Jeganathan Swaminathan, Maya Posch,
Jacek Galowicz

Expert C++
Programming

Learning Path

Leveraging the power of modern C++ to build scalable
modular applications

L1 Packh

Expert C++ Programming

Leveraging the power of modern C++ to build scalable
modular applications

A learning path in three sections

BIRMINGHAM - MUMBAI

Expert C++ Programming

Copyright © 2018 Packt Publishing

All rights reserved. No part of this learning path may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this learning path to ensure the accuracy of the information
presented. However, the information contained in this learning path is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this learning path.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this learning path by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Authors: Jeganathan Swaminathan, Maya Posch, Jacek Galowicz
Reviewer: Brandon James, Louis E. Mauget, Arne Mertz
Content Development Editor: Priyanka Sawant

Graphics: Jisha Chirayal

Production Coordinator: Nilesh Mohite

Published on: April 2018
Production reference: 1060418

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-139-0

www.packtpub.com

http://www.packtpub.com

Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Table of Contents

Preface 1
Section 1: Mastering C++ Programming

Chapter 1: Introduction to C++17 Standard Template Library 6
The Standard Template Library architecture 7
Algorithms 8
Iterators 8
Containers 11
Functors 11
Sequence containers 13
Array 13
Code walkthrough 14
Commonly used APlIs in an array 14

Vector 16
Code walkthrough 17
Commonly used vector APls 18

Code walkthrough 19

Pitfalls of a vector 20

List 20
Commonly used APlIs in a list 23
Forward list 23
Code walkthrough 25
Commonly used APlIs in a forward_list container 25

Deque 28
Commonly used APls in a deque 29
Associative containers 30
Set 31
Code walkthrough 33
Commonly used APlIs in a set 34

Map 34
Code walkthrough 35
Commonly used APIs in a map 36
Multiset 36
Multimap 37
Unordered sets 38
Unordered maps 39
Unordered multisets 39
Unordered multimaps 39
Container adapters 40

Stack 40

Table of Contents

Commonly used APls in a stack 41

Queue 42
Commonly used APls in a queue 42
Priority queue 44
Commonly used APls in a priority queue 44
Summary 45
Chapter 2: Template Programming 46
Generic programming 46
Function templates 48
Code walkthrough 50
Overloading function templates 52
Code walkthrough 55

Class template 57
Code walkthrough 60
Explicit class specializations 61
Code walkthrough 64

Partial template specialization 69
Summary 72
Chapter 3: Smart Pointers 73
Memory management 73
Issues with raw pointers 74
Smart pointers 77
auto_ptr 78
Code walkthrough - Part 1 81

Code walkthrough - Part 2 82
unique_ptr 84
Code walkthrough 86
shared_ptr 87
Code walkthrough 89
weak_ptr 90
Circular dependency 93
Summary 95
Chapter 4: Developing GUI Applications in C++ 96
Qt 08
Installing Qt 5.7.0 in Ubuntu 16.04 98

Qt Core 100
Writing our first Qt console application 100

Qt Widgets 103
Writing our first Qt GUI application 103
Layouts 108
Writing a GUI application with a horizontal layout 109
Writing a GUI application with a vertical layout 114
Writing a GUI application with a box layout 118
Writing a GUI application with a grid layout 122

[ii]

Table of Contents

Signals and slots
Using stacked layout in Qt applications

Writing a simple math application combining multiple layouts
Summary

Chapter 5: Test-Driven Development
TDD
Common myths and questions around TDD
Does it take more efforts for a developer to write a unit test?
Is code coverage metrics good or bad?
Does TDD work for complex legacy projects?

Is TDD even applicable for embedded or products that involve hardware?

Unit testing frameworks for C++
Google test framework
Installing Google test framework on Ubuntu

How to build google test and mock together as one single static library

without installing?
Writing our first test case using the Google test framework
Using Google test framework in Visual Studio IDE
TDD in action
Testing a piece of legacy code that has dependency
Summary

Chapter 6: Behavior-Driven Development

Behavior-driven development

TDD versus BDD

C++ BDD frameworks

The Gherkin language

Installing cucumber-cpp in Ubuntu
Installing the cucumber-cpp framework prerequisite software
Building and executing the test cases

Feature file

Spoken languages supported by Gherkin

The recommended cucumber-cpp project folder structure

Writing our first Cucumber test case
Integrating our project in cucumber-cpp CMakelLists.txt
Executing our test case

Dry running your cucumber test cases

BDD - a test-first development approach
Let's build and run our BDD test case
It's testing time!

Summary

Chapter 7: Code Smells and Clean Code Practices
Code refactoring

126
137
146
155

156
157
158
158
159
159
160
160
161
161

164
166
170
178
199
208

209
209
210
210
211
211
212
214
215
217
218
218
224
225
226
227
237
242
247

248
249

[iii]

Table of Contents

Code smell 250
What is agile? 250
SOLID design principle 251
Single responsibility principle 252
Open closed principle 254
Liskov substitution principle 257
Interface segregation 258
Dependency inversion 260
Code smell 264
Comment smell 264
Long method 265
Long parameter list 265
Duplicate code 266
Conditional complexity 267
Large class 267
Dead code 267
Primitive obsession 268
Data class 268
Feature envy 268
Summary 269
Section 2: Mastering C++ Multithreading
Chapter 8: Revisiting Multithreading 271
Getting started 271
The multithreaded application 272
Makefile 276
Other applications 278
Summary 279
Chapter 9: Multithreading Implementation on the Processor and OS 280
Introduction to POSIX pthreads 280
Creating threads with the pthreads library 281
How to compile and run 283
Does C++ support threads natively? 284
Defining processes and threads 285
Tasks in x86 (32-bit and 64-bit) 287
Process state in ARM 290
The stack 291
Defining multithreading 292
Flynn's taxonomy 294
Symmetric versus asymmetric multiprocessing 294
Loosely and tightly coupled multiprocessing 295
Combining multiprocessing with multithreading 296
Multithreading types 296

[iv]

Table of Contents

Temporal multithreading
Simultaneous multithreading (SMT)
Schedulers
Tracing the demo application
Mutual exclusion implementations
Hardware
Software
Concurrency
How to compile and run
Asynchronous message passing using the concurrency support library
How to compile and run
Concurrency tasks
How to compile and run
Using tasks with a thread support library
How to compile and run
Binding the thread procedure and its input to packaged_task
How to compile and run
Exception handling with the concurrency library
How to compile and run
What did you learn?
Summary

Chapter 10: C++ Multithreading APIs
API overview
POSIX threads
Windows support
PThreads thread management
Mutexes
Condition variables
Synchronization
Semaphores
Thread local storage (TLC)
Windows threads
Thread management
Advanced management
Synchronization
Condition variables
Thread local storage
Boost
Thread class
Thread pool
Thread local storage (TLS)
Synchronization
C++ threads
Putting it together

296
297
297
299
301
302
303
304
305
306
307
307
308
309
309
310
311
311
312
313
313

314
314
315
318
318
320
321
323
324
324
326
326
329
329
330
330
330
331
332
332
333
334
334

[v]

Table of Contents

Summary 335
Chapter 11: Thread Synchronization and Communication 336
Safety first 336
The scheduler 337
High-level view 337
Implementation 338
Request class 340

Worker class 342
Dispatcher 344
Makefile 348
Output 349
Sharing data 352
Using r/w-locks 353
Using shared pointers 353
Summary 353
Chapter 12: Native C++ Threads and Primitives 354
The STL threading API 354
Boost.Thread API 354
The 2011 standard 355
C++14 356
Thread class 356
Basic use 357
Passing parameters 357
Return value 358
Moving threads 358
Thread ID 359
Sleeping 360
Yield 361
Detach 361
Swap 361
Mutex 362
Basic use 362
Non-blocking locking 364

Timed mutex 365
Lock guard 366
Unique lock 367
Scoped lock 368
Recursive mutex 368
Recursive timed mutex 369
Shared mutex 369
Shared timed mutex 370
Condition variable 370
Condition_variable_any 373

[vil

Table of Contents

Notify all at thread exit
Future
Promise
Shared future
Packaged_task
Async
Launch policy
Atomics
Summary

Chapter 13: Debugging Multithreaded Code
When to start debugging
The humble debugger
GDB
Debugging multithreaded code
Breakpoints
Back traces
Dynamic analysis tools
Limitations
Alternatives
Memcheck
Basic use
Error types
lllegal read / illegal write errors
Use of uninitialized values
Uninitialized or unaddressable system call values
lllegal frees
Mismatched deallocation
Overlapping source and destination

Fishy argument values
Memory leak detection

Helgrind
Basic use

Misuse of the pthreads API

Lock order problems

Data races

DRD

Basic use

Features

C++11 threads support
Summary

Chapter 14: Best Practices
Proper multithreading
Wrongful expectations - deadlocks
Being careless - data races
Mutexes aren't magic

373
374
375
376
377
378
379
379
379

380
380
381
382
383
384
385
387
388
388
389
389
392
392
392
394
396
396
396

397
397

398
398
403
404
405
405
405
407
408
409

410
410
411
415
420

[vii]

Table of Contents

Locks are fancy mutexes
Threads versus the future
Static order of initialization
Summary

Chapter 15: Atomic Operations - Working with the Hardware

Atomic operations
Visual C++
GCC
Memory order
Other compilers
C++11 atomics
Example
Non-class functions
Example
Atomic flag
Memory order
Relaxed ordering
Release-acquire ordering
Release-consume ordering
Sequentially-consistent ordering
Volatile keyword
Summary

Chapter 16: Multithreading with Distributed Computing
Distributed computing, in a nutshell
MPI
Implementations
Using MPI
Compiling MPI applications
The cluster hardware
Installing Open MPI
Linux and BSDs
Windows
Distributing jobs across nodes
Setting up an MPI node
Creating the MPI host file
Running the job
Using a cluster scheduler
MPI communication
MPI data types
Custom types
Basic communication
Advanced communication
Broadcasting
Scattering and gathering

422
423
423
426

427
427
428
434
437
438
438
441
442
443
445
445
446
446
447
447
448

448

449
449
451
452
453
454
455
459
459
459
461
462
462
463
463
464
465
466
468
469
470
470

[viii]

Table of Contents

MPI versus threads 471
Potential issues 473
Summary 474
Chapter 17: Multithreading with GPGPU 475
The GPGPU processing model 475
Implementations 476
OpenCL 477
Common OpenCL applications 477
OpenCL versions 478
OpenCL 1.0 478
OpenCL 1.1 478
OpenCL 1.2 479
OpenCL 2.0 480
OpenCL 2.1 480
OpenCL 2.2 481
Setting up a development environment 482
Linux 482
Windows 482
OS X/MacOS 483
A basic OpenCL application 483
GPU memory management 487
GPGPU and multithreading 489
Latency 490
Potential issues 490
Debugging GPGPU applications 491
Summary 492
Section 3: C++17 STL Cookbook
Chapter 18: The New C++17 Features 494
Introduction 494
Using structured bindings to unpack bundled return values 495
How to do it... 495
How it works... 497
There's more... 497
Limiting variable scopes to if and switch statements 499
How to do it... 500
How it works... 500
There's more... 502
Profiting from the new bracket initializer rules 503
How to do it... 503
How it works... 504
Letting the constructor automatically deduce the resulting template
class type 505

[ix]

Table of Contents

How to do it...
How it works...
There's more...
Simplifying compile time decisions with constexpr-if
How to do it...
How it works...
There's more...
Enabling header-only libraries with inline variables
How it's done...
How it works...
There's more...
Implementing handy helper functions with fold expressions
How to do it...
How it works...
There's more...
Match ranges against individual items
Check if multiple insertions into a set are successful
Check if all the parameters are within a certain range
Pushing multiple items into a vector

Chapter 19: STL Containers

Using the erase-remove idiom on std::vector
How to do it...
How it works...
There's more...

Deleting items from an unsorted std::vector in O(1) time
How to do it...
How it works...

Accessing std::vector instances the fast or the safe way
How to do it...
How it works...
There's more...

Keeping std::vector instances sorted
How to do it...
How it works...
There's more...

Inserting items efficiently and conditionally into std::map
How to do it...
How it works...
There's more...

Knowing the new insertion hint semantics of std::map::insert
How to do it...
How it works...
There's more...

Efficiently modifying the keys of std::map items

505
506
507
508
508
509
510
512
512
513
515
515
516
516
517
519
520
521
521

523
524
524
526
527
528
528
531
532
532
533
534
534
534
536
537
537
538
540
541
541
541
542
543
544

[x]

Table of Contents

How to do it...
How it works...
There's more...
Using std::unordered_map with custom types
How to do it...
How it works...
Filtering duplicates from user input and printing them in
alphabetical order with std::set
How to do it...
How it works...
std::istream_iterator
std::inserter
Putting it together
Implementing a simple RPN calculator with std::stack
How to do it...
How it works...
Stack handling
Distinguishing operands from operations from user input
Selecting and applying the right mathematical operation
There's more...
Implementing a word frequency counter with std::map
How to do it...
How it works...
Implement a writing style helper tool for finding very long
sentences in text with std::multimap
How to do it...
How it works...
There's more...
Implementing a personal to-do list using std::priority_queue
How to do it...
How it works...

Chapter 20: Iterators

Introduction
Iterator categories
Input iterator
Forward iterator
Bidirectional iterator
Random access iterator
Contiguous iterator
Output iterator
Mutable iterator
Building your own iterable range
How to do it...
How it works...

Making your own iterators compatible with STL iterator categories

545
547
547
548
548
550

551
552
553
553
554
555
555
556
559
559
560
561
561
562
562
565

566
567
570
571
571
572
574

575
575
577
578
578
578
579
579
579
579
579
580
582
583

[xil

Table of Contents

How to do it...
How it works...
There's more...
Using iterator adapters to fill generic data structures
How to do it...
How it works...
std::back_insert_iterator
std::front_insert_iterator
std::insert_iterator
std::istream_iterator
std::ostream_iterator
Implementing algorithms in terms of iterators
How to do it...
There's more...

Iterating the other way around using reverse iterator adapters

How to do it...
How it works...
Terminating iterations over ranges with iterator sentinels
How to do it...
Automatically checking iterator code with checked iterators
How to do it...
How it works...
There's more...
Building your own zip iterator adapter
How to do it...
There's more...
Ranges library

Chapter 21: Lambda Expressions
Introduction
Defining functions on the run using lambda expressions
How to do it...
How it works...
Capture list
mutable (optional)
constexpr (optional)
exception attr (optional)
return type (optional)
Adding polymorphy by wrapping lambdas into std::function
How to do it...
How it works...
Composing functions by concatenation
How to do it...
How it works...
Creating complex predicates with logical conjunction
How to do it...

583
586
586
587
587
589
589
589
590
590
590
591
592
594
595
595
596
597
598
600
601
603
604
605
607
610
611

612
612
614
614
617
618
619
619
619
619
619
620
622
623
624
626
627
627

[xii]

Table of Contents

There's more...
Calling multiple functions with the same input
How to do it...
How it works...
Implementing transform_if using std::accumulate and lambdas
How to do it...
How it works...
Generating cartesian product pairs of any input at compile time
How to do it...
How it works...

Chapter 22: STL Algorithm Basics
Introduction
Copying items from containers to other containers
How to do it...
How it works...
Sorting containers
How to do it...
How it works...
Removing specific items from containers
How to do it...
How it works...
Transforming the contents of containers
How to do it...
How it works...
Finding items in ordered and unordered vectors
How to do it...
How it works...
Limiting the values of a vector to a specific numeric range with
std::clamp
How to do it...
How it works...
Locating patterns in strings with std::search and choosing the
optimal implementation
How to do it...
How it works...
Sampling large vectors
How to do it...
How it works...
Generating permutations of input sequences
How to do it...
How it works...
Implementing a dictionary merging tool
How to do it...

629
630
630
632
634
634
637
640
641
643

645
646
648
649
651
653
653
657
657
658
661
661
662
664
664
665
669

671
672
675

675
676
678
680
681
684
685
685
686
687
688

[xiii]

Table of Contents

How it works...

Chapter 23: Advanced Use of STL Algorithms

Introduction
Implementing a trie class using STL algorithms
How to do it...
How it works...
Implementing a search input suggestion generator with tries
How to do it...
How it works...
There's more...
Implementing the Fourier transform formula with STL numeric
algorithms
How to do it...
How it works...
Calculating the error sum of two vectors
How to do it...
How it works...
Implementing an ASCIlI Mandelbrot renderer
How to do it...
How it works...
Building our own algorithm - split
How to do it...
How it works...
There's more...
Composing useful algorithms from standard algorithms - gather
How to do it...
How it works...
Removing consecutive whitespace between words
How to do it...
How it works...
Compressing and decompressing strings
How to do it...
How it works...
There's more...

Chapter 24: Strings, Stream Classes, and Regular Expressions

Introduction
Creating, concatenating, and transforming strings
How to do it...
How it works...
Trimming whitespace from the beginning and end of strings
How to do it...
How it works...

690

691
691
692
693
697
698
699
703
704

704
705
711
713
713
716
717
718
722
723
724
726
727
727
728
731
733
733
734
736
736
738
740

741
742
743
744
746
747
747
749

[xiv]

Table of Contents

Getting the comfort of std::string without the cost of constructing

std::string objects 750
How to do it... 751
How it works... 753

Reading values from user input 754
How to do it... 754
How it works... 756

Counting all words in a file 757
How to do it... 758
How it works... 760

Formatting your output with I/O stream manipulators 760
How to do it... 761
How it works... 765

Initializing complex objects from file input 767
How to do it... 767
How it works... 769

Filling containers from std::istream iterators 770
How to do it... 771
How it works... 774

Generic printing with std::ostream iterators 775
How to do it... 776
How it works... 779

Redirecting output to files for specific code sections 780
How to do it... 781
How it works... 784

Creating custom string classes by inheriting from std::char_traits 785
How to do it... 786
How it works... 790

Tokenizing input with the regular expression library 791
How to do it... 792
How it works... 794

Comfortably pretty printing numbers differently per context on the

fly 796
How to do it... 797

Catching readable exceptions from std::iostream errors 799
How to do it... 800
How it works... 802

Chapter 25: Utility Classes 803

Introduction 804

Converting between different time units using std::ratio 804
How to do it... 805
How it works... 808
There's more... 810

[xv]

Table of Contents

Converting between absolute and relative times with std::chrono
How to do it...
How it works...
Safely signalizing failure with std::optional
How to do it...
How it works...
Applying functions on tuples
How to do it...
How it works...
Quickly composing data structures with std::tuple
How to do it...
How it works...
operator<< for tuples
The zip function for tuples
Replacing void* with std::any for more type safety
How to do it...
How it works...
Storing different types with std::variant
How to do it...
How it works...
Automatically handling resources with std::unique_ptr
How to do it...
How it works...
Automatically handling shared heap memory with std::shared_ptr
How to do it...
How it works...
There's more...
Dealing with weak pointers to shared objects
How to do it...
How it works...
Simplifying resource handling of legacy APIs with smart pointers
How to do it...
How it works...
Sharing different member values of the same object
How to do it...
How it works...
Generating random numbers and choosing the right random
number engine
How to do it...
How it works...
Generating random numbers and letting the STL shape specific
distributions
How to do it...
How it works...

810
811
813
814
815
817
819
819
821
822
822
827
827
828
830
830
833
833
834
838
839
840
843
844
844
847
849
850
851
853
855
856
858
859
860
861

863
863
868

870
870
877

[xvi]

Table of Contents

Chapter 26: Parallelism and Concurrency
Introduction
Automatically parallelizing code that uses standard algorithms
How to do it...
How it works...
Which STL algorithms can we parallelize this way?
How do those execution policies work?
What does vectorization mean?
Putting a program to sleep for specific amounts of time
How to do it...
How it works...
Starting and stopping threads
How to do it...
How it works...
Performing exception safe shared locking with std::unique_lock
and std::shared_lock
How to do it...
How it works...
Mutex classes
Lock classes
Avoiding deadlocks with std::scoped_lock
How to do it...
How it works...
Synchronizing concurrent std::cout use
How to do it...
How it works...
Safely postponing initialization with std::call_once
How to do it...
How it works...
Pushing the execution of tasks into the background using
std::async
How to do it...
How it works...
There's more...
Implementing the producer/consumer idiom with
std::condition_variable
How to do it...
How it works...
Implementing the multiple producers/consumers idiom with
std::condition_variable
How to do it...
How it works...
Parallelizing the ASCIl Mandelbrot renderer using std::async
How to do it...

879
879
880
881
883
883
884
886
887
887
888
889
890
892

894
895
898
898
899
902
903
905
906
907
909
910
911
912

913
914
917
918

919
919
922

924
925
929
931
932

[xvii]

Table of Contents

How it works... 935
Implementing a tiny automatic parallelization library with std::future 936
How to do it... 937
How it works... 941
Chapter 27: Filesystem 946
Introduction 946
Implementing a path normalizer 947
How to do it... 947
How it works... 949
There's more... 949
Getting canonical file paths from relative paths 950
How to do it... 951
How it works... 953
Listing all files in directories 954
How to do it... 954
How it works... 958
Implementing a grep-like text search tool 959
How to do it... 960
How it works... 962
There's more... 963
Implementing an automatic file renamer 963
How to do it... 964
Implementing a disk usage counter 966
How to do it... 967
How it works... 969
Calculating statistics about file types 969
How to do it... 970
Implementing a tool that reduces folder size by substituting
duplicates with symlinks 973
How to do it... 973
How it works... 977
There's more... 977
Bibliography 979
Index 980

[xviii]

Preface

Introduction to the learning path and the technology.

Who this learning path is for

This learning path is for Java developers who are looking to move a level up and learn how
to build robust applications in the latest version of Java.

What this learning path covers

Section 1, Mastering C++ Programming, introducing you to the latest features in C++ 17
and STL. It encourages clean code practices in C++ in general and demonstrates the
GUI app-development options in C++. Youlll get tips on avoiding memory leaks using
smart-pointers.

Section 2, Mastering C++ Multithreading, you’ll see how multi-threaded programming can
help you achieve concurrency in your applications. We start with a brief introduction to
the fundamentals of multithreading and concurrency concepts. We then take an in-depth
look at how these concepts work at the hardware-level as well as how both operating
systems and frameworks use these low-level functions. You will learn about the native
multithreading and concurrency support available in C++ since the 2011 revision,
synchronization and communication between threads, debugging concurrent C++
applications, and the best programming practices in C++.

Section 3, C++17 STL Cookbook, you’ll get an in-depth understanding of the C++
Standard Template Library; we show implementation-specific, problem-solution
approaches that will help you quickly overcome hurdles. You will learn the core STL
concepts, such as containers, algorithms, utility classes, lambda expressions, iterators, and
more while working on practical real-world recipes. These recipes will help you get the
most from the STL and show you how to program in a better way.

Preface

To get the most out of this learning path

1. A strong understanding of C++ language is highly recommended as the book is
for the experienced developers.

2. You will need any OS (Windows, Linux, or macOS) and any C++ compiler
installed on your systems in order to get started.

Download the example code files

You can download the example code files for this learning path from your account at
www.packtpub.com. If you purchased this learning path elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the learning path in the Search box and follow the onscreen
instructions.

LN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the learning path is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Path-Name. We also have other code bundles from our rich

catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

[2]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
height: 100%;
margin: 0;
padding: 0

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]

exten => s,1,Dial (Zap/1]30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => 1,1,Voicemail (s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

[31]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the learning path title in
the subject of your message. If you have questions about any aspect of this learning path,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this learning path, we would be grateful if you
would report this to us. Please visit www.packtpub.com/submit-errata, selecting your
learning path, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this learning path, why not leave a
review on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[4]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1

Mastering C++ Programming

Modern C++ 17 at your fingertips

Introduction to C++17 Standard
Template Library

As you know, the C++ language is the brain child of Bjarne Stroustrup, who developed C++
in 1979. The C++ programming language is standardized by International Organization for
Standardization (ISO). The initial standardization was published in 1998, commonly
referred to as C++98, and the next standardization C++03 was published in 2003, which was
primarily a bug fix release with just one language feature for value initialization. In August
2011, the C++11 standard was published with several additions to the core language,
including several significant interesting changes to the Standard Template Library (STL);
C++11 basically replaced the C++03 standard. C++14 was published in December, 2014 with
some new features, and later, the C++17 standard was published on July 31, 2017. At the
time of writing this book, C++17 is the latest revision of the ISO/IEC standard for the C++
programming language.

This chapter requires a compiler that supports C++17 features: gcc version 7 or later. As gcc
version 7 is the latest version at the time of writing this book, I'll be using gcc version 7.1.0
in this chapter.

Introduction to C++17 Standard Template Library Chapter 1

This chapter will cover the following topics:

e STL overview

e STL architecture
e Containers

o [terators

e Algorithms
¢ Functors

e STL containers

¢ Sequence

e Associative
e Unordered
e Adaptors

Let's look into the STL topics one by one in the following sections.

The Standard Template Library architecture

The C++ Standard Template Library (STL) offers ready-made generic containers,
algorithms that can be applied to the containers, and iterators to navigate the containers.
The STL is implemented with C++ templates, and templates allow generic programming in
C++.

The STL encourages a C++ developer to focus on the task at hand by freeing up the
developer from writing low-level data structures and algorithms. The STL is a time-tested
library that allows rapid application development.

The STL is an interesting piece of work and architecture. Its secret formula is compile-time
polymorphism. To get better performance, the STL avoids dynamic polymorphism, saying
goodbye to virtual functions. Broadly, the STL has the following four components:

e Algorithms
e Functors
e [terators
o Containers

[7]

Introduction to C++17 Standard Template Library Chapter 1

The STL architecture stitches all the aforementioned four components together. It has many
commonly used algorithms with performance guarantees. The interesting part about STL
algorithms is that they work seamlessly without any knowledge about the containers that
hold the data. This is made possible due to the iterators that offer high-level traversal APIs,
which completely abstracts the underlying data structure used within a container. The STL
makes use of operator overloading quite extensively. Let's understand the major
components of STL one by one to get a good grasp of the STL conceptually.

Algorithms

The STL algorithms are powered by C++ templates; hence, the same algorithm works
irrespective of what data type it deals with or independently of how the data is organized
by a container. Interestingly, the STL algorithms are generic enough to support built-in and
user-defined data types using templates. As a matter of fact, the algorithms interact with the
containers via iterators. Hence, what matters to the algorithms is the iterator supported by
the container. Having said that, the performance of an algorithm depends on the
underlying data structure used within a container. Hence, certain algorithms work only on
selective containers, as each algorithm supported by the STL expects a certain type of
iterator.

Iterators

An iterator is a design pattern, but interestingly, the STL work started much before

Gang of Four published their design patterns-related work to the software community.
Iterators themselves are objects that allow traversing the containers to access, modify, and
manipulate the data stored in the containers. Iterators do this so magically that we don't
realize or need to know where and how the data is stored and retrieved.

[81]

Introduction to C++17 Standard Template Library

Chapter 1

The following image visually represents an iterator:

begin()

10 || 20I 30 || 40

50 " 60 I?O || 80

end()

From the preceding image, you can understand that every iterator supports the begin ()
API, which returns the first element position, and the end () API returns one position past

the last element in the container.

The STL broadly supports the following five types of iterators:

¢ Input iterators

Output iterators
Forward iterators

Bidirectional iterators
e Random-access iterators

The container implements the iterator to let us easily retrieve and manipulate the data,

without delving much into the technical details of a container.

[91]

Introduction to C++17 Standard Template Library Chapter 1

The following table explains each of the five iterators:

The type of iterator

Description

Input iterator

* It is used to read from the pointed element

* It is valid for single-time navigation, and once it reaches the end of the
container, the iterator will be invalidated

* It supports pre- and post-increment operators

* It does not support decrement operators

* It supports dereferencing

* It supports the == and ! = operators to compare with the other iterators
* The istream_iterator iterator is an input iterator

* All the containers support this iterator

Output iterator

* It is used to modify the pointed element

* It is valid for single-time navigation, and once it reaches the end of the
container, the iterator will be invalidated

« It supports pre- and post-increment operators

* It does not support decrement operators

* It supports dereferencing

* It doesn't support the == and ! = operators

¢ The ostream_iterator,back_inserter,

front_inserter iterators are examples of output iterators

¢ All the containers support this iterator

Forward iterator

* It supports the input iterator and output iterator functionalities
* It allows multi-pass navigation

* It supports pre-increment and post-increment operators

* It supports dereferencing

* The forward_1ist container supports forward iterators

Bidirectional iterator

* It is a forward iterator that supports navigation in both directions

* It allows multi-pass navigation

* It supports pre-increment and post-increment operators

* It supports pre-decrement and post-decrement operators

* It supports dereferencing

* It supports the [] operator

e The 1ist, set, map, multiset, and multimap containers support
bidirectional iterators

[10]

Introduction to C++17 Standard Template Library Chapter 1

* Elements can be accessed using an arbitrary offset position

* It supports pre-increment and post-increment operators

* It supports pre-decrement and post-decrement operators

* It supports dereferencing

* It is the most functionally complete iterator, as it supports all the
functionalities of the other types of iterators listed previously

* The array, vector, and deque containers support random-access
iterators

* A container that supports random access will naturally support
bidirectional and other types of iterators

Random-access iterator

Containers

STL containers are objects that typically grow and shrink dynamically. Containers use
complex data structures to store the data under the hood and offer high-level functions to
access the data without us delving into the complex internal implementation details of the
data structure. STL containers are highly efficient and time-tested.

Every container uses different types of data structures to store, organize, and manipulate
data in an efficient way. Though many containers may seem similar, they behave differently
under the hood. Hence, the wrong choice of containers leads to application performance
issues and unnecessary complexities.

Containers come in the following flavors:

¢ Sequential
e Associative
e Container adapters

The objects stored in the containers are copied or moved, and not referenced. We will
explore every type of container in the upcoming sections with simple yet interesting
examples.

Functors

Functors are objects that behave like regular functions. The beauty is that functors can be
substituted in the place of function pointers. Functors are handy objects that let you extend
or complement the behavior of an STL function without compromising the object-oriented
coding principles.

[11]

Introduction to C++17 Standard Template Library Chapter 1

Functors are easy to implement; all you need to do is overload the function operator.
Functors are also referred to as functionoids.

The following code will demonstrate the way a simple functor can be implemented:

#include <iostream>
#include <vector>

#include <iterator>
#include <algorithm>
using namespace std;

template <typename T>
class Printer {
public:
void operator () (const T& element) {
cout << element << "t";
}
bi

int main () {
vector<int> v = { 10, 20, 30, 40, 50 };

cout << "nPrint the vector entries using Functor" << endl;
for_each (v.begin(), v.end(), Printer<int>());
cout << endl;

return 0;

}

Let's quickly compile the program using the following command:

g++ main.cpp -std=c++17
./a.out

Let's check the output of the program:

Print the vector entries using Functor
10 20 30 40 50

We hope you realize how easy and cool a functor is.

[12]

Introduction to C++17 Standard Template Library Chapter 1

Sequence containers

The STL supports quite an interesting variety of sequence containers. Sequence containers
store homogeneous data types in a linear fashion, which can be accessed sequentially. The
STL supports the following sequence containers:

e Arrays

e Vectors

e Lists

e forward_list

e deque

As the objects stored in an STL container are nothing but copies of the values, the STL
expects certain basic requirements from the user-defined data types in order to hold those
objects inside a container. Every object stored in an STL container must provide the
following as a minimum requirement:

e A default constructor
e A copy constructor
e An assignment operator

Let's explore the sequence containers one by one in the following subsections.

Array

The STL array container is a fixed-size sequence container, just like a C/C++ built-in array,
except that the STL array is size-aware and a bit smarter than the built-in C/C++ array. Let's
understand an STL array with an example:

#include <iostream>
#include <array>
using namespace std;
int main () {
array<int,5> a = {1, 5, 2, 4, 3 };

cout << "nSize of array is " << a.size() << endl;
auto pos = a.begin();
cout << endl;

while (pos != a.end())
cout << *pos++ << "t";

[13]

Introduction to C++17 Standard Template Library Chapter 1

cout << endl;

return 0;

}

The preceding code can be compiled and the output can be viewed with the following
commands:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Size of array is 5
1 5 2 4 3

Code walkthrough

The following line declares an array of a fixed size (5) and initializes the array with five
elements:

array<int,5> a = {1, 5, 2, 4, 3 };

The size mentioned can't be changed once declared, just like a C/C++ built-in array.

The array: :size () method returns the size of the array, irrespective of how many
integers are initialized in the initializer list. The auto pos = a.begin () method declares
an iterator of array<int, 5> and assigns the starting position of the array.

The array: :end () method points to one position after the last element in the array. The
iterator behaves like or mimics a C++ pointer, and dereferencing the iterator returns the
value pointed by the iterator. The iterator position can be moved forward and backwards
with ++pos and —-pos, respectively.

Commonly used APIs in an array

The following table shows some commonly used array APIs:

API Description

This returns the value stored at the position referred to by the index.
at (int index | The index is a zero-based index. This API will throw

) an std: :out_of_range exception if the index is outside the index
range of the array.

[14]

Introduction to C++17 Standard Template Library Chapter 1

operator | This is an unsafe method, as it won't throw any exception if the index
pere falls outside the valid range of the array. This tends to be slightly faster
int index] . ' ;
than at, as this API doesn't perform bounds checking.
front () This returns the first element in the array.
back () This returns the last element in the array.
begin () This returns the position of the first element in the array
end () This returns one position past the last element in the array
. This returns the reverse beginning position, that is, it returns the
rbegin ()
position of the last element in the array
This returns the reverse end position, that is, it returns one position
rend () . .
before the first element in the array
size () This returns the size of the array

The array container supports random access; hence, given an index, the array container can
fetch a value with a runtime complexity of O(1) or constant time.

The array container elements can be accessed in a reverse fashion using the reverse iterator:

#include <iostream>
#include <array>
using namespace std;

int main

array<int, 6> a;

int size

for

= a.size();
(int index=0; index < size; ++index)

alindex] = (index+1) * 100;

cout << "nPrint values in original order ..." << endl;

auto pos

while
cout << *pos++ << "t";
cout << endl;

= a.begin();
pos != a.end())

cout << "nPrint values in reverse order ..." << endl;

auto rpos

while
cout << *rpos++ << "t";

= a.rbegin();

rpos != a.rend())

[15]

Introduction to C++17 Standard Template Library Chapter 1

cout << endl;

return 0;

}

We will use the following command to get the output:

./a.out

The output is as follows:

Print values in original order
100 200 300 400 500 600

Print values in reverse order
600 500 400 300 200 100

Vector

Vector is a quite useful sequence container, and it works exactly as an array, except that the
vector can grow and shrink at runtime while an array is of a fixed size. However, the data
structure used under the hood in an array and vector is a plain simple built-in C/C++ style
array.

Let's look at the following example to understand vectors better:

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main () {
vector<int> v = { 1, 5, 2, 4, 3 };

cout << "nSize of vector is " << v.size() << endl;
auto pos = v.begin();
cout << "nPrint vector elements before sorting" << endl;
while (pos != v.end())
cout << *pos++ << "t";
cout << endl;

sort (v.begin(), v.end());

pos = v.begin();

[16]

Introduction to C++17 Standard Template Library Chapter 1

cout << "nPrint vector elements after sorting" << endl;

while (pos != v.end())
cout << *pos++ << "t";
cout << endl;

return 0;

}

The preceding code can be compiled and the output can be viewed with the following
commands:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Size of vector is 5

Print vector elements before sorting
1 5 2 4 3

Print vector elements after sorting
1 2 3 4 5

Code walkthrough

The following line declares a vector and initializes the vector with five elements:
vector<int> v = {1, 5, 2, 4, 3 };

However, a vector also allows appending values to the end of the vector by using

the vector: :push_back<data_type>(value) APL The sort () algorithm takes two
random access iterators that represent a range of data that must be sorted. As the vector
internally uses a built-in C/C++ array, just like the STL array container, a vector also
supports random access iterators; hence the sort () function is a highly efficient algorithm
whose runtime complexity is logarithmic, that is, O(N log2 (N)).

[17]

Introduction to C++17 Standard Template Library

Chapter 1

Commonly used vector APls

The following table shows some commonly used vector APIs:

API Description
This returns the value stored at the indexed position. It
at (int index) throws the std: :out_of_range exception if the index
is invalid.
This returns the value stored at the indexed position. It
operator [int index] is faster than at (int index), since no bounds
checking is performed by this function.
front () This returns the first value stored in the vector.
back () This returns the last value stored in the vector.
This returns true if the vector is empty, and false
empty () .
otherwise.
size () This returns the number of values stored in the vector.

reserve (int size)

This reserves the initial size of the vector. When the
vector size has reached its capacity, an attempt to insert
new values requires vector resizing. This makes the
insertion consume O(N) runtime complexity. The
reserve () method is a workaround for the issue
described.

capacity ()

This returns the total capacity of the vector, while the
size is the actual value stored in the vector.

clear ()

This clears all the values.

push_back<data_type> (
value)

This adds a new value at the end of the vector.

It would be really fun and convenient to read and print to/from the vector using
istream_iterator and ostream_iterator. The following code demonstrates the use of

a vector:

#include <iostream>
#include <vector>

#include <algorithm>
#include <iterator>

[18]

Introduction to C++17 Standard Template Library Chapter 1

using namespace std;

int main () {
vector<int> v;

cout << "nType empty string to end the input once you are done feeding
the vector" << endl;
cout << "nEnter some numbers to feed the vector ..." << endl;

istream_iterator<int> start_input (cin);
istream_iterator<int> end_input;

copy (start_input, end_input, back_inserter(v));
cout << "nPrint the vector ..." << endl;
copy (v.begin(), v.end(), ostream_iterator<int>(cout, "t"));

cout << endl;
return 0;

Note that the output of the program is skipped, as the output depends on
the input entered by you. Feel free to try the instructions on the command
line.

Code walkthrough

Basically, the copy algorithm accepts a range of iterators, where the first two arguments
represent the source and the third argument represents the destination, which happens to
be the vector:

istream_iterator<int> start_input (cin);
istream_iterator<int> end_input;

copy (start_input, end_input, back_inserter(v));

The start_input iterator instance defines an istream_iterator iterator that receives
input from istreamand cin, and the end_input iterator instance defines an end-of-file
delimiter, which is an empty string by default (""). Hence, the input can be terminated by
typing "" in the command-line input terminal.

[19]

Introduction to C++17 Standard Template Library Chapter 1

Similarly, let's understand the following code snippet:

cout << "nPrint the vector ..." << endl;
copy (v.begin(), v.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

The copy algorithm is used to copy the values from a vector, one element at a time, to
ostream, separating the output with a tab character (t).

Pitfalls of a vector

Every STL container has its own advantages and disadvantages. There is no single STL
container that works better in all the scenarios. A vector internally uses an array data
structure, and arrays are fixed in size in C/C++. Hence, when you attempt to add new
values to the vector at the time the vector size has already reached its maximum capacity,
then the vector will allocate new consecutive locations that can accommodate the old values
and the new value in a contiguous location. It then starts copying the old values into the
new locations. Once all the data elements are copied, the vector will invalidate the old
location.

Whenever this happens, the vector insertion will take O(N) runtime complexity. As the size
of the vector grows over time, on demand, the O(N) runtime complexity will show up a
pretty bad performance. If you know the maximum size required, you could reserve so
much initial size upfront in order to overcome this issue. However, not in all scenarios do
you need to use a vector. Of course, a vector supports dynamic size and random access,
which has performance benefits in some scenarios, but it is possible that the feature you are
working on may not really need random access, in which case a list, deque, or some other
container may work better for you.

List

The list STL container makes use of a doubly linked list data structure internally. Hence, a
list supports only sequential access, and searching a random value in a list in the worst case
may take O(N) runtime complexity. However, if you know for sure that you only need
sequential access, the list does offer its own benefits. The list STL container lets you insert
data elements at the end, in the front, or in the middle with a constant time complexity, that
is, O(1) runtime complexity in the best, average, and worst case scenarios.

[20]

Introduction to C++17 Standard Template Library Chapter 1

The following image demonstrates the internal data structure used by the list STL:

rend() rbegin()

|

10 20 30

1 ¥ |

begin() end()

Let's write a simple program to get first-hand experience of using the list STL:

#include <iostream>
#include <list>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {
list<int> 1;

for (int count=0; count<5; ++count)
1.push_back ((count+1) * 100);

auto pos = l.begin();
cout << "nPrint the 1list ..." << endl;
while (pos != l.end())

cout << *postt+t << "--—>";

cout << " X" << endl;

return 0;

}

I'm sure that by now you have got a taste of the C++ STL, its elegance, and its power. Isn't it
cool to observe that the syntax remains the same for all the STL containers? You may have
observed that the syntax remains the same no matter whether you are using an array, a
vector, or a list. Trust me, you will get the same impression when you explore the other STL
containers as well.

[21]

Introduction to C++17 Standard Template Library Chapter 1

Having said that, the previous code is self-explanatory, as we did pretty much the same
with the other containers.

Let's try to sort the list, as shown in the following code:

#include <iostream>
#include <list>

#include <iterator>
#include <algorithm>
using namespace std;

int main () {

list<int> 1 = { 100, 20, 80, 50, 60, 5 };

auto pos = l.begin();
cout << "nPrint the list before sorting ..." << endl;
copy (l.begin(), l.end(), ostream_iterator<int>(cout, "-->"));

cout << "X" << endl;
l.sort ();

cout << "nPrint the 1list after sorting ..." << endl;
copy (l.begin(), l.end(), ostream_iterator<int>(cout, "-->"));
cout << "X" << endl;

return 0;

}

Did you notice the sort () method? Yes, the list container has its own sorting algorithms.
The reason for a list container to support its own version of a sorting algorithm is that the
generic sort () algorithm expects a random access iterator, whereas a list container doesn't
support random access. In such cases, the respective container will offer its own efficient
algorithms to overcome the shortcoming.

Interestingly, the runtime complexity of the sort algorithm supported by a list is O (N
log2 N).

[22]

Introduction to C++17 Standard Template Library

Chapter 1

Commonly used APIs in a list
The following table shows the most commonly used APIs of an STL list:

API Description

front () This returns the first value stored in the list

back () This returns the last value stored in the list

size () This returns the count of values stored in the list

empty () This returns t rue when the list is empty, and
Pty false otherwise

clear () This clears all the values stored in the list

push_back<data_type> (value

)

This adds a value at the end of the list

push_front<data_type>(value

)

This adds a value at the front of the list

This merges two sorted lists with values of the

merge (list) same type

reverse () This reverses the list

unique () This removes duplicate values from the list
sort () This sorts the values stored in a list

Forward list

The STL's forward_list container is built on top of a singly linked list data structure;
hence, it only supports navigation in the forward direction. As forward_list consumes
one less pointer for every node in terms of memory and runtime, it is considered more
efficient compared with the list container. However, as price for the extra edge of
performance advantage, forward_list had to give up some functionalities.

[23]

Introduction to C++17 Standard Template Library Chapter 1
e following diagram shows the internal data-structure used in forward_list:
The foll g diag h the int 1 data-structu din £ d_list
N 10 20 30
begin() end()
Let's explore the following sample code:
#include <iostream>
#include <forward_list>
#include <iterator>
#include <algorithm>
using namespace std;
int main () |
forward_list<int> 1 = { 10, 10, 20, 30, 45, 45, 50 };
cout << "nlist with all values ..." << endl;
copy (l.begin(), l.end(), ostream_iterator<int>(cout, "t"));
cout << "nSize of list with duplicates is " << distance(l.begin(),
l.end()) << endl;
l.unique();
cout << "nSize of list without duplicates is " << distance(l.begin(),
l.end()) << endl;
l.resize(distance(l.begin(), l.end()));
cout << "nlist after removing duplicates ..." << endl;
copy (l.begin(), l.end(), ostream_iterator<int>(cout, "t"));

cout << endl;

return 0;

[24]

Introduction to C++17 Standard Template Library Chapter 1

The output can be viewed with the following command:
./a.out

The output will be as follows:

list with all values ...
10 10 20 30 45 45 50
Size of list with duplicates is 7

Size of list without duplicates is 5

list after removing duplicates ...
10 20 30 45 50

Code walkthrough

The following code declares and initializes the forward_list container with some unique
values and some duplicate values:

forward_list<int> 1 = { 10, 10, 20, 30, 45, 45, 50 };

As the forward_list container doesn't support the size () function, we used
the distance () function to find the size of the list:

cout << "nSize of list with duplicates is " << distance(l.begin(), 1l.end()
) << endl;

The following forward_list<int>::unique () function removes the duplicate integers
and retains only the unique values:

l.unique();

Commonly used APIs in a forward_list container

The following table shows the commonly used forward_list APIs:

API Description

This returns the first value stored in the

front () .
forward_list container

This returns true when the forward_1ist container

empty () . :
PEY is empty and false, otherwise

[25]

Introduction to C++17 Standard Template

Library Chapter 1

clear ()

This clears all the values stored in forward_1list

push_front<data_type> (
value)

This adds a value to the front of forward_1list

merge (list)

This merges two sorted forward_list containers
with values of the same type

reverse ()

This reverses the forward_1ist container

unique ()

This removes duplicate values from the
forward_list container

sort ()

This sorts the values stored in forward_list

Let's explore one more example to get a firm understanding of the forward_list

container:

#include
#include
#include
#include

<iostream>
<forward_list>
<iterator>
<algorithm>

using namespace std;

int main

0O A

forward_list<int> listl = { 10, 20, 10, 45, 45, 50, 25 };
forward_list<int> list2 = { 20, 35, 27, 15, 100, 85, 12, 15 };

cout << "nFirst list before sorting ..." << endl;

copy (listl.begin(), listl.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

cout << "nSecond list before sorting ..." << endl;

copy (list2.begin(), list2.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

listl.sort ();

list2.sort ();

cout << "nFirst list after sorting ..." << endl;

copy (listl.begin(), listl.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

cout << "nSecond list after sorting ..." << endl;

copy (list2.begin(), list2.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

[26]

Introduction to C++17 Standard Template Library Chapter 1
listl.merge (list2);
cout << "nMerged list ..." << endl;
copy (listl.begin(), listl.end(), ostream_iterator<int>(cout, "t"));
cout << "nMerged list after removing duplicates ..." << endl;
listl.unique();
copy (listl.begin(), listl.end(), ostream_iterator<int>(cout, "t"));

return 0;

}

The preceding code snippet is an interesting example that demonstrates the practical use of

the sort (), merge (), and unique () STL algorithms.

The output can be viewed with the following command:

./a.out

The output of the program is as follows:

First list before sorting .

10 20 10 45 45 50 25
Second list before sorting ...

20 35 27 15 100 85 12 15

First list after sorting

10 10 20 25 45 45 50
Second list after sorting .

12 15 15 20 27 35 85 100

Merged list

10 10 12 15 15 20 20 25 27 35
Merged list after removing duplicates

10 12 15 20 25 27 35 45 50 85

The output and the program are pretty self-explanatory.

45 45 50 85 100

100

[27]

Introduction to C++17 Standard Template Library Chapter 1

Deque

The deque container is a double-ended queue and the data structure used could be a
dynamic array or a vector. In a deque, it is possible to insert an element both at the front
and back, with a constant time complexity of O(1), unlike vectors, in which the time
complexity of inserting an element at the back is O(1) while that for inserting an element at
the front is O(N). The deque doesn't suffer from the problem of reallocation, which is
suffered by a vector. However, all the benefits of a vector are there with deque, except that
deque is slightly better in terms of performance as compared to a vector as there are several
rows of dynamic arrays or vectors in each row.

The following diagram shows the internal data structure used in a deque container:

begin()

10 20 30 || 40 50 || 60 || 70 80

of L1

end()

Let's write a simple program to try out the deque container:

#include <iostream>
#include <deque>

#include <algorithm>
#include <iterator>
using namespace std;

int main () |
deque<int> d = { 10, 20, 30, 40, 50 };

cout << "nInitial size of deque is " << d.size () << endl;

d.push_back(60)
d.push_front (5)

’
’

cout << "nSize of deque after push back and front is " << d.size() <<

[28]

Introduction to C++17 Standard Template Library Chapter 1

endl;

copy (d.begin(), d.end(), ostream_iterator<int>(cout, "t"));

d.clear();

cout << "nSize of deque after clearing all values is " << d.size() <<
endl;

cout << "nIs the deque empty after clearing values ? " << (d.empty ()
? "true" : "false") << endl;

return 0;

}

The output can be viewed with the following command:
./a.out

The output of the program is as follows:
Intitial size of deque is 5
Size of deque after push back and front is 7
Print the deque
5 10 20 30 40 50 60

Size of deque after clearing all values is 0

Is the deque empty after clearing values ? true

Commonly used APIs in a deque
The following table shows the commonly used deque APIs:

API Description

This returns the value stored at the indexed position. It
at (int index) throws the std: :out_of_range exception if the
index is invalid.

This returns the value stored at the indexed position. It
operator [int index] is faster than at (int index) since no bounds
checking is performed by this function.

front () This returns the first value stored in the deque.

back () This returns the last value stored in the deque.

[29]

Introduction to C++17 Standard Template Library Chapter 1

This returns t rue if the deque is empty and false,

empty () .
otherwise.

size () This returns the number of values stored in the deque.
This returns the total capacity of the deque, while

capacity () size () returns the actual number of values stored in
the deque.

clear () This clears all the values.

h_back<data_t > .
push_backedata_type> | This adds a new value at the end of the deque.
value)

Associative containers

Associative containers store data in a sorted fashion, unlike the sequence containers. Hence,
the order in which the data is inserted will not be retained by the associative containers.
Associative containers are highly efficient in searching a value with O(log n) runtime
complexity. Every time a new value gets added to the container, the container will reorder
the values stored internally if required.

The STL supports the following types of associative containers:

e Set

e Map
Multiset
Multimap

Unordered set
Unordered multiset

Unordered map

Unordered multimap

Associative containers organize the data as key-value pairs. The data will be sorted based
on the key for random and faster access. Associative containers come in two flavors:

e Ordered
e Unordered

[30]

Introduction to C++17 Standard Template Library Chapter 1

The following associative containers come under ordered containers, as they are
ordered/sorted in a particular fashion. Ordered associative containers generally use some
form of Binary Search Tree (BST); usually, a red-black tree is used to store the data:

e Set

e Map
Multiset
Multimap

The following associative containers come under unordered containers, as they are not
ordered in any particular fashion and they use hash tables:

Unordered Set
Unordered Map
Unordered Multiset
Unordered Multimap

Let's understand the previously mentioned containers with examples in the following
subsections.

Set

A set container stores only unique values in a sorted fashion. A set organizes the values
using the value as a key. The set container is immutable, that is, the values stored in a set
can't be modified; however, the values can be deleted. A set generally uses a red-black tree
data structure, which is a form of balanced BST. The time complexity of set operations are
guaranteed to be O (log N).

Let's write a simple program using a set:

#include <iostream>
#include <set>
#include <vector>
#include <iterator>
#include <algorithm>
using namespace std;

int main() {
set<int> s1 = { 1, 3, 5, 7, 9 };
set<int> s2 = { 2, 3, 7, 8, 10 };
vector<int> v(sl.size() + s2.size());

[31]

Introduction to C++17 Standard Template Library Chapter 1

cout << "nFirst set values are ..." << endl;

copy (sl.begin(), sl.end(), ostream_iterator<int> (cout, "t"));

cout << endl;

cout << "nSecond set values are ..." << endl;

copy (s2.begin(), s2.end(), ostream_iterator<int> (cout, "t"));

cout << endl;

auto pos = set_difference (sl.begin(), sl.end(), s2.begin(), s2.end(),
v.begin());

v.resize (pos - v.begin());

cout << "nValues present in set one but not in set two are oL
endl;

copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));

cout << endl;

v.clear ();

v.resize (sl.size() + s2.size());

pos = set_union (sl.begin(), sl.end(), s2.begin(), s2.end(), v.begin()
)i

v.resize (pos - v.begin());

cout << "nMerged set values in vector are ..." << endl;

copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));

cout << endl;

return 0;

}
The output can be viewed with the following command:

./a.out

The output of the program is as follows:

First set values are
1 3 5 7 9

Second set values are
2 3 7 8 10

Values present in set one but not in set two are
1 5 9

[32]

Introduction to C++17 Standard Template Library Chapter 1

Merged values of first and second set are
1 2 3 5 7 8 9 10

Code walkthrough

The following code declares and initializes two sets, s1 and s2:

set<int> sl = { 1, 3, 5, 7, 9 };
set<int> s2 = { 2, 3, 7, 8, 10 };

The following line will ensure that the vector has enough room to store the values in the
resultant vector:

vector<int> v (sl.size() + s2.size());

The following code will print the values in s1 and s2:

cout << "nFirst set values are ..." << endl;
copy (sl.begin(), sl.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

cout << "nSecond set values are ..." << endl;
copy (s2.begin(), s2.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

The set_difference () algorithm will populate the vector v with values only present in
set s1 but not in s2. The iterator, pos, will point to the last element in the vector; hence, the
vector resize will ensure that the extra spaces in the vector are removed:

auto pos = set_difference (sl.begin(), sl.end(), s2.begin(), s2.end(),
v.begin());
v.resize (pos - v.begin());

The following code will print the values populated in the vector v:

cout << "nValues present in set one but not in set two are ..." << endl;
copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

The set_union () algorithm will merge the contents of sets s1 and s2 into the vector, and
the vector is then resized to fit only the merged values:

pos = set_union (sl.begin(), sl.end(), s2.begin(), s2.end(), v.begin());
v.resize (pos - v.begin());

[33]

Introduction to C++17 Standard Template Library Chapter 1

The following code will print the merged values populated in the vector v:
cout << "nMerged values of first and second set are ..." << endl;

copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

Commonly used APIs in a set

The following table describes the commonly used set APIs:

API Description

insert (value) | This inserts a value into the set

clear () This clears all the values in the set

size () This returns the total number of entries present in the set

empty () This will print t rue if the set is empty, and returns false otherwise

find () Thi§ finds the element with the specified key and returns the iterator
position

equal_range () This returns the range of elements matching a specific key

lower_bound () This returns an iterator to the first element not less than the given key

upper_bound () This returns an iterator to the first element greater than the given key

Map

A map stores the values organized by keys. Unlike a set, a map has a dedicated key per
value. Maps generally use a red-black tree as an internal data structure, which is a balanced
BST that guarantees O(log N) runtime efficiency for searching or locating a value in the
map. The values stored in a map are sorted based on the key, using a red-black tree. The
keys used in a map must be unique. A map will not retain the sequences of the input as it
reorganizes the values based on the key, that is, the red-black tree will be rotated to balance
the red-black tree height.

Let's write a simple program to understand map usage:

#include <iostream>
#include <map>

#include <iterator>
#include <algorithm>

[34]

Introduction to C++17 Standard Template Library

Chapter 1

using namespace std;
int main () A

map<string, long> contacts;

contacts["Jegan"] = 123456789;
contacts["Meena"] = 523456289;
contacts["Nitesh"] = 623856729;
contacts["Sriram"] = 993456789;

auto pos = contacts.find("Sriram");
if (pos != contacts.end())

cout << pos—->second << endl;

return 0;

}

Let's compile and check the output of the program:

g++ main.cpp -std=c++17
./a.out

The output is as follows:

Mobile number of Sriram is 8901122334

Code walkthrough

The following line declares a map with a st ring name as the key and a 1ong mobile

number as the value stored in the map:

map< string, long > contacts;

The following code snippet adds four contacts organized by name as the key:

contacts["Jegan"] 1234567890;
contacts["Meena"] = 5784433221,
contacts["Nitesh"] = 4567891234;
contacts["Sriram"] = 8901122334;

The following line will try to locate the contact with the name, Sriram, in the contacts map;
if Sriramis found, then the find () function will return the iterator pointing to the location

of the key-value pair; otherwise it returns the contacts.end () position:

auto pos = contacts.find("Sriram");

[35]

Introduction to C++17 Standard Template Library Chapter 1

The following code verifies whether the iterator, pos, has reached contacts.end () and
prints the contact number. Since the map is an associative container, it stores a key=>value
pair; hence, pos->first indicates the key and pos->second indicates the value:

if (pos != contacts.end())
cout << "nMobile number of " << pos—>first << " is " << pos->second

<< endl;
else

cout << "nContact not found." << endl;

Commonly used APIs in a map

The following table shows the commonly used map APlIs:

API

Description

at (key)

This returns the value for the corresponding key if the key is found;
otherwise it throws the std: : out_of_range exception

operator[key

]

This updates an existing value for the corresponding key if the key is
found; otherwise it will add a new entry with the respective
key=>value supplied

empty () This returns t rue if the map is empty, and false otherwise
size () This returns the count of the key=>value pairs stored in the map
clear() This clears the entries stored in the map

count () This returns the number of elements matching the given key
find () This finds the element with the specified key

Multiset

A multiset container works in a manner similar to a set container, except for the fact that a
set allows only unique values to be stored whereas a multiset lets you store duplicate
values. As you know, in the case of set and multiset containers, the values themselves are
used as keys to organize the data. A multiset container is just like a set; it doesn't allow
modifying the values stored in the multiset.

[36]

Introduction to C++17 Standard Template Library Chapter 1

Let's write a simple program using a multiset:

#include <iostream>
#include <set>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {
multiset<int> s = { 10, 30, 10, 50, 70, 90 };

cout << "nMultiset values are ..." << endl;

copy (s.begin(), s.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

return 0;

}
The output can be viewed with the following command:

./a.out

The output of the program is as follows:

Multiset wvalues are
10 30 10 50 70 90

Interestingly, in the preceding output, you can see that the multiset holds duplicate values.

Multimap

A multimap works exactly as a map, except that a multimap container will allow multiple
values to be stored with the same key.

Let's explore the multimap container with a simple example:

#include <iostream>
#include <map>
#include <vector>
#include <iterator>
#include <algorithm>
using namespace std;

int main() {
multimap< string, long > contacts = {

[37]

Introduction to C++17 Standard Template Library Chapter 1

"Jegan", 2232342343 },
"Meena", 3243435343 1},
"Nitesh", 6234324343 },
"Sriram", 8932443241 },
"Nitesh", 5534327346 }

P T

}i

auto pos = contacts.find ("Nitesh");
int count = contacts.count ("Nitesh");
int index = 0;

while (pos != contacts.end()) {
cout << "\nMobile number of " << pos->first << " is " <<
pos—>second << endl;
++index;
++pos;
if (index == count)
break;

return 0;

}

The program can be compiled and the output can be viewed with the following commands:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Mobile number of Nitesh is 6234324343
Mobile number of Nitesh is 5534327346

Unordered sets

An unordered set works in a manner similar to a set, except that the internal behavior of
these containers differs. A set makes use of red-black trees while an unordered set makes
use of hash tables. The time complexity of set operations is O(log N) while the time
complexity of unordered set operations is O(1); hence, the unordered set tends to be faster
than the set.

The values stored in an unordered set are not organized in any particular fashion, unlike in
a set, which stores values in a sorted fashion. If performance is the criteria, then an
unordered set is a good bet; however, if iterating the values in a sorted fashion is a
requirement, then set is a good choice.

[38]

Introduction to C++17 Standard Template Library Chapter 1

Unordered maps

An unordered map works in a manner similar to a map, except that the internal behavior of
these containers differs. A map makes use of red-black trees while unordered map makes
use of hash tables. The time complexity of map operations is O(log N) while that of
unordered map operations is O(1); hence, an unordered map tends to be faster than a map.

The values stored in an unordered map are not organized in any particular fashion, unlike
in a map where values are sorted by keys.

Unordered multisets

An unordered multiset works in a manner similar to a multiset, except that the internal
behavior of these containers differs. A multiset makes use of red-black trees while an
unordered multiset makes use of hash tables. The time complexity of multiset operations
is O(log N) while that of unordered multiset operations is O(1). Hence, an unordered
multiset tends to be faster than a multiset.

The values stored in an unordered multiset are not organized in any particular fashion,
unlike in a multiset where values are stored in a sorted fashion. If performance is the
criteria, unordered multisets are a good bet; however, if iterating the values in a sorted
fashion is a requirement, then multiset is a good choice.

Unordered multimaps

An unordered multimap works in a manner similar to a multimap, except that the internal
behavior of these containers differs. A multimap makes use of red-black trees while an
unordered multimap makes use of hash tables. The time complexity of multimap operations
is O(log N) while that of unordered multimap operations is O(1); hence, an unordered
multimap tends to be faster than a multimap.

The values stored in an unordered multimap are not organized in any particular fashion,
unlike in multimaps where values are sorted by keys. If performance is the criteria, then an
unordered multimap is a good bet; however, if iterating the values in a sorted fashion is a
requirement, then multimap is a good choice.

[39]

Introduction to C++17 Standard Template Library Chapter 1

Container adapters

Container adapters adapt existing containers to provide new containers. In simple terms,
STL extension is done with composition instead of inheritance.

STL containers can't be extended by inheritance, as their constructors aren't virtual.
Throughout the STL, you can observe that while static polymorphism is used both in terms
of operator overloading and templates, dynamic polymorphism is consciously avoided for
performance reasons. Hence, extending the STL by subclassing the existing containers isn't
a good idea, as it would lead to memory leaks because container classes aren't designed to
behave like base classes.

The STL supports the following container adapters:

e Stack
e Queue
e Priority Queue

Let's explore the container adapters in the following subsections.

Stack

Stack is not a new container; it is a template adapter class. The adapter containers wrap an
existing container and provide high-level functionalities. The stack adapter container offers
stack operations while hiding the unnecessary functionalities that are irrelevant for a stack.
The STL stack makes use of a deque container by default; however, we can instruct the
stack to use any existing container that meets the requirement of the stack during the stack
instantiation.

Deques, lists, and vectors meet the requirements of a stack adapter.

A stack operates on the Last In First Out (LIFO) philosophy.

[40]

Introduction to C++17 Standard Template Library Chapter 1

Commonly used APIs in a stack

The following table shows commonly used stack APIs:

API

Description

top ()

This returns the top-most value in the stack, that is, the
value that was added last

)

push<data_type>(value

This will push the value provided to the top of the stack

pop () This will remove the top-most value from the stack
size () This returns the number of values present in the stack

This returns t rue if the stack is empty; otherwise it
empty ()

returns false

It's time to get our hands dirty; let's write a simple program to use a stack:

#include <iostream>

#include <stack>

#include <iterator>

#include <algorithm>
using namespace std;

int main () |

stack<string> spoken_languages;

spoken_languages.push ("French");
spoken_languages.push ("German");
spoken_languages.push ("English");
spoken_languages.push ("Hindi");
spoken_languages.push ("Sanskrit");
spoken_languages.push ("Tamil");
cout << "nValues in Stack are ..." << endl;
while (! spoken_languages.empty ()) {

cout << spoken_languages.top() << endl;

spoken_languages.pop () ;

}

cout << endl;

return 0;

[41]

Introduction to C++17 Standard Template Library Chapter 1

}

The program can be compiled and the output can be viewed with the following command:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Values in Stack are ...
Tamil

Kannada

Telugu

Sanskrit

Hindi

English

German

French

From the preceding output, we can see the LIFO behavior of stack.

Queue

A queue works based on the First In First Out (FIFO) principle. A queue is not a new
container; it is a templatized adapter class that wraps an existing container and provides the
high-level functionalities that are required for queue operations, while hiding the
unnecessary functionalities that are irrelevant for a queue. The STL queue makes use of a
deque container by default; however, we can instruct the queue to use any existing
container that meets the requirement of the queue during the queue instantiation.

In a queue, new values can be added at the back and removed from the front. Deques, lists,
and vectors meet the requirements of a queue adapter.

Commonly used APIs in a queue

The following table shows the commonly used queue APIs:

API Description
push () |This appends a new value at the back of the queue
pop () This removes the value at the front of the queue

[42]

Introduction to C++17 Standard Template Library Chapter 1

front () | This returns the value in the front of the queue

back () [This returns the value at the back of the queue

empty () | This returns t rue when the queue is empty; otherwise it returns false

size () [This returns the number of values stored in the queue

Let's use a queue in the following program:

#include <iostream>
#include <queue>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {
queue<int> qg;

g.push (100);
g.push (200);
g.push (300);

cout << "nValues in Queue are ..." << endl;
while (! g.empty ()) A

cout << g.front () << endl;

g.pop();

}

return 0;

}
The program can be compiled and the output can be viewed with the following commands:
g++ main.cpp —-std=c++17

./a.out

The output of the program is as follows:

Values in Queue are ...
100
200
300

From the preceding output, you can observe that the values were popped out in the same
sequence that they were pushed in, that is, FIFO.

[43]

Introduction to C++17 Standard Template Library Chapter 1

Priority queue

A priority queue is not a new container; it is a templatized adapter class that wraps an
existing container and provides high-level functionalities that are required for priority
queue operations, while hiding the unnecessary functionalities that are irrelevant for a
priority queue. A priority queue makes use of a vector container by default; however, a
deque container also meets the requirement of the priority queue. Hence, during the
priority queue instantiation, you could instruct the priority queue to make use of a deque as
well.

A priority queue organizes the data in such a way that the highest priority value appears
first; in other words, the values are sorted in a descending order.

The deque and vector meet the requirements of a priority queue adaptor.

Commonly used APIs in a priority queue

The following table shows commonly used priority queue APIs:

API Description
push () |This appends a new value at the back of the priority queue
pop () This removes the value at the front of the priority queue

empty () | This returns t rue when the priority queue is empty; otherwise it returns false

size () [This returns the number of values stored in the priority queue

top () This returns the value in the front of the priority queue

Let's write a simple program to understand priority_queue:

#include <iostream>
#include <queue>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {
priority_queue<int> g;

g.push(100);
g.push(50);
g.push(1000);

[44]

Introduction to C++17 Standard Template Library Chapter 1

g.push(800);
g.push(300);

cout << "nSequence in which value are inserted are ..." << endl;
cout << "100t50t1000t800t300" << endl;
cout << "Priority queue values are ..." << endl;
while (! g.empty()) A
cout << qg.top() << "t";
q.pop () ;

}

cout << endl;

return 0;

}
The program can be compiled and the output can be viewed with the following command:
g++ main.cpp —-std=c++17

./a.out

The output of the program is as follows:

Sequence in which value are inserted are ...
100 50 1000 800 300

Priority queue values are ...
1000 800 300 100 50

From the preceding output, you can observe that priority_queue is a special type of
queue that reorders the inputs in such a way that the highest value appears first.

Summary

In this chapter you learned about ready-made generic containers, functors, iterators, and
algorithms. You also learned set, map, multiset, and multimap associative containers, their
internal data structures, and common algorithms that can be applied on them. Further you
learned how to use the various containers with practical hands-on code samples.

In the next chapter, you will learn template programming, which helps you master the
essentials of templates.

[45]

Template Programming

In this chapter, we will cover the following topics:

¢ Generic programming
¢ Function templates

Class templates

Overloading function templates
Generic classes

Explicit class specializations

Partial specializations

Let's now start learning generic programming.

Generic programming

Generic programming is a style of programming that helps you develop reusable code or
generic algorithms that can be applied to a wide variety of data types. Whenever a generic
algorithm is invoked, the data types will be supplied as parameters with a special syntax.

Let's say we would like to write a sort () function, which takes an array of inputs that
needs to be sorted in an ascending order. Secondly, we need the sort () function to sort
int, double, char, and string data types. There are a couple of ways this can be solved:

e We could write four different sort () functions for each data type

e We could also write a single macro function

Template Programming Chapter 2

Well, both approaches have their own merits and demerits. The advantage of the first
approach is that, since there are dedicated functions for the int, double, char, and string
data types, the compiler will be able to perform type checking if an incorrect data type is
supplied. The disadvantage of the first approach is that we have to write four different
functions even though the logic remains the same across all the functions. If a bug is
identified in the algorithm, it must be fixed separately in all four functions; hence, heavy
maintenance efforts are required. If we need to support another data type, we will end up
writing one more function, and this will keep growing as we need to support more data

types.

The advantage of the second approach is that we could just write one macro for all the data
types. However, one very discouraging disadvantage is that the compiler will not be able to
perform type checking, and this approach is more prone to errors and may invite many
unexpected troubles. This approach is dead against object-oriented coding principles.

C++ supports generic programming with templates, which has the following benefits:

e We just need to write one function using templates

Templates support static polymorphism

Templates offer all the advantages of the two aforementioned approaches,
without any disadvantages

¢ Generic programming enables code reuse

The resultant code is object-oriented

The C++ compiler can perform type checking during compile time

Easy to maintain
e Supports a wide variety of built-in and user-defined data types

However, the disadvantages are as follows:

¢ Not all C++ programmers feel comfortable writing template-based coding, but
this is only an initial hiccup

e In certain scenarios, templates could bloat your code and increase the binary
footprint, leading to performance issues

[47]

Template Programming Chapter 2

Function templates

A function template lets you parameterize a data type. The reason this is referred to as
generic programming is that a single template function will support many built-in and user-
defined data types. A templatized function works like a C-style macro, except for the fact
that the C++ compiler will type check the function when we supply an incompatible data
type at the time of invoking the template function.

It will be easier to understand the template concept with a simple example, as follows:
#include <iostream>
#include <algorithm>
#include <iterator>

using namespace std;

template <typename T, int size>

void sort (T input[]) {
for (int 1i=0; i<size; ++1i) {
for (int j=0; Jj<size; ++j) {
if (input[i] < input[j])
swap (inputf[i], input[3j]);
;
;
}
int main () {
int a(10] = { 100, 10, 40, 20, 60, 80, 5, 50, 30, 25 };
cout << "nValues in the int array before sorting ..." << endl;
copy (a, a+l1l0, ostream_iterator<int>(cout, "t"));

cout << endl;
::sort<int, 10>(a);

cout << "nValues in the int array after sorting ..." << endl;
copy (a, a+l1l0, ostream_iterator<int>(cout, "t"));
cout << endl;

double b[5] = { 85.6d, 76.13d, 0.012d, 1.57d, 2.56d };

cout << "nValues in the double array before sorting ..." << endl;
copy (b, b+5, ostream_iterator<double>(cout, "t"));
cout << endl;

::sort<double, 5>(b);

[48]

Template Programming Chapter 2

cout << "nValues in the double array after sorting ..." << endl;
copy (b, b+5, ostream_iterator<double>(cout, "t"));
cout << endl;

string names[6] = {
"Rishi Kumar Sahay",
"Arun KR",
"Arun CR",
"Ninad",
"Pankaj",
"Nikita"
}i

cout << "nNames before sorting ..." << endl;
copy (names, names+6, ostream_iterator<string>(cout, "n"));
cout << endl;

::sort<string, 6>(names);

cout << "nNames after sorting ..." << endl;
copy (names, names+6, ostream_iterator<string>(cout, "n"));
cout << endl;

return 0;

}

Run the following commands:

g++ main.cpp -std=c++17
./a.out

The output of the preceding program is as follows:

Values in the int array before sorting
100 10 40 20 60 80 5 50 30 25

Values in the int array after sorting
5 10 20 25 30 40 50 60 80 100

Values in the double array before sorting
85.6d 76.13d 0.012d 1.57d 2.56d

Values in the double array after sorting
0.012 1.57 2.56 76.13 85.6

Names before sorting
Rishi Kumar Sahay
Arun KR

[49]

Template Programming Chapter 2

Arun CR
Ninad
Pankaj
Nikita

Names after sorting ...
Arun CR

Arun KR

Nikita

Ninad

Pankaj

Rich Kumar Sahay

Isn't it really interesting to see just one template function doing all the magic? Yes, that's
how cool C++ templates are!

Are you curious to see the assembly output of a template instantiation?
Use the command, g++ -S main.cpp.

Code walkthrough

The following code defines a function template. The keyword, template <typename T,
int size>, tells the compiler that what follows is a function template:

template <typename T, int size>
void sort (T input[]) {

for (int i=0; i<size; ++i) |
for (int j=0; Jj<size; ++j) {
if (input[i] < input[j])
swap (input[i], inputlj]);

}

The line, void sort (T input[]), defines a function named sort, which returns void
and receives an input array of type T. The T type doesn't indicate any specific data type. T
will be deduced at the time of instantiating the function template during compile time.

[50]

Template Programming Chapter 2

The following code populates an integer array with some unsorted values and prints the
same to the terminal:

int af(10] = { 100, 10, 40, 20, 60, 80, 5, 50, 30, 25 };

cout << "nValues in the int array before sorting ..." << endl;
copy (a, a+l1l0, ostream_iterator<int>(cout, "t"));

cout << endl;

The following line will instantiate an instance of a function template for the int data type.
At this point, typename T is substituted and a specialized function is created for the int
data type. The scope-resolution operator in front of sort, thatis, : : sort (), ensures that it
invokes our custom function, sort (), defined in the global namespace; otherwise, the C++
compiler will attempt to invoke the sort () algorithm defined in the std namespace, or
from any other namespace if such a function exists. The <int, 10> variable tells the
compiler to create an instance of a function, substituting t ypename T with int, and 10
indicates the size of the array used in the template function:

::sort<int, 10>(a);

The following lines will instantiate two additional instances that support a double array of
5 elements and a string array of 6 elements respectively:

::sort<double, 5>(b);
::sort<string, 6>(names);

If you are curious to know some more details about how the C++ compiler instantiates the
function templates to support int, double, and string, you could try the Unix

utilities, nm and c++£ilt. The nm Unix utility will list the symbols in the symbol table, as
follows:

nm ./a.out | grep sort

00000000000017f1 W _Z4sortIdLiSEEVPT_

0000000000001651 W _Z4sortIiLil0EEVPT_

000000000000199 W
_Z4sortINSt7__cxxl1lll2basic_stringIcStllchar_traitsIcESaIcEEELi6EEVPT_

As you can see, there are three different overloaded sort functions in the binary; however,
we have defined only one template function. As the C++ compiler has mangled names to
deal with function overloading, it is difficult for us to interpret which function among the
three functions is meant for the int, double, and string data types.

[51]

Template Programming Chapter 2

However, there is a clue: the first function is meant for double, the second is meant for int,
and the third is meant for string. The name-mangled function has _Z4sort IdLi5EEVPT_
for double, _Z4sortIiLilOEEvVPT_ for int,
and__Z4sortINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEELi6EEVP
T_ for string. There is another cool Unix utility to help you interpret the function
signatures without much struggle. Check the following output of the c++£ilt utility:

c++£filt _Z4sortIdLi5EEVPT_
void sort<double, 5> (doublet*)

c++filt _Z4sortIiLilOEEvVPT_
void sort<int, 10> (int¥*)

c++£filt

_Z4sortINSt7__cxxlll2basic_stringIcStllchar_ traitsIcESaIcEEELi6EEvVPT_
void sort<std::_ cxxll::basic_string<char, std::char_traits<char>,
std: :allocator<char> >, 6>(std::__cxxll::basic_string<char,

std: :char_traits<char>, std::allocator<char> >¥%)

Hopefully, you will find these utilities useful while working with C++ templates. I'm sure
these tools and techniques will help you to debug any C++ application.

Overloading function templates

Overloading function templates works exactly like regular function overloading in C++.
However, I'll help you recollect the C++ function overloading basics.

The function overloading rules and expectations from the C++ compiler are as follows:

e The overloaded function names will be the same.

e The C++ compiler will not be able to differentiate between overloaded functions
that differ only by a return value.

e The number of overloaded function arguments, the data types of those
arguments, or their sequence should be different. Apart from the other rules, at
least one of these rules described in the current bullet point should be satisfied,
but more compliance wouldn't hurt, though.

¢ The overloaded functions must be in the same namespace or within the same
class scope.

[52]

Template Programming Chapter 2

If any of these aforementioned rules aren't met, the C++ compiler will not treat them as
overloaded functions. If there is any ambiguity in differentiating between the overloaded
functions, the C++ compiler will report it promptly as a compilation error.

It is time to explore this with an example, as shown in the following program:
#include <iostream>

#include <array>
using namespace std;

void sort (array<int, 6> data) {
cout << "Non-template sort function invoked ..." << endl;
int size = data.size();
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3j) {
if (datal[i] < datalj]l)
swap (datali], datalj]);
}
}
}
template <typename T, int size>
void sort (array<T, size> data) {
cout << "Template sort function invoked with one argument..." << endl;
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) {
if (datal[i] < datal3j]l)
swap (datali], datalj]);
}
}
}
template <typename T>
void sort (T datal[], int size) {
cout << "Template sort function invoked with two arguments..." <<
endl;
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) {
if (datal[i] < datal3j]l)
swap (datali], datalj]);

[53]

Template Programming Chapter 2

int main () {
//Will invoke the non-template sort function
array<int, 6> a = { 10, 50, 40, 30, 60, 20 };
r:sort (a);
//Will invoke the template function that takes a single argument
array<float,6> b = { 10.6£f, 57.9f, 80.7f, 35.1f, 69.3f, 20.0f };
::sort<float,6>(b);
//Will invoke the template function that takes a single argument
array<double, 6> ¢ = { 10.6d, 57.9d, 80.7d, 35.1d, 69.3d, 20.0d };
::sort<double, 6> (c);
//Will invoke the template function that takes two arguments
double d[] = { 10.5d, 12.1d, 5.56d, 1.31d, 81.5d, 12.86ed };
::sort<double> (d, 6);

return 0;

}

Run the following commands:

g++ main.cpp -std=c++17
./a.out

The output of the preceding program is as follows:

Non-template sort function invoked
Template sort function invoked with one argument...
Template sort function invoked with one argument...

Template sort function invoked with two arguments...

[54]

Template Programming Chapter 2

Code walkthrough

The following code is a non-template version of our custom sort () function:

void sort (array<int, 6> data) {
cout << "Non-template sort function invoked ..." << endl;
int size = data.size();
for (int 1=0; i<size; ++i) {
for (int j=0; j<size; ++3) {
if (datal[i] < datal3j]l)
swap (datali], datalj]);

}

Non-template functions and template functions can coexist and participate in function
overloading. One weird behavior of the preceding function is that the size of the array is
hardcoded.

The second version of our sort () function is a template function, as shown in the
following code snippet. Interestingly, the weird issue that we noticed in the first non-
template sort () version is addressed here:

template <typename T, int size>

void sort (array<T, size> data) {
cout << "Template sort function invoked with one argument..." << endl;
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) {
if (datal[i] < datal3j]l)
swap (datalil, datalj]);

}

In the preceding code, both the data type and the size of the array are passed as template
arguments, which are then passed to the function call arguments. This approach makes the
function generic, as this function can be instantiated for any data type.

[55]

Template Programming Chapter 2

The third version of our custom sort () function is also a template function, as shown in
the following code snippet:

template <typename T>

void sort (T datal], int size) {
cout << "Template sort function invoked with two argument..." << endl;
for (int 1i=0; i<size; ++i) {
for (int j=0; j<size; ++3) {
if (datal[i] < datalj])
swap (datafli]l, datalj]);

}

The preceding template function takes a C-style array; hence, it also expects the user to
indicate its size. However, the size of the array could be computed within the function, but
for demonstration purposes, I need a function that takes two arguments. The previous
function isn't recommended, as it uses a C-style array; ideally, we would use one of the STL
containers.

Now, let's understand the main function code. The following code declares and initializes
the STL array container with six values, which is then passed to our sort () function
defined in the default namespace:

//Will invoke the non-template sort function
array<int, 6> a = { 10, 50, 40, 30, 60, 20 };
c:sort (a);

The preceding code will invoke the non-template sort () function. An important point to
note is that, whenever C++ encounters a function call, it first looks for a non-template
version; if C++ finds a matching non-template function version, its search for the correct
function definition ends there. If the C++ compiler isn't able to identify a non-template
function definition that matches the function call signature, then it starts looking for any
template function that could support the function call and instantiates a specialized
function for the data type required.

Let's understand the following code:

//Will invoke the template function that takes a single argument
array<float,6> b = { 10.6£f, 57.9f, 80.7f, 35.1f, 69.3f, 20.0f };
::sort<float,6>(b);

[56]

Template Programming Chapter 2

This will invoke the template function that receives a single argument. As there is no non-
template sort () function that receives an array<float, 6> data type, the C++ compiler
will instantiate such a function out of our user-defined sort () template function with a
single argument that takes array<float, 6>.

In the same way, the following code triggers the compiler to instantiate a double version of
the template sort () function that receives array<double, 6>:

//Will invoke the template function that takes a single argument
array<double, 6> c = { 10.6d, 57.9d, 80.7d, 35.1d, 69.3d, 20.0d };
::sort<double, 6> (c);

Finally, the following code will instantiate an instance of the template sort () that receives
two arguments and invokes the function:

//Will invoke the template function that takes two arguments
double d[] = { 10.5d, 12.1d, 5.56d, 1.31d, 81.5d, 12.86d };
::sort<double> (d, 6);

If you have come this far, I'm sure you like the C++ template topics discussed so far.

Class template

C++ templates extend the function template concepts to classes too, and enable us to write
object-oriented generic code. In the previous sections, you learned the use of function
templates and overloading. In this section, you will learn writing template classes that open
up more interesting generic programming concepts.

A class template lets you parameterize the data type on the class level via a template type
expression.

Let's understand a class template with the following example:

//myalgorithm.h
#include <iostream>
#include <algorithm>
#include <array>
#include <iterator>
using namespace std;

template <typename T, int size>
class MyAlgorithm {

public:

[57]

Template Programming Chapter 2

MyAlgorithm() { }
~MyAlgorithm() { }

void sort (array<T, size> &data) |
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) {

if (datal[i] < datalj])
swap (datali], dataljl);

void sort (T datal[size]);
}i

template <typename T, int size>

inline void MyAlgorithm<T, size>::sort (T datalsize]) {
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) {

if (datal[i] < datalj])
swap (data[il, datalj]);

C++ template function overloading is a form of static or compile-time
polymorphism.

Let's use myalgorithm.h in the following main. cpp program as follows:

#include "myalgorithm.h"
int main () {
MyAlgorithm<int, 10> algorithmil;
array<int, 10> a = { 10, 5, 15, 20, 25, 18, 1, 100, 90, 18 };
cout << "nArray values before sorting ..." << endl;
copy (a.begin(), a.end(), ostream_iterator<int>(cout, "t"));

cout << endl;

algorithml.sort (a);

[58]

Template Programming Chapter 2

cout << "nArray values after sorting ..." << endl;
copy (a.begin(), a.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

MyAlgorithm<int, 10> algorithm?2;

double d[] = { 100.0, 20.5, 200.5, 300.8, 186.78, 1.1 };
cout << "nArray values before sorting ..." << endl;
copy (d.begin(), d.end(), ostream_iterator<double>(cout, "t"));

cout << endl;

algorithm2.sort (d);

cout << "nArray values after sorting ..." << endl;

copy (d.begin(), d.end(), ostream_iterator<double>(cout, "t"));
cout << endl;

return 0;

}

Let's quickly compile the program using the following command:
g++ main.cpp -std=c++17
./a.out

The output is as follows:

Array values before sorting
10 5 15 20 25 18 1 100 90 18

Array values after sorting
1 5 10 15 18 18 20 25 90 100

Array values before sorting
100 20.5 200.5 300.8 186.78 1.1

Array values after sorting
1.1 20.5 100 186.78 200.5 300.8

[59]

Template Programming Chapter 2

Code walkthrough
The following code declares a class template. The keyword, template <typename T,
int size>, canbe replaced with <class T, int size>.Both keywords can be

interchanged in function and class templates; however, as an industry best
practice, template<class T> can be used only with class templates to avoid confusion:

template <typename T, int size>
class MyAlgorithm

One of the overloaded sort () methods is defined inline as follows:

void sort (array<T, size> &data) {
for (int 1=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) |
if (datali] < datalj])
swap (datal[i], datalj]);

}

The second overloaded sort () function is just declared within the class scope, without any
definition, as follows:

template <typename T, int size>
class MyAlgorithm {
public:
void sort (T datal[size]);

Fi

The preceding sort () function is defined outside the class scope, as shown in the following
code snippet. The weird part is that we need to repeat the template parameters for every
member function that is defined outside the class template:

template <typename T, int size>

inline void MyAlgorithm<T, size>::sort (T datalsize]) {
for (int 1i=0; i<size; ++i) {
for (int j=0; Jj<size; ++3) {
if (datal[i] < datalj])
swap (datafli]l, datalj]);

}

Otherwise, the class template concepts remain the same as that of function templates.

[60]

Template Programming Chapter 2

Would you like to see the compiler-instantiated code for templates? Use
the g++ —-fdump-tree-original main.cpp -std=c++17 command.

Explicit class specializations

So far in this chapter, you have learned how to do generic programming with function
templates and class templates. As you understand the class template, a single template class
can support any built-in and user-defined data types. However, there are times when we
need to treat certain data types with some special treatment with respect to the other data
types. In such cases, C++ offers us explicit class specialization support to handle selective
data types with differential treatment.

Consider the STL deque container; though deque looks fine for storing, let's say, string,
int, double, and long, if we decide to use deque to store a bunch of boolean types, the
bool data type takes at least one byte, while it may vary as per compiler vendor
implementation. While a single bit can efficiently represent true or false, a boolean at least
takes one byte, that is, 8 bits, and the remaining 7 bits are not used. This may appear as
though it's okay; however, if you have to store a very large deque of booleans, it definitely
doesn't appear to be an efficient idea, right? You may think, what's the big deal? We could
write another specialized class or template class for bool. But this approach requires end
users to use different classes for different data types explicitly, and this doesn't sound like a
good design either, right? This is exactly where C++'s explicit class specialization comes in
handy.

The explicit template specialization is also referred to as full-template
specialization.

Never mind if you aren't convinced yet; the following example will help you understand
the need for explicit class specialization and how explicit class specialization works.

Let us develop a DynamicArray class to support a dynamic array of any data type. Let's
start with a class template, as shown in the following program:

#include <iostream>
#include <deque>

#include <algorithm>
#include <iterator>
using namespace std;

[61]

Template Programming

Chapter 2

template < class T >
class DynamicArray {
private:
deque< T > dynamicArray;

typename deque< T >::iterator pos;

public:
DynamicArray () { initialize();
~DynamicArray () { }
void initialize () |

pos = dynamicArray.begin();

void appendvValue(T element)

dynamicArray.push_back (element);
}
bool hasNextValue () |
return (pos != dynamicArray.end());

T getValue () {
return *post+;

}i

The preceding DynamicArray template class internally makes use of the STL deque class.
Hence, you could consider the DynamicArray template class a custom adapter container.
Let's explore how the DynamicArray template class can be used in main. cpp with the

following code snippet:

#include "dynamicarray.h"
#include "dynamicarrayforbool.h"

int main () {
DynamicArray<int> intArray;

intArray.appendValue (100);
intArray.appendValue (200);
intArray.appendValue (300);
intArray.appendValue (400);

intArray.initialize();

cout << "nInt DynamicArray values are

[62]

." << endl;

Template Programming

Chapter 2

while (intArray.hasNextValue())
cout << intArray.getValue() << "t";
cout << endl;

DynamicArray<char> charArray;
charArray.appendvValue('"H');

charArray.appendvValue('e');
charArray.appendvValue('1');
charArray.appendvValue('1');
charArray.appendvValue('o');
charArray.initialize();
cout << "nChar DynamicArray values are ..." << endl;
while (charArray.hasNextValue())
cout << charArray.getValue() << "t";

cout << endl;

DynamicArray<bool> boolArray;
boolArray.appendValue (true);
boolArray.appendValue (false);
boolArray.appendvValue (true);
boolArray.appendvValue (false);

boolArray.initialize();
cout << "nBool DynamicArray values are ..." << endl;
while (boolArray.hasNextValue())
cout << boolArray.getValue() << "t";
cout << endl;
return 0;
}
Let's quickly compile the program using the following command:
g++ main.cpp -std=c++17
./a.out
The output is as follows:

Int DynamicArray values are
100 200 300 400

Char DynamicArray values are
H e 1 1 o

[63]

Template Programming Chapter 2

Bool DynamicArray values are ...
1 0 1 0

Great! Our custom adapter container seems to work fine.

Code walkthrough

Let's zoom in and try to understand how the previous program works. The following code
tells the C++ compiler that what follows is a class template:

template < class T >
class DynamicArray {
private:
deque< T > dynamicArray;
typename deque< T >::iterator pos;

As you can see, the DynamicArray class makes use of STL deque internally, and an iterator
for deque is declared with the name, pos. This iterator, pos, is utilized by the Dynamic
template class to provide high-level methods such as the initialize (), appendvalue (),
hasNextValue (), and getValue () methods.

The initialize () method initializes the deque iterator pos to the first data element
stored within deque. The appendvalue (T element) method lets you add a data
element at the end of deque. The hasNextvalue () method tells whether the
DynamicArray class has further data values stored--t rue indicates it has further values
and false indicates that the DynamicArray navigation has reached the end of deque. The
initialize () method can be used to reset the pos iterator to the starting point when
required. The getvalue () method returns the data element pointed by the pos iterator at
that moment. The getvalue () method doesn't perform any validation; hence, it must be
combined with hasNextValue () before invoking getValue () to safely access the values
stored in DynamicArray.

Now, let's understand the main () function. The following code declares a

DynamicArray class that stores the int data type; DynamicArray<int> intArray will
trigger the C++ compiler to instantiate a DynamicArray class that is specialized for the int
data type:

DynamicArray<int> intArray;

intArray.appendValue(100);
intArray.appendValue (200);
intArray.appendValue (300);
intArray.appendValue (400);

[64]

Template Programming Chapter 2

The values 100, 200, 300, and 400 are stored back to back within the DynamicArray class.
The following code ensures that the intArray iterator points to the first element. Once the
iterator is initialized, the values stored in the DynamicArray class are printed with the
getValue () method, while hasNextValue () ensures that the navigation hasn't reached
the end of the DynamicArray class:

intArray.initialize();

cout << "nInt DynamicArray values are ..." << endl;
while (intArray.hasNextValue())
cout << intArray.getValue() << "t";

cout << endl;

Along the same lines, in the main function, a char DynamicArray class is created,
populated with some data, and printed. Let's skip char DynamicArray and directly move
on to the DynamicArray class that stores bool.

DynamicArray<bool> boolArray;

boolArray.appendValue ("1010");
boolArray.initialize();

cout << "nBool DynamicArray values are ..." << endl;

while (boolArray.hasNextValue())
cout << boolArray.getValue() << "t";
cout << endl;

From the preceding code snippet, we can see everything looks okay, right? Yes, the
preceding code works perfectly fine; however, there is a performance issue with the
DynamicArray design approach. While t rue can be represented by 1 and false can be
represented by 0, which requires just 1 bit, the preceding DynamicArray class makes use of
8 bits to represent 1 and 8 bits to represent 0, which we must fix without forcing end users
to choose a different DynamicArray class that works efficiently for bool.

Let's fix the issue by using explicit class template specialization with the following code:

#include <iostream>
#include <bitset>

#include <algorithm>
#include <iterator>
using namespace std;

template <>
class DynamicArray<bool> {

[65]

Template Programming Chapter 2

private:
deque< bitset<8> *> dynamicArray;
bitset<8> oneByte;
typename deque<bitset<8> * >::iterator pos;
int bitSetIndex;

int getDequelIndex () {
return (bitSetIndex) ? (bitSetIndex/8) : 0;
}
public:
DynamicArray () |

bitSetIndex = 0;
initialize();

}
~DynamicArray () { }
void initialize() {

pos = dynamicArray.begin();
bitSetIndex = 0;

void appendValue (bool wvalue) {
int dequeIndex = getDequelndex () ;
bitset<8> *pBit = NULL;

if ((dynamicArray.size() ==) |1 (dequelIndex >= (
dynamicArray.size()))) {
pBit = new bitset<8>();
pBit->reset ();
dynamicArray.push_back (pBit);

if (!'dynamicArray.empty ())

pBit = dynamicArray.at (dequelndex);
pBit->set (bitSetIndex % 8, wvalue);
++bitSetIndex;

bool hasNextValue () {
return (bitSetIndex < ((dynamicArray.size() * 8)));

bool getValue() {
int dequeIndex = getDequelndex () ;

bitset<8> *pBit = dynamicArray.at (dequelndex) ;
int index = bitSetIndex % 8;

[66]

Template Programmi

ng

Chapter 2

}i

++bitSetIndex;

return (*pBit) [index]

? true

false;

Did you notice the template class declaration? The syntax for template class specialization
istemplate <> class DynamicArray<bool> { };. The class template expression is
empty <> and the name of the class template that works for all data types and the name of

the class that works the for the bool data type are kept the same with the template

expression, <bool>.

If you observe closely, the specialized DynamicArray class for bool internally makes use of
deque< bitset<8> >, thatis, deque of bitsets of 8 bits, and, when required, deque will
automatically allocate more bitset<8> bits. The bitset variable is a memory-efficient STL
container that consumes just 1 bit to represent true or false.

Let's take a look at the main function:

#include "dyn

amicarray.h"

#include "dynamicarrayforbool.h"

int main () {

DynamicArray<int> intArray;

intArray.
intArray.
intArray
intArray.

intArray.

appendValue (
appendValue

(
.appendValue (
(

appendValue

initialize();

100
200
300
400

)

)
)
).

’

cout << "nInt DynamicArray values are
while (intArray.hasNextValue ())
cout << intArray.getValue () <<

cout << e

ndl;

DynamicArray<char> charArray;

charArray.
charArray.
charArray.
charArray.
charArray.

charArray.

appendValue (
appendValue (
appendValue (
appendValue (
appendValue (

initialize ()

TH!
el
v
v
'o!

’

)i

<< endl;

[67]

Template Programming

Chapter 2

cout << "nChar DynamicArray values are

while (charArray.hasNextValue())
cout << charArray.getValue ()
cout << endl;

DynamicArray<bool> boolArray;

boolArray.appendvValue (true);
boolArray.appendValue (false);
boolArray.appendvValue (true);
boolArray.appendValue (false);
boolArray.appendvValue (true);
boolArray.appendValue (false);
boolArray.appendvValue (true);
boolArray.appendValue (false);
boolArray.appendvValue (true);
boolArray.appendValue (true);
boolArray.appendValue (false);
boolArray.appendValue (false);
boolArray.appendvValue (true);
boolArray.appendValue (true);
boolArray.appendvValue (false);
boolArray.appendValue (false);
boolArray.initialize();

cout << "nBool DynamicArray values are ..." << endl;

while (boolArray.hasNextValue())
cout << boolArray.getValue() ;
cout << endl;

return 0;
}

With the class template specialization in place, we can observe from the following that the
main code seems the same for bool, char, and double, although the primary template
class, DynamicArray, and the specialized DynamicArray<bool> class are different:
DynamicArray<char> charArray;
charArray.appendValue('H');

charArray.appendValue('e');

charArray.initialize();

[68]

Template Programming Chapter 2

cout << "nChar DynamicArray values are ..." << endl;
while (charArray.hasNextValue())
cout << charArray.getValue() << "t";

cout << endl;

DynamicArray<bool> boolArray;
boolArray.appendValue (true);
boolArray.appendValue (false);

boolArray.initialize();

cout << "nBool DynamicArray values are ..." << endl;
while (boolArray.hasNextValue())

cout << boolArray.getValue() ;
cout << endl;

I'm sure you will find this C++ template specialization feature quite useful.

Partial template specialization

Unlike explicit template specialization, which replaces the primary template class with its
own complete definitions for a specific data type, partial template specialization allows us
to specialize a certain subset of template parameters supported by the primary template
class, while the other generic types can be the same as the primary template class.

When partial template specialization is combined with inheritance, it can do more wonders,
as shown in the following example:

#include <iostream>
using namespace std;

template <typename T1, typename T2, typename T3>
class MyTemplateClass {

public:
void F1(T1 t1, T2 t2, T3 t3) {
cout << "nPrimary Template Class - Function F1 invoked ..." <<
endl;
cout << "Value of tl1 is " << tl1 << endl;
cout << "Value of t2 is " << t2 << endl;
cout << "Value of t3 1is " << t3 << endl;

void F2(T1 tl, T2 t2) {
cout << "nPrimary Tempalte Class - Function F2 invoked ..." <<
endl;

[69]

Template Programming Chapter 2

cout << "Value of tl is " << tl << endl;
cout << "Value of t2 is " << 2 * t2 << endl;

bi

template <typename T1, typename T2, typename T3>
class MyTemplateClass< T1, T2*, T3*> : public MyTemplateClass<T1l, T2, T3> {

public:
void F1(T1 t1, T2* t2, T3* t3) {
cout << "nPartially Specialized Template Class - Function F1
invoked ..." << endl;
cout << "Value of tl1 is " << tl1 << endl;
cout << "Value of t2 is " << *t2 << endl;
cout << "Value of t3 is " << *t3 << endl;

bi
The main. cpp file will have the following content:

#include "partiallyspecialized.h"

int main () {
int x = 10;
int *y = &x;
int *z = &x;

MyTemplateClass<int, int*, int*> obj;
obj.Fl(x, v, z);
obj.F2(x, X);

return 0;

}

From the preceding code, you may have noticed that the primary template class name and
the partially specialized class name are the same as in the case of full or explicit template
class specialization. However, there are some syntactic changes in the template parameter
expression. In the case of a complete template class specialization, the template parameter
expression will be empty, whereas, in the case of a partially specialized template class,
listed appears, as shown in the following:

template <typename T1, typename T2, typename T3>
class MyTemplateClass< T1, T2*, T3*> : public MyTemplateClass<T1l, T2, T3> {
bi

[70]

Template Programming Chapter 2

The expression, template<typename T1, typename T2, typename T3>,isthe
template parameter expression used in the primary class template class, and
MyTemplateClass< T1, T2*, T3*>isthe partial specialization done by the second class.
As you can see, the second class has done some specialization on typename T2 and
typename T3, as they are used as pointers in the second class; however, typename T1 is
used as is in the second class.

Apart from the facts discussed so far, the second class also inherits the primary template
class, which helps the second class reuse the public and protected methods of the primary
template class. However, a partial template specialization doesn't stop the specialized class
from supporting other functions.

While the F1 function from the primary template class is replaced by the partially
specialized template class, it reuses the F2 function from the primary template class via
inheritance.

Let's quickly compile the program using the following command:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Partially Specialized Template Classs — Function Fl invoked ...
Value of tl1l is 10
Value of t2 is 10
Value of t3 is 10

Primary Tempalte Class - Function F2 invoked ...
Value of tl1 is 10
Value of t2 is 20

I 'hope that you find the partially specialized template class useful.

[71]

Template Programming Chapter 2

Summary

In this chapter, you learned the following:

* You are now aware of the motivation for using generic programming
* You are now familiar with function templates

¢ You know how to overload function templates

* You are aware of class templates

* You are aware of when to use explicit template specialization and when to use
partially specialized template specialization

Congrats! Overall, you have a good understanding of C++'s template programming.

In the next chapter, you will learn smart pointers.

[72]

Smart Pointers

In the previous chapter, you learned about template programming and the benefits of
generic programming. In this chapter, you will learn about the following smart pointer
topics:

e Memory management
e Issues with raw pointers

Cyclic dependency

Smart pointers:
® auto_ptr

® unique_ptr
® shared_ptr

® weak_ptr

Let's explore the memory management facilities offered by C++.

Memory management

In C++, memory management is generally a responsibility of the software developers. This
is because C++ standard does not enforce garbage collection support in C++ compiler; hence,
it is left to the compiler vendor's choice. Exceptionally, the Sun C++ compiler comes with a
garbage collection library named libgc.

Smart Pointers Chapter 3

C++ language has many powerful features. Of these, needless to say, pointers is one of the
most powerful and useful features. Having said pointers are very useful, they do come with
their own weird issues, hence they must be used responsibly. When memory management
is not taken seriously or not done quite right, it leads to many issues, including application
crashes, core dumps, segmentation faults, intermittent difficulties to debug issues,
performance issues, and so on. Dangling pointers or rogue pointers sometimes mess with
other unrelated applications while the culprit application executes silently; in fact, the
victim application might be blamed many times. The worst part about memory leaks is that
at certain times it gets really tricky and even experienced developers end up debugging the
victim code for countless hours while the culprit code is left untouched. Effective memory
management helps avoid memory leaks and lets you develop high-performance
applications that are memory efficient.

As the memory model of every operating system varies, every OS may behave differently at
a different point in time for the same memory leak issue. Memory management is a big
topic, and C++ offers many ways to do it well. We'll discuss some of the useful techniques in
the following sections.

Issues with raw pointers

The majority of the C++ developers have something in common: all of us love to code
complex stuff. You ask a developer, "Hey dude, would you like to reuse code that already
exists and works or would you like to develop one yourself?" Though diplomatically, most
developers will say to reuse what is already there when possible, their heart will say, "I
wish I could design and develop it myself." Complex data structure and algorithms tend to
call for pointers. Raw pointers are really cool to work with until you get into trouble.

Raw pointers must be allocated with memory before use and require deallocation once
done; it is that simple. However, things get complicated in a product where pointer
allocation may happen in one place and deallocation might happen in yet another place. If
memory management decisions aren't made correctly, people may assume it is either the
caller or callee's responsibility to free up memory, and at times, the memory may not be
freed up from either place. In yet another possibility, chances are that the same pointer is
deleted multiples times from different places, which could lead to application crashes. If
this happens in a Windows device driver, it will most likely end up in a blue screen of
death.

[74]

Smart Pointers Chapter 3

Just imagine, what if there were an application exception and the function that threw the
exception had a bunch of pointers that were allocated with memory before the exception
occurred? It is anybody's guess: there will be memory leaks.

Let's take a simple example that makes use of a raw pointer:

#include <iostream>
using namespace std;

class MyClass {

public:
volid someMethod () {
int *ptr = new int();
*ptr = 100;
int result = *ptr / 0; //division by zero error expected
delete ptr;
}
bi
int main () {

MyClass objMyClass;
objMyClass.someMethod () ;

return 0;

}
Now, run the following command:
g++ main.cpp -g -std=c++17
Check out the output of this program:
main.cpp: In member function ‘void MyClass::someMethod()’:
main.cpp:12:21: warning: division by zero [-Wdiv-by-zero]

int result = *ptr / 0;

Now, run the following command:

./a.out
[1] 31674 floating point exception (core dumped) ./a.out

[75]

Smart Pointers

Chapter 3

C++ compiler is really cool. Look at the warning message, it bangs on in regard to pointing
out the issue. I love the Linux operating system. Linux is quite smart in finding rogue
applications that misbehave, and it knocks them off right on time before they cause any
damage to the rest of the applications or the OS. A core dump is actually good, while it is
cursed instead of celebrating the Linux approach. Guess what, Microsoft's Windows
operating systems are equally smarter. They do bug check when they find some
applications doing fishy memory accesses and Windows OS as well supports mini-dumps
and full dumps which are equivalent to core dumps in Linux OS.

Let's take a look at the Valgrind tool output to check the memory leak issue:

valgrind —--leak-check=full —--show-leak-kinds=all ./a.out

-=32857—=
-=32857—=
-=32857—=

info

==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==

Memcheck, a memory error detector
Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.12.0 and LibVEX; rerun with -h for copyright

Command: ./a.out

Process terminating with default action of signal 8 (SIGFPE)
Integer divide by zero at address 0x802D82B86

at 0x10896A: MyClass: :someMethod() (main.cpp:12)

by 0x1088C2: main (main.cpp:24)

HEAP SUMMARY:
in use at exit: 4 bytes in 1 blocks
total heap usage: 2 allocs, 1 frees, 72,708 bytes allocated

4 bytes in 1 blocks are still reachable in loss record 1 of 1
at Ox4C2E19F: operator new(unsigned long) (in

/usr/lib/valgrind/vgpreload_memcheck-amd64-1inux.so)

==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==
==32857==

[1]

32857

by 0x108951: MyClass::someMethod () (main.cpp:8)
by 0x1088C2: main (main.cpp:24)

LEAK SUMMARY:

definitely lost: 0 bytes in 0 blocks
indirectly lost: 0 bytes in 0 blocks
possibly lost: 0 bytes in 0 blocks
still reachable: 4 bytes in 1 blocks
suppressed: 0 bytes in 0 blocks

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 0 errors from 0O contexts (suppressed: 0 from 0)
floating point exception (core dumped) valgrind --leak-check=full

—-show-leak-kinds=all ./a.out

[76]

Smart Pointers Chapter 3

In this output, if you pay attention to the bold portion of the text, you will notice the
Valgrind tool did point out the source code line number that caused this core dump. Line
number 12 from the main. cpp file is as follows:

int result = *ptr / 0; //division by zero error expected

The moment the exception occurs at line number 12 in the main. cpp file, the code that
appears below the exception will never get executed. At line number 13 in

the main. cpp file, there appears a delete statement that will never get executed due to the
exception:

delete ptr;

The memory allocated to the preceding raw pointer isn't released as the memory pointed by
pointers is not freed up during the stack unwinding process. Whenever an exception is
thrown by a function and the exception isn't handled by the same function, stack
unwinding is guaranteed. However, only the automatic local variables will be cleaned up
during the stack unwinding process, not the memory pointed by the pointers. This results
in memory leaks.

This is one of the weird issues invited by the use of raw pointers; there are many other
similar scenarios. Hopefully you are convinced now that the thrill of using raw pointers
does come at a cost. But the penalty paid isn't really worth it as there are good alternatives
available in C++ to deal with this issue. You are right, using a smart pointer is the solution
that offers the benefits of using pointers without paying the cost attached to raw pointers.

Hence, smart pointers are the way to use pointers safely in C++.

Smart pointers

In C++, smart pointers let you focus on the problem at hand by freeing you from the worries
of dealing with custom garbage collection techniques. Smart pointers let you use raw
pointers safely. They take the responsibility of cleaning up the memory used by raw
pointers.

C++ supports many types of smart pointers that can be used in different scenarios:

® auto_ptr
e unique_ptr
® shared_ptr

® weak_ptr

[77]

Smart Pointers Chapter 3

The auto_ptr smart pointer was introduced in C++11. An auto_ptr smart pointer helps
release the heap memory automatically when it goes out of scope. However, due to the way
auto_ptr transfers ownership from one auto_ptr instance to another, it was deprecated
and unique_ptr was introduced as its replacement. The shared_ptr smart pointer helps
multiple shared smart pointers reference the same object and takes care of the memory
management burden. The weak_ptr smart pointer helps resolve memory leak issues that
arise due to the use of shared_ptr when there is a cyclic dependency issue in the
application design.

There are other types of smart pointers and related stuff that are not so commonly used,
and they are listed in the following bullet list. However, I would highly recommend that
you explore them on your own as you never know when you will find them useful:

® owner_less

® cnable_shared_from this
® bad_weak_ptr

e default_delete

The owner_less smart pointer helps compare two or more smart pointers if they share the
same raw pointed object. The enable_shared_from_this smart pointer helps get a smart
pointer of the this pointer. The bad_weak_ptr smart pointer is an exception class that
implies that shared_ptr was created using an invalid smart pointer. The
default_delete smart pointer refers to the default destruction policy used by
unique_ptr, which invokes the delete statement, while partial specialization for array
types that use delete[] is also supported.

In this chapter, we will explore auto_ptr, shared_ptr, weak_ptr, and unique-ptr one
by one.

auto_ptr

The auto_ptr smart pointer takes a raw pointer, wraps it, and ensures the memory pointed
by the raw pointer is released back whenever the auto_ptr object goes out of scope. At any
time, only one auto_pt r smart pointer can point to an object. Hence, whenever one
auto_ptr pointer is assigned to another auto_ptr pointer, the ownership gets transferred
to the auto_ptr instance that has received the assignment; the same happens when

an auto_ptr smart pointer is copied.

[78]

Smart Pointers Chapter 3

It would be interesting to observe the stuff in action with a simple example, as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class MyClass {
private:
static int count;
string name;
public:
MyClass () A
ostringstream stringStream(ostringstream::ate);
stringStream << "Object";
stringStream << ++count;

name = stringStream.str();

cout << "nMyClass Default constructor - " << name << endl;
}
~MyClass () {

cout << "nMyClass destructor - " << name << endl;

MyClass (const MyClass &objectBeingCopied) {
cout << "nMyClass copy constructor" << endl;

MyClassé& operator = (const MyClass &objectBeingAssigned) {
cout << "nMyClass assignment operator" << endl;

void sayHello() |
cout << "Hello from MyClass " << name << endl;

}i

int MyClass::count = 0;

int main () A
auto_ptr<MyClass> ptrl(new MyClass ());
auto_ptr<MyClass> ptr2(new MyClass ());

return 0;

[79]

Smart Pointers Chapter 3

The compilation output of the preceding program is as follows:

g++ main.cpp -std=c++17

main.cpp: In function ‘int main()’:
main.cpp:40:2: warning: ‘template<class> class std::auto_ptr’ is deprecated
[-Wdeprecated-declarations]

auto_ptr<MyClass> ptrl(new MyClass ());

In file included from /usr/include/c++/6/memory:81:0,
from main.cpp:3:
/usr/include/c++/6/bits/unique_ptr.h:49:28: note: declared here
template<typename> class auto_ptr;
main.cpp:41:2: warning: ‘template<class> class std::auto_ptr’ is deprecated
[-Wdeprecated-declarations]
auto_ptr<MyClass> ptr2(new MyClass ());
In file included from /usr/include/c++/6/memory:81:0,
from main.cpp:3:

/usr/include/c++/6/bits/unique_ptr.h:49:28: note: declared here
template<typename> class auto_ptr;

As you can see, the C++ compiler warns us as the use of auto_ptr is deprecated. Hence, I
don't recommend the use of the aut o_ptr smart pointer anymore; it is replaced by
unique_ptr.

For now, we can ignore the warnings and move on, as follows:
g++ main.cpp -Wno-deprecated
./a.out
MyClass Default constructor - Objectl
MyClass Default constructor - Object2
MyClass destructor - Object2
MyClass destructor - Objectl

As you can see in the preceding program output, both Object1 and Object2, allocated in a
heap, got deleted automatically. And the credit goes to the auto_ptr smart pointer.

[80]

Smart Pointers Chapter 3

Code walkthrough - Part 1

As you may have understood from the MyClass definition, it has defined the default
constructor, copy constructor and destructor, an assignment operator, and
sayHello () methods, as shown here:

//Definitions removed here to keep it simple
class MyClass {
public:
MyClass () { } //Default constructor
~MyClass () { } //Destructor
MyClass (const MyClass &objectBeingCopied) {} //Copy Constructor
MyClassé& operator = (const MyClass &objectBeingAssigned) { }
//Assignment operator
void sayHello();
bi

The methods of MyClass have nothing more than a print statement that indicates the
methods got invoked; they were purely meant for demonstration purposes.

The main () function creates two auto_ptr smart pointers that point to two different
MyClass objects, as shown here:

int main () A
auto_ptr<MyClass> ptrl(new MyClass ());
auto_ptr<MyClass> ptr2(new MyClass ());

return 0;

}

As you can understand, auto_ptr is a local object that wraps a raw pointer, not a pointer.
When the control hits the return statement, the stack unwinding process gets initiated, and
as part of this, the stack objects, that is, ptr1 and ptr2, get destroyed. This, in turn, invokes
the destructor of aut o_pt r that ends up deleting the MyClass objects pointed by the stack
objects ptr1 and ptr2.

We are not quite done yet. Let's explore more useful functionalities of auto_ptr, as shown
in the following main function:

int main () {

auto_ptr<MyClass> ptrl(new MyClass ());
auto_ptr<MyClass> ptr2(new MyClass ());

[81]

Smart Pointers Chapter 3

ptrl->sayHello () ;
ptr2->sayHello();

//At this point the below stuffs happen

//1. ptr2 smart pointer has given up ownership of MyClass Object 2
//2. MyClass Object 2 will be destructed as ptr2 has given up its
// ownership on Object 2

//3. Ownership of Object 1 will be transferred to ptr2

ptr2 = ptril;

//The line below if uncommented will result in core dump as ptrl
//has given up its ownership on Object 1 and the ownership of
//Object 1 is transferred to ptr2.

// ptrl->sayHello();

ptr2->sayHello();
return 0;

Code walkthrough - Part 2

The main () function code we just saw demonstrates many useful techniques and

some controversial behaviors of the auto_ptr smart pointer. The following code creates
two instances of auto_ptr, namely ptr1 and ptr2, that wrap two objects of MyClass
created in a heap:

auto_ptr<MyClass> ptrl(new MyClass ());
auto_ptr<MyClass> ptr2(new MyClass ());

Next, the following code demonstrates how the methods supported by MyClass can be
invoked using auto_ptr:

ptrl->sayHello();
ptr2->sayHello();

Hope you observed the ptr1->sayHello () statement. It will make you believe that

the auto_ptr ptrl object is a pointer, but in reality, ptr1 and ptr2 are just auto_ptr
objects created in the stack as local variables. As the auto_ptr class has overloaded the —>
pointer operator and the * dereferencing operator, it appears like a pointer. As a matter of
fact, all the methods exposed by MyClass can only be accessed using the —> pointer
operator, while all the auto_ptr methods can be accessed as you would regularly access a
stack object.

[82]

Smart Pointers Chapter 3

The following code demonstrates the internal behavior of the auto_ptr smart pointer, so
pay close attention; this is going to be really interesting:

ptr2 = ptril;

It appears as though the preceding code is a simple assignment statement, but it triggers
many activities within auto_ptr. The following activities happen due to the preceding
assignment statement:

¢ The ptr2 smart pointer will give up the ownership of MyClass object 2.

e MyClass object 2 will be destructed as pt r2 has given up its ownership of
object 2.

e The ownership of object 1 will be transferred to ptr2.

¢ At this point, ptr1 is neither pointing to object 1, nor it is responsible for
managing the memory used by object 1.

The following commented line has got some facts to tell you:

// ptrl->sayHello();

As the ptr1 smart pointer has released its ownership of object 1, itisillegal to attempt
accessing the sayHello () method. This is because ptr1, in reality, isn't pointing to object
1 anymore, and object 1 is owned by ptr2.Itis the responsibility of the pt r2 smart
pointer to release the memory utilized by object 1 when ptr2 goes out of scope. If the
preceding code is uncommented, it would lead to a core dump.

Finally, the following code lets us invoke the sayHello () method on object 1 using
the pt r2 smart pointer:

ptr2->sayHello();
return 0;

The return statement we just saw will initiate the stack unwinding process in the main ()
function. This will end up invoking the destructor of pt r2, which in turn will deallocate the
memory utilized by object 1. The beauty is all this happens automatically. The auto_ptr
smart pointer works hard for us behind the scenes while we are focusing on the problem at
hand.

[83]

Smart Pointers Chapter 3

However, due to the following reasons, auto_ptr is deprecated in C++11 onward:

¢ An auto_ptr object can't be stored in an STL container

e The auto_ptr copy constructor will remove the ownership from the original
source, thatis, auto_ptr

e The auto_ptr copy assignment operator will remove the ownership from the
original source, which is, auto_ptr

¢ The original intention of copy constructor and assignment operators are
violated by auto_ptr as the auto_ptr copy constructor and assignment
operators will remove the ownership of the source object from the right-hand
side object and assign the ownership to the left-hand side object

unique_ptr

The unique_ptr smart pointer works in exactly the same way as auto_ptr, except that
unique_ptr addresses the issues introduced by auto_ptr. Hence, unique_ptrisa
replacement of auto_ptr, starting from C++11. The unique_ptr smart pointer allows only
one smart pointer to exclusively own a heap-allocated object. The ownership transfer from
one unique_ptr instance to another can be done only via the std: :move () function.

Hence, let's refactor our previous example to make use of unique_ptr in place of
auto_ptr.

The refactored code sample is as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class MyClass {
private:
static int count;
string name;

public:
MyClass () A
ostringstream stringStream(ostringstream: :ate);
stringStream << "Object";
stringStream << ++count;
name = stringStream.str();

[84]

Smart Pointers

Chapter 3

cout << "nMyClass
}
~MyClass () A

cout << "nMyClass

MyClass (const MyClass
cout << "nMyClass

Default constructor — " << name << endl;

destructor -

"

<< name << endl;

&objectBeingCopied) {
copy constructor" << endl;

}
MyClass& operator = (const MyClass &objectBeingAssigned) {
cout << "nMyClass assignment operator" << endl;
}
void sayHello() A
cout << "nHello from MyClass" << endl;
}
bi
int MyClass::count = 0;

int main (

}

unique_ptr<MyClass> ptrl(new MyClass ()
unique_ptr<MyClass> ptr2(new MyClass ()

) A

ptrl->sayHello();
ptr2->sayHello () ;

//At this point the below stuffs happen

)i
)i

//1. ptr2 smart pointer has given up ownership of MyClass Object 2
//2. MyClass Object 2 will be destructed as ptr2 has given up its

// owners

hip on Object 2

//3. Ownership of Object 1 will be transferred to ptr2
ptr2 = move(ptrl);

//The line below if uncommented will result in core dump as ptrl
//has given up its ownership on Object 1 and the ownership of

//Object 1 is transferred to ptr2.
// ptrl->sayHello();

ptr2->sayHello () ;

return 0;

[85]

Smart Pointers Chapter 3

The output of the preceding program is as follows:
g++ main.cpp -std=c++17
./a.out
MyClass Default constructor - Objectl
MyClass Default constructor - Object2
MyClass destructor - Object2
MyClass destructor - Objectl

In the preceding output, you can notice the compiler doesn't report any warning and the
output of the program is the same as that of auto_ptr.

Code walkthrough

It is important to note the differences in the main () function, between auto_ptr and
unique_ptr. Let's check out the main () function, as illustrated in the following code. This
code creates two instances of unique_ptr, namely ptr1 and ptr2, that wrap two objects of
MyClass created in the heap:

unique_ptr<MyClass> ptrl(new MyClass());
unique_ptr<MyClass> ptr2(new MyClass());

Next, the following code demonstrates how the methods supported by MyClass can be
invoked using unique_ptr:

ptrl->sayHello();
ptr2->sayHello();

ust like auto_ptr, the unique_ptr smart pointers pt r1 object has overloaded the —>
P)
pointer operator and the * dereferencing operator; hence, it appears like a pointer.

The following code demonstrates unique_ptr doesn't support the assignment of one
unique_ptr instance to another, and ownership transfer can only be achieved with
the std: :move () function:

ptr2 = std::move (ptrl);

[86]

Smart Pointers Chapter 3

The move function triggers the following activities:

The ptr2 smart pointer gives up the ownership of the MyClass object 2

MyClass object 2 is destructed as ptr2 gives up its ownership of object 2

The ownership of object 1 is transferred to ptr2

At this point, ptr1 is neither pointing to object 1, nor it is responsible for
managing the memory used by object 1

The following code, if uncommented, will lead to a core dump:

// ptrl->sayHello () ;

Finally, the following code lets us invoke the sayHello () method on object 1 using
the ptr2 smart pointer:

ptr2->sayHello();
return 0;

The return statement we just saw will initiate the stack unwinding process in the main ()
function. This will end up invoking the destructor of pt r2, which in turn will deallocate the
memory utilized by object 1.Note that unique_ptr objects could be stored in STL
containers, unlike auto_ptr objects.

shared_ptr

The shared_ptr smart pointer is used when a group of shared_ptr objects shares the
ownership of a heap-allocated object. The shared_ptr pointer releases the shared object
when all the shared_ptr instances are done with the use of the shared object. The
shared_ptr pointer uses the reference counting mechanism to check the total references to
the shared object; whenever the reference count becomes zero, the last shared_ptr
instance deletes the shared object.

Let's check out the use of shared_ptr through an example, as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class MyClass {
private:

[87]

Smart Pointers Chapter 3

static int count;
string name;
public:
MyClass () A
ostringstream stringStream(ostringstream::ate);
stringStream << "Object";
stringStream << ++count;

name = stringStream.str();

cout << "nMyClass Default constructor - " << name << endl;

~MyClass () A
cout << "nMyClass destructor - " << name << endl;

MyClass (const MyClass &objectBeingCopied) {
cout << "nMyClass copy constructor" << endl;

}

MyClass& operator = (const MyClass &objectBeingAssigned) {
cout << "nMyClass assignment operator" << endl;

}

void sayHello () {
cout << "Hello from MyClass " << name << endl;

}i

int MyClass::count = 0;

int main () A
shared_ptr<MyClass> ptrl(new MyClass ());
ptrl->sayHello () ;
cout << "nUse count is " << ptrl.use_count () << endl;
{

shared_ptr<MyClass> ptr2(ptrl);
ptr2->sayHello();
cout << "nUse count is " << ptr2.use_count () << endl;

shared_ptr<MyClass> ptr3 = ptrl;
ptr3->sayHello();
cout << "nUse count is " << ptr3.use_count () << endl;

[88]

Smart Pointers Chapter 3

return 0;

}

The output of the preceding program is as follows:

MyClass Default constructor - Objectl
Hello from MyClass Objectl
Use count is 1

Hello from MyClass Objectl
Use count is 2

Number of smart pointers referring to MyClass object after ptr2 is
destroyed is 1

Hello from MyClass Objectl
Use count is 2

MyClass destructor - Objectl

Code walkthrough

The following code creates an instance of the shared_pt r object that points to the MyClass
heap-allocated object. Just like other smart pointers, shared_ptr also has the overloaded
->and * operators. Hence, all the MyClass object methods can be invoked as though you
are using a raw pointer. The use_count () method tells the number of smart pointers that
refer to the shared object:

shared_ptr<MyClass> ptrl(new MyClass ());

ptrl->sayHello();

cout << "nNumber of smart pointers referring to MyClass object is "
<< ptrl->use_count () << endl;

In the following code, the scope of the smart pointer ptr2 is wrapped within the block
enclosed by flower brackets. Hence, pt r2 will get destroyed at the end of the following
code block. The expected use_count function within the code block is 2:

{
shared_ptr<MyClass> ptr2(ptrl);
ptr2->sayHello();
cout << "nNumber of smart pointers referring to MyClass object is "
<< ptr2->use_count () << endl;

[89]

Smart Pointers Chapter 3

In the following code, the expected use_count valueis 1 as pt r2 would have been deleted,
which would reduce the reference count by 1:

cout << "nNumber of smart pointers referring to MyClass object after ptr2
is destroyed is "
<< ptrl->use_count () << endl;

The following code will print a Hello message, followed by use_count as 2. This is due to
the fact that ptr1 and ptr3 are now referring to the MyClass shared object in the heap:

shared_ptr<MyClass> ptr3 = ptr2;

ptr3->sayHello();

cout << "nNumber of smart pointers referring to MyClass object is "
<< ptr2->use_count () << endl;

The return 0; statement at the end of the main function will destroy ptr1 and ptr3,
reducing the reference count to zero. Hence, we can observe the MyClass destructor print
the statement at the end of the output.

weak_ptr

So far, we have discussed the positive side of shared_ptr with examples. However,
shared_ptr fails to clean up the memory when there is a circular dependency in the
application design. Either the application design must be refactored to avoid cyclic
dependency, or we can make use of weak_ptr to resolve the cyclic dependency issue.

You can check out my YouTube channel to understand the shared_ptr
issue and how it can be resolved with weak_ptr: https://www.youtube.
com/watch?v=SVTLTK5gbDc

Consider there are three classes: A, B, and C. Class A and B have an instance of C, while C
has an instance of A and B. There is a design issue here. A depends on C and C depends on
A too. Similarly, B depends on C and C depends on B as well.

Consider the following code:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class C;

[90]

https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc

Smart Pointers

Chapter 3

class A {
private:
shared_ptr<C> ptr;
public:
A() A

cout << "nA constructor" << endl;

~A() Ao
cout << "nA destructor" << endl;

void setObject (shared_ptr<C> ptr) {
this->ptr = ptr;

bi

class B {

private:
shared_ptr<C> ptr;
public:
B(O) A
cout << "nB constructor" << endl;
}
~B() A

cout << "nB destructor" << endl;

void setObject (shared_ptr<C> ptr) {
this->ptr = ptr;

bi

class C {
private:

shared_ptr<A> ptril;

shared_ptr ptr2;
public:

C(shared_ptr<A> ptrl, shared_ptr ptr2)
cout << "nC constructor" << endl;
this->ptrl = ptrl;
this->ptr2 = ptr2;

~C() A
cout << "nC destructor" << endl;

[91]

Smart Pointers Chapter 3

}i

int main () {
shared_ptr<A> a(new A());
shared_ptr b(new B());
shared_ptr<C> c(new C(a, b));

a->setObject (shared_ptr<C>(
b->setObject (shared_ptr<C>(

c))i
c))i

return 0;

}

The output of the preceding program is as follows:

g++ problem.cpp —-std=c++17
./a.out

A constructor

B constructor

C constructor

In the preceding output, you can observe that even though we used shared_ptr, the
memory utilized by objects A, B, and C were never deallocated. This is because we didn't
see the destructor of the respective classes being invoked. The reason for this is

that shared_ptr internally makes use of the reference counting algorithm to decide
whether the shared object has to be destructed. However, it fails here because object A can't
be deleted unless object C is deleted. Object C can't be deleted unless object A is deleted.
Also, object C can't be deleted unless objects A and B are deleted. Similarly, object A can't be
deleted unless object C is deleted and object B can't be deleted unless object C is deleted.

The bottom line is that this is a circular dependency design issue. In order to fix this issue,
starting from C++11, C++ introduced weak_ptr. The weak_ptr smart pointer is not a strong
reference. Hence, the object referred to could be deleted at any point of time, unlike
shared_ptr.

[92]

Smart Pointers

Chapter 3

Circular dependency

Circular dependency is an issue that occurs if object A depends on B, and object B depends
on A. Now let's see how this issue could be fixed with a combination of shared_ptr and

weak_ptr, eventually breaking the circular dependency, as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class C;

class A {

private:
weak_ptr<C> ptr;
public:
A() A
cout << "nA constructor"
}
~A() A

cout << "nA destructor"

<< endl;

<< endl;

void setObject (weak_ptr<C> ptr) {

this->ptr = ptr;

}i

class B {

private:
weak_ptr<C> ptr;
public:
B(O) A
cout << "nB constructor"
}
~B() {

cout << "nB destructor"

<< endl;

<< endl;

void setObject (weak_ptr<C> ptr) {

this->ptr = ptr;

}i

Smart Pointers

Chapter 3

class C {
private:

shared_ptr<A> ptrl;

shared_ptr ptr2;
public:

C(shared_ptr<A> ptrl, shared_ptr ptr2)
cout << "nC constructor" << endl;
this->ptrl = ptrl;
this->ptr2 = ptr2;

~C() A
cout << "nC destructor" << endl;
}
}i
int main () {
shared_ptr<A> a(new A());
shared_ptr b(new B());
shared_ptr<C> c(new C(a, b));

a->setObject (weak_ptr<C>(
b->setObject (weak_ptr<C>(

))i

C
c))

return 0;
}

The output of the preceding refactored code is as follows:

g++ solution.cpp -std=c++17
./a.out

A constructor

B constructor

C constructor

C destructor

B destructor

A destructor

[94]

Smart Pointers Chapter 3

Summary

In this chapter, you learned about

e Memory leak issues that arise due to raw pointers
¢ The issues of auto_pt r with respect to assignment and copy constructor
e unique_ptr and it's advantage

¢ Role of shared_ptr in memory management and its limitation related to cyclic
dependency.

* You also resolving cyclic dependency issues with weak_ptr

In the next chapter, you will learn about developing GUI applications in C++.

[95]

Developing GUI Applications in
C++

In this chapter, you will learn the following topics:

o A brief overview of Qt

The Qt Framework

Installing Qt on Ubuntu
Developing Qt Core application

Developing a Qt GUI application

Using layouts in the Qt GUI application

Understanding signals and slots for event handling
¢ Using multiple layouts in the Qt application

Qtis a cross-platform application framework developed in C++. It is supported on various
platforms, including Windows, Linux, Mac OS, Android, iOS, Embedded Linux, QNX,
VxWorks, Windows CE/RT, Integrity, Wayland, X11, Embedded Devices, and so on. It is
primarily used as a human-machine-interface (HMI) or Graphical User Interface (GUI)
framework; however, it is also used to develop a command-line interface (CLI)
applications. The correct way of pronouncing Qt is cute. The Qt application framework
comes in two flavors: open source and with a commercial license.

Qt is the brainchild of Haavard Nord and Eirik Chambe-Eng, the original developers, who
developed it back in the year 1991.

Developing GUI Applications in C++ Chapter 4

As C++language doesn't support GUI natively, you must have guessed that there is no
event management support in C++ language out of the box. Hence, there was a need for Qt
to support its own event handling mechanism, which led to the signals and slots technique.
Under the hood, signals and slots use the observer design pattern that allows Qt objects to
talk to each other. Does this sound too hard to understand? No worries! Signals are nothing
but events, such as a button click or window close, and slots are event handlers that can
supply a response to these events in the way you wish to respond to them.

To make our life easier in terms of Qt application development, Qt supports various macros
and Qt-specific keywords. As these keywords will not be understood by C++, Qt has to
translate them and the macros into pure C++ code so that the C++ compiler can do its job as
usual. To make this happen in a smoother fashion, Qt supports something called Meta-
Object Compiler, also known as moc.

Qt is a natural choice for C++ projects as it is out-and-out C++ code; hence, as a C++
developer, you will feel at home when you use Qt in your application. A typical application
will have both complex logic and impressive Ul In small product teams, typically one
developer does multiple stuff, which is good and bad.

Generally, professional developers have good problem-solving skills. Problem-solving skills
are essential to solve a complex problem in an optimal fashion with a good choice of data
structures and algorithms.

Developing an impressive Ul requires creative design skills. While there are a countable
number of developers who are either good at problem-solving or creative Ul design, not all
developers are good at both. This is where Qt stands out.

Say a start-up wants to develop an application for their internal purposes. For this, a simple
GUI application would suffice, where a decent looking HMI/GUI might work for the team
as the application is meant for internal purposes only. In such scenarios, the entire
application can be developed in C++ and the Qt Widgets framework. The only prerequisite
is that the development team must be proficient in C++.

However, in cases where a mobile app has to be developed, an impressive HMI becomes
mandatory. Again, the mobile app can be developed with C++ and Qt Widgets. But now
there are two parts to this choice. The good part is that the mobile app team has to be good
at just C++. The bad part of this choice is that there is no guarantee that all good C++
developers will be good at designing a mobile app's HMI/GUL

[971]

Developing GUI Applications in C++ Chapter 4

Let's assume the team has one or two dedicated Photoshop professionals who are good at
creating catchy images that can be used in the GUI and one or two UI designers who can
make an impressive HMI/GUI with the images created by the Photoshop experts. Typically,
UI designers are good at frontend technologies, such as JavaScript, HTML, and CSS.
Complex business logic can be developed in the powerful Qt Framework, while the
HMI/GUI can be developed in QML.

QML is a declarative scripting language that comes along with the Qt application
framework. It is close to JavaScript and has Qt-specific extensions. It is good for rapid
application development and allows UI designers to focus on HMI/GUI and C++ developers
to focus on the complex business logic that can be developed in Qt Framework.

Since both the C++ Qt Framework and QML are part of the same Qt application framework,
they go hand in hand seamlessly.

Qtis a vast and powerful framework; hence this chapter will focus on the basic essentials of
Qt to get you started with Qt. If you are curious to learn more, you may want to check out
my other upcoming book that I'm working on, namely Mastering Qt and QML Programming.

Qt

The Qt Framework is developed in C++, hence it is guaranteed that it would be a cake walk
for any good C++ developer. It supports CLI and GUI-based application development. At
the time of writing this chapter, the latest version of the Qt application framework is Qt
5.7.0. By the time you read this book, it is possible that a different version of Qt will be
available for you to download. You can download the latest version from https://www.qt .

io.

Installing Qt 5.7.0 in Ubuntu 16.04

Throughout this chapter, I'll be using Ubuntu 16.04 OS; however, the programs that are
listed in this chapter should work on any platform that supports Qt.

For detailed installation instructions, refer to https://wiki.qt.io/install_Qt_5_on_
Ubuntu.

At this point, you should have a C++ compiler installed on your system. If this is not the
case, first ensure that you install a C++ compiler, as follows:

sudo apt—-get install build-essential

[98]

https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu

Developing GUI Applications in C++ Chapter 4

From the Ubuntu Terminal, you should be able to download Qt 5.7.0, as shown in the
following command:

wget http://download.qgt.io/official_releases/qt/5.7/5.7.0/gt-
opensource-linux-x64-5.7.0.run

Provide execute permission to the downloaded installer, as shown in the following
command:

chmod +x gt-opensource-linux-x64-5.7.0.run

I strongly recommend that you install Qt along with its source code. You
can get help directly from the source code if you prefer to look up Qt Help
the geeky way.

Launch the installer as shown in the following command:

./gqt-opensource-linux-x64-5.7.0.run

As Qt makes use of OpenGL, make sure you install the following before you start writing
your first program in Qt. To install 1ibfontconfigl, run the following command:

sudo apt-get install libfontconfigl
To install mesa-common-dev, run the following command:
sudo apt—-get install mesa-common-dev

At this point, you should have a working Qt setup. You can verify the installation by
issuing the following command in the Linux Terminal:

L] L] jegan — jegan@ubuniu: ~/MasteringC++/Chapter2/Ex] — ssh jegan@172.16.31.134 —101=7

jegan@ubuntu:~/MasteringC++/Chapter2/Ex1$ export PATH=$PATH:/home/jegan/Qt5.7.0/5.7/gcc_64/bin
jegan@ubuntu:~/MasteringC++/Chapter2/Ex1% gmake —version

QMake version 3.0

Using Qt version 5.7.8 in /home/jegan/Qt5.7.8/5.7/gcc_64/1ib
jegan@ubuntu:~/MasteringC++/Chapter2/Ex1s$ [

Figure 5.1

In case the gmake command isn't recognized, make sure you export the bin path of the Qt
installation folder, as shown in the preceding screenshot. Additionally, creating a soft link
might be useful too. The command for this is as follows:

sudo 1ln -s /home/jegan/Qt5.7.0/5.7/gcc_64/bin/gmake /usr/bin/qgmake

[99]

Developing GUI Applications in C++ Chapter 4

The path where Qt is installed on your system might vary from mine, so please substitute
the Qt path accordingly.

Qt Core

Qt Core is one of the modules supported by Qt. This module has loads of useful classes,
such as QObject, QCoreApplication, QDebug, and so on. Almost every Qt application
will require this module, hence they are linked implicitly by the Qt Framework. Every Qt
class inherits from Q0bject, and the QObject class offers event handling support to Qt
applications. Q0bject is the critical piece that supports the event handling mechanism;
interestingly, even console-based applications can support event handling in Qt.

Writing our first Qt console application

If you get a similar output to that shown in Figure 5.1, you are all set to get your hands
dirty. Let's write our first Qt application, as shown in the following screenshot:

main. cpp | buffers
1 #include <QDebug>
2
3 int main () §
4
5 qDebug() << "Hello Qt - CLI app" << endl;
6
7 B
NORMAL RN PEe]s] oo 100% : 7: 1
"main.cpp" 7L, 81C

Figure 5.2

In the first line, we have included the QDebug header from the QtCore module. If you
observe closely, the gDebug () function resembles the C++ cout ostream operator. The
gDebug () function is going to be your good friend in the Qt world while you are
debugging your code. The QDebug class has overloaded the C++ ostream operator in order
to add support for Qt data types that aren't supported by the C++ compiler.

[100]

Developing GUI Applications in C++ Chapter 4

In old school fashion, I'm kind of obsessed with the Terminal to achieve pretty much
anything while coding as opposed to using some fancy Integrated Development
Environments (IDEs). You may either love or hate this approach, which is quite natural.
The good part is there is nothing going to stand between you and Qt/C++ as you are going
to use plain and simple yet powerful text editors, such as Vim, Emacs, Sublime Text, Atom,
Brackets, or Neovim, so you will learn almost all the essentials of how Qt projects and
gmake work; IDEs make your life easy, but they hide a lot of the essential stuff that every
serious developer must know. So it's a trade-off. I leave it to you to decide whether to use
your favorite plain text editor or Qt Creator IDE or any other fancy IDE. I'm going to stick
with the refactored Vim editor called Neovim, which looks really cool. Figure 5.2 will give
you an idea of the Neovim editor's look and feel.

Let's get back to business. Let's see how to compile this code in the command line the geeky
way. Well, before that, you may want to know about the qmake tool. It is a proprietary
make utility of Qt. The gmake utility is nothing more than a make tool, but it is aware of Qt-
specific stuff so it knows about moc, signals, slots, and so on, which a typical make utility
will be unaware of.

The following command should help you create a .pro file. The name of the .pro file will
be decided by the qmake utility, based on the project folder name. The . pro file is the way
the Qt Creator IDE combines related files as a single project. Since we aren't going to use Qt
Creator, we will use the . pro file to create Makefile in order to compile our Qt project just
like a plain C++ project.

ece jegan — jegan@ubuntu: ~/MasteringC++/Chapter5/Ex1 — ssh -X -Y jegan@172.16.31.133 — 59x11

jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ 1s

main.cpp

jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ qmake -project
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ 1s

Exl.pro main.cpp
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ qmake
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ 1s

Exl.pro main.cpp Makefile
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$

Figure 5.3

[101]

Developing GUI Applications in C++

Chapter 4

When you issue the qmake -project command, qmake will scan through the current
folder and all the subfolders under the current folder and include the headers and source
files in Ex1.pro. By the way, the .pro file is a plain text file that can be opened using any
text editor, as shown in Figure 5.4:

[] [] jegan — =jMasteringC++/Chapter5/Ex1/Ex1.pro — ssh -X -¥ jegan@172.16.31.133 — 78x14
Ex1.pro [N buffers -
1 B R
2 # Automatically generated by gmake (3.@) Thu Oct 27 16:29:56 2016
3 R AR R R T R T R T R R R R A
a4
5 TEMPLATE = app
6 TARGET = Ex1
7 INCLUDEPATH += .
8
9 # Input
10 SOURCES += main.cpp
NORMAL 10% : 1: 1

Figure 5.4

Now it's time to create Makefile taking Ex1.pro as an input file. As the Ex1.pro file is
present in the current directory, we don't have to explicitly supply Ex1.pro as an input file
to autogenerate Makefile. The idea is that once we have a . pro file, all we would need to
do is generate Makefile from the .pro file issuing command: gmake. This will do all the
magic of creating a full-blown Makefile for your project that you can use to build your
project with the make utility, as shown in the following screenshot:

LN] jegan — jegan@ubuntu: ~/MasteringC++/Chapter5/Ex1 — ssh -X -Y jegan@®172.16.31.133 — 7@x12

jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ ls

Exl.pro main.cpp Makefile

jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ make

g++ —c —pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_GU
I_LIB -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.0/5.7/gcc_64/include -I../../../Qt
5.7.0/5.7/g9cc_64/include/QtGui -I../../../Qt5.7.0/5.7/gcc_64/include/QtCore -I.
-I../../../Qt5.7.0/5.7/gcc_64/mkspecs/linux-g++ —o main.o main.cpp

g++ -W1,-01 -Wl,-rpath,/home/jegan/Qt5.7.08/5.7/gcc_64/1ib -0 Ex1 main.o -L/ho

me/jegan/Qt5.7.0/5.7/gcc_64/1ib -1Qt5Gui -L/usr/1ib64 -1Qt5Core -1GL -lpthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ i

Figure 5.5

[102]

Developing GUI Applications in C++ Chapter 4

This is the point we have been waiting for, right? Yes, let's execute our first Qt Hello World
program, as shown in the following screenshot:

. [] jegan — jegan@ubuntu: ~/MasteringC++/ChapterS/Exl — ssh -X -Y jegan@172.16.31.133 — 78x12

g++ -c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_GU*
I_LIB -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.8/5.7/g9cc_64/include -I../../../Qt
5.7.8/5.7/g9cc_64/include/QtGui -I../../../Qt5.7.08/5.7/gcc_b4/include/QtCore -I.
-I../../../Qt5.7.0/5.7/g9cc_64/mkspecs/linux-g++ -0 main.o main.cpp

g++ -Wl,-01 -Wl,-rpath, /home/jegan/Qt5.7.0/5.7/gcc_64/1ib -0 Ex1 main.o -L/ho

me/jegan/Qt5.7.0/5.7/gcc_64/1ib -1Qt56Gui -L/usr/1ib64 -1Qt5Core -1GL -1lpthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ s

Ex1 Exl.pro main.cpp main.o Makefile
jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$./Ex1

Hello Qt from CLI app

jegan@ubuntu:~/MasteringC++/Chapter5/Ex1$ [J

Figure 5.6

Congratulations! You have completed your first Qt application. In this exercise, you learned
how to set up and configure Qt in Ubuntu and how to write a simple Qt console application
and then build and run it. The best part is you learned all of this from the command line.

Qt Widgets

Qt Widgets is an interesting module that supports quite a lot of widgets, such as buttons,
labels, edit, combo, list, dialog, and so on. QwWidget is the base class of all of the widgets,
while QObject is the base class of pretty much every Qt class. While many programming
languages refer to as UI controls, Qt refers to them as widgets. Though Qt works on many
platforms, its home remains Linux; widgets are common in the Linux world.

Writing our first Qt GUI application

Our first console application is really cool, isn't it? Let's continue exploring further. This
time, let's write a simple GUI-based Hello World program. The procedure will remain
almost the same, except for some minor changes in main. cpp. Refer to the following for the
complete code:

[103]

Developing GUI Applications in C++ Chapter 4

® e jegan — ~MasteringC++/ChapterS/Ex2imain.cpp — ssh -X -Y jegan@172.16.31.133 — 10831
main..c.pp | b ffers ~
e
3

&

4 = Filename: main.cpp

5 %

6 * Description: This is a simple Hello Wold GUI app in Qt.
F

B x Version: 1.8

9 * Created: 10/15/2016 11:41:39 PM

10 * Revision: none

11 * Compiler: gcc

12 *

13 = Author: Jeganathan Swaminathan <jegan@tektutor.org>
14 % Organization: TekTutor <www.tektutor.org=>

15 *

16 =* — — —
17 %

18 #include <QApplication=
19 #include <QWidget=>

21 int main (int argc, char #kargv) {

22

23 QApplication theApp (argc,argv);

24

25 QWidget myWindow;

26 myWindow.setWindowTitle ("Hello Qt, my first GUI application");
27 myWindow.show();

28

29 return theApp.exec();

30 }

main() < c 93% : 28/30 : 1

Figure 5.7

Wait a minute. Let me explain the need for QApplication in line number 23 and line
number 29. Every Qt GUI application must have exactly one instance of the QApplication
instance. QApplication provides support for command-line switches for our application,
hence the need to supply the argument count (argc) and the argument value (argv). GUI-
based applications are event-driven, so they must respond to events or, to be precise,
signals in the Qt world. In line number 29, the exec function starts the event loop, which
ensures the application waits for user interactions until the user closes the window. The
idea is that all the user events will be received by the QApplication instance in an event
queue, which will then be notified to its Child widgets. The event queue ensures all the
events deposited in the queue are handled in the same sequence that they occur, that is,
first in, first out (FIFO).

In case you are curious to check what would happen if you comment line 29, the application
will still compile and run but you may not see any window. The reason being the main
thread or the main function creates an instance of QWidget in line number 25, which is the
window that we see when we launch the application.

[104]

Developing GUI Applications in C++

Chapter 4

In line number 27, the window instance is displayed, but in the absence of line number 29,
the main function will terminate the application immediately without giving a chance for
you to check your first Qt GUI application. It's worth trying, so go ahead and see what
happens with and without line number 29.

Let's generate Makefile, as shown in the following screenshot:

® [jegan — jegan@ubuntu: ~/MasteringC++/Chapter5/Ex2 — ssh -X -Y jegan@172.16.31.133 — 64x9
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ 1s
main.cpp

jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ qmake —project
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ ls

Ex2.pro main.cpp
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ qmake
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ 1s

Ex2.pro main.cpp Makefile
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$

Figure 5.8

Now let's try to compile our project with the make utility, as shown in the following

screenshot:

jegan — jegan@ubuntu: ~MasteringC++/Chapters/Ex2 — ssh -X -Y jegan@172.16.31.133 — 87=10

jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ make
g++ —c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT —-fPIC -DQT_NO_DEBUG -DQT_GUI_LIB -D
QT_CORE_LIB -I. -I. -I../../../Qt5.7.0/5.7/gcc_64/include -I../../../Qt5.7.0/5.7/gcc_64
/include/QtGui -I../../../Qt5.7.8/5.7/9cc_64/include/QtCore -I. -I../../../Qt5.7.0/5.7/
gcc_64/mkspecs/linux-g++ —o main.o main.cpp

main.cpp:18:24: fatal error: QApplication: No such file or directory
compilation terminated.

Makefile:562: recipe for target 'main.o' failed

make: sk [main.o] Error 1

jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ |

Figure 5.9

Interesting, right? Our brand new Qt GUI program fails to compile. Did you notice the fatal
error? No big deal; let's understand why this happened. The reason is that we have not yet
linked the Qt Widgets module, as the QApplication class is part of the Qt Widgets
module. In that case, you may wonder how your first Hello World program compiled
without any issue. In our first program, the QDebug class was part of the QtCore module
that got linked implicitly, whereas other modules had to be linked explicitly. Let's see how

to get this done:

[105]

Developing GUI Applications in C++ Chapter 4

buffers *

Ex2.pro
1

Automatically generated by gmake (3.8) Thu Oct 27 17:85:22 2016

W HH T T T

TARGET = Ex2
INCLUDEPATH += .

9]1QT += widgets
10

11 # Input
12 SOURCES += main.cpp

2
2
4
5 TEMPLATE = app
6
7
8

B3% : 18/12 : 1

"Ex2.pro

12L, 298C written

Figure 5.10

We need to add 0T += widgets to the Ex2.pro file so that the gmake utility understands
that it needs to link Qt Widgets's shared object (the . so file) in Linux, also known as

the Dynamic Link Library (the . d11 file) in Windows, while creating the final executable.
Once this is taken care of, we must gmake so that Makefile could reflect the new change in
our Ex2 .pro file, as demonstrated in the following screenshot:

® L] jegan — jegan@ubuntu: ~MasteringC++/Chapter5/Ex2 — ssh -X -¥ jegan®172.16.31.133 — 87=11
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ qmake
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2% make

g++ —c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LI
B -DQT_GUI_LIB -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.@/5.7/g9cc_64/include -I../../../Q
t5.7.0/5.7/gcc_64/include/QtWidgets -I../../../Qt5.7.0/5.7/gcc_64/include/QtGui -I../..
/../Qt5.7.0/5.7/gcc_64/include/QtCore -I. -I../../../Qt5.7.08/5.7/gcc_64/mkspecs/linux—g
++ -0 main.o main.cpp

g++ -W1,-01 -Wl,-rpath,/home/jegan/Qt5.7.0/5.7/gcc_64/1ib -0 Ex2 main.o -L/home/jegan
/Qt5.7.0/5.7/gcc_64/1ib -1Qt5Widgets -L/usr/1ib64 -1Qt5Gui -1Qt5Core -1GL -1lpthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ i

Figure 5.11

[106]

Developing GUI Applications in C++ Chapter 4

Cool. Let's check our first GUI-based Qt app now. In my system, the application output
looks as shown in Figure 5.12; you should get a similar output as well if all goes well at your
end:

jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$ ls =
Ex2 Ex2.pro main.cpp main.o Makefile
jegan@ubuntu:~/MasteringC++/Chapter5/Ex2$./Ex2

eoe N Ex2

Figure 5.12

It would be nice if we set the title of our window as Hello Ot, right? Let's do this right
away:

main. cop | 6 fers |
5 =%
6 * Description: This is a simple Hello Wold GUI app in Qt.
T *
8 *x Version: 1.8
9 Created: 10/15/2016 11:41:39 PM
10 = Revision: none
11 =* Compiler: gcc
12 =
13 % Author: Jeganathan Swaminathan <jegan@tektutor.org>
14 % Organization: TekTutor <www.tektutor.org>
15 =*
16 =*
17 *x/

18 #include <QApplication=>
19 #include <QWidget>

20

21 int main (int argc, char sxkargv) {

22

23 QApplication theApp (argc,argv);

24

25 QWidget myWindow;

26 myWindow.setWindowTitle ("Hello Qt, my first GUI application");
27 myWindow.show();

28

29 return theApp.exec();

> main.cpp IRl 87% : 28/32 : 1 <[NEraiving

Figure 5.13

[107]

Developing GUI Applications in C++ Chapter 4

Add the code presented at line number 26 to ensure you build your project with the make
utility before you test your new change:

[NN] %/ Hello Qt, my first GUI application

Figure 5.14

Layouts

Qt is cross-platform application framework, hence it supports concepts such as layouts for
developing applications that look consistent in all platforms, irrespective of the different
screen resolutions. When we develop GUI/HMI-based Qt applications, an application
developed in one system shouldn't appear different on another system with a different
screen size and resolution. This is achieved in the Qt Framework via layouts. Layouts come
in different flavors. This helps a developer design a professional-looking HMI/GUI by
organizing various widgets within a window or dialog. Layouts differ in the way they
arrange their child widgets. While one arranges its child widgets in a horizontal fashion,
another will arrange them in a vertical or grid fashion. When a window or dialog gets
resized, the layouts resize their child widgets so they don't get truncated or go out of focus.

[108]

Developing GUI Applications in C++ Chapter 4

Writing a GUI application with a horizontal layout

Let's write a Qt application that has a couple of buttons in the dialog. Qt supports a variety
of useful layout managers that act as an invisible canvas where many QwWidgets can be
arranged before they are attached to a window or dialog. Each dialog or window can have
only one layout. Every widget can be added to only one layout; however, many layouts can
be combined to design a professional Ul.

Let's start writing the code now. In this project, we are going to write code in a modular
fashion, hence we are going to create three files with the names MyD1g.h, MyD1lg. cpp, and
main.cpp.

The game plan is as follows:

Create a single instance of QApplication.

Create a custom dialog by inheriting gDialog.

Create three buttons.

Create a horizontal box layout.

Add the three buttons to the invisible horizontal box layout.
Set the horizontal box layout's instance as our dialog's layout.
Show the dialog.

Start the event loop on QApplication.

PN

It is important that we follow clean code practices so that our code is easy to understand
and can be maintained by anyone. As we are going to follow industry best practices, let's
declare the dialog in a header file called MyD1g.h, define the dialog in the source file called
MyDlg.cpp, and use MyD1g.cpp in main.cpp that has the main function. Every

time MyD1g. cpp requires a header file, let's make it a practice to include all the headers
only in MyD1g. h; with this, the only header we will see in MyD1g. cpp is MyD1g.h.

By the way, did I tell you Qt follows the camel casing coding convention? Yes, I did
mention it right now. By now, you will have observed that all Qt classes start with the letter
Q because Qt inventors loved the letter "Q" in Emacs and they were so obsessed with that
font type that they decided to use the letter Q everywhere in Qt.

One last suggestion. Wouldn't it be easy for others to locate the dialog class if the name of
the file and the name of the class were similar? I can hear you say yes. All set! Let's start
coding our Qt application. First, refer to the following screenshot:

[109]

Developing GUI Applications in C++

Chapter 4

19 #include <QDialog>
20 #include <QHBoxLayout>
21 #include <QPushButton>

23 class MyDlg : public QDialog {
24 private:

25 QPushButton xpBttnl, *pBttn2, *xpBttn3;
26 QHBoxLayout *plLayout;

27 public:

28 MyDlg();

& 108% : 30/30 :

[THyD . 1 I 17 15 | |

4 * Filename: MyDlg.h

5 %

6 * Description: Simple Qt application with QDialog, QPushButton and QHBoxLayout
7 *

8 * Version: 1.0

9 x Created: 10/16/2016 05:08:21 AM
10 * Revision: none
11 * Compiler: gcc
12 *

13 % Author: Jeganathan Swaminathan <jegan@tektutor.org>
14 % Organization: TekTutor <www.tektutur.nrg>l
15 %
16 *
17 %/

10t trailin. |

Figure 5.15

In the preceding screenshot, we declared a class with the name MyD1g. It has one layout,

three buttons, and a constructor. Now refer to this screenshot:

[IEEICIN vy ta. oo | ©oufers |
7 *
8 *x Version: 1.9
9 * Created: 10/16/2016 ©5:11:17 AM
18 x Revision: none
11 % Compiler: gcc
12 *
13 * Author: Jeganathan Swaminathan <jegan@tektutor.org>
14 * Organization: TekTutor <www.tektutor.org>
15 *
16 *
17 %/
18 #include "MyDlg.h"
19
20 MyDlg::MyDlg() {
21 pLayout = new QHBoxLayout(this);
22
23 pBttnl = new QPushButton ("Button 1");
24 pBttn2 = new QPushButton ("Button 2");
25 pBttn3 = new QPushButton ("Button 3");
26
27 pLayout->addwidget (pBttnl);
28 pLayout—>addW (pBttn2);
29 pLayout->addwidget (pBttn3);
30
31 setLayout (pLayout);
B 100% : 33/33 : 1 <[iErailEnm

Figure 5.16

[110]

Developing GUI Applications in C++

Chapter 4

As you can see in the preceding screenshot, we defined the MyD1g constructor and
instantiated the layout and the three buttons. In lines 27 through 29, we added three buttons
to the layout. In line number 31, we associated the layout to our dialog. That's all it takes. In
the following screenshot, we defined our main function, which creates an instance

of QApplication:

18 #include <QApplication>
19 #include "MyD1g.h"

MyD1lg. cpp main.cpp E buffers °
3 %
4 x Filename: main.cpp
5 =%
6 * Description: Simple Qt application with QDialog, QPushButton and QHBoxLayout
7 %
8 * Version: 1.0
9 * Created: 10/16/2016 05:18:27 AM
10 * Revision: none
11 * Compiler: gcc
12 *
13 % Author: Jeganathan Swaminathan <jegan@tektutor.org>
14 * Organization: TekTutor <www.tektutor.org>
15 =*
16 x =
17 */

20

21 int main (int argc, char sekargv) {

22 QApplication theApp (argc, argv);
23

24 MyDlg dlg;

25 dlg.show();

26

27 return theApp.exec();

28 }

29 i

L[LULYSY- main.cpp IO CIIR: 100% : 29/29 :

1t trailin.

Figure 5.17

We followed this up by creating our custom dialog instance and displaying the dialog.
Finally, at line 27, we started the event loop so that MyD1g could respond to user

interactions. Refer to the following screenshot:

[111]

Developing GUI Applications in C++ Chapter 4

jegan@ubuntu:~/MasteringC++/Chapter2/Ex3% gmake —-project |°®
jegan@ubuntu:~/MasteringC++/Chapter2/Ex3% vim Ex3.pro
UltiSnips requires py >= 2.7 or py3

Press ENTER or type command to continue
jegan@ubuntu:~/MasteringC++/Chapter2/Ex3% gmake
jegan@ubuntu:~/MasteringC++/Chapter2/Ex3% s

Ex3.pro main.cpp Makefile MyDlg.cpp MyDlg.h
jegan@ubuntu:i~/MasteringC++/Chapter2/Ex3% make

g++ —-c —-pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC
-DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB
-I. -I. -I../../../0t5.7.8/5.7/gcc_b64/include -I../../../Q
t5.7.8/5.7/g9cc_64/include/QtWidgets -I../../../0t5.7.8/5.7

/gci® % Exd F”ﬁ
e/Q r'g
++ 1

g++ Button 1 Button 2 Button 3 IIC
-DQ’ IB

-I. ey 7 gre—uey . /Q
t5.7.8/5.7/gcc_64/include/QtWidgets -I../../../0t5.7.8/5.7
/gcc_64/include/QtGui -I../../../0t5.7.8/5.7/gcc_64/includ
e/QtCore -I. -I../../../Qt5.7.8/5.7/g9cc_64/mkspecs/Linux-g
++ -0 MyDlg.o MyDlg.cpp

g++ -W1,-01 -Wl,-rpath,/home/jegan/Qt5.7.08/5.7/g9cc_64/1ib

-0 Ex3 main.o MyDlg.o -L/home/jegan/Qt5.7.8/5.7/g9cc_64/1
ib -10t5Widgets -L/usr/lib64 -10t5Gui -1Qt5Core -1GL -1lpth
read

jegan@ubuntu:~/MasteringC++/Chapter2/Ex3% ./Ex3

Figure 5.18

The preceding screenshot demonstrates the build and execution procedures, and there is
our cute application. Actually, you can try playing with the dialog to understand the
horizontal layout better. First, stretch the dialog horizontally and notice all the buttons'
width increase; then, see whether you can reduce the dialog's width to notice all the
buttons' width decrease. That's the job of any layout manager. A layout manager arranges
widgets and retrieves the size of the window and divides the height and width equally
among all its child widgets. Layout managers keep notifying all their child widgets about
any resize events. However, it is up to the respective child widget to decide whether they
want to resize themselves or ignore the layout resize signals.

To check this behavior, try stretching out the dialog vertically. As you increase the height of
the dialog, the dialog's height should increase, but the buttons will not increase their height.
This is because every Qt Widget has its own preferred size policy; as per their size policy,
they may respond or ignore certain layout resize signals.

[112]

Developing GUI Applications in C++ Chapter 4

If you want the buttons to stretch vertically as well, QPushBut t on offers a way to get this
done. In fact, QpushButton extends from Qwidget just like any other widget. The
setSizePolicy () method comes to QPushButton from its base class, that is, QWidget:

—Adashoinge IChapamEX YAoKy o0 — h - Jgee@ T2 131133 eganubentu: /015 7.0/8.7jgce B45in — a5 ¥ fogan@172 1831133 ;
‘wblg-cpn ™ Duffers -~

14 =*% Organization: TekTutor <www.tektutor.org=>

15 =%

16 =*

17 =/

18 #include "MyDlg.h"

19

20 MyDlg::MyDlg() {

21 pLayout = new QHBoxLayout(this);

22

23 pBttnl = new QPushButton ("Button 1");

24 pBttn2 = new QPushButton ("Button 2");

25 pBttn3 = new QPushButton ("Button 3");

26

27 pBttnl->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);

28 pBttn2->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);

29 pBttn3->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);

38

31 pLayout-=addwidget (pBttnl);

32 pLayout->addwidget (pBttn2);

33 pLayout-»addWidget (pBttn3);

34

35 setLayout (pLayout);

36

37 setWindowTitle ("Horizontal Box Layout");

> MyDlg.cpp G MECIULER M 89% : 35/39 : 8 <[JINtraitine

Figure 5.19

Did you notice line number 37? Yes, I have set the window title within the constructor of
MyD1lg to keep our main function compact and clean.

Make sure you have built your project using the make utility before launching your
application:

[] | Horizontal Box Layout

Button 1 Button 2 Button 3

Figure 5.20

[113]

Developing GUI Applications in C++ Chapter 4

In the highlighted section, we have overridden the default size policy of all the buttons. In
line number 27, the first parameter QSizePolicy: :Expanding refers to the horizontal
policy and the second parameter refers to the vertical policy. To find other possible values

of 0sizePolicy, refer to the assistant that comes in handy with the Qt API reference, as
shown in the following screenshot:

- — jegan@ubuntu; ~{MasteringC++/Chapter2/Exd — ssh -¥ jegan@172.16.31133

R T T T T
egan@ubuntu:~/Qt5.7.0/5.7/gcc_64/bin$ 1s

assistant moc ghelpconverter gmlplugindump rcc
canbusutil pixeltool ghelpgenerator gqmlprofiler sdpscanner
designer gcollectiongenerator qlalr gmlscene syncqt.pl
fixqt4headers.pl qdbus qmake gmltestrunner uic
lconvert gqdbuscpp2xml gml gscxmlc xmlpatterns
licheck64 qdbusviewer gmleasing qt.conf xmlpatternsvalidator

% Ot Assistant
File Edit View Go Bookmarks Help
~)
s O 24 & 8§

con... . Book... | Se.. enum QsizePolicy::Policy a
Indiax 3 This enum describes the various per-dimension sizing types used when constructing a 0SizePalicy,
Look for:

Constant Value Description

20 Painting Example - The OWidg reHintl) is the only acceptable alternative, so the widget can

40000 Chips never groi nk (e.q. the vertical direction of & push button).

<gdrawutil. h> - Drawing Utility... . .

<QLalgonthms> - Genenic Alga... The sizeHint(} is minimal. and sufficient. The widget can be expanded. but
<QtEndianz - Endian Conversi... there is no advantage to it being larger (e.g. the harizantal direction of a push
<QtGlobal> - Global Qt Declar... button, It cannot be smaller than the size provided by sizeHinti)

<GtMath= - Generic Math Func... . . .
<QtPluginz - Defining Flugins 0SizePolicy: tHaxlms inkFlag The sizeHintl} is a maxmum. The widget can be shrunk any amount withaut

device datriment if other widgets need the space (e.g. a separatar line), it cannat be
Ttarget largar than the size provided by sizeHinti]
_touchPaints

touchPaintStates vi1 wFla hrinkFlag The sizeHintl} is best. but the widget can be shrunk and still be wseful, The

aw widget can be expanded, but there is no advantage to it being larger than
2 = sizeMint(] {the default OWidget policy).
Open Pages B 4zefiol ey Expandion rowfiag | Shrinklisg
Q5izePolicy Class | Ot Widgets 5.7

The sizeHinti} is a sensible size. but the widget can be shrunk and still be
useful. The widget can make use of extra space, so it should get as much
space as possible (e.g. the horizontal direction of a horizontal slider).

The sizeHintl} is minimal. and sufficient. The widget can make use of extra
space, 50 it should get as much space as possible (e.g, the horizontal direction
of a harizantal slider),

The sizeHinti} is ignared, The widget will get as much space as passible,
See also PolicyTlag

orizontalPolicyl), and setverticalPolicy)

Figure 5.21

Writing a GUI application with a vertical layout

In the previous section, you learned how to use a horizontal box layout. In this section, you
will see how to use a vertical box layout in your application.

As a matter of fact, the horizontal and vertical box layouts vary only in terms of how they
arrange the widgets. For instance, the horizontal box layout will arrange its child widgets in

a horizontal fashion from left to right, whereas the vertical box layout will arrange its child
widgets in a vertical fashion from top to bottom.

[114]

Developing GUI Applications in C++

Chapter 4

You can copy the source code from the previous section, as the changes are minor in nature.

Once you have copied the code, your project directory should look as follows:

L] @ jegan — jegan@ubuntu: ~/MasteringC++/Chapter5/Exd — ssh -X -¥ jegan@172.16.31.133 — B2=13

jegan@ubuntu:~/MasteringC++/Chapter5/Ex4$ tree
main.cpp
MyDlg.cpp
MyDlg.h

@ directories, 3 files
jegan@ubuntu:~/MasteringC++/Chapter5/Ex4%

Figure 5.22

Let me demonstrate the changes starting from the MyD1g. h header file, as follows:

o0 e jegan — ~{MasteringC++/ChapterS/Ex4/MyDig.h — ssh -X -¥ jegan@172.16.31133 — 110223
MyD1lg.h
12 =
13
14
15
16
17
18
19_gtinclude <QDialog>
s netue Qo avor)

21 #include <QPushButton>

Author: Jeganathan Swaminathan <jegan@tektutor.org>
Organization: TekTutor <www.tektutor.org>

* KK XX

/

23 class MyDlg : public QDialog {
24 private:

25 pBttn2, *pBttn3;
26 QVBoxLayout *plLayout;

27 public?t

93% : 29/31 : 28

buffers

Figure 5.23

[115]

Developing GUI Applications in C++

Chapter 4

I'have replaced gHBoxLayout with QVBoxLayout; that is all. Yes, let's proceed with file
changes related to MyD1g. cpp:

19
20
24l
22
23
24
25
26
27
28
29
30
31
=2
=g
34
=B
36
B
38

MyD1lg::

MyD1lg.cpp
18 #include "MyDlg.h"

MyDlg{} {

pLayout = new QVBoxLayout(this); |

s

pBttnl = new QPushButton (“Button 1");
pBttn2 = new QPushButton ("Button 2");
pBttn3 = new QPushButton ("Button 3");

pBttnl->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);
pBttn2->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);
pBttn3->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);
pLayout->addWidget (pBttnl);
pLayout->addWidget (pBttn2);
pLayout->addWidget (pBttn3);

setLayout (pLayout);

Iselw;wdow'itle ("Vertical Box Layout");l

Figure 5.24

There are no changes to be done in main. cpp; however, I have shown main. cpp for your
reference, as follows:

int

#include <QApplication>
#include "MyD1lg.h"

main (int argc, char xkargv) {
QApplication::setColorSpec(QApplication::ManyColor);
QApplication theApp (argc, argv);

MyDlg dlg;
dlg.show();

return theApp.exec();

Figure 5.25

[116]

Developing GUI Applications in C++ Chapter 4

Now all we need to do is autogenerate Makefile and then make and run the program as
follows:

- [] jegan — jegan@ubuntu: ~MasteringC++/ChaplerS/Exd — ssh -X -Y jegan@172.16.31.133 — 10«25
jegan@ubuntui~/MasteringC++/Chapter5/Ex4% 1s

main.cpp MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Ex4% gmake —project

jegan@ubuntu:~/MasteringC++/Chapter5/Ex4% 1s

Ex4.pro main.cpp MyDlg.cpp MyDlg.h

jegan@ubuntui~/MasteringC++/Chapter5/Ex4$ vim Ex4.pro

UltiSnips requires py == 2.7 or py3

Press ENTER or type command to continue

jegan@ubuntu:~/MasteringC++/Chapter5/Ex4% 1s

Exd4.pro main.cpp MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Exd4$ gmake

jegan@ubuntu:i~/MasteringC++/Chapter5/Ex4$ 1s

Ex4.pro main.cpp Makefile MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Ex4% make

g++ —c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_COR
E_LIB -I. -I. -I../../../0t5.7.98/5.7/gcc_64/include -I../../../Qt5.7.8/5.7/gcc_64/include/QtWidgets -I../../..
/Qt5.7.8/5.7/gcc_64/include/QtGui -I../../../Qt5.7.08/5.7/9cc_64/include/QtCore -I. -I../../../Qt5.7.0/5.7/gcc_
64/mkspecs/Llinux-g++ -0 main.o main.cpp

g++ -¢ -pipe -02 -std=gnu++11 -Wall -W —-D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_COR
E LIB -I. -I. -I../../../0Qt5.7.8/5.7/gcc_64/include -I../../../Qt5.7.8/5.7/gcc_64/include/QtWidgets -I../../..
/0t5.7.98/5.7/gcc_64/include/QtGui -I../../../0Qt5.7.8/5.7/gcc_64/include/QtCore -I. -I../../../Qt5.7.8/5.7/gcc_
64/mkspecs/linux-g++ -o MyDlg.o MyDlg.cpp

g++ -Wl,-01 -Wl,-rpath,/home/jegan/Qt5.7.08/5.7/gcc_64/1ib -0 Ex4 main.o MyDlg.o -L/home/jegan/Qt5.7.0/5.7/gc
c_64/1ib -10t5Widgets -L/usr/1ib64 -10t56ui -1Qt5Core -16L -lpthread

jegan@ubuntu:~/MasteringC++/Chapter5/Ex4$ I

Figure 5.26

Let's execute our brand new program and check the output. The following output
demonstrates that QVBoxLayout arranges the widgets in a vertical top to bottom fashion.
When the window is stretched, all the buttons' width will increase/decrease depending on
whether the window is stretched out or stretched in:

O |%| Vertical Box Layout

Button 1

Button 2

Button 3

Figure 5.27

[117]

Developing GUI Applications in C++ Chapter 4

Writing a GUI application with a box layout

In the previous sections, you learned how to make use of QHBoxLayout and QVBoxLayout.
Actually, these two classes are the convenience classes for QBoxLayout. In the case of
QHBoxLayout, the QHBoxLayout class has subclassed 9BoxLayout and configured
QBoxLayout: :Direction to QBoxLayout: : LeftToRight, whereas the QVBoxLayout
class has subclassed 0BoxLayout and configured

QBoxLayout::Direction to QBoxLayout: :TopToBottom.

Apart from these values, QBoxLayout : :Direction supports various other values, as
follows:

e OBoxLayout::LeftToRight: This arranges the widgets from left to right
® OBoxLayout: :RightToLeft: This arranges the widgets from right to left
® OBoxLayout: : TopToBottom: This arranges the widgets from top to bottom
® OBoxLayout: :BottomToTop: This arranges the widgets from bottom to top

Let's write a simple program using QBoxLayout with five buttons.

Let's start with the MyD1g.h header file. I have declared five button pointers in the MyD1g
class and a 9BoxLayout pointer:

eoe

WYDIG h— coh Y jegun@17276 31133 — 0425
At A GO — 88 Y. P : - e SRSl — o Vivaen
MyD g . | b fers
8 * Version: 1.0

Created: 16/16/2016 05:08:21 AM
Revision: none
Compiler: gcc

10

Author: Jeganathan Swaminathan <jegan@tektutor.org>
Organization: TekTutor <www.tektutor.org>|

)
R KK KKK K ¥

&

19 #include <QDialog>
20 #include <QBoxLayout>
21 #include <QPushButton>

23 class MyDlg : public QDialog {
24 private:

25 QPushButton *pBttnl, *pBttn2, xpBttn3, *pBttn4, xpBttn5;
26 QBoxLayout *plLayout;

27 public:

28 MyDlg();

B 100% : 30/30 : 1 <[NEraIvEGEN

Figure 5.28

Let's take a look at our MyD1g. cpp source file. If you notice line number 21 in the following
screenshot, the QBoxLayout constructor takes two arguments. The first argument is the
direction in which you wish to arrange the widgets and the second argument is an optional
argument that expects the parent address of the layout instance.

[118]

Developing GUI Applications in C++ Chapter 4

As you may have guessed, the this pointer refers to the MyD1g instance pointer, which
happens to be the parent of the layout.

a0 e jegan — ~/MasieringC+ +/Chapler/ExS MyDlg.cpp — ssh - jegan®172:16:31.133 — 10B=30
oo | e oun = —Phstateg e+ CRagers D30 — s Yioas- |
MyD1g. cpp buffers
18 #include "MyDlg.h"

19

20 MyD1g::MyD1g() {

21 pLayout = new (BoxLayout(QBoxLayout::LeftToRight, this);

22

23 pBttnl = new QPushButton ("Button 1");

24 pBttn2 = new QPushButton (“Button 2");

25 pBttn3 = new QPushButton ("Button 3");

26 pBttnd = new QPu tton ("Button 4");

27 pBttn5 = new QPushButton ("Button 5");

28

29 pBttnl->setSizePolicy (QSizePolicy::Expanding, D]

30 pBttn2->setSizePolicy (QSizePolicy::Expanding, M

31 pBttn3->setSizePolicy (QSizePolic)

32 pBttnd—>setSizePolicy (QSizePolic:)i

33 pBttnS->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);

34

35 pLayout->add t (pBttnl);

36 pLayout—>add t (pBttn2);

37 pLayout->a t (pBttn3);

38 pLayout->add t (pBttn4);

39 fpLayout->addWidget (pBttnS);

40

41 setlayout (pLayout);

42

43 setWindowTitle ("Box Layout");

44 }

Figure 5.29

Again, as you may have guessed, the main. cpp file isn't going to change from our past
exercises, as shown in the following screenshot:

o0 e jegan
Jogan@ubunt~astaingCroiChapier2Eh — soh 1.. |
g PRI main.cpp

lasteringCe +/Chapter5/Ex5/main.cpp — ssh -Y jegan@172.16.31.133 — 108x30
— ssh ¥ jogan.. - ~Maste

3 %

4 Filename: main.cpp

5 *

6 * Description: Simple Qt application with QDialog, QPushButten and QBoxLayout
7 *

8 * Version: 1.0

9 =* Created: 10/16/2016 05:18:27 AM

10 * Revision: none

11 = Compiler: gcc

12 x

13 =% Author: Jeganathan Swaminathan <jegan@tektutor.org>
14 x Organization: TekTutor <www.tektutor.org>

15 %

16 *

17 *x/
18 #include <QApplication>
19 #include "MyD1lg.h"

20

21 int main (int argc, char skargv) {

22 QApplication theApp (argc, argv);
23

24 MyDlg dlg;

25 dlg.show();

26

27 return theApp.exec();

28 z

Figure 5.30

[119]

Developing GUI Applications in C++ Chapter 4

Let's compile and run our program, as follows:

oganBubutu: ~MasteringC + + [Chagterd/Exd — ssh ¥, jegan@uburtu: ~[015.7.0/5.7jgee_B47bin — sk ¥ jogan - ogan@uburtu: ~/MasteringC e - [CRIpH
jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% 1s

main.cpp MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% gqmake -project

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% 1s

Ex5.pro main.cpp MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% vim Ex5.pro

UltiSnips requires py >= 2.7 or py3

Press ENTER or type command to continue

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% 1s

Ex5.pro main.cpp MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% gqmake

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% s

Ex5.pro main.cpp Makefile MyDlg.cpp MyDlg.h

jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% make

g++ —C -pipe -02 -std=gnu++11 -Wall -W —D_REENTRANT —fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_C
ORE_LIB -I. -I. -I../../../Qt5.7.8/5.7/gcc_64/include -I../../../Qt5.7.0/5.7/gcc_64/include/QtWidgets -I../.
/. /Qt5.7.0/5.7/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/g9cc_64/include/QtCore -I. -I../../../Qt5.7.0/5.
7/g9cc_64/mkspecs/linux—g++ -0 main.o main.cpp

g++ —c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT —fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_C
ORE_LIB -I. -I. -I../../../0t5.7.8/5.7/gcc_64/include -I../../../Qt5.7.0/5.7/gcc_64/include/QtWidgets -I../.
+/+./Qt5.7.0/5.7/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/g9cc_64/include/QtCore -I. -I../../../Qt5.7.0/5.
7/gcc_64/mkspecs/linux-g++ -o MyDlg.o MyDlg.cpp

g++ -W1,-01 -Wl,-rpath,/home/jegan/Qt5.7.8/5.7/gcc_64/1ib -0 Ex5 main.o MyDlg.c -L/home/jegan/Qt5.7.0/5.7/
gce_64/1ib -1Qt5wWidgets -L/usr/1ib64 -1Qt5Gui -1Qt5Core -1GL -1pthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex5% ./Ex5

L] N/ Bax Layout

Button 1 Butten 2 Butten 3 Button 4 Butten 5

Figure 5.31

If you notice the output, it looks like a horizontal box layout output, right? Exactly, because
we have set the direction to QBoxLayout : : Left ToRight. If you modify the direction to,
say, QBoxLayout : : RightToLeft, then Button 1 would appear on the right-hand side,
Button 2 would appear on the left-hand side of Button 1, and so on. Hence, the output
would look as shown in the following screenshot:

e If the direction is set to QBoxLayout: :RightToLeft, you'll see the following
output:

[]) Box Layout

Button 5 Button 4 Button 3 Button 2 Button 1

Figure 5.32

[120]

Developing GUI Applications in C++ Chapter 4

e If the direction is set to QBoxLayout : : TopToBottom, you'll see the following
output:

1] % Box Layout

Button 1

Button 2

Button 3

Button 4

Button 5

Figure 5.33

e If the direction is set to QBoxLayout : : BottomToTop, you'll see the following
output:

9] % | Box Layout

Button 5

Button 4

Button 3

Button 2

Button 1

Figure 5.34

In all the preceding scenarios, the buttons are added to the layout exactly in the same
sequence, starting from Button 1 through Button 5, respectively. However, depending on
the direction chosen in the 9QBoxLayout constructor, the box layout will arrange the
buttons, hence the difference in the output.

[121]

Developing GUI Applications in C++ Chapter 4

Writing a GUI application with a grid layout

A grid layout allows us to arrange widgets in a tabular fashion. It is quite easy, just like a
box layout. All we need to do is indicate the row and column where each widget must be
added to the layout. As the row and column index starts from a zero-based index, the value
of row 0 indicates the first row and the value of column 0 indicates the first column. Enough
of theory; let's start writing some code.

Let's declare 10 buttons and add them in two rows and five columns. Other than the
specific QGridLayout differences, the rest of the stuff will remain the same as the previous
exercises, so go ahead and create MyD1g.h, MyD1.cpp, and main.cpp if you have
understood the concepts discussed so far.

Let me present the MyD1g. h source code in the following screenshot:

L N jesgan — ~[MasteringC++/Chapter5/Ex/MyDig.h — ssh -Y jegan@172.16.31.133 — 128x36
Fegan@ubuntu: ~MasteringC+ JE: sgh Y. jepan@ubuntu: ~/0t5. T0JS Tigee_BLMbin — ssh ¥ jegan... -

4 Filename: MyDlg.h
5 %
6 % Description: Simple Qt application with QDialog, QPushButten and QGridLayout
7 *
8 = Version: 1.8
9 * Created: 18/16/2016 @5:08:21 AM
18 =* Revision: none
11 = Compiler: gcc
12 =*
13 =* Author: Jeganathan Swaminathan =jegan@tektutor.org>
14 * Organization: TekTutor <www.tektutor.org
15 =*
16 * se=ssssssss=sss=ssssssssssssssssssssssss=s ====s======= se=ss=ssss==s
17 =/
18
B 19 #include <QDialog>

20 #include <QGridLayout>
21 #include <QPushButton>

23 class MyDlg : public QDialog {

24 private:

23 QPushButton =pBttnl, =pBttn2, =pBttn3, =pBttnd, =pBttn5;
6 QPushButton =pBttn6, =pBttn7, =pBttn8, =pBttn9, =pBttnld;

QGridLayout =pLayout;

28 publie:
MyDlg();

30)

Figure 5.35

[122]

Developing GUI Applications in C++

Chapter 4

The following is the code snippet of MyD1g. cpp:

j6QAN@UDUNIY; ~MaSeringC++/ChIPLEr2iExs — 53h -Y...

LM, MyDlg.cpp

19

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

20 MyDlg:
21

18 #include “MyDlg.h"

:MyDlg() {
pLayout = idLayout(th
pBttnl = ton ("
pBttn2 = n
pBttn3 =
pBttnd =
pBttn5 =
pBttné = ton (
pBttn7 = n ("
pBttn8 = ("
pBttn9 = new C (&
pBttn1® = new QPushButton (
pLayout->. t (pBttnl,
pLayout—>. t (pBttn2,
pLayout—>. t (pBttn3,
pLayout—>. t (pBttn4,
pLayout—> t (pBttn5,
pLayout->z t (pBttn6,
pLayout—> t (pBttn7,
pLayout—>. t (pBttn8,
pLayout—> t (pBttn9,
pLayout—> t (pBttnl@
etLayout (pLayout);

Jegan — ~/MasteringC++/Chapter 5/EXG/MyDIg.cpp — 58h -Y jegan@172.16.

is);

Button

"Button
"Button
"Button
"Button

"Button

Button
Button
Button

"Button

[}
1
0, 2
3
4

-
AWNRS

. L

Figure 5.36

)i //First
)i //First
); //First
)i //First

);

)
)
) .
)
)

1
2"
3m
4
5

6
7) ;s
8
9

H

10");

//First row,

//Second
//Second
//Second

3 //Second

//Second

row,
row,
row,
row,

jegan@ubuntu: ~/QI5.7.0/5.7/g6C.64/bin — 33h Y jegan...

row,
row,
row,
row,
row,

first column
second column
third column
fourth column
fifth column

first column
second column
third column
fourth column
fifth column

94% : 47/50 ¢

The main. cpp source file content will remain the same as our previous exercises; hence, I
have skipped the main.cpp code snippet. As you are familiar with the build process, I have
skipped it too. If you have forgotten about this, just check the previous sections to
understand the build procedure.

If you have typed the code correctly, you should get the following output:

@ [x| Grid Layout
‘ Button 1 Button 2 Button 3 Button 4 Button 5
Button 6 Button 7 Button 8 Button 9 Button 10
Figure 5.37

Actually, the grid layout has more stuff to offer. Let's explore how we can make a button
span across multiple cells. I guarantee what you are about to see is going to be more

interesting.

I'm going to modify MyD1g.h and MyD1lg.cpp and keep main. cpp the same as the previous

exercises:

[123]

Developing GUI Applications in C++

Chapter 4

24 pri

ss MyDlg :

publics:

LN] jegan — ~Masteringl «+/Chapter§/Ex?iMyDig.h — ssh -¥ jegani®172.16.31.133 — 128=38
epanBubuntu: ~MasterngC e« [Chapter/Eed — sah ¥ . jepanPubunty: ~[O1S 0/5. Tigee B4/ — S5h ¥ [epan_ -
MyDlg.h
2 % T — —
3 =
4 = Filename: MyDlg.h

5 -

6 = Description: Simple Qt application with QDialog, QPushButton and QGridLayout
7 *

8 = Version: 1.8

9 % Created: 10/17/2016)

18 = Revisien: none

11 = Compiler: gcc

12 =

13 % Author: Jeganathan Swaminathan <jegan@tektutor.org=
14 = Organization: TekTutor cwww.ttktutnr.urg:l

15 =

16 *

17 =/

18

19 #include <=QDialeg>

20 #include <QGridLayout=

21 #include <QPushButton=>

22

23 lic Qhialeg {

QPushButton »pBttnl, =pBttn2, *»pBttn3, =pBttnd;
QPushButton *pBttn5, =pBttnb, *pBttn7, =pBttng;
QGridLayout #plLayout;

"MyDlg.h" 31L, 78OC

3%

1/31 :

~ABStENGC s+ [CASNErSExT MO — 8h - jegan_

buffers

1 [1 trailing[a]]

Figure 5.38

Here goes our MyD1g. cpp:

21

pLayout = new QGridLayout(this);

pBttnl
pBttn2

new QPushButton ("Button 1");
new QPushButton ("Button 2");

pBttn3 new QPushButton ("Button 3");
pBttnd = new QPushButton ("Button 4");
pBttn5 new QPushButton ("Button 5");
pBttn6 new QPushButton ("Button 6");
pBttn7 = new QPushButton ("Button 7");
pBttn8 = new QPushButton ("Button 8");

pBttn3->setSizePolicy (QSizePolicy::Expanding, QSizePolicy::Expanding);

MyD 1. c.pp-+ | . fers | =

20 MyD1g::MyDlg() {

pLayout->addwidget (pBttnl, @, 0, 1, 1);
pLayout->addwidget (pBttn2, @, 1, 1, 2);
Layout->addwWidget (pBttn3, @, 3, 2, 1);
Layout->addWidget (pBttn4, 1, 0, 1, 3);

//First row, first column - Takes one row and one column
//First row, second column — Takes one row and two columns
//First row, fourth column — Takes two rows and one column
//Second row, first column — Takes one row and three columns

pLayout->addwidget (pBttn5, 2, @
pLayout—->addwidget (pBttn6, 2, 1
pLayout->addwidget (pBttn7, 2, 2
pLayout->addwidget (pBttn8, 2, 3

setlLayout (pLayout);

setWindowTitle ("Grid Layout");

); //Third row, first column — Takes one row and one column

)i //Third row, second column - Takes one row and two columns
); //Third row, third column — Takes two rows and one column
); //Third row, fourth column - Takes one row and one column

Figure 5.39

[124]

Developing GUI Applications in C++ Chapter 4

Notice the lines 35 through 38. Let's discuss the addwidget () function in detail now.

In line number 35, the pLayout->addWidget (pBttnl, 0, 0, 1, 1) code does the
following things:

e The first three arguments add Button 1 to the grid layout at the first row and first
column

¢ The fourth argument 1 instructs that Button 1 will occupy just one row
¢ The fifth argument 1 instructs that Button 1 will occupy just one column

e Hence, it's clear that pBttnl should be rendered at cell (0, 0) and it should
occupy just one grid cell

In line number 36, the pLayout->addWidget (pBttn2, 0, 1, 1, 2) code does the
following;:

e The first three arguments add Button 2 to the grid layout at the first row and
second column

¢ The fourth argument instructs that Button 2 will occupy one row
e The fifth argument instructs that Button 2 will occupy two columns (that is, the
second column and the third column in the first row)

¢ At the bottom line, Button 2 will be rendered at cell (0,1) and it should occupy
one row and two columns

In line number 37, the pLayout—>addWidget (pBttn3, 0, 3, 2, 1) code does the
following;:

e The first three arguments add Button 3 to the grid layout at the first row and
fourth column

¢ The fourth argument instructs that Button 3 will occupy two rows (that is, the
first row and the fourth column and the second row and the fourth column)

e The fifth argument instructs that Button 3 will occupy one column

In line number 38, the pLayout->addWidget (pBttn4, 1, 0, 1, 3) code does the
following;:

e The first three arguments add Button 4 to the grid layout at the second row and
first column

¢ The fourth argument instructs that Button 4 will occupy one row

e The fifth argument instructs that Button 4 will occupy three columns (that is,
the second row first, then the second and third column)

[125]

Developing GUI Applications in C++

Chapter 4

Check out the output of the program:

[] \| Grid Layout
| Button1 | Button 2
J— Button 3
Button 4
Button 5 Button 6 Button 7 Button 8
Figure 5.40

Signals and slots

Signals and slots are an integral part of the Qt Framework. So far, we have written some
simple but interesting Qt applications, but we haven't handled events. Now it's time to
understand how to support events in our application.

Let's write a simple application with just one button. When the button is clicked, check
whether we can print something on the console.

The MyD1g.h header demonstrates how the MyD1g class shall be declared:

ace jegan — ~jMasieringC++Chapter S[Ex8/MyDig h — ssh -¥ jegan@172.16.31.133 — 128«36
jegan@ubunty: ~MasteringC e +/Chapter/Exd — ssh ¥ .. jegan@ubuntu: =/G5.7.0/5.7/gec_B4/bin — ssh ¥ jegan.. =MasteringC e [ThaplerS/ExEMyDig h — ssh -¥ jegan... +
MyDlg.h buffers °
4 % Filename: MyDlg.h

* Description: Simple Qt application with QPushButton that demonstrates Signals and S'Lotsl

* Version: 1.8

* Created: 10/18/2016]]

* Revision: none

* Compiler: gcc

* Author: Jeganathan Swaminathan <jegan@tektutor.org>

* Organization: TekTutor <www.tektutor.org=f]

=/

lude <QDialog>

e <QHBoxLayout>
21 #include <QPushButton>

lass MyDlg : public QDialeg {

QPushButton =pBttn;
QHBoxLayout *pLayout;
10
30
3% : 1730 : 1 -<Pifradndngiell

Figure 5.41

[126]

Developing GUI Applications in C++ Chapter 4

The following screenshot demonstrates how the MyD1g constructor shall be defined to add a
single button to our dialog window:

LN] jegan — ~{MasieringC+«/Chapter/Exd/MyDig.cpp — ssh -¥ jegan@172.16.31.133 — 128-36

epar@uburty ~(MasteringC s o [IChaperEEsd — sah Y. .. jepanPubunty: =015 7.0/5.Tigec_B4/in = s5h <Y jegan_. - =fMasteringCe « JCAapterSExE My DI c0p = s8N <Y jega. +
DT +1voa. [o ffers *
7 = ===== e z==== R — z==== ======

3 =

4w Filename: MyDlg.cpp

5 -

6 = Description: Simple Qt application with QDialeg & QPushButton that demonstrates

7 * Signals and Slots

8 e

9 Version: 1.0

1@ Created: 10/18/2816

11 Revision: none

Compiler: gcc

W
TEEREEEE

14 Author: Jeganathan Swaminathan <jegan@tektutor.org=
15 Organization: TekTutor <www.tektutor.org>

16

17 S i - R — S m=me==
18 *=/

19 #include “"MyDlg.h"

20

21 MyDlg::MyDlg() {

22 pLayout = new QHBoxLayout({this);

23

24 pBttn = new 0 ("Click Me"):

26 pLayout-=addiidget (pBttn);

27

28 setLayout { pLayout);

29

39 setWindowTitle (“Signals and Slots");

31}

25% : 8/31 ;1 -[ISralEnGIIsIN

Figure 5.42

[127]

Developing GUI Applications in C++ Chapter 4

The main. cpp looks as follows:

LR jegan
Jegan@ubuntu: ~(MasteringCe s ChaptertiEsd = ssh Y. .. jepan@ubintu: ~/01S.70/5.Tipee_B4/bin K - ~MasIErRGC s+ (ChagaerSExBimain cop — 555 Y egen. +
ma:in. | b fers

Filename: main.ecpp
Description: Simple Qt application with QDialeg, QPushButton and QBoxLayout

Version: 1.8

Created: 10/16/2016 05:18:27 AM
Revisien: none

Compiler: gcc

Author: Jeganathan Swaminathan <jegan@tektutor.org=>
Organization: TekTutor <www.tektutor.org=

I IO O I O O N

ct
=
%
3 -

c¢lude <QApplication=
19 #include “"MyDlg.h"

(int arge, char ##argv) {
QApplication theApp (argc, argv);

MyDlg dla;
dlg.show();

27 return theApp.exec();

=~ main.cpp Cpp B 3 ;120 ;1 -DiErallinglian

"main.cpp" 29L, 712C

Figure 5.43

Let's build and run our program and later add support for signals and slots. If you have
followed the instructions correctly, your output should resemble the following screenshot:

@ %| Signals and Slots

| Click Me

Figure 5.44

If you click on the button, you will notice that nothing happens, as we are yet to add
support for signals and slots in our application. Okay, it's time to reveal the secret
instruction that will help you make the button respond to a button-click signal. Hold on, it's
time for some more information. Don't worry, it's related to Qt.

[128]

Developing GUI Applications in C++ Chapter 4

Qt signals are nothing but events, and slot functions are event handler functions.
Interestingly, both signals and slots are normal C++ functions; only when they are marked
as signals or slots, will the Qt Framework understand their purpose and provide the
necessary boilerplate code.

Every widget in Qt supports one or more signal and may also optionally support one or
more slot. So let's explore which signals QpushButton supports before we write any further
code.

Let's make use of the Qt assistant for API reference:

ace ™ Ot Assistant
File Edt View Go Bockmarks Help

@tk an q8Q

Cone.. | .. Book... Se.. =

e 2m Qt5.7 QtWidgets C++ Classes QPushButton
ook for Qt 5.7.0 Reference Documentation
QPush
Contents
~QPushButton Properties
Public Functions
Reimplemented Public Functions
Public Slots
Protected Functions
Reimplemented Protected Functions
Detailed Description
QPushButton Class
The QPushButton widget provides a command button. More...
Header: #include <QPushButton=
Open P 3= . -
| Gy Clare Gt wiogets 5 qmake: QT += widgets

Inherits: QAbstractButton
Inherited By: QCommandLinkButton

» List of all members, including inherited members

Properties

+ autoDefault : bool

« default : bool

= flat : bool

= 11 properties inherited from QAbstractButton

Figure 5.45

[129]

Developing GUI Applications in C++ Chapter 4

If you observe the preceding screenshot, it has a Contents section that seems to cover
Public Slots, but we don't see any signals listed there. That's a lot of information. If the
Contents section doesn't list out signals, QpushButton wouldn't support signals directly.
However, maybe its base class, that is, QAbst ractButton, would support some signals.
The QPushButton class section gives loads of useful information, such as the header
filename, which Qt module must be linked to the application--that is, qmake entries that
must be added to . pro--and so on. It also mentions the base class of QpushButton. If you
scroll down further, your Qt assistant window should look like this:

') | Gt Assistant
¥lle Edit View Go Bookmarks Help
ro i Do 8Q
Iﬂiz:'" - (B s‘:'_ virtual void focusOutEvent(QFocusEvent *e)
Look for; virtual bool hitButten(const QPoint &pos) const
sh . ’
i virtual void keyPressEvent(QKeyEvent *e)
SEFLSSt virtual void paintEvent(QPaintEvent *)
= 14 protected functions inherited from QAbstractButton
» 35 protected functions inherited from OWidget
= 9 protected functions inherited frem QObject
» 1 protected function inherited from QPaintDevice
Additional Inherited Members
I + 4 signals inherited from QAbstractButton I
« 3 signals inherited from QWidget
* 2 signals inherited from QObject
» 1 public variable inherited from QObject
Open Pages - = 5 static public members inherited from QWidget

+ 10 static public members inherited from QObject
» 1 protected slot inherited from QWidget

» 2 protected variables inherited from QObject

+ 1 protected type inherited frem QPaintDevice

Detailed Description

The QPushButton widget provides a command button,

The push butten, or command butten, is perhaps the most commonly used widget in any graphical user interface. Push (click) a button
to command the computer to perform some action, or to answer a question. Typical buttons are OK, Apply, Cancel, Close, Yes, No and
Haln

Case Sansitive

Figure 5.46

[130]

Developing GUI Applications in C++

Chapter 4

If you observe the highlighted section under Additional Inherited Members, apparently
the Qt assistant implies that QPushButton has inherited four signals from
QAbstractButton. So we need to explore the signals supported by QAbstractButton in

order to support the signals in QPushButton.

l ° % Ot Assistant
Plle Edit View Go Bookmarks Melp

a M

b oGl DA §8Q
Cone. | L. Book.. Se.. = 1 public slot inherited from QObject
Index i 50
Loak for:
QPush

Signals

%;ﬂum_ void clicked({bool checked = false)
void pressed()

void released()

void toggled(beol checked)

+ 3 signals inherited from QWidget
+ 2 signals inherited from QObject

Protected Functions

virtual void checkStateSet()
virtual bool hitButton(const QPoint &pos) const

o . virtual void nextCheckState()
pen Pages AR

Reimplemented Protected Functions

virtual void changeEvent(QEvent *e)

virtual bool event(QEvent *)

virtual void focusinEvent{QFocusEvent *e)
virtual void focusOutEvent(QFocusEvent *e)
virtual void keyPressEvent({QKeyEvent *e)

wirtual wnid __kevReleaseEvent/OKewFuent *)

Case Sensitive

Figure 5.47

With the help of the Qt assistant, as shown in the preceding screenshot, it is evident that
the QAbstractButton class supports four signals that are also available for QpushButton,
as QPushButton is a child class of QAbstractButton. So let's use the clicked () signal in

this exercise.

[131]

Developing GUI Applications in C++ Chapter 4

We need to make some minor changes in MyD1g.h and MyD1g. cpp in order to use
the clicked () signal. Hence, I have presented these two files with changes highlighted in
the following screenshot:

l =0 18980 — ~/MasteringC ++/ChapterS/Ex8/MyDig.n — ssh -Y jegan©172.16.31.133 — D4=27

~ — =[MasteringCo+ IChapter S/ ExBiMyOig.h — s3h -Y jegan@T72.16.31.133 = — jegarPubunty; ¥ Rgan@172.16.31.133 g Butuntu; ~/QU5.7.075.7/05C. 0400 — 884 -Y jeqan@172.16.91.133 +
MyD g . | b f fers
14 % Author: Jeganathan Swaminathan <jegan@tektutor.org>
15 * Organization: TekTutor <www.tektutor.org=|
16 =
17 =
18 x/
19
20 #include <QDialog>
21£1nclude <0 >
22 #include <QHBoxLayout>
23 #include <QPushButton>

24

25 class MyDlg : public QDialog {
26 private:

27 QPushButton *pBttn;

28 QHBoxLayout *plLayout;
29

30 public:

31 MyDlg();

32

33 |private slots:

34 void onButtonClicked():

B 100% : 37/37 : 1 <Jtradvinm

Figure 5.48

As you are aware, the QDebug class is used for debugging purposes. It offers functionalities
to Qt applications that are similar to cout, but they aren't really required for signals and
slots. We are using them here just for debugging purposes. In Figure 5.48, line number 34,
void MyD1lg: :onButtonClicked () is our slot function that we are intending to use as an
event handler function that must be invoked in response to the button click.

[132]

Developing GUI Applications in C++ Chapter 4

The following screenshot should give you an idea of what changes you will have to perform
in MyD1g. cpp for signal and slot support:

Hlerl.g.'cp'ﬁ' _7 I . I) I ! buffers *
19 #include "MyDlg.h"

21 MyDlg::MyDlg{) {
22 pLayout = new QHBoxLayout(this);

24 pBttn = new QPushButton ("Click Me");
26 pLayout->addWidget (pBttn);
28 setLayout (pLayout);

30 setWindowTitle ("Signals and Slots");

32 connect [

33 pBttn,

34 SIGNAL { clicked()),

35 this,

36 SLOT (onButtonClicked())

nButtonClicked() {
ebug() << “"Button clicked ...";

NORMAL 3 utf-8[unix] < +39742 0 1L trailin. <JPISyRtaxaNERE20NTIIN

Figure 5.49

If you observe line 40 through 42 in the preceding screenshot,

the MyD1g: :onButtonClicked () method is a slot function that must be invoked
whenever the button is clicked. But unless the button's clicked () signal is mapped to
the MyD1g: :onButtonClicked () slot, the Qt Framework wouldn't know that it must
invoke MyD1g: :onButtonClicked () when the button is clicked. Hence, in line numbers
32 through 37, we have connected the button signal c1icked () with

the MyD1g instance's onButtonClicked () slot function. The connect function is inherited
by MyD1lg from QDialog. This, in turn, has inherited the function from its ultimate base
class, called Q0bject.

The mantra is that every class that would like to participate in signal and

slot communication must be either QObject or its subclass. Q0Object offers quite a good
amount of signal and slot support, and QObject is part of the 9t Core module. What's
amazing is that the Qt Framework has made signal and slot available to even command-line
applications. This is the reason signals and slots support is built into the ultimate base class
QObject, which is part of the QtCore module.

[133]

Developing GUI Applications in C++ Chapter 4

Okay, let's build and run our program and see whether the signals work in our application:

Makefile:794: recipe for target 'MyDlg.o' failed =
make: *%x [MyDlg.o] Error 1

jegan@ubuntui~/MasteringC++/Chapter5/Ex8$ vim MyDlg.cpp +42

UltiSnips requires py >= 2.7 or py3

Press ENTER or type command to continue

jegan@ubuntu:~/MasteringC++/Chapter5/Ex8% make

g++ -c —pipe -02 —-std=gnu++11 -Wall -W —D_REENTRANT —fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_
GUI_LIB -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.08/5.7/gcc_64/include -I../../../Qt5.7.0/5.7/gcc
_64/include/QtWidgets -I../../../Qt5.7.0/5.7/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/gcc_6
4/include/QtCore -I. -I../../../Qt5.7.0/5.7/gcc_64/mkspecs/linux-g++ -0 MyDlg.o MyDlg.cpp

g++ -W1,-01 -W1,-rpath,/home/jegan/Qt5.7.@/5.7/gcc_64/1ib —o Ex8 main.o MyDlg.o -L/home/jega
n/Qt5.7.0/5.7/gcc_64/1ib -1Qt5Widgets -L/usr/1ib64 -1Qt5Gui -1Qt5Core -1GL -1lpthread
jegan@ubuntu:i~/MasteringC++/Chapter5/Ex8$ vim MyDlg.cpp

UltiSnips requires py >= 2.7 or py3

Press ENTER or type command to continue

jegan@ubuntu:~/MasteringC++/Chapter5/Ex8% make

g++ —-c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_
GUI_LIB -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.08/5.7/gcc_64/include -I../../../Qt5.7.0/5.7/gcc
_64/include/QtWidgets -I../../../Qt5.7.08/5.7/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/gcc_6
4/include/QtCore -I. -I../../../Qt5.7.0/5.7/gcc_64/mkspecs/linux-g++ -o MyDlg.o MyDlg.cpp

g++ -W1,-01 -W1,-rpath,/home/jegan/Qt5.7.@/5.7/gcc_64/1ib -0 Ex8 main.o MyDlg.o -L/home/jega
n/Qt5.7.0/5.7/g9cc_64/1ib -1Qt5Widgets -L/usr/lib64 -1Qt5Gui -1Qt5Core -1GL -lpthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex8% ./Ex8

ject::connect:

Click Me:

Figure 5.50

Interestingly, we don't get a compilation error, but when we click on the button, the
highlighted warning message appears automatically. This is a hint from the Qt Framework
that we have missed out on an important procedure that is mandatory to make signals and
slots work.

Let's recollect the procedure we followed to autogenerate Makefile in our headers and
source files:

1. The gmake -project command ensures that all the header files and source files
that are present in the current folder are included in the . pro file.

2. The gmake command picks up the .pro file present in the current folder and
generates Makefile for our project.
3. The make command will invoke the make utility. It then executes Makefile in

the current directory and builds our project based on the make rules defined in
Makefile.

[134]

Developing GUI Applications in C++ Chapter 4

In step 1, the gmake utility scans through all our custom header files and checks whether
they need signal and slot support. Any header file that has the 0_0BJECT macro hints the
gmake utility that it needs signal and slot support. Hence we must use the 9_OBJECT macro
in our MyD1g.h header file:

F B - o I .
MyDlg.h buffers *
14 Author: Jeganathan Swaminathan <jegan@tektutor.org>
15 % Organization: TekTutor <www.tektutor.org>ll
16 =
17 =
18 */

20 #include <QDialog>
21 #include <QDebug>
22 #include <QHBoxLayout>
23 #include <QPushButton>

25 ss MyDlg : public QDialog {
26[Q_0BJECT

27 private:

28 QPushButton *pBttn;

29 QHBoxLayout *pLayout;
30

31 public:

32 MyD1lg();

33

34 private slots:

35 void onButtonClicked();
36

37 }F;

NORMAL B 63% : 24/38 : 1 <[INEradlEney

“MyDlg.h" 38L, 798C written

Figure 5.51

Once the recommended changes are done in the header file, we need to ensure that the
gmake command is issued. Now the gmake utility will open the Ex8.pro file to get our
project headers and source files. When gmake parses MyD1g.h and finds the 9_OBJECT
macro, it will learn that our MyD1g. h requires signals and slots, then it will ensure that the
moc compiler is invoked on MyD1g.h so that the boilerplate code can be autogenerated in a
file called moc_MyD1g. cpp. This will then go ahead and add the necessary rules to
Makefile so that the autogenerated moc_MyD1g. cpp file gets built along with the other
source files.

Now that you know the secrets of Qt signals and slots, go ahead and try out this procedure
and check whether your button click prints the Button clicked ... message. have gone
ahead and built our project with the changes recommended. In the following screenshot, I
have highlighted the interesting stuff that goes on behind the scenes; these are some of the
advantages one would get when working in the command line versus using fancy IDEs:

[135]

Developing GUI Applications in C++ Chapter 4

]egan%uhuntu'~fMasterlng[++f(hapter5/£x8$ ls

Ex8 Ex8.pro main.cpp main.o Makefile MyDlg.cpp MyDlg.h MyDlg.o
jegan@ubuntu:~/MasteringC++/Chapter5/Ex8$ gqmake

jegan@ubuntu:~/MasteringC++/Chapter5/Ex8$ make

g++ —Cc -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LI
B -DQT_CORE_LIB -I. -I. -I../../../0t5.7.8/5.7/gcc_64/include -I../../../Qt5.7.8/5.7/gcc_64/include/
QtWidgets -I../../../Qt5.7.08/5.7/gcc_64/include/QtGui -I../../../0Qt5.7.08/5.7/g9cc_64/include/QtCore -
I. -I../../../Qt5.7.08/5.7/gcc_64/mkspecs/linux—g++ -0 main.o main.cpp

g++ —-c -pipe -02 -std=gnu++11 -Wall -W —-D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LI
B -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.8/5.7/gcc_b64/include -I../../../Qt5.7.8/5.7/gcc_64/include/
QtwWidgets -I../../../Qt5.7.8/5.7/q9cc_64/include/QtGui -I../../../Qt5.7.8/5.7/gcc_64/include/QtCore -
I. -I../../../Qt5.7.8/5.7/gcc_b4/mkspecs/linux-g++ -0 MyDlg.o MyDlg.c

]
home/jegan/Qt5. ? afs ngcc 64/mkspecs/11nux—g++ —I/home/]egan/Master1ngC++/Chapter5fEx8 -Ifhcmef]ega
n/MasteringC++/Chapter5/Ex8 -I/home/jegan/Qt5.7.0/5.7/gcc_64/include -I/home/jegan/Qt5.7.8/5.7/qcc_6
4/include/QtWidgets -I/home/jegan/Qt5.7.0/5.7/gcc_64/include/QtGui -I/home/jegan/Qt5.7.0/5.7/qcc_64/
include/QtCore -I/usr/include/c++/5 -I/usr/include/x86_64-1linux-gnu/c++/5 -I/usr/include/c++/5/backw
Frd =I/usr/lib/gcc/x86_64-1linux-gnu/5/include -I/usr/local/include -I/usr/lib/gcc/x86_64-1inux-gnu/5

include-fixed -I/usr/include/x86, 64—linux-gnu -I!usr/include MyDlg.h -0 moc_MyDlg.cpp
g++ =C -pipe -UZ -std=gnu++11 -Wa

B -DQT_CORE_LIB -I. -I. —I..l.-!--thS 7.0/5.7/gcc_ G4/1nclude -I../../..!OtS 7.0/5.7/gcc_ 64f1ncludef
QtwWidgets -I../../../Qt5.7.0/5.7/gcc_b4/include/QtGui -I../../../Qt5.7.8/5.7/gcc_64/include/QtCore -
I. -I../../../Qt5.7.8/5.7/gcc_64/mkspecs/linux-g++ -o moc_MyDlg.o moc_MyD1lg.cpp
g++ -WL,-01 -W1,-rpath, /home/jegan/Qt5.7.0/5.7/g9cc_64/1ib -o ExB main.o MyDlg.o moc_MyDlg.o -L/hom
e/jegan/Qt5.7.8/5.7/gcc_64/1ib -1Qt5Widgets —-L/usr/1ib64 -10t5Gui -1Qt5Core -1GL -ipthread
jegan@ubuntu;:~/MasteringC++/Chapter5/Ex8%

Figure 5.52

Now it's time that we test the output of our cool and simple application that supports
signals and slots. The output is presented in the following screenshot:

. — ¥ ingan@ 172 183133 foganB e ~[QUS70/5 Tg¢e. 847 @172 1831133
g++ -c plpe —02 —std-gnu++11 —Wall -W -D_| REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_| LIB DQT GUI_LI
B -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.8/5.7/gcc_64/include -I../../../Qt5.7.@8/5.7/gcc_64/include/
QtWidgets —I../../..fUtS.?.B/E.7/gcc_54/includelﬂtﬁui =I../uu/0./Qt5.7.0/5.7/gcc_64/include/QtCore -
I. -I../../../Qt5.7.8/5.7/gcc_64/mkspecs/linux-g++ -0 main.o main.cpp
g++ —c —-pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LI
B -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.0/5.7/g9cc_64/include -I../../../Qt5.7.08/5.7/gcc_64/include/
QtwWidgets -I../../../Qt5.7.8/5.7/gcc_64/include/QtGui -I../../../Qt5.7.8/5.7/gcc_64/include/QtCore -
I. -I../../../Qt5.7.0/5.7/gcc_64/mkspecs/linux-g++ -o MyDlg.o MyDlg.cpp
/home/jegan/Qt5.7.0/5.7/gcc_64/bin/moc -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB -I/
home/jegan/Qt5.7.0/5.7/gcc_64/mkspecs/linux—-g++ —-I/home/jegan/MasteringC++/Chapter5/Ex8 -I/home/jega

n/MasteringC++/Chapter5/Ex8 -I/home/jegan/Qt5. ESigonis and Sl |de -I/home/jegan/Qt5.7.0/5.7/gcc_6
4/include/QtWidgets -I/home/jegan/Qt5.7.0/5.7/ . =I/home/jegan/Qt5.7.0/5.7/gcc_64/
include/QtCore -I/usr/include/c++/5 -I/usr/inc - 9%" ly/c++/5 =I/usr/include/c++/5/backw

ard -I/usr/lib/gcc/x86_64-1inux-gnu/5/include —prworr—ewaer=meeweed —L/usr/lib/gcc/x86_64-1inux-gnu/5
/include-fixed -I/usr/include/x86_64-linux-gnu -I/usr/include MyDlg.h —-o moc_MyDlg.cpp

g++ -c —pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LI
B -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.9/5.7/gcc_64/include -I../../../Qt5.7.8/5.7/gcc_64/include/
QtWidgets -I../../../Qt5.7.8/5.7/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/g9cc_64/include/QtCore -
I. -I../«./../Qt5.7.8/5.7/gcc_64/mkspecs/linux-g++ —o moc_MyDlg.o moc_MyDlg.cpp

g++ -Wl,-01 -Wl,-rpath, /home/jegan/Qt5.7.8/5.7/gcc_64/1ib -o Ex8 main.o MyDlg.o moc_MyDlg.o -L/hom
e/jegan/Qt5.7.0/5.7/gcc_64/1ib -1Qt5Widgets -L/usr/lib64 -1Qt56ui -1Qt5Core -1GL -lpthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex8% ./Ex8

1ibGL error: No matching fbConfigs or visuals found

i i i to load driver: swrast
Button clicked ...

Figure 5.53

Congratulations! You can pat your back. You have learned enough to do cool stuff in Qt.

[136]

Developing GUI Applications in C++ Chapter 4

Using stacked layout in Qt applications

As you have learned about signals and slots, in this section, let's explore how to use a
stacked layout in an application that has multiple windows; each window could be either a
QWidget or QDialog. Each page may have its own child widgets. The application we are
about to develop will demonstrate the use of a stacked layout and how to navigate from one
window to the other within the stacked layout.

MyDIg (QDialog)

QVBoxLayout
QStackedLayout

Page 4 (QWidget)

Each page can be developed as separate class
7 that subclasses Qwidget

QBoxLayout
Invisible stretch

| Prev Page I [Next Page I [Exit App I

Figure 5.54

This application is going to require a decent amount of code, hence it is important that we
ensure our code is structured carefully so that it meets both the structural and functional
quality, avoiding code smells as much as possible.

Let's create four widgets/windows that could be stacked up in a stacked layout, where each
page could be developed as a separate class split across two files: HBoxD1g.h and
HBoxDlg.cpp and so on.

Let's start with HBoxD1g.h. As you are familiar with layouts, in this exercise, we are going
to create each dialog with one layout so that while navigating between the subwindows,
you can differentiate between the pages. Otherwise, there will be no connection between the
stacked layout and other layouts as such.

[137]

Developing GUI Applications in C++ Chapter 4
ece egan — ~{MasteringC++/Chaptert{Ex9iHBoxDig.h — ssh -Y jegan@17216.31.133 — 00«27
~tterngC e+ ChipterSEARBaDn — 53h Y egae BI7ZIAII 5 oo £
<oxDlg.h - VBoxDlg.h VBoxD1lg.c BoxDlg.h BoxDlg.cpp [t NI buffers °
6 * Description: This dialog will demonstrate Horizontal box layout with 5 buttons.
7 =
8 %
9 % Version: 1.0
10 = Created: 10/20/2016
11 = Revision: none
12 x Compiler: gcc
13 =
14 % Author: Jeganathan Swaminathan <jegan@tektutor.org>
15 * Organization: TekTutor <www.tektutor.org=>
16 *
17 *
18 */
19 #include <QWidget>
20 #include <QHBoxLayout>
21 #include <QPushButton>
22
23 class HBoxDlg : public Qwidget {
24 private:
25 QPushButton =pBttnl, *pBttn2, =pBttn3, =pBttnd, *pBttn5;
26 QHBoxLayout *plLayout;
27 public:
28 HBoxD1g();
29 i
NORMAL ENLTINOICHY HBoxDlg < cp) 29729 : 2
"HBoxD1lg.h" 29L, 748C written
Figure 5.55
The following code snippet is from the HBoxD1g. cpp file:
en e jogan — ~{Mastering(oterS/Ex9fHBoxDig.cop — 33h -Y jegani17216.31133 — 10027
co—an v 2 B n 5 un_ [+
HBoxD1g.cpp INEIEDITHD I NI buffers °
16 =*
17 =*
18 */
19 #include "HBoxDlg.h"
20
21 HBoxD1g: :HBoxD1g() §
22
23 pBttnl = new QPushButton("Button 1");
24 pBttn2 = new QPushButton("Button 2");
25 pBttn3 = new QPushButton("Button 3");
26 pBttn4 = new QPushButton("Button 4");
27 pBttn5 = new QPushButton("Button 5");
28
29 pLayout = new QHBoxLayout(this);
30
31 pLayout-=addWidget (pBttnl);
32 pLayout->addWidget (pBttn2);
33 pLayout-saddWidget (pBttn3);
34 pLayout->addWidget (pBttn4);
35 pLayout->addwWidget (pBttn5);
36
37 setLayout (pLayout);
38
39 §
NORMAL 3 B 100% : 39/39 : 1 <[iErailins =SSR
Figure 5.56

[138]

Developing GUI Applications in C++ Chapter 4
.. ' .
Similarly, let's write VBoxD1g.h as follows:
g RSN VBoxDLlg. cop . RS buffers °
6 * Description: This dialog will demeonstrate Vertical box layout with 5 buttons.
7 %
8 =
9 % Version: 1.0
10 = Created: 18/20/2016
11 * Revision: none
12 % Compiler: gcc
13 =%
14 % Author: Jeganathan Swaminathan <jegan@tektutor.org=>
15 =% Organization: TekTutor <www.tektutor.org>
16 =*
17 =*
18 */
19 #include <QWidget>
20 #include <QVBoxLayout>
21 #include <QPushButton>
22
23 class VBoxDlg : public QWidget {
24 private:
25 QPushButton =pBttnl, *pBttn2, *pBttn3, *pBttn4, *xpBttn5;
26 QVBoxLayout *pLayout;
27 public:
28 VBoxD1lg();
29/29 : 2
Figure 5.57
Let's create the third dialog BoxD1g.h with a box layout, as follows:
saoe jogan — ~/MasteringC+/ChapterS{ExBBaxDkg.h — ssh ¥ jogani172.16.31.133 — 100s27
Mg+ ChapterSIEABADA — a1 ¥ epin@IT2 16133 B E s
VBoxDlg.h | VBoxDlg.c| BoxDlg. h EEIFOICASTINISEICH NI buffers °©

* Description: This dialog will demonstrate Box layout with 5 buttons.

6

7 =%

8

9 % Version: 1.0

10 * Created: 10/20/2016

11 % Revision: none

12 = Compiler: gcc

13 =%

14 = Author: Jeganathan Swaminathan <jegan@tektutor.org>

15 =* Organization: TekTutor <www.tektutor.org>
*
*

18 */

19 #include <QWidget>

20 #include <QBoxLayout>
21 #include <QPushButton>

22

23 class BoxDlg : public Qwidget {

24 private:

25 QPushButton =pBttnl, =*pBttn2, *xpBttn3, =xpBttnd, =xpBttn5;

26 QBoxLayout #plLayout;

27 public:

28 BoxDlg();

29 M

NORMAL ZB:OFOIGHI 30xD1lg < ¢ utf-8 [e 100% :

29/29 :

2

Figure 5.58

[139]

Developing GUI Applications in C++

Chapter 4

The respective BoxD1g. cpp source file will look as follows:

buffers

] ogan — ~MasiaringC Chagter HE8[BoxDIg.op — ssh -1 jegan®172.18.81,133 — 100-27
~asoringes CopierS T BenDig cpp = s ¥ fegan@171 1831133 E =

BoxDlg.cpp

15 * Organization: TekTutor <www.tektutor.org>

16 =

17 %

18 =/

19 #include "BoxDlg.h"

20

21 BoxDlg::BoxDlg() §

22

23 pBttnl = ton("Button 1");

24 pBttn2 = n{"Button 2");

25 pBttn3 = n{"Button 3");

26 pBttnd = L n("Button 4");

27 pBttn5 = shButton("Button 5");

28

29 pLayout = new (BoxLayout(QBoxLayout::BottomToTop, this);

30

31 pLayout->addwi (pBttnl);

32 pLayout-> (pBttn2);

33 pLayout->ac t (pBttn3);

34 plLayout->ad (pBttnd);

35 pLayout=>ad get (pBttn5);

36

37 setLayout (pLayout);

BoxDlg() < cpp tf-8[unix] <JNUIEH

38/38 : 1 <[NErEEERE

Figure 5.59

The fourth dialog that we would like to stack up is GridD1g, so let's see how GridDlg.h

can be written, which is illustrated in the following screenshot:

iQ #include <Qwidget>
20 #include <QGridLayout>
21 #include <QPushButton>

22

23 class GridDlg : public Qwidget {

24 private:

25 QPushButton =pBttnl, *pBttn2, *pBttn3, *pBttnd4, *pBttn5;
26 QPushButton *pBttn6, *pBttn7, *pBttn8, *pBttn9, =*pBttnld;
27 QGridLayout *plLayout;

28 public:

sne jegan = ~/MasteringCe+/Chapter §/Ex/GridDig.h = ssh =Y jegan 172 16.31.133 = 100=27
aan 33 = . = on_ [+
Gridpg. h | buf fers
7 *
8 *x
9 x Version: 1.0
10 * Created: 10/20/2016
11 * Revision: none
12 * Compiler: gcc
13 %
14 * Author: Jeganathan Swaminathan <jegan@tektutor.org>
15 #* Organization: TekTutor <www.tektutor.org>
16 *
17 %
18 %/

96% : 29/30 : 8

Figure 5.60

[140]

Developing GUI Applications in C++

Chapter 4

The respective GridDlg. cpp will look like this:

18
19
20
21
22

24
25

jegan — ~/MasteringC-++)Chapter&/ExdGridDig.cpp

aDig.cop — sah - jegang

*/
#include "GridDlg.h"
Gridblg: :GridDlg() {
pBttnl
pBttn2
pBttn3

pBtind
pBttns

pBttn6
pBttn7
pBttng
pBttn9
pBttnld

pLayout

plLayout—=
pLayout—>
pLayout=>
pLayout—>
playout—=

pLayout->
plLayout->
Layout—>
Layout—=>
pLayout=>

= new QGridLayout(this

133

"Button

Button
("Button
("Button

pBttnl,
pBttn2,
pBttn3,
pBttnd,
pBttn5,

BWNE®

pBttng,
pBttn7,
pBttn8,
pBttng,
pBttnle,

pWNR S

ayout (plLayout);

Griddlg.h MegCCRCTR

row,

row,

t row,
t row,

//First

//Second
//Second
//Second
//Second
//5econd

row,

row,
row,
row,
row,
row,

GridDlgl) < cp;

ssh -¥ jegan172.15.31.133 — 12837
& -asn . =

a4
buffers *

First Column
Second Column
Third Column
Fourth Column
Fifth Column

First Column
Second Column
Third Column
Fourth Column
Fifth Column

9% & 46/50 : 9 <NINEFEINENGIGIN

Figure 5.61

Cool, we are done with creating four widgets that can be stacked up in MainDlg. MainDlg
is the one that's going to use QStackedLayout, so the crux of this exercise is understanding
how a stacked layout works.

[

141]

Developing GUI Applications in C++ Chapter 4

Let's see how MainD1g.h shall be written:

0@ jofgan — ~{MasseringC++/ChapterS(ExBMainDig.h — ssh -Y jegan@172.16.31.133 — 128+37
~fdasheringCe +[ChapierS/Exd/MainDin h — ssh -¥ jegan@172.18.91.133 - s - e |4

Griddlo.h | GridDlo.cpp MUDSUIMCNWN NN
19
28 f/Built-in Qt headers goes here
21 #include <QWidget=>

=(Dialog=

<QPushButton=

e <(QStackedLayout>

<{BoxLayout=

5 #include <QVBoxLayout>

8 f/Custom headers goes here
) #include "HBoxDlg.h"

#incl "VBoxDlg.h"
31 “BoxDlg.h"
32 je "GridDlg.h"
4 class MainDlg : public QDialog {

Q_0BJECT

ivate:

0StackedLayout #pStackedLayout;

38 (QBoxLayout *pNavigationlLayout;
3g QvBoxLayout =pMainLayout;
40 QPushButton *pPrevBttn, =pNextBttn, =pExitBttn;

HBoxDlg *pHBoxDlg;
43 VBoxDlg *pVBoxDlg;
44 BoxDlg =pBoxDlg;
45 GridDlg *pGridDlg;

MainDlg < cp t OFIRE: 188% : 52/52 @ 2

Figure 5.62

In MainD1g, we have declared three slot functions, one for each button, in order to support
the navigation logic among the four windows. A stacked layout is similar to a tabbed
widget, except that a tabbed widget will provide its own visual way to switch between the
tabs, whereas in the case of a stacked layout, it is up to us to provide the switching logic.

[142]

Developing GUI Applications in C++ Chapter 4

The MainD1lg. cpp will look like this:

LK jegan — ~/MasteringC++Chapter &/Ex8/MainDlg.cpp — ssh -Y jegan@17 21631133 — 17G=48
~IMasteringCe + [ChapterS/ExSiainDig.con — ssh ¥ jegan@1T216.31133

BELRDLGTCRR — butfers =

"MainDlg. h"

22 MainDlg: :M

pBoxDlg = "
pGriddlg = new

——

28 pStackedLayout = new () kedLay ():

pStackedLayout->
pStackedlLayout-=
pStackedLayout->
pStackedLayout->

pHBoxDlg);
pVBoxDlg)
pBoxDlg);
pGriddlg);

—

pMavigationLayout = new 0Box (QBoxLayout::RightToLeft);

pPrevBttn =
pNextBttn = ;
pExitBttn = ("Exit App"):
pMavigationLayout-=addb t [pExitBttn);
pMavigationLayout-saddb t [pMextBttn);
pMavigationLayout-=addk -t { pPrevBttn);
pMavigationLayout== stch()z
pMainLayout = new QVBox {this);
pMainLayout—s y | pStackedLayout);
pMainLayout-= Y { pNavigationLayout);
[pMainLayout);

{

pPrevBttn,

IGNAL ((),
|

."t . .)

MainDlgl) =< cpp gl G1% : 56/91 : 8

Figure 5.63

You can choose a box layout to hold the three buttons, as we prefer buttons aligned to the
right. However, in order to ensure that extra spaces are consumed by some invisible glue,
we have added a stretch item at line number 44.

Between lines 30 through 33, we have added all the four subwindows in a stacked layout so
that windows can be made visible one at a time. The HBox dialog is added at index 0,
the VBox dialog is added at index 1, and so on.

[143]

Developing GUI Applications in C++ Chapter 4

Lines 53 through 58 demonstrate how the previous button's clicked signal is wired with its
corresponding MainDlg: :onPrevPage () slot function. Similar connections must be
configured for next and exit buttons:

0@ jegan — ~/MasteringC++Chagterb/ExdMainDlg.cpp — ssh -Y jegan@1? 21631133 — 176=48
~Masieringl++ iChapberS/Ex3iMainDig.con — ssh -¥ jegan@17218.31133 - asn - meh_ | 4
Ma 40D g . | buffers =
pPrevBttn,
IGNAL),
'
T (onf F ()
iz
60 {
61 pNextBttn,
; IGNAL ((3
T (onNextPage(})
-):
{
pExitBttn,
] IGNAL (R
) ’
1 T (onExitApp())
2 iz
3}
5 void MainDlg::onPrevF (r {
E currentPageIndex = pStackedLayout=» I {);
E { currentPageIndex = 8)}
' pStackedLayout== I « (currentPageIndex = 1);
8}
oid MainDlg::onNextF () {
currentPageIndex = pStackedlLayout—> ();
f { currentPageIndex < 3)
pStackedLayout—= I « [currentPagelndex + 1);
7}
oid MainDlg::onE appl)
0:
£ 108% : 91/91 : 1

Figure 5.64

The if condition in line 78 ensures that the switching logic happens only if we are in the
second or later subwindows. As the horizontal dialog is at index 0, we can't navigate to the
previous window in cases where the current window happens to be a horizontal dialog. A
similar validation is in place for switching to the next subwindow in line 85.

The stacked layout supports the setCurrent Index () method to switch to a particular
index position; alternatively, you could try the setCurrentWidget () method as well if it
works better in your scenario.

[144]

Developing GUI Applications in C++

Chapter 4

The main. cpp looks short and simple, as follows:

e =QApplication>

*MainDlg.h™

{ int arge, char ==argv } {
OApplication { arge, argv 1;
MainDlg dlg;
dlg.);

: theApp.exec();

3 }

MORMAL

"main.cpp™ 30L, T6BC

E

1/30 :

L L] jegan — ~fMasteringC +«)Chapters Exymain.cpp — ssh - jegandi 72.96.31.133 — 141.43

~ ARG +[ChamerSEXBIMAN 6B — 10 Y [en@TT2 1631133 - an - a0
m ey -L§iig

1=

* Filename: main.cpp

* Description: This has the main entry-point function. The main function will

* launch the main dialeg that has the stacked layout.

*

= Version: 1.8

*® Created: 18/19/2816

* Rev iQn: none

® Compiler: gecc

- Author: Jeganathan Swaminathan <jegan@tektutor.org=

* Organization: TekTutor <www.tektuter.org>

1 [T trailingl15]

Figure 5.65

The best part of our main function is that irrespective of the complexity of the application
logic, the main function doesn't have any business logic. This makes our code clean and

easily maintainable.

[145]

Developing GUI Applications in C++

Chapter 4

Writing a simple math application combining

multiple layouts

In this section, let's explore how to write a simple math application. As part of this exercise,
we will use QLineEdit and QLabel widgets and QFormLayout. We need to design a U], as
shown in the following screenshot:

QLabel

Simple Math App (QDialog)

QVBoxLayout
QFormLayout
First Number [QLineEdit
Second Number | QLineEdit
Result | QLineEdit
B QVBoxLayout
<o sle SUCIN 5 [Divide | [Muttipy] [Divide | [Ext |
A\ \ 2
N\ /
N\ /
\ ¥ v /
QPushButton

Figure 5.66

QLabel is a widget typically used for static text, and 9LineEdit will allow a user to supply
a single line input. As shown in the preceding screenshot, we will use QVBoxLayout as the
main layout in order to arrange QFormLayout and QBoxLayout in a vertical fashion.
QFormLayout comes in handy when you need to create a form where there will be a
caption on the left-hand side followed by some widget on its right. 0GridLayout might
also do the job, but QFormLayout is easy to use in such scenarios.

[146]

Developing GUI Applications in C++ Chapter 4

In this exercise, we will create three files, namely MyD1g.h, MyDlg. cpp, and main. cpp.
Let's start with the MyD1g.h source code and then move on to other files:

e JTHOON
14 =% Compiler: gcc
15 *
16 * Author: Jeganathan Swaminathan <jegan@tektutor.org=>
17 = Organization: TekTutor <www.tektutor.org>
18 =%
19 x = —
20 *x/

21

22 #include <QPushButton>
23 #include <QLineEdit>
24 #include <QLabel>

25 #include <QDialog>

26 #include <QVBoxLayout>
27 #include <QFormLayout>

28

29 class MyDlg : public QDialog {

30 private:

31 QVBoxLayout *pMainLayout;

32 QBoxLayout xpButtonLayout;

33 QFormLayout *pFormLayout;

34

35 QLineEdit =pFirstEdit, *pSecondEdit, =pResultEdit;
36 QLabel =xpFirstLabel, *pSecondLabel, #*pResultlLabel;
37 QPushButton #pAddButton, #pSubtractButton, =pMultiplyButton, *pDivideButton;
38 public:

39 MyDlg();

B 100% : 40: 3 <[NINmEKEd=IN

Figure 5.67

In the preceding figure, three layouts are declared. The vertical box layout is used as the
main layout, while the box layout is used to arrange the buttons in the right-aligned
fashion. The form layout is used to add the labels, that is, line edit widgets. This exercise
will also help you understand how one can combine multiple layouts to design a
professional HMI.

Qt doesn't have any documented restriction in the number of layouts that can be combined
in a single window. However, when possible, it is a good idea to consider designing an
HMI with a minimal number of layouts if you are striving to develop a small memory
footprint application. Otherwise, there is certainly no harm in using multiple layouts in
your application.

[147]

Developing GUI Applications in C++ Chapter 4

In the following screenshot, you will get an idea of how the MyD1g. cpp source file shall be
implemented. In the MyD1g constructor, all the buttons are instantiated and laid out in the
box layout for right alignment. The form layout is used to hold the QLineEdit widgets and
their corresponding QLabel widgets in a grid-like fashion. QLineEdit widgets typically
help supply a single line input; in this particular exercise, they help us supply a number
input that must be added, subtracted, and so on, depending on the user's choice.

g MyD1lg.cpp buffers *
21 #include "MyDlg.h"
22
23 MyDlg: :MyDlg() {
24 pAddButton = new “Add");
25 pSubtractButton on("Subtract");
26 pMultiplyButton Sutton("Multiply");
27 pDivideButton = ne tton("Divide");
28
29 pButtonLayout = new OBoxLayout(QBoxLayout::RightToLeft);
30
31 pButtonLayout-> /idget (pDivideButton);
32 pButtonLayout->: jget (pMultiplyButton);
33 pButtonLayout—> et (pSubtractButton);
34 pButtonLayout—>: et (pDivideButton);
35
36 pFormLayout = new QFormLayout();
37
38 pFirstEdit =
39 pSecondEdit =
49 pResultEdit =
a2 pFormLayout—>: "First number",pFirstEdit);
43 pFormLayout—=: w("Second number",pSecondEdit);
44 pFormLayout—>ad w("Result", pResultEdit);
45
46 pMainLayout = new QVBoxLayout(this);
48 pMainLayout->: (pFormLayout);
49 pMainLayout->add (pButtonLayout);
5@
51 Bsetlayout (pMainLayout);

Figure 5.68

The best part of our main. cpp source file is that it remains pretty much the same,
irrespective of the complexity of our application. In this exercise, I would like to tell you a
secret about MyD1g. Did you notice that the MyD1g constructor is instantiated in the stack as
opposed to the heap? The idea is that when the main () function exits, the stack used by the
main function gets unwinded, eventually freeing up all the stack variables present in the
stack. When MyD1g gets freed up, it results in calling the MyD1g destructor. In the Qt
Framework, every widget constructor takes an optional parent widget pointer, which is
used by the topmost window destructor to free up its child widgets. Interestingly, Qt
maintains a tree-like data structure to manage the memory of all its child widgets. So, if all
goes well, the Qt Framework will take care of freeing up all its child widgets' memory
locations "automagically".

[148]

Developing GUI Applications in C++

Chapter 4

This helps Qt developers focus on the application aspect, while the Qt Framework will take

care of memory management.

1 /*

2

3

4 % Filename: main.cpp

5 =%

6 =* Description: This exercise will demonstrate the use of QFormLayout
7 % QLabel and QLineEdit.

8 =

9 * Version: 1.0

10 =* Created: 10/22/2016

11 =* Revision: none

12 * Compiler: gcc

13 =

14 =* Author: Jeganathan Swaminathan <jegan@tektutor.org>
15 % Organization: TekTutor <www.tektutor.org>

16 =*

17 *

18 *x/

19 #include <QApplication>
2@ #include "MyDlg.h"

22 int main (int argc, char s*argv) {

23 QApplication theApp(argc,argv);
24

25 MyDlg dlg;

26 dlg.show();

27

28 return theApp.exec();

29 }

NORMAL SETFTNET
“main.cpp” 29L, 717C

Figure 5.69

Aren't you excited to check the output of our new application? If you build and execute the
application, then you are supposed to get an output similar to the following screenshot. Of
course, we are yet to add signal and slot support, but it's a good idea to design the GUI to

our satisfaction and then shift our focus to event handling;:

ece
jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$ tree

Ex10 Y | Ex10
Ex1@.pro
main.cpp
main.o Result

Makefile add Subtract || Multiply |[_Divide |
MyD1lg.cpp
MyD1lg.h
MyDlg.o

First number ||

second number

@ directories, files
jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$./Ex10

Figure 5.70

[149]

Developing GUI Applications in C++ Chapter 4

If you observe closely, though the buttons are laid out on QBoxLayout in the right to left
direction, the buttons aren't aligned to the right. The reason for this behavior is when the
window is stretched out, the box layout seems to have divided and allocated the extra
horizontal space available among all the buttons. So let's go ahead and throw in a stretch
item to the leftmost position on the box layout such that the stretch will eat up all the extra
spaces, leaving the buttons no room to expand. This will get us the right-aligned effect.
After adding the stretch, the code will look as shown in the following screenshot:

MyDlg.cpp I Duffers
27 pDivideButton = new QPushButton("Divide");

28

29 pButtonLayout = new (BoxLayout(QBoxLayout::RightToLeft);

30

31 pButtonLayout->addWidget (pDivideButton);

32 pButtonLayout->addWidget (pMultiplyButton);

33 pButtonLayout->addWidget (pSubtractButton);

34 pButtonLayout->addWidget (pAddButton);

35 I pButtonlayout->addStretch (");]

36

37 pFormLayout = new QFormLayout();

38

NORMAL SITDITHTT [IDICIOIENE T 66% : 35: 34

Figure 5.71

Go ahead and check whether your output looks as shown in the following screenshot.
Sometimes, as developers, we get excited to see the output in a rush and forget to compile
our changes, so ensure the project is built again. If you don't see any change in output, no
worries; just try to stretch out the window horizontally and you should see the right-
aligned effect, as shown in the following screenshot:

jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$ make

g++ —-c —pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -D
QT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB -I. -I. -I../../../Qt5.7.0/5.7/9
cc_64/include -I../../../Qt5.7.08/5.7/gcc_64/include/QtWidgets -I../../../Q
t5.7.0/5.7/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/gcc_64/include/QtCo
re -I. -I../../../Qt5.7.0/5.7/gcc_64/mkspecs/linux-g++ -o MyDlg.o MyDlg.cp

p

g++ -W1,-01 -W1,-rpath,/home/jegan/Qt5.7.08/5.7/gcc_64/1ib -o Ex1@ main.o M
yDlg.o -L/home/jegan/Qt5.7.8/5.7/gcc_| 64/11b -1Qt5Widgets -L/usr/1ib64 -1
Qt5Gui -1Qt5Core -1GL -1pthread X Exi0

jegan@ubuntu: ~/Master1ngC++/Chapter5/Exlﬂ$ First number

Second number

Result

Add Subtract Multiply || Divide |

Figure 5.72

[150]

Developing GUI Applications in C++ Chapter 4

Now since we have a decent-looking application, let's add signal and slot support to add
the response to button clicks. Let's not rush and include the add and subtract functionalities
for now. We will use some gDebug () print statements to check whether the signals and
slots are connected properly and then gradually replace them with the actual
functionalities.

If you remember the earlier signal and slot exercise, any Qt window that is interested in
supporting signals and slots must be Q0bject and should include the 9_0OBJECT macro in
the MyD1g.h header file, as shown in the following screenshot:

MyD g .. | b fers

29 class MyDlg : public QDialog {

31 private:

32 QVBoxLayout *pMainLayout;

58 QBoxLayout *pButtonLayout;

34 QFormLayout xpFormLayout;

35

36 QLineEdit *pFirstEdit, *pSecondEdit, *pResultEdit;

37 QLabel xpFirstLabel, *pSecondLabel, *pResultLabel;

38 QPushButton *pAddButton, *pSubtractButton, *pMultiplyButton, *pDivideButton
H

39 public:

40 MyDlg();

41 [private slots:

42 void onAddBut ked();

43 void onSubt licked():

44 void onMultip ttonClicked();

45 void onDivideButtonClicked();

46 °F;

Figure 5.73

In lines starting from 41 through 45, four slot methods are declared in the private section.
Slot functions are regular C++ functions that could be invoked directly just like other C++
functions. However, in this scenario, the slot functions are intended to be invoked only with
MyD1lg. Hence they are declared as private functions, but they could be made public if you
believe that others might find it useful to connect to your public slot.

Cool, if you have come this far, it says that you have understood the things discussed so far.
Alright, let's go ahead and implement the definitions for the slot functions in MyD1g. cpp
and then connect the clicked () button's signals with the respective slot functions:

[151]

Developing GUI Applications in C++ Chapter 4

MyD1lg.h MyD1lg.cpp
50

pMainLayout->addLayout (pButtonLayout);

51
52 setlLayout (pMainLayout);
53 }
54
55| void MyDlg::onAddButtonClicked() {
56 gDebug() << "Add button clicked ..." << endl;
571 }
58
59| void MyD1lg::onSubtractButtonClicked() {
60 gDebug() << "Subtract button clicked ..." << endl;
61| }
62
63] void MyDlg::onMultiplyButtonClicked() {
64 gDebug() << "Multiply button clicked ..." << endl;
65| }
66
67] void MyD1lg::onDivideButtonClicked() {
68] gDebug() << "Divide button clicked ..." << endl;
69| B

RMA <uttonClicked() < cpp utf

Figure 5.74

Now it's time to wire up the signals to their respective slots. As you may have guessed, we
need to use the connect function in the MyD1g constructor, as shown in the following
screenshot, to get the button clicks to the corresponding slots:

[J [jegan — ~[Masteri ++|ChapterB/Ex10/MyDig.cop — ash -X -Y jegan@172.16.31.133 — 116=34
MyD1g. cpp | o f fers |
52 setlayout (pMainLayout);

53

54 connect (

55 pAddButton,

56 SIGNAL (clicked() },

57 this,

58 SLOT { onAddButtonClicked())

59);

60 connect (

61 pSubtractButton,

62 SIGNAL (clicked()),

63 this,

64 SLOT (onSubtractButtonClicked())}
65);

66 connect (

67 pMultiplyButton,

68 SIGNAL (clicked()),

69 this,

70 SLOT { onMultiplyButtonClicked())
71);

72 connect {

73 pDivideButton,

74 SIGNAL (clicked()),

75 this,

76 SLOT (onDivideButtonClicked())
77)

78 }

79

80 void MyDlg::onAddButtonClicked() {

1 qDebug() << "Add button clicked ..."

84% : 79/94 : 1

Figure 5.75

[152]

Developing GUI Applications in C++ Chapter 4

We are all set. Yes, it's showtime now. As we have taken care of most of the stuff, let's
compile and check the output of our little Qt application:

eace jegan — jegan@ubuniu; ~/MasteringC++/ChaplerS/Ex10 — 55 -X -Y jegan@172.16.31.133 — 116221

Press ENTER or type command to continue =
jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$ make

g++ —c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB
-I. -I. -I../../../Qt5.7.0/5.7/gcc_b64/include -I../../../Qt5.7.8/5.7/gcc_b4/include/QtWidgets -I../../../Qt5.7.0/5.7
/qcc_64/include/QtGui -I../../../0Qt5.7.0/5.7/gcc_64/include/QtCore -I. -I../../../Qt5.7.@/5.7/gcc_64/mkspecs/linux—g
++ -0 main.o main.cpp

g++ —c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB
-I. -I. -I../../../Qt5.7.0/5.7/gcc_B4/include -I../../../Qt5.7.8/5.7/gcc_64/include/QtWidgets -I../../../Qt5.7.8/5.7
fqce_64/include/QtGui -I../../../Qt5.7.0/5.7/9cc_64/include/QtCore -I. -I../../../Qt5.7.8/5.7/gcc_64/mkspecs/1inux-g
++ -0 MyDlg.o MyDlg.cpp

g++ -W1,-01 -WL,-rpath,/home/jegan/Qt5.7.8/5.7/gcc_64/1ib -0 Ex10 main.o MyDlg.o -L/home/jegan/Qt5.7.0/5.7/gcc_64/

main.o: In function “main':

main.cpp: (.text.startup+@x59): undefined reference to “vtable for MyDlg

main.cpp: (.text.startup+®xb2): undefined reference to “vtable for MyDlg'
yO1g.o: (& &t YOG s Myoger -

MyDlg.cpp: (.text+@x29): undefined reference to “vtable for MyDlg'
collect2: error: 1d returned 1 exit status

Makefile:211: recipe for target 'Ex18' failed

make: ik [Ex1@] Error 1

jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$ [

Figure 5.76

Oops! We got some linker error. The root cause of this issue is that we forgot to invoke
gmake after enabling signal and slot support in our application. No worries, let's invoke
gmake and make and run our application:

MyDlg.o: In function “MyDlg::MyDlg()': ® \ Bxi0 =
MyD1lg.cpp: (. text+@x29): undefined reference to “vtable for MyDlg'

collect2: error: ld returned 1 exit status First number ||

Makefile:211: recipe for target 'Ex1@' failed Second number

make: sk [Ex18] Error 1 Result
jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$ gmake Add Subtract Multiply Divide |

jegan@ubuntu:~/MasteringC++/Chapter5/Ex10% make T —
/home/jegan/Qt5.7.8/5.7/gcc_64/bin/moc -DOT_NO_DEBUG -DQT_WIDGETS_LIB -DOT_GUI_LIB -DQT_CORE_LIB -I/home/jegan/0t5.7
.0/5.7/gcc_64/mkspecs/linux-g++ -I/home/jegan/MasteringC++/Chapter5/Ex10 -I/home/jegan/MasteringC++/Chapter5/Ex10 -I
/home/jegan/Qt5.7.8/5.7/gcc_64/include -I/home/jegan/Qt5.7.0/5.7/gcc_64/include/QtWidgets -I/home/jegan/Qt5.7.0/5.7/
gcc_b4/include/QtGui -I/home/jegan/Qt5.7.8/5.7/gcc_b4/include/QtCore -I/usr/include/c++/5 -I/usr/include/x86_64-1inu
x-gnu/c++/5 -I/usr/include/c++/5/backward -I/usr/lib/gcc/xB6_64-1inux-gnu/5/include -I/usr/local/include -I/usr/lib/
gcc/x86_64-1inux—gnu/5/include-fixed -I/usr/include/x86_64-1inux-gnu -I/usr/include MyDlg.h -0 moc_MyDlg.cpp

g++ -c -pipe -02 -std=gnu++11 -Wall -W -D_REENTRANT -fPIC -DQT_NO_DEBUG -DQT_WIDGETS_LIB -DQT_GUI_LIB -DQT_CORE_LIB
-I. -I. -I../../../Qt5.7.8/5.7/gcc_64/include -I../../../Qt5.7.8/5.7/gcc_64/include/QtWidgets -I../../../Qt5.7.8/5.7
/gcc_64/include/QtGui -I../../../Qt5.7.0/5.7/gcc_64/include/QtCore -I. -I../../../Qt5.7.8/5.7/gcc_64/mkspecs/linux—g
++ -0 moc_MyDlg.o moc_MyDlg.cpp

g++ -Wl,-01 -Wl,-rpath,/home/jeqan/Qt5.7.8/5.7/gcc_b64/1ib -0 Ex1@ main.o MyDlg.o moc_MyDlg.o -L/home/jegan/Qt5.7.@
/5.7/gcc_b4/1ib -1Qt5Widgets -L/usr/1ib64 -1Qt5Gui -1Qt5Core -1GL -lpthread
jegan@ubuntu:~/MasteringC++/Chapter5/Ex10% ./Ex1@

Figure 5.77

Great, we have fixed the issue. The make utility doesn't seem to make any noise this time
and we are able to launch the application. Let's check whether the signals and slots are
working as expected. For this, click on the Add button and see what happens:

[153]

Developing GUI Applications in C++

Chapter 4

jegan@ubuntu:~/MasteringC++/Chapter5/Ex10$./Ex10

dd button clicked ...

x| Ex10
First number
Second number
Result

Add Subtract Multiply Divide |
Figure 5.78

Wow! When we click on the Add button, the gbebug () console message confirms that the
MyDlg: :onAddButtonClicked () slotis invoked. If you are curious to check the slots of
other buttons, go ahead and try clicking on the rest of the buttons.

Our application will be incomplete without business logic. So let's add business logic to the
MyDlg::onAddButtonClicked () slot function to perform the addition and display the
result. Once you learn how to integrate the added business logic, you can follow the same
approach and implement the rest of the slot functions:

@0 e jegan — ~/MasteringC++/Chapter5/Ex10{MyDIg.cpp — ssh -X -¥ je
MyD1lg.cpp
72 connect (
73 pDivideButton,
74 SIGNAL (clicked()),
75 this,
76 SLOT (onDivideButtonClicked())
77);
78 }
79
80 Jvoid MyD1g::onAddButtonClicked() {
81 qDebug() << "Add button clicked ..." << endl;
82 int firstNumber = pFirstEdit->text().toInt();
83 int secondNumber = pSecondEdit->text().toInt();
84 int result = firstNumber + secondNumber;
85 QString strResult;
86 strResult.setNum(result);
87
a8 pResultEdit->setText(strResult);
89 I+
90
91 void MyD1g::onSubtractButtonClicked() {
92 gDebug() << "Subtract button clicked ..." << endl;
93 }
94
95 void MyD1lg::onMultiplyButtonClicked() {
96 qDebug() << "Multiply button clicked ..." << endl;
97 }
98
Figure 5.79

[154]

Developing GUI Applications in C++ Chapter 4

In the MyD1g: : onAddButtonClicked () function, the business logic is integrated. In lines
82 and 83, we are trying to extract the values typed by the user in the QLineEdit widgets.
The text () function in QLineEdit returns QString. The 0String object provides

toInt () that comes in handy to extract the integer value represented by 0string. Once
the values are added and stored in the result variable, we need to convert the result integer
value back to 9String, as shown in line number 86, so that the result can be fed into
QLineEdit, as shown in line number 88.

Similarly, you can go ahead and integrate the business logic for other math operations.
Once you have thoroughly tested the application, you can remove the gbebug () console's
output. We added the gbebug () messages for debugging purposes, hence they can be
cleaned up now.

Summary

In this chapter, you learned developing C++ GUI applications using Qt application
framework. The key takeaway points are listed below.

* You learned installing Qt and required tools in Linux.
* You learned writing simple console based application with Qt Framework.
* You learned writing simple GUI based applications with Qt Framework.

* You learned event handling with Qt Signal and Slots mechanism and how Meta
Object Compiler helps us generate the crucial boiler plate code required for
Signal and Slots.

* You learned using various Qt Layouts in application development to develop an
appealing HMI that looks great in many Qt supported platforms.

* You learned combining multiple layouts in a single HMI to develop professional
HMI.

* You learned quite a lot of Qt Widgets and how they could help you develop
impressive HMIs.

¢ Overall you learned developing cross-platform GUI applications using Qt
application framework.

In the next chapter, you will be learning multithread programming and IPC in C++.

[155]

Test-Driven Development

This chapter will cover the following topics:

¢ A brief overview of test-driven development

e Common myths and questions around TDD

e Whether it takes more efforts for a developer to write unit tests
e Whether code coverage metrics is good or bad

e Whether TDD would work for complex legacy projects

e Whether TDD is even applicable for embedded products or products that involve
hardware

e Unit test frameworks for C++
¢ Google test framework
e Installing Google test framework on Ubuntu

e The process to build a Google test and mock together as one single static library
without installing them

e Writing our first test case using Google test framework
¢ Using Google test framework in Visual Studio IDE

e TDD in action

¢ Testing legacy code that has dependency

Let's deep dive into these TDD topics.

Test-Driven Development Chapter 5

TDD

Test-driven development (TDD) is an extreme programming practice. In TDD, we start
with a test case and incrementally write the production code that is required to make the
test case succeed. The idea is that one should focus on one test case or scenario at a time and
once the test case passes, they can then move on to the next scenario. In this process, if the
new test case passes, we shouldn't modify the production code. In other words, in the
process of developing a new feature or while fixing a bug, we can modify the production
code only for two reasons: either to ensure the test case passes or to refactor the code. The
primary focus of TDD is unit testing; however, it can be extended to integration and
interaction testing to some extent.

The following figure demonstrates the TDD process visually:

Add a Test
. Test Failed

Write Code

Refactor

Test Passed

When TDD is followed religiously, one can achieve both functional and structural quality of
the code. It is very crucial that you write the test case first before writing the production
code as opposed to writing test cases at the end of the development phase. This makes quite
a lot of difference. For instance, when a developer writes unit test cases at the end of
development, it is very unlikely that the test cases will find any defect in the code. The
reason is that the developers will unconsciously be inclined to prove their code is doing the
right thing when the test case is written at the end of development. Whereas, when
developers write test cases upfront, as no code is written yet, they start thinking from the
end user's point of view, which would encourage them to come up with numerous
scenarios from the requirement specification point of view.

[157]

Test-Driven Development Chapter 5

In other words, test cases written against code that is already written will generally not find
any bug as it tends to prove the code written is correct, instead of testing it against the
requirement. As developers think of various scenarios before writing code, it helps them
write better code incrementally, ensuring that the code does take care of those scenarios.
However, when the code has loopholes, it is the test case that helps them find issues, as test
cases will fail if they don't meet the requirements.

TDD is not just about using some unit test framework. It requires cultural and mindset
change while developing or fixing defects in the code. Developers' focus should be to make
the code functionally correct. Once the code is developed in this fashion, it is highly
recommended that the developers should also focus on removing any code smells by
refactoring the code; this will ensure the structural quality of the code would be good as
well. In the long run, it is the structural quality of the code that would make the team
deliver features faster.

Common myths and questions around TDD

There are lots of myths and common doubts about TDD that crosses everyone's mind when
they are about to start their TDD journey. Let me clarify most of them that I came across, for
while I consulted many product giants around the globe.

Does it take more efforts for a developer to write
a unit test?

One of the common doubts that arises in the minds of most developers is, "How am I
supposed to estimate my effort when we adapt to TDD?" As developers are supposed to
write unit and integration test cases as part of TDD, it is no wonder you are concerned
about how to negotiate with the customer or management for the additional effort required
to write test cases in addition to writing code. No worries, you aren't alone; as a freelance
software consultant myself, many developers have asked me this question.

As a developer, you test your code manually; instead, write automated test cases now. The
good news is that it is a one-time effort that is guaranteed to help you in the long run. While
a developer requires repeated manual effort to test their code, every time they change the
code, the already existing automated test cases will help the developer by giving them
immediate feedback when they integrate a new piece of code.

[158]

Test-Driven Development Chapter 5

The bottom line is that it requires some additional effort, but in the long run, it helps reduce
the effort required.

Is code coverage metrics good or bad?

Code coverage tools help developers identify gaps in their automated test cases. No doubt,
many times it will give a clue about missing test scenarios, which would eventually further
strengthen the automated test cases. But when an organization starts enforcing code
coverage as a measure to check the effectiveness of test coverage, it sometimes drives the
developers in the wrong direction. From my practical consulting experience, what I have
learned is that many developers start writing test cases for constructors and private and
protected functions to show higher code coverage. In this process, developers start chasing
numbers and lose the ultimate goal of TDD.

In a particular source with a class that has 20 methods, it is possible that only 10 methods
qualify for unit testing while the other methods are complex functionality. In such a case,
the code coverage tools will show only 50 percent code coverage, which is absolutely fine as
per the TDD philosophy. However, if the organization policy enforces a minimum 75
percent code coverage, then the developers will have no choice other than testing the
constructor, destructor, private, protected, and complex functions for the sake of showing
good code coverage.

The trouble with testing private and protected methods is that they tend to change more
often as they are marked as implementation details. When private and protected methods
change badly, that calls for modifying test cases, which makes the developer's life harder in
terms of maintaining the test cases.

Hence, code coverage tools are very good developer tools to find test scenario gaps, but it
should be left to a developer to make a wise choice of whether to write a test case or ignore
writing test cases for certain methods, depending on the complexity of the methods.
However, if code coverage is used as project metrics, it more often tends to drive developers
to find wrong ways to show better coverage, leading to bad test case practices.

Does TDD work for complex legacy projects?

Certainly! TDD works for any type of software project or products. TDD isn't meant just for
new products or projects; it is also proven to be more effective with complex legacy projects
or products. In a maintenance project, the vast majority of the time one has to fix defects
and very rarely one has to support a new feature. Even in such legacy code, one can follow
TDD while fixing defects.

[159]

Test-Driven Development Chapter 5

As a developer, you would readily agree with me that once you are able to reproduce the
issue, almost half of the problem can be considered fixed from the developer's point of
view. Hence, you can start with a test case that reproduces the issue and then debug and fix
the issue. When you fix the issue, the test case will start passing; now it's time to think of
another possible test case that may reproduce the same def<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>