minus, "-")

// …

KEYWORD(BEGIN , KEYALL)

KEYWORD(CONST , KEYALL)

// …

88 Turning the Source File into an Abstract Syntax Tree

#undef KEYWORD

#undef PUNCTUATOR

#undef TOK

With these centralized definitions, it's easy to create the TokenKind enumeration in the
include/tinylang/Basic/TokenKinds.h file. Again, the enumeration is put into
its own namespace, called tok:

#ifndef TINYLANG_BASIC_TOKENKINDS_H

#define TINYLANG_BASIC_TOKENKINDS_H

namespace tinylang {

namespace tok {

enum TokenKind : unsigned short {

#define TOK(ID) ID,

#include "TokenKinds.def"

 NUM_TOKENS

};

The pattern you must use to fill the array should be familiar by now. The TOK macro
is defined to only return the enumeration label's ID. As a useful addition, we also
define NUM_TOKENS as the last member of the enumeration, denoting the number
of defined tokens:

 const char *getTokenName(TokenKind Kind);

 const char *getPunctuatorSpelling(TokenKind Kind);

 const char *getKeywordSpelling(TokenKind Kind);

 }

}

#endif

Structuring the lexer 89

The implementation file, lib/Basic/TokenKinds.cpp, also uses the .def file to
retrieve the names:

#include "tinylang/Basic/TokenKinds.h"

#include "llvm/Support/ErrorHandling.h"

using namespace tinylang;

static const char * const TokNames[] = {

#define TOK(ID) #ID,

#define KEYWORD(ID, FLAG) #ID,

#include "tinylang/Basic/TokenKinds.def"

 nullptr

};

The textual name of a token is derived from its enumeration label's ID. There are two
particularities. First, we need two define the TOK and KEYWORD macros because the
default definition of KEYWORD does not use the TOK macro. Second, a nullptr
value is added at the end of the array, accounting for the added NUM_TOKENS
enumeration member:

const char *tok::getTokenName(TokenKind Kind) {

 return TokNames[Kind];

}

We take a slightly different approach for the getPunctuatorSpelling() and
getKeywordSpelling() functions. These functions only return meaningful values for
a subset of the enumeration. This can be realized with a switch statement, which returns
a nullptr value by default:

const char *tok::getPunctuatorSpelling(TokenKind Kind) {

 switch (Kind) {

#define PUNCTUATOR(ID, SP) case ID: return SP;

#include "tinylang/Basic/TokenKinds.def"

 default: break;

 }

 return nullptr;

}

90 Turning the Source File into an Abstract Syntax Tree

const char *tok::getKeywordSpelling(TokenKind Kind) {

 switch (Kind) {

#define KEYWORD(ID, FLAG) case kw_ ## ID: return #ID;

#include "tinylang/Basic/TokenKinds.def"

 default: break;

 }

 return nullptr;

}

Tip
Note how the macros are defined to retrieve the piece of information that's
required from the file.

In the previous chapter, the Token class was declared in the same header file as the
Lexer class. To make this more modular, we will put the Token class into its own header
file in include/Lexer/Token.h. As in the previous case, Token stores a pointer to
the start of the token, the length, and the token's kind, as defined previously:

class Token {

 friend class Lexer;

 const char *Ptr;

 size_t Length;

 tok::TokenKind Kind;

public:

 tok::TokenKind getKind() const { return Kind; }

 size_t getLength() const { return Length; }

The SMLoc instance, which denotes the source's position in the messages, is created from
the pointer to the token:

 SMLoc getLocation() const {

 return SMLoc::getFromPointer(Ptr);

 }

Structuring the lexer 91

The getIdentifier() and getLiteralData() methods allow us to access the text
of the token for identifiers and literal data. It is not necessary to access the text for any
other token type, as this is implied by the token's type:

 StringRef getIdentifier() {

 assert(is(tok::identifier) &&

 "Cannot get identfier of non-identifier");

 return StringRef(Ptr, Length);

 }

 StringRef getLiteralData() {

 assert(isOneOf(tok::integer_literal,

 tok::string_literal) &&

 "Cannot get literal data of non-literal");

 return StringRef(Ptr, Length);

 }

};

We declare the Lexer class in the include/Lexer/Lexer.h header file and put the
implementation in the lib/Lexer/lexer.cpp file. The structure is the same as for the
calc language from the previous chapter. Here, we must take a closer look at two details:

•	 First, there are operators that share the same prefix; for example, < and <=. When
the current character we're looking at is a <, we must check the next character first,
before deciding which token we found. Remember that we required that the input
ends with a null byte. Therefore, the next character can always be used if the current
character is valid:

 case '<':

 if (*(CurPtr + 1) == '=')

 formTokenWithChars(token, CurPtr + 2, tok::lessequal);

 else

 formTokenWithChars(token, CurPtr + 1, tok::less);

 break;

92 Turning the Source File into an Abstract Syntax Tree

•	 The other detail is that at this point, there are far more keywords. How can
we handle this? A simple and fast solution is to populate a hash table with the
keywords, which are all stored in the TokenKinds.def file. This can be done
while we instantiate the Lexer class. In this approach, it is also possible to support
different levels of the language, as the keywords can be filtered with the attached
flag. Here, this flexibility is not needed yet. In the header file, the keyword filter is
defined as follows, using an instance of llvm::StringMap for the hash table:

class KeywordFilter {

 llvm::StringMap<tok::TokenKind> HashTable;

 void addKeyword(StringRef Keyword,

 tok::TokenKind TokenCode);

public:

 void addKeywords();

The getKeyword() method returns the token kind of the given string, or a default
value if the string does not represent a keyword:

 tok::TokenKind getKeyword(

 StringRef Name,

 tok::TokenKind DefaultTokenCode = tok::unknown) {

 auto Result = HashTable.find(Name);

 if (Result != HashTable.end())

 return Result->second;

 return DefaultTokenCode;

 }

};

In the implementation file, the keyword table is filled in:
void KeywordFilter::addKeyword(StringRef Keyword,

 tok::TokenKind TokenCode)

{

 HashTable.insert(std::make_pair(Keyword, TokenCode));

}

void KeywordFilter::addKeywords() {

#define KEYWORD(NAME, FLAGS)

addKeyword(StringRef(#NAME), tok::kw_##NAME);

Constructing a recursive descent parser 93

#include "tinylang/Basic/TokenKinds.def"

}

With these techniques, it's not difficult to write an efficient lexer class. Since compilation
speed matters, many compilers use a handwritten lexer, an example of which is Clang.

Constructing a recursive descent parser
As shown in the previous chapter, the parser is derived from its grammar. Let's recall all
the construction rules. For each rule of grammar, you create a method that's named after
the non-terminal on the left-hand side of the rule in order to parse the right-hand side of
the rule. Following the definition of the right-hand side, you must do the following:

•	 For each non-terminal, the corresponding method is called.

•	 Each token is consumed.

•	 For alternatives and optional or repeating groups, the look-ahead token (the next
unconsumed token) is examined to decide where we can continue from.

Let's apply these construction rules to the following rule of the grammar:

ifStatement

 : "IF" expression "THEN" statementSequence

 ("ELSE" statementSequence)? "END" ;

We can easily translate this into the following C++ method:

void Parser::parseIfStatement() {

 consume(tok::kw_IF);

 parseExpression();

 consume(tok::kw_THEN);

 parseStatementSequence();

 if (Tok.is(tok::kw_ELSE)) {

 advance();

 parseStatementSequence();

 }

 consume(tok::kw_END);

}

94 Turning the Source File into an Abstract Syntax Tree

The whole grammar of tinylang can be turned into C++ in this way. In general, you
must be careful and avoid some pitfalls.

One issue to look out for is left-recursive rules. A rule is left-recursive if the right-hand
side begins with the same terminal that's on the left-hand side. A typical example can be
found in the grammar for expressions:

expression : expression "+" term ;

If it's not already clear from the grammar, then the following translation into C++ should
make it obvious that this results in infinite recursion:

Void Parser::parseExpression() {

 parseExpression();

 consume(tok::plus);

 parseTerm();

}

Left recursion can also indirectly occur and involve more rules, which is much more
difficult to spot. That's why an algorithm exists that can detect and eliminate left recursion.

At each step, the parser decides how to continue just by using the look-ahead token. The
grammar is said to have conflicts if this decision cannot be made deterministically. To
illustrate this, let's have a look at the using statement in C#. Like in C++, the using
statement can be used to make a symbol visible in a namespace, such as in using
Math;. It is also possible to define an alias name for the imported symbol; that is, using
M = Math;. In grammar, this can be expressed as follows:

usingStmt : "using" (ident "=")? ident ";"

Obviously, there's is a problem here. After the parser consumed the using keyword, the
look-ahead token is ident. But this information is not enough for us to decide if the
optional group must be skipped or parsed. This situation always arises if the set of tokens
that the optional group can begin with overlap with the set of tokens that follow the
optional group.

Let's rewrite the rule with an alternative instead of an optional group:

usingStmt : "using" (ident "=" ident | ident) ";" ;

Now, there is a different conflict: both alternatives begin with the same token. Looking
only at the look-ahead token, the parser can't decide which of the alternatives is the
right one.

Constructing a recursive descent parser 95

These conflicts are very common. Therefore, it's good to know how to handle them. One
approach is to rewrite the grammar in such a way that the conflict disappears. In the
previous example, both alternatives begin with the same token. This can be factored out,
resulting in the following rule:

usingStmt : "using" ident ("=" ident)? ";" ;

This formulation has no conflict. However, it should also be noted that it is less expressive.
In the other two formulations, it is obvious which ident is the alias name and which
ident is the namespace name. In this conflict-free rule, the left-most ident changes its
role. First, it is the namespace name, but if an equals sign (=) follows it, then it turns into
the alias name.

The second approach is to add an additional predicate to distinguish between both cases.
This predicate, often called a resolver, could use context information for the decision
(such as a name lookup in a symbol table), though it could have a look at more than one
token. Let's assume that the lexer has a Token &peek(int n) method, which returns
the nth token after the current look-ahead token. Here, the existence of an equals sign can
be used as an additional predicate in the decision:

if (Tok.is(tok::ident) && Lex.peek(0).is(tok::equal)) {

 advance();

 consume(tok::equal);

}

consume(tok::ident);

Now, let's incorporate error recovery. In the previous chapter, I introduced the so-called
panic mode as a technique for error recovery. The basic idea is to skip tokens until one is
found that is suitable for continuing parsing. For example, in tinylang, a statement is
followed by a semicolon (:).

If there is a syntax problem in an IF statement, then you skip all the tokens until you
find a semicolon. Then, you continue with the next statement. Instead of using an ad hoc
definition for the token set, it's better to use a systematic approach.

For each non-terminal, you compute the set of tokens that can follow the
non-terminal anywhere (called the FOLLOW set). For the non-terminal statement,
the;, ELSE, and END tokens can follow. So, you use this set in the error recovery part of
parseStatement(). This method assumes that a syntax error can be handled locally.
In general, this is not possible. Because the parser skips tokens, it could happen that so
many are skipped that the end of the input is reached. At this point, local recovery is
not possible.

96 Turning the Source File into an Abstract Syntax Tree

To prevent meaningless error messages, the calling method needs to be informed that
error recovery has still not finished. This can be done with the bool return value: true
means that error recovery hasn't finished yet, while false means that parsing (including
possible error recovery) was successful.

There are numerous ways to extend this error recovery scheme. One popular way is to
also use the FOLLOW sets of the active callers. As a simple example, let's assume that
parseStatement() was called by parseStatementSequence(), which was itself
called by parseBlock() and that that was called from parseModule().

Here, each of the corresponding non-terminals has a FOLLOW set. If the parser detects
a syntax error in parseStatement(), then tokens are skipped until the token is in at
least one of the FOLLOW sets of the active callers. If the token is in the FOLLOW set of
a statement, then the error was recovered locally, and a false value is returned to the
caller. Otherwise, a true value is returned, meaning that error recovery must continue.
A possible implementation strategy for this extension is passing a std::bitset or
std::tuple to represent the union of the current FOLLOW sets to the callee.

One last question is still open: how can we call error recovery? In the previous chapter,
a goto was used to jump to the error recovery block. This works but is not a pleasing
solution. Given the discussion earlier, we can skip tokens in a separate method. Clang has
a method called skipUntil() for this purpose, and we can also use this for tinylang.

Because the next step is to add semantic actions to the parser, it would be nice to have
a central place to put cleanup code if necessary. A nested function would be ideal for
this. C++ does not have a nested function. Instead, a lambda function can serve a
similar purpose. The parseIfStatement() method with complete error recovery
looks as follows:

bool Parser::parseIfStatement() {

 auto _errorhandler = [this] {

 return SkipUntil(tok::semi, tok::kw_ELSE, tok::kw_END);

 };

 if (consume(tok::kw_IF))

 return _errorhandler();

 if (parseExpression(E))

 return _errorhandler();

 if (consume(tok::kw_THEN))

 return _errorhandler();

 if (parseStatementSequence(IfStmts))

Generating a parser and lexer with bison and flex 97

 return _errorhandler();

 if (Tok.is(tok::kw_ELSE)) {

 advance();

 if (parseStatementSequence(ElseStmts))

 return _errorhandler();

 }

 if (expect(tok::kw_END))

 return _errorhandler();

 return false;

}

Generating a parser and lexer with bison
and flex
Manually constructing a lexer and a parser is not difficult and usually results in fast
components. The disadvantage is that it is not easy to introduce changes, especially in the
parser. This can be important if you are prototyping a new programming language. Using
specialized tools can mitigate this issue.

There are many tools available that generate either a lexer or a parser from a specification
file. In the Linux world, flex (https://github.com/westes/flex) and bison
(https://www.gnu.org/software/bison/) are the most commonly used tools.
Flex generates a lexer from a set of regular expressions, while bison generates a parser
from a grammar description. Usually, both tools are used together.

Bison produces an LALR(1) parser from a grammar description. An LALR(1) parser
is a bottom-up parser and is implemented using an automaton. The input for bison is a
grammar file very similar to the one presented at beginning of this chapter. The main
difference is that regular expressions are not supported on the right-hand side. Optional
groups and repetitions must be rewritten as rules. A bison specification for tinylang,
stored in a tinylang.yy file, begins with the following prologue:

%require "3.2"

%language "c++"

%defines "Parser.h"

%define api.namespace {tinylang}

%define api.parser.class {Parser}

%define api.token.prefix {T_}

%token

https://www.gnu.org/software/bison/

98 Turning the Source File into an Abstract Syntax Tree

 identifier integer_literal string_literal

 PLUS MINUS STAR SLASH

We instruct bison to generate C++ code with the %language directive. Using the
%define directive, we override some default values for the code generation: the
generated class should be named Parser and be inside the tinylang namespace
Additionally, the members of the enumeration representing the token kind should be
prefixed with T_. We require version 3.2 or later, because some of these variables were
introduced with this version. To be able to interact with flex, we tell bison to write a
Parser.h header file with the %defines directive. Finally, we must declare all used
tokens with the %token directive. The grammar rules come after %%:

%%

compilationUnit

 : MODULE identifier SEMI imports block identifier PERIOD ;

imports : %empty | import imports ;

import

 : FROM identifier IMPORT identList SEMI

 | IMPORT identList SEMI ;

Please compare these rules with the grammar specification shown in the first section of
this chapter. Bison does not know repeating groups, so we need to add a new rule called
imports to model this repetition. In the import rule, we must introduce an alternative
to model the optional group.

We also need to rewrite other rules of the tinylang grammar in this style. For example,
the rule for the IF statement becomes the following:

ifStatement

 : IF expression THEN statementSequence

 elseStatement END ;

elseStatement : %empty | ELSE statementSequence ;

Again, we must introduce a new rule to model the optional ELSE statement. The %empty
directive could be omitted, but the use of it makes it clear that this is an empty branch of
the alternative.

Once we've rewritten all the grammar rules in the bison style, we can generate the parser
with the following command:

$ bison tinylang.yy

Generating a parser and lexer with bison and flex 99

That's all it takes to create a parser that's similar to the handwritten one in the
previous section!

Similarly, flex is easy to use. The specification for flex is a list of regular expressions
and the associated action, which is executed if the regular expression matches. The
tinylang.l file specifies the lexer for tinylang. Like the bison specification, it begins
with a prologue:

%{

#include "Parser.h"

%}

%option noyywrap nounput noinput batch

id [a-zA-Z_][a-zA-Z_0-9]*

digit [0-9]

hexdigit [0-9A-F]

space [\t\r]

The text inside %{ }% is copied into the file generated by flex. We use this mechanism
to include the header file generated by bison. With the %option directive, we control
which features the generated lexer should have. We only read one file and do not want to
continue to read another file once we've reached the end of it, so we specify noyywrap to
disable this feature. We also do not need access to the underlying file stream and disable
it with nounput and noinout. Finally, because we do not need an interactive lexer, we
request that a batch scanner is generated.

Inside the prologue, we can also define character patterns for later use. After %% follows
the definition section:

%%

{space}+

{digit}+ return

 tinylang::Parser::token::T_integer_literal;

In the definition section, you specify a regular expression pattern and an action to execute
if the pattern matches the input. The action can also be empty.

The {space}+ pattern uses the space character pattern defined in the prologue. It
matches one or more white space characters. We defined no action, so all white space will
be ignored.

100 Turning the Source File into an Abstract Syntax Tree

To match a number, we use the {digit}+ pattern. As an action, we only return the
associated token kind. The same is done for all the tokens. For example, we do the
following for the arithmetic operators:

"+" return tinylang::Parser::token::T_PLUS;

"-" return tinylang::Parser::token::T_MINUS;

"*" return tinylang::Parser::token::T_STAR;

"/" return tinylang::Parser::token::T_SLASH;

If several patterns match the input, then the pattern with the longest match is selected.
If there is still more than one pattern that matches the input, then the pattern that
comes first lexicographically in the specification file is chosen. That's why it is important
to define the patterns for the keywords first and the pattern for identifiers only after all
the keywords:

"VAR" return tinylang::Parser::token::T_VAR;

"WHILE" return tinylang::Parser::token::T_WHILE;

{id} return tinylang::Parser::token::T_identifier;

The actions are not limited to just a return statement. If your code needs more than one
line, then you must surround your code with curly braces { }.

The scanner is generated with the following command:

$ flex –c++ tinylang.l

Which approach should you use for your language project? Parser generators usually
generate LALR(1) parsers. The LALR(1) class is larger than the LL(1) class, which
recursive descent parsers can be constructed for. If you can't tweak your grammar so that
it fits in the LL(1) class, then you should consider using a parser generator. It's not feasible
to construct such a bottom-up parser by hand. Even if your grammar is LL(1), a parser
generator provides more comfort while producing similar code to what you could write by
hand. Often, this is a choice that's influenced by many factors. Clang uses a handwritten
parser, while GCC uses a bison-generated parser.

Performing semantic analysis 101

Performing semantic analysis
The parser that we constructed in the previous section only checks the syntax of the input.
The next step is to add the ability to perform semantic analysis. In the calc example in
the previous chapter, the parser constructed an AST. In a separate phase, the semantic
analyzer worked on this tree. This approach can always be used. In this section, we will use
a slightly different approach and intertwine the parser and the semantic analyzer more.

These are some of the tasks a semantic analyzer must perform:

•	 For each declaration, the semantic analyzer must check if the used name has not
been declared elsewhere already.

•	 For each occurrence of a name in an expression or statement, the semantic analyzer
must check that the name is declared and that the desired use fits the declaration.

•	 For each expression, the semantic analyzer must compute the resulting type. It is
also necessary to compute if the expression is constant and if so, which value it has.

•	 For assignment and parameter passing, the semantic analyzer must check that the
types are compatible. Furthermore, we must check that the conditions in the IF and
WHILE statements are of the BOOLEAN type.

That's already a lot to check for such a small subset of a programming language!

Handling the scope of names
Let's have a look at the scope of names first. The scope of a name is the range where the
name is visible. Like C, tinylang uses a declare-before-use model. For example, the B
and X variables are declared at the module level so that they're of the INTEGER type:

VAR B, X: INTEGER;

Before the declaration, the variables are not known and cannot be used. This is only
possible after the declaration. Inside a procedure, more variables can be declared:

PROCEDURE Proc;

VAR B: BOOLEAN;

BEGIN

 (* Statements *)

END Proc;

102 Turning the Source File into an Abstract Syntax Tree

Inside this procedure, at the point where the comment is, using B refers to the local
variable B, while using X refers to the global variable X. The scope of the local variable,
B, is the Proc procedure. If a name cannot be found in the current scope, then the
search continues in the enclosing scope. Therefore, the X variable can be used inside
the procedure. In tinylang, only modules and procedures open a new scope. Other
language constructs such as struct and class usually also open a scope. Predefined
entities such as the INTEGER type or the TRUE literal are declared in a global scope,
enclosing the scope of the module.

In tinylang, only the name is crucial. Therefore, a scope can be implemented as a
mapping from a name to its declaration. A new name can only be inserted if it is not
already present. For the lookup, the enclosing or parent scope must also be known. The
interface (in the include/tinylang/Sema/Scope.h file) is as follows:

#ifndef TINYLANG_SEMA_SCOPE_H

#define TINYLANG_SEMA_SCOPE_H

#include "tinylang/Basic/LLVM.h"

#include "llvm/ADT/StringMap.h"

#include "llvm/ADT/StringRef.h"

namespace tinylang {

class Decl;

class Scope {

 Scope *Parent;

 StringMap<Decl *> Symbols;

public:

 Scope(Scope *Parent = nullptr) : Parent(Parent) {}

 bool insert(Decl *Declaration);

 Decl *lookup(StringRef Name);

 Scope *getParent() { return Parent; }

};

Performing semantic analysis 103

} // namespace tinylang

#endif

The implementation in the lib/Sema/Scope.cpp file looks as follows:

#include "tinylang/Sema/Scope.h"

#include "tinylang/AST/AST.h"

using namespace tinylang;

bool Scope::insert(Decl *Declaration) {

 return Symbols

 .insert(std::pair<StringRef, Decl *>(

 Declaration->getName(), Declaration))

 .second;

}

Please note that the StringMap::insert() method does not override an existing
entry. The second member of the resulting std::pair indicates whether the table was
updated. This information is returned to the caller.

To implement the search for the declaration of a symbol, the lookup() method searches
the current scope; if nothing is found, it searches the scopes that have been linked by the
parent member:

Decl *Scope::lookup(StringRef Name) {

 Scope *S = this;

 while (S) {

 StringMap<Decl *>::const_iterator I =

 S->Symbols.find(Name);

 if (I != S->Symbols.end())

 return I->second;

 S = S->getParent();

 }

 return nullptr;

}

104 Turning the Source File into an Abstract Syntax Tree

The variable declaration is then processed as follows:

•	 The current scope is the module scope.

•	 The INTEGER type declaration is looked up. It's an error if no declaration is found
or if it is not a type declaration.

•	 A new AST node, VariableDeclaration, is instantiated, with the important
attributes being the name, B, and the type.

•	 The name, B, is inserted into the current scope, mapped to the declaration instance.
If the name is already present in the scope, then this is an error. The content of the
current scope is not changed in this case.

•	 The same is done for the X variable.

Two tasks are performed here. Like in the calc example, AST nodes are constructed. At the
same time, the attributes of the node, such as its type, are computed. Why is this possible?

The semantic analyzer can fall back on two different sets of attributes. The scope is
inherited from the caller. The type declaration can be computed (or synthesized) by
evaluating the name of the type declaration. The language is designed in such a way that
these two sets of attributes are sufficient to compute all the attributes of the AST node.

An important aspect of this is the declare-before-use model. If a language allows the use
of names before declaration, such as the members inside a class in C++, then it is not
possible to compute all the attributes of an AST node at once. In such a case, the AST
node must be constructed with only partially computed attributes or just with plain
information (such as in the calc example).

The AST must be visited one or more times to determine the missing information. In
the case of tinylang (and Modula-2), it would also be possible to dispense with the
AST construction – the AST is indirectly represented through the call hierarchy of the
parseXXX() methods. Code generation from an AST is much more common, so we
construct an AST here, too.

Before we put all the pieces together, we need to understand the LLVM style of using
runtime type information (RTTI).

Performing semantic analysis 105

Using LLVM-style RTTI for the AST
Naturally, the AST nodes are a part of a class hierarchy. A declaration always has a name.
Other attributes depend on what is being declared. If a variable is declared, then a type
is required. A constant declaration needs a type and a value, and so on. Of course, at
runtime, you need to find out which kind of declaration you are working with. The
dynamic_cast<> C++ operator could be used for this. The problem is that the required
RTTI is only available if the C++ class has a virtual table attached to it; that is, it uses
virtual functions. Another disadvantage is that C++ RTTI is bloated. To avoid these
disadvantages, the LLVM developers introduced a self-made RTTI style that is used
throughout the LLVM libraries.

The (abstract) base class of our hierarchy is Decl. To implement the LLVM-style RTTI, a
public enumeration containing a label for each subclass is added. Also, a private member
of this type and a public getter is required. The private member is usually called Kind. In
our case, this looks like this:

class Decl {

public:

 enum DeclKind { DK_Module, DK_Const, DK_Type,

 DK_Var, DK_Param, DK_Proc };

private:

 const DeclKind Kind;

public:

 DeclKind getKind() const { return Kind; }

};

Each subclass now needs a special function member called classof. The purpose
of this function is to determine if a given instance is of the requested type. For a
VariableDeclaration, it is implemented as follows:

static bool classof(const Decl *D) {

 return D->getKind() == DK_Var;

}

106 Turning the Source File into an Abstract Syntax Tree

Now, you can use the llvm::isa<> special templates to check if an object is of
the requested type and llvm::dyn_cast<> to dynamically cast the object. There
are more templates that exist, but these two are the most commonly used ones. For
the other templates, see https://llvm.org/docs/ProgrammersManual.
html#the-isa-cast-and-dyn-cast-templates and for more information
about the LLVM style, including more advanced uses, see https://llvm.org/docs/
HowToSetUpLLVMStyleRTTI.html.

Creating the semantic analyzer
Equipped with this knowledge, we can now implement the semantic analyzer, operating
on AST nodes created by the parser. First, we will implement the definition of the AST
node for a variable, which is stored in the include/llvm/tinylang/AST/AST.h
file. Besides support for the LLVM-style RTTI, the base class stores the name of the
declaration, the location of its name, and a pointer to the enclosing declaration. The latter
is required to code-generate nested procedures. The Decl base class is declared as follows:

class Decl {

public:

 enum DeclKind { DK_Module, DK_Const, DK_Type,

 DK_Var, DK_Param, DK_Proc };

private:

 const DeclKind Kind;

protected:

 Decl *EnclosingDecL;

 SMLoc Loc;

 StringRef Name;

public:

 Decl(DeclKind Kind, Decl *EnclosingDecL, SMLoc Loc,

 StringRef Name)

 : Kind(Kind), EnclosingDecL(EnclosingDecL), Loc(Loc),

 Name(Name) {}

 DeclKind getKind() const { return Kind; }

 SMLoc getLocation() { return Loc; }

https://llvm.org/docs/ProgrammersManual.html#the-isa-cast-and-dyn-cast-templates
https://llvm.org/docs/ProgrammersManual.html#the-isa-cast-and-dyn-cast-templates
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html
https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html

Performing semantic analysis 107

 StringRef getName() { return Name; }

 Decl *getEnclosingDecl() { return EnclosingDecL; }

};

The declaration for a variable only adds a pointer to the type declaration:

class TypeDeclaration;

class VariableDeclaration : public Decl {

 TypeDeclaration *Ty;

public:

 VariableDeclaration(Decl *EnclosingDecL, SMLoc Loc,

 StringRef Name, TypeDeclaration *Ty)

 : Decl(DK_Var, EnclosingDecL, Loc, Name), Ty(Ty) {}

 TypeDeclaration *getType() { return Ty; }

 static bool classof(const Decl *D) {

 return D->getKind() == DK_Var;

 }

};

The method in the parser needs to be extended with a semantic action and variables for
the information that's been collected:

bool Parser::parseVariableDeclaration(DeclList &Decls) {

 auto _errorhandler = [this] {

 while (!Tok.is(tok::semi)) {

 advance();

 if (Tok.is(tok::eof)) return true;

 }

 return false;

 };

 Decl *D = nullptr; IdentList Ids;

 if (parseIdentList(Ids)) return _errorhandler();

 if (consume(tok::colon)) return _errorhandler();

108 Turning the Source File into an Abstract Syntax Tree

 if (parseQualident(D)) return _errorhandler();

 Actions.actOnVariableDeclaration(Decls, Ids, D);

 return false;

}

A DeclList is a list of declarations called std::vector<Decl*>, while IdentList
is a list of locations and identifiers called std::vector<std::pair<SMLoc,
StringRef>>.

The parseQualident() method returns a declaration, which in this case is expected to
be a type declaration.

The parser class knows an instance of the semantic analyzer class, Sema, which is stored
in the Actions member. A call to actOnVariableDeclaration() runs the
semantic analyzer and the AST construction. The implementation is in the lib/Sema/
Sema.cpp file:

void Sema::actOnVariableDeclaration(DeclList &Decls,

 IdentList &Ids,

 Decl *D) {

 if (TypeDeclaration *Ty = dyn_cast<TypeDeclaration>(D)) {

 for (auto I = Ids.begin(), E = Ids.end(); I != E; ++I) {

 SMLoc Loc = I->first;

 StringRef Name = I->second;

 VariableDeclaration *Decl = new VariableDeclaration(

 CurrentDecl, Loc, Name, Ty);

 if (CurrentScope->insert(Decl))

 Decls.push_back(Decl);

 else

 Diags.report(Loc, diag::err_symbold_declared, Name);

 }

 } else if (!Ids.empty()) {

 SMLoc Loc = Ids.front().first;

 Diags.report(Loc, diag::err_vardecl_requires_type);

 }

}

Performing semantic analysis 109

First, the type declaration is check with llvm::dyn_cast<TypeDeclaration>. If
it is not a type declaration, then an error message is printed. Otherwise, for each name
in the Ids list, a VariableDeclaration is instantiated and added to the list of
declarations. If adding the variable to the current scope fails because the name has already
been declared, then an error message is printed.

Most of the other entities are constructed in the same way, with the complexity of their
semantic analysis being the only difference. More work is required for modules and
procedures because they open a new scope. Opening a new scope is easy: only a new
Scope object must be instantiated. As soon as the module or procedure has been parsed,
the scope must be removed.

This must be done in a reliable fashion because we do not want to add names to the
wrong scope in case of a syntax error. This is a classic use of the Resource Acquisition
Is Initialization (RAII) idiom in C++. Another complication comes from the fact that a
procedure can recursively call itself. Due to this, the name of the procedure must be added
to the current scope before it can be used. The semantic analyzer has two methods to enter
and leave a scope. The scope is associated with a declaration:

void Sema::enterScope(Decl *D) {

 CurrentScope = new Scope(CurrentScope);

 CurrentDecl = D;

}

void Sema::leaveScope() {

 Scope *Parent = CurrentScope->getParent();

 delete CurrentScope;

 CurrentScope = Parent;

 CurrentDecl = CurrentDecl->getEnclosingDecl();

}

A simple helper class is used to implement the RAII idiom:

class EnterDeclScope {

 Sema &Semantics;

public:

 EnterDeclScope(Sema &Semantics, Decl *D)

 : Semantics(Semantics) {

 Semantics.enterScope(D);

110 Turning the Source File into an Abstract Syntax Tree

 }

 ~EnterDeclScope() { Semantics.leaveScope(); }

};

While parsing a module or procedure, there are now two interactions with the semantic
analyzer. The first is after the name is parsed. Here, the (almost empty) AST node is
constructed, and a new scope is established:

bool Parser::parseProcedureDeclaration(/* … */) {

 /* … */

 if (consume(tok::kw_PROCEDURE)) return _errorhandler();

 if (expect(tok::identifier)) return _errorhandler();

 ProcedureDeclaration *D =

 Actions.actOnProcedureDeclaration(

 Tok.getLocation(), Tok.getIdentifier());

 EnterDeclScope S(Actions, D);

 /* … */

}

The semantic analyzer does more than check the name in the current scope and return the
AST node:

ProcedureDeclaration *

Sema::actOnProcedureDeclaration(SMLoc Loc, StringRef Name) {

 ProcedureDeclaration *P =

 new ProcedureDeclaration(CurrentDecl, Loc, Name);

 if (!CurrentScope->insert(P))

 Diags.report(Loc, diag::err_symbold_declared, Name);

 return P;

}

The real work is done once all the declarations and the procedure's body have been parsed.
Basically, the semantic analyzer must only check if the name at the end of the procedure
declaration is equal to the name of the procedure, and also if the declaration that's used
for the return type is really a type declaration:

void Sema::actOnProcedureDeclaration(

 ProcedureDeclaration *ProcDecl, SMLoc Loc,

 StringRef Name, FormalParamList &Params, Decl *RetType,

Performing semantic analysis 111

 DeclList &Decls, StmtList &Stmts) {

 if (Name != ProcDecl->getName()) {

 Diags.report(Loc, diag::err_proc_identifier_not_equal);

 Diags.report(ProcDecl->getLocation(),

 diag::note_proc_identifier_declaration);

 }

 ProcDecl->setDecls(Decls);

 ProcDecl->setStmts(Stmts);

 auto RetTypeDecl =

 dyn_cast_or_null<TypeDeclaration>(RetType);

 if (!RetTypeDecl && RetType)

 Diags.report(Loc, diag::err_returntype_must_be_type,

 Name);

 else

 ProcDecl->setRetType(RetTypeDecl);

}

Some declarations are inherently present and cannot be defined by the developer. This
includes the BOOLEAN and INTEGER types and the TRUE and FALSE literals. These
declarations exist in the global scope and must be added programmatically. Modula-2
also predefines some procedures, such as INC or DEC, which should also be added to the
global scope. Given our classes, the initialization of the global scope is simple:

void Sema::initialize() {

 CurrentScope = new Scope();

 CurrentDecl = nullptr;

 IntegerType =

 new TypeDeclaration(CurrentDecl, SMLoc(), "INTEGER");

 BooleanType =

 new TypeDeclaration(CurrentDecl, SMLoc(), "BOOLEAN");

 TrueLiteral = new BooleanLiteral(true, BooleanType);

 FalseLiteral = new BooleanLiteral(false, BooleanType);

 TrueConst = new ConstantDeclaration(CurrentDecl, SMLoc(),

 "TRUE", TrueLiteral);

 FalseConst = new ConstantDeclaration(

112 Turning the Source File into an Abstract Syntax Tree

 CurrentDecl, SMLoc(), "FALSE", FalseLiteral);

 CurrentScope->insert(IntegerType);

 CurrentScope->insert(BooleanType);

 CurrentScope->insert(TrueConst);

 CurrentScope->insert(FalseConst);

}

With this scheme, all the required calculations for tinylang can be done. For
example, to compute if an expression results in a constant value, you must ensure the
following occurs:

•	 A literal or a reference to a constant declaration is constant.

•	 If both sides of an expression are constant, then applying the operator also yields
a constant.

These rules are easily embedded into the semantic analyzer while creating the AST nodes
for an expression. Likewise, the type and the constant value can be computed.

It should be noted that not all kinds of computations can be done in this way. For example,
to detect the use of uninitialized variables, a method called symbolic interpretation can
be used. In its general form, the method requires a special walk order through the AST,
which is not possible during construction time. The good news is that the presented
approach creates a fully decorated AST, which is ready for code generation. This AST can,
of course, be used for further analysis, given the fact that costly analysis can be turned on
or off on demand.

To play around with the frontend, you also need to update the driver. Since the code
generation is missing, a correct tinylang program produces no output. Still, it can be
used to explore error recovery and to provoke semantic errors:

#include "tinylang/Basic/Diagnostic.h"

#include "tinylang/Basic/Version.h"

#include "tinylang/Parser/Parser.h"

#include "llvm/Support/InitLLVM.h"

#include "llvm/Support/raw_ostream.h"

using namespace tinylang;

int main(int argc_, const char **argv_) {

 llvm::InitLLVM X(argc_, argv_);

Performing semantic analysis 113

 llvm::SmallVector<const char *, 256> argv(argv_ + 1,

 argv_ + argc_);

 llvm::outs() << "Tinylang "

 << tinylang::getTinylangVersion() << "\n";

 for (const char *F : argv) {

 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>

 FileOrErr = llvm::MemoryBuffer::getFile(F);

 if (std::error_code BufferError =

 FileOrErr.getError()) {

 llvm::errs() << "Error reading " << F << ": "

 << BufferError.message() << "\n";

 continue;

 }

 llvm::SourceMgr SrcMgr;

 DiagnosticsEngine Diags(SrcMgr);

 SrcMgr.AddNewSourceBuffer(std::move(*FileOrErr),

 llvm::SMLoc());

 auto lexer = Lexer(SrcMgr, Diags);

 auto sema = Sema(Diags);

 auto parser = Parser(lexer, sema);

 parser.parse();

 }

}

Congratulations! You've finished implementing the frontend for tinylang!

Now, let's try out what we have learned so far. Save the following source, which is an
implementation of Euclid's greatest common divisor algorithm, as a Gcd.mod file:

MODULE Gcd;

PROCEDURE GCD(a, b: INTEGER):INTEGER;

VAR t: INTEGER;

BEGIN

 IF b = 0 THEN RETURN a; END;

114 Turning the Source File into an Abstract Syntax Tree

 WHILE b # 0 DO

 t := a MOD b;

 a := b;

 b := t;

 END;

 RETURN a;

END GCD;

END Gcd.

Let's run the compiler on this file with the following command:

$ tinylang Gcm.mod

Tinylang 0.1

There is no output except the version number being printed. This is because only the
frontend part has been implemented. However, if you change the source so that it contains
syntax errors, then error messages will be printed.

We'll continue this fun by adding code generation, which is the topic of the next chapter.

Summary
In this chapter, you learned about the techniques a real-world compiler uses in the
frontend. Starting with the project's layout, you created separate libraries for the lexer,
the parser, and the semantic analyzer. To output messages to the user, you extended an
existing LLVM class, which allowed the messages to be stored centrally. The lexer has now
been separated into several interfaces.

You then learned how to construct a recursive descent parser from a grammar description,
which pitfalls to avoid, and how to use generators to do the job. The semantic analyzer
you constructed performs all the semantic checks that are required by the language while
being intertwined with the parser and AST construction.

The result of your coding effort was a fully decorated AST, which will be used in the next
chapter to generate IR code and object code.

5
Basics of IR

Code Generation
Having created a decorated Abstract Syntax Tree (AST) for your programming language,
the next task is to generate the LLVM IR code from it. LLVM IR code resembles three-
address code, with a human-readable representation. Therefore, we need a systematic
approach to translate language concepts such as control structures into the lower level of
LLVM IR.

In this chapter, you will learn about the basics of LLVM IR, and how to generate IR for
control flow structures from the AST. You will also learn how to generate LLVM IR for
expressions in Static Single Assignment (SSA) form, using a modern algorithm. Finally,
you will learn how to emit assembler text and object code.

This chapter will cover the following topics:

•	 Generating IR from the AST

•	 Using AST numbering to generate IR code in SSA form

•	 Setting up the module and the driver

By the end of the chapter, you will have acquired the knowledge to create a code generator
for your own programming language, and how to integrate it into your own compiler.

116 Basics of IR Code Generation

Technical requirements
The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter05/tinylang

You can find the code in action videos at https://bit.ly/3nllhED

Generating IR from the AST
The LLVM code generator takes a module as described in IR as input and turns it into
object code or assembly text. We need to transform the AST representation into IR. To
implement an IR code generator, we will look at a simple example first and then develop
the classes required for the code generator. The complete implementation will be divided
into three classes: the CodeGenerator, the CGModule, and the CGProcedure classes.
The CodeGenerator class is the general interface used by the compiler driver. The
CGModule and the CGProcedure classes hold the state required for generating the IR
code for a compilation unit and a single function.

We begin with a look at the clang-generated IR in the next section.

Understanding the IR code
Before generating the IR code, it's good to know the main elements of the IR language.
In Chapter 3, The Structure of a Compiler, we already had a brief look at IR. An easy way
to get more knowledge of IR is to study the output from clang. For example, save this
C source code, which implements the Euclidean algorithm for calculating the greatest
common divisor of two numbers, as gcd.c:

unsigned gcd(unsigned a, unsigned b) {

 if (b == 0)

 return a;

 while (b != 0) {

 unsigned t = a % b;

 a = b;

 b = t;

 }

 return a;

}

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter05/tinylang
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter05/tinylang
https://bit.ly/3nllhED

Generating IR from the AST 117

You can then create the IR file, gcd.ll, with the following command:

$ clang --target=aarch64-linux-gnu –O1 -S -emit-llvm gcd.c

The IR code is not target-independent, even if it often looks like it. The preceding
command compiles the source file for an ARM 64-bit CPU on Linux. The -S option
instructs clang to output an assembly file, and with the additional specification of
-emit-llvm, an IR file is created. The optimization level, -O1, is used to get an easy
readable IR code. Let's have a look at the generated file and understand how the C source
maps to IR. At the top of the file, some basic properties are established:

; ModuleID = 'gcd.c'

source_filename = "gcd.c"

target datalayout = "e-m:e-i8:8:32-i16:16:32-i64:64-

 i128:128-n32:64-S128"

target triple = "aarch64-unknown-linux-gnu"

The first line is a comment, informing you about which module identifier was used.
On the following line, the filename of the source file is named. With clang, both are
the same.

The target datalayout string establishes some basic properties. Its parts are
separated by -. The following information is included:

•	 A small e means that bytes in memory are stored using the little endian schema.
To specify a big endian, you use a big E.

•	 m: specifies the name mangling applied to symbols. Here, m:e means that ELF
name mangling is used.

•	 The entries on the iN:A:P form, for example, i8:8:32, specify the alignment of
data, given in bits. The first number is the alignment required by the ABI, and the
second number is the preferred alignment. For bytes (i8), the ABI alignment is 1
byte (8) and the preferred alignment is 4 bytes (32).

•	 n specifies which native register sizes are available. n32:64 means that 32-bit and
64-bit wide integers are natively supported.

•	 S specifies the alignment of the stack, again in bits. S128 means that the stack
maintains a 16-byte alignment.

118 Basics of IR Code Generation

Note
A lot more information can be provided with the target data layout. You can
find the full information in the reference manual at https://llvm.org/
docs/LangRef.html#data-layout.

Last, the target triple string specifies the architecture we are compiling for. This is
essential for the information we gave on the command line. You will find a more in-depth
discussion of the triple in Chapter 2, Touring the LLVM Source.

Next, the gcd function is defined in the IR file:

define i32 @gcd(i32 %a, i32 %b) {

This resembles the function signature in the C file. The unsigned data type is translated
to the 32-bit integer type, i32. The function name is prefixed with @, and the parameter
names are prefixed with %. The body of the function is enclosed in curly braces. The code
of the body follows:

entry:

 %cmp = icmp eq i32 %b, 0

 br i1 %cmp, label %return, label %while.body

The IR code is organized in so-called basic blocks. A well-formed basic block is a linear
sequence of instructions, which begins with an optional label and ends with a terminator
instruction, for example, a branch or return instruction. Each basic block thus has one
entry point and one exit point. LLVM allows malformed basic blocks at construction
time. The label of the first basic block is entry. The code in the block is simple: the first
instruction compares the parameter %b against 0. The second instruction branched to
label return if the condition was true and to label while.body if the condition
was false.

Another characteristic of the IR code is that it is in a SSA form. The code uses an
unlimited number of virtual registers, but each register is only written once. The
result of the comparison is assigned to the named virtual register, %cmp. This register
is subsequently used, but it is never written again. Optimizations such as constant
propagation and common subexpression elimination work very well with the SSA form
and all modern compilers are using it.

The next basic block is the body of the while loop:

while.body:

 %b.addr.010 = phi i32 [%rem, %while.body],

https://llvm.org/docs/LangRef.html#data-layout
https://llvm.org/docs/LangRef.html#data-layout

Generating IR from the AST 119

 [%b, %entry]

 %a.addr.09 = phi i32 [%b.addr.010, %while.body],

 [%a, %entry]

 %rem = urem i32 %a.addr.09, %b.addr.010

 %cmp1 = icmp eq i32 %rem, 0

 br i1 %cmp1, label %return, label %while.body

Inside the loop of gcd, the a and b parameters are assigned new values. If a register
can be only written once, then this is not possible. The solution is to use the special phi
instruction. The phi instruction has a list of basic blocks and values as parameters.
A basic block presents the incoming edge from that basic block, and the value is the
values from those basic blocks. At runtime, the phi instruction compares the label of the
previously executed basic block with the labels in the parameter list.

The value of the instruction is then the value associated with the label. For the first phi
instruction, the value is to register %rem if the previously executed basic block was
while.body. The value is %b, if entry was the previously executed basic block. The
values are the ones at the start of the basic block. The register %b.addr.010 gets
a value from the first phi instruction. The same register is used in the parameter list of
the second phi instruction, but the value is assumed to be the one before it is changed
through the first phi instruction.

After the loop body, the return value must be chosen:

return:

 %retval.0 = phi i32 [%a, %entry],

 [%b.addr.010, %while.body]

 ret i32 %retval.0

}

Again, a phi instruction is used to select the desired value. The ret instruction does not
only end this basic block, but also denotes the end of this function at runtime. It has the
return value as a parameter.

There are some restrictions regarding the use of phi instructions. They must be the first
instructions of a basic block. The first basic block is special: it has no previously executed
block. Therefore, it cannot begin with a phi instruction.

The IR code itself looks a lot like a mix of C and assembly language. Despite this familiar
style, it is not clear how we can easily generate IR code from an AST. In particular, the
phi instruction looks difficult to generate. But don't be scared. In the next section, we will
implement a simple algorithm to do just that!

120 Basics of IR Code Generation

Knowing the load-and-store approach
All local optimizations in LLVM are based on the SSA form shown here. For global
variables, memory references are used. The IR language knows load-and-store
instructions, which are used to fetch and store those values. You can use this for local
variables, too. These instructions are not in SSA form, and LLVM knows how to convert
them into the required SSA form. Therefore, you can allocate memory slots for each
local variable and use load-and-store instructions to change their value. All you need to
remember is the pointer to the memory slot where a variable is stored. In fact, the clang
compiler uses this approach.

Let's look at the IR code with loads and stores. Compile gcd.c again, this time without
enabling optimization:

$ clang --target=aarch64-linux-gnu -S -emit-llvm gcd.c

The gcd function now looks different. This is the first basic block:

define i32 @gcd(i32, i32) {

 %3 = alloca i32, align 4

 %4 = alloca i32, align 4

 %5 = alloca i32, align 4

 %6 = alloca i32, align 4

 store i32 %0, i32* %4, align 4

 store i32 %1, i32* %5, align 4

 %7 = load i32, i32* %5, align 4

 %8 = icmp eq i32 %7, 0

 br i1 %8, label %9, label %11

The IR code now relays the automatic numbering of registers and labels. The names of the
parameters are not specified. Implicitly, they are %0 and %1. The basic block has no label,
so it gets 2 assigned. The first instructions allocate memory for four 32-bit values. After
that, the parameters %0 and %1 are stored in the memory slots pointed to by registers
%4 and %5. To perform the comparison of parameter %1 against 0, the value is explicitly
loaded from the memory slot. With this approach, you do not need to use the phi
instruction! Instead, you load a value from a memory slot, perform a calculation on it
and store the new value back in the memory slot. The next time you read the memory
slot, you get the last computed value. All the other basic blocks for the gcd function
follow this pattern.

Generating IR from the AST 121

The advantage of using load-and-store instructions in this way is that it is fairly easy
to generate the IR code. The disadvantage is that you generate a lot of IR instructions
that LLVM will remove with the mem2reg pass in the very first optimization step,
after converting the basic block to SSA form. Therefore, we generate the IR code in SSA
form directly.

We begin the development of IR code generation with the mapping of the control flow to
basic blocks.

Mapping the control flow to basic blocks
As mentioned in the previous section, a well-formed basic block is just a linear sequence
of instructions. A basic block can begin with phi instructions and must end with a branch
instruction. Inside a basic block, neither phi nor branch instructions are allowed. Each
basic block has exactly one label, marking the first instruction of the basic block. Labels
are the targets of branch instructions. You can view branches as directed edges between
two basic blocks, resulting in the Control Flow Graph (CFG). A basic block can have
predecessors and successors. The first basic block of a function is special in the sense that
no predecessors are allowed.

As a consequence of these restrictions, control statements of the source language, such
as WHILE or IF, produce several basic blocks. Let's look at the WHILE statement. The
condition of the WHILE statement controls whether the loop body or the next statement
is executed. The condition must be generated in a basic block of its own because there are
two predecessors:

•	 The basic block resulting from the statement before the WHILE loop

•	 The branch from the end of the loop body back to the condition

There are also two successors:

•	 The beginning of the loop body

•	 The basic block resulting from the statement following the WHILE loop

122 Basics of IR Code Generation

The loop body itself has at least one basic block:

Figure 5.1 – Basic blocks of a WHILE statement

The IR code generation follows this structure. We store a pointer to the current basic block
in the CGProcedure class and use an instance of llvm::IRBuilder<> for inserting
instructions into the basic block. First, we create the basic blocks:

void emitStmt(WhileStatement *Stmt) {

 llvm::BasicBlock *WhileCondBB = llvm::BasicBlock::Create(

 getLLVMCtx(), "while.cond", Fn);

 llvm::BasicBlock *WhileBodyBB = llvm::BasicBlock::Create(

 getLLVMCtx(), "while.body", Fn);

 llvm::BasicBlock *AfterWhileBB =

 llvm::BasicBlock::Create(

 getLLVMCtx(), "after.while", Fn);

The Fn variable denotes the current function, and getLLVMCtx() returns the LLVM
context. Both are set later. We end the current basic block with a branch to the basic block,
which will hold the condition:

 Builder.CreateBr(WhileCondBB);

Using AST numbering to generate IR code in SSA form 123

The basic block for the condition becomes the new current basic block. We generate the
condition and end the block with a conditional branch:

 setCurr(WhileCondBB);

 llvm::Value *Cond = emitExpr(Stmt->getCond());

 Builder.CreateCondBr(Cond, WhileBodyBB, AfterWhileBB);

Next, we generate the loop body. As a final instruction, we add a branch back to the basic
block of the condition:

 setCurr(WhileBodyBB);

 emit(Stmt->getWhileStmts());

 Builder.CreateBr(WhileCondBB);

This ends the generation of the WHILE statement. The empty basic block for statements
following the WHILE statement becomes the new current basic block:

 setCurr(AfterWhileBB);

}

Following this schema, you can create an emit() method for each statement of the
source language.

Using AST numbering to generate IR code in
SSA form
In order to generate IR code in SSA form from the AST, we use an approach called AST
numbering. The basic idea is that for each basic block, we store the current value of local
variables written to in this basic block.

Although it is simple, we will still need several steps. We will introduce the required data
structure first, after which we will implement the reading and writing of values local to
a basic block. We will then handle values that are used in several basic blocks and
conclude by optimizing the phi instructions created.

124 Basics of IR Code Generation

Defining the data structure to hold values
We use struct BasicBlockDef to hold the information for a single block:

struct BasicBlockDef {

llvm::DenseMap<Decl *, llvm::TrackingVH<llvm::Value>> Defs;

// ...

};

The LLVM class, llvm::Value, represents a value in SSA form. The Value class
acts like a label on the result of a computation. It is created once, usually through an
IR instruction, and then subsequently used. There can be changes during various
optimizations. For example, if the optimizer detects that the values %1 and %2 are always
the same, then it can replace uses of %2 with %1. Basically, this changes the label, but not
the computation. To be aware of such changes, we cannot use the Value class directly.
Instead, we need a value handle. There are value handles with different functionalities.
To track replacements, we use the llvm::TrackingVH<> class. As a result, the Defs
member maps a declaration of the AST (a variable or a formal parameter) to its current
value. We now need to store this information for each basic block:

llvm::DenseMap<llvm::BasicBlock *, BasicBlockDef>

 CurrentDef;

With this data structure, we are now able to handle local values.

Reading and writing values local to a basic block
To store the current value of a local variable in a basic block, we just create an entry in
the maps:

void writeLocalVariable(llvm::BasicBlock *BB, Decl *Decl,

 llvm::Value *Val) {

 CurrentDef[BB].Defs[Decl] = Val;

}

The lookup of a variable's value is a bit more complicated, because the value might not be
in the basic block. In this case, we need to extend the search to the predecessors using
a possible recursive search:

llvm::Value *

readLocalVariable(llvm::BasicBlock *BB, Decl *Decl) {

 auto Val = CurrentDef[BB].Defs.find(Decl);

Using AST numbering to generate IR code in SSA form 125

 if (Val != CurrentDef[BB].Defs.end())

 return Val->second;

 return readLocalVariableRecursive(BB, Decl);

}

The real work is searching the predecessors, which is implemented in the next section.

Searching the predecessor blocks for a value
If the current basic block we are looking at has only one predecessor, then we search there
for the value of the variable. If the basic block has several predecessors, then we need to
search for the value in all these blocks and combine the results. To illustrate this situation,
you can look at the basic block with the condition of the WHILE statement from the
previous section.

This basic block has two predecessors – the one resulting from the statement before the
WHILE loop, and the one resulting from the branch for the end of the body of the WHILE
loop. A variable used in the condition should have an initial value and will most likely be
changed in the body of the loop. So, we need to collect these definitions and create a phi
instruction from it. The basic blocks created from the WHILE statement contain a cycle.

Because we recursively search the predecessor blocks, we must break this cycle. To do so,
we use a simple trick. We insert an empty phi instruction and record this as the current
value of the variable. If we see this basic block again in our search, then we find that the
variable has a value, which we use. The search stops at this point. After we have collected
all the values, we must update the phi instruction.

We will still face a problem. At the time of the lookup, not all predecessors of a basic block
may be known. How can this happen? Look at the creation of the basic blocks for the
WHILE statement. The IR for the condition of the loop is generated first. But the branch
from the end of the body back to the basic block containing the condition can only be
added after the IR for the body is generated, because this basic block is not known earlier.
If we need to read the value of a variable in the condition, then we are stuck, because not
all predecessors are known.

To solve this situation, we must do a little bit more:

1.	 First, we attach a flag to the basic block.

2.	 Then, we define a basic block as sealed if we know all the predecessors of the basic
block. If the basic block is not sealed and we need to look up the value of the
variable not yet defined in this basic block, then we insert an empty phi instruction
and use it as the value.

126 Basics of IR Code Generation

3.	 We also need to remember this instruction. If the block is later sealed, then we need
to update the instruction with the real values. To implement this, we add two more
members to struct BasicBlockDef: The IncompletePhis map records
the phi instructions that we need to later update, and the Sealed flag indicates
whether the basic block is sealed:

llvm::DenseMap<llvm::PHINode *, Decl *>

 IncompletePhis;

unsigned Sealed : 1;

4.	 Then, the method can be implemented as described:

llvm::Value *readLocalVariableRecursive(

 llvm::BasicBlock *BB,

 Decl *Decl) {

 llvm::Value *Val = nullptr;

 if (!CurrentDef[BB].Sealed) {

 llvm::PHINode *Phi = addEmptyPhi(BB, Decl);

 CurrentDef[BB].IncompletePhis[Phi] = Decl;

 Val = Phi;

 } else if (auto *PredBB = BB

 ->getSinglePredecessor()) {

 Val = readLocalVariable(PredBB, Decl);

 } else {

 llvm::PHINode *Phi = addEmptyPhi(BB, Decl);

 Val = Phi;

 writeLocalVariable(BB, Decl, Val);

 addPhiOperands(BB, Decl, Phi);

 }

 writeLocalVariable(BB, Decl, Val);

 return Val;

}

5.	 The addEmptyPhi() method inserts an empty phi instruction at the beginning
of the basic block:

llvm::PHINode *addEmptyPhi(llvm::BasicBlock *BB, Decl
*Decl) {

 return BB->empty()

Using AST numbering to generate IR code in SSA form 127

 ? llvm::PHINode::Create(mapType(Decl), 0,

 "", BB)

 : llvm::PHINode::Create(mapType(Decl), 0,

 "", &BB->front());

}

6.	 To add the missing operands to the phi instruction, we first search all the
predecessors of the basic block and add the operand pair value and basic block to
the phi instruction. Then, we try to optimize the instruction:

void addPhiOperands(llvm::BasicBlock *BB, Decl *Decl,

 llvm::PHINode *Phi) {

 for (auto I = llvm::pred_begin(BB),

 E = llvm::pred_end(BB);

 I != E; ++I) {

 Phi->addIncoming(readLocalVariable(*I, Decl), *I);

 }

 optimizePhi(Phi);

}

This algorithm can generate unwanted phi instructions. An approach to optimize these is
implemented in the next section.

Optimizing the generated phi instructions
How can we optimize a phi instruction and why should we do it? Although the SSA form
is advantageous for many optimizations, the phi instruction is often not interpreted by
the algorithms and thereby hinders optimization in general. Therefore, the fewer phi
instructions we generate, the better:

1.	 If the instruction has only one operand or all operands have the same value, then
we replace the instruction with this value. If the instruction has no operand, then
we replace the instruction with the special value, Undef. Only if the instruction has
two or more distinct operands do we have to keep the instruction:

void optimizePhi(llvm::PHINode *Phi) {

 llvm::Value *Same = nullptr;

 for (llvm::Value *V : Phi->incoming_values()) {

128 Basics of IR Code Generation

 if (V == Same || V == Phi)

 continue;

 if (Same && V != Same)

 return;

 Same = V;

 }

 if (Same == nullptr)

 Same = llvm::UndefValue::get(Phi->getType());

2.	 Removing a phi instruction may lead to optimization opportunities in other phi
instructions. We search for all uses of the value in other phi instructions and then
try to optimize these instructions, too:

 llvm::SmallVector<llvm::PHINode *, 8> CandidatePhis;

 for (llvm::Use &U : Phi->uses()) {

 if (auto *P =

 llvm::dyn_cast<llvm::PHINode>(U.getUser()))

 CandidatePhis.push_back(P);

 }

 Phi->replaceAllUsesWith(Same);

 Phi->eraseFromParent();

 for (auto *P : CandidatePhis)

 optimizePhi(P);

}

If desired, this algorithm can be improved further. Instead of always iterating the list of
values for each phi instruction, we could pick and remember two distinct values. In the
optimize function, we could then check whether these two values are still in the list
of the phi instruction. If yes, then we know that there is nothing to optimize. But even
without this optimization, this algorithm runs very fast, so we are not going to implement
this now.

We are almost done. Only the operation to seal a basic block has not yet been
implemented, which we will do in the next section.

Using AST numbering to generate IR code in SSA form 129

Sealing a block
As soon as we know that all predecessors of a block are known, we can seal the block.
If the source language contains only structured statements, such as tinylang, then
it is easy to determine that place where a block can be sealed. Look again at the basic
blocks generated for the WHILE statement. The basic block containing the condition
can be sealed after the branch from the end of the body is added, because this was the
last missing predecessor. To seal a block, we simply add the missing operands to the
incomplete phi instructions and set the flag:

void sealBlock(llvm::BasicBlock *BB) {

 for (auto PhiDecl : CurrentDef[BB].IncompletePhis) {

 addPhiOperands(BB, PhiDecl.second, PhiDecl.first);

 }

 CurrentDef[BB].IncompletePhis.clear();

 CurrentDef[BB].Sealed = true;

}

With these methods, we are now ready to generate the IR code for expressions.

Creating IR code for expressions
In general, you translate expressions as already shown in Chapter 3, The Structure of
a Compiler. The only interesting part is how to access variables. The previous section
covered local variables, but there are other kinds of variables. Let's discuss briefly what we
need to do:

•	 For a local variable of the procedure, we use the readLocalVariable() and
writeLocalVariable() methods from the previous section.

•	 For a local variable in an enclosing procedure, we require a pointer to the frame of
the enclosing procedure. This is handled in a later section.

•	 For a global variable, we generate load-and-store instructions.

•	 For a formal parameter, we have to differentiate between passing by value and
passing by reference (the VAR parameter in tinylang). A parameter passed by
value is treated as a local variable, and a parameter passed by reference is treated as
a global variable.

130 Basics of IR Code Generation

Putting it all together, we get the following code for reading a variable or
formal parameter:

llvm::Value *CGProcedure::readVariable(llvm::BasicBlock

 *BB,

 Decl *D) {

 if (auto *V = llvm::dyn_cast<VariableDeclaration>(D)) {

 if (V->getEnclosingDecl() == Proc)

 return readLocalVariable(BB, D);

 else if (V->getEnclosingDecl() ==

 CGM.getModuleDeclaration()) {

 return Builder.CreateLoad(mapType(D),

 CGM.getGlobal(D));

 } else

 llvm::report_fatal_error(

 "Nested procedures not yet supported");

 } else if (auto *FP =

 llvm::dyn_cast<FormalParameterDeclaration>(

 D)) {

 if (FP->isVar()) {

 return Builder.CreateLoad(

 mapType(FP)->getPointerElementType(),

 FormalParams[FP]);

 } else

 return readLocalVariable(BB, D);

 } else

 llvm::report_fatal_error("Unsupported declaration");

}

Writing to a variable or formal parameter is symmetrical; we just need to exchange
the method to read with the one to write and use a store instruction instead of
a load instruction.

Next, these functions are applied while generating the IR code for functions, which we
implement next.

Using AST numbering to generate IR code in SSA form 131

Emitting the IR code for a function
Most of the IR code will live in a function. A function in IR code resembles a function
in C. It specifies the name, and the types of the parameters and of the return value and
other attributes. To call a function in a different compilation unit, you need to declare the
function. This is similar to a prototype in C. If you add basic blocks to the function,
then you define the function. We will do all this in the next sections, beginning with
a discussion regarding the visibility of symbol names.

Controlling visibility with linkage and name mangling
Functions (and also global variables) have a linkage style attached. With the linkage
style, we define the visibility of a symbol name and what should happen if more than one
symbol has the same name. The most basic linkage styles are private and external.
A symbol with private linkage is only visible in the current compilation unit, while a
symbol with external linkage is globally available.

For a language without a proper module concept, such as C, this is certainly adequate.
With modules, we need to do more. Assume that we have a module called Square
providing a Root() function and a Cube module also providing a Root() function. If
the functions are private, then there is obviously no problem. The function gets the name
Root and private linkage. The situation is different if the function is exported, so that it
can be called in other modules. Using the function name alone is not enough, because this
name is not unique.

The solution is to tweak the name to make it globally unique. This is called name
mangling. How this is done depends on the requirements and characteristics of the
language. In our case, the base idea is to use a combination of the module and the
function name to create a global unique name. Using Square.Root as a name looks like
an obvious solution, but may lead to problems with assemblers, as the dot may have
a special meaning. Instead of using a delimiter between the name components, we can get
a similar effect with prefixing the name components with their length: 6Square4Root.
This is no legal identifier for LLVM, but we can fix this by prefixing the whole name with
_t (t for tinylang): _t6Square4Root. In this way, we can create unique names for
exported symbols:

std::string CGModule::mangleName(Decl *D) {

 std::string Mangled;

 llvm::SmallString<16> Tmp;

 while (D) {

 llvm::StringRef Name = D->getName();

 Tmp.clear();

132 Basics of IR Code Generation

 Tmp.append(llvm::itostr(Name.size()));

 Tmp.append(Name);

 Mangled.insert(0, Tmp.c_str());

 D = D->getEnclosingDecl();

 }

 Mangled.insert(0, "_t");

 return Mangled;

}

If your source language supports type overloading, then you need to extend this
scheme with type names. For example, to distinguish between the C++ functions int
root(int) and double root(double), the type of the parameter and the return
value are added to the function name.

You also need to think about the length of the generated name, because some linkers
place restrictions on the length. With nested namespaces and classes in C++, the mangled
names can be rather long. There, C++ defines a compression scheme to avoid repeating
name components over and over again.

Next, we look at how to treat the parameter types.

Converting types from an AST description
to LLVM types
The parameters of a function also require some consideration. First, we need to map the
types of the source language to an LLVM type. As tinylang currently only has two
types, this is easy:

llvm::Type *convertType(TypeDeclaration *Ty) {

 if (Ty->getName() == "INTEGER")

 return Int64Ty;

 if (Ty->getName() == "BOOLEAN")

 return Int1Ty;

 llvm::report_fatal_error("Unsupported type");

}

Int64Ty, Int1Ty, and later VoidTy are class members holding the type representation
of LLVM types, i64, i1, and void.

Using AST numbering to generate IR code in SSA form 133

For a formal parameter that passes by reference, this is not enough. The LLVM type
of this parameter is a pointer. We generalize the function and take formal parameters
into account:

llvm::Type *mapType(Decl *Decl) {

 if (auto *FP = llvm::

 dyn_cast<FormalParameterDeclaration>(

 Decl)) {

 llvm::Type *Ty = convertType(FP->getType());

 if (FP->isVar())

 Ty = Ty->getPointerTo();

 return Ty;

 }

 if (auto *V = llvm::dyn_cast<VariableDeclaration>(Decl))

 return convertType(V->getType());

 return convertType(llvm::cast<TypeDeclaration>(Decl));

}

With these helpers at hand, we create the LLVM IR function next.

Creating the LLVM IR function
To emit a function in LLVM IR, a function type is needed, which is similar to a prototype
in C. Creating the function type involves mapping the types and then calling the factory
method to create the function type:

llvm::FunctionType *createFunctionType(

 ProcedureDeclaration *Proc) {

 llvm::Type *ResultTy = VoidTy;

 if (Proc->getRetType()) {

 ResultTy = mapType(Proc->getRetType());

 }

 auto FormalParams = Proc->getFormalParams();

 llvm::SmallVector<llvm::Type *, 8> ParamTypes;

 for (auto FP : FormalParams) {

 llvm::Type *Ty = mapType(FP);

 ParamTypes.push_back(Ty);

 }

134 Basics of IR Code Generation

 return llvm::FunctionType::get(ResultTy, ParamTypes,

 /* IsVarArgs */ false);

}

Based on the function type, we also create the LLVM function. This associates the
function type with the linkage and the mangled name:

llvm::Function *

createFunction(ProcedureDeclaration *Proc,

 llvm::FunctionType *FTy) {

 llvm::Function *Fn = llvm::Function::Create(

 Fty, llvm::GlobalValue::ExternalLinkage,

 mangleName(Proc), getModule());

The getModule() method returns the current LLVM module, which we will set
up a bit later.

With the function created, we can add some more information to it. First, we can give the
parameter's names. This makes the IR more readable. Second, we can add attributes to the
function and to the parameters to specify some characteristics. As an example, we do this
for parameters passed by reference.

At the LLVM level, these parameters are pointers. But from the source language design,
these are very restricted pointers. Analog to references in C++, we always need to specify
a variable for a VAR parameter. So, we know by design that this pointer will never be null
and that it is always dereferenceable, meaning that we can read the value pointed to by
risking a general protection fault. Also by design, this pointer cannot be passed around.
In particular, there are no copies of the pointer that outlive the call to the function.
Therefore, the pointer is said to not be captured.

The llvm::AttributeBuilder class is used to build the set of attributes for a formal
parameter. To get the storage size of a parameter type, we can simply ask the data layout:

 size_t Idx = 0;

 for (auto I = Fn->arg_begin(), E = Fn->arg_end(); I != E;

 ++I, ++Idx) {

 llvm::Argument *Arg = I;

 FormalParameterDeclaration *FP =

 Proc->getFormalParams()[Idx];

 if (FP->isVar()) {

 llvm::AttrBuilder Attr;

Using AST numbering to generate IR code in SSA form 135

 llvm::TypeSize Sz =

 CGM.getModule()

 ->getDataLayout().getTypeStoreSize(

 CGM.convertType(FP->getType()));

 Attr.addDereferenceableAttr(Sz);

 Attr.addAttribute(llvm::Attribute::NoCapture);

 Arg->addAttrs(Attr);

 }

 Arg->setName(FP->getName());

 }

 return Fn;

}

We now have created the IR function. In the next section, we add the basic blocks of the
function body to the function.

Emitting the function body
We are almost done with emitting the IR code for a function! We only need to put the
pieces together to emit a function, including its body:

1.	 Given a procedure declaration from tinylang, we first create the function type
and the function:

void run(ProcedureDeclaration *Proc) {

 this->Proc = Proc;

 Fty = createFunctionType(Proc);

 Fn = createFunction(Proc, Fty);

2.	 Next, we create the first basic block of the function and make it the current one:

 llvm::BasicBlock *BB = llvm::BasicBlock::Create(

 CGM.getLLVMCtx(), "entry", Fn);

 setCurr(BB);

136 Basics of IR Code Generation

3.	 Then we step through all formal parameters. To handle VAR parameters correctly,
we need to initialize the FormalParams member (used in readVariable()).
In contrast to local variables, formal parameters have a value in the first basic block,
so we make these values known:

 size_t Idx = 0;

 auto &Defs = CurrentDef[BB];

 for (auto I = Fn->arg_begin(), E = Fn->arg_end(); I !=
 E; ++I, ++Idx) {

 llvm::Argument *Arg = I;

 FormalParameterDeclaration *FP = Proc->

 getParams()[Idx];

 FormalParams[FP] = Arg;

 Defs.Defs.insert(

 std::pair<Decl *, llvm::Value *>(FP, Arg));

 }

4.	 Following this setup, we can call the emit() method to start generating the IR
code for statements:

 auto Block = Proc->getStmts();

 emit(Proc->getStmts());

5.	 The last block after generating the IR code may not yet be sealed, so we call
sealBlock() now. A procedure in tinylang may have an implicit return, so we
also check whether the last basic block has a proper terminator, and add one if not:

 sealBlock(Curr);

 if (!Curr->getTerminator()) {

 Builder.CreateRetVoid();

 }

}

This finishes the generation of IR code for functions. We still need to create the LLVM
module, which holds all the IR code together. We do this in the next section.

Setting up the module and the driver 137

Setting up the module and the driver
We collect all functions and global variables of a compilation unit in an LLVM module.
To facilitate IR generation, we wrap all the functions from the previous sections in a code
generator class. To get a working compiler, we also need to define the target architecture
for which we want to generate code, and also add the passes that emit the code. We
implement all this in the next chapters, starting with the code generator.

Wrapping everything in the code generator
The IR module is the brace around all elements we generate for a compilation unit. At
the global level, we iterate through the declarations at the module level and create global
variables and call the code generation for procedures. A global variable in tinylang
is mapped to an instance of the llvm::GobalValue class. This mapping is saved in
Globals and made available to the code generation for procedures:

void CGModule::run(ModuleDeclaration *Mod) {

 for (auto *Decl : Mod->getDecls()) {

 if (auto *Var =

 llvm::dyn_cast<VariableDeclaration>(Decl)) {

 llvm::GlobalVariable *V = new llvm::GlobalVariable(

 *M, convertType(Var->getType()),

 /*isConstant=*/false,

 llvm::GlobalValue::PrivateLinkage, nullptr,

 mangleName(Var));

 Globals[Var] = V;

 } else if (auto *Proc =

 llvm::dyn_cast<ProcedureDeclaration>(

 Decl)) {

 CGProcedure CGP(*this);

 CGP.run(Proc);

 }

 }

}

The module also holds the LLVMContext class and caches the most commonly used
LLVM types. The latter ones need to be initialized, for example, for the 64-bit integer type:

Int64Ty = llvm::Type::getInt64Ty(getLLVMCtx());

138 Basics of IR Code Generation

The CodeGenerator class initializes the LLVM IR module and calls the code generation
for the module. Most importantly, this class must know for which target architecture we
like to generate code. This information is passed in the llvm::TargetMachine class,
which is set up in the driver:

void CodeGenerator::run(ModuleDeclaration *Mod, std::string
FileName) {

 llvm::Module *M = new llvm::Module(FileName, Ctx);

 M->setTargetTriple(TM->getTargetTriple().getTriple());

 M->setDataLayout(TM->createDataLayout());

 CGModule CGM(M);

 CGM.run(Mod);

}

For ease of use, we also introduce a factory method for the code generator:

CodeGenerator *CodeGenerator::create(llvm::TargetMachine *TM) {

 return new CodeGenerator(TM);

}

The CodeGenerator class provides a small interface to create IR code, which is ideal
for use in the compiler driver. Before we integrate it, we need to implement support for
machine code generation.

Initializing the target machine class
Now, only the creation of the target machine is missing. With the target machine, we
define the CPU architecture for which we like to generate code. For each CPU, there are
also features available that can be used to influence code generation. For example, a newer
CPU of a CPU architecture family can support vector instructions. With features, we can
toggle the use of vector instructions on or off. To support setting all these options from
the command line, LLVM provides some supporting code. In the Driver class, we add
the following include variable:

#include "llvm/CodeGen/CommandFlags.h"

Setting up the module and the driver 139

This include variable adds common command-line options to our compiler driver.
Many LLVM tools also use these command-line options, which have the benefit of
providing a common interface to the user. Only the option to specify a target triple is
missing. As this is very useful, we add this on our own:

static cl::opt<std::string>

 MTriple("mtriple",

 cl::desc("Override target triple for module"));

Let's create the target machine:

1.	 For the purpose of displaying error messages, the name of the application must be
passed to the function:

llvm::TargetMachine *

createTargetMachine(const char *Argv0) {

2.	 We first collect all the information provided by the command line. These are options
for the code generator, the name of the CPU, possible features that should be
activated or deactivated, and the triple of the target:

 llvm::Triple = llvm::Triple(

 !MTriple.empty()

 ? llvm::Triple::normalize(MTriple)

 : llvm::sys::getDefaultTargetTriple());

 llvm::TargetOptions =

 codegen::InitTargetOptionsFromCodeGenFlags(Triple);

 std::string CPUStr = codegen::getCPUStr();

 std::string FeatureStr = codegen::getFeaturesStr();

3.	 Then we look up the target in the target registry. If an error occurs, then we display
the error message and bail out. A possible error would be an unsupported triple
specified by the user:

 std::string Error;

 const llvm::Target *Target =

 llvm::TargetRegistry::lookupTarget(

 codegen::getMArch(), Triple,

 Error);

140 Basics of IR Code Generation

 if (!Target) {

 llvm::WithColor::error(llvm::errs(), Argv0) <<

 Error;

 return nullptr;

 }

4.	 With the help of the Target class, we configure the target machine using all the
known options requested by the user:

 llvm::TargetMachine *TM = Target->

 createTargetMachine(

 Triple.getTriple(), CPUStr, FeatureStr,

 TargetOptions,

 llvm::Optional<llvm::Reloc::Model>(

 codegen::getRelocModel()));

 return TM;

}

With the target machine instance, we can generate IR code targeting a CPU architecture of
our choice. What is missing is the translation to assembly text or the generation of object
code files. We add this support in the next section.

Emitting assembler text and object code
In LLVM, the IR code is run through a pipeline of passes. Each pass performs a single
task, for example, removing dead code. We will learn more about passes in Chapter 8,
Optimizing IR. Outputting assembler code or an object file is implemented as a pass, too.
Let's add basic support for it!

We need to include even more LLVM header files. We need the
llvm::legacy::PassManager class for holding the passes to emit code to a file. We
also want to be able to output LLVM IR code, so we also need a pass to emit this. And last,
we use the llvm:: ToolOutputFile class for file operations:

#include "llvm/IR/IRPrintingPasses.h"

#include "llvm/IR/LegacyPassManager.h"

#include "llvm/Support/ToolOutputFile.h"

Setting up the module and the driver 141

Another command-line option for outputting LLVM IR is also required:

static cl::opt<bool>

 EmitLLVM("emit-llvm",

 cl::desc("Emit IR code instead of assembler"),

 cl::init(false));

The first task in the new emit() method is to deal with the name of the output file.
If the input is read from stdin, indicated by the use of the minus symbol, -, then we
output the result to stdout. The ToolOutputFile class knows how to handle the
special filename, -:

bool emit(StringRef Argv0, llvm::Module *M,

 llvm::TargetMachine *TM,

 StringRef InputFilename) {

 CodeGenFileType FileType = codegen::getFileType();

 std::string OutputFilename;

 if (InputFilename == "-") {

 OutputFilename = "-";

 }

Otherwise, we drop a possible extension of the input filename and append .ll, .s,
or .o as an extension, depending on the command-line options given by the user. The
FileType option is defined in the llvm/CodeGen/CommandFlags.inc header file,
which we included earlier. This option has no support for emitting IR code, and so we
added the new option, –emit-llvm, which only takes effect if used together with the
assembly file type:

 else {

 if (InputFilename.endswith(".mod"))

 OutputFilename = InputFilename.drop_back(4).str();

 else

 OutputFilename = InputFilename.str();

 switch (FileType) {

 case CGFT_AssemblyFile:

 OutputFilename.append(EmitLLVM ? ".ll" : ".s");

 break;

 case CGFT_ObjectFile:

 OutputFilename.append(".o");

142 Basics of IR Code Generation

 break;

 case CGFT_Null:

 OutputFilename.append(".null");

 break;

 }

 }

Some platforms distinguish between text and binary files, and so we have to provide the
right open flags when opening the output file:

 std::error_code EC;

 sys::fs::OpenFlags = sys::fs::OF_None;

 if (FileType == CGFT_AssemblyFile)

 OpenFlags |= sys::fs::OF_Text;

 auto Out = std::make_unique<llvm::ToolOutputFile>(

 OutputFilename, EC, OpenFlags);

 if (EC) {

 WithColor::error(errs(), Argv0) << EC.message() <<

 '\n';

 return false;

 }

Now we can add the required passes to PassManager. The TargetMachine class
has a utility method, which adds the requested classes. Therefore, we only need to check
whether the user requests to output LLVM IR code:

 legacy::PassManager PM;

 if (FileType == CGFT_AssemblyFile && EmitLLVM) {

 PM.add(createPrintModulePass(Out->os()));

 } else {

 if (TM->addPassesToEmitFile(PM, Out->os(), nullptr,

 FileType)) {

 WithColor::error() << "No support for file type\n";

 return false;

 }

 }

Setting up the module and the driver 143

With all this preparation done, emitting the file boils down to a single function call:

 PM.run(*M);

The ToolOutputFile class automatically deletes the file if we do not explicitly
request that we want to keep it. This makes error handling easier, as there are potentially
many places where we need to handle errors and only one place that is reached in case
everything went well. We successfully emitted the code, so we want to keep the file:

 Out->keep();

And finally, we report success to the caller:

 return true;

}

Calling the emit() method with the llvm::Module we created, with a call to the
CodeGenerator class, emits the code as requested.

Suppose you have the greatest common divisor algorithm in tinylang stored in the
gcd.mod file. To translate this to a gcd.os object file, you type the following:

$ tinylang –filetype=obj gcd.mod

If you would like to inspect the generated IR code directly on screen, then you can type
the following:

$ tinylang –filetype=asm –emit-llvm –o – gcd.mod

Let's celebrate! At this point, we have created a complete compiler, from reading the
source language up to emitting assembler code or an object file.

144 Basics of IR Code Generation

Summary
In this chapter, you learned how to implement your own code generator for LLVM IR
code. Basic blocks are an important data structure, holding all the instructions and
expressing branches. You learned how to create basic blocks for the control statements of
the source language and how to add instructions to a basic block. You applied a modern
algorithm to handle local variables in functions, leading to less IR code. The goal of
a compiler is to generate assembler text or an object file for the input, so you also added
a simple compilation pipeline. With this knowledge, you will be able to generate LLVM IR
and, subsequently, assembler text or object code for your own language compiler.

In the next chapter, you will learn how to deal with aggregate data structures and how to
ensure that function calls comply with the rules of your platform.

6
IR Generation
for High-Level

Language Constructs
High-level languages today usually make use of aggregate data types and object-
oriented programming (OOP) constructs. LLVM IR has some support for aggregate
data types, and we must implement OOP constructs such as classes on our own. Adding
aggregate types gives rise to the question of how parameters of an aggregate type are
passed. Different platforms have different rules, and this is also reflected in the IR. Being
compliant with the calling convention ensures that system functions can be called.

In this chapter, you will learn how to translate aggregate data types and pointers to LLVM
IR, and how to pass parameters to a function in a system-compliant way. You'll also learn
how to implement classes and virtual functions in LLVM IR.

This chapter will cover the following topics:

•	 Working with arrays, structs, and pointers

•	 Getting the application binary interface right

•	 Creating IR code for classes and virtual functions

146 IR Generation for High-Level Language Constructs

By the end of the chapter, you will have acquired the knowledge to create LLVM IR for
aggregate data types and OOP. You will also know how to pass aggregate data types
according to the rules of the platform.

Technical requirements
The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter06/tinylang

You can find the code in action videos at https://bit.ly/3nllhED

Working with arrays, structs, and pointers
For almost all applications, basic types such as INTEGER are not sufficient. For example,
to represent mathematical objects such as a matrix or a complex number, you must
construct new data types based on existing data types. These new data types are generally
called aggregate or composite types.

Arrays are a sequence of elements of the same type. In LLVM, arrays are always static: the
number of elements is constant. The tinylang type of ARRAY [10] OF INTEGER, or
the C type of long[10], is expressed in IR as follows:

[10 x i64]

Structures are composites of different types. In programming languages, they are often
expressed with named members. For example, in tinylang, a structure is written as
RECORD x, y: REAL; color: INTEGER; END; and the same structure in C is
struct { float x, y; long color; };. In LLVM IR, only the type names
are listed:

{ float, float, i64 }

To access a member, a numerical index is used. Like arrays, the first element has the
index number 0.

The members of this structure are laid out in memory according to the specification in
the data layout string. If necessary, unused padding bytes are inserted. If you need to take
control of the memory layout, then you can use a packed structure, in which all elements
have a 1-byte alignment. The syntax is slightly different:

<{ float, float, i64 }>

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter06/tinylang
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter06/tinylang
https://bit.ly/3nllhED

Working with arrays, structs, and pointers 147

Loaded into a register, arrays and structs are treated as a unit. It is not possible to refer to
a single element of the %x array-valued register as %x[3], for example. This is due to the
SSA form because it is not possible to tell whether %x[i] and %x[j] refer to the same
element or not. Instead, we need special instructions to extract and insert single-element
values into an array. To read the second element, we use the following:

%el2 = extractvalue [10 x i64] %x, 1

We can also update an element, for example, the first one:

%xnew = insertvalue [10 x i64] %x, i64 %el2, 0

Both instructions work on the structure, too. For example, to access the color member
from the %pt register, you write the following:

%color = extractvalue { float, float, i64 } %pt, 2

There is an important limitation on both instructions: the index must be a constant. For
structures, this is easily explainable. The index number is only a substitute for the name,
and languages such as C have no notion of dynamically computing the name of a struct
member. For arrays, it is simply that it can't be implemented efficiently. Both instructions
have value in specific cases when the number of elements is small and known. For
example, a complex number could be modeled as an array of two floating-point numbers.
It's reasonable to pass this array around and it is always clear which part of the array must
be accessed during a computation.

For general use in the frontend, we have to resort to pointers to memory. All global values
in LLVM are expressed as pointers. Let's declare a global variable, @arr, as an array of
eight i64 elements, the equivalent of the long arr[8] C declaration:

@arr = common global [8 x i64] zeroinitializer

To access the second element of the array, an address calculation must be performed to
determine the address of the indexed element. Then, the value can then be loaded from
that address. Put into a @second function, this looks like this:

define i64 @second() {

 %1 = getelementptr [8 x i64], [8 x i64]* @arr, i64 0, i64

 1

 %2 = load i64, i64* %1

 ret i64 %2

}

148 IR Generation for High-Level Language Constructs

The getelementptr instruction is the workhorse for address calculations. As such,
it needs some more explanation. The first operand, [8 x i64], is the base type the
instruction is operating on. The second operand, [8 x i64]* @arr, specifies the base
pointer. Please note the subtle difference here: we declared an array of eight elements,
but because all global values are treated as pointers, we have a pointer to the array. In
C syntax, we work with long (*arr)[8]! The consequence is that we first have to
dereference the pointer before we can index the element, such as arr[0][1] in C. The
third operand, i64 0, dereferences the pointer and the fourth operand, i64 1, is the
element index. The result of this computation is the address of the indexed element. Please
note that no memory is touched by this instruction.

Except for structs, the index parameters do not need to be constant. Therefore, the
getelementptr instruction can be used in a loop to retrieve the elements of an array.
Structs are treated differently here: only constants can be used, and the type must be i32.

With this knowledge, arrays are easily integrated into the code generator from Chapter 5,
Basics of IR Generation. The convertType() method must be extended to create the
type. If the Arr variable holds the type denoter of an array, then we can add the following
to the method:

llvm::Type *Component = convertType(Arr->getComponentType());

uint64_t NumElements = Arr->getNumElem();

return llvm::ArrayType::get(Component, NumElements);

This type can be used to declare global variables. For local variables, we need to allocate
memory for the array. We do this in the first basic block of the procedure:

for (auto *D : Proc->getDecls()) {

 if (auto *Var =

 llvm::dyn_cast<VariableDeclaration>(D)) {

 llvm::Type *Ty = mapType(Var);

 if (Ty->isAggregateType()) {

 llvm::Value *Val = Builder.CreateAlloca(Ty);

 Defs.Defs.insert(

 std::pair<Decl *, llvm::Value *>(Var, Val));

 }

 }

}

Working with arrays, structs, and pointers 149

To read and write an element, we have to generate the getelemtptr instruction. This
is added to the emitExpr() (reading a value) and emitAssign() (writing a value)
methods. To read an element of an array, the value of the variable is read first. Then the
selectors of the variable are processed. For each index, the expression is evaluated and the
value is stored. Based on this list, the address of the referenced element is calculated and
the value is loaded:

auto &Selectors = Var->getSelectorList();

for (auto *I = Selectors.begin(),

 *E = Selectors.end();

 I != E;) {

 if (auto *Idx = llvm::dyn_cast<IndexSelector>(*I)) {

 llvm::SmallVector<llvm::Value *, 4> IdxList;

 IdxList.push_back(emitExpr(Idx->getIndex()));

 for (++I; I != E;) {

 if (auto *Idx2 =

 llvm::dyn_cast<IndexSelector>(*I)) {

 IdxList.push_back(emitExpr(Idx2->getIndex()));

 ++I;

 } else

 break;

 }

 Val = Builder.CreateGEP(Val, IdxList);

 Val = Builder.CreateLoad(

 Val->getType()->getPointerElementType(), Val);

 } else {

 llvm::report_fatal_error("Unsupported selector");

 }

}

Writing to an array element uses the same code, with the exception that you do not
generate a load instruction. Instead, you use the pointer as the target in a store
instruction. For records, you use a similar approach. The selector for a record member
contains the constant field index, named Idx. You convert this constant into a constant
LLVM value with the following:

llvm::Value *FieldIdx = llvm::ConstantInt::get(Int32Ty, Idx);

Then, you can use value in the Builder.CreateGEP() methods as for arrays.

150 IR Generation for High-Level Language Constructs

Now you have the knowledge to translate aggregate data types to LLVM IR. Passing values
of those types in a system-compliant way requires some care, and you will learn how to
implement it correctly in the next section.

Getting the application binary interface right
With the latest addition of arrays and records to the code generator, you may notice that
sometimes the generated code does not execute as expected. The reason is that we have
ignored the calling conventions of the platform so far. Each platform defines its own rules
for how one function can call another function in the same program or a library. These
rules are summarized in the application binary interface (ABI) documentation. Typical
information includes the following:

•	 Are machine registers used for parameter passing? If yes, which?

•	 How are aggregates such as arrays and structs passed to a function?

•	 How are return values handled?

There is a wide variety of rules in use. On some platforms, aggregates are always passed
indirectly, meaning that a copy of the aggregate is placed on the stack and only a pointer
to the copy is passed as a parameter. On other platforms, a small aggregate (say 128- or
256-bit-wide) is passed in registers and only above that threshold is indirect parameter
passing used. Some platforms also use floating-point and vector registers for parameter
passing, while others demand that floating-point values are passed in integer registers.

Of course, this is all interesting, low-level stuff. Unfortunately, it leaks into LLVM IR.
At first, this is surprising. After all, we define the types of all parameters of a function in
LLVM IR! It turns out that this is not enough. To understand this, let's consider complex
numbers. Some languages have built-in data types for complex numbers; for example,
C99 has float _Complex (among others). Older versions of C do not have complex
number types, but you can easily define struct Complex { float re, im; } and
create arithmetic operations on this type. Both types can be mapped to the { float,
float } LLVM IR type. If the ABI now states that values of a built-in complex number
type are passed in two floating-point registers, but user-defined aggregates are always
passed indirectly, then the information given with the function is not enough for LLVM
to decide how to pass this particular parameter. The unfortunate consequence is that we
need to provide more information to LLVM, and this information is highly ABI-specific.

Getting the application binary interface right 151

There are two ways to specify this information to LLVM: parameter attributes and type
rewriting. What you need to use depends on the target platform and the code generator.
The most commonly used parameter attributes are the following:

•	 inreg specifies that the parameter is passed in a register.

•	 byval specifies that the parameter is passed by value. The parameter must be
a pointer type. A hidden copy is made of the pointed-to data and this pointer is
passed to the called function.

•	 zeroext and signext specify that the passed integer value should be zero- or
sign-extended.

•	 sret specifies that this parameter holds a pointer to memory that is used to return
an aggregate type from the function.

While all code generators support the zeroext, signext, and sret attributes, only
some support inreg and byval. An attribute can be added to the argument of a
function with the addAttr() method. For example, to set the inreg attribute on the
Arg argument, you call the following:

Arg->addAttr(llvm::Attribute::InReg);

To set multiple attributes, you can use the llvm::AttrBuilder class.

The other way to provide additional information is to use type rewriting. With this
approach, you disguise the original types. You can do the following:

•	 Split the parameter; for example, instead of passing one complex argument, you can
pass two floating-point arguments.

•	 Cast the parameter into a different representation, for example, a struct of size 64
bits or less into an i64 integer.

To cast between types without changing the bits of the value, you use the bitcast
instruction. The bitcast instruction does not operate on aggregate types, but this is not
a restriction as you can always use pointers. If a point is modeled as a struct with two int
members, expressed as type { i32, i32 } in LLVM, then this can be bitcast to i64
in the following way:

%intpoint = bitcast { i32, i32}* %point to i64*

This converts the pointer to the struct into a pointer to an i64 integer value.
Subsequently, you can load this value and pass it as a parameter. You must only make sure
that both types have the same size.

152 IR Generation for High-Level Language Constructs

Adding attributes to an argument or changing the type is not complicated. But how do
you know what you need to implement? First of all, you should get an overview of the
calling convention used on your target platform. For example, the ELF ABI on Linux is
documented for each supported CPU platform. Just look up the document and make
yourself comfortable with it. There is documentation about the requirements of the
LLVM code generators. The source of information is the Clang implementation, in
the https://github.com/llvm/llvm-project/blob/main/clang/lib/
CodeGen/TargetInfo.cpp file. This single file contains the ABI-specific actions for
all supported platforms. It is also the single place where all information is collected.

In this section, you learned how to generate the IR for function calls to be compliant with
the ABI of your platform. The next section covers the different ways to create IR for classes
and virtual functions.

Creating IR code for classes
and virtual functions
Many modern programming languages support object orientation using classes. A class
is a high-level language construct, and in this section, we explore how we can map a class
construct into LLVM IR.

Implementing single inheritance
A class is a collection of data and methods. A class can inherit from another class,
potentially adding more data fields and methods or overriding existing virtual methods.
Let's illustrate this with classes in Oberon-2, which is also a good model for tinylang. A
Shape class defines an abstract shape with a color and an area:

TYPE Shape = RECORD

 color: INTEGER;

 PROCEDURE (VAR s: Shape) GetColor():

 INTEGER;

 PROCEDURE (VAR s: Shape) Area(): REAL;

 END;

The GetColor method only returns the color number:

PROCEDURE (VAR s: Shape) GetColor(): INTEGER;

BEGIN RETURN s.color; END GetColor;

https://github.com/llvm/llvm-project/blob/main/clang/lib/CodeGen/TargetInfo.cpp
https://github.com/llvm/llvm-project/blob/main/clang/lib/CodeGen/TargetInfo.cpp

Creating IR code for classes and virtual functions 153

The area of an abstract shape cannot be calculated, so this is an abstract method:

PROCEDURE (VAR s: Shape) Area(): REAL;

BEGIN HALT; END;

The Shape type can be extended to represent a Circle class:

TYPE Circle = RECORD (Shape)

 radius: REAL;

 PROCEDURE (VAR s: Circle) Area(): REAL;

 END;

For a circle, the area can be calculated:

PROCEDURE (VAR s: Circle) Area(): REAL;

BEGIN RETURN 2 * radius * radius; END;

The type can also be queried at runtime. If shape is a variable of the Shape type, then we
can formulate a type test in this way:

IF shape IS Circle THEN (* … *) END;

The different syntax aside, this works much like in C++. One notable difference to C++ is
that the Oberon-2 syntax makes the implicit this pointer explicit, calling it the receiver
of a method.

The basic problems to solve are how to lay out a class in memory and how to implement
the dynamic call of methods and runtime type checking. For the memory layout,
this is quite easy. The Shape class has only one data member, and we can map it to a
corresponding LLVM structure type:

@Shape = type { i64 }

The Circle class adds another data member. The solution is to append the new data
member at the end:

@Circle = type { i64, float }

The reason is that a class can have many subclasses. With this strategy, the data member of
the common base class always has the same memory offset and also uses the same index
to access the field via the getelementptr instruction.

154 IR Generation for High-Level Language Constructs

To implement a dynamic call of a method, we must further extend the LLVM structure.
If the Area() function is called on a Shape object, then the abstract method is called,
causing the application to halt. If it is called on a Circle object, then the corresponding
method to calculate the area of a circle is called. The GetColor() function can be
called for objects of both classes. The basic idea to implement this is to associate a table
with function pointers with each object. Here, the table would have two entries: one
for the GetColor() method and one for the Area() function. The Shape class and
the Circle class each have such a table. The tables differ in the entry for the Area()
function, which calls different code depending on the type of the object. This table is
called the virtual method table, often abbreviated as the vtable.

The vtable alone is not useful. We must connect it with an object. To do so, we add a
pointer to the vtable always as the first data member to the structure. At the LLVM level,
the @Shape type then becomes the following:

@Shape = type { [2 x i8*]*, i64 }

The @Circle type is similarly extended. The resulting memory structure is shown in
Figure 6.1:

Figure 6.1 – Memory layout of the classes and the virtual method tables

LLVM does not have void pointers and pointers to bytes are used instead. With the
introduction of the hidden vtable field, there is now also the need to have a way
to initialize it. In C++, this is part of calling the constructor. In Oberon-2, the field is
initialized automatically when the memory is allocated.

A dynamic call to a method is then executed with the following steps:

1.	 Calculate the offset of the vtable pointer via the getelementptr instruction.

2.	 Load the pointer to the vtable.

3.	 Calculate the offset of the function in the vtable.

4.	 Load the function pointer.

5.	 Indirectly call the function via the pointer with the call instruction.

Creating IR code for classes and virtual functions 155

This does not sound very efficient, but in fact, most CPU architectures can perform this
dynamic call in just two instructions. So, it is really the LLVM level that is verbose.

To turn a function into a method, a reference to the object's data is required. This is
implemented by passing the pointer to the data as the first parameter of the method.
In Oberon-2, this is the explicit receiver. In languages similar to C++, it is the implicit
this pointer.

With the vtable, we have a unique address in memory for each class. Does this help with
the runtime type test, too? The answer is that it helps only in a limited way. To illustrate
the problem, let's extend the class hierarchy with an Ellipse class, which inherits from
the Circle class. (This is not the classical is-a relationship in the mathematical sense.)
If we have the shape variable of the Shape type, then we could implement the shape
IS Circle type test as a comparison of the vtable pointer stored in the shape variable
with the vtable pointer of the Circle class. This comparison only results in true if
shape has the exact Circle type. But if shape is indeed of the Ellipse type, then
the comparison returns false, even if an object of the Ellipse type can be used in all
places where only an object of the Circle type is required.

Clearly, we need to do more. The solution is to extend the virtual method table with
runtime type information. How much information you need to store depends on the
source language. To support the runtime type check, it is enough to store a pointer to the
vtable of the base class, which then looks as in Figure 6.2:

Figure 6.2 – Class and vtable layout supporting simple type tests

If the test fails as described earlier, then the test is repeated with the pointer to the vtable
of the base class. This is repeated until the test yields true or, if there is no base class,
false. In contrast to calling a dynamic function, the type test is a costly operation,
because in the worst case, the inheritance hierarchy is walked up to the root class.

156 IR Generation for High-Level Language Constructs

If you know the whole class hierarchy, then an efficient approach is possible: you number
each member of the class hierarchy in depth-first order. Then, the type test becomes a
comparison against a number or an interval, which can be done in constant time. In fact,
that is the approach of LLVM's own runtime type test, which we learned about in the
previous chapter.

Coupling runtime type information with the vtable is a design decision, either mandated
by the source language or just an implementation detail. For example, if you need detailed
runtime type information, because the source language supports reflection at runtime,
and you have data types without a vtable, then coupling both is not a good idea. In C++,
the coupling results in the fact that a class with virtual functions (and therefore no vtable)
has no runtime type data attached to it.

Often, programming languages support interfaces, which are a collection of virtual
methods. Interfaces are important because they add a useful abstraction. We will look at
possible implementations of interfaces in the next section.

Extending single inheritance with interfaces
Languages such as Java support interfaces. An interface is a collection of abstract
methods, comparable to a base class with no data members and only abstract methods
defined. Interfaces pose an interesting problem because each class implementing an
interface can have the corresponding method at a different position in the vtable. The
reason is simply that the order of function pointers in the vtable is derived from the
order of the functions in the class definition in the source language. The definition in the
interface is independent of this, and different orders are the norm.

Because the methods defined in an interface can have a different order, we attach a table
for each implemented interface to the class. For each method of the interface, this table
can specify either the index of the method in the vtable or can be a copy of the function
pointer stored in the vtable. If a method is called on the interface, then the corresponding
vtable of the interface is searched, then the pointer to the function is fetched and the
method is called. Adding two interfaces, I1 and I2, to the Shape class results in the
following layout:

Creating IR code for classes and virtual functions 157

Figure 6.3 – Layout of vtables for interfaces

The caveat lies in the fact that we have to find the right vtable. We can use an approach
similar to the runtime type test: we can perform a linear search through the list of interface
vtables. We can assign a unique number to each interface (for example, a memory
address) and identify the vtable using this number. The disadvantage of this scheme is
obvious: calling a method through an interface takes much more time than calling the
same method on the class. There is no easy mitigation for this problem.

A good approach is to replace the linear search with a hash table. At compile time, the
interface that a class implements is known. Therefore, we can construct a perfect hash
function, which maps the interface number to the vtable for the interface. A known
unique number identifying an interface may be needed for the construction, so memory
does not help. But there are other ways to compute a unique number. If the symbol names
in the source are unique, then it is always possible to compute a cryptographic hash
such as the MD5 of the symbol and use the hash as the number. The calculation occurs at
compile time and therefore has no runtime cost.

The result is much faster than the linear search and only takes constant time. Still, it
involves several arithmetic operations on a number and is slower than the method call of a
class type.

Usually, interfaces also take part in runtime type tests, making the list to search even
longer. Of course, if the hash table approach is implemented, then it can also be used for
the runtime type test.

Some languages allow more than one parent class. This has some interesting challenges for
the implementation, and we master this in the next section.

158 IR Generation for High-Level Language Constructs

 Adding support for multiple inheritance
Multiple inheritance adds another challenge. If a class inherits from two or more base
classes, then we need to combine the data members in such a way that they are still
accessible from the methods. Like in the single inheritance case, the solution is to append
all data members, including the hidden vtable pointers. The Circle class is not only a
geometric shape but also a graphic object. To model this, we let the Circle class inherit
from the Shape class and the GraphicObj class. In the class layout, the fields from the
Shape class come first. Then, we append all fields of the GraphicObj class, including
the hidden vtable pointer. After that, we add the new data members of the Circle class,
resulting in the overall structure shown in Figure 6.4:

Figure 6.4 – Layout of classes and vtables with multiple inheritance

This approach has several implications. There can now be several pointers to the object.
A pointer to the Shape or Circle class points to the top of the object, while a pointer
to a GraphicObj class points to inside this object, to the beginning of the embedded
GraphicObj object. This has to be taken into account when comparing pointers.

Calling a virtual method is also affected. If a method is defined in the GraphicObj class,
then this method expects the class layout of the GraphicObj class. If this method is not
overridden in the Circle class, then there are two possibilities. The easy case is if the
method call is done with a pointer to a GraphicObj instance: in this case, you look up
the address of the method in the vtable of the GraphicObj class and call the function.
The more complicated case is if you call the method with a pointer to the Circle class.
Again, you can look up the address of the method in the vtable of the Circle class.
The called method expects a this pointer to an instance of the GraphicObj class,
so we have to adjust that pointer, too. We can do this because we know the offset of the
GraphicObj class inside the Circle class.

Creating IR code for classes and virtual functions 159

If a method of GrapicObj is overridden in the Circle class, then nothing special needs
to be done if the method is called through a pointer to the Circle class. However, if the
method is called through a pointer to a GraphicObj instance, then we need to make
another adjustment because the method needs a this pointer pointing to a Circle
instance. At compile time, we cannot compute this adjustment, because we do not know
whether this GraphicObj instance is part of a multiple inheritance hierarchy or not. To
solve this, we store the adjustment we need to make to the this pointer before calling the
method together with each function pointer in the vtable, as in Figure 6.5:

Figure 6.5 – vtable with adjustments to the this pointer

The method call now becomes the following:

1.	 Look up the function pointer in the vtable.

2.	 Adjust the this pointer.

3.	 Call the method.

This approach can also be used for implementing interfaces. Because an interface has
only methods, each implemented interface adds a new vtable pointer to the object. This is
easier to implement and most likely faster, but it adds overhead to each object instance. In
the worst case, if your class has a single 64-bit data field but implements 10 interfaces, then
your object requires 96 bytes in memory: 8 bytes for the vtable pointer of the class itself, 8
bytes for the data member, and 10 * 8 bytes for the vtable pointers of each interface.

To support meaningful comparisons to objects and to perform runtime type tests, it is
needed to normalize a pointer to an object first. If we add an additional field to the vtable,
containing an offset at the top of the object, then we can always adjust the pointer to point
to the real object. In the vtable of the Circle class, this offset is 0, but not in the vtable
of the embedded GraphicObj class. Of course, whether this needs to be implemented
depends on the semantics of the source language.

160 IR Generation for High-Level Language Constructs

LLVM itself does not favor a special implementation of object-oriented features. As seen
in this section, we can implement all approaches with the available LLVM data types.
If you want to try a new approach, then a good way is to do a prototype in C first. The
required pointer manipulations are quickly translated to LLVM IR, but reasoning about
the functionality is easier in a higher-level language.

With the knowledge acquired in this section, you can implement the lowering of all OOP
constructs commonly found in programming languages into LLVM IR in your own code
generator. You have recipes on how to represent single inheritance, single inheritance with
an interface, or multiple inheritance in memory, and also how to implement type tests and
how to look up virtual functions, which are the core concepts of OOP languages.

Summary
In this chapter, you learned how to translate aggregate data types and pointers to LLVM
IR code. You also learned about the intricacies of the ABI. Finally, you learned about the
different approaches to translating classes and virtual functions to LLVM IR. With the
knowledge of this chapter, you will be able to create an LLVM IR code generator for most
real programming languages.

In the next chapter, you will learn about some advanced techniques. Exception handling
is fairly common in modern programming languages, and LLVM has some support for
it. Attaching type information to pointers can help with certain optimizations, so we will
add this, too. Last but not least, the ability to debug an application is essential for many
developers, so we will add the generation of debug metadata to our code generator.

7
Advanced IR
Generation

With the intermediate representation (IR) generation introduced in the previous
chapters, you can already implement most of the functionality required in a compiler. In
this chapter, we will look at some advanced topics that often arise in terms of real-world
compilers. For example, many modern languages make use of exception handling, and we
look at how to translate this to low-level virtual machine (LLVM) IR.

To support the LLVM optimizer in producing better code in certain situations, we add
additional type metadata to the IR code, and attaching debug metadata enables the
compiler's user to take advantage of source-level debug tools.

In this chapter, you will learn about the following topics:

•	 In Throwing and catching exceptions, you will learn how to implement exception
handling in your compiler.

•	 In Generating metadata for type-based alias analysis, you attach additional metadata
to LLVM IR, which helps LLVM to better optimize the code.

•	 In Adding debug metadata, you implement the support classes needed to add debug
information to the generated IR code.

162 Advanced IR Generation

By the end of the chapter, you will acquire knowledge about exception handling and about
metadata for type-based alias analysis and debug information.

Technical requirements
The code files for this chapter is available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter07

You can find the code in action videos at https://bit.ly/3nllhED.

Throwing and catching exceptions
Exception handling in LLVM IR is closely tied to the platform's support. Here, we will
look at the most common type of exception handling using libunwind. Its full potential
is used by C++, so we will look at an example in C++ first, where the bar() function can
throw an int or a double value, as follows:

int bar(int x) {

 if (x == 1) throw 1;

 if (x == 2) throw 42.0;

 return x;

}

The foo() function calls bar(), but only handles a thrown int value. It also declares
that it only throws int values, as follows:

int foo(int x) throw(int) {

 int y = 0;

 try {

 y = bar(x);

 }

 catch (int e) {

 y = e;

 }

 return y;

}

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter07
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter07
https://bit.ly/3nllhED

Throwing and catching exceptions 163

Throwing an exception requires two calls into the runtime library. First, memory for the
exception is allocated with a call to __cxa_allocate_exception(). This function
takes the number of bytes to allocate as a parameter. The exception payload (the int or the
double value in the example) is copied to the allocated memory. The exception is then
raised with a call to __cxa_throw(). This function takes three arguments: a pointer to the
allocated exception; type information about the payload; and a pointer to a destructor, if the
exception payload has one. The __cxa_throw() function initiates the stack-unwinding
process and never returns. In LLVM IR, this is done for the int value, as follows:

%eh = tail call i8* @__cxa_allocate_exception(i64 4)

%payload = bitcast i8* %eh to i32*

store i32 1, i32* %payload

tail call void @__cxa_throw(i8* %eh,

 i8* bitcast (i8** @_ZTIi to i8*), i8*

 null)

unreachable

_ZTIi is the type information describing an int type. For a double type, it would be
_ZTId. The call to __cxa_throw() is marked as a tail call because it is the final call in
this function, possibly enabling reuse of the current stack frame.

So far, nothing LLVM-specific has been done. This changes in the foo() function,
because the call to bar() could possibly raise an exception. If it is an int-type exception,
then the control flow must be transferred to the IR code of the catch clause. To
accomplish this, an invoke instruction must be used instead of a call instruction, as
illustrated in the following code snippet:

%y = invoke i32 @_Z3bari(i32 %x) to label %next

 unwind label %lpad

The difference between both instructions is that invoke has two labels associated. The
first label is where execution continues if the called function ended normally, usually with a
ret instruction. In the preceding code example, this label is called %next. If an exception
occurs, then execution continues at a so-called landing pad, with a %lpad label.

164 Advanced IR Generation

The landing pad is a basic block that must begin with a landingpad instruction. The
landingpad instruction gives LLVM information about the handled exception types.
For the foo() functions, it gives the following information:

lpad:

%exc = landingpad { i8*, i32 }

 cleanup

 catch i8* bitcast (i8** @_ZTIi to i8*)

 filter [1 x i8*] [i8* bitcast (i8** @_ZTIi to

 i8*)]

There are three possible types of action here, outlined as follows:

•	 cleanup: This denotes that code to clean up the current state is present. Usually,
this is used to call destructors of local objects. If this marker is present, then the
landing pad is always called during stack unwinding.

•	 catch: This is a list of type-value pairs and denotes the exception types that can
be handled. The landing pad is called if the thrown exception type is found in
this list. In the case of the foo() function, the value is a pointer to the C++
runtime type information for the int type, similar to the parameter of the
__cxa_throw() function.

•	 filter: This specifies an array of exception types. The landing pad is called if the
exception type of the current exception is not found in the array. This is used to
implement the throw() specification. For the foo() function, the array has only
one member—the type information for the int type.

The result type of the landingpad instruction is a { i8*, i32 } structure. The first
element is a pointer to the thrown exception, while the second element is a type selector.
Let's extract both elements from the structure, as follows:

%exc.ptr = extractvalue { i8*, i32 } %exc, 0

%exc.sel = extractvalue { i8*, i32 } %exc, 1

Throwing and catching exceptions 165

A type selector is a number that helps us to identify the cause of why the landing pad is
called. It has a positive value if the current exception type matches one of the exception
types given in the catch part of the landingpad instruction. If the current exception
type does not match any of the values given in the filter part, then the value is
negative, and it is 0 if the cleanup code should be called.

Basically, the type selector is offset into a type information table, constructed from the
values given in the catch and filter parts of the landingpad instruction. During
optimization, multiple landing pads can be combined into one, which means that the
structure of this table is not known at the IR level. To retrieve the type selector for a given
type, we need to call the @llvm.eh.typeid.for intrinsic function. We need this to
check if the type selector value corresponds to the type information for int, to be able to
execute the code in the catch (int e) {} block, as follows:

%tid.int = tail call i32 @llvm.eh.typeid.for(

 i8* bitcast (i8** @_ZTIi to

 i8*))

%tst.int = icmp eq i32 %exc.sel, %tid.int

br i1 % tst.int, label %catchint, label %filterorcleanup

The handing of an exception is framed by calls to __cxa_begin_catch() and __
cxa_end_catch(). The __cxa_begin_catch() function needs one argument: the
current exception. That is one of the values returned by the landingpad instruction. It
returns a pointer to the exception payload—an int value, in our case. The __cxa_end_
catch() function marks the end of exception handling and deallocates the memory
allocated with __cxa_allocate_exception(). Please note that the runtime
behavior is much more complicated if another exception is thrown inside the catch
block. The handling of the exception is done like this:

catchint:

%payload = tail call i8* @__cxa_begin_catch(i8* %exc.ptr)

%payload.int = bitcast i8* %payload to i32*

%retval = load i32, i32* %payload.int

tail call void @__cxa_end_catch()

br label %return

166 Advanced IR Generation

If the type of the current exception does not match the list in the throws() declaration,
the unexpected exception handler is called. First, we need to check the type selector again,
as follows:

filterorcleanup:

%tst.blzero = icmp slt i32 %exc.sel, 0

br i1 %tst.blzero, label %filter, label %cleanup

If the value of the type selector is lower than 0 we then call the handler, as follows:

filter:

tail call void @__cxa_call_unexpected(i8* %exc.ptr) #4

unreachable

Again, the handler is not expected to come back.

There is no cleanup work needed in this case, so all the cleanup code does is resume the
execution of the stack unwinder, as follows:

cleanup:

resume { i8*, i32 } %exc

One piece is still missing: libunwind drives the stack unwinding, but it is not tied to a
single language. Language-dependent handling is done in the personality function.
For C++ on Linux, the personality function is called __gxx_personality_v0().
Depending on the platform or compiler, this name can vary. Each function that needs to
take part in stack unwinding has a personality function attached. The personality
function analyzes if the function catches an exception, has a non-matching filter list,
or needs a cleanup call. It gives this information back to the unwinder, which acts
accordingly. In LLVM IR, the pointer to the personality function is given as part of
the function definition, as illustrated in the following code snippet:

define i32 @_Z3fooi(i32) personality i8* bitcast

 (i32 (...)* @__gxx_personality_v0 to

 i8*)

With this, the exception-handling facility is complete.

Throwing and catching exceptions 167

To use exception handling in the compiler for your programming language, the simplest
strategy is to piggyback onto the existing C++ runtime functions. This has also the advantage
that your exceptions are interoperable with C++. A disadvantage is that you tie some of the
C++ runtime into the runtime of your language—most notably, memory management. If
you want to avoid this, then you need to create your own equivalents of the _cxa_ functions.
Still, you will want to use libunwind, which provides the stack-unwinding mechanism.

1.	 Let's look at how to create this IR. We created the calc expression compiler in
Chapter 3, The Structure of a Compiler. We will now extend the code generator of the
expression compiler to raise and handle an exception if a division by 0 is performed.
The generated IR will check if the divisor of a division is 0. If true, then an exception
will be raised. We will also add a landing pad to the function, which catches the
exception, prints Divide by zero! to the console, and ends the calculation.
Using exception handling is not really necessary in this simple case, but it allows us
to concentrate on the code generation. We add all code to the CodeGenerator.
cpp file. We begin by adding required new fields and some helper methods. We
need to store the LLVM declaration of the __cxa_allocate_exception() and
__cxa_throw() functions, consisting of the function type and the function itself.
A GlobalVariable instance is needed to hold the type information. We also need
references to the basic blocks holding the landing pad and a basic block containing
just an unreachable instruction, as illustrated in the following code snippet:

 GlobalVariable *TypeInfo = nullptr;

 FunctionType *AllocEHFty = nullptr;

 Function *AllocEHFn = nullptr;

 FunctionType *ThrowEHFty = nullptr;

 Function *ThrowEHFn = nullptr;

 BasicBlock *LPadBB = nullptr;

 BasicBlock *UnreachableBB = nullptr;

2.	 We also add a new helper function to create the IR for comparing two values. The
createICmpEq() function takes the Left and Right value to compare as
parameters. It creates a compare instruction, testing for equality of the values,
and a branch instruction to two basic blocks, for the equal and unequal cases. The
two basic blocks are returned via references in the TrueDest and FalseDest
parameters. A label for the new basic blocks can be given in the TrueLabel and
FalseLabel parameters. The code is shown in the following snippet:

 void createICmpEq(Value *Left, Value *Right,

 BasicBlock *&TrueDest,

168 Advanced IR Generation

 BasicBlock *&FalseDest,

 const Twine &TrueLabel = "",

 const Twine &FalseLabel = "") {

 Function *Fn =
 Builder.GetInsertBlock()->getParent();

 TrueDest = BasicBlock::Create(M->getContext(),
 TrueLabel, Fn);

 FalseDest = BasicBlock::Create(M->getContext(),
 FalseLabel, Fn);

 Value *Cmp = Builder.CreateCmp(CmpInst::ICMP_EQ,
 Left, Right);

 Builder.CreateCondBr(Cmp, TrueDest, FalseDest);

 }

3.	 To use the functions from the runtime, we need to create several function
declarations. In LLVM, a function type giving the signature—as well as the function
itself—must be constructed. We use the createFunc() method to create both
objects. The functions need references to FunctionType and Function pointers,
the name of the newly declared function, and the result type. The parameter-type
list is optional, and the flag to indicate a variable parameter list is set to false,
indicating that there is no variable part in the parameter list. The code can be seen
in the following snippet:

 void createFunc(FunctionType *&Fty, Function *&Fn,

 const Twine &N, Type *Result,

 ArrayRef<Type *> Params = None,

 bool IsVarArgs = false) {

 Fty = FunctionType::get(Result, Params, IsVarArgs);

 Fn = Function::Create(

 Fty, GlobalValue::ExternalLinkage, N, M);

 }

With these preparations done, we continue to generate the IR to raise an exception.

Throwing and catching exceptions 169

Raising an exception
To generate the IR code to raise an exception, we add an addThrow() method. This new
method needs to initialize the new fields, and then generates the IR to raise an exception
via the __cxa_throw function. The payload of the raised exception is of an int type
and can be set to an arbitrary value. Here is what we need to code:

1.	 The new addThrow() method begins with checking if the TypeInfo field has
been initialized. If not, then a global external constant of an i8* type and a _ZTIi
name is created. This represents the C++ metadata describing the C++ int type.
The code is illustrated in the following snippet:

 void addThrow(int PayloadVal) {

 if (!TypeInfo) {

 TypeInfo = new GlobalVariable(

 *M, Int8PtrTy,

 /*isConstant=*/true,

 GlobalValue::ExternalLinkage,

 /*Initializer=*/nullptr, "_ZTIi");

2.	 The initialization continues with creating the IR declaration for __cxa_
allocate_exception() and __cxa_throw functions() using our
createFunc() helper method, as follows:

 createFunc(AllocEHFty, AllocEHFn,

 "__cxa_allocate_exception",

 Int8PtrTy,

 {Int64Ty});

 createFunc(ThrowEHFty, ThrowEHFn, "__cxa_throw",

 VoidTy,

 {Int8PtrTy, Int8PtrTy, Int8PtrTy});

3.	 A function using exception handling needs a personality function, which helps
with the stack unwinding. We add the IR code to declare a __gxx_personality_
v0() personality function from the C++ library, and set it as the personality
routine of the current function. The current function is not stored as a field but we
can use a Builder instance to query the current basic block, which has the function
stored as a parent field, as illustrated in the following code snippet:

 FunctionType *PersFty;

 Function *PersFn;

170 Advanced IR Generation

 createFunc(PersFty, PersFn,
 "__gxx_personality_v0", Int32Ty, None,
 true);

 Function *Fn =
 Builder.GetInsertBlock()->getParent();

 Fn->setPersonalityFn(PersFn);

4.	 Next, we create and populate the basic block for the landing pad. First, we need
to save the pointer to the current basic block. Then, we create a new basic block,
set it inside the builder to use as the basic block to insert instructions, and call the
addLandingPad() method. This method generates the IR code for handling an
exception and is described in the next section, Catching an exception. The following
code populates the basic block for the landing pad:

 BasicBlock *SaveBB = Builder.GetInsertBlock();

 LPadBB = BasicBlock::Create(M->getContext(),
 "lpad", Fn);

 Builder.SetInsertPoint(LPadBB);

 addLandingPad();

5.	 The initialization part has finished with creating the basic block holding an
unreachable instruction. Again, we create a basic block and set it as an insertion
point at the builder. Then, we add an unreachable instruction to it. Lastly, we
set the insertion point of the builder back to the saved SaveBB instance so that
the following IR is added to the right basic block. The code is illustrated in the
following snippet:

 UnreachableBB = BasicBlock::Create(

 M->getContext(), "unreachable", Fn);

 Builder.SetInsertPoint(UnreachableBB);

 Builder.CreateUnreachable();

 Builder.SetInsertPoint(SaveBB);

 }

Throwing and catching exceptions 171

6.	 To raise an exception, we need to allocate memory for the exception and the payload
via a call to the __cxa_allocate_exception() function. Our payload is of
a C++ int type, which usually has a size of 4 bytes. We create a constant unsigned
value for the size, and call the function with it as a parameter. The function type and
the function declaration are already initialized, so we only need to create a call
instruction, as follows:

 Constant *PayloadSz =
 ConstantInt::get(Int64Ty, 4, false);

 CallInst *EH = Builder.CreateCall(
 AllocEHFty, AllocEHFn, {PayloadSz});

7.	 Next, we store the PayloadVal value into the allocated memory. To do so, we
need to create an LLVM IR constant with a call to the ConstantInt::get()
function. The pointer to the allocated memory is of an i8* type, but to store a value
of an i32 type we need to create a bitcast instruction to cast the type, as follows:

 Value *PayloadPtr =
 Builder.CreateBitCast(EH, Int32PtrTy);

 Builder.CreateStore(
 ConstantInt::get(Int32Ty, PayloadVal, true),

 PayloadPtr);

8.	 Finally, we raise an exception with a call to the __cxa_throw function. Because
this function actually raises an exception that is also handled in the same function,
we need to use an invoke instruction instead of a call instruction. Unlike with
a call instruction, an invoke instruction ends a basic block because it has two
successor basic blocks. Here, these are the UnreachableBB and LPadBB basic
blocks. If the function raises no exception, the control flow is transferred to the
UnreachableBB basic block. Due to the design of the __cxa_throw() function,
this will never happen. The control flow is transferred to the LPadBB basic block to
handle the exception. This finishes the implementation of the addThrow() method,
as illustrated in the following code snippet:

 Builder.CreateInvoke(

 ThrowEHFty, ThrowEHFn, UnreachableBB, LPadBB,

 {EH, ConstantExpr::getBitCast(TypeInfo,

 Int8PtrTy),

 ConstantPointerNull::get(Int8PtrTy)});

 }

172 Advanced IR Generation

Next, we add the code to generate the IR for handling an exception.

Catching an exception
To generate the IR code to catch an exception, we add an addLandingPad() method.
The generated IR extracts the type information from the exception. If it matches the C++
int type, then the exception is handled by printing Divide by zero! to the console
and returning from the function. If the type does not match, we simply execute a resume
instruction, which transfers control back to the runtime. Because there are no other
functions in the call hierarchy to handle this exception, the runtime will terminate the
application. These are the steps we need to take to generate the IR to catch an exception:

1.	 In the generated IR, we need to call the __cxa_begin_catch() and _cxa_
end_catch() functions from the C++ runtime library. To print an error message,
we will generate a call to the puts() function from the C runtime library, and to
get the type information from the exception, we must generate a call to the llvm.
eh.typeid.for instrinsic. We need FunctionType and Function instances
for all of them, and we take advantage of our createFunc() method to create
them, as follows:

 void addLandingPad() {

 FunctionType *TypeIdFty; Function *TypeIdFn;

 createFunc(TypeIdFty, TypeIdFn,

 "llvm.eh.typeid.for", Int32Ty,

 {Int8PtrTy});

 FunctionType *BeginCatchFty; Function

 *BeginCatchFn;

 createFunc(BeginCatchFty, BeginCatchFn,

 "__cxa_begin_catch", Int8PtrTy,

 {Int8PtrTy});

 FunctionType *EndCatchFty; Function *EndCatchFn;

 createFunc(EndCatchFty, EndCatchFn,

 "__cxa_end_catch", VoidTy);

 FunctionType *PutsFty; Function *PutsFn;

 createFunc(PutsFty, PutsFn, "puts", Int32Ty,

 {Int8PtrTy});

Throwing and catching exceptions 173

2.	 The landingpad instruction is the first instruction we generate. The result type
is a structure containing fields of i8* and i32 types. This structure is generated
with a call to the StructType::get() function. We handle an exception of a
C++ int type, and we must add this as a clause to the landingpad instruction.
The clause must be a constant of the i8* type, therefore we need to generate a
bitcast instruction to convert the TypeInfo value to this type. We store the
value returned from the instruction for later use in an Exc variable, as follows:

 LandingPadInst *Exc = Builder.CreateLandingPad(

 StructType::get(Int8PtrTy, Int32Ty), 1, "exc");

 Exc->addClause(ConstantExpr::getBitCast(TypeInfo,

 Int8PtrTy));

3.	 Next, we extract the type selector from the returned value. With a call to the
llvm.eh.typeid.for intrinsic, we retrieve the type ID for the TypeInfo field,
representing the C++ int type. With this IR, we now have generated the two values
we need to compare to decide if we can handle the exception, as illustrated in the
following code snippet:

 Value *Sel = Builder.CreateExtractValue(Exc, {1},
 "exc.sel");

 CallInst *Id =

 Builder.CreateCall(TypeIdFty, TypeIdFn,

 {ConstantExpr::getBitCast(

 TypeInfo, Int8PtrTy)});

4.	 To generate the IR for the comparison, we call our createICmpEq() function.
This function also generates two basic blocks, which we store in the TrueDest and
FalseDest variables, as illustrated in the following code snippet:

 BasicBlock *TrueDest, *FalseDest;

 createICmpEq(Sel, Id, TrueDest, FalseDest,

 "match",

 "resume");

174 Advanced IR Generation

5.	 If the two values do not match, the control flow continues at the FalseDest basic
block. This basic block only contains a resume instruction, to give control back to
the C++ runtime. This is illustrated in the following code snippet:

 Builder.SetInsertPoint(FalseDest);

 Builder.CreateResume(Exc);

6.	 If the two values are equal, the control flow continues at the TrueDest basic
block. We first generate the IR code to extract the pointer to the exception from the
return value of the landingpad instruction, stored in the Exc variable. Then, we
generate a call to the __cxa_begin_catch () function, passing the pointer to
the exception as a parameter. This indicates the start of the exception being handled
to the runtime, as illustrated in the following code snippet:

 Builder.SetInsertPoint(TrueDest);

 Value *Ptr =

 Builder.CreateExtractValue(Exc, {0},

 "exc.ptr");

 Builder.CreateCall(BeginCatchFty, BeginCatchFn,

 {Ptr});

7.	 We handle the exception by calling the puts() function, to print a message
to the console. For this, we first generate a pointer to the string with a call to
the CreateGlobalStringPtr() function, and then pass this pointer as a
parameter in the generated call to the puts() function, as follows:

 Value *MsgPtr = Builder.CreateGlobalStringPtr(

 "Divide by zero!", "msg", 0, M);

 Builder.CreateCall(PutsFty, PutsFn, {MsgPtr});

8.	 This finishes the handling of the exception, and we generate a call to the
__cxa_end_catch() function to inform the runtime about it. Lastly, we
return from the function with a ret instruction, as follows:

 Builder.CreateCall(EndCatchFty, EndCatchFn);

 Builder.CreateRet(Int32Zero);

 }

With the addThrow() and addLandingPad() functions, we can generate the IR to
raise an exception and to handle an exception. We still need to add the IR to check if the
divisor is 0, which is the topic of the next section.

Throwing and catching exceptions 175

Integrating the exception-handling code
into the application
The IR for the division is generated inside the visit(BinaryOp&) method. Instead of
just generating a sdiv instruction, we first generate the IR to compare the divisor with 0.
If the divisor is 0, then the control flow continues in a basic block raising the exception.
Otherwise, the control flow continues in a basic block with the sdiv instruction. With
the help of the createICmpEq() and addThrow() functions, we can code this very
easily, as follows:

 case BinaryOp::Div:

 BasicBlock *TrueDest, *FalseDest;

 createICmpEq(Right, Int32Zero, TrueDest,

 FalseDest, "divbyzero", "notzero");

 Builder.SetInsertPoint(TrueDest);

 addThrow(42); // Arbitrary payload value.

 Builder.SetInsertPoint(FalseDest);

 V = Builder.CreateSDiv(Left, Right);

 break;

The code-generation part is now complete. To build the application, you change into the
build directory and run the ninja tool, as follows:

$ ninja

After the build is finished, you can check the generated IR—for example, with the with
a: 3/a expression, as follows:

$ src/calc "with a: 3/a"

You will see the additional IR needed to raise and catch the exception.

The generated IR now depends on the C++ runtime. The easiest way to link against the
required libraries is to use the clang++ compiler. Rename the rtcalc.c file with the
runtime functions for the expression calculator as rtcalc.cpp, and add extern "C"
in front of each function inside the file. Then we can use the llc tool to turn the generated
IR into an object file and use the clang++ compiler to create an executable, as follows:

$ src/calc "with a: 3/a" | llc -filetype obj -o exp.o

$ clang++ -o exp exp.o ../rtcalc.cpp

176 Advanced IR Generation

Then, we can run the generated application with different values, as follows:

$./exp

Enter a value for a: 1

The result is: 3

$./exp

Enter a value for a: 0

Divide by zero!

In the second run the input is 0, and this raises an exception. It works as expected!

We have learned how to raise and catch exceptions. The code to generate the IR can be
used as a blueprint for other compilers. Of course, the used type information and the
number of catch clauses depends on the input to the compiler, but the IR we need to
generate still follows the pattern presented in this section.

Adding metadata is a way to provide further information to LLVM. In the next section, we
add type metadata to support the LLVM optimizer in certain situations.

Generating metadata for type-based
alias analysis
Two pointers may point to the same memory cell, and they then alias each other. Memory
is not typed in the LLVM model, which makes it difficult for the optimizer to decide if two
pointers alias each other or not. If the compiler can prove that two pointers do not alias
each other, then more optimizations are possible. In the next section, we will have a closer
look at the problem and investigate how adding additional metadata will help, before we
implement this approach.

Understanding the need for additional metadata
To demonstrate the problem, let's look at the following function:

void doSomething(int *p, float *q) {

 *p = 42;

 *q = 3.1425;

}

Generating metadata for type-based alias analysis 177

The optimizer cannot decide if the p and q pointers point to the same memory cell or
not. During optimization this is an important analysis, called an alias analysis. If p and q
point to the same memory cell, then they are aliases. If the optimizer can prove that both
pointers never alias each other, this enables additional optimization opportunities. For
example, in the soSomething() function, the stores can be reordered without altering
the result in this case.

It depends on the definition of the source language as to whether a variable of one type
can be an alias of another variable of a different type. Please note that languages may also
contain expressions that break the type-based alias assumption—for example, typecasts
between unrelated types.

The solution chosen by the LLVM developers is to add metadata to load and store
instructions. The metadata has two purposes, outlined as follows:

•	 First, it defines the type hierarchy based on which type may alias another type
•	 Secondly, it describes the memory access in a load or store instruction

Let's have a look at the type hierarchy in C. Each type of hierarchy starts with a root
node, either named or anonymous. LLVM assumes that root nodes with the same name
describe the same type of hierarchy. You can use different type hierarchies in the same
LLVM modules, and LLVM makes the safe assumption that these types may alias. Beneath
the root node, there are nodes for scalar types. Nodes for aggregate types are not attached
to the root node, but they refer to scalar types and other aggregate types. Clang defines the
hierarchy for C as follows:

•	 The root node is called Simple C/C++ TBAA.
•	 Beneath the root node is the node for char types. This is a special type in C

because all pointers can be converted to a pointer to char.
•	 Beneath the char node are nodes for the other scalar types and a type for all

pointers, called any pointer.

Aggregate types are defined as a sequence of member types and offsets.

These metadata definitions are used in access tags attached to the load and store
instructions. An access tag is made up of three parts: a base type, an access type, and an
offset. Depending on the base type, there are two possible ways the access tag describes
memory access, outlined here:

1.	 If the base type is an aggregate type, then the access tag describes the memory access
of a struct member, having the access type and being located at a given offset.

2.	 If the base type is a scalar type, then the access type must be the same as the base
type and the offset must be 0.

178 Advanced IR Generation

With these definitions, we can now define a relation on the access tags, which is used to
evaluate if two pointers may alias each other or not. The immediate parent of a tuple
(base type, offset) is determined by the base type and the offset, as follows:

•	 If the base type is a scalar type and the offset is 0, then the immediate parent is
(parent type, 0), with parent type being the type of the parent node as defined in the
type hierarchy. If the offset is not 0, then the immediate parent is undefined.

•	 If the base type is an aggregate type, then the immediate parent of tuple (base type,
offset) is the tuple (new type, new offset), with the new type being the type of the
member at the offset. The new offset is the offset of the new type, adjusted to its
new start.

The transitive closure of this relation is the parent relation. Two-memory access
types—for example, (base type 1, access type 1, offset 1) and (base type 2, access type 2,
offset 2) —may alias if (base type 1, offset 1) and (base type 2, offset 2) or vice versa are
related in the parent relation.

Let's illustrate this in an example, as follows:

struct Point { float x, y; }

void func(struct Point *p, float *x, int *i, char *c) {

 p->x = 0; p->y = 0; *x = 0.0; *i = 0; *c = 0;

}

Using the preceding memory-access tag definition for scalar types, the access tag for
parameter i is (int, int, 0), and for parameter c it is (char, char, 0). In the type
hierarchy, the parent of the node for the int type is the char node, therefore the
immediate parent of (int, 0) is (char, 0), and both pointers can alias. The same is true
for parameter x and parameter c. But parameter x and i are not related, and hence they
do not alias each other. The access for the y member of struct Point is (Point,
float, 4), with 4 being the offset of the y member in the struct. The immediate parent of
(Point, 4) is (float, 0), therefore access to p->y and x may alias, and—with the same
reasoning—also with parameter c.

To create the metadata, we use the llvm::MDBuilder class, which is declared in
the llvm/IR/MDBuilder.h header file. The data itself is stored in instances of the
llvm::MDNode and llvm::MDString classes. Using the builder class shields us from
the internal details of the construction.

Generating metadata for type-based alias analysis 179

A root node is created with a call to the createTBAARoot() method, which expects
the name of the type hierarchy as a parameter and returns the root node. An anonymous
unique root node can be created with the createAnonymousTBAARoot() method.

A scalar type is added to the hierarchy with the createTBAAScalarTypeNode()
method, which takes the name of the type and the parent node as a parameter.
Adding a type node for an aggregate type is slightly more complex. The
createTBAAStructTypeNode() method takes the name of the type and a list of
the fields as parameters. The fields are given as a std::pair<llvm::MDNode*,
uint64_t> instance. The first element indicates the type of the member and the second
element indicates the offset in the struct type.

An access tag is created with the createTBAAStructTagNode() method, which takes
the base type, the access type, and the offset as parameters.

Lastly, the metadata must be attached to a load or store instruction. The
llvm::Instruction class has a setMetadata() method, which is used to add
various metadata. The first parameter must be llvm::LLVMContext::MD_tbaa and
the second must be the access tag.

Equipped with this knowledge, we will add metadata for type-based alias analysis
(TBAA) to tinylang in the next section.

Adding TBAA metadata to tinylang
To support TBAA, we add a new CGTBAA class. This class is responsible for generating
the metadata nodes. We make it a member of the CGModule class, calling it TBAA. Every
load and store instruction could be possibly annotated, and we place a new function
for this purpose in the CGModule class too. The function tries to create the tag-access
information. If this is successful, the metadata is attached to the instruction. This design
also allows us to turn off the metadata generation if we do not need it—for example, in
builds with the optimization turned off. The code is illustrated in the following snippet:

void CGModule::decorateInst(llvm::Instruction *Inst,

 TypeDenoter *TyDe) {

 if (auto *N = TBAA.getAccessTagInfo(TyDe))

 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, N);

}

180 Advanced IR Generation

We put the declaration of the new CGTBAA class into the include/tinylang/
CodeGen/CGTBAA.h header file and put the definition into the lib/CodeGen/
CGTBAA.cpp file. Besides the abstract syntax tree (AST) definitions, the header file
needs to include the files defining the metadata nodes and builder, as illustrated in the
following code snippet:

#include "tinylang/AST/AST.h"

#include "llvm/IR/MDBuilder.h"

#include "llvm/IR/Metadata.h"

The CGTBAA class needs to store some data members. So, let's see how to do this step by
step, as follows:

1.	 First of all, we need to cache the root of the type hierarchy, like this:

 class CGTBAA {

 llvm::MDNode *Root;

2.	 To construct the metadata nodes, we need an instance of the MDBuilder class,
as follows:

 llvm::MDBuilder MDHelper;

3.	 Lastly, we store the metadata generated for a type to reuse, as follows:

 llvm::DenseMap<TypeDenoter *, llvm::MDNode *>

 MetadataCache;

// …

};

After defining the variables required for the construction, we now add the methods
required to create the metadata, as follows:

1.	 The constructor initializes the data members, like this:

CGTBAA::CGTBAA(llvm::LLVMContext &Ctx)

 : MDHelper(llvm::MDBuilder(Ctx)), Root(nullptr) {}

2.	 We lazily instantiate the root of the type hierarchy, which we name Simple
tinylang TBAA, as illustrated in the following code snippet:

llvm::MDNode *CGTBAA::getRoot() {

 if (!Root)

Generating metadata for type-based alias analysis 181

 Root = MDHelper.createTBAARoot("Simple tinylang
 TBAA");

 return Root;

}

3.	 For a scalar type, we create a metadata node with the help of the MDBuilder class
based on the name of the type. The new metadata node is stored in the cache, as
illustrated in the following code snippet:

llvm::MDNode *

CGTBAA::createScalarTypeNode(TypeDeclaration *Ty,

 StringRef Name,

 llvm::MDNode *Parent) {

 llvm::MDNode *N =

 MDHelper.createTBAAScalarTypeNode(Name, Parent);

 return MetadataCache[Ty] = N;

}

4.	 The method to create the metadata for a record is more complicated, as we have to
enumerate all the fields of the record. The code is shown in the following snippet:

llvm::MDNode *CGTBAA::createStructTypeNode(

 TypeDeclaration *Ty, StringRef Name,

 llvm::ArrayRef<std::pair<llvm::MDNode *,

 uint64_t>>

 Fields) {

 llvm::MDNode *N =

 MDHelper.createTBAAStructTypeNode(Name, Fields);

 return MetadataCache[Ty] = N;

}

5.	 To return the metadata for a tinylang type, we need to create the type hierarchy.
Because the type system of tinylang is very restricted, we can use a simple
approach. Each scalar type is mapped to a unique type attached to the root node,
and we map all pointers to a single type. Structured types then refer to these nodes.
If we cannot map a type we then return nullptr, as follows:

llvm::MDNode *CGTBAA::getTypeInfo(TypeDeclaration *Ty) {

 if (llvm::MDNode *N = MetadataCache[Ty])

182 Advanced IR Generation

 return N;

 if (auto *Pervasive =

 llvm::dyn_cast<PervasiveTypeDeclaration>(Ty)) {

 StringRef Name = Pervasive->getName();

 return createScalarTypeNode(Pervasive, Name,

 getRoot());

 }

 if (auto *Pointer =

 llvm::dyn_cast<PointerTypeDeclaration>(Ty)) {

 StringRef Name = "any pointer";

 return createScalarTypeNode(Pointer, Name,

 getRoot());

 }

 if (auto *Record =

 llvm::dyn_cast<RecordTypeDeclaration>(Ty)) {

 llvm::SmallVector<std::pair<llvm::MDNode *,

 uint64_t>,

 4>

 Fields;

 auto *Rec =

 llvm::cast<llvm::StructType>(
 CGM.convertType(Record));

 const llvm::StructLayout *Layout =

 CGM.getModule()->getDataLayout()

 .getStructLayout(Rec);

 unsigned Idx = 0;

 for (const auto &F : Record->getFields()) {

 uint64_t Offset = Layout->getElementOffset(Idx);

 Fields.emplace_back(getTypeInfo(F.getType()),

 Offset);

 ++Idx;

 }

 StringRef Name = CGM.mangleName(Record);

 return createStructTypeNode(Record, Name, Fields);

Generating metadata for type-based alias analysis 183

 }

 return nullptr;

}

6.	 A general method to get the metadata is getAccessTagInfo(). As we only need
to look for a pointer type, we check for it. Otherwise, we return a nullptr, as
illustrated in the following code snippet:

llvm::MDNode *CGTBAA::getAccessTagInfo(TypeDenoter *TyDe)

{

 if (auto *Pointer = llvm::dyn_cast<PointerType>(TyDe))

 {

 return getTypeInfo(Pointer->getTyDen());

 }

 return nullptr;

}

To enable the generation of TBAA metadata, we now simply need to attach the
metadata to the load and store instructions we generate. For example, in
CGProcedure::writeVariable(), a store to a global variable, use a store
instruction, as follows:

 Builder.CreateStore(Val, CGM.getGlobal(D));

To decorate the instruction, we need to replace the preceding line with the following lines:

 auto *Inst = Builder.CreateStore(Val,

 CGM.getGlobal(Decl));

 CGM.decorateInst(Inst, V->getTypeDenoter());

With these changes in place, we have finished the generation of TBAA metadata.

In the next section, we look at a very similar topic: the generation of debug metadata.

184 Advanced IR Generation

Adding debug metadata
To allow source-level debugging, we have to add debug information. Support for debug
information in LLVM uses debug metadata to describe the types of the source language
and other static information, and an intrinsic to track variable values. The LLVM core
libraries generate debug information in DWARF format on Unix systems and in Protein
Data Bank (PDB) format for Windows. We take a look at the general structure in the
next section.

Understanding the general structure
of debug metadata
To describe the static structure, LLVM uses metadata in a similar way to the metadata for
type-based analysis. The static structure describes the file, the compilation unit, functions,
lexical blocks, and the used data types.

The main class we use is llvm::DIBuilder, and we need to use the llvm/IR/
DIBuilder include file to get the class declaration. This builder class provides an easy-
to-use interface to create the debug metadata. The metadata is later either added to LLVM
objects such as global variables or is used in calls to debug intrinsics. Important metadata
that the builder class can create is listed here:

•	 lvm::DIFile: This describes a file using the filename and the absolute path of the
directory containing the file. You use the createFile() method to create it. A file
can contain the main compilation unit or it could contain imported declarations.

•	 llvm::DICompileUnit: This is used to describe the current compilation
unit. Among other things, you specify the source language, a compiler-specific
producer string, whether optimizations are enabled or not, and—of course—
the DIFile in which the compilation unit resides. You create it with a call to
createCompileUnit().

•	 llvm::DISubprogram: This describes a function. Important information is the
scope (usually a DICompileUnit or a DISubprogram for a nested function), the
name of the function, the mangled name of the function, and the function type. It is
created with a call to createFunction().

•	 llvm::DILexicalBlock: This describes a lexical block that models the
block scoping found in many high-level languages. You create this with a call to
createLexicalBlock().

Adding debug metadata 185

LLVM makes no assumptions about the language your compiler translates. As a
consequence, it has no information about the data types of the language. To support
source-level debugging, especially displaying variable values in a debugger, type
information must be added too. Important constructs are listed here:

•	 The createBasicType() function, returning a pointer to the
llvm::DIBasicType class, creates the metadata to describe a basic type such as
INTEGER in tinylang or int in C++. Besides the name of the type, the required
parameters are the size in bits and the encoding—for example, whether it is a signed
or unsigned type.

•	 There are several ways to construct the metadata for composite data types,
represented by the llvm::DIComposite class. You use createArrayType(),
createStructType(), createUnionType(), and createVectorType()
functions to instantiate the metadata for array, struct, union, and vector
data types. The functions require the parameter you expect—for example, the base
type and the number of subscriptions for an array type, or a list of the field members
of a struct type.

•	 There are also methods to support enumerations, templates, classes, and so on.

The list of functions shows you that you have to add every detail of the source language
to the debug information. Let's assume your instance of the llvm::DIBuilder class is
called DBuilder. Assume further that you have some tinylang source in a file called
File.mod in the /home/llvmuser folder. Inside the file is a Func():INTEGER
function at line 5, which contains a VAR i:INTEGER local declaration at line 7. Let's
create the metadata for this, beginning with the information for the file. You need to
specify the filename and the absolute path of the folder in which the file resides, as
illustrated in the following code snippet:

llvm::DIFile *DbgFile = DBuilder.createFile("File.mod",

 "/home/llvmuser");

The file is a module in tinylang and therefore is the compilation unit for LLVM. This
carries a lot of information, as can be seen in the following code snippet:

bool IsOptimized = false;

llvm::StringRef CUFlags;

unsigned ObjCRunTimeVersion = 0;

llvm::StringRef SplitName;

llvm::DICompileUnit::DebugEmissionKind EmissionKind =

 llvm::DICompileUnit::DebugEmissionKind::FullDebug;

186 Advanced IR Generation

llvm::DICompileUnit *DbgCU = DBuilder.createCompileUnit(

 llvm::dwarf::DW_LANG_Modula2, DbgFile, „tinylang",

 IsOptimized, CUFlags, ObjCRunTimeVersion, SplitName,

 EmissionKind);

The debugger needs to know the source language. The DWARF standard defines an
enumeration with all the common values. A disadvantage is that you cannot simply add
a new source language. To do that, you have to create a request through the DWARF
committee. Be aware that the debugger and other debug tools also need support for a new
language—just adding a new member to the enumeration is not enough.

In many cases, it is sufficient to choose a language that is close to your source language.
In the case of tinylang this is Modula-2, and we use DW_LANG_Modula2 for language
identification. A compilation unit resides in a file, which is identified by the DbgFile
variable we created before. The debug information can carry information about the
producer. This can be the name of the compiler and the version information. Here, we just
pass a tinylang string. If you do not want to add this information, then you can simply
use an empty string as a parameter.

The next set of information includes an IsOptimized flag, which should indicate if
the compiler has turned optimization on or not. Usually, this flag is derived from the
–O command-line switch. You can pass additional parameter settings to the debugger
with the CUFlags parameter. This is not used here, and we pass an empty string. We
do not use Objective-C, so we pass 0 as the Objective-C runtime version. Normally,
debug information is embedded in the object file we are creating. If we want to write the
debug information into a separate file, then the SplitName parameter must contain
the name of this file; otherwise, just pass an empty string. And lastly, you can define
the level of debug information that should be emitted. The default setting is full debug
information, indicated by the use of the FullDebug enum value. You can also choose the
LineTablesOnly value if you want to emit only line numbers, or the NoDebug value
for no debug information at all. For the latter, it is better to not create debug information
in the first place.

Our minimalistic source uses only the INTEGER data type, which is a signed 32-bit value.
Creating the metadata for this type is straightforward, as can be seen in the following
code snippet:

llvm::DIBasicType *DbgIntTy =

 DBuilder.createBasicType("INTEGER", 32,

 llvm::dwarf::DW_ATE_signed);

Adding debug metadata 187

To create the debug metadata for the function, we have to create a type for the signature
first, and then the metadata for the function itself. This is similar to the creation of IR for
a function. The signature of the function is an array with all the types of the parameters
in source order and the return type of the function as the first element at index 0. Usually,
this array is constructed dynamically. In our case, we can also construct the metadata
statically. This is useful for internal functions—for example, for module initializing.
Typically, the parameters of these functions are always known, and the compiler writer
can hardcode them. The code is shown in the following snippet:

llvm::Metadata *DbgSigTy = {DbgIntTy};

llvm::DITypeRefArray DbgParamsTy =

 DBuilder.getOrCreateTypeArray(DbgSigTy);

llvm::DISubroutineType *DbgFuncTy =

 DBuilder.createSubroutineType(DbgParamsTy);

Our function has an INTEGER return type and no further parameters, so the DbgSigTy
array contains only the pointer to the metadata for this type. This static array is turned
into a type array, which is then used to create the type for the function.

The function itself requires more data, as follows:

unsigned LineNo = 5;

unsigned ScopeLine = 5;

llvm::DISubprogram *DbgFunc = DBuilder.createFunction(

 DbgCU, "Func", "_t4File4Func", DbgFile, LineNo,

 DbgFuncTy, ScopeLine,

 llvm::DISubprogram::FlagPrivate,

 llvm::DISubprogram::SPFlagLocalToUnit);

A function belongs to a compilation unit, in our case stored in the DbgCU variable. We
need to specify the name of the function in the source file, which is Func, and the mangled
name is stored in the object file. This information helps the debugger to locate the machine
code of the function later on. The mangled name, based on the rules of tinylang, is _
t4File4Func. We also have to specify the file that contains the function.

188 Advanced IR Generation

This may sound surprising at first, but think of the include mechanism in C and C++: a
function can be stored in a different file, which is then included with #include in the
main compilation unit. Here, this is not the case, and we use the same file as the one the
compilation unit uses. Next, the line number of the function and the function type are
passed. The line number of the function may not be the line number where the lexical scope
of the function begins. In this case, you can specify a different ScopeLine. A function also
has protection, which we specify here with the FlagPrivate value to indicate a private
function. Other possible values are FlagPublic and FlagProtected, for public and
protected functions.

Besides the protection level, there are other flags that can be specified here. For
example, FlagVirtual indicates a virtual function, and FlagNoReturn indicates
that the function does not return to the caller. You can find a complete list of possible
values in the llvm/include/llvm/IR/DebugInfoFlags.def LLVM include
file. And lastly, flags specific to a function can be specified. The most used one is the
SPFlagLocalToUnit value, which indicates that the function is local to this compilation
unit. Also often used is the MainSubprogram value, indicating that this function is the
main function of the application. You can also find all possible values in the LLVM include
file mentioned previously.

So far, we only created the metadata referring to static data. Variables are dynamic in
nature, and we explore how to attach the static metadata to the IR code for accessing
variables in the next section.

Tracking variables and their values
To be useful, the type metadata described in the last section needs to be associated
with the variables of the source program. For a global variable, this is pretty easy. The
createGlobalVariableExpression() function of the llvm::DIBuilder
class creates the metadata to describe a global variable. This includes the name of the
variable in the source, the mangled name, the source file, and so on. A global variable
in LLVM IR is represented by an instance of the GlobalVariable class. This class
has an addDebugInfo() method, which associates the metadata node returned from
createGlobalVariableExpression() with the global variable.

For local variables, we need to take another approach. LLVM IR does not know a class
representing a local variable; it knows only about values. The solution the LLVM community
developed is to insert calls to intrinsic functions into the IR code of a function. An intrinsic
function is a function that LLVM knows about and therefore can do some magic with it. In
most cases, intrinsic functions do not result in a subroutine call at the machine level. Here,
the function call is a convenient vehicle to associate the metadata with a value.

Adding debug metadata 189

The most important intrinsic functions for debug metadata are llvm.dbg.declare
and llvm.dbg.value. The former is called once to declare the address of a local
variable, while the latter is called whenever a local variable is set to a new value.

Future LLVM versions will replace llvm.dbg.declare with the llvm.dbg.addr
intrinsic
The llvm.dbg.declare intrinsic function makes a very strong
assumption: the address of the variable described in the call to the intrinsic is
valid throughout the lifetime of the function. This assumption makes it very
hard to preserve debug metadata during optimization because the real storage
address can change. To solve this, a new intrinsic called llvm.dbg.addr was
designed. This intrinsic takes the same parameters as llvm.dbg.declare,
but it has less strict semantics. It still describes the address of a local variable, and
a frontend should generate exactly one call to it.

During optimization, passes can replace this intrinsic with (possibly multiple)
calls to llvm.dbg.value and/or llvm.dbg.addr in order to preserve
the debug information.

The llvm.dbg.declare intrinsic will be deprecated and later removed
when work on llvm.dbg.addr is finished.

How does it work? The LLVM IR representation and the programmatic creation via the
llvm::DIBuilder class differ a bit, so we look at both. Continuing our example from
the previous section, we allocate local storage for the i variable inside the Func function
with the alloca instruction, as follows:

@i = alloca i32

After that, we add a call to the llvm.dbg.declare intrinsic, like this:

call void @llvm.dbg.declare(metadata i32* %i,

 metadata !1, metadata

 !DIExpression())

The first parameter is the address to the local variable. The second parameter is the metadata
describing the local variable, created by a call to either createAutoVariable()
for a local variable or createParameterVariable() for a parameter of the
llvm::DIBuilder class. The third parameter describes an address expression, which I
explain later.

190 Advanced IR Generation

Let's implement the IR creation. You allocate the storage for the @i local variable with a
call to the CreateAlloca() method of the llvm::IRBuilder<> class, as follows:

llvm::Type *IntTy = llvm::Type::getInt32Ty(LLVMCtx);

llvm::Value *Val = Builder.CreateAlloca(IntTy, nullptr, "i");

The LLVMCtx variable is the used context class, and Builder is the used instance of the
llvm::IRBuilder<> class.

A local variable also needs to be described by metadata, as follows:

llvm::DILocalVariable *DbgLocalVar =

 DBuilder.createAutoVariable(DbgFunc, "i", DbgFile,

 7, DbgIntTy);

Using the values from the previous section, we specify that the variable is part of the
DbgFunc function, has the name i, is defined in the file named by DbgFile at line 7,
and has a DbgIntTy type.

Finally, we associate the debug metadata with the address of the variable using the
llvm.dbg.declare intrinsic. Using llvm::DIBuilder shields you from all of the
details of adding a call. The code is shown in the following snippet:

llvm::DILocation *DbgLoc =

 llvm::DILocation::get(LLVMCtx, 7, 5,

 DbgFunc);

DBuilder.insertDeclare(Val, DbgLocalVar,

 DBuilder.createExpression(), DbgLoc,

 Val.getParent());

Again, we have to specify a source location for the variable. An instance of
llvm::DILocation is a container to hold the line and column of a location associated
with a scope. The insertDeclare() method adds a call to the intrinsic function to
the LLVM IR. As parameters it requires the address of the variable, stored in Val, and the
debug metadata for the variable, stored in DbgValVar. We also pass an empty address
expression and the debug location created before. As with a normal instruction, we need
to specify into which basic block the call is inserted. If we specify a basic block, then
the call is inserted at the end. Alternatively, we can specify an instruction, and the call is
inserted before that instruction. We have the pointer to the alloca instruction, which is
the last one that we inserted into the underlying basic block. So, we use this basic block,
and the call gets appended after the alloca instruction.

Adding debug metadata 191

If a value of a local variable changes, then a call to llvm.dbg.value must be added
to the IR. You use the insertValue() method of llvm::DIBuilder to do so. This
works similarly for llvm.dbg.addr. The difference is that instead of the address of the
variable, now the new value is specified.

When we implemented the IR generation for functions, we used an advanced algorithm
that mainly used values and avoided allocating storage for local variables. For adding
debug information, this only means that we use llvm.dbg.value much more often
than you see in Clang-generated IR.

What can we do if the variable does not have dedicated storage space but is part of a larger
aggregate type? One situation where this can arise is with the use of nested functions.
To implement access to the stack frame of the caller, you collect all used variables in
a structure and pass a pointer to this record to the called function. Inside the called
function, you can refer to the variables of the caller as if they were local to the function.
What is different is that these variables are now part of an aggregate.

In the call to llvm.dbg.declare, you use an empty expression if the debug metadata
describes the whole memory the first parameter is pointing to. If it instead describes only
a part of the memory, then you need to add an expression indicating which part of the
memory the metadata applies to. In the case of the nested frame, you need to calculate
the offset into the frame. You need access to a DataLayout instance, which you can get
from the LLVM module into which you are creating the IR code. If the llvm::Module
instance is named Mod, the variable holding the nested frame structure is named Frame,
being of type llvm::StructType, and you access the third member of the frame. This
then gives you the offset of the member, as illustrated in the following code snippet:

const llvm::DataLayout &DL = Mod->getDataLayout();

uint64_t Ofs = DL.getStructLayout(Frame)

 ->getElementOffset(3);

The expression is created from a sequence of operations. To access the third member of
the frame, the debugger needs to add the offset to the base pointer. You need to create an
array and this information—for example, in this way:

llvm::SmallVector<int64_t, 2> AddrOps;

AddrOps.push_back(llvm::dwarf::DW_OP_plus_uconst);

AddrOps.push_back(Offset);

From this array, you can create an expression that you then pass to llvm.dbg.declare
instead of the empty expression, as follows:

llvm::DIExpression *Expr = DBuilder.createExpression(AddrOps);

192 Advanced IR Generation

You are not limited to this offset operation. DWARF knows many different operators, and
you can create fairly complex expressions. You can find a complete list of operators in the
llvm/include/llvm/BinaryFormat/Dwarf.def LLVM include file.

You are now able to create debug information for variables. To enable the debugger to
follow the control flow in the source, you also need to provide line-number information,
which is the topic of the next section.

Adding line numbers
A debugger allows a programmer to step line by line through an application. For this, the
debugger needs to know which machine instructions belong to which line in the source
code. LLVM allows a source location to be added to each instruction. In the previous
section, we created location information of the llvm::DILocation type. A debug
location has more information than just the line, column, and scope. If needed, the scope
into which this line is inlined can be specified. It is also possible to indicate that this debug
location belongs to implicit code—that is, code that the frontend has generated but that is
not in the source code.

Before it can be attached to an instruction, we must wrap the debug location in an
llvm::DebugLoc object. To do so, you simply pass the location information obtained
from the llvm::DILocation class to the llvm::DebugLoc constructor. With this
wrapping, it is possible for LLVM to track the location information. While the location
in the source obviously does not change, the generated machine code for a source-level
statement or expression can be dropped during optimization. Encapsulation helps to deal
with these possible changes.

Adding line-number information mostly boils down to retrieving the line-number
information from the AST and adding it to the generated instructions. The
llvm::Instruction class has the setDebugLoc() method, which attaches the
location information to the instruction.

In the next section, we add the generation of debug information to our tinylang compiler.

Adding debug support to tinylang
We encapsulate the generation of debug metadata in the new CGDebugInfo class. We
put the declaration into the tinylang/CodeGen/CGDebugInfo.h header file and the
definition into the tinylang/CodeGen/CGDebugInfo.cpp file.

Adding debug metadata 193

The CGDebugInfo class has five important members. We need a reference to the code
generator for the module, CGM, because we need to convert types from AST representation
to LLVM types. Of course, we also need an instance of the llvm::DIBuilder class,
called DBuilder, as in the previous sections. A pointer to the instance of the compile
unit is also needed, and we store it in a member called CU.

To avoid repeated creation of the debug metadata for types, we also add a map to
cache this information. The member is called TypeCache. And lastly, we need
a way to manage the scope information, for which we create a stack based on the
llvm::SmallVector<> class, called ScopeStack. Thus we have the following code:

 CGModule &CGM;

 llvm::DIBuilder DBuilder;

 llvm::DICompileUnit *CU;

 llvm::DenseMap<TypeDeclaration *, llvm::DIType *>

 TypeCache;

 llvm::SmallVector<llvm::DIScope *, 4> ScopeStack;

The following methods of the CGDebugInfo class all make use of these members:

1.	 First, we need to create the compile unit, which we do in the constructor. We also
create a file containing the compile unit here. Later, we can refer to the file through
the CU member. The code for the constructor is shown in the following snippet:

CGDebugInfo::CGDebugInfo(CGModule &CGM)

 : CGM(CGM), DBuilder(*CGM.getModule()) {

 llvm::SmallString<128> Path(

 CGM.getASTCtx().getFilename());

 llvm::sys::fs::make_absolute(Path);

 llvm::DIFile *File = DBuilder.createFile(

 llvm::sys::path::filename(Path),

 llvm::sys::path::parent_path(Path));

 bool IsOptimized = false;

 unsigned ObjCRunTimeVersion = 0;

 llvm::DICompileUnit::DebugEmissionKind EmissionKind =

 llvm::DICompileUnit::DebugEmissionKind::FullDebug;

 CU = DBuilder.createCompileUnit(

 llvm::dwarf::DW_LANG_Modula2, File, "tinylang",

194 Advanced IR Generation

 IsOptimized, StringRef(), ObjCRunTimeVersion,

 StringRef(), EmissionKind);

}

2.	 Very often, we need to provide a line number. This can be derived from the source
manager location, which is available is most AST nodes. The source manager can
convert this into a line number, as follows:

unsigned CGDebugInfo::getLineNumber(SMLoc Loc) {

 return CGM.getASTCtx().getSourceMgr().FindLineNumber(

 Loc);

}

3.	 Information about a scope is held on a stack. We need methods to open and close
a scope and to retrieve the current scope. The compilation unit is the global scope,
which we add automatically, as follows:

llvm::DIScope *CGDebugInfo::getScope() {

 if (ScopeStack.empty())

 openScope(CU->getFile());

 return ScopeStack.back();

}

void CGDebugInfo::openScope(llvm::DIScope *Scope) {

 ScopeStack.push_back(Scope);

}

void CGDebugInfo::closeScope() {

 ScopeStack.pop_back();

}

4.	 We create a method for each category of the type we need to transform. The
getPervasiveType() method creates the debug metadata for basic types. Note
in the following code snippet the use of the encoding parameter, declaring the
INTEGER type as a signed type and the BOOLEAN type encoded as a Boolean type:

llvm::DIType *

CGDebugInfo::getPervasiveType(TypeDeclaration *Ty) {

 if (Ty->getName() == "INTEGER") {

Adding debug metadata 195

 return DBuilder.createBasicType(

 Ty->getName(), 64, llvm::dwarf::DW_ATE_signed);

 }

 if (Ty->getName() == "BOOLEAN") {

 return DBuilder.createBasicType(

 Ty->getName(), 1,

 llvm::dwarf::DW_ATE_boolean);

 }

 llvm::report_fatal_error(

 "Unsupported pervasive type");

}

5.	 If the type name is simply renamed, then we map this to a type definition. Here, we
need to make the first use of the scope and line-number information, as follows:

llvm::DIType *

CGDebugInfo::getAliasType(AliasTypeDeclaration *Ty) {

 return DBuilder.createTypedef(

 getType(Ty->getType()), Ty->getName(),

 CU->getFile(), getLineNumber(Ty->getLocation()),

 getScope());

}

6.	 Creating the debug information for an array requires specification about the size
and the alignment. We retrieve this data from the DataLayout class. We also need
to specify the index range of the array. We can do this with the following code:

llvm::DIType *

CGDebugInfo::getArrayType(ArrayTypeDeclaration *Ty) {

 auto *ATy =

 llvm::cast<llvm::ArrayType>(CGM.convertType(Ty));

 const llvm::DataLayout &DL =

 CGM.getModule()->getDataLayout();

 uint64_t NumElements = Ty->getUpperIndex();

 llvm::SmallVector<llvm::Metadata *, 4> Subscripts;

 Subscripts.push_back(

 DBuilder.getOrCreateSubrange(0, NumElements));

196 Advanced IR Generation

 return DBuilder.createArrayType(

 DL.getTypeSizeInBits(ATy) * 8,

 DL.getABITypeAlignment(ATy),

 getType(Ty->getType()),

 DBuilder.getOrCreateArray(Subscripts));

}

7.	 Using all these single methods, we create a central method to create the metadata
for a type. This metadata is also responsible for caching the data. The code can be
seen in the following snippet:

llvm::DIType *

CGDebugInfo::getType(TypeDeclaration *Ty) {

 if (llvm::DIType *T = TypeCache[Ty])

 return T;

 if (llvm::isa<PervasiveTypeDeclaration>(Ty))

 return TypeCache[Ty] = getPervasiveType(Ty);

 else if (auto *AliasTy =

 llvm::dyn_cast<AliasTypeDeclaration>(Ty))

 return TypeCache[Ty] = getAliasType(AliasTy);

 else if (auto *ArrayTy =

 llvm::dyn_cast<ArrayTypeDeclaration>(Ty))

 return TypeCache[Ty] = getArrayType(ArrayTy);

 else if (auto *RecordTy =

 llvm ::dyn_cast<RecordTypeDeclaration>(

 Ty))

 return TypeCache[Ty] = getRecordType(RecordTy);

 llvm::report_fatal_error("Unsupported type");

 return nullptr;

}

8.	 We also need to add a method to emit metadata for global variables, as follows:

void CGDebugInfo::emitGlobalVariable(

 VariableDeclaration *Decl,

 llvm::GlobalVariable *V) {

 llvm::DIGlobalVariableExpression *GV =

Adding debug metadata 197

 DBuilder.createGlobalVariableExpression(

 getScope(), Decl->getName(), V->getName(),

 CU->getFile(),

 getLineNumber(Decl->getLocation()),

 getType(Decl->getType()), false);

 V->addDebugInfo(GV);

}

9.	 To emit the debug information for procedures, we first need to create the metadata
for the procedure type. For this, we need a list of the types of the parameter, with the
return type being the first entry. If the procedure has no return type, then we use an
unspecified type called void, as in C. If a parameter is a reference, then we need to
add the reference type; otherwise, we add the type to the list. The code is illustrated
in the following snippet:

llvm::DISubroutineType *

CGDebugInfo::getType(ProcedureDeclaration *P) {

 llvm::SmallVector<llvm::Metadata *, 4> Types;

 const llvm::DataLayout &DL =

 CGM.getModule()->getDataLayout();

 // Return type at index 0

 if (P->getRetType())

 Types.push_back(getType(P->getRetType()));

 else

 Types.push_back(

 DBuilder.createUnspecifiedType("void"));

 for (const auto *FP : P->getFormalParams()) {

 llvm::DIType *PT = getType(FP->getType());

 if (FP->isVar()) {

 llvm::Type *PTy = CGM.convertType(FP->getType());

 PT = DBuilder.createReferenceType(

 llvm::dwarf::DW_TAG_reference_type, PT,

 DL.getTypeSizeInBits(PTy) * 8,

 DL.getABITypeAlignment(PTy));

 }

 Types.push_back(PT);

 }

198 Advanced IR Generation

 return DBuilder.createSubroutineType(

 DBuilder.getOrCreateTypeArray(Types));

}

10.	 For the procedure itself, we can now create the debug information using the
procedure type created in the last step. A procedure also opens a new scope, so we
push the procedure onto the scope stack. We also associate the LLVM function
object with the new debug information, as follows:

void CGDebugInfo::emitProcedure(

 ProcedureDeclaration *Decl, llvm::Function *Fn) {

 llvm::DISubroutineType *SubT = getType(Decl);

 llvm::DISubprogram *Sub = DBuilder.createFunction(

 getScope(), Decl->getName(), Fn->getName(),

 CU->getFile(), getLineNumber(Decl->getLocation()),

 SubT, getLineNumber(Decl->getLocation()),

 llvm::DINode::FlagPrototyped,

 llvm::DISubprogram::SPFlagDefinition);

 openScope(Sub);

 Fn->setSubprogram(Sub);

}

11.	 When the end of a procedure is reached, we must inform the builder to finalize the
construction of debug information for this procedure. We also need to remove the
procedure from the scope stack. We can do this with the following code:

void CGDebugInfo::emitProcedureEnd(

 ProcedureDeclaration *Decl, llvm::Function *Fn) {

 if (Fn && Fn->getSubprogram())

 DBuilder.finalizeSubprogram(Fn->getSubprogram());

 closeScope();

}

12.	 Lastly, when we are finished with adding the debug information, we need to add
the finalize() method onto the builder. The generated debug information is
then validated. This is an important step during development as it helps you to find
wrongly generated metadata. The code can be seen in the following snippet:

void CGDebugInfo::finalize() { DBuilder.finalize(); }

Adding debug metadata 199

Debug information should only be generated if the user requested it. We will need a new
command-line switch for this. We will add this to the file of the CGModule class, and we
will also use it inside this class, as follows:

static llvm::cl::opt<bool>

 Debug("g", llvm::cl::desc("Generate debug information"),

 llvm::cl::init(false));

The CGModule class holds an instance of the std::unique_ptr<CGDebugInfo>
class. The pointer is initialized in the constructor, regarding the setting of the
command-line switch, as follows:

 if (Debug)

 DebugInfo.reset(new CGDebugInfo(*this));

In the getter method we return the pointer, like this:

CGDebugInfo *getDbgInfo() {

 return DebugInfo.get();

}

A common pattern when generating the debug metadata is to retrieve the pointer and
check if it is valid. For example, after we have created a global variable, we add the debug
information in this way:

VariableDeclaration *Var = …;

llvm::GlobalVariable *V = …;

if (CGDebugInfo *Dbg = getDbgInfo())

 Dbg->emitGlobalVariable(Var, V);

In order to add line-number information, we need to add a getDebugLoc() conversion
method into the CGDebugInfo class, which turns the location information from the AST
into the debug metadata, as follows:

llvm::DebugLoc CGDebugInfo::getDebugLoc(SMLoc Loc) {

 std::pair<unsigned, unsigned> LineAndCol =

 CGM.getASTCtx().getSourceMgr().getLineAndColumn(Loc);

 llvm::DILocation *DILoc = llvm::DILocation::get(

 CGM.getLLVMCtx(), LineAndCol.first, LineAndCol.second,

 getCU());

 return llvm::DebugLoc(DILoc);

}

200 Advanced IR Generation

A utility function in the CGModule class can then be called to add the line-number
information to an instruction, as follows:

void CGModule::applyLocation(llvm::Instruction *Inst,

 llvm::SMLoc Loc) {

 if (CGDebugInfo *Dbg = getDbgInfo())

 Inst->setDebugLoc(Dbg->getDebugLoc(Loc));

}

In this way, you can add the debug information for your own compiler.

Summary
In this chapter, you learned how throwing and catching exceptions works in LLVM and
about which IR code you need to generate to exploit this feature. To enhance the scope
of IR, you learned how you can attach various metadata to instructions. Metadata for
type-based aliases provides additional information to the LLVM optimizer and helps
with certain optimizations to produce better machine code. Users always appreciate the
possibility of using a source-level debugger, and through adding debug information to the
IR code you are able to provide this important feature of a compiler.

Optimizing the IR code is a core task of LLVM. In the next chapter, we will learn how
the pass manager works and how we can influence the optimization pipeline the pass
manager governs.

8
Optimizing IR

LLVM uses a series of Passes to optimize the intermediate representation (IR). A Pass
performs an operation on a unit of IR, either a function or a module. The operation can
be a transformation, which changes the IR in a defined way, or an analysis, which collects
information such as dependencies. A series of Passes is called the Pass pipeline. The Pass
manager executes the Pass pipeline on the IR that our compiler produces. Therefore, it is
important that we know what the Pass manager does and how to construct a Pass pipeline.
The semantics of a programming language might require the development of new Passes,
and we must add these Passes to the pipeline.

In this chapter, we will cover the following topics:

•	 Introducing the LLVM Pass manager

•	 Implementing a Pass using the new Pass manager

•	 Adapting a Pass for use with the old Pass manager

•	 Adding an optimization pipeline to your compiler

By the end of the chapter, you will know how to develop a new Pass and how to add it
to a Pass pipeline. You will have also acquired the knowledge required to set up the Pass
pipeline in your own compiler.

202 Optimizing IR

Technical requirements
The source code for this chapter is available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter08

You can find the code in action videos at https://bit.ly/3nllhED

Introducing the LLVM Pass manager
The LLVM core libraries optimize the IR your compiler creates and turn it into object
code. This giant task is broken down into separate steps, called Passes. These Passes need
to be executed in the right order, which is the objective of the Pass manager.

But why not hardcode the order of the Passes? Well, the user of your compiler usually
expects that your compiler provides a different level of optimization. Developers prefer
a faster compilation speed over-optimization during development time. The final
application should run as fast as possible, and your compiler should be able to perform
sophisticated optimizations, with longer compilation times accepted. A different level of
optimization means a different number of optimization Passes that need to be executed.
And, as a compiler writer, you might want to provide your own Passes to take advantage
of your knowledge of the source language. For example, you might want to replace well-
known library functions with inline IR or, if possible, with the computed result of that
function. For C, such a Pass is part of the LLVM core libraries, but for other languages,
you will need to provide it yourself. And introducing your own Passes, you might need
to reorder or add some Passes. For example, if you know that the operation of your Pass
leaves some IR code unreachable, then you should also run the dead code removal Pass
after your own Pass. The Pass manager helps you to organize these requirements.

A Pass is often categorized according to the scope in which it works:

•	 A function Pass takes a single function as input and performs its work on this
function only.

•	 A module Pass takes a whole module as input. Such a Pass performs its work on the
given module and can be used for intraprocedural operations inside this module.

•	 A call graph Pass traverses the functions of a call graph in bottom-up order.

Besides the IR code, a Pass might also consume, produce, or invalidate some analysis
results. There are a lot of different analyses performed; for example, alias analysis or the
construction of a dominator tree. The dominator tree helps move invariant code out of a
loop, so a Pass performing such a transformation can only run after the dominator tree
has been created. Another Pass might perform a transformation that could invalidate the
existing dominator tree.

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter08
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter08
https://bit.ly/3nllhED

Introducing the LLVM Pass manager 203

Under the hood, the Pass manager ensures the following:

•	 Analysis results are shared among Passes. This requires you to keep track of which
Pass requires which analysis, and of the state of each analysis. The goal is to avoid
needless recomputation of analyses and to free up the memory held by the analysis
results as soon as possible.

•	 The Passes are executed in a pipeline fashion. For example, if several function Passes
should be executed in sequence, then the Pass manager runs each of these function
Passes on the first function. It will then run all function Passes on the second
function, and so on. The underlying idea here is to improve the cache behavior, as
the compiler performs transformations on only a limited set of data (that is, one IR
function) and then moves on to the next limited set of data.

There are two Pass managers in LLVM, as follows:

•	 The old (or legacy) Pass manager

•	 The new Pass manager

The future belongs to the new Pass manager, but the transition is not yet complete. A
number of crucial Passes, such as object code emission, have not yet been migrated to the
new Pass manager, so it is important to understand both Pass managers.

The old Pass manager requires a Pass to inherit from a base class, for example, from
the llvm::FunctionPass class for a function Pass. In contrast, the new Pass
manager relies on a concept-based approach, requiring inheritance from the special
llvm::PassInfo<> mixin class only. The dependence between Passes was not
expressed explicitly with the old Pass manager. In the new Pass manager, it needs to be
explicitly coded. The new Pass manager also features a different approach to handling
analysis and allows the specification of an optimization pipeline through a textual
representation on the command line. Some LLVM users reported a reduction of compile
of up to 10% just by switching from the old to the new Pass manager, which is a very
convincing argument for using the new Pass manager.

First, we will implement a Pass for the new Pass manager and explore how to add it to
the optimization pipeline. Later, we will take a look at how to use a Pass with the old Pass
manager, too.

204 Optimizing IR

Implementing a Pass using the
new Pass manager
A Pass can perform arbitrary complex transformations on the LLVM IR. To illustrate the
mechanics of adding a new Pass, our new Pass only counts the number of IR instructions
and basic blocks. We name the Pass countir. Adding the Pass to the LLVM source tree
or as a standalone Pass differs slightly, so we will do both in the following sections. Let's
begin by adding a new Pass to the LLVM source tree.

Adding a Pass to the LLVM source tree
Let's start by adding the new Pass to the LLVM source. This is the right approach if we
later want to publish the new Pass in the LLVM tree.

The source of Passes that perform transformations on the LLVM IR is located in the
llvm-project/llvm/lib/Transforms folder, and the header files are in the
llvm-project/llvm/include/llvm/Transforms folder. Because there are so
many Passes, they are sorted into subfolders after the category they fit in.

For our new Pass, we create a new folder, called CountIR, in both locations. First, let's
implement the CountIR.h header file:

1.	 As usual, we need to make sure that the file can be included multiple times.
Additionally, we need to include the Pass manager definition:

#ifndef LLVM_TRANSFORMS_COUNTIR_COUNTIR_H

#define LLVM_TRANSFORMS_COUNTIR_COUNTIR_H

#include "llvm/IR/PassManager.h"

2.	 Because we are inside the LLVM source, we put our new CountIR class into the
llvm namespace. The class inherits from the PassInfoMixin template. This
template only adds some boilerplate code, such as a name() method. It is not used
the determine the type of Pass:

namespace llvm {

class CountIRPass : public PassInfoMixin<CountIRPass> {

3.	 At runtime, the run() method of the task will be called. The signature of the
run() method determines the type of Pass. Here, the first argument is a reference
to the Function type, so this is a function Pass:

Implementing a Pass using the new Pass manager 205

public:

 PreservedAnalyses run(Function &F,

 FunctionAnalysisManager &AM);

4.	 Finally, we need to close the class, the namespace, and the header guard:

};

} // namespace llvm

#endif

Of course, the definition of our new Pass is so simple because we have only
performed a trivial task.

Let's continue with the implementation of the Pass inside the CountIIR.cpp file.
LLVM supports the collection of statistical information about a Pass if compiled in
debug mode. For our Pass, we will make use of this infrastructure.

5.	 We begin the source by including our own header file and the required LLVM
header files:

#include "llvm/Transforms/CountIR/CountIR.h"

#include "llvm/ADT/Statistic.h"

#include "llvm/Support/Debug.h"

6.	 To shorten the source, we tell the compiler that we are using the llvm namespace:

using namespace llvm;

7.	 The built-in debug infrastructure of LLVM requires that we define a debug type,
which is a string. This string is later shown in the printed statistic:

#define DEBUG_TYPE "countir"

8.	 We define two counter variables with the STATISTIC macro. The first parameter
is the name of the counter variable, and the second parameter is the text that will be
printed in the statistic:

STATISTIC(NumOfInst, "Number of instructions.");

STATISTIC(NumOfBB, "Number of basic blocks.");

206 Optimizing IR

9.	 Inside the run() method, we loop through all of the basic blocks of the function
and increment the corresponding counter. We do the same for all instructions of
a basic block. To prevent a compiler from warning us about unused variables, we
insert a no-op use of the I variable. Because we only count and do not alter the IR,
we tell the caller that we have preserved all existing analyses:

PreservedAnalyses

CountIRPass::run(Function &F,

 FunctionAnalysisManager &AM) {

 for (BasicBlock &BB : F) {

 ++NumOfBB;

 for (Instruction &I : BB) {

 (void)I;

 ++NumOfInst;

 }

 }

 return PreservedAnalyses::all();

}

So far, we have implemented the functionality of our new Pass. We will reuse this
implementation later for an out-of-tree Pass. For the solution inside the LLVM tree,
we must change several files in LLVM to announce the existence of the new Pass:

1.	 First, we need to add a CMakeLists.txt file to the source folder. This file
contains the build instructions for a new LLVM library name, LLVMCountIR. The
new library needs to link against the LLVM Support component because we use
the debug and statistic infrastructure, and against the LLVM Core component,
which contains the definition of the LLVM IR:

add_llvm_component_library(LLVMCountIR

 CountIR.cpp

 LINK_COMPONENTS Core Support)

2.	 In order to make this new library part of the build, we need to add the folder into
the CMakeLists.txt file of the parent folder, which is the llvm-project/
llvm/lib/Transforms/CMakeList.txt file. Then, add the following line:

add_subdirectory(CountIR)

Implementing a Pass using the new Pass manager 207

3.	 The PassBuilder class needs to know about our new Pass. To do this, we add
the following line into the include section of the llvm-project/llvm/lib/
Passes/PassBuilder.cpp file:

#include "llvm/Transforms/CountIR/CountIR.h"

4.	 As the last step, we need to update the Pass registry, which is in the llvm-
project/llvm/lib/Passes/PassRegistry.def file. Look for the section
in which function Passes are defined, for example, by searching for the FUNCTION_
PASS macro. Inside this section, you add the following line:

FUNCTION_PASS("countir", CountIRPass())

5.	 We have now made all the necessary changes. Follow the build instructions from
Chapter 1, Installing LLVM, in the Building with CMake section, to recompile
LLVM. To test the new Pass, we store the following IR code inside the demo.ll file
in our build folder. The code has two functions and, in sum, three instructions
and two basic blocks:

define internal i32 @func() {

 ret i32 0

}

define dso_local i32 @main() {

 %1 = call i32 @func()

 ret i32 %1

}

6.	 We can use the new Pass with the opt utility. To run the new Pass, we will utilize
the --passes="countir" option. To get the statistical output, we need to add
the --stats option. Because we do not need the resulting bitcode, we also specify
the --disable-output option:

$ bin/opt --disable-output --passes="countir" –-stats
demo.ll

===--
--===

 ... Statistics Collected ...

===--
--===

208 Optimizing IR

2 countir - Number of basic blocks.

3 countir - Number of instructions.

7.	 We run our news Pass, and the output matches our expectations. We have
successfully extended LLVM!

Running a single Pass helps with debugging. With the –-passes option, you cannot only
name a single Pass but describe a whole pipeline. For example, the default pipeline for
optimization level 2 is named default<O2>. You can run the countir Pass before the
default pipeline with the –-passes="module(countir),default<O2>" argument.
The Pass names in such a pipeline description must be of the same type. The default
pipeline is a module Pass and our countir Pass is a function Pass. To create a module
pipeline from both, first, we must create a module Pass containing the countir Pass.
That is done with module(countir). You can add more function Passes to this module
Pass by specifying them in a comma-separated list. In the same way, the module Passes
can be combined. To study the effects of this, you can use the inline and countir
Passes: running them in a different order, or as a module Pass, will give you a different
statistical output.

Adding a new Pass to the LLVM source tree makes sense if you plan to publish your Pass
as a part of LLVM. If you do not plan to do this, or if you want to distribute your Pass
independently of LLVM, then you can create a Pass plugin. In the next section, we will
view the steps to do this.

Adding a new Pass as a plugin
To provide a new Pass as a plugin, we will create a new project that uses LLVM:

1.	 Let's begin by creating a new folder, called countirpass, in our source folder. The
folder will have the following structure and files:

|-- CMakeLists.txt

|-- include

| `-- CountIR.h

|-- lib

 |-- CMakeLists.txt

 `-- CountIR.cpp

Implementing a Pass using the new Pass manager 209

2.	 Note that we have reused the functionality from the previous section, with some
small adaptions. The CountIR.h header file is now in a different location, so we
change the name of the symbol that is used as a guard. We also do not use the llvm
namespace, because we are now outside the LLVM source. As a result of this change,
the header file becomes the following:

#ifndef COUNTIR_H

#define COUNTIR_H

#include "llvm/IR/PassManager.h"

class CountIRPass

 : public llvm::PassInfoMixin<CountIRPass> {

public:

 llvm::PreservedAnalyses

 run(llvm::Function &F,

 llvm::FunctionAnalysisManager &AM);

};

#endif

3.	 We can copy the CountIR.cpp implementation file from the previous section.
Small changes are needed here, too. Because the path of our header file has changed,
we need to replace the include directive with the following:

#include "CountIR.h"

4.	 We also need to register the new Pass at the Pass builder. This happens when
the plugin is loaded. The Pass plugin manager calls the special function,
llvmGetPassPluginInfo(), which performs the registration. For this
implementation, we require two additional include files:

#include "llvm/Passes/PassBuilder.h"

#include "llvm/Passes/PassPlugin.h"

210 Optimizing IR

The user specifies the Passes to run on the command line with the –-passes
option. The PassBuilder class extracts the Pass names from the string. In order
to create an instance of the named Pass, the PassBuilder class maintains a list
of callbacks. Essentially, the callbacks are called with the Pass name and a Pass
manager. If the callback knows the Pass name, then it adds an instance of this Pass
to the Pass manager. For our Pass, we need to provide such a callback function:

bool PipelineParsingCB(

 StringRef Name, FunctionPassManager &FPM,

 ArrayRef<PassBuilder::PipelineElement>) {

 if (Name == "countir") {

 FPM.addPass(CountIRPass());

 return true;

 }

 return false;

}

5.	 Of course, we need to register this function as the PassBuilder instance. After
the plugin is loaded, a registration callback is called for exactly this purpose. Our
registration function is as follows:

void RegisterCB(PassBuilder &PB) {

 PB.registerPipelineParsingCallback(PipelineParsingCB);

}

6.	 Finally, each plugin needs to provide the mentioned
llvmGetPassPluginInfo() function. This function returns a structure with
four elements: the LLVM plugin API version used by our plugin, a name, the
version number of the plugin, and the registration callback. The plugin API requires
that the function uses the extern "C" convention. This is to avoid problems with
C++ name mangling. The function is very simple:

extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_
WEAK

llvmGetPassPluginInfo() {

 return {LLVM_PLUGIN_API_VERSION, "CountIR", "v0.1",

 RegisterCB};

}

Implementing a Pass using the new Pass manager 211

The implementation of one separate function for each callback helps us to
understand what is going on. If your plugin provides several Passes, then you can
extend the RegisterCB callback function to register all of the Passes. Often, you
can find a very compact approach. The following llvmGetPassPluginInfo()
function combines PipelineParsingCB(), RegisterCB(), and
llvmGetPassPluginInfo() from earlier into a single function. It does so by
making use of lambda functions:

extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_
WEAK

llvmGetPassPluginInfo() {

 return {LLVM_PLUGIN_API_VERSION, "CountIR", "v0.1",

 [](PassBuilder &PB) {

 PB.registerPipelineParsingCallback(

 [](StringRef Name, FunctionPassManager
 &FPM,

 ArrayRef<PassBuilder::PipelineElement>)

 {

 if (Name == "countir") {

 FPM.addPass(CountIRPass());

 return true;

 }

 return false;

 });

 }};

}

7.	 Now, we only need to add the build files. The lib/CMakeLists.txt file contains
just one command to compile the source file. The LLVM-specific command, add_
llvm_library(), ensures that the same compiler flags that were used to build
LLVM are utilized:

add_llvm_library(CountIR MODULE CountIR.cpp)

The top-level CMakeLists.txt file is more complex.

212 Optimizing IR

8.	 As usual, we set the required CMake version and the project name. Additionally, we
set the LLVM_EXPORTED_SYMBOL_FILE variable to ON. This is necessary to make
the plugin work on Windows:

cmake_minimum_required(VERSION 3.4.3)

project(countirpass)

set(LLVM_EXPORTED_SYMBOL_FILE ON)

9.	 Next, we look for the LLVM installation. We also print information about the found
version to the console:

find_package(LLVM REQUIRED CONFIG)

message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")

message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")

10.	 Now, we can add the cmake folder from LLVM to the search path. We include
the LLVM-specific files, ChooseMSVCCRT and AddLLVM, which provide
additional commands:

list(APPEND CMAKE_MODULE_PATH ${LLVM_DIR})

include(ChooseMSVCCRT)

include(AddLLVM)

11.	 The compiler needs to know about the required definitions and the LLVM paths:

include_directories("${LLVM_INCLUDE_DIR}")

add_definitions("${LLVM_DEFINITIONS}")

link_directories("${LLVM_LIBRARY_DIR}")

12.	 Finally, we add our own include and source folders:

include_directories(BEFORE include)

add_subdirectory(lib)

13.	 Having implemented all of the required files, we can now create the build folder
beside the countirpass folder. First, change to the build directory and create the
build files:

$ cmake –G Ninja ../countirpass

Adapting a Pass for use with the old Pass manager 213

14.	 Then, you can compile the plugin, as follows:

$ ninja

15.	 You use the plugin with the opt utility, which is the modular LLVM optimizer and
analyzer. Among other things, the opt utility produces an optimized version of the
input file. To use the plugin with it, you need to specify an additional parameter to
load the plugin:

$ opt --load-pass-plugin=lib/CountIR.so
--passes="countir"\

 --disable-output –-stats demo.ll

The output is the same as the previous version. Congratulations; the Pass plugin works!

So far, we have only created a Pass for the new Pass manager. In the next section, we will
also extend the Pass for the old Pass manager.

Adapting a Pass for use with the
old Pass manager
The future belongs to the new Pass manager, and it makes no sense to develop a new Pass
for the old Pass manager exclusively. However, during the ongoing transition phase, it
would be useful if a Pass could work with both Pass managers, as most of the Passes in
LLVM already do.

The old Pass manager requires a Pass that has been derived from certain base classes. For
example, a function Pass must derive from the FunctionPass base class. There are more
differences, too. The method run by the Pass manager is named runOnFunction(),
and an ID for the Pass must also be provided. The strategy we follow here is to create a
separate class that we can use with the old Pass manager and refactor the source code in a
way that the functionality can be used with both Pass managers.

We use the Pass plugin as a base. In the include/CountIR.h header file, we add a new
class definition, as follows:

1.	 The new class needs to derive from the FunctionPass class, so we include an
additional header to get the class definition:

#include "llvm/Pass.h"

214 Optimizing IR

2.	 We name the new class CountIRLegacyPass. The class needs an ID for the
internal LLVM machinery, and we initialize the parent class with it:

class CountIRLegacyPass : public llvm::FunctionPass {

public:

 static char ID;

 CountIRLegacyPass() : llvm::FunctionPass(ID) {}

3.	 In order to implement the Pass functionality, two functions must be overridden. The
runOnFunction() method is called for every LLVM IR function and implements
our counting functionality. The getAnalysisUsage() method is used to
announce that all of the analysis results are saved:

 bool runOnFunction(llvm::Function &F) override;

 void getAnalysisUsage(llvm::AnalysisUsage &AU) const
 override;

};

4.	 With the changes to the header file now complete, we can enhance the
implementation inside the lib/CountIR.cpp file. To reuse the counting
functionality, we move the source code into a new function:

void runCounting(Function &F) {

 for (BasicBlock &BB : F) {

 ++NumOfBB;

 for (Instruction &I : BB) {

 (void)I;

 ++NumOfInst;

 }

 }

}

5.	 The method for the new Pass manager needs to be updated in order to use the
new function:

PreservedAnalyses

CountIRPass::run(Function &F, FunctionAnalysisManager
&AM) {

 runCounting(F);

Adapting a Pass for use with the old Pass manager 215

 return PreservedAnalyses::all();

}

6.	 In the same way, we implement the method for the old Pass manager. With the
false return value, we indicate that the IR did not change:

bool CountIRLegacyPass::runOnFunction(Function &F) {

 runCounting(F);

 return false;

}

7.	 To preserve the existing analysis results, the getAnalysisUsage()
method must be implemented in the following way. This is similar to the
PreservedAnalyses::all() return value in the new Pass manager. If you do
not implement this method, then all analysis results are thrown away by default:

void CountIRLegacyPass::getAnalysisUsage(

 AnalysisUsage &AU) const {

 AU.setPreservesAll();

}

8.	 The ID field can be initialized with an arbitrary value because LLVM uses the
address of the field. The common value is 0, so we use it too:

char CountIRLegacyPass::ID = 0;

9.	 Only the Pass registration is missing now. To register the new Pass, we need to
provide a static instance of the RegisterPass<> template. The first argument is
the name of the command-line option to invoke the new Pass. The second argument
is the name of the Pass, which is used, among other things, as information for the
user when invoking the -help option:

static RegisterPass<CountIRLegacyPass>

 X("countir", "CountIR Pass");

10.	 These changes are enough to allow us to invoke our new Pass under the old Pass
manager and the new Pass manager. To test the addition, change back into the
build folder and compile the Pass:

$ ninja

216 Optimizing IR

11.	 To load the plugin for use with the old Pass manager, we need to use the --load
option. Our new Pass is invoked with the --countir option:

$ opt --load lib/CountIR.so --countir –-stats\

 --disable-output demo.ll

Tip
Please also check, in the command line from the previous section, that the
invocation of our Pass with the new Pass manager still works fine!

Being able to run our new Pass with an LLVM-provided tool is nice, but ultimately, we
want to run it inside our compiler. In the next section, we will explore how to set up an
optimization pipeline and how to customize it.

Adding an optimization pipeline
to your compiler
Our tinylang compiler, which was developed in the previous chapters, performs
no optimizations on the created IR code. In the following sections, we will add an
optimization pipeline to the compiler to perform this exactly.

Creating an optimization pipeline with the new Pass
manager
Central to the setup of the optimization pipeline is the PassBuilder class. This class
knows about all of the registered Passes and can construct a Pass pipeline from a textual
description. We use this class to either create the Pass pipeline from a description given
on the command line or use a default pipeline based on the requested optimization level.
We also support the use of Pass plugins, such as the countir Pass plugin, which we
discussed in the previous section. With this, we mimic part of the functionality of the opt
tool and also use similar names for the command-line options.

The PassBuilder class populates an instance of a ModulePassManager class, which
is the Pass manager to hold the constructed Pass pipeline and actually run it. The code
generation Passes still use the old Pass manager; therefore, we have to retain the old Pass
manager for this purpose.

Adding an optimization pipeline to your compiler 217

For the implementation, we extend the tools/driver/Driver.cpp file from our
tinylang compiler:

1.	 We use new classes, so we begin by adding new include files. The llvm/
Passes/PassBuilder.h file provides the definition of the PassBuilder class.
The llvm/Passes/PassPlugin.h file is required for plugin support. Finally,
the llvm/Analysis/TargetTransformInfo.h file provides a Pass that
connects IR-level transformations with target-specific information:

#include "llvm/Passes/PassBuilder.h"

#include "llvm/Passes/PassPlugin.h"

#include "llvm/Analysis/TargetTransformInfo.h"

2.	 To use certain features of the new Pass manager, we add three command-line
options, using the same names as the opt tool. The --passes option enables the
textual specification of the Pass pipeline, and the --load-pass-plugin option
enables the use of Pass plugins. If the --debug-pass-manager option is given,
then the Pass manager prints out information about the executed Passes:

static cl::opt<bool>

 DebugPM("debug-pass-manager", cl::Hidden,

 cl::desc("Print PM debugging

 information"));

static cl::opt<std::string> PassPipeline(

 "passes",

 cl::desc("A description of the pass pipeline"));

static cl::list<std::string> PassPlugins(

 "load-pass-plugin",

 cl::desc("Load passes from plugin library"));

3.	 The user influences the construction of the Pass pipeline with the optimization level.
The PassBuilder class supports six different optimization levels: one level with
no optimization, three levels for optimizing the speed, and two levels for reducing
the size. We capture all of these levels in one command-line option:

static cl::opt<signed char> OptLevel(

 cl::desc("Setting the optimization level:"),

 cl::ZeroOrMore,

 cl::values(

 clEnumValN(3, "O", "Equivalent to -O3"),

218 Optimizing IR

 clEnumValN(0, "O0", "Optimization level 0"),

 clEnumValN(1, "O1", "Optimization level 1"),

 clEnumValN(2, "O2", "Optimization level 2"),

 clEnumValN(3, "O3", "Optimization level 3"),

 clEnumValN(-1, "Os",

 "Like -O2 with extra

 optimizations "

 "for size"),

 clEnumValN(

 -2, "Oz",

 "Like -Os but reduces code size further")),

 cl::init(0));

4.	 The plugin mechanism of LLVM supports a static plugin registry, which is created
during the configuration of the project. To make use of this registry, we include the
llvm/Support/Extension.def database file to create the prototype for the
functions, which returns the plugin information:

#define HANDLE_EXTENSION(Ext) \

 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();

#include "llvm/Support/Extension.def"

5.	 We replace the existing emit() function with a new version. We declare the
required PassBuilder instance at top of the function:

bool emit(StringRef Argv0, llvm::Module *M,

 llvm::TargetMachine *TM,

 StringRef InputFilename) {

 PassBuilder PB(TM);

6.	 To implement the support for the Pass plugins given on the command line, we loop
through the list of plugin libraries given by the user and try to load the plugin. We
emit an error message if this fails; otherwise, we register the Passes:

 for (auto &PluginFN : PassPlugins) {

 auto PassPlugin = PassPlugin::Load(PluginFN);

 if (!PassPlugin) {

 WithColor::error(errs(), Argv0)

 << "Failed to load passes from '"

Adding an optimization pipeline to your compiler 219

 << PluginFN

 << "'. Request ignored.\n";

 continue;

 }

 PassPlugin->registerPassBuilderCallbacks(PB);

 }

7.	 The information from the static plugin registry is used in a similar way to register
those plugins with our PassBuilder instance:

#define HANDLE_EXTENSION(Ext) \

 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(\

 PB);

#include "llvm/Support/Extension.def"

8.	 We need to declare variables for the different analysis managers. The only parameter
is the debug flag:

 LoopAnalysisManager LAM(DebugPM);

 FunctionAnalysisManager FAM(DebugPM);

 CGSCCAnalysisManager CGAM(DebugPM);

 ModuleAnalysisManager MAM(DebugPM);

9.	 Next, we populate the analysis managers with calls to the respective register
method on the PassBuilder instance. Through this call, the analysis manager is
populated with the default analysis Passes and also runs registration callbacks. We
also make sure that the function analysis manager uses the default alias-analysis
pipeline and that all analysis managers know about each other:

 FAM.registerPass(

 [&] { return PB.buildDefaultAAPipeline(); });

 PB.registerModuleAnalyses(MAM);

 PB.registerCGSCCAnalyses(CGAM);

 PB.registerFunctionAnalyses(FAM);

 PB.registerLoopAnalyses(LAM);

 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);

220 Optimizing IR

10.	 The MPM module Pass manager holds the Pass pipeline that we construct. The
instance is initialized with the debug flag:

 ModulePassManager MPM(DebugPM);

11.	 We implement two different ways to populate the module Pass manager with the
Pass pipeline. If the user provided a Pass pipeline on the command line, that is, they
used the --passes option, then we use this as the Pass pipeline:

 if (!PassPipeline.empty()) {

 if (auto Err = PB.parsePassPipeline(

 MPM, PassPipeline)) {

 WithColor::error(errs(), Argv0)

 << toString(std::move(Err)) << "\n";

 return false;

 }

 }

12.	 Otherwise, we use the chosen optimization level to determine the Pass pipeline
to construct. The name of the default Pass pipeline is default, and it takes the
optimization level as a parameter:

 else {

 StringRef DefaultPass;

 switch (OptLevel) {

 case 0: DefaultPass = "default<O0>"; break;

 case 1: DefaultPass = "default<O1>"; break;

 case 2: DefaultPass = "default<O2>"; break;

 case 3: DefaultPass = "default<O3>"; break;

 case -1: DefaultPass = "default<Os>"; break;

 case -2: DefaultPass = "default<Oz>"; break;

 }

 if (auto Err = PB.parsePassPipeline(

 MPM, DefaultPass)) {

 WithColor::error(errs(), Argv0)

 << toString(std::move(Err)) << "\n";

 return false;

 }

 }

Adding an optimization pipeline to your compiler 221

13.	 The Pass pipeline to run transformations on the IR code is now set up. We need an
open file to write the result to. The system assembler and LLVM IR output are text
based, so we should set the OF_Text flag for both of them:

 std::error_code EC;

 sys::fs::OpenFlags OpenFlags = sys::fs::OF_None;

 CodeGenFileType FileType = codegen::getFileType();

 if (FileType == CGFT_AssemblyFile)

 OpenFlags |= sys::fs::OF_Text;

 auto Out = std::make_unique<llvm::ToolOutputFile>(

 outputFilename(InputFilename), EC, OpenFlags);

 if (EC) {

 WithColor::error(errs(), Argv0)

 << EC.message() << '\n';

 return false;

 }

14.	 For the code generation, we have to use the old Pass manager. We simply declare
the CodeGenPM instances and add the Pass that makes target-specific information
available at the IR transformation level:

 legacy::PassManager CodeGenPM;

 CodeGenPM.add(createTargetTransformInfoWrapperPass(

 TM->getTargetIRAnalysis()));

15.	 To output the LLVM IR, we add a Pass that just prints the IR into a stream:

 if (FileType == CGFT_AssemblyFile && EmitLLVM) {

 CodeGenPM.add(createPrintModulePass(Out->os()));

 }

16.	 Otherwise, we let the TargetMachine instance add the required code generation
Passes, directed by the FileType value that we Pass as an argument:

 else {

 if (TM->addPassesToEmitFile(CodeGenPM, Out->os(),

 nullptr, FileType)) {

 WithColor::error()

222 Optimizing IR

 << "No support for file type\n";

 return false;

 }

 }

17.	 After all of this preparation, we are now ready to execute the Passes. First, we run
the optimization pipeline on the IR module. Next, the code generation Passes are
run. Of course, after all this work, we want to keep the output file:

 MPM.run(*M, MAM);

 CodeGenPM.run(*M);

 Out->keep();

 return true;

}

18.	 That was a lot of code, but it was straightforward. Of course, we also have to update
the dependencies in the tools/driver/CMakeLists.txt build file. Besides
adding the target components, we add all the transformation and code generation
components from LLVM. The names roughly resemble the directory names where
the source is located. The component name is translated to the link library name
during the configuration process:

set(LLVM_LINK_COMPONENTS ${LLVM_TARGETS_TO_BUILD}

 AggressiveInstCombine Analysis AsmParser

 BitWriter CodeGen Core Coroutines IPO IRReader

 InstCombine Instrumentation MC ObjCARCOpts Remarks

 ScalarOpts Support Target TransformUtils Vectorize

 Passes)

19.	 Our compiler driver supports plugins, and we announce the following support:

add_tinylang_tool(tinylang Driver.cpp SUPPORT_PLUGINS)

20.	 In the same way as before, we have to link against our own libraries:

target_link_libraries(tinylang

 PRIVATE tinylangBasic tinylangCodeGen

 tinylangLexer tinylangParser tinylangSema)

These are necessary additions to the source code and the build system.

Adding an optimization pipeline to your compiler 223

21.	 To build the extended compiler, change into your build directory and type
in the following:

$ ninja

Changes to the files of the build system are automatically detected, and cmake is
run before we compile and link our changed source. In case you need to rerun the
configuration step, please follow the instructions located in Chapter 2, Touring the LLVM
Source, in the Compiling the tinylang application section.

Since we have used the options for the opt tool as a blueprint, you should try running
tinylang with the options to load a Pass plugin and run the Pass, as we did in the
previous sections.

With the current implementation, we can either run a default Pass pipeline or construct
one ourselves. The latter is very flexible but, in almost all cases, overkill. The default
pipeline runs very well for C-like languages. What is missing is a way to extend the Pass
pipeline. In the next section, we will explain how to implement this.

Extending the Pass pipeline
In the previous section, we used the PassBuilder class to create a Pass pipeline, either
from a user-provided description or a predefined name. Now, we will look at another way
to customize the Pass pipeline: using extension points.

During the construction of the Pass pipeline, the Pass builder allows you to add Passes
contributed by the user. These places are called extension points. A number of extension
points exist, such as the following:

•	 The pipeline start extension point allows you to add Passes at the beginning
of the pipeline.

•	 The peephole extension point allows you to add Passes after each instance of the
instruction combiner Pass.

Other extension points exist, too. To employ an extension point, you register a callback.
During the construction of the Pass pipeline, your callback is run at the defined extension
point and can add a Pass to the given Pass manager.

224 Optimizing IR

To register a callback for the pipeline start extension point, you call the
registerPipelineStartEPCallback() method of the PassBuilder
class. For example, to add our CountIRPass Pass to the beginning of the
pipeline, you need to adapt the Pass to be used as a module Pass with a call to the
createModuleToFunctionPassAdaptor() template function, and then add the
Pass to the module Pass manager:

PB.registerPipelineStartEPCallback(

 [](ModulePassManager &MPM) {

 MPM.addPass(

 createModuleToFunctionPassAdaptor(

 CountIRPass());

 });

You can add this snippet in the Pass pipeline setup code at any point before the pipeline is
created, that is, before the parsePassPipeline() method is called.

A very natural extension to what we have done in the previous section is to let the user
Pass a pipeline description for an extension point on the command line. The opt tool
allows this, too. Let's do this for the pipeline start extension point. First, we add the
following code to the tools/driver/Driver.cpp file:

1.	 We add a new command line for the user to specify the pipeline description. Again,
we take the option name from the opt tool:

static cl::opt<std::string> PipelineStartEPPipeline(

 "passes-ep-pipeline-start",

 cl::desc("Pipeline start extension point));

2.	 Using a lambda function as a callback is the most convenient way. To parse
the pipeline description, we call the parsePassPipeline() method of the
PassBuilder instance. The Passes are added to the PM Pass manager and given as
an argument to the lambda function. If there is an error, we print an error message
without stopping the application. You can add this snippet after the call to the
crossRegisterProxies() method:

 PB.registerPipelineStartEPCallback(

 [&PB, Argv0](ModulePassManager &PM) {

 if (auto Err = PB.parsePassPipeline(

 PM, PipelineStartEPPipeline)) {

 WithColor::error(errs(), Argv0)

Adding an optimization pipeline to your compiler 225

 << "Could not parse pipeline "

 << PipelineStartEPPipeline.ArgStr

 << ": "

 << toString(std::move(Err)) << "\n";

 }

 });

Tip
To allow the user to add Passes at every extension point, you need to add the
preceding code snippet for each extension point.

3.	 It's now a good time to try out the different pass manager options. With the
--debug-pass-manager option, you can follow which Passes are executed in
which order. You can print the IR before or after each Pass is invoked using the
--print-before-all and --print-after-all options. If you create your
own Pass pipeline, then you can insert the print Pass in points of interest. For
example, try the --passes="print,inline,print" option. You can also use
the print Pass to explore the various extension points.

New print options in LLVM 12
LLVM 12 supports the -print-changed option, which will only print
the IR code if it has changed, compared to the result from the earlier Pass. The
greatly reduced output makes it much easier to follow IR transformations.

The PassBuilder class has a nested OptimizationLevel class to represent
the six different optimization levels. Instead of using the "default<O?>" pipeline
description as an argument to the parsePassPipeline() method, we can
also call the buildPerModuleDefaultPipeline() method, which builds
the default optimization pipeline for the request level – except for level O0. The
optimization level, O0, means that no optimization is performed. Consequently,
no Passes are added to the Pass manager. If we still want to run a certain Pass,
then we can add it to the Pass manager manually. A simple Pass to run at this
level is the AlwaysInliner Pass, which inlines a function marked with an
always_inline attribute into the caller. After translating the command-line
option value for the optimization level into the corresponding member of the
OptimizationLevel class, we can implement this as follows:

 PassBuilder::OptimizationLevel Olevel = …;

 if (OLevel == PassBuilder::OptimizationLevel::O0)

226 Optimizing IR

 MPM.addPass(AlwaysInlinerPass());

 else

 MPM = PB.buildPerModuleDefaultPipeline(OLevel,
 DebugPM);

Of course, it is possible to add more than one Pass to the Pass manager in this
fashion. The PassBuilder class also uses the addPass() method during the
construction of the Pass pipeline.

New functionality in LLVM 12 – running extension point callbacks
Because the Pass pipeline is not populated for optimization level O0, the
registered extension points are not called. If you use the extension points to
register Passes, which should also run at the O0 level, this is problematic.
In LLVM 12, the new runRegisteredEPCallbacks() method can
be called to run the registered extension point callbacks, resulting in a Pass
manager populated only with the Passes registered through the extension
points.

With the addition of the optimization pipeline to tinylang, you can create an
optimizing compiler such as clang. The LLVM community works on improving the
optimizations and the optimization pipeline with each release. Because of this, it is
very seldom that the default pipeline is not used. Most often, new Passes are added to
implement certain semantics of the programming language.

Summary
In this chapter, you learned how to create a new Pass for LLVM. You ran the Pass using
a Pass pipeline description and an extension point. You extended your compiler with the
construction and execution of a Pass pipeline similar to clang, turning tinylang into
an optimizing compiler. The Pass pipeline allows you to add Passes at extension points,
and you learned how to register Passes at these points. This enables you to extend the
optimization pipeline with your own developed Passes or existing Passes.

In the next chapter, we will explore how LLVM generates machine instructions from the
optimized IR.

Section 3 –
Taking LLVM to the

Next Level

In this section, you will learn how instruction selection is implemented in LLVM, and you
will apply this knowledge by adding support for a new machine instruction. LLVM has a
just-in-time (JIT) compiler, and you will learn how you can use it and how to tailor it to
your needs. You will also try out the various tools and libraries that help to identify bugs
in applications. Finally, you will extend LLVM with a new backend, which will equip you
with the knowledge required to take advantange of new architectures not yet supported
by LLVM.

This section comprises the following chapters:

•	 Chapter 9, Instruction Selection

•	 Chapter 10, JIT Compilation

•	 Chapter 11, Debugging Using LLVM Tools

•	 Chapter 12, Creating Your Own Backend

9
Instruction Selection
The LLVM IR used so far still needs to be turned into machine instructions. This is called
instruction selection, often abbreviated to ISel. Instruction selection is an important part
of the target backend, and LLVM has three different approaches for selecting instructions:
the selection DAG, fast instruction selection, and global instruction selection.

In this chapter, you will learn the following topics:

•	 Understanding the LLVM target backend structure, which introduces you to the
task performed by the target backend, and you examine the machine passes to run.

•	 Using the machine IR (MIR) to test and debug the backend, which helps you to
output MIR after a specified pass and run a pass on the MIR file.

•	 How instruction selection works, in which you learn about the different ways LLVM
performs instruction selection.

•	 Supporting new machine instructions, in which you add a new machine instruction
and make it available to the instruction selection.

By the end of the chapter, you will know how the target backends are structured and
how instruction selection works. You will also acquire the knowledge to add currently
unsupported machine instructions to the assembler and the instruction selection, and
how to test your addition.

230 Instruction Selection

Technical requirements
To see the graph visualization, you must install the Graphviz software, which can
be downloaded from https://graphviz.org/. The source code is available at
http://gitlab.com/graphviz/graphviz/.

The source code for this chapter is available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter09

You can find the code in action videos at https://bit.ly/3nllhED

Understanding the LLVM target
backend structure
After the LLVM IR is optimized, the selected LLVM target is used to generate the machine
code from it. Among others, the following tasks are performed in the target backend:

1.	 The directed acyclic graph (DAG) used for instruction selection, usually referred to
as the SelectionDAG, is constructed.

2.	 Machine instructions corresponding to the IR code are selected.
3.	 The selected machine instructions are ordered in an optimal sequence.
4.	 Virtual registers are replaced with machine registers.
5.	 Prologue and epilogue code is added to functions.
6.	 Basic blocks are ordered in an optimal sequence.
7.	 Target-specific passes are run.
8.	 Object code or assembly is emitted.

All these steps are implemented as machine function passes, derived from the
MachineFunctionPass class. This is a subclass of the FunctionPass class, one of
the base classes used by the old pass manager. As of LLVM 12, the conversion of machine
function passes to the new pass manager is still a work in progress.

During all these steps, an LLVM instruction undergoes a transformation. At the code
level, an LLVM IR instruction is represented by an instance of the Instruction class.
During the instruction selection phase, it is transformed into a MachineInstr instance.
This is a representation much nearer to the actual machine level. It already contains
the instructions that are valid for the target, but still operates on virtual registers (up to
register allocation) and also can contain certain pseudo instructions. The passes after the
instruction selection refine this, and in the end, an instance of MCInstr is created, which
is a representation of the real machine instruction. The MCInstr instance can be written
into an object file or printed as assembly code.

https://graphviz.org/
http://gitlab.com/graphviz/graphviz/
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter09
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter09
https://bit.ly/3nllhED

Using MIR to test and debug the backend 231

To explore the backend passes, you can create a small IR file with the following content:

define i16 @sum(i16 %a, i16 %b) {

 %res = add i16 %a, 3

 ret i16 %res

}

Save this code as sum.ll. Compile it for the MIPS architecture using llc, the LLVM
static compiler. This tool compiles LLVM IR into assembly text or an object file. The target
platform compile for can be overridden on the command line with the –mtriple option.
Invoke the llc tool with the –debug-pass=Structure option:

$ llc -mtriple=mips-linux-gnu -debug-pass=Structure < sum.ll

Besides the generated assembly code, you will see a long list of machine passes to run.
Among them, the MIPS DAG->DAG Pattern Instruction Selection pass
performs the instruction selection, the Mips Delay Slot Filler is a target-specific
pass, and the last pass before cleanup, Mips Assembly Printer, is responsible for
printing the assembly code. Of all of these passes, the instruction selection pass is the
most interesting one, and we look at it in detail in the next section.

Using MIR to test and debug the backend
You saw in the previous section that many passes are run in the target backend.
However, most of these passes do not operate on LLVM IR, but on MIR. This is
a target-dependent representation of the instructions, and therefore more low-level
than LLVM IR. It can still contain references to virtual registers, so it is not yet the pure
instruction of the target CPU.

To see the optimizations on the IR level, you can, for example, tell llc to dump the IR
after each pass. This does not work with the machine passes in the backend, because they
do not work on IR. Instead, MIR serves a similar purpose.

MIR is a textual representation of the current state of the machine instructions in
the current module. It utilizes the YAML format, which allows for serialization and
deserialization. The basic idea is that you can stop the pass pipeline at a point and inspect
the state in YAML format. You can also modify the YAML file, or create your own, and
pass on it, and inspect the result. This allows for easy debugging and testing.

232 Instruction Selection

Let's have a look at MIR. Run the llc tool with the --stop-after=finalize-isel
option and the test input file we used earlier:

$ llc -mtriple=mips-linux-gnu \

 -stop-after=finalize-isel < sum.ll

This instructs llc to dump MIR after instruction selection is complete. The shortened
output looks like this:

name: sum

body: |

 bb.0 (%ir-block.0):

 liveins: $a0, $a1

 %1:gpr32 = COPY $a1

 %0:gpr32 = COPY $a0

 %2:gpr32 = ADDu %0, %1

 $v0 = COPY %2

 RetRA implicit $v0

...

There are several properties you immediately note. First, there is a mix of virtual registers
such as %0 and real machine registers such as $a0. The reason for this comes from ABI
lowering. To be portable across different compilers and languages, functions adhere to a
calling convention, which is part of the application binary interface (ABI). The output is
for a Linux system on a MIPS machine. With the calling convention used by the system,
the first parameter is passed in register $a0. Because the MIR output was generated
after the instruction selection but before register allocation, you still see the use of
virtual registers.

Instead of the add instruction from LLVM IR, the machine instruction ADDu is used in
the MIR file. You can also see that the virtual registers have a register call attached, in this
case, gpr32. There are no 16-bit registers on the MIPS architecture, and therefore 32-bit
registers must be used.

The bb.0 label refers to the first basic block, and the indented content after the label is
part of the basic blocks. The first statement specifies the registers that are live on entry to
the basic block. After that, the instructions follow. In this case, only $a0, and $a1, both
parameters, are live on entry.

Using MIR to test and debug the backend 233

There are a lot of other details in the MIR file. You can read about them in the LLVM MIR
documentation at https://llvm.org/docs/MIRLangRef.html.

One problem you encounter is how to find out the name of a pass, especially if you just
need to examine the output after that pass without actively working on it. When using
the -debug-pass=Structure option with llc, the options that activate the passes
are printed on the top. For example, if you want to stop before the Mips Delay Slot
Filler pass, then you need to look at the printed list, and hopefully find the -mips-
delay-slot-filler option, which also gives you the name of the pass.

The main application of the MIR file format is to aid in testing machine passes in the
target backend. Using llc with the --stop-after option, you get the MIR after
the specified pass. Usually, you will use this as the base for your intended test case. The
first thing you note is that the MIR output is very verbose. For example, many fields
are empty. To reduce this clutter, you can add the -simplify-mir option to the llc
command line.

You save and change the MIR as needed for your test case. The llc tool can run a single
pass, and this is a perfect match for testing with the MIR file. Let's assume you like to
test the MIPS Delay Slot Filler pass. The delay slot is a special property of
RISC architectures such as MIPS or SPARC: the next instruction after a jump is always
executed. Therefore, the compiler must make sure that there is a suitable instruction after
each jump, and this pass performs this duty.

We generate the MIR before running the pass:

$ llc -mtriple=mips-linux-gnu \

 -stop-before=mips-delay-slot-filler -simplify-mir \

 < sum.ll >delay.mir

The output is much smaller because we used the -simplify-mir option. The body of
the function is now the following:

body: |

 bb.0 (%ir-block.0):

 liveins: $a0, $a1

 renamable $v0 = ADDu killed renamable $a0,

 killed renamable $a1

 PseudoReturn undef $ra, implicit $v0

https://llvm.org/docs/MIRLangRef.html

234 Instruction Selection

Most notably, you will see the ADDu instruction, followed by apseudo instruction for
the return.

With the delay.ll file as input, we now run the delay slot filler pass:

$ llc -mtriple=mips-linux-gnu \

 -run-pass=mips-delay-slot-filler -o - delay.mir

Now compare the function in the output with the earlier one:

body: |

 bb.0 (%ir-block.0):

 PseudoReturn undef $ra, implicit $v0 {

 renamable $v0 = ADDu killed renamable $a0,

 killed renamable $a1

 }

You see that ADDu and the pseudo instruction for the return have changed order, and the
ADDu instruction is now nested inside the return: the pass identified the ADDu instruction
as suitable for the delay slot.

In case the delay slot concept is new to you, you will also want to have a look at the
generated assembly, which you easily generate with llc:

$ llc -mtriple=mips-linux-gnu < sum.ll

The output contains a lot of details, but with the help of the bb.0 name of the basic block,
you can easily locate the generated assembly code for it:

%bb.0:

 jr $ra

 addu $2, $4, $5

Indeed, the order of the instructions changed!

Equipped with this knowledge, we take a look at the heart of the target backend and
examine how machine instruction selection is performed in LLVM.

How instruction selection works 235

How instruction selection works
The task of an LLVM backend is to create machine instructions from the LLVM IR. This
process is called instruction selection or lowering. Motivated by the idea to automate this
task as much as possible, the LLVM developers invented the TableGen language to capture
all the details of a target description. We first look at this language before diving into the
instruction selection algorithms.

Specifying the target description in
the TableGen language
A machine instruction has a lot of properties: a mnemonic used by the assembler and
disassembler, a bit pattern to represent the instruction in memory, input and output
operands, and so on. The LLVM developers decided to capture all this information in
a single place, the target description. A new language, the TableGen language, was
invented for this purpose. The idea was to use a code generator to create various source
fragments from the target description, which could then be used in different tools. Target
descriptions are stored in files using the .td suffix.

In principle, the TableGen language is very simple. All you can do is define records.
A record has a unique name and contains a list of values and a list of superclasses. A
definition is a record in which all values are defined, while a class is a record that can have
undefined values. The main purpose of classes is to have an abstract record that can be
used to build other abstract or concrete records. For example, the Register class defines
the common properties of a register, and you can define a concrete record for register R0:

class Register {

 string name;

}

def R0 : Register {

 let name = "R0";

 string altName = "$0";

}

You use the let keyword to override a value.

236 Instruction Selection

The TableGen language has a lot of syntactic sugar to make dealing with records easier. A
class can have a template argument, for example:

class Register<string n> {

 string name = n;

}

def R0 : Register<"R0"> {

 string altName = "$0";

}

The TableGen language is statically typed, and you have to specify the type of each value.
Some of the supported types are the following:

•	 bit: A single bit

•	 int: A 64-bit integer value

•	 bits<n>: An integral type consisting of n bits

•	 string: A character string

•	 list<t>: A list of elements of type t

•	 dag: A directed acyclic graph (DAG; used by the instruction selection)

The name of a class can also be used as a type. For example, list<Register> specifies
a list of elements of the Register class.

The language allows the inclusion of other files with the include keyword. For
conditional compiling, the preprocessor directives #define, #ifdef, and #ifndef
are supported.

The TableGen library in LLVM can parse files written in the TableGen language and
create an in-memory representation of the records. You can use this library to create
your own generator.

LLVM comes with its own generator tool called llvm-tblgen and some .td files. The
target description of a backend includes the llvm/Target/Target.td file first. This
file defines classes such as Register, Target, or Processor. The llvm-tblgen tool
knows about these classes and generates C++ code from the defined records.

How instruction selection works 237

Let's have a look at the MIPS backend as an example. The target description is in the
Mips.td file in the llvm/lib/Target/Mips folder. This file includes the Target.
td file mentioned first. It also defines target features, for example:

def FeatureMips64r2

 : SubtargetFeature<"mips64r2", "MipsArchVersion",

 "Mips64r2", "Mips64r2 ISA Support",

 [FeatureMips64, FeatureMips32r2]>;

Such features are later used to define CPU models, for example:

def : Proc<"mips64r2", [FeatureMips64r2]>;

Other files that define registers, instructions, scheduling models, and so on are
also included.

The llvm-tblgen tool can show you the records defined by this target description.
If you are in the build directory, then the following command will print the records
to the console:

$ bin/llvm-tblgen \

 -I../llvm-project/llvm/lib/Target/Mips/ \

 -I../llvm-project/llvm/include \

 ../llvm-project/llvm/lib/Target/Mips/Mips.td

Like with Clang, the –I option adds a directory to search when including files. To see the
records can be helpful for debugging. The real purpose of the tool is to generate C++ code
from the records. For example, with the -gen-subtarget option, the data necessary to
parse the –mcpu= and –mtarget= option of llc is emitted to the console:

$ bin/llvm-tblgen \

 -I../llvm-project/llvm/lib/Target/Mips/ \

 -I../llvm-project/llvm/include \

 ../llvm-project/llvm/lib/Target/Mips/Mips.td \

 -gen-subtarget

Save the generated code from that command in a file and explore how the feature and the
CPU are used in generated code!

238 Instruction Selection

The encoding of instructions usually follows a handful of patterns. Therefore, the
definition of instructions is split into classes defining the bit encoding and the concrete
definition of instruction. The encoding for the MIPS instructions is in the file llvm/
Target/Mips/MipsInstrFormats.td. Let's have a look at the definition of the
ADD_FM format:

class ADD_FM<bits<6> op, bits<6> funct> : StdArch {

 bits<5> rd;

 bits<5> rs;

 bits<5> rt;

 bits<32> Inst;

 let Inst{31-26} = op;

 let Inst{25-21} = rs;

 let Inst{20-16} = rt;

 let Inst{15-11} = rd;

 let Inst{10-6} = 0;

 let Inst{5-0} = funct;

}

In the record body, several new bit fields are defined: rd, rs, and so on. They are used to
override portions of the Inst field, which holds the bit pattern for the instruction. The
rd, rs, and rt bit fields encode the registers the instruction operates on, and the op and
funct parameters denote the opcode and a function number. The StdArch superclass
only adds a field stating that this format follows a standard encoding.

Most instruction encoding in the MIPS target does not refer to the DAG nodes and
do not specify the assembly mnemonic. A separate class is defined for that. One of the
instructions in the MIPS architecture is the nor instruction, which computes the bitwise
or of the first and second input register, inverts the bits of the result, and assigns the result
to the output register. There are several variants of this instruction, and the following
LogicNOR class helps with avoiding the same definitions multiple times:

class LogicNOR<string opstr, RegisterOperand RO>:

 InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),

 !strconcat(opstr, "\t$rd, $rs, $rt"),

 [(set RO:$rd, (not (or RO:$rs, RO:$rt)))],

 II_NOR, FrmR, opstr> {

How instruction selection works 239

 let isCommutable = 1;

}

Wow, the simple concept of records now looks complicated. Let's dissect that definition.
The class derives from the InstSE class, which is always used for instructions with
standard encoding. If you follow the superclass hierarchy further, then you see that
this class derives from Instruction class, which is the predefined class denoting an
instruction of a target. The (outs RO:$rd) parameter defines the result of the final
instruction as a DAG node. The RO part refers to the parameter of the same name of the
LogicNOR class and denotes a register operand. The $rd is the register to use. This is
the value that will be put later into the instruction encoding, in the rd field. The second
parameter defines the values the instruction will operate on. In summary, this class is for
an instruction that operates on three registers. The !strconcat(opstr, "\t$rd,
$rs, $rt") parameter assembles the textual representation of the instruction. The
!strconcat operator is a predefined functionality from TableGen, which concatenates
two strings. You can look up all predefined operators in the TableGen programmer's guide
at: https://llvm.org/docs/TableGen/ProgRef.html.

It follows a pattern definition, which resembles the textual description of the nor
instruction and describes the computation of this instruction. The first element of the
pattern is the operation, which is followed by a comma-separated list of operands. The
operands refer to the register names in the DAG parameters and also specify an LLVM
IR value type. LLVM has a set of predefined operators, such as add and and, which
can be used in patterns. The operators are of the SDNode class, and can also be used
as parameters. You can look up the predefined operators in the file llvm/Target/
TargetSelectionDAG.td.

The II_NOR parameter specifies the itinerary class used in the scheduling model, and
the FrmR parameter is a value defined to identify this instruction format. Finally, the
opstr mnemonic is passed to the superclass. The body of this class is quite simple: it
just specifies that the nor operation is commutative, which means that the order of the
operands can be swapped.

Finally, this class is used to define a record for an instruction, as an example, for the nor
instruction in 64-bit mode:

def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>,

 GPR_64;

https://llvm.org/docs/TableGen/ProgRef.html

240 Instruction Selection

This is the final definition, recognizable from the def keyword. It uses the LogicNOR
class to define the DAG operands and pattern, and the ADD_FM class to specify the binary
instruction encoding. The additional GPR_64 predicate makes sure that this instruction is
only used if 64-bit registers are available.

The developers try hard to not repeat definitions multiple times, and one often-used
approach is the use of multiclass classes. A multiclass class can define multiple
records at once.

For example, the floating point unit of a MIPS CPU can perform addition with single- or
double-precision floating point values. The definition of both instructions is very similar,
therefore a multiclass class is defined to create two instructions at once:

multiclass ADDS_M<…> {

 def _D32 : ADDS_FT<…>, FGR_32;

 def _D64 : ADDS_FT<…>, FGR_64;

}

The ADDS_FT class defines the instruction format, similar to the LogicNOR class.
The FGR_32 and FGR_64 predicates are used to decide at compile time which
instruction can be used. The important part is the definition of _D32 and _D64 records.
These are the templates for the records. The instruction records are then defined with the
defm keyword:

defm FADD : ADDS_M<…>;

This defines the two records from the multiclass at once and assigns the names FADD_D32
and FADD_D64 to them. This is a very powerful way to avoid code repetition, and it is
often used in the target descriptions, but combined with the other TableGen features it can
lead to very cryptic definitions.

With the knowledge of how the target description is organized, we can now explore the
instruction selection in the next section.

Instruction selection with the selection DAG
The standard way LLVM converts the IR to machine instructions is via a DAG. Using
pattern matching with the patterns provided in the target description and using custom
code, the IR instructions are transformed into machine instructions. This approach is not
as straightforward as it sounds: the IR is mostly target-independent and can contain data
types that are not supported on the target. For example, the i1 type representing a single
bit is not a valid type on most targets.

How instruction selection works 241

The selectionDAG consists of nodes of SDNode type, defined in the file llvm/CodeGen/
SelectionDAGNodes.h. The operation the node represents is called OpCode, and
the target-independent codes are defined in the file llvm/CodeGen/ISDOpcodes.h.
Besides the operation, the node stores the operands and the value it produces.

The values and operands of a node form a data flow dependency. A control flow
dependency is represented by chain edges, which have the special type MVT::Other.
This makes it possible to keep the order of instructions with side effects, for example, a
load instruction.

Instruction selection using the selection DAG is performed with the following steps:

1.	 The DAG is constructed.

2.	 The DAG is optimized.

3.	 The types in the DAG are legalized.

4.	 The DAG is optimized.

5.	 The operations in the DAG are legalized.

6.	 The DAG is optimized.

7.	 The instructions are selected.

8.	 The instructions are ordered.

Let's examine how we can follow the changes each of the steps makes to the
selection DAG.

How to follow the instruction selection process
You can see the work of the instruction selection in two different ways. If you pass the
–debug-only=isel option to the llc tool, then the result of each step is printed in
textual format. This is a great help if you need to investigate why a machine instruction
was selected. For example, run the following command to see the output for the sum.ll
file from the Understanding the LLVM target backend structure section:

$ llc -mtriple=mips-linux-gnu -debug-only=isel < sum.ll

This prints a lot of information. At the top of the output, you see the description of the
initial created DAG for the input:

Initial selection DAG: %bb.0 'sum:'

SelectionDAG has 12 nodes:

 t0: ch = EntryToken

242 Instruction Selection

 t2: i32,ch = CopyFromReg t0, Register:i32 %0

 t5: i16 = truncate t2

 t4: i32,ch = CopyFromReg t0, Register:i32 %1

 t6: i16 = truncate t4

 t7: i16 = add t5, t6

 t8: i32 = any_extend t7

 t10: ch,glue = CopyToReg t0, Register:i32 $v0, t8

 t11: ch = MipsISD::Ret t10, Register:i32 $v0, t10:1

Like in the MIR output from the last section, you see here CopyFromReg instructions,
which transfer the content of registers used by the ABI to virtual nodes. The truncate
nodes are required because the example uses 16-bit values, but the MIPS architectures
have only native support for 32-bit values. The add operation is performed on 16-bit
virtual registers, and the result is extended and returned to the caller. Such a section is
printed for each of the steps mentioned above.

LLVM can also generate a visualization of the selection DAG with the help of the Graphviz
software. If you pass the –view-dag-combine1-dags option to the llc tool, then a
window opens showing the constructed DAG. For example, run llc with the small file
from the preceding:

$ llc -mtriple=mips-linux-gnu –view-dag-combine1-dags sum.ll

How instruction selection works 243

Running on a Windows PC, you then see the DAG:

Figure 9.1 – Constructed selection DAG for the sum.ll file

244 Instruction Selection

Be sure to compare that the textual representation and this graph contain the same
information. The EntryToken is the start of the DAG, and the GraphRoot is the final
node. The chain for the control flow is marked with the blue dashed arrows. The black
arrows denote the data flow. The red arrows glue nodes together, preventing reordering
them. The graph can get really big even for moderately sized functions. It does not contain
more or other information than the textual output with the –debug-only=isel option,
only the presentation is more comfortable. You can also generate the graph at other points
in time, for example:

•	 Add the --view-legalize-types-dags option to see the DAG before
type legalization.

•	 Add the –view-isel-dags option to see the selection instructions.

You can see all available options to view the DAG using the --help-hidden option.
Because the DAG can get large and confusing, you can limit the rendering to one basic
block using the -filter-view-dags option.

Examining the instruction selection
Knowing how to visualize the DAG, we can now dive into the details. The selection
DAG is constructed from the IR. For each function in the IR, an instance of the
SelectionDAG class is populated by the SelectionDAGBuilder class. There are
no special optimizations done at this step. Nevertheless, a target needs to provide some
functions to lower calls, argument handling, return jumps, and so on. To do so, the target
has to implement the TargetLowering interface. Inside the folder of a target, the
source is usually in the XXXISelLowering.h and XXXISelLowering.cpp files. The
implementation of the TargetLowering interface provides all the information needed
for the instruction process, for example, which data types and which operations are
supported on the target.

The optimization step is run several times. The optimizer performs simple optimization,
for example identifying rotates on targets that support these operations. The rationale here
is that a cleaned-up DAG is produced, which simplifies the other steps.

How instruction selection works 245

During the type legalization step, types that are not supported on the target are replaced
with supported ones. For example, if a target natively supports only 32-bit-wide integers,
then smaller values must be converted to 32-bit through sign or zero extension. This is
called promoting. If a 64-bit value can't be handled by this target, then the value must
be split into a pair of 32-bit values. This is called expanding. Vector types are treated
similarly. A vector type can be extended with additional elements, or it can be broken up
into several values. For example, a vector with four values could be split into two vectors
with two values each. If the splitting process ends with a single value, then no suitable
vector could be found and scalar types are used instead. This is called scalarizing. The
information about the supported types is configured in the target-specific implementation
of the TargetLowering interface. After type legalization, the selection DAG has this
textual representation for the sum.ll file:

Optimized type-legalized selection DAG: %bb.0 'sum:'

SelectionDAG has 9 nodes:

 t0: ch = EntryToken

 t2: i32,ch = CopyFromReg t0, Register:i32 %0

 t4: i32,ch = CopyFromReg t0, Register:i32 %1

 t12: i32 = add t2, t4

 t10: ch,glue = CopyToReg t0, Register:i32 $v0, t12

 t11: ch = MipsISD::Ret t10, Register:i32 $v0, t10:1

If you compare this with the initial constructed DAG, then here only 32-bit registers are
used. The 16-bit values were promoted, because only 32-bit values are supported natively.

Operation legalization is similar to type legalization. This step is necessary because not all
operations may be supported by a target, or even if a type is natively supported on a target,
it may not valid for all operations. For example, not all targets have a native instruction
for population count. In such cases, the operation is replaced by a sequence of operations
to implement the functionality. If the type does not fit for the operation, then promoting
the type to a larger one could be done. It is also possible for a backend author to provide
custom code. If the legalization action is set to Custom, then the LowerOperation()
method in the TargetLowering class is called for these operations. The method must
create a legal version of the operation then. In the sum.ll example, the add operation
is already legal, because addition of two 23-bit registers is supported on the platform, and
nothing changed.

246 Instruction Selection

After types and operations are legalized, the instruction selection happens. A large part
of the selection is automated. Remember from the previous section that you provided a
pattern in the description of an instruction. From these descriptions, a pattern matcher is
generated by the llvm-tblgen tool. Basically, the pattern matcher tries to find a pattern
that matches the current DAG node. The instruction associated with the pattern will then
be selected. The pattern matcher is implemented as a bytecode interpreter. The available
codes for the interpreter are defined in the llvm/CodeGen/SelectionDAGISel.h
header file. The XXXISelDAGToDAG class implements the instruction selection for a
target. The Select() method is called for each DAG node. The default is to call the
generated matcher, but you can also add code for cases not handled by it.

It is noteworthy that there is no one-to-one relationship between a selection DAG node
and the selected instructions. A DAG node can expand into several instructions, and
several DAG nodes can collapse into a single instruction. An example of the former
is synthesizing immediate values. Especially on RISC architectures, the bit length of
immediate values is restricted. A 32-bit target may only support an embedded immediate
value of 16-bit length. To perform an operation that requires a 32-bit constant value, you
usually split it into two 16-bit values and then generate two or more instructions that use
the 16-bit values instead. Among others, you find patterns for this in the MIPS target.
Bit-field instructions are a common example for the latter case: combinations of and, or,
and shift DAG nodes can often be matched to special bit-field instructions, resulting in
just one instruction for two or more DAG nodes.

Usually, you specify a pattern in the target description to combine two or more DAG
nodes. For more complex cases, which are not easily handled with a pattern, you can
mark the operation of the top node to require special DAG combine treatment. For these
nodes, the PerformDAGCombine() method in the XXXISelLowering class is called.
You can then check arbitrary complex patterns, and if you find your match, then you can
return the operation representing the combined DAG nodes. This method is called before
the generated matcher is run for the DAG node.

You can follow the instruction selection process in the printed output for the sum.ll file.
For the add operation, you find there the following lines:

ISEL: Starting selection on root node: t12: i32 = add t2, t4

ISEL: Starting pattern match

 Initial Opcode index to 27835

 …

 Morphed node: t12: i32 = ADDu t2, t4

ISEL: Match complete!

How instruction selection works 247

The index numbers point into the array of the generated matcher. The start is at index
27835 (an arbitrary value that can change from release to release), and after some steps,
the ADDu instruction is selected.

Following the pattern matching
If you encounter a problem with a pattern, then you can also retrace the
matching by reading the generated bytecode. You find the source in the lib/
Target/XXX/XXXGenDAGIsel.inc file in the build directory. You
open the file in a text editor and search for the index in the preceding output.
Each line is prefixed with the index number, so you can easily find the right
place in the array. The used predicates are also printed as comments, so they
can help you to understand why a certain pattern was not selected.

Turning the DAG into instruction sequences
After instruction selection, the code is still a graph. This data structure needs to be
flattened, which means that the instructions must be sequentially ordered. The graph
contains data and control flow dependencies, but there are always several possibilities to
order the instructions in such a way that these dependencies are fulfilled. What we want is
an order that best utilizes the hardware. Modern hardware can issue several instructions
in parallel, but restrictions always apply. A simple example of such a restriction is one
instruction requiring the result of another instruction. In such a case, the hardware may
not be able to issue both instructions and instead executes the instructions in sequence.

You can add a scheduling model to the target description, which describes the available
units and their properties. For example, if a CPU has two integer arithmetic units,
then this information is captured in the model. For each instruction, it is necessary to
know which part of the model is used. There are different ways to do this. The newer,
recommended approach is to define a scheduling model using the so-called machine-
instruction scheduler. To do so, you need to define a SchedMachineModel record for
each subtarget in the target description. Basically, the model consists of definitions for the
input and output operands of instructions and processor resources. Both definitions are
then associated together with latency values. You can look up the predefined types for this
model in the llvm/Target/TargetSched.td file. Look at the Lanai target for a very
simple model and in the SystemZ target for a complex scheduling model.

248 Instruction Selection

There is also an older model based on so-called itineraries. With this model, you
define processor units as FuncUnit records. A step using such a unit is defined as an
InstrStage record. Each instruction is associated with an itinerary class. For each
itinerary class, the used processor pipeline composed of InstrStage records is
defined, together with the number of processor cycles required for execution.
You can find the predefined types for the itinerary model in the llvm/Target/
TargetItinerary.td file.

Some targets use both models. One reason is due to development history. The itinerary-
based model was the first one added to LLVM, and targets began using this model. When
the new machine-instruction scheduler was added more than 5 years later, nobody cared
enough to migrate the already existing models. Another reason is that with the itinerary
model, you can not only model an instruction that uses multiple processor units, but you
can also specify during which cycles the units are used. However, this detail level is rarely
needed, and if it is needed, then you can refer to the machine-instruction scheduler model
to the defined itineraries, basically pulling this information into the new model too.

If present, the scheduling model is used to order the instructions in an optimal way. After
this step, the DAG is not needed anymore and is destroyed.

Performing instruction selection with the selection DAG produces almost optimal results,
but it comes at a cost in terms of runtime and memory usage. Therefore, alternative
approaches were developed, which we examine next. In the next section, we look at the
fast instruction selection approach.

Fast instruction selection – FastISel
Using the selection DAG for instruction selection costs compile time. If you are
developing an application, then the runtime of the compiler matters. You also do not
care about the generated code so much, because it is more important that complete
debug information is emitted. Because of these reasons, the LLVM developers decided to
implement a special instruction selector that has a fast runtime but produces less optimal
code, and which is used only for –O0 optimization level. This component is called fast
instruction selection, or FastIsel for short.

The implementation is in the XXXFastISel classes. Not every target supports this
instruction selection method, in which case the selection DAG approach is used for –
O0, too. The implementation is straightforward: a target-specific class is derived from a
FastISel class and has to implement a couple of methods. The TableGen tool generates
most of the required code from the target description. Nevertheless, there is some effort
needed to implement this instruction selector. One of the root causes is that you need to
get the calling convention right, which is usually complex.

How instruction selection works 249

The MIPS target features an implementation of fast instruction selection. You can enable
use of fast instruction selection by passing the –fast-isel option to llc tool. Using
the sum.ll example file from first section, an invocation looks like this:

$ llc -mtriple=mips-linux-gnu -fast-isel –O0 sum.ll

Fast instruction selection runs very quickly, but it is a completely different code path.
Some LLVM developers decided to look for a solution that runs quickly but can
also produce good code, with the goal to replace both the selection dag and the fast
instruction selector in the future. We look at this approach in the next section.

The new global instruction selection – GlobalISel
Using the selection DAG, we can generate pretty good machine code. The drawback is
that it is a very complex piece of software. This means that it is hard to develop, test, and
maintain. The FastISel instruction selection works quickly and is less complex, but does
not produce good code. Both approaches do not share much code, except for the code
generated by TableGen.

Can we have the best of both worlds? One instruction selection algorithm, which is fast,
easy to implement, and which produces good code? That is the motivation for adding
another instruction selection algorithm, the global instruction selection, to the LLVM
framework. The short-term goal is to replace FastISel first, and in the long term the
selection DAG, too.

The approach taken by global instruction selection is to build on the existing
infrastructure. The whole task is broken down into a sequence of machine function
passes. Another major design decision is to not introduce another intermediate
representation but instead use the existing MachineInstr class. However, new
generic opcodes are added.

The current sequence of steps is as follows:

1.	 The IRTranslator pass builds the initial machine instructions using the
generic opcodes.

2.	 The Legalizer pass legalizes types and operations in one step. This is different
from the selection DAG, which uses two different steps for it. Real CPU
architectures are sometimes weird, and it is possible that a certain data type is only
supported with one instruction. This case is not handled well by the selection DAG,
but it's easy to handle this in the combined step in the global instruction selection.

250 Instruction Selection

3.	 The generated machine instructions still operate on virtual registers. In the
RegBankSelect pass, a register bank is selected. A register bank represents a type
of registers on the CPU, for example, general-purpose registers. This is more coarse-
grained than the register definitions in the target description. The important point
is that it associates type information with the instruction. The type information is
based on the types available in the target, so this is already lower than the generic
type in LLVM IR.

4.	 At this point, the types and operations are known to be legal for the target,
and type information is associated with each instruction. The following
InstructionSelect pass can then easily replace the generic instructions with
the machine ones.

After the global instruction selection, the usual backend passes such as instruction
scheduling, register allocation, and basic block placement are run.

Global instruction selection is compiled into LLVM, but it is not enabled by default.
If you want to use it, you need to give the –global-isel option to llc or –mllvm
global-isel to clang. You can control what happens if an IR construct cannot be
handled by global instruction selection. When you give the -global-isel-abort=0
option to llc, then the selection DAG is used as fallback. With =1, the application is
terminated. To prevent this, you can give the -global-isel-abort=0 option to llc.
And with =2, the selection DAG is used as fallback, and a diagnostic message is printed to
inform you about the problem.

To add global instruction selection to a target, you only need to override the
corresponding functions in the TargetPassConfig class of your target. This class is
instantiated by the XXXTargetMachine class, and the implementation is usually found
in the same file. For example, you override the addIRTranslator() method to add the
IRTranslator pass to the machine passes of your target.

The development happens mainly on the AArch64 target, which currently has the best
support for global instruction selection. Many other targets, including x86 and Power,
have also added support for global instruction selection. One challenge here is that not
that much code is generated from the table description, so there is still an amount of
manual coding you have to do. Another challenge is that big-endian targets are currently
not supported, so pure big-endian targets such as SystemZ cannot use global instruction
selection as of today. Both will certainly improve over time.

Supporting new machine instructions 251

The Mips target features an implementation of global instruction selection, with the
mentioned limitation that it can only be used for little-endian targets. You can enable use
of global instruction selection by passing the –global-isel option to the llc tool.
Using the sum.ll example file from first section, an invocation looks like this:

$ llc -mtriple=mipsel-linux-gnu -global-isel sum.ll

Please note that the target mipsel-linux-gnu is the little-endian target. Using the
big-endian mips-linux-gnu target results in an error message.

The global instruction selector works much quicker than the selection DAG, and already
produces higher code quality than fast instruction selection.

Supporting new machine instructions
The CPU you are targeting may have machine instructions not yet supported by LLVM.
For example, manufacturers using the MIPS architecture often add special instructions to
the core MIPS instruction set. The specification of the RISC-V instruction set explicitly
allows manufacturers to add new instructions. Or you are adding a completely new
backend, and then you must add the instructions of the CPU. In the next section, we will
add assembler support for a single, new machine instruction to an LLVM backend.

Adding a new instruction to the assembler
and code generation
New machine instructions are usually tied to a certain CPU feature. Then the new
instruction is only recognized if the user has selected the feature using the --mattr=
option to llc.

As an example, we will add a new machine instruction to the MIPS backend. The
imaginary, new machine instruction first squares the value of the two input registers $2
and $3 and assigns the sum of both squares to the output register $1:

sqsumu $1, $2, $3

The name of the instruction is sqsumu, derived from the square and
summation operation. The last u in the name indicates that the instruction
works on unsigned integers.

The CPU feature we are adding first is called sqsum. This will allow us to call llc with
the --mattr=+sqsum option to enable recognition of the new instruction.

252 Instruction Selection

Most of the code we will add is in the TableGen files which describe the MIPS backend.
All the files are located in the llvm/lib/Target/Mips folder. The top-level file is
Mips.td. Look at the file and locate the section in which the various features are defined.
Here you add the definition of our new feature:

def FeatureSQSum

 : SubtargetFeature<"sqsum", "HasSQSum", "true",

 "Use square-sum instruction">;

The SubtargetFeature class takes four template parameters. The first, sqsum, is the
name of the feature, for use on the command line. The second parameter, HasSQSum,
is the name of the attribute in the Subtarget class representing this feature. The next
parameters are the default value and the description of the feature, used for providing help
on the command line. TableGen generates the base class for the MipsSubtarget class,
defined in MipsSubtarget.h file. In this file, we add the new attribute in the private
part of the class, where all the other attributes are defined:

 // Has square-sum instruction.

 bool HasSQSum = false;

In the public part, we also a method to retrieve the value of the attribute. We need this
method for the next addition:

 bool hasSQSum() const { return HasSQSum; }

With these additions, we are already able to set the sqsum feature on the command line,
albeit without effect.

To tie the new instruction to the sqsum feature, we need to define a predicate that
indicates whether the feature is selected or not. We add this to the MipsInstrInfo.td
file, either in the section where all the other predicates are defined or simply at the end:

def HasSQSum : Predicate<"Subtarget->hasSQSum()">,

 AssemblerPredicate<(all_of FeatureSQSum)>;

The predicate uses the hasSQSum() method defined earlier. Additionally, the
AssemblerPredicate template specifies the condition used when generating the
source code for the assembler. We simply refer to the previously defined feature.

Supporting new machine instructions 253

We also need to update the scheduling model. The MIPS target uses both the itinerary and
the machine-instruction scheduler. For the itinerary model, an InstrItinClass record
is defined for each instruction in the MipsSchedule.td file. Simply add the following
line in this file in the section where all the itineraries are defined:

def II_SQSUMU : InstrItinClass;

We also need to give details about the instruction costs. Usually, you find this
information in the documentation for the CPU. For our instruction, we optimistically
assume that it just takes one cycle in the ALU. This information is added to the
MipsGenericItineraries definition in the same file:

InstrItinData<II_SQSUMU, [InstrStage<1, [ALU]>]>

With this, the update to the itinerary-based scheduling model is complete. The
MIPS target also defines a generic scheduling model based on the machine-instruction
scheduler model in the MipsScheduleGeneric.td file. Because this is a
complete model covering all instructions, we also need to add our instruction add.
As it is based on multiplication, we simply extend the existing definition for the MULT
and MULTu instructions:

def : InstRW<[GenericWriteMul], (instrs MULT, MULTu, SQSUMu)>;

The MIPS target also defines a scheduling model for the P5600 CPU in the
MipsScheduleP5600.td file. Our new instruction is obviously not supported on this
target, so we add it to the list of unsupported features:

list<Predicate> UnsupportedFeatures = [HasSQSum, HasMips3, …

254 Instruction Selection

Now we are ready to add the new instruction at the end of the Mips64InstrInfo.
td file. TableGen definitions are always terse, therefore we dissect them. The definition
uses some predefined classes from the MIPS target descriptions. Our new instruction
is an arithmetic instruction, and by design, it fits the ArithLogicR class. The first
parameter, "sqsumu", specifies the assembler mnemonic of the instruction. The next
parameter, GPR64Opnd, states that the instructions use 64-bit registers as operands and
the following 1 parameter indicates that the operands are commutative. Last, an itinerary
is given for the instruction. The ADD_FM class is given to specify the binary encoding of
the instruction. For a real instruction, the parameters must be chosen according to the
documentation. Then follows the ISA_MIPS64 predicate, which indicates for which
instruction set the instruction is valid. And last, our SQSUM predicate states that the
instruction is only valid when our feature is enabled. The complete definition is as follows:

def SQSUMu : ArithLogicR<"sqsumu", GPR64Opnd, 1, II_SQSUMU>,

 ADD_FM<0x1c, 0x28>, ISA_MIPS64, SQSUM

If you only aim to support the new instruction, then this definition is enough. Be sure
to finish the definition with ; in this case. With the addition of a selection DAG pattern,
you make the instruction available to the code generator. The instruction uses the two
operand registers $rs and $rt and the destination register $rd, all three defined by the
ADD_FM binary format class. In theory, the pattern to match is then simple: the value of
each register is squared using the mul multiplication operator, and then the two products
are added using the add operator and assigned to the destination register $rd. The
pattern gets a bit more complicated because, with the MIPS instruction set, the result of
a multiplication is stored in a special register pair. To be usable, the result must be moved
to a general-purpose register. During legalization of operations, the generic mul operator
is replaced with the MIPS-specific MipsMult operation for the multiplication and the
MipsMFLO operation to move the lower part of the result into a general-purpose register.
We must take this into account when writing the pattern, which looks as follows:

{

 let Pattern = [(set GPR64Opnd:$rd,

 (add (MipsMFLO (MipsMult

 GPR64Opnd:$rs,

 GPR64Opnd:$rs)),

 (MipsMFLO (MipsMult

 GPR64Opnd:$rt,

Supporting new machine instructions 255

 GPR64Opnd:$rt)))

)];

}

As described in the Instruction selection with the selection DAG section, if this pattern
matches the current DAG node, then our new instruction is selected. Because of the
SQSUM predicate, this only happens when the sqsum feature is activated. Let's check it
with a test!

Testing the new instruction
If you extend LLVM, then it is good practice to verify it with automated tests. Especially if
you want to contribute your extension to the LLVM project, then good tests are required.

After adding a new machine instruction as we did in the last section, we must check two
different aspects:

•	 First, we have to verify that the instruction encoding is correct.

•	 Second, we must make sure that the code generation works as expected.

The LLVM projects use LIT, the LLVM Integrated Tester, as the testing tool. Basically, a
test case is a file that contains the input, the commands to run, and the checks that should
be performed. Adding new tests is as easy as copying a new file into the test directory. To
verify the encoding of our new instruction, we use the llvm-mc tool. Besides other tasks,
this tool can show the encoding of an instruction. For an ad hoc check, you can run the
following command to show the instruction encoding:

$ echo "sqsumu \$1,\$2,\$3" | \

 llvm-mc --triple=mips64-linux-gnu -mattr=+sqsum \

 --show-encoding

This already shows part of the input and the command to run in an automated test case.
To verify the result, you use the FileCheck tool. The output of llvm-mc is piped into
this tool. Additionally, FileCheck reads the test case file. The test case file contains lines
marked with the CHECK: keyword, after which the expected output follows. FileCheck
tries to match these lines against the data piped into it. If no match is found, then an error
is displayed. Place the sqsumu.s test case file with the following content into the llvm/
test/MC/Mips directory:

RUN: llvm-mc %s -triple=mips64-linux-gnu -mattr=+sqsum \

RUN: --show-encoding | FileCheck %s

256 Instruction Selection

CHECK: sqsumu $1, $2, $3 # encoding: [0x70,0x43,0x08,0x28]

 sqsumu $1, $2, $3

If you are inside the llvm/test/Mips/MC folder, then you can run the test with the
following command, which reports success at the end:

$ llvm-lit sqsumu.s

-- Testing: 1 tests, 1 workers --

PASS: LLVM :: MC/Mips/sqsumu.s (1 of 1)

Testing Time: 0.11s

 Passed: 1

The LIT tool interprets the RUN: line, replacing %s with the current filename. The
FileCheck tool reads the file, parses the CHECK: lines, and tries to match the input
from the pipe. This is a very effective way of testing.

If you are in the build directory, you can invoke the LLVM tests with this command:

$ ninja check-llvm

You can also run the tests contained in one folder, by adding the folder name
separated by a dash. To run the tests in the llvm/test/Mips/MC folder, you
type the following command:

$ ninja check-llvm-mips-mc

To construct a test case for the code generation, you follow the same strategy. The
following sqsum.ll file contains LLVM IR code to calculate the hypotenuse square:

define i64 @hyposquare(i64 %a, i64 %b) {

 %asq = mul i64 %a, %a

 %bsq = mul i64 %b, %b

 %res = add i64 %asq, %bsq

 ret i64 %res

}

To see the generated assembly code, you use the llc tool:

$ llc –mtriple=mips64-linux-gnu –mattr=+sqsum < sqsum.ll

Supporting new machine instructions 257

Convince yourself that you see our new sqsum instruction in the output. Please also
check that the instruction is not generated if you remove the –mattr=+sqsum option.

Equipped with this knowledge, you can construct the test case. This time, we use two
RUN: lines: one to check that our new instruction is generated, and one to check that it
is not. We can do both with one test case file because we can tell the FileCheck tool to
look for a different label than CHECK:. Put the test case file sqsum.ll with the following
content into the llvm/test/CodeGen/Mips folder:

; RUN: llc -mtriple=mips64-linux-gnu -mattr=+sqsum < %s |\

; RUN: FileCheck -check-prefix=SQSUM %s

; RUN: llc -mtriple=mips64-linux-gnu < %s |\

; RUN: FileCheck --check-prefix=NOSQSUM %s

define i64 @hyposquare(i64 %a, i64 %b) {

; SQSUM-LABEL: hyposquare:

; SQSUM: sqsumu $2, $4, $5

; NOSQSUM-LABEL: hyposquare:

; NOSQSUM: dmult $5, $5

; NOSQSUM: mflo $1

; NOSQSUM: dmult $4, $4

; NOSQSUM: mflo $2

; NOSQSUM: addu $2, $2, $1

 %asq = mul i64 %a, %a

 %bsq = mul i64 %b, %b

 %res = add i64 %asq, %bsq

 ret i64 %res

}

As with the other test, you can run the test alone in the folder with the
following command:

$ llvm-lit squm.ll

Alternatively, you can run it from the build directory with the following command:

$ ninja check-llvm-mips-codegen

258 Instruction Selection

With these steps, you enhanced the LLVM assembler with a new instruction, enabled the
instruction selection to use this new instruction, and verified that the encoding is correct
and the code generation works as expected.

Summary
In this chapter, you learned how the backend of an LLVM target is structured. You used
the MIR to examine the state after a pass and you used machine IR to run a single pass.
With this knowledge, you can investigate problems in backend passes.

You learned how instruction selection with the help of the selection DAG is implemented
in LLVM, and you also were introduced to alternative methods for instruction selection
with FastISel and GlobalISel, which helps in deciding which algorithm to choose if your
platform offers all of them.

You extended LLVM to support a new machine instruction in the assembler and in the
instruction selection, helping you to add support for currently unsupported CPU features.
To validate the extension, you developed automated test cases for it.

In the next chapter, we examine another unique feature of LLVM: generating and
executing code in one step, also known as Just-In-Time (JIT) compilation.

10
JIT Compilation

The LLVM core libraries come with the ExecutionEngine component, which allows the
compilation and execution of IR code in memory. Using this component, we can build
just in time (JIT) compilers, which allow the direct execution of IR code. A JIT compiler
works more like an interpreter, in the sense that no object code needs to be stored on
secondary storage.

In this chapter, you will learn about applications for JIT compilers, and how the LLVM
JIT compiler works in principle. You will explore the LLVM dynamic compiler and
interpreter, and you will also learn how to implement a JIT compiler tool on your own.
You will also see how to make use of a JIT compiler as part of a static compiler, and the
challenges associated with it.

This chapter will cover the following topics:

•	 Getting an overview of LLVM's JIT implementation and use cases

•	 Using JIT compilation for direct execution

•	 Utilizing a JIT compiler for code evaluation

By the end of the chapter, you will know how to develop a JIT compiler, either using a
preconfigured class, or a customized version fitting your needs. You will also acquire the
knowledge to make use of a JIT compiler inside a traditional static compiler.

260 JIT Compilation

Technical requirements
The code files for the chapter can be found at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter10

You can find the code in action videos at https://bit.ly/3nllhED

Getting an overview of LLVM's JIT
implementation and use cases
So far, we have only looked at ahead of time (AOT) compilers. These compilers compile
the whole application. Only once the compilation is finished can the application run. If
the compilation is performed at the runtime of the application, then the compiler is a JIT
compiler. A JIT compiler has interesting use cases:

•	 Implementation of a virtual machine: A programming language can be translated
to byte code with an AOT compiler. At runtime, a JIT compiler is used to compile
the byte code to machine code. The advantage of this approach is that the byte code
is hardware-independent, and thanks to the JIT compiler, there is no performance
penalty compared to an AOT compiler. Java and C# use this model today, but
the idea is really old: the USCD Pascal compiler from 1977 already used a
similar approach.

•	 Expression evaluation: A spreadsheet application can compile often-executed
expressions with a JIT compiler. This can speed up the financial simulations,
for example. The LLVM debugger LLDB uses the approach to evaluate a source
expression at debug time.

•	 Database queries: A database creates an execution plan from a database query. The
execution plan describes the operations on tables and columns, which leads to the
query answer when executed. A JIT compiler can be used to translate the execution
plan into machine code, thereby speeding up the execution of the query.

The static compilation model of LLVM is not as far away from the JIT model as you may
think. The LLVM static compiler, llc, compiles LLVM IR into machine code and saves
the result as an object file on disk. If the object file is not stored on disk but in memory,
would the code be executable? Not directly, because references to global functions and
global data use relocations instead of absolute addresses.

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter10
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter10
https://bit.ly/3nllhED

Getting an overview of LLVM's JIT implementation and use cases 261

Conceptually, a relocation describes how to calculate the address, for example, as an
offset to a known address. If we resolve the relocations into addresses, like the linker and
dynamic loader do, then we can execute the object code. Running the static compiler to
compile IR code into an object file in memory, performing a link step on the in-memory
object file, and then running the code gives us a JIT compiler. The JIT implementation in
the LLVM core libraries is based on this idea.

During the development history of LLVM, there were several JIT implementations, with
different feature sets. The latest JIT API is the on request compilation (ORC) engine.
In case you were wondering about the acronym: it was the lead developer's intention to
invent yet another acronym based on Tolkien's universe, after the ELF (Executable and
Linking Format) and the DWARF (Debugging Standard) were already there.

The ORC engine builds on, and extends, the idea of using the static compiler and
a dynamic linker on the in-memory object file. The implementation uses a layered
approach. The two basic levels are the following:

1.	 Compile layer

2.	 Link layer

On top of the compile layer can sit a layer providing support for lazy compilation. A
transformation layer can be stacked on top or below the lazy compilation layer, allowing
the developer to add arbitrary transformation, or simply be notified of certain events.
This layered approach has the advantage that the JIT engine is customizable for diverse
requirements. For example, a high-performance virtual machine may choose to compile
everything upfront and make no use of the lazy compilation layer. Other virtual machines
will emphasize start up time and responsiveness to the user, and achieve this with the help
of the lazy compilation layer.

The older MCJIT engine is still available. The API is derived from an even older, already
removed, JIT engine. Over time, the API became a bit bloated, and it lacks the flexibility
of the ORC API. The goal is to remove this implementation, as the ORC engine now
provides all the functionality of the MCJIT engine. New developments should use the
ORC API.

In the next section, we look at lli, the LLVM interpreter and dynamic compiler, before
we dive into implementing a JIT compiler.

262 JIT Compilation

Using JIT compilation for direct execution
Running LLVM IR directly is the first idea that comes to mind when thinking about a JIT
compiler. This is what the lli tool, the LLVM interpreter, and the dynamic compiler do.
We will explore the lli tool in the next section, and subsequently implement a similar
tool on our own.

Exploring the lli tool
Let's try the lli tool with a very simple example. Store the following source as a hello.
ll file. It is the equivalent of a C hello world application. It declares the prototype for the
printf() function from the C library. The hellostr constant contains the message
to be printed. Inside the main() function, a pointer to the first character of the message
is calculated via the getelementptr instruction, and this value is passed to the
printf() function. The application always returns 0. The complete source code
is as follows:

declare i32 @printf(i8*, ...)

@hellostr = private unnamed_addr constant [13 x i8] c"Hello
 world\0A\00"

define i32 @main(i32 %argc, i8** %argv) {

 %res = call i32 (i8*, ...) @printf(
 i8* getelementptr inbounds ([13 x i8],
 [13 x i8]* @hellostr, i64 0, i64 0))

 ret i32 0

}

This LLVM IR file is generic enough that it is valid for all platforms. We can directly
execute the IR with the lli tool with the help of the following command:

$ lli hello.ll

Hello world

The interesting point here is how the printf() function is found. The IR code is
compiled to machine code, and a lookup for the printf symbol is triggered. This symbol
is not found in the IR, so the current process is searched for it. The lli tool dynamically
links against the C library, and the symbol is found there.

Using JIT compilation for direct execution 263

Of course, the lli tool does not link against libraries you created. To enable the use of
such functions, the lli tool supports the loading of shared libraries and objects. The
following C source just prints a friendly message:

#include <stdio.h>

void greetings() {

 puts("Hi!");

}

Stored in the greetings.c file, we use this to explore the loading of objects with the
lli tool. Compile this source into a shared library. The –fPIC option instructs clang to
generate position-independent code, which is required for shared libraries. With the –
shared option given, the compiler creates the greetings.so shared library:

$ clang –fPIC –shared –o greetings.so greetings.c

We also compile the file into a greetings.o object file:

$ clang –c –o greetings.o greetings.c

We now have two files, the greetings.so shared library and the greetings.o object
file, which we will load into the lli tool.

We also need an LLVM IR file, which calls the greetings() function. For this, create
the main.ll file, which contains a single call to the function:

declare void @greetings(...)

define dso_local i32 @main(i32 %argc, i8** %argv) {

 call void (...) @greetings()

 ret i32 0

}

If you try to execute the IR as before, then the lli tool is not able to locate the greetings
symbol and will simply crash:

$ lli main.ll

PLEASE submit a bug report to https://bugs.llvm.org/ and
include the crash backtrace.

264 JIT Compilation

The greetings() function is defined in an external file, and to fix the crash, we have
to tell the lli tool which additional file needs to be loaded. In order to use the shared
library, you have to use the –load option, which takes the path to the shared library as
an argument:

$ lli –load ./greetings.so main.ll

Hi!

It is important to specify the path to the shared library, if the directory containing the
shared library is not in the search path for the dynamic loader. If omitted, then the library
will not be found.

Alternatively, we can instruct the lli tool to load the object file with the –extra-
object option:

$ lli –extra-object greetings.o main.ll

Hi!

Other supported options are –extra-archive, which loads an archive, and –extra-
module, which loads another bitcode file. Both options require the path to the file as
an argument.

You now know how you can use the lli tool to directly execute LLVM IR. In the next
section, we will implement our own JIT tool.

Implementing our own JIT compiler with LLJIT
The lli tool is nothing more than a thin wrapper around LLVM APIs. In the first section,
we learned that the ORC engine uses a layered approach. The ExecutionSession
class represents a running JIT program. Besides other items, this class holds the used
JITDylib instances. A JITDylib instance is a symbol table, which maps symbol names
to addresses. For example, this can be the symbols defined in an LLVM IR file, or the
symbols of a loaded shared library.

To execute LLVM IR, we do not need to create a JIT stack on our own. The utility LLJIT
class provides this functionality. You can also make use of this class when migrating
from the older MCJIT implementation. This class essentially provides the same
functionality. We begin the implementation with the initialization of the JIT engine
in the next subsection.

Using JIT compilation for direct execution 265

Initializing the JIT engine for compiling LLVM IR
We first implement the function that sets up the JIT engine, compiles an LLVM IR
module, and executes the main() function in this module. Later, we use this core
functionality to build a small JIT tool. This is the jitmain() function:

1.	 The function needs the LLVM module with the IR to execute. Also needed is the
LLVM context class used for this module, because the context class holds important
type information. The goal is to call the main() function, so we also pass the usual
argc and argv parameters:

Error jitmain(std::unique_ptr<Module> M,

 std::unique_ptr<LLVMContext> Ctx, int

 argc,

 char *argv[]) {

2.	 We use the LLJITBuilder class to create an LLJIT instance. If an error occurs,
then we return the error. A possible source for an error is that the platform does not
yet support JIT compilation:

 auto JIT = orc::LLJITBuilder().create();

 if (!JIT)

 return JIT.takeError();

3.	 Then we add the module to the main JITDylib instance. If configured, then JIT
compilation utilizes multiple threads. Therefore, we need to wrap the module and
the context in a ThreadSafeModule instance. If an error occurs, then we return
the error:

 if (auto Err = (*JIT)->addIRModule(

 orc::ThreadSafeModule(std::move(M),

 std::move(Ctx))))

 return Err;

266 JIT Compilation

4.	 Like the lli tool, we also support the symbols from the C library.
The DefinitionGenerator class exposes symbols, and the
DynamicLibrarySearchGenerator subclass exposes the names found in the
shared library. The class provides two factory methods. The Load() method can
be used to load a shared library, while the GetForCurrentProcess() method
exposes the symbols of the current process. We use the latter function. The symbol
names can have a prefix, depending on the platform. We retrieve the data layout and
pass the prefix to the GetForCurrentprocess() function. The symbol names
are then treated in the right way, and we do not need to care about it. As usual, we
return from the function in case an error occurs:

 const DataLayout &DL = (*JIT)->getDataLayout();

 auto DLSG = orc::DynamicLibrarySearchGenerator::

 GetForCurrentProcess(DL.getGlobalPrefix());

 if (!DLSG)

 return DLSG.takeError();

5.	 We then add the generator to the main JITDylib instance. In case a symbol needs
to be looked up, the symbols from the loaded shared library are also searched:

 (*JIT)->getMainJITDylib().addGenerator(

 std::move(*DLSG));

6.	 Next, we look up the main symbol. This symbol must be in the IR module given
on the command line. The lookup triggers compilation of that IR module. If other
symbols are referenced inside the IR module, then they are resolved using
the generator added in the previous step. The result is of the
JITEvaluatedSymbol class:

 auto MainSym = (*JIT)->lookup("main");

 if (!MainSym)

 return MainSym.takeError();

7.	 We ask the returned JIT symbol for the address of the function. We cast this address
to the prototype of the C main() function:

 auto *Main = (int (*)(

 int, char **))MainSym->getAddress();

Using JIT compilation for direct execution 267

8.	 Now we can call the main() function in the IR module, and pass the argc and
argv parameters, which the function expects. We ignore the return value:

 (void)Main(argc, argv);

9.	 We report success following execution of the function:

 return Error::success();

}

This demonstrates how easy it is to use JIT compilation. There is a bunch of other
possibilities to expose names, besides exposing the symbols for the current process
or from a shared library. The StaticLibraryDefinitionGenerator class
exposes the symbols found in a static archive, and can be used in the same way as
the DynamicLibrarySearchGenerator class. The LLJIT class also has an
addObjectFile() method to expose the symbols of an object file. You can also
provide your own DefinitionGenerator implementation if the existing
implementations do not fit your needs. In the next subsection, you extend the
implementation into a JIT compiler.

Creating the JIT compiler utility
The jitmain() function is easily extended into a small tool, which we do next. The
source is saved in a JIT.cpp file and is a simple JIT compiler:

1.	 We must include several header files. The LLJIT.h header defines the LLJIT class,
and the core classes of the ORC API. We include the IRReader.h header because
it defines a function to read LLVM IR files. The CommandLine.h header allows us
to parse the command-line options in the LLVM style. Finally, the InitLLVM.h
header is required for basic initialization of the tool, and the TargetSelect.h
header for the initialization of the native target:

#include "llvm/ExecutionEngine/Orc/LLJIT.h"

#include "llvm/IRReader/IRReader.h"

#include "llvm/Support/CommandLine.h"

#include "llvm/Support/InitLLVM.h"

#include "llvm/Support/TargetSelect.h"

2.	 We add the llvm namespace to the current scope:

using namespace llvm;

268 JIT Compilation

3.	 Our JIT tool expects exactly one input file on the command line, which we declare
with the cl::opt<> class:

static cl::opt<std::string>

 InputFile(cl::Positional, cl::Required,

 cl::desc("<input-file>"));

4.	 To read the IR file, we call the parseIRFile() function. The file can be the
textual IR representation, or a bitcode file. The function returns a pointer to the
created module. Error handling is a bit different because a textual IR file can be
parsed, which is not necessarily syntactical correct. The SMDiagnostic instance
holds the error information in case of a syntax error. The error message is printed,
and the application is exited:

std::unique_ptr<Module>

loadModule(StringRef Filename, LLVMContext &Ctx,

 const char *ProgName) {

 SMDiagnostic Err;

 std::unique_ptr<Module> Mod =

 parseIRFile(Filename, Err, Ctx);

 if (!Mod.get()) {

 Err.print(ProgName, errs());

 exit(-1);

 }

 return std::move(Mod);

}

5.	 The jitmain() function is placed here:

Error jitmain(…) { … }

6.	 Then we add the main() function, which initializes the tool and the native target,
and parses the command line:

int main(int argc, char *argv[]) {

 InitLLVM X(argc, argv);

 InitializeNativeTarget();

 InitializeNativeTargetAsmPrinter();

Using JIT compilation for direct execution 269

 InitializeNativeTargetAsmParser();

 cl::ParseCommandLineOptions(argc, argv,

 "JIT\n");

7.	 Next, the LLVM context class is initialized:

 auto Ctx = std::make_unique<LLVMContext>();

8.	 Then we load the IR module named on the command line:

 std::unique_ptr<Module> M =

 loadModule(InputFile, *Ctx, argv[0]);

9.	 Then we can call the jitmain() function. To handle errors, we use the
ExitOnError utility class. This class prints an error message and exits the
application when an error occurred. We also set a banner with the name of the
application, which is printed before the error message:

 ExitOnError ExitOnErr(std::string(argv[0]) + ": ");

 ExitOnErr(jitmain(std::move(M), std::move(Ctx),

 argc, argv));

10.	 If the control flow reaches this point, then the IR was successfully executed. We
return 0 to indicate success:

 return 0;

}

This is already the complete implementation! We only need to add the build description,
which is the topic of the next subsection.

Adding the CMake build description
In order to compile this source file, we also need to create a CMakeLists.txt file with
the build description, saved besides the JIT.cpp file:

1.	 We set the minimal required CMake version to the number required by LLVM and
give the project the name jit:

cmake_minimum_required (VERSION 3.13.4)

project ("jit")

270 JIT Compilation

2.	 The LLVM package needs to be loaded, and we add the directory of the
CMake modules provided by LLVM to the search path. Then we include the
ChooseMSVCCRT module, which makes sure that the same C runtime is used
as by LLVM:

find_package(LLVM REQUIRED CONFIG)

list(APPEND CMAKE_MODULE_PATH ${LLVM_DIR})

include(ChooseMSVCCRT)

3.	 We also need to add the definitions and the include path from LLVM. The LLVM
components used are mapped to the library names with a function call:

add_definitions(${LLVM_DEFINITIONS})

include_directories(SYSTEM ${LLVM_INCLUDE_DIRS})

llvm_map_components_to_libnames(llvm_libs Core OrcJIT

 Support

 native)

4.	 Lastly, we define the name of the executable, the source files to compile, and the
library to link against:

add_executable(JIT JIT.cpp)

target_link_libraries(JIT ${llvm_libs})

5.	 That is everything that is required for the JIT tool. Create and change into
a build directory, and then run the following command to create and compile
the application:

$ cmake –G Ninja <path to source directory>

$ ninja

This compiles the JIT tool. You can check the functionality with the hello.ll file from
the beginning of the chapter:

$ JIT hello.ll

Hello world

Using JIT compilation for direct execution 271

Creating a JIT compiler is surprisingly easy!

The example used LLVM IR as input, but this is not a requirement. The LLJIT class uses
the IRCompileLayer class, which is responsible for compiling IR to machine code. You
can define your own layer, which accepts the input you need, for example, Java byte code.

Using the predefined LLJIT class is handy, but limits our flexibility. In the next section, we
will look at how to implement a JIT compiler using the layers provided by the ORC API.

Building a JIT compiler class from scratch
Using the layered approach of ORC, it is very easy to build a JIT compiler customized for
the requirements. There is no one-size-fits-all JIT compiler, and the first section of this
chapter gave some examples. Let's have a look at how to set up a JIT compiler.

The ORC API uses layers, which are stacked together. The lowest level is the object
linking layer, represented by the llvm::orc::RTDyldObjectLinkingLayer class.
It is responsible for linking in-memory objects and turning them into executable code.
The memory required for this task is managed by an instance of the MemoryManager
interface. There is a default implementation, but we can also use a custom version if we
need to.

Above the object linking layer is the compile layer, which is responsible for creating an
in-memory object file. The llvm::orc::IRCompileLayer class takes an IR module
as input, and compiles it to an object file. The IRCompileLayer class is a subclass of the
IRLayer class, which is a generic class for layer implementations accepting LLVM IR.

These two layers already form the core of a JIT compiler. They add an LLVM IR module
as input, which is compiled and linked in-memory. To add more functionality, we can
add more layers on top of these both. For example, the CompileOnDemandLayer class
splits a module, so that only the requested functions are compiled. This can be used to
implement lazy compilation. The CompileOnDemandLayer class is also a subclass of
the IRLayer class. In a very generic way, the IRTransformLayer class, also a subclass
of the IRLayer class, allows us to apply a transformation to the module.

Another important class is the ExecutionSession class. This class represents a
running JIT program. Basically, this means that the class manages the JITDylib
symbol tables, provides lookup functionality for symbols, and keeps track of the resource
managers used.

272 JIT Compilation

The generic recipe for a JIT compiler is as follows:

1.	 Initialize an instance of the ExecutionSession class.

2.	 Initialize the layer, at least consisting of the RTDyldObjectLinkingLayer class
and the IRCompileLayer class.

3.	 Create the first JITDylib symbol table, usually with main or a similar name.

The usage is very similar to the LLJIT class from the previous section:

4.	 Add an IR module to the symbol table.

5.	 Look up a symbol, the triggered compilation of the associated function, and
possibly the whole module.

6.	 Execute the function.

In the next subsection, we will implement a JIT compiler class based on the generic recipe.

Creating a JIT compiler class
To keep the implementation of the JIT compiler class simple, we put everything into
the JIT.h header file. The initialization of the class is a bit more complex. Due to the
handling of possible errors, we need a factory method to create some objects upfront
before we can call the constructor. The steps to create the class are as follows:

1.	 We begin by guarding the header file against multiple inclusion with the JIT_H
preprocessor definition:

#ifndef JIT_H

#define JIT_H

2.	 A bunch of include files is required. Most of them provide a class with the
same name as the header file. The Core.h header provides a couple of basic
classes, including the ExecutionSession class. The ExecutionUtils.h
header provides the DynamicLibrarySearchGenerator class to search
libraries for symbols, which we already used in the Implementing our own JIT
compiler with LLJIT section. The CompileUtils.h header provides the
ConcurrentIRCompiler class:

#include "llvm/Analysis/AliasAnalysis.h"

#include "llvm/ExecutionEngine/JITSymbol.h"

#include "llvm/ExecutionEngine/Orc/CompileUtils.h"

#include "llvm/ExecutionEngine/Orc/Core.h"

Using JIT compilation for direct execution 273

#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"

#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"

#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"

#include
 "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"

#include "llvm/ExecutionEngine/Orc/Mangling.h"

#include
 "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"

#include
 "llvm/ExecutionEngine/Orc/TargetProcessControl.h"

#include "llvm/ExecutionEngine/SectionMemoryManager.h"

#include "llvm/Passes/PassBuilder.h"

#include "llvm/Support/Error.h"

3.	 Our new class is the JIT class:

class JIT {

4.	 The private data members reflect the ORC layers and a helper class. The
ExecutionSession, ObjectLinkingLayer, CompileLayer,
OptIRLayer, and MainJITDylib instances represent the running
JIT program, the layers, and the symbol table, as already described. The
TargetProcessControl instance is used for interaction with the JIT target
process. This can be the same process, another process on the same machine, or a
remote process on a different machine, possible with a different architecture. The
DataLayout and MangleAndInterner classes are required to mangle the
symbols names in the correct way. The symbol names are internalized, which means
that all equal names have the same address. To check whether two symbol names
are equal, it is then sufficient to compare the addresses, which is a very
fast operation:

 std::unique_ptr<llvm::orc::TargetProcessControl>

 TPC;

 std::unique_ptr<llvm::orc::ExecutionSession> ES;

 llvm::DataLayout DL;

 llvm::orc::MangleAndInterner Mangle;

 std::unique_ptr<llvm::orc::RTDyldObjectLinkingLayer>

 ObjectLinkingLayer;

 std::unique_ptr<llvm::orc::IRCompileLayer>

274 JIT Compilation

 CompileLayer;

 std::unique_ptr<llvm::orc::IRTransformLayer>

 OptIRLayer;

 llvm::orc::JITDylib &MainJITDylib;

5.	 The initialization is split into three parts. In C++, a constructor cannot return an
error. The simple and recommended solution is to create a static factory method,
which can do the error handling prior to constructing the object. The initialization
of the layers is more complex, so we introduce factory methods for them, too.

In the create() factory method, we first create a SymbolStringPool instance,
which is used to implement string internalization and is shared by several classes. To
take control of the current process, we create a SelfTargetProcessControl
instance. If we want to target a different process, then we need to change
this instance.

Then we construct a JITTargetMachineBuilder instance, for which we need
to know the target triple of the JIT process. Next, we query the target machine
builder for the data layout. This step can fail if the builder is not able to instantiate
the target machine based on the triple provided, for example, because support for
this target is not compiled into the LLVM libraries:

public:

 static llvm::Expected<std::unique_ptr<JIT>> create() {

 auto SSP =

 std::make_shared<llvm::orc::SymbolStringPool>();

 auto TPC =

 llvm::orc::SelfTargetProcessControl::Create(SSP);

 if (!TPC)

 return TPC.takeError();

 llvm::orc::JITTargetMachineBuilder JTMB(

 (*TPC)->getTargetTriple());

 auto DL = JTMB.getDefaultDataLayoutForTarget();

 if (!DL)

 return DL.takeError();

Using JIT compilation for direct execution 275

6.	 At this point, we have handled all the calls that could potentially fail. We are now
able to initialize the ExecutionSession instance. Finally, the constructor of the
JIT class is called with all instantiated objects, and the result is returned to
the caller:

 auto ES =

 std::make_unique<llvm::orc::ExecutionSession>(

 std::move(SSP));

 return std::make_unique<JIT>(

 std::move(*TPC), std::move(ES),

 std::move(*DL),

 std::move(JTMB));

 }

7.	 The constructor of the JIT class moves the passed parameters to the private data
members. The layer objects are constructed with a call to a static factory name
with the create prefix. Each layer factory method requires a reference to the
ExecutionSession instance, connecting the layer to the running JIT session.
Except for the object linking layer, which is at the bottom of the layer stack, each
layer also requires a reference to the previous layer, illustrating the stacking order:

 JIT(std::unique_ptr<llvm::orc::TargetProcessControl>

 TPCtrl,

 std::unique_ptr<llvm::orc::ExecutionSession> ExeS,

 llvm::DataLayout DataL,

 llvm::orc::JITTargetMachineBuilder JTMB)

 : TPC(std::move(TPCtrl)), ES(std::move(ExeS)),

 DL(std::move(DataL)), Mangle(*ES, DL),

 ObjectLinkingLayer(std::move(

 createObjectLinkingLayer(*ES, JTMB))),

 CompileLayer(std::move(createCompileLayer(

 *ES, *ObjectLinkingLayer,

 std::move(JTMB)))),

 OptIRLayer(std::move(

 createOptIRLayer(*ES, *CompileLayer))),

 MainJITDylib(ES->createBareJITDylib("<main>")) {

276 JIT Compilation

8.	 In the body of the constructor, we add the generator to search the current process
for symbols. The GetForCurrentProcess() method is special, because the
return value is wrapped in an Expected<> template, indicating that an Error
object can also be returned. But we know that no error can occur – the current
process will eventually run! Therefore, we unwrap the result with the cantFail()
function, which terminates the application if an error occurred anyway:

 MainJITDylib.addGenerator(llvm::cantFail(

 llvm::orc::DynamicLibrarySearchGenerator::

 GetForCurrentProcess(DL.getGlobalPrefix())));

 }

9.	 To create the object linking layer, we need to provide a memory manager. We stick
here to the default SectionMemoryManager class, but we could also provide a
different implementation if needed:

 static std::unique_ptr<

 llvm::orc::RTDyldObjectLinkingLayer>

 createObjectLinkingLayer(

 llvm::orc::ExecutionSession &ES,

 llvm::orc::JITTargetMachineBuilder &JTMB) {

 auto GetMemoryManager = []() {

 return std::make_unique<

 llvm::SectionMemoryManager>();

 };

 auto OLLayer = std::make_unique<

 llvm::orc::RTDyldObjectLinkingLayer>(

 ES, GetMemoryManager);

10.	 A slight complication exists for the COFF object file format, which is used on
Windows. This file format does not allow functions to be marked as exported.
This subsequently leads to failures in checks inside the object linking layer: the
flags stored in the symbol are compared with the flags from IR, which leads to a
mismatch because of the missing export marker. The solution is to override the flags
only for this file format. This finishes construction of the object layer, and the object
is returned to the caller:

 if (JTMB.getTargetTriple().isOSBinFormatCOFF()) {

 OLLayer

Using JIT compilation for direct execution 277

 ->setOverrideObjectFlagsWithResponsibilityFlags(

 true);

 OLLayer

 ->setAutoClaimResponsibilityForObjectSymbols(

 true);

 }

 return std::move(OLLayer);

 }

11.	 To initialize the compiler layer, an IRCompiler instance is needed. The
IRCompiler instance is responsible for compiling an IR module into an
object file. If our JIT compiler does not use threads, then we can use the
SimpleCompiler class, which compiles the IR module using a given
target machine. The TargetMachine class is not thread-safe, likewise the
SimpleCompiler class, too. To support compilation with multiple threads, we
use the ConcurrentIRCompiler class, which creates a new TargetMachine
instance for each module to compile. This approach solves the problem with
multiple threads:

 static std::unique_ptr<llvm::orc::IRCompileLayer>

 createCompileLayer(

 llvm::orc::ExecutionSession &ES,

 llvm::orc::RTDyldObjectLinkingLayer &OLLayer,

 llvm::orc::JITTargetMachineBuilder JTMB) {

 auto IRCompiler = std::make_unique<

 llvm::orc::ConcurrentIRCompiler>(

 std::move(JTMB));

 auto IRCLayer =

 std::make_unique<llvm::orc::IRCompileLayer>(

 ES, OLLayer, std::move(IRCompiler));

 return std::move(IRCLayer);

 }

278 JIT Compilation

12.	 Instead of compiling the IR module directly to machine code, we install a layer
that optimizes the IR first. This is a deliberate design decision: We turn our JIT
compiler into an optimizing JIT compiler, which produces faster code that takes
longer to produce, meaning a delay for the user. We do not add lazy compilation, so
entire modules are compiled when just a symbol is looked up. This can add up to a
significant time before the user sees the code executing.

Note
Please note that introducing lazy compilation is not a proper solution
in all circumstances.

Lazy compilation is realized through moving each function into a module of
its own, which is compiled when the function name is looked up. This prevents
inter-procedural optimizations such as inlining, because the inliner pass needs
access to the body of the function called to inline them. As a result, the user sees
a faster startup with lazy compilation, but the code produced is not as optimal as
it can be. These design decisions depend on the intended use. Here, we decide for
fast code, accepting slower start up times. The optimization layer is realized as a
transformation layer. The IRTransformLayer class delegates the transformation
to a function, in our case, to the optimizeModule function:

 static std::unique_ptr<llvm::orc::IRTransformLayer>

 createOptIRLayer(

 llvm::orc::ExecutionSession &ES,

 llvm::orc::IRCompileLayer &CompileLayer) {

 auto OptIRLayer =

 std::make_unique<llvm::orc::IRTransformLayer>(

 ES, CompileLayer,

 optimizeModule);

 return std::move(OptIRLayer);

 }

13.	 The optimizeModule() function is an example of a transformation on an IR
module. The function gets the module to transform as parameter, and returns the
transformed one. Because the JIT can potentially run with multiple threads, the IR
module is wrapped in a ThreadSafeModule instance:

 static llvm::Expected<llvm::orc::ThreadSafeModule>

 optimizeModule(

Using JIT compilation for direct execution 279

 llvm::orc::ThreadSafeModule TSM,

 const llvm::orc::MaterializationResponsibility

 &R) {

14.	 To optimize the IR, we recall some information from Chapter 8, Optimizing IR,
in the Adding an optimization pipeline to your compiler section. We require a
PassBuilder instance to create an optimization pipeline. First, we define a couple
of analysis managers, and register them afterward at the pass builder. Then we
populate a ModulePassManager instance with the default optimization pipeline
for the O2 level. This is again a design decision: the O2 level produces fast machine
code already, but does this faster still than the O3 level. Afterward, we run the
pipeline on the module. Finally, the optimized module is returned to the caller:

 TSM.withModuleDo([](llvm::Module &M) {

 bool DebugPM = false;

 llvm::PassBuilder PB(DebugPM);

 llvm::LoopAnalysisManager LAM(DebugPM);

 llvm::FunctionAnalysisManager FAM(DebugPM);

 llvm::CGSCCAnalysisManager CGAM(DebugPM);

 llvm::ModuleAnalysisManager MAM(DebugPM);

 FAM.registerPass(

 [&] { return PB.buildDefaultAAPipeline(); });

 PB.registerModuleAnalyses(MAM);

 PB.registerCGSCCAnalyses(CGAM);

 PB.registerFunctionAnalyses(FAM);

 PB.registerLoopAnalyses(LAM);

 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);

 llvm::ModulePassManager MPM =

 PB.buildPerModuleDefaultPipeline(

 llvm::PassBuilder::OptimizationLevel::O2,

 DebugPM);

 MPM.run(M, MAM);

 });

 return std::move(TSM);

 }

280 JIT Compilation

15.	 The client of the JIT class needs a way to add an IR module, which we provide with
the addIRModule() function. Remember the layer stack we created: we must add
the IR module to the top layer, otherwise we would accidently bypass some layers.
This would be a programming error that is not easily spotted: if the OptIRLayer
member is replaced by a CompileLayer member, then our JIT class still works,
but not as an optimizing JIT because we have bypassed this layer. This is no cause
for concern as regards this small implementation, but in a large JIT optimization,
we would introduce a function to return the top-level layer:

 llvm::Error addIRModule(

 llvm::orc::ThreadSafeModule TSM,

 llvm::orc::ResourceTrackerSP RT = nullptr) {

 if (!RT)

 RT = MainJITDylib.getDefaultResourceTracker();

 return OptIRLayer->add(RT, std::move(TSM));

 }

16.	 Likewise, a client of our JIT class needs a way to look up a symbol. We delegate this
to the ExecutionSession instance, passing in a reference to the main symbol
table and the mangled and internalized name of the requested symbol:

 llvm::Expected<llvm::JITEvaluatedSymbol>

 lookup(llvm::StringRef Name) {

 return ES->lookup({&MainJITDylib},

 Mangle(Name.str()));

 }

Putting the JIT compiler together was quite easy. Initializing the class is a bit tricky, as it
involves a factory method and a constructor call for the JIT class, and factory methods
for each layer. This distribution is caused by limitations in C++, although the code itself
is simple.

In the next subsection, we are using our new JIT compiler class to implement a command-
line utility.

Utilizing a JIT compiler for code evaluation 281

Using our new JIT compiler class
The interface of our new JIT compiler class resembles the LLJIT class used in the
Implementing our own JIT compiler with LLJIT section. To test our new implementation,
we copy the LIT.cpp class from the previous section and make the following changes:

1.	 To be able to use our new class, we include the JIT.h header file. This replaces
the llvm/ExecutionEngine/Orc/LLJIT.h header file, which is no longer
required because we are no longer using the LLJIT class.

2.	 Inside the jitmain() function, we replace the call to orc::LLJITBuilder().
create() with a call to our new JIT::create() method.

3.	 Again, in the jitmain() function, we remove the code to add the
DynamicLibrarySearchGenerator class. Precisely this generator is integrated
in the JIT class.

This is already everything that needs to be changed! We can compile and run the changed
application as in the previous section, with the same result. Under the hood, the new
class uses a fixed optimization level, so with sufficiently large modules, we can note the
differences in startup and runtime.

Having a JIT compiler at hand can stimulate new ideas. In the next section, we will
look at how we can use the JIT compiler as part of a static compiler to evaluate code at
compile time.

Utilizing a JIT compiler for code evaluation
Compiler writers make a great effort to produce optimal code. A simple, yet effective,
optimization is to replace an arithmetic operation on two constants by the result value
of this operation. To be able to perform the computation, an interpreter for constant
expressions is embedded. And to arrive at the same result, the interpreter has to
implement the same rules as the generated machine code! Of course, this can be the
source of subtle errors.

282 JIT Compilation

A different approach would be to compile the constant expression to IR using the same
code generations methods, and then have JIT compile and execute the IR. This idea
can even be taken a step further. In mathematics, a function always produces the same
result for the same input. For functions in computer languages, this is not true. A good
example is the rand() function, which returns a random value for each call. A function
in computer languages, which has the same characteristic as a function in mathematics, is
called a pure function. During the optimization of expressions, we could JIT-compile and
execute pure functions, which only have constant parameters, and replace the call to the
function with the result returned from JIT execution. Effectively, we move the execution
of the function from runtime to compile time!

Think about cross-compilation
Using a JIT compiler as part of a static compiler is an interesting option.
However, if the compiler were to support cross-compilation, then this approach
should be well thought-out. The usual candidates causing trouble are floating-
point types. The precision of the long double type in C often depends
on the hardware and the operation system. Some systems use 128-bit floating
points, while others only use 64-bit floating points. The 80-bit floating point
type is only available on the x86 platform, and usually only used on Windows.
Performing the same floating-point operation with different precision can
result in huge differences. Evaluation through JIT compilation cannot be used
in such cases.

It cannot easily be decided whether a function is pure. The common solution is to apply a
heuristic. If a function does not read or write into heap memory, either through pointers
or indirectly with the use of aggregate types, and only calls other pure functions, then
it is a pure function. The developer can aid the compiler, and mark pure functions, for
example, with a special keyword or symbol. In the semantic analysis phase, the compiler
can then check for violations.

In the next subsection, we will take a closer look at the implications for language
semantics when trying to JIT-execute a function at compile time.

Utilizing a JIT compiler for code evaluation 283

Identifying the language semantics
The difficult part is indeed to decide at the language semantics level which parts of the
language are suitable for evaluation at compile time. Excluding access to heap memory
is very restrictive. In general terms, it rules out string handling, for example. Using heap
memory becomes problematic when the allocated memory survives the lifetime of the
JIT-executed function. This is a program state, which can influence other results, and is
therefore dangerous. On the other hand, if there are matched calls to malloc() and
free() functions, then the memory is only used for internal calculation. In this case, the
use of heap memory would be safe. But precisely this condition is not easy to proof.

At a similar level, an infinite loop inside the JIT-executed function can freeze the compiler.
Alan Turing showed in 1936 that no machine can decide whether a function will produce
a result or whether it is stuck in an endless loop. Some precautions must be taken to avoid
this situation, for example, a runtime limit after which the JIT-executed function
is terminated.

And last, the more that functionality is allowed, the more thoughts must be put into
security, because the compiler now executes code written by someone else. Just imagine
that this code downloads and runs files from the internet or tries to erase the hard disk:
with too much state allowed for JIT-executed functions, we also need to think about
such scenarios.

The idea is not new. The D programming language has a feature called compile-
time function execution. The reference compiler dmd implements this feature by
interpretation of the functions at the AST level. The LLVM-based LDC compiler has an
experimental feature to use the LLVM JIT engine for it. You can find out more about the
language and the compilers at https://dlang.org/.

Ignoring the semantic challenges, the implementation is not that difficult. In the Building
a JIT compiler class from scratch section, we developed a JIT compiler with the JIT class.
We feed an IR module in the class, and we can look up and execute a function from this
module. Looking at the tinylang compiler implementation, we can clearly identify
access to constants, because there is a ConstantAccess node in the AST. For example,
there is code like the following:

 if (auto *Const = llvm::dyn_cast<ConstantAccess>(Expr)) {

 // Do something with the constant.

 }

284 JIT Compilation

Instead of interpreting the operations in the expression to derive the value of the constant,
we can do the following:

1.	 Create a new IR module.

2.	 Create an IR function in the module, returning a value of the expected type.

3.	 Use the existing emitExpr() function to create the IR for the expression and
return the calculated value with the last instruction.

4.	 JIT-execute the function to calculate the value.

Is this worth implementing? LLVM performs constant propagation and function inlining
as part of the optimization pipeline. A simple expression such as 4 + 5 is already replaced
during IR construction with the result. Small functions such as calculation of the greatest
common divisor are inlined. If all parameters are constant values, then the inlined code
gets replaced by the result of the calculation through constant propagation.

Based on this observation, an implementation of this approach is only useful if enough
language features are available for execution at compile time. If this is the case, then it is
fairly easily implemented using the given sketch.

Knowing how to utilize the JIT compiler component of LLVM enables you to use LLVM
in whole new ways. Besides implementing a JIT compiler like the Java VM, the JIT
compiler can also be embedded in other applications. This allows creative approaches,
such as its use inside a static compiler, which you looked at in this section.

Summary
In this chapter, you learned how to develop a JIT compiler. You began with possible
applications of JIT compilers, and you explored lli, the LLVM dynamic compiler
and interpreter. Using the predefined LLJIT class, you built a tool similar to lli on
your own. To be able to take advantage of the layered structure of the ORC API, you
implemented an optimizing JIT class. Having acquired all this knowledge, you explored
the possibility of using a JIT compiler inside a static compiler, a feature from which some
languages can benefit.

In the next chapter, you will examine how to add a backend for a new CPU architecture
to LLVM.

11
Debugging Using

LLVM Tools
LLVM comes with a set of tools that helps you to identify certain errors in your
application. All of these tools make use of the LLVM and Clang libraries.

In this chapter, you will learn how to instrument an application with sanitizers, how to
use the most common sanitizer to identify a wide range of bugs, and how to implement
fuzz testing for your application. This will help you to identify bugs that are usually not
found with unit testing. You will also learn how to identify performance bottlenecks in
your application, running the static analyzer to identify problems normally not found by
the compiler, and creating your own Clang-based tool with which you can extend Clang
with new functionality.

This chapter will cover the following topics:

•	 Instrumenting an application with sanitizers

•	 Finding bugs with libFuzzer

•	 Performance profiling with XRay

•	 Checking the source with the Clang Static Analyzer

•	 Creating your own Clang-based tool

286 Debugging Using LLVM Tools

By the end of the chapter, you will know how to use various LLVM and Clang tools to
identify a large category of errors in an application. You will also acquire the knowledge to
extend Clang with new functionality, for example, to enforce a naming convention or to
add new source analysis.

Technical requirements
To create the flame graph in the Performance profiling with XRay section, you need to
install the scripts from https://github.com/brendangregg/FlameGraph. Some
systems, such as Fedora and FreeBSD, provide a package for these scripts, which you can
also use.

To view the Chrome visualization in the same section, you need to have the Chrome
browser installed. You can download the browser from https://www.google.
com/chrome/, or use the package manager of your system to install the Chrome
browser. The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter11

You can find the code in action videos at https://bit.ly/3nllhED

Instrumenting an application with sanitizers
LLVM comes with a couple of sanitizers. These are passes that instrument the
Intermediate Representation (IR) in a way to check for certain misbehaviors of an
application. Usually, they require library support, which is part of the compiler-rt
project. Sanitizers can be enabled in Clang, which makes them very comfortable to use. In
the following sections, we will have a look at the available sanitizers, namely, address,
memory, and thread. We will first look at the address sanitizer.

Detecting memory access problems with
the address sanitizer
You use the address sanitizer to detect a couple of memory access bugs in an
application. This includes common errors such as using dynamically allocated memory
after freeing it, or writing to dynamically allocated memory outside the boundaries of the
allocated memory.

https://github.com/brendangregg/FlameGraph
https://www.google.com/chrome/
https://www.google.com/chrome/
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter11
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter11
https://bit.ly/3nllhED

Instrumenting an application with sanitizers 287

When enabled, the address sanitizer replaces calls to the malloc() and free()
functions with its own version, and instruments all memory access with a checking guard.
Of course, this adds a lot of overhead to the application, and you will use the address
sanitizer only during the testing phase of the application. If you are interested in the
implementation details, then you can find the source of the pass in the llvm/lib/
Transforms/Instrumentation/AddressSanitzer.cpp file and a description
of the algorithm used at https://github.com/google/sanitizers/wiki/
AddressSanitizerAlgorithm.

Let's run a short example to demonstrate the capabilities of the address sanitizer. The
following example application, outofbounds.c, allocates 12 bytes of memory, but
initializes 14 bytes:

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[]) {

 char *p = malloc(12);

 memset(p, 0, 14);

 return (int)*p;

}

You can compile and run this application without noticing any problems. This is typical
for this kind of error. Even in larger applications, this kind of bug can go unnoticed for a
long time. But, if you enable the address sanitizer with the -fsanitize=address
option, then the application stops after detecting the error.

It is also useful to enable debug symbols with the –g option, because it helps to identify
the location of the error in the source. The following code is an example of how to compile
the source file with the address sanitizer and debug symbols enabled:

$ clang -fsanitize=address -g outofbounds.c -o outofbounds

Now, you get a lengthy error report when running the application:

$./outofbounds

==
===

==1067==ERROR: AddressSanitizer: heap-buffer-overflow on
address 0x60200000001c at pc 0x00000023a6ef bp 0x7fffffffeb10
sp 0x7fffffffe2d8

WRITE of size 14 at 0x60200000001c thread T0

https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm

288 Debugging Using LLVM Tools

 #0 0x23a6ee in __asan_memset /usr/src/contrib/llvm-project/
compiler-rt/lib/asan/asan_interceptors_memintrinsics.cpp:26:3

 #1 0x2b2a03 in main /home/kai/sanitizers/outofbounds.c:6:3

 #2 0x23331f in _start /usr/src/lib/csu/amd64/crt1.c:76:7

The report also contains detailed information about the memory content. The important
information is the type of error – heap buffer overflow, in this case – and the offending
source line. To find the source line, you look at the stack trace at location #1, which is the
last location before the address sanitizer intercepts the execution of the application.
It shows line 6 in the outofbounds.c file, which is the line containing the call to
memset() – indeed, the exact place where the buffer overflow happens.

If you replace the line containing memset(p, 0, 14); in the outofbounds.c file
with the following code, then you introduce access to memory after the memory is freed.
You'll need to store the source in the useafterfree.c file:

 memset(p, 0, 12);

 free(p);

Again, if you compile and run it, the use of the pointer after the memory
is free is detected:

$ clang -fsanitize=address -g useafterfree.c -o useafterfree

$./useafterfree

==
===

==1118==ERROR: AddressSanitizer: heap-use-after-free on address
0x602000000010 at pc 0x0000002b2a5c bp 0x7fffffffeb00 sp
0x7fffffffeaf8

READ of size 1 at 0x602000000010 thread T0

 #0 0x2b2a5b in main /home/kai/sanitizers/
useafterfree.c:8:15

 #1 0x23331f in _start /usr/src/lib/csu/amd64/crt1.c:76:7

This time, the report points to line 8, which contains dereferencing of the p pointer.

On x86_64 Linux and macOS, you can also enable a leak detector. If you set the ASAN_
OPTIONS environment variable to the value detect_leaks=1 before running the
application, then you also get a report about memory leaks. On the command line, you do
this as follows:

$ ASAN_OPTIONS=detect_leaks=1 ./useafterfree

Instrumenting an application with sanitizers 289

The address sanitizer is very useful, because it catches a category of bugs that are
otherwise difficult to detect. The memory sanitizer does a similar task, and we'll look at it
in the next section.

Finding uninitialized memory access
with the memory sanitizer
Using uninitialized memory is another category of bugs that are hard to find. In C and
C++, the general memory allocation routines do not initialize the memory buffer with a
default value. The same is true for automatic variables on the stack.

There are lots of opportunities for errors, and the memory sanitizer helps to find the
bugs. If you are interested in the implementation details, you can find the source for
the memory sanitizer pass in the llvm/lib/Transforms/Instrumentation/
MemorySanitizer.cpp file. The comment at top of the file explains the ideas behind
the implementation.

Let's run a small example and save the following source as the memory.c file. You should
note that the x variable is not initialized, but is used as a return value:

int main(int argc, char *argv[]) {

 int x;

 return x;

}

Without the sanitizer, the application will run just fine. However, you will get an error
report if you use the -fsanitize=memory option:

$ clang -fsanitize=memory -g memory.c -o memory

$./memory

==1206==WARNING: MemorySanitizer: use-of-uninitialized-value

 #0 0x10a8f49 in main /home/kai/sanitizers/memory.c:3:3

 #1 0x1053481 in _start /usr/src/lib/csu/amd64/crt1.c:76:7

SUMMARY: MemorySanitizer: use-of-uninitialized-value /home/kai/
sanitizers/memory.c:3:3 in main

Exiting

290 Debugging Using LLVM Tools

Like the address sanitizer, the memory sanitizer stops the application at the first
found error.

In the next section, we look at how we can use the thread sanitizer to detect data races
in multi-threaded applications.

Pointing out data races with the thread sanitizer
To leverage the power of modern CPUs, applications now use multiple threads. This is a
powerful technique, but it also introduces new sources of errors. A very common problem
in multi-threaded applications is that access to global data is not protected, for example,
with a mutex or semaphore. This is called a data race. The thread sanitizer can detect
data races in Pthread-based applications and applications using the LLVM libc++
implementation. You will find the implementation in the llvm/lib/Transforms/
Instrumentation/ThreadSanitize.cpp file.

To demonstrate the functionality of the thread sanitizer, we will create a very simple
producer/consumer-style application. The producer thread increments a global variable,
while the consumer thread decrements the same variable. The access to the global variable
is not protected, so this is clearly a data race. You'll need to save the following source in
the thread.c file:

#include <pthread.h>

int data = 0;

void *producer(void *x) {

 for (int i = 0; i < 10000; ++i) ++data;

 return x;

}

void *consumer(void *x) {

 for (int i = 0; i < 10000; ++i) --data;

 return x;

}

int main() {

 pthread_t t1, t2;

 pthread_create(&t1, NULL, producer, NULL);

 pthread_create(&t2, NULL, consumer, NULL);

Instrumenting an application with sanitizers 291

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 return data;

}

From the preceding code, the data variable is shared between two threads. Here, it is
of the int type to make the example simple. Most often, a data structure such as the
std::vector class or similar would be used. These two threads run the producer()
and consumer() functions.

The producer() function only increments the data variable, while the consumer()
function decrements it. No access protection is implemented, so this constitutes a data
race. The main() function starts both threads with the pthread_create() function,
waits for the end of the threads with the pthread_join() function, and returns the
current value of the data variable.

If you compile and run this application, then you will note no error; that is, the return
value is always 0. An error, in this case, a return value not equal to 0, will show up if the
number of loops performed is increased by a factor of 100. Then, you'll see other values
showing up.

You use the thread sanitizer to identify the data race. To compile with the thread
sanitizer being enabled, you'll need to pass the -fsanitize=thread option to Clang.
Adding debug symbols with the –g option gives you line numbers in the report, which
helps a lot. Note that you also need to link the pthread library:

$ clang -fsanitize=thread -g thread.c -o thread -lpthread

$./thread

==================

WARNING: ThreadSanitizer: data race (pid=1474)

 Write of size 4 at 0x000000cdf8f8 by thread T2:

 #0 consumer /home/kai/sanitizers/thread.c:11:35
(thread+0x2b0fb2)

 Previous write of size 4 at 0x000000cdf8f8 by thread T1:

 #0 producer /home/kai/sanitizers/thread.c:6:35
(thread+0x2b0f22)

 Location is global 'data' of size 4 at 0x000000cdf8f8
(thread+0x000000cdf8f8)

292 Debugging Using LLVM Tools

 Thread T2 (tid=100437, running) created by main thread at:

 #0 pthread_create /usr/src/contrib/llvm-project/
compiler-rt/lib/tsan/rtl/tsan_interceptors_posix.cpp:962:3
(thread+0x271703)

 #1 main /home/kai/sanitizers/thread.c:18:3
(thread+0x2b1040)

 Thread T1 (tid=100436, finished) created by main thread at:

 #0 pthread_create /usr/src/contrib/llvm-project/
compiler-rt/lib/tsan/rtl/tsan_interceptors_posix.cpp:962:3
(thread+0x271703)

 #1 main /home/kai/sanitizers/thread.c:17:3
(thread+0x2b1021)

SUMMARY: ThreadSanitizer: data race /home/kai/sanitizers/
thread.c:11:35 in consumer

==================

ThreadSanitizer: reported 1 warnings

The report points us to lines 6 and 11 of the source file, where the global variable is
accessed. It also shows that two threads, named T1 and T2, accessed the variable, as well
as the file and line number of the respective calls to the pthread_create() function.

In this section, we learned how to use three sanitizers to identify common problems in
applications. The address sanitizer helps us to identify common memory access errors,
such as out-of-bounds access or using memory after being freed. Using the memory
sanitizer, we can find accesses to uninitialized memory, and the thread sanitizer helps us
to identify data races.

In the next section, we try to trigger the sanitizers by running our application on random
data, called fuzz testing.

Finding bugs with libFuzzer
To test your application, you'll need to write unit tests. This is a great way to make sure
your software behaves correctly. However, due to the exponential number of possible
inputs, you'll probably miss certain weird inputs, and a few bugs as well.

Finding bugs with libFuzzer 293

Fuzz testing can help here. The idea is to present your application with randomly
generated data, or data based on valid input but with random changes. This is done over
and over again, and so your application is tested with a large number of inputs. This is
a very powerful testing approach. Literally hundreds of bugs in web browsers and other
software have been found with fuzz testing.

LLVM comes with its own fuzz testing library. Originally part of the LLVM core libraries,
the libFuzzer implementation was finally moved to compiler-rt. The library is
designed to test small and fast functions.

Let's run a small example. You'll need to provide the LLVMFuzzerTestOneInput()
function. This function is called by the fuzzer driver and provides you with some input.
The following function counts consecutive ASCII digits in the input, and then we'll feed
the random input to it. You'll need to save the example in the fuzzer.c file:

#include <stdint.h>

#include <stdlib.h>

int count(const uint8_t *Data, size_t Size) {

 int cnt = 0;

 if (Size)

 while (Data[cnt] >= '0' && Data[cnt] <= '9') ++cnt;

 return cnt;

}

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t

 Size) {

 count(Data, Size);

 return 0;

}

From the preceding code, the count() function counts the number of digits in
the memory pointed to by the Data variable. The size of the data is only checked to
determine whether there are any bytes available. Inside the while loop, the size is
not checked.

Used with normal C strings, there will be no error because C strings are always
terminated by a 0 byte. The LLVMFuzzerTestOneInput() function is the so-called
fuzz target, and it is the function called by libFuzzer. It calls the function we want to test
and returns 0, which is currently the only allowed value.

294 Debugging Using LLVM Tools

To compile the file with libFuzzer, you add the -fsanitize=fuzzer option. The
recommendation is to also enable the address sanitizer and the generation of debug
symbols. Use the following command to compile the file:

$ clang -fsanitize=fuzzer,address -g fuzzer.c -o fuzzer

When you run the test, a lengthy report is emitted. The report contains more information
than a stack trace, so let's have a closer look at it:

1.	 The first line tells you the seed that was used to initialize the random number
generator. You can use the –seed= option to repeat this execution:

INFO: Seed: 1297394926

2.	 By default, libFuzzer limits inputs to at most 4,096 bytes. You can change the default
by using the –max_len= option:

INFO: -max_len is not provided; libFuzzer will not
generate inputs larger than 4096 bytes

3.	 Now, we run the test without providing sample input. The set of all sample inputs is
called the corpus, and it is empty for this run:

INFO: A corpus is not provided, starting from an empty
corpus

4.	 Some information about the generated test data will follow. It shows you that 28
inputs were tried and 6 inputs, with a combined length of 19 bytes, were found,
which together cover 6 coverage points or basic blocks:

#28 NEW cov: 6 ft: 9 corp: 6/19b lim: 4 exec/s: 0
rss: 29Mb L: 4/4 MS: 4 CopyPart-PersAutoDict-CopyPart-
ChangeByte- DE: "1\x00"-

5.	 After this, a buffer overflow was detected, and it follows the information from the
address sanitizer. Lastly, the report tells you where the input causing the buffer
overflow is saved:

artifact_prefix='./'; Test unit written to ./crash-17ba07
91499db908433b80f37c5fbc89b870084b

With the saved input, you can execute the test case with just the crashing input again:

$./fuzzer crash-17ba0791499db908433b80f37c5fbc89b870084b

Finding bugs with libFuzzer 295

This is obviously a great help to identify the problem. Only, using random data is often not
very helpful. If you try to fuzz test the tinylang lexer or parser, then pure random data
leads to immediate rejection of the input, because no valid token can be found.

In such cases, it is more useful to provide a small set of valid input, called the corpus.
Then, the files of the corpus are randomly mutated and used as input. You can think of the
input as mostly valid, with just a few bits flipped. This also works great with other input,
which must have a certain format. For example, for a library processing JPEG and PNG
files, you will provide some small JPEG and PNG files as the corpus.

You can save the corpus files in one or more directories and you can create a simple
corpus for your fuzz test with the help of the printf command:

$ mkdir corpus

$ printf "012345\0" >corpus/12345.txt

$ printf "987\0" >corpus/987.txt

When running the test, you will provide the directory on the command line:

$./fuzzer corpus/

The corpus is then used as the base for generating random input, as the report tells you:

INFO: seed corpus: files: 2 min: 4b max: 7b total: 11b rss:
29Mb

If you are testing a function that works on tokens or other magic values, such as a
programming language, then you can speed up the process by providing a dictionary
with the tokens. For a programming language, the dictionary would contain all the
keywords and special symbols used in the language. The dictionary definitions follow a
simple key-value style. For example, to define the if keyword in the dictionary, you can
add the following:

kw1="if"

However, the key is optional and can be left out. You can then specify the dictionary file
on the command line with the –dict= option. In the next section, we'll get to know the
limitations and alternatives for the libFuzzer implementation.

296 Debugging Using LLVM Tools

Limitations and alternatives
The libFuzzer implementation is fast but poses a number of restrictions on the test target.
They are as follows:

•	 The function under test must accept the input as an array in memory. Some library
functions require a file path to the data instead, and they cannot be tested with
libFuzzer.

•	 The exit() function should not be called.

•	 The global state should not be altered.

•	 Hardware random number generators should not be used.

From the aforementioned restrictions, the first two restrictions are an implication of the
implementation of libFuzzer as a library. The latter two restrictions are needed to avoid
confusion in the evaluation algorithm. If one of these restrictions is not met, then two
identical calls to the fuzz target can give different results.

The best-known alternative tool for fuzz testing is AFL, found at https://github.
com/google/AFL. AFL needs an instrumented binary (an LLVM plugin for
instrumentation is provided) and requires the application to take the input as the file
path on the command line. AFL and libFuzzer can share the same corpus and the same
dictionary files. Thus, it is possible to test an application with both tools. In cases where
libFuzzer is not applicable, AFL may be a good alternative.

There are many more ways of influencing the way libFuzzer works. You can read the
reference page at https://llvm.org/docs/LibFuzzer.html for more details.

In the next section, we look at a totally different problem an application can have; we try
to identify performance bottlenecks.

Performance profiling with XRay
If your application seems to run slow, then you might want to know where all the time is
spent in the code. In this case, instrumenting the code with XRay helps you. Basically, at
each function entry and exit, a special call into the runtime library is inserted. This allows
counting how often a function is called, and also how much time is spent in the function.
You find the implementation for the instrumentation pass in the llvm/lib/XRay/
directory. The runtime portion is part of compiler-rt.

https://github.com/google/AFL
https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html

Performance profiling with XRay 297

In the following example source, real work is simulated by calling the usleep()
function. The func1() function sleeps for 10 µs. The func2() function either calls
func1() or sleeps for 100 µs, depending on whether the n parameter is odd or even.
Inside the main() function, both functions are called inside a loop. This is already
enough to get interesting information. You'll need to save the following source code in the
xraydemo.c file:

#include <unistd.h>

void func1() { usleep(10); }

void func2(int n) {

 if (n % 2) func1();

 else usleep(100);

}

int main(int argc, char *argv[]) {

 for (int i = 0; i < 100; i++) { func1(); func2(i); }

 return 0;

}

To enable the XRay instrumentation during compilation, you will need to specify the
-fxray-instrument option. Functions with less than 200 instructions are not
instrumented. This is an arbitrary threshold defined by the developers, and in our case, the
functions would not be instrumented. The threshold can be specified with the -fxray-
instruction-threshold= option. Alternatively, we can add a function attribute to
control whether a function should be instrumented. For example, adding the following
prototype would result in always instrumenting the function:

void func1() __attribute__((xray_always_instrument));

Likewise, by using the xray_never_instrument attribute, you can turn off
instrumentation for a function.

We will now use the command-line option and compile the xraydemo.c file as follows:

$ clang -fxray-instrument -fxray-instruction-threshold=1 -g\

 xraydemo.c -o xraydemo

298 Debugging Using LLVM Tools

In the resulting binary, instrumentation is turned off by default. If you run the binary, you
will note no difference to a not-instrumented binary. The XRAY_OPTIONS environment
variable is used to control the recording of runtime data. To enable data collection, you
run the application as follows:

$ XRAY_OPTIONS= "patch_premain=true xray_mode=xray-basic "\

 ./xraydemo

The xray_mode=xray-basic option tells the runtime that we want to use basic mode.
In this mode, all runtime data is collected, which can result in huge log files. When the
patch_premain=true option is given, then functions that are run before the main()
function are instrumented, too.

After running this command, you see a new file in the directory, in which the collected
data is stored. You need to use the llvm-xray tool to extract readable information from
this file.

The llvm-xray tool supports various subcommands. You use the account
subcommand to extract some basic statistics. For example, to get the top 10 most called
functions, you add the -top=10 option to limit the output, and the -sort=count
option to specify the function call count as the sort criteria. You can influence the sort
order with the -sortorder= option. Run the following command to get the statistic:

$ llvm-xray account xray-log.xraydemo.xVsWiE -sort=count\

 -sortorder=dsc -instr_map ./xraydemo

Functions with latencies: 3

 funcid count sum function

 1 150 0.166002 demo.c:4:0: func1

 2 100 0.543103 demo.c:9:0: func2

 3 1 0.655643 demo.c:17:0: main

You can see that the func1() function is called most often, as well as the accumulated
time spent in this function. The example only has three functions, so the –top= option
has no visible effect here, but for real applications, it is very useful.

From the collected data, it is possible to reconstruct all the stack frames that occurred
during runtime. You use the stack subcommand to view the top 10 stacks. The output
shown here is reduced for brevity:

$ llvm-xray stack xray-log.xraydemo.xVsWiE -instr_map\

 ./xraydemo

Unique Stacks: 3

Performance profiling with XRay 299

Top 10 Stacks by leaf sum:

Sum: 1325516912

lvl function count sum

#0 main 1 1777862705

#1 func2 50 1325516912

Top 10 Stacks by leaf count:

Count: 100

lvl function count sum

#0 main 1 1777862705

#1 func1 100 303596276

A stack frame is a sequence of how a function is called. The func2() function is
called by the main() function, and this is the stack frame with the largest accumulated
time. The depth depends on how many functions are called, and the stack frames are
usually large.

This subcommand can also be used to create a flame graph from the stack frames.
With a flame graph, you can easily identify which functions have a large accumulated
runtime. The output is the stack frames with count and runtime information. Using the
flamegraph.pl script, you convert the data into a Scalable Vector Graphics (SVG)
file, which you can view in your browser.

With the following command, you instruct llvm-xray to output all stack frames with
the –all-stacks option. Using the –stack-format=flame option, the output
is in the format expected by the flamegraph.pl script. With the –aggregation-
type option, you can choose whether stack frames are aggregated by total time or by the
number of invocations. The output of llvm-xray is piped into the flamegraph.pl
script, and the resulting output is saved in the flame.svg file:

$ llvm-xray stack xray-log.xraydemo.xVsWiE -all-stacks\

 -stack-format=flame --aggregation-type=time\

 -instr_map ./xraydemo | flamegraph.pl >flame.svg

300 Debugging Using LLVM Tools

Open the generated flame.svg file in your browser. The graphic looks as follows:

Figure 11.1 – Flame graph produced by llvm-xray

Flame graphs can be confusing at the first look, because the x axis does not have the usual
meaning of elapsed time. Instead, the functions are simply sorted by name. The colors are
chosen to have good contrast and have no other meaning. From the preceding graph, you
can easily determine the call hierarchy and the time spent in a function.

Information about a stack frame is displayed only after you move the mouse cursor over
the rectangle representing the frame. With a mouse click on the frame, you can zoom
into this stack frame. Flame graphs are of great help if you want to identify functions
worth optimizing. To find out more about flame graphs, please visit the website of
Brendan Gregg, the inventor of flame graphs, http://www.brendangregg.com/
flamegraphs.html.

You can use the convert subcommand to convert the data into .yaml format or into
the format used by the Chrome trace viewer visualization. The latter is another nice
way to create a graphic from the data. To save the data in the xray.evt file, you run the
following command:

$ llvm-xray convert -output-format=trace_event\

 -output=xray.evt -symbolize –sort\

 -instr_map=./xraydemo xray-log.xraydemo.xVsWiE

If you do not specify the –symbolize option, then no function names are shown in the
resulting graph.

Once that is done, open the Chrome browser and type chrome:///tracing.
Then, click on the Load button to load the xray.evt file. You will see the following
visualization of the data:

http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html

Checking the source with the Clang Static Analyzer 301

Figure 11.2 – Chrome trace viewer visualization generated by llvm-xray

In this view, the stack frames are sorted by the time the function call occurs. For
further interpretation of the visualization, please read the tutorial at https://www.
chromium.org/developers/how-tos/trace-event-profiling-tool.

Tip
The llvm-xray tool has more functionality. You can read about it on
the LLVM website at https://llvm.org/docs/XRay.html and
https://llvm.org/docs/XRayExample.html.

In this section, we learned how to instrument an application with XRay, how to collect
runtime information, and how to visualize that data. We can use this knowledge to find
performance bottlenecks in applications.

Another approach to identifying errors in an application is to analyze the source code,
which is done with the static analyzer.

Checking the source with the
Clang Static Analyzer
The Clang Static Analyzer is a tool that performs additional checking on C, C++, and
Objective C source code. The checks performed by the static analyzer are more thorough
than the checks the compiler performs. They are also more costly in terms of time and
required resources. The static analyzer has a set of checkers that check for certain bugs.

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://llvm.org/docs/XRay.html
https://llvm.org/docs/XRayExample.html

302 Debugging Using LLVM Tools

The tool performs a symbolic interpretation of the source code that looks at all the code
paths through an application and derives constraints on the values used in the application
from it. Symbolic interpretation is a common technique used in compilers, for example,
to identify constant values. In the context of the static analyzer, the checkers are applied to
the derived values.

For example, if the divisor of a division is 0, then the static analyzer warns about it. We
can check this with the following example stored in the div.c file:

int divbyzero(int a, int b) { return a / b; }

int bug() { return divbyzero(5, 0); }

The static analyzer will warn about a division by 0 in the example. However, when
compiling, the file with the clang -Wall -c div.c command will show no warning.

There are two ways to invoke the static analyzer from the command line. The older
tool is scan-build, which is included in LLVM and can be used for simple scenarios.
The newer tool is CodeChecker, available at https://github.com/Ericsson/
codechecker/. For checking a single file, the scan-build tool is the easier
solution. You simply pass the compile command to the tool, and everything else
is done automatically:

$ scan-build clang -c div.c

scan-build: Using '/usr/local/llvm12/bin/clang-12' for static
analysis

div.c:2:12: warning: Division by zero [core.DivideZero]

 return a / b;

 ~~^~~

1 warning generated.

scan-build: Analysis run complete.

scan-build: 1 bug found.

scan-build: Run 'scan-view /tmp/scan-
build-2021-03-01-023401-8721-1' to examine bug reports.

The output on the screen already tells you that a problem was found, that is, the checker
with the name core.DivideZero was triggered. But that is not all. You will find a
complete report in HTML in the mentioned subdirectory of the /tmp directory. You can
use the scan-view command to view the report or open the index.html file found in
the subdirectory in your browser.

https://github.com/Ericsson/codechecker/
https://github.com/Ericsson/codechecker/

Checking the source with the Clang Static Analyzer 303

The first page of the report shows you a summary of the found bugs:

Figure 11.3 – Summary page

For each found error, the summary page shows the type of the error, the location in the
source, and the path length after which the analyzer finds the error. A link to a detailed
report for the error is provided.

304 Debugging Using LLVM Tools

The following screenshot shows the detailed report for the error:

Figure 11.4 – Detailed report

With the detailed report, you are able to verify the error by following the numbered
bubbles. In our simple example, it shows in three steps how passing 0 as a parameter value
leads to a division by zero error.

Verification through a human is indeed required. If the derived constraints are not precise
enough for a certain checker, then false positives are possible, that is, an error is reported
for perfectly fine code. Based on the report, you can identify false positives.

You are not limited to the checkers that are provided with the tool. You can also add new
checkers. The next section shows how to do this.

Checking the source with the Clang Static Analyzer 305

Adding a new checker to the Clang Static Analyzer
To add a new checker to the Clang Static Analyzer, you create a new subclass of the
Checker class. The static analyzer tries all possible paths through the code. The analyzer
engine generates events at certain points, for example, before a function call or after a
function call. Your class has to provide callbacks for these events if you need to handle
them. The Checker class and the registrations for the events are provided in the clang/
include/clang/StaticAnalyzer/Core/Checker.h header file.

Usually, a checker needs to track some symbols. But the checker can't manage the state,
because it does not know which code path the analyzer engine currently tries. Therefore,
the tracked state must be registered with the engine, and can only be changed using a
ProgramStateRef instance.

Many libraries provide functions that must be used in pairs. For example, the C standard
library provides the malloc() and free() functions. The memory allocated by the
malloc() function must be freed exactly one time by the free() function. Not calling
the free() function, or calling it several times, is a programming error. There are many
more instances of this coding pattern, and the static analyzer provides checkers for some
of them.

The iconv library provides functions to convert text from one encoding to another,
for example, from Latin-1 encoding to UTF-16 encoding. To perform the conversion,
the implementation needs to allocate memory. To transparently manage the internal
resources, the iconv library provides the iconv_open() and iconv_close()
functions, which must be used in pairs. You implement a checker to check for this.

To detect the errors, the checker needs to track the descriptor returned from the iconv_
open() function. The analyzer engine returns a SymbolRef instance for the return
value of the iconv_open() function. We associate this symbol with a state to reflect
whether iconv_close() was called or not. For the state, we create the IconvState
class, which encapsulates a bool value.

The new IconvChecker class needs to handle four events:

•	 PostCall, which occurs after a function call. After the iconv_open() function
is called, we retrieve the symbol for the return value and remember it as being in an
open state.

•	 PreCall, which occurs before a function call. Before the iconv_close()
function is called, we check whether the symbol for the descriptor is in an open
state. If not, then the iconv_close() function was already called for the
descriptor, and we have detected a double call to the function.

306 Debugging Using LLVM Tools

•	 DeadSymbols, which occurs when unused symbols are cleaned up. We check
whether an unused symbol for a descriptor is still in an open state. If yes, then we
have detected a missing call to iconv_close(), which is a resource leak.

•	 PointerEscape, which is called when the symbols can no longer be tracked by
the analyzer. In this case, we remove the symbol from the state, because we can no
longer reason whether the descriptor was closed or not.

The new checker is implemented inside the Clang project. Let's begin with adding the
new checker to the collection of all checkers, which is the clang/include/clang/
StaticAnalyzer/Checkers/Checkers.td file. Each checker is associated with
packages. Our new checker is under development, and therefore it belongs in the alpha
package. The iconv API is a POSIX-standardized API, so it also belongs in the unix
package. Locate the UnixAlpha section in the Checkers.td file and add the following
code to register the new IconvChecker:

def IconvChecker : Checker<"Iconv">,

 HelpText<"Check handling of iconv functions">,

 Documentation<NotDocumented>;

This adds the new checker to the collection of known checkers, sets help text for the
command-line option, and states that there is no documentation for this checker.

Next, we implement the checker in the clang/lib/StaticAnalyzer/Checkers/
IconvChecker.cpp file:

1.	 For the implementation, we need to include several header files. The
BuiltinCheckerRegistration.h file is required to register the checker. The
Checker.h file provides the declaration of the Checker class and the callbacks
for the events. The CallEvent.h file declares the class used for call events, and the
CheckerContext.h file is required for the declaration of the CheckerContext
class, which is the central class providing access to the state of the analyzer:

#include "clang/StaticAnalyzer/Checkers/

BuiltinCheckerRegistration.h"

#include "clang/StaticAnalyzer/Core/Checker.h"

#include "clang/StaticAnalyzer/Core/

PathSensitive/CallEvent.h"

#include "clang/StaticAnalyzer/Core/PathSensitive/

CheckerContext.h"

Checking the source with the Clang Static Analyzer 307

2.	 To avoid typing the namespace names, we use the clang and ento namespaces:

using namespace clang;

using namespace ento;

3.	 We associate a state with each symbol representing an iconv descriptor. The state
can be open or closed, and we use a bool-type variable, with the true value for an
open state. The state value is encapsulated in the IconvState struct. This struct
is used with a FoldingSet data structure, which is a hash set that filters duplicate
entries. To be usable with this data structure implementation, the Profile()
method is added here, which sets the unique bits of this struct. We put the struct
into an anonymous namespace, to avoid pollution of the global namespace:

namespace {

struct IconvState {

 const bool IsOpen;

public:

 IconvState(bool IsOpen) : IsOpen(IsOpen) {}

 bool isOpen() const { return IsOpen; }

 bool operator==(const IconvState &O) const {

 return IsOpen == O.IsOpen;

 }

 void Profile(llvm::FoldingSetNodeID &ID) const {

 ID.AddInteger(IsOpen);

 }

};

}

308 Debugging Using LLVM Tools

4.	 The IconvState struct represents the state of an iconv descriptor, which is
represented by a symbol of the SymbolRef class. This is best done with a map,
which has the symbol as the key and the state as the value. As explained earlier, the
checker cannot hold the state. Instead, the state must be registered with the global
program state, which is done with the REGISTER_MAP_WITH_PROGRAMSTATE
macro. This macro introduces the IconvStateMap name, which we use later to
access the map:

REGISTER_MAP_WITH_PROGRAMSTATE(IconvStateMap, SymbolRef,

 IconvState)

5.	 We also implement the IconvChecker class in an anonymous namespace. The
requested PostCall, PreCall, DeadSymbols, and PointerEscape events
are template parameters to the Checker base class:

namespace {

class IconvChecker

 : public Checker<check::PostCall, check::PreCall,

 check::DeadSymbols,

 check::PointerEscape> {

6.	 The IconvChecker class only has fields of the CallDescription type, which
are used to identify iconv_open(), iconv(), and iconv_close() function
calls in the program:

 CallDescription IconvOpenFn, IconvFn, IconvCloseFn;

7.	 The report() method generates an error report. The important parameters to the
method are an array of symbols, the type of the bug, and a bug description. Inside
the method, a bug report is created for each symbol, and the symbol is marked as
the interesting one for the bug. If a source range is provided as a parameter, then
this is also added to the report. Finally, the report is emitted:

 void

 report(ArrayRef<SymbolRef> Syms, const BugType &Bug,

 StringRef Desc, CheckerContext &C,

 ExplodedNode *ErrNode,

 Optional<SourceRange> Range = None) const {

 for (SymbolRef Sym : Syms) {

 auto R = std::make_unique

Checking the source with the Clang Static Analyzer 309

 <PathSensitiveBugReport>(

 Bug, Desc, ErrNode);

 R->markInteresting(Sym);

 if (Range)

 R->addRange(*Range);

 C.emitReport(std::move(R));

 }

 }

8.	 The constructor of the IconvChecker class only initializes the
CallDescription fields using the name of the function:

public:

 IconvChecker()

 : IconvOpenFn("iconv_open"), IconvFn("iconv"),

 IconvCloseFn("iconv_close", 1) {}

9.	 The checkPostCall() method is called after the analyzer has executed a
function call. If the executed function is not a global C function and not named
iconv_open, then there is nothing to do:

 void checkPostCall(const CallEvent &Call,

 CheckerContext &C) const {

 if (!Call.isGlobalCFunction() ||

 !Call.isCalled(IconvOpenFn))

 return;

10.	 Otherwise, we try to get the return value of the function as a symbol. To store
the symbol with the open state in the global program state, we need to get a
ProgramStateRef instance from the CheckerContext instance. The
state is immutable, so adding the symbol to the state results in a new state. The
analyzer engine is informed about the new state with a call to the
addTransition() method:

 if (SymbolRef Handle =

 Call.getReturnValue().getAsSymbol()) {

 ProgramStateRef State = C.getState();

 State = State->set<IconvStateMap>(

 Handle, IconvState(true));

310 Debugging Using LLVM Tools

 C.addTransition(State);

 }

 }

11.	 Likewise, the checkPreCall() method is called before the analyzer executes
a function. Only a global C function with the name iconv_close is of interest
to us:

 void checkPreCall(const CallEvent &Call,

 CheckerContext &C) const {

 if (!Call.isGlobalCFunction() ||

 !Call.isCalled(IconvCloseFn))

 return;

12.	 If the symbol for the first argument of the function, which is the iconv descriptor, is
known, then we retrieve the state of the symbol from the program state:

 if (SymbolRef Handle =

 Call.getArgSVal(0).getAsSymbol()) {

 ProgramStateRef State = C.getState();

 if (const IconvState *St =

 State->get<IconvStateMap>(Handle)) {

13.	 If the state represents the closed state, then we have detected a double close error,
and we generate a bug report for it. The call to generateErrorNode() can
return a nullptr value if an error report was already generated for this path, so we
have to check for this situation:

 if (!St->isOpen()) {

 if (ExplodedNode *N = C.generateErrorNode()) {

 BugType DoubleCloseBugType(

 this, "Double iconv_close",

 "iconv API Error");

 report({Handle}, DoubleCloseBugType,

 "Closing a previous closed iconv "

 "descriptor",

 C, N, Call.getSourceRange());

 }

 return;

Checking the source with the Clang Static Analyzer 311

 }

 }

14.	 Otherwise, we set the state for the symbol to closed:

 State = State->set<IconvStateMap>(

 Handle, IconvState(false));

 C.addTransition(State);

 }

 }

15.	 The checkDeadSymbols() method is called to clean up unused symbols. We
loop over all symbols we track and ask the SymbolReaper instance whether the
current symbol is dead:

 void checkDeadSymbols(SymbolReaper &SymReaper,

 CheckerContext &C) const {

 ProgramStateRef State = C.getState();

 SmallVector<SymbolRef, 8> LeakedSyms;

 for (auto SymbolState :

 State->get<IconvStateMap>()) {

 SymbolRef Sym = SymbolState.first;

 IconvState &St = SymbolState.second;

 if (SymReaper.isDead(Sym)) {

16.	 If the symbol is dead, then we need to check the state. If the state is still open, then
this is a potential resource leak. There is one exception: iconv_open() returns
-1 in the case of an error. If the analyzer is in a code path handling this error, then
it is wrong to assume a resource leak, because the function call failed. We try to get
the value of the symbol from the ConstraintManager instance, and we do not
consider the symbol as a resource leak if this value is -1. We add a leaked symbol to
a SmallVector instance, for generating the error report later. Finally, we remove
the dead symbol from the program state:

 if (St.isOpen()) {

 bool IsLeaked = true;

 if (const llvm::APSInt *Val =

 State->getConstraintManager()

 .getSymVal(State, Sym))

312 Debugging Using LLVM Tools

 IsLeaked = Val->getExtValue() != -1;

 if (IsLeaked)

 LeakedSyms.push_back(Sym);

 }

 State = State->remove<IconvStateMap>(Sym);

 }

 }

17.	 After the loop, we call the generateNonFatalErrorNode() method. This
method transitions to the new program state, and returns an error node if there
is not already an error node for this path. The LeakedSyms container holds the
(possibly empty) list of leaked symbols, and we call the report() method to
generate an error report:

 if (ExplodedNode *N =

 C.generateNonFatalErrorNode(State)) {

 BugType LeakBugType(this, "Resource Leak",

 "iconv API Error", true);

 report(LeakedSyms, LeakBugType,

 "Opened iconv descriptor not closed", C,

 N);

 }

 }

18.	 The checkPointerEscape() function is called when the analyzer detects a
function call for which the parameters cannot be tracked. In such a case, we must
assume that we do not know whether the iconv descriptor will be closed inside
the function or not. The only exception is a call to the iconv() function, which
does the conversion and is known to not call the iconv_close() function. This
finishes the implementation of the IconvChecker class:

 ProgramStateRef

 checkPointerEscape(ProgramStateRef State,

 const InvalidatedSymbols &Escaped,

 const CallEvent *Call,

 PointerEscapeKind Kind) const {

 if (Kind == PSK_DirectEscapeOnCall &&

 Call->isCalled(IconvFn))

Checking the source with the Clang Static Analyzer 313

 return State;

 for (SymbolRef Sym : Escaped)

 State = State->remove<IconvStateMap>(Sym);

 return State;

 }

};

}

19.	 Lastly, the new checker needs to be registered at a CheckerManager
instance. The shouldRegisterIconvChecker() method returns true
to indicate that IconvChecker should be registered by default, and the
registerIconvChecker() method performs the registration. Both methods
are called via the code generated from the Checkers.td file:

void ento::registerIconvChecker(CheckerManager &Mgr) {

 Mgr.registerChecker<IconvChecker>();

}

bool ento::shouldRegisterIconvChecker(

 const CheckerManager &Mgr) {

 return true;

}

This finishes the implementation of the new checker. You just need to add the filename
to the list of source filenames in the clang/lib/StaticAnalyzer/Checkers/
CmakeLists.txt file:

add_clang_library(clangStaticAnalyzerCheckers

…

 IconvChecker.cpp

…)

To compile the new checker, you change to your build directory and run the
ninja command:

$ ninja

314 Debugging Using LLVM Tools

You can test the new checker with the following source saved in the conv.c file, which
has two calls to the iconv_close() function:

#include <iconv.h>

void doconv() {

 iconv_t id = iconv_open("Latin1", "UTF-16");

 iconv_close(id);

 iconv_close(id);

}

You learned how to extend the Clang Static Analyzer with your own checker. You can
use this knowledge to either create new general checkers and contribute them to the
community, or you can create checkers specifically built for your needs, to raise the quality
of your product.

The static analyzer is built leveraging the Clang infrastructure, and the next section
introduces you to how can build your own plugin extending Clang.

Creating your own Clang-based tool
The static analyzer is an impressive example of what you can do with the Clang
infrastructure. It is also possible to extend Clang with plugins, so you are able to
add your own functionality to Clang. The technique is very similar to adding a pass
plugin to LLVM.

Let's explore the functionality with a simple plugin. The LLVM coding standard requires
function names to begin with a lowercase letter. However, the coding standard has evolved
over time, and there are many instances in which a function begins with an uppercase
letter. A plugin that warns about a violation of the naming rule can help to fix the issue, so
let's give it a try.

Because you want to run a user-defined action over the abstract syntax tree (AST),
you need to define a subclass of the PluginASTAction class. If you write your own
tool using the Clang libraries, then you define subclasses of the ASTFrontendAction
class for your actions. The PluginASTAction class is a subclass of the
ASTFrontendAction class, with the additional ability to parse command-line options.

Creating your own Clang-based tool 315

The other class you need is a subclass of the ASTConsumer class. An AST consumer is a
class using which you can run an action over an AST, regardless of the origin of the AST.
Nothing more is needed for our first plugin. You can create the implementation in the
NamingPlugin.cpp file as follows:

1.	 Begin by including the required header files. Besides the mentioned ASTConsumer
class, you also need an instance of the compiler and the plugin registry:

#include "clang/AST/ASTConsumer.h"

#include "clang/Frontend/CompilerInstance.h"

#include "clang/Frontend/FrontendPluginRegistry.h"

2.	 Use the clang namespace and put your implementation into an anonymous
namespace to avoid name clashes:

using namespace clang;

namespace {

3.	 Next, define your subclass of the ASTConsumer class. Later, you will want to emit
warnings if you detect a violation of the naming rule. To do so, you need a reference
to a DiagnosticsEngine instance.

4.	 You'll need to store a CompilerInstance instance in the class, then you can ask
for a DiagnosticsEngine instance:

class NamingASTConsumer : public ASTConsumer {

 CompilerInstance &CI;

public:

 NamingASTConsumer(CompilerInstance &CI) : CI(CI) {}

5.	 An ASTConsumer instance has several entry methods. The
HandleTopLevelDecl() method fits our purpose. The method is called for
each declaration at the top level. This includes more than functions, for example,
variables. So, you will use the LLVM RTTI dyn_cast<>() function to determine
whether the declaration is a function declaration. The HandleTopLevelDecl()
method has a declaration group as a parameter, which can contain more than a
single declaration. This requires a loop over the declarations. The following code
shows us the HandleTopLevelDecl() method:

 bool HandleTopLevelDecl(DeclGroupRef DG) override {

 for (DeclGroupRef::iterator I = DG.begin(),

316 Debugging Using LLVM Tools

 E = DG.end();

 I != E; ++I) {

 const Decl *D = *I;

 if (const FunctionDecl *FD =

 dyn_cast<FunctionDecl>(D)) {

6.	 After having found a function declaration, you'll need to retrieve the name of the
function. You'll also need to make sure that the name is not empty:

 std::string Name =

 FD->getNameInfo().getName().getAsString();

 assert(Name.length() > 0 &&

 "Unexpected empty identifier");

If the function name does not start with a lowercase letter, then you'll have found a
violation of the naming rule:

 char &First = Name.at(0);

 if (!(First >= 'a' && First <= 'z')) {

7.	 To emit a warning, you need a DiagnosticsEngine instance. Additionally, you
need a message ID. Inside Clang, the message ID is defined as an enumeration.
Because your plugin is not part of Clang, you need to create a custom ID, which you
then use to emit the warning:

 DiagnosticsEngine &Diag =

 CI.getDiagnostics();

 unsigned ID = Diag.getCustomDiagID(

 DiagnosticsEngine::Warning,

 "Function name should start with "

 "lowercase letter");

 Diag.Report(FD->getLocation(), ID);

8.	 Aside from closing all open braces, you need to return true from this function to
indicate that processing can continue:

 }

 }

 }

Creating your own Clang-based tool 317

 return true;

 }

};

9.	 Next, you need to create the PluginASTAction subclass, which implements the
interface called by Clang:

class PluginNamingAction : public PluginASTAction {

public:

The first method you must implement is the CreateASTConsumer() method,
which returns an instance of your NamingASTConsumer class. This method is
called by Clang, and the passed CompilerInstance instance gives you access to
all the important classes of the compiler. The following code demonstrates this:

 std::unique_ptr<ASTConsumer>

 CreateASTConsumer(CompilerInstance &CI,

 StringRef file) override {

 return std::make_unique<NamingASTConsumer>(CI);

 }

10.	 A plugin also has access to command-line options. Your plugin has no command-
line parameters, and you will just return true to indicate success:

 bool ParseArgs(const CompilerInstance &CI,

 const std::vector<std::string> &args)
 override {

 return true;

 }

11.	 The action type of a plugin describes when the action is invoked. The default value
is Cmdline, which means that the plugin must be named on the command line
in order to be invoked. You'll need to override the method and change the value to
AddAfterMainAction, which automatically runs the action:

 PluginASTAction::ActionType getActionType() override {

 return AddAfterMainAction;

 }

318 Debugging Using LLVM Tools

12.	 The implementation of your PluginNamingAction class is finished; only the
closing braces for the class and the anonymous namespace are missing. Add them to
the code as follows:

};

}

13.	 Lastly, you need to register the plugin. The first parameter is the name of the plugin,
and the second parameter is the help text:

static FrontendPluginRegistry::Add<PluginNamingAction>

 X("naming-plugin", "naming plugin");

This finishes the implementation of the plugin. To compile the plugin, create a build
description in the CMakeLists.txt file. The plugin lives outside the Clang source tree,
so you need to set up a complete project. You can do so by following these steps:

1.	 Begin with the definition of the required CMake version and the name of
the project:

cmake_minimum_required(VERSION 3.13.4)

project(naminglugin)

2.	 Next, include the LLVM files. If CMake is not able to find the files automatically,
then you have to set the LLVM_DIR variable to point to the LLVM directory
containing the CMake files:

find_package(LLVM REQUIRED CONFIG)

3.	 Append the LLVM directory with the CMake files to the search path, and include
some required modules:

list(APPEND CMAKE_MODULE_PATH ${LLVM_DIR})

include(ChooseMSVCCRT)

include(AddLLVM)

include(HandleLLVMOptions)

4.	 Then, load the CMake definitions for Clang. If CMake is not able to find the files
automatically, then you have to set the Clang_DIR variable to point to the Clang
directory containing the CMake files:

find_package(Clang REQUIRED)

Creating your own Clang-based tool 319

5.	 Next, define where the headers files and the library files are located, and which
definitions to use:

include_directories("${LLVM_INCLUDE_DIR}"

 "${CLANG_INCLUDE_DIRS}")

add_definitions("${LLVM_DEFINITIONS}")

link_directories("${LLVM_LIBRARY_DIR}")

6.	 The previous definitions set up the build environment. Insert the following
command, defining the name of your plugin, the source file(s) of the plugin, and
that it is a Clang plugin:

add_llvm_library(NamingPlugin MODULE NamingPlugin.cpp

 PLUGIN_TOOL clang)

On Windows, the plugin support is different from the Unix platforms, and
the required LLVM and Clang libraries must be linked in. The following code
ensures this:

if(LLVM_ENABLE_PLUGINS AND (WIN32 OR CYGWIN))

 set(LLVM_LINK_COMPONENTS Support)

 clang_target_link_libraries(NamingPlugin PRIVATE

 clangAST clangBasic clangFrontend clangLex)

endif()

7.	 Save both files in the NamingPlugin directory. Create a build-naming-
plugin directory at the same level as the NamingPlugin directory, and build the
plugin with the following commands:

$ mkdir build-naming-plugin

$ cd build-naming-plugin

$ cmake –G Ninja ../NamingPlugin

$ ninja

These steps create the NamingPlugin.so shared library in the build directory.

To test the plugin, save the following source as the naming.c file. The Func1 function
name violates the naming rule, but not the main name:

int Func1() { return 0; }

int main() { return Func1(); }

320 Debugging Using LLVM Tools

To invoke the plugin, you need to specify the –fplugin= option:

$ clang -fplugin=./NamingPlugin.so naming.c

naming.c:1:5: warning: Function name should start with
lowercase letter

int Func1() { return 0; }

 ^

1 warning generated.

This kind of invocation requires that you override the getActionType() method of
the PluginASTAction class, and that you return a value different from the Cmdline
default value.

If you did not do this, for example, because you want to have more control over the
invocation of the plugin action, then you can run the plugin from the compiler
command line:

$ clang -cc1 -load ./NamingPlugin.so -plugin naming-plugin\

 naming.c

Congrats, you have built your first Clang plugin!

The disadvantage of this approach is that it has certain limitations. The ASTConsumer
class has different entry methods, but they are all coarse-grained. This can be solved by
using a RecursiveASTVisitor class. This class traverses all AST nodes, and you can
override the VisitXXX() methods you are interested in. You can rewrite the plugin to
use the visitor with the following steps:

1.	 You need an additional include for the definition of the
RecursiveASTVisitor class. Insert it as follows:

#include "clang/AST/RecursiveASTVisitor.h"

2.	 Then, define the visitor as the first class in the anonymous namespace. You will only
store a reference to the AST context, which will give you access to all the important
methods for AST manipulation, including the DiagnosticsEngine instance
required for emitting the warning:

class NamingVisitor

 : public RecursiveASTVisitor<NamingVisitor> {

private:

Creating your own Clang-based tool 321

 ASTContext &ASTCtx;

public:

 explicit NamingVisitor(CompilerInstance &CI)

 : ASTCtx(CI.getASTContext()) {}

3.	 During traversal, the VisitFunctionDecl() method is called whenever a
function declaration is discovered. Copy the body of the inner loop inside the
HandleTopLevelDecl() function here:

 virtual bool VisitFunctionDecl(FunctionDecl *FD) {

 std::string Name =

 FD->getNameInfo().getName().getAsString();

 assert(Name.length() > 0 &&

 "Unexpected empty identifier");

 char &First = Name.at(0);

 if (!(First >= 'a' && First <= 'z')) {

 DiagnosticsEngine &Diag =

 ASTCtx.getDiagnostics();

 unsigned ID = Diag.getCustomDiagID(

 DiagnosticsEngine::Warning,

 "Function name should start with "

 "lowercase letter");

 Diag.Report(FD->getLocation(), ID);

 }

 return true;

 }

};

4.	 This finishes the visitor implementation. In your NamingASTConsumer class, you
will now only store a visitor instance:

 std::unique_ptr<NamingVisitor> Visitor;

public:

 NamingASTConsumer(CompilerInstance &CI)

 : Visitor(std::make_unique<NamingVisitor>(CI)) {}

322 Debugging Using LLVM Tools

5.	 You will remove the HandleTopLevelDecl() method, because the
functionality is now in the visitor class, so you'll need to override the
HandleTranslationUnit() method instead. This class is called once for each
translation unit, and you will start the AST traversal here:

 void

 HandleTranslationUnit(ASTContext &ASTCtx) override {

 Visitor->TraverseDecl(

 ASTCtx.getTranslationUnitDecl());

 }

This new implementation has exactly the same functionality. The advantage is that it is
easier to extend. For example, if you want to examine variable declarations, then you
implement the VisitVarDecl() method. Or if you want to work with a statement,
then you implement the VisitStmt() method. Basically, you have a visitor method for
each entity of the C, C++, and Objective C languages.

Having access to the AST allows you to build plugins that perform complex tasks.
Enforcing naming conventions, as described in this section, is a useful addition to Clang.
Another useful addition you could implement as a plugin is the calculation of a software
metric such as cyclomatic complexity. You can also add or replace AST nodes, allowing
you, for example, to add runtime instrumentation. Adding plugins allows you to extend
Clang in the way you need it.

Summary
In this chapter, you learned how to apply various sanitizers. You detected pointer errors
with the address sanitizer, uninitialized memory access with the memory sanitizer, and
detected data races with the thread sanitizer. Application errors are often triggered by
malformed input, and you implemented fuzz testing to test your application with random data.

You instrumented your application with XRay to identify the performance bottlenecks,
and you also learned about the various ways to visualize data. In this chapter, you also
used the Clang Static Analyzer to find possible errors through interpretation of the source,
and you learned how to build your own Clang plugin.

These skills will help you to raise the quality of the applications you build. It is certainly
good to find runtime errors before your application users complain about them. Applying
the knowledge gained in this chapter, you can not only find a wide range of common
errors but also extend Clang with new functionality.

In the next chapter, you will learn how to add a new backend to LLVM.

12
Create Your

Own Backend
LLVM has a very flexible architecture. You can also add a new target backend to it. The
core of a backend is the target description, from which most of the code is generated.
However, it is not yet possible to generate a complete backend, and implementing the
calling convention requires manually written code. In this chapter, we will learn how to
add support for a historical CPU.

In this chapter, we will cover the following:

•	 Setting the stage for a new backend introduces you to the M88k CPU architecture
and shows you where to find the information you need.

•	 Adding the new architecture to the Triple class teaches you how to make LLVM
aware of a new CPU architecture.

•	 In Extending the ELF file format definition in LLVM, you will add support for the
M88k-specific relocations to the libraries and tools that handle ELD object files.

•	 In Creating the target description, you will develop all the parts of the target
description in the TableGen language.

•	 In Implementing the DAG instruction selection classes, you will create the passes
and supporting classes required for instruction selection.

324 Create Your Own Backend

•	 Generating assembler instructions teaches you how to implement the assembler
printer, which is responsible for textual assembler generation.

•	 In Emitting machine code, you learn about which additional classes you must
provide to enable the machine code (MC) layer to write code to object files.

•	 In Adding support for disassembling, you will learn how to implement support
for a disassembler.

•	 In Piecing it all together, you will integrate the source for the new backend into the
build system.

By the end of this chapter, you will know how to develop a new and complete backend.
You will know about the different parts a backend is made of, giving you a deeper
understanding of the LLVM architecture.

Technical requirements
The code files for the chapter are available at https://github.com/
PacktPublishing/Learn-LLVM-12/tree/master/Chapter12

You can find the code in action videos at https://bit.ly/3nllhED

Setting the stage for a new backend
Whether it's needed commercially to support a new CPU or it's only for a hobby project
to add support for some old architecture, adding a new backend to LLVM is a major task.
The following sections outline what you need to develop a new backend. We will add a
backend for the Motorola M88k architecture, which is a RISC architecture from the 1980s.

https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter12
https://github.com/PacktPublishing/Learn-LLVM-12/tree/master/Chapter12
https://bit.ly/3nllhED

Adding the new architecture to the Triple class 325

References
You can read more about the architecture on Wikipedia: https://
en.wikipedia.org/wiki/Motorola_88000. The important
information about this architecture is still available on the internet.
You can find the CPU manuals with the instruction set and timing
information at http://www.bitsavers.org/components/
motorola/88000/, and the System V ABI M88k Processor supplement
with the definitions of the ELF format and the calling convention can
be found at https://archive.org/details/bitsavers_
attunixSysa0138776555SystemVRelease
488000ABI1990_8011463.

OpenBSD, available at https://www.openbsd.org/, still supports
the LUNA-88k system. On the OpenBSD system, it is easy to create a GCC
cross-compiler for M88k. And with GXemul, available at http://gavare.
se/gxemul/, there exists an emulator capable of running certain OpenBSD
releases for the M88k architecture.

Taken together, the M88k architecture is long out of production, but we found enough
information and tools to make it an interesting goal to add an LLVM backend for it. We
will begin with a very basic task and extend the Triple class.

Adding the new architecture to the Triple class
An instance of the Triple class represents the target platform LLVM is producing code
for. To support a new architecture, the first task is to extend the Triple class. In the
llvm/include/llvm/ADT/Triple.h file, you add a member to the ArchType
enumeration and a new predicate:

class Triple {

public:

 enum ArchType {

 // Many more members

 m88k, // M88000 (big endian): m88k

 };

 /// Tests whether the target is M88k.

 bool isM88k() const {

 return getArch() == Triple::m88k;

 }

https://en.wikipedia.org/wiki/Motorola_88000
https://en.wikipedia.org/wiki/Motorola_88000
http://www.bitsavers.org/components/motorola/88000/
http://www.bitsavers.org/components/motorola/88000/
https://archive.org/details/bitsavers_attunixSysa0138776555SystemVRelease
488000ABI1990_8011463
https://archive.org/details/bitsavers_attunixSysa0138776555SystemVRelease
488000ABI1990_8011463
https://archive.org/details/bitsavers_attunixSysa0138776555SystemVRelease
488000ABI1990_8011463
https://www.openbsd.org/

326 Create Your Own Backend

// Many more methods

};

Inside the llvm/lib/Support/Triple.cpp file, there are numerous methods that
use the ArchType enumeration. You need to extend all of them; for example, in the
getArchTypeName() method, you need to add a new case statement:

 switch (Kind) {

// Many more cases

 case m88k: return "m88k";

 }

In most cases, the compiler will warn you if you forget to handle the new m88k
enumeration member in one of the functions. Next, we will expand the Executable and
Linkable Format (ELF) definition.

Extending the ELF file format
definition in LLVM
The ELF file format is one of the binary object file formats that LLVM has support for
to read and write. ELF itself is defined for many CPU architectures, and there is also a
definition for the M88k architecture. All we need to do is to add the definition of the
relocations and some flags. The relocations are given in Chapter 4, Object Files, of the
System V ABI M88k Processor supplement book:

1.	 We need to type the following into the llvm/include/llvm/BinaryFormat/
ELFRelocs/M88k.def file:

#ifndef ELF_RELOC

#error "ELF_RELOC must be defined"

#endif

ELF_RELOC(R_88K_NONE, 0)

ELF_RELOC(R_88K_COPY, 1)

// Many more…

2.	 We also add some flags to the llvm/include/llvm/BinaryFormat/ELF.h
file and include the relocation definitions:

// M88k Specific e_flags

enum : unsigned {

Extending the ELF file format definition in LLVM 327

 EF_88K_NABI = 0x80000000, // Not ABI compliant

 EF_88K_M88110 = 0x00000004 // File uses 88110-

 // specific

 // features

};

// M88k relocations.

enum {

#include "ELFRelocs/M88k.def"

};

The code can be added anywhere in the file, but it is best to keep a sorted order and
insert it before the code for the MIPS architecture.

3.	 We also need to expand some other methods. In the llvm/include/llvm/
Object/ELFObjectFile.h file are some methods that translate between
enumeration members and strings. For example, we must add a new case statement
to the getFileFormatName() method:

 switch (EF.getHeader()->e_ident[ELF::EI_CLASS]) {

// Many more cases

 case ELF::EM_88K:

 return "elf32-m88k";

 }

4.	 Similarly, we extend the getArch() method.

5.	 Last, we use the relocation definitions in the llvm/lib/Object/ELF.cpp file,
in the getELFRelocationTypeName() method:

 switch (Machine) {

// Many more cases

 case ELF::EM_88K:

 switch (Type) {

#include "llvm/BinaryFormat/ELFRelocs/M88k.def"

 default:

 break;

 }

 break;

 }

328 Create Your Own Backend

6.	 To complete the support, you can also add the relocations in the llvm/lib/
ObjectYAML/ELFYAML.cpp file, in the method that maps the ELFYAML::ELF_
REL enumeration.

7.	 At this point, we have completed the support of the m88k architecture in the ELF
file format. You can use the llvm-readobj tool to inspect an ELF object file, for
example, created by a cross-compiler on OpenBSD. Likewise, you can create an ELF
object file for the m88k architecture with the yaml2obj tool.

Is adding support for an object file format mandatory?
Integrating support for an architecture into the ELF file format implementation
requires only a couple of lines. If the architecture for which you create an
LLVM backend uses the ELF format, then you should take this route. On the
other hand, adding support for a completely new binary file format is itself a
complicated task. In this case, a possible approach is to only output assembler
files and use an external assembler to create object files.

With these additions, the implementation of the ELF file formats now supports the
M88k architecture. In the next section, we create the target description for the M88k
architecture, which describes the instructions, registers, calling convention, and other
details of the architecture.

Creating the target description
The target description is the heart of a backend implementation. In an ideal world, we
could generate the whole backend from the target description. This goal has not yet been
reached, and therefore, we need to extend the generated code later. Let's dissect the target
description, beginning with the top-level file.

Implementing the top-level file of the
target description
We put the files of our new backend into the llvm/lib/Target/M88k directory. The
target description is in the M88k.td file:

1.	 In this file, we first need to include basic target description classes predefined by
LLVM and then the files we are going to create in the next sections:

include "llvm/Target/Target.td"

include "M88kRegisterInfo.td"

Creating the target description 329

include "M88kCallingConv.td"

include "M88kSchedule.td"

include "M88kInstrFormats.td"

include "M88kInstrInfo.td"

2.	 Next, we also define the supported processor. Among other things, this translates
into the parameter for the –mcpu= option:

def : ProcessorModel<"mc88110", M88kSchedModel, []>;

3.	 With all these definitions done, we now can piece our target together. We define
these subclasses, in case we need to modify some of the default values. The
M88kInstrInfo class holds all the information about the instructions:

def M88kInstrInfo : InstrInfo;

4.	 We define a parser for the .s assembly files, and we additionally state that register
names are always be prefixed with %:

def M88kAsmParser : AsmParser;

def M88kAsmParserVariant : AsmParserVariant {

 let RegisterPrefix = "%";

}

5.	 Next, we define a class for the assembly writer, which is responsible for writing .s
assembly files:

def M88kAsmWriter : AsmWriter;

6.	 And lastly, all these records are put together to define the target:

def M88k : Target {

 let InstructionSet = M88kInstrInfo;

 let AssemblyParsers = [M88kAsmParser];

 let AssemblyParserVariants = [M88kAsmParserVariant];

 let AssemblyWriters = [M88kAsmWriter];

 let AllowRegisterRenaming = 1;

}

Now that the top-level file is implemented, we create the included files, starting with the
register definition in the next section.

330 Create Your Own Backend

Adding the register definition
A CPU architecture usually defines a set of registers. The characteristics of these registers
can vary greatly. Some architectures allow access to subregisters. For example, the x86
architecture has special register names to access only a part of a register value. Other
architectures do not implement this. Besides general-purpose, floating-point, and vector
registers, an architecture may also define special registers, for example, for status codes or
for the configuration of floating-point operations. You need to define all this information
for LLVM.

The M88k architecture defines general-purpose registers, floating-point registers, and
control registers. To keep the example small, we will only define the general-purpose
registers. We begin with defining a super-class for the registers. The encoding for registers
uses only 5 bits, so we limit the field holding the encoding. We also define that all the
generated C++ code should reside in the M88k namespace:

class M88kReg<bits<5> Enc, string n> : Register<n> {

 let HWEncoding{15-5} = 0;

 let HWEncoding{4-0} = Enc;

 let Namespace = "M88k";

}

The M88kReg class is used for all register types. We define a special class for general-
purpose registers:

class GRi<bits<5> Enc, string n> : M88kReg<Enc, n>;

Now we can define all 32 general-purpose registers:

foreach I = 0-31 in {

 def R#I : GRi<I, "r"#I>;

}

The single registers need to be grouped in register classes. The sequence order of the
registers also defines the allocation order in the register allocator. Here, we simply
add all registers:

def GPR : RegisterClass<"M88k", [i32], 32,

 (add (sequence "R%u", 0, 31))>;

Creating the target description 331

And last, we need to define an operand based on the register class. The operand is used
in selecting DAG nodes to match a register, and it can also be extended to denote method
names for printing and matching the register in assembly code:

def GPROpnd : RegisterOperand<GPR>;

This finishes our definition of the registers. In the next section, we use these definitions to
define the calling convention.

Defining the calling convention
A calling convention defines how parameters are passed to functions. Usually, the first
parameters are passed in registers, and the rest of the parameters are passed on the stack.
There must also be rules on how aggregates are passed and how values are returned from
a function. From the definition given here, analyzer classes are generated, which are used
later during the lowering of calls.

You can read about the calling convention used on the M88k architecture in Chapter 3,
Low-Level System Information, of the System V ABI M88k Processor supplement book.
Let's translate this into the TableGen syntax:

1.	 We define a record for the calling convention:

def CC_M88k : CallingConv<[

2.	 The M88k architecture only has 32-bit registers, therefore values of smaller data
types need to be promoted to 32 bit:

 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>,

3.	 The calling convention states that for aggregate return values, a pointer to the
memory is passed in the r12 register:

 CCIfSRet<CCIfType<[i32], CCAssignToReg<[R12]>>>,

4.	 The registers r2 to r9 are used to pass parameters:

 CCIfType<[i32,i64,f32,f64],

 CCAssignToReg<[R2, R3, R4, R5, R6, R7, R8,

 R9]>>,

332 Create Your Own Backend

5.	 Every additional parameter is passed on the stack, in 4 bytes-aligned slots:

 CCAssignToStack<4, 4>

]>;

6.	 An additional record defines how results are passed to the calling function. 32-bit
values are passed in the r2 register, and 64-bit values use the r2 and r3 registers:

def RetCC_M88k : CallingConv<[

 CCIfType<[i32,f32], CCAssignToReg<[R2]>>,

 CCIfType<[i64,f64], CCAssignToReg<[R2, R3]>>

]>;

7.	 And last, a calling convention also states which registers have to be preserved by the
called function:

def CSR_M88k :

 CalleeSavedRegs<(add (sequence "R%d", 14,

 25), R30)>;

If needed, you can also define multiple calling conventions. In the next section, we will
have a brief look at the scheduling model.

Creating the scheduling model
The scheduling model is used by the code generation to order the instructions in an
optimal way. Defining a scheduling model improves the performance of the generated
code, but it is not necessary for code generation. Therefore, we only define a placeholder
for the model. We add the information that the CPU can issue at most two instructions at
once, and that it is an in-order CPU:

def M88kSchedModel : SchedMachineModel {

 let IssueWidth = 2;

 let MicroOpBufferSize = 0;

 let CompleteModel = 0;

 let NoModel = 1;

}

Creating the target description 333

You can find recipes on how to create a complete scheduling model in the talk
Writing Great Schedulers on YouTube at https://www.youtube.com/
watch?v=brpomKUynEA.

Next, we will define the instruction formats and the instructions.

Defining the instruction formats and
the instruction information
We have already looked at the instruction formats and the instruction information in
Chapter 9, Instruction Selection, in the Supporting new machine instructions section. To
define the instructions for the M88k architecture, we follow the same approach. First,
we define a base class for the instruction records. The most important field of this class
is the Inst field, which holds the encoding for the instruction. Most of the other field
definitions just assign a value to a field defined in the Instruction superclass:

class InstM88k<dag outs, dag ins, string asmstr,

 list<dag> pattern, InstrItinClass itin =

 NoItinerary>

 : Instruction {

 field bits<32> Inst;

 field bits<32> SoftFail = 0;

 let Namespace = "M88k";

 let Size = 4;

 dag OutOperandList = outs;

 dag InOperandList = ins;

 let AsmString = asmstr;

 let Pattern = pattern;

 let DecoderNamespace = "M88k";

 let Itinerary = itin;

}

This base class is used for all instruction formats, so it is also used for the F_JMP format.
You take the encoding for the user manual of the processor. The class has two parameters,
which must be part of the encoding. The func parameter defines bits 11 to 15 of the
encoding, which defines the instruction as a jump with or without saving the return
address. The next parameter is a bit that defines whether the next instruction is executed
unconditionally or not. This is similar to the delay slot of the MIPS architecture.

https://www.youtube.com/watch?v=brpomKUynEA
https://www.youtube.com/watch?v=brpomKUynEA

334 Create Your Own Backend

The class also defines the rs2 field, which holds the encoding of the register holding the
target address. The other parameters are the DAG input and output operand, the textual
assembler string, a DAG pattern used to select this instruction, and an itinerary class for
the scheduler model:

class F_JMP<bits<5> func, bits<1> next,

 dag outs, dag ins, string asmstr,

 list<dag> pattern,

 InstrItinClass itin = NoItinerary>

 : InstM88k<outs, ins, asmstr, pattern, itin> {

 bits<5> rs2;

 let Inst{31-26} = 0b111101;

 let Inst{25-16} = 0b0000000000;

 let Inst{15-11} = func;

 let Inst{10} = next;

 let Inst{9-5} = 0b00000;

 let Inst{4-0} = rs2;

}

And with this, we can finally define the instruction. A jump instruction is the last
instruction in a basic block, so we need to set the isTerminator flag. Because control
flow can't fall through this instruction, we also have to set the isBarrier flag. We take
the values for the func and next parameters from the user manual of the processor.

The input DAG operand is a general-purpose register and refers to the operand from
the preceding register's information. The encoding is stored in the rs2 field, from the
preceding class definition. The output operand is empty. The assembler string gives the
textual syntax of the instruction and also refers to the register operand. The DAG pattern
uses the predefine brind operator. This instruction is selected if the DAG contains an
indirect branch node with the target address hold in a register:

let isTerminator = 1, isBarrier = 1 in

 def JMP : F_JMP<0b11000, 0, (outs), (ins GPROpnd:$rs2),

 "jmp $rs2", [(brind GPROpnd:$rs2)]>;

We need to define records for all instructions in this way.

Creating the target description 335

In this file, we also implement other necessary patterns for instruction selection. A typical
application is a constant synthesis. The M88k architecture has 32 bit-wide registers, but
the instructions with immediate values as operands support only 16 bit-wide constants. As
a consequence, operations such as a bitwise and between a register and a 32-bit constant
have to be split into two instructions that use 16-bit constants.

Luckily, a flag in the and instruction defines whether an operation applies to the lower or
the upper half of the register. With operators LO16 and HI16 used to extract the lower or
upper half of a constant, we can formulate a DAG pattern for an and operation between a
register and a 32 bit-wide constant:

def : Pat<(and GPR:$rs1, uimm32:$imm),

 (ANDri (ANDriu GPR:$rs1, (HI16 i32:$imm)),

 (LO16 i32:$imm))>;

The ANDri operator is the and instruction that applies the constant to the lower half of
the register, and the ANDriu operator uses the upper half of the register. Of course, before
we can use these names in the pattern, we must define the instruction like we defined
the jmp instruction. This pattern solves the problem using a 32-bit constant with an and
operation, generating two machine instructions for it during instruction selection.

Not all operations can be represented by the predefined DAG nodes. For example, the
M88k architecture defined bit field operations, which can be seen as generalizations of
the normal and/or operations. For such operations, it is possible to introduce new node
types, for example, for the set instruction:

def m88k_set : SDNode<"M88kISD::SET", SDTIntBinOp>;

This defines a new record of the SDNode class. The first argument is the C++ enumeration
member that denotes the new operation. The second parameter is the so-called type
profile and defines the type and number of parameters and the result type. The predefined
SDTIntBinOp class defines two integer parameters and an integer result type, which
is suitable for this operation. You can look up the predefined classes in the llvm/
include/llvm/Target/TargetSelectionDAG.td file. If there is no suitable
predefined type profile, then you can define a new one.

336 Create Your Own Backend

For calling functions, LLVM requires certain definitions that cannot be predefined
because they are not completely target-independent. For example, for returns, we need to
specify a retflag record:

def retflag : SDNode<"M88kISD::RET_FLAG", SDTNone,

 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

Comparing this to m88k_set the record, this also defines some flags for the DAG
node: the chain and glue sequences are used, and the operator can take a variable
number of arguments.

Implement the instructions iteratively
A modern CPU can easily have thousands of instructions. It makes sense to
not implement all instructions at once. Instead, you should first concentrate on
basic instructions such as logical operations and call and return instructions.
This is enough to get a very basic backend working. To this base, you then add
more and more instruction definitions and patterns.

This finishes our implementation of the target description. From the target description,
a lot of code is automatically generated with the llvm-tblgen tool. To complete
the instruction selection and other parts of the backend, we still need to develop a
C++ source using the generated code. In the next section, we implement the DAG
instruction selection.

Implementing the DAG instruction
selection classes
A large portion of the DAG instruction selector is generated by the llvm-tblgen tool.
We still need to create classes using the generated code and put everything together. Let's
begin with a part of the initialization process.

Implementing the DAG instruction selection classes 337

Initializing the target machine
Each backend has to provide at least one TargetMachine class, usually a subclass of the
LLVMTargetMachine class. The M88kTargetMachine class holds a lot of the details
required for code generation, and it also acts as a factory for other backend classes, most
notably for the Subtarget class and the TargetPassConfig class. The Subtarget
class holds the configuration for the code generation, such as which features are enabled.
The TargetPassConfig class configures the machine passes of the backend. The
declaration for our M88kTargetMachine class is in the M88ktargetMachine.h file
and looks like this:

class M88kTargetMachine : public LLVMTargetMachine {

public:

 M88kTargetMachine(/* parameters */);

 ~M88kTargetMachine() override;

 const M88kSubtarget *getSubtargetImpl(const Function &)

 const override;

 const M88kSubtarget *getSubtargetImpl() const = delete;

 TargetPassConfig *createPassConfig(PassManagerBase &PM)

 override;

};

Please note that there can be a different subtarget for each function.

The implementation in the M88kTargetMachine.cpp file is straightforward. Most
interesting is the setup of the machine passes for this backend. This creates the connection
to the selection DAG (and, if desired, to global instruction selection). The passes created
in the class are later added to the pass pipeline to produce object files or assemblers from
the IR:

namespace {

class M88kPassConfig : public TargetPassConfig {

public:

 M88kPassConfig(M88kTargetMachine &TM, PassManagerBase

 &PM)

 : TargetPassConfig(TM, PM) {}

338 Create Your Own Backend

 M88kTargetMachine &getM88kTargetMachine() const {

 return getTM<M88kTargetMachine>();

 }

 bool addInstSelector() override {

 addPass(createM88kISelDag(getM88kTargetMachine(),

 getOptLevel()));

 return false;

 }

};

} // namespace

TargetPassConfig *M88kTargetMachine::createPassConfig(

 PassManagerBase &PM) {

 return new M88kPassConfig(*this, PM);

}

The SubTarget implementation return from the M88kTargetMachine class gives
access to other important classes. The M88kInstrInfo class returns information about
instructions, including registers. The M88kTargetLowering class provides a lowering
of call-related instructions and also allows adding custom DAG rules. Most of the class is
generated by the llvm-tblgen tool, and we need to include the generated header.

The definition in the M88kSubTarget.h file is as follows:

#define GET_SUBTARGETINFO_HEADER

#include "M88kGenSubtargetInfo.inc"

namespace llvm {

class M88kSubtarget : public M88kGenSubtargetInfo {

 Triple TargetTriple;

 virtual void anchor();

 M88kInstrInfo InstrInfo;

 M88kTargetLowering TLInfo;

 M88kFrameLowering FrameLowering;

public:

Implementing the DAG instruction selection classes 339

 M88kSubtarget(const Triple &TT, const std::string &CPU,

 const std::string &FS,

 const TargetMachine &TM);

 void ParseSubtargetFeatures(StringRef CPU, StringRef FS);

 const TargetFrameLowering *getFrameLowering() const

 override

 { return &FrameLowering; }

 const M88kInstrInfo *getInstrInfo() const override

 { return &InstrInfo; }

 const M88kRegisterInfo *getRegisterInfo() const override

 { return &InstrInfo.getRegisterInfo(); }

 const M88kTargetLowering *getTargetLowering() const

 override

 { return &TLInfo; }

};

} // end namespace llvm

Next, we implement the selection DAG.

Adding the selection DAG implementation
The selection DAG is implemented in the M88kDAGtoDAGIsel class in the file of the
same name. Here, we benefit from having created the target machine description: most
of the functionality is generated from this description. In a very first implementation,
we only need to override the Select() function and forward it to the generated
SelectCode function. More functions can be overridden for certain cases, for example,
if we need to extend the preprocessing of the DAG or if we need to add special inline
assembler constraints.

Because this class is a machine function pass, we also provide a name for the pass. The
main bulk of the implementation comes from the generated file, which we include in the
middle of the class:

class M88kDAGToDAGISel : public SelectionDAGISel {

 const M88kSubtarget *Subtarget;

public:

 M88kDAGToDAGISel(M88kTargetMachine &TM,

340 Create Your Own Backend

 CodeGenOpt::Level OptLevel)

 : SelectionDAGISel(TM, OptLevel) {}

 StringRef getPassName() const override {

 return "M88k DAG->DAG Pattern Instruction Selection";

 }

#include "M88kGenDAGISel.inc"

 void Select(SDNode *Node) override {

 SelectCode(Node);

 }

};

We also add the factory function to create the pass in this file:

FunctionPass *llvm::createM88kISelDag(M88kTargetMachine &TM,

 CodeGenOpt::Level

 OptLevel) {

 return new M88kDAGToDAGISel(TM, OptLevel);

}

Now we can implement the target-specific operations, which cannot be expressed in the
target description.

Supporting target-specific operations
Let's turn to the M88kTargetLowering class, defined in the M88kISelLowering.h
file. This class configures the instruction DAG selection process and enhances the
lowering with target-specific operations.

In the target description, we defined new DAG nodes. The enumeration used with
the new types is also defined in this file, continuing the numbering with the last
predefined number:

namespace M88kISD {

enum NodeType : unsigned {

 FIRST_NUMBER = ISD::BUILTIN_OP_END,

 RET_FLAG,

Implementing the DAG instruction selection classes 341

 SET,

};

} // end namespace M88kISD

The class needs to provide the required lowering methods for the function calls.
To keep it simple, we look only at returning values. The class can also define the
LowerOperation() hook method for operations that need custom handling.
We can also enable custom DAG combining methods, for which we define the
PerformDAGCombine() method:

class M88kTargetLowering : public TargetLowering {

 const M88kSubtarget &Subtarget;

public:

 explicit M88kTargetLowering(const TargetMachine &TM,

 const M88kSubtarget &STI);

 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const

 override;

 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)

 const override;

 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv,

 bool IsVarArg,

 const SmallVectorImpl<ISD::OutputArg> &Outs,

 const SmallVectorImpl<SDValue> &OutVals,

 const SDLoc &DL,

 SelectionDAG &DAG) const override;

};

342 Create Your Own Backend

The implementation of the class is in the M88kISelLowering.cpp file. First, we look at
how to lower a return value:

1.	 The generated functions for the calling convention are needed, so we include the
generated file:

#include "M88kGenCallingConv.inc"

2.	 The LowerReturn() method takes a lot of arguments, which are all defined by
the TargetLowering superclass. The most important ones are the Outs vector,
which holds the description of the return argument, and the OutVals vector,
which holds the DAG nodes for the return values:

SDValue M88kTargetLowering::LowerReturn(SDValue Chain,

 CallingConv::ID CallConv,

 bool IsVarArg,

 const SmallVectorImpl<ISD::OutputArg>

 &Outs,

 const SmallVectorImpl<SDValue> &OutVals,

 const SDLoc &DL, SelectionDAG &DAG) const {

3.	 We analyze the return argument with the help of the CCState class, passing a
reference to the generated RetCC_M88k function. As result, we have classified all
the return arguments:

 MachineFunction &MF = DAG.getMachineFunction();

 SmallVector<CCValAssign, 16> RetLocs;

 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs,

 *DAG.getContext());

 RetCCInfo.AnalyzeReturn(Outs, RetCC_M88k);

4.	 In case of a void function, there is nothing to do and we return. Please note
that the type of the returned node is RET_FLAG. We defined this in the target
description as the new ret_flag node:

 if (RetLocs.empty())

 return DAG.getNode(M88kISD::RET_FLAG, DL,

 MVT::Other, Chain);

Implementing the DAG instruction selection classes 343

5.	 Otherwise, we need to loop over the return arguments. For each return argument,
we have an instance of the CCValAssign class, which tells us how we have to treat
the argument:

 SDValue Glue;

 SmallVector<SDValue, 4> RetOps;

 RetOps.push_back(Chain);

 for (unsigned I = 0, E = RetLocs.size(); I != E;

 ++I) {

 CCValAssign &VA = RetLocs[I];

 SDValue RetValue = OutVals[I];

6.	 The values may need to be promoted. We add a DAG node with the required
extension operation, if necessary:

 switch (VA.getLocInfo()) {

 case CCValAssign::SExt:

 RetValue = DAG.getNode(ISD::SIGN_EXTEND, DL,

 VA.getLocVT(), RetValue);

 break;

 case CCValAssign::ZExt:

 RetValue = DAG.getNode(ISD::ZERO_EXTEND, DL,

 VA.getLocVT(), RetValue);

 break;

 case CCValAssign::AExt:

 RetValue = DAG.getNode(ISD::ANY_EXTEND, DL,

 VA.getLocVT(), RetValue);

 break;

 case CCValAssign::Full:

 break;

 default:

 llvm_unreachable("Unhandled VA.getLocInfo()");

 }

7.	 When the value has the right type, we copy the value into a register for returning it
and chain and glue the copies together. This finishes the loop:

 Register Reg = VA.getLocReg();

 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue,

344 Create Your Own Backend

 Glue);

 Glue = Chain.getValue(1);

 RetOps.push_back(DAG.getRegister(Reg,

 VA.getLocVT()));

 }

8.	 Last, we need to update the chain and the glue:

 RetOps[0] = Chain;

 if (Glue.getNode())

 RetOps.push_back(Glue);

9.	 We will then return the ret_flag node, connecting the result of the lowering:

 return DAG.getNode(M88kISD::RET_FLAG, DL,

 MVT::Other,

 RetOps);

}

To be able to call functions, we must implement the LowerFormalArguments() and
LowerCall() methods. Both methods follow a similar approach and hence are not
shown here.

Configuring the target lowering
The methods to lower function calls and arguments must always be implemented, as they
are always target-dependent. Other operations may or may not have support in the target
architecture. To make the lowering process aware of it, we set up the configuration in the
constructor of the M88kTargetLowering class:

1.	 The constructor takes TargetMachine and M88kSubtarget instances as
parameters and initializes the corresponding fields with them:

M88kTargetLowering::M88kTargetLowering(

 const TargetMachine &TM, const M88kSubtarget &STI)

 : TargetLowering(TM), Subtarget(STI) {

2.	 We add all the register classes first. We have only general-purpose registers defined,
therefore it is just a simple call:

 addRegisterClass(MVT::i32, &M88k::GPRRegClass);

Implementing the DAG instruction selection classes 345

3.	 After all the register classes are added, we compute the derived properties for the
registers. For example, since the registers are 32 bits wide, this function marks the
64-bit data type as requiring two registers:

 computeRegisterProperties(Subtarget.getRegisterInfo());

4.	 We also need to tell which register is used for the stack pointer. On the M88k
architecture, the r31 register is used:

 setStackPointerRegisterToSaveRestore(M88k::R31);

5.	 We also need to define how boolean values are represented. Basically, we say here
that the values 0 and 1 are used. Other possible options are to look only at bit 0 of
the value, ignoring all other bits, and setting all bits of the value either to 0 or 1:

 setBooleanContents(ZeroOrOneBooleanContent);

6.	 For every operation that needs special handling, we must call the
setOperationAction() method. The method takes the operation, the value
type, and the action to take as input. If the operation is valid, then we use the
Legal action value. If the type should be promoted, then we use the Promote
action value, and if the operation should result in a library call, then we use the
LibCall action value.

If we give the Expand action value, then the instruction selection first tries to
expand this operation into other operations. If this is not possible, then a library
call is used. And last, we can implement our own action if using the Custom
action value. In this case, the LowerOperation()method is called for a node
with this operation. As an example, we set the CTTZ count trailing zeros operation
to the Expand action. This operation will be replaced by a sequence of primitive
bit operations:

 setOperationAction(ISD::CTTZ, MVT::i32, Expand);

7.	 The M88k architecture has a bit field operation, for which it is not easy to define a
pattern in the target description. Here, we tell the instruction selection that we want
to perform additional matching on or DAG nodes:

 setTargetDAGCombine(ISD::OR);

}

346 Create Your Own Backend

Depending on the target architecture, setting the configuration in the constructor
can be much longer. We only defined the bare minimum, ignoring, for example,
floating-point operations.

We have marked the or operation to perform custom combining on it. As a result,
the instruction selector calls the PerformDAGCombine() method before calling
the generated instruction selection. This function is called in the various phases of the
instruction selection, but usually, we perform our matching only after the operations
are legalized. The common implementation is to look at the operation and branch to a
function handling the matching:

SDValue M88kTargetLowering::PerformDAGCombine(SDNode *N,

 DAGCombinerInfo &DCI) const {

 if (DCI.isBeforeLegalizeOps())

 return SDValue();

 switch (N->getOpcode()) {

 default:

 break;

 case ISD::OR:

 return performORCombine(N, DCI);

 }

 return SDValue();

}

In the performORCombine() method, we try to check whether we can generate a set
instruction for the or operation. The set instruction sets a number of consecutive bits
to 1, starting at a specified bit offset. This is a special case of the or operation, with the
second operand being a constant matching this format. Because the or instruction of the
M88k architecture works only on 16-bit constants, this matching is beneficial, because
otherwise, we would have to synthesize the constant, resulting in two or instructions. This
method uses the isShiftedMask() helper function to determine whether the constant
values have the required form.

If the second operand is a constant of the required form, then this function returns a
node representing the set instruction. Otherwise, the return value SDValue()
indicates that no matching pattern was found and that the generated DAG pattern
matcher should be called:

SDValue performORCombine(SDNode *N,

 TargetLowering::DAGCombinerInfo &DCI) {

 SelectionDAG &DAG = DCI.DAG;

Generating assembler instructions 347

 uint64_t Width, Offset;

 ConstantSDNode *Mask =

 dyn_cast<ConstantSDNode>(N->getOperand(

 1));

 if (!Mask ||

 !isShiftedMask(Mask->getZExtValue(), Width, Offset))

 return SDValue();

 EVT ValTy = N->getValueType(0);

 SDLoc DL(N);

 return DAG.getNode(M88kISD::SET, DL, ValTy,

 N->getOperand(0),

 DAG.getConstant(Width << 5 | Offset, DL,

 MVT::i32));

}

To finish the implementation of the whole lowering process, we need to implement the
M88kFrameLowering class. This class is responsible for handling the stack frame. This
includes generating the prologue and epilogue code, handling register spills, and more.
For the very first implementation, you can just provide empty functions. Obviously, for
complete functionality, this class must be implemented.

This finishes our implementation of the instruction selection. Next, we look at how the
final instructions are emitted.

Generating assembler instructions
The instruction selection implemented in the previous sections lowers the IR instructions
into MachineInstr instances. This is already a much lower representation of
instruction, but it is not yet the machine code itself. The last pass in the backend
pipeline is to emit the instructions, either as assembly text or into an object file. The
M88kAsmPrinter machine pass is responsible for this task.

Basically, this pass lowers a MachineInstr instance to an MCInst instance, which
is then emitted to a streamer. The MCInst class represents the real machine code
instruction. This additional lowering is required because the MachineInstr class still
does not have all the required details.

348 Create Your Own Backend

For the first approach, we can limit our implementation to overriding the
emitInstruction() method. You need to override more methods for supporting
several operand types, mainly to emit the correct relocations. This class is also responsible
for handling inline assemblers, which you also need to implement if needed.

Because the M88kAsmPrinter class is again a machine function pass, we also override
the getPassName() method. The declaration of the class is as follows:

class M88kAsmPrinter : public AsmPrinter {

public:

 explicit M88kAsmPrinter(TargetMachine &TM,

 std::unique_ptr<MCStreamer>

 Streamer)

 : AsmPrinter(TM, std::move(Streamer)) {}

 StringRef getPassName() const override

 { return "M88k Assembly Printer"; }

 void emitInstruction(const MachineInstr *MI) override;

};

Basically, we must handle two different cases in the emitInstruction() method.
The MachineInstr instance can still have operands, which are not real machine
instructions. For example, this is the case for the return ret_flag node, having the
RET opcode value. On the M88k architecture, there is no return instruction. Instead, a
jump to the address store in the r1 register is made. Therefore, we need to construct the
branch instruction when we detect the RET opcode. In the default case, the lowering only
needs the information from the MachineInstr instance, and we delegate this task to the
M88kMCInstLower class:

void M88kAsmPrinter::emitInstruction(const MachineInstr *MI) {

 MCInst LoweredMI;

 switch (MI->getOpcode()) {

 case M88k::RET:

 LoweredMI = MCInstBuilder(M88k::JMP).addReg(M88k::R1);

 break;

 default:

 M88kMCInstLower Lower(MF->getContext(), *this);

Generating assembler instructions 349

 Lower.lower(MI, LoweredMI);

 break;

 }

 EmitToStreamer(*OutStreamer, LoweredMI);

}

The M88kMCInstLower class has no predefined superclass. Its main purpose is to
handle the various operand types. As we currently only have a very limited set of
supported operand types, we can reduce this class to having only a single method. The
lower() method sets the opcode and the operand of the MCInst instance. Only register
and immediate operands are handled; other operand types are ignored. For the full
implementation, we also need to handle memory addresses:

void M88kMCInstLower::lower(const MachineInstr *MI, MCInst
&OutMI) const {

 OutMI.setOpcode(MI->getOpcode());

 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I)

 {

 const MachineOperand &MO = MI->getOperand(I);

 switch (MO.getType()) {

 case MachineOperand::MO_Register:

 if (MO.isImplicit())

 break;

 OutMI.addOperand(MCOperand::createReg(MO.getReg()));

 break;

 case MachineOperand::MO_Immediate:

 OutMI.addOperand(MCOperand::createImm(MO.getImm()));

 break;

 default:

 break;

 }

 }

}

350 Create Your Own Backend

The assembler printer needs a factory method, which is called during initialization, for
example, from the InitializeAllAsmPrinters() method:

extern "C" LLVM_EXTERNAL_VISIBILITY void

LLVMInitializeM88kAsmPrinter() {

 RegisterAsmPrinter<M88kAsmPrinter> X(getTheM88kTarget());

}

Finally, having lowered the instructions to real machine code instructions, we are still not
done. We need to implement various small pieces for the MC layer, which we look at in
the next section.

Emitting machine code
The MC layer is responsible for emitting machine code in textual or binary form. Most
of the functionality is either implemented in the various MC classes and only needs to be
configured, or the implementation is generated from the target description.

The initialization of the MC layer takes place in the MCTargetDesc/
M88kMCTargetDesc.cpp file. The following classes are registered with the
TargetRegistry singleton:

•	 M88kMCAsmInfo: This class provides basic information, such as the size of a
code pointer, the direction of stack growth, the comment symbol, or the name of
assembler directives.

•	 M88MCInstrInfo: This class holds information about instructions, for example,
the name of an instruction.

•	 M88kRegInfo: This class provides information about registers, for example, the
name of a register, or which register is the stack pointer.

•	 M88kSubtargetInfo: This class holds the data of the scheduling model and the
methods to parse and set CPU features.

•	 M88kMCAsmBackend: This class provides helper methods to get the target-
dependent relocation data for fixups. It also contains factory methods for the object
writer classes.

•	 M88kMCInstPrinter: This class contains helper methods to textually print
instructions and operands. If an operand defines a custom print method in the
target description, then it must be implemented in this class.

•	 M88kMCCodeEmitter: This class writes the encoding of an instruction to
a stream.

Emitting machine code 351

Depending on the scope of a backend implementation, we do not need to register and
implement all of these classes. You can omit to register the MCInstPrinter subclass if
you do not support textual assembler output. If you do not add support writing of object
files, you can omit the MCAsmBackend and MCCodeEmitter subclasses.

We begin the file by including the generated parts and providing factory methods for it:

#define GET_INSTRINFO_MC_DESC

#include "M88kGenInstrInfo.inc"

#define GET_SUBTARGETINFO_MC_DESC

#include "M88kGenSubtargetInfo.inc"

#define GET_REGINFO_MC_DESC

#include "M88kGenRegisterInfo.inc"

static MCInstrInfo *createM88kMCInstrInfo() {

 MCInstrInfo *X = new MCInstrInfo();

 InitM88kMCInstrInfo(X);

 return X;

}

static MCRegisterInfo *createM88kMCRegisterInfo(

 const Triple &TT) {

 MCRegisterInfo *X = new MCRegisterInfo();

 InitM88kMCRegisterInfo(X, M88k::R1);

 return X;

}

static MCSubtargetInfo *createM88kMCSubtargetInfo(

 const Triple &TT, StringRef CPU, StringRef

 FS) {

 return createM88kMCSubtargetInfoImpl(TT, CPU, FS);

}

We also provide some factory methods for classes implemented in other files:

static MCAsmInfo *createM88kMCAsmInfo(

 const MCRegisterInfo &MRI, const Triple &TT,

 const MCTargetOptions &Options) {

352 Create Your Own Backend

 return new M88kMCAsmInfo(TT);

}

static MCInstPrinter *createM88kMCInstPrinter(

 const Triple &T, unsigned SyntaxVariant,

 const MCAsmInfo &MAI, const MCInstrInfo &MII,

 const MCRegisterInfo &MRI) {

 return new M88kInstPrinter(MAI, MII, MRI);

}

To initialize the MC layer, we only need to register all the factory methods with the
TargetRegistry singleton:

extern "C" LLVM_EXTERNAL_VISIBILITY

void LLVMInitializeM88kTargetMC() {

 TargetRegistry::RegisterMCAsmInfo(getTheM88kTarget(),

 createM88kMCAsmInfo);

 TargetRegistry::RegisterMCCodeEmitter(getTheM88kTarget(),

 createM88kMCCodeEmitter);

 TargetRegistry::RegisterMCInstrInfo(getTheM88kTarget(),

 createM88kMCInstrInfo);

 TargetRegistry::RegisterMCRegInfo(getTheM88kTarget(),

 createM88kMCRegisterInfo);

 TargetRegistry::RegisterMCSubtargetInfo(getTheM88kTarget(),

 createM88kMCSubtargetInfo);

 TargetRegistry::RegisterMCAsmBackend(getTheM88kTarget(),

 createM88kMCAsmBackend);

 TargetRegistry::RegisterMCInstPrinter(getTheM88kTarget(),

 createM88kMCInstPrinter);

}

Additionally, in the MCTargetDesc/M88kTargetDesc.h header file, we also need to
include the header portion of the generated source, to make it available to others, too:

#define GET_REGINFO_ENUM

#include "M88kGenRegisterInfo.inc"

#define GET_INSTRINFO_ENUM

Adding support for disassembling 353

#include "M88kGenInstrInfo.inc"

#define GET_SUBTARGETINFO_ENUM

#include "M88kGenSubtargetInfo.inc"

We put the source files for the registered classes all in the MCTargetDesc directory. For
the first implementation, it is sufficient to provide just stubs for these classes. For example,
as long as support for memory addresses is not added to the target description, no fixups
will be generated. The M88kMCAsmInfo class can be very quickly implemented, as we
only need to set some properties in the constructor:

M88kMCAsmInfo::M88kMCAsmInfo(const Triple &TT) {

 CodePointerSize = 4;

 IsLittleEndian = false;

 MinInstAlignment = 4;

 CommentString = "#";

}

Having implemented the support classes for the MC layer, we are now able to emit the
machine code into files.

In the next section, we implement the class required for disassembling, which is the
reverse action: turning an object file back into assembler text.

Adding support for disassembling
The definition of the instructions in the target description allows the construction of
decoder tables, which are used to disassemble an object file into a textual assembler.
The decoder tables and a decoder function are generated by the llvm-tblgen tool.
Besides the generated code, we only need to provide the code to register and initialize the
M88kDisassembler class and some helper functions to decode registers and operands.
We place the implementation in the Disassembler/M88kDisassembler.cpp file.

The getInstruction() method of the M88kDisassembler class does the decoding
work. It takes an array of bytes as input and decodes the next instruction into an instance
of the MCInst class. The class declaration is as follows:

using DecodeStatus = MCDisassembler::DecodeStatus;

namespace {

class M88kDisassembler : public MCDisassembler {

354 Create Your Own Backend

public:

 M88kDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx)

 : MCDisassembler(STI, Ctx) {}

 ~M88kDisassembler() override = default;

 DecodeStatus getInstruction(MCInst &instr, uint64_t &Size,

 ArrayRef<uint8_t> Bytes,

 uint64_t Address,

 raw_ostream &CStream) const

 override;

};

}

The generated classes refer unqualified to the DecodeStatus enumeration, so
we have to make this name visible.

To initialize the disassembler, we define a factory function that simply instantiates
a new object:

static MCDisassembler *

createM88kDisassembler(const Target &T,

 const MCSubtargetInfo &STI,

 MCContext &Ctx) {

 return new M88kDisassembler(STI, Ctx);

}

In the LLVMInitializeM88kDisassembler() function, we register the factory
function at the target registry:

extern "C" LLVM_EXTERNAL_VISIBILITY void

LLVMInitializeM88kDisassembler() {

 TargetRegistry::RegisterMCDisassembler(

 getTheM88kTarget(), createM88kDisassembler);

}

This function is called from the InitializeAllDisassemblers() function or
the InitializeNativeTargetDisassembler() function, when the LLVM core
libraries are initialized.

Adding support for disassembling 355

The generated decoder function expects helper functions to decode registers and
operands. The reason for this is that the encoding of those elements often involves special
cases not expressed in the target description. For example, the distance between two
instructions is always even, so the lowest bit can be ignored because it is always zero.

To decode the registers, the DecodeGPRRegisterClass() function has to be defined.
The 32 registers are encoded with a number between 0 and 31, and we can use the static
GPRDecoderTable table to map between the encoding and the generated enumeration
for the registers:

static const uint16_t GPRDecoderTable[] = {

 M88k::R0, M88k::R1, M88k::R2, M88k::R3,

 M88k::R4, M88k::R5, M88k::R6, M88k::R7,

 M88k::R8, M88k::R9, M88k::R10, M88k::R11,

 M88k::R12, M88k::R13, M88k::R14, M88k::R15,

 M88k::R16, M88k::R17, M88k::R18, M88k::R19,

 M88k::R20, M88k::R21, M88k::R22, M88k::R23,

 M88k::R24, M88k::R25, M88k::R26, M88k::R27,

 M88k::R28, M88k::R29, M88k::R30, M88k::R31,

};

static DecodeStatus

DecodeGPRRegisterClass(MCInst &Inst, uint64_t RegNo,

 uint64_t Address,

 const void *Decoder) {

 if (RegNo > 31)

 return MCDisassembler::Fail;

 unsigned Register = GPRDecoderTable[RegNo];

 Inst.addOperand(MCOperand::createReg(Register));

 return MCDisassembler::Success;

}

356 Create Your Own Backend

All other required decoder functions follow the same pattern as the
DecodeGPRRegisterClass() function:

1.	 Check that the value to decode fits the required size restriction. If not, then return
the MCDisassembler::Fail value.

2.	 Decode the value and add it to the MCInst instance.

3.	 Return MCDisassembler::Success to indicate success.

Then, we can include the generated decoder tables and function:

#include "M88kGenDisassemblerTables.inc"

Finally, we are able to define the getInstruction() method. This method has two
result values, the decoded instruction and the size of the instruction. If the byte array is
too small, the size must be set to 0. This is important because the size parameter is used by
the caller to advance the pointer to the next memory location, even if the decoding failed.

In the case of the M88k architecture, the method is simple, because all instructions are 4
bytes long. So, after extracting 4 bytes from the array, the generated decoder function can
be called:

DecodeStatus M88kDisassembler::getInstruction(

 MCInst &MI, uint64_t &Size, ArrayRef<uint8_t> Bytes,

 uint64_t Address, raw_ostream &CS) const {

 if (Bytes.size() < 4) {

 Size = 0;

 return MCDisassembler::Fail;

 }

 Size = 4;

 uint32_t Inst = 0;

 for (uint32_t I = 0; I < Size; ++I)

 Inst = (Inst << 8) | Bytes[I];

 return decodeInstruction(DecoderTableM88k32, MI, Inst,

 Address, this, STI);

}

This finishes the implementation of the disassembler.

Piecing it all together 357

After we have implemented all the classes, we only need to set up the build system to pick
up the new target backend, which we will add in the next section.

Piecing it all together
Our new target, located in the llvm/lib/Target/M88k directory, needs to be
integrated into the build system. To make development easy, we add it as an experimental
target in the llvm/CMakeLists.txt file. We replace the existing empty string with the
name of our target:

set(LLVM_EXPERIMENTAL_TARGETS_TO_BUILD "M88k" …)

We also need to provide a llvm/lib/Target/M88k/CMakeLists.txt file to build
our target. Besides listing the C++ files for the target, it also defines the generation of the
source from the target description.

Generating all the types of sources from the target description
Different runs of the llvm-tblgen tool generate different portions of
C++ code. However, I recommend adding the generation of all parts to
the CMakeLists.txt file. The reason for this is that it provides better
checking. For example, if you make an error with the instruction encoding,
then this is only caught during the generation of the code for the disassembler.
So, even if you do not plan to support the disassembler, it is still worth
generating the source for it.

The file looks as follows:

1.	 First, we define a new LLVM component named M88k:

add_llvm_component_group(M88k)

2.	 Next, we name the target description file, add statements to generate the various
source pieces with TableGen, and define a public target for it:

set(LLVM_TARGET_DEFINITIONS M88k.tdtablegen(LLVM
M88kGenAsmMatcher.inc -gen-asm-matcher)

tablegen(LLVM M88kGenAsmWriter.inc -gen-asm-writer)

tablegen(LLVM M88kGenCallingConv.inc -gen-callingconv)

tablegen(LLVM M88kGenDAGISel.inc -gen-dag-isel)

tablegen(LLVM M88kGenDisassemblerTables.inc

 -gen-disassembler)

358 Create Your Own Backend

tablegen(LLVM M88kGenInstrInfo.inc -gen-instr-info)

tablegen(LLVM M88kGenMCCodeEmitter.inc -gen-emitter)

tablegen(LLVM M88kGenRegisterInfo.inc -gen-register-info)

tablegen(LLVM M88kGenSubtargetInfo.inc -gen-subtarget)

add_public_tablegen_target(M88kCommonTableGen)

3.	 We must list all the source files the new component is made of:

add_llvm_target(M88kCodeGen

 M88kAsmPrinter.cpp M88kFrameLowering.cpp

 M88kISelDAGToDAG.cpp M88kISelLowering.cpp

 M88kRegisterInfo.cpp M88kSubtarget.cpp

 M88kTargetMachine.cpp)

4.	 Last, we include the directories with the MC and disassembler classes in the build:

add_subdirectory(MCTargetDesc)

add_subdirectory(Disassembler)

Now we are ready to compile the LLVM with the new backend target. On the build
directory, we can simply run this:

$ ninja

This detects the changed CmakeLists.txt file, runs the configuration step again, and
compiles the new backend. To check that all went well, you can run this:

$ bin/llc –version

The output should contain the following line in the Registered Target section:

 m88k - M88k

Piecing it all together 359

Hurray! We finished the backend implementation. Let's try it out. The following f1
function in LLVM IR performs a bitwise AND operation between the two parameters of
the function and returns the result. Save it in the example.ll file:

target triple = "m88k-openbsd"

define i32 @f1(i32 %a, i32 %b) {

 %res = and i32 %a, %b

 ret i32 %res

}

Run the llc tool as follows to see the generated assembler text on the console:

$ llc < example.ll

 .text

 .file "<stdin>"

 .globl f1 # -- Begin
function f1

 .align 3

 .type f1,@function

f1: # @f1

 .cfi_startproc

%bb.0:

 and %r2, %r2, %r3

 jmp %r1

.Lfunc_end0:

 .size f1, .Lfunc_end0-f1

 .cfi_endproc

 # -- End function

 .section ".note.GNU-stack","",@progbits

The output is in valid GNU syntax. For the f1 function, and and jmp instructions are
generated. The parameters are passed in the %r2 and %r3 registers, which are used in
the and instruction. The result is stored in the %r2 register, which is also the register to
return 32-bit values. The return from the function is realized with a branch to the address
hold in the %r1 register, which also matches the ABI. It all looks very good!

360 Create Your Own Backend

With the topics you learned about in this chapter, you can now implement your own
LLVM backend. For many relatively simple CPUs such as digital signal processors
(DSPs), you do not need to implement more than we did here. Of course, the
implementation for the M88k CPU architecture does not yet support all features of
the architecture, for example, floating-point registers. However, you now know all the
important concepts applied in LLVM backend development, and with this, you will be
able to add any missing parts!

Summary
In this chapter, you learned how to develop a new backend target for LLVM. You first
collected the required documentation and made LLVM aware of the new architecture by
enhancing the Triple class. The documentation also includes the relocation definition
for the ELF file format, and you added support for that to LLVM.

You learned about the different parts the target description contains, and using the C++
source generated from it, you learned how to implement an instruction selection. For
outputting the generated code, you developed an assembler printer and learned which
support classes are needed to write to an object file. You also learned how to add support
for disassembling, which is used to turn an object file back into assembler text. Lastly, you
extended the build system to include the new target in the build.

You are now equipped with everything you need to use LLVM in creative ways in your
own projects. The LLVM ecosystem is very active, and new features are added all the time,
so be sure to follow all developments!

Being a compiler developer myself, it was a pleasure for me to write about LLVM and
discover some new features along the way. Have fun with LLVM!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

362 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

LLVM Techniques, Tips, and Best Practices Clang and Middle-End Libraries

Min-Yih Hsu

ISBN: 978-1-83882-495-2

•	 Find out how LLVM's build system works and how to reduce the building resource

•	 Get to grips with running custom testing with LLVM's LIT framework

•	 Build different types of plugins and extensions for Clang

•	 Customize Clang's toolchain and compiler flags

•	 Write LLVM passes for the new PassManager

•	 Discover how to inspect and modify LLVM IR

•	 Understand how to use LLVM's profile-guided optimizations (PGO) framework

•	 Create custom compiler sanitizers

https://www.packtpub.com/product/llvm-techniques-tips-and-best-practices-clang-and-middle-end-libraries/9781838824952

Why subscribe? 363

Modern C++ Programming Cookbook - Second Edition

Marius Bancila

ISBN: 78-1-80020-898-8

•	 Understand the new C++20 language and library features and the problems they
solve

•	 Become skilled at using the standard support for threading and concurrency for
daily tasks

•	 Leverage the standard library and work with containers, algorithms, and iterators

•	 Solve text searching and replacement problems using regular expressions

•	 Work with different types of strings and learn the various aspects of compilation

•	 Take advantage of the file system library to work with files and directories

•	 Implement various useful patterns and idioms

•	 Explore the widely used testing frameworks for C++

https://www.packtpub.com/product/modern-c-programming-cookbook-second-edition/9781800208988

364 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
Abstract Syntax Tree (AST)

about 21, 50, 58- 61, 180, 314
IR code, generating from 116
LLVM IR, generating from 66-71
LLVM-style RTTI, using for 105, 106

additional metadata
need for 176-179

address sanitizer
memory access problems,

detecting 286-288
AFL

URL 296
aggregate 146
ahead of time (AOT) 260
alias analysis 177
annotated abstract syntax tree (AST) 42
anonymous 177
application

exception-handling code,
integrating into 175, 176

instrumenting, with sanitizers 286
application binary interface (ABI)

about 232
obtaining 150, 151

arithmetic expression language
about 43
formalism, for specifying

syntax of 43, 44
grammar, need for compiler writer 44

arrays
about 146
working with 146-150

assembler
new instruction, adding to 251-254

assembler instructions
generating 347-350

assembler text
emitting 140-143

AST description, to LLVM types
types, converting from 132, 133

AST numbering
about 123
using, to generate IR code

in SSA form 123

B
backend

stage, setting 324

366 Index

basic block
about 118
values local, reading to 124
values local, writing to 124

bison
lexer, generating with 97-100
parser, generating with 97-100

bugs
finding, with libFuzzer 293, 295

build directory
creating 8

build process, customizing
about 10
variables, define by CMake 11, 12
variables, define by LLVM 13, 14

build system files
generating 8-10

C
C++ source files

adding 30, 31
calc 43
Calc.cpp driver

implementing 71-74
Chocolately

URL 6
Chrome trace viewer visualization 300
Clang

compiling, with CMake 7
installing, with CMake 7

Clang-based tool
creating 314-322

Clang implementation
reference link 152

Clang Static Analyzer
checker, adding to 305-314
source, checking 301-304

class 235
classes

IR code, creating for 152
CMake

Clang, compiling with 7
Clang, installing with 7
LLVM core libraries, compiling with 7
LLVM core libraries, installing with 7
URL 4

CMake build description
adding 269, 270

CMake files
adding 24-30

code
generating, with LLVM backend 64

CodeChecker
URL 302

code generation
new instruction, adding to 251-254

code generator
wrapping, everything in 137, 138

compiler
blocks, building 42, 43
for LLVM 12 4

compiler writer
grammar, need for 44

compile-time function execution 283
composite types 146
control flow graph (CFG) 121
CPU architecture

targeting 35-39
cross-compilation 282
cyclomatic complexity 322

D
DAG instruction selection classes

implementing 336

Index 367

DAG instruction selection
classes implementation

about 336
adding 339, 340
target lowering, configuring 344-347
target machine, initializing 337-339
target-specific operations,

supporting 340-344
data races

pointing, with thread sanitizer 290-292
data structure

defining, to hold values 124
Debugging Standard (DWARF) 261
debug metadata

adding 184
debug support, adding to

tinylang 192,-199
general structure 184-188
line numbers, adding 192
values, tracking 188-191
variables, tracking 188-191

definition 235
digital signal processors (DSPs) 360
directed acyclic graph (DAG) 230, 236
directory structure

creating 23, 24
disassembling

support, adding 353-357
dmd compiler 283
DNF 5
driver

setting up 137

E
ELF file format definition

extending, in LLVM 326-328

exception-handling code
integrating, into application 175, 176

exceptions
catching 162-174
raising 169-171
throwing 162-168

Executable and Linking Format (ELF) 261
expanding 245
expressions

IR code, creating 129, 130
extended Backus-Naur form (EBNF) 44
extension points 223

F
FastISel 248
flame graph 299
flex

lexer, generating with 97-100
parser, generating with 97-100

FOLLOW set 95
function body

emitting 135, 136
fuzzer driver 293
fuzz target 293
fuzz testing 292, 293

G
generated phi instructions

optimizing 127, 128
generics 78
GlobalISel 249-251
GNU Compiler Collection (GCC) 20
GNU Make

reference link 5
GXemul

URL 325

368 Index

H
heap buffer overflow 288
Hello, world 23

I
iconv library 305
identifier 81
instruction selection

examining 244-247
with selection DAG 240
working 235

instruction selection process
working 241-244

integer literal 81
interfaces

single inheritance, extending
with 156, 157

Intermediate Representation
(IR) 18, 42, 64, 286

IR code
about 116-119
creating, for classes 152
creating, for expressions 129, 130
creating, for virtual functions 152
emitting, for function 131
generating, from AST 116
generating, with AST numbering

in SSA form 123
IR code, generating with AST

numbering in SSA form
block, sealing 129
data structure, defining to

hold values 124
generated phi instructions,

optimizing 127, 128

predecessor blocks, searching
for value 125-127

values local, reading to basic block 124
values local, writing to basic block 124
visibility, controlling with

linkage 131, 132
visibility, controlling with name

mangling 131, 132
IR code generation

control flow, mapping to
basic blocks 121-123

J
Java 156
JIT compilation

language semantics, identifying 283, 284
using, for direct execution 262

JIT compiler
utilizing, for code evaluation 281, 282

JIT compiler class
building 271
creating 272-280
using 281

JIT compiler, use cases
database queries 260
expression evaluation 260
virtual machine implementation 260

JIT compiler utility
creating 267-269

JIT engine
initializing, for compiling

LLVM IR 265-267
just-in-time (JIT) 38

K
keywords 86

Index 369

L
lazy compilation 261
left-recursive 94
lexer

about 45
generating, with bison and flex 97-100
structuring 86-92

Lexer.h 45
lexical analysis

about 45
handwritten 45-50

libFuzzer
alternatives 296
bugs, searching 293-295
limitations 296
reference link 296

line numbers
adding 192

lli tool 262-264
LLJIT

JIT compiler, implementing with 264
LLVM

ELF file format definition,
extending 326-328

JIT implementation 260, 261
LLVM backend

code, generating with 64
LLVM core libraries

compiling, with CMake 7
installing, with CMake 7

LLVM Integrated Tester 255
LLVM IR

generating, from AST 66-71
textual representation of 64-66

LLVM IR function
creating 133, 134

LLVM libraries
used, for creating project 23

LLVM MIR documentation
reference link 233

LLVM module
setting up 137

LLVM mono repository
contents 18

LLVM mono repository, contents
additions 18
compiler 19
core libraries 18
runtime libraries 20
tools 19

LLVM Pass manager
about 202, 203, 208
new Pass manager 203
old Pass manager 203

LLVM project
layout 20-23

LLVM static compiler 231
LLVM-style RTTI

reference link 106
using, for AST 105, 106

LLVM target backend structure 230, 231
llvm-xray tool

reference link 301
load-and-store approach

about 120, 121
lowering 235

M
machine code

emitting 350-353
memory access problems

detecting, with address
sanitizer 286-288

memory sanitizer
uninitialized memory access,

finding 289, 290
metadata

generating, for type-based alias
analysis (TBAA) 176

MIR
used, for debugging backend 231-234
used, for testing backend 231-234

Motorola M88k architecture
backend, adding 324
URL 325

multi-level intermediate
representation (MLIR) 18

multiple inheritance
support, adding for 158-160

N
new instruction

adding, to assembler 251-254
adding, to code generation 251-254
testing 255-257

new machine instructions
supporting 251

Ninja
about 33
URL 4

O
object code

emitting 140-143
object-oriented programming (OOP) 78
on request compilation (ORC) engine 261
OpenBSD

URL 325
operation legalization 245

optimization pipeline
adding, to your compiler 216
creating, with new Pass

manager 216-223

P
panic mode 55
parser

error handling 55-58
generating, with bison and flex 97-100
handwritten 51, 52
implementing 53-55

Pass
adding, as plugin 208-213
adding, for use with old Pass

manager 213-216
adding, to LLVM source tree 204-208
implementing, with new

Pass manager 204
Passes 202
Pass pipeline

extending 223-226
performance profiling

with XRay 296-300
pointers

working with 146-150
polyhedral model 18
predecessor blocks

searching, for value 125-127
predecessors 121
prerequisite software, for LLVM

Fedora, installing 5
FreeBSD, installing 5
git, configuring 6
OS X, installing 6
RedHat, installing 5

Index 371

Ubuntu, installing 5
Windows, installing 6

programming language
defining 78-81

project, creating with LLVM libraries
C++ source files, adding 30, 31
CMake files, adding 24-30
directory structure, creating 23, 24
tinylang application, compiling 32-34

project layout
creating 81, 82

promoting 245
Protein Data Bank (PDB) 184
punctuators 86
pure function 282
Python

URL 5

R
record 235
recursive descent parser

constructing 93-96
repository

cloning 7, 8
resolver 95
Resource Acquisition Is

Initialization (RAII) 109
reStructuredText 22
runtime library

implementing 71-74
runtime type information (RTTI) 104

S
sanitizers

application, instrumenting 286
Scalable Vector Graphics (SVG) file 299

scalarizing 245
scan-build 302
SelectionDAG

about 230
instruction selection 240

semantic analysis
creating 106-114
LLVM-style RTTI, using

for AST 105, 106
performing 101
scope of names, handling 101-104

semantic analyzer 61-64
single inheritance

extending, with interfaces 156, 157
implementing 152-156

source
checking, with Clang Static

Analyzer 301-304
source files

managing 82-86
SSA form

IR code, generating with AST
numbering in 123

stack frame 299
static single assignment (SSA) 118
structs

working with 146-150
successors 121
symbolic interpretation 302
syntactical analysis 50

T
TableGen 252
TableGen language

target description, specifying in 235-240
TableGen programmer’s guide

reference link 239

372 Index

tablegen tool 37
target

integrating, into build system 357-360
target description

calling convention, defining 331-332
creating 328
instruction formats, defining 333-336
instruction information,

defining 333-336
register definition, adding 330
scheduling model, creating 332, 333
specifying, in TableGen

language 235-240
top-level file, implementing 328, 329

target machine class
initializing 138-140

TBAA metadata
adding, to tinylang 179-183

thread-local storage (TLS) 14
thread sanitizer

data races, pointing 290-292
Tiny 23
tinylang

debug support, adding to 192-199
TBAA metadata, adding to 179-183

tinylang application
alternative way, for including LLVM 35
compiling 32-34

tokens 43, 86
transformation layer 261
triple 36
Triple class

architecture, adding 325, 326
type-based alias analysis (TBAA)

about 179
additional metadata, need for 176-179
metadata, generating 176

U
uninitialized memory access

searching, with memory
sanitizer 289, 290

unit tests 292
user messages

managing 82-86

V
virtual functions

IR code, creating for 152
virtual method table (vtable) 154

X
XRay

performance profiling 296-300

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1 – The Basics of Compiler Construction
with LLVM
	Chapter 1: Installing LLVM
	Getting the prerequisites ready
	Ubuntu
	Fedora and RedHat
	FreeBSD
	OS X
	Windows
	Configuring Git

	Building with CMake
	Cloning the repository
	Creating a build directory
	Generating the build system files

	Customizing the build process
	Variables defined by CMake
	Variables defined by LLVM

	Summary

	Chapter 2: Touring the
LLVM Source
	Technical requirements
	Contents of the LLVM mono repository
	LLVM core libraries and additions
	Compilers and tools
	Runtime libraries

	Layout of an LLVM project
	Creating your own project
using LLVM libraries
	Creating the directory structure
	Adding the CMake files
	Adding the C++ source files
	Compiling the tinylang application

	Targeting a different CPU architecture
	Summary

	Chapter 3: Structure of a Compiler
	Technical requirements
	Building blocks of a compiler
	An arithmetic expression language
	Formalism for specifying the syntax of
a programming language
	How grammar helps the compiler writer

	Lexical analysis
	A handwritten lexer

	Syntactical analysis
	A handwritten parser
	The abstract syntax tree

	Semantic analysis
	Generating code with the LLVM backend
	Textual representation of the LLVM IR
	Generating the IR from the AST
	The missing pieces – the driver and the runtime library

	Summary

	Section 2 – From Source to Machine Code Generation
	Chapter 4: Turning the Source File into an Abstract Syntax Tree
	Technical requirements
	Defining a real programming language
	Creating the project layout
	Managing source files and user messages
	Structuring the lexer
	Constructing a recursive descent parser
	Generating a parser and lexer with bison
and flex
	Performing semantic analysis
	Handling the scope of names
	Using LLVM-style RTTI for the AST
	Creating the semantic analyzer

	Summary

	Chapter 5: Basics of IR
Code Generation
	Technical requirements
	Generating IR from the AST
	Understanding the IR code
	Knowing the load-and-store approach
	Mapping the control flow to basic blocks

	Using AST numbering to generate IR code in SSA form
	Defining the data structure to hold values
	Reading and writing values local to a basic block
	Searching the predecessor blocks for a value
	Optimizing the generated phi instructions
	Sealing a block
	Creating IR code for expressions
	Emitting the IR code for a function
	Controlling visibility with linkage and name mangling
	Converting types from an AST description
to LLVM types
	Creating the LLVM IR function
	Emitting the function body

	Setting up the module and the driver
	Wrapping everything in the code generator
	Initializing the target machine class
	Emitting assembler text and object code

	Summary

	Chapter 6: IR Generation
for High-Level Language Constructs
	Technical requirements
	Working with arrays, structs, and pointers
	Getting the application binary interface right
	Creating IR code for classes
and virtual functions
	Implementing single inheritance
	Extending single inheritance with interfaces
	 Adding support for multiple inheritance

	Summary

	Chapter 7: Advanced IR Generation
	Technical requirements
	Throwing and catching exceptions
	Raising an exception
	Catching an exception
	Integrating the exception-handling code
into the application

	Generating metadata for type-based
alias analysis
	Understanding the need for additional metadata
	Adding TBAA metadata to tinylang

	Adding debug metadata
	Understanding the general structure
of debug metadata
	Tracking variables and their values
	Adding line numbers
	Adding debug support to tinylang

	Summary

	Chapter 8: Optimizing IR
	Technical requirements
	Introducing the LLVM Pass manager
	Implementing a Pass using the
new Pass manager
	Adding a Pass to the LLVM source tree
	Adding a new Pass as a plugin

	Adapting a Pass for use with the
old Pass manager
	Adding an optimization pipeline
to your compiler
	Creating an optimization pipeline with the new Pass manager
	Extending the Pass pipeline

	Summary

	Section 3 – Taking LLVM to the Next Level
	Chapter 9: Instruction Selection
	Technical requirements
	Understanding the LLVM target
backend structure
	Using MIR to test and debug the backend
	How instruction selection works
	Specifying the target description in
the TableGen language
	Instruction selection with the selection DAG
	Fast instruction selection – FastISel
	The new global instruction selection – GlobalISel

	Supporting new machine instructions
	Adding a new instruction to the assembler
and code generation
	Testing the new instruction

	Summary

	Chapter 10: JIT Compilation
	Technical requirements
	Getting an overview of LLVM's JIT implementation and use cases
	Using JIT compilation for direct execution
	Exploring the lli tool
	Implementing our own JIT compiler with LLJIT
	Building a JIT compiler class from scratch

	Utilizing a JIT compiler for code evaluation
	Identifying the language semantics

	Summary

	Chapter 11: Debugging Using LLVM Tools
	Technical requirements
	Instrumenting an application with sanitizers
	Detecting memory access problems with
the address sanitizer
	Finding uninitialized memory access
with the memory sanitizer
	Pointing out data races with the thread sanitizer

	Finding bugs with libFuzzer
	Limitations and alternatives

	Performance profiling with XRay
	Checking the source with the
Clang Static Analyzer
	Adding a new checker to the Clang Static Analyzer

	Creating your own Clang-based tool
	Summary

	Chapter 12: Create Your
Own Backend
	Technical requirements
	Setting the stage for a new backend
	Adding the new architecture to the Triple class
	Extending the ELF file format
definition in LLVM
	Creating the target description
	Implementing the top-level file of the
target description
	Adding the register definition
	Defining the calling convention
	Creating the scheduling model
	Defining the instruction formats and
the instruction information

	Implementing the DAG instruction
selection classes
	Initializing the target machine
	Adding the selection DAG implementation
	Supporting target-specific operations
	Configuring the target lowering

	Generating assembler instructions
	Emitting machine code
	Adding support for disassembling
	Piecing it all together
	Summary

	Other Books You May Enjoy
	Index

