

Expert C++ Programming

Leveraging the power of modern C++ to build scalable
modular applications

A learning path in three sections

BIRMINGHAM - MUMBAI

Expert C++ Programming
Copyright © 2018 Packt Publishing

All rights reserved. No part of this learning path may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this learning path to ensure the accuracy of the information
presented. However, the information contained in this learning path is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages
caused or alleged to have been caused directly or indirectly by this learning path.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this learning path by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Authors: Jeganathan Swaminathan, Maya Posch, Jacek Galowicz
Reviewer: Brandon James, Louis E. Mauget, Arne Mertz
Content Development Editor: Priyanka Sawant
Graphics: Jisha Chirayal
Production Coordinator: Nilesh Mohite

Published on: April 2018

Production reference: 1060418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-139-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Table of Contents
Preface 1

Section 1: Mastering C++ Programming
Chapter 1: Introduction to C++17 Standard Template Library 6

The Standard Template Library architecture 7
Algorithms 8
Iterators 8
Containers 11
Functors 11

Sequence containers 13
Array 13

Code walkthrough 14
Commonly used APIs in an array 14

Vector 16
Code walkthrough 17
Commonly used vector APIs 18
Code walkthrough 19
Pitfalls of a vector 20

List 20
Commonly used APIs in a list 23

Forward list 23
Code walkthrough 25
Commonly used APIs in a forward_list container 25

Deque 28
Commonly used APIs in a deque 29

Associative containers 30
Set 31

Code walkthrough 33
Commonly used APIs in a set 34

Map 34
Code walkthrough 35
Commonly used APIs in a map 36

Multiset 36
Multimap 37
Unordered sets 38
Unordered maps 39
Unordered multisets 39
Unordered multimaps 39

Container adapters 40
Stack 40

Table of Contents

[ii]

Commonly used APIs in a stack 41
Queue 42

Commonly used APIs in a queue 42
Priority queue 44

Commonly used APIs in a priority queue 44
Summary 45

Chapter 2: Template Programming 46
Generic programming 46

Function templates 48
Code walkthrough 50

Overloading function templates 52
Code walkthrough 55

Class template 57
Code walkthrough 60

Explicit class specializations 61
Code walkthrough 64

Partial template specialization 69
Summary 72

Chapter 3: Smart Pointers 73
Memory management 73
Issues with raw pointers 74
Smart pointers 77

auto_ptr 78
Code walkthrough - Part 1 81
Code walkthrough - Part 2 82

unique_ptr 84
Code walkthrough 86

shared_ptr 87
Code walkthrough 89

weak_ptr 90
Circular dependency 93

Summary 95

Chapter 4: Developing GUI Applications in C++ 96
Qt 98

Installing Qt 5.7.0 in Ubuntu 16.04 98
Qt Core 100

Writing our first Qt console application 100
Qt Widgets 103

Writing our first Qt GUI application 103
Layouts 108

Writing a GUI application with a horizontal layout 109
Writing a GUI application with a vertical layout 114
Writing a GUI application with a box layout 118
Writing a GUI application with a grid layout 122

Table of Contents

[iii]

Signals and slots 126
Using stacked layout in Qt applications 137

Writing a simple math application combining multiple layouts 146
Summary 155

Chapter 5: Test-Driven Development 156
TDD 157
Common myths and questions around TDD 158

Does it take more efforts for a developer to write a unit test? 158
Is code coverage metrics good or bad? 159
Does TDD work for complex legacy projects? 159
Is TDD even applicable for embedded or products that involve hardware? 160

Unit testing frameworks for C++ 160
Google test framework 161

Installing Google test framework on Ubuntu 161
How to build google test and mock together as one single static library
without installing? 164
Writing our first test case using the Google test framework 166
Using Google test framework in Visual Studio IDE 170

TDD in action 178
Testing a piece of legacy code that has dependency 199

Summary 208

Chapter 6: Behavior-Driven Development 209
Behavior-driven development 209
TDD versus BDD 210
C++ BDD frameworks 210
The Gherkin language 211
Installing cucumber-cpp in Ubuntu 211

Installing the cucumber-cpp framework prerequisite software 212
Building and executing the test cases 214

Feature file 215
Spoken languages supported by Gherkin 217
The recommended cucumber-cpp project folder structure 218
Writing our first Cucumber test case 218

Integrating our project in cucumber-cpp CMakeLists.txt 224
Executing our test case 225

Dry running your cucumber test cases 226
BDD - a test-first development approach 227

Let's build and run our BDD test case 237
It's testing time! 242

Summary 247

Chapter 7: Code Smells and Clean Code Practices 248
Code refactoring 249

Table of Contents

[iv]

Code smell 250
What is agile? 250
SOLID design principle 251

Single responsibility principle 252
Open closed principle 254
Liskov substitution principle 257
Interface segregation 258
Dependency inversion 260

Code smell 264
Comment smell 264
Long method 265
Long parameter list 265
Duplicate code 266
Conditional complexity 267
Large class 267
Dead code 267
Primitive obsession 268
Data class 268
Feature envy 268

Summary 269

Section 2: Mastering C++ Multithreading
Chapter 8: Revisiting Multithreading 271

Getting started 271
The multithreaded application 272

Makefile 276
Other applications 278
Summary 279

Chapter 9: Multithreading Implementation on the Processor and OS 280
Introduction to POSIX pthreads 280
Creating threads with the pthreads library 281

How to compile and run 283
Does C++ support threads natively? 284
Defining processes and threads 285

Tasks in x86 (32-bit and 64-bit) 287
Process state in ARM 290

The stack 291
Defining multithreading 292

Flynn's taxonomy 294
Symmetric versus asymmetric multiprocessing 294
Loosely and tightly coupled multiprocessing 295
Combining multiprocessing with multithreading 296
Multithreading types 296

Table of Contents

[v]

Temporal multithreading 296
Simultaneous multithreading (SMT) 297

Schedulers 297
Tracing the demo application 299
Mutual exclusion implementations 301

Hardware 302
Software 303

Concurrency 304
How to compile and run 305
Asynchronous message passing using the concurrency support library 306

How to compile and run 307
Concurrency tasks 307

How to compile and run 308
Using tasks with a thread support library 309

How to compile and run 309
Binding the thread procedure and its input to packaged_task 310

How to compile and run 311
Exception handling with the concurrency library 311

How to compile and run 312
What did you learn? 313

Summary 313

Chapter 10: C++ Multithreading APIs 314
API overview 314
POSIX threads 315

Windows support 318
PThreads thread management 318
Mutexes 320
Condition variables 321
Synchronization 323
Semaphores 324
Thread local storage (TLC) 324

Windows threads 326
Thread management 326
Advanced management 329
Synchronization 329
Condition variables 330
Thread local storage 330

Boost 330
Thread class 331
Thread pool 332
Thread local storage (TLS) 332
Synchronization 333

C++ threads 334
Putting it together 334

Table of Contents

[vi]

Summary 335

Chapter 11: Thread Synchronization and Communication 336
Safety first 336
The scheduler 337

High-level view 337
Implementation 338

Request class 340
Worker class 342

Dispatcher 344
Makefile 348
Output 349

Sharing data 352
Using r/w-locks 353
Using shared pointers 353

Summary 353

Chapter 12: Native C++ Threads and Primitives 354
The STL threading API 354

Boost.Thread API 354
The 2011 standard 355
C++14 356
Thread class 356

Basic use 357
Passing parameters 357
Return value 358
Moving threads 358
Thread ID 359
Sleeping 360
Yield 361
Detach 361
Swap 361

Mutex 362
Basic use 362

Non-blocking locking 364
Timed mutex 365
Lock guard 366
Unique lock 367
Scoped lock 368
Recursive mutex 368
Recursive timed mutex 369

Shared mutex 369
Shared timed mutex 370

Condition variable 370
Condition_variable_any 373

Table of Contents

[vii]

Notify all at thread exit 373
Future 374

Promise 375
Shared future 376

Packaged_task 377
Async 378

Launch policy 379
Atomics 379
Summary 379

Chapter 13: Debugging Multithreaded Code 380
When to start debugging 380
The humble debugger 381

GDB 382
Debugging multithreaded code 383
Breakpoints 384
Back traces 385

Dynamic analysis tools 387
Limitations 388
Alternatives 388
Memcheck 389

Basic use 389
Error types 392

Illegal read / illegal write errors 392
Use of uninitialized values 392
Uninitialized or unaddressable system call values 394
Illegal frees 396
Mismatched deallocation 396
Overlapping source and destination 396
Fishy argument values 397
Memory leak detection 397

Helgrind 398
Basic use 398

Misuse of the pthreads API 403
Lock order problems 404
Data races 405
DRD 405
Basic use 405
Features 407
C++11 threads support 408

Summary 409

Chapter 14: Best Practices 410
Proper multithreading 410
Wrongful expectations - deadlocks 411
Being careless - data races 415
Mutexes aren't magic 420

Table of Contents

[viii]

Locks are fancy mutexes 422
Threads versus the future 423
Static order of initialization 423
Summary 426

Chapter 15: Atomic Operations - Working with the Hardware 427
Atomic operations 427

Visual C++ 428
GCC 434

Memory order 437
Other compilers 438
C++11 atomics 438
Example 441
Non-class functions 442
Example 443
Atomic flag 445
Memory order 445

Relaxed ordering 446
Release-acquire ordering 446
Release-consume ordering 447
Sequentially-consistent ordering 447
Volatile keyword 448

Summary 448

Chapter 16: Multithreading with Distributed Computing 449
Distributed computing, in a nutshell 449

MPI 451
Implementations 452
Using MPI 453

Compiling MPI applications 454
The cluster hardware 455

Installing Open MPI 459
Linux and BSDs 459
Windows 459

Distributing jobs across nodes 461
Setting up an MPI node 462
Creating the MPI host file 462
Running the job 463
Using a cluster scheduler 463

MPI communication 464
MPI data types 465

Custom types 466
Basic communication 468
Advanced communication 469
Broadcasting 470
Scattering and gathering 470

Table of Contents

[ix]

MPI versus threads 471
Potential issues 473
Summary 474

Chapter 17: Multithreading with GPGPU 475
The GPGPU processing model 475

Implementations 476
OpenCL 477
Common OpenCL applications 477
OpenCL versions 478

OpenCL 1.0 478
OpenCL 1.1 478
OpenCL 1.2 479
OpenCL 2.0 480
OpenCL 2.1 480
OpenCL 2.2 481

Setting up a development environment 482
Linux 482
Windows 482
OS X/MacOS 483

A basic OpenCL application 483
GPU memory management 487
GPGPU and multithreading 489

Latency 490
Potential issues 490
Debugging GPGPU applications 491
Summary 492

Section 3: C++17 STL Cookbook
Chapter 18: The New C++17 Features 494

Introduction 494
Using structured bindings to unpack bundled return values 495

How to do it... 495
How it works... 497
There's more... 497

Limiting variable scopes to if and switch statements 499
How to do it... 500
How it works... 500
There's more... 502

Profiting from the new bracket initializer rules 503
How to do it... 503
How it works... 504

Letting the constructor automatically deduce the resulting template
class type 505

Table of Contents

[x]

How to do it... 505
How it works... 506
There's more... 507

Simplifying compile time decisions with constexpr-if 508
How to do it... 508
How it works... 509
There's more... 510

Enabling header-only libraries with inline variables 512
How it's done... 512
How it works... 513
There's more... 515

Implementing handy helper functions with fold expressions 515
How to do it... 516
How it works... 516
There's more... 517

Match ranges against individual items 519
Check if multiple insertions into a set are successful 520
Check if all the parameters are within a certain range 521
Pushing multiple items into a vector 521

Chapter 19: STL Containers 523
Using the erase-remove idiom on std::vector 524

How to do it... 524
How it works... 526
There's more... 527

Deleting items from an unsorted std::vector in O(1) time 528
How to do it... 528
How it works... 531

Accessing std::vector instances the fast or the safe way 532
How to do it... 532
How it works... 533
There's more... 534

Keeping std::vector instances sorted 534
How to do it... 534
How it works... 536
There's more... 537

Inserting items efficiently and conditionally into std::map 537
How to do it... 538
How it works... 540
There's more... 541

Knowing the new insertion hint semantics of std::map::insert 541
How to do it... 541
How it works... 542
There's more... 543

Efficiently modifying the keys of std::map items 544

Table of Contents

[xi]

How to do it... 545
How it works... 547
There's more... 547

Using std::unordered_map with custom types 548
How to do it... 548
How it works... 550

Filtering duplicates from user input and printing them in
alphabetical order with std::set 551

How to do it... 552
How it works... 553

std::istream_iterator 553
std::inserter 554
Putting it together 555

Implementing a simple RPN calculator with std::stack 555
How to do it... 556
How it works... 559

Stack handling 559
Distinguishing operands from operations from user input 560
Selecting and applying the right mathematical operation 561

There's more... 561
Implementing a word frequency counter with std::map 562

How to do it... 562
How it works... 565

Implement a writing style helper tool for finding very long
sentences in text with std::multimap 566

How to do it... 567
How it works... 570
 There's more... 571

Implementing a personal to-do list using std::priority_queue 571
How to do it... 572
How it works... 574

Chapter 20: Iterators 575
Introduction 575

Iterator categories 577
Input iterator 578
Forward iterator 578
Bidirectional iterator 578
Random access iterator 579
Contiguous iterator 579
Output iterator 579
Mutable iterator 579

Building your own iterable range 579
How to do it... 580
How it works... 582

Making your own iterators compatible with STL iterator categories 583

Table of Contents

[xii]

How to do it... 583
How it works... 586
There's more... 586

Using iterator adapters to fill generic data structures 587
How to do it... 587
How it works... 589

std::back_insert_iterator 589
std::front_insert_iterator 589
std::insert_iterator 590
std::istream_iterator 590
std::ostream_iterator 590

Implementing algorithms in terms of iterators 591
How to do it... 592
There's more... 594

Iterating the other way around using reverse iterator adapters 595
How to do it... 595
How it works... 596

Terminating iterations over ranges with iterator sentinels 597
How to do it... 598

Automatically checking iterator code with checked iterators 600
How to do it... 601
How it works... 603
There's more... 604

Building your own zip iterator adapter 605
How to do it... 607
There's more... 610

Ranges library 611

Chapter 21: Lambda Expressions 612
Introduction 612
Defining functions on the run using lambda expressions 614

How to do it... 614
How it works... 617

Capture list 618
mutable (optional) 619
constexpr (optional) 619
exception attr (optional) 619
return type (optional) 619

Adding polymorphy by wrapping lambdas into std::function 619
How to do it... 620
How it works... 622

Composing functions by concatenation 623
How to do it... 624
How it works... 626

Creating complex predicates with logical conjunction 627
How to do it... 627

Table of Contents

[xiii]

There's more... 629
Calling multiple functions with the same input 630

How to do it... 630
How it works... 632

Implementing transform_if using std::accumulate and lambdas 634
How to do it... 634
How it works... 637

Generating cartesian product pairs of any input at compile time 640
How to do it... 641
How it works... 643

Chapter 22: STL Algorithm Basics 645
Introduction 646
Copying items from containers to other containers 648

How to do it... 649
How it works... 651

Sorting containers 653
How to do it... 653
How it works... 657

Removing specific items from containers 657
How to do it... 658
How it works... 661

Transforming the contents of containers 661
How to do it... 662
How it works... 664

Finding items in ordered and unordered vectors 664
How to do it... 665
How it works... 669

Limiting the values of a vector to a specific numeric range with
std::clamp 671

How to do it... 672
How it works... 675

Locating patterns in strings with std::search and choosing the
optimal implementation 675

How to do it... 676
How it works... 678

Sampling large vectors 680
How to do it... 681
How it works... 684

Generating permutations of input sequences 685
How to do it... 685
How it works... 686

Implementing a dictionary merging tool 687
How to do it... 688

Table of Contents

[xiv]

How it works... 690

Chapter 23: Advanced Use of STL Algorithms 691
Introduction 691
Implementing a trie class using STL algorithms 692

How to do it... 693
How it works... 697

Implementing a search input suggestion generator with tries 698
How to do it... 699
How it works... 703
There's more... 704

Implementing the Fourier transform formula with STL numeric
algorithms 704

How to do it... 705
How it works... 711

Calculating the error sum of two vectors 713
How to do it... 713
How it works... 716

Implementing an ASCII Mandelbrot renderer 717
How to do it... 718
How it works... 722

Building our own algorithm - split 723
How to do it... 724
How it works... 726
There's more... 727

Composing useful algorithms from standard algorithms - gather 727
How to do it... 728
How it works... 731

Removing consecutive whitespace between words 733
How to do it... 733
How it works... 734

Compressing and decompressing strings 736
How to do it... 736
How it works... 738
There's more... 740

Chapter 24: Strings, Stream Classes, and Regular Expressions 741
Introduction 742
Creating, concatenating, and transforming strings 743

How to do it... 744
How it works... 746

Trimming whitespace from the beginning and end of strings 747
How to do it... 747
How it works... 749

Table of Contents

[xv]

Getting the comfort of std::string without the cost of constructing
std::string objects 750

How to do it... 751
How it works... 753

Reading values from user input 754
How to do it... 754
How it works... 756

Counting all words in a file 757
How to do it... 758
How it works... 760

Formatting your output with I/O stream manipulators 760
How to do it... 761
How it works... 765

Initializing complex objects from file input 767
How to do it... 767
How it works... 769

Filling containers from std::istream iterators 770
How to do it... 771
How it works... 774

Generic printing with std::ostream iterators 775
How to do it... 776
How it works... 779

Redirecting output to files for specific code sections 780
How to do it... 781
How it works... 784

Creating custom string classes by inheriting from std::char_traits 785
How to do it... 786
How it works... 790

Tokenizing input with the regular expression library 791
How to do it... 792
How it works... 794

Comfortably pretty printing numbers differently per context on the
fly 796

How to do it... 797
Catching readable exceptions from std::iostream errors 799

How to do it... 800
How it works... 802

Chapter 25: Utility Classes 803
Introduction 804
Converting between different time units using std::ratio 804

How to do it... 805
How it works... 808
There's more... 810

Table of Contents

[xvi]

Converting between absolute and relative times with std::chrono 810
How to do it... 811
How it works... 813

Safely signalizing failure with std::optional 814
How to do it... 815
How it works... 817

Applying functions on tuples 819
How to do it... 819
How it works... 821

Quickly composing data structures with std::tuple 822
How to do it... 822
How it works... 827

operator<< for tuples 827
The zip function for tuples 828

Replacing void* with std::any for more type safety 830
How to do it... 830
How it works... 833

Storing different types with std::variant 833
How to do it... 834
How it works... 838

Automatically handling resources with std::unique_ptr 839
How to do it... 840
How it works... 843

Automatically handling shared heap memory with std::shared_ptr 844
How to do it... 844
How it works... 847
There's more... 849

Dealing with weak pointers to shared objects 850
How to do it... 851
How it works... 853

Simplifying resource handling of legacy APIs with smart pointers 855
How to do it... 856
How it works... 858

Sharing different member values of the same object 859
How to do it... 860
How it works... 861

Generating random numbers and choosing the right random
number engine 863

How to do it... 863
How it works... 868

Generating random numbers and letting the STL shape specific
distributions 870

How to do it... 870
How it works... 877

Table of Contents

[xvii]

Chapter 26: Parallelism and Concurrency 879
Introduction 879
Automatically parallelizing code that uses standard algorithms 880

How to do it... 881
How it works... 883

Which STL algorithms can we parallelize this way? 883
How do those execution policies work? 884
What does vectorization mean? 886

Putting a program to sleep for specific amounts of time 887
How to do it... 887
How it works... 888

Starting and stopping threads 889
How to do it... 890
How it works... 892

Performing exception safe shared locking with std::unique_lock
and std::shared_lock 894

How to do it... 895
How it works... 898

Mutex classes 898
Lock classes 899

Avoiding deadlocks with std::scoped_lock 902
How to do it... 903
How it works... 905

Synchronizing concurrent std::cout use 906
How to do it... 907
How it works... 909

Safely postponing initialization with std::call_once 910
How to do it... 911
How it works... 912

Pushing the execution of tasks into the background using
std::async 913

How to do it... 914
How it works... 917
There's more... 918

Implementing the producer/consumer idiom with
std::condition_variable 919

How to do it... 919
How it works... 922

Implementing the multiple producers/consumers idiom with
std::condition_variable 924

How to do it... 925
How it works... 929

Parallelizing the ASCII Mandelbrot renderer using std::async 931
How to do it... 932

Table of Contents

[xviii]

How it works... 935
Implementing a tiny automatic parallelization library with std::future 936

How to do it... 937
How it works... 941

Chapter 27: Filesystem 946
Introduction 946
Implementing a path normalizer 947

How to do it... 947
How it works... 949
There's more... 949

Getting canonical file paths from relative paths 950
How to do it... 951
How it works... 953

Listing all files in directories 954
How to do it... 954
How it works... 958

Implementing a grep-like text search tool 959
How to do it... 960
How it works... 962
There's more... 963

Implementing an automatic file renamer 963
How to do it... 964

Implementing a disk usage counter 966
How to do it... 967
How it works... 969

Calculating statistics about file types 969
How to do it... 970

Implementing a tool that reduces folder size by substituting
duplicates with symlinks 973

How to do it... 973
How it works... 977
There's more... 977

Bibliography 979

Index 980

Preface
Introduction to the learning path and the technology.

Who this learning path is for
This learning path is for Java developers who are looking to move a level up and learn how
to build robust applications in the latest version of Java.

What this learning path covers
Section 1, Mastering C++ Programming, introducing ​ ​you ​ ​to ​ ​the ​ ​latest ​ ​features ​ ​in ​ ​C++ ​ ​17
and STL. ​ ​It ​ ​encourages clean ​ ​code ​ ​practices ​ ​in ​ ​C++ ​ ​in ​ ​general ​ ​and ​ ​demonstrates ​ ​the ​
GUI app-development ​ ​options ​ ​in ​ ​C++. ​ ​You’ll ​ ​get ​ ​tips ​ ​on ​ ​avoiding ​ ​memory ​ ​leaks using
​ ​smart-pointers. ​

 Section 2, Mastering C++ Multithreading, ​you’ll ​ ​see ​ ​how ​ ​multi-threaded ​programming can ​
help ​ ​you ​ ​achieve ​ ​concurrency ​ ​in ​ ​your ​ ​applications. We start with a brief introduction to
the fundamentals of multithreading and concurrency concepts. We then take an in-depth
look at how these concepts work at the hardware-level as well as how both operating
systems and frameworks use these low-level functions. You will learn about the native
multithreading and concurrency support available in C++ since the 2011 revision,
synchronization and communication between threads, debugging concurrent C++
applications, and the best programming practices in C++.

 Section 3, C++17 STL Cookbook, you’ll ​ ​get ​ ​an ​ ​in-depth ​ ​understanding ​ ​of ​ ​the ​ ​C++ ​
Standard Template ​ ​Library; we show implementation-specific, problem-solution
approaches that will help you quickly overcome hurdles. You will learn the core STL
concepts, such as containers, algorithms, utility classes, lambda expressions, iterators, and
more while working on practical real-world recipes. These recipes will help you get the
most from the STL and show you how to program in a better way.

Preface

[2]

To get the most out of this learning path
A strong understanding of C++ language is highly recommended as the book is1.
for the experienced developers.
You will need any OS (Windows, Linux, or macOS) and any C++ compiler2.
installed on your systems in order to get started.

Download the example code files
You can download the example code files for this learning path from your account at
www.packtpub.com. If you purchased this learning path elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the learning path in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the learning path is also hosted on GitHub at https:/ ​/​github. ​com/
PacktPublishing/​Learning- ​Path- ​Name. We also have other code bundles from our rich
catalog of books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​. Check
them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[3]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[4]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the learning path title in
the subject of your message. If you have questions about any aspect of this learning path,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this learning path, we would be grateful if you
would report this to us. Please visit www.packtpub.com/submit-errata, selecting your
learning path, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this learning path, why not leave a
review on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you think
about our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Mastering C++ Programming

Modern C++ 17 at your fingertips

1
Introduction to C++17 Standard

Template Library
As you know, the C++ language is the brain child of Bjarne Stroustrup, who developed C++
in 1979. The C++ programming language is standardized by International Organization for
Standardization (ISO). The initial standardization was published in 1998, commonly
referred to as C++98, and the next standardization C++03 was published in 2003, which was
primarily a bug fix release with just one language feature for value initialization. In August
2011, the C++11 standard was published with several additions to the core language,
including several significant interesting changes to the Standard Template Library (STL);
C++11 basically replaced the C++03 standard. C++14 was published in December, 2014 with
some new features, and later, the C++17 standard was published on July 31, 2017. At the
time of writing this book, C++17 is the latest revision of the ISO/IEC standard for the C++
programming language.

This chapter requires a compiler that supports C++17 features: gcc version 7 or later. As gcc
version 7 is the latest version at the time of writing this book, I'll be using gcc version 7.1.0
in this chapter.

Introduction to C++17 Standard Template Library Chapter 1

[7]

This chapter will cover the following topics:

STL overview
STL architecture

Containers
Iterators
Algorithms
Functors

STL containers
Sequence
Associative
Unordered
Adaptors

Let's look into the STL topics one by one in the following sections.

The Standard Template Library architecture
The C++ Standard Template Library (STL) offers ready-made generic containers,
algorithms that can be applied to the containers, and iterators to navigate the containers.
The STL is implemented with C++ templates, and templates allow generic programming in
C++.

The STL encourages a C++ developer to focus on the task at hand by freeing up the
developer from writing low-level data structures and algorithms. The STL is a time-tested
library that allows rapid application development.

The STL is an interesting piece of work and architecture. Its secret formula is compile-time
polymorphism. To get better performance, the STL avoids dynamic polymorphism, saying
goodbye to virtual functions. Broadly, the STL has the following four components:

Algorithms
Functors
Iterators
Containers

Introduction to C++17 Standard Template Library Chapter 1

[8]

The STL architecture stitches all the aforementioned four components together. It has many
commonly used algorithms with performance guarantees. The interesting part about STL
algorithms is that they work seamlessly without any knowledge about the containers that
hold the data. This is made possible due to the iterators that offer high-level traversal APIs,
which completely abstracts the underlying data structure used within a container. The STL
makes use of operator overloading quite extensively. Let's understand the major
components of STL one by one to get a good grasp of the STL conceptually.

Algorithms
The STL algorithms are powered by C++ templates; hence, the same algorithm works
irrespective of what data type it deals with or independently of how the data is organized
by a container. Interestingly, the STL algorithms are generic enough to support built-in and
user-defined data types using templates. As a matter of fact, the algorithms interact with the
containers via iterators. Hence, what matters to the algorithms is the iterator supported by
the container. Having said that, the performance of an algorithm depends on the
underlying data structure used within a container. Hence, certain algorithms work only on
selective containers, as each algorithm supported by the STL expects a certain type of
iterator.

Iterators
An iterator is a design pattern, but interestingly, the STL work started much before
Gang of Four published their design patterns-related work to the software community.
Iterators themselves are objects that allow traversing the containers to access, modify, and
manipulate the data stored in the containers. Iterators do this so magically that we don't
realize or need to know where and how the data is stored and retrieved.

Introduction to C++17 Standard Template Library Chapter 1

[9]

The following image visually represents an iterator:

From the preceding image, you can understand that every iterator supports the begin()
API, which returns the first element position, and the end() API returns one position past
the last element in the container.

The STL broadly supports the following five types of iterators:

Input iterators
Output iterators
Forward iterators
Bidirectional iterators
Random-access iterators

The container implements the iterator to let us easily retrieve and manipulate the data,
without delving much into the technical details of a container.

Introduction to C++17 Standard Template Library Chapter 1

[10]

The following table explains each of the five iterators:

The type of iterator Description

Input iterator

• It is used to read from the pointed element
• It is valid for single-time navigation, and once it reaches the end of the
container, the iterator will be invalidated
• It supports pre- and post-increment operators
• It does not support decrement operators
• It supports dereferencing
• It supports the == and != operators to compare with the other iterators
• The istream_iterator iterator is an input iterator
• All the containers support this iterator

Output iterator

• It is used to modify the pointed element
• It is valid for single-time navigation, and once it reaches the end of the
container, the iterator will be invalidated
• It supports pre- and post-increment operators
• It does not support decrement operators
• It supports dereferencing
• It doesn't support the == and != operators
• The ostream_iterator, back_inserter,
front_inserter iterators are examples of output iterators
• All the containers support this iterator

Forward iterator

• It supports the input iterator and output iterator functionalities
• It allows multi-pass navigation
• It supports pre-increment and post-increment operators
• It supports dereferencing
• The forward_list container supports forward iterators

Bidirectional iterator

• It is a forward iterator that supports navigation in both directions
• It allows multi-pass navigation
• It supports pre-increment and post-increment operators
• It supports pre-decrement and post-decrement operators
• It supports dereferencing
• It supports the [] operator
• The list, set, map, multiset, and multimap containers support
bidirectional iterators

Introduction to C++17 Standard Template Library Chapter 1

[11]

Random-access iterator

• Elements can be accessed using an arbitrary offset position
• It supports pre-increment and post-increment operators
• It supports pre-decrement and post-decrement operators
• It supports dereferencing
• It is the most functionally complete iterator, as it supports all the
functionalities of the other types of iterators listed previously
• The array, vector, and deque containers support random-access
iterators
• A container that supports random access will naturally support
bidirectional and other types of iterators

Containers
STL containers are objects that typically grow and shrink dynamically. Containers use
complex data structures to store the data under the hood and offer high-level functions to
access the data without us delving into the complex internal implementation details of the
data structure. STL containers are highly efficient and time-tested.

Every container uses different types of data structures to store, organize, and manipulate
data in an efficient way. Though many containers may seem similar, they behave differently
under the hood. Hence, the wrong choice of containers leads to application performance
issues and unnecessary complexities.

Containers come in the following flavors:

Sequential
Associative
Container adapters

The objects stored in the containers are copied or moved, and not referenced. We will
explore every type of container in the upcoming sections with simple yet interesting
examples.

Functors
Functors are objects that behave like regular functions. The beauty is that functors can be
substituted in the place of function pointers. Functors are handy objects that let you extend
or complement the behavior of an STL function without compromising the object-oriented
coding principles.

Introduction to C++17 Standard Template Library Chapter 1

[12]

Functors are easy to implement; all you need to do is overload the function operator.
Functors are also referred to as functionoids.

The following code will demonstrate the way a simple functor can be implemented:

#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>
using namespace std;

template <typename T>
class Printer {
public:
 void operator() (const T& element) {
 cout << element << "t";
 }
};

int main () {
 vector<int> v = { 10, 20, 30, 40, 50 };

 cout << "nPrint the vector entries using Functor" << endl;

 for_each (v.begin(), v.end(), Printer<int>());

 cout << endl;

 return 0;
}

Let's quickly compile the program using the following command:

g++ main.cpp -std=c++17
./a.out

Let's check the output of the program:

Print the vector entries using Functor
10 20 30 40 50

We hope you realize how easy and cool a functor is.

Introduction to C++17 Standard Template Library Chapter 1

[13]

Sequence containers
The STL supports quite an interesting variety of sequence containers. Sequence containers
store homogeneous data types in a linear fashion, which can be accessed sequentially. The
STL supports the following sequence containers:

Arrays
Vectors
Lists
forward_list

deque

As the objects stored in an STL container are nothing but copies of the values, the STL
expects certain basic requirements from the user-defined data types in order to hold those
objects inside a container. Every object stored in an STL container must provide the
following as a minimum requirement:

A default constructor
A copy constructor
An assignment operator

Let's explore the sequence containers one by one in the following subsections.

Array
The STL array container is a fixed-size sequence container, just like a C/C++ built-in array,
except that the STL array is size-aware and a bit smarter than the built-in C/C++ array. Let's
understand an STL array with an example:

#include <iostream>
#include <array>
using namespace std;
int main () {
 array<int,5> a = { 1, 5, 2, 4, 3 };

 cout << "nSize of array is " << a.size() << endl;

 auto pos = a.begin();

 cout << endl;
 while (pos != a.end())
 cout << *pos++ << "t";

Introduction to C++17 Standard Template Library Chapter 1

[14]

 cout << endl;

 return 0;
}

The preceding code can be compiled and the output can be viewed with the following
commands:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Size of array is 5
1 5 2 4 3

Code walkthrough
The following line declares an array of a fixed size (5) and initializes the array with five
elements:

array<int,5> a = { 1, 5, 2, 4, 3 };

The size mentioned can't be changed once declared, just like a C/C++ built-in array.
The array::size() method returns the size of the array, irrespective of how many
integers are initialized in the initializer list. The auto pos = a.begin() method declares
an iterator of array<int,5> and assigns the starting position of the array.
The array::end() method points to one position after the last element in the array. The
iterator behaves like or mimics a C++ pointer, and dereferencing the iterator returns the
value pointed by the iterator. The iterator position can be moved forward and backwards
with ++pos and --pos, respectively.

Commonly used APIs in an array
The following table shows some commonly used array APIs:

API Description

at(int index
)

This returns the value stored at the position referred to by the index.
The index is a zero-based index. This API will throw
an std::out_of_range exception if the index is outside the index
range of the array.

Introduction to C++17 Standard Template Library Chapter 1

[15]

operator [
int index]

This is an unsafe method, as it won't throw any exception if the index
falls outside the valid range of the array. This tends to be slightly faster
than at, as this API doesn't perform bounds checking.

front() This returns the first element in the array.

back() This returns the last element in the array.

begin() This returns the position of the first element in the array

end() This returns one position past the last element in the array

rbegin()
This returns the reverse beginning position, that is, it returns the
position of the last element in the array

rend()
This returns the reverse end position, that is, it returns one position
before the first element in the array

size() This returns the size of the array

The array container supports random access; hence, given an index, the array container can
fetch a value with a runtime complexity of O(1) or constant time.

The array container elements can be accessed in a reverse fashion using the reverse iterator:

#include <iostream>
#include <array>
using namespace std;

int main () {

 array<int, 6> a;
 int size = a.size();
 for (int index=0; index < size; ++index)
 a[index] = (index+1) * 100;

 cout << "nPrint values in original order ..." << endl;
 auto pos = a.begin();
 while (pos != a.end())
 cout << *pos++ << "t";
 cout << endl;

 cout << "nPrint values in reverse order ..." << endl;

 auto rpos = a.rbegin();
 while (rpos != a.rend())
 cout << *rpos++ << "t";

Introduction to C++17 Standard Template Library Chapter 1

[16]

 cout << endl;

 return 0;
}

We will use the following command to get the output:

./a.out

The output is as follows:

Print values in original order ...
100 200 300 400 500 600

Print values in reverse order ...
600 500 400 300 200 100

Vector
Vector is a quite useful sequence container, and it works exactly as an array, except that the
vector can grow and shrink at runtime while an array is of a fixed size. However, the data
structure used under the hood in an array and vector is a plain simple built-in C/C++ style
array.

Let's look at the following example to understand vectors better:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

int main () {
 vector<int> v = { 1, 5, 2, 4, 3 };

 cout << "nSize of vector is " << v.size() << endl;

 auto pos = v.begin();

 cout << "nPrint vector elements before sorting" << endl;
 while (pos != v.end())
 cout << *pos++ << "t";
 cout << endl;

 sort(v.begin(), v.end());

 pos = v.begin();

Introduction to C++17 Standard Template Library Chapter 1

[17]

 cout << "nPrint vector elements after sorting" << endl;

 while (pos != v.end())
 cout << *pos++ << "t";
 cout << endl;

 return 0;
}

The preceding code can be compiled and the output can be viewed with the following
commands:

g++ main.cpp -std=c++17
./a.out

The output of the program is as follows:

Size of vector is 5

Print vector elements before sorting
1 5 2 4 3

Print vector elements after sorting
1 2 3 4 5

Code walkthrough
The following line declares a vector and initializes the vector with five elements:

vector<int> v = { 1, 5, 2, 4, 3 };

However, a vector also allows appending values to the end of the vector by using
the vector::push_back<data_type>(value) API. The sort() algorithm takes two
random access iterators that represent a range of data that must be sorted. As the vector
internally uses a built-in C/C++ array, just like the STL array container, a vector also
supports random access iterators; hence the sort() function is a highly efficient algorithm
whose runtime complexity is logarithmic, that is, O(N log2 (N)).

Introduction to C++17 Standard Template Library Chapter 1

[18]

Commonly used vector APIs
The following table shows some commonly used vector APIs:

API Description

at (int index)
This returns the value stored at the indexed position. It
throws the std::out_of_range exception if the index
is invalid.

operator [int index]
This returns the value stored at the indexed position. It
is faster than at(int index), since no bounds
checking is performed by this function.

front() This returns the first value stored in the vector.

back() This returns the last value stored in the vector.

empty()
This returns true if the vector is empty, and false
otherwise.

size() This returns the number of values stored in the vector.

reserve(int size)

This reserves the initial size of the vector. When the
vector size has reached its capacity, an attempt to insert
new values requires vector resizing. This makes the
insertion consume O(N) runtime complexity. The
reserve() method is a workaround for the issue
described.

capacity()
This returns the total capacity of the vector, while the
size is the actual value stored in the vector.

clear() This clears all the values.

push_back<data_type>(
value)

This adds a new value at the end of the vector.

It would be really fun and convenient to read and print to/from the vector using
istream_iterator and ostream_iterator. The following code demonstrates the use of
a vector:

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>

Introduction to C++17 Standard Template Library Chapter 1

[19]

using namespace std;

int main () {
 vector<int> v;

 cout << "nType empty string to end the input once you are done feeding
the vector" << endl;
 cout << "nEnter some numbers to feed the vector ..." << endl;

 istream_iterator<int> start_input(cin);
 istream_iterator<int> end_input;

 copy (start_input, end_input, back_inserter(v));

 cout << "nPrint the vector ..." << endl;
 copy (v.begin(), v.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 return 0;
}

Note that the output of the program is skipped, as the output depends on
the input entered by you. Feel free to try the instructions on the command
line.

Code walkthrough
Basically, the copy algorithm accepts a range of iterators, where the first two arguments
represent the source and the third argument represents the destination, which happens to
be the vector:

istream_iterator<int> start_input(cin);
istream_iterator<int> end_input;

copy (start_input, end_input, back_inserter(v));

The start_input iterator instance defines an istream_iterator iterator that receives
input from istream and cin, and the end_input iterator instance defines an end-of-file
delimiter, which is an empty string by default (""). Hence, the input can be terminated by
typing "" in the command-line input terminal.

Introduction to C++17 Standard Template Library Chapter 1

[20]

Similarly, let's understand the following code snippet:

cout << "nPrint the vector ..." << endl;
copy (v.begin(), v.end(), ostream_iterator<int>(cout, "t"));
cout << endl;

The copy algorithm is used to copy the values from a vector, one element at a time, to
ostream, separating the output with a tab character (t).

Pitfalls of a vector
Every STL container has its own advantages and disadvantages. There is no single STL
container that works better in all the scenarios. A vector internally uses an array data
structure, and arrays are fixed in size in C/C++. Hence, when you attempt to add new
values to the vector at the time the vector size has already reached its maximum capacity,
then the vector will allocate new consecutive locations that can accommodate the old values
and the new value in a contiguous location. It then starts copying the old values into the
new locations. Once all the data elements are copied, the vector will invalidate the old
location.

Whenever this happens, the vector insertion will take O(N) runtime complexity. As the size
of the vector grows over time, on demand, the O(N) runtime complexity will show up a
pretty bad performance. If you know the maximum size required, you could reserve so
much initial size upfront in order to overcome this issue. However, not in all scenarios do
you need to use a vector. Of course, a vector supports dynamic size and random access,
which has performance benefits in some scenarios, but it is possible that the feature you are
working on may not really need random access, in which case a list, deque, or some other
container may work better for you.

List
The list STL container makes use of a doubly linked list data structure internally. Hence, a
list supports only sequential access, and searching a random value in a list in the worst case
may take O(N) runtime complexity. However, if you know for sure that you only need
sequential access, the list does offer its own benefits. The list STL container lets you insert
data elements at the end, in the front, or in the middle with a constant time complexity, that
is, O(1) runtime complexity in the best, average, and worst case scenarios.

Introduction to C++17 Standard Template Library Chapter 1

[21]

 The following image demonstrates the internal data structure used by the list STL:

Let's write a simple program to get first-hand experience of using the list STL:

#include <iostream>
#include <list>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {

 list<int> l;

 for (int count=0; count<5; ++count)
 l.push_back((count+1) * 100);

 auto pos = l.begin();

 cout << "nPrint the list ..." << endl;
 while (pos != l.end())
 cout << *pos++ << "-->";
 cout << " X" << endl;

 return 0;
}

I'm sure that by now you have got a taste of the C++ STL, its elegance, and its power. Isn't it
cool to observe that the syntax remains the same for all the STL containers? You may have
observed that the syntax remains the same no matter whether you are using an array, a
vector, or a list. Trust me, you will get the same impression when you explore the other STL
containers as well.

Introduction to C++17 Standard Template Library Chapter 1

[22]

Having said that, the previous code is self-explanatory, as we did pretty much the same
with the other containers.

Let's try to sort the list, as shown in the following code:

#include <iostream>
#include <list>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {

 list<int> l = { 100, 20, 80, 50, 60, 5 };

 auto pos = l.begin();

 cout << "nPrint the list before sorting ..." << endl;
 copy (l.begin(), l.end(), ostream_iterator<int>(cout, "-->"));
 cout << "X" << endl;

 l.sort();

 cout << "nPrint the list after sorting ..." << endl;
 copy (l.begin(), l.end(), ostream_iterator<int>(cout, "-->"));
 cout << "X" << endl;

 return 0;
}

Did you notice the sort() method? Yes, the list container has its own sorting algorithms.
The reason for a list container to support its own version of a sorting algorithm is that the
generic sort() algorithm expects a random access iterator, whereas a list container doesn't
support random access. In such cases, the respective container will offer its own efficient
algorithms to overcome the shortcoming.

Interestingly, the runtime complexity of the sort algorithm supported by a list is O (N
log2 N).

Introduction to C++17 Standard Template Library Chapter 1

[23]

Commonly used APIs in a list
The following table shows the most commonly used APIs of an STL list:

API Description

front() This returns the first value stored in the list

back() This returns the last value stored in the list

size() This returns the count of values stored in the list

empty()
This returns true when the list is empty, and
false otherwise

clear() This clears all the values stored in the list

push_back<data_type>(value) This adds a value at the end of the list

push_front<data_type>(value) This adds a value at the front of the list

merge(list)
This merges two sorted lists with values of the
same type

reverse() This reverses the list

unique() This removes duplicate values from the list

sort() This sorts the values stored in a list

Forward list
The STL's forward_list container is built on top of a singly linked list data structure;
hence, it only supports navigation in the forward direction. As forward_list consumes
one less pointer for every node in terms of memory and runtime, it is considered more
efficient compared with the list container. However, as price for the extra edge of
performance advantage, forward_list had to give up some functionalities.

Introduction to C++17 Standard Template Library Chapter 1

[24]

The following diagram shows the internal data-structure used in forward_list:

Let's explore the following sample code:

#include <iostream>
#include <forward_list>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {

 forward_list<int> l = { 10, 10, 20, 30, 45, 45, 50 };

 cout << "nlist with all values ..." << endl;
 copy (l.begin(), l.end(), ostream_iterator<int>(cout, "t"));

 cout << "nSize of list with duplicates is " << distance(l.begin(),
l.end()) << endl;

 l.unique();

 cout << "nSize of list without duplicates is " << distance(l.begin(),
l.end()) << endl;

 l.resize(distance(l.begin(), l.end()));

 cout << "nlist after removing duplicates ..." << endl;
 copy (l.begin(), l.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 return 0;

}

Introduction to C++17 Standard Template Library Chapter 1

[25]

The output can be viewed with the following command:

./a.out

The output will be as follows:

list with all values ...
10 10 20 30 45 45 50
Size of list with duplicates is 7

Size of list without duplicates is 5

list after removing duplicates ...
10 20 30 45 50

Code walkthrough
The following code declares and initializes the forward_list container with some unique
values and some duplicate values:

forward_list<int> l = { 10, 10, 20, 30, 45, 45, 50 };

As the forward_list container doesn't support the size() function, we used
the distance() function to find the size of the list:

cout << "nSize of list with duplicates is " << distance(l.begin(), l.end()
) << endl;

The following forward_list<int>::unique() function removes the duplicate integers
and retains only the unique values:

l.unique();

Commonly used APIs in a forward_list container
The following table shows the commonly used forward_list APIs:

API Description

front()
This returns the first value stored in the
forward_list container

empty()
This returns true when the forward_list container
is empty and false, otherwise

Introduction to C++17 Standard Template Library Chapter 1

[26]

clear() This clears all the values stored in forward_list

push_front<data_type>(
value)

This adds a value to the front of forward_list

merge(list)
This merges two sorted forward_list containers
with values of the same type

reverse() This reverses the forward_list container

unique()
This removes duplicate values from the
forward_list container

sort() This sorts the values stored in forward_list

Let's explore one more example to get a firm understanding of the forward_list
container:

#include <iostream>
#include <forward_list>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {

 forward_list<int> list1 = { 10, 20, 10, 45, 45, 50, 25 };
 forward_list<int> list2 = { 20, 35, 27, 15, 100, 85, 12, 15 };

 cout << "nFirst list before sorting ..." << endl;
 copy (list1.begin(), list1.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 cout << "nSecond list before sorting ..." << endl;
 copy (list2.begin(), list2.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 list1.sort();
 list2.sort();

 cout << "nFirst list after sorting ..." << endl;
 copy (list1.begin(), list1.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 cout << "nSecond list after sorting ..." << endl;
 copy (list2.begin(), list2.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

Introduction to C++17 Standard Template Library Chapter 1

[27]

 list1.merge (list2);
 cout << "nMerged list ..." << endl;
 copy (list1.begin(), list1.end(), ostream_iterator<int>(cout, "t"));

 cout << "nMerged list after removing duplicates ..." << endl;
 list1.unique();
 copy (list1.begin(), list1.end(), ostream_iterator<int>(cout, "t"));

 return 0;
}

The preceding code snippet is an interesting example that demonstrates the practical use of
the sort(), merge(), and unique() STL algorithms.

The output can be viewed with the following command:

./a.out

The output of the program is as follows:
First list before sorting ...
10 20 10 45 45 50 25
Second list before sorting ...
20 35 27 15 100 85 12 15

First list after sorting ...
10 10 20 25 45 45 50
Second list after sorting ...
12 15 15 20 27 35 85 100

Merged list ...
10 10 12 15 15 20 20 25 27 35 45 45 50 85 100
Merged list after removing duplicates ...
10 12 15 20 25 27 35 45 50 85 100

The output and the program are pretty self-explanatory.

Introduction to C++17 Standard Template Library Chapter 1

[28]

Deque
The deque container is a double-ended queue and the data structure used could be a
dynamic array or a vector. In a deque, it is possible to insert an element both at the front
and back, with a constant time complexity of O(1), unlike vectors, in which the time
complexity of inserting an element at the back is O(1) while that for inserting an element at
the front is O(N). The deque doesn't suffer from the problem of reallocation, which is
suffered by a vector. However, all the benefits of a vector are there with deque, except that
deque is slightly better in terms of performance as compared to a vector as there are several
rows of dynamic arrays or vectors in each row.

The following diagram shows the internal data structure used in a deque container:

Let's write a simple program to try out the deque container:

#include <iostream>
#include <deque>
#include <algorithm>
#include <iterator>
using namespace std;

int main () {
 deque<int> d = { 10, 20, 30, 40, 50 };

 cout << "nInitial size of deque is " << d.size() << endl;

 d.push_back(60);
 d.push_front(5);

 cout << "nSize of deque after push back and front is " << d.size() <<

Introduction to C++17 Standard Template Library Chapter 1

[29]

endl;

 copy (d.begin(), d.end(), ostream_iterator<int>(cout, "t"));
 d.clear();

 cout << "nSize of deque after clearing all values is " << d.size() <<
endl;

 cout << "nIs the deque empty after clearing values ? " << (d.empty()
? "true" : "false") << endl;
return 0;
}

The output can be viewed with the following command:

./a.out

The output of the program is as follows:
Intitial size of deque is 5

Size of deque after push back and front is 7

Print the deque ...
5 10 20 30 40 50 60
Size of deque after clearing all values is 0

Is the deque empty after clearing values ? true

Commonly used APIs in a deque
The following table shows the commonly used deque APIs:

API Description

at (int index)
This returns the value stored at the indexed position. It
throws the std::out_of_range exception if the
index is invalid.

operator [int index]
This returns the value stored at the indexed position. It
is faster than at(int index) since no bounds
checking is performed by this function.

front() This returns the first value stored in the deque.

back() This returns the last value stored in the deque.

Introduction to C++17 Standard Template Library Chapter 1

[30]

empty()
This returns true if the deque is empty and false,
otherwise.

size() This returns the number of values stored in the deque.

capacity()
This returns the total capacity of the deque, while
size() returns the actual number of values stored in
the deque.

clear() This clears all the values.

push_back<data_type>(
value)

This adds a new value at the end of the deque.

Associative containers
Associative containers store data in a sorted fashion, unlike the sequence containers. Hence,
the order in which the data is inserted will not be retained by the associative containers.
Associative containers are highly efficient in searching a value with O(log n) runtime
complexity. Every time a new value gets added to the container, the container will reorder
the values stored internally if required.

The STL supports the following types of associative containers:

Set
Map
Multiset
Multimap
Unordered set
Unordered multiset
Unordered map
Unordered multimap

Associative containers organize the data as key-value pairs. The data will be sorted based
on the key for random and faster access. Associative containers come in two flavors:

Ordered
Unordered

Introduction to C++17 Standard Template Library Chapter 1

[31]

The following associative containers come under ordered containers, as they are
ordered/sorted in a particular fashion. Ordered associative containers generally use some
form of Binary Search Tree (BST); usually, a red-black tree is used to store the data:

Set
Map
Multiset
Multimap

The following associative containers come under unordered containers, as they are not
ordered in any particular fashion and they use hash tables:

Unordered Set
Unordered Map
Unordered Multiset
Unordered Multimap

Let's understand the previously mentioned containers with examples in the following
subsections.

Set
A set container stores only unique values in a sorted fashion. A set organizes the values
using the value as a key. The set container is immutable, that is, the values stored in a set
can't be modified; however, the values can be deleted. A set generally uses a red-black tree
data structure, which is a form of balanced BST. The time complexity of set operations are
guaranteed to be O (log N).

Let's write a simple program using a set:

#include <iostream>
#include <set>
#include <vector>
#include <iterator>
#include <algorithm>
using namespace std;

int main() {
 set<int> s1 = { 1, 3, 5, 7, 9 };
 set<int> s2 = { 2, 3, 7, 8, 10 };

 vector<int> v(s1.size() + s2.size());

Introduction to C++17 Standard Template Library Chapter 1

[32]

 cout << "nFirst set values are ..." << endl;
 copy (s1.begin(), s1.end(), ostream_iterator<int> (cout, "t"));
 cout << endl;

 cout << "nSecond set values are ..." << endl;
 copy (s2.begin(), s2.end(), ostream_iterator<int> (cout, "t"));
 cout << endl;

 auto pos = set_difference (s1.begin(), s1.end(), s2.begin(), s2.end(),
v.begin());
 v.resize (pos - v.begin());

 cout << "nValues present in set one but not in set two are ..." <<
endl;
 copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));
 cout << endl;

 v.clear();

 v.resize (s1.size() + s2.size());

 pos = set_union (s1.begin(), s1.end(), s2.begin(), s2.end(), v.begin()
);

 v.resize (pos - v.begin());

 cout << "nMerged set values in vector are ..." << endl;
 copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));
 cout << endl;

 return 0;
}

The output can be viewed with the following command:

./a.out

The output of the program is as follows:
First set values are ...
1 3 5 7 9

Second set values are ...
2 3 7 8 10

Values present in set one but not in set two are ...
1 5 9

Introduction to C++17 Standard Template Library Chapter 1

[33]

Merged values of first and second set are ...
1 2 3 5 7 8 9 10

Code walkthrough
The following code declares and initializes two sets, s1 and s2:

set<int> s1 = { 1, 3, 5, 7, 9 };
set<int> s2 = { 2, 3, 7, 8, 10 };

The following line will ensure that the vector has enough room to store the values in the
resultant vector:

vector<int> v(s1.size() + s2.size());

The following code will print the values in s1 and s2:

cout << "nFirst set values are ..." << endl;
copy (s1.begin(), s1.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

cout << "nSecond set values are ..." << endl;
copy (s2.begin(), s2.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

The set_difference() algorithm will populate the vector v with values only present in
set s1 but not in s2. The iterator, pos, will point to the last element in the vector; hence, the
vector resize will ensure that the extra spaces in the vector are removed:

auto pos = set_difference (s1.begin(), s1.end(), s2.begin(), s2.end(),
v.begin());
v.resize (pos - v.begin());

The following code will print the values populated in the vector v:

cout << "nValues present in set one but not in set two are ..." << endl;
copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

The set_union() algorithm will merge the contents of sets s1 and s2 into the vector, and
the vector is then resized to fit only the merged values:

pos = set_union (s1.begin(), s1.end(), s2.begin(), s2.end(), v.begin());
v.resize (pos - v.begin());

Introduction to C++17 Standard Template Library Chapter 1

[34]

The following code will print the merged values populated in the vector v:

cout << "nMerged values of first and second set are ..." << endl;
copy (v.begin(), v.end(), ostream_iterator<int> (cout, "t"));
cout << endl;

Commonly used APIs in a set
The following table describes the commonly used set APIs:

API Description

insert(value) This inserts a value into the set

clear() This clears all the values in the set

size() This returns the total number of entries present in the set

empty() This will print true if the set is empty, and returns false otherwise

find()
This finds the element with the specified key and returns the iterator
position

equal_range() This returns the range of elements matching a specific key

lower_bound() This returns an iterator to the first element not less than the given key

upper_bound() This returns an iterator to the first element greater than the given key

Map
A map stores the values organized by keys. Unlike a set, a map has a dedicated key per
value. Maps generally use a red-black tree as an internal data structure, which is a balanced
BST that guarantees O(log N) runtime efficiency for searching or locating a value in the
map. The values stored in a map are sorted based on the key, using a red-black tree. The
keys used in a map must be unique. A map will not retain the sequences of the input as it
reorganizes the values based on the key, that is, the red-black tree will be rotated to balance
the red-black tree height.

Let's write a simple program to understand map usage:

#include <iostream>
#include <map>
#include <iterator>
#include <algorithm>

Introduction to C++17 Standard Template Library Chapter 1

[35]

using namespace std;
int main () {

 map<string, long> contacts;

 contacts["Jegan"] = 123456789;
 contacts["Meena"] = 523456289;
 contacts["Nitesh"] = 623856729;
 contacts["Sriram"] = 993456789;

 auto pos = contacts.find("Sriram");

 if (pos != contacts.end())
 cout << pos->second << endl;

 return 0;
}

Let's compile and check the output of the program:

g++ main.cpp -std=c++17
./a.out

The output is as follows:

Mobile number of Sriram is 8901122334

Code walkthrough
The following line declares a map with a string name as the key and a long mobile
number as the value stored in the map:

map< string, long > contacts;

The following code snippet adds four contacts organized by name as the key:

 contacts["Jegan"] = 1234567890;
 contacts["Meena"] = 5784433221;
 contacts["Nitesh"] = 4567891234;
 contacts["Sriram"] = 8901122334;

The following line will try to locate the contact with the name, Sriram, in the contacts map;
if Sriram is found, then the find() function will return the iterator pointing to the location
of the key-value pair; otherwise it returns the contacts.end() position:

 auto pos = contacts.find("Sriram");

Introduction to C++17 Standard Template Library Chapter 1

[36]

The following code verifies whether the iterator, pos, has reached contacts.end() and
prints the contact number. Since the map is an associative container, it stores a key=>value
pair; hence, pos->first indicates the key and pos->second indicates the value:

 if (pos != contacts.end())
 cout << "nMobile number of " << pos->first << " is " << pos->second
<< endl;
 else
 cout << "nContact not found." << endl;

Commonly used APIs in a map
The following table shows the commonly used map APIs:

API Description

at (key)
This returns the value for the corresponding key if the key is found;
otherwise it throws the std::out_of_range exception

operator[key
]

This updates an existing value for the corresponding key if the key is
found; otherwise it will add a new entry with the respective
key=>value supplied

empty() This returns true if the map is empty, and false otherwise

size() This returns the count of the key=>value pairs stored in the map

clear() This clears the entries stored in the map

count() This returns the number of elements matching the given key

find() This finds the element with the specified key

Multiset
A multiset container works in a manner similar to a set container, except for the fact that a
set allows only unique values to be stored whereas a multiset lets you store duplicate
values. As you know, in the case of set and multiset containers, the values themselves are
used as keys to organize the data. A multiset container is just like a set; it doesn't allow
modifying the values stored in the multiset.

Introduction to C++17 Standard Template Library Chapter 1

[37]

Let's write a simple program using a multiset:

#include <iostream>
#include <set>
#include <iterator>
#include <algorithm>
using namespace std;

int main() {
 multiset<int> s = { 10, 30, 10, 50, 70, 90 };

 cout << "nMultiset values are ..." << endl;

 copy (s.begin(), s.end(), ostream_iterator<int> (cout, "t"));
 cout << endl;

 return 0;
}

The output can be viewed with the following command:

./a.out

The output of the program is as follows:
Multiset values are ...
10 30 10 50 70 90

Interestingly, in the preceding output, you can see that the multiset holds duplicate values.

Multimap
A multimap works exactly as a map, except that a multimap container will allow multiple
values to be stored with the same key.

Let's explore the multimap container with a simple example:

#include <iostream>
#include <map>
#include <vector>
#include <iterator>
#include <algorithm>
using namespace std;

int main() {
 multimap< string, long > contacts = {

Introduction to C++17 Standard Template Library Chapter 1

[38]

 { "Jegan", 2232342343 },
 { "Meena", 3243435343 },
 { "Nitesh", 6234324343 },
 { "Sriram", 8932443241 },
 { "Nitesh", 5534327346 }
 };

 auto pos = contacts.find ("Nitesh");
 int count = contacts.count("Nitesh");
 int index = 0;

 while (pos != contacts.end()) {
 cout << "\nMobile number of " << pos->first << " is " <<
 pos->second << endl;
 ++index;
 ++pos;
 if (index == count)
 break;
}
 return 0;
}

The program can be compiled and the output can be viewed with the following commands:

g++ main.cpp -std=c++17

./a.out

The output of the program is as follows:
Mobile number of Nitesh is 6234324343
Mobile number of Nitesh is 5534327346

Unordered sets
An unordered set works in a manner similar to a set, except that the internal behavior of
these containers differs. A set makes use of red-black trees while an unordered set makes
use of hash tables. The time complexity of set operations is O(log N) while the time
complexity of unordered set operations is O(1); hence, the unordered set tends to be faster
than the set.

The values stored in an unordered set are not organized in any particular fashion, unlike in
a set, which stores values in a sorted fashion. If performance is the criteria, then an
unordered set is a good bet; however, if iterating the values in a sorted fashion is a
requirement, then set is a good choice.

Introduction to C++17 Standard Template Library Chapter 1

[39]

Unordered maps
An unordered map works in a manner similar to a map, except that the internal behavior of
these containers differs. A map makes use of red-black trees while unordered map makes
use of hash tables. The time complexity of map operations is O(log N) while that of
unordered map operations is O(1); hence, an unordered map tends to be faster than a map.

The values stored in an unordered map are not organized in any particular fashion, unlike
in a map where values are sorted by keys.

Unordered multisets
An unordered multiset works in a manner similar to a multiset, except that the internal
behavior of these containers differs. A multiset makes use of red-black trees while an
unordered multiset makes use of hash tables. The time complexity of multiset operations
is O(log N) while that of unordered multiset operations is O(1). Hence, an unordered
multiset tends to be faster than a multiset.

The values stored in an unordered multiset are not organized in any particular fashion,
unlike in a multiset where values are stored in a sorted fashion. If performance is the
criteria, unordered multisets are a good bet; however, if iterating the values in a sorted
fashion is a requirement, then multiset is a good choice.

Unordered multimaps
An unordered multimap works in a manner similar to a multimap, except that the internal
behavior of these containers differs. A multimap makes use of red-black trees while an
unordered multimap makes use of hash tables. The time complexity of multimap operations
is O(log N) while that of unordered multimap operations is O(1); hence, an unordered
multimap tends to be faster than a multimap.

The values stored in an unordered multimap are not organized in any particular fashion,
unlike in multimaps where values are sorted by keys. If performance is the criteria, then an
unordered multimap is a good bet; however, if iterating the values in a sorted fashion is a
requirement, then multimap is a good choice.

Introduction to C++17 Standard Template Library Chapter 1

[40]

Container adapters
Container adapters adapt existing containers to provide new containers. In simple terms,
STL extension is done with composition instead of inheritance.

STL containers can't be extended by inheritance, as their constructors aren't virtual.
Throughout the STL, you can observe that while static polymorphism is used both in terms
of operator overloading and templates, dynamic polymorphism is consciously avoided for
performance reasons. Hence, extending the STL by subclassing the existing containers isn't
a good idea, as it would lead to memory leaks because container classes aren't designed to
behave like base classes.

The STL supports the following container adapters:

Stack
Queue
Priority Queue

Let's explore the container adapters in the following subsections.

Stack
Stack is not a new container; it is a template adapter class. The adapter containers wrap an
existing container and provide high-level functionalities. The stack adapter container offers
stack operations while hiding the unnecessary functionalities that are irrelevant for a stack.
The STL stack makes use of a deque container by default; however, we can instruct the
stack to use any existing container that meets the requirement of the stack during the stack
instantiation.

Deques, lists, and vectors meet the requirements of a stack adapter.

A stack operates on the Last In First Out (LIFO) philosophy.

Introduction to C++17 Standard Template Library Chapter 1

[41]

Commonly used APIs in a stack
The following table shows commonly used stack APIs:

API Description

top()
This returns the top-most value in the stack, that is, the
value that was added last

push<data_type>(value
)

This will push the value provided to the top of the stack

pop() This will remove the top-most value from the stack

size() This returns the number of values present in the stack

empty()
This returns true if the stack is empty; otherwise it
returns false

It's time to get our hands dirty; let's write a simple program to use a stack:

#include <iostream>
#include <stack>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {

 stack<string> spoken_languages;

 spoken_languages.push ("French");
 spoken_languages.push ("German");
 spoken_languages.push ("English");
 spoken_languages.push ("Hindi");
 spoken_languages.push ("Sanskrit");
 spoken_languages.push ("Tamil");

 cout << "nValues in Stack are ..." << endl;
 while (! spoken_languages.empty()) {
 cout << spoken_languages.top() << endl;
 spoken_languages.pop();
 }
 cout << endl;

 return 0;

Introduction to C++17 Standard Template Library Chapter 1

[42]

}

The program can be compiled and the output can be viewed with the following command:

g++ main.cpp -std=c++17

./a.out

The output of the program is as follows:
Values in Stack are ...
Tamil
Kannada
Telugu
Sanskrit
Hindi
English
German
French

From the preceding output, we can see the LIFO behavior of stack.

Queue
A queue works based on the First In First Out (FIFO) principle. A queue is not a new
container; it is a templatized adapter class that wraps an existing container and provides the
high-level functionalities that are required for queue operations, while hiding the
unnecessary functionalities that are irrelevant for a queue. The STL queue makes use of a
deque container by default; however, we can instruct the queue to use any existing
container that meets the requirement of the queue during the queue instantiation.

In a queue, new values can be added at the back and removed from the front. Deques, lists,
and vectors meet the requirements of a queue adapter.

Commonly used APIs in a queue
The following table shows the commonly used queue APIs:

API Description

push() This appends a new value at the back of the queue

pop() This removes the value at the front of the queue

Introduction to C++17 Standard Template Library Chapter 1

[43]

front() This returns the value in the front of the queue

back() This returns the value at the back of the queue

empty() This returns true when the queue is empty; otherwise it returns false

size() This returns the number of values stored in the queue

Let's use a queue in the following program:

#include <iostream>
#include <queue>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {
 queue<int> q;

 q.push (100);
 q.push (200);
 q.push (300);

 cout << "nValues in Queue are ..." << endl;
 while (! q.empty()) {
 cout << q.front() << endl;
 q.pop();
 }

 return 0;
}

The program can be compiled and the output can be viewed with the following commands:

g++ main.cpp -std=c++17

./a.out

The output of the program is as follows:
Values in Queue are ...
100
200
300

From the preceding output, you can observe that the values were popped out in the same
sequence that they were pushed in, that is, FIFO.

Introduction to C++17 Standard Template Library Chapter 1

[44]

Priority queue
A priority queue is not a new container; it is a templatized adapter class that wraps an
existing container and provides high-level functionalities that are required for priority
queue operations, while hiding the unnecessary functionalities that are irrelevant for a
priority queue. A priority queue makes use of a vector container by default; however, a
deque container also meets the requirement of the priority queue. Hence, during the
priority queue instantiation, you could instruct the priority queue to make use of a deque as
well.

A priority queue organizes the data in such a way that the highest priority value appears
first; in other words, the values are sorted in a descending order.

The deque and vector meet the requirements of a priority queue adaptor.

Commonly used APIs in a priority queue
The following table shows commonly used priority queue APIs:

API Description

push() This appends a new value at the back of the priority queue

pop() This removes the value at the front of the priority queue

empty() This returns true when the priority queue is empty; otherwise it returns false

size() This returns the number of values stored in the priority queue

top() This returns the value in the front of the priority queue

Let's write a simple program to understand priority_queue:

#include <iostream>
#include <queue>
#include <iterator>
#include <algorithm>
using namespace std;

int main () {
 priority_queue<int> q;

 q.push(100);
 q.push(50);
 q.push(1000);

Introduction to C++17 Standard Template Library Chapter 1

[45]

 q.push(800);
 q.push(300);

 cout << "nSequence in which value are inserted are ..." << endl;
 cout << "100t50t1000t800t300" << endl;
 cout << "Priority queue values are ..." << endl;

 while (! q.empty()) {
 cout << q.top() << "t";
 q.pop();
 }
 cout << endl;

 return 0;
}

The program can be compiled and the output can be viewed with the following command:

g++ main.cpp -std=c++17

./a.out

The output of the program is as follows:
Sequence in which value are inserted are ...
100 50 1000 800 300

Priority queue values are ...
1000 800 300 100 50

From the preceding output, you can observe that priority_queue is a special type of
queue that reorders the inputs in such a way that the highest value appears first.

Summary
In this chapter you learned about ready-made generic containers, functors, iterators, and
algorithms. You also learned set, map, multiset, and multimap associative containers, their
internal data structures, and common algorithms that can be applied on them. Further you
learned how to use the various containers with practical hands-on code samples.

In the next chapter, you will learn template programming, which helps you master the
essentials of templates.

2
Template Programming

In this chapter, we will cover the following topics:

Generic programming
Function templates
Class templates
Overloading function templates
Generic classes
Explicit class specializations
Partial specializations

Let's now start learning generic programming.

Generic programming
Generic programming is a style of programming that helps you develop reusable code or
generic algorithms that can be applied to a wide variety of data types. Whenever a generic
algorithm is invoked, the data types will be supplied as parameters with a special syntax.

Let's say we would like to write a sort() function, which takes an array of inputs that
needs to be sorted in an ascending order. Secondly, we need the sort() function to sort
int, double, char, and string data types. There are a couple of ways this can be solved:

We could write four different sort() functions for each data type
We could also write a single macro function

Template Programming Chapter 2

[47]

Well, both approaches have their own merits and demerits. The advantage of the first
approach is that, since there are dedicated functions for the int, double, char, and string
data types, the compiler will be able to perform type checking if an incorrect data type is
supplied. The disadvantage of the first approach is that we have to write four different
functions even though the logic remains the same across all the functions. If a bug is
identified in the algorithm, it must be fixed separately in all four functions; hence, heavy
maintenance efforts are required. If we need to support another data type, we will end up
writing one more function, and this will keep growing as we need to support more data
types.

The advantage of the second approach is that we could just write one macro for all the data
types. However, one very discouraging disadvantage is that the compiler will not be able to
perform type checking, and this approach is more prone to errors and may invite many
unexpected troubles. This approach is dead against object-oriented coding principles.

C++ supports generic programming with templates, which has the following benefits:

We just need to write one function using templates
Templates support static polymorphism
Templates offer all the advantages of the two aforementioned approaches,
without any disadvantages
Generic programming enables code reuse
The resultant code is object-oriented
The C++ compiler can perform type checking during compile time
Easy to maintain
Supports a wide variety of built-in and user-defined data types

However, the disadvantages are as follows:

Not all C++ programmers feel comfortable writing template-based coding, but
this is only an initial hiccup
In certain scenarios, templates could bloat your code and increase the binary
footprint, leading to performance issues

Template Programming Chapter 2

[48]

Function templates
A function template lets you parameterize a data type. The reason this is referred to as
generic programming is that a single template function will support many built-in and user-
defined data types. A templatized function works like a C-style macro, except for the fact
that the C++ compiler will type check the function when we supply an incompatible data
type at the time of invoking the template function.

It will be easier to understand the template concept with a simple example, as follows:

#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;

template <typename T, int size>
void sort (T input[]) {

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (input[i] < input[j])
 swap (input[i], input[j]);
 }
 }

}

int main () {
 int a[10] = { 100, 10, 40, 20, 60, 80, 5, 50, 30, 25 };

 cout << "nValues in the int array before sorting ..." << endl;
 copy (a, a+10, ostream_iterator<int>(cout, "t"));
 cout << endl;

 ::sort<int, 10>(a);

 cout << "nValues in the int array after sorting ..." << endl;
 copy (a, a+10, ostream_iterator<int>(cout, "t"));
 cout << endl;

 double b[5] = { 85.6d, 76.13d, 0.012d, 1.57d, 2.56d };

 cout << "nValues in the double array before sorting ..." << endl;
 copy (b, b+5, ostream_iterator<double>(cout, "t"));
 cout << endl;

 ::sort<double, 5>(b);

Template Programming Chapter 2

[49]

 cout << "nValues in the double array after sorting ..." << endl;
 copy (b, b+5, ostream_iterator<double>(cout, "t"));
 cout << endl;

 string names[6] = {
 "Rishi Kumar Sahay",
 "Arun KR",
 "Arun CR",
 "Ninad",
 "Pankaj",
 "Nikita"
 };

 cout << "nNames before sorting ..." << endl;
 copy (names, names+6, ostream_iterator<string>(cout, "n"));
 cout << endl;

 ::sort<string, 6>(names);

 cout << "nNames after sorting ..." << endl;
 copy (names, names+6, ostream_iterator<string>(cout, "n"));
 cout << endl;

 return 0;
}

Run the following commands:

g++ main.cpp -std=c++17
./a.out

The output of the preceding program is as follows:

Values in the int array before sorting ...
100 10 40 20 60 80 5 50 30 25

Values in the int array after sorting ...
5 10 20 25 30 40 50 60 80 100

Values in the double array before sorting ...
85.6d 76.13d 0.012d 1.57d 2.56d

Values in the double array after sorting ...
0.012 1.57 2.56 76.13 85.6

Names before sorting ...
Rishi Kumar Sahay
Arun KR

Template Programming Chapter 2

[50]

Arun CR
Ninad
Pankaj
Nikita

Names after sorting ...
Arun CR
Arun KR
Nikita
Ninad
Pankaj
Rich Kumar Sahay

Isn't it really interesting to see just one template function doing all the magic? Yes, that's
how cool C++ templates are!

Are you curious to see the assembly output of a template instantiation?
Use the command, g++ -S main.cpp.

Code walkthrough
The following code defines a function template. The keyword, template <typename T,
int size>, tells the compiler that what follows is a function template:

template <typename T, int size>
void sort (T input[]) {

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (input[i] < input[j])
 swap (input[i], input[j]);
 }
 }

}

The line, void sort (T input[]), defines a function named sort, which returns void
and receives an input array of type T. The T type doesn't indicate any specific data type. T
will be deduced at the time of instantiating the function template during compile time.

Template Programming Chapter 2

[51]

The following code populates an integer array with some unsorted values and prints the
same to the terminal:

 int a[10] = { 100, 10, 40, 20, 60, 80, 5, 50, 30, 25 };
 cout << "nValues in the int array before sorting ..." << endl;
 copy (a, a+10, ostream_iterator<int>(cout, "t"));
 cout << endl;

The following line will instantiate an instance of a function template for the int data type.
At this point, typename T is substituted and a specialized function is created for the int
data type. The scope-resolution operator in front of sort, that is, ::sort(), ensures that it
invokes our custom function, sort(), defined in the global namespace; otherwise, the C++
compiler will attempt to invoke the sort() algorithm defined in the std namespace, or
from any other namespace if such a function exists. The <int, 10> variable tells the
compiler to create an instance of a function, substituting typename T with int, and 10
indicates the size of the array used in the template function:

::sort<int, 10>(a);

The following lines will instantiate two additional instances that support a double array of
5 elements and a string array of 6 elements respectively:

::sort<double, 5>(b);
::sort<string, 6>(names);

If you are curious to know some more details about how the C++ compiler instantiates the
function templates to support int, double, and string, you could try the Unix
utilities, nm and c++filt. The nm Unix utility will list the symbols in the symbol table, as
follows:

nm ./a.out | grep sort

00000000000017f1 W _Z4sortIdLi5EEvPT_
0000000000001651 W _Z4sortIiLi10EEvPT_
000000000000199b W
_Z4sortINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEELi6EEvPT_

As you can see, there are three different overloaded sort functions in the binary; however,
we have defined only one template function. As the C++ compiler has mangled names to
deal with function overloading, it is difficult for us to interpret which function among the
three functions is meant for the int, double, and string data types.

Template Programming Chapter 2

[52]

However, there is a clue: the first function is meant for double, the second is meant for int,
and the third is meant for string. The name-mangled function has _Z4sortIdLi5EEvPT_
for double, _Z4sortIiLi10EEvPT_ for int,
and _Z4sortINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEELi6EEvP
T_ for string. There is another cool Unix utility to help you interpret the function
signatures without much struggle. Check the following output of the c++filt utility:

c++filt _Z4sortIdLi5EEvPT_
void sort<double, 5>(double*)

c++filt _Z4sortIiLi10EEvPT_
void sort<int, 10>(int*)

c++filt
_Z4sortINSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEELi6EEvPT_
void sort<std::__cxx11::basic_string<char, std::char_traits<char>,
std::allocator<char> >, 6>(std::__cxx11::basic_string<char,
std::char_traits<char>, std::allocator<char> >*)

Hopefully, you will find these utilities useful while working with C++ templates. I'm sure
these tools and techniques will help you to debug any C++ application.

Overloading function templates
Overloading function templates works exactly like regular function overloading in C++.
However, I'll help you recollect the C++ function overloading basics.

The function overloading rules and expectations from the C++ compiler are as follows:

The overloaded function names will be the same.
The C++ compiler will not be able to differentiate between overloaded functions
that differ only by a return value.
The number of overloaded function arguments, the data types of those
arguments, or their sequence should be different. Apart from the other rules, at
least one of these rules described in the current bullet point should be satisfied,
but more compliance wouldn't hurt, though.
The overloaded functions must be in the same namespace or within the same
class scope.

Template Programming Chapter 2

[53]

If any of these aforementioned rules aren't met, the C++ compiler will not treat them as
overloaded functions. If there is any ambiguity in differentiating between the overloaded
functions, the C++ compiler will report it promptly as a compilation error.

It is time to explore this with an example, as shown in the following program:

#include <iostream>
#include <array>
using namespace std;

void sort (array<int,6> data) {

 cout << "Non-template sort function invoked ..." << endl;
 int size = data.size();

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }

}

template <typename T, int size>
void sort (array<T, size> data) {

 cout << "Template sort function invoked with one argument..." << endl;

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }

}

template <typename T>
void sort (T data[], int size) {
 cout << "Template sort function invoked with two arguments..." <<
endl;

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);

Template Programming Chapter 2

[54]

 }
 }

}

int main() {

 //Will invoke the non-template sort function
 array<int, 6> a = { 10, 50, 40, 30, 60, 20 };
 ::sort (a);

 //Will invoke the template function that takes a single argument
 array<float,6> b = { 10.6f, 57.9f, 80.7f, 35.1f, 69.3f, 20.0f };
 ::sort<float,6>(b);

 //Will invoke the template function that takes a single argument
 array<double,6> c = { 10.6d, 57.9d, 80.7d, 35.1d, 69.3d, 20.0d };
 ::sort<double,6> (c);

 //Will invoke the template function that takes two arguments
 double d[] = { 10.5d, 12.1d, 5.56d, 1.31d, 81.5d, 12.86d };
 ::sort<double> (d, 6);

 return 0;

}

Run the following commands:

g++ main.cpp -std=c++17

./a.out

The output of the preceding program is as follows:

Non-template sort function invoked ...

Template sort function invoked with one argument...

Template sort function invoked with one argument...

Template sort function invoked with two arguments...

Template Programming Chapter 2

[55]

Code walkthrough
The following code is a non-template version of our custom sort() function:

void sort (array<int,6> data) {

 cout << "Non-template sort function invoked ..." << endl;

 int size = data.size();

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }

}

Non-template functions and template functions can coexist and participate in function
overloading. One weird behavior of the preceding function is that the size of the array is
hardcoded.

The second version of our sort() function is a template function, as shown in the
following code snippet. Interestingly, the weird issue that we noticed in the first non-
template sort() version is addressed here:

template <typename T, int size>
void sort (array<T, size> data) {

 cout << "Template sort function invoked with one argument..." << endl;

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }

}

In the preceding code, both the data type and the size of the array are passed as template
arguments, which are then passed to the function call arguments. This approach makes the
function generic, as this function can be instantiated for any data type.

Template Programming Chapter 2

[56]

The third version of our custom sort() function is also a template function, as shown in
the following code snippet:

template <typename T>
void sort (T data[], int size) {
 cout << "Template sort function invoked with two argument..." << endl;

 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }

}

The preceding template function takes a C-style array; hence, it also expects the user to
indicate its size. However, the size of the array could be computed within the function, but
for demonstration purposes, I need a function that takes two arguments. The previous
function isn't recommended, as it uses a C-style array; ideally, we would use one of the STL
containers.

Now, let's understand the main function code. The following code declares and initializes
the STL array container with six values, which is then passed to our sort() function
defined in the default namespace:

 //Will invoke the non-template sort function
 array<int, 6> a = { 10, 50, 40, 30, 60, 20 };
 ::sort (a);

The preceding code will invoke the non-template sort() function. An important point to
note is that, whenever C++ encounters a function call, it first looks for a non-template
version; if C++ finds a matching non-template function version, its search for the correct
function definition ends there. If the C++ compiler isn't able to identify a non-template
function definition that matches the function call signature, then it starts looking for any
template function that could support the function call and instantiates a specialized
function for the data type required.

Let's understand the following code:

//Will invoke the template function that takes a single argument
array<float,6> b = { 10.6f, 57.9f, 80.7f, 35.1f, 69.3f, 20.0f };
::sort<float,6>(b);

Template Programming Chapter 2

[57]

This will invoke the template function that receives a single argument. As there is no non-
template sort() function that receives an array<float,6> data type, the C++ compiler
will instantiate such a function out of our user-defined sort() template function with a
single argument that takes array<float, 6>.

In the same way, the following code triggers the compiler to instantiate a double version of
the template sort() function that receives array<double, 6>:

 //Will invoke the template function that takes a single argument
 array<double,6> c = { 10.6d, 57.9d, 80.7d, 35.1d, 69.3d, 20.0d };
 ::sort<double,6> (c);

Finally, the following code will instantiate an instance of the template sort() that receives
two arguments and invokes the function:

 //Will invoke the template function that takes two arguments
 double d[] = { 10.5d, 12.1d, 5.56d, 1.31d, 81.5d, 12.86d };
 ::sort<double> (d, 6);

If you have come this far, I'm sure you like the C++ template topics discussed so far.

Class template
C++ templates extend the function template concepts to classes too, and enable us to write
object-oriented generic code. In the previous sections, you learned the use of function
templates and overloading. In this section, you will learn writing template classes that open
up more interesting generic programming concepts.

A class template lets you parameterize the data type on the class level via a template type
expression.

Let's understand a class template with the following example:

//myalgorithm.h
#include <iostream>
#include <algorithm>
#include <array>
#include <iterator>
using namespace std;

template <typename T, int size>
class MyAlgorithm {

public:

Template Programming Chapter 2

[58]

 MyAlgorithm() { }
 ~MyAlgorithm() { }

 void sort(array<T, size> &data) {
 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }
 }

 void sort (T data[size]);

};

template <typename T, int size>
inline void MyAlgorithm<T, size>::sort (T data[size]) {
 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }
}

C++ template function overloading is a form of static or compile-time
polymorphism.

Let's use myalgorithm.h in the following main.cpp program as follows:

#include "myalgorithm.h"

int main() {

 MyAlgorithm<int, 10> algorithm1;

 array<int, 10> a = { 10, 5, 15, 20, 25, 18, 1, 100, 90, 18 };

 cout << "nArray values before sorting ..." << endl;
 copy (a.begin(), a.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 algorithm1.sort (a);

Template Programming Chapter 2

[59]

 cout << "nArray values after sorting ..." << endl;
 copy (a.begin(), a.end(), ostream_iterator<int>(cout, "t"));
 cout << endl;

 MyAlgorithm<int, 10> algorithm2;
 double d[] = { 100.0, 20.5, 200.5, 300.8, 186.78, 1.1 };

 cout << "nArray values before sorting ..." << endl;
 copy (d.begin(), d.end(), ostream_iterator<double>(cout, "t"));
 cout << endl;

 algorithm2.sort (d);

 cout << "nArray values after sorting ..." << endl;
 copy (d.begin(), d.end(), ostream_iterator<double>(cout, "t"));
 cout << endl;

 return 0;

}

Let's quickly compile the program using the following command:

g++ main.cpp -std=c++17

./a.out

The output is as follows:

Array values before sorting ...
10 5 15 20 25 18 1 100 90 18

Array values after sorting ...
1 5 10 15 18 18 20 25 90 100

Array values before sorting ...
100 20.5 200.5 300.8 186.78 1.1

Array values after sorting ...
1.1 20.5 100 186.78 200.5 300.8

Template Programming Chapter 2

[60]

Code walkthrough
The following code declares a class template. The keyword, template <typename T,
int size>, can be replaced with <class T, int size>. Both keywords can be
interchanged in function and class templates; however, as an industry best
practice, template<class T> can be used only with class templates to avoid confusion:

template <typename T, int size>
class MyAlgorithm

One of the overloaded sort() methods is defined inline as follows:

 void sort(array<T, size> &data) {
 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }
 }

The second overloaded sort() function is just declared within the class scope, without any
definition, as follows:

template <typename T, int size>
class MyAlgorithm {
 public:
 void sort (T data[size]);
};

The preceding sort() function is defined outside the class scope, as shown in the following
code snippet. The weird part is that we need to repeat the template parameters for every
member function that is defined outside the class template:

template <typename T, int size>
inline void MyAlgorithm<T, size>::sort (T data[size]) {
 for (int i=0; i<size; ++i) {
 for (int j=0; j<size; ++j) {
 if (data[i] < data[j])
 swap (data[i], data[j]);
 }
 }
}

Otherwise, the class template concepts remain the same as that of function templates.

Template Programming Chapter 2

[61]

Would you like to see the compiler-instantiated code for templates? Use
the g++ -fdump-tree-original main.cpp -std=c++17 command.

Explicit class specializations
So far in this chapter, you have learned how to do generic programming with function
templates and class templates. As you understand the class template, a single template class
can support any built-in and user-defined data types. However, there are times when we
need to treat certain data types with some special treatment with respect to the other data
types. In such cases, C++ offers us explicit class specialization support to handle selective
data types with differential treatment.

Consider the STL deque container; though deque looks fine for storing, let's say, string,
int, double, and long, if we decide to use deque to store a bunch of boolean types, the
bool data type takes at least one byte, while it may vary as per compiler vendor
implementation. While a single bit can efficiently represent true or false, a boolean at least
takes one byte, that is, 8 bits, and the remaining 7 bits are not used. This may appear as
though it's okay; however, if you have to store a very large deque of booleans, it definitely
doesn't appear to be an efficient idea, right? You may think, what's the big deal? We could
write another specialized class or template class for bool. But this approach requires end
users to use different classes for different data types explicitly, and this doesn't sound like a
good design either, right? This is exactly where C++'s explicit class specialization comes in
handy.

The explicit template specialization is also referred to as full-template
specialization.

Never mind if you aren't convinced yet; the following example will help you understand
the need for explicit class specialization and how explicit class specialization works.

Let us develop a DynamicArray class to support a dynamic array of any data type. Let's
start with a class template, as shown in the following program:

#include <iostream>
#include <deque>
#include <algorithm>
#include <iterator>
using namespace std;

Template Programming Chapter 2

[62]

template < class T >
class DynamicArray {
 private:
 deque< T > dynamicArray;
 typename deque< T >::iterator pos;

 public:
 DynamicArray() { initialize(); }
 ~DynamicArray() { }

 void initialize() {
 pos = dynamicArray.begin();
 }

 void appendValue(T element) {
 dynamicArray.push_back (element);
 }

 bool hasNextValue() {
 return (pos != dynamicArray.end());
 }

 T getValue() {
 return *pos++;
 }

};

The preceding DynamicArray template class internally makes use of the STL deque class.
Hence, you could consider the DynamicArray template class a custom adapter container.
Let's explore how the DynamicArray template class can be used in main.cpp with the
following code snippet:

#include "dynamicarray.h"
#include "dynamicarrayforbool.h"

int main () {
 DynamicArray<int> intArray;

 intArray.appendValue(100);
 intArray.appendValue(200);
 intArray.appendValue(300);
 intArray.appendValue(400);

 intArray.initialize();

 cout << "nInt DynamicArray values are ..." << endl;

Template Programming Chapter 2

[63]

 while (intArray.hasNextValue())
 cout << intArray.getValue() << "t";
 cout << endl;

 DynamicArray<char> charArray;
 charArray.appendValue('H');
 charArray.appendValue('e');
 charArray.appendValue('l');
 charArray.appendValue('l');
 charArray.appendValue('o');

 charArray.initialize();

 cout << "nChar DynamicArray values are ..." << endl;
 while (charArray.hasNextValue())
 cout << charArray.getValue() << "t";
 cout << endl;

 DynamicArray<bool> boolArray;
 boolArray.appendValue (true);
 boolArray.appendValue (false);
 boolArray.appendValue (true);
 boolArray.appendValue (false);

 boolArray.initialize();

 cout << "nBool DynamicArray values are ..." << endl;
 while (boolArray.hasNextValue())
 cout << boolArray.getValue() << "t";
 cout << endl;

 return 0;

}

Let's quickly compile the program using the following command:

g++ main.cpp -std=c++17

./a.out

The output is as follows:

Int DynamicArray values are ...
100 200 300 400

Char DynamicArray values are ...
H e l l o

Template Programming Chapter 2

[64]

Bool DynamicArray values are ...
1 0 1 0

Great! Our custom adapter container seems to work fine.

Code walkthrough
Let's zoom in and try to understand how the previous program works. The following code
tells the C++ compiler that what follows is a class template:

template < class T >
class DynamicArray {
 private:
 deque< T > dynamicArray;
 typename deque< T >::iterator pos;

As you can see, the DynamicArray class makes use of STL deque internally, and an iterator
for deque is declared with the name, pos. This iterator, pos, is utilized by the Dynamic
template class to provide high-level methods such as the initialize(), appendValue(),
hasNextValue(), and getValue() methods.

The initialize() method initializes the deque iterator pos to the first data element
stored within deque. The appendValue(T element) method lets you add a data
element at the end of deque. The hasNextValue() method tells whether the
DynamicArray class has further data values stored--true indicates it has further values
and false indicates that the DynamicArray navigation has reached the end of deque. The
initialize() method can be used to reset the pos iterator to the starting point when
required. The getValue() method returns the data element pointed by the pos iterator at
that moment. The getValue() method doesn't perform any validation; hence, it must be
combined with hasNextValue() before invoking getValue() to safely access the values
stored in DynamicArray.

Now, let's understand the main() function. The following code declares a
DynamicArray class that stores the int data type; DynamicArray<int> intArray will
trigger the C++ compiler to instantiate a DynamicArray class that is specialized for the int
data type:

DynamicArray<int> intArray;

intArray.appendValue(100);
intArray.appendValue(200);
intArray.appendValue(300);
intArray.appendValue(400);

Template Programming Chapter 2

[65]

The values 100, 200, 300, and 400 are stored back to back within the DynamicArray class.
The following code ensures that the intArray iterator points to the first element. Once the
iterator is initialized, the values stored in the DynamicArray class are printed with the
getValue() method, while hasNextValue() ensures that the navigation hasn't reached
the end of the DynamicArray class:

intArray.initialize();
cout << "nInt DynamicArray values are ..." << endl;
while (intArray.hasNextValue())
 cout << intArray.getValue() << "t";
cout << endl;

Along the same lines, in the main function, a char DynamicArray class is created,
populated with some data, and printed. Let's skip char DynamicArray and directly move
on to the DynamicArray class that stores bool.

DynamicArray<bool> boolArray;

boolArray.appendValue ("1010");

boolArray.initialize();

cout << "nBool DynamicArray values are ..." << endl;

while (boolArray.hasNextValue())
 cout << boolArray.getValue() << "t";
cout << endl;

From the preceding code snippet, we can see everything looks okay, right? Yes, the
preceding code works perfectly fine; however, there is a performance issue with the
DynamicArray design approach. While true can be represented by 1 and false can be
represented by 0, which requires just 1 bit, the preceding DynamicArray class makes use of
8 bits to represent 1 and 8 bits to represent 0, which we must fix without forcing end users
to choose a different DynamicArray class that works efficiently for bool.

Let's fix the issue by using explicit class template specialization with the following code:

#include <iostream>
#include <bitset>
#include <algorithm>
#include <iterator>
using namespace std;

template <>
class DynamicArray<bool> {

Template Programming Chapter 2

[66]

 private:
 deque< bitset<8> *> dynamicArray;
 bitset<8> oneByte;
 typename deque<bitset<8> * >::iterator pos;
 int bitSetIndex;

 int getDequeIndex () {
 return (bitSetIndex) ? (bitSetIndex/8) : 0;
 }
 public:
 DynamicArray() {
 bitSetIndex = 0;
 initialize();
 }

 ~DynamicArray() { }

 void initialize() {
 pos = dynamicArray.begin();
 bitSetIndex = 0;
 }

 void appendValue(bool value) {
 int dequeIndex = getDequeIndex();
 bitset<8> *pBit = NULL;

 if ((dynamicArray.size() == 0) || (dequeIndex >= (
dynamicArray.size()))) {
 pBit = new bitset<8>();
 pBit->reset();
 dynamicArray.push_back (pBit);
 }

 if (!dynamicArray.empty())
 pBit = dynamicArray.at(dequeIndex);
 pBit->set(bitSetIndex % 8, value);
 ++bitSetIndex;
 }

 bool hasNextValue() {
 return (bitSetIndex < ((dynamicArray.size() * 8)));
 }

 bool getValue() {
 int dequeIndex = getDequeIndex();

 bitset<8> *pBit = dynamicArray.at(dequeIndex);
 int index = bitSetIndex % 8;

Template Programming Chapter 2

[67]

 ++bitSetIndex;

 return (*pBit)[index] ? true : false;
 }
};

Did you notice the template class declaration? The syntax for template class specialization
is template <> class DynamicArray<bool> { };. The class template expression is
empty <> and the name of the class template that works for all data types and the name of
the class that works the for the bool data type are kept the same with the template
expression, <bool>.

If you observe closely, the specialized DynamicArray class for bool internally makes use of
deque< bitset<8> >, that is, deque of bitsets of 8 bits, and, when required, deque will
automatically allocate more bitset<8> bits. The bitset variable is a memory-efficient STL
container that consumes just 1 bit to represent true or false.

Let's take a look at the main function:

#include "dynamicarray.h"
#include "dynamicarrayforbool.h"

int main () {

 DynamicArray<int> intArray;
 intArray.appendValue(100);
 intArray.appendValue(200);
 intArray.appendValue(300);
 intArray.appendValue(400);

 intArray.initialize();

 cout << "nInt DynamicArray values are ..." << endl;
 while (intArray.hasNextValue())
 cout << intArray.getValue() << "t";
 cout << endl;

 DynamicArray<char> charArray;
 charArray.appendValue('H');
 charArray.appendValue('e');
 charArray.appendValue('l');
 charArray.appendValue('l');
 charArray.appendValue('o');

 charArray.initialize();

Template Programming Chapter 2

[68]

 cout << "nChar DynamicArray values are ..." << endl;
 while (charArray.hasNextValue())
 cout << charArray.getValue() << "t";
 cout << endl;

 DynamicArray<bool> boolArray;
 boolArray.appendValue (true);
 boolArray.appendValue (false);
 boolArray.appendValue (true);
 boolArray.appendValue (false);

 boolArray.appendValue (true);
 boolArray.appendValue (false);
 boolArray.appendValue (true);
 boolArray.appendValue (false);

 boolArray.appendValue (true);
 boolArray.appendValue (true);
 boolArray.appendValue (false);
 boolArray.appendValue (false);

 boolArray.appendValue (true);
 boolArray.appendValue (true);
 boolArray.appendValue (false);
 boolArray.appendValue (false);

 boolArray.initialize();

 cout << "nBool DynamicArray values are ..." << endl;
 while (boolArray.hasNextValue())
 cout << boolArray.getValue() ;
 cout << endl;

 return 0;

}

With the class template specialization in place, we can observe from the following that the
main code seems the same for bool, char, and double, although the primary template
class, DynamicArray, and the specialized DynamicArray<bool> class are different:

DynamicArray<char> charArray;
charArray.appendValue('H');
charArray.appendValue('e');

charArray.initialize();

Template Programming Chapter 2

[69]

cout << "nChar DynamicArray values are ..." << endl;
while (charArray.hasNextValue())
cout << charArray.getValue() << "t";
cout << endl;

DynamicArray<bool> boolArray;
boolArray.appendValue (true);
boolArray.appendValue (false);

boolArray.initialize();

cout << "nBool DynamicArray values are ..." << endl;
while (boolArray.hasNextValue())
 cout << boolArray.getValue() ;
cout << endl;

I'm sure you will find this C++ template specialization feature quite useful.

Partial template specialization
Unlike explicit template specialization, which replaces the primary template class with its
own complete definitions for a specific data type, partial template specialization allows us
to specialize a certain subset of template parameters supported by the primary template
class, while the other generic types can be the same as the primary template class.

When partial template specialization is combined with inheritance, it can do more wonders,
as shown in the following example:

#include <iostream>
using namespace std;

template <typename T1, typename T2, typename T3>
class MyTemplateClass {
public:
 void F1(T1 t1, T2 t2, T3 t3) {
 cout << "nPrimary Template Class - Function F1 invoked ..." <<
endl;
 cout << "Value of t1 is " << t1 << endl;
 cout << "Value of t2 is " << t2 << endl;
 cout << "Value of t3 is " << t3 << endl;
 }

 void F2(T1 t1, T2 t2) {
 cout << "nPrimary Tempalte Class - Function F2 invoked ..." <<
endl;

Template Programming Chapter 2

[70]

 cout << "Value of t1 is " << t1 << endl;
 cout << "Value of t2 is " << 2 * t2 << endl;
 }
};

template <typename T1, typename T2, typename T3>
class MyTemplateClass< T1, T2*, T3*> : public MyTemplateClass<T1, T2, T3> {
 public:
 void F1(T1 t1, T2* t2, T3* t3) {
 cout << "nPartially Specialized Template Class - Function F1
invoked ..." << endl;
 cout << "Value of t1 is " << t1 << endl;
 cout << "Value of t2 is " << *t2 << endl;
 cout << "Value of t3 is " << *t3 << endl;
 }
};

The main.cpp file will have the following content:

#include "partiallyspecialized.h"

int main () {
 int x = 10;
 int *y = &x;
 int *z = &x;

 MyTemplateClass<int, int*, int*> obj;
 obj.F1(x, y, z);
 obj.F2(x, x);

 return 0;
}

From the preceding code, you may have noticed that the primary template class name and
the partially specialized class name are the same as in the case of full or explicit template
class specialization. However, there are some syntactic changes in the template parameter
expression. In the case of a complete template class specialization, the template parameter
expression will be empty, whereas, in the case of a partially specialized template class,
listed appears, as shown in the following:

template <typename T1, typename T2, typename T3>
class MyTemplateClass< T1, T2*, T3*> : public MyTemplateClass<T1, T2, T3> {
};

Template Programming Chapter 2

[71]

The expression, template<typename T1, typename T2, typename T3>, is the
template parameter expression used in the primary class template class, and
MyTemplateClass< T1, T2*, T3*> is the partial specialization done by the second class.
As you can see, the second class has done some specialization on typename T2 and
typename T3, as they are used as pointers in the second class; however, typename T1 is
used as is in the second class.

Apart from the facts discussed so far, the second class also inherits the primary template
class, which helps the second class reuse the public and protected methods of the primary
template class. However, a partial template specialization doesn't stop the specialized class
from supporting other functions.

While the F1 function from the primary template class is replaced by the partially
specialized template class, it reuses the F2 function from the primary template class via
inheritance.

Let's quickly compile the program using the following command:

g++ main.cpp -std=c++17

./a.out

The output of the program is as follows:

Partially Specialized Template Classs - Function F1 invoked ...
Value of t1 is 10
Value of t2 is 10
Value of t3 is 10

Primary Tempalte Class - Function F2 invoked ...
Value of t1 is 10
Value of t2 is 20

I hope that you find the partially specialized template class useful.

Template Programming Chapter 2

[72]

Summary
In this chapter, you learned the following:

You are now aware of the motivation for using generic programming
You are now familiar with function templates
You know how to overload function templates
You are aware of class templates
You are aware of when to use explicit template specialization and when to use
partially specialized template specialization

Congrats! Overall, you have a good understanding of C++'s template programming.

In the next chapter, you will learn smart pointers.

3
Smart Pointers

In the previous chapter, you learned about template programming and the benefits of
generic programming. In this chapter, you will learn about the following smart pointer
topics:

Memory management
Issues with raw pointers
Cyclic dependency
Smart pointers:

auto_ptr

unique_ptr

shared_ptr

weak_ptr

Let's explore the memory management facilities offered by C++.

Memory management
In C++, memory management is generally a responsibility of the software developers. This
is because C++ standard does not enforce garbage collection support in C++ compiler; hence,
it is left to the compiler vendor's choice. Exceptionally, the Sun C++ compiler comes with a
garbage collection library named libgc.

Smart Pointers Chapter 3

[74]

C++ language has many powerful features. Of these, needless to say, pointers is one of the
most powerful and useful features. Having said pointers are very useful, they do come with
their own weird issues, hence they must be used responsibly. When memory management
is not taken seriously or not done quite right, it leads to many issues, including application
crashes, core dumps, segmentation faults, intermittent difficulties to debug issues,
performance issues, and so on. Dangling pointers or rogue pointers sometimes mess with
other unrelated applications while the culprit application executes silently; in fact, the
victim application might be blamed many times. The worst part about memory leaks is that
at certain times it gets really tricky and even experienced developers end up debugging the
victim code for countless hours while the culprit code is left untouched. Effective memory
management helps avoid memory leaks and lets you develop high-performance
applications that are memory efficient.

As the memory model of every operating system varies, every OS may behave differently at
a different point in time for the same memory leak issue. Memory management is a big
topic, and C++ offers many ways to do it well. We'll discuss some of the useful techniques in
the following sections.

Issues with raw pointers
The majority of the C++ developers have something in common: all of us love to code
complex stuff. You ask a developer, "Hey dude, would you like to reuse code that already
exists and works or would you like to develop one yourself?" Though diplomatically, most
developers will say to reuse what is already there when possible, their heart will say, "I
wish I could design and develop it myself." Complex data structure and algorithms tend to
call for pointers. Raw pointers are really cool to work with until you get into trouble.

Raw pointers must be allocated with memory before use and require deallocation once
done; it is that simple. However, things get complicated in a product where pointer
allocation may happen in one place and deallocation might happen in yet another place. If
memory management decisions aren't made correctly, people may assume it is either the
caller or callee's responsibility to free up memory, and at times, the memory may not be
freed up from either place. In yet another possibility, chances are that the same pointer is
deleted multiples times from different places, which could lead to application crashes. If
this happens in a Windows device driver, it will most likely end up in a blue screen of
death.

Smart Pointers Chapter 3

[75]

Just imagine, what if there were an application exception and the function that threw the
exception had a bunch of pointers that were allocated with memory before the exception
occurred? It is anybody's guess: there will be memory leaks.

Let's take a simple example that makes use of a raw pointer:

#include <iostream>
using namespace std;

class MyClass {
 public:
 void someMethod() {

 int *ptr = new int();
 *ptr = 100;
 int result = *ptr / 0; //division by zero error expected
 delete ptr;

 }
};

int main () {

 MyClass objMyClass;
 objMyClass.someMethod();

 return 0;

}

Now, run the following command:

g++ main.cpp -g -std=c++17

Check out the output of this program:

main.cpp: In member function ‘void MyClass::someMethod()’:
main.cpp:12:21: warning: division by zero [-Wdiv-by-zero]
 int result = *ptr / 0;

Now, run the following command:

./a.out
[1] 31674 floating point exception (core dumped) ./a.out

Smart Pointers Chapter 3

[76]

C++ compiler is really cool. Look at the warning message, it bangs on in regard to pointing
out the issue. I love the Linux operating system. Linux is quite smart in finding rogue
applications that misbehave, and it knocks them off right on time before they cause any
damage to the rest of the applications or the OS. A core dump is actually good, while it is
cursed instead of celebrating the Linux approach. Guess what, Microsoft's Windows
operating systems are equally smarter. They do bug check when they find some
applications doing fishy memory accesses and Windows OS as well supports mini-dumps
and full dumps which are equivalent to core dumps in Linux OS.

Let's take a look at the Valgrind tool output to check the memory leak issue:

valgrind --leak-check=full --show-leak-kinds=all ./a.out

==32857== Memcheck, a memory error detector
==32857== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==32857== Using Valgrind-3.12.0 and LibVEX; rerun with -h for copyright
info
==32857== Command: ./a.out
==32857==
==32857==
==32857== Process terminating with default action of signal 8 (SIGFPE)
==32857== Integer divide by zero at address 0x802D82B86
==32857== at 0x10896A: MyClass::someMethod() (main.cpp:12)
==32857== by 0x1088C2: main (main.cpp:24)
==32857==
==32857== HEAP SUMMARY:
==32857== in use at exit: 4 bytes in 1 blocks
==32857== total heap usage: 2 allocs, 1 frees, 72,708 bytes allocated
==32857==
==32857== 4 bytes in 1 blocks are still reachable in loss record 1 of 1
==32857== at 0x4C2E19F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==32857== by 0x108951: MyClass::someMethod() (main.cpp:8)
==32857== by 0x1088C2: main (main.cpp:24)
==32857==
==32857== LEAK SUMMARY:
==32857== definitely lost: 0 bytes in 0 blocks
==32857== indirectly lost: 0 bytes in 0 blocks
==32857== possibly lost: 0 bytes in 0 blocks
==32857== still reachable: 4 bytes in 1 blocks
==32857== suppressed: 0 bytes in 0 blocks
==32857==
==32857== For counts of detected and suppressed errors, rerun with: -v
==32857== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)
[1] 32857 floating point exception (core dumped) valgrind --leak-check=full
--show-leak-kinds=all ./a.out

Smart Pointers Chapter 3

[77]

In this output, if you pay attention to the bold portion of the text, you will notice the
Valgrind tool did point out the source code line number that caused this core dump. Line
number 12 from the main.cpp file is as follows:

 int result = *ptr / 0; //division by zero error expected

The moment the exception occurs at line number 12 in the main.cpp file, the code that
appears below the exception will never get executed. At line number 13 in
the main.cpp file, there appears a delete statement that will never get executed due to the
exception:

 delete ptr;

The memory allocated to the preceding raw pointer isn't released as the memory pointed by
pointers is not freed up during the stack unwinding process. Whenever an exception is
thrown by a function and the exception isn't handled by the same function, stack
unwinding is guaranteed. However, only the automatic local variables will be cleaned up
during the stack unwinding process, not the memory pointed by the pointers. This results
in memory leaks.

This is one of the weird issues invited by the use of raw pointers; there are many other
similar scenarios. Hopefully you are convinced now that the thrill of using raw pointers
does come at a cost. But the penalty paid isn't really worth it as there are good alternatives
available in C++ to deal with this issue. You are right, using a smart pointer is the solution
that offers the benefits of using pointers without paying the cost attached to raw pointers.

Hence, smart pointers are the way to use pointers safely in C++.

Smart pointers
In C++, smart pointers let you focus on the problem at hand by freeing you from the worries
of dealing with custom garbage collection techniques. Smart pointers let you use raw
pointers safely. They take the responsibility of cleaning up the memory used by raw
pointers.

C++ supports many types of smart pointers that can be used in different scenarios:

auto_ptr

unique_ptr

shared_ptr

weak_ptr

Smart Pointers Chapter 3

[78]

The auto_ptr smart pointer was introduced in C++11. An auto_ptr smart pointer helps
release the heap memory automatically when it goes out of scope. However, due to the way
auto_ptr transfers ownership from one auto_ptr instance to another, it was deprecated
and unique_ptr was introduced as its replacement. The shared_ptr smart pointer helps
multiple shared smart pointers reference the same object and takes care of the memory
management burden. The weak_ptr smart pointer helps resolve memory leak issues that
arise due to the use of shared_ptr when there is a cyclic dependency issue in the
application design.

There are other types of smart pointers and related stuff that are not so commonly used,
and they are listed in the following bullet list. However, I would highly recommend that
you explore them on your own as you never know when you will find them useful:

owner_less

enable_shared_from_this

bad_weak_ptr

default_delete

The owner_less smart pointer helps compare two or more smart pointers if they share the
same raw pointed object. The enable_shared_from_this smart pointer helps get a smart
pointer of the this pointer. The bad_weak_ptr smart pointer is an exception class that
implies that shared_ptr was created using an invalid smart pointer. The
default_delete smart pointer refers to the default destruction policy used by
unique_ptr, which invokes the delete statement, while partial specialization for array
types that use delete[] is also supported.

In this chapter, we will explore auto_ptr, shared_ptr, weak_ptr, and unique-ptr one
by one.

auto_ptr
The auto_ptr smart pointer takes a raw pointer, wraps it, and ensures the memory pointed
by the raw pointer is released back whenever the auto_ptr object goes out of scope. At any
time, only one auto_ptr smart pointer can point to an object. Hence, whenever one
auto_ptr pointer is assigned to another auto_ptr pointer, the ownership gets transferred
to the auto_ptr instance that has received the assignment; the same happens when
an auto_ptr smart pointer is copied.

Smart Pointers Chapter 3

[79]

It would be interesting to observe the stuff in action with a simple example, as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class MyClass {
 private:
 static int count;
 string name;
 public:
 MyClass() {
 ostringstream stringStream(ostringstream::ate);
 stringStream << "Object";
 stringStream << ++count;
 name = stringStream.str();
 cout << "nMyClass Default constructor - " << name << endl;
 }
 ~MyClass() {
 cout << "nMyClass destructor - " << name << endl;
 }

 MyClass (const MyClass &objectBeingCopied) {
 cout << "nMyClass copy constructor" << endl;
 }

 MyClass& operator = (const MyClass &objectBeingAssigned) {
 cout << "nMyClass assignment operator" << endl;
 }

 void sayHello() {
 cout << "Hello from MyClass " << name << endl;
 }
};

int MyClass::count = 0;

int main () {

 auto_ptr<MyClass> ptr1(new MyClass());
 auto_ptr<MyClass> ptr2(new MyClass());

 return 0;

}

Smart Pointers Chapter 3

[80]

The compilation output of the preceding program is as follows:

g++ main.cpp -std=c++17

main.cpp: In function ‘int main()’:
main.cpp:40:2: warning: ‘template<class> class std::auto_ptr’ is deprecated
[-Wdeprecated-declarations]
 auto_ptr<MyClass> ptr1(new MyClass());

In file included from /usr/include/c++/6/memory:81:0,
 from main.cpp:3:
/usr/include/c++/6/bits/unique_ptr.h:49:28: note: declared here
 template<typename> class auto_ptr;

main.cpp:41:2: warning: ‘template<class> class std::auto_ptr’ is deprecated
[-Wdeprecated-declarations]
 auto_ptr<MyClass> ptr2(new MyClass());

In file included from /usr/include/c++/6/memory:81:0,
 from main.cpp:3:
/usr/include/c++/6/bits/unique_ptr.h:49:28: note: declared here
 template<typename> class auto_ptr;

As you can see, the C++ compiler warns us as the use of auto_ptr is deprecated. Hence, I
don't recommend the use of the auto_ptr smart pointer anymore; it is replaced by
unique_ptr.

For now, we can ignore the warnings and move on, as follows:

g++ main.cpp -Wno-deprecated

./a.out

MyClass Default constructor - Object1

MyClass Default constructor - Object2

MyClass destructor - Object2

MyClass destructor - Object1

As you can see in the preceding program output, both Object1 and Object2, allocated in a
heap, got deleted automatically. And the credit goes to the auto_ptr smart pointer.

Smart Pointers Chapter 3

[81]

Code walkthrough - Part 1
As you may have understood from the MyClass definition, it has defined the default
constructor, copy constructor and destructor, an assignment operator, and
sayHello() methods, as shown here:

//Definitions removed here to keep it simple
class MyClass {
public:
 MyClass() { } //Default constructor
 ~MyClass() { } //Destructor
 MyClass (const MyClass &objectBeingCopied) {} //Copy Constructor
 MyClass& operator = (const MyClass &objectBeingAssigned) { }
//Assignment operator
 void sayHello();
};

The methods of MyClass have nothing more than a print statement that indicates the
methods got invoked; they were purely meant for demonstration purposes.

The main() function creates two auto_ptr smart pointers that point to two different
MyClass objects, as shown here:

int main () {

 auto_ptr<MyClass> ptr1(new MyClass());
 auto_ptr<MyClass> ptr2(new MyClass());

 return 0;

}

As you can understand, auto_ptr is a local object that wraps a raw pointer, not a pointer.
When the control hits the return statement, the stack unwinding process gets initiated, and
as part of this, the stack objects, that is, ptr1 and ptr2, get destroyed. This, in turn, invokes
the destructor of auto_ptr that ends up deleting the MyClass objects pointed by the stack
objects ptr1 and ptr2.

We are not quite done yet. Let's explore more useful functionalities of auto_ptr, as shown
in the following main function:

int main () {

 auto_ptr<MyClass> ptr1(new MyClass());
 auto_ptr<MyClass> ptr2(new MyClass());

Smart Pointers Chapter 3

[82]

 ptr1->sayHello();
 ptr2->sayHello();

 //At this point the below stuffs happen
 //1. ptr2 smart pointer has given up ownership of MyClass Object 2
 //2. MyClass Object 2 will be destructed as ptr2 has given up its
 // ownership on Object 2
 //3. Ownership of Object 1 will be transferred to ptr2
 ptr2 = ptr1;

 //The line below if uncommented will result in core dump as ptr1
 //has given up its ownership on Object 1 and the ownership of
 //Object 1 is transferred to ptr2.
 // ptr1->sayHello();

 ptr2->sayHello();
 return 0;

}

Code walkthrough - Part 2
The main() function code we just saw demonstrates many useful techniques and
some controversial behaviors of the auto_ptr smart pointer. The following code creates
two instances of auto_ptr, namely ptr1 and ptr2, that wrap two objects of MyClass
created in a heap:

 auto_ptr<MyClass> ptr1(new MyClass());
 auto_ptr<MyClass> ptr2(new MyClass());

Next, the following code demonstrates how the methods supported by MyClass can be
invoked using auto_ptr:

 ptr1->sayHello();
 ptr2->sayHello();

Hope you observed the ptr1->sayHello() statement. It will make you believe that
the auto_ptr ptr1 object is a pointer, but in reality, ptr1 and ptr2 are just auto_ptr
objects created in the stack as local variables. As the auto_ptr class has overloaded the ->
pointer operator and the * dereferencing operator, it appears like a pointer. As a matter of
fact, all the methods exposed by MyClass can only be accessed using the -> pointer
operator, while all the auto_ptr methods can be accessed as you would regularly access a
stack object.

Smart Pointers Chapter 3

[83]

The following code demonstrates the internal behavior of the auto_ptr smart pointer, so
pay close attention; this is going to be really interesting:

ptr2 = ptr1;

It appears as though the preceding code is a simple assignment statement, but it triggers
many activities within auto_ptr. The following activities happen due to the preceding
assignment statement:

The ptr2 smart pointer will give up the ownership of MyClass object 2.
MyClass object 2 will be destructed as ptr2 has given up its ownership of
object 2.
The ownership of object 1 will be transferred to ptr2.
At this point, ptr1 is neither pointing to object 1, nor it is responsible for
managing the memory used by object 1.

The following commented line has got some facts to tell you:

// ptr1->sayHello();

As the ptr1 smart pointer has released its ownership of object 1, it is illegal to attempt
accessing the sayHello() method. This is because ptr1, in reality, isn't pointing to object
1 anymore, and object 1 is owned by ptr2. It is the responsibility of the ptr2 smart
pointer to release the memory utilized by object 1 when ptr2 goes out of scope. If the
preceding code is uncommented, it would lead to a core dump.

Finally, the following code lets us invoke the sayHello() method on object 1 using
the ptr2 smart pointer:

ptr2->sayHello();
return 0;

The return statement we just saw will initiate the stack unwinding process in the main()
function. This will end up invoking the destructor of ptr2, which in turn will deallocate the
memory utilized by object 1. The beauty is all this happens automatically. The auto_ptr
smart pointer works hard for us behind the scenes while we are focusing on the problem at
hand.

Smart Pointers Chapter 3

[84]

However, due to the following reasons, auto_ptr is deprecated in C++11 onward:

An auto_ptr object can't be stored in an STL container
The auto_ptr copy constructor will remove the ownership from the original
source, that is, auto_ptr
The auto_ptr copy assignment operator will remove the ownership from the
original source, which is, auto_ptr
The original intention of copy constructor and assignment operators are
violated by auto_ptr as the auto_ptr copy constructor and assignment
operators will remove the ownership of the source object from the right-hand
side object and assign the ownership to the left-hand side object

unique_ptr
The unique_ptr smart pointer works in exactly the same way as auto_ptr, except that
unique_ptr addresses the issues introduced by auto_ptr. Hence, unique_ptr is a
replacement of auto_ptr, starting from C++11. The unique_ptr smart pointer allows only
one smart pointer to exclusively own a heap-allocated object. The ownership transfer from
one unique_ptr instance to another can be done only via the std::move() function.

Hence, let's refactor our previous example to make use of unique_ptr in place of
auto_ptr.

The refactored code sample is as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class MyClass {
 private:
 static int count;
 string name;

 public:
 MyClass() {
 ostringstream stringStream(ostringstream::ate);
 stringStream << "Object";
 stringStream << ++count;
 name = stringStream.str();

Smart Pointers Chapter 3

[85]

 cout << "nMyClass Default constructor - " << name << endl;
 }
 ~MyClass() {
 cout << "nMyClass destructor - " << name << endl;
 }

 MyClass (const MyClass &objectBeingCopied) {
 cout << "nMyClass copy constructor" << endl;
 }

 MyClass& operator = (const MyClass &objectBeingAssigned) {
 cout << "nMyClass assignment operator" << endl;
 }

 void sayHello() {
 cout << "nHello from MyClass" << endl;
 }

};

int MyClass::count = 0;

int main () {

 unique_ptr<MyClass> ptr1(new MyClass());
 unique_ptr<MyClass> ptr2(new MyClass());

 ptr1->sayHello();
 ptr2->sayHello();

 //At this point the below stuffs happen
 //1. ptr2 smart pointer has given up ownership of MyClass Object 2
 //2. MyClass Object 2 will be destructed as ptr2 has given up its
 // ownership on Object 2
 //3. Ownership of Object 1 will be transferred to ptr2
 ptr2 = move(ptr1);

 //The line below if uncommented will result in core dump as ptr1
 //has given up its ownership on Object 1 and the ownership of
 //Object 1 is transferred to ptr2.
 // ptr1->sayHello();

 ptr2->sayHello();

 return 0;
}

Smart Pointers Chapter 3

[86]

The output of the preceding program is as follows:

g++ main.cpp -std=c++17

./a.out

MyClass Default constructor - Object1

MyClass Default constructor - Object2

MyClass destructor - Object2

MyClass destructor - Object1

In the preceding output, you can notice the compiler doesn't report any warning and the
output of the program is the same as that of auto_ptr.

Code walkthrough
It is important to note the differences in the main() function, between auto_ptr and
unique_ptr. Let's check out the main() function, as illustrated in the following code. This
code creates two instances of unique_ptr, namely ptr1 and ptr2, that wrap two objects of
MyClass created in the heap:

 unique_ptr<MyClass> ptr1(new MyClass());
 unique_ptr<MyClass> ptr2(new MyClass());

Next, the following code demonstrates how the methods supported by MyClass can be
invoked using unique_ptr:

 ptr1->sayHello();
 ptr2->sayHello();

Just like auto_ptr, the unique_ptr smart pointers ptr1 object has overloaded the ->
pointer operator and the * dereferencing operator; hence, it appears like a pointer.

The following code demonstrates unique_ptr doesn't support the assignment of one
unique_ptr instance to another, and ownership transfer can only be achieved with
the std::move() function:

ptr2 = std::move(ptr1);

Smart Pointers Chapter 3

[87]

The move function triggers the following activities:

The ptr2 smart pointer gives up the ownership of the MyClass object 2
MyClass object 2 is destructed as ptr2 gives up its ownership of object 2
The ownership of object 1 is transferred to ptr2
At this point, ptr1 is neither pointing to object 1, nor it is responsible for
managing the memory used by object 1

The following code, if uncommented, will lead to a core dump:

// ptr1->sayHello();

Finally, the following code lets us invoke the sayHello() method on object 1 using
the ptr2 smart pointer:

ptr2->sayHello();
return 0;

The return statement we just saw will initiate the stack unwinding process in the main()
function. This will end up invoking the destructor of ptr2, which in turn will deallocate the
memory utilized by object 1. Note that unique_ptr objects could be stored in STL
containers, unlike auto_ptr objects.

shared_ptr
The shared_ptr smart pointer is used when a group of shared_ptr objects shares the
ownership of a heap-allocated object. The shared_ptr pointer releases the shared object
when all the shared_ptr instances are done with the use of the shared object. The
shared_ptr pointer uses the reference counting mechanism to check the total references to
the shared object; whenever the reference count becomes zero, the last shared_ptr
instance deletes the shared object.

Let's check out the use of shared_ptr through an example, as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class MyClass {
 private:

Smart Pointers Chapter 3

[88]

 static int count;
 string name;
 public:
 MyClass() {
 ostringstream stringStream(ostringstream::ate);
 stringStream << "Object";
 stringStream << ++count;

 name = stringStream.str();

 cout << "nMyClass Default constructor - " << name << endl;
 }

 ~MyClass() {
 cout << "nMyClass destructor - " << name << endl;
 }

 MyClass (const MyClass &objectBeingCopied) {
 cout << "nMyClass copy constructor" << endl;
 }

 MyClass& operator = (const MyClass &objectBeingAssigned) {
 cout << "nMyClass assignment operator" << endl;
 }

 void sayHello() {
 cout << "Hello from MyClass " << name << endl;
 }

};

int MyClass::count = 0;

int main () {

 shared_ptr<MyClass> ptr1(new MyClass());
 ptr1->sayHello();
 cout << "nUse count is " << ptr1.use_count() << endl;

 {
 shared_ptr<MyClass> ptr2(ptr1);
 ptr2->sayHello();
 cout << "nUse count is " << ptr2.use_count() << endl;
 }

 shared_ptr<MyClass> ptr3 = ptr1;
 ptr3->sayHello();
 cout << "nUse count is " << ptr3.use_count() << endl;

Smart Pointers Chapter 3

[89]

 return 0;
}

The output of the preceding program is as follows:

MyClass Default constructor - Object1
Hello from MyClass Object1
Use count is 1

Hello from MyClass Object1
Use count is 2

Number of smart pointers referring to MyClass object after ptr2 is
destroyed is 1

Hello from MyClass Object1
Use count is 2

MyClass destructor - Object1

Code walkthrough
The following code creates an instance of the shared_ptr object that points to the MyClass
heap-allocated object. Just like other smart pointers, shared_ptr also has the overloaded
-> and * operators. Hence, all the MyClass object methods can be invoked as though you
are using a raw pointer. The use_count() method tells the number of smart pointers that
refer to the shared object:

 shared_ptr<MyClass> ptr1(new MyClass());
 ptr1->sayHello();
 cout << "nNumber of smart pointers referring to MyClass object is "
 << ptr1->use_count() << endl;

In the following code, the scope of the smart pointer ptr2 is wrapped within the block
enclosed by flower brackets. Hence, ptr2 will get destroyed at the end of the following
code block. The expected use_count function within the code block is 2:

 {
 shared_ptr<MyClass> ptr2(ptr1);
 ptr2->sayHello();
 cout << "nNumber of smart pointers referring to MyClass object is "
 << ptr2->use_count() << endl;
 }

Smart Pointers Chapter 3

[90]

In the following code, the expected use_count value is 1 as ptr2 would have been deleted,
which would reduce the reference count by 1:

 cout << "nNumber of smart pointers referring to MyClass object after ptr2
is destroyed is "
 << ptr1->use_count() << endl;

The following code will print a Hello message, followed by use_count as 2. This is due to
the fact that ptr1 and ptr3 are now referring to the MyClass shared object in the heap:

shared_ptr<MyClass> ptr3 = ptr2;
ptr3->sayHello();
cout << "nNumber of smart pointers referring to MyClass object is "
 << ptr2->use_count() << endl;

The return 0; statement at the end of the main function will destroy ptr1 and ptr3,
reducing the reference count to zero. Hence, we can observe the MyClass destructor print
the statement at the end of the output.

weak_ptr
So far, we have discussed the positive side of shared_ptr with examples. However,
shared_ptr fails to clean up the memory when there is a circular dependency in the
application design. Either the application design must be refactored to avoid cyclic
dependency, or we can make use of weak_ptr to resolve the cyclic dependency issue.

You can check out my YouTube channel to understand the shared_ptr
issue and how it can be resolved with weak_ptr: https:/ ​/​www. ​youtube.
com/​watch? ​v= ​SVTLTK5gbDc.

Consider there are three classes: A, B, and C. Class A and B have an instance of C, while C
has an instance of A and B. There is a design issue here. A depends on C and C depends on
A too. Similarly, B depends on C and C depends on B as well.

Consider the following code:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class C;

https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc
https://www.youtube.com/watch?v=SVTLTK5gbDc

Smart Pointers Chapter 3

[91]

class A {
 private:
 shared_ptr<C> ptr;
 public:
 A() {
 cout << "nA constructor" << endl;
 }

 ~A() {
 cout << "nA destructor" << endl;
 }

 void setObject (shared_ptr<C> ptr) {
 this->ptr = ptr;
 }
};

class B {
 private:
 shared_ptr<C> ptr;
 public:
 B() {
 cout << "nB constructor" << endl;
 }

 ~B() {
 cout << "nB destructor" << endl;
 }

 void setObject (shared_ptr<C> ptr) {
 this->ptr = ptr;
 }
};

class C {
 private:
 shared_ptr<A> ptr1;
 shared_ptr ptr2;
 public:
 C(shared_ptr<A> ptr1, shared_ptr ptr2) {
 cout << "nC constructor" << endl;
 this->ptr1 = ptr1;
 this->ptr2 = ptr2;
 }

 ~C() {
 cout << "nC destructor" << endl;
 }

Smart Pointers Chapter 3

[92]

};

int main () {
 shared_ptr<A> a(new A());
 shared_ptr b(new B());
 shared_ptr<C> c(new C(a, b));

 a->setObject (shared_ptr<C>(c));
 b->setObject (shared_ptr<C>(c));

 return 0;
}

 The output of the preceding program is as follows:

g++ problem.cpp -std=c++17

./a.out

A constructor

B constructor

C constructor

In the preceding output, you can observe that even though we used shared_ptr, the
memory utilized by objects A, B, and C were never deallocated. This is because we didn't
see the destructor of the respective classes being invoked. The reason for this is
that shared_ptr internally makes use of the reference counting algorithm to decide
whether the shared object has to be destructed. However, it fails here because object A can't
be deleted unless object C is deleted. Object C can't be deleted unless object A is deleted.
Also, object C can't be deleted unless objects A and B are deleted. Similarly, object A can't be
deleted unless object C is deleted and object B can't be deleted unless object C is deleted.

The bottom line is that this is a circular dependency design issue. In order to fix this issue,
starting from C++11, C++ introduced weak_ptr. The weak_ptr smart pointer is not a strong
reference. Hence, the object referred to could be deleted at any point of time, unlike
shared_ptr.

Smart Pointers Chapter 3

[93]

Circular dependency
Circular dependency is an issue that occurs if object A depends on B, and object B depends
on A. Now let's see how this issue could be fixed with a combination of shared_ptr and
weak_ptr, eventually breaking the circular dependency, as follows:

#include <iostream>
#include <string>
#include <memory>
#include <sstream>
using namespace std;

class C;

class A {
 private:
 weak_ptr<C> ptr;
 public:
 A() {
 cout << "nA constructor" << endl;
 }

 ~A() {
 cout << "nA destructor" << endl;
 }

 void setObject (weak_ptr<C> ptr) {
 this->ptr = ptr;
 }
};

class B {
 private:
 weak_ptr<C> ptr;
 public:
 B() {
 cout << "nB constructor" << endl;
 }
 ~B() {
 cout << "nB destructor" << endl;
 }

 void setObject (weak_ptr<C> ptr) {
 this->ptr = ptr;
 }
};

Smart Pointers Chapter 3

[94]

class C {
 private:
 shared_ptr<A> ptr1;
 shared_ptr ptr2;
 public:
 C(shared_ptr<A> ptr1, shared_ptr ptr2) {
 cout << "nC constructor" << endl;
 this->ptr1 = ptr1;
 this->ptr2 = ptr2;
 }

 ~C() {
 cout << "nC destructor" << endl;
 }
};

int main () {
 shared_ptr<A> a(new A());
 shared_ptr b(new B());
 shared_ptr<C> c(new C(a, b));

 a->setObject (weak_ptr<C>(c));
 b->setObject (weak_ptr<C>(c));

 return 0;
}

The output of the preceding refactored code is as follows:

g++ solution.cpp -std=c++17

./a.out

A constructor

B constructor

C constructor

C destructor

B destructor

A destructor

Smart Pointers Chapter 3

[95]

Summary
In this chapter, you learned about

Memory leak issues that arise due to raw pointers
The issues of auto_ptr with respect to assignment and copy constructor
unique_ptr and it's advantage
Role of shared_ptr in memory management and its limitation related to cyclic
dependency.
You also resolving cyclic dependency issues with weak_ptr

In the next chapter, you will learn about developing GUI applications in C++.

4
Developing GUI Applications in

C++
In this chapter, you will learn the following topics:

A brief overview of Qt
The Qt Framework
Installing Qt on Ubuntu
Developing Qt Core application
Developing a Qt GUI application
Using layouts in the Qt GUI application
Understanding signals and slots for event handling
Using multiple layouts in the Qt application

Qt is a cross-platform application framework developed in C++. It is supported on various
platforms, including Windows, Linux, Mac OS, Android, iOS, Embedded Linux, QNX,
VxWorks, Windows CE/RT, Integrity, Wayland, X11, Embedded Devices, and so on. It is
primarily used as a human-machine-interface (HMI) or Graphical User Interface (GUI)
framework; however, it is also used to develop a command-line interface (CLI)
applications. The correct way of pronouncing Qt is cute. The Qt application framework
comes in two flavors: open source and with a commercial license.

Qt is the brainchild of Haavard Nord and Eirik Chambe-Eng, the original developers, who
developed it back in the year 1991.

Developing GUI Applications in C++ Chapter 4

[97]

As C++ language doesn't support GUI natively, you must have guessed that there is no
event management support in C++ language out of the box. Hence, there was a need for Qt
to support its own event handling mechanism, which led to the signals and slots technique.
Under the hood, signals and slots use the observer design pattern that allows Qt objects to
talk to each other. Does this sound too hard to understand? No worries! Signals are nothing
but events, such as a button click or window close, and slots are event handlers that can
supply a response to these events in the way you wish to respond to them.

To make our life easier in terms of Qt application development, Qt supports various macros
and Qt-specific keywords. As these keywords will not be understood by C++, Qt has to
translate them and the macros into pure C++ code so that the C++ compiler can do its job as
usual. To make this happen in a smoother fashion, Qt supports something called Meta-
Object Compiler, also known as moc.

Qt is a natural choice for C++ projects as it is out-and-out C++ code; hence, as a C++
developer, you will feel at home when you use Qt in your application. A typical application
will have both complex logic and impressive UI. In small product teams, typically one
developer does multiple stuff, which is good and bad.

Generally, professional developers have good problem-solving skills. Problem-solving skills
are essential to solve a complex problem in an optimal fashion with a good choice of data
structures and algorithms.

Developing an impressive UI requires creative design skills. While there are a countable
number of developers who are either good at problem-solving or creative UI design, not all
developers are good at both. This is where Qt stands out.

Say a start-up wants to develop an application for their internal purposes. For this, a simple
GUI application would suffice, where a decent looking HMI/GUI might work for the team
as the application is meant for internal purposes only. In such scenarios, the entire
application can be developed in C++ and the Qt Widgets framework. The only prerequisite
is that the development team must be proficient in C++.

However, in cases where a mobile app has to be developed, an impressive HMI becomes
mandatory. Again, the mobile app can be developed with C++ and Qt Widgets. But now
there are two parts to this choice. The good part is that the mobile app team has to be good
at just C++. The bad part of this choice is that there is no guarantee that all good C++
developers will be good at designing a mobile app's HMI/GUI.

Developing GUI Applications in C++ Chapter 4

[98]

Let's assume the team has one or two dedicated Photoshop professionals who are good at
creating catchy images that can be used in the GUI and one or two UI designers who can
make an impressive HMI/GUI with the images created by the Photoshop experts. Typically,
UI designers are good at frontend technologies, such as JavaScript, HTML, and CSS.
Complex business logic can be developed in the powerful Qt Framework, while the
HMI/GUI can be developed in QML.

QML is a declarative scripting language that comes along with the Qt application
framework. It is close to JavaScript and has Qt-specific extensions. It is good for rapid
application development and allows UI designers to focus on HMI/GUI and C++ developers
to focus on the complex business logic that can be developed in Qt Framework.

Since both the C++ Qt Framework and QML are part of the same Qt application framework,
they go hand in hand seamlessly.

Qt is a vast and powerful framework; hence this chapter will focus on the basic essentials of
Qt to get you started with Qt. If you are curious to learn more, you may want to check out
my other upcoming book that I'm working on, namely Mastering Qt and QML Programming.

Qt
The Qt Framework is developed in C++, hence it is guaranteed that it would be a cake walk
for any good C++ developer. It supports CLI and GUI-based application development. At
the time of writing this chapter, the latest version of the Qt application framework is Qt
5.7.0. By the time you read this book, it is possible that a different version of Qt will be
available for you to download. You can download the latest version from https:/ ​/ ​www.​qt.
io.

Installing Qt 5.7.0 in Ubuntu 16.04
Throughout this chapter, I'll be using Ubuntu 16.04 OS; however, the programs that are
listed in this chapter should work on any platform that supports Qt.

For detailed installation instructions, refer to https:/ ​/​wiki. ​qt. ​io/​install_ ​Qt_​5_ ​on_
Ubuntu.

At this point, you should have a C++ compiler installed on your system. If this is not the
case, first ensure that you install a C++ compiler, as follows:

sudo apt-get install build-essential

https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://www.qt.io
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu
https://wiki.qt.io/install_Qt_5_on_Ubuntu

Developing GUI Applications in C++ Chapter 4

[99]

From the Ubuntu Terminal, you should be able to download Qt 5.7.0, as shown in the
following command:

wget http://download.qt.io/official_releases/qt/5.7/5.7.0/qt-
opensource-linux-x64-5.7.0.run

Provide execute permission to the downloaded installer, as shown in the following
command:

chmod +x qt-opensource-linux-x64-5.7.0.run

I strongly recommend that you install Qt along with its source code. You
can get help directly from the source code if you prefer to look up Qt Help
the geeky way.

Launch the installer as shown in the following command:

./qt-opensource-linux-x64-5.7.0.run

As Qt makes use of OpenGL, make sure you install the following before you start writing
your first program in Qt. To install libfontconfig1, run the following command:

 sudo apt-get install libfontconfig1

To install mesa-common-dev, run the following command:

sudo apt-get install mesa-common-dev

At this point, you should have a working Qt setup. You can verify the installation by
issuing the following command in the Linux Terminal:

Figure 5.1

In case the qmake command isn't recognized, make sure you export the bin path of the Qt
installation folder, as shown in the preceding screenshot. Additionally, creating a soft link
might be useful too. The command for this is as follows:

 sudo ln -s /home/jegan/Qt5.7.0/5.7/gcc_64/bin/qmake /usr/bin/qmake

Developing GUI Applications in C++ Chapter 4

[100]

The path where Qt is installed on your system might vary from mine, so please substitute
the Qt path accordingly.

Qt Core
Qt Core is one of the modules supported by Qt. This module has loads of useful classes,
such as QObject, QCoreApplication, QDebug, and so on. Almost every Qt application
will require this module, hence they are linked implicitly by the Qt Framework. Every Qt
class inherits from QObject, and the QObject class offers event handling support to Qt
applications. QObject is the critical piece that supports the event handling mechanism;
interestingly, even console-based applications can support event handling in Qt.

Writing our first Qt console application
If you get a similar output to that shown in Figure 5.1, you are all set to get your hands
dirty. Let's write our first Qt application, as shown in the following screenshot:

Figure 5.2

In the first line, we have included the QDebug header from the QtCore module. If you
observe closely, the qDebug() function resembles the C++ cout ostream operator. The
qDebug() function is going to be your good friend in the Qt world while you are
debugging your code. The QDebug class has overloaded the C++ ostream operator in order
to add support for Qt data types that aren't supported by the C++ compiler.

Developing GUI Applications in C++ Chapter 4

[101]

In old school fashion, I'm kind of obsessed with the Terminal to achieve pretty much
anything while coding as opposed to using some fancy Integrated Development
Environments (IDEs). You may either love or hate this approach, which is quite natural.
The good part is there is nothing going to stand between you and Qt/C++ as you are going
to use plain and simple yet powerful text editors, such as Vim, Emacs, Sublime Text, Atom,
Brackets, or Neovim, so you will learn almost all the essentials of how Qt projects and
qmake work; IDEs make your life easy, but they hide a lot of the essential stuff that every
serious developer must know. So it's a trade-off. I leave it to you to decide whether to use
your favorite plain text editor or Qt Creator IDE or any other fancy IDE. I'm going to stick
with the refactored Vim editor called Neovim, which looks really cool. Figure 5.2 will give
you an idea of the Neovim editor's look and feel.

Let's get back to business. Let's see how to compile this code in the command line the geeky
way. Well, before that, you may want to know about the qmake tool. It is a proprietary
make utility of Qt. The qmake utility is nothing more than a make tool, but it is aware of Qt-
specific stuff so it knows about moc, signals, slots, and so on, which a typical make utility
will be unaware of.

The following command should help you create a .pro file. The name of the .pro file will
be decided by the qmake utility, based on the project folder name. The .pro file is the way
the Qt Creator IDE combines related files as a single project. Since we aren't going to use Qt
Creator, we will use the .pro file to create Makefile in order to compile our Qt project just
like a plain C++ project.

Figure 5.3

Developing GUI Applications in C++ Chapter 4

[102]

When you issue the qmake -project command, qmake will scan through the current
folder and all the subfolders under the current folder and include the headers and source
files in Ex1.pro. By the way, the .pro file is a plain text file that can be opened using any
text editor, as shown in Figure 5.4:

Figure 5.4

Now it's time to create Makefile taking Ex1.pro as an input file. As the Ex1.pro file is
present in the current directory, we don't have to explicitly supply Ex1.pro as an input file
to autogenerate Makefile. The idea is that once we have a .pro file, all we would need to
do is generate Makefile from the .pro file issuing command: qmake. This will do all the
magic of creating a full-blown Makefile for your project that you can use to build your
project with the make utility, as shown in the following screenshot:

Figure 5.5

Developing GUI Applications in C++ Chapter 4

[103]

This is the point we have been waiting for, right? Yes, let's execute our first Qt Hello World
program, as shown in the following screenshot:

Figure 5.6

Congratulations! You have completed your first Qt application. In this exercise, you learned
how to set up and configure Qt in Ubuntu and how to write a simple Qt console application
and then build and run it. The best part is you learned all of this from the command line.

Qt Widgets
Qt Widgets is an interesting module that supports quite a lot of widgets, such as buttons,
labels, edit, combo, list, dialog, and so on. QWidget is the base class of all of the widgets,
while QObject is the base class of pretty much every Qt class. While many programming
languages refer to as UI controls, Qt refers to them as widgets. Though Qt works on many
platforms, its home remains Linux; widgets are common in the Linux world.

Writing our first Qt GUI application
Our first console application is really cool, isn't it? Let's continue exploring further. This
time, let's write a simple GUI-based Hello World program. The procedure will remain
almost the same, except for some minor changes in main.cpp. Refer to the following for the
complete code:

Developing GUI Applications in C++ Chapter 4

[104]

Figure 5.7

Wait a minute. Let me explain the need for QApplication in line number 23 and line
number 29. Every Qt GUI application must have exactly one instance of the QApplication
instance. QApplication provides support for command-line switches for our application,
hence the need to supply the argument count (argc) and the argument value (argv). GUI-
based applications are event-driven, so they must respond to events or, to be precise,
signals in the Qt world. In line number 29, the exec function starts the event loop, which
ensures the application waits for user interactions until the user closes the window. The
idea is that all the user events will be received by the QApplication instance in an event
queue, which will then be notified to its Child widgets. The event queue ensures all the
events deposited in the queue are handled in the same sequence that they occur, that is,
first in, first out (FIFO).

In case you are curious to check what would happen if you comment line 29, the application
will still compile and run but you may not see any window. The reason being the main
thread or the main function creates an instance of QWidget in line number 25, which is the
window that we see when we launch the application.

Developing GUI Applications in C++ Chapter 4

[105]

In line number 27, the window instance is displayed, but in the absence of line number 29,
the main function will terminate the application immediately without giving a chance for
you to check your first Qt GUI application. It's worth trying, so go ahead and see what
happens with and without line number 29.

Let's generate Makefile, as shown in the following screenshot:

Figure 5.8

Now let's try to compile our project with the make utility, as shown in the following
screenshot:

Figure 5.9

Interesting, right? Our brand new Qt GUI program fails to compile. Did you notice the fatal
error? No big deal; let's understand why this happened. The reason is that we have not yet
linked the Qt Widgets module, as the QApplication class is part of the Qt Widgets
module. In that case, you may wonder how your first Hello World program compiled
without any issue. In our first program, the QDebug class was part of the QtCore module
that got linked implicitly, whereas other modules had to be linked explicitly. Let's see how
to get this done:

Developing GUI Applications in C++ Chapter 4

[106]

Figure 5.10

We need to add QT += widgets to the Ex2.pro file so that the qmake utility understands
that it needs to link Qt Widgets's shared object (the .so file) in Linux, also known as
the Dynamic Link Library (the .dll file) in Windows, while creating the final executable.
Once this is taken care of, we must qmake so that Makefile could reflect the new change in
our Ex2.pro file, as demonstrated in the following screenshot:

Figure 5.11

Developing GUI Applications in C++ Chapter 4

[107]

Cool. Let's check our first GUI-based Qt app now. In my system, the application output
looks as shown in Figure 5.12; you should get a similar output as well if all goes well at your
end:

Figure 5.12

It would be nice if we set the title of our window as Hello Qt, right? Let's do this right
away:

Figure 5.13

Developing GUI Applications in C++ Chapter 4

[108]

Add the code presented at line number 26 to ensure you build your project with the make
utility before you test your new change:

Figure 5.14

Layouts
Qt is cross-platform application framework, hence it supports concepts such as layouts for
developing applications that look consistent in all platforms, irrespective of the different
screen resolutions. When we develop GUI/HMI-based Qt applications, an application
developed in one system shouldn't appear different on another system with a different
screen size and resolution. This is achieved in the Qt Framework via layouts. Layouts come
in different flavors. This helps a developer design a professional-looking HMI/GUI by
organizing various widgets within a window or dialog. Layouts differ in the way they
arrange their child widgets. While one arranges its child widgets in a horizontal fashion,
another will arrange them in a vertical or grid fashion. When a window or dialog gets
resized, the layouts resize their child widgets so they don't get truncated or go out of focus.

Developing GUI Applications in C++ Chapter 4

[109]

Writing a GUI application with a horizontal layout
Let's write a Qt application that has a couple of buttons in the dialog. Qt supports a variety
of useful layout managers that act as an invisible canvas where many QWidgets can be
arranged before they are attached to a window or dialog. Each dialog or window can have
only one layout. Every widget can be added to only one layout; however, many layouts can
be combined to design a professional UI.

Let's start writing the code now. In this project, we are going to write code in a modular
fashion, hence we are going to create three files with the names MyDlg.h, MyDlg.cpp, and
main.cpp.

The game plan is as follows:

Create a single instance of QApplication.1.
Create a custom dialog by inheriting QDialog.2.
Create three buttons.3.
Create a horizontal box layout.4.
Add the three buttons to the invisible horizontal box layout.5.
Set the horizontal box layout's instance as our dialog's layout.6.
Show the dialog.7.
Start the event loop on QApplication.8.

It is important that we follow clean code practices so that our code is easy to understand
and can be maintained by anyone. As we are going to follow industry best practices, let's
declare the dialog in a header file called MyDlg.h, define the dialog in the source file called
MyDlg.cpp, and use MyDlg.cpp in main.cpp that has the main function. Every
time MyDlg.cpp requires a header file, let's make it a practice to include all the headers
only in MyDlg.h; with this, the only header we will see in MyDlg.cpp is MyDlg.h.

By the way, did I tell you Qt follows the camel casing coding convention? Yes, I did
mention it right now. By now, you will have observed that all Qt classes start with the letter
Q because Qt inventors loved the letter "Q" in Emacs and they were so obsessed with that
font type that they decided to use the letter Q everywhere in Qt.

One last suggestion. Wouldn't it be easy for others to locate the dialog class if the name of
the file and the name of the class were similar? I can hear you say yes. All set! Let's start
coding our Qt application. First, refer to the following screenshot:

Developing GUI Applications in C++ Chapter 4

[110]

Figure 5.15

In the preceding screenshot, we declared a class with the name MyDlg. It has one layout,
three buttons, and a constructor. Now refer to this screenshot:

Figure 5.16

Developing GUI Applications in C++ Chapter 4

[111]

As you can see in the preceding screenshot, we defined the MyDlg constructor and
instantiated the layout and the three buttons. In lines 27 through 29, we added three buttons
to the layout. In line number 31, we associated the layout to our dialog. That's all it takes. In
the following screenshot, we defined our main function, which creates an instance
of QApplication:

Figure 5.17

We followed this up by creating our custom dialog instance and displaying the dialog.
Finally, at line 27, we started the event loop so that MyDlg could respond to user
interactions. Refer to the following screenshot:

Developing GUI Applications in C++ Chapter 4

[112]

Figure 5.18

The preceding screenshot demonstrates the build and execution procedures, and there is
our cute application. Actually, you can try playing with the dialog to understand the
horizontal layout better. First, stretch the dialog horizontally and notice all the buttons'
width increase; then, see whether you can reduce the dialog's width to notice all the
buttons' width decrease. That's the job of any layout manager. A layout manager arranges
widgets and retrieves the size of the window and divides the height and width equally
among all its child widgets. Layout managers keep notifying all their child widgets about
any resize events. However, it is up to the respective child widget to decide whether they
want to resize themselves or ignore the layout resize signals.

To check this behavior, try stretching out the dialog vertically. As you increase the height of
the dialog, the dialog's height should increase, but the buttons will not increase their height.
This is because every Qt Widget has its own preferred size policy; as per their size policy,
they may respond or ignore certain layout resize signals.

Developing GUI Applications in C++ Chapter 4

[113]

If you want the buttons to stretch vertically as well, QPushButton offers a way to get this
done. In fact, QPushButton extends from QWidget just like any other widget. The
setSizePolicy() method comes to QPushButton from its base class, that is, QWidget:

Figure 5.19

Did you notice line number 37? Yes, I have set the window title within the constructor of
MyDlg to keep our main function compact and clean.

Make sure you have built your project using the make utility before launching your
application:

Figure 5.20

Developing GUI Applications in C++ Chapter 4

[114]

In the highlighted section, we have overridden the default size policy of all the buttons. In
line number 27, the first parameter QSizePolicy::Expanding refers to the horizontal
policy and the second parameter refers to the vertical policy. To find other possible values
of QSizePolicy, refer to the assistant that comes in handy with the Qt API reference, as
shown in the following screenshot:

Figure 5.21

Writing a GUI application with a vertical layout
In the previous section, you learned how to use a horizontal box layout. In this section, you
will see how to use a vertical box layout in your application.

As a matter of fact, the horizontal and vertical box layouts vary only in terms of how they
arrange the widgets. For instance, the horizontal box layout will arrange its child widgets in
a horizontal fashion from left to right, whereas the vertical box layout will arrange its child
widgets in a vertical fashion from top to bottom.

Developing GUI Applications in C++ Chapter 4

[115]

You can copy the source code from the previous section, as the changes are minor in nature.
Once you have copied the code, your project directory should look as follows:

Figure 5.22

Let me demonstrate the changes starting from the MyDlg.h header file, as follows:

Figure 5.23

Developing GUI Applications in C++ Chapter 4

[116]

I have replaced QHBoxLayout with QVBoxLayout; that is all. Yes, let's proceed with file
changes related to MyDlg.cpp:

Figure 5.24

There are no changes to be done in main.cpp; however, I have shown main.cpp for your
reference, as follows:

Figure 5.25

Developing GUI Applications in C++ Chapter 4

[117]

Now all we need to do is autogenerate Makefile and then make and run the program as
follows:

Figure 5.26

Let's execute our brand new program and check the output. The following output
demonstrates that QVBoxLayout arranges the widgets in a vertical top to bottom fashion.
When the window is stretched, all the buttons' width will increase/decrease depending on
whether the window is stretched out or stretched in:

Figure 5.27

Developing GUI Applications in C++ Chapter 4

[118]

Writing a GUI application with a box layout
In the previous sections, you learned how to make use of QHBoxLayout and QVBoxLayout.
Actually, these two classes are the convenience classes for QBoxLayout. In the case of
QHBoxLayout, the QHBoxLayout class has subclassed QBoxLayout and configured
QBoxLayout::Direction to QBoxLayout::LeftToRight, whereas the QVBoxLayout
class has subclassed QBoxLayout and configured
QBoxLayout::Direction to QBoxLayout::TopToBottom.

Apart from these values, QBoxLayout::Direction supports various other values, as
follows:

QBoxLayout::LeftToRight: This arranges the widgets from left to right
QBoxLayout::RightToLeft: This arranges the widgets from right to left
QBoxLayout::TopToBottom: This arranges the widgets from top to bottom
QBoxLayout::BottomToTop: This arranges the widgets from bottom to top

Let's write a simple program using QBoxLayout with five buttons.

Let's start with the MyDlg.h header file. I have declared five button pointers in the MyDlg
class and a QBoxLayout pointer:

Figure 5.28

Let's take a look at our MyDlg.cpp source file. If you notice line number 21 in the following
screenshot, the QBoxLayout constructor takes two arguments. The first argument is the
direction in which you wish to arrange the widgets and the second argument is an optional
argument that expects the parent address of the layout instance.

Developing GUI Applications in C++ Chapter 4

[119]

As you may have guessed, the this pointer refers to the MyDlg instance pointer, which
happens to be the parent of the layout.

Figure 5.29

Again, as you may have guessed, the main.cpp file isn't going to change from our past
exercises, as shown in the following screenshot:

Figure 5.30

Developing GUI Applications in C++ Chapter 4

[120]

Let's compile and run our program, as follows:

Figure 5.31

If you notice the output, it looks like a horizontal box layout output, right? Exactly, because
we have set the direction to QBoxLayout::LeftToRight. If you modify the direction to,
say, QBoxLayout::RightToLeft, then Button 1 would appear on the right-hand side,
Button 2 would appear on the left-hand side of Button 1, and so on. Hence, the output
would look as shown in the following screenshot:

If the direction is set to QBoxLayout::RightToLeft, you'll see the following
output:

Figure 5.32

Developing GUI Applications in C++ Chapter 4

[121]

If the direction is set to QBoxLayout::TopToBottom, you'll see the following
output:

Figure 5.33

If the direction is set to QBoxLayout::BottomToTop, you'll see the following
output:

Figure 5.34

In all the preceding scenarios, the buttons are added to the layout exactly in the same
sequence, starting from Button 1 through Button 5, respectively. However, depending on
the direction chosen in the QBoxLayout constructor, the box layout will arrange the
buttons, hence the difference in the output.

Developing GUI Applications in C++ Chapter 4

[122]

Writing a GUI application with a grid layout
A grid layout allows us to arrange widgets in a tabular fashion. It is quite easy, just like a
box layout. All we need to do is indicate the row and column where each widget must be
added to the layout. As the row and column index starts from a zero-based index, the value
of row 0 indicates the first row and the value of column 0 indicates the first column. Enough
of theory; let's start writing some code.

Let's declare 10 buttons and add them in two rows and five columns. Other than the
specific QGridLayout differences, the rest of the stuff will remain the same as the previous
exercises, so go ahead and create MyDlg.h, MyDl.cpp, and main.cpp if you have
understood the concepts discussed so far.

Let me present the MyDlg.h source code in the following screenshot:

Figure 5.35

Developing GUI Applications in C++ Chapter 4

[123]

The following is the code snippet of MyDlg.cpp:

Figure 5.36

The main.cpp source file content will remain the same as our previous exercises; hence, I
have skipped the main.cpp code snippet. As you are familiar with the build process, I have
skipped it too. If you have forgotten about this, just check the previous sections to
understand the build procedure.

If you have typed the code correctly, you should get the following output:

Figure 5.37

Actually, the grid layout has more stuff to offer. Let's explore how we can make a button
span across multiple cells. I guarantee what you are about to see is going to be more
interesting.

I'm going to modify MyDlg.h and MyDlg.cpp and keep main.cpp the same as the previous
exercises:

Developing GUI Applications in C++ Chapter 4

[124]

Figure 5.38

Here goes our MyDlg.cpp:

 Figure 5.39

Developing GUI Applications in C++ Chapter 4

[125]

Notice the lines 35 through 38. Let's discuss the addWidget() function in detail now.

In line number 35, the pLayout->addWidget (pBttn1, 0, 0, 1, 1) code does the
following things:

The first three arguments add Button 1 to the grid layout at the first row and first
column
The fourth argument 1 instructs that Button 1 will occupy just one row
The fifth argument 1 instructs that Button 1 will occupy just one column
Hence, it's clear that pBttn1 should be rendered at cell (0, 0) and it should
occupy just one grid cell

In line number 36, the pLayout->addWidget (pBttn2, 0, 1, 1, 2) code does the
following:

The first three arguments add Button 2 to the grid layout at the first row and
second column
The fourth argument instructs that Button 2 will occupy one row
The fifth argument instructs that Button 2 will occupy two columns (that is, the
second column and the third column in the first row)
At the bottom line, Button 2 will be rendered at cell (0,1) and it should occupy
one row and two columns

In line number 37, the pLayout->addWidget (pBttn3, 0, 3, 2, 1) code does the
following:

The first three arguments add Button 3 to the grid layout at the first row and
fourth column
The fourth argument instructs that Button 3 will occupy two rows (that is, the
first row and the fourth column and the second row and the fourth column)
The fifth argument instructs that Button 3 will occupy one column

In line number 38, the pLayout->addWidget (pBttn4, 1, 0, 1, 3) code does the
following:

The first three arguments add Button 4 to the grid layout at the second row and
first column
The fourth argument instructs that Button 4 will occupy one row
The fifth argument instructs that Button 4 will occupy three columns (that is,
the second row first, then the second and third column)

Developing GUI Applications in C++ Chapter 4

[126]

Check out the output of the program:

Figure 5.40

Signals and slots
Signals and slots are an integral part of the Qt Framework. So far, we have written some
simple but interesting Qt applications, but we haven't handled events. Now it's time to
understand how to support events in our application.

Let's write a simple application with just one button. When the button is clicked, check
whether we can print something on the console.

The MyDlg.h header demonstrates how the MyDlg class shall be declared:

Figure 5.41

Developing GUI Applications in C++ Chapter 4

[127]

The following screenshot demonstrates how the MyDlg constructor shall be defined to add a
single button to our dialog window:

 Figure 5.42

Developing GUI Applications in C++ Chapter 4

[128]

The main.cpp looks as follows:

Figure 5.43

Let's build and run our program and later add support for signals and slots. If you have
followed the instructions correctly, your output should resemble the following screenshot:

Figure 5.44

If you click on the button, you will notice that nothing happens, as we are yet to add
support for signals and slots in our application. Okay, it's time to reveal the secret
instruction that will help you make the button respond to a button-click signal. Hold on, it's
time for some more information. Don't worry, it's related to Qt.

Developing GUI Applications in C++ Chapter 4

[129]

Qt signals are nothing but events, and slot functions are event handler functions.
Interestingly, both signals and slots are normal C++ functions; only when they are marked
as signals or slots, will the Qt Framework understand their purpose and provide the
necessary boilerplate code.

Every widget in Qt supports one or more signal and may also optionally support one or
more slot. So let's explore which signals QPushButton supports before we write any further
code.

Let's make use of the Qt assistant for API reference:

Figure 5.45

Developing GUI Applications in C++ Chapter 4

[130]

If you observe the preceding screenshot, it has a Contents section that seems to cover
Public Slots, but we don't see any signals listed there. That's a lot of information. If the
Contents section doesn't list out signals, QPushButton wouldn't support signals directly.
However, maybe its base class, that is, QAbstractButton, would support some signals.
The QPushButton class section gives loads of useful information, such as the header
filename, which Qt module must be linked to the application--that is, qmake entries that
must be added to .pro--and so on. It also mentions the base class of QPushButton. If you
scroll down further, your Qt assistant window should look like this:

Figure 5.46

Developing GUI Applications in C++ Chapter 4

[131]

If you observe the highlighted section under Additional Inherited Members, apparently
the Qt assistant implies that QPushButton has inherited four signals from
QAbstractButton. So we need to explore the signals supported by QAbstractButton in
order to support the signals in QPushButton.

Figure 5.47

With the help of the Qt assistant, as shown in the preceding screenshot, it is evident that
the QAbstractButton class supports four signals that are also available for QPushButton,
as QPushButton is a child class of QAbstractButton. So let's use the clicked() signal in
this exercise.

Developing GUI Applications in C++ Chapter 4

[132]

We need to make some minor changes in MyDlg.h and MyDlg.cpp in order to use
the clicked() signal. Hence, I have presented these two files with changes highlighted in
the following screenshot:

Figure 5.48

As you are aware, the QDebug class is used for debugging purposes. It offers functionalities
to Qt applications that are similar to cout, but they aren't really required for signals and
slots. We are using them here just for debugging purposes. In Figure 5.48, line number 34,
void MyDlg::onButtonClicked() is our slot function that we are intending to use as an
event handler function that must be invoked in response to the button click.

Developing GUI Applications in C++ Chapter 4

[133]

The following screenshot should give you an idea of what changes you will have to perform
in MyDlg.cpp for signal and slot support:

Figure 5.49

If you observe line 40 through 42 in the preceding screenshot,
the MyDlg::onButtonClicked() method is a slot function that must be invoked
whenever the button is clicked. But unless the button's clicked() signal is mapped to
the MyDlg::onButtonClicked() slot, the Qt Framework wouldn't know that it must
invoke MyDlg::onButtonClicked() when the button is clicked. Hence, in line numbers
32 through 37, we have connected the button signal clicked() with
the MyDlg instance's onButtonClicked() slot function. The connect function is inherited
by MyDlg from QDialog. This, in turn, has inherited the function from its ultimate base
class, called QObject.

The mantra is that every class that would like to participate in signal and
slot communication must be either QObject or its subclass. QObject offers quite a good
amount of signal and slot support, and QObject is part of the QtCore module. What's
amazing is that the Qt Framework has made signal and slot available to even command-line
applications. This is the reason signals and slots support is built into the ultimate base class
QObject, which is part of the QtCore module.

Developing GUI Applications in C++ Chapter 4

[134]

Okay, let's build and run our program and see whether the signals work in our application:

Figure 5.50

Interestingly, we don't get a compilation error, but when we click on the button, the
highlighted warning message appears automatically. This is a hint from the Qt Framework
that we have missed out on an important procedure that is mandatory to make signals and
slots work.

Let's recollect the procedure we followed to autogenerate Makefile in our headers and
source files:

The qmake -project command ensures that all the header files and source files1.
that are present in the current folder are included in the .pro file.
The qmake command picks up the .pro file present in the current folder and2.
generates Makefile for our project.
The make command will invoke the make utility. It then executes Makefile in3.
the current directory and builds our project based on the make rules defined in
Makefile.

Developing GUI Applications in C++ Chapter 4

[135]

In step 1, the qmake utility scans through all our custom header files and checks whether
they need signal and slot support. Any header file that has the Q_OBJECT macro hints the
qmake utility that it needs signal and slot support. Hence we must use the Q_OBJECT macro
in our MyDlg.h header file:

Figure 5.51

Once the recommended changes are done in the header file, we need to ensure that the
qmake command is issued. Now the qmake utility will open the Ex8.pro file to get our
project headers and source files. When qmake parses MyDlg.h and finds the Q_OBJECT
macro, it will learn that our MyDlg.h requires signals and slots, then it will ensure that the
moc compiler is invoked on MyDlg.h so that the boilerplate code can be autogenerated in a
file called moc_MyDlg.cpp. This will then go ahead and add the necessary rules to
Makefile so that the autogenerated moc_MyDlg.cpp file gets built along with the other
source files.

Now that you know the secrets of Qt signals and slots, go ahead and try out this procedure
and check whether your button click prints the Button clicked ... message. I have gone
ahead and built our project with the changes recommended. In the following screenshot, I
have highlighted the interesting stuff that goes on behind the scenes; these are some of the
advantages one would get when working in the command line versus using fancy IDEs:

Developing GUI Applications in C++ Chapter 4

[136]

Figure 5.52

Now it's time that we test the output of our cool and simple application that supports
signals and slots. The output is presented in the following screenshot:

Figure 5.53

Congratulations! You can pat your back. You have learned enough to do cool stuff in Qt.

Developing GUI Applications in C++ Chapter 4

[137]

Using stacked layout in Qt applications
As you have learned about signals and slots, in this section, let's explore how to use a
stacked layout in an application that has multiple windows; each window could be either a
QWidget or QDialog. Each page may have its own child widgets. The application we are
about to develop will demonstrate the use of a stacked layout and how to navigate from one
window to the other within the stacked layout.

Figure 5.54

This application is going to require a decent amount of code, hence it is important that we
ensure our code is structured carefully so that it meets both the structural and functional
quality, avoiding code smells as much as possible.

Let's create four widgets/windows that could be stacked up in a stacked layout, where each
page could be developed as a separate class split across two files: HBoxDlg.h and
HBoxDlg.cpp and so on.

Let's start with HBoxDlg.h. As you are familiar with layouts, in this exercise, we are going
to create each dialog with one layout so that while navigating between the subwindows,
you can differentiate between the pages. Otherwise, there will be no connection between the
stacked layout and other layouts as such.

Developing GUI Applications in C++ Chapter 4

[138]

Figure 5.55

The following code snippet is from the HBoxDlg.cpp file:

Figure 5.56

Developing GUI Applications in C++ Chapter 4

[139]

Similarly, let's write VBoxDlg.h as follows:

Figure 5.57

Let's create the third dialog BoxDlg.h with a box layout, as follows:

Figure 5.58

Developing GUI Applications in C++ Chapter 4

[140]

The respective BoxDlg.cpp source file will look as follows:

Figure 5.59

The fourth dialog that we would like to stack up is GridDlg, so let's see how GridDlg.h
can be written, which is illustrated in the following screenshot:

Figure 5.60

Developing GUI Applications in C++ Chapter 4

[141]

The respective GridDlg.cpp will look like this:

Figure 5.61

Cool, we are done with creating four widgets that can be stacked up in MainDlg. MainDlg
is the one that's going to use QStackedLayout, so the crux of this exercise is understanding
how a stacked layout works.

Developing GUI Applications in C++ Chapter 4

[142]

Let's see how MainDlg.h shall be written:

Figure 5.62

In MainDlg, we have declared three slot functions, one for each button, in order to support
the navigation logic among the four windows. A stacked layout is similar to a tabbed
widget, except that a tabbed widget will provide its own visual way to switch between the
tabs, whereas in the case of a stacked layout, it is up to us to provide the switching logic.

Developing GUI Applications in C++ Chapter 4

[143]

The MainDlg.cpp will look like this:

 Figure 5.63

You can choose a box layout to hold the three buttons, as we prefer buttons aligned to the
right. However, in order to ensure that extra spaces are consumed by some invisible glue,
we have added a stretch item at line number 44.

Between lines 30 through 33, we have added all the four subwindows in a stacked layout so
that windows can be made visible one at a time. The HBox dialog is added at index 0,
the VBox dialog is added at index 1, and so on.

Developing GUI Applications in C++ Chapter 4

[144]

Lines 53 through 58 demonstrate how the previous button's clicked signal is wired with its
corresponding MainDlg::onPrevPage() slot function. Similar connections must be
configured for next and exit buttons:

Figure 5.64

The if condition in line 78 ensures that the switching logic happens only if we are in the
second or later subwindows. As the horizontal dialog is at index 0, we can't navigate to the
previous window in cases where the current window happens to be a horizontal dialog. A
similar validation is in place for switching to the next subwindow in line 85.

The stacked layout supports the setCurrentIndex() method to switch to a particular
index position; alternatively, you could try the setCurrentWidget() method as well if it
works better in your scenario.

Developing GUI Applications in C++ Chapter 4

[145]

The main.cpp looks short and simple, as follows:

Figure 5.65

The best part of our main function is that irrespective of the complexity of the application
logic, the main function doesn't have any business logic. This makes our code clean and
easily maintainable.

Developing GUI Applications in C++ Chapter 4

[146]

Writing a simple math application combining
multiple layouts
In this section, let's explore how to write a simple math application. As part of this exercise,
we will use QLineEdit and QLabel widgets and QFormLayout. We need to design a UI, as
shown in the following screenshot:

Figure 5.66

QLabel is a widget typically used for static text, and QLineEdit will allow a user to supply
a single line input. As shown in the preceding screenshot, we will use QVBoxLayout as the
main layout in order to arrange QFormLayout and QBoxLayout in a vertical fashion.
QFormLayout comes in handy when you need to create a form where there will be a
caption on the left-hand side followed by some widget on its right. QGridLayout might
also do the job, but QFormLayout is easy to use in such scenarios.

Developing GUI Applications in C++ Chapter 4

[147]

In this exercise, we will create three files, namely MyDlg.h, MyDlg.cpp, and main.cpp.
Let's start with the MyDlg.h source code and then move on to other files:

Figure 5.67

In the preceding figure, three layouts are declared. The vertical box layout is used as the
main layout, while the box layout is used to arrange the buttons in the right-aligned
fashion. The form layout is used to add the labels, that is, line edit widgets. This exercise
will also help you understand how one can combine multiple layouts to design a
professional HMI.

Qt doesn't have any documented restriction in the number of layouts that can be combined
in a single window. However, when possible, it is a good idea to consider designing an
HMI with a minimal number of layouts if you are striving to develop a small memory
footprint application. Otherwise, there is certainly no harm in using multiple layouts in
your application.

Developing GUI Applications in C++ Chapter 4

[148]

In the following screenshot, you will get an idea of how the MyDlg.cpp source file shall be
implemented. In the MyDlg constructor, all the buttons are instantiated and laid out in the
box layout for right alignment. The form layout is used to hold the QLineEdit widgets and
their corresponding QLabel widgets in a grid-like fashion. QLineEdit widgets typically
help supply a single line input; in this particular exercise, they help us supply a number
input that must be added, subtracted, and so on, depending on the user's choice.

Figure 5.68

The best part of our main.cpp source file is that it remains pretty much the same,
irrespective of the complexity of our application. In this exercise, I would like to tell you a
secret about MyDlg. Did you notice that the MyDlg constructor is instantiated in the stack as
opposed to the heap? The idea is that when the main() function exits, the stack used by the
main function gets unwinded, eventually freeing up all the stack variables present in the
stack. When MyDlg gets freed up, it results in calling the MyDlg destructor. In the Qt
Framework, every widget constructor takes an optional parent widget pointer, which is
used by the topmost window destructor to free up its child widgets. Interestingly, Qt
maintains a tree-like data structure to manage the memory of all its child widgets. So, if all
goes well, the Qt Framework will take care of freeing up all its child widgets' memory
locations "automagically".

Developing GUI Applications in C++ Chapter 4

[149]

This helps Qt developers focus on the application aspect, while the Qt Framework will take
care of memory management.

Figure 5.69

Aren't you excited to check the output of our new application? If you build and execute the
application, then you are supposed to get an output similar to the following screenshot. Of
course, we are yet to add signal and slot support, but it's a good idea to design the GUI to
our satisfaction and then shift our focus to event handling:

Figure 5.70

Developing GUI Applications in C++ Chapter 4

[150]

If you observe closely, though the buttons are laid out on QBoxLayout in the right to left
direction, the buttons aren't aligned to the right. The reason for this behavior is when the
window is stretched out, the box layout seems to have divided and allocated the extra
horizontal space available among all the buttons. So let's go ahead and throw in a stretch
item to the leftmost position on the box layout such that the stretch will eat up all the extra
spaces, leaving the buttons no room to expand. This will get us the right-aligned effect.
After adding the stretch, the code will look as shown in the following screenshot:

Figure 5.71

Go ahead and check whether your output looks as shown in the following screenshot.
Sometimes, as developers, we get excited to see the output in a rush and forget to compile
our changes, so ensure the project is built again. If you don't see any change in output, no
worries; just try to stretch out the window horizontally and you should see the right-
aligned effect, as shown in the following screenshot:

Figure 5.72

Developing GUI Applications in C++ Chapter 4

[151]

Now since we have a decent-looking application, let's add signal and slot support to add
the response to button clicks. Let's not rush and include the add and subtract functionalities
for now. We will use some qDebug() print statements to check whether the signals and
slots are connected properly and then gradually replace them with the actual
functionalities.

If you remember the earlier signal and slot exercise, any Qt window that is interested in
supporting signals and slots must be QObject and should include the Q_OBJECT macro in
the MyDlg.h header file, as shown in the following screenshot:

Figure 5.73

In lines starting from 41 through 45, four slot methods are declared in the private section.
Slot functions are regular C++ functions that could be invoked directly just like other C++
functions. However, in this scenario, the slot functions are intended to be invoked only with
MyDlg. Hence they are declared as private functions, but they could be made public if you
believe that others might find it useful to connect to your public slot.

Cool, if you have come this far, it says that you have understood the things discussed so far.
Alright, let's go ahead and implement the definitions for the slot functions in MyDlg.cpp
and then connect the clicked() button's signals with the respective slot functions:

Developing GUI Applications in C++ Chapter 4

[152]

Figure 5.74

Now it's time to wire up the signals to their respective slots. As you may have guessed, we
need to use the connect function in the MyDlg constructor, as shown in the following
screenshot, to get the button clicks to the corresponding slots:

Figure 5.75

Developing GUI Applications in C++ Chapter 4

[153]

We are all set. Yes, it's showtime now. As we have taken care of most of the stuff, let's
compile and check the output of our little Qt application:

Figure 5.76

Oops! We got some linker error. The root cause of this issue is that we forgot to invoke
qmake after enabling signal and slot support in our application. No worries, let's invoke
qmake and make and run our application:

Figure 5.77

Great, we have fixed the issue. The make utility doesn't seem to make any noise this time
and we are able to launch the application. Let's check whether the signals and slots are
working as expected. For this, click on the Add button and see what happens:

Developing GUI Applications in C++ Chapter 4

[154]

Figure 5.78

Wow! When we click on the Add button, the qDebug() console message confirms that the
MyDlg::onAddButtonClicked() slot is invoked. If you are curious to check the slots of
other buttons, go ahead and try clicking on the rest of the buttons.

Our application will be incomplete without business logic. So let's add business logic to the
MyDlg::onAddButtonClicked() slot function to perform the addition and display the
result. Once you learn how to integrate the added business logic, you can follow the same
approach and implement the rest of the slot functions:

Figure 5.79

Developing GUI Applications in C++ Chapter 4

[155]

In the MyDlg::onAddButtonClicked() function, the business logic is integrated. In lines
82 and 83, we are trying to extract the values typed by the user in the QLineEdit widgets.
The text() function in QLineEdit returns QString. The QString object provides
toInt() that comes in handy to extract the integer value represented by QString. Once
the values are added and stored in the result variable, we need to convert the result integer
value back to QString, as shown in line number 86, so that the result can be fed into
QLineEdit, as shown in line number 88.

Similarly, you can go ahead and integrate the business logic for other math operations.
Once you have thoroughly tested the application, you can remove the qDebug() console's
output. We added the qDebug() messages for debugging purposes, hence they can be
cleaned up now.

Summary
In this chapter, you learned developing C++ GUI applications using Qt application
framework. The key takeaway points are listed below.

You learned installing Qt and required tools in Linux.
You learned writing simple console based application with Qt Framework.
You learned writing simple GUI based applications with Qt Framework.
You learned event handling with Qt Signal and Slots mechanism and how Meta
Object Compiler helps us generate the crucial boiler plate code required for
Signal and Slots.
You learned using various Qt Layouts in application development to develop an
appealing HMI that looks great in many Qt supported platforms.
You learned combining multiple layouts in a single HMI to develop professional
HMI.
You learned quite a lot of Qt Widgets and how they could help you develop
impressive HMIs.
Overall you learned developing cross-platform GUI applications using Qt
application framework.

In the next chapter, you will be learning multithread programming and IPC in C++.

5
Test-Driven Development

This chapter will cover the following topics:

A brief overview of test-driven development
Common myths and questions around TDD
Whether it takes more efforts for a developer to write unit tests
Whether code coverage metrics is good or bad
Whether TDD would work for complex legacy projects
Whether TDD is even applicable for embedded products or products that involve
hardware
Unit test frameworks for C++
Google test framework
Installing Google test framework on Ubuntu
The process to build a Google test and mock together as one single static library
without installing them
Writing our first test case using Google test framework
Using Google test framework in Visual Studio IDE
TDD in action
Testing legacy code that has dependency

Let's deep dive into these TDD topics.

Test-Driven Development Chapter 5

[157]

TDD
Test-driven development (TDD) is an extreme programming practice. In TDD, we start
with a test case and incrementally write the production code that is required to make the
test case succeed. The idea is that one should focus on one test case or scenario at a time and
once the test case passes, they can then move on to the next scenario. In this process, if the
new test case passes, we shouldn't modify the production code. In other words, in the
process of developing a new feature or while fixing a bug, we can modify the production
code only for two reasons: either to ensure the test case passes or to refactor the code. The
primary focus of TDD is unit testing; however, it can be extended to integration and
interaction testing to some extent.

The following figure demonstrates the TDD process visually:

When TDD is followed religiously, one can achieve both functional and structural quality of
the code. It is very crucial that you write the test case first before writing the production
code as opposed to writing test cases at the end of the development phase. This makes quite
a lot of difference. For instance, when a developer writes unit test cases at the end of
development, it is very unlikely that the test cases will find any defect in the code. The
reason is that the developers will unconsciously be inclined to prove their code is doing the
right thing when the test case is written at the end of development. Whereas, when
developers write test cases upfront, as no code is written yet, they start thinking from the
end user's point of view, which would encourage them to come up with numerous
scenarios from the requirement specification point of view.

Test-Driven Development Chapter 5

[158]

In other words, test cases written against code that is already written will generally not find
any bug as it tends to prove the code written is correct, instead of testing it against the
requirement. As developers think of various scenarios before writing code, it helps them
write better code incrementally, ensuring that the code does take care of those scenarios.
However, when the code has loopholes, it is the test case that helps them find issues, as test
cases will fail if they don't meet the requirements.

TDD is not just about using some unit test framework. It requires cultural and mindset
change while developing or fixing defects in the code. Developers' focus should be to make
the code functionally correct. Once the code is developed in this fashion, it is highly
recommended that the developers should also focus on removing any code smells by
refactoring the code; this will ensure the structural quality of the code would be good as
well. In the long run, it is the structural quality of the code that would make the team
deliver features faster.

Common myths and questions around TDD
There are lots of myths and common doubts about TDD that crosses everyone's mind when
they are about to start their TDD journey. Let me clarify most of them that I came across, for
while I consulted many product giants around the globe.

Does it take more efforts for a developer to write
a unit test?
One of the common doubts that arises in the minds of most developers is, "How am I
supposed to estimate my effort when we adapt to TDD?" As developers are supposed to
write unit and integration test cases as part of TDD, it is no wonder you are concerned
about how to negotiate with the customer or management for the additional effort required
to write test cases in addition to writing code. No worries, you aren't alone; as a freelance
software consultant myself, many developers have asked me this question.

As a developer, you test your code manually; instead, write automated test cases now. The
good news is that it is a one-time effort that is guaranteed to help you in the long run. While
a developer requires repeated manual effort to test their code, every time they change the
code, the already existing automated test cases will help the developer by giving them
immediate feedback when they integrate a new piece of code.

Test-Driven Development Chapter 5

[159]

The bottom line is that it requires some additional effort, but in the long run, it helps reduce
the effort required.

Is code coverage metrics good or bad?
Code coverage tools help developers identify gaps in their automated test cases. No doubt,
many times it will give a clue about missing test scenarios, which would eventually further
strengthen the automated test cases. But when an organization starts enforcing code
coverage as a measure to check the effectiveness of test coverage, it sometimes drives the
developers in the wrong direction. From my practical consulting experience, what I have
learned is that many developers start writing test cases for constructors and private and
protected functions to show higher code coverage. In this process, developers start chasing
numbers and lose the ultimate goal of TDD.

In a particular source with a class that has 20 methods, it is possible that only 10 methods
qualify for unit testing while the other methods are complex functionality. In such a case,
the code coverage tools will show only 50 percent code coverage, which is absolutely fine as
per the TDD philosophy. However, if the organization policy enforces a minimum 75
percent code coverage, then the developers will have no choice other than testing the
constructor, destructor, private, protected, and complex functions for the sake of showing
good code coverage.

The trouble with testing private and protected methods is that they tend to change more
often as they are marked as implementation details. When private and protected methods
change badly, that calls for modifying test cases, which makes the developer's life harder in
terms of maintaining the test cases.

Hence, code coverage tools are very good developer tools to find test scenario gaps, but it
should be left to a developer to make a wise choice of whether to write a test case or ignore
writing test cases for certain methods, depending on the complexity of the methods.
However, if code coverage is used as project metrics, it more often tends to drive developers
to find wrong ways to show better coverage, leading to bad test case practices.

Does TDD work for complex legacy projects?
Certainly! TDD works for any type of software project or products. TDD isn't meant just for
new products or projects; it is also proven to be more effective with complex legacy projects
or products. In a maintenance project, the vast majority of the time one has to fix defects
and very rarely one has to support a new feature. Even in such legacy code, one can follow
TDD while fixing defects.

Test-Driven Development Chapter 5

[160]

As a developer, you would readily agree with me that once you are able to reproduce the
issue, almost half of the problem can be considered fixed from the developer's point of
view. Hence, you can start with a test case that reproduces the issue and then debug and fix
the issue. When you fix the issue, the test case will start passing; now it's time to think of
another possible test case that may reproduce the same defect and repeat the process.

Is TDD even applicable for embedded or products
that involve hardware?
Just like application software can benefit from TDD, embedded projects or projects that
involve hardware interactions can also benefit from the TDD approach. Interestingly,
embedded projects or products that involve hardware benefit more from TDD as they can
test most part of their code without the hardware by isolating the hardware dependency.
TDD helps reduce time to market as most part of the software can be tested by the team
without waiting for the hardware. As most part of the code is already tested thoroughly
without hardware, it helps avoid last-minute surprises or firefighting when the board
bring-up happens. This is because most of the scenarios would have been tested
thoroughly.

As per software engineering best practices, a good design is loosely coupled and strongly
cohesive in nature. Though we all strive to write code that is loosely coupled, it isn't
possible to write code that is absolutely independent all the time. Most times, the code has
some type of dependency. In the case of application software, the dependency could be a
database or a web server; in the case of embedded products, the dependency could be a
piece of hardware. But using dependency inversion, code under test (CUT) can be isolated
from its dependency, enabling us to test the code without its dependency, which is a
powerful technique. So as long as we are open to refactoring the code to make it more
modular and atomic, any type of code and project or product will benefit from the TDD
approach.

Unit testing frameworks for C++
As a C++ developer, you have quite a lot of options when choosing between unit testing
frameworks. While there are many more frameworks, these are some of the popular ones:
CppUnit, CppUnitLite, Boost, MSTest, Visual Studio unit test, and Google test framework.

Test-Driven Development Chapter 5

[161]

Though older articles, I recommend you to take a look at http:/ ​/
gamesfromwithin. ​com/ ​exploring- ​the- ​c- ​unit- ​testing- ​framework-
jungle and https:/ ​/​accu. ​org/ ​index. ​php/ ​journals/ ​. They might give
you some insight into this topic.

Without any second thought, Google test framework is one of the most popular testing
frameworks for C++ as it is supported on a wide variety of platforms, actively developed,
and above all, backed by Google.

Throughout this chapter, we will use the Google test and Google mock frameworks.
However, the concepts discussed in this chapter are applicable to all unit test frameworks.
We'll deep dive into Google test framework and its installation procedure in the next
sections.

Google test framework
Google test framework is an open source testing framework that works on quite a lot of
platforms. TDD only focuses on unit testing and to some extent integration testing, but the
Google test framework can be used for a wide variety of testing. It classifies test cases as
small, medium, large, fidelity, resilience, precision, and other types of test cases. Unit test
cases fall in small, integration test cases fall in medium, and complex functionalities and
acceptance test cases fall in the large category.

It also bundles the Google mock framework as part of it. As they are technically from the
same team, they play with each other seamlessly. However, the Google mock framework
can be used with other testing frameworks, such as CppUnit.

Installing Google test framework on Ubuntu
You can download the Google test framework from https:/ ​/​github. ​com/ ​google/
googletest as source code. However, the best way to download it is via the Git clone from
the terminal command line:

git clone https://github.com/google/googletest.git

Git is an open source distributed version control system (DVCS). If you
haven't installed it on your system, you will find more information on
why you should, at https:/ ​/​git- ​scm.​com/ ​. However, in Ubuntu, it can be
easily installed with the sudo apt-get install git command.

http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://accu.org/index.php/journals/
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/

Test-Driven Development Chapter 5

[162]

Once the code is downloaded as shown in Figure 7.1, you'll be able to locate the Google test
framework source code in the googletest folder:

Figure 7.1

The googletest folder has both the googletest and googlemock frameworks in separate
folders. Now we can invoke the cmake utility to configure our build and autogenerate
Makefile, as follows:

cmake CMakeLists.txt

Figure 7.2

Test-Driven Development Chapter 5

[163]

When the cmake utility is invoked, it detects the C/C++ header's files and its path that are
necessary to build the Google test framework from the source code. Also, it will try to locate
the tools required to build the source code. Once all the necessary headers and tools are
located, it will autogenerate the Makefile. Once you have Makefile in place, you can use
it to compile and install Google test and Google mock on your system:

sudo make install

The following screenshot demonstrates how you can install google test on your system:

Figure 7.3

In the preceding image, the make install command has compiled and installed libgmock.a
and libgtest.a static library files in the /usr/local/lib folder. Since the
/usr/local/lib folder path is generally in the system's PATH environment variable, it
can be accessed from any project within the system.

Test-Driven Development Chapter 5

[164]

How to build google test and mock together as
one single static library without installing?
In case you don't prefer installing the libgmock.a and libgtest.a static library files and
the respective header files on common system folders, then there is yet another way to build
the Google test framework.

The following command will create three object files, as shown in Figure 7.4:

g++ -c googletest/googletest/src/gtest-all.cc
googletest/googlemock/src/gmock-all.cc
googletest/googlemock/src/gmock_main.cc -I googletest/googletest/ -I
googletest/googletest/include -I googletest/googlemock -I
googletest/googlemock/include -lpthread -

Figure 7.4

The next step is to combine all the object files into a single static library with the following
command:

ar crf libgtest.a gmock-all.o gmock_main.o gtest-all.o

If all goes well, your folder should have the brand new libgtest.a static library, as shown
in Figure 7.5. Let's understand the following command instructions:

g++ -c googletest/googletest/src/gtest-all.cc
googletest/googlemock/src/gmock-all.cc
googletest/googlemock/src/gmock_main.cc -I googletest/googletest/ -I
googletest/googletest/include
-I googletest/googlemock -I googletest/googlemock/include -lpthread -
std=c++14

Test-Driven Development Chapter 5

[165]

The preceding command will help us create three object files: gtest-all.o, gmock-all.o, and
gmock_main.o. The googletest framework makes use of some C++11 features, and I have
purposefully used c++14 to be on the safer side. The gmock_main.cc source file has a main
function that will initialize the Google mock framework, which in turn will internally
initialize the Google test framework. The best part about this approach is that we don't have
to supply the main function for our unit test application. Please note the compilation
command includes the following include paths to help the g++ compiler locate the
necessary header files in the Google test and Google mock frameworks:

-I googletest/googletest
-I googletest/googletest/include
-I googletest/googlemock
-I googletest/googlemock/include

Now the next step is to create our libgtest.a static library that will bundle both gtest and
gmock frameworks into one single static library. As the Google test framework makes use
of multiple threads, it is mandatory to link the pthread library as part of our static library:

ar crv libgtest.a gtest-all.o gmock_main.o gmock-all.o

The ar archive command helps combine all the object files into a single static library.

The following image demonstrates the discussed procedure practically in a terminal:

Figure 7.5

Test-Driven Development Chapter 5

[166]

Writing our first test case using the Google test
framework
Learning the Google test framework is pretty easy. Let's create two folders: one for
production code and the other for test code. The idea is to separate the production code
from the test code. Once you have created both the folders, start with the Math.h header, as
shown in Figure 7.6:

Figure 7.6

The Math class has just one function to demonstrate the usage of the unit test framework.
To begin with, our Math class has a simple add function that is good enough to understand
the basic usage of the Google test framework.

In the place of the Google test framework, you could use CppUnit as
well and integrate mocking frameworks such as the Google mock
framework, mockpp, or opmock.

Test-Driven Development Chapter 5

[167]

Let's implement our simple Math class in the following Math.cpp source file:

Figure 7.7

The preceding two files are supposed to be in the src folder, as shown in Figure 7.8. All of
the production code gets into the src folder, and any number of files can be part of the src
folder.

Figure 7.8

As we have written some production code, let's see how to write some basic test cases for
the preceding production code. As a general best practice, it is recommended to name the
test case file as either MobileTest or TestMobile so that it is easy for anyone to predict
the purpose of the file. In C++ or in the Google test framework, it isn't mandatory to
maintain the filename and class name as the same, but it is generally considered a best
practice as it helps anyone locate a particular class just by looking at the filenames.

Test-Driven Development Chapter 5

[168]

Both the Google test framework and Google mock framework go hand in
hand as they are from the same team, hence this combination works pretty
well in the majority of the platforms, including embedded platforms.

As we have already compiled our Google test framework as a static library, let's begin with
the MathTest.cpp source file straight away:

Figure 7.9

In Figure 7.9, at line number 18, we included the gtest header file from the Google test
framework. In the Google test framework, test cases are written using a TEST macro that
takes two parameters. The first parameter, namely MathTest, represents the test module
name and the second parameter is the name of the test case. Test modules help us group a
bunch of related test cases under a module. Hence, it is very important to name the test
module and test case aptly to improve the readability of the test report.

Test-Driven Development Chapter 5

[169]

As you are aware, Math is the class we are intending to test; we have instantiated an object
of the Math object at line 22. In line 25, we invoked the add function on the math object,
which is supposed to return the actual result. Finally, at line 27, we checked whether the
expected result matches the actual result. The Google test macro EXPECT_EQ will mark the
test case as passed if the expected and actual result match; otherwise, the framework will
mark the test case outcome as failed.

Cool, we are all set now. Let's see how to compile and run our test case now. The following
command should help you compile the test case:

g++ -o tester.exe src/Math.cpp test/MathTest.cpp -I googletest/googletest
-I googletest/googletest/include -I googletest/googlemock
-I googletest/googlemock/include -I src libgtest.a -lpthread

Note that the compilation command includes the following include path:

-I googletest/googletest
-I googletest/googletest/include
-I googletest/googlemock
-I googletest/googlemock/include
-I src

Also, it is important to note that we also linked our Google test static library libgtest.a
and the POSIX pthreads library as the Google test framework makes use of multiple .

Figure 7.10

Congrats! We have compiled and executed our first test case successfully.

Test-Driven Development Chapter 5

[170]

Using Google test framework in Visual Studio IDE
First, we need to download the Google test framework .zip file from https:/ ​/​github. ​com/
google/​googletest/ ​archive/ ​master. ​zip. The next step is to extract the .zip file in some
directory. In my case, I have extracted it into the googletest folder and copied all the
contents of googletest googletest-mastergoogletest-master to the googletest
folder, as shown in Figure 7.11:

Figure 7.11

It is time to create a simple project in Visual Studio. I have used Microsoft Visual Studio
Community 2015. However, the procedure followed here should pretty much remain the
same for other versions of Visual Studio, except that the options might be available in
different menus.

https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip
https://github.com/google/googletest/archive/master.zip

Test-Driven Development Chapter 5

[171]

You need to create a new project named MathApp by navigating to New Project | Visual
Studio | Windows | Win32 | Win32 Console Application, as shown in Figure 7.12. This
project is going to be the production code to be tested.

 Figure 7.12

Let's add the MyMath class to the MathApp project. The MyMath class is the production code
that will be declared in MyMath.h and defined in MyMath.cpp.

Test-Driven Development Chapter 5

[172]

Let's take a look at the MyMath.h header file shown in Figure 7.13:

Figure 7.13

Test-Driven Development Chapter 5

[173]

The definition of the MyMath class looks as shown in Figure 7.14:

Figure 7.14

Test-Driven Development Chapter 5

[174]

As it is a console application, it is mandatory to supply the main function, as shown in
Figure 7.15:

Figure 7.15

Test-Driven Development Chapter 5

[175]

Next, we are going to add a static library project named GoogleTestLib to the same
MathApp project solution, as shown in Figure 7.16:

Figure 7.16

Next, we need to add the following source files from the Google test framework to our static
library project:

C:Usersjegangoogletestgoogletestsrcgtest-all.cc
C:Usersjegangoogletestgooglemocksrcgmock-all.cc
C:Usersjegangoogletestgooglemocksrcgmock_main.cc

Test-Driven Development Chapter 5

[176]

In order to compile the static library, we need to include the following header file paths in
GoogleTestLib/Properties/VC++ Directories/Include directories:

C:Usersjegangoogletestgoogletest
C:Usersjegangoogletestgoogletestinclude
C:Usersjegangoogletestgooglemock
C:Usersjegangoogletestgooglemockinclude

You may have to customize the paths based on where you have copied/installed the Google
test framework in your system.

Now it's time to add the MathTestApp Win32 console application to the MathApp solution.
We need to make MathTestApp as a StartUp project so that we can directly execute this
application. Let's ensure there are no source files in the MathTestApp project before we add
a new source file named MathTest.cpp to the MathTestApp project.

We need to configure the same set of Google test framework include paths we added to the
GoogleTestLib static library. In addition to this, we must also add the MathApp project
directory as the test project will refer to the header file in the MathApp project, as follows.
However, customize the paths as per the directory structure you follow for this project in
your system:

C:Usersjegangoogletestgoogletest
C:Usersjegangoogletestgoogletestinclude
C:Usersjegangoogletestgooglemock
C:Usersjegangoogletestgooglemockinclude
C:ProjectsMasteringC++ProgrammingMathAppMathApp

In the MathAppTest project, make sure you have added references to MathApp and
GoogleTestLib so that the MathAppTest project will compile the other two projects when
it senses changes in them.

Test-Driven Development Chapter 5

[177]

Great! We are almost done. Now let's implement MathTest.cpp, as shown in Figure 7.17:

Figure 7.17

Test-Driven Development Chapter 5

[178]

Everything is ready now; let's run the test cases and check the result:

Figure 7.18

TDD in action
Let's see how to develop an Reverse Polish Notation (RPN) calculator application that
follows the TDD approach. RPN is also known as the postfix notation. The expectation from
the RPN Calculator application is to accept a postfix math expression as an input and return
the evaluated result as the output.

Test-Driven Development Chapter 5

[179]

Step by step, I would like to demonstrate how one can follow the TDD approach while
developing an application. As the first step, I would like to explain the project directory
structure, then we'll move forward. Let's create a folder named Ex2 with the following
structure:

Figure 7.19

The googletest folder is the gtest test library that has the necessary gtest and gmock
header files. Now libgtest.a is the Google test static library that we created in the
previous exercise. We are going to use the make utility to build our project, hence I have
placed a Makefile in the project home directory. The src directory will hold the
production code, while the test directory will hold all the test cases that we are going to
write.

Before we start writing test cases, let's take a postfix math "2 5 * 4 + 3 3 * 1 + /" and
understand the standard postfix algorithm that we are going to apply to evaluate the RPN
math expression. As per the postfix algorithm, we are going to parse the RPN math
expression one token at a time. Whenever we encounter an operand (number), we are going
to push that into the stack. Whenever we encounter an operator, we are going to pop out
two values from the stack, apply the math operation, push back the intermediate result into
the stack, and repeat the procedure until all the tokens are evaluated in the RPN expression.
At the end, when no more tokens are left in the input string, we will pop out the value and
print it as the result. The procedure is demonstrated step by step in the following figure:

Test-Driven Development Chapter 5

[180]

Figure 7.20

To start with, let's take a simple postfix math expression and translate the scenario into a
test case:

Test Case : Test a simple addition
Input: "10 15 +"
Expected Output: 25.0

Test-Driven Development Chapter 5

[181]

Let's translate the preceding test case as a Google test in the test folder, as follows:

test/RPNCalculatorTest.cpp

TEST (RPNCalculatorTest, testSimpleAddition) {
 RPNCalculator rpnCalculator;
 double actualResult = rpnCalculator.evaluate ("10 15 +");
 double expectedResult = 25.0;
 EXPECT_EQ (expectedResult, actualResult);
}

In order to compile the preceding test case, let's write the minimal production code that is
required in the src folder, as follows:

src/RPNCalculator.h

#include <iostream>
#include <string>
using namespace std;

class RPNCalculator {
 public:
 double evaluate (string);
};

As the RPN math expression will be supplied as a space-separated string, the evaluate
method will take a string input argument:

src/RPNCalculator.cpp

#include "RPNCalculator.h"

double RPNCalculator::evaluate (string rpnMathExpression) {
 return 0.0;
}

The following Makefile class helps run the test cases every time we compile the
production code:

Test-Driven Development Chapter 5

[182]

Figure 7.21

Now let's build and run the test case and check the test case's outcome:

Figure 7.22

Test-Driven Development Chapter 5

[183]

In TDD, we always start with a failing test case. The root cause of the failure is that the
expected result is 25, while the actual result is 0. The reason is that we haven't implemented
the evaluate method, hence we have hardcoded to return 0, irrespective of any input. So
let's implement the evaluate method in order to make the test case pass.

We need to modify src/RPNCalculator.h and src/RPNCalculator.cpp as follows:

Figure 7.23

Test-Driven Development Chapter 5

[184]

In the RPNCalculator.h header file, observe the new header files that are included to handle
string tokenizing and string double conversion and copy the RPN tokens to the vector:

Figure 7.24

As per the standard postfix algorithm, we are using a stack to hold all the numbers that we
find in the RPN expression. Anytime we encounter the + math operator, we pop out two
values from the stack and add them and push back the results into the stack. If the token
isn't a + operator, we can safely assume that it would be a number, so we just push the
value to the stack.

Test-Driven Development Chapter 5

[185]

With the preceding implementation in place, let's try the test case and check whether the
test case passes:

Figure 7.25

Cool, our first test case has passed as expected. It's time to think of another test case. This
time, let's add a test case for subtraction:

Test Case : Test a simple subtraction
Input: "25 10 -"
Expected Output: 15.0

Let's translate the preceding test case as a Google test in the test folder, as follows:

test/RPNCalculatorTest.cpp

TEST (RPNCalculatorTest, testSimpleSubtraction) {
 RPNCalculator rpnCalculator;
 double actualResult = rpnCalculator.evaluate ("25 10 -");
 double expectedResult = 15.0;
 EXPECT_EQ (expectedResult, actualResult);
}

With the preceding test case added to test/RPNCalculatorTest, it should now look like
this:

Test-Driven Development Chapter 5

[186]

Figure 7.26

Let's execute the test cases and check whether our new test case passes:

Figure 7.27

Test-Driven Development Chapter 5

[187]

As expected, the new test fails as we haven't added support for subtraction in our
application yet. This is very evident, based on the C++ exception, as the code attempts to
convert the subtraction - operator into a number. Let's add support for subtraction logic in
our evaluate method:

Figure 7.28

Test-Driven Development Chapter 5

[188]

It's time to test. Let's execute the test case and check whether things are working:

Figure 7.29

Cool! Did you notice that our test case failed in this instance? Wait a minute. Why are we
excited if the test case failed? The reason we should be happy is that our test case found a
bug; after all, that is the main intent of TDD, isn't?

Figure 7.30

Test-Driven Development Chapter 5

[189]

The root cause of the failure is that the Stack operates on the basis of Last In First
Out (LIFO) whereas our code assumes FIFO. Did you notice that our code assumes that it
will pop out the first number first while the reality is that it is supposed to pop out the
second number first? Interesting, this bug was there in the addition operation too; however,
since addition is associative, the bug was kind of suppressed but the subtraction test case
detected it.

Figure 7.31

Let's fix the bug as shown in the preceding screenshot and check whether the test cases will
pass:

Test-Driven Development Chapter 5

[190]

Figure 7.32

Awesome! We fixed the bug and our test case seems to certify they are fixed. Let's add more
test cases. This time, let's add a test case to verify multiplication:

Test Case : Test a simple multiplication
Input: "25 10 *"
Expected Output: 250.0

Let's translate the preceding test case as a google test in the test folder, as follows:

test/RPNCalculatorTest.cpp

TEST (RPNCalculatorTest, testSimpleMultiplication) {
 RPNCalculator rpnCalculator;
 double actualResult = rpnCalculator.evaluate ("25 10 *");
 double expectedResult = 250.0;
 EXPECT_EQ (expectedResult, actualResult);
}

Test-Driven Development Chapter 5

[191]

We know this time the test case is going to fail, so let's fast forward and take a look at the
division test case:

Test Case : Test a simple division
Input: "250 10 /"
Expected Output: 25.0

Let's translate the preceding test case as a google test in the test folder, as follows:

test/RPNCalculatorTest.cpp

TEST (RPNCalculatorTest, testSimpleDivision) {
 RPNCalculator rpnCalculator;
 double actualResult = rpnCalculator.evaluate ("250 10 /");
 double expectedResult = 25.0;
 EXPECT_EQ (expectedResult, actualResult);
}

Let's skip the test result and move forward with a final complex expression test case that
involves many operations:

Test Case : Test a complex rpn expression
Input: "2 5 * 4 + 7 2 - 1 + /"
Expected Output: 25.0

Let's translate the preceding test case as a google test in the test folder, as shown here:

test/RPNCalculatorTest.cpp

TEST (RPNCalculatorTest, testSimpleDivision) {
 RPNCalculator rpnCalculator;
 double actualResult = rpnCalculator.evaluate ("250 10 /");
 double expectedResult = 25.0;
 EXPECT_EQ (expectedResult, actualResult);
}

Let's check whether our RPNCalculator application is able to evaluate a complex RPN
expression that involves addition, subtraction, multiplication, and division in a single
expression with the following test case:

test/RPNCalculatorTest.cpp

TEST (RPNCalculatorTest, testComplexExpression) {
 RPNCalculator rpnCalculator;
 double actualResult = rpnCalculator.evaluate ("2 5 * 4 + 7
2 - 1 + /");

Test-Driven Development Chapter 5

[192]

 double expectedResult = 2.33333;
 ASSERT_NEAR (expectedResult, actualResult, 4);
}

In the preceding test case, we are checking whether the expected result matches the actual
result to the approximation of up to four decimal places. If the values are different beyond
this approximation, then the test case is supposed to fail.

Let's check the test case output now:

Figure 7.33

Great! All the test cases are green.

Test-Driven Development Chapter 5

[193]

Now let's take a look at our production code and check whether there is any room for
improvement:

Figure 7.34

The code is functionally good but has many code smells. It is a long method with the nested
if-else condition and duplicate code. TDD is not just about test automation; it is also
about writing good code without code smells. Hence, we must refactor code and make it
more modular and reduce the code complexity.

We can apply polymorphism or the strategy design pattern here instead of the nested if-
else conditions. Also, we can use the factory method design pattern to create various
subtypes. There is also scope to use the Null Object Design Pattern.

The best part is we don't have to worry about the risk of breaking our code in the process of
refactoring as we have a sufficient number of test cases to give us feedback in case we break
our code.

First, let's understand how we could refactor the RPNCalculator design shown in Figure
7.35:

Test-Driven Development Chapter 5

[194]

Figure 7.35

Based on the preceding design refactoring approach, we can refactor RPNCalculator as
shown in Figure 7.36:

Figure 7.36

Test-Driven Development Chapter 5

[195]

If you compare the RPNCalculator code before and after refactoring, you'll find that code
complexity has reduced to a decent amount after refactoring.

The MathFactory class can be implemented as shown in Figure 7.37:

Figure 7.37

Test-Driven Development Chapter 5

[196]

As much as possible, we must strive to avoid if-else conditions, or in general, we must
try to avoid code branching when possible. Hence, STL map is used to avoid if-else
conditions. This also promotes the reuse of the same Math objects, irrespective of the
complexity of the RPN expression.

You will get an idea of how the MathOperator Add class is implemented if you refer
to Figure 7.38:

Figure 7.38

Test-Driven Development Chapter 5

[197]

The Add class definition looks as shown in Figure 7.39:

Figure 7.39

Test-Driven Development Chapter 5

[198]

The subtract, multiplication, and division classes can be implemented in the similar fashion,
as an Add class. The bottom line is that after refactoring, we can refactor a single
RPNCalculator class into smaller and maintainable classes that can be tested individually.

Let's take a look at the refactored Makefile class in Figure 7.40 and test our code after the
refactoring process is complete:

Figure 7.40

Test-Driven Development Chapter 5

[199]

If all goes well, we should see all the test cases pass after refactoring if no functionalities are
broken, as shown in Figure 7.41:

Figure 7.41

Cool! All the test cases have passed, hence it is guaranteed that we haven't broken the
functionality in the process of refactoring. The main intent of TDD is to write testable code
that is both functionally and structurally clean.

Testing a piece of legacy code that has
dependency
In the previous section, the CUT was independent with no dependency, hence the way it
tested the code was straightforward. However, let's discuss how we can unit test the CUT
that has dependencies. For this, refer to the following image:

Test-Driven Development Chapter 5

[200]

Figure 7.42

In Figure 7.42, it is apparent that Mobile has a dependency on Camera and the association
between Mobile and Camera is composition. Let's see how the Camera.h header file is
implemented in a legacy application:

Figure 7.43

Test-Driven Development Chapter 5

[201]

For demonstration purposes, let's take this simple Camera class that has ON() and OFF()
functionalities. Let's assume that the ON/OFF functionality will interact with the camera
hardware internally. Check out the Camera.cpp source file in Figure 7.44:

Figure 7.44

Test-Driven Development Chapter 5

[202]

For debugging purposes, I have added some print statements that will come in handy when
we test the powerOn() and powerOff() functionalities of mobile. Now let's check the
Mobile class header file in Figure 7.45:

 Figure 7.45

Test-Driven Development Chapter 5

[203]

We move on to the mobile implementation, as illustrated in Figure 7.46:

Figure 7.46

From the Mobile constructor implementation, it is evident that mobile has a camera or to
be precise composition relationship. In other words, the Mobile class is the one that
constructs the Camera object, as shown in Figure 7.46, line 21, in the constructor. Let's try to
see the complexity involved in testing the powerOn() functionality of Mobile; the
dependency has a composition relationship with the CUT of Mobile.

Let's write the powerOn() test case assuming camera On has succeeded, as follows:

TEST (MobileTest, testPowerOnWhenCameraONSucceeds) {

 Mobile mobile;
 ASSERT_TRUE (mobile.powerOn());

}

Test-Driven Development Chapter 5

[204]

Now let's try to run the Mobile test case and check the test outcome, as illustrated in Figure
7.47:

Figure 7.47

From Figure 7.47, we can understand that the powerOn() test case of Mobile has passed.
However, we also understand that the real ON() method of the Camera class also got
invoked. This, in turn, will interact with the camera hardware. At the end of the day, it is
not a unit test as the test outcome isn't completely dependent on the CUT. If the test case
had failed, we wouldn't have been able to pinpoint whether the failure was due to the code
in the powerOn() logic of mobile or the code in the ON() logic of camera, which would
have defeated the purpose of our test case. An ideal unit test should isolate the CUT from
its dependencies using dependency injection and test the code. This approach will help us
identify the behavior of the CUT in normal or abnormal scenarios. Ideally, when a unit test
case fails, we should be able to guess the root cause of the failure without debugging the
code; this is only possible when we manage to isolate the dependencies of our CUT.

The key benefit of this approach is that the CUT can be tested even before the dependency
is implemented, which helps test 60~70 percent of the code without the dependencies. This
naturally reduces the time to market the software product.

Test-Driven Development Chapter 5

[205]

This is where the Google mock or gmock comes in handy. Let's check how we can refactor
our code to enable dependency injection. Though it sounds very complex, the effort
required to refactor code isn't that complex. In reality, the effort required to refactor your
production code could be more complex, but it is worth the effort. Let's take a look at the
refactored Mobile class shown in Figure 7.48:

Figure 7.48

In the Mobile class, I have added an overloaded constructor that takes camera as an
argument. This technique is called constructor dependency injection. Let's see how this
simple yet powerful technique could help us isolate the camera dependency while testing
the powerOn() functionality of Mobile.

Also, we must refactor the Camera.h header file and declare the ON() and OFF() methods
as virtual in order for the gmock framework to help us stub these methods, as shown
in Figure 7.49:

Test-Driven Development Chapter 5

[206]

Figure 7.49

Now let's refactor our test case as shown in Figure 7.50:

Figure 7.50

Test-Driven Development Chapter 5

[207]

We are all set to build and execute the test cases. The test outcome is expected as shown
in Figure 7.51:

Figure 7.51

Cool! Not only has our test case passed, but we have also isolated our CUT from its camera
dependency, which is evident as we don't see the print statements from the ON() method of
camera. The bottom line is you have now learned how to unit test code by isolating its
dependencies.

Happy TDD!

Test-Driven Development Chapter 5

[208]

Summary
In this chapter, you learned quite a lot about TDD, and the following is the summary of the
key takeaway points:

TDD is an Extreme Programming (XP) practice
TDD is a bottom-up approach that encourages us to start with a test case, hence it
is commonly referred to as LowercaseTest-First Development
You learned how to write test cases using Google Test and Google Mock
Frameworks in Linux and Windows
You also learned how to write an application that follows TDD in Linux and
Visual Studio on the Windows platform
You learned about the Dependency Inversion technique and how to unit test a
code by isolating its dependency using the Google Mock Framework
The Google Test Framework supports Unit Testing, Integration Testing,
Regression Testing, Performance Testing, Functional Testing, and so on
TDD mainly insists on Unit Testing, Integration Testing, and Interaction Testing
while complex functional testing must be done with Behavior-Driven
Development
You learned how to refactor code smells into clean code while the unit test cases
that you wrote give continuous feedback

You have learned TDD and how to automate Unit Test Cases, Integration Test Cases, and
Interaction Test cases in a bottom-up approach. With BDD, you will learn the top-down
development approach, writing end-to-end functionalities and test cases and other complex
test scenarios that we did not cover while discussing TDD.

In the next chapter, you will learn about Behavior-Driven Development.

6
Behavior-Driven Development

This chapter covers the following topics:

A brief overview of behavior-driven development
TDD versus BDD
C++ BDD frameworks
The Gherkin language
Installing cucumber-cpp in Ubuntu
Feature file
Spoken languages supported by Gherkin
The recommended cucumber-cpp project folder structure
Writing our first Cucumber test case
Dry running our Cucumber test cases
BDD--a test-first development approach

In the following sections, let's look into each topic with easy-to-digest and interesting code
samples in a practical fashion.

Behavior-driven development
Behavior-driven development (BDD) is an outside-in development technique. BDD
encourages capturing the requirements as a set of scenarios or use cases that describe how
the end user will use the feature. The scenario will precisely express what will be the input
supplied and what is the expected response from the feature. The best part of BDD is that it
uses a domain-specific language (DSL) called Gherkin to describe the BDD scenarios.

Behavior-Driven Development Chapter 6

[210]

Gherkin is an English-like language that is used by all the BDD test frameworks. Gherkin is
a business-readable DSL that helps you describe the test case scenarios, keeping out the
implementation details. The Gherkin language keywords are a bunch of English words;
hence the scenarios can be understood by both technical and non-technical members
involved in a software product or a project team.

Did I tell you that the BDD scenarios written in Gherkin languages serve as both
documentation and test cases? As the Gherkin language is easy to understand and uses
English-like keywords, the product requirements can be directly captured as BDD
scenarios, as opposed to boring Word or PDF documents. Based on my consulting and
industry experience, I have observed that a majority of the companies never update the
requirement documents when the design gets refactored in the due course of time. This
leads to stale and non-updated documents, which the development team will not trust for
their reference purposes. Hence, the effort that has gone towards preparing the
requirements, high-level design documents, and low-level design documents goes to waste
in the long run, whereas Cucumber test cases will stay updated and relevant at all times.

TDD versus BDD
TDD is an inside-out development technique whereas BDD is an outside-in development
technique. TDD mainly focuses on unit testing and integration test case automation.

BDD focuses on end-to-end functional test cases and user acceptance test cases. However,
BDD could also be used for unit testing, smoke testing, and, literally, every type of testing.

BDD is an extension of the TDD approach; hence, BDD also strongly encourages test-first
development. It is quite natural to use both BDD and TDD in the same product; hence, BDD
isn't a replacement for TDD. BDD can be thought of as a high-level design document, while
TDD is the low-level design document.

C++ BDD frameworks
In C++, TDD test cases are written using testing frameworks such as CppUnit, gtest, and so
on, which require a technical background to understand them and hence, are generally used
only by developers.

Behavior-Driven Development Chapter 6

[211]

In C++, BDD test cases are written using a popular test framework called cucumber-cpp.
The cucumber-cpp framework expects that the test cases are written in the Gherkin
language, while the actual test case implementations can be done with any test framework,
such as gtest or CppUnit.

However, in this book, we will be using cucumber-cpp with the gtest framework.

The Gherkin language
Gherkin is the universal language used by every BDD framework for various programming
languages that enjoy BDD support.

Gherkin is a line-oriented language, similar to YAML or Python. Gherkin will interpret the
structure of the test case based on indentations.

The # character is used for a single line of comment in Gherkin. At the time of writing this
book, Gherkin support about 60 keywords.

Gherkin is a DSL used by the Cucumber framework.

Installing cucumber-cpp in Ubuntu
Installing the cucumber-cpp framework is quite straightforward in Linux. All you need to
do is either download or clone the latest copy of cucumber-cpp.

The following command can be used to clone the cucumber-cpp framework:

git clone https://github.com/cucumber/cucumber-cpp.git

The cucumber-cpp framework is supported in Linux, Windows, and
Macintosh. It can be integrated with Visual Studio on Windows or Xcode
on macOS.

Behavior-Driven Development Chapter 6

[212]

The following screenshot demonstrates the Git clone procedure:

As cucumber-cpp depends on a wire protocol to allow the writing of BDD test case step
definitions in the C++ language, we need to install Ruby.

Installing the cucumber-cpp framework
prerequisite software
The following command helps you install Ruby on your Ubuntu system. This is one of the
prerequisite software that is required for the cucumber-cpp framework:

sudo apt install ruby

Behavior-Driven Development Chapter 6

[213]

The following screenshot demonstrates the Ruby installation procedure:

Once the installation is complete, please ensure that Ruby is installed properly by checking
its version. The following command should print the version of Ruby installed on your
system:

ruby --version

In order to complete the Ruby installation, we need to install the ruby-dev packages, as
follows:

sudo apt install ruby-dev

Next, we need to ensure that the bundler tool is installed so that the Ruby dependencies are
installed by the bundler tool seamlessly:

sudo gem install bundler
bundle install

Behavior-Driven Development Chapter 6

[214]

If it all went smooth, you can go ahead and check if the correct version of Cucumber, Ruby,
and Ruby's tools are installed properly. The bundle install command will ensure that
Cucumber and other Ruby dependencies are installed. Make sure you don't install bundle
install as a sudo user; this will prevent non-root from accessing the Ruby gem packages:

We are almost done, but we are not there yet. We need to build the cucumber-cpp project;
as part of that, let's get the latest test suite for the cucumber-cpp framework:

git submodule init
git submodule update

We go on to install the ninja and boost libraries before we can initiate the build. Though we
aren't going to use the boost test framework in this chapter, the travis.sh script file looks
for the boost library. Hence, I would suggest installing the boost library in general, as part
of Cucumber:

sudo apt install ninja-build
sudo apt-get install libboost-all-dev

Building and executing the test cases
Now, it's time to build the cucumber-cpp framework. Let's create the build folder. In the
cucumber-cpp folder, there will be a shell script by the name, travis.sh. You got to
execute the script to build and execute the test cases:

sudo ./travis.sh

Behavior-Driven Development Chapter 6

[215]

Though the previous approach works, my personal preference and recommendation would
be the following approach. The reason behind recommending the following approach is
that the build folder is supposed to be created as a non-root user, as anyone should be able
to perform the build once the cucumber-cpp setup is complete. You should be able to find
the instructions in the README.md file under the cucumber-cpp folder:

git submodule init
git submodule update
cmake -E make_directory build
cmake -E chdir build cmake --DCUKE_ENABLE_EXAMPLES=on ..
cmake --build build
cmake --build build --target test
cmake --build build --target features

If you were able to complete all the previous installation steps exactly as explained, you are
all set to start playing with cucumber-cpp. Congrats!!!

Feature file
Every product feature will have a dedicated feature file. The feature file is a text file with
the .feature extension. A feature file can contain any number of scenarios, and each
scenario is equivalent to a test case.

Let's take a look at a simple feature file example:

1 # language: en
2
3 Feature: The Facebook application should authenticate user login.
4
5 Scenario: Successful Login
6 Given I navigate to Facebook login page https://www.facebook.com
7 And I type jegan@tektutor.org as Email
8 And I type mysecretpassword as Password
9 When I click the Login button
10 Then I expect Facebook Home Page after Successful Login

Behavior-Driven Development Chapter 6

[216]

Cool, it appears like plain English, right? But trust me, this is how Cucumber test cases are
written! I understand your doubt--it looks easy and cool but how does this verify the
functionality, and where is the code that verifies the functionality? The cucumber-
cpp framework is a cool framework, but it doesn't natively support any testing
functionalities; hence cucumber-cpp depends on the gtest, CppUnit, other test
frameworks. The test case implementation is written in a Steps file, which can be written in
C++ using the gtest framework in our case. However, any test framework will work.

Every feature file will start with the Feature keyword followed by one or more lines of
description that describe the feature briefly. In the feature file, the words Feature,
Scenario, Given, And, When, and Then are all Gherkin keywords.

A feature file may contain any number of scenarios (test cases) for a feature. For instance, in
our case, login is the feature, and there could be multiple login scenarios as follows:

Success Login

Unsuccessful Login

Invalid password

Invalid username

The user attempted to login without supplying credentials.

Every line following the scenario will translate into one function in the
Steps_definition.cpp source file. Basically, the cucumber-cpp framework maps the
feature file steps with a corresponding function in the Steps_definition.cpp file using
regular expressions.

Behavior-Driven Development Chapter 6

[217]

Spoken languages supported by Gherkin
Gherkin supports over 60 spoken languages. As a best practice, the first line of a feature file
will indicate to the Cucumber framework that we would like to use English:

1 # language: en

The following command will list all the spoken languages supported by the cucumber-
cpp framework:

cucumber -i18n help

The list is as follows:

Behavior-Driven Development Chapter 6

[218]

The recommended cucumber-cpp project
folder structure
Like TDD, the Cucumber framework too recommends a project folder structure. The
recommended cucumber-cpp project folder structure is as follows:

The src folder will contain the production code, that is, all your project files will be
maintained under the src directory. The BDD feature files will be maintained under
the features folder and its respective Steps file, which has either boost test cases or gtest
cases. In this chapter, we will be using the gtest framework with cucumber-cpp. The wire
file has wire protocol-related connection details such as the port and others. The
CMakeLists.txt is the build script that has the instructions to build your project along
with its dependency details, just like Makefile used by the MakeBuild utility.

Writing our first Cucumber test case
Let's write our very first Cucumber test case! As this is our first exercise, I would like to
keep it short and simple. First, let's create the folder structure for our HelloBDD project.

Behavior-Driven Development Chapter 6

[219]

To create the Cucumber project folder structure, we can use the cucumber utility, as
follows:

cucumber --init

This will ensure that the features and steps_definitions folders are created as per
Cucumber best practices:

Once the basic folder structure is created, let's manually create the rest of the files:

mkdir src
cd HelloBDD
touch CMakeLists.txt
touch features/hello.feature
touch features/step_definitions/cucumber.wire
touch features/step_definitions/HelloBDDSteps.cpp
touch src/Hello.h
touch src/Hello.cpp

Once the folder structure and empty files are created, the project folder structure should
look like the following screenshot:

Behavior-Driven Development Chapter 6

[220]

It's time to start applying our Gherkin knowledge in action; hence, let's first start with the
feature file:

language: en

Feature: Application should be able to print greeting message Hello BDD!

 Scenario: Should be able to greet with Hello BDD! message
 Given an instance of Hello class is created
 When the sayHello method is invoked
 Then it should return "Hello BDD!"

Let's take a look at the cucumber.wire file:

host: localhost
port: 3902

As Cucumber is implemented in Ruby, the Cucumber steps
implementation has to be written in Ruby. This approach discourages
using the cucumber-cpp framework for projects that are implemented in
platforms other than Ruby. The wire protocol is the solution offered by
the cucumber-cpp framework to extend cucumber support for non-Ruby
platforms. Basically, whenever the cucumber-cpp framework executes the
test cases, it looks for steps definitions, but if Cucumber finds a .wire file,
it will instead connect to that IP address and port, in order to query the
server if the process has definitions for the steps described in
the .feature file. This helps Cucumber support many platforms apart
from Ruby. However, Java and .NET have native Cucumber
implementations: Cucumber-JVM and Specflow, respectively. Hence, in
order to allow the test cases to be written in C++, the wire protocol is used
by cucumber-cpp.

Now let's see how to write the steps file using the gtest Framework.

Thanks to Google! The Google Test Framework (gtest) includes Google
Mock Framework (gmock). For C/C++, the gtest framework is one of the
best frameworks I have come across, as this is pretty close to the JUnit and
Mockito/PowerMock offerings for Java. For a relatively modern language
like Java compared to C++, it should be much easier to support mocking
with the help of reflection, but from a C/C++ point of view, without the
reflection feature from C++, gtest/gmock is nothing short of
JUnit/TestNG/Mockito/PowerMock.

Behavior-Driven Development Chapter 6

[221]

You can observe the written steps files using gtest in the following screenshot:

The following header files ensure that the gtest header and Cucumber headers necessary for
writing Cucumber steps are included:

#include <gtest/gtest.h>
#include <cucumber-cpp/autodetect.hpp>

Now let's proceed with writing the steps:

struct HelloCtx {
 Hello *ptrHello;
 string actualResponse;
};

The HelloCtx struct is a user-defined test context that holds the object instance under test
and its test response. The cucumber-cpp framework offers a smart ScenarioScope class
that allows us to access the object under test and its output, across all the steps in a
Cucumber test scenario.

For every Given, When, and Then statement that we wrote in the feature file, there is a
corresponding function in the steps file. The appropriate cpp functions that correspond to
Given, When, and Then are mapped with the help of regular expressions.

Behavior-Driven Development Chapter 6

[222]

For instance, consider the following Given line in the feature file:

Given an instance of Hello class is created

This corresponds to the following cpp function that gets mapped with the help of
regex. The ^ character in the regex implies that the pattern starts with an, and
the $ character implies that the pattern ends with created:

GIVEN("^an instance of Hello class is created$")
{
 ScenarioScope<HelloCtx> context;
 context->ptrHello = new Hello();
}

As the GIVEN step says that, at this point, we must ensure that an instance of the Hello
object is created; the corresponding C++ code is written in this function to instantiate an
object of the Hello class.

On a similar note, the following When step and its corresponding cpp functions are mapped
by cucumber-cpp:

When the sayHello method is invoked

It is important that the regex matches exactly; otherwise, the cucumber-cpp framework will
report that it can't find the steps function:

WHEN("^the sayHello method is invoked$")
{
 ScenarioScope<HelloCtx> context;
 context->actualResponse = context->ptrHello->sayHello();
}

Now let's look at the Hello.h file:

#include <iostream>
#include <string>
using namespace std;

class Hello {
public:
 string sayHello();
};

Behavior-Driven Development Chapter 6

[223]

Here is the respective source file, that is, Hello.cpp:

#include "Hello.h"

string Hello::sayHello() {
 return "Hello BDD!";
}

As an industry best practice, the only header file that should be included
in the source file is its corresponding header file. The rest of the headers
required should go into the header files corresponding to the source file.
This helps the development team to locate the headers quite easily. BDD is
not just about test automation; the expected end result is clean, defectless,
and maintainable code.

Finally, let's write CMakeLists.txt:

The first line implies the name of the project. The third line ensures that the Cucumber
header directories and our project's include_directories are in the INCLUDE path. The
fifth line basically instructs the cmake utility to create a library out of the files present under
the src folder, that is, Hello.cpp, and its Hello.h file. The seventh line detects whether
the gtest framework is installed on our system, and the eighth line ensures that the
HelloBDDSteps.cpp file is compiled. Finally, in the ninth line, the final executable is
created, linking all the HelloBDD libraries that have our production code, the
HelloBDDSteps object file, and the respective Cucumber and gtest library files.

Behavior-Driven Development Chapter 6

[224]

Integrating our project in cucumber-cpp
CMakeLists.txt
There is one last configuration that we need to do before we start building our project:

Basically, I have commented the examples subdirectories and added our HelloBDD project
in CMakeLists.txt present under the cucumber-cpp folder, as shown earlier.

As we have created the project as per cucumber-cpp best practices, let's navigate to the
HelloBDD project home and issue the following command:

cmake --build build

It isn't mandatory to comment add_subdirectory(examples). But
commenting definitely helps us focus on our project.

Behavior-Driven Development Chapter 6

[225]

The following screenshot shows the build procedure:

Executing our test case
Now let's execute the test case. This involves two steps, as we are using the wire protocol.
Let's first launch the test case executable in background mode and then Cucumber, as
follows:

cmake --build build
build/HelloBDD/HelloBDDSteps > /dev/null &
cucumber HelloBDD

Redirecting to /dev/null isn't really mandatory. The main purpose of
redirecting to a null device is to avoid distractions from the print
statement that an application may spit in the terminal output. Hence, it is a
personal preference. In case you prefer to see the debug or general print
statements from your application, feel free to issue the command without
redirection:

build/HelloBDD/HelloBDDSteps &

Behavior-Driven Development Chapter 6

[226]

The following screenshot demonstrates the build and test execution procedure:

Congrats! our very first cucumber-cpp test case has passed. Each scenario represents a test
case and the test case includes three steps; as all the steps passed, the scenario is reported as
passed.

Dry running your cucumber test cases
Do you want to quickly check whether the feature files and steps files are written correctly,
without really executing them? Cucumber has a quick and cool feature to do so:

build/HelloBDD/HelloBDDSteps > /dev/null &

This command will execute our test application in the background mode. /dev/null is a
null device in Linux OS, and we are redirecting all the unwanted print statements from the
HelloBDDSteps executable to the null device to ensure it doesn't distract us while we
execute our Cucumber test cases.

The next command will allow us to dry run the Cucumber test scenario:

cucumber --dry-run

Behavior-Driven Development Chapter 6

[227]

The following screenshot shows the test execution:

BDD - a test-first development approach
Just like TDD, BDD also insists on following a test-first development approach. Hence, in
this section, let's explore how we could write an end-to-end feature following a test-first
development approach the BDD way!

Let's take a simple example that helps us understand the BDD style of coding. We will write
an RPNCalculator application that does addition, subtraction, multiplication, division,
and complex math expressions that involve many math operations in the same input.

Let's create our project folder structure as per Cucumber standards:

mkdir RPNCalculator
cd RPNCalculator
cucumber --init
tree
mkdir src
tree

Behavior-Driven Development Chapter 6

[228]

The following screenshot demonstrates the procedure visually:

Great! The folder structure is now created. Now, let's create empty files with a touch utility
to help us visualize our final project folder structure along with the files:

touch features/rpncalculator.feature
touch features/step_definitions/RPNCalculatorSteps.cpp
touch features/step_definitions/cucumber.wire
touch src/RPNCalculator.h
touch src/RPNCalculator.cpp
touch CMakeLists.txt

Behavior-Driven Development Chapter 6

[229]

Once the dummy files are created, the final project folder structure will look like the
following screenshot:

As usual, the Cucumber wire file is going to look as follows. In fact, throughout this
chapter, this file will look same:

host: localhost
port: 3902

Now, let's start with the rpncalculator.feature file, as shown in the following
screenshot:

As you can see, the feature description can be pretty elaborate. Did you notice? I have used
Scenario Outline in the place of scenario. The interesting part of Scenario Outline is
that it allows describing the set of inputs and the corresponding output in the form of a
table under the Examples Cucumber section.

Behavior-Driven Development Chapter 6

[230]

If you are familiar with SCRUM, does the Cucumber scenario look pretty
close to the user story? Yes, that's the idea. Ideally, the SCRUM user stories
or use cases can be written as Cucumber scenarios. The Cucumber feature
file is a live document that can be executed.

We need to add our project in the CMakeLists.txt file at the cucumber-cpp home
directory, as follows:

Ensure that CMakeLists.txt under the RPNCalculator folder looks as follows:

Behavior-Driven Development Chapter 6

[231]

Now, let's build our project with the following command from the cucumber-cpp home
directory:

cmake --build build

Let's execute our brand new RPNCalculator Cucumber test cases with the following
command:

build/RPNCalculator/RPNCalculatorSteps &

cucumber RPNCalculator

The output looks as follows:

In the preceding screenshot, there are two suggestions for every Given, When, and
Then statements we wrote in the feature file. The first version is meant for Ruby and the
second is meant for C++; hence, we can safely ignore the step suggestions, which are as
follows:

Then(/^the actualResult should match the (d+).(d+)$/) do |arg1, arg2|
 pending # Write code here that turns the phrase above into concrete
actions
end

Behavior-Driven Development Chapter 6

[232]

As we are yet to implement the RPNCalculatorSteps.cpp file, the Cucumber framework
is suggesting us to supply implementations for the previous steps. Let's copy and paste
them in the RPNCalculatorSteps.cpp file and complete the steps implementations, as
follows:

REGEX_PARAM is a macro supported by the cucumber-cpp BDD
framework, which comes in handy to extract the input arguments from the
regular expression and pass them to the Cucumber step functions.

Now, let's try to build our project again with the following command:

cmake --build build

Behavior-Driven Development Chapter 6

[233]

The build log looks as follows:

The secret formula behind every successful developer or consultant is that
they have strong debugging and problem-solving skills. Analyzing build
reports, especially build failures, is a key quality one should acquire to
successfully apply BDD. Every build error teaches us something!

Behavior-Driven Development Chapter 6

[234]

The build error is obvious, as we are yet to implement RPNCalculator, as the file is empty.
Let's write minimal code such that the code compiles:

BDD leads to incremental design and development, unlike the waterfall
model. The waterfall model encourages upfront design. Typically, in a
waterfall model, the design is done initially, and it consumes 30-40% of the
overall project effort. The main issue with upfront design is that we will
have less knowledge about the feature initially; often, we will have a
vague feature knowledge, but it will improve over time. So, it isn't a good
idea to put in more effort in the design activity upfront; rather, be open to
refactoring the design and code as and when necessary.

Hence, BDD is a natural choice for complex projects.

Behavior-Driven Development Chapter 6

[235]

With this minimal implementation, let's try to build and run the test cases:

Cool! Since the code compiles without errors, let's execute the test case now and observe
what happens:

Behavior-Driven Development Chapter 6

[236]

The errors are highlighted in red color as shown in the preceding screenshot by the
cucumber-cpp framework. This is expected; the test case is failing as the
RPNCalculator::evaluate method is hardcoded to return 0.0.

Ideally, we had to write only minimal code to make this pass, but I took
the liberty of fast forwarding the steps, with the assumption that you have
already read Chapter 7, Test Driven Development before reading the
current chapter. In that chapter, I have demonstrated every step in detail,
including the refactoring.

Now, let's go ahead and implement the code to make this test case pass. The modified
RPNCalculator header file looks as follows:

Behavior-Driven Development Chapter 6

[237]

The respective RPNCalculator source file looks as follows:

As per BDD practice, note that we have only implemented code that is necessary for
supporting the addition operation alone, as per our current Cucumber scenario
requirements. Like TDD, in BDD, we are supposed to write only the required amount of
code to satisfy the current scenario; this way, we can ensure that every line of code is
covered by effective test cases.

Let's build and run our BDD test case
Let's now build and test. The following commands can be used to build, launch the steps in
the background, and run the Cucumber test cases with a wire protocol, respectively:

cmake --build build

build/RPNCalculator/RPNCalculatorSteps &

cucumber RPNCalculator

Behavior-Driven Development Chapter 6

[238]

The following screenshot demonstrates the procedure of building and executing the
Cucumber test case:

Great! Our test scenario is all green now! Let's move on to our next test scenario.

Let's add a scenario in the feature file to test the subtraction operation, as follows:

Behavior-Driven Development Chapter 6

[239]

The test output looks as follows:

We had seen this before, hadn't we? I'm sure you guessed it right; the expected result is
85 whereas the actual result is 0, as we haven't added any support for subtraction yet. Now,
let's add the necessary code to add the subtraction logic in our application:

Behavior-Driven Development Chapter 6

[240]

With this code change, let's rerun the test case and see what the test outcome is:

Cool, the test report is back to green!

Let's move on and add a scenario in the feature file to test the multiplication operation:

Behavior-Driven Development Chapter 6

[241]

It is time to the run the test case, as shown in the following screenshot:

You got it right; yes, we need to add support for multiplication in our production code.
Okay, let's do it right away, as shown in the following screenshot:

Behavior-Driven Development Chapter 6

[242]

It's testing time!
The following commands help you build, launch the steps applications, and run the
Cucumber test cases, respectively. To be precise, the first command builds the test cases,
while the second command launches the Cucumber steps test executable in the background
mode. The third command executes the Cucumber test case that we wrote for the
RPNCalculator project. The RPNCalculatorSteps executable will work as a server that
Cucumber can talk to via the wire protocol. The Cucumber framework will get the
connection details of the server from the cucumber.wire file kept under
the step_definitions folder:

cmake --build build

build/RPNCalculator/RPNCalculatorSteps &

cucumber RPNCalculator

The following screenshot demonstrates the Cucumber test case execution procedure:

Behavior-Driven Development Chapter 6

[243]

I'm sure you've got the hang of BDD! Yes, BDD is pretty simple and straightforward. Now
let's add a scenario for the division operation as shown in the following screenshot:

Let's quickly run the test case and observe the test outcome, as shown in the following
screenshot:

Behavior-Driven Development Chapter 6

[244]

Yes, I heard you saying you know the reason for the failure. Let's quickly add support for
division and rerun the test cases to see it turn all green! BDD makes coding really fun.

We need to add the following code snippet in RPNCalculator.cpp:

else if (*token == "/") {
 secondNumber = numberStack.top();
 numberStack.pop();
 firstNumber = numberStack.top();
 numberStack.pop();
 result = firstNumber / secondNumber;

 numberStack.push (result);
}

With this code change, let's check the test output:

cmake --build build
build/RPNCalculator/RPNCalculatorSteps &
cucumber RPNCalculator

The following screenshot demonstrates the procedure visually:

Behavior-Driven Development Chapter 6

[245]

So far so good. All the scenarios we tested so far have passed, which is a good sign. But let's
try a complex expression that involves many math operations. For instance, let's try 10.0 5.0
* 1.0 + 100.0 2.0 / -.

Did you know?
Reverse Polish Notation (postfix notation) is used by pretty much every
compiler to evaluate mathematical expressions.

The following screenshot demonstrates the integration of the complex expression test case:

Let's run the test scenarios one more time, as this would be a real test for the entire code
implemented so far, as this expression involves all the operations our simple application
supports.

Behavior-Driven Development Chapter 6

[246]

The following command can be used to launch the application in the background mode and
to execute the Cucumber test cases:

build/RPNCalculator/RPNCalculatorSteps &
cucumber RPNCalculator

The following screenshot demonstrates the procedure visually:

Great! If you have come this far, I'm sure you would have understood cucumber-cpp and
the BDD style of coding.

Refactoring and Removing Code Smells
The RPNCalculator.cpp code has too much branching, which is a code
smell; hence, the code could be refactored. The good news is that
RPNCalculator.cpp can be refactored to remove the code smells and has
the scope to use the Factory Method, Strategy, and Null Object Design
Patterns.

Behavior-Driven Development Chapter 6

[247]

Summary
In this chapter, you learned the following

Behavior-driven development in short is referred as BDD.
BDD is a top-down development approach and uses Gherkin language as
Domain Specific Language (DSL).
In a project, BDD and TDD can be used side by side as they complement each
other and not replace one another.
The cucumber-cpp BDD Framework makes use of wire protocol to support non-
ruby platforms to write test cases.
You learned BDD in a practical fashion by implementing an RPNCalculator with
test-first development approach.
BDD similar to TDD, it encourages developing clean code by refactoring the code
in short-intervals in an incremental fashion.
You learned writing BDD test cases with Gherkin and the steps definition using
Google test framework.

In the next chapter, you will be learning about C++ debugging techniques.

7
Code Smells and Clean Code

Practices
This chapter will cover the following topics:

Introduction to code smells
The concept of clean code
How agile and clean code practices are related
SOLID design principle
Code refactoring
Refactoring code smells into clean code
Refactoring code smells into design patterns

Clean code is the source code that works in an accurate way functionally and is structurally
well written. Through thorough testing, we can ensure the code is functionally correct. We
can improve code quality via code self-review, peer code review, code analysis, and most
importantly, by code refactoring.

The following are some of the qualities of clean code:

Easy to understand
Easy to enhance
Adding new functionality doesn't require many code changes
Easy to reuse
Self-explanatory
Has comments when necessary

Code Smells and Clean Code Practices Chapter 7

[249]

Lastly, the best part about writing clean code is that both the development team involved in
the project or product and the customer will be happy.

Code refactoring
Refactoring helps improve the structural quality of the source code. It doesn't modify the
functionality of the code; it just improves the structural aspect of the code quality.
Refactoring makes the code cleaner, but at times it may help you improve the overall code
performance. However, you need to understand that performance tuning is different from
code refactoring.

The following diagram demonstrates the development process overview:

How is code refactoring done safely? The answer to this question is as follows:

Embrace DevOps
Adapt to test-driven development
Adapt to behavior-driven development
Use acceptance test-driven development

Code Smells and Clean Code Practices Chapter 7

[250]

Code smell
Source code has two aspects of quality, namely functional and structural. The functional
quality of a piece of source code can be achieved by testing the code against the customer
specifications. The biggest mistake most developers make is that they tend to commit the
code to version control software without refactoring it; that is, they commit the code the
moment they believe it is functionally complete.

As a matter of fact, committing code to version control often is a good habit, as this is what
makes continuous integration and DevOps possible. After committing the code to version
control, what the vast majority of developers ignore is refactoring it. It is highly critical that
you refactor the code to ensure it is clean, without which being agile is impossible.

Code that looks like noodles (spaghetti) requires more efforts to enhance or maintain.
Hence, responding to a customer's request quickly is not practically possible. This is why
maintaining clean code is critical to being agile. This is applicable irrespective of the agile
framework that is followed in your organization.

What is agile?
Agile is all about fail fast. An agile team will be able to respond to a customer's requirement
quickly without involving any circus from the development team. It doesn't really matter
much which agile framework the team is using: Scrum, Kanban, XP, or something else.
What really matters is, are you following them seriously?

As an independent software consultant, I have personally observed and learned who
generally complains, and why they complain about agile.

As Scrum is one of the most popular agile frameworks, let's assume a product company,
say, ABC Tech Private Ltd., has decided to follow Scrum for the new product that they are
planning to develop. The good news is that ABC Tech, just like most organizations, also
hosts a Sprint planning meeting, a daily stand-up meeting, Sprint review, Sprint
retrospective, and all other Scrum ceremonies efficiently. Assume that ABC Tech has
ensured their Scrum master is Scrum-certified and the product manager is a Scrum-certified
product owner. Great! Everything sounds good so far.

Let's say the ABC Tech product team doesn't use TDD, BDD, ATDD, and DevOps. Do you
think the ABC Tech product team is agile? Certainly not. As a matter of fact, the
development team will be highly stressed with a hectic and impractical schedule. At the
end of the day, there will be very high attrition, as the team will not be happy. Hence,
customers will not be happy, as the quality of the product will suffer terribly.

Code Smells and Clean Code Practices Chapter 7

[251]

What do you think has gone wrong with the ABC Tech product team?

Scrum has two sets of processes, namely the project management process, which is covered
by Scrum ceremonies. Then, there is the engineering side of the process, which most
organizations don't pay much attention to. This is evident from the interest or awareness of
Certified SCRUM Developer (CSD) certification in the IT industry. The amount of interest
the IT industry shows to CSM, CSPO, or CSP is hardly shown to CSD, which is required for
developers. However, I don't believe certification alone could make someone a subject-
matter expert; it only shows the seriousness the person or the organization shows in
embracing an agile framework and delivering quality products to their customers.

Unless the code is kept clean, how is it possible for the development team to respond to
customers' requirements quickly? In other words, unless the engineers in the development
team embrace TDD, BDD, ATDD, continuous integration, and DevOps in the product
development, no team will be able to succeed in Scrum or, for that matter, with any other
agile framework.

The bottom line is that unless your organization takes the engineering Scrum process and
project management Scrum process equally serious, no development team can claim to
succeed in agile.

SOLID design principle
SOLID is an acronym for a set of important design principles that, if followed, can avoid
code smells and improve the code quality, both structurally and functionally.

Code smells can be prevented or refactored into clean code if your software architecture
meets the SOLID design principle compliance. The following principles are collectively
called SOLID design principles:

Single responsibility principle
Open closed principle
Liskov substitution principle
Interface segregation
Dependency inversion

Code Smells and Clean Code Practices Chapter 7

[252]

The best part is that most design patterns also follow and are compliant with SOLID design
principles.

Let's go through each of the preceding design principles one by one in the following
sections.

Single responsibility principle
Single responsibility principle is also referred to as SRP in short. SRP says that every class
must have only one responsibility. In other words, every class must represent exactly one
object. When a class represents multiple objects, it tends to violate SRP and opens up
chances for multiple code smells.

For example, let's take a simple Employee class, as follows:

Code Smells and Clean Code Practices Chapter 7

[253]

In the preceding class diagram, the Employee class seems to represent three different
objects: Employee, Address, and Contact. Hence, it violates the SRP. As per this principle,
from the preceding Employee class, two other classes can be extracted, namely Address
and Contact, as follows:

For simplicity, the class diagrams used in this section don't show any methods that are
supported by the respective classes, as our focus is understanding the SRP with a simple
example.

In the preceding refactored design, Employee has one or more addresses (personal and
official) and one or more contacts (personal and official). The best part is that after
refactoring the design, every class abstracts one and only thing; that is, it has only one
responsibility.

Code Smells and Clean Code Practices Chapter 7

[254]

Open closed principle
An architecture or design is in compliance with the open closed principle (OCP) when the
design supports the addition of new features with no code changes or without modifying
the existing source code. As you know, based on your professional industry experience,
every single project you have come across was extensible in one way or another. This is
how you were able to add new features to your product. However, the design will be in
compliance with the OCP when such a feature extension is done without you modifying the
existing code.

Let's take a simple Item class, as shown in the following code. For simplicity, only the
essential details are captured in the Item class:

#include <iostream>
#include <string>
using namespace std;
class Item {
 private:
 string name;
 double quantity;
 double pricePerUnit;
 public:
 Item (string name, double pricePerUnit, double quantity) {
 this-name = name;
 this->pricePerUnit = pricePerUnit;
 this->quantity = quantity;
 }
 public double getPrice() {
 return quantity * pricePerUnit;
 }
 public String getDescription() {
 return name;
 }
};

Assume the preceding Item class is part of a simple billing application for a small shop. As
the Item class will be able to represent a pen, calculator, chocolate, notebook, and so on, it
is generic enough to support any billable item that is dealt by the shop. However, if the
shop owner is supposed to collect Goods and Services Tax (GST) or Value Added Tax
(VAT), the existing Item class doesn't seem to support the tax component. One common
approach is to modify the Item class to support the tax component. However, if we were to
modify existing code, our design would be non-compliant to OCP.

Code Smells and Clean Code Practices Chapter 7

[255]

Hence, let's refactor our design to make it OCP-compliant using Visitor design pattern. Let's
explore the refactoring possibility, as shown in the following code:

#ifndef __VISITABLE_H
#define __VISITABLE_H
#include <string>
 using namespace std;
class Visitor;

class Visitable {
 public:
 virtual void accept (Visitor *) = 0;
 virtual double getPrice() = 0;
 virtual string getDescription() = 0;
 };
#endif

The Visitable class is an abstract class with three pure virtual functions. The Item class
will be inheriting the Visitable abstract class, as shown here:

#ifndef __ITEM_H
#define __ITEM_H
#include <iostream>
#include <string>
using namespace std;
#include "Visitable.h"
#include "Visitor.h"
class Item : public Visitable {
 private:
 string name;
 double quantity;
 double unitPrice;
 public:
 Item (string name, double quantity, double unitPrice);
 string getDescription();
 double getQuantity();
 double getPrice();
 void accept (Visitor *pVisitor);
 };

 #endif

Code Smells and Clean Code Practices Chapter 7

[256]

Next, let's take a look at the Visitor class, shown in the following code. It says there can be
any number of Visitor subclasses that can be implemented in future to add new
functionalities, all without modifying the Item class:

class Visitable;
#ifndef __VISITOR_H
#define __VISITOR_H
class Visitor {
 protected:
 double price;

 public:
 virtual void visit (Visitable *) = 0;
 virtual double getPrice() = 0;
 };

 #endif

The GSTVisitor class is the one that lets us add the GST functionality without modifying
the Item class. The GSTVisitor implementation looks like this:

#include "GSTVisitor.h"

void GSTVisitor::visit (Visitable *pItem) {
 price = pItem->getPrice() + (0.18 * pItem->getPrice());
}

double GSTVisitor::getPrice() {
 return price;
}

The Makefile looks as follows:

all: GSTVisitor.o Item.o main.o
 g++ -o gst.exe GSTVisitor.o Item.o main.o

GSTVisitor.o: GSTVisitor.cpp Visitable.h Visitor.h
 g++ -c GSTVisitor.cpp

Item.o: Item.cpp
 g++ -c Item.cpp

main.o: main.cpp
 g++ -c main.cpp

Code Smells and Clean Code Practices Chapter 7

[257]

The refactored design is OCP-compliant, as we would be able to add new functionalities
without modifying the Item class. Just imagine: if the GST calculation varies from time to
time, without modifying the Item class, we would be able to add new subclasses of
Visitor and address the upcoming changes.

Liskov substitution principle
Liskov substitution principle (LSP) stresses the importance of subclasses adhering to the
contract established by the base class. In an ideal inheritance hierarchy, as the design focus
moves up the class hierarchy, we should notice generalization; as the design focus moves
down the class hierarchy, we should notice specialization.

The inheritance contract is between two classes, hence it is the responsibility of the base
class to impose rules that all subclasses can follow, and the subclasses are equally
responsible for obeying the contract once agreed. A design that compromises these design
philosophies will be non-compliant to the LSP.

LSP says if a method takes the base class or interface as an argument, one should be able to
substitute the instance of any one of the subclasses unconditionally.

As a matter of fact, inheritance violates the most fundamental design principles: inheritance
is weakly cohesive and strongly coupled. Hence, the real benefit of inheritance is
polymorphism, and code reuse is a tiny benefit compared to the price paid for inheritance.
When LSP is violated, we can't substitute the base class instance with one of its
subclass instances, and the worst part is we can't invoke methods polymorphically. In spite
of paying the design penalties of using inheritance, if we can't reap the benefit of
polymorphism, there is no real motivation to use it.

The technique to identify LSP violation is as follows:

Subclasses will have one or more overridden methods with empty
implementations
The base class will have a specialized behavior, which will force certain
subclasses, irrespective of whether those specialized behaviors are of the
subclasses' interest or not
Not all generalized methods can be invoked polymorphically

Code Smells and Clean Code Practices Chapter 7

[258]

The following are the ways to refactor LSP violations:

Move the specialized methods from the base class to the subclass that requires
those specialized behaviors.
Avoid forcing vaguely related classes to participate in an inheritance relationship.
Unless the subclass is a base type, do not use inheritance for the mere sake of
code reuse.
Do not look for small benefits, such as code reuse, but look for ways to use
polymorphism or aggregation or composition when possible.

Interface segregation
Interface segregation design principle recommends modeling many small interfaces for a
specific purpose, as opposed to modeling one bigger interface that represents many things.
In the case of C++, an abstract class with pure virtual functions can be thought of as an
interface.

Let's take a simple example to understand interface segregation:

#include <iostream>
#include <string>
using namespace std;

class IEmployee {
 public:
 virtual string getDoor() = 0;
 virtual string getStreet() = 0;
 virtual string getCity() = 0;
 virtual string getPinCode() = 0;
 virtual string getState() = 0;
 virtual string getCountry() = 0;
 virtual string getName() = 0;
 virtual string getTitle() = 0;
 virtual string getCountryDialCode() = 0;
 virtual string getContactNumber() = 0;
};

Code Smells and Clean Code Practices Chapter 7

[259]

In the preceding example, the abstract class demonstrates a chaotic design. The design is
chaotic as it seems to represent many things, such as employee, address, and contact. One of
the ways in which the preceding abstract class can be refactored is by breaking the single
interface into three separate interfaces: IEmployee, IAddress, and IContact. In C++,
interfaces are nothing but abstract classes with pure virtual functions:

#include <iostream>
#include <string>
#include <list>
using namespace std;

class IEmployee {
 private:
 string firstName, middleName, lastName,
 string title;
 string employeeCode;
 list<IAddress> addresses;
 list<IContact> contactNumbers;
 public:
 virtual string getAddress() = 0;
 virtual string getContactNumber() = 0;
};

class IAddress {
 private:
 string doorNo, street, city, pinCode, state, country;
 public:
 IAddress (string doorNo, string street, string city,
 string pinCode, string state, string country);
 virtual string getAddress() = 0;
};

class IContact {
 private:
 string countryCode, mobileNumber;
 public:
 IContact (string countryCode, string mobileNumber);
 virtual string getMobileNumber() = 0;
};

In the refactored code snippet, every interface represents exactly one object, hence it is in
compliance with the interface segregation design principle.

Code Smells and Clean Code Practices Chapter 7

[260]

Dependency inversion
A good design will be strongly cohesive and loosely coupled. Hence, our design must have
less dependency. A design that makes a code dependent on many other objects or modules
is considered a poor design. If Dependency Inversion (DI) is violated, any change that
happens in the dependent modules will have a bad impact on our module, leading to a
ripple effect.

Let's take a simple example to understand the power of DI. A Mobile class "has a" Camera
object and notice that has a form is composition. Composition is an exclusive ownership
where the lifetime of the Camera object is directly controlled by the Mobile object:

As you can see in the preceding image, the Mobile class has an instance of Camera and the
has a form used is composition, which is an exclusive ownership relationship.

Let's take a look at the Mobile class implementation, as follows:

#include <iostream>
using namespace std;

class Mobile {
 private:
 Camera camera;
 public:
 Mobile ();
 bool powerOn();
 bool powerOff();
};

class Camera {
 public:
 bool ON();
 bool OFF();
};

bool Mobile::powerOn() {

Code Smells and Clean Code Practices Chapter 7

[261]

 if (camera.ON()) {
 cout << "nPositive Logic - assume some complex Mobile power ON
logic happens here." << endl;
 return true;
 }
 cout << "nNegative Logic - assume some complex Mobile power OFF
logic happens here." << endl;
 << endl;
 return false;
}

bool Mobile::powerOff() {
 if (camera.OFF()) {
 cout << "nPositive Logic - assume some complex Mobile power
OFF logic happens here." << endl;
 return true;
 }
 cout << "nNegative Logic - assume some complex Mobile power OFF logic
happens here." << endl;
 return false;
}

bool Camera::ON() {
 cout << "nAssume Camera class interacts with Camera hardware heren" <<
endl;
 cout << "nAssume some Camera ON logic happens here" << endl;
 return true;
}

bool Camera::OFF() {
 cout << "nAssume Camera class interacts with Camera hardware heren" <<
endl;
 cout << "nAssume some Camera OFF logic happens here" << endl;
 return true;
}

In the preceding code, Mobile has implementation-level knowledge about Camera, which
is a poor design. Ideally, Mobile should be interacting with Camera via an interface or an
abstract class with pure virtual functions, as this separates the Camera implementation from
its contract. This approach helps replace Camera without affecting Mobile and also gives
an opportunity to support a bunch of Camera subclasses in place of one single camera.

Code Smells and Clean Code Practices Chapter 7

[262]

Wondering why it is called Dependency Injection (DI) or Inversion of Control (IOC)? The
reason it is termed dependency injection is that currently, the lifetime of Camera is
controlled by the Mobile object; that is, Camera is instantiated and destroyed by the
Mobile object. In such a case, it is almost impossible to unit test Mobile in the absence of
Camera, as Mobile has a hard dependency on Camera. Unless Camera is implemented, we
can't test the functionality of Mobile, which is a bad design approach. When we invert the
dependency, it lets the Mobile object use the Camera object while it gives up the
responsibility of controlling the lifetime of the Camera object. This process is rightly
referred to as IOC. The advantage is that you will be able to unit test the Mobile and
Camera objects independently and they will be strongly cohesive and loosely coupled due
to IOC.

Let's refactor the preceding code with the DI design principle:

#include <iostream>
using namespace std;

class ICamera {
 public:
 virtual bool ON() = 0;
 virtual bool OFF() = 0;
};

class Mobile {
 private:
 ICamera *pCamera;
 public:
 Mobile (ICamera *pCamera);
 void setCamera(ICamera *pCamera);
 bool powerOn();
 bool powerOff();
};

class Camera : public ICamera {
public:
 bool ON();
 bool OFF();
};

//Constructor Dependency Injection
Mobile::Mobile (ICamera *pCamera) {
 this->pCamera = pCamera;
}

//Method Dependency Injection

Code Smells and Clean Code Practices Chapter 7

[263]

Mobile::setCamera(ICamera *pCamera) {
 this->pCamera = pCamera;
}

bool Mobile::powerOn() {
 if (pCamera->ON()) {
 cout << "nPositive Logic - assume some complex Mobile power ON
logic happens here." << endl;
 return true;
 }
cout << "nNegative Logic - assume some complex Mobile power OFF logic
happens here." << endl;
<< endl;
 return false;
}

bool Mobile::powerOff() {
 if (pCamera->OFF()) {
 cout << "nPositive Logic - assume some complex Mobile power OFF
logic happens here." << endl;
 return true;
}
 cout << "nNegative Logic - assume some complex Mobile power OFF logic
happens here." << endl;
 return false;
}

bool Camera::ON() {
 cout << "nAssume Camera class interacts with Camera hardware heren"
<< endl;
 cout << "nAssume some Camera ON logic happens here" << endl;
 return true;
}

bool Camera::OFF() {
 cout << "nAssume Camera class interacts with Camera hardware heren"
<< endl;
 cout << "nAssume some Camera OFF logic happens here" << endl;
 return true;
}

The changes are highlighted in bold in the preceding code snippet. IOC is such a powerful
technique that it lets us decouple the dependency as just demonstrated; however, its
implementation is quite simple.

Code Smells and Clean Code Practices Chapter 7

[264]

Code smell
Code smell is a term used to refer to a piece of code that lacks structural quality; however,
the code may be functionally correct. Code smells violate SOLID design principles, hence
they must be taken seriously, as the code that is not well written leads to heavy
maintenance cost in the long run. However, code smells can be refactored into clean code.

Comment smell
As an independent software consultant, I have had a lot of opportunities to interact and
learn from great developers, architects, QA folks, system administrators, CTOs and CEOs,
entrepreneurs, and so on. Whenever our discussions crossed the billion dollar question,
"What is clean code or good code?", I more or less got one common response globally,
"Good code will be well commented." While this is partially correct, certainly that's where
the problem starts. Ideally, clean code should be self-explanatory, without any need for
comments. However, there are some occasions where comments improve the overall
readability and maintainability. Not all comments are code smells, hence it becomes
necessary to differentiate a good comment from a bad one. Have a look at the following
code snippet:

if (condition1) {
 // some block of code
}
else if (condition2) {
 // some block of code
}
else {
 // OOPS - the control should not reach here ### Code Smell ###
}

I'm sure you have come across these kinds of comments. Needless to explain that the
preceding scenario is a code smell. Ideally, the developer should have refactored the code to
fix the bug instead of writing such a comment. I was once debugging a critical issue in the
middle of the night and I noticed the control reached the mysterious empty code block with
just a comment in it. I'm sure you have come across funnier code and can imagine the
frustration it brings; at times, you too would have written such a type of code.

A good comment will express why the code is written in a specific way rather than express
how the code does something. A comment that conveys how the code does something is a
code smell, whereas a comment that conveys the why part of the code is a good comment,
as the why part is not expressed by the code; therefore, a good comment provides value
addition.

Code Smells and Clean Code Practices Chapter 7

[265]

Long method
A method is long when it is identified to have multiple responsibilities. Naturally, a method
that has more than 20-25 lines of code tends to have more than one responsibility. Having
said that, a method with more lines of code is longer. This doesn't mean a method with less
than 25 lines of code isn't longer. Take a look at the following code snippet:

void Employee::validateAndSave() {
 if ((street != "") && (city != ""))
 saveEmployeeDetails();
}

Clearly, the preceding method has multiple responsibilities; that is, it seems to validate and
save the details. While validating before saving isn't wrong, the same method shouldn't do
both. So the preceding method can be refactored into two smaller methods that have one
single responsibility:

private:
void Employee::validateAddress() {
 if ((street == "") || (city == ""))
 throw exception("Invalid Address");
}

public:
void Employee::save() {
 validateAddress();
}

Each of the refactored methods shown in the preceding code has exactly one responsibility.
It would be tempting to make the validateAddress() method a predicate method; that is,
a method that returns a bool. However, if validateAddress() is written as a predicate
method, then the client code will be forced to do if check, which is a code smell. Handling
errors by returning error code isn't considered object-oriented code, hence error handling
must be done using C++ exceptions.

Long parameter list
An object-oriented method takes fewer arguments, as a well-designed object will be
strongly cohesive and loosely coupled. A method that takes too many arguments is a
symptom that informs that the knowledge required to make a decision is received
externally, which means the current object doesn't have all of the knowledge to make a
decision by itself.

Code Smells and Clean Code Practices Chapter 7

[266]

This means the current object is weakly cohesive and strongly coupled, as it depends on too
much external data to make a decision. Member functions generally tend to receive fewer
arguments, as the data members they require are generally member variables. Hence, the
need to pass member variables to member functions sounds artificial.

Let's see some of the common reasons why a method tends to receive too many arguments.
The most common symptoms and reasons are listed here:

The object is weakly cohesive and strongly coupled; that is, it depends too much
on other objects
It is a static method
It is a misplaced method; that is, it doesn't belong to that object
It is not object-oriented code
SRP is violated

The ways to refactor a method that takes long parameter list (LPL) are listed here:

Avoid extracting and passing data in bits and pieces; consider passing an entire
object and let the method extract the details it requires
Identify the object that supplies the arguments to the method that receives LPL
and consider moving the method there
Group the list of arguments and create a parameter object and move the method
that receives LPL inside the new object

Duplicate code
Duplicate code is a commonly recurring code smell that doesn't require much explanation.
The copying and pasting code culture alone can't be blamed for duplicate code. Duplicate
code makes code maintenance more cumbersome, as the same issues may have to be fixed
in multiple places, and integrating new features requires too many code changes, which
tends to break the unexpected functionalities. Duplicate code also increases the application
binary footprint, hence it must be refactored to clean code.

Code Smells and Clean Code Practices Chapter 7

[267]

Conditional complexity
Conditional complexity code smell is about complex large conditions that tend to grow
larger and more complex with time. This code smell can be refactored with the strategy
design pattern. As the strategy design pattern deals with many related objects, there is
scope for using the Factory method, and the null object design pattern can be used to
deal with unsupported subclasses in the Factory method:

//Before refactoring
void SomeClass::someMethod() {
 if (! conition1 && condition2)
 //perform some logic
 else if (! condition3 && condition4 && condition5)
 //perform some logic
 else
 //do something
}

//After refactoring
void SomeClass::someMethod() {
 if (privateMethod1())
 //perform some logic
 else if (privateMethod2())
 //perform some logic
 else
 //do something
}

Large class
A large class code smell makes the code difficult to understand and tougher to maintain. A
large class can do too many things for one class. Large classes can be refactored by breaking
them into smaller classes with a single responsibility.

Dead code
Dead code is commented code or code that is never used or integrated. It can be detected
with code coverage tools. Generally, developers retain these instances of code due to lack of
confidence, and this happens more often in legacy code. As every code is tracked in version
control software tools, dead code can be deleted, and if required, can always be retrieved
back from version control software.

Code Smells and Clean Code Practices Chapter 7

[268]

Primitive obsession
Primitive Obsession (PO) is a wrong design choice: use of a primitive data type to
represent a complex domain entity. For example, if the string data type is used to represent
date, though it sounds like a smart idea initially, it invites a lot of maintenance trouble in
the long run.

Assuming you have used a string data type to represent date, the following issues will be a
challenge:

You would need to sort things based on date
Date arithmetic will become very complex with the introduction of string
Supporting various date formats as per regional settings will become complex
with string

Ideally, date must be represented by a class as opposed to a primitive data type.

Data class
Data classes provide only getter and setter functions. Though they are very good for
transferring data from one layer to another, they tend to burden the classes that depend on
the data class. As data classes won't provide any useful functionalities, the classes that
interact or depend on data classes end up adding functionalities with the data from the data
class. In this fashion, the classes around the data class violate the SRP and tend to be a large
class.

Feature envy
Certain classes are termed feature envy if they have too much knowledge about other
internal details of other classes. Generally, this happens when the other classes are data
classes. Code smells are interrelated; breaking one code smell tends to attract other code
smells.

Code Smells and Clean Code Practices Chapter 7

[269]

Summary
In this chapter, you learned about the following topics:

Code smells and the importance of refactoring code
SOLID design principles:

Single responsibility principle
Open closed principle
Liskov substitution
Interface segregation
Dependency injection

Various code smells:
Comments smell
Long method
Long parameter list
Duplicate code
Conditional complexity
Large class
Dead code

Object-oriented code smells' primitive obsession
Data class
Feature envy

You also learned about many refactoring techniques that will help you maintain your code
cleaner. Happy coding!

2
Mastering C++ Multithreading

Write robust, concurrent, and parallel applications

8
Revisiting Multithreading

Chances are that if you're reading this book, you have already done some multithreaded
programming in C++, or, possibly, other languages. This chapter is meant to recap the topic
purely from a C++ point of view, going through a basic multithreaded application, while
also covering the tools we'll be using throughout the book. At the end of this chapter, you
will have all the knowledge and information needed to proceed with the further chapters.

Topics covered in this chapter include the following:

Basic multithreading in C++ using the native API
Writing basic makefiles and usage of GCC/MinGW
Compiling a program using make and executing it on the command-line

Getting started
During the course of this book, we'll be assuming the use of a GCC-based toolchain (GCC or
MinGW on Windows). If you wish to use alternative toolchains (clang, MSVC, ICC, and so
on), please consult the documentation provided with these for compatible commands.

To compile the examples provided in this book, makefiles will be used. For those unfamiliar
with makefiles, they are a simple but powerful text-based format used with the make tool
for automating build tasks including compiling source code and adjusting the build
environment. First released in 1977, make remains among the most popular build
automation tools today.

Familiarity with the command line (Bash or equivalent) is assumed, with MSYS2 (Bash on
Windows) recommended for those using Windows.

Revisiting Multithreading Chapter 8

[272]

The multithreaded application
In its most basic form, a multithreaded application consists of a singular process with two
or more threads. These threads can be used in a variety of ways; for example, to allow the
process to respond to events in an asynchronous manner by using one thread per incoming
event or type of event, or to speed up the processing of data by splitting the work across
multiple threads.

Examples of asynchronous responses to events include the processing of the graphical user
interface (GUI) and network events on separate threads so that neither type of event has to
wait on the other, or can block events from being responded to in time. Generally, a single
thread performs a single task, such as the processing of GUI or network events, or the
processing of data.

For this basic example, the application will start with a singular thread, which will then
launch a number of threads, and wait for them to finish. Each of these new threads will
perform its own task before finishing.

Revisiting Multithreading Chapter 8

[273]

Let's start with the includes and global variables for our application:

#include <iostream>
#include <thread>
#include <mutex>
#include <vector>
#include <random>

using namespace std;

// --- Globals
mutex values_mtx;
mutex cout_mtx;
vector<int> values;

Both the I/O stream and vector headers should be familiar to anyone who has ever used
C++: the former is here used for the standard output (cout), and the vector for storing a
sequence of values.

The random header is new in c++11, and as the name suggests, it offers classes and
methods for generating random sequences. We use it here to make our threads do
something interesting.

Finally, the thread and mutex includes are the core of our multithreaded application; they
provide the basic means for creating threads, and allow for thread-safe interactions between
them.

Moving on, we create two mutexes: one for the global vector and one for cout, since the
latter is not thread-safe.

Next we create the main function as follows:

int main() {
 values.push_back(42);

We push a fixed value onto the vector instance; this one will be used by the threads we
create in a moment:

 thread tr1(threadFnc, 1);
 thread tr2(threadFnc, 2);
 thread tr3(threadFnc, 3);
 thread tr4(threadFnc, 4);

Revisiting Multithreading Chapter 8

[274]

We create new threads, and provide them with the name of the method to use, passing
along any parameters--in this case, just a single integer:

 tr1.join();
 tr2.join();
 tr3.join();
 tr4.join();

Next, we wait for each thread to finish before we continue by calling join() on each thread
instance:

 cout << "Input: " << values[0] << ", Result 1: " << values[1] << ",
Result 2: " << values[2] << ", Result 3: " << values[3] << ", Result 4: "
<< values[4] << "n";

 return 1;
}

At this point, we expect that each thread has done whatever it's supposed to do, and added
the result to the vector, which we then read out and show the user.

Of course, this shows almost nothing of what really happens in the application, mostly just
the essential simplicity of using threads. Next, let's see what happens inside this method
that we pass to each thread instance:

void threadFnc(int tid) {
 cout_mtx.lock();
 cout << "Starting thread " << tid << ".n";
 cout_mtx.unlock();

In the preceding code, we can see that the integer parameter being passed to the thread
method is a thread identifier. To indicate that the thread is starting, a message containing
the thread identifier is output. Since we're using a non-thread-safe method for this, we
use the cout_mtx mutex instance to do this safely, ensuring that just one thread can write
to cout at any time:

 values_mtx.lock();
 int val = values[0];
 values_mtx.unlock();

When we obtain the initial value set in the vector, we copy it to a local variable so that we
can immediately release the mutex for the vector to enable other threads to use the vector:

 int rval = randGen(0, 10);
 val += rval;

Revisiting Multithreading Chapter 8

[275]

These last two lines contain the essence of what the threads created do: they take the initial
value, and add a randomly generated value to it. The randGen() method takes two
parameters, defining the range of the returned value:

 cout_mtx.lock();
 cout << "Thread " << tid << " adding " << rval << ". New value: " <<
val << ".n";
 cout_mtx.unlock();

 values_mtx.lock();
 values.push_back(val);
 values_mtx.unlock();
}

Finally, we (safely) log a message informing the user of the result of this action before
adding the new value to the vector. In both cases, we use the respective mutex to ensure
that there can be no overlap when accessing the resource with any of the other threads.

Once the method reaches this point, the thread containing it will terminate, and the main
thread will have one less thread to wait for to rejoin. The joining of a thread basically means
that it stops existing, usually with a return value passed to the thread which created the
thread. This can happen explicitly, with the main thread waiting for the child thread to
finish, or in the background.

Lastly, we'll take a look at the randGen() method. Here we can see some multithreaded
specific additions as well:

int randGen(const int& min, const int& max) {
 static thread_local mt19937
generator(hash<thread::id>()(this_thread::get_id()));
 uniform_int_distribution<int> distribution(min, max);
 return distribution(generator)
}

This preceding method takes a minimum and maximum value as explained earlier, which
limits the range of the random numbers this method can return. At its core, it uses a
mt19937-based generator, which employs a 32-bit Mersenne Twister algorithm with a
state size of 19937 bits. This is a common and appropriate choice for most applications.

Of note here is the use of the thread_local keyword. What this means is that even though
it is defined as a static variable, its scope will be limited to the thread using it. Every thread
will thus create its own generator instance, which is important when using the random
number API in the STL.

Revisiting Multithreading Chapter 8

[276]

A hash of the internal thread identifier is used as a seed for the generator. This ensures
that each thread gets a fairly unique seed for its generator instance, allowing for better
random number sequences.

Finally, we create a new uniform_int_distribution instance using the provided
minimum and maximum limits, and use it together with the generator instance to
generate the random number which we return.

Makefile
In order to compile the code described earlier, one could use an IDE, or type the command
on the command line. As mentioned in the beginning of this chapter, we'll be using
makefiles for the examples in this book. The big advantages of this are that one does not
have to repeatedly type in the same extensive command, and it is portable to any system
which supports make.

Further advantages include being able to have previous generated artifacts removed
automatically and to only compile those source files which have changed, along with a
detailed control over build steps.

The makefile for this example is rather basic:

GCC := g++

OUTPUT := ch01_mt_example
SOURCES := $(wildcard *.cpp)
CCFLAGS := -std=c++11 -pthread

all: $(OUTPUT)

$(OUTPUT):
 $(GCC) -o $(OUTPUT) $(CCFLAGS) $(SOURCES)

clean:
 rm $(OUTPUT)

.PHONY: all

Revisiting Multithreading Chapter 8

[277]

From the top down, we first define the compiler that we'll use (g++), set the name of the
output binary (the .exe extension on Windows will be post-fixed automatically), followed
by the gathering of the sources and any important compiler flags.

The wildcard feature allows one to collect the names of all files matching the string
following it in one go without having to define the name of each source file in the folder
individually.

For the compiler flags, we're only really interested in enabling the c++11 features, for which
GCC still requires one to supply this compiler flag.

For the all method, we just tell make to run g++ with the supplied information. Next we
define a simple clean method which just removes the produced binary, and finally, we tell
make to not interpret any folder or file named all in the folder, but to use the internal
method with the .PHONY section.

When we run this makefile, we see the following command-line output:

$ make
g++ -o ch01_mt_example -std=c++11 ch01_mt_example.cpp

Afterwards, we find an executable file called ch01_mt_example (with the .exe extension
attached on Windows) in the same folder. Executing this binary will result in a command-
line output akin to the following:

$./ch01_mt_example.exe

Starting thread 1.

Thread 1 adding 8. New value: 50.

Starting thread 2.

Thread 2 adding 2. New value: 44.

Starting thread 3.

Starting thread 4.

Thread 3 adding 0. New value: 42.

Thread 4 adding 8. New value: 50.

Input: 42, Result 1: 50, Result 2: 44, Result 3: 42, Result 4: 50

Revisiting Multithreading Chapter 8

[278]

What one can see here already is the somewhat asynchronous nature of threads and their
output. While threads 1 and 2 appear to run synchronously, starting and quitting
seemingly in order, threads 3 and 4 clearly run asynchronously as both start simultaneously
before logging their action. For this reason, and especially in longer-running threads, it's
virtually impossible to say in which order the log output and results will be returned.

While we use a simple vector to collect the results of the threads, there is no saying whether
Result 1 truly originates from the thread which we assigned ID 1 in the beginning. If we
need this information, we need to extend the data we return by using an information
structure with details on the processing thread or similar.

One could, for example, use struct like this:

struct result {
 int tid;
 int result;
};

The vector would then be changed to contain result instances rather than integer instances.
One could pass the initial integer value directly to the thread as part of its parameters, or
pass it via some other way.

Other applications
The example in this chapter is primarily useful for applications where data or tasks have to
be handled in parallel. For the earlier mentioned use case of a GUI-based application with
business logic and network-related features, the basic setup of a main application, which
launches the required threads, would remain the same. However, instead of having each
thread to be the same, each would be a completely different method.

Revisiting Multithreading Chapter 8

[279]

For this type of application, the thread layout would look like this:

As the graphic shows, the main thread would launch the GUI, network, and business logic
thread, with the latter communicating with the network thread to send and receive data.
The business logic thread would also receive user input from the GUI thread, and send
updates back to be displayed on the GUI.

Summary
In this chapter, we went over the basics of a multithreaded application in C++ using the
native threading API. We looked at how to have multiple threads perform a task in parallel,
and also explored how to properly use the random number API in the STL within a
multithreaded application.

In the next chapter, we'll discuss how multithreading is implemented both in hardware and
in operating systems. We'll see how this implementation differs per processor architecture
and operating system, and how this affects our multithreaded application.

9
Multithreading Implementation

on the Processor and OS
The foundation of any multithreaded application is formed by the implementation of the
required features by the hardware of the processor, as well as by the way these features are
translated into an API for use by applications by the operating system. An understanding of
this foundation is crucial for developing an intuitive understanding of how to best
implement a multithreaded application.

Topics covered in this chapter include the following:

How operating systems changed to use these hardware features
Concepts behind memory safety and memory models in various architectures
Differences between various process and threading models by OSes
Concurrency

Introduction to POSIX pthreads
Unix, Linux, and macOS are largely compliant with the POSIX standard. Portable
Operating System Interface for Unix (POSIX) is an IEEE standard that helps all Unix and
Unix-like operating systems, that is Linux and macOS, communicate with a single interface.

Multithreading Implementation on the Processor and OS Chapter 9

[281]

Interestingly, POSIX is also supported by POSIX-compliant tools--Cygwin, MinGW, and
Windows subsystem for Linux--that provide a pseudo-Unix-like runtime and development
environment on Windows platforms.

Note that pthread is a POSIX-compliant C library used in Unix, Linux, and macOS. Starting
from C++11, C++ natively supports threads via the C++ thread support library and
concurrent library. In this chapter, we will understand how to use pthreads, thread support,
and concurrency library in an object-oriented fashion. Also, we will discuss the merits of
using native C++ thread support and concurrency library as opposed to using POSIX
pthreads or other third-party threading frameworks.

Creating threads with the pthreads library
Let's get straight to business. You need to understand the pthread APIs we'll discuss to get
your hands dirty. To start with, this function is used to create a new thread:

 #include <pthread.h>
 int pthread_create(
 pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void*),
 void *arg
)

The following table briefly explains the arguments used in the preceding function:

API arguments Comments

pthread_t *thread Thread handle pointer

pthread_attr_t *attr Thread attribute

void *(*start_routine)(void*) Thread function pointer

void * arg Thread argument

Multithreading Implementation on the Processor and OS Chapter 9

[282]

This function blocks the caller thread until the thread passed in the first argument exits, as
shown in the code:

int pthread_join (pthread_t *thread, void **retval)

The following table briefly describes the arguments in the preceding function:

API arguments Comments

pthread_t thread Thread handle

void **retval
Output parameter that indicates the exit code of the thread
procedure

The ensuing function should be used within the thread context. Here, retval is the exit
code of the thread that indicates the exit code of the thread that invoked this function:

int pthread_exit (void *retval)

Here's the argument used in this function:

API argument Comment

void *retval The exit code of the thread procedure

The following function returns the thread ID:

pthread_t pthread_self(void)

Let's write our first multithreaded application:

#include <pthread.h>
#include <iostream>

using namespace std;

void* threadProc (void *param) {
 for (int count=0; count<3; ++count)
 cout << "Message " << count << " from " << pthread_self()
 << endl;
 pthread_exit(0);
}

int main() {
 pthread_t thread1, thread2, thread3;

Multithreading Implementation on the Processor and OS Chapter 9

[283]

 pthread_create (&thread1, NULL, threadProc, NULL);
 pthread_create (&thread2, NULL, threadProc, NULL);
 pthread_create (&thread3, NULL, threadProc, NULL);

 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 pthread_join(thread3, NULL);
 return 0;

}

How to compile and run
The program can be compiled with the following command:

g++ main.cpp -lpthread

As you can see, we need to link the POSIX pthread library dynamically.

Check out the following screenshot and visualize the output of the multithreaded program:

Multithreading Implementation on the Processor and OS Chapter 9

[284]

The code that is written in ThreadProc runs within the thread context. The preceding
program has a total of four threads, including the main thread. I had blocked the main
thread with pthread_join to force it to wait for the other three threads to complete their
tasks first, failing which the main thread would have exited before them. When the main
thread exits, the application exits too, which ends up prematurely destroying newly created
threads.

Though we created thread1, thread2, and thread3 in the respective sequence, there is no
guarantee that they will be started in the exact same sequence they were created in.

The operating system scheduler decides the sequence in which the threads must be started,
based on the algorithm used by the operating system scheduler. Interestingly, the sequence
in which the threads get started might vary at different runs in the same system.

Does C++ support threads natively?
Starting from C++11, C++ does support threads natively, and it is generally referred to as the
C++ thread support library. The C++ thread support library provides an abstraction over the
POSIX pthreads C library. Over time, C++ native thread support has improved to a greater
extent.

I highly recommend you make use of the C++ native thread over pthreads. The C++ thread
support library is supported on all platforms as it is officially part of standard C++ as
opposed to the POSIX pthread library, which is only supported on Unix, Linux, and
macOS but not directly on Windows.

The best part is thread support has matured to a new level in C++17, and it is poised to
reach the next level in C++20. Hence, it is a good idea to consider using the C++ thread
support library in your projects.

Multithreading Implementation on the Processor and OS Chapter 9

[285]

Defining processes and threads
Essentially, to the operating system (OS), a process consists of one or more threads, each
thread processing its own state and variables. One would regard this as a hierarchical
configuration, with the OS as the foundation, providing support for the running of (user)
processes. Each of these processes then consists of one or more threads. Communication
between processes is handled by inter-process communication (IPC), which is provided by
the operating system.

In a graphical view, this looks like the following:

Each process within the OS has its own state, with each thread in a process having its own
state as well as the relative to the other threads within that same process. While IPC allows
processes to communicate with each other, threads can communicate with other threads
within the process in a variety of ways, which we'll explore in more depth in upcoming
chapters. This generally involves some kind of shared memory between threads.

An application is loaded from binary data in a specific executable format such as, for
example, Executable and Linkable Format (ELF) which is generally used on Linux and
many other operating systems. With ELF binaries, the following number of sections should
always be present:

.bss

.data

.rodata

.text

Multithreading Implementation on the Processor and OS Chapter 9

[286]

The .bss section is, essentially, allocated with uninitialized memory including empty
arrays which thus do not take up any space in the binary, as it makes no sense to store rows
of pure zeroes in the executable. Similarly, there is the .data section with initialized data.
This contains global tables, variables, and the like. Finally, the .rodata section is like
.data, but it is, as the name suggests, read-only. It contains things such as hardcoded
strings.

In the .text section, we find the actual application instructions (code) which will be
executed by the processor. The whole of this will get loaded by the operating system, thus
creating a process. The layout of such a process looks like the following diagram:

This is what a process looks like when launched from an ELF-format binary, though the
final format in memory is roughly the same in basically any OS, including for a Windows
process launched from a PE-format binary. Each of the sections in the binary are loaded into
their respective sections, with the BSS section allocated to the specified size. The .text
section is loaded along with the other sections, and its initial instruction is executed once
this is done, which starts the process.

In system languages such as C++, one can see how variables and other program state
information within such a process are stored both on the stack (variables exist within the
scope) and heap (using the new operator). The stack is a section of memory (one allocated
per thread), the size of which depends on the operating system and its configuration. One
can generally also set the stack size programmatically when creating a new thread.

Multithreading Implementation on the Processor and OS Chapter 9

[287]

In an operating system, a process consists of a block of memory addresses, the size of which
is constant and limited by the size of its memory pointers. For a 32-bit OS, this would limit
this block to 4 GB. Within this virtual memory space, the OS allocates a basic stack and
heap, both of which can grow until all memory addresses have been exhausted, and further
attempts by the process to allocate more memory will be denied.

The stack is a concept both for the operating system and for the hardware. In essence, it's a
collection (stack) of so-called stack frames, each of which is composed of variables,
instructions, and other data relevant to the execution frame of a task.

In hardware terms, the stack is part of the task (x86) or process state (ARM), which is how
the processor defines an execution instance (program or thread). This hardware-defined
entity contains the entire state of a singular thread of execution. See the following sections
for further details on this.

Tasks in x86 (32-bit and 64-bit)
A task is defined as follows in the Intel IA-32 System Programming guide, Volume 3A:

"A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or exception
handler, or a kernel or executive utility."

"The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for
execution, and for switching from one task to another. When operating in protected mode, all
processor execution takes place from within a task. Even simple systems must define at least one task.
More complex systems can use the processor's task management facilities to support multitasking
applications."

This excerpt from the IA-32 (Intel x86) manual summarizes how the hardware supports and
implements support for operating systems, processes, and the switching between these
processes.

It's important to realize here that, to the processor, there's no such thing as a process or
thread. All it knows of are threads of execution, defined as a series of instructions. These
instructions are loaded into memory somewhere, and the current position in these
instructions is kept track of along with the variable data (variables) being created, as the
application is executed within the data section of the process.

Multithreading Implementation on the Processor and OS Chapter 9

[288]

Each task also runs within a hardware-defined protection ring, with the OS's tasks generally
running on ring 0, and user tasks on ring 3. Rings 1 and 2 are rarely used except for specific
use cases with modern OSes on the x86 architecture. These rings are privilege-levels
enforced by the hardware and allow for example for the strict separation of kernel and user-
level tasks.

The task structure for both 32-bit and 64-bit tasks are quite similar in concept. The official
name for it is the Task State Structure (TSS). It has the following layout for 32-bit x86
CPUs:

Multithreading Implementation on the Processor and OS Chapter 9

[289]

Following are the firlds:

SS0: The first stack segment selector field
ESP0: The first SP field

For 64-bit x86_64 CPUs, the TSS layout looks somewhat different, since hardware-based
task switching is not supported in this mode:

Multithreading Implementation on the Processor and OS Chapter 9

[290]

Here, we have similar relevant fields, just with different names:

RSPn: SP for privilege levels 0 through 2
ISTn: Interrupt stack table pointers

Even though on x86 in 32-bit mode, the CPU supports hardware-based switching between
tasks, most operating systems will use just a single TSS structure per CPU regardless of the
mode, and do the actual switching between tasks in software. This is partially due to
efficiency reasons (swapping out only pointers which change), partially due to features
which are only possible this way, such as measuring CPU time used by a process/thread,
and to adjust the priority of a thread or process. Doing it in software also simplifies the
portability of code between 64-bit and 32-bit systems, since the former do not support
hardware-based task switching.

During a software-based task switch (usually via an interrupt), the ESP/RSP, and so on are
stored in memory and replaced with the values for the next scheduled task. This means that
once execution resumes, the TSS structure will now have the Stack Pointer (SP), segment
pointer(s), register contents, and all other details of the new task.

The source of the interrupt can be based in hardware or software. A hardware interrupt is
usually used by devices to signal to the CPU that they require attention by the OS. The act
of calling a hardware interrupt is called an Interrupt Request, or IRQ.

A software interrupt can be due to an exceptional condition in the CPU itself, or as a feature
of the CPU's instruction set. The action of switching tasks by the OS's kernel is also
performed by triggering a software interrupt.

Process state in ARM
In ARM architectures, applications usually run in the unprivileged Exception Level 0 (EL0)
level, which is comparable to ring 3 on x86 architectures, and the OS kernel in EL1. The
ARMv7 (AArch32, 32-bit) architecture has the SP in the general purpose register 13. For
ARMv8 (AArch64, 64-bit), a dedicated SP register is implemented for each exception level:
SP_EL0, SP_EL1, and so on.

For task state, the ARM architecture uses Program State Register (PSR) instances for the
Current Program State Register (CPSR) or the Saved Program State Register (SPSR)
program state's registers. The PSR is part of the Process State (PSTATE), which is an
abstraction of the process state information.

Multithreading Implementation on the Processor and OS Chapter 9

[291]

While the ARM architecture is significantly different from the x86 architecture, when using
software-based task switching, the basic principle does not change: save the current task's
SP, register state, and put the next task's detail in there instead before resuming processing.

The stack
As we saw in the preceding sections, the stack together with the CPU registers define a task.
As mentioned earlier, this stack consists of stack frames, each of which defines the (local)
variables, parameters, data, and instructions for that particular instance of task execution.
Of note is that although the stack and stack frames are primarily a software concept, it is an
essential feature of any modern OS, with hardware support in many CPU instruction sets.
Graphically, it can be be visualized like the following:

Multithreading Implementation on the Processor and OS Chapter 9

[292]

The SP (ESP on x86) points to the top of the stack, with another pointer (Extended Base
Pointer (EBP) for x86). Each frame contains a reference to the preceding frame (caller return
address), as set by the OS.

When using a debugger with one's C++ application, this is basically what one sees when
requesting the backtrack--the individual frames of the stack showing the initial stack frame
leading up until the current frame. Here, one can examine each individual frame's details.

Defining multithreading
Over the past decades, a lot of different terms related to the way tasks are processed by a
computer have been coined and come into common use. Many of these are also used
interchangeably, correctly or not. An example of this is multithreading in comparison with
multiprocessing.

Here, the latter means running one task per processor in a system with multiple physical
processors, while the former means running multiple tasks on a singular processor
simultaneously, thus giving the illusion that they are all being executed simultaneously:

Another interesting distinction between multiprocessing and multitasking is that the latter
uses time-slices in order to run multiple threads on a single processor core. This is different
from multithreading in the sense that in a multitasking system, no tasks will ever run in a
concurrent fashion on the same CPU core, though tasks can still be interrupted.

Multithreading Implementation on the Processor and OS Chapter 9

[293]

The concept of a process and a shared memory space between the threads contained within
the said process is at the very core of multithreaded systems from a software perspective.
Though the hardware is often not aware of this--seeing just a single task to the OS.
However, such a multithreaded process contains two or many more threads. Each of these
threads then perform its own series of tasks.

In other implementations, such as Intel's Hyper-Threading (HT) on x86 processors, this
multithreading is implemented in the hardware itself, where it's commonly referred to as
SMT (see the section Simultaneous multithreading (SMT) for details). When HT is enabled,
each physical CPU core is presented to the OS as being two cores. The hardware itself will
then attempt to execute the tasks assigned to these so-called virtual cores concurrently,
scheduling operations which can use different elements of a processing core at the same
time. In practice, this can give a noticeable boost in performance without the operating
system or application requiring any type of optimization.

The OS can of course still do its own scheduling to further optimize the execution of task,
since the hardware is not aware of many details about the instructions it is executing.

Having HT enabled looks like this in the visual format:

In this preceding graphic, we see the instructions of four different tasks in memory (RAM).
Out of these, two tasks (threads) are being executed simultaneously, with the CPU's
scheduler (in the frontend) attempting to schedule the instructions so that as many
instructions as possible can be executed in parallel. Where this is not possible, so-called
pipeline bubbles (in white) appear where the execution hardware is idle.

Multithreading Implementation on the Processor and OS Chapter 9

[294]

Together with internal CPU optimizations, this leads to a very high throughput of
instructions, also called Instructions Per Second (IPC). Instead of the GHz rating of a CPU,
this IPC number is generally far more significant for determining the sheer performance of
a CPU.

Flynn's taxonomy
Different types of computer architecture are classified using a system which was first
proposed by Michael J. Flynn, back in 1966. This classification system knows four
categories, defining the capabilities of the processing hardware in terms of the number of
input and output streams:

Single Instruction, Single Data (SISD): A single instruction is fetched to operate
on a single data stream. This is the traditional model for CPUs.
Single Instruction, Multiple Data (SIMD): With this model, a single instruction
operates on multiple data streams in parallel. This is what vector processors such
as graphics processing units (GPUs) use.
Multiple Instruction, Single Data (MISD): This model is most commonly used
for redundant systems, whereby the same operation is performed on the same
data by different processing units, validating the results at the end to detect
hardware failure. This is commonly used by avionics systems and similar.
Multiple Instruction, Multiple Data (MIMD): For this model, a multiprocessing
system lends itself very well. Multiple threads across multiple processors process
multiple streams of data. These threads are not identical, as is the case with
SIMD.

An important thing to note with these categories is that they are all defined in terms of
multiprocessing, meaning that they refer to the intrinsic capabilities of the hardware. Using
software techniques, virtually any method can be approximated on even a regular SISD-
style architecture. This is, however, part of multithreading.

Symmetric versus asymmetric multiprocessing
Over the past decades, many systems were created which contained multiple processing
units. These can be broadly divided into Symmetric Multiprocessing (SMP) and
Asymmetric Multiprocessing (AMP) systems.

Multithreading Implementation on the Processor and OS Chapter 9

[295]

AMP's main defining feature is that a second processor is attached as a peripheral to the
primary CPU. This means that it cannot run control software, but only user applications.
This approach has also been used to connect CPUs using a different architecture to allow
one to, for example, run x86 applications on an Amiga, 68k-based system.

With an SMP system, each of the CPUs are peers having access to the same hardware
resources, and set up in a cooperative fashion. Initially, SMP systems involved multiple
physical CPUs, but later, multiple processor cores got integrated on a single CPU die:

With the proliferation of multi-core CPUs, SMP is the most common type of processing
outside of embedded development, where uniprocessing (single core, single processor) is
still very common.

Technically, the sound, network, and graphic processors in a system can be considered to be
asymmetric processors related to the CPU. With an increase in General Purpose GPU
(GPGPU) processing, AMP is becoming more relevant.

Loosely and tightly coupled multiprocessing
A multiprocessing system does not necessarily have to be implemented within a single
system, but can also consist of multiple systems which are connected in a network. Such a
cluster is then called a loosely coupled multiprocessing system. We cover distributing
computing in Chapter 9, Multithreading with Distributed Computing.

Multithreading Implementation on the Processor and OS Chapter 9

[296]

This is in contrast with a tightly coupled multiprocessing system, whereby the system is
integrated on a single printed circuit board (PCB), using the same low-level, high-speed
bus or similar.

Combining multiprocessing with multithreading
Virtually any modern system combines multiprocessing with multithreading, courtesy of
multi-core CPUs, which combine two or more processing cores on a single processor die.
What this means for an operating system is that it has to schedule tasks both across multiple
processing cores while also scheduling them on specific cores in order to extract maximum
performance.

This is the area of task schedulers, which we will look at in a moment. Suffice it to say that
this is a topic worthy of its own book.

Multithreading types
Like multiprocessing, there is not a single implementation, but two main ones. The main
distinction between these is the maximum number of threads the processor can execute
concurrently during a single cycle. The main goal of a multithreading implementation is to
get as close to 100% utilization of the processor hardware as reasonably possible.
Multithreading utilizes both thread-level and process-level parallelism to accomplish this
goal.

The are two types of multithreading, which we will cover in the following sections.

Temporal multithreading
Also known as super-threading, the main subtypes for temporal multithreading (TMT) are
coarse-grained and fine-grained (or interleaved). The former switches rapidly between
different tasks, saving the context of each before switching to another task's context. The
latter type switches tasks with each cycle, resulting in a CPU pipeline containing
instructions from various tasks from which the term interleaved is derived.

The fine-grained type is implemented in barrel processors. They have an advantage over
x86 and other architectures that they can guarantee specific timing (useful for hard real-time
embedded systems) in addition to being less complex to implement due to assumptions that
one can make.

Multithreading Implementation on the Processor and OS Chapter 9

[297]

Simultaneous multithreading (SMT)
SMT is implemented on superscalar CPUs (implementing instruction-level parallelism),
which include the x86 and ARM architectures. The defining characteristic of SMT is also
indicated by its name, specifically, its ability to execute multiple threads in parallel, per
core.

Generally, two threads per core is common, but some designs support up to eight
concurrent threads per core. The main advantage of this is being able to share resources
among threads, with an obvious disadvantage of conflicting needs by multiple threads,
which has to be managed. Another advantage is that it makes the resulting CPU more
energy efficient due to a lack of hardware resource duplication.

Intel's HT technology is essentially Intel's SMT implementation, providing a basic two
thread SMT engine starting with some Pentium 4 CPUs in 2002.

Schedulers
A number of task-scheduling algorithms exist, each focusing on a different goal. Some may
seek to maximize throughput, others minimize latency, while others may seek to maximize
response time. Which scheduler is the optimal choice solely depends on the application the
system is being used for.

For desktop systems, the scheduler is generally kept as general-purpose as possible, usually
prioritizing foreground applications over background applications in order to give the user
the best possible desktop experience.

For embedded systems, especially in real-time, industrial applications would instead seek
to guarantee timing. This allows processes to be executed at exactly the right time, which is
crucial in, for example, driving machinery, robotics, or chemical processes where a delay of
even a few milliseconds could be costly or even fatal.

The scheduler type is also dependent on the multitasking state of the OS--a cooperative
multitasking system would not be able to provide many guarantees about when it can
switch out a running process for another one, as this depends on when the active process
yields.

With a preemptive scheduler, processes are switched without them being aware of it,
allowing the scheduler more control over when processes run at which time points.

Multithreading Implementation on the Processor and OS Chapter 9

[298]

Windows NT-based OSes (Windows NT, 2000, XP, and so on) use what is called a
multilevel feedback queue, featuring 32 priority levels. This type of priority scheduler
allows one to prioritize tasks over other tasks, allowing one to fine-tune the resulting
experience.

Linux originally (kernel 2.4) also used a multilevel feedback queue-based priority scheduler
like Windows NT with an O(n) scheduler. With version 2.6, this was replaced with an O(1)
scheduler, allowing processes to be scheduled within a constant amount of time. Starting
with Linux kernel 2.6.23, the default scheduler is the Completely Fair Scheduler (CFS),
which ensures that all tasks get a comparable share of CPU time.

The type of scheduling algorithm used for a number of commonly used or well-known
OSes is listed in this table:

Operating System Preemption Algorithm

Amiga OS Yes Prioritized round-robin scheduling

FreeBSD Yes Multilevel feedback queue

Linux kernel before 2.6.0 Yes Multilevel feedback queue

Linux kernel 2.6.0-2.6.23 Yes O(1) scheduler

Linux kernel after 2.6.23 Yes Completely Fair Scheduler

classic Mac OS pre-9 None Cooperative scheduler

Mac OS 9 Some Preemptive scheduler for MP tasks, and
cooperative for processes and threads

OS X/macOS Yes Multilevel feedback queue

NetBSD Yes Multilevel feedback queue

Solaris Yes Multilevel feedback queue

Windows 3.1x None Cooperative scheduler

Windows 95, 98, Me Half Preemptive scheduler for 32-bit processes,
and cooperative for 16-bit processes

Windows NT (including 2000,
XP, Vista, 7, and Server) Yes Multilevel feedback queue

(Source: https:/​/​en. ​wikipedia. ​org/ ​wiki/ ​Scheduling_ ​(computing))

https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)

Multithreading Implementation on the Processor and OS Chapter 9

[299]

The preemptive column indicates whether the scheduler is preemptive or not, with the next
column providing further details. As one can see, preemptive schedulers are very common,
and used by all modern desktop operating systems.

Tracing the demo application
In the demonstration code of Chapter 1, Revisiting Multithreading, we looked at a simple
c++11 application which used four threads to perform some processing. In this section, we
will look at the same application, but from a hardware and OS perspective.

When we look at the start of the code in the main function, we see that we create a data
structure containing a single (integer) value:

int main() {
 values.push_back(42);

After the OS creates a new task and associated stack structure, an instance of a vector data
structure (customized for integer types) is allocated on the stack. The size of this was
specified in the binary file's global data section (BSS for ELF).

When the application's execution is started using its entry function (main() by default), the
data structure is modified to contain the new integer value.

Next, we create four threads, providing each with some initial data:

 thread tr1(threadFnc, 1);
 thread tr2(threadFnc, 2);
 thread tr3(threadFnc, 3);
 thread tr4(threadFnc, 4);

For the OS, this means creating new data structures, and allocating a stack for each new
thread. For the hardware, this initially does not change anything if no hardware-based task
switching is used.

At this point, the OS's scheduler and the CPU can combine to execute this set of tasks
(threads) as efficiently and quickly as possible, employing features of the hardware
including SMP, SMT, and so on.

Multithreading Implementation on the Processor and OS Chapter 9

[300]

After this, the main thread waits until the other threads stop executing:

 tr1.join();
 tr2.join();
 tr3.join();
 tr4.join();

These are blocking calls, which mark the main thread as being blocked until these four
threads (tasks) finish executing. At this point, the OS's scheduler will resume execution of
the main thread.

In each newly created thread, we first output a string on the standard output, making sure
that we lock the mutex to ensure synchronous access:

void threadFnc(int tid) {
 cout_mtx.lock();
 cout << "Starting thread " << tid << ".n";
 cout_mtx.unlock();

A mutex, in essence, is a singular value being stored on the stack of heap, which then is
accessed using an atomic operation. This means that some form of hardware support is
required. Using this, a task can check whether it is allowed to proceed yet, or has to wait
and try again.

In this last particular piece of code, this mutex lock allows us to output on the standard C++
output stream without other threads interfering.

After this, we copy the initial value in the vector to a local variable, again ensuring that it's
done synchronously:

 values_mtx.lock();
 int val = values[0];
 values_mtx.unlock();

The same thing happens here, except now the mutex lock allows us to read the first value in
the vector without risking another thread accessing or even changing it while we use it.

This is followed by the generating of a random number as follows:

 int rval = randGen(0, 10);
 val += rval;

Multithreading Implementation on the Processor and OS Chapter 9

[301]

This uses the randGen() method, which is as follows:

int randGen(const int& min, const int& max) {
 static thread_local mt19937 generator(hash<thread::id>()
(this_thread::get_id()));
 uniform_int_distribution<int> distribution(min, max);
 return distribution(generator);
}

This method is interesting due to its use of a thread-local variable. Thread-local storage is a
section of a thread's memory which is specific to it, and used for global variables, which,
nevertheless, have to remain limited to that specific thread.

This is very useful for a static variable like the one used here. That the generator instance
is static is because we do not want to reinitialize it every single time we use this method, yet
we do not want to share this instance across all threads. By using a thread-local, static
instance, we can accomplish both goals. A static instance is created and used, but separately
for each thread.

The Thread function then ends with the same series of mutexes being locked, and the new
value being copied to the array.

 cout_mtx.lock();
 cout << "Thread " << tid << " adding " << rval << ". New value: " <<
val << ".n";
 cout_mtx.unlock();

 values_mtx.lock();
 values.push_back(val);
 values_mtx.unlock();
}

Here we see the same synchronous access to the standard output stream, followed by
synchronous access to the values data structure.

Mutual exclusion implementations
Mutual exclusion is the principle which underlies thread-safe access of data within a
multithreaded application. One can implement this both in hardware and software. The
mutual exclusion (mutex) is the most elementary form of this functionality in most
implementations.

Multithreading Implementation on the Processor and OS Chapter 9

[302]

Hardware
The simplest hardware-based implementation on a uniprocessor (single processor core),
non-SMT system is to disable interrupts, and thus, prevent the task from being changed.
More commonly, a so-called busy-wait principle is employed. This is the basic principle
behind a mutex--due to how the processor fetches data, only one task can obtain and
read/write an atomic value in the shared memory, meaning, a variable sized the same (or
smaller) as the CPU's registers. This is further detailed in Chapter 15, Atomic Operations -
Working with the Hardware.

When our code tries to lock a mutex, what this does is read the value of such an atomic
section of memory, and try to set it to its locked value. Since this is a single operation, only
one task can change the value at any given time. Other tasks will have to wait until they can
gain access in this busy-wait cycle, as shown in this diagram:

Multithreading Implementation on the Processor and OS Chapter 9

[303]

Software
Software-defined mutual exclusion implementations are all based on busy-waiting. An
example is Dekker's algorithm, which defines a system in which two processes can
synchronize, employing busy-wait to wait for the other process to leave the critical section.

The pseudocode for this algorithm is as follows:

 variables
 wants_to_enter : array of 2 booleans
 turn : integer

 wants_to_enter[0] ← false
 wants_to_enter[1] ← false
 turn ← 0 // or 1

p0:
 wants_to_enter[0] ← true
 while wants_to_enter[1] {
 if turn ≠ 0 {
 wants_to_enter[0] ← false
 while turn ≠ 0 {
 // busy wait
 }
 wants_to_enter[0] ← true
 }
 }
 // critical section
 ...
 turn ← 1
 wants_to_enter[0] ← false
 // remainder section

p1:
 wants_to_enter[1] ← true
 while wants_to_enter[0] {
 if turn ≠ 1 {
 wants_to_enter[1] ← false
 while turn ≠ 1 {
 // busy wait
 }
 wants_to_enter[1] ← true
 }
 }
 // critical section
 ...
 turn ← 0

Multithreading Implementation on the Processor and OS Chapter 9

[304]

 wants_to_enter[1] ← false
 // remainder section

(Referenced from: https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Dekker's_ ​algorithm)

In this preceding algorithm, processes indicate the intent to enter a critical section, checking
whether it's their turn (using the process ID), then setting their intent to enter the section to
false after they have entered it. Only once a process has set its intent to enter to true again
will it enter the critical section again. If it wishes to enter, but turn does not match its
process ID, it'll busy-wait until the condition becomes true.

A major disadvantage of software-based mutual exclusion algorithms is that they only
work if out-of-order (OoO) execution of code is disabled. OoO means that the hardware
actively reorders incoming instructions in order to optimize their execution, thus changing
their order. Since these algorithms require that various steps are executed in order, they no
longer work on OoO processors.

Concurrency
Every modern programming language supports concurrency, offering high-level APIs that
allow the execution of many tasks simultaneously. C++ supports concurrency starting from
C++11 and more sophisticated APIs got added further in C++14 and C++17. Though the C++
thread support library allows multithreading, it requires writing lengthy code using
complex synchronizations; however, concurrency lets us execute independent tasks--even
loop iterations can run concurrently without writing complex code. The bottom line is
parallelization is made more easy with concurrency.

The concurrency support library complements the C++ thread support library. The
combined use of these two powerful libraries makes concurrent programming more easy in
C++.

Let's write a simple Hello World program using C++ concurrency in the following file
named main.cpp:

#include <iostream>
#include <future>
using namespace std;

void sayHello() {
 cout << endl << "Hello Concurrency support library!" << endl;
}

https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm

Multithreading Implementation on the Processor and OS Chapter 9

[305]

int main () {
 future<void> futureObj = async (launch::async, sayHello);
 futureObj.wait();

 return 0;
}

Let's try to understand the main() function. Future is an object of the concurrency module
that helps the caller function retrieve the message passed by the thread in an asynchronous
fashion. The void in future<void> represents the sayHello() thread function that is not
expected to pass any message to the caller, that is, the main thread function.
The async class lets us execute a function in two modes,
namely launch::async or launch::deferred mode.

The launch::async mode lets the async object launch the sayHello() method in a
separate thread, whereas the launch::deferred mode lets the async object invoke
the sayHello() function without creating a separate thread. In launch::deferred mode,
the sayHello() method invocation will be different until the caller thread invokes
the future::get() method.

The futureObj.wait() voice is used to block the main thread to let
the sayHello() function complete its task. The future::wait() function is similar
to thread::join() in the thread support library.

How to compile and run
Let's go ahead and compile the program with the following command:

g++ main.cpp -o concurrency.exe -std=c++17 -lpthread

Let's launch concurrency.exe, as shown ahead, and understand how it works:

Multithreading Implementation on the Processor and OS Chapter 9

[306]

Asynchronous message passing using the
concurrency support library
Let's slightly modify main.cpp, the Hello World program we wrote in the previous section.
Let's understand how we could pass a message from a Thread function to the
caller function asynchronously:

#include <iostream>
#include <future>
using namespace std;

void sayHello(promise<string> promise_) {
 promise_.set_value ("Hello Concurrency support library!");
}

int main () {
 promise<string> promiseObj;

 future<string> futureObj = promiseObj.get_future();
 async (launch::async, sayHello, move(promiseObj));
 cout << futureObj.get() << endl;

 return 0;
}

In the previous program, promiseObj is used by the sayHello() thread function to pass
the message to the main thread asynchronously. Note that promise<string> implies that
the sayHello() function is expected to pass a string message, hence the main thread
retrieves future<string>. The future::get() function call will be blocked until
the sayHello() thread function calls the promise::set_value() method.

However, it is important to understand that future::get() must only be called once as
the corresponding promise object will be destructed after the call to
the future::get() method invocation.

Did you notice the use of the std::move() function? The std::move() function basically
transfers the ownership of promiseObj to the sayHello() thread function,
hence promiseObj must not be accessed from the main thread after std::move() is
invoked.

Multithreading Implementation on the Processor and OS Chapter 9

[307]

How to compile and run
Let's go ahead and compile the program with the following command:

g++ main.cpp -o concurrency.exe -std=c++17 -lpthread

Observe how the concurrency.exe application works by launching concurrency.exe as
shown ahead:

As you may have guessed, the output of this program is exactly the same as our previous
version. But this version of our program makes use of promise and future objects, unlike the
previous version that doesn't support message passing.

Concurrency tasks
The concurrency support module supports a concept called task. A task is work that
happens concurrently across threads. A concurrent task can be created using
the packaged_task class. The packaged_task class conveniently connects
the thread function, the corresponding promise, and feature objects.

Let's understand the use of packaged_task with a simple example. The following program
gives us an opportunity to taste a bit of functional programming with lambda expressions
and functions:

#include <iostream>
#include <future>
#include <promise>
#include <thread>
#include <functional>
using namespace std;

int main () {
 packaged_task<int (int, int)>
 addTask ([] (int firstInput, int secondInput) {
 return firstInput + secondInput;

Multithreading Implementation on the Processor and OS Chapter 9

[308]

 });

 future<int> output = addTask.get_future();
 addTask (15, 10);

 cout << "The sum of 15 + 10 is " << output.get() << endl;
 return 0;
}

In the previously shown program, I created a packaged_task instance called addTask.
The packaged_task< int (int,int)> instance implies that the add task will return an
integer and take two integer arguments:

addTask ([] (int firstInput, int secondInput) {
 return firstInput + secondInput;
});

The preceding code snippet indicates it is a lambda function that is defined anonymously.

The interesting part is that the addTask() call in main.cpp appears like a regular
function call. The future<int> object is extracted from
the packaged_task instance addTask, which is then used to retrieve the output of
the addTask via the future object instance, that is, the get() method.

How to compile and run
Let's go ahead and compile the program with the following command:

g++ main.cpp -o concurrency.exe -std=c++17 -lpthread

Let's quickly launch concurrency.exe and observe the output shown next:

Cool! You learned how to use lambda functions with the concurrency support library.

Multithreading Implementation on the Processor and OS Chapter 9

[309]

Using tasks with a thread support library
In the previous section, you learned how packaged_task can be used in an elegant way. I
love lambda functions a lot. They look a lot like mathematics. But not everyone likes
lambda functions as they degrade readability to some extent. Hence, it isn't mandatory to
use lambda functions with a concurrent task if you don't prefer lambdas. In this section,
you'll understand how to use a concurrent task with the thread support library, as shown in
the following code:

#include <iostream>
#include <future>
#include <thread>
#include <functional>
using namespace std;

int add (int firstInput, int secondInput) {
 return firstInput + secondInput;
}

int main () {
 packaged_task<int (int, int)> addTask(add);

 future<int> output = addTask.get_future();

 thread addThread (move(addTask), 15, 10);

 addThread.join();

 cout << "The sum of 15 + 10 is " << output.get() << endl;

 return 0;
}

How to compile and run
Let's go ahead and compile the program with the following command:

g++ main.cpp -o concurrency.exe -std=c++17 -lpthread

Multithreading Implementation on the Processor and OS Chapter 9

[310]

Let's launch concurrency.exe, as shown in the following screenshot, and understand the
difference between the previous program and the current version:

Yes, the output is the same as the previous section because we just refactored the code.

Wonderful! You just learned how to integrate the C++ thread support library with
concurrent components.

Binding the thread procedure and its input to
packaged_task
In this section, you will learn how you can bind the thread function and its respective
arguments with packaged_task.

Let's take the code from the previous section and modify it to understand the bind feature,
as follows:

#include <iostream>
#include <future>
#include <string>
using namespace std;

int add (int firstInput, int secondInput) {
 return firstInput + secondInput;
}

int main () {

 packaged_task<int (int,int)> addTask(add);
 future<int> output = addTask.get_future();
 thread addThread (move(addTask), 15, 10);
 addThread.join();
 cout << "The sum of 15 + 10 is " << output.get() << endl;
 return 0;
}

Multithreading Implementation on the Processor and OS Chapter 9

[311]

The std::bind() function binds the thread function and its arguments with the
respective task. Since the arguments are bound upfront, there is no need to supply the input
arguments 15 or 10 once again. These are some of the convenient ways in
which packaged_task can be used in C++.

How to compile and run
Let's go ahead and compile the program with the following command:

g++ main.cpp -o concurrency.exe -std=c++17 -lpthread

Let's launch concurrency.exe, as shown in the following screenshot, and understand the
difference between the previous program and the current version:

Congrats! You have learned a lot about concurrency in C++ so far.

Exception handling with the concurrency library
The concurrency support library also supports passing exceptions via a future object.

Let's understand the exception concurrency handling mechanism with a simple example, as
follows:

#include <iostream>
#include <future>
#include <promise>
using namespace std;

void add (int firstInput, int secondInput, promise<int> output) {
 try {
 if ((INT_MAX == firstInput) || (INT_MAX == secondInput))
 output.set_exception(current_exception()) ;
 }

Multithreading Implementation on the Processor and OS Chapter 9

[312]

 catch(...) {}

 output.set_value(firstInput + secondInput) ;

}

int main () {

 try {
 promise<int> promise_;
 future<int> output = promise_.get_future();
 async (launch::deferred, add, INT_MAX, INT_MAX, move(promise_));
 cout << "The sum of INT_MAX + INT_MAX is " << output.get () <<
endl;
 }
 catch(exception e) {
 cerr << "Exception occured" << endl;
 }
}

Just like the way we passed the output messages to the caller function/thread, the
concurrency support library also allows you to set the exception that occurred within the
task or asynchronous function. When the caller thread invokes
the future::get() method, the same exception will be thrown, hence communicating
exceptions is made easy.

How to compile and run
Let's go ahead and compile the program with the following command. Uncle fruits and
yodas malte:

g++ main.cpp -o concurrency.exe -std=c++17 -lpthread

Multithreading Implementation on the Processor and OS Chapter 9

[313]

What did you learn?
Let me summarize the takeaway points:

The concurrency support library offers high-level components that enable the
execution of several tasks concurrently
Future objects let the caller thread retrieve the output of the asynchronous
function
The promise object is used by the asynchronous function to set the output or
exception
The type of FUTURE and PROMISE object must be the same as the type of the value
set by the asynchronous function
Concurrent components can be used in combination with the C++ thread support
library seamlessly
The lambda function and expression can be used with the concurrency support
library

Summary
In this chapter, we saw how processes and threads are implemented both in operating
systems and in hardware. We also looked at various configurations of processor hardware
and elements of operating systems involved in scheduling to see how they provide various
types of task processing.

Finally, we took the multithreaded program example of the previous chapter, and ran
through it again, this time considering what happens in the OS and processor while it is
being executed.

In the next chapter, we will take a look at the various multithreading APIs being offered via
OS and library-based implementations, along with examples comparing these APIs.

10
C++ Multithreading APIs

While C++ has a native multithreading implementation in the Standard Template Library
(STL), OS-level and framework-based multithreading APIs are still very common.
Examples of these APIs include Windows and POSIX (Portable Operating System
Interface) threads, and those provided by the Qt, Boost, and POCO libraries.

This chapter takes a detailed look at the features provided by each of these APIs, as well as
the similarities and differences between each of them. Finally, we'll look at common usage
scenarios using example code.

Topics covered by this chapter include the following:

A comparison of the available multithreading APIs
Examples of the usage of each of these APIs

API overview
Before the C++ 2011 (C++11) standard, many different threading implementations were
developed, many of which are limited to a specific software platform. Some of these are still
relevant today, such as Windows threads. Others have been superseded by standards, of
which POSIX Threads (Pthreads) has become the de facto standard on UNIX-like OSes.
This includes Linux-based and BSD-based OS, as well as OS X (macOS) and Solaris.

Many libraries were developed to make cross-platform development easier. Although
Pthreads helps to make UNIX-like OS more or less compatible one of the prerequisites to
make software portable across all major operating systems, a generic threading API is
needed. This is why libraries such as Boost, POCO, and Qt were created. Applications can
use these and rely on the library to handle any differences between platforms.

C++ Multithreading APIs Chapter 10

[315]

POSIX threads
Pthreads were first defined in the POSIX.1c standard (Threads extensions, IEEE Std
1003.1c-1995) from 1995 as an extension to the POSIX standard. At the time, UNIX had been
chosen as a manufacturer-neutral interface, with POSIX unifying the various APIs among
them.

Despite this standardization effort, differences still exist in Pthread implementations
between OS's which implement it (for example, between Linux and OS X), courtesy of non-
portable extensions (marked with _np in the method name).

For the pthread_setname_np method, the Linux implementation takes two parameters,
allowing one to set the name of a thread other than the current thread. On OS X (since 10.6),
this method only takes one parameter, allowing one to set the name of the current thread
only. If portability is a concern, one has to be mindful of such differences.

After 1997, the POSIX standard revisions were managed by the Austin Joint Working
Group. These revisions merge the threads extension into the main standard. The current
revision is 7, also known as POSIX.1-2008 and IEEE Std 1003.1, 2013 edition--with a free
copy of the standard available online.

OS's can be certified to conform to the POSIX standard. Currently, these are as mentioned in
this table:

Name Developer Since
version

Architecture(s)
(current) Notes

AIX IBM 5L POWER Server OS

HP-UX Hewlett-Packard 11i v3 PA-RISC, IA-64
(Itanium) Server OS

IRIX Silicon Graphics
(SGI) 6 MIPS Discontinued

Inspur K-UX Inspur 2 X86_64, Linux based

Integrity Green Hills Software 5

ARM, XScale,
Blackfin, Freescale
Coldfire, MIPS,
PowerPC, x86.

Real-time OS

OS X/MacOS Apple 10.5
(Leopard) X86_64 Desktop OS

C++ Multithreading APIs Chapter 10

[316]

QNX
Neutrino BlackBerry 1

Intel 8088, x86, MIPS,
PowerPC, SH-4,
ARM, StrongARM,
XScale

Real-time,
embedded OS

Solaris Sun/Oracle 2.5
SPARC, IA-32 (<11),
x86_64, PowerPC
(2.5.1)

Server OS

Tru64 DEC, HP, IBM,
Compaq 5.1B-4 Alpha Discontinued

UnixWare Novell, SCO, Xinuos 7.1.3 x86 Server OS

Other operating systems are mostly compliant. The following are examples of the same:

Name Platform Notes

Android ARM, x86, MIPS Linux based. Bionic C-library.

BeOS (Haiku) IA-32, ARM, x64_64 Limited to GCC 2.x for x86.

Darwin PowerPC, x86, ARM Uses the open source components on
which macOS is based.

FreeBSD
IA-32, x86_64, sparc64,
PowerPC, ARM, MIPS, and
so on

Essentially POSIX compliant. One can
rely on documented POSIX behavior.
More strict on compliance than Linux,
in general.

Linux

Alpha, ARC, ARM, AVR32,
Blackfin, H8/300, Itanium,
m68k, Microblaze, MIPS,
Nios II, OpenRISC, PA-
RISC, PowerPC, s390,
S+core, SuperH, SPARC,
x86, Xtensa, and so on

Some Linux distributions (see
previous table) are certified as being
POSIX compliant. This does not imply
that every Linux distribution is POSIX
compliant. Some tools and libraries
may differ from the standard.
For Pthreads, this may mean that the
behavior is sometimes different
between Linux distributions (different
scheduler, and so on) as well as
compared to other OS's implementing
Pthreads.

C++ Multithreading APIs Chapter 10

[317]

MINIX 3 IA-32, ARM Conforms to POSIX specification
standard 3 (SUSv3, 2004).

NetBSD

Alpha, ARM, PA-RISC, 68k,
MIPS, PowerPC, SH3,
SPARC, RISC-V, VAX, x86,
and so on

Almost fully compatible with POSX.1
(1990), and mostly compliant with
POSIX.2 (1992).

Nuclear RTOS
ARM, MIPS, PowerPC, Nios
II, MicroBlaze, SuperH, and
so on

Proprietary RTOS from Mentor
Graphics aimed at embedded
applications.

NuttX ARM, AVR, AVR32, HCS12,
SuperH, Z80, and so on

Light-weight RTOS, scalable from 8 to
32-bit systems with strong focus on
POSIX compliance.

OpenBSD

Alpha, x86_64, ARM, PA-
RISC, IA-32, MIPS,
PowerPC, SPARC, and so
on

Forked from NetBSD in 1995. Similar
POSIX support.

OpenSolaris/illumos IA-32, x86_64, SPARC,
ARM

Compliant with the commercial
Solaris releases being certified
compatible.

VxWorks ARM, SH-4, x86, x86_64,
MIPS, PowerPC

POSIX compliant, with certification
for user-mode execution environment.

From this it should be obvious that it's not a clear matter of following the POSIX
specification, and being able to count on one's code compiling on each of these platforms.
Each platform will also have its own set of extensions to the standard for features which
were omitted in the standard, but are still desirable. Pthreads are, however, widely used by
Linux, BSD, and similar software.

C++ Multithreading APIs Chapter 10

[318]

Windows support
It's also possible to use the POSIX APIs in a limited fashion using, for example, the
following:

Name Compliance

Cygwin Mostly complete. Provides a full runtime environment for a POSIX
application, which can be distributed as a normal Windows application.

MinGW With MinGW-w64 (a redevelopment of MinGW), Pthreads support is
fairly complete, though some functionality may be absent.

Windows
Subsystem for
Linux

WSL is a Windows 10 feature, which allows a Ubuntu Linux 14.04 (64-
bit) image's tools and utilities to run natively on top of it though not
those using GUI features or missing kernel features. Otherwise, it offers
similar compliance as Linux.
This feature currently requires that one runs the Windows 10
Anniversary Update and install WSL by hand using instructions
provided by Microsoft.

POSIX on Windows is generally not recommended. Unless there are good reasons to use
POSIX (large existing code base, for example), it's far easier to use one of the cross-platform
APIs (covered later in this chapter), which smooth away any platform issues.

In the following sections, we'll look at the features offered by the Pthreads API.

PThreads thread management
These are all the functions which start with either pthread_ or pthread_attr_. These
functions all apply to threads themselves and their attribute objects.

The basic use of threads with Pthreads looks like the following:

#include <pthread.h>
#include <stdlib.h>
#define NUM_THREADS 5

C++ Multithreading APIs Chapter 10

[319]

The main Pthreads header is pthread.h. This gives access to everything but semaphores
(covered later in this section). We also define a constant for the number of threads we wish
to start here:

void* worker(void* arg) {
 int value = *((int*) arg);
 // More business logic.
 return 0;
}

We define a simple Worker function, which we'll pass to the new thread in a moment. For
demonstration and debugging purposes one could first add a simple cout or printf-based
bit of business logic to print out the value sent to the new thread.

Next, we define the main function as follows:

int main(int argc, char** argv) {
 pthread_t threads[NUM_THREADS];
 int thread_args[NUM_THREADS];
 int result_code;
 for (unsigned int i = 0; i < NUM_THREADS; ++i) {
 thread_args[i] = i;
 result_code = pthread_create(&threads[i], 0, worker, (void*)
&thread_args[i]);
 }

We create all of the threads in a loop in the preceding function. Each thread instance gets a
thread ID assigned (first argument) when created in addition to a result code (zero on
success) returned by the pthread_create() function. The thread ID is the handle to
reference the thread in future calls.

The second argument to the function is a pthread_attr_t structure instance, or 0 if none.
This allows for configuration characteristics of the new thread, such as the initial stack size.
When zero is passed, default parameters are used, which differ per platform and
configuration.

The third parameter is a pointer to the function which the new thread will start with. This
function pointer is defined as a function which returns a pointer to void data (that is,
custom data), and accepts a pointer to void data. Here, the data being passed to the new
thread as an argument is the thread ID:

 for (int i = 0; i < NUM_THREADS; ++i) {
 result_code = pthread_join(threads[i], 0);
 }

C++ Multithreading APIs Chapter 10

[320]

 exit(0);
}

Next, we wait for each worker thread to finish using the pthread_join() function. This
function takes two parameters, the ID of the thread to wait for, and a buffer for the return
value of the Worker function (or zero).

Other functions to manage threads are as follows:

void pthread_exit(void *value_ptr):
This function terminates the thread calling it, making the provided argument's
value available to any thread calling pthread_join() on it.

int pthread_cancel(pthread_t thread):
This function requests that the specified thread will be canceled. Depending on
the state of the target thread, this will invoke its cancellation handlers.

Beyond this, there are the pthread_attr_* functions to manipulate and obtain
information about a pthread_attr_t structure.

Mutexes
These are functions prefixed with either pthread_mutex_ or pthread_mutexattr_. They
apply to mutexes and their attribute objects.

Mutexes in Pthreads can be initialized, destroyed, locked, and unlocked. They can also have
their behavior customized using a pthread_mutexattr_t structure, which has its
corresponding pthread_mutexattr_* functions for initializing and destroying an
attribute on it.

A basic use of a Pthread mutex using static initialization looks as follows:

static pthread_mutex_t func_mutex = PTHREAD_MUTEX_INITIALIZER;

void func() {
 pthread_mutex_lock(&func_mutex);

 // Do something that's not thread-safe.

 pthread_mutex_unlock(&func_mutex);
}

C++ Multithreading APIs Chapter 10

[321]

In this last bit of code, we use the PTHREAD_MUTEX_INITIALIZER macro, which initializes
the mutex for us without having to type out the code for it every time. In comparison to
other APIs, one has to manually initialize and destroy mutexes, though the use of macros
helps somewhat.

After this, we lock and unlock the mutex. There's also the pthread_mutex_trylock()
function, which is like the regular lock version, but which will return immediately if the
referenced mutex is already locked instead of waiting for it to be unlocked.

In this example, the mutex is not explicitly destroyed. This is, however, a part of normal
memory management in a Pthreads-based application.

Condition variables
These are functions which are prefixed with either pthread_cond_ or
pthread_condattr_. They apply to condition variables and their attribute objects.

Condition variables in Pthreads follow the same pattern of having an initialization and a
destroy function in addition to having the same for managing a pthread_condattr_t
attribution structure.

This example covers basic usage of Pthreads condition variables:

#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

 #define COUNT_TRIGGER 10
 #define COUNT_LIMIT 12

 int count = 0;
 int thread_ids[3] = {0,1,2};
 pthread_mutex_t count_mutex;
 pthread_cond_t count_cv;

In the preceding code, we get the standard headers, and define a count trigger and limit,
whose purpose will become clear in a moment. We also define a few global variables: a
count variable, the IDs for the threads we wish to create, as well as a mutex and condition
variable:

void* add_count(void* t) {
 int tid = (long) t;
 for (int i = 0; i < COUNT_TRIGGER; ++i) {
 pthread_mutex_lock(&count_mutex);

C++ Multithreading APIs Chapter 10

[322]

 count++;
 if (count == COUNT_LIMIT) {
 pthread_cond_signal(&count_cv);
 }

 pthread_mutex_unlock(&count_mutex);
 sleep(1);
 }

 pthread_exit(0);
}

This preceding function, essentially, just adds to the global counter variable after obtaining
exclusive access to it with the count_mutex. It also checks whether the count trigger value
has been reached. If it has, it will signal the condition variable.

To give the second thread, which also runs this function, a chance to get the mutex, we
sleep for 1 second in each cycle of the loop:

void* watch_count(void* t) {
 int tid = (int) t;

 pthread_mutex_lock(&count_mutex);
 if (count < COUNT_LIMIT) {
 pthread_cond_wait(&count_cv, &count_mutex);
 }

 pthread_mutex_unlock(&count_mutex);
 pthread_exit(0);
}

In this second function, we lock the global mutex before checking whether we have reached
the count limit yet. This is our insurance in case the thread running this function does not
get called before the count reaches the limit.

Otherwise, we wait on the condition variable providing the condition variable and locked
mutex. Once signaled, we unlock the global mutex, and exit the thread.

A point to note here is that this example does not account for spurious wake-ups. Pthreads
condition variables are susceptible to such wake-ups which necessitate one to use a loop
and check whether some kind of condition has been met:

int main (int argc, char* argv[]) {
 int tid1 = 1, tid2 = 2, tid3 = 3;
 pthread_t threads[3];
 pthread_attr_t attr;

C++ Multithreading APIs Chapter 10

[323]

 pthread_mutex_init(&count_mutex, 0);
 pthread_cond_init (&count_cv, 0);

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_create(&threads[0], &attr, watch_count, (void *) tid1);
 pthread_create(&threads[1], &attr, add_count, (void *) tid2);
 pthread_create(&threads[2], &attr, add_count, (void *) tid3);

 for (int i = 0; i < 3; ++i) {
 pthread_join(threads[i], 0);
 }

 pthread_attr_destroy(&attr);
 pthread_mutex_destroy(&count_mutex);
 pthread_cond_destroy(&count_cv);
 return 0;
}

Finally, in the main function, we create the three threads, with two running the function
which adds to the counter, and the third running the function which waits to have its
condition variable signaled.

In this method, we also initialize the global mutex and condition variable. The threads we
create further have the "joinable" attribute explicitly set.

Finally, we wait for each thread to finish, after which we clean up, destroying the attribute
structure instance, mutex, and condition variable before exiting.

Using the pthread_cond_broadcast() function, it's further possible to signal all threads
which are waiting for a condition variable instead of merely the first one in the queue. This
enables one to use condition variables more elegantly with some applications, such as
where one has a lot of worker threads waiting for new dataset to arrive without having to
notify every thread individually.

Synchronization
Functions which implement synchronization are prefixed with pthread_rwlock_ or
pthread_barrier_. These implement read/write locks and synchronization barriers.

A read/write lock (rwlock) is very similar to a mutex, except that it has the additional
feature of allowing infinite threads to read simultaneously, while only restricting write
access to a singular thread.

C++ Multithreading APIs Chapter 10

[324]

Using rwlock is very similar to using a mutex:

#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock_t* rwlock, const
pthread_rwlockattr_t* attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

In the last code, we include the same general header, and either use the initialization
function, or the generic macro. The interesting part is when we lock rwlock, which can be
done for just read-only access:

int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t* rwlock);

Here, the second variation returns immediately if the lock has been locked already. One can
also lock it for write access as follows:

int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t * rwlock);

These functions work basically the same, except that only one writer is allowed at any given
time, whereas multiple readers can obtain a read-only lock.

Barriers are another concept with Pthreads. These are synchronization objects which act like
a barrier for a number of threads. All of these have to reach the barrier before any of them
can proceed past it. In the barrier initialization function, the thread count is specified. Only
once all of these threads have called the barrier object using the
pthread_barrier_wait() function will they continue executing.

Semaphores
Semaphores were, as mentioned earlier, not part of the original Pthreads extension to the
POSIX specification. They are declared in the semaphore.h header for this reason.

In essence, semaphores are simple integers, generally used as a resource count. To make
them thread-safe, atomic operations (check and lock) are used. POSIX semaphores support
the initializing, destroying, incrementing and decrementing of a semaphore as well as
waiting for the semaphore to reach a non-zero value.

C++ Multithreading APIs Chapter 10

[325]

Thread local storage (TLC)
With Pthreads, TLS is accomplished using keys and methods to set thread-specific data:

pthread_key_t global_var_key;
void* worker(void* arg) {
 int *p = new int;
 *p = 1;
 pthread_setspecific(global_var_key, p);
 int* global_spec_var = (int*) pthread_getspecific(global_var_key);
 *global_spec_var += 1;
 pthread_setspecific(global_var_key, 0);
 delete p;
 pthread_exit(0);
}

In the worker thread, we allocate a new integer on the heap, and set the global key to its
own value. After increasing the global variable by 1, its value will be 2, regardless of what
the other threads do. We can set the global variable to 0 once we're done with it for this
thread, and delete the allocated value:

int main(void) {
 pthread_t threads[5];
 pthread_key_create(&global_var_key, 0);
 for (int i = 0; i < 5; ++i)
 pthread_create(&threads[i],0,worker,0);
 for (int i = 0; i < 5; ++i) {
 pthread_join(threads[i], 0);
 }
 return 0;
}

A global key is set and used to reference the TLS variable, yet each of the threads we create
can set its own value for this key.

While a thread can create its own keys, this method of handling TLS is fairly involved
compared to the other APIs we're looking at in this chapter.

C++ Multithreading APIs Chapter 10

[326]

Windows threads
Relative to Pthreads, Windows threads are limited to Windows operating systems and
similar (for example ReactOS, and other OS's using Wine). This provides a fairly consistent
implementation, easily defined by the Windows version that the support corresponds to.

Prior to Windows Vista, threading support missed features such as condition variables,
while having features not found in Pthreads. Depending on one's perspective, having to use
the countless "type def" types defined by the Windows headers can be a bother as well.

Thread management
A basic example of using Windows threads, as adapted from the official MSDN
documentation sample code, looks like this:

#include <windows.h>
#include <tchar.h>
#include <strsafe.h>

#define MAX_THREADS 3
#define BUF_SIZE 255

After including a series of Windows-specific headers for the thread functions, character
strings, and more, we define the number of threads we wish to create as well as the size of
the message buffer in the Worker function.

We also define a struct type (passed by void pointer: LPVOID) to contain the sample
data we pass to each worker thread:

typedef struct MyData {
 int val1;
 int val2;
} MYDATA, *PMYDATA;

DWORD WINAPI worker(LPVOID lpParam) {
 HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hStdout == INVALID_HANDLE_VALUE) {
 return 1;
 }

 PMYDATA pDataArray = (PMYDATA) lpParam;

 TCHAR msgBuf[BUF_SIZE];
 size_t cchStringSize;

C++ Multithreading APIs Chapter 10

[327]

 DWORD dwChars;
 StringCchPrintf(msgBuf, BUF_SIZE, TEXT("Parameters = %d, %dn"),
 pDataArray->val1, pDataArray->val2);
 StringCchLength(msgBuf, BUF_SIZE, &cchStringSize);
 WriteConsole(hStdout, msgBuf, (DWORD) cchStringSize, &dwChars, NULL);

 return 0;
}

In the Worker function, we cast the provided parameter to our custom struct type before
using it to print its values to a string, which we output on the console.

We also validate that there's an active standard output (console or similar). The functions
used to print the string are all thread safe.

void errorHandler(LPTSTR lpszFunction) {
 LPVOID lpMsgBuf;
 LPVOID lpDisplayBuf;
 DWORD dw = GetLastError();

 FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 dw,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 (LPTSTR) &lpMsgBuf,
 0, NULL);

 lpDisplayBuf = (LPVOID) LocalAlloc(LMEM_ZEROINIT,
 (lstrlen((LPCTSTR) lpMsgBuf) + lstrlen((LPCTSTR) lpszFunction) +
40) * sizeof(TCHAR));
 StringCchPrintf((LPTSTR)lpDisplayBuf,
 LocalSize(lpDisplayBuf) / sizeof(TCHAR),
 TEXT("%s failed with error %d: %s"),
 lpszFunction, dw, lpMsgBuf);
 MessageBox(NULL, (LPCTSTR) lpDisplayBuf, TEXT("Error"), MB_OK);

 LocalFree(lpMsgBuf);
 LocalFree(lpDisplayBuf);
}

Here, an error handler function is defined, which obtains the system error message for the
last error code. After obtaining the code for the last error, the error message to be output is
formatted, and shown in a message box. Finally, the allocated memory buffers are freed.

C++ Multithreading APIs Chapter 10

[328]

Finally, the main function is as follows:

int _tmain() {
 PMYDATA pDataArray[MAX_THREADS];
 DWORD dwThreadIdArray[MAX_THREADS];
 HANDLE hThreadArray[MAX_THREADS];
 for (int i = 0; i < MAX_THREADS; ++i) {
 pDataArray[i] = (PMYDATA) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY, sizeof(MYDATA));
if (pDataArray[i] == 0) {
 ExitProcess(2);
 }
 pDataArray[i]->val1 = i;
 pDataArray[i]->val2 = i+100;
 hThreadArray[i] = CreateThread(
 NULL, // default security attributes
 0, // use default stack size
 worker, // thread function name
 pDataArray[i], // argument to thread function
 0, // use default creation flags
 &dwThreadIdArray[i]);// returns the thread identifier
 if (hThreadArray[i] == 0) {
 errorHandler(TEXT("CreateThread"));
 ExitProcess(3);
 }
 }
 WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);
 for (int i = 0; i < MAX_THREADS; ++i) {
 CloseHandle(hThreadArray[i]);
 if (pDataArray[i] != 0) {
 HeapFree(GetProcessHeap(), 0, pDataArray[i]);
 }
 }
 return 0;
}

In the main function, we create our threads in a loop, allocate memory for thread data, and
generate unique data for each thread before starting the thread. Each thread instance is
passed its own unique parameters.

After this, we wait for the threads to finish and rejoin. This is essentially the same as calling
the join function on singular threads with Pthreads--only here, a single function call
suffices.

Finally, each thread handle is closed, and we clean up the memory we allocated earlier.

C++ Multithreading APIs Chapter 10

[329]

Advanced management
Advanced thread management with Windows threads includes jobs, fibers, and thread
pools. Jobs essentially allow one to link multiple threads together into a singular unit,
enabling one to change properties and the status of all these threads in one go.

Fibers are light-weight threads, which run within the context of the thread which creates
them. The creating thread is expected to schedule these fibers itself. Fibers also have Fiber
Local Storage (FLS) akin to TLS.

Finally, the Windows threads API provides a Thread Pool API, allowing one to easily use
such a thread pool in one's application. Each process is also provided with a default thread
pool.

Synchronization
With Windows threads, mutual exclusion and synchronization can be accomplished using
critical sections, mutexes, semaphores, slim reader/writer (SRW) locks, barriers, and
variations.

Synchronization objects include the following:

Name Description

Event Allows for signaling of events between threads and processes using
named objects.

Mutex Used for inter-thread and process synchronization to coordinate access
to shared resources.

Semaphore Standard semaphore counter object, used for inter-thread and process
synchronization.

Waitable timer Timer object usable by multiple processes with multiple usage modes.

Critical section
Critical sections are essentially mutexes which are limited to a single
process, which makes them faster than using a mutex due to lack of
kernel space calls.

Slim reader/writer
lock

SRWs are akin to read/write locks in Pthreads, allowing multiple
readers or a single writer thread to access a shared resource.

Interlocked variable
access

Allows for atomic access to a range of variables which are otherwise not
guaranteed to be atomic. This enables threads to share a variable
without having to use mutexes.

C++ Multithreading APIs Chapter 10

[330]

Condition variables
The implementation of condition variables with Windows threads is fairly straightforward.
It uses a critical section (CRITICAL_SECTION) and condition variable
(CONDITION_VARIABLE) along with the condition variable functions to wait for a specific
condition variable, or to signal it.

Thread local storage
Thread local storage (TLS) with Windows threads is similar to Pthreads in that a central
key (TLS index) has to be created first after which individual threads can use that global
index to store and retrieve local values.

Like with Pthreads, this involves a similar amount of manual memory management, as the
TLS value has to be allocated and deleted by hand.

Boost
Boost threads is a relatively small part of the Boost collection of libraries. It was, however,
used as the basis for what became the multithreading implementation in C++11, similar to
how other Boost libraries ultimately made it, fully or partially, into new C++ standards.
Refer to the C++ threads section in this chapter for details on the multithreading API.

Features missing in the C++11 standard, which are available in Boost threads, include the
following:

Thread groups (like Windows jobs)
Thread interruption (cancellation)
Thread join with timeout
Additional mutual exclusion lock types (improved with C++14)

Unless one absolutely needs such features, or if one cannot use a compiler which supports
the C++11 standard (including STL threads), there is little reason to use Boost threads over
the C++11 implementation.

Since Boost provides wrappers around native OS features, using native C++ threads would
likely reduce overhead depending on the quality of the STL implementation.

POCO

C++ Multithreading APIs Chapter 10

[331]

The POCO library is a fairly lightweight wrapper around operating system functionality. It
does not require a C++11 compatible compiler or any kind of pre-compiling or meta-
compiling.

Thread class
The Thread class is a simple wrapper around an OS-level thread. It takes Worker class
instances which inherit from the Runnable class. The official documentation provides a
basic example of this as follows:

#include "Poco/Thread.h"
#include "Poco/Runnable.h"
#include <iostream>

class HelloRunnable: public Poco::Runnable {
 virtual void run() {
 std::cout << "Hello, world!" << std::endl;
 }
};

int main(int argc, char** argv) {
 HelloRunnable runnable;
 Poco::Thread thread;
 thread.start(runnable);
 thread.join();
 return 0;
}

This preceding code is a very simple "Hello world" example with a worker which only
outputs a string via the standard output. The thread instance is allocated on the stack, and
kept within the scope of the entry function waiting for the worker to finish using the
join() function.

With many of its thread functions, POCO is quite reminiscent of Pthreads, though it does
deviate significantly on points such as configuring a thread and other objects. Being a C++
library, it sets properties using class methods rather than filling in a struct and passing it as
a parameter.

C++ Multithreading APIs Chapter 10

[332]

Thread pool
POCO provides a default thread pool with 16 threads. This number can be changed
dynamically. Like with regular threads, a thread pool requires one to pass a Worker class
instance which inherits from the Runnable class:

#include "Poco/ThreadPool.h"
#include "Poco/Runnable.h"
#include <iostream>

class HelloRunnable: public Poco::Runnable {
 virtual void run() {
 std::cout << "Hello, world!" << std::endl;
 }
};

int main(int argc, char** argv) {
 HelloRunnable runnable;
 Poco::ThreadPool::defaultPool().start(runnable);
 Poco::ThreadPool::defaultPool().joinAll();
 return 0;
}

The worker instance is added to the thread pool, which runs it. The thread pool cleans up
threads which have been idle for a certain time when we add another worker instance,
change the capacity, or call joinAll(). As a result, the single worker thread will join, and
with no active threads left, the application exits.

Thread local storage (TLS)
With POCO, TLS is implemented as a class template, allowing one to use it with almost any
type.

As detailed by the official documentation:

#include "Poco/Thread.h"
#include "Poco/Runnable.h"
#include "Poco/ThreadLocal.h"
#include <iostream>

class Counter: public Poco::Runnable {
 void run() {
 static Poco::ThreadLocal<int> tls;
 for (*tls = 0; *tls < 10; ++(*tls)) {
 std::cout << *tls << std::endl;

C++ Multithreading APIs Chapter 10

[333]

 }
 }
};

int main(int argc, char** argv) {
 Counter counter1;
 Counter counter2;
 Poco::Thread t1;
 Poco::Thread t2;
 t1.start(counter1);
 t2.start(counter2);
 t1.join();
 t2.join();
 return 0;
}

In this preceding worker example, we create a static TLS variable using the ThreadLocal
class template, and define it to contain an integer.

Because we define it as static, it will only be created once per thread. In order to use our TLS
variable, we can use either the arrow (->) or asterisk (*) operator to access its value. In this
example, we increase the TLS value once per cycle of the for loop until the limit has been
reached.

This example demonstrates that both threads will generate their own series of 10 integers,
counting through the same numbers without affecting each other.

Synchronization
The synchronization primitives offered by POCO are listed as follows:

Mutex
FastMutex
Event
Condition
Semaphore
RWLock

C++ Multithreading APIs Chapter 10

[334]

Noticeable here is the FastMutex class. This is generally a non-recursive mutex type, except
on Windows, where it is recursive. This means one should generally assume either type to
be recursive in the sense that the same mutex can be locked multiple times by the same
thread.

One can also use mutexes with the ScopedLock class, which ensures that a mutex which it
encapsulates is released at the end of the current scope.

Events are akin to Windows events, except that they are limited to a single process. They
form the basis of condition variables in POCO.

POCO condition variables function much in the same way as they do with Pthreads and
others, except that they are not subject to spurious wake-ups. Normally condition variables
are subject to these random wake-ups for optimization reasons. By not having to deal with
explicitly having to check whether its condition was met or not upon a condition variable
wait returning less burden is placed on the developer.

C++ threads
The native multithreading support in C++ is covered extensively in Chapter 12, Native C++
Threads and Primitives.

As mentioned earlier in the Boost section of this chapter, the C++ multithreading support is
heavily based on the Boost threads API, using virtually the same headers and names. The
API itself is again reminiscent of Pthreads, though with significant differences when it
comes to, for example, condition variables.

Upcoming chapters will use the C++ threading support exclusively for examples.

Putting it together
Of the APIs covered in this chapter, only the Qt multithreading API can be considered to be
truly high level. Although the other APIs (including C++11) have some higher-level
concepts including thread pools and asynchronous runners which do not require one to use
threads directly, Qt offers a full-blown signal-slot architecture, which makes inter-thread
communication exceptionally easy.

As covered in this chapter, this ease also comes with a cost, namely, that of having to
develop one's application to fit the Qt framework. This may not be acceptable depending on
the project.

C++ Multithreading APIs Chapter 10

[335]

Which of these APIs is the right one depends on one's requirements. It is, however,
relatively fair to say that using straight Pthreads, Windows threads, and kin does not make
a lot of sense when one can use APIs such as C++11 threads, POCO, and so on, which ease
the development process with no significant reduction in performance while also gaining
extensive portability across platforms.

All the APIs are at least somewhat comparable at their core in what they offer in features.

Summary
In this chapter, we looked in some detail at a number of the more popular multithreading
APIs and frameworks, putting them next to each other to get an idea of their strengths and
weaknesses. We went through a number of examples showing how to implement basic
functionality using each of these APIs.

In the next chapter, we will look in detail at how to synchronize threads and communicate
between them.

11
Thread Synchronization and

Communication
While, generally, threads are used to work on a task more or less independently from other
threads, there are many occasions where one would want to pass data between threads, or
even control other threads, such as from a central task scheduler thread. This chapter looks
at how such tasks are accomplished with the C++11 threading API.

Topics covered in this chapter include the following:

Using mutexes, locks, and similar synchronization structures
Using condition variables and signals to control threads
Safely passing and sharing data between threads

Safety first
The central problem with concurrency is that of ensuring safe access to shared resources
even when communicating between threads. There is also the issue of threads being able to
communicate and synchronize themselves.

What makes multithreaded programming such a challenge is to be able to keep track of
each interaction between threads, and to ensure that each and every form of access is
secured while not falling into the trap of deadlocks and data races.

Thread Synchronization and Communication Chapter 11

[337]

In this chapter, we will look at a fairly complex example involving a task scheduler. This is
a form of high-concurrency, high-throughput situation where many different requirements
come together with many potential traps, as we will see in a moment.

The scheduler
A good example of multithreading with a significant amount of synchronization and
communication between threads is the scheduling of tasks. Here, the goal is to accept
incoming tasks and assign them to work threads as quickly as possible.

In this scenario, a number of different approaches are possible. Often one has worker
threads running in an active loop, constantly polling a central queue for new tasks.
Disadvantages of this approach include wasting of processor cycles on the said polling, and
the congestion which forms at the synchronization mechanism used, generally a mutex.
Furthermore, this active polling approach scales very poorly when the number of worker
threads increase.

Ideally, each worker thread would wait idly until it is needed again. To accomplish this, we
have to approach the problem from the other side: not from the perspective of the worker
threads, but from that of the queue. Much like the scheduler of an operating system, it is the
scheduler which is aware of both the tasks which require processing as well as the available
worker threads.

In this approach, a central scheduler instance would accept new tasks and actively assign
them to worker threads. The said scheduler instance may also manage these worker
threads, such as their number and priority, depending on the number of incoming tasks and
the type of task or other properties.

High-level view
At its core, our scheduler or dispatcher is quite simple, functioning like a queue with all of
the scheduling logic built into it, as seen in the following diagram:

Thread Synchronization and Communication Chapter 11

[338]

As one can see from the preceding high-level view, there really isn't much to it. However, as
we'll see in a moment, the actual implementation does have a number of complications.

Implementation
As is usual, we start off with the main function, contained in main.cpp:

#include "dispatcher.h"
#include "request.h"

#include <iostream>
#include <string>
#include <csignal>
#include <thread>
#include <chrono>

using namespace std;

sig_atomic_t signal_caught = 0;
mutex logMutex;

The custom headers we include are those for our dispatcher implementation, as well as the
request class that we'll use.

Thread Synchronization and Communication Chapter 11

[339]

Globally, we define an atomic variable to be used with the signal handler, as well as a
mutex which will synchronize the output (on the standard output) from our logging
method:

void sigint_handler(int sig) {
 signal_caught = 1;
}

Our signal handler function (for SIGINT signals) simply sets the global atomic variable that
we defined earlier:

void logFnc(string text) {
 logMutex.lock();
 cout << text << "n";
 logMutex.unlock();
}

In our logging function, we use the global mutex to ensure that writing to the standard
output is synchronized:

int main() {
 signal(SIGINT, &sigint_handler);
 Dispatcher::init(10);

In the main function, we install the signal handler for SIGINT to allow us to interrupt the
execution of the application. We also call the static init() function on the Dispatcher
class to initialize it:

 cout << "Initialised.n";
 int cycles = 0;
 Request* rq = 0;
 while (!signal_caught && cycles < 50) {
 rq = new Request();
 rq->setValue(cycles);
 rq->setOutput(&logFnc);
 Dispatcher::addRequest(rq);
 cycles++;
 }

Next, we set up the loop in which we will create new requests. In each cycle, we create a
new Request instance, and use its setValue() function to set an integer value (current
cycle number). We also set our logging function on the request instance before adding this
new request to Dispatcher using its static addRequest() function.

Thread Synchronization and Communication Chapter 11

[340]

This loop will continue until the maximum number of cycles have been reached, or SIGINT
has been signaled using Ctrl+C or similar:

 this_thread::sleep_for(chrono::seconds(5));
 Dispatcher::stop();
 cout << "Clean-up done.n";
 return 0;
}

Finally, we wait for 5 seconds using the thread's sleep_for() function, and the
chrono::seconds() function from the chrono STL header.

We also call the stop() function on Dispatcher before returning.

Request class
A request for Dispatcher always derives from the pure virtual AbstractRequest class:

#pragma once
#ifndef ABSTRACT_REQUEST_H
#define ABSTRACT_REQUEST_H

class AbstractRequest {
 //
 public:
 virtual void setValue(int value) = 0;
 virtual void process() = 0;
 virtual void finish() = 0;
};
#endif

This AbstractRequest class defines an API with three functions, which a deriving class
always has to implement. Out of these, the process() and finish() functions are the
most generic and likely to be used in any practical implementation. The setValue()
function is specific to this demonstration implementation, and would likely be adapted or
extended to fit a real-life scenario.

The advantage of using an abstract class as the basis for a request is that it allows the
Dispatcher class to handle many different types of requests as long as they all adhere to
this same basic API.

Thread Synchronization and Communication Chapter 11

[341]

Using this abstract interface, we implement a basic Request class as follows:

#pragma once
#ifndef REQUEST_H
#define REQUEST_H

#include "abstract_request.h"

#include <string>

using namespace std;

typedef void (*logFunction)(string text);

class Request : public AbstractRequest {
 int value;
 logFunction outFnc;
 public: void setValue(int value) { this->value = value; }
 void setOutput(logFunction fnc) { outFnc = fnc; }
 void process();
 void finish();
};
#endif

In its header file, we first define the function pointer's format. After this, we implement the
request API, and add the setOutput() function to the base API, which accepts a function
pointer for logging. Both setter functions merely assign the provided parameter to their
respective private class members.

Next, the class function implementations are given as follows:

#include "request.h"
void Request::process() {
 outFnc("Starting processing request " + std::to_string(value) + "...");
 //
}
void Request::finish() {
 outFnc("Finished request " + std::to_string(value));
}

Both of these implementations are very basic; they merely use the function pointer to
output a string indicating the status of the worker thread.

In a practical implementation, one would add the business logic to the process() function
with the finish() function containing any functionality to finish up a request such as
writing a map into a string.

Thread Synchronization and Communication Chapter 11

[342]

Worker class
Next is the Worker class. This contains the logic which will be called by Dispatcher in
order to process a request.

#pragma once
#ifndef WORKER_H
#define WORKER_H

#include "abstract_request.h"

#include <condition_variable>
#include <mutex>

using namespace std;

class Worker {
 condition_variable cv;
 mutex mtx;
 unique_lock<mutex> ulock;
 AbstractRequest* request;
 bool running;
 bool ready;
 public:
 Worker() { running = true; ready = false; ulock =
unique_lock<mutex>(mtx); }
 void run();
 void stop() { running = false; }
 void setRequest(AbstractRequest* request) { this->request = request;
ready = true; }
 void getCondition(condition_variable* &cv);
};
#endif

Whereas the adding of a request to Dispatcher does not require any special logic, the
Worker class does require the use of condition variables to synchronize itself with the
dispatcher. For the C++11 threads API, this requires a condition variable, a mutex, and a
unique lock.

The unique lock encapsulates the mutex, and will ultimately be used with the condition
variable as we will see in a moment.

Beyond this, we define methods to start and stop the worker, to set a new request for
processing, and to obtain access to its internal condition variable.

Thread Synchronization and Communication Chapter 11

[343]

Moving on, the rest of the implementation is written as follows:

#include "worker.h"
#include "dispatcher.h"

#include <chrono>

using namespace std;

void Worker::getCondition(condition_variable* &cv) {
 cv = &(this)->cv;
}

void Worker::run() {
 while (running) {
 if (ready) {
 ready = false;
 request->process();
 request->finish();
 }
 if (Dispatcher::addWorker(this)) {
 // Use the ready loop to deal with spurious wake-ups.
 while (!ready && running) {
 if (cv.wait_for(ulock, chrono::seconds(1)) ==
cv_status::timeout) {
 // We timed out, but we keep waiting unless
 // the worker is
 // stopped by the dispatcher.
 }
 }
 }
 }
}

Beyond the getter function for the condition variable, we define the run() function,
which dispatcher will run for each worker thread upon starting it.

Its main loop merely checks that the stop() function hasn't been called yet, which would
have set the running Boolean value to false, and ended the work thread. This is used by
Dispatcher when shutting down, allowing it to terminate the worker threads. Since
Boolean values are generally atomic, setting and checking can be done simultaneously
without risk or requiring a mutex.

Thread Synchronization and Communication Chapter 11

[344]

Moving on, the check of the ready variable is to ensure that a request is actually waiting
when the thread is first run. On the first run of the worker thread, no request will be
waiting, and thus, attempting to process one would result in a crash. Upon Dispatcher
setting a new request, this Boolean variable will be set to true.

If a request is waiting, the ready variable will be set to false again, after which the request
instance will have its process() and finish() functions called. This will run the business
logic of the request on the worker thread's thread, and finalize it.

Finally, the worker thread adds itself to the dispatcher using its static addWorker()
function. This function will return false if no new request is available, and cause the
worker thread to wait until a new request has become available. Otherwise, the worker
thread will continue with the processing of the new request that Dispatcher will have set
on it.

If asked to wait, we enter a new loop. This loop will ensure that when the condition variable
is woken up, it is because we got signaled by Dispatcher (ready variable set to true), and
not because of a spurious wake-up.

Last of all, we enter the actual wait() function of the condition variable using the unique
lock instance we created before along with a timeout. If a timeout occurs, we can either
terminate the thread, or keep waiting. Here, we choose to do nothing and just re-enter the
waiting loop.

Dispatcher
As the last item, we have the Dispatcher class itself:

 #pragma once
 #ifndef DISPATCHER_H
 #define DISPATCHER_H

 #include "abstract_request.h"
 #include "worker.h"

 #include <queue>
 #include <mutex>
 #include <thread>
 #include <vector>

 using namespace std;

 class Dispatcher {

Thread Synchronization and Communication Chapter 11

[345]

 static queue<AbstractRequest*> requests;
 static queue<Worker*> workers;
 static mutex requestsMutex;
 static mutex workersMutex;
 static vector<Worker*> allWorkers;
 static vector<thread*> threads;
 public:
 static bool init(int workers);
 static bool stop();
 static void addRequest(AbstractRequest* request);
 static bool addWorker(Worker* worker);
 };
 #endif

Most of this will look familiar. As you will have surmised by now, this is a fully static class.

Moving on, its implementation is as follows:

 #include "dispatcher.h"

 #include <iostream>
 using namespace std;

 queue<AbstractRequest*> Dispatcher::requests;
 queue<Worker*> Dispatcher::workers;
 mutex Dispatcher::requestsMutex;
 mutex Dispatcher::workersMutex;
 vector<Worker*> Dispatcher::allWorkers;
 vector<thread*> Dispatcher::threads;

 bool Dispatcher::init(int workers) {
 thread* t = 0;
 Worker* w = 0;
 for (int i = 0; i < workers; ++i) {
 w = new Worker;
 allWorkers.push_back(w);
 t = new thread(&Worker::run, w);
 threads.push_back(t);
 }
 return true;
 }

Thread Synchronization and Communication Chapter 11

[346]

After setting up the static class members, the init() function is defined. It starts the
specified number of worker threads keeping a reference to each worker and thread instance
in their respective vector data structures:

 bool Dispatcher::stop() {
 for (int i = 0; i < allWorkers.size(); ++i) {
 allWorkers[i]->stop();
 }
 cout << "Stopped workers.n";
 for (int j = 0; j < threads.size(); ++j) {
 threads[j]->join();
 cout << "Joined threads.n";
 }
 }

In the stop() function, each worker instance has its stop() function called. This will cause
each worker thread to terminate, as we saw earlier in the Worker class description.

Finally, we wait for each thread to join (that is, finish) prior to returning:

 void Dispatcher::addRequest(AbstractRequest* request) {
 workersMutex.lock();
 if (!workers.empty()) {
 Worker* worker = workers.front();
 worker->setRequest(request);
 condition_variable* cv;
 worker->getCondition(cv);
 cv->notify_one();
 workers.pop();
 workersMutex.unlock();
 }
 else {
 workersMutex.unlock();
 requestsMutex.lock();
 requests.push(request);
 requestsMutex.unlock();
 }
 }

The addRequest() function is where things get interesting. In this function, a new request
is added. What happens next depends on whether a worker thread is waiting for a new
request or not. If no worker thread is waiting (worker queue is empty), the request is added
to the request queue.

The use of mutexes ensures that the access to these queues occurs safely, as the worker
threads will simultaneously try to access both queues as well.

Thread Synchronization and Communication Chapter 11

[347]

An important gotcha to note here is the possibility of a deadlock. That is, a situation where
two threads will hold the lock on a resource, with the second thread waiting for the first one
to release its lock before releasing its own. Every situation where more than one mutex is
used in a single scope holds this potential.

In this function, the potential for a deadlock lies in releasing of the lock on the workers
mutex, and when the lock on the requests mutex is obtained. In the case that this function
holds the workers mutex and tries to obtain the requests lock (when no worker thread is
available), there is a chance that another thread holds the requests mutex (looking for new
requests to handle) while simultaneously trying to obtain the workers mutex (finding no
requests and adding itself to the workers queue).

The solution here is simple: release a mutex before obtaining the next one. In the situation
where one feels that more than one mutex lock has to be held, it is paramount to examine
and test one's code for potential deadlocks. In this particular situation, the workers mutex
lock is explicitly released when it is no longer needed, or before the requests mutex lock is
obtained, thus preventing a deadlock.

Another important aspect of this particular section of code is the way it signals a worker
thread. As one can see in the first section of the if/else block, when the workers queue is not
empty, a worker is fetched from the queue, has the request set on it, and then has its
condition variable referenced and signaled, or notified.

Internally, the condition variable uses the mutex we handed it before in the Worker class
definition to guarantee only atomic access to it. When the notify_one() function
(generally called signal() in other APIs) is called on the condition variable, it will notify
the first thread in the queue of threads waiting for the condition variable to return and
continue.

In the Worker class run() function, we would be waiting for this notification event. Upon
receiving it, the worker thread would continue and process the new request. The thread
reference will then be removed from the queue until it adds itself again once it is done
processing the request:

 bool Dispatcher::addWorker(Worker* worker) {
 bool wait = true;
 requestsMutex.lock();
 if (!requests.empty()) {
 AbstractRequest* request = requests.front();
 worker->setRequest(request);
 requests.pop();
 wait = false;
 requestsMutex.unlock();
 }

Thread Synchronization and Communication Chapter 11

[348]

 else {
 requestsMutex.unlock();
 workersMutex.lock();
 workers.push(worker);
 workersMutex.unlock();
 }
 return wait;
 }

With this last function, a worker thread will add itself to the queue once it is done
processing a request. It is similar to the earlier function in that the incoming worker is first
actively matched with any request which may be waiting in the request queue. If none are
available, the worker is added to the worker queue.

It is important to note here that we return a Boolean value which indicates whether the
calling thread should wait for a new request, or whether it already has received a new
request while trying to add itself to the queue.

While this code is less complex than that of the previous function, it still holds the same
potential deadlock issue due to the handling of two mutexes within the same scope. Here,
too, we first release the mutex we hold before obtaining the next one.

Makefile
The makefile for this Dispatcher example is very basic again--it gathers all C++ source files
in the current folder, and compiles them into a binary using g++:

 GCC := g++

 OUTPUT := dispatcher_demo
 SOURCES := $(wildcard *.cpp)
 CCFLAGS := -std=c++11 -g3

 all: $(OUTPUT)
 $(OUTPUT):
 $(GCC) -o $(OUTPUT) $(CCFLAGS) $(SOURCES)
 clean:
 rm $(OUTPUT)
 .PHONY: all

Thread Synchronization and Communication Chapter 11

[349]

Output
After compiling the application, running it produces the following output for the 50 total
requests:

 $./dispatcher_demo.exe
 Initialised.
 Starting processing request 1...
 Starting processing request 2...
 Finished request 1
 Starting processing request 3...
 Finished request 3
 Starting processing request 6...
 Finished request 6
 Starting processing request 8...
 Finished request 8
 Starting processing request 9...
 Finished request 9
 Finished request 2
 Starting processing request 11...
 Finished request 11
 Starting processing request 12...
 Finished request 12
 Starting processing request 13...
 Finished request 13
 Starting processing request 14...
 Finished request 14
 Starting processing request 7...
 Starting processing request 10...
 Starting processing request 15...
 Finished request 7
 Finished request 15
 Finished request 10
 Starting processing request 16...
 Finished request 16
 Starting processing request 17...
 Starting processing request 18...
 Starting processing request 0...

At this point, we can already clearly see that even with each request taking almost no time
to process, the requests are clearly being executed in parallel. The first request (request 0)
only starts being processed after the sixteenth request, while the second request already
finishes after the ninth request, long before this.

Thread Synchronization and Communication Chapter 11

[350]

The factors which determine which thread, and thus, which request is processed first
depends on the OS scheduler and hardware-based scheduling as described in chapter 9,
Multithreading Implementation on the Processor and OS. This clearly shows just how few
assumptions can be made about how a multithreaded application will be executed even on
a single platform.

 Starting processing request 5...
 Finished request 5
 Starting processing request 20...
 Finished request 18
 Finished request 20
 Starting processing request 21...
 Starting processing request 4...
 Finished request 21
 Finished request 4

In the preceding code, the fourth and fifth requests also finish in a rather delayed fashion.

 Starting processing request 23...
 Starting processing request 24...
 Starting processing request 22...
 Finished request 24
 Finished request 23
 Finished request 22
 Starting processing request 26...
 Starting processing request 25...
 Starting processing request 28...
 Finished request 26
 Starting processing request 27...
 Finished request 28
 Finished request 27
 Starting processing request 29...
 Starting processing request 30...
 Finished request 30
 Finished request 29
 Finished request 17
 Finished request 25
 Starting processing request 19...
 Finished request 0

Thread Synchronization and Communication Chapter 11

[351]

At this point, the first request finally finishes. This may indicate that the initialization time
for the first request will always be delayed as compared to the successive requests. Running
the application multiple times can confirm this. It's important that if the order of processing
is relevant, this randomness does not negatively affect one's application.

 Starting processing request 33...
 Starting processing request 35...
 Finished request 33
 Finished request 35
 Starting processing request 37...
 Starting processing request 38...
 Finished request 37
 Finished request 38
 Starting processing request 39...
 Starting processing request 40...
 Starting processing request 36...
 Starting processing request 31...
 Finished request 40
 Finished request 39
 Starting processing request 32...
 Starting processing request 41...
 Finished request 32
 Finished request 41
 Starting processing request 42...
 Finished request 31
 Starting processing request 44...
 Finished request 36
 Finished request 42
 Starting processing request 45...
 Finished request 44
 Starting processing request 47...
 Starting processing request 48...
 Finished request 48
 Starting processing request 43...
 Finished request 47
 Finished request 43
 Finished request 19
 Starting processing request 34...
 Finished request 34
 Starting processing request 46...
 Starting processing request 49...
 Finished request 46
 Finished request 49
 Finished request 45

Thread Synchronization and Communication Chapter 11

[352]

Request 19 also became fairly delayed, showing once again just how unpredictable a
multithreaded application can be. If we were processing a large dataset in parallel here,
with chunks of data in each request, we might have to pause at some points to account for
these delays, as otherwise, our output cache might grow too large.

As doing so would negatively affect an application's performance, one might have to look
at low-level optimizations, as well as the scheduling of threads on specific processor cores
in order to prevent this from happening.

 Stopped workers.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Clean-up done.

All 10 worker threads which were launched in the beginning terminate here as we call the
stop() function of the Dispatcher.

Sharing data
In the example given in this chapter, we saw how to share information between threads in
addition to synchronizing threads--this in the form of the requests we passed from the main
thread into the dispatcher from which each request gets passed on to a different thread.

The essential idea behind the sharing of data between threads is that the data to be shared
exists somewhere in a way which is accessible to two threads or more. After this, we have to
ensure that only one thread can modify the data, and that the data does not get modified
while it's being read. Generally, we would use mutexes or similar to ensure this.

Thread Synchronization and Communication Chapter 11

[353]

Using r/w-locks
Read-write locks are a possible optimization here, because they allow multiple threads to
read simultaneously from a single data source. If one has an application in which multiple
worker threads read the same information repeatedly, it would be more efficient to use
read-write locks than basic mutexes, because the attempts to read the data will not block the
other threads.

A read-write lock can thus be used as a more advanced version of a mutex, namely, as one
which adapts its behavior to the type of access. Internally, it builds on mutexes (or
semaphores) and condition variables.

Using shared pointers
First available via the Boost library and introduced natively with C++11, shared pointers are
an abstraction of memory management using reference counting for heap-allocated
instances. They are partially thread-safe in that creating multiple shared pointer instances
can be created, but the referenced object itself is not thread-safe.

Depending on the application, this may suffice, however. To make them properly thread-
safe, one can use atomics. We will look at this in more detail in Chapter 15, Atomic
Operations - Working with the Hardware.

Summary
In this chapter, we looked at how to pass data between threads in a safe manner as part of a
fairly complex scheduler implementation. We also looked at the resulting asynchronous
processing of the said scheduler, and considered some potential alternatives and
optimizations for passing data between threads.

At this point, you should be able to safely pass data between threads, as well as synchronize
access to other shared resources.

In the next chapter, we will look at native C++ threading and the primitives API.

12
Native C++ Threads and

Primitives
Starting with the 2011 revision of the C++ standard, a multithreading API is officially part of
the C++ Standard Template Library (STL). This means that threads, thread primitives, and
synchronization mechanisms are available to any new C++ application without the need to
install a third-party library, or to rely on the operating system's APIs.

This chapter looks at the multithreading features available in this native API up to the
features added by the 2014 standard. A number of examples will be shown to use these
features in detail.

Topics in this chapter include the following:

The features covered by the multithreading API in C++'s STL
Detailed examples of the usage of each feature

The STL threading API
In Chapter 10, C++ Multithreading APIs, we looked at the various APIs that are available to
us when developing a multithreaded C++ application. In Chapter 11, Thread Synchronization
and Communication, we implemented a multithreaded scheduler application using the native
C++ threading API.

Boost.Thread API
By including the <thread> header from the STL, we gain access to the std::thread class
with facilities for mutual exclusion (mutex, and so on) provided by further headers. This
API is, essentially, the same as the multithreading API from Boost.Thread, the main

Native C++ Threads and Primitives Chapter 12

[355]

differences being more control over threads (join with timeout, thread groups, and thread
interruption), and a number of additional lock types implemented on top of primitives such
as mutexes and condition variables.

In general, Boost.Thread should be used as a fall back for when C++11 support isn't
present, or when these additional Boost.Thread features are a requirement of one's
application, and not easily added otherwise. Since Boost.Thread builds upon the available
(native) threading support, it's also likely to add overhead as compared to the C++11 STL
implementation.

The 2011 standard
The 2011 revision to the C++ standard (commonly referred to as C++11) adds a wide range
of new features, the most crucial one being the addition of native multithreading support,
which adds the ability to create, manage, and use threads within C++ without the use of
third-party libraries.

This standard standardizes the memory model for the core language to allow multiple
threads to coexist as well as enables features such as thread-local storage. Initial support
was added in the C++03 standard, but the C++11 standard is the first to make full use of this.

As noted earlier, the actual threading API itself is implemented in the STL. One of the goals
for the C++11 (C++0x) standard was to have as many of the new features as possible in the
STL, and not as part of the core language. As a result, in order to use threads, mutexes, and
kin, one has to first include the relevant STL header.

The standards committee which worked on the new multithreading API each had their own
sets of goals, and as a result, a few features which were desired by some did not make it
into the final standard. This includes features such as terminating another thread, or thread
cancellation, which was strongly opposed by the POSIX representatives on account of
canceling threads likely to cause issues with resource clean-up in the thread being
destroyed.

Native C++ Threads and Primitives Chapter 12

[356]

Following are the features provided by this API implementation:

std::thread

std::mutex

std::recursive_mutex

std::condition_variable

std::condition_variable_any

std::lock_guard

std::unique_lock

std::packaged_task

std::async

std::future

In a moment, we will look at detailed examples of each of these features. First we will see
what the next revisions of the C++ standard have added to this initial set.

C++14
The 2014 standard adds the following features to the standard library:

std::shared_lock

std::shared_timed_mutex

Both of these are defined in the <shared_mutex> STL header. Since locks are based on
mutexes, a shared lock is, therefore, reliant on a shared mutex.

Thread class
The thread class is the core of the entire threading API; it wraps the underlying operating
system's threads, and provides the functionality we need to start and stop threads.

This functionality is made accessible by including the <thread> header.

Native C++ Threads and Primitives Chapter 12

[357]

Basic use
Upon creating a thread it is started immediately:

#include <thread>

void worker() {
 // Business logic.
}

int main () {
 std::thread t(worker);
 return 0;
}

This preceding code would start the thread to then immediately terminate the application,
because we are not waiting for the new thread to finish executing.

To do this properly, we need to wait for the thread to finish, or rejoin as follows:

#include <thread>

void worker() {
 // Business logic.
}

int main () {
 std::thread t(worker);
 t.join();
 return 0;
}

This last code would execute, wait for the new thread to finish, and then return.

Passing parameters
It's also possible to pass parameters to a new thread. These parameter values have to be
move constructible, which means that it's a type which has a move or copy constructor
(called for rvalue references). In practice, this is the case for all basic types and most (user-
defined) classes:

#include <thread>
#include <string>

void worker(int n, std::string t) {

Native C++ Threads and Primitives Chapter 12

[358]

 // Business logic.
}

int main () {
 std::string s = "Test";
 int i = 1;
 std::thread t(worker, i, s);
 t.join();
 return 0;
}

In this preceding code, we pass an integer and string to the thread function. This function
will receive copies of both variables. When passing references or pointers, things get more
complicated with life cycle issues, data races, and such becoming a potential problem.

Return value
Any value returned by the function passed to the thread class constructor is ignored. To
return information to the thread which created the new thread, one has to use inter-thread
synchronization mechanisms (like mutexes) and some kind of a shared variable.

Moving threads
The 2011 standard adds std::move to the <utility> header. Using this template method,
one can move resources between objects. This means that it can also move thread instances:

#include <thread>
#include <string>
#include <utility>

void worker(int n, string t) {
 // Business logic.
}

int main () {
 std::string s = "Test";
 std::thread t0(worker, 1, s);
 std::thread t1(std::move(t0));
 t1.join();
 return 0;
}

Native C++ Threads and Primitives Chapter 12

[359]

In this version of the code, we create a thread before moving it to another thread. Thread 0
thus ceases to exist (since it instantly finishes), and the execution of the thread function
resumes in the new thread that we create.

As a result of this, we do not have to wait for the first thread to re join, but only for the
second one.

Thread ID
Each thread has an identifier associated with it. This ID, or handle, is a unique identifier
provided by the STL implementation. It can be obtained by calling the get_id() function
of the thread class instance, or by calling std::this_thread::get_id() to get the ID of
the thread calling the function:

#include <iostream>
 #include <thread>
 #include <chrono>
 #include <mutex>

 std::mutex display_mutex;

 void worker() {
 std::thread::id this_id = std::this_thread::get_id();

 display_mutex.lock();
 std::cout << "thread " << this_id << " sleeping...n";
 display_mutex.unlock();

 std::this_thread::sleep_for(std::chrono::seconds(1));
 }

 int main() {
 std::thread t1(worker);
 std::thread::id t1_id = t1.get_id();

 std::thread t2(worker);
 std::thread::id t2_id = t2.get_id();

 display_mutex.lock();
 std::cout << "t1's id: " << t1_id << "n";
 std::cout << "t2's id: " << t2_id << "n";
 display_mutex.unlock();

 t1.join();
 t2.join();

Native C++ Threads and Primitives Chapter 12

[360]

 return 0;
 }

This code would produce output similar to this:

t1's id: 2
t2's id: 3
thread 2 sleeping...
thread 3 sleeping...

Here, one sees that the internal thread ID is an integer (std::thread::id type), relative to
the initial thread (ID 1). This is comparable to most native thread IDs such as those for
POSIX. These can also be obtained using native_handle(). That function will return
whatever is the underlying native thread handle. It is particularly useful when one wishes
to use a very specific PThread or Win32 thread functionality that's not available in the STL
implementation.

Sleeping
It's possible to delay the execution of a thread (sleep) using either of two methods. One is
sleep_for(), which delays execution by at least the specified duration, but possibly
longer:

#include <iostream>
#include <chrono>
#include <thread>
 using namespace std::chrono_literals;

 typedef std::chrono::time_point<std::chrono::high_resolution_clock>
timepoint;
int main() {
 std::cout << "Starting sleep.n";

 timepoint start = std::chrono::high_resolution_clock::now();

 std::this_thread::sleep_for(2s);

 timepoint end = std::chrono::high_resolution_clock::now();
 std::chrono::duration<double, std::milli> elapsed = end -
 start;
 std::cout << "Slept for: " << elapsed.count() << " msn";
}

This preceding code shows how to sleep for roughly 2 seconds, measuring the exact
duration using a counter with the highest precision possible on the current OS.

Native C++ Threads and Primitives Chapter 12

[361]

Note that we are able to specify the number of seconds directly, with the seconds post-fix.
This is a C++14 feature that got added to the <chrono> header. For the C++11 version, one
has to create an instance of std::chrono::seconds and pass it to the sleep_for() function.

The other method is sleep_until(), which takes a single parameter of type
std::chrono::time_point<Clock, Duration>. Using this function, one can set a
thread to sleep until the specified time point has been reached. Due to the operating
system's scheduling priorities, this wake-up time might not be the exact time as specified.

Yield
One can indicate to the OS that the current thread can be rescheduled so that other threads
can run instead. For this, one uses the std::this_thread::yield() function. The exact
result of this function depends on the underlying OS implementation and its scheduler. In
the case of a FIFO scheduler, it's likely that the calling thread will be put at the back of the
queue.

This is a highly specialized function, with special use cases. It should not be used without
first validating its effect on the application's performance.

Detach
After starting a thread, one can call detach() on the thread object. This effectively detaches
the new thread from the calling thread, meaning that the former will continue executing
even after the calling thread has exited.

Swap
Using swap(), either as a standalone method or as function of a thread instance, one can
exchange the underlying thread handles of thread objects:

#include <iostream>
#include <thread>
#include <chrono>
void worker() {
 std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main() {
 std::thread t1(worker);
 std::thread t2(worker);

Native C++ Threads and Primitives Chapter 12

[362]

 std::cout << "thread 1 id: " << t1.get_id() << "n";
 std::cout << "thread 2 id: " << t2.get_id() << "n";
 std::swap(t1, t2);
 std::cout << "Swapping threads..." << "n";

 std::cout << "thread 1 id: " << t1.get_id() << "n";
 std::cout << "thread 2 id: " << t2.get_id() << "n";
 t1.swap(t2);
 std::cout << "Swapping threads..." << "n";

 std::cout << "thread 1 id: " << t1.get_id() << "n";
 std::cout << "thread 2 id: " << t2.get_id() << "n";
 t1.join();
 t2.join();
}

The possible output from this code might look like the following:

thread 1 id: 2
thread 2 id: 3
Swapping threads...
thread 1 id: 3
thread 2 id: 2
Swapping threads...
thread 1 id: 2
thread 2 id: 3

The effect of this is that the state of each thread is swapped with that of the other thread,
essentially exchanging their identities.

Mutex
The <mutex> header contains multiple types of mutexes and locks. The mutex type is the
most commonly used type, and provides the basic lock/unlock functionality without any
further complications.

Basic use
At its core, the goal of a mutex is to exclude the possibility of simultaneous access so as to
prevent data corruption, and to prevent crashes due to the use of non-thread-safe routines.

Native C++ Threads and Primitives Chapter 12

[363]

An example of where one would need to use a mutex is the following code:

#include <iostream>
#include <thread>
void worker(int i) {
 std::cout << "Outputting this from thread number: " << i << "n";
}
int main() {
 std::thread t1(worker, 1);
 std::thread t2(worker, 2);
 t1.join();
 t2.join();

 return 0;
}

If one were to try and run this preceding code as-is, one would notice that the text output
from both threads would be mashed together instead of being output one after the other.
The reason for this is that the standard output (whether C or C++-style) is not thread-safe.
Though the application will not crash, the output will be a jumble.

The fix for this is simple, and is given as follows:

#include <iostream>
#include <thread>
#include <mutex>

std::mutex globalMutex;
void worker(int i) {
 globalMutex.lock();
 std::cout << "Outputting this from thread number: " << i << "n";
 globalMutex.unlock();
}
int main() {
 std::thread t1(worker, 1);
 std::thread t2(worker, 2);
 t1.join();
 t2.join();

 return 0;
}

Native C++ Threads and Primitives Chapter 12

[364]

In this situation, each thread would first need to obtain access to the mutex object. Since
only one thread can have access to the mutex object, the other thread will end up waiting
for the first thread to finish writing to the standard output, and the two strings will appear
one after the other, as intended.

Non-blocking locking
It's possible to not want the thread to block and wait for the mutex object to become
available: for example, when one just wants to know whether a request is already being
handled by another thread, and there's no use in waiting for it to finish.

For this, a mutex comes with the try_lock() function which does exactly that.

In the following example, we can see two threads trying to increment the same counter, but
with one incrementing its own counter whenever it fails to immediately obtain access to the
shared counter:

#include <chrono>
#include <mutex>
#include <thread>
#include <iostream>
std::chrono::milliseconds interval(50);
std::mutex mutex;
int shared_counter = 0;
int exclusive_counter = 0;
void worker0() {
 std::this_thread::sleep_for(interval);
 while (true) {
 if (mutex.try_lock()) {
 std::cout << "Shared (" << job_shared << ")n";
 mutex.unlock();
 return;
 }
 else {
 ++exclusive_counter;
 std::cout << "Exclusive (" << exclusive_counter
<< ")n";
 std::this_thread::sleep_for(interval);
 }
 }
}
void worker1() {
 mutex.lock();
 std::this_thread::sleep_for(10 * interval);
 ++shared_counter;

Native C++ Threads and Primitives Chapter 12

[365]

 mutex.unlock();
}
int main() {
 std::thread t1(worker0);
 std::thread t2(worker1);
 t1.join();
 t2.join();
}

Both threads in this preceding example run a different worker function, yet both have in
common the fact that they sleep for a period of time, and try to acquire the mutex for the
shared counter when they wake up. If they do, they'll increase the counter, but only the first
worker will output this fact.

The first worker also logs when it did not get the shared counter, but only increased its
exclusive counter. The resulting output might look something like this:

Exclusive (1)
Exclusive (2)
Exclusive (3)
Shared (1)
Exclusive (4)

Timed mutex
A timed mutex is a regular mutex type, but with a number of added functions which give
one control over the time period during which it should be attempted to obtain the lock,
that is, try_lock_for and try_lock_until.

The former tries to obtain the lock during the specified time period (std::chrono object)
before returning the result (true or false). The latter will wait until a specific point in the
future before returning the result.

The use of these functions mostly lies in offering a middle path between the blocking (lock)
and non-blocking (try_lock) methods of the regular mutex. One may want to wait for a
number of tasks using only a single thread without knowing when a task will become
available, or a task may expire at a certain point in time at which waiting for it makes no
sense any more.

Native C++ Threads and Primitives Chapter 12

[366]

Lock guard
A lock guard is a simple mutex wrapper, which handles the obtaining of a lock on the
mutex object as well as its release when the lock guard goes out of scope. This is a helpful
mechanism to ensure that one does not forget to release a mutex lock, and to help reduce
clutter in one's code when one has to release the same mutex in multiple locations.

While refactoring of, for example, big if/else blocks can reduce the instances in which the
release of a mutex lock is required, it's much easier to just use this lock guard wrapper and
not worry about such details:

#include <thread>
#include <mutex>
#include <iostream>
int counter = 0;
std::mutex counter_mutex;
void worker() {
 std::lock_guard<std::mutex> lock(counter_mutex);
 if (counter == 1) { counter += 10; }
 else if (counter >= 10) { counter += 15; }
 else if (counter >= 50) { return; }
 else { ++counter; }
 std::cout << std::this_thread::get_id() << ": " << counter << 'n';
}
int main() {
 std::cout << __func__ << ": " << counter << 'n';
 std::thread t1(worker);
 std::thread t2(worker);
 t1.join();
 t2.join();
 std::cout << __func__ << ": " << counter << 'n';
}

In the preceding example, we see that we have a small if/else block with one condition
leading to the worker function immediately returning. Without a lock guard, we would
have to make sure that we also unlocked the mutex in this condition before returning from
the function.

With the lock guard, however, we do not have to worry about such details, which allows us
to focus on the business logic instead of worrying about mutex management.

Native C++ Threads and Primitives Chapter 12

[367]

Unique lock
The unique lock is a general-purpose mutex wrapper. It's similar to the timed mutex, but
with additional features, primary of which is the concept of ownership. Unlike other lock
types, a unique lock does not necessarily own the mutex it wraps if it contains any at all.
Mutexes can be transferred between unique lock instances along with ownership of the said
mutexes using the swap() function.

Whether a unique lock instance has ownership of its mutex, and whether it's locked or not,
is first determined when creating the lock, as can be seen with its constructors. For example:

std::mutex m1, m2, m3;
std::unique_lock<std::mutex> lock1(m1, std::defer_lock);
std::unique_lock<std::mutex> lock2(m2, std::try_lock);
std::unique_lock<std::mutex> lock3(m3, std::adopt_lock);

The first constructor in the last code does not lock the assigned mutex (defers). The second
attempts to lock the mutex using try_lock(). Finally, the third constructor assumes that it
already owns the provided mutex.

In addition to these, other constructors allow the functionality of a timed mutex. That is, it
will wait for a time period until a time point has been reached, or until the lock has been
acquired.

Finally, the association between the lock and the mutex is broken by using the release()
function, and a pointer is returned to the mutex object. The caller is then responsible for the
releasing of any remaining locks on the mutex and for the further handling of it.

This type of lock isn't one which one will tend to use very often on its own, as it's extremely
generic. Most of the other types of mutexes and locks are significantly less complex, and
likely to fulfil all the needs in 99% of all cases. The complexity of a unique lock is, thus, both
a benefit and a risk.

It is, however, commonly used by other parts of the C++11 threading API, such as condition
variables, as we will see in a moment.

One area where a unique lock may be useful is as a scoped lock, allowing one to use scoped
locks without having to rely on the native scoped locks in the C++17 standard. See this
example:

#include <mutex>
std::mutex my_mutex
int count = 0;
int function() {

Native C++ Threads and Primitives Chapter 12

[368]

 std::unique_lock<mutex> lock(my_mutex);
 count++;
}

As we enter the function, we create a new unique_lock with the global mutex instance. The
mutex is locked at this point, after which we can perform any critical operations.

When the function scope ends, the destructor of the unique_lock is called, which results in
the mutex getting unlocked again.

Scoped lock
First introduced in the 2017 standard, the scoped lock is a mutex wrapper which obtains
access to (locks) the provided mutex, and ensures it is unlocked when the scoped lock goes
out of scope. It differs from a lock guard in that it is a wrapper for not one, but multiple
mutexes.

This can be useful when one deals with multiple mutexes in a single scope. One reason to
use a scoped lock is to avoid accidentally introducing deadlocks and other unpleasant
complications with, for example, one mutex being locked by the scoped lock, another lock
still being waited upon, and another thread instance having the exactly opposite situation.

One property of a scoped lock is that it tries to avoid such a situation, theoretically making
this type of lock deadlock-safe.

Recursive mutex
The recursive mutex is another subtype of mutex. Even though it has exactly the same
functions as a regular mutex, it allows the calling thread, which initially locked the mutex,
to lock the same mutex repeatedly. By doing this, the mutex doesn't become available for
other threads until the owning thread has unlocked the mutex as many times as it has
locked it.

One good reason to use a recursive mutex is for example when using recursive functions.
With a regular mutex one would need to invent some kind of entry point which would lock
the mutex before entering the recursive function.

With a recursive mutex, each iteration of the recursive function would lock the recursive
mutex again, and upon finishing one iteration, it would unlock the mutex. As a result the
mutex would be unlocked and unlocked the same number of times.

Native C++ Threads and Primitives Chapter 12

[369]

A potential complication hereby is that the maximum number of times that a recursive
mutex can be locked is not defined in the standard. When the implementation's limit has
been reached, a std::system_error will be thrown if one tries to lock it, or false is
returned when using the non-blocking try_lock function.

Recursive timed mutex
The recursive timed mutex is, as the name suggests, an amalgamation of the functionality of
the timed mutex and recursive mutex. As a result, it allows one to recursively lock the
mutex using a timed conditional function.

Although this adds challenges to ensuring that the mutex is unlocked as many times as the
thread locks it, it nevertheless offers possibilities for more complex algorithms such as the
aforementioned task-handlers.

Shared mutex
The <shared_mutex> header was first added with the 2014 standard, by adding the
shared_timed_mutex class. With the 2017 standard, the shared_mutex class was also
added.

The shared mutex header has been present since C++17. In addition to the usual mutual
exclusive access, this mutex class adds the ability to provide shared access to the mutex.
This allows one to, for example, provide read access to a resource by multiple threads,
while a writing thread would still be able to gain exclusive access. This is similar to the
read-write locks of Pthreads.

The functions added to this mutex type are the following:

lock_shared()

try_lock_shared()

unlock_shared()

The use of this mutex's share functionality should be fairly self-explanatory. A theoretically
infinite number of readers can gain read access to the mutex, while ensuring that only a
single thread can write to the resource at any time.

Native C++ Threads and Primitives Chapter 12

[370]

Shared timed mutex
This header has been present since C++14. It adds shared locking functionality to the timed
mutex with these functions:

lock_shared()

try_lock_shared()

try_lock_shared_for()

try_lock_shared_until()

unlock_shared()

This class is essentially an amalgamation of the shared mutex and timed mutex, as the name
suggests. The interesting thing here is that it was added to the standard before the more
basic shared mutex.

Condition variable
In essence, a condition variable provides a mechanism through which a thread's execution
can be controlled by another thread. This is done by having a shared variable which a
thread will wait for until signaled by another thread. It is an essential part of the scheduler
implementation we looked at in Chapter 11, Thread Synchronization and Communication.

For the C++11 API, condition variables and their associated functionality are defined in the
<condition_variable> header.

The basic usage of a condition variable can be summarized from that scheduler's code in
Chapter 11, Thread Synchronization and Communication.

 #include "abstract_request.h"

 #include <condition_variable>
 #include <mutex>

using namespace std;

 class Worker {
 condition_variable cv;
 mutex mtx;
 unique_lock<mutex> ulock;
 AbstractRequest* request;
 bool running;

Native C++ Threads and Primitives Chapter 12

[371]

 bool ready;
 public:
 Worker() { running = true; ready = false; ulock =
unique_lock<mutex>(mtx); }
 void run();
 void stop() { running = false; }
 void setRequest(AbstractRequest* request) { this->request = request;
ready = true; }
 void getCondition(condition_variable* &cv);
 };

In the constructor, as defined in the preceding Worker class declaration, we see the way a
condition variable in the C++11 API is initialized. The steps are listed as follows:

Create a condition_variable and mutex instance.1.
Assign the mutex to a new unique_lock instance. With the constructor we use2.
here for the lock, the assigned mutex is also locked upon assignment.
The condition variable is now ready for use:3.

#include <chrono>
using namespace std;
void Worker::run() {
 while (running) {
 if (ready) {
 ready = false;
 request->process();
 request->finish();
 }
 if (Dispatcher::addWorker(this)) {
 while (!ready && running) {
 if (cv.wait_for(ulock, chrono::seconds(1)) ==
 cv_status::timeout) {
 // We timed out, but we keep waiting unless the
 worker is
 // stopped by the dispatcher.
 }
 }
 }
 }
}

Here, we use the wait_for() function of the condition variable, and pass both the unique
lock instance we created earlier and the amount of time which we want to wait for. Here we
wait for 1 second. If we time out on this wait, we are free to re-enter the wait (as is done
here) in a continuous loop, or continue execution.

Native C++ Threads and Primitives Chapter 12

[372]

It's also possible to perform a blocking wait using the simple wait() function, or wait until
a certain point in time with wait_for().

As noted, when we first looked at this code, the reason why this worker's code uses the
ready Boolean variable is to check that it was really another thread which signaled the
condition variable, and not just a spurious wake-up. It's an unfortunate complication of
most condition variable implementations--including the C++11 one--that they are
susceptible to this.

As a result of these random wake-up events, it is necessary to have some way to ensure that
we really did wake up intentionally. In the scheduler code, this is done by having the
thread which wakes up the worker thread also set a Boolean value which the worker
thread can wake up.

Whether we timed out, or were notified, or suffered a spurious wake-up can be checked
with the cv_status enumeration. This enumeration knows these two possible conditions:

timeout

no_timeout

The signaling, or notifying, itself is quite straightforward:

void Dispatcher::addRequest(AbstractRequest* request) {
 workersMutex.lock();
 if (!workers.empty()) {
 Worker* worker = workers.front();
 worker->setRequest(request);
 condition_variable* cv;
 worker->getCondition(cv);
 cv->notify_one();
 workers.pop();
 workersMutex.unlock();
 }
 else {
 workersMutex.unlock();
 requestsMutex.lock();
 requests.push(request);
 requestsMutex.unlock();
 }
 }

Native C++ Threads and Primitives Chapter 12

[373]

In this preceding function from the Dispatcher class, we attempt to obtain an available
worker thread instance. If found, we obtain a reference to the worker thread's condition
variable as follows:

void Worker::getCondition(condition_variable* &cv) {
 cv = &(this)->cv;
 }

Setting the new request on the worker thread also changes the value of the ready variable
to true, allowing the worker to check that it is indeed allowed to continue.

Finally, the condition variable is notified that any threads which are waiting on it can now
continue using notify_one(). This particular function will signal the first thread in the
FIFO queue for this condition variable to continue. Here, only one thread will ever be
notified, but if there are multiple threads waiting for the same condition variable, the calling
of notify_all() will allow all threads in the FIFO queue to continue.

Condition_variable_any
The condition_variable_any class is a generalization of the condition_variable
class. It differs from the latter in that it allows for other mutual exclusion mechanisms to be
used beyond unique_lock<mutex>. The only requirement is that the lock used meets the
BasicLockable requirements, meaning that it provides a lock() and unlock() function.

Notify all at thread exit
The std::notify_all_at_thread_exit() function allows a (detached) thread to notify
other threads that it has completely finished, and is in the process of having all objects
within its scope (thread-local) destroyed. It functions by moving the provided lock to
internal storage before signaling the provided condition variable.

The result is exactly as if the lock was unlocked and notify_all() was called on the
condition variable.

A basic (non-functional) example can be given as follows:

#include <mutex>
#include <thread>
#include <condition_variable>
using namespace std;
mutex m;

Native C++ Threads and Primitives Chapter 12

[374]

condition_variable cv;
bool ready = false;
ThreadLocal result;
void worker() {
 unique_lock<mutex> ulock(m);
 result = thread_local_method();
 ready = true;
 std::notify_all_at_thread_exit(cv, std::move(ulock));
}
int main() {
 thread t(worker);
 t.detach();
 // Do work here.

 unique_lock<std::mutex> ulock(m);
 while(!ready) {
 cv.wait(ulock);
 }

 // Process result
}

Here, the worker thread executes a method which creates thread-local objects. It's therefore
essential that the main thread waits for the detached worker thread to finish first. If the
latter isn't done yet when the main thread finishes its tasks, it will enter a wait using the
global condition variable. In the worker thread, std::notify_all_at_thread_exit() is
called after setting the ready Boolean.

What this accomplishes is twofold. After calling the function, no more threads are allowed
to wait on the condition variable. It also allows the main thread to wait for the result of the
detached worker thread to become available.

Future
The last part of the C++11 thread support API is defined in <future>. It offers a range of
classes, which implement more high-level multithreading concepts aimed more at easy
asynchronous processing rather than the implementation of a multithreaded architecture.

Here we have to distinguish two concepts: that of a future and that of a promise. The former
is the end result (the future product) that'll be used by a reader/consumer. The latter is what
the writer/producer uses.

Native C++ Threads and Primitives Chapter 12

[375]

A basic example of a future would be:

#include <iostream>
#include <future>
#include <chrono>

bool is_prime (int x) {
 for (int i = 2; i < x; ++i) if (x%i==0) return false;
 return true;
}

int main () {
 std::future<bool> fut = std::async (is_prime, 444444443);
 std::cout << "Checking, please wait";
 std::chrono::milliseconds span(100);
 while (fut.wait_for(span) == std::future_status::timeout) {
std::cout << '.' << std::flush;
 }

 bool x = fut.get();
 std::cout << "n444444443 " << (x?"is":"is not") << " prime.n";
 return 0;
}

This code asynchronously calls a function, passing it a parameter (potential prime number).
It then enters an active loop while it waits for the future it received from the asynchronous
function call to finish. It sets a 100 ms timeout on its wait function.

Once the future finishes (not returning a timeout on the wait function), we obtain the
resulting value, in this case telling us that the value we provided the function with is in fact
a prime number.

In the async section of this chapter, we will look a bit more at asynchronous function calls.

Promise
A promise allows one to transfer states between threads. For example:

#include <iostream>
#include <functional>
#include <thread>
#include <future>

void print_int (std::future<int>& fut) {

Native C++ Threads and Primitives Chapter 12

[376]

 int x = fut.get();
 std::cout << "value: " << x << 'n';
}

int main () {
 std::promise<int> prom;
 std::future<int> fut = prom.get_future();
 std::thread th1 (print_int, std::ref(fut));
 prom.set_value (10);
 th1.join();
 return 0;

This preceding code uses a promise instance passed to a worker thread to transfer a value
to the other thread, in this case an integer. The new thread waits for the future we created
from the promise, and which it received from the main thread to complete.

The promise is completed when we set the value on the promise. This completes the future
and finishes the worker thread.

In this particular example, we use a blocking wait on the future object, but one can also
use wait_for() and wait_until(), to wait for a time period or a point in time
respectively, as we saw in the previous example for a future.

Shared future
A shared_future is just like a regular future object, but can be copied, which allows
multiple threads to read its results.

Creating a shared_future is similar to a regular future.

std::promise<void> promise1;
std::shared_future<void> sFuture(promise1.get_future());

The biggest difference is that the regular future is passed to its constructor.

After this, all threads which have access to the future object can wait for it, and obtain its
value. This can also be used to signal threads in a way similar to condition variables.

Native C++ Threads and Primitives Chapter 12

[377]

Packaged_task
A packaged_task is a wrapper for any callable target (function, bind, lambda, or other
function object). It allows for asynchronous execution with the result available in a future
object. It is similar to std::function, but automatically transfers its results to a future
object.

For example:

#include <iostream>
#include <future>
#include <chrono>
#include <thread>

using namespace std;

int countdown (int from, int to) {
 for (int i = from; i != to; --i) {
 cout << i << 'n';
 this_thread::sleep_for(chrono::seconds(1));
 }

 cout << "Finished countdown.n";
 return from - to;
}

int main () {
 packaged_task<int(int, int)> task(countdown);
 future<int> result = task.get_future();
 thread t (std::move(task), 10, 0);

 // Other logic.

 int value = result.get();

 cout << "The countdown lasted for " << value << " seconds.n";

 t.join();
 return 0;
}

This preceding code implements a simple countdown feature, counting down from 10 to 0.
After creating the task and obtaining a reference to its future object, we push it onto a
thread along with the parameters of the worker function.

Native C++ Threads and Primitives Chapter 12

[378]

The result from the countdown worker thread becomes available as soon as it finishes. We
can use the future object's waiting functions here the same way as for a promise.

Async
A more straightforward version of promise and packaged_task can be found in
std::async(). This is a simple function, which takes a callable object (function, bind,
lambda, and similar) along with any parameters for it, and returns a future object.

The following is a basic example of the async() function:

#include <iostream>
#include <future>

using namespace std;

bool is_prime (int x) {
 cout << "Calculating prime...n";
 for (int i = 2; i < x; ++i) {
 if (x % i == 0) {
 return false;
 }
 }

 return true;
}

int main () {
 future<bool> pFuture = std::async (is_prime, 343321);

 cout << "Checking whether 343321 is a prime number.n";

 // Wait for future object to be ready.

 bool result = pFuture.get();
 if (result) {
 cout << "Prime found.n";
 }
 else {
 cout << "No prime found.n";
 }

 return 0;
}

Native C++ Threads and Primitives Chapter 12

[379]

The worker function in the preceding code determines whether a provided integer is a
prime number or not. As we can see, the resulting code is a lot more simple than with a
packaged_task or promise.

Launch policy
In addition to the basic version of std::async(), there is a second version which allows
one to specify the launch policy as its first argument. This is a bitmask value of type
std::launch with the following possible values:

* launch::async
* launch::deferred

The async flag means that a new thread and execution context for the worker function is
created immediately. The deferred flag means that this is postponed until wait() or
get() is called on the future object. Specifying both flags causes the function to choose the
method automatically depending on the current system situation.

The std::async() version, without explicitly specified bitmask values, defaults to the
latter, automatic method.

Atomics
With multithreading, the use of atomics is also very important. The C++11 STL offers an
<atomic> header for this reason. This topic is covered extensively in Chapter 15, Atomic
Operations - Working with the Hardware.

Summary
In this chapter, we explored the entirety of the multithreading support in the C++11 API,
along with the features added in C++14 and C++17.

We saw how to use each feature using descriptions and example code. We can now use the
native C++ multithreading API to implement multithreaded, thread-safe code as well as use
the asynchronous execution features in order to speed up and execute functions in parallel.

In the next chapter, we will take a look at the inevitable next step in the implementation of
multithreaded code: debugging and validating of the resulting application.

13
Debugging Multithreaded Code

Ideally, one's code would work properly the first time around, and contain no hidden bugs
that are waiting to crash the application, corrupt data, or cause other issues. Realistically,
this is, of course, impossible. Thus it is that tools were developed which make it easy to
examine and debug multithreaded applications.

In this chapter, we will look at a number of them including a regular debugger as well as
some of the tools which are part of the Valgrind suite, specifically, Helgrind and DRD. We
will also look at profiling a multithreaded application in order to find hotspots and
potential issues in its design.

Topics covered in this chapter include the following:

Introducing the Valgrind suite of tools
Using the Helgrind and DRD tools
Interpreting the Helgrind and DRD analysis results
Profiling an application, and analyzing the results

When to start debugging
Ideally, one would test and validate one's code every time one has reached a certain
milestone, whether it's for a singular module, a number of modules, or the application as a
whole. It's important to ascertain that the assumptions one makes match up with the
ultimate functionality.

Debugging Multithreaded Code Chapter 13

[381]

Especially, with multithreaded code, there's a large element of coincidence in that a
particular error state is not guaranteed to be reached during each run of the application.
Signs of an improperly implemented multithreaded application may result in symptoms
such as seemingly random crashes.

Likely the first hint one will get that something isn't correct is when the application crashes,
and one is left with a core dump. This is a file which contains the memory content of the
application at the time when it crashed, including the stack.

This core dump can be used in almost the same fashion as running a debugger with the
running process. It is particularly useful to examine the location in the code at which we
crashed, and in which thread. We can also examine memory contents this way.

One of the best indicators that one is dealing with a multithreading issue is when the
application never crashes in the same location (different stack trace), or when it always
crashes around a point where one performs mutual exclusion operations, such as
manipulating a global data structure.

To start off, we'll first take a more in-depth look at using a debugger for diagnosing and
debugging before diving into the Valgrind suite of tools.

The humble debugger
Of all the questions a developer may have, the question of why did my application just crash?
is probably among the most important. This is also one of the questions which are most
easily answered with a debugger. Regardless of whether one is live debugging a process, or
analyzing the core dump of a crashed process, the debugger can (hopefully) generate a back
trace, also known as a stack trace. This trace contains a chronological list of all the functions
which were called since the application was started as one would find them on the stack
(see chapter 9, Multithreading Implementation on the Processor and OS, for details on how a
stack works).

The last few entries of this back trace will thus show us in which part of the code things
went wrong. If the debug information was compiled into the binary, or provided to the
debugger, we can also see the code at that line along with the names of the variables.

Even better, since we're looking at the stack frames, we can also examine the variables
within that stack frame. This means the parameters passed to the function along with any
local variables and their values.

Debugging Multithreaded Code Chapter 13

[382]

In order to have the debug information (symbols) available, one has to compile the source
code with the appropriate compiler flags set. For GCC, one can select a host of debug
information levels and types. Most commonly, one would use the -g flag with an integer
specifying the debug level attached, as follows:

-g0: produces no debug information (negates -g)
-g1: minimal information on function descriptions and external variables
-g3: all information including macro definitions

This flag instructs GCC to generate debug information in the native format for the OS. One
can also use different flags to generate the debug information in a specific format; however,
this is not necessary for use with GCC's debugger (GDB) as well as with the Valgrind tools.

Both GDB and Valgrind will use this debug information. While it's technically possible to
use both without having the debug information available, that's best left as an exercise for
truly desperate times.

GDB
One of the most commonly used debuggers for C-based and C++-based code is the GNU
Debugger, or GDB for short. In the following example, we'll use this debugger due to it
being both widely used and freely available. Originally written in 1986, it's now used with a
wide variety of programming languages, and has become the most commonly used
debugger, both in personal and professional use.

The most elemental interface for GDB is a command-line shell, but it can be used with
graphical frontends, which also include a number of IDEs such as Qt Creator, Dev-C++, and
Code::Blocks. These frontends and IDEs can make it easier and more intuitive to manage
breakpoints, set up watch variables, and perform other common operations. Their use is,
however, not required.

On Linux and BSD distributions, gdb is easily installed from a package, just as it is on
Windows with MSYS2 and similar UNIX-like environments. For OS X/MacOS, one may
have to install gdb using a third-party package manager such as Homebrew.

Since gdb is not normally code signed on MacOS, it cannot gain the system-level access it
requires for normal operation. Here one can either run gdb as root (not recommended), or
follow a tutorial relevant to your version of MacOS.

Debugging Multithreaded Code Chapter 13

[383]

Debugging multithreaded code
As mentioned earlier, there are two ways to use a debugger, either by starting the
application from within the debugger (or attaching to the running process), or by loading a
core dump file. Within the debugging session, one can either interrupt the running process
(with Ctrl+C, which sends the SIGINT signal), or load the debug symbols for the loaded
core dump. After this, we can examine the active threads in this frame:

Thread 1 received signal SIGINT, Interrupt.
0x00007fff8a3fff72 in mach_msg_trap () from
/usr/lib/system/libsystem_kernel.dylib
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x1703 of process 72492 0x00007fff8a3fff72 in mach_msg_trap
() from /usr/lib/system/libsystem_kernel.dylib
3 Thread 0x1a03 of process 72492 0x00007fff8a406efa in kevent_qos ()
from /usr/lib/system/libsystem_kernel.dylib
10 Thread 0x2063 of process 72492 0x00007fff8a3fff72 in mach_msg_trap ()
from /usr/lib/system/libsystem_kernel.dylibs
14 Thread 0x1e0f of process 72492 0x00007fff8a405d3e in __pselect () from
/usr/lib/system/libsystem_kernel.dylib
(gdb) c
Continuing.

In the preceding code, we can see how after sending the SIGINT signal to the application (a
Qt-based application running on OS X), we request the list of all threads which exist at this
point in time along with their thread number, ID, and the function which they are currently
executing. This also shows clearly which threads are likely waiting based on the latter
information, as is often the case of a graphical user interface application like this one. Here
we also see that the thread which is currently active in the application as marked by the
asterisk in front of its number (thread 1).

We can also switch between threads at will by using the thread <ID> command, and
move up and down between a thread's stack frames. This allows us to examine every aspect
of individual threads.

When full debug information is available, one would generally also see the exact line of
code that a thread is executing. This means that during the development stage of an
application, it makes sense to have as much debug information available as possible to
make debugging much easier.

Debugging Multithreaded Code Chapter 13

[384]

Breakpoints
For the dispatcher code we looked at in Chapter 4, Threading Synchronization and
Communication, we can set a breakpoint to allow us to examine the active threads as well:

$ gdb dispatcher_demo.exe
GNU gdb (GDB) 7.9
Copyright (C) 2015 Free Software Foundation, Inc.
Reading symbols from dispatcher_demo.exe...done.
(gdb) break main.cpp:67
Breakpoint 1 at 0x4017af: file main.cpp, line 67.
(gdb) run
Starting program: dispatcher_demo.exe
[New Thread 10264.0x2a90]
[New Thread 10264.0x2bac]
[New Thread 10264.0x2914]
[New Thread 10264.0x1b80]
[New Thread 10264.0x213c]
[New Thread 10264.0x2228]
[New Thread 10264.0x2338]
[New Thread 10264.0x270c]
[New Thread 10264.0x14ac]
[New Thread 10264.0x24f8]
[New Thread 10264.0x1a90]

As we can see in the above command line output, we start GDB with the name of the
application we wish to debug as a parameter, here from a Bash shell under Windows. After
this, we can set a breakpoint here, using the filename of the source file and the line we wish
to break at after the (gdb) of the gdb command line input. We select the first line after the
loop in which the requests get sent to the dispatcher, then run the application. This is
followed by the list of the new threads which are being created by the dispatcher, as
reported by GDB.

Next, we wait until the breakpoint is hit:

Breakpoint 1, main () at main.cpp:67
67 this_thread::sleep_for(chrono::seconds(5));
(gdb) info threads
Id Target Id Frame
11 Thread 10264.0x1a90 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
10 Thread 10264.0x24f8 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
9 Thread 10264.0x14ac 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
8 Thread 10264.0x270c 0x00000000775ec2ea in

Debugging Multithreaded Code Chapter 13

[385]

ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
7 Thread 10264.0x2338 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
6 Thread 10264.0x2228 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
5 Thread 10264.0x213c 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
4 Thread 10264.0x1b80 0x0000000064942eaf in ?? () from
/mingw64/bin/libwinpthread-1.dll
3 Thread 10264.0x2914 0x00000000775c2385 in ntdll!LdrUnloadDll () from
/c/Windows/SYSTEM32/ntdll.dll
2 Thread 10264.0x2bac 0x00000000775c2385 in ntdll!LdrUnloadDll () from
/c/Windows/SYSTEM32/ntdll.dll
* 1 Thread 10264.0x2a90 main () at main.cpp:67
(gdb) bt
#0 main () at main.cpp:67
(gdb) c
Continuing.

Upon reaching the breakpoint, an info threads command lists the active threads. Here we can
clearly see the use of condition variables where a thread is waiting in
ntdll!ZwWaitForMultipleObjects(). As covered in Chapter 3, C++ Multithreading
APIs, this is part of the condition variable implementation on Windows using its native
multithreading API.

When we create a back trace (bt command), we see that the current stack for thread 1 (the
current thread) is just one frame, only for the main method, since we didn't call into another
function from this starting point at this line.

Back traces
During normal application execution, such as with the GUI application we looked at earlier,
sending SIGINT to the application can also be followed by the command to create a back
trace like this:

Thread 1 received signal SIGINT, Interrupt.
0x00007fff8a3fff72 in mach_msg_trap () from
/usr/lib/system/libsystem_kernel.dylib
(gdb) bt
#0 0x00007fff8a3fff72 in mach_msg_trap () from
/usr/lib/system/libsystem_kernel.dylib
#1 0x00007fff8a3ff3b3 in mach_msg () from
/usr/lib/system/libsystem_kernel.dylib
#2 0x00007fff99f37124 in __CFRunLoopServiceMachPort () from

Debugging Multithreaded Code Chapter 13

[386]

/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundati
on
#3 0x00007fff99f365ec in __CFRunLoopRun () from
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundati
on
#4 0x00007fff99f35e38 in CFRunLoopRunSpecific () from
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundati
on
#5 0x00007fff97b73935 in RunCurrentEventLoopInMode ()
from
/System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox
.framework/Versions/A/HIToolbox
#6 0x00007fff97b7376f in ReceiveNextEventCommon ()
from
/System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox
.framework/Versions/A/HIToolbox
#7 0x00007fff97b735af in _BlockUntilNextEventMatchingListInModeWithFilter
()
from
/System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox
.framework/Versions/A/HIToolbox
#8 0x00007fff9ed3cdf6 in _DPSNextEvent () from
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
#9 0x00007fff9ed3c226 in -[NSApplication
_nextEventMatchingEventMask:untilDate:inMode:dequeue:] ()
from /System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
#10 0x00007fff9ed30d80 in -[NSApplication run] () from
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
#11 0x0000000102a25143 in qt_plugin_instance () from
/usr/local/Cellar/qt/5.8.0_1/plugins/platforms/libqcocoa.dylib
#12 0x0000000100cd3811 in
QEventLoop::exec(QFlags<QEventLoop::ProcessEventsFlag>) () from
/usr/local/opt/qt5/lib/QtCore.framework/Versions/5/QtCore
#13 0x0000000100cd80a7 in QCoreApplication::exec() () from
/usr/local/opt/qt5/lib/QtCore.framework/Versions/5/QtCore
#14 0x0000000100003956 in main (argc=<optimized out>, argv=<optimized out>)
at main.cpp:10
(gdb) c
Continuing.

In this preceding code, we can see the execution of thread ID 1 from its creation, through
the entry point (main). Each subsequent function call is added to the stack. When a function
finishes, it is removed from the stack. This is both a benefit and a disadvantage. While it
does keep the back trace nice and clean, it also means that the history of what happened
before the last function call is no longer there.

Debugging Multithreaded Code Chapter 13

[387]

If we create a back trace with a core dump file, not having this historical information can be
very annoying, and possibly make one start on a wild goose chase as one tries to narrow
down the presumed cause of a crash. This means that a certain level of experience is
required for successful debugging.

In case of a crashed application, the debugger will start us on the thread which suffered the
crash. Often, this is the thread with the problematic code, but it could be that the real fault
lies with code executed by another thread, or even the unsafe use of variables. If one thread
were to change the information that another thread is currently reading, the latter thread
could end up with garbage data. The result of this could be a crash, or even worse--
corruption, later in the application.

The worst-case scenario consists of the stack getting overwritten by, for example, a wild
pointer. In this case, a buffer or similar on the stack gets written past its limit, thus erasing
parts of the stack by filling it with new data. This is a buffer overflow, and can both lead to
the application crashing, or the (malicious) exploitation of the application.

Dynamic analysis tools
Although the value of a debugger is hard to dismiss, there are times when one needs a
different type of tool to answer questions about things such as memory usage, leaks, and to
diagnose or prevent threading issues. This is where tools such as those which are part of the
Valgrind suite of dynamic analysis tools can be of great help. As a framework for building
dynamic analysis tools, the Valgrind distribution currently contains the following tools
which are of interest to us:

Memcheck
Helgrind
DRD

Memcheck is a memory error detector, which allows us to discover memory leaks, illegal
reads and writes, as well as allocation, deallocation, and similar memory-related issues.

Debugging Multithreaded Code Chapter 13

[388]

Helgrind and DRD are both thread error detectors. This basically means that they will
attempt to detect any multithreading issues such as data races and incorrect use of mutexes.
Where they differ is that Helgrind can detect locking order violations, and DRD supports
detached threads, while also using less memory than Helgrind.

Limitations
A major limitation with dynamic analysis tools is that they require tight integration with the
host operating system. This is the primary reason why Valgrind is focused on POSIX
threads, and does not currently work on Windows.

The Valgrind website (at http://valgrind.org/info/platforms.html) describes the issue
as follows:

"Windows is not under consideration because porting to it would require so many changes
it would almost be a separate project. (However, Valgrind + Wine can be made to work
with some effort.) Also, non-open-source OSes are difficult to deal with; being able to see
the OS and associated (libc) source code makes things much easier. However, Valgrind is
quite usable in conjunction with Wine, which means that it is possible to run Windows
programs under Valgrind with some effort."

Basically, this means that Windows applications can be debugged with Valgrind under
Linux with some difficulty, but using Windows as the OS won't happen any time soon.

Valgrind does work on OS X/macOS, starting with OS X 10.8 (Mountain Lion). Support for
the latest version of macOS may be somewhat incomplete due to changes made by Apple,
however. As with the Linux version of Valgrind, it's generally best to always use the latest
version of Valgrind. As with gdb, use the distro's package manager, or a third-party one
like Homebrew on MacOS.

Alternatives
Alternatives to the Valgrind tools on Windows and other platforms include the ones listed
in the following table:

Name Type Platforms License

Dr. Memory Memory checker All major platforms Open source

gperftools (Google) Heap, CPU, and call
profiler Linux (x86) Open source

http://valgrind.org/info/platforms.html

Debugging Multithreaded Code Chapter 13

[389]

Visual Leak Detector Memory checker Windows (Visual
Studio) Open Source

Intel Inspector Memory and thread
debugger Windows, Linux Proprietary

PurifyPlus Memory, performance Windows, Linux Proprietary

Parasoft Insure++ Memory and thread
debugger

Windows, Solaris,
Linux, AIX Proprietary

Memcheck
Memcheck is the default Valgrind tool when no other tool is specified in the parameters to
its executable. Memcheck itself is a memory error detector capable of detecting the
following types of issues:

Accessing memory outside of allocated bounds, overflowing of the stack, and
accessing previously freed memory blocks
The use of undefined values, which are variables which have not been initialized
Improper freeing of heap memory including repeatedly freeing blocks
Mismatched use of C- and C++-style memory allocations as well as array
allocators and deallocators (new[] and delete[])
Overlapping source and destination pointers in functions such as memcpy
The passing of an invalid (for example, negative) value as the size parameter to
malloc or similar functions
Memory leaks; that is, heap blocks without any valid reference to them

Using a debugger or a simple task manager, it's practically impossible to detect issues such
as the ones given in the preceding list. The value of Memcheck lies in being able to detect
and fix issues early in development, which otherwise can lead to corrupted data and
mysterious crashes.

Basic use
Using Memcheck is fairly easy. If we take the demo application we created in Chapter 4,
Thread Synchronization and Communication, we know that normally we start it using this:

$./dispatcher_demo

Debugging Multithreaded Code Chapter 13

[390]

To run Valgrind with the default Memcheck tool while also logging the resulting output to
a log file, we would start it as follows:

$ valgrind --log-file=dispatcher.log --read-var-info=yes --leak-check=full
./dispatcher_demo

With the preceding command, we will log Memcheck's output to a file called
dispatcher.log, and also enable the full checking of memory leaks, including detailed
reporting of where these leaks occur, using the available debug information in the binary.
By also reading the variable information (--read-var-info=yes), we get even more
detailed information on where a memory leak occurred.

One cannot log to a file, but unless it's a very simple application, the produced output from
Valgrind will likely be so much that it probably won't fit into the terminal buffer. Having
the output as a file allows one to use it as a reference later as well as search it using more
advanced tools than what the terminal usually provides.

After running this, we can examine the produced log file's contents as follows:

==5764== Memcheck, a memory error detector
==5764== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==5764== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==5764== Command: ./dispatcher_demo
==5764== Parent PID: 2838
==5764==
==5764==
==5764== HEAP SUMMARY:
==5764== in use at exit: 75,184 bytes in 71 blocks
==5764== total heap usage: 260 allocs, 189 frees, 88,678 bytes allocated
==5764==
==5764== 80 bytes in 10 blocks are definitely lost in loss record 1 of 5
==5764== at 0x4C2E0EF: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5764== by 0x402EFD: Dispatcher::init(int) (dispatcher.cpp:40)
==5764== by 0x409300: main (main.cpp:51)
==5764==
==5764== 960 bytes in 40 blocks are definitely lost in loss record 3 of 5
==5764== at 0x4C2E0EF: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5764== by 0x409338: main (main.cpp:60)
==5764==
==5764== 1,440 (1,200 direct, 240 indirect) bytes in 10 blocks are
definitely lost in loss record 4 of 5
==5764== at 0x4C2E0EF: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5764== by 0x402EBB: Dispatcher::init(int) (dispatcher.cpp:38)

Debugging Multithreaded Code Chapter 13

[391]

==5764== by 0x409300: main (main.cpp:51)
==5764==
==5764== LEAK SUMMARY:
==5764== definitely lost: 2,240 bytes in 60 blocks
==5764== indirectly lost: 240 bytes in 10 blocks
==5764== possibly lost: 0 bytes in 0 blocks
==5764== still reachable: 72,704 bytes in 1 blocks
==5764== suppressed: 0 bytes in 0 blocks
==5764== Reachable blocks (those to which a pointer was found) are not
shown.
==5764== To see them, rerun with: --leak-check=full --show-leak-kinds=all
==5764==
==5764== For counts of detected and suppressed errors, rerun with: -v
==5764== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 0 from 0)

Here we can see that we have a total of three memory leaks. Two are from allocations in the
dispatcher class on lines 38 and 40:

w = new Worker;

And the other one is this:

t = new thread(&Worker::run, w);

We also see a leak from an allocation at line 60 in main.cpp:

rq = new Request();

Although there is nothing wrong with these allocations themselves, if we trace them during
the application life cycle, we notice that we never call delete on these objects. If we were to
fix these memory leaks, we would need to delete those Request instances once we're done
with them, and clean up the Worker and thread instances in the destructor of the
dispatcher class.

Since in this demo application the entire application is terminated and cleaned up by the OS
at the end of its run, this is not really a concern. For an application where the same
dispatcher is used in a way where new requests are being generated and added constantly,
while possibly also dynamically scaling the number of worker threads, this would,
however, be a real concern. In this situation, care would have to be taken that such memory
leaks are resolved.

Debugging Multithreaded Code Chapter 13

[392]

Error types
Memcheck can detect a wide range of memory-related issues. The following sections
summarize these errors and their meanings.

Illegal read / illegal write errors
These errors are usually reported in the following format:

Invalid read of size <bytes>
at 0x<memory address>: (location)
by 0x<memory address>: (location)
by 0x<memory address>: (location)
Address 0x<memory address> <error description>

The first line in the preceding error message tells one whether it was an invalid read or
write access. The next few lines will be a back trace detailing the location (and possibly, the
line in the source file) from which the invalid read or write was performed, and from where
that code was called.

Finally, the last line will detail the type of illegal access that occurred, such as the reading of
an already freed block of memory.

This type of error is indicative of writing into or reading from a section of memory which
one should not have access to. This can happen because one accesses a wild pointer (that is,
referencing a random memory address), or due to an earlier issue in the code which caused
a wrong memory address to be calculated, or a memory boundary not being respected, and
reading past the bounds of an array or similar.

Usually, when this type of error is reported, it should be taken highly seriously, as it
indicates a fundamental issue which can lead not only to data corruption and crashes, but
also to bugs which can be exploited by others.

Use of uninitialized values
In short, this is the issue where a variable's value is used without the said variable having
been assigned a value. At this point, it's likely that these contents are just whichever bytes
were in that part of RAM which just got allocated. As a result, this can lead to unpredictable
behavior whenever these contents are used or accessed.

When encountered, Memcheck will throw errors similar to these:

$ valgrind --read-var-info=yes --leak-check=full ./unval
==6822== Memcheck, a memory error detector

Debugging Multithreaded Code Chapter 13

[393]

==6822== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==6822== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6822== Command: ./unval
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87B83: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Use of uninitialised value of size 8
==6822== at 0x4E8476B: _itoa_word (_itoa.c:179)
==6822== by 0x4E8812C: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E84775: _itoa_word (_itoa.c:179)
==6822== by 0x4E8812C: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E881AF: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87C59: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E8841A: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87CAB: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87CE2: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822==
==6822== HEAP SUMMARY:

Debugging Multithreaded Code Chapter 13

[394]

==6822== in use at exit: 0 bytes in 0 blocks
==6822== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==6822==
==6822== All heap blocks were freed -- no leaks are possible
==6822==
==6822== For counts of detected and suppressed errors, rerun with: -v
==6822== Use --track-origins=yes to see where uninitialised values come
from
==6822== ERROR SUMMARY: 8 errors from 8 contexts (suppressed: 0 from 0)

This particular series of errors was caused by the following small bit of code:

#include <cstring>
 #include <cstdio>

 int main() {
 int x;
 printf ("x = %dn", x);
 return 0;
 }

As we can see in the preceding code, we never initialize our variable, which would be set to
just any random value. If one is lucky, it'll be set to zero, or an equally (hopefully) harmless
value. This code shows just how any of our uninitialized variables enter into library code.

Whether or not the use of uninitialized variables is harmful is hard to say, and depends
heavily on the type of variable and the affected code. It is, however, far easier to simply
assign a safe, default value than it is to hunt down and debug mysterious issues which may
be caused (at random) by an uninitialized variable.

For additional information on where an uninitialized variable originates, one can pass the -
track-origins=yes flag to Memcheck. This will tell it to keep more information per
variable, which will make the tracking down of this type of issue much easier.

Uninitialized or unaddressable system call values
Whenever a function is called, it's possible that uninitialized values are passed as
parameters, or even pointers to a buffer which is unaddressable. In either case, Memcheck
will log this:

$ valgrind --read-var-info=yes --leak-check=full ./unsyscall
==6848== Memcheck, a memory error detector
==6848== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==6848== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6848== Command: ./unsyscall
==6848==

Debugging Multithreaded Code Chapter 13

[395]

==6848== Syscall param write(buf) points to uninitialised byte(s)
==6848== at 0x4F306E0: __write_nocancel (syscall-template.S:84)
==6848== by 0x4005EF: main (unsyscall.cpp:7)
==6848== Address 0x5203040 is 0 bytes inside a block of size 10 alloc'd
==6848== at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==6848== by 0x4005C7: main (unsyscall.cpp:5)
==6848==
==6848== Syscall param exit_group(status) contains uninitialised byte(s)
==6848== at 0x4F05B98: _Exit (_exit.c:31)
==6848== by 0x4E73FAA: __run_exit_handlers (exit.c:97)
==6848== by 0x4E74044: exit (exit.c:104)
==6848== by 0x4005FC: main (unsyscall.cpp:8)
==6848==
==6848==
==6848== HEAP SUMMARY:
==6848== in use at exit: 14 bytes in 2 blocks
==6848== total heap usage: 2 allocs, 0 frees, 14 bytes allocated
==6848==
==6848== LEAK SUMMARY:
==6848== definitely lost: 0 bytes in 0 blocks
==6848== indirectly lost: 0 bytes in 0 blocks
==6848== possibly lost: 0 bytes in 0 blocks
==6848== still reachable: 14 bytes in 2 blocks
==6848== suppressed: 0 bytes in 0 blocks
==6848== Reachable blocks (those to which a pointer was found) are not
shown.
==6848== To see them, rerun with: --leak-check=full --show-leak-kinds=all
==6848==
==6848== For counts of detected and suppressed errors, rerun with: -v
==6848== Use --track-origins=yes to see where uninitialised values come
from
==6848== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

The preceding log was generated by this code:

#include <cstdlib>
 #include <unistd.h>

 int main() {
 char* arr = (char*) malloc(10);
 int* arr2 = (int*) malloc(sizeof(int));
 write(1, arr, 10);
 exit(arr2[0]);
 }

Debugging Multithreaded Code Chapter 13

[396]

Much like the general use of uninitialized values as detailed in the previous section, the
passing of uninitialized, or otherwise dodgy, parameters is, at the very least, risky, and in
the worst case, a source of crashes, data corruption, or worse.

Illegal frees
An illegal free or delete is usually an attempt to repeatedly call free() or delete() on an
already deallocated block of memory. While not necessarily harmful, this would be
indicative of bad design, and would absolutely have to be fixed.

It can also occur when one tries to free a memory block using a pointer which does not
point to the beginning of that memory block. This is one of the primary reasons why one
should never perform pointer arithmetic on the original pointer one obtains from a call to
malloc() or new(), but use a copy instead.

Mismatched deallocation
Allocation and deallocation of memory blocks should always be performed using matching
functions. This means that when we allocate using C-style functions, we deallocate with the
matching function from the same API. The same is true for C++-style allocation and
deallocation.

Briefly, this means the following:

If we allocate using malloc, calloc, valloc, realloc, or memalign, we
deallocate with free
If we allocate with new, we deallocate with delete
If we allocate with new[], we deallocate with delete[]

Mixing these up won't necessarily cause problems, but doing so is undefined behavior. The
latter type of allocating and deallocating is specific to arrays. Not using delete[] for an
array that was allocated with new[] likely leads to a memory leak, or worse.

Overlapping source and destination
This type of error indicates that the pointers passed for a source and destination memory
block overlap (based on expected size). The result of this type of bug is usually a form of
corruption or system crash.

Debugging Multithreaded Code Chapter 13

[397]

Fishy argument values
For memory allocation functions, Memcheck validates whether the arguments passed to
them actually make sense. One example of this would be the passing of a negative size, or if
it would far exceed a reasonable allocation size: for example, an allocation request for a
petabyte of memory. Most likely, these values would be the result of a faulty calculation
earlier in the code.

Memcheck would report this error like in this example from the Memcheck manual:

==32233== Argument 'size' of function malloc has a fishy (possibly
negative) value: -3
==32233== at 0x4C2CFA7: malloc (vg_replace_malloc.c:298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: main (fishy.c:23)

Here it was attempted to pass the value of -3 to malloc, which obviously doesn't make a lot
of sense. Since this is obviously a nonsensical operation, it's indicative of a serious bug in
the code.

Memory leak detection
The most important thing to keep in mind for Memcheck's reporting of memory leaks is
that a lot of reported leaks may in fact not be leaks. This is reflected in the way Memcheck
reports any potential issues it finds, which is as follows:

Definitely lost
Indirectly lost
Possibly lost

Of the three possible report types, the Definitely lost type is the only one where it is
absolutely certain that the memory block in question is no longer reachable, with no pointer
or reference remaining, which makes it impossible for the application to ever free the
memory.

In case of the Indirectly lost type, we did not lose the pointer to these memory blocks
themselves, but, the pointer to a structure which refers to these blocks instead. This could,
for example, occur when we directly lose access to the root node of a data structure (such as
a red/black or binary tree). As a result, we also lose the ability to access any of the child
nodes.

Debugging Multithreaded Code Chapter 13

[398]

Finally, Possibly lost is the catch-all type where Memcheck isn't entirely certain whether
there is still a reference to the memory block. This can happen where interior pointers exist,
such as in the case of particular types of array allocations. It can also occur through the use
of multiple inheritance, where a C++ object uses self-reference.

As mentioned earlier in the basic use section for Memcheck, it's advisable to always run
Memcheck with --leak-check=full specified to get detailed information on exactly
where a memory leak was found.

Helgrind
The purpose of Helgrind is to detect issues with synchronization implementations within a
multithreaded application. It can detect wrongful use of POSIX threads, potential deadlock
issues due to wrong locking order as well as data races--the reading or writing of data
without thread synchronization.

Basic use
We start Helgrind on our application in the following manner:

$ valgrind --tool=helgrind --read-var-info=yes --log-
file=dispatcher_helgrind.log ./dispatcher_demo

Similar to running Memcheck, this will run the application and log all generated output to a
log file, while explicitly using all available debugging information in the binary.

After running the application, we examine the generated log file:

==6417== Helgrind, a thread error detector
==6417== Copyright (C) 2007-2015, and GNU GPL'd, by OpenWorks LLP et al.
==6417== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6417== Command: ./dispatcher_demo
==6417== Parent PID: 2838
==6417==
==6417== ---Thread-Announcement--
==6417==
==6417== Thread #1 is the program's root thread

After the initial basic information about the application and the Valgrind version, we are
informed that the root thread has been created:

==6417==
==6417== ---Thread-Announcement--

Debugging Multithreaded Code Chapter 13

[399]

==6417==
==6417== Thread #2 was created
==6417== at 0x56FB7EE: clone (clone.S:74)
==6417== by 0x53DE149: create_thread (createthread.c:102)
==6417== by 0x53DFE83: pthread_create@@GLIBC_2.2.5
(pthread_create.c:679)
==6417== by 0x4C34BB7: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x4EF8DC2:
std::thread::_M_start_thread(std::shared_ptr<std::thread::_Impl_base>, void
(*)()) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==6417== by 0x403AD7: std::thread::thread<void (Worker::*)(),
Worker*&>(void (Worker::*&&)(), Worker*&) (thread:137)
==6417== by 0x4030E6: Dispatcher::init(int) (dispatcher.cpp:40)
==6417== by 0x4090A0: main (main.cpp:51)
==6417==
==6417== --

The first thread is created by the dispatcher and logged. Next we get the first warning:

==6417==
==6417== Lock at 0x60F4A0 was first observed
==6417== at 0x4C321BC: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x401CD1: __gthread_mutex_lock(pthread_mutex_t*) (gthr-
default.h:748)
==6417== by 0x402103: std::mutex::lock() (mutex:135)
==6417== by 0x40337E: Dispatcher::addWorker(Worker*)
(dispatcher.cpp:108)
==6417== by 0x401DF9: Worker::run() (worker.cpp:49)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x53DF6B9: start_thread (pthread_create.c:333)
==6417== Address 0x60f4a0 is 0 bytes inside data symbol
"_ZN10Dispatcher12workersMutexE"

Debugging Multithreaded Code Chapter 13

[400]

==6417==
==6417== Possible data race during write of size 1 at 0x5CD9261 by thread
#1
==6417== Locks held: 1, at address 0x60F4A0
==6417== at 0x403650: Worker::setRequest(AbstractRequest*) (worker.h:38)
==6417== by 0x403253: Dispatcher::addRequest(AbstractRequest*)
(dispatcher.cpp:70)
==6417== by 0x409132: main (main.cpp:63)
==6417==
==6417== This conflicts with a previous read of size 1 by thread #2
==6417== Locks held: none
==6417== at 0x401E02: Worker::run() (worker.cpp:51)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x53DF6B9: start_thread (pthread_create.c:333)
==6417== Address 0x5cd9261 is 97 bytes inside a block of size 104 alloc'd
==6417== at 0x4C2F50F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)
==6417== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
==6417== by 0x4090A0: main (main.cpp:51)
==6417== Block was alloc'd by thread #1
==6417==
==6417== --

In the preceding warning, we are being told by Helgrind about a conflicting read of size 1
between thread IDs 1 and 2. Since the C++11 threading API uses a fair amount of templates,
the trace can be somewhat hard to read. The essence is found in these lines:

==6417== at 0x403650: Worker::setRequest(AbstractRequest*) (worker.h:38)
==6417== at 0x401E02: Worker::run() (worker.cpp:51)

This corresponds to the following lines of code:

void setRequest(AbstractRequest* request) { this->request = request; ready
= true; }

Debugging Multithreaded Code Chapter 13

[401]

while (!ready && running) {

The only variable of size 1 in these lines of code is the Boolean variable ready. Since this is a
Boolean variable, we know that it is an atomic operation (see Chapter 15, Atomic Operations
- Working with the Hardware, for details). As a result, we can ignore this warning.

Next, we get another warning for this thread:

==6417== Possible data race during write of size 1 at 0x5CD9260 by thread
#1
==6417== Locks held: none
==6417== at 0x40362C: Worker::stop() (worker.h:37)
==6417== by 0x403184: Dispatcher::stop() (dispatcher.cpp:50)
==6417== by 0x409163: main (main.cpp:70)
==6417==
==6417== This conflicts with a previous read of size 1 by thread #2
==6417== Locks held: none
==6417== at 0x401E0E: Worker::run() (worker.cpp:51)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x53DF6B9: start_thread (pthread_create.c:333)
==6417== Address 0x5cd9260 is 96 bytes inside a block of size 104 alloc'd
==6417== at 0x4C2F50F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)
==6417== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
==6417== by 0x4090A0: main (main.cpp:51)
==6417== Block was alloc'd by thread #1

Similar to the first warning, this also refers to a Boolean variable--here, the running
variable in the Worker instance. Since this is also an atomic operation, we can again ignore
this warning.

Debugging Multithreaded Code Chapter 13

[402]

Following this warning, we get a repeat of these warnings for other threads. We also see
this warning repeated a number of times:

==6417== Lock at 0x60F540 was first observed
==6417== at 0x4C321BC: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x401CD1: __gthread_mutex_lock(pthread_mutex_t*) (gthr-
default.h:748)
==6417== by 0x402103: std::mutex::lock() (mutex:135)
==6417== by 0x409044: logFnc(std::__cxx11::basic_string<char,
std::char_traits<char>, std::allocator<char> >) (main.cpp:40)
==6417== by 0x40283E: Request::process() (request.cpp:19)
==6417== by 0x401DCE: Worker::run() (worker.cpp:44)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== Address 0x60f540 is 0 bytes inside data symbol "logMutex"
==6417==
==6417== Possible data race during read of size 8 at 0x60F238 by thread #1
==6417== Locks held: none
==6417== at 0x4F4ED6F: std::basic_ostream<char, std::char_traits<char>
>& std::__ostream_insert<char, std::char_traits<char>
>(std::basic_ostream<char, std::char_traits<char> >&, char const*, long)
(in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==6417== by 0x4F4F236: std::basic_ostream<char, std::char_traits<char>
>& std::operator<< <std::char_traits<char> >(std::basic_ostream<char,
std::char_traits<char> >&, char const*) (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x403199: Dispatcher::stop() (dispatcher.cpp:53)
==6417== by 0x409163: main (main.cpp:70)
==6417==
==6417== This conflicts with a previous write of size 8 by thread #7
==6417== Locks held: 1, at address 0x60F540
==6417== at 0x4F4EE25: std::basic_ostream<char, std::char_traits<char>
>& std::__ostream_insert<char, std::char_traits<char>

Debugging Multithreaded Code Chapter 13

[403]

>(std::basic_ostream<char, std::char_traits<char> >&, char const*, long)
(in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==6417== by 0x409055: logFnc(std::__cxx11::basic_string<char,
std::char_traits<char>, std::allocator<char> >) (main.cpp:41)
==6417== by 0x402916: Request::finish() (request.cpp:27)
==6417== by 0x401DED: Worker::run() (worker.cpp:45)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== Address 0x60f238 is 24 bytes inside data symbol
"_ZSt4cout@@GLIBCXX_3.4"

This warning is triggered by not having the use of standard output synchronized between
threads. Even though the logging function of this demo application uses a mutex to
synchronize the text logged by worker threads, we also write to standard output in an
unsafe manner in a few locations.

This is relatively easy to fix by using a central, thread-safe logging function. Even though
it's unlikely to cause any stability issues, it will very likely cause any logging output to end
up as a garbled, unusable mess.

Misuse of the pthreads API
Helgrind detects a large number of errors involving the pthreads API, as summarized by its
manual, and listed next:

Unlocking an invalid mutex
Unlocking a not-locked mutex
Unlocking a mutex held by a different thread
Destroying an invalid or a locked mutex
Recursively locking a non-recursive mutex
Deallocation of memory that contains a locked mutex
Passing mutex arguments to functions expecting reader-writer lock arguments,
and vice versa

Debugging Multithreaded Code Chapter 13

[404]

Failure of a POSIX pthread function fails with an error code that must be handled
A thread exits whilst still holding locked locks
Calling pthread_cond_wait with a not-locked mutex, an invalid mutex, or one
locked by a different thread
Inconsistent bindings between condition variables and their associated mutexes
Invalid or duplicate initialization of a pthread barrier
Initialization of a pthread barrier on which threads are still waiting
Destruction of a pthread barrier object which was never initialized, or on which
threads are still waiting
Waiting on an uninitialized pthread barrier

In addition to this, if Helgrind itself does not detect an error, but the pthreads library itself
returns an error for each function which Helgrind intercepts, an error is reported by
Helgrind as well.

Lock order problems
Lock order detection uses the assumption that once a series of locks have been accessed in a
particular order, that is the order in which they will always be used. Imagine, for example, a
resource that's guarded by two locks. As we saw with the dispatcher demonstration from
Chapter 11, Thread Synchronization and Communication, we use two mutexes in its
Dispatcher class, one to manage access to the worker threads, and one to the request
instances.

In the correct implementation of that code, we always make sure to unlock one mutex
before we attempt to obtain the other, as there's a chance that another thread already has
obtained access to that second mutex, and attempts to obtain access to the first, thus
creating a deadlock situation.

While useful, it is important to realize that there are some areas where this detection
algorithm is, as of yet, imperfect. This is mostly apparent with the use of, for example,
condition variables, which naturally uses a locking order that tends to get reported by
Helgrind as wrong.

The take-away message here is that one has to examine these log messages and judge their
merit, but unlike straight misuse of the multithreading API, whether or not the reported
issue is a false-positive or not is far less clear-cut.

Debugging Multithreaded Code Chapter 13

[405]

Data races
In essence, a data race is when two more threads attempt to read or write to the same
resource without any synchronization mechanism in place. Here, only a concurrent read
and write, or two simultaneous writes, are actually harmful; therefore, only these two types
of access get reported.

In an earlier section on basic Helgrind usage, we saw some examples of this type of error in
the log. There it concerned the simultaneous writing and reading of a variable. As we also
covered in that section, Helgrind does not concern itself with whether a write or read was
atomic, but merely reports a potential issue.

Much like with lock order problems, this again means that one has to judge each data race
report on its merit, as many will likely be false-positives.

DRD
DRD is very similar to Helgrind, in that it also detects issues with threading and
synchronization in the application. The main ways in which DRD differs from Helgrind are
the following:

DRD uses less memory
DRD doesn't detect locking order violations
DRD supports detached threads

Generally, one wants to run both DRD and Helgrind to compare the output from both with
each other. Since a lot of potential issues are highly non-deterministic, using both tools
generally helps to pinpoint the most serious issues.

Basic use
Starting DRD is very similar to starting the other tools--we just have to specify our desired
tool like this:

$ valgrind --tool=drd --log-file=dispatcher_drd.log --read-var-info=yes
./dispatcher_demo

Debugging Multithreaded Code Chapter 13

[406]

After the application finishes, we examine the generated log file's contents.

==6576== drd, a thread error detector
==6576== Copyright (C) 2006-2015, and GNU GPL'd, by Bart Van Assche.
==6576== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6576== Command: ./dispatcher_demo
==6576== Parent PID: 2838
==6576==
==6576== Conflicting store by thread 1 at 0x05ce51b1 size 1
==6576== at 0x403650: Worker::setRequest(AbstractRequest*) (worker.h:38)
==6576== by 0x403253: Dispatcher::addRequest(AbstractRequest*)
(dispatcher.cpp:70)
==6576== by 0x409132: main (main.cpp:63)
==6576== Address 0x5ce51b1 is at offset 97 from 0x5ce5150. Allocation
context:
==6576== at 0x4C3150F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_drd-amd64-linux.so)
==6576== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
==6576== by 0x4090A0: main (main.cpp:51)
==6576== Other segment start (thread 2)
==6576== at 0x4C3818C: pthread_mutex_unlock (in
/usr/lib/valgrind/vgpreload_drd-amd64-linux.so)
==6576== by 0x401D00: __gthread_mutex_unlock(pthread_mutex_t*) (gthr-
default.h:778)
==6576== by 0x402131: std::mutex::unlock() (mutex:153)
==6576== by 0x403399: Dispatcher::addWorker(Worker*)
(dispatcher.cpp:110)
==6576== by 0x401DF9: Worker::run() (worker.cpp:49)
==6576== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6576== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6576== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6576== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6576== by 0x4F04C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6576== by 0x4C3458B: ??? (in /usr/lib/valgrind/vgpreload_drd-amd64-
linux.so)
==6576== by 0x53EB6B9: start_thread (pthread_create.c:333)
==6576== Other segment end (thread 2)
==6576== at 0x4C3725B: pthread_mutex_lock (in
/usr/lib/valgrind/vgpreload_drd-amd64-linux.so)
==6576== by 0x401CD1: __gthread_mutex_lock(pthread_mutex_t*) (gthr-

Debugging Multithreaded Code Chapter 13

[407]

default.h:748)
==6576== by 0x402103: std::mutex::lock() (mutex:135)
==6576== by 0x4023F8: std::unique_lock<std::mutex>::lock() (mutex:485)
==6576== by 0x40219D:
std::unique_lock<std::mutex>::unique_lock(std::mutex&) (mutex:415)
==6576== by 0x401E33: Worker::run() (worker.cpp:52)
==6576== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6576== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6576== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6576== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6576== by 0x4F04C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6576== by 0x4C3458B: ??? (in /usr/lib/valgrind/vgpreload_drd-amd64-
linux.so)

The preceding summary basically repeats what we saw with the Helgrind log. We see the
same data race report (conflicting store), which we can safely ignore due to atomics. For this
particular code at least, the use of DRD did not add anything we didn't already know from
using Helgrind.

Regardless, it's always a good idea to use both tools just in case one tools spots something
which the other didn't.

Features
DRD will detect the following errors:

Data races
Lock contention (deadlocks and delays)
Misuse of the pthreads API

For the third point, this list of errors detected by DRD, according to its manual, is very
similar to that of Helgrind:

Passing the address of one type of synchronization object (for example, a mutex)
to a POSIX API call that expects a pointer to another type of synchronization
object (for example, a condition variable)

Debugging Multithreaded Code Chapter 13

[408]

Attempt to unlock a mutex that has not been locked
Attempt to unlock a mutex that was locked by another thread
Attempt to lock a mutex of type PTHREAD_MUTEX_NORMAL or a spinlock
recursively
Destruction or deallocation of a locked mutex
Sending a signal to a condition variable while no lock is held on the mutex
associated with the condition variable
Calling pthread_cond_wait on a mutex that is not locked, that is, locked by
another thread or that has been locked recursively
Associating two different mutexes with a condition variable through
pthread_cond_wait

Destruction or deallocation of a condition variable that is being waited upon
Destruction or deallocation of a locked reader-writer synchronization object
Attempt to unlock a reader-writer synchronization object that was not locked by
the calling thread
Attempt to recursively lock a reader-writer synchronization object exclusively
Attempt to pass the address of a user-defined reader-writer synchronization
object to a POSIX threads function
Attempt to pass the address of a POSIX reader-writer synchronization object to
one of the annotations for user-defined reader-writer synchronization objects
Reinitialization of a mutex, condition variable, reader-writer lock, semaphore, or
barrier
Destruction or deallocation of a semaphore or barrier that is being waited upon
Missing synchronization between barrier wait and barrier destruction
Exiting a thread without first unlocking the spinlocks, mutexes, or reader-writer
synchronization objects that were locked by that thread
Passing an invalid thread ID to pthread_join or pthread_cancel

As mentioned earlier, helpful here is the fact that DRD also supports detached threads.
Whether locking order checks are important depends on one's application.

C++11 threads support
The DRD manual contains this section on C++11 threads support.

Debugging Multithreaded Code Chapter 13

[409]

If you want to use the c++11 class std::thread you will need to do the following to
annotate the std::shared_ptr<> objects used in the implementation of that class:

Add the following code at the start of a common header or at the start of each
source file, before any C++ header files are included:

 #include <valgrind/drd.h>
 #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(addr)
 ANNOTATE_HAPPENS_BEFORE(addr)
 #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(addr)
 ANNOTATE_HAPPENS_AFTER(addr)

Download the GCC source code and from the source file libstdc++-
v3/src/c++11/thread.cc, copy the implementation of the
execute_native_thread_routine() and
std::thread::_M_start_thread() functions into a source file that is linked
with your application. Make sure that also in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.

One might see a lot of false positives when using DRD with an application that uses the
C++11 threads API, which would be fixed by the preceding fix.

However, when using GCC 5.4 and Valgrind 3.11 (possibly, using older versions too) this
issue does not seem to be present any more. It is, however, something to keep in mind when
one suddenly sees a lot of false positives in one's DRD output while using the C++11
threads API.

Summary
In this chapter, we took a look at how to approach the debugging of multithreaded
applications. We explored the basics of using a debugger in a multithreaded context. Next,
we saw how to use three tools in the Valgrind framework, which can assist us in tracking
down multithreading and other crucial issues.

At this point, we can take applications written using the information in the preceding
chapters and analyze them for any issues which should be fixed including memory leaks
and improper use of synchronization mechanisms.

In the next chapter, we will take all that we have learned, and look at some best practices
when it comes to multithreaded programming and developing in general.

14
Best Practices

As with most things, it's best to avoid making mistakes rather than correcting them
afterwards. This chapter looks at a number of common mistakes and design issues with
multithreaded applications, and shows ways to avoid the common - and less common -
issues.

Topics in this chapter include:

Common multithreading issues, such as deadlocks and data races.
The proper use of mutexes, locks, and pitfalls.
Potential issues when using static initialization.

Proper multithreading
In the preceding chapters, we have seen a variety of potential issues which can occur when
writing multithreaded code. These range from the obvious ones, such as two threads not
being able to write to the same location at the same time, to the more subtle, such as
incorrect usage of a mutex.

There are also many issues with elements which aren't directly part of multithreaded code,
yet which can nevertheless cause seemingly random crashes and other frustrating issues.
One example of this is static initialization of variables. In the following sections, we'll be
looking at all of these issues and many more, as well as ways to prevent ever having to deal
with them.

As with many things in life, they are interesting experiences, but you generally do not care
to repeat them.

Best Practices Chapter 14

[411]

Wrongful expectations - deadlocks
A deadlock is described pretty succinctly by its name already. It occurs when two or more
processes attempt to gain access to a resource which the other is holding, while that other
thread is simultaneously waiting to gain access to a resource which it is holding.

For example:

Thread 1 gains access to resource A1.
Thread 1 and 2 both want to gain access to resource B2.
Thread 2 wins and now owns B, with thread 1 still waiting on B3.
Thread 2 wants to use A now, and waits for access4.
Both thread 1 and 2 wait forever for a resource5.

In this situation, we assume that the thread will be able to gain access to each resource at
some point, while the opposite is true, thanks to each thread holding on to the resource
which the other thread needs.

Visualized, this deadlock process would look like this:

Best Practices Chapter 14

[412]

This makes it clear that two basic rules when it comes to preventing deadlocks are:

Try to never hold more than one lock at any time.
Release any held locks as soon as you can.

We saw a real-life example of this in Chapter 11, Thread Synchronization and Communication,
when we looked at the dispatcher demonstration code. This code involves two mutexes, to
safe-guard access to two data structures:

void Dispatcher::addRequest(AbstractRequest* request) {
 workersMutex.lock();
 if (!workers.empty()) {
 Worker* worker = workers.front();
 worker->setRequest(request);
 condition_variable* cv;
 mutex* mtx;
 worker->getCondition(cv);
 worker->getMutex(mtx);
 unique_lock<mutex> lock(*mtx);
 cv->notify_one();
 workers.pop();
 workersMutex.unlock();
 }
 else {
 workersMutex.unlock();
 requestsMutex.lock();
 requests.push(request);
 requestsMutex.unlock();
 }
 }

The mutexes here are the workersMutex and requestsMutex variables. We can clearly see
how at no point do we hold onto a mutex before trying to obtain access to the other one. We
explicitly lock the workersMutex at the beginning of the method, so that we can safely
check whether the workers data structure is empty or not.

If it's not empty, we hand the new request to a worker. Then, as we are done with the
workers, data structure, we release the mutex. At this point, we retain zero mutexes.
Nothing too complex here, as we just use a single mutex.

Best Practices Chapter 14

[413]

The interesting thing is in the else statement, for when there is no waiting worker and we
need to obtain the second mutex. As we enter this scope, we retain one mutex. We could
just attempt to obtain the requestsMutex and assume that it will work, yet this may
deadlock, for this simple reason:

bool Dispatcher::addWorker(Worker* worker) {
 bool wait = true;
 requestsMutex.lock();
 if (!requests.empty()) {
 AbstractRequest* request = requests.front();
 worker->setRequest(request);
 requests.pop();
 wait = false;
 requestsMutex.unlock();
 }
 else {
 requestsMutex.unlock();
 workersMutex.lock();
 workers.push(worker);
 workersMutex.unlock();
 }
 return wait;
 }

The accompanying function to the earlier preceding function we see also uses these two
mutexes. Worse, this function runs in a separate thread. As a result, when the first function
holds the workersMutex as it tries to obtain the requestsMutex, with this second function
simultaneously holding the latter, while trying to obtain the former, we hit a deadlock.

In the functions, as we see them here, however, both rules have been implemented
successfully; we never hold more than one lock at a time, and we release any locks we hold
as soon as we can. This can be seen in both else cases, where as we enter them, we first
release any locks we do not need any more.

As in either case, we do not need to check respectively, the workers or requests data
structures any more; we can release the relevant lock before we do anything else. This
results in the following visualization:

Best Practices Chapter 14

[414]

It is of course possible that we may need to use data contained in two or more data
structures or variables; data which is used by other threads simultaneously. It may be
difficult to ensure that there is no chance of a deadlock in the resulting code.

Here, one may want to consider using temporary variables or similar. By locking the mutex,
copying the relevant data, and immediately releasing the lock, there is no chance of
deadlock with that mutex. Even if one has to write back results to the data structure, this
can be done in a separate action.

This adds two more rules in preventing deadlocks:

Try to never hold more than one lock at a time.
Release any held locks as soon as you can.
Never hold a lock any longer than is absolutely necessary.
When holding multiple locks, mind their order.

Best Practices Chapter 14

[415]

Being careless - data races
A data race, also known as a race condition, occurs when two or more threads attempt to
write to the same shared memory simultaneously. As a result, the state of the shared
memory during and at the end of the sequence of instructions executed by each thread is by
definition, non-deterministic.

As we saw in Chapter 13, Debugging Multithreaded Code, data races are reported quite often
by tools used to debug multi-threaded applications. For example:

 ==6984== Possible data race during write of size 1 at 0x5CD9260 by
thread #1
 ==6984== Locks held: none
 ==6984== at 0x40362C: Worker::stop() (worker.h:37)
 ==6984== by 0x403184: Dispatcher::stop() (dispatcher.cpp:50)
 ==6984== by 0x409163: main (main.cpp:70)
 ==6984==
 ==6984== This conflicts with a previous read of size 1 by thread #2
 ==6984== Locks held: none
 ==6984== at 0x401E0E: Worker::run() (worker.cpp:51)
 ==6984== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
 ==6984== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
 ==6984== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::operator()() (functional:1520)
 ==6984== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
 ==6984== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
 ==6984== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
 ==6984== by 0x53DF6B9: start_thread (pthread_create.c:333)
 ==6984== Address 0x5cd9260 is 96 bytes inside a block of size 104 alloc'd
 ==6984== at 0x4C2F50F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)
 ==6984== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
 ==6984== by 0x4090A0: main (main.cpp:51)
 ==6984== Block was alloc'd by thread #1

Best Practices Chapter 14

[416]

The code which generated the preceding warning was the following:

bool Dispatcher::stop() {
 for (int i = 0; i < allWorkers.size(); ++i) {
 allWorkers[i]->stop();
 }
 cout << "Stopped workers.n";
 for (int j = 0; j < threads.size(); ++j) {
 threads[j]->join();
 cout << "Joined threads.n";
 }
 }

Consider this code in the Worker instance:

 void stop() { running = false; }

We also have:

void Worker::run() {
 while (running) {
 if (ready) {
 ready = false;
 request->process();
 request->finish();
 }
 if (Dispatcher::addWorker(this)) {
 while (!ready && running) {
 unique_lock<mutex> ulock(mtx);
 if (cv.wait_for(ulock, chrono::seconds(1)) ==
cv_status::timeout) {
 }
 }
 }
 }
 }

Best Practices Chapter 14

[417]

Here, running is a Boolean variable that is being set to false (writing to it from one
thread), signaling the worker thread that it should terminate its waiting loop, where
reading the Boolean variable is done from a different process, the main thread versus the
worker thread:

This particular example's warning was due to a Boolean variable being simultaneously
written and read. Naturally, the reason why this specific situation is safe has to do with
atomics, as explained in detail in Chapter 8, Atomic Operations - Working with the Hardware.

Best Practices Chapter 14

[418]

The reason why even an operation like this is potentially risky is because the reading
operation may occur while the variable is still in the process of being updated. In the case
of, for example, a 32-bit integer, depending on the hardware architecture, updating this
variable might be done in one operation, or multiple. In the latter case, the reading
operation might read an intermediate value with unpredictable results:

Best Practices Chapter 14

[419]

A more comical situation occurs when multiple threads write to a standard with out using,
for example, cout. As this stream is not thread-safe, the resulting output stream will
contain bits and pieces of the input streams, from whenever either of the threads got a
chance to write:

The basic rules to prevent data races thus are:

Never write to an unlocked, non-atomic, shared resource
Never read from an unlocked, non-atomic, shared resource

This essentially means that any write or read has to be thread-safe. If one writes to shared
memory, no other thread should be able to write to it at the same time. Similarly, when we
read from a shared resource, we need to ensure that, at most, only other threads are also
reading the shared resource.

Best Practices Chapter 14

[420]

This level of mutual exclusion is naturally accomplished by mutexes as we have seen in the
preceding chapters, with a refinement offered in read-write locks, which allows for
simultaneous readers while having writes as fully mutually exclusive events.

Of course, there are also gotchas with mutexes, as we will see in the following section.

Mutexes aren't magic
Mutexes form the basis of practically all forms of mutual exclusion APIs. At their core, they
seem extremely simple, only one thread can own a mutex, with other threads neatly waiting
in a queue until they can obtain the lock on the mutex.

One might even picture this process as follows:

Best Practices Chapter 14

[421]

The reality is of course less pretty, mostly owing to the practical limitations imposed on us
by the hardware. One obvious limitation is that synchronization primitives aren't free. Even
though they are implemented in the hardware, it takes multiple calls to make them work.

The two most common ways to implement mutexes in the hardware is to use either the test-
and-set (TAS) or compare-and-swap (CAS) CPU features.

Test-and-set is usually implemented as two assembly-level instructions, which are executed
autonomously, meaning that they cannot be interrupted. The first instruction tests whether
a certain memory area is set to a 1 or zero. The second instruction is executed only when the
value is a zero (false). This means that the mutex was not locked yet. The second
instruction thus sets the memory area to a 1, locking the mutex.

In pseudo-code, this would look like this:

bool TAS(bool lock) {
 if (lock) {
 return true;
 }
 else {
 lock = true;
 return false;
 }
}

Compare-and-swap is a lesser used variation on this, which performs a comparison
operation on a memory location and a given value, only replacing the contents of that
memory location if the first two match:

bool CAS(int* p, int old, int new) {
 if (*p != old) {
 return false;
 }
 *p = new;
 return true;
}

In either case, one would have to actively repeat either function until a positive value is
returned:

volatile bool lock = false;
 void critical() {
 while (TAS(&lock) == false);
 // Critical section
 lock = 0;
 }

Best Practices Chapter 14

[422]

Here, a simple while loop is used to constantly poll the memory area (marked as volatile to
prevent possibly problematic compiler optimizations). Generally, an algorithm is used for
this which slowly reduces the rate at which it is being polled. This is to reduce the amount
of pressure on the processor and memory systems.

This makes it clear that the use of a mutex is not free, but that each thread which waits for a
mutex lock actively uses resources. As a result, the general rules here are:

Ensure that threads wait for mutexes and similar locks as briefly as possible.
Use condition variables or timers for longer waiting periods.

Locks are fancy mutexes
As we saw earlier in the section on mutexes, there are some issues to keep in mind when
using mutexes. Naturally these also apply when using locks and other mechanisms based
on mutexes, even if some of these issues are smoothed over by these APIs.

One of the things one may get confused about when first using multithreading APIs is what
the actual difference is between the different synchronization types. As we covered earlier
in this chapter, mutexes underlie virtually all synchronization mechanisms, merely differing
in the way that they use mutexes to implement the provided functionality.

The important thing here is that they are not distinct synchronization mechanisms, but
merely specializations of the basic mutex type. Whether one would use a regular mutex, a
read/write lock, a semaphore - or even something as esoteric as a reentrant (recursive)
mutex or lock - depends fully on the particular problem which one is trying to solve.

For the scheduler, we first encountered in Chapter 11, Thread Synchronization and
Communication, we used regular mutexes to protect the data structures containing the
queued worker threads and requests. Since any access of either data structure would likely
not only involve reading actions, but also the manipulation of the structure, it would not
make sense there to use read/write locks. Similarly, recursive locks would not serve any
purpose over the humble mutex.

For each synchronization problem, one therefore has to ask the following questions:

Which requirements do I have?
Which synchronization mechanism best fits these requirements?

Best Practices Chapter 14

[423]

It's therefore attractive to go for a complex type, but generally it's best to stick with the
simpler type which fulfills all the requirements. When it comes to debugging one's
implementation, precious time can be saved over a fancier implementation.

Threads versus the future
Recently it has become popular to advise against the use of threads, instead advocating the
use of other asynchronous processing mechanisms, such as promise. The reasons behind
this are that the use of threads and the synchronization involved is complex and error-
prone. Often one just wants to run a task in parallel and not concern oneself with how the
result is obtained.

For simple tasks which would run only briefly, this can certainly make sense. The main
advantage of a thread-based implementation will always be that one can fully customize its
behavior. With a promise, one sends in a task to run and at the end, one gets the result out
of a future instance. This is convenient for simple tasks, but obviously does not cover a lot
of situations.

The best approach here is to first learn threads and synchronization mechanisms well, along
with their limitations. Only after that does it really make sense to consider whether one
wishes to use a promise, packaged_task, or a full-blown thread.

Another major consideration with these fancier, future-based APIs is that they are heavily
template-based, which can make the debugging and troubleshooting of any issues which
may occur significantly less easy than when using the more straightforward and low-level
APIs.

Static order of initialization
Static variables are variables which are declared only once, essentially existing in a global
scope, though potentially only shared between instances of a particular class. It's also
possible to have classes which are completely static:

class Foo {
 static std::map<int, std::string> strings;
 static std::string oneString;

public:
 static void init(int a, std::string b, std::string c) {
 strings.insert(std::pair<int, std::string>(a, b));

Best Practices Chapter 14

[424]

 oneString = c;
 }
};

std::map<int, std::string> Foo::strings;
std::string Foo::oneString;

As we can see here, static variables along with static functions seem like a very simple, yet
powerful concept. While at its core this is true, there's a major issue which will catch the
unwary when it comes to static variables and the initialization of classes. This is in the form
of initialization order.

Imagine what happens if we wish to use the preceding class from another class' static
initialization, like this:

class Bar {
 static std::string name;
 static std::string initName();

public:
 void init();
};

// Static initializations.
std::string Bar::name = Bar::initName();

std::string Bar::initName() {
 Foo::init(1, "A", "B");
 return "Bar";
}

While this may seem like it would work fine, adding the first string to the class' map
structure with the integer as key means there is a very good chance that this code will crash.
The reason for this is simple, there is no guarantee that Foo::string is initialized at the
point when we call Foo::init(). Trying to use an uninitialized map structure will thus
lead to an exception.

In short, the initialization order of static variables is basically random, leading to non-
deterministic behavior if this is not taken into account.

Best Practices Chapter 14

[425]

The solution to this problem is fairly simple. Basically, the goal is to make the initialization
of more complex static variables explicit instead of implicit like in the preceding example.
For this we modify the Foo class:

class Foo {
 static std::map<int, std::string>& strings();
 static std::string oneString;

public:
 static void init(int a, std::string b, std::string c) {
 static std::map<int, std::string> stringsStatic = Foo::strings();
 stringsStatic.insert(std::pair<int, std::string>(a, b));
 oneString = c;
 }
};

std::string Foo::oneString;

std::map<int, std::string>& Foo::strings() {
 static std::map<int, std::string>* stringsStatic = new std::map<int,
std::string>();
 return *stringsStatic;
}

Starting at the top, we see that we no longer define the static map directly. Instead, we have
a private function with the same name. This function's implementation is found at the
bottom of this sample code. In it, we have a static pointer to a map structure with the
familiar map definition.

When this function is called, a new map is created when there's no instance yet, due to it
being a static variable. In the modified init() function, we see that we call the strings()
function to obtain a reference to this instance. This is the explicit initialization part, as
calling the function will always ensure that the map structure is initialized before we use it,
solving the earlier problem we had.

We also see a small optimization here: the stringsStatic variable we create is also static,
meaning that we will only ever call the strings() function once. This makes repeated
function calls unnecessary and regains the speed we would have had with the previous
simple--but unstable--implementation.

The essential rule with static variable initialization is thus, always use explicit initialization
for non-trivial static variables.

Best Practices Chapter 14

[426]

Summary
In this chapter, we looked at a number of good practices and rules to keep in mind when
writing multithreaded code, along with some general advice. At this point, one should be
able to avoid some of the bigger pitfalls and major sources of confusion when writing such
code.

In the next chapter, we will be looking at how to use the underlying hardware to our
advantage with atomic operations, along with the <atomics> header that was also
introduced with C++11.

15
Atomic Operations - Working

with the Hardware
A lot of optimization and thread-safety depends on one's understanding of the underlying
hardware: from aligned memory access on some architectures, to knowing which data sizes
and thus C++ types can be safely addressed without performance penalties or the need for
mutexes and similar.

This chapter looks at how one can make use of the characteristics of a number of processor
architectures in order to, for example, prevent the use of mutexes where atomic operations
would prevent any access conflicts regardless. Compiler-specific extensions such as those in
GCC are also examined.

Topics in this chapter include:

The types of atomic operations and how to use them
How to target a specific processor architecture
Compiler-based atomic operations

Atomic operations
Briefly put, an atomic operation is an operation which the processor can execute with a
single instruction. This makes it atomic in the sense that nothing (barring interrupts) can
interfere with it, or change any variables or data it may be using.

Applications include guaranteeing the order of instruction execution, lock-free
implementations, and related uses where instruction execution order and memory access
guarantees are important.

Before the 2011 C++ standard, the access to such atomic operations as provided by the
processor was only provided by the compiler, using extensions.

Atomic Operations - Working with the Hardware Chapter 15

[428]

Visual C++
For Microsoft's MSVC compiler there are the interlocked functions, as summarized from the
MSDN documentation, starting with the adding features:

Interlocked function Description

InterlockedAdd
Performs an atomic addition operation on the specified LONG
values.

InterlockedAddAcquire
Performs an atomic addition operation on the specified LONG
values. The operation is performed with acquire memory
ordering semantics.

InterlockedAddRelease
Performs an atomic addition operation on the specified LONG
values. The operation is performed with release memory
ordering semantics.

InterlockedAddNoFence
Performs an atomic addition operation on the specified LONG
values. The operation is performed atomically, but without
using memory barriers (covered in this chapter).

These are the 32-bit versions of this feature. There are also 64-bit versions of this and other
methods in the API. Atomic functions tend to be focused on a specific variable type, but
variations in this API have been left out of this summary to keep it brief.

We can also see the acquire and release variations. These provide the guarantee that the
respective read or write access will be protected from memory reordering (on a hardware
level) with any subsequent read or write operation. Finally, the no fence variation (also
known as a memory barrier) performs the operation without the use of any memory
barriers.

Normally CPUs perform instructions (including memory reads and writes) out of order to
optimize performance. Since this type of behavior is not always desirable, memory barriers
were added to prevent this instruction reordering.

Atomic Operations - Working with the Hardware Chapter 15

[429]

Next is the atomic AND feature:

Interlocked function Description

InterlockedAnd
Performs an atomic AND operation on the specified LONG
values.

InterlockedAndAcquire
Performs an atomic AND operation on the specified LONG
values. The operation is performed with acquire memory
ordering semantics.

InterlockedAndRelease
Performs an atomic AND operation on the specified LONG
values. The operation is performed with release memory
ordering semantics.

InterlockedAndNoFence
Performs an atomic AND operation on the specified LONG
values. The operation is performed atomically, but without
using memory barriers.

The bit-test features are as follows:

Interlocked function Description

InterlockedBitTestAndComplement
Tests the specified bit of the specified LONG
value and complements it.

InterlockedBitTestAndResetAcquire

Tests the specified bit of the specified LONG
value and sets it to 0. The operation is
atomic, and it is performed with acquire
memory ordering semantics.

InterlockedBitTestAndResetRelease

Tests the specified bit of the specified LONG
value and sets it to 0. The operation is
atomic, and it is performed using memory
release semantics.

InterlockedBitTestAndSetAcquire

Tests the specified bit of the specified LONG
value and sets it to 1. The operation is
atomic, and it is performed with acquire
memory ordering semantics.

Atomic Operations - Working with the Hardware Chapter 15

[430]

Interlocked function Description

InterlockedBitTestAndSetRelease

Tests the specified bit of the specified LONG
value and sets it to 1. The operation is
atomic, and it is performed with release
memory ordering semantics.

InterlockedBitTestAndReset
Tests the specified bit of the specified LONG
value and sets it to 0.

InterlockedBitTestAndSet
Tests the specified bit of the specified LONG
value and sets it to 1.

The comparison features can be listed as shown:

Interlocked function Description

InterlockedCompareExchange

Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison.

InterlockedCompareExchangeAcquire

Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison. The operation is performed with
acquire memory ordering semantics.

InterlockedCompareExchangeRelease

Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison. The exchange is performed with
release memory ordering semantics.

InterlockedCompareExchangeNoFence

Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison. The operation is performed
atomically, but without using memory barriers.

InterlockedCompareExchangePointer

Performs an atomic compare-and-exchange operation on the
specified pointer values. The function compares two specified
pointer values and exchanges with another pointer value
based on the outcome of the comparison.

InterlockedCompareExchangePointerAcquire

Performs an atomic compare-and-exchange operation on the
specified pointer values. The function compares two specified
pointer values and exchanges with another pointer value
based on the outcome of the comparison. The operation is
performed with acquire memory ordering semantics.

Atomic Operations - Working with the Hardware Chapter 15

[431]

Interlocked function Description

InterlockedCompareExchangePointerRelease

Performs an atomic compare-and-exchange operation on the
specified pointer values. The function compares two specified
pointer values and exchanges with another pointer value
based on the outcome of the comparison. The operation is
performed with release memory ordering semantics.

InterlockedCompareExchangePointerNoFence

Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified pointer
values and exchanges with another pointer value based on
the outcome of the comparison. The operation is performed
atomically, but without using memory barriers

The decrement features are:

Interlocked function Description

InterlockedDecrement
Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation.

InterlockedDecrementAcquire

Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed with acquire memory
ordering semantics.

InterlockedDecrementRelease

Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed with release memory ordering
semantics.

InterlockedDecrementNoFence

Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed atomically, but without using
memory barriers.

Atomic Operations - Working with the Hardware Chapter 15

[432]

The exchange (swap) features are:

Interlocked function Description

InterlockedExchange
Sets a 32-bit variable to the specified value as
an atomic operation.

InterlockedExchangeAcquire

Sets a 32-bit variable to the specified value as
an atomic operation. The operation is
performed with acquire memory ordering
semantics.

InterlockedExchangeNoFence

Sets a 32-bit variable to the specified value as
an atomic operation. The operation is
performed atomically, but without using
memory barriers.

InterlockedExchangePointer Atomically exchanges a pair of pointer values.

InterlockedExchangePointerAcquire
Atomically exchanges a pair of pointer values.
The operation is performed with acquire
memory ordering semantics.

InterlockedExchangePointerNoFence
Atomically exchanges a pair of addresses. The
operation is performed atomically, but
without using memory barriers.

InterlockedExchangeSubtract Performs an atomic subtraction of two values.

InterlockedExchangeAdd
Performs an atomic addition of two 32-bit
values.

InterlockedExchangeAddAcquire
Performs an atomic addition of two 32-bit
values. The operation is performed with
acquire memory ordering semantics.

InterlockedExchangeAddRelease
Performs an atomic addition of two 32-bit
values. The operation is performed with
release memory ordering semantics.

InterlockedExchangeAddNoFence

Performs an atomic addition of two 32-bit
values. The operation is performed
atomically, but without using memory
barriers.

Atomic Operations - Working with the Hardware Chapter 15

[433]

The increment features are:

Interlocked function Description

InterlockedIncrement
Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation.

InterlockedIncrementAcquire

Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed using acquire memory
ordering semantics.

InterlockedIncrementRelease

Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed using release memory
ordering semantics.

InterlockedIncrementNoFence

Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed atomically, but without using
memory barriers.

The OR feature:

Interlocked function Description

InterlockedOr Performs an atomic OR operation on the specified LONG values.

InterlockedOrAcquire
Performs an atomic OR operation on the specified LONG values.
The operation is performed with acquire memory ordering
semantics.

InterlockedOrRelease
Performs an atomic OR operation on the specified LONG values.
The operation is performed with release memory ordering
semantics.

InterlockedOrNoFence
Performs an atomic OR operation on the specified LONG values.
The operation is performed atomically, but without using
memory barriers.

Atomic Operations - Working with the Hardware Chapter 15

[434]

Finally, the exclusive OR (XOR) features are:

Interlocked function Description

InterlockedXor
Performs an atomic XOR operation on the specified LONG
values.

InterlockedXorAcquire
Performs an atomic XOR operation on the specified LONG
values. The operation is performed with acquire memory
ordering semantics.

InterlockedXorRelease
Performs an atomic XOR operation on the specified LONG
values. The operation is performed with release memory
ordering semantics.

InterlockedXorNoFence
Performs an atomic XOR operation on the specified LONG
values. The operation is performed atomically, but without
using memory barriers.

GCC
Like Visual C++, GCC also comes with a set of built-in atomic functions. These differ based
on the underlying architecture that the GCC version and the standard library one uses.
Since GCC is used on a considerably larger number of platforms and operating systems
than VC++, this is definitely a big factor when considering portability.

For example, not every built-in atomic function provided on the x86 platform will be
available on ARM, partially due to architectural differences, including variations of the
specific ARM architecture. For example, ARMv6, ARMv7, or the current ARMv8, along
with the Thumb instruction set, and so on.

Before the C++11 standard, GCC used __sync-prefixed extensions for atomics:

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

Atomic Operations - Working with the Hardware Chapter 15

[435]

These operations fetch a value from memory and perform the specified operation on it,
returning the value that was in memory. These all use a memory barrier.

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

These operations are similar to the first set, except they return the new value after the
specified operation.

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval,
...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)

These comparison operations will write the new value if the old value matches the provided
value. The Boolean variation returns true if the new value has been written.

__sync_synchronize (...)

This function creates a full memory barrier.

type __sync_lock_test_and_set (type *ptr, type value, ...)

This method is actually an exchange operation unlike what the name suggests. It updates
the pointer value and returns the previous value. This uses not a full memory barrier, but
an acquire barrier, meaning that it does not release the barrier.

void __sync_lock_release (type *ptr, ...)

This function releases the barrier obtained by the previous method.

To adapt to the C++11 memory model, GCC added the __atomic built-in methods, which
also changes the API considerably:

type __atomic_load_n (type *ptr, int memorder)
void __atomic_load (type *ptr, type *ret, int memorder)
void __atomic_store_n (type *ptr, type val, int memorder)
void __atomic_store (type *ptr, type *val, int memorder)
type __atomic_exchange_n (type *ptr, type val, int memorder)
void __atomic_exchange (type *ptr, type *val, type *ret, int memorder)
bool __atomic_compare_exchange_n (type *ptr, type *expected, type desired,
bool weak, int success_memorder, int failure_memorder)
bool __atomic_compare_exchange (type *ptr, type *expected, type *desired,
bool weak, int success_memorder, int failure_memorder)

Atomic Operations - Working with the Hardware Chapter 15

[436]

First are the generic load, store, and exchange functions. They are fairly self-explanatory.
Load functions read a value in memory, store functions store a value in memory, and
exchange functions swap the existing value with a new value. Compare and exchange
functions make the swapping conditional.

type __atomic_add_fetch (type *ptr, type val, int memorder)
type __atomic_sub_fetch (type *ptr, type val, int memorder)
type __atomic_and_fetch (type *ptr, type val, int memorder)
type __atomic_xor_fetch (type *ptr, type val, int memorder)
type __atomic_or_fetch (type *ptr, type val, int memorder)
type __atomic_nand_fetch (type *ptr, type val, int memorder)

These functions are essentially the same as in the old API, returning the result of the specific
operation.

type __atomic_fetch_add (type *ptr, type val, int memorder)
type __atomic_fetch_sub (type *ptr, type val, int memorder)
type __atomic_fetch_and (type *ptr, type val, int memorder)
type __atomic_fetch_xor (type *ptr, type val, int memorder)
type __atomic_fetch_or (type *ptr, type val, int memorder)
type __atomic_fetch_nand (type *ptr, type val, int memorder)

And again, the same functions, updated for the new API. These return the original value
(fetch before operation).

bool __atomic_test_and_set (void *ptr, int memorder)

Unlike the similarly named function in the old API, this function performs a real test and set
operation instead of the exchange operation of the old API's function, which still requires
one to release the memory barrier afterwards. The test is for some defined value.

void __atomic_clear (bool *ptr, int memorder)

This function clears the pointer address, setting it to 0.

void __atomic_thread_fence (int memorder)

A synchronization memory barrier (fence) between threads can be created using this
function.

void __atomic_signal_fence (int memorder)

Atomic Operations - Working with the Hardware Chapter 15

[437]

This function creates a memory barrier between a thread and signal handlers within that
same thread.

bool __atomic_always_lock_free (size_t size, void *ptr)

The function checks whether objects of the specified size will always create lock-free atomic
instructions for the current processor architecture.

bool __atomic_is_lock_free (size_t size, void *ptr)

This is essentially the same as the previous function.

Memory order
Memory barriers (fences) are not always used in the C++11 memory model for atomic
operations. In the GCC built-in atomics API, this is reflected in the memorder parameter in
its functions. The possible values for this map directly to the values in the C++11 atomics
API:

__ATOMIC_RELAXED: Implies no inter-thread ordering constraints.
__ATOMIC_CONSUME: This is currently implemented using the stronger
__ATOMIC_ACQUIRE memory order because of a deficiency in C++11's semantics
for memory_order_consume.
__ATOMIC_ACQUIRE: Creates an inter-thread happens-before constraint from the
release (or stronger) semantic store to this acquire load
__ATOMIC_RELEASE: Creates an inter-thread happens-before constraint to
acquire (or stronger) semantic loads that read from this release store
__ATOMIC_ACQ_REL: Combines the effects of both __ATOMIC_ACQUIRE and
__ATOMIC_RELEASE.
__ATOMIC_SEQ_CST: Enforces total ordering with all other __ATOMIC_SEQ_CST
operations.

The preceding list was copied from the GCC manual's chapter on atomics for GCC 7.1.
Along with the comments in that chapter, it makes it quite clear that trade-offs were made
when implementing both the C++11 atomics support within its memory model and in the
compiler's implementation.

Atomic Operations - Working with the Hardware Chapter 15

[438]

Since atomics rely on the underlying hardware support, there will never be a single piece of
code using atomics that will work across a wide variety of architectures.

Other compilers
There are many more compiler toolchains for C/C++ than just VC++ and GCC, of course,
including the Intel Compiler Collection (ICC) and other, usually proprietary tools.. These all
have their own collection of built-in atomic functions. Fortunately, thanks to the C++11
standard, we now have a fully portable standard for atomics between compilers. Generally,
this means that outside of very specific use cases (or maintenance of existing code), one
would use the C++ standard over compiler-specific extensions.

C++11 atomics
In order to use the native C++11 atomics features, all one has to do is include the <atomic>
header. This makes available the atomic class, which uses templates to adapt itself to the
required type, with a large number of predefined typedefs:

Typedef name Full specialization

std::atomic_bool std::atomic<bool>

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>

std::atomic_uchar std::atomic<unsigned char>

std::atomic_short std::atomic<short>

std::atomic_ushort std::atomic<unsigned short>

std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>

std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>

std::atomic_llong std::atomic<long long>

std::atomic_ullong std::atomic<unsigned long long>

std::atomic_char16_t std::atomic<char16_t>

Atomic Operations - Working with the Hardware Chapter 15

[439]

std::atomic_char32_t std::atomic<char32_t>

std::atomic_wchar_t std::atomic<wchar_t>

std::atomic_int8_t std::atomic<std::int8_t>

std::atomic_uint8_t std::atomic<std::uint8_t>

std::atomic_int16_t std::atomic<std::int16_t>

std::atomic_uint16_t std::atomic<std::uint16_t>

std::atomic_int32_t std::atomic<std::int32_t>

std::atomic_uint32_t std::atomic<std::uint32_t>

std::atomic_int64_t std::atomic<std::int64_t>

std::atomic_uint64_t std::atomic<std::uint64_t>

std::atomic_int_least8_t std::atomic<std::int_least8_t>

std::atomic_uint_least8_t std::atomic<std::uint_least8_t>

std::atomic_int_least16_t std::atomic<std::int_least16_t>

std::atomic_uint_least16_t std::atomic<std::uint_least16_t>

std::atomic_int_least32_t std::atomic<std::int_least32_t>

std::atomic_uint_least32_t std::atomic<std::uint_least32_t>

std::atomic_int_least64_t std::atomic<std::int_least64_t>

std::atomic_uint_least64_t std::atomic<std::uint_least64_t>

std::atomic_int_fast8_t std::atomic<std::int_fast8_t>

std::atomic_uint_fast8_t std::atomic<std::uint_fast8_t>

std::atomic_int_fast16_t std::atomic<std::int_fast16_t>

std::atomic_uint_fast16_t std::atomic<std::uint_fast16_t>

std::atomic_int_fast32_t std::atomic<std::int_fast32_t>

std::atomic_uint_fast32_t std::atomic<std::uint_fast32_t>

std::atomic_int_fast64_t std::atomic<std::int_fast64_t>

std::atomic_uint_fast64_t std::atomic<std::uint_fast64_t>

std::atomic_intptr_t std::atomic<std::intptr_t>

Atomic Operations - Working with the Hardware Chapter 15

[440]

std::atomic_uintptr_t std::atomic<std::uintptr_t>

std::atomic_size_t std::atomic<std::size_t>

std::atomic_ptrdiff_t std::atomic<std::ptrdiff_t>

std::atomic_intmax_t std::atomic<std::intmax_t>

std::atomic_uintmax_t std::atomic<std::uintmax_t>

This atomic class defines the following generic functions:

Function Description

operator= Assigns a value to an atomic object.

is_lock_free Returns true if the atomic object is lock-free.

store
Replaces the value of the atomic object with a non-atomic
argument, atomically.

load Atomically obtains the value of the atomic object.

operator T Loads a value from an atomic object.

exchange
Atomically replaces the value of the object with the new
value and returns the old value.

compare_exchange_weak
compare_exchange_strong

Atomically compares the value of the object and swaps
values if equal, or else returns the current value.

With the C++17 update, the is_always_lock_free constant is added. This allows one to
inquire whether the type is always lock-free.

Finally, we have the specialized atomic functions:

Function Description

fetch_add
Atomically adds the argument to the value stored in the atomic
object and returns the old value.

fetch_sub
Atomically subtracts the argument from the value stored in the
atomic object and returns the old value.

fetch_and
Atomically performs bitwise AND between the argument and the
value of the atomic object and returns the old value.

Atomic Operations - Working with the Hardware Chapter 15

[441]

fetch_or
Atomically performs bitwise OR between the argument and the value
of the atomic object and returns the old value.

fetch_xor
Atomically performs bitwise XOR between the argument and the
value of the atomic object and returns the old value.

operator++
operator++(int)
operator--
operator--(int)

Increments or decrements the atomic value by one.

operator+=
operator-=
operator&=
operator|=
operator^=

Adds, subtracts, or performs a bitwise AND, OR, XOR operation with
the atomic value.

Example
A basic example using fetch_add would look like this:

#include <iostream>
#include <thread>
#include <atomic>
std::atomic<long long> count;
void worker() {
 count.fetch_add(1, std::memory_order_relaxed);
}
int main() {
 std::thread t1(worker);
 std::thread t2(worker);
 std::thread t3(worker);
 std::thread t4(worker);
 std::thread t5(worker);
 t1.join();
 t2.join();
 t3.join();
 t4.join();
 t5.join();
 std::cout << "Count value:" << count << 'n';
}

The result of this example code would be 5. As we can see here, we can implement a basic
counter this way with atomics, instead of having to use any mutexes or similar in order to
provide thread synchronization.

Atomic Operations - Working with the Hardware Chapter 15

[442]

Non-class functions
In addition to the atomic class, there are also a number of template-based functions
defined in the <atomic> header which we can use in a manner more akin to the compiler's
built-in atomic functions:

Function Description

atomic_is_lock_free
Checks whether the atomic type's
operations are lock-free.

atomic_storeatomic_store_explicit
Atomically replaces the value of the
atomic object with a non-atomic
argument.

atomic_load
atomic_load_explicit

Atomically obtains the value stored in
an atomic object.

atomic_exchange
atomic_exchange_explicit

Atomically replaces the value of the
atomic object with a non-atomic
argument and returns the old value of
atomic.

atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit

Atomically compares the value of the
atomic object with a non-atomic
argument and performs an atomic
exchange if equal or atomic load if
not.

atomic_fetch_add
atomic_fetch_add_explicit

Adds a non-atomic value to an
atomic object and obtains the
previous value of atomic.

atomic_fetch_sub
atomic_fetch_sub_explicit

Subtracts a non-atomic value from an
atomic object and obtains the
previous value of atomic.

atomic_fetch_and
atomic_fetch_and_explicit

Replaces the atomic object with the
result of logical AND with a non-atomic
argument and obtains the previous
value of the atomic.

Atomic Operations - Working with the Hardware Chapter 15

[443]

atomic_fetch_or
atomic_fetch_or_explicit

Replaces the atomic object with the
result of logical OR with a non-atomic
argument and obtains the previous
value of atomic.

atomic_fetch_xor
atomic_fetch_xor_explicit

Replaces the atomic object with the
result of logical XOR with a non-atomic
argument and obtains the previous
value of atomic.

atomic_flag_test_and_set
atomic_flag_test_and_set_explicit

Atomically sets the flag to true and
returns its previous value.

atomic_flag_clear
atomic_flag_clear_explicit

Atomically sets the value of the flag to
false.

atomic_init
Non-atomic initialization of a default-
constructed atomic object.

kill_dependency
Removes the specified object from the
std::memory_order_consume

dependency tree.

atomic_thread_fence
Generic memory order-dependent
fence synchronization primitive.

atomic_signal_fence
Fence between a thread and a signal
handler executed in the same thread.

The difference between the regular and explicit functions is that the latter allows one to
actually set the memory order to use. The former always uses memory_order_seq_cst as
the memory order.

Example
In this example using atomic_fetch_sub, an indexed container is processed by multiple
threads concurrently, without the use of locks:

#include <string>
#include <thread>
#include <vector>
#include <iostream>
#include <atomic>

Atomic Operations - Working with the Hardware Chapter 15

[444]

#include <numeric>
const int N = 10000;
std::atomic<int> cnt;
std::vector<int> data(N);
void reader(int id) {
 for (;;) {
 int idx = atomic_fetch_sub_explicit(&cnt, 1,
std::memory_order_relaxed);
 if (idx >= 0) {
 std::cout << "reader " << std::to_string(id) <<
" processed item "
 << std::to_string(data[idx]) << 'n';
 }
 else {
 std::cout << "reader " << std::to_string(id) <<
" done.n";
 break;
 }
 }
}
int main() {
 std::iota(data.begin(), data.end(), 1);
 cnt = data.size() - 1;
 std::vector<std::thread> v;
 for (int n = 0; n < 10; ++n) {
 v.emplace_back(reader, n);
 }

 for (std::thread& t : v) {
 t.join();
 }
}

This example code uses a vector filled with integers of size N as the data source, filling it
with 1s. The atomic counter object is set to the size of the data vector. After this, 10 threads
are created (initialized in place using the vector's emplace_back C++11 feature), which run
the reader function.

In that function, we read the current value of the index counter from memory using the
atomic_fetch_sub_explicit function, which allows us to use the
memory_order_relaxed memory order. This function also subtracts the value we pass
from this old value, counting the index down by 1.

So long as the index number we obtain this way is higher or equal to zero, the function
continues, otherwise it will quit. Once all the threads have finished, the application exits.

Atomic Operations - Working with the Hardware Chapter 15

[445]

Atomic flag
std::atomic_flag is an atomic Boolean type. Unlike the other specializations of the
atomic class, it is guaranteed to be lock-free. It does not however, offer any load or store
operations.

Instead, it offers the assignment operator, and functions to either clear, or test_and_set
the flag. The former thereby sets the flag to false, and the latter will test and set it to true.

Memory order
This property is defined as an enumeration in the <atomic> header:

enum memory_order {
 memory_order_relaxed,
 memory_order_consume,
 memory_order_acquire,
 memory_order_release,
 memory_order_acq_rel,
 memory_order_seq_cst
};

In the GCC section, we already touched briefly on the topic of memory order. As mentioned
there, this is one of the parts where the characteristics of the underlying hardware
architecture surface somewhat.

Basically, memory order determines how non-atomic memory accesses are to be ordered
(memory access order) around an atomic operation. What this affects is how different
threads will see the data in memory as they're executing their instructions:

Enum Description

memory_order_relaxed
Relaxed operation: there are no synchronization or ordering
constraints imposed on other reads or writes, only this
operation's atomicity is guaranteed.

memory_order_consume

A load operation with this memory order performs a consume
operation on the affected memory location: no reads or writes in
the current thread dependent on the value currently loaded
can be reordered before this load. Writes to data-dependent
variables in other threads that release the same atomic variable
are visible in the current thread. On most platforms, this affects
compiler optimizations only.

Atomic Operations - Working with the Hardware Chapter 15

[446]

memory_order_acquire

A load operation with this memory order performs the acquire
operation on the affected memory location: no reads or writes in
the current thread can be reordered before this load. All writes
in other threads that release the same atomic variable are
visible in the current thread.

memory_order_release

A store operation with this memory order performs the release
operation: no reads or writes in the current thread can be
reordered after this store. All writes in the current thread are
visible in other threads that acquire the same atomic variable
and writes that carry a dependency into the atomic variable
become visible in other threads that consume the same atomic.

memory_order_acq_rel

A read-modify-write operation with this memory order is both
an acquire operation and a release operation. No memory reads or
writes in the current thread can be reordered before or after
this store. All writes in other threads that release the same
atomic variable are visible before the modification and the
modification is visible in other threads that acquire the same
atomic variable.

memory_order_seq_cst

Any operation with this memory order is both an acquire
operation and a release operation, plus a single total order exists
in which all threads observe all modifications in the same
order.

Relaxed ordering
With relaxed memory ordering, no order is enforced among concurrent memory accesses.
All that this type of ordering guarantees is atomicity and modification order.

A typical use for this type of ordering is for counters, whether incrementing--or
decrementing, as we saw earlier in the example code in the previous section.

Release-acquire ordering
If an atomic store in thread A is tagged memory_order_release and an atomic load in
thread B from the same variable is tagged memory_order_acquire, all memory writes
(non-atomic and relaxed atomic) that happened before the atomic store from the point of
view of thread A, become visible side-effects in thread B. That is, once the atomic load has
been completed, thread B is guaranteed to see everything thread A wrote to memory.

Atomic Operations - Working with the Hardware Chapter 15

[447]

This type of operation is automatic on so-called strongly ordered architectures, including
x86, SPARC, and POWER. Weakly-ordered architectures, such as ARM, PowerPC, and
Itanium, will require the use of memory barriers here.

Typical applications of this type of memory ordering include mutual exclusion
mechanisms, such as a mutex or atomic spinlock.

Release-consume ordering
If an atomic store in thread A is tagged memory_order_release and an atomic load in
thread B from the same variable is tagged memory_order_consume, all memory writes
(non-atomic and relaxed atomic) that are dependency-ordered before the atomic store from the
point of view of thread A, become visible side-effects within those operations in thread B into
which the load operation carries dependency. That is, once the atomic load has been
completed, those operators and functions in thread B that use the value obtained from the
load are guaranteed to see what thread A wrote to memory.

This type of ordering is automatic on virtually all architectures. The only major exception is
the (obsolete) Alpha architecture. A typical use case for this type of ordering would be read
access to data that rarely gets changed.

As of C++17, this type of memory ordering is being revised, and the use of
memory_order_consume is temporarily discouraged.

Sequentially-consistent ordering
Atomic operations tagged memory_order_seq_cst not only order memory the same way
as release/acquire ordering (everything that happened before a store in one thread becomes
a visible side effect in the thread that did a load), but also establishes a single total modification
order of all atomic operations that are so tagged.

This type of ordering may be necessary for situations where all consumers must observe the
changes being made by other threads in exactly the same order. It requires full memory
barriers as a consequence on multi-core or multi-CPU systems.

As a result of such a complex setup, this type of ordering is significantly slower than the
other types. It also requires that every single atomic operation has to be tagged with this
type of memory ordering, or the sequential ordering will be lost.

Atomic Operations - Working with the Hardware Chapter 15

[448]

Volatile keyword
The volatile keyword is probably quite familiar to anyone who has ever written complex
multithreaded code. Its basic use is to tell the compiler that the relevant variable should
always be loaded from memory, never making assumptions about its value. It also ensures
that the compiler will not make any aggressive optimizations to the variable.

For multithreaded applications, it is generally ineffective, however, its use is discouraged.
The main issue with the volatile specification is that it does not define a multithreaded
memory model, meaning that the result of this keyword may not be deterministic across
platforms, CPUs and even toolchains.

Within the area of atomics, this keyword is not required, and in fact is unlikely to be
helpful. To guarantee that one obtains the current version of a variable that is shared
between multiple CPU cores and their caches, one would have to use an operation like
atomic_compare_exchange_strong, atomic_fetch_add, or atomic_exchange to let
the hardware fetch the correct and current value.

For multithreaded code, it is recommended to not use the volatile keyword and use atomics
instead, to guarantee proper behavior.

Summary
In this chapter, we looked at atomic operations and exactly how they are integrated into
compilers to allow one's code to work as closely with the underlying hardware as possible.
The reader will now be familiar with the types of atomic operations, the use of a memory
barrier (fencing), as well as the various types of memory ordering and their implications.

The reader is now capable of using atomic operations in their own code to accomplish lock-
free designs and to make proper use of the C++11 memory model.

In the next chapter, we will take everything we have learned so far and move away from
CPUs, instead taking a look at GPGPU, the general-purpose processing of data on video
cards (GPUs).

16
Multithreading with Distributed

Computing
Distributed computing was one of the original applications of multithreaded programming.
Back when every personal computer just contained a single processor with a single core,
government and research institutions, as well as some companies would have multi-
processor systems, often in the form of clusters. These would be capable of multithreaded
processing; by splitting tasks across processors, they could speed up various tasks,
including simulations, rendering of CGI movies, and the like.

Nowadays virtually every desktop-level or better system has more than a single processor
core, and assembling a number of systems together into a cluster is very easy, using cheap
Ethernet wiring. Combined with frameworks such as OpenMP and Open MPI, it's quite
easy to expand a C++ based (multithreaded) application to run on a distributed system.

Topics in this chapter include:

Integrating OpenMP and MPI in a multithreaded C++ application
Implementing a distributed, multithreaded application
Common applications and issues with distributed, multithreaded programming

Distributed computing, in a nutshell
When it comes to processing large datasets in parallel, it would be ideal if one could take
the data, chop it up into lots of small parts, and push it to a lot of threads, thus significantly
shortening the total time spent processing the said data.

Multithreading with Distributed Computing Chapter 16

[450]

The idea behind distributed computing is exactly this: on each node in a distributed system
one or more instances of our application run, whereby this application can either be single
or multithreaded. Due to the overhead of inter-process communication, it's generally more
efficient to use a multithreaded application, as well as due to other possible optimizations--
courtesy of resource sharing.

If one already has a multithreaded application ready to use, then one can move straight to
using MPI to make it work on a distributed system. Otherwise, OpenMP is a compiler
extension (for C/C++ and Fortran) which can make it relatively painless to make an
application multithreaded without refactoring.

To do this, OpenMP allows one to mark a common code segment, to be executed on all
slave threads. A master thread creates a number of slave threads which will concurrently
process that same code segment. A basic Hello World OpenMP application looks like this:

/**

 * FILE: omp_hello.c
 * DESCRIPTION:
 * OpenMP Example - Hello World - C/C++ Version
 * In this simple example, the master thread forks a parallel region.
 * All threads in the team obtain their unique thread number and print
it.
 * The master thread only prints the total number of threads. Two OpenMP
 * library routines are used to obtain the number of threads and each
 * thread's number.
 * AUTHOR: Blaise Barney 5/99
 * LAST REVISED: 04/06/05

***/
 #include <omp.h>
 #include <stdio.h>
 #include <stdlib.h>

 int main (int argc, char *argv[]) {
 int nthreads, tid;

 /* Fork a team of threads giving them their own copies of variables */
 #pragma omp parallel private(nthreads, tid) {
 /* Obtain thread number */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %dn", tid);

 /* Only master thread does this */
 if (tid == 0) {
 nthreads = omp_get_num_threads();

Multithreading with Distributed Computing Chapter 16

[451]

 printf("Number of threads = %dn", nthreads);
 }

 } /* All threads join master thread and disband */
}

What one can easily tell from this basic sample is that OpenMP provides a C based API
through the <omp.h> header. We can also see the section that will be executed by each
thread, as marked by a #pragma omp preprocessor macro.

The advantage of OpenMP over the examples of multithreaded code which we saw in the
preceding chapters, is the ease with which a section of code can be marked as being
multithreaded without having to make any actual code changes. The obvious limitation that
comes with this is that every thread instance will execute the exact same code and further
optimization options are limited.

MPI
In order to schedule the execution of code on specific nodes, MPI (Message Passing
Interface) is commonly used. Open MPI is a free library implementation of this, and used
by many high-ranking supercomputers. MPICH is another popular implementation.

MPI itself is defined as a communication protocol for the programming of parallel
computers. It is currently at its third revision (MPI-3).

In summary, MPI offers the following basic concepts:

Communicators: A communicator object connects a group of processes within an
MPI session. It both assigns unique identifiers to processes and arranges
processes within an ordered topology.
Point-to-point operations: This type of operation allows for direct
communication between specific processes.
Collective functions: These functions involve broadcasting communications
within a process group. They can also be used in the reverse manner, which
would take the results from all processes in a group and, for example, sum them
on a single node. A more selective version would ensure that a specific data item
is sent to a specific node.
Derived datatype: Since not every node in an MPI cluster is guaranteed to have
the same definition, byte order, and interpretation of data types, MPI requires
that it is specified what type each data segment is, so that MPI can do data
conversion.

Multithreading with Distributed Computing Chapter 16

[452]

One-sided communications: These are operations which allow one to write or
read to or from remote memory, or perform a reduction operation across a
number of tasks without having to synchronize between tasks. This can be useful
for certain types of algorithms, such as those involving distributed matrix
multiplication.
Dynamic process management: This is a feature which allows MPI processes to
create new MPI processes, or establish communication with a newly created MPI
process.
Parallel I/O: Also called MPI-IO, this is an abstraction for I/O management on
distributed systems, including file access, for easy use with MPI.

Of these, MPI-IO, dynamic process management, and one-sided communication are MPI-2
features. Migration from MPI-1 based code and the incompatibility of dynamic process
management with some setups, along with many applications not requiring MPI-2 features,
means that uptake of MPI-2 has been relatively slow.

Implementations
The initial implementation of MPI was MPICH, by Argonne National Laboratory (ANL)
and Mississippi State University. It is currently one of the most popular implementations,
used as the foundation for MPI implementations, including those by IBM (Blue Gene), Intel,
QLogic, Cray, Myricom, Microsoft, Ohio State University (MVAPICH), and others.

Another very common implementation is Open MPI, which was formed out of the merger
of three MPI implementations:

FT-MPI (University of Tennessee)
LA-MPI (Los Alamos National Laboratory)
LAM/MPI (Indiana University)

These, along with the PACX-MPI team at the University of Stuttgart, are the founding
members of the Open MPI team. One of the primary goals of Open MPI is to create a high-
quality, open source MPI-3 implementation.

MPI implementations are mandated to support C and Fortran. C/C++ and Fortran along
with assembly support is very common, along with bindings for other languages.

Multithreading with Distributed Computing Chapter 16

[453]

Using MPI
Regardless of the implementation chosen, the resulting API will always match the official
MPI standard, differing only by the MPI version that the library one has picked supports.
All MPI-1 (revision 1.3) features should be supported by any MPI implementation,
however.

This means that the canonical Hello World (as, for example, found on the MPI Tutorial site:
http://mpitutorial.com/tutorials/mpi-hello-world/) for MPI should work regardless
of which library one picks:

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
 // Initialize the MPI environment
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 int name_len;
 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message
 printf("Hello world from processor %s, rank %d"
 " out of %d processorsn",
 processor_name, world_rank, world_size);

 // Finalize the MPI environment.
 MPI_Finalize();
}

When reading through this basic example of an MPI-based application, it's important to be
familiar with the terms used with MPI, in particular:

World: The registered MPI processes for this job
Communicator: The object which connects all MPI processes within a session

http://mpitutorial.com/tutorials/mpi-hello-world/

Multithreading with Distributed Computing Chapter 16

[454]

Rank: The identifier for a process within a communicator
Processor: A physical CPU, a singular core of a multi-core CPU, or the hostname
of the system

In this Hello World example, we can see that we include the <mpi.h> header. This MPI
header will always be the same, regardless of the implementation we use.

Initializing the MPI environment requires a single call to MPI_Init(), which can take two
parameters, both of which are optional at this point.

Getting the size of the world (meaning, number of processes available) is the next step. This
is done using MPI_Comm_size(), which takes the MPI_COMM_WORLD global variable
(defined by MPI for our use) and updates the second parameter with the number of
processes in that world.

The rank we then obtain is essentially the unique ID assigned to this process by MPI.
Obtaining this UID is performed with MPI_Comm_rank(). Again, this takes the
MPI_COMM_WORLD variable as the first parameter and returns our numeric rank as the
second parameter. This rank is useful for self-identification and communication between
processes.

Obtaining the name of the specific piece of hardware on which one is running can also be
useful, particularly for diagnostic purposes. For this we can call
MPI_Get_processor_name(). The returned string will be of a globally defined maximum
length and will identify the hardware in some manner. The exact format of this string is
implementation defined.

Finally, we print out the information we gathered and clean up the MPI environment before
terminating the application.

Compiling MPI applications
In order to compile an MPI application, the mpicc compiler wrapper is used. This
executable should be part of whichever MPI implementation has been installed.

Using it is, however, identical to how one would use, for example, GCC:

 $ mpicc -o mpi_hello_world mpi_hello_world.c

This can be compared to:

 $ gcc mpi_hello_world.c -lmsmpi -o mpi_hello_world

Multithreading with Distributed Computing Chapter 16

[455]

This would compile and link our Hello World example into a binary, ready to be executed.
Executing this binary is, however, not done by starting it directly, but instead a launcher is
used, like this:

 $ mpiexec.exe -n 4 mpi_hello_world.exe
 Hello world from processor Generic_PC, rank 0 out of 4 processors
 Hello world from processor Generic_PC, rank 2 out of 4 processors
 Hello world from processor Generic_PC, rank 1 out of 4 processors
 Hello world from processor Generic_PC, rank 3 out of 4 processors

The preceding output is from Open MPI running inside a Bash shell on a Windows system.
As we can see, we launch four processes in total (4 ranks). The processor name is reported
as the hostname for each process ("PC").

The binary to launch MPI applications with is called mpiexec or mpirun, or orterun. These
are synonyms for the same binary, though not all implementations will have all synonyms.
For Open MPI, all three are present and one can use any of these.

The cluster hardware
The systems an MPI based or similar application will run on consist of multiple
independent systems (nodes), each of which is connected to the others using some kind of
network interface. For high-end applications, these tend to be custom nodes with high-
speed, low-latency interconnects. At the other end of the spectrum are so-called Beowulf
and similar type clusters, made out of standard (desktop) computers and usually connected
using regular Ethernet.

At the time of writing, the fastest supercomputer (according to the TOP500 listing) is the
Sunway TaihuLight supercomputer at the National Supercomputing Center in Wuxi,
China. It uses a total of 40,960 Chinese-designed SW26010 manycore RISC architecture-
based CPUs, with 256 cores per CPU (divided in 4 64-core groups), along with four
management cores. The term manycore refers to a specialized CPU design which focuses
more on explicit parallelism as opposed to the single-thread and general-purpose focus of
most CPU cores. This type of CPU is similar to a GPU architecture and vector processors in
general.

Each of these nodes contains a single SW26010 along with 32 GB of DDR3 memory. They
are connected via a PCIe 3.0-based network, itself consisting of a three-level hierarchy: the
central switching network (for supernodes), the supernode network (connecting all 256
nodes in a supernode), and the resource network, which provides access to I/O and other
resource services. The bandwidth for this network between individual nodes is 12
GB/second, with a latency of about 1 microsecond.

Multithreading with Distributed Computing Chapter 16

[456]

The following graphic (from "The Sunway TaihuLight Supercomputer: System and
Applications", DOI: 10.1007/s11432-016-5588-7) provides a visual overview of this system:

Multithreading with Distributed Computing Chapter 16

[457]

For situations where the budget does not allow for such an elaborate and highly customized
system, or where the specific tasks do not warrant such an approach, there always remains
the "Beowulf" approach. A Beowulf cluster is a term used to refer to a distributed
computing system constructed out of common computer systems. These can be Intel or
AMD-based x86 systems, with ARM-based processors now becoming popular.

It's generally helpful to have each node in a cluster to be roughly identical to the other
nodes. Although it's possible to have an asymmetric cluster, management and job
scheduling becomes much easier when one can make broad assumptions about each node.

At the very least, one would want to match the processor architecture, with a base level of
CPU extensions, such as SSE2/3 and perhaps AVX and kin, common across all nodes. Doing
this would allow one to use the same compiled binary across the nodes, along with the
same algorithms, massively simplifying the deployment of jobs and the maintenance of the
code base.

For the network between the nodes, Ethernet is a very popular option, delivering
communication times measured in tens to hundreds of microseconds, while costing only a
fraction of faster options. Usually each node would be connected to a single Ethernet
network, as in this graphic:

Multithreading with Distributed Computing Chapter 16

[458]

There is also the option to add a second or even third Ethernet link to each or specific nodes
to give them access to files, I/O, and other resources, without having to compete with
bandwidth on the primary network layer. For very large clusters, one could consider an
approach such as that used with the Sunway TaihuLight and many other supercomputers:
splitting nodes up into supernodes, each with their own inter-node network. This would
allow one to optimize traffic on the network by limiting it to only associated nodes.

An example of such an optimized Beowulf cluster would look like this:

Multithreading with Distributed Computing Chapter 16

[459]

Clearly there is a wide range of possible configurations with MPI-based clusters, utilizing
custom, off-the-shelf, or a combination of both types of hardware. The intended purpose of
the cluster often determines the most optimal layout for a specific cluster, such as running
simulations, or the processing of large datasets. Each type of job presents its own set of
limitations and requirements, which is also reflected in the software implementation.

Installing Open MPI
For the remainder of this chapter, we will focus on Open MPI. In order to get a working
development environment for Open MPI, one will have to install its headers and library
files, along with its supporting tools and binaries.

Linux and BSDs
On Linux and BSD distributions with a package management system, it's quite easy: simply
install the Open MPI package and everything should be set up and configured, ready to be
used. Consult the manual for one's specific distribution, to see how to search for and install
specific packages.

On Debian-based distributions, one would use:

 $ sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev

The preceding command would install the Open MPI binaries, documentation, and
development headers. The last two packages can be omitted on compute nodes.

Windows
On Windows things get slightly complex, mostly because of the dominating presence of
Visual C++ and the accompanying compiler toolchain. If one wishes to use the same
development environment as on Linux or BSD, using MinGW, one has to take some
additional steps.

This chapter assumes the use of either GCC or MinGW. If one wishes to
develop MPI applications using the Visual Studio environment, please
consult the relevant documentation for this.

Multithreading with Distributed Computing Chapter 16

[460]

The easiest to use and most up to date MinGW environment is MSYS2, which provides a
Bash shell along with most of the tools one would be familiar with under Linux and BSD. It
also features the Pacman package manager, as known from the Linux Arch distribution.
Using this, it's easy to install the requisite packages for Open MPI development.

After installing the MSYS2 environment from https://msys2.github.io/, install the
MinGW toolchain:

 $ pacman -S base-devel mingw-w64-x86_64-toolchain

This assumes that the 64-bit version of MSYS2 was installed. For the 32-bit version, select
i686 instead of x86_64. After installing these packages, we will have both MinGW and the
basic development tools installed. In order to use them, start a new shell using the MinGW
64-bit postfix in the name, either via the shortcut in the start menu, or by using the
executable file in the MSYS2 install folder.

With MinGW ready, it's time to install MS-MPI version 7.x. This is Microsoft's
implementation of MPI and the easiest way to use MPI on Windows. It's an implementation
of the MPI-2 specification and mostly compatible with the MPICH2 reference
implementation. Since MS-MPI libraries are not compatible between versions, we use this
specific version.

Though version 7 of MS-MPI has been archived, it can still be downloaded via the Microsoft
Download Center at
https://www.microsoft.com/en-us/download/details.aspx?id=49926.

MS-MPI version 7 comes with two installers, msmpisdk.msi and MSMpiSetup.exe. Both
need to be installed. Afterwards, we should be able to open a new MSYS2 shell and find the
following environment variable set up:

 $ printenv | grep "WIN|MSMPI"
 MSMPI_INC=D:DevMicrosoftSDKsMPIInclude
 MSMPI_LIB32=D:DevMicrosoftSDKsMPILibx86
 MSMPI_LIB64=D:DevMicrosoftSDKsMPILibx64
 WINDIR=C:Windows

This output for the printenv command shows that the MS-MPI SDK and runtime was
properly installed. Next, we need to convert the static library from the Visual C++ LIB
format to the MinGW A format:

 $ mkdir ~/msmpi
 $ cd ~/msmpi
 $ cp "$MSMPI_LIB64/msmpi.lib" .
 $ cp "$WINDIR/system32/msmpi.dll" .
 $ gendef msmpi.dll

https://msys2.github.io/
https://www.microsoft.com/en-us/download/details.aspx?id=49926

Multithreading with Distributed Computing Chapter 16

[461]

 $ dlltool -d msmpi.def -D msmpi.dll -l libmsmpi.a
 $ cp libmsmpi.a /mingw64/lib/.

We first copy the original LIB file into a new temporary folder in our home folder, along
with the runtime DLL. Next, we use the gendef tool on the DLL in order to create the
definitions which we will need in order to convert it to a new format.

This last step is done with dlltool, which takes the definitions file along with the DLL and
outputs a static library file which is compatible with MinGW. This file we then copy to a
location where MinGW can find it later when linking.

Next, we need to copy the MPI header:

 $ cp "$MSMPI_INC/mpi.h" .

After copying this header file, we must open it and locate the section that starts with:

typedef __int64 MPI_Aint

Immediately above that line, we need to add the following line:

 #include <stdint.h>

This include adds the definition for __int64, which we will need for the code to compile
correctly.

Finally, copy the header file to the MinGW include folder:

 $ cp mpi.h /mingw64/include

With this we have the libraries and headers all in place for MPI development with MinGW.
allowing us to compile and run the earlier Hello World example, and continue with the rest
of this chapter.

Distributing jobs across nodes
In order to distribute MPI jobs across the nodes in a cluster, one has to either specify these
nodes as a parameter to the mpirun/mpiexec command or make use of a host file. This host
file contains the names of the nodes on the network which will be available for a run, along
with the number of available slots on the host.

Multithreading with Distributed Computing Chapter 16

[462]

A prerequisite for running MPI applications on a remote node is that the MPI runtime is
installed on that node, and that password-less access has been configured for that node.
This means that so long as the master node has the SSH keys installed, it can log into each of
these nodes in order to launch the MPI application on it.

Setting up an MPI node
After installing MPI on a node, the next step is to set up password-less SSH access for the
master node. This requires the SSH server to be installed on the node (part of the ssh
package on Debian-based distributions). After this we need to generate and install the SSH
key.

One way to easily do this is by having a common user on the master node and other nodes,
and using an NFS network share or similar to mount the user folder on the master node on
the compute nodes. This way all nodes would have the same SSH key and known hosts file.
One disadvantage of this approach is the lack of security. For an internet-connected cluster,
this would not be a very good approach.

It is, however, a definitely good idea to run the job on each node as the same user to prevent
any possible permission issues, especially when using files and other resources. With the
common user account created on each node, and with the SSH key generated, we can
transfer the public key to the node using the following command:

 $ ssh-copy-id mpiuser@node1

Alternatively, we can copy the public key into the authorized_keys file on the node
system while we are setting it up. If creating and configuring a large number of nodes, it
would make sense to use an image to copy onto each node's system drive, use a setup
script, or possibly boot from an image through PXE boot.

With this step completed, the master node can now log into each compute node in order to
run jobs.

Creating the MPI host file
As mentioned earlier, in order to run a job on other nodes, we need to specify these nodes.
The easiest way to do this is to create a file containing the names of the compute nodes we
wish to use, along with optional parameters.

Multithreading with Distributed Computing Chapter 16

[463]

To allow us to use names for the nodes instead of IP addresses, we have to modify the
operating system's host file first: for example, /etc/hosts on Linux:

 192.168.0.1 master
 192.168.0.2 node0
 192.168.0.3 node1

Next we create a new file which will be the host file for use with MPI:

 master
 node0
 node1

With this configuration, a job would be executed on both compute nodes, as well as the
master node. We can take the master node out of this file to prevent this.

Without any optional parameter provided, the MPI runtime will use all available processors
on the node. If it is desirable, we can limit this number:

 node0 slots=2
 node1 slots=4

Assuming that both nodes are quad-core CPUs, this would mean that only half the cores on
node0 would be used, and all of them on node1.

Running the job
Running an MPI job across multiple MPI nodes is basically the same as executing it only
locally, as in the example earlier in this chapter:

 $ mpirun --hostfile my_hostfile hello_mpi_world

This command would tell the MPI launcher to use a host file called my_hostfile and run a
copy of the specified MPI application on each processor of each node found in that host file.

Using a cluster scheduler
In addition to using a manual command and host files to create and start jobs on specific
nodes, there are also cluster scheduler applications. These generally involve the running of
a daemon process on each node as well as the master node. Using the provided tools, one
can then manage resources and jobs, scheduling allocation and keeping track of job status.

Multithreading with Distributed Computing Chapter 16

[464]

One of the most popular cluster management scheduler's is SLURM, which short for Simple
Linux Utility for Resource management (though now renamed to Slurm Workload Manager
with the website at https:/ ​/ ​slurm. ​schedmd. ​com/ ​). It is commonly used by supercomputers
as well as many computer clusters. Its primary functions consist out of:

Allocating exclusive or non-exclusive access to resources (nodes) to specific users
using time slots
The starting and monitoring of jobs such as MPI-based applications on a set of
nodes
Managing a queue of pending jobs to arbitrate contention for shared resources

The setting up of a cluster scheduler is not required for a basic cluster operation, but can be
very useful for larger clusters, when running multiple jobs simultaneously, or when having
multiple users of the cluster wishing to run their own job.

MPI communication
At this point, we have a functional MPI cluster, which can be used to execute MPI-based
applications (and others, as well) in a parallel fashion. While for some tasks it might be okay
to just send dozens or hundreds of processes on their merry way and wait for them to
finish, very often it is crucial that these parallel processes are able to communicate with each
other.

This is where the true meaning of MPI (being "Message Passing Interface") comes into play.
Within the hierarchy created by an MPI job, processes can communicate and share data in a
variety of ways. Most fundamentally, they can share and receive messages.

An MPI message has the following properties:

A sender
A receiver
A message tag (ID)
A count of the elements in the message
An MPI datatype

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

Multithreading with Distributed Computing Chapter 16

[465]

The sender and receiver should be fairly obvious. The message tag is a numeric ID which
the sender can set and which the receiver can use to filter messages, to, for example, allow
for the prioritizing of specific messages. The data type determines the type of information
contained in the message.

The send and receive functions look like this:

int MPI_Send(
 void* data,
 int count,
 MPI_Datatype datatype,
 int destination,
 int tag,
 MPI_Comm communicator)

int MPI_Recv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)

An interesting thing to note here is that the count parameter in the send function indicates
the number of elements that the function will be sending, whereas the same parameter in
the receive function indicates the maximum number of elements that this thread will accept.

The communicator refers to the MPI communicator instance being used, and the receive
function contains a final parameter which can be used to check the status of the MPI
message.

MPI data types
MPI defines a number of basic types, which one can use directly:

MPI datatype C equivalent

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int

Multithreading with Distributed Computing Chapter 16

[466]

MPI datatype C equivalent

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char

MPI guarantees that when using these types, the receiving side will always get the message
data in the format it expects, regardless of endianness and other platform-related issues.

Custom types
In addition to these basic formats, one can also create new MPI data types. These use a
number of MPI functions, including MPI_Type_create_struct:

int MPI_Type_create_struct(
 int count,
 int array_of_blocklengths[],
 const MPI_Aint array_of_displacements[],
 const MPI_Datatype array_of_types[],
 MPI_Datatype *newtype)

With this function, one can create an MPI type that contains a struct, to be passed just like a
basic MPI data type:

#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <cstddef>

struct car {
 int shifts;
 int topSpeed;
};

Multithreading with Distributed Computing Chapter 16

[467]

int main(int argc, char **argv) {
 const int tag = 13;
 int size, rank;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 if (size < 2) {
 fprintf(stderr,"Requires at least two processes.n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 }

 const int nitems = 2;
 int blocklengths[2] = {1,1};
 MPI_Datatype types[2] = {MPI_INT, MPI_INT};
 MPI_Datatype mpi_car_type;
 MPI_Aint offsets[2];

 offsets[0] = offsetof(car, shifts);
 offsets[1] = offsetof(car, topSpeed);

 MPI_Type_create_struct(nitems, blocklengths, offsets, types,
&mpi_car_type);
 MPI_Type_commit(&mpi_car_type);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0) {
 car send;
 send.shifts = 4;
 send.topSpeed = 100;

 const int dest = 1;
 MPI_Send(&send, 1, mpi_car_type, dest, tag, MPI_COMM_WORLD);

 printf("Rank %d: sent structure carn", rank);
 }
 if (rank == 1) {
 MPI_Status status;
 const int src = 0;

 car recv;

 MPI_Recv(&recv, 1, mpi_car_type, src, tag, MPI_COMM_WORLD,
&status);
 printf("Rank %d: Received: shifts = %d topSpeed = %dn", rank,
recv.shifts, recv.topSpeed);
 }

Multithreading with Distributed Computing Chapter 16

[468]

 MPI_Type_free(&mpi_car_type);
 MPI_Finalize();

 return 0;
}

Here we see how a new MPI data type called mpi_car_type is defined and used to
message between two processes. To create a struct type like this, we need to define the
number of items in the struct, the number of elements in each block, their byte
displacement, and their basic MPI types.

Basic communication
A simple example of MPI communication is the sending of a single value from one process
to another. In order to do this, one needs to use the following listed code and run the
compiled binary to start at least two processes. It does not matter whether these processes
run locally or on two compute nodes.

The following code was gratefully borrowed from http:/ ​/​mpitutorial. ​com/ ​tutorials/
mpi-​hello-​world/ ​:

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 // Initialize the MPI environment.
 MPI_Init(NULL, NULL);
 // Find out rank, size.
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // We are assuming at least 2 processes for this task.
 if (world_size < 2) {
 fprintf(stderr, "World size must be greater than 1 for
%s.n", argv[0]);
 MPI_Abort(MPI_COMM_WORLD, 1);
 }

 int number;
 if (world_rank == 0) {
 // If we are rank 0, set the number to -1 and send it to process
1.

http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/

Multithreading with Distributed Computing Chapter 16

[469]

 number = -1;
 MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (world_rank == 1) {
 MPI_Recv(&number, 1, MPI_INT, 0, 0,
 MPI_COMM_WORLD,
 MPI_STATUS_IGNORE);
 printf("Process 1 received number %d from process 0.n",
number);
 }
 MPI_Finalize();
}

There isn't a lot to this code. We work through the usual MPI initialization, followed by a
check to ensure that our world size is at least two processes large.

The process with rank 0 will then send an MPI message of data type MPI_INT and value -1.
The process with rank 1 will wait to receive this message. The receiving process specifies for
MPI_Status MPI_STATUS_IGNORE to indicate that the process will not be checking the
status of the message. This is a useful optimization technique.

Finally, the expected output is the following:

 $ mpirun -n 2 ./send_recv_demo
 Process 1 received number -1 from process 0

Here we start the compiled demo code with a total of two processes. The output shows that
the second process received the MPI message from the first process, with the correct value.

Advanced communication
For advanced MPI communication, one would use the MPI_Status field to obtain more
information about a message. One can use MPI_Probe to discover a message's size before
accepting it with MPI_Recv. This can be useful for situations where it is not known
beforehand what the size of a message will be.

Multithreading with Distributed Computing Chapter 16

[470]

Broadcasting
Broadcasting a message means that all processes in the world will receive it. This simplifies
the broadcast function relative to the send function:

int MPI_Bcast(
 void *buffer,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm comm)

The receiving processes would simply use a normal MPI_Recv function. All that the
broadcast function does is optimize the sending of many messages using an algorithm that
uses multiple network links simultaneously, instead of just one.

Scattering and gathering
Scattering is very similar to broadcasting a message, with one very important distinction:
instead of sending the same data in each message, instead it sends a different part of an
array to each recipient. Its function definition looks as follows:

int MPI_Scatter(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

Each receiving process will get the same data type, but we can specify how many items will
be sent to each process (send_count). This function is used on both the sending and
receiving side, with the latter only having to define the last set of parameters relating to
receiving data, with the world rank of the root process and the relevant communicator
being provided.

Multithreading with Distributed Computing Chapter 16

[471]

Gathering is the inverse of scattering. Here multiple processes will send data that ends up at
a single process, with this data sorted by the rank of the process which sent it. Its function
definition looks as follows:

int MPI_Gather(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

One may notice that this function looks very similar to the scatter function. This is because
it works basically the same way, only this time around the sending nodes have to all fill in
the parameters related to sending the data, while the receiving process has to fill in the
parameters related to receiving data.

It is important to note here that the recv_count parameter relates to the amount of data
received from each sending process, not the size in total.

There exist further specializations of these two basic functions, but these will not be covered
here.

MPI versus threads
One might think that it would be easiest to use MPI to allocate one instance of the MPI
application to a single CPU core on each cluster node, and this would be true. It would,
however, not be the fastest solution.

Although for communication between processes across a network MPI is likely the best
choice in this context, within a single system (single or multi-CPU system) using
multithreading makes a lot of sense.

The main reason for this is simply that communication between threads is significantly
faster than inter-process communication, especially when using a generalized
communication layer such as MPI.

Multithreading with Distributed Computing Chapter 16

[472]

One could write an application that uses MPI to communicate across the cluster's network,
whereby one allocates one instance of the application to each MPI node. The application
itself would detect the number of CPU cores on that system, and create one thread for each
core. Hybrid MPI, as it's often called, is therefore commonly used, for the advantages it
provides:

Faster communication – using fast inter-thread communication.
Fewer MPI messages – fewer messages means a reduction in bandwidth and
latency.
Avoiding data duplication – data can be shared between threads instead of
sending the same message to a range of processes.

Implementing this can be done the way we have seen in previous chapters, by using the
multithreading features found in C++11 and successive versions. The other option is to use
OpenMP, as we saw at the very beginning of this chapter.

The obvious advantage of using OpenMP is that it takes very little effort from the
developer's side. If all that one needs is to get more instances of the same routine running,
all it takes is are the small modifications to mark the code to be used for the worker threads.

For example:

#include <stdio.h>
#include <mpi.h>
#include <omp.h>

int main(int argc, char *argv[]) {
 int numprocs, rank, len;
 char procname[MPI_MAX_PROCESSOR_NAME];
 int tnum = 0, tc = 1;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(procname, &len);

 #pragma omp parallel default(shared) private(tnum, tc) {
 np = omp_get_num_threads();
 tnum = omp_get_thread_num();
 printf("Thread %d out of %d from process %d out of %d on %sn",
 tnum, tc, rank, numprocs, procname);
 }

 MPI_Finalize();
}

Multithreading with Distributed Computing Chapter 16

[473]

The above code combines an OpenMP application with MPI. To compile it we would run
for example:

$ mpicc -openmp hellohybrid.c -o hellohybrid

Next, to run the application, we would use mpirun or equivalent:

$ export OMP_NUM_THREADS=8
$ mpirun -np 2 --hostfile my_hostfile -x OMP_NUM_THREADS ./hellohybrid

The mpirun command would run two MPI processes using the hellohybrid binary, passing
the environment variable we exported with the -x flag to each new process. The value
contained in that variable will then be used by the OpenMP runtime to create that number
of threads.

Assuming we have at least two MPI nodes in our MPI host file, we would end up with two
MPI processes across two nodes, each of which running eight threads, which would fit a
quad-core CPU with Hyper-Threading or an octo-core CPU.

Potential issues
When writing MPI-based applications and executing them on either a multi-core CPU or
cluster, the issues one may encounter are very much the same as those we already came
across with the multithreaded code in the preceding chapters.

However, an additional worry with MPI is that one relies on the availability of network
resources. Since a send buffer used for an MPI_Send call cannot be reclaimed until the
network stack can process the buffer, and this call is a blocking type, sending lots of small
messages can lead to one process waiting for another, which in turn is waiting for a call to
complete.

This type of deadlock should be kept in mind when designing the messaging structure of an
MPI application. One can, for example, ensure that there are no send calls building up on
one side, which would lead to such a scenario. Providing feedback messages on, queue
depth and similar could be used to the ease pressure.

MPI also contains a synchronization mechanism using a so-called barrier. This is meant to
be used between MPI processes to allow them to synchronize on for example a task. Using
an MPI barrier (MPI_Barrier) call is similarly problematic as a mutex in that if an MPI
process does not manage to get synchronized, everything will hang at this point.

Multithreading with Distributed Computing Chapter 16

[474]

Summary
In this chapter, we looked in some detail at the MPI standard, along with a number of its
implementations, specifically Open MPI, and we looked at how to set up a cluster. We also
saw how to use OpenMP to easily add multithreading to existing codes.

At this point, the reader should be capable of setting up a basic Beowulf or similar cluster,
configuring it for MPI, and running basic MPI applications on it. How to communicate
between MPI processes and how to define custom data types should be known. In addition,
the reader will be aware of the potential pitfalls when programming for MPI.

In the next chapter, we will take all our knowledge of the preceding chapters and see how
we can combine it in the final chapter, as we look at general-purpose computing on
videocards (GPGPU).

17
Multithreading with GPGPU

A fairly recent development has been to use video cards (GPUs) for general purpose
computing (GPGPU). Using frameworks such as CUDA and OpenCL, it is possible to speed
up, for example, the processing of large datasets in parallel in medical, military, and
scientific applications. In this chapter, we will look at how this is done with C++ and
OpenCL, and how to integrate such a feature into a multithreaded application in C++.

Topics in this chapter include:

Integrating OpenCL into a C++ based application
The challenges of using OpenCL in a multithreaded fashion
The impact of latency and scheduling on multithreaded performance

The GPGPU processing model
In Chapter 16, Multithreading with Distributed Computing, we looked at running the same
task across a number of compute nodes in a cluster system. The main goal of such a setup is
to process data in a highly parallel fashion, theoretically speeding up said processing
relative to a single system with fewer CPU cores.

GPGPU (General Purpose Computing on Graphics Processing Units) is in some ways
similar to this, but with one major difference: while a compute cluster with only regular
CPUs is good at scalar tasks--meaning performing one task on one single set of data (SISD)--
GPUs are vector processors that excel at SIMD (Single Input, Multiple Data) tasks.

Multithreading with GPGPU Chapter 17

[476]

Essentially, this means that one can send a large dataset to a GPU, along with a single task
description, and the GPU will proceed to execute that same task on parts of that data in
parallel on its hundreds or thousands of cores. One can thus regard a GPU as a very
specialized kind of cluster:

Implementations
When the concept of GPGPU was first coined (around 2001), the most common way to write
GPGPU programs was using GLSL (OpenGL Shading Language) and similar shader
languages. Since these shader languages were already aimed at the processing of SIMD
tasks (image and scene data), adapting them for more generic tasks was fairly
straightforward.

Since that time, a number of more specialized implementations have appeared:

Name Since Owner Notes

CUDA 2006 NVidia This is proprietary and only runs on NVidia
GPUs

Close to Metal 2006 ATi/AMD This was abandoned in favor of OpenCL

DirectCompute 2008 Microsoft This is released with DX11, runs on DX10 GPUs,
and is limited to Windows platforms

Multithreading with GPGPU Chapter 17

[477]

OpenCL 2009 Khronos Group

This is open standard and available across
AMD, Intel, and NVidia GPUs on all
mainstream platforms, as well as mobile
platforms

OpenCL
Of the various current GPGPU implementations, OpenCL is by far the most interesting
GPGPU API due to the absence of limitations. It is available for virtually all mainstream
GPUs and platforms, even enjoying support on select mobile platforms.

Another distinguishing feature of OpenCL is that it's not limited to just GPGPU either. As
part of its name (Open Computing Language), it abstracts a system into the so-called
compute devices, each with their own capabilities. GPGPU is the most common application,
but this feature makes it fairly easy to test implementations on a CPU first, for easy
debugging.

One possible disadvantage of OpenCL is that it employs a high level of abstraction for
memory and hardware details, which can negatively affect performance, even as it increases
the portability of the code.

In the rest of this chapter, we will focus on OpenCL.

Common OpenCL applications
Many programs incorporate OpenCL-based code in order to speed up operations. These
include programs aimed at graphics processing, as well as 3D modelling and CAD, audio
and video processing. Some examples are:

Adobe Photoshop
GIMP
ImageMagick
Autodesk Maya
Blender
Handbrake
Vegas Pro

Multithreading with GPGPU Chapter 17

[478]

OpenCV
Libav
Final Cut Pro
FFmpeg

Further acceleration of certain operations is found in office applications including
LibreOffice Calc and Microsoft Excel.

Perhaps more importantly, OpenCL is also commonly used for scientific computing and
cryptography, including BOINC and GROMACS as well as many other libraries and
programs.

OpenCL versions
Since the release of the OpenCL specification on December 8, 2008, there have so far been
five updates, bringing it up to version 2.2. Important changes with these releases are
mentioned next.

OpenCL 1.0
The first public release was released by Apple as part of the macOS X Snow Leopard release
on August 28, 2009.

Together with this release, AMD announced that it would support OpenCL and retire its
own Close to Metal (CtM) framework. NVidia, RapidMind, and IBM also added support for
OpenCL to their own frameworks.

OpenCL 1.1
The OpenCL 1.1 specification was ratified by the Khronos Group on June 14, 2010. It adds
additional functionality for parallel programming and performance, including the
following:

New data types including 3-component vectors and additional image formats
Handling commands from multiple host threads and processing buffers across
multiple devices

Multithreading with GPGPU Chapter 17

[479]

Operations on regions of a buffer including reading, writing, and copying of the
1D, 2D, or 3D rectangular regions
Enhanced use of events to drive and control command execution
Additional OpenCL built-in C functions, such as integer clamp, shuffle, and
asynchronous-strided (not contiguous, but with gaps between the data) copies
Improved OpenGL interoperability through efficient sharing of images and
buffers by linking OpenCL and OpenGL events

OpenCL 1.2
The OpenCL 1.2 version was released on November 15, 2011. Its most significant features
include the following:

Device partitioning: This enables applications to partition a device into sub-
devices to directly control work assignment to particular compute units, reserve a
part of the device for use for high priority/latency-sensitive tasks, or effectively
use shared hardware resources such as a cache.
Separate compilation and linking of objects: This provides the capabilities and
flexibility of traditional compilers enabling the creation of libraries of OpenCL
programs for other programs to link to.
Enhanced image support: This includes added support for 1D images and 1D &
2D image arrays. Also, the OpenGL sharing extension now enables an OpenCL
image to be created from OpenGL 1D textures and 1D & 2D texture arrays.

Built-in kernels: This represents the capabilities of specialized or non-
programmable hardware and associated firmware, such as video
encoder/decoders and digital signal processors, enabling these custom devices to
be driven from and integrated closely with the OpenCL framework.
DX9 Media Surface Sharing: This enables efficient sharing between OpenCL and
DirectX 9 or DXVA media surfaces.
DX11 Surface Sharing: For seamless sharing between OpenCL and DirectX 11
surfaces.

Multithreading with GPGPU Chapter 17

[480]

OpenCL 2.0
The OpenCL2.0 version was released on November 18, 2013. This release has the following
significant changes or additions:

Shared Virtual Memory: Host and device kernels can directly share complex,
pointer-containing data structures such as trees and linked lists, providing
significant programming flexibility and eliminating costly data transfers between
host and devices.
Dynamic Parallelism: Device kernels can enqueue kernels to the same device
with no host interaction, enabling flexible work scheduling paradigms and
avoiding the need to transfer execution control and data between the device and
host, often significantly offloading host processor bottlenecks.
Generic Address Space: Functions can be written without specifying a named
address space for arguments, especially useful for those arguments that are
declared to be a pointer to a type, eliminating the need for multiple functions to
be written for each named address space used in an application.
Images: Improved image support including sRGB images and 3D image writes,
the ability for kernels to read from and write to the same image, and the creation
of OpenCL images from a mip-mapped or a multi-sampled OpenGL texture for
improved OpenGL interop.
C11 Atomics: A subset of C11 atomics and synchronization operations to enable
assignments in one work-item to be visible to other work-items in a work-group,
across work-groups executing on a device or for sharing data between the
OpenCL device and host.
Pipes: Pipes are memory objects that store data organized as a FIFO and OpenCL
2.0 provides built-in functions for kernels to read from or write to a pipe,
providing straightforward programming of pipe data structures that can be
highly optimized by OpenCL implementers.
Android Installable Client Driver Extension: Enables OpenCL implementations
to be discovered and loaded as a shared object on Android systems.

OpenCL 2.1
The OpenCL 2.1 revision to the 2.0 standard was released on November 16, 2015. The most
notable thing about this release was the introduction of the OpenCL C++ kernel language,
such as how the OpenCL language originally was based on C with extensions, the C++
version is based on a subset of C++14, with backwards compatibility for the C kernel
language.

Multithreading with GPGPU Chapter 17

[481]

Updates to the OpenCL API include the following:

Subgroups: These enable finer grain control of hardware threading, are now in
core, together with additional subgroup query operations for increased flexibility
Copying of kernel objects and states: clCloneKernel enables copying of kernel
objects and state for safe implementation of copy constructors in wrapper classes
Low-latency device timer queries: These allow for alignment of profiling data
between device and host code
Intermediate SPIR-V code for the runtime:

A bi-directional translator between LLVM to SPIR-V to enable
flexible use of both intermediate languages in tool chains.
An OpenCL C to LLVM compiler that generates SPIR-V through
the above translator.
A SPIR-V assembler and disassembler.

Standard Portable Intermediate Representation (SPIR) and its successor, SPIR-V, are a way
to provide device-independent binaries for use across OpenCL devices.

OpenCL 2.2
On May 16, 2017, what is now the current release of OpenCL was released. According to the
Khronos Group, it includes the following changes:

OpenCL 2.2 brings the OpenCL C++ kernel language into the core specification
for significantly enhanced parallel programming productivity
The OpenCL C++ kernel language is a static subset of the C++14 standard and
includes classes, templates, Lambda expressions, function overloads, and many
other constructs for generic and meta-programming
Leverages the new Khronos SPIR-V 1.1 intermediate language that fully supports
the OpenCL C++ kernel language
OpenCL library functions can now take advantage of the C++ language to
provide increased safety and reduced undefined behavior while accessing
features such as atomics, iterators, images, samplers, pipes, and device queue
built-in types and address spaces
Pipe storage is a new device-side type in OpenCL 2.2 that is useful for FPGA
implementations by making the connectivity size and type known at compile
time and enabling efficient device-scope communication between kernels

Multithreading with GPGPU Chapter 17

[482]

OpenCL 2.2 also includes features for enhanced optimization of generated code:
Applications can provide the value of specialization constant at SPIR-V
compilation time, a new query can detect non-trivial constructors and destructors
of program-scope global objects, and user callbacks can be set at program release
time
Runs on any OpenCL 2.0-capable hardware (only driver update required)

Setting up a development environment
Regardless of which platform and GPU you have, the most important part of doing
OpenCL development is to obtain the OpenCL runtime for one's GPU from its
manufacturer. Here, AMD, Intel, and NVidia all provide an SDK for all mainstream
platforms. For NVidia, OpenCL support is included in the CUDA SDK.

Along with the GPU vendor's SDK, one can also find details on their website on which
GPUs are supported by this SDK.

Linux
After installing the vendor's GPGPU SDK using the provided instructions, we still need to
download the OpenCL headers. Unlike the shared library and runtime file provided by the
vendor, these headers are generic and will work with any OpenCL implementation.

For Debian-based distributions, simply execute the following command line:

 $ sudo apt-get install opencl-headers

For other distributions, the package may be called the same, or something different. Consult
the manual for one's distribution on how to find out the package name.

After installing the SDK and OpenCL headers, we are ready to compile our first OpenCL
applications.

Windows
On Windows, we can choose between developing with Visual Studio (Visual C++) or with
the Windows port of GCC (MinGW). To stay consistent with the Linux version, we will be
using MinGW along with MSYS2. This means that we'll have the same compiler toolchain
and same Bash shell and utilities, along with the Pacman package manager.

Multithreading with GPGPU Chapter 17

[483]

After installing the vendor's GPGPU SDK, as described previously, simply execute the
following command line in an MSYS2 shell in order to install the OpenCL headers:

 $ pacman -S mingw64/mingw-w64-x86_64-opencl-headers

Or, execute the following command line when using the 32-bit version of MinGW:

 mingw32/mingw-w64-i686-opencl-headers

With this, the OpenCL headers are in place. We now just have to make sure that the
MinGW linker can find OpenCL library. With the NVidia CUDA SDK, you can use the
CUDA_PATH environment variable for this, or browse the install location of the SDK and
copy the appropriate OpenCL LIB file from there to the MinGW lib folder, making sure not
to mix the 32-bit and 64-bit files.

With the shared library now also in place, we can compile the OpenCL applications.

OS X/MacOS
Starting with OS X 10.7, an OpenCL runtime is provided with the OS. After installing
XCode for the development headers and libraries, one can immediately start with OpenCL
development.

A basic OpenCL application
A common example of a GPGPU application is one which calculates the Fast Fourier
Transform (FFT). This algorithm is commonly used for audio processing and similar,
allowing you to transform, for example, from the time domain to the frequency domain for
analysis purposes.

What it does is apply a divide and conquer approach to a dataset, in order to calculate the
DFT (Discrete Fourier Transform). It does this by splitting the input sequence into a fixed,
small number of smaller subsequences, computing their DFT, and assembling these outputs
in order to compose the final sequence.

Multithreading with GPGPU Chapter 17

[484]

This is fairly advanced mathematics, but suffice it to say that what makes it so ideal for
GPGPU is that it's a highly-parallel algorithm, employing the subdivision of data in order to
speed up the calculating of the DFT, as visualized in this graphic:

Each OpenCL application consists of at least two parts: the C++ code that sets up and
configures the OpenCL instance, and the actual OpenCL code, also known as a kernel, such
as this one based on the FFT demonstration example from Wikipedia:

// This kernel computes FFT of length 1024.
// The 1024 length FFT is decomposed into calls to a radix 16 function,
// another radix 16 function and then a radix 4 function
 __kernel void fft1D_1024 (__global float2 *in,
 __global float2 *out,
 __local float *sMemx,
 __local float *sMemy) {
 int tid = get_local_id(0);
 int blockIdx = get_group_id(0) * 1024 + tid;
 float2 data[16];

 // starting index of data to/from global memory
 in = in + blockIdx; out = out + blockIdx;

 globalLoads(data, in, 64); // coalesced global reads
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 1024, 0);

Multithreading with GPGPU Chapter 17

[485]

 // local shuffle using local memory
 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid
>> 4)));
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 64, 4); // twiddle factor
multiplication

 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid &
15)));

 // four radix-4 function calls
 fftRadix4Pass(data); // radix-4 function number 1
 fftRadix4Pass(data + 4); // radix-4 function number 2
 fftRadix4Pass(data + 8); // radix-4 function number 3
 fftRadix4Pass(data + 12); // radix-4 function number 4

 // coalesced global writes
 globalStores(data, out, 64);
 }

This OpenCL kernel shows that, like the GLSL shader language, OpenCL's kernel language
is essentially C with a number of extensions. Although one could use the OpenCL C++
kernel language, this one is only available since OpenCL 2.1 (2015), and as a result, support
and examples for it are less common than the C kernel language.

Next is the C++ application, using which, we run the preceding OpenCL kernel:

#include <cstdio>
 #include <ctime>
 #include "CLopencl.h"

 #define NUM_ENTRIES 1024

 int main() { // (int argc, const char * argv[]) {
 const char* KernelSource = "fft1D_1024_kernel_src.cl";

As we can see here, there's only one header we have to include in order to gain access to the
OpenCL functions. We also specify the name of the file that contains the source for our
OpenCL kernel. Since each OpenCL device is likely a different architecture, the kernel is
compiled for the target device when we load it:

 const cl_uint num = 1;
 clGetDeviceIDs(0, CL_DEVICE_TYPE_GPU, 0, 0, (cl_uint*) num);

 cl_device_id devices[1];
 clGetDeviceIDs(0, CL_DEVICE_TYPE_GPU, num, devices, 0);

Multithreading with GPGPU Chapter 17

[486]

Next, we have to obtain a list of OpenCL devices we can use, filtering it by GPUs:

 cl_context context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU,
 0, 0, 0);

We then create an OpenCL context using the GPU devices we found. The context manages
the resources on a range of devices:

 clGetDeviceIDs(0, CL_DEVICE_TYPE_DEFAULT, 1, devices, 0);
 cl_command_queue queue = clCreateCommandQueue(context, devices[0], 0,
0);

Finally, we will create the command queue that will contain the commands to be executed
on the OpenCL devices:

 cl_mem memobjs[] = { clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(float) * 2 * NUM_ENTRIES, 0, 0),
 clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) * 2 *
NUM_ENTRIES, 0, 0) };

In order to communicate with devices, we need to allocate buffer objects that will contain
the data we will copy to their memory. Here, we will allocate two buffers, one to read and
one to write:

 cl_program program = clCreateProgramWithSource(context, 1, (const char
**)& KernelSource, 0, 0);

We have now got the data on the device, but still need to load the kernel on it. For this, we
will create a kernel using the OpenCL kernel source we looked at earlier, using the filename
we defined earlier:

 clBuildProgram(program, 0, 0, 0, 0, 0);

Next, we will compile the source as follows:

 cl_kernel kernel = clCreateKernel(program, "fft1D_1024", 0);

Finally, we will create the actual kernel from the binary we created:

 size_t local_work_size[1] = { 256 };

 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);
 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);
 clSetKernelArg(kernel, 2, sizeof(float) * (local_work_size[0] + 1) *
16, 0);
 clSetKernelArg(kernel, 3, sizeof(float) * (local_work_size[0] + 1) *
16, 0);

Multithreading with GPGPU Chapter 17

[487]

In order to pass arguments to our kernel, we have to set them here. Here, we will add
pointers to our buffers and dimensions of the work size as follows:

 size_t global_work_size[1] = { 256 };
 global_work_size[0] = NUM_ENTRIES;
 local_work_size[0] = 64; // Nvidia: 192 or 256
 clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_work_size,
local_work_size, 0, 0, 0);

Now we can set the work item dimensions and execute the kernel. Here, we will use a
kernel execution method that allows us to define the size of the work group:

 cl_mem C = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (size), 0,
&ret);
 cl_int ret = clEnqueueReadBuffer(queue, memobjs[1],
CL_TRUE, 0, sizeof(float) * 2 * NUM_ENTRIES, C, 0, 0, 0);

After executing the kernel, we wish to read back the resulting information. For this, we tell
OpenCL to copy the assigned write buffer we passed as a kernel argument into a newly
assigned buffer. We are now free to use the data in this buffer as we see fit.

However, in this example, we will not use the data:

 clReleaseMemObject(memobjs[0]);
 clReleaseMemObject(memobjs[1]);
 clReleaseCommandQueue(queue);
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseContext(context);
 free(C);
 }

Finally, we free the resources we allocated and exit.

GPU memory management
When using a CPU, one has to deal with a number of memory hierarchies, in the form of the
main memory (slowest), to CPU caches (faster), and CPU registers (fastest). A GPU is much
the same, in that, one has to deal with a memory hierarchy that can significantly impact the
speed of one's applications.

Multithreading with GPGPU Chapter 17

[488]

Fastest on a GPU is also the register (or private) memory, of which we have quite a bit more
than on the average CPU. After this, we get local memory, which is a memory shared by a
number of processing elements. Slowest on the GPU itself is the memory data cache, also
called texture memory. This is a memory on the card that is usually referred to as Video
RAM (VRAM) and uses a high-bandwidth, but a relatively high-latency memory such as
GDDR5.

The absolute slowest is using the host system's memory (system RAM), as this has to travel
across the PCIe bus and through various other subsystems in order to transfer any data.
Relative to on-device memory systems, host-device communication is best called 'glacial'.

For AMD, Nvidia, and similar dedicated GPU devices, the memory architecture can be
visualized like this:

Multithreading with GPGPU Chapter 17

[489]

Because of this memory layout, it is advisable to transfer any data in large blocks, and to use
asynchronous transfers if possible. Ideally, the kernel would run on the GPU core and have
the data streamed to it to avoid any latencies.

GPGPU and multithreading
Combining multithreaded code with GPGPU can be much easier than trying to manage a
parallel application running on an MPI cluster. This is mostly due to the following
workflow:

Prepare data: Readying the data which we want to process, such as a large set of1.
images, or a single large image, by sending it to the GPU's memory.
Prepare kernel: Loading the OpenCL kernel file and compiling it into an OpenCL2.
kernel.
Execute kernel: Send the kernel to the GPU and instruct it to start processing3.
data.
Read data: Once we know the processing has finished, or a specific intermediate4.
state has been reached, we will read a buffer we passed along as an argument
with the OpenCL kernel in order to obtain our result(s).

As this is an asynchronous process, one can treat this as a fire-and-forget operation, merely
having a single thread dedicated to monitoring the process of the active kernels.

The biggest challenge in terms of multithreading and GPGPU applications lies not with the
host-based application, but with the GPGPU kernel or shader program running on the GPU,
as it has to coordinate memory management and processing between both local and distant
processing units, determine which memory systems to use depending on the type of data
without causing problems elsewhere in the processing.

This is a delicate process involving a lot of trial and error, profiling and optimizations. One
memory copy optimization or use of an asynchronous operation instead of a synchronous
one may cut processing time from many hours to just a couple. A good understanding of
the memory systems is crucial to preventing data starvation and similar issues.

Since GPGPU is generally used to accelerate tasks of significant duration (minutes to hours,
or longer), it is probably best regarded from a multithreading perspective as a common
worker thread, albeit with a few important complications, mostly in the form of latency.

Multithreading with GPGPU Chapter 17

[490]

Latency
As we touched upon in the earlier section on GPU memory management, it is highly
preferable to use the memory closest to the GPU's processing units first, as they are the
fastest. Fastest here mostly means that they have less latency, meaning the time taken to
request information from the memory and receiving the response.

The exact latency will differ per GPU, but as an example, for Nvidia's Kepler (Tesla K20)
architecture, one can expect a latency of:

Global memory: 450 cycles.
Constant memory cache: 45 – 125 cycles.
Local (shared) memory: 45 cycles.

These measurements are all on the CPU itself. For the PCIe bus one would have to expect
something on the order of multiple milliseconds per transfer once one starts to transfer
multi-megabyte buffers. To fill for example the GPU's memory with a gigabyte-sized buffer
could take a considerable amount of time.

For a simple round-trip over the PCIe bus one would measure the latency in microseconds,
which for a GPU core running at 1+ GHz would seem like an eternity. This basically defines
why communication between the host and GPU should be absolutely minimal and highly
optimized.

Potential issues
A common mistake with GPGPU applications is reading the result buffer before the
processing has finished. After transferring the buffer to the device and executing the kernel,
one has to insert synchronization points to signal the host that it has finished processing.
These generally should be implemented using asynchronous methods.

As we just covered in the section on latency, it's important to keep in mind the potentially
very large delays between a request and response, depending on the memory sub-system or
bus. Failure to do so may cause weird glitches, freezes and crashes, as well as data
corruption and an application which will seemingly wait forever.

It is crucial to profile a GPGPU application to get a good idea of what the GPU utilization is,
and whether the process flow is anywhere near being optimal.

Multithreading with GPGPU Chapter 17

[491]

Debugging GPGPU applications
The biggest challenge with GPGPU applications is that of debugging a kernel. CUDA comes
with a simulator for this reason, which allows one to run and debug a kernel on a CPU.
OpenCL allows one to run a kernel on a CPU without modification, although this may not
get the exact same behavior (and bugs) as when run on a specific GPU device.

A slightly more advanced method involves the use of a dedicated debugger such as
Nvidia's Nsight, which comes in versions both for Visual Studio (https:/ ​/​developer.
nvidia.​com/​nvidia- ​nsight- ​visual- ​studio- ​edition) and Eclipse (https:/ ​/​developer.
nvidia.​com/​nsight- ​eclipse- ​edition).

According to the marketing blurb on the Nsight website:

NVIDIA Nsight Visual Studio Edition brings GPU computing into Microsoft Visual
Studio (including multiple instances of VS2017). This application development
environment for GPUs allows you to build, debug, profile and trace heterogeneous
compute, graphics, and virtual reality applications built with CUDA C/C++, OpenCL,
DirectCompute, Direct3D, Vulkan API, OpenGL, OpenVR, and the Oculus SDK.

The following screenshot shows an active CUDA debug session:

https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition

Multithreading with GPGPU Chapter 17

[492]

A big advantage of such a debugger tool is that it allows one to monitor, profile and
optimize one's GPGPU application by identifying bottlenecks and potential problems.

Summary
In this chapter, we looked at how to integrate GPGPU processing into a C++ application in
the form of OpenCL. We also looked at the GPU memory hierarchy and how this impacts
performance, especially in terms of host-device communication.

You should now be familiar with GPGPU implementations and concepts, along with how to
create an OpenCL application, and how to compile and run it. How to avoid common
mistakes should also be known.

As this is the final chapter of this book, it is hoped that all major questions have been
answered, and that the preceding chapters, along with this one, have been informative and
helpful in some fashion.

Moving on from this book, the reader may be interested in pursuing any of the topics
covered in more detail, for which many resources are available both online and offline. The
topic of multithreading and related areas is very large and touches upon many applications,
from business to scientific, artistic and personal applications

The reader may want to set up a Beowulf cluster of tehir own, or focus on GPGPU, or
combine the two. Maybe there is a complex application they have wanted to write for a
while, or perhaps just have fun with programming.

3
C++17 STL Cookbook

Discover the latest enhancements to functional programming and lambda expressions

18
The New C++17 Features

In this chapter, we will cover the following recipes:

Using structured bindings to unpack bundled return values
Limiting variable scopes to if and switch statements
Profiting from the new bracket initializer rules
Letting the constructor automatically deduce the resulting template class type
Simplifying compile-time decisions with constexpr-if
Enabling header-only libraries with inline variables
Implementing handy helper functions with fold expressions

Introduction
C++ got a lot of additions in C++11, C++14, and, most recently, C++17. By now, it is a
completely different language compared to what it was just a decade ago. The C++ standard
does not only standardize the language, as it needs to be understood by the compilers, but
also the C++ standard template library (STL).

This book explains how to put the STL to the best use with a broad range of examples. But
at first, this chapter will concentrate on the most important new language features.
Mastering them will greatly help you write readable, maintainable, and expressive code a
lot.

The New C++17 Features Chapter 18

[495]

We will see how to access individual members of pairs, tuples, and structures comfortably
with structured bindings and how to limit variable scopes with the new if and switch
variable initialization capabilities. The syntactical ambiguities, which were introduced by
C++11 with the new bracket initialization syntax, which looks the same for initializer lists,
were fixed by new bracket initializer rules. The exact type of template class instances can now
be deduced from the actual constructor arguments, and if different specializations of a
template class will result in completely different code, this is now easily expressible with
constexpr-if. The handling of variadic parameter packs in template functions became much
easier in many cases with the new fold expressions. At last, it became more comfortable to
define static globally accessible objects in header-only libraries with the new ability to
declare inline variables, which was only possible for functions before.

Some of the examples in this chapter might be more interesting for implementers of
libraries than for developers who implement applications. While we will have a look at
such features for completeness reasons, it is not too critical to understand all the examples
of this chapter immediately in order to understand the rest of this book.

Using structured bindings to unpack
bundled return values
C++17 comes with a new feature, which combines syntactic sugar and automatic type
deduction: structured bindings. These help to assign values from pairs, tuples, and structs
into individual variables. In other programming languages, this is also called unpacking.

How to do it...
Applying a structured binding in order to assign multiple variables from one bundled
structure is always one step. Let's first see how it was done before C++17. Then, we can have
a look at multiple examples that show how we can do it in C++17:

Accessing individual values of an std::pair: Imagine we have a mathematical
function, divide_remainder, which accepts a dividend and a divisor parameter
and returns the fraction of both as well as the remainder. It returns those values
using an std::pair bundle:

 std::pair<int, int> divide_remainder(int dividend, int divisor);

The New C++17 Features Chapter 18

[496]

Consider the following way of accessing the individual values of the resulting
pair:

 const auto result (divide_remainder(16, 3));
 std::cout << "16 / 3 is "
 << result.first << " with a remainder of "
 << result.second << 'n';

Instead of doing it as shown in the preceding code snippet, we can now assign the
individual values to individual variables with expressive names, which is much
better to read:

 auto [fraction, remainder] = divide_remainder(16, 3);
 std::cout << "16 / 3 is "
 << fraction << " with a remainder of "
 << remainder << 'n';

Structured bindings also work with std::tuple: Let's take the following
example function, which gets us online stock information:

 std::tuple<std::string,
 std::chrono::system_clock::time_point, unsigned>
 stock_info(const std::string &name);

Assigning its result to individual variables looks just like in the example before:

 const auto [name, valid_time, price] = stock_info("INTC");

Structured bindings also work with custom structures: Let's assume a structure
like the following:

 struct employee {
 unsigned id;
 std::string name;
 std::string role;
 unsigned salary;
 };

Now, we can access these members using structured bindings. We can even do
that in a loop, assuming we have a whole vector of those:

 int main()
 {
 std::vector<employee> employees {
 /* Initialized from somewhere */};
 for (const auto &[id, name, role, salary] : employees) {
 std::cout << "Name: " << name

The New C++17 Features Chapter 18

[497]

 << "Role: " << role
 << "Salary: " << salary << 'n';
 }
 }

How it works...
Structured bindings are always applied with the same pattern:

auto [var1, var2, ...] = <pair, tuple, struct, or array expression>;

The list of variables var1, var2, ... must exactly match the number of
variables contained by the expression being assigned from.
The <pair, tuple, struct, or array expression> must be one of the
following:

An std::pair.
An std::tuple.
A struct. All members must be non-static and defined in the same
base class. The first declared member is assigned to the first
variable, the second member to the second variable, and so on.
An array of fixed size.

The type can be auto, const auto, const auto&, and even auto&&.

Not only for the sake of performance, always make sure to minimize
needless copies by using references when appropriate.

If we write too many or not enough variables between the square brackets, the compiler will
error out, telling us about our mistake:

std::tuple<int, float, long> tup {1, 2.0, 3};
auto [a, b] = tup; // Does not work

This example obviously tries to stuff a tuple variable with three members into only two
variables. The compiler immediately chokes on this and tells us about our mistake:

error: type 'std::tuple<int, float, long>' decomposes into 3 elements, but
only 2 names were provided
auto [a, b] = tup;

The New C++17 Features Chapter 18

[498]

There's more...
A lot of fundamental data structures from the STL are immediately accessible using
structured bindings without us having to change anything. Consider, for example, a loop
that prints all the items of an std::map:

std::map<std::string, size_t> animal_population {
 {"humans", 7000000000},
 {"chickens", 17863376000},
 {"camels", 24246291},
 {"sheep", 1086881528},
 /* … */
};

for (const auto &[species, count] : animal_population) {
 std::cout << "There are " << count << " " << species
 << " on this planet.n";
}

This particular example works because when we iterate over an std::map container, we
get the std::pair<const key_type, value_type> nodes on every iteration step.
Exactly these nodes are unpacked using the structured bindings feature (key_type is the
species string and value_type is the population count size_t) in order to access them
individually in the loop body.

Before C++17, it was possible to achieve a similar effect using std::tie:

int remainder;
std::tie(std::ignore, remainder) = divide_remainder(16, 5);
std::cout << "16 % 5 is " << remainder << 'n';

This example shows how to unpack the resulting pair into two variables. The std::tie is
less powerful than structured bindings in the sense that we have to define all the variables
we want to bind to before. On the other hand, this example shows a strength of std::tie
that structured bindings do not have: the value std::ignore acts as a dummy variable.
The fraction part of the result is assigned to it, which leads to that value being dropped
because we do not need it in that example.

When using structured bindings, we don't have tie dummy variables, so
we have to bind all the values to named variables. Doing so and ignoring
some of them is efficient, nevertheless, because the compiler can optimize
the unused bindings out easily.

The New C++17 Features Chapter 18

[499]

Back in the past, the divide_remainder function could have been implemented in the
following way, using output parameters:

bool divide_remainder(int dividend, int divisor,
 int &fraction, int &remainder);

Accessing it would have looked like the following:

int fraction, remainder;
const bool success {divide_remainder(16, 3, fraction, remainder)};
if (success) {
 std::cout << "16 / 3 is " << fraction << " with a remainder of "
 << remainder << 'n';
}

A lot of people will still prefer this over returning complex structures like pairs, tuples, and
structs, arguing that this way the code would be faster, due to avoided intermediate copies
of those values. This is not true any longer for modern compilers, which optimize
intermediate copies away.

Apart from the missing language features in C, returning complex
structures via return value was considered slow for a long time because
the object had to be initialized in the returning function and then copied
into the variable that should contain the return value on the caller side.
Modern compilers support return value optimization (RVO), which
enables for omitting intermediate copies.

Limiting variable scopes to if and switch
statements
It is good style to limit the scope of variables as much as possible. Sometimes, however, one
first needs to obtain some value, and only if it fits a certain condition, it can be processed
further.

For this purpose, C++17 comes with if and switch statements with initializers.

The New C++17 Features Chapter 18

[500]

How to do it...
In this recipe, we use the initializer syntax in both the supported contexts in order to see
how they tidy up our code:

The if statements: Imagine we want to find a character in a character map using
the find method of std::map:

 if (auto itr (character_map.find(c)); itr != character_map.end()) {
 // *itr is valid. Do something with it.
 } else {
 // itr is the end-iterator. Don't dereference.
 }
 // itr is not available here at all

The switch statements: This is how it would look to get a character from the
input and, at the same time, check the value in a switch statement in order to
control a computer game:

 switch (char c (getchar()); c) {
 case 'a': move_left(); break;
 case 's': move_back(); break;
 case 'w': move_fwd(); break;
 case 'd': move_right(); break;
 case 'q': quit_game(); break;

 case '0'...'9': select_tool('0' - c); break;

 default:
 std::cout << "invalid input: " << c << 'n';
 }

How it works...
The if and switch statements with initializers are basically just syntax sugar. The
following two samples are equivalent:

Before C++17:

{
 auto var (init_value);
 if (condition) {
 // branch A. var is accessible
 } else {
 // branch B. var is accessible

The New C++17 Features Chapter 18

[501]

 }
 // var is still accessible
}

Since C++17:

if (auto var (init_value); condition) {
 // branch A. var is accessible
} else {
 // branch B. var is accessible
}
// var is not accessible any longer

The same applies to switch statements:

Before C++17:

{
 auto var (init_value);
 switch (var) {
 case 1: ...
 case 2: ...
 ...
 }
 // var is still accessible
}

Since C++17:

switch (auto var (init_value); var) {
case 1: ...
case 2: ...
 ...
}
// var is not accessible any longer

This feature is very useful to keep the scope of a variable as short as necessary. Before
C++17, this was only possible using extra braces around the code, as the pre-C++17
examples show. The short lifetimes reduce the number of variables in the scope, which
keeps our code tidy and makes it easier to refactor.

The New C++17 Features Chapter 18

[502]

There's more...
Another interesting use case is the limited scope of critical sections. Consider the following
example:

if (std::lock_guard<std::mutex> lg {my_mutex}; some_condition) {
 // Do something
}

At first, an std::lock_guard is created. This is a class that accepts a mutex argument as a
constructor argument. It locks the mutex in its constructor, and when it runs out of scope, it
unlocks it again in its destructor. This way, it is impossible to forget to unlock the mutex.
Before C++17, a pair of extra braces was needed in order to determine the scope where it
unlocks again.

Yet another interesting use case is the scope of weak pointers. Consider the following:

if (auto shared_pointer (weak_pointer.lock()); shared_pointer != nullptr) {
 // Yes, the shared object does still exist
} else {
 // shared_pointer var is accessible, but a null pointer
}
// shared_pointer is not accessible any longer

This is another example where we would have a useless shared_pointer variable leaking
into the current scope, although it has a potentially useless state outside the if conditional
block or noisy extra brackets!

The if statements with initializers are especially useful when using legacy APIs with output
parameters:

if (DWORD exit_code; GetExitCodeProcess(process_handle, &exit_code)) {
 std::cout << "Exit code of process was: " << exit_code << 'n';
}
// No useless exit_code variable outside the if-conditional

GetExitCodeProcess is a Windows kernel API function. It returns the exit code for a
given process handle but only if that handle is valid. After leaving this conditional block,
the variable is useless, so we don't need it in any scope any longer.

Being able to initialize variables within if blocks is obviously very useful in a lot of
situations and, especially, when dealing with legacy APIs that use output parameters.

The New C++17 Features Chapter 18

[503]

Keep your scopes tight using if and switch statement initializers. This
makes your code more compact, easier to read, and in code refactoring
sessions, it will be easier to move around.

Profiting from the new bracket initializer
rules
C++11 came with the new brace initializer syntax {}. Its purpose was to allow for aggregate
initialization, but also for usual constructor calling. Unfortunately, it was too easy to
express the wrong thing when combining this syntax with the auto variable type. C++17
comes with an enhanced set of initializer rules. In this recipe, we will clarify how to
correctly initialize variables with which syntax in C++17.

How to do it...
Variables are initialized in one step. Using the initializer syntax, there are two different
situations:

Using the brace initializer syntax without auto type deduction:

 // Three identical ways to initialize an int:
 int x1 = 1;
 int x2 {1};
 int x3 (1);
 std::vector<int> v1 {1, 2, 3}; // Vector with three ints: 1, 2, 3
 std::vector<int> v2 = {1, 2, 3}; // same here
 std::vector<int> v3 (10, 20); // Vector with 10 ints,
 // each have value 20

Using the brace initializer syntax with auto type deduction:

 auto v {1}; // v is int
 auto w {1, 2}; // error: only single elements in direct
 // auto initialization allowed! (this is new)
 auto x = {1}; // x is std::initializer_list<int>
 auto y = {1, 2}; // y is std::initializer_list<int>
 auto z = {1, 2, 3.0}; // error: Cannot deduce element type

The New C++17 Features Chapter 18

[504]

How it works...
Without auto type deduction, there's not much to be surprised about in the brace {}
operator, at least, when initializing regular types. When initializing containers such as
std::vector, std::list, and so on, a brace initializer will match the
std::initializer_list constructor of that container class. It does this in a greedy
manner, which means that it is not possible to match non-aggregate constructors (non-
aggregate constructors are usual constructors in contrast to the ones that accept an
initializer list).

std::vector, for example, provides a specific non-aggregate constructor, which fills
arbitrarily many items with the same value: std::vector<int> v (N, value). When
writing std::vector<int> v {N, value}, the initializer_list constructor is
chosen, which will initialize the vector with two items: N and value. This is a special pitfall
one should know about.

One nice detail about the {} operator compared to constructor calling using normal ()
parentheses is that they do no implicit type conversions: int x (1.2); and int x =
1.2; will initialize x to value 1 by silently rounding down the floating point value and
converting it to int. int x {1.2};, in contrast, will not compile because it wants to exactly
match the constructor type.

One can controversially argue about which initialization style is the best
one.
Fans of the bracket initialization style say that using brackets makes it very
explicit, that the variable is initialized with a constructor call, and that this
code line is not reinitializing anything. Furthermore, using {} brackets
will select the only matching constructor, while initializer lines using ()
parentheses try to match the closest constructor and even do type
conversion in order to match.

The additional rule introduced in C++17 affects the initialization with auto type deduction--
while C++11 would correctly make the type of the variable auto x {123}; an
std::initializer_list<int> with only one element, this is seldom what we would
want. C++17 would make the same variable an int.

The New C++17 Features Chapter 18

[505]

Rule of thumb:

auto var_name {one_element}; deduces var_name to be of the same type as
one_element

auto var_name {element1, element2, ...}; is invalid and does not
compile
auto var_name = {element1, element2, ...}; deduces to an
std::initializer_list<T> with T being of the same type as all the elements
in the list

C++17 has made it harder to accidentally define an initializer list.

Trying this out with different compilers in C++11/C++14 mode will show
that some compilers actually deduce auto x {123}; to an int, while
others deduce it to std::initializer_list<int>. Writing code like
this can lead to problems regarding portability!

Letting the constructor automatically deduce
the resulting template class type
A lot of classes in C++ are usually specialized on types, which could be easily deduced from
the variable types the user puts in their constructor calls. Nevertheless, before C++17, this
was not a standardized feature. C++17 lets the compiler automatically deduce template types
from constructor calls.

How to do it...
A very handy use case for this is constructing std::pair and std::tuple instances.
These can be specialized and instantiated and specialized in one step:

std::pair my_pair (123, "abc"); // std::pair<int, const char*>
std::tuple my_tuple (123, 12.3, "abc"); // std::tuple<int, double,
 // const char*>

The New C++17 Features Chapter 18

[506]

How it works...
Let’s define an example class where automatic template type deduction would be of value:

template <typename T1, typename T2, typename T3>
class my_wrapper {
 T1 t1;
 T2 t2;
 T3 t3;

public:
 explicit my_wrapper(T1 t1_, T2 t2_, T3 t3_)
 : t1{t1_}, t2{t2_}, t3{t3_}
 {}

 /* … */
};

Okay, this is just another template class. We previously had to write the following in order
to instantiate it:

my_wrapper<int, double, const char *> wrapper {123, 1.23, "abc"};

We can now just omit the template specialization part:

my_wrapper wrapper {123, 1.23, "abc"};

Before C++17, this was only possible by implementing a make function helper:

my_wrapper<T1, T2, T3> make_wrapper(T1 t1, T2 t2, T3 t3)
{
 return {t1, t2, t3};
}

Using such helpers, it was possible to have a similar effect:

auto wrapper (make_wrapper(123, 1.23, "abc"));

The STL already comes with a lot of helper functions such as that one:
std::make_shared, std::make_unique, std::make_tuple, and so on.
In C++17, these can now mostly be regarded as obsolete. Of course, they
will be provided further for compatibility reasons.

The New C++17 Features Chapter 18

[507]

There's more...
What we just learned about was implicit template type deduction. In some cases, we cannot
rely on implicit type deduction. Consider the following example class:

template <typename T>
struct sum {
 T value;

 template <typename ... Ts>
 sum(Ts&& ... values) : value{(values + ...)} {}
};

This struct, sum, accepts an arbitrary number of parameters and adds them together using a
fold expression (have a look at the fold expression recipe a little later in this chapter to get
more details on fold expressions). The resulting sum is saved in the member variable
value. Now the question is, what type is T? If we don't want to specify it explicitly, it surely
needs to depend on the types of the values provided in the constructor. If we provide string
instances, it needs to be std::string. If we provide integers, it needs to be int. If we
provide integers, floats, and doubles, the compiler needs to figure out which type fits all the
values without information loss. In order to achieve that, we provide an explicit deduction
guide:

template <typename ... Ts>
sum(Ts&& ... ts) -> sum<std::common_type_t<Ts...>>;

This deduction guide tells the compiler to use the std::common_type_t trait, which is able
to find out which common type fits all the values. Let's see how to use it:

sum s {1u, 2.0, 3, 4.0f};
sum string_sum {std::string{"abc"}, "def"};

std::cout << s.value << 'n'
 << string_sum.value << 'n';

In the first line we instantiate a sum object with constructor arguments of type unsigned,
double, int, and float. The std::common_type_t returns double as the common type,
so we get a sum<double> instance. In the second line, we provide an std::string
instance and a C-style string. Following our deduction guide, the compiler constructs an
instance of type sum<std::string>.

When running this code, it will print 10 as the numeric sum and abcdef as the string sum.

The New C++17 Features Chapter 18

[508]

Simplifying compile time decisions with
constexpr-if
In templated code, it is often necessary to do certain things differently, depending on the
type the template is specialized for. C++17 comes with constexpr-if expressions, which
simplify the code in such situations a lot.

How to do it...
In this recipe, we'll implement a little helper template class. It can deal with different
template type specializations because it is able to select completely different code in some
passages, depending on what type we specialize it for:

Write the part of the code that is generic. In our example, it is a simple class,1.
which supports adding a type U value to the type T member value using an add
function:

 template <typename T>
 class addable
 {
 T val;
 public:
 addable(T v) : val{v} {}
 template <typename U>
 T add(U x) const {
 return val + x;
 }
 };

The New C++17 Features Chapter 18

[509]

Imagine that type T is std::vector<something> and type U is just int. What2.
shall it mean to add an integer to a whole vector? Let's say it means that we add
the integer to every item in the vector. This will be done in a loop:

 template <typename U>
 T add(U x)
 {
 auto copy (val); // Get a copy of the vector member
 for (auto &n : copy) {
 n += x;
 }
 return copy;
 }

The next and last step is to combine both worlds. If T is a vector of U items, do the3.
loop variant. If it is not, just implement the normal addition:

 template <typename U>
 T add(U x) const {
 if constexpr (std::is_same_v<T, std::vector<U>>) {
 auto copy (val);
 for (auto &n : copy) {
 n += x;
 }
 return copy;
 } else {
 return val + x;
 }
 }

The class can now be put to use. Let's see how nicely it works with completely4.
different types, such as int, float, std::vector<int>, and
std::vector<string>:

 addable<int>{1}.add(2); // is 3
 addable<float>{1.0}.add(2); // is 3.0
 addable<std::string>{"aa"}.add("bb"); // is "aabb"

 std::vector<int> v {1, 2, 3};
 addable<std::vector<int>>{v}.add(10);
 // is std::vector<int>{11, 12, 13}

 std::vector<std::string> sv {"a", "b", "c"};
 addable<std::vector<std::string>>{sv}.add(std::string{"z"});
 // is {"az", "bz", "cz"}

The New C++17 Features Chapter 18

[510]

How it works...
The new constexpr-if works exactly like usual if-else constructs. The difference is that the
condition that it tests has to be evaluated at compile time. All runtime code that the compiler
creates from our program will not contain any branch instructions from constexpr-if
conditionals. One could also put it that it works in a similar manner to preprocessor #if
and #else text substitution macros, but for those, the code would not even have to be
syntactically well-formed. All the branches of a constexpr-if construct need to be
syntactically well-formed, but the branches that are not taken do not need to be semantically
valid.

In order to distinguish whether the code should add the value x to a vector or not, we use
the type trait std::is_same. An expression std::is_same<A, B>::value evaluates to
the Boolean value true if A and B are of the same type. The condition used in our recipe is
std::is_same<T, std::vector<U>>::value, which evaluates to true if the user
specialized the class on T = std::vector<X> and tries to call add with a parameter of
type U = X.

There can, of course, be multiple conditions in one constexpr-if-else block (note that a and b
have to depend on template parameters and not only on compile-time constants):

if constexpr (a) {
 // do something
} else if constexpr (b) {
 // do something else
} else {
 // do something completely different
}

With C++17, a lot of meta programming situations are much easier to express and to read.

There's more...
In order to relate how much constexpr-if constructs are an improvement to C++, we can
have a look at how the same thing could have been implemented before C++17:

template <typename T>
class addable
{
 T val;

public:
 addable(T v) : val{v} {}

The New C++17 Features Chapter 18

[511]

 template <typename U>
 std::enable_if_t<!std::is_same<T, std::vector<U>>::value, T>
 add(U x) const { return val + x; }

 template <typename U>
 std::enable_if_t<std::is_same<T, std::vector<U>>::value,
 std::vector<U>>
 add(U x) const {
 auto copy (val);
 for (auto &n : copy) {
 n += x;
 }
 return copy;
 }
};

Without using constexpr-if, this class works for all different types we wished for, but it
looks super complicated. How does it work?

The implementations alone of the two different add functions look simple. It's their return
type declaration, which makes them look complicated, and which contains a trick--an
expression such as std::enable_if_t<condition, type> evaluates to type if
condition is true. Otherwise, the std::enable_if_t expression does not evaluate to
anything. That would normally considered an error, but we will see why it is not.

For the second add function, the same condition is used in an inverted manner. This way, it
can only be true at the same time for one of the two implementations.

When the compiler sees different template functions with the same name and has to choose
one of them, an important principle comes into play: SFINAE, which stands for
Substitution Failure is not an Error. In this case, this means that the compiler does not
error out if the return value of one of those functions cannot be deduced from an erroneous
template expression (which std::enable_if is, in case its condition evaluates to false).
It will simply look further and try the other function implementation. That is the trick; that is
how this works.

What a hassle. It is nice to see that this became so much easier with C++17.

The New C++17 Features Chapter 18

[512]

Enabling header-only libraries with inline
variables
While it was always possible in C++ to declare individual functions inline, C++17
additionally allows us to declare variables inline. This makes it much easier to implement
header-only libraries, which was previously only possible using workarounds.

How it's done...
In this recipe, we create an example class that could suit as a member of a typical header-
only library. The target is to give it a static member and instantiate it in a globally available
manner using the inline keyword, which would not be possible like this before C++17:

The process_monitor class should both contain a static member and be1.
globally accessible itself, which would produce double-defined symbols when
included from multiple translation units:

 // foo_lib.hpp
 class process_monitor {
 public:
 static const std::string standard_string
 {"some static globally available string"};
 };
 process_monitor global_process_monitor;

If we now include this in multiple .cpp files in order to compile and link them,2.
this would fail at the linker stage. In order to fix this, we add the inline
keyword:

 // foo_lib.hpp

 class process_monitor {
 public:
 static const inline std::string standard_string
 {"some static globally available string"};
 };

 inline process_monitor global_process_monitor;

Voila, that's it!

The New C++17 Features Chapter 18

[513]

How it works...
C++ programs do often consist of multiple C++ source files (these do have .cpp or .cc
suffices). These are individually compiled to modules/object files (which usually have .o
suffices). Linking all the modules/object files together into a single executable or
shared/static library is then the last step.

At the link stage, it is considered an error if the linker can find the definition of one specific
symbol multiple times. Let's say, for example, we have a function with a signature such as
int foo();. If two modules define the same function, which is the right one? The linker
can't just roll the dice. Well, it could, but that's most likely not what any programmer would
ever want to happen.

The traditional way to provide globally available functions is to declare them in the header
files, which will be included by any C++ module that needs to call them. The definition of
every of those functions will be then put once into separate module files. These are then
linked together with the modules that desire to use these functions. This is also called the
One Definition Rule (ODR). Check out the following illustration for better understanding:

The New C++17 Features Chapter 18

[514]

However, if this were the only way, then it would not have been possible to provide
header-only libraries. Header-only libraries are very handy because they only need to be
included using #include into any C++ program file and then are immediately available. In
order to use libraries that are not header-only, the programmer must also adapt the build
scripts in order to have the linker link the library modules together with his own module
files. Especially for libraries with only very short functions, this is unnecessarily
uncomfortable.

For such cases, the inline keyword can be used to make an exception in order to allow
multiple definitions of the same symbol in different modules. If the linker finds multiple
symbols with the same signature, but they are declared inline, it will just choose the first
one and trust that the other symbols have the same definition. That all equal inline symbols
are defined completely equal is basically a promise from the programmer.

Regarding our recipe example, the linker will find the
process_monitor::standard_string symbol in every module that includes
foo_lib.hpp. Without the inline keyword, it would not know which one to choose, so it
would abort and report an error. The same applies to the global_process_monitor
symbol. Which one is the right one?

After declaring both the symbols inline, it will just accept the first occurrence of each
symbol and drop all the others.

Before C++17, the only clean way would be to provide this symbol via an additional C++
module file, which would force our library users to include this file in the linking step.

The inline keyword traditionally also has another function. It tells the compiler that it can
eliminate the function call by taking its implementation and directly putting it where it was
called. This way, the calling code contains one function call less, which can often be
considered faster. If the function is very short, the resulting assembly will also be shorter
(assuming that the number of instructions that do the function call, saving and restoring the
stack, and so on, is higher than the actual payload code). If the inlined function is very long,
the binary size will grow and this might sometimes not even lead to faster code in the end.
Therefore, the compiler will only use the inline keyword as a hint and might eliminate
function calls by inlining them. But it can also inline some functions without the
programmer having it declared inline.

The New C++17 Features Chapter 18

[515]

There's more...
One possible workaround before C++17 was providing a static function, which returns a
reference to a static object:

class foo {
public:
 static std::string& standard_string() {
 static std::string s {"some standard string"};
 return s;
 }
};

This way, it is completely legal to include the header file in multiple modules but still
getting access to exactly the same instance everywhere. However, the object is not
constructed immediately at the start of program but only on the first call of this getter
function. For some use cases, this is indeed a problem. Imagine that we want the
constructor of the static, globally available object to do something important at program start
(just as our reciple example library class), but due to the getter being called near the end of
the program, it is too late.

Another workaround is to make the non-template class foo a template class, so it can profit
from the same rules as templates.

Both strategies can be avoided in C++17.

Implementing handy helper functions with
fold expressions
Since C++11, there are variadic template parameter packs, which enable implementing
functions that accept arbitrarily many parameters. Sometimes, these parameters are all
combined into one expression in order to derive the function result from that. This task
became really easy with C++17, as it comes with fold expressions.

The New C++17 Features Chapter 18

[516]

How to do it...
Let's implement a function that takes arbitrarily many parameters and returns their sum:

At first, we define its signature:1.

 template <typename ... Ts>
 auto sum(Ts ... ts);

So, we have a parameter pack ts now, and the function should expand all the2.
parameters and sum them together using a fold expression. If we use any
operator (+, in this example) together with ... in order to apply it to all the
values of a parameter pack, we need to surround the expression with
parentheses:

 template <typename ... Ts>
 auto sum(Ts ... ts)
 {
 return (ts + ...);
 }

We can now call it this way:3.

 int the_sum {sum(1, 2, 3, 4, 5)}; // Value: 15

It does not only work with int types; we can call it with any type that just4.
implements the + operator, such as std::string:

 std::string a {"Hello "};
 std::string b {"World"};
 std::cout << sum(a, b) << 'n'; // Output: Hello World

How it works...
What we just did was a simple recursive application of a binary operator (+) to its
parameters. This is generally called folding. C++17 comes with fold expressions, which help
expressing the same idea with less code.

The New C++17 Features Chapter 18

[517]

This kind of expression is called unary fold. C++17 supports folding parameter packs with
the following binary operators: +, -, *, /, %, ^, &, |, =, <, >, <<, >>, +=, -=, *=, /=, %=, ^=, &=,
|=, <<=, >>=, ==, !=, <=, >=, &&, ||, ,, .*, ->*.

By the way, in our example code, it does not matter if we write (ts + …) or (… + ts);
both work. However, there is a difference that may be relevant in other cases--if the … dots
are on the right-hand side of the operator, the fold is called a right fold. If they are on the left-
hand side, it is a left fold.

In our sum example, a unary left fold expands to 1 + (2 + (3 + (4 + 5))), while a
unary right fold will expand to (((1 + 2) + 3) + 4) + 5. Depending on the operator in
use, this can make a difference. When adding numbers, it does not.

There's more...
In case someone calls sum() with no arguments, the variadic parameter pack contains no
values that could be folded. For most operators, this is an error (for some, it is not; we will
see this in a minute). We then need to decide if this should stay an error or if an empty sum
should result in a specific value. The obvious idea is that the sum of nothing is 0.

This is how it’s done:

template <typename ... Ts>
auto sum(Ts ... ts)
{
 return (ts + ... + 0);
}

This way, sum() evaluates to 0, and sum(1, 2, 3) evaluates to (1 + (2 + (3 + 0))).
Such folds with an initial value are called binary folds.

Again, it works if we write (ts + ... + 0), or (0 + ... + ts), but this makes the
binary fold a binary right fold or a binary left fold again. Check out the following diagram:

The New C++17 Features Chapter 18

[518]

When using binary folds in order to implement the no-argument case, the notion of an
identity element is often important--in this case, adding a 0 to any number changes nothing,
which makes 0 an identity element. Because of this property, we can add a 0 to any fold
expression with the operators + or -, which leads to the result 0 in case there are no
parameters in the parameter pack. From a mathematical point of view, this is correct. From
an implementation view, we need to define what is correct, depending on what we need.

The same principle applies to multiplication. Here, the identity element is 1:

template <typename ... Ts>
auto product(Ts ... ts)
{
 return (ts * ... * 1);
}

The result of product(2, 3) is 6, and the result of product() without parameters is 1.

The logical and (&&) and or (||) operators come with built-in identity elements. Folding an
empty parameter pack with && results in true, and folding an empty parameter pack with
|| results in false.

The New C++17 Features Chapter 18

[519]

Another operator that defaults to a certain expression when applied on empty parameter
packs is the comma operator (,), which then defaults to void().

In order to ignite some inspiration, let's have a look at some more little helpers that we can
implement using this feature.

Match ranges against individual items
How about a function that tells whether some range contains at least one of the values we
provide as variadic parameters:

template <typename R, typename ... Ts>
auto matches(const R& range, Ts ... ts)
{
 return (std::count(std::begin(range), std::end(range), ts) + ...);
}

The helper function uses the std::count function from the STL. This function takes three
parameters: the first two parameters are the begin and end iterators of some iterable range,
and as the third parameter, it takes a value which will be compared to all the items of the
range. The std::count method then returns the number of all the elements within the
range that are equal to the third parameter.

In our fold expression, we always feed the begin and end iterators of the same parameter
range into the std::count function. However, as the third parameter, each time we put
one other parameter from the parameter pack into it. In the end, the function sums up all
the results and returns it to the caller.

We can use it like this:

std::vector<int> v {1, 2, 3, 4, 5};

matches(v, 2, 5); // returns 2
matches(v, 100, 200); // returns 0
matches("abcdefg", 'x', 'y', 'z'); // returns 0
matches("abcdefg", 'a', 'd', 'f'); // returns 3

As we can see, the matches helper function is quite versatile--it can be called on vectors or
even on strings directly. It would also work on initializer lists, on instances of std::list,
std::array, std::set, and so on!

The New C++17 Features Chapter 18

[520]

Check if multiple insertions into a set are successful
Let's write a helper that inserts an arbitrary number of variadic parameters into an
std::set and returns if all the insertions are successful:

template <typename T, typename ... Ts>
bool insert_all(T &set, Ts ... ts)
{
 return (set.insert(ts).second && ...);
}

So, how does this work? The insert function of std::set has the following signature:

std::pair<iterator, bool> insert(const value_type& value);

The documentation says that when we try to insert an item, the insert function will return
an iterator and a bool variable in a pair. The bool value is true if the insertion is
successful. If it is successful, the iterator points to the new element in the set. Otherwise, the
iterator points to the existing item, which would collide with the item to be inserted.

Our helper function accesses the .second field after insertion, which is just the bool
variable that reflects success or fail. If all the insertions lead to true in all the return pairs,
then all the insertions were successful. The fold expression combines all the insertion results
with the && operator and returns the result.

We can use it like this:

std::set<int> my_set {1, 2, 3};

insert_all(my_set, 4, 5, 6); // Returns true
insert_all(my_set, 7, 8, 2); // Returns false, because the 2 collides

Note that if we try to insert, for example, three elements, but the second element can
already not be inserted, the && ... fold will short-circuit and stop inserting all the other
elements:

std::set<int> my_set {1, 2, 3};

insert_all(my_set, 4, 2, 5); // Returns false
// set contains {1, 2, 3, 4} now, without the 5!

The New C++17 Features Chapter 18

[521]

Check if all the parameters are within a certain range
If we can check if one variable is within some specific range, we can also do the same thing
with multiple variables using fold expressions:

template <typename T, typename ... Ts>
bool within(T min, T max, Ts ...ts)
{
 return ((min <= ts && ts <= max) && ...);
}

The expression, (min <= ts && ts <= max), does tell for every value of the parameter
pack if it is between min and max (including min and max). We choose the && operator to
reduce all the Boolean results to a single one, which is only true if all the individual results
are true.

This is how it looks in action:

within(10, 20, 1, 15, 30); // --> false
within(10, 20, 11, 12, 13); // --> true
within(5.0, 5.5, 5.1, 5.2, 5.3) // --> true

Interestingly, this function is very versatile because the only requirement it imposes on the
types we use is that they are comparable with the <= operator. And this requirement is also
fulfilled by std::string, for example:

std::string aaa {"aaa"};
std::string bcd {"bcd"};
std::string def {"def"};
std::string zzz {"zzz"};

within(aaa, zzz, bcd, def); // --> true
within(aaa, def, bcd, zzz); // --> false

Pushing multiple items into a vector
It's also possible to write a helper that does not reduce any results but processes multiple
actions of the same kind. Like inserting items into an std::vector, which does not return
any results (std::vector::insert() signalizes error by throwing exceptions):

template <typename T, typename ... Ts>
void insert_all(std::vector<T> &vec, Ts ... ts)
{
 (vec.push_back(ts), ...);
}

The New C++17 Features Chapter 18

[522]

int main()
{
 std::vector<int> v {1, 2, 3};
 insert_all(v, 4, 5, 6);
}

Note that we use the comma (,) operator in order to expand the parameter pack into
individual vec.push_back(...) calls without folding the actual result. This function also
works nicely with an empty parameter pack because the comma operator has an implicit
identity element, void(), which translates to do nothing.

19
STL Containers

We will cover the following recipes in this chapter:

Using the erase-remove idiom on std::vector
Deleting items from an unsorted std::vector in O(1) time
Accessing std::vector instances the fast or the safe way
Keeping std::vector instances sorted
Inserting items efficiently and conditionally into std::map
Knowing the new insertion hint semantics of std::map::insert
Efficiently modifying the keys of std::map items
Using std::unordered_map with custom types
Filtering duplicates from user input and printing them in alphabetical order with
std::set

Implementing a simple RPN calculator with std::stack
Implementing a word frequency counter with std::map
Implementing a writing style helper tool for finding very long sentences in texts
with std::set
Implementing a personal to-do list using std::priority_queue

STL Containers Chapter 19

[524]

Using the erase-remove idiom on std::vector
A lot of novice C++ programmers learn about std::vector, that it basically works like an
automatically growing array, and stop right there. Later, they only lookup its documentation
in order to see how to do very specific things, for example, removing items. Using STL
containers like this will only scratch the surface of how much they help writing clean,
maintainable, and fast code.

This section is all about removing items from in-between a vector instance. When an item
disappears from a vector, and sits somewhere in the middle between other items, then all
items right from it must move one slot to the left (which gives this task a runtime cost within
O(n)). Many novice programmers will do that using a loop, since it is also not really a hard
thing to do. Unfortunately, they will potentially ignore a lot of optimization potential while
doing that. And in the end, a hand crafted loop is neither faster, nor prettier to read than the
STL way, which we will see next.

How to do it...
In this section, we are filling an std::vector instance with some example integers, and
then prune some specific items away from it. The way we are doing it is considered the
correct way of removing multiple items from a vector.

Of course we need to include some headers before we do anything.1.

 #include <iostream>
 #include <vector>
 #include <algorithm>

Then we declare that we are using namespace std to spare us some typing.2.

 using namespace std;

Now we create us a vector of integers and fill it with some example items.3.

 int main()
 {
 vector<int> v {1, 2, 3, 2, 5, 2, 6, 2, 4, 8};

The next step is to remove the items. What do we remove? There are multiple 24.
values. Let's remove them.

 const auto new_end (remove(begin(v), end(v), 2));

STL Containers Chapter 19

[525]

Interestingly, that was only one of the two steps. The vector still has the same5.
size. The next line makes it actually shorter.

 v.erase(new_end, end(v));

Let's stop by here in order to print the vector's content to the terminal, and then6.
continue.

 for (auto i : v) {
 cout << i << ", ";
 }
 cout << 'n';

Now, let's remove a whole class of items, instead of specific values. In order to do7.
that, we define a predicate function first, which accepts a number as parameter,
and returns true, if it is an odd number.

 const auto odd ([](int i) { return i % 2 != 0; });

Now we use the remove_if function and feed it with the predicate function.8.
Instead of removing in two steps as we did before, we do it in one.

 v.erase(remove_if(begin(v), end(v), odd), end(v));

All odd items are gone now, but the vector's capacity is still at the old 109.
elements. In a last step, we reduce that also to the actual current size of the vector.
Note that this might lead the vector code to allocate a new chunk of memory that
fits and moves all items from the old chunk to the new one.

 v.shrink_to_fit();

Now, let's print the content after the second run of removing items and that's it.10.

 for (auto i : v) {
 cout << i << ", ";
 }
 cout << 'n';
 }

Compiling and running the program yields the following two output lines from11.
the two item removing approaches.

 $./main
 1, 3, 5, 6, 4, 8,
 6, 4, 8,

STL Containers Chapter 19

[526]

How it works...
What became obvious in the recipe is that when removing items from the middle of a
vector, they first need to be removed and then erased. At least the functions we used have
names like this. This is admittedly confusing, but let's have a closer look at it to make sense
of these steps.

The code which removes all values of 2 from the vector, looked like this:

const auto new_end (remove(begin(v), end(v), 2));
v.erase(new_end, end(v));

The std::begin and std::end functions both accept a vector instance as parameter, and
return us iterators, which point to the first item, and past the last item, just as sketched in the
upcoming diagram.

After feeding these and the value 2 to the std::remove function, it will move the non-2
values forward, just like we could do that with a manually programmed loop. The
algorithm will strictly preserve the order of all non-2 values while doing that. A quick look
at the illustration might be a bit confusing. In step 2, there still is a value of 2, and the vector
should have become shorter, as there were four values of 2, which all ought to be removed.
Instead, the 4 and the 8 which were in the initial array, are duplicated. What's that?

STL Containers Chapter 19

[527]

Let's only take a look at all the items, which are within the range and which spans from the
begin iterator on the illustration, to the new_end iterator. The item, to which the new_end
iterator points, is the first item past the range, so it's not included. Just concentrating on that
region (these are only the items from 1 to including 8), we realize that this is the correct
range from which all values of 2 are removed.

This is where the erase call comes into play: We must tell the vector that it shall not
consider all items from new_end to end to be items of the vector any longer. This order is
easy to follow for the vector, as it can just point its end iterator to the position of new_end
and it's done. Note that new_end was the return value of the std::remove call, so we can
just use that.

Note that the vector did more magic than just moving an internal pointer.
If that vector was a vector of more complicated objects, it would have
called all the destructors of the to-be-removed items.

Afterward, the vector looks like in step 3 of the diagram: it's considered smaller now. The
old items which are now out of the range, are still in memory.

In order to make the vector occupy only as much memory as it needs, we make
the shrink_to_fit call in the end. During that call, it allocates exactly as much memory as
needed, moves over all the items and deletes the larger chunk we don't need any longer.

In step 8, we define a predicate function and use it with std::remove_if in only one step.
This works, because whatever iterator the remove function returns, it is safe to be used in
the vector's erase function. Even if no odd item was found, the std::remove_if function
will do just nothing, and return the end iterator. Then, a call like v.erase(end, end); also
does nothing, hence it is harmless.

There's more...
The std::remove function also works on other containers. When used with std::array,
 note that it does not support the second step of calling erase, because they do not have
automatic size handling. Just because std::remove effectively only moves items
around and does not perform their actual deletion, it can also be used on data structures
such as arrays that do not support resizing. In the array case, one could overwrite the
values past the new end iterator with sentinel values such as '' for strings, for example.

STL Containers Chapter 19

[528]

Deleting items from an unsorted std::vector
in O(1) time
Deleting items from somewhere in the middle of an std::vector takes O(n) time. This is
because the resulting gap from removing an item must be filled by moving all the items
which come after the gap one slot to the left.

While moving items around like this, which might be expensive if they are complex and/or
very large and include many items, we preserve their order. If preserving the order is not
important, we can optimize this, as this section shows.

How to do it...
In this section, we will fill an std::vector instance with some example numbers, and
implement a quick remove function, which removes any item from a vector in O(1) time.

First, we need to include the required header files.1.

 #include <iostream>
 #include <vector>
 #include <algorithm>

Then, we define a main function where we instantiate a vector with example2.
numbers.

 int main()
 {
 std::vector<int> v {123, 456, 789, 100, 200};

The next step is to delete the value at index 2 (counting from zero of course, so it's3.
the third number 789). The function we will use for that task is not implemented
yet. We do that some steps later. Afterward, we print the vector's content.

 quick_remove_at(v, 2);
 for (int i : v) {
 std::cout << i << ", ";
 }
 std::cout << 'n';

STL Containers Chapter 19

[529]

Now, we will delete another item. It will be the value 123, and let's say we don't4.
know its index. Therefore, we will use the std::find function, which accepts a
range (the vector), and a value, and then searches for the value's position.
Afterward, it returns us an iterator pointing to the 123 value. We will use the
same quick_remove_at function, but this is an overloaded version of the previous
one which accepts iterators. It is also not implemented, yet.

 quick_remove_at(v, std::find(std::begin(v), std::end(v), 123));
 for (int i : v) {
 std::cout << i << ", ";
 }
 std::cout << 'n';
 }

Apart from the two quick_remove_at functions, we are done. So let's5.
implement these. (Note that they should be at least declared before the main
function. So let's just define them there.)
Both the functions accept a reference to a vector of something (in our case, its int
values), so we leave that open what kind of vector the user will come up with.
For us, it's a vector of T values. The first quick_remove_at function we used
accepts index values, which are numbers, so the interface looks like the following:

 template <typename T>
 void quick_remove_at(std::vector<T> &v, std::size_t idx)
 {

Now comes the meat of the recipe--how do we remove the item quickly without6.
moving too many others? First, we simply take the value of the last item in the
vector and use it to overwrite the item which shall be deleted. Second, we cut off
the last item of the vector. These are the two steps. We surround this code with a
little sanity check. If the index value is obviously out of the vector range, we do
nothing. Otherwise, the code would, for example, crash on an empty vector.

 if (idx < v.size()) {
 v[idx] = std::move(v.back());
 v.pop_back();
 }
 }

STL Containers Chapter 19

[530]

The other implementation of quick_remove_at works similar. Instead of7.
accepting a numeric index, it accepts an iterator for std::vector<T>. Obtaining
its type in a generic manner is not complicated because STL containers already
define such types.

 template <typename T>
 void quick_remove_at(std::vector<T> &v,
 typename std::vector<T>::iterator it)
 {

Now, we will access the value, at which the iterator is pointing. Just as in the8.
other function, we will overwrite it by the last element in the vector. Because we
are handling not a numeric index, but an iterator this time, we need to check a bit
differently if the iterator position is sane. If it points to the artificial end position,
we are not allowed to dereference it.

 if (it != std::end(v)) {

Within that if block, we do the same thing as before--we overwrite the item to be9.
removed with the value of the item from the last position--then we cut off the last
element from the vector:

 *it = std::move(v.back());
 v.pop_back();
 }
 }

That's it. Compiling and running the program leads to the following output:10.

 $./main
 123, 456, 200, 100,
 100, 456, 200,

STL Containers Chapter 19

[531]

How it works...
The quick_remove_at function removes items pretty quickly without touching too many
other items. It does this in a relatively creative way: It kind of swaps the actual item, which
shall be removed with the last item in the vector. Although the last item has no connection to
the actually selected item, it is in a special position: Removing the last item is cheap! The
vector's size just needs to be shrunk down by one slot, and that's it. No items are moved
during that step. Have a look at the following diagram which helps imaging how this
happens:

Both the steps in the recipe code look like this:

v.at(idx) = std::move(v.back());
v.pop_back();

This is the iterator version, which looks nearly identical:

*it = std::move(v.back());
v.pop_back();

Logically, we swap the selected item and the last one. But the code does not swap items, it
moves the last one over the first one. Why? If we swapped the items, then we would have to
store the selected item in a temporary variable, move the last item to the selected item, and
then store the temporary value in the last slot again. This seems useless, as we are just about
to delete the last item anyway.

STL Containers Chapter 19

[532]

Ok, fine, so the swap is useless, and a one-way overwrite is a better thing to do. Having
seen that, we can argue that this step could also be performed with a simple *it =
v.back();, right? Yes, this would be completely correct, but imagine we stored some very
large strings in every slot, or even another vector or map--in that situation, that little
assignment would lead to a very expensive copy. The std::move call in between is just an
optimization: In the example case of strings, the string item internally points to a large string
in the heap. We do not need to copy that. Instead, when moving a string, the destination of
the move gets to point at the string data of the other. The move source item is left intact, but in
a useless state, which is fine because we are removing it anyway.

Accessing std::vector instances the fast or
the safe way
The std::vector is probably the most widely used container in the STL, because it holds
data just like an array, and adds a lot of comfort around that representation. However,
wrong access to a vector can still be dangerous. If a vector contains 100 elements, and by
accident our code tries to access an element at index 123, this is obviously bad. Such a
program could just crash, which might be the best case, because that behavior would make
it very obvious that there is a bug! If it does not crash, we might observe that the program
just behaves strangely from time to time, which could lead to even more headaches than a
crashing program. The experienced programmer might add some checks before any directly
indexed vector access. Such checks do not increase the readability of the code, and many
people do not know that std::vector already has built-in bound checks!

How to do it...
In this section, we will use the two different ways to access an std::vector, and then see
how we can utilize them to write safer programs without decreasing readability.

Let's include all the needed header files, and fill an example vector with 10001.
times the value 123, so we have something we can access:

 #include <iostream>
 #include <vector>

 using namespace std;

STL Containers Chapter 19

[533]

 int main()
 {
 const size_t container_size {1000};
 vector<int> v (container_size, 123);

Now, we access the vector out of bounds using the [] operator:2.

 cout << "Out of range element value: "
 << v[container_size + 10] << 'n';

Next, we access it out of bounds using the at function:3.

 cout << "Out of range element value: "
 << v.at(container_size + 10) << 'n';
 }

Let's run the program and see what happens. The error message is GCC specific.4.
Other compilers would emit different but similar error messages. The first read
succeeds in a strange way. It doesn't lead the program to crash, but it's a
completely different value than 123. We can't see the output line of the other
access because it purposefully crashed the whole program. If that out of bounds
access was an accident, we would catch it much earlier!

 Out of range element value: -726629391
 terminate called after throwing an instance of 'std::out_of_range'
 what(): array::at: __n (which is 1010) >= _Nm (which is 1000)
 Aborted (core dumped)

How it works...
The std::vector provides the [] operator and the at function, and they basically do
exactly the same job. The at function, however, performs additional bounds checks and
throws an exception if the vector bounds are exceeded. This is super useful in situations like
ours, but also makes the program a little bit slower.

Especially when doing numeric computations with indexed members which need to be
really fast, it is advantageous to stick to [] indexed access. In any other situation, the at
function helps uncovering bugs with usually negligible performance loss.

It is good practice to use the at function by default. If the resulting code is
too slow but has proven to be bug-free, the [] operator can be used in
performance-sensitive sections instead.

STL Containers Chapter 19

[534]

There's more...
Of course, we can handle out of bounds accesses, instead of letting the whole app crash. In
order to handle it, we catch the exception, in case it was thrown by the at function. Catching
such an exception is simple. We just surround the at call with a try block and define the
error handling in a catch block.

try {
 std::cout << "Out of range element value: "
 << v.at(container_size + 10) << 'n';
} catch (const std::out_of_range &e) {
 std::cout << "Ooops, out of range access detected: "
 << e.what() << 'n';
}

By the way, std::array also provides an at function.

Keeping std::vector instances sorted
Arrays and vectors do not sort their payload objects themselves. But if we need that, this
does not mean that we always have to switch to data structures, which were designed to do
that automatically. If an std::vector is perfect for our use case, it is still very simple and
practical to add items to it in a sorting manner.

How to do it...
In this section, we will fill an std::vector with random words, sort it, and then insert
more words while keeping the vector's sorted word order intact.

Let's first include all headers we're going to need.1.

 #include <iostream>
 #include <vector>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <cassert>

STL Containers Chapter 19

[535]

We also declare that we are using namespace std in order to spare us some2.
std:: prefixes:

 using namespace std;

Then we write a little main function, which fills a vector with some random3.
strings.

 int main()
 {
 vector<string> v {"some", "random", "words",
 "without", "order", "aaa",
 "yyy"};

The next thing we do is sorting that vector. Let's do that with some assertions and4.
the is_sorted function from the STL before, which shows that the vector really
was not sorted before, but is sorted afterward.

 assert(false == is_sorted(begin(v), end(v)));
 sort(begin(v), end(v));
 assert(true == is_sorted(begin(v), end(v)));

Now, we finally add some random words into the sorted vector using a5.
new insert_sorted function, which we still need to implement afterward.
These words shall be put at the right spot so that the vector is still sorted
afterward:

 insert_sorted(v, "foobar");
 insert_sorted(v, "zzz");

So, let's now implement insert_sorted a little earlier in the source file.6.

 void insert_sorted(vector<string> &v, const string &word)
 {
 const auto insert_pos (lower_bound(begin(v), end(v), word));
 v.insert(insert_pos, word);
 }

STL Containers Chapter 19

[536]

Now, back in the main function where we stopped, we can now continue printing7.
the vector and see that the insert procedure works:

 for (const auto &w : v) {
 cout << w << " ";
 }
 cout << 'n';
 }

Compiling and running the program yields the following nicely sorted output:8.

 aaa foobar order random some without words yyy zzz

How it works...
The whole program is constructed around the insert_sorted function, which does what
this section is about: For any new string, it locates the position in the sorted vector, at which
it must be inserted, in order to preserve the order of the strings in the vector. However, we
assume that the vector was sorted before. Otherwise, this would not work.

The locating step is done by the STL function lower_bound, which accepts
three arguments. The first two denote beginning and end of the underlying range. The range
is our vector of words in this case. The third argument is the word, which shall be inserted.
The function then finds the first item in the range, which is greater than or equal to that third
parameter and returns an iterator pointing to it.

Having the right position at hand, we gave it to the std::vector member method insert,
which accepts just two arguments. The first argument is an iterator, which points to the
position in the vector, at which the second parameter shall be inserted. It appears very
handy that we can use the same iterator, which just dropped out of the lower_bound
function. The second argument is, of course, the item to be inserted.

STL Containers Chapter 19

[537]

There's more...
The insert_sorted function is pretty generic. If we generalize the types of its parameters,
it will also work on other container payload types, and even on other containers such
as std::set, std::deque, std::list, and so on! (Note that set has its own lower_bound
member function that does the same as std::lower_bound, but is more efficient because it
is specialized for sets.)

template <typename C, typename T>
void insert_sorted(C &v, const T &item)
{
 const auto insert_pos (lower_bound(begin(v), end(v), item));
 v.insert(insert_pos, item);
}

When trying to switch the type of the vector in the recipe from std::vector to something
else, note that not all containers support std::sort. That algorithm requires random
access containers, which std::list, for example, does not fulfill.

Inserting items efficiently and conditionally
into std::map
Sometimes we want to fill a map with key-value pairs and while filling the map up, we
might run into two different cases:

The key does not exist yet. Create a fresh key-value pair.1.
The key does exist already. Take the existing item and modify it.2.

We could just naively use the insert or emplace methods of map and see if they succeed.
If it doesn't, we have case 2 and modify the existing item. In both cases, insert and emplace
create the item which we try to insert, and in case 2 the freshly created item is dropped. We
get a useless constructor call in both cases.

Since C++17, there is the try_emplace function, which enables us to create items only
conditionally upon insertion. Let's implement a program that takes a list of billionaires and
constructs a map that tells us the number of billionaires per country. In addition to that, it
stores the wealthiest person in every country. Our example will not contain expensive to
create items, but whenever we find ourselves in such a situation in real-life projects, we
know how to master it with try_emplace.

STL Containers Chapter 19

[538]

How to do it...
In this section, we will implement an application that creates a map from a list of
billionaires. The map maps from each country to a reference to the wealthiest person in that
country and a counter that tells how many billionaires that country has.

As always, we need to include some headers first and we declare that we use1.
namespace std by default.

 #include <iostream>
 #include <functional>
 #include <list>
 #include <map>

 using namespace std;

Let's define a structure that represents billionaire items for our list.2.

 struct billionaire {
 string name;
 double dollars;
 string country;
 };

In the main function, we first define the list of billionaires. There are many3.
billionaires in the world, so let's construct a limited list with just some of the
richest persons in some countries. This list is already ordered. The rankings are
actually taken from the Forbes 2017 list The World's Billionaires at https:/ ​/ ​www.
forbes.​com/ ​billionaires/ ​list/ ​:

 int main()
 {
 list<billionaire> billionaires {
 {"Bill Gates", 86.0, "USA"},
 {"Warren Buffet", 75.6, "USA"},
 {"Jeff Bezos", 72.8, "USA"},
 {"Amancio Ortega", 71.3, "Spain"},
 {"Mark Zuckerberg", 56.0, "USA"},
 {"Carlos Slim", 54.5, "Mexico"},
 // ...
 {"Bernard Arnault", 41.5, "France"},
 // ...
 {"Liliane Bettencourt", 39.5, "France"},
 // ...
 {"Wang Jianlin", 31.3, "China"},
 {"Li Ka-shing", 31.2, "Hong Kong"}

https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/

STL Containers Chapter 19

[539]

 // ...
 };

Now, let's define the map. It maps from the country string to a pair. The pair4.
contains a (const) copy of the first billionaire of every country from our list. That
is automatically the richest billionaire per country. The other variable in the pair
is a counter, which we will increment for every following billionaire in that
country.

 map<string, pair<const billionaire, size_t>> m;

Now, let's go through the list and try to emplace a new payload pair for every5.
country. The pair contains a reference to the billionaire we are currently looking
at and a counter value of 1.

 for (const auto &b : billionaires) {
 auto [iterator, success] = m.try_emplace(b.country, b, 1);

If that step was successful, then we don't need to do anything else. The pair for6.
which we provided the constructor arguments b, 1 has been constructed and
inserted into the map. If the insertion was not successful because the country key
exists already, then the pair was not constructed. If our billionaire structure was
very large, this would have saved us the runtime cost of copying it.
However, in the nonsuccessful case, we still need to increment the counter for
this country.

 if (!success) {
 iterator->second.second += 1;
 }
 }

Ok, that's it. We can now print how many billionaires there are per country, and7.
who is the wealthiest one in each country.

 for (const auto & [key, value] : m) {
 const auto &[b, count] = value;
 cout << b.country << " : " << count
 << " billionaires. Richest is "
 << b.name << " with " << b.dollars
 << " B$n";
 }
 }

STL Containers Chapter 19

[540]

Compiling and running the program yields the following output. (Of course, the8.
output is limited, because we limited our input map.)

 $./efficient_insert_or_modify
 China : 1 billionaires. Richest is Wang Jianlin with 31.3 B$
 France : 2 billionaires. Richest is Bernard Arnault with 41.5 B$
 Hong Kong : 1 billionaires. Richest is Li Ka-shing with 31.2 B$
 Mexico : 1 billionaires. Richest is Carlos Slim with 54.5 B$
 Spain : 1 billionaires. Richest is Amancio Ortega with 71.3 B$
 USA : 4 billionaires. Richest is Bill Gates with 86 B$

How it works...
The whole recipe revolves around the try_emplace function of std::map, which is a new
C++17 addition. It has the following signature:

std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

Thus, the key being inserted is parameter k and the associated value is constructed from the
parameter pack args. If we succeed in inserting the item, then the function returns an
iterator, which points to the new node in the map, paired with a Boolean value being set to
true. If the insertion was not successful, the Boolean value in the return pair is set to false,
and the iterator points to the item with which the new item would clash.

This characteristic is very useful in our case--when we see a billionaire from a specific
country for the first time, then this country is not a key in the map yet. In that case, we must
insert it, accompanied with a new counter being set to 1. If we did see a billionaire from a
specific country already, we have to get a reference to its existing counter, in order to
increment it. This is exactly what happened in step 6:

if (!success) {
 iterator->second.second += 1;
}

Note that both the insert and emplace functions of std::map work
exactly the same way. A crucial difference is that try_emplace will not
construct the object associated with the key if the key already exists. This
boosts the performance in case objects of that type are expensive to create.

STL Containers Chapter 19

[541]

There's more...
The whole program still works if we switch the type of the map from std::map to
std::unordered_map. This way, we can simply switch from one implementation to
another, which has different performance characteristics. In this recipe, the only observable
difference is that the billionaire map is not printed in alphabetical order any longer, because
hash maps do not order their objects the same way as search trees do.

Knowing the new insertion hint semantics of
std::map::insert
Looking up items in an std::map takes O(log(n)) time. This is the same for inserting new
items, because the position where to insert them must be looked up. Naive insertion of M
new items would thus take O(M * log(n)) time.

In order to make this more efficient, std::map insertion functions accept an optional
insertion hint parameter. The insertion hint is basically an iterator, which points near the
future position of the item that is to be inserted. If the hint is correct, then we get amortized
O(1) insertion time.

How to do it...
In this section, we will insert multiple items into an std::map, and use insertion hints for
that, in order to reduce the number of lookups.

We are mapping strings to numbers, so we need the header files included for1.
std::map and std::string.

 #include <iostream>
 #include <map>
 #include <string>

The next step is to instantiate a map, which already contains some example2.
characters.

 int main()
 {
 std::map<std::string, size_t> m {{"b", 1}, {"c", 2}, {"d", 3}};

STL Containers Chapter 19

[542]

We will insert multiple items now, and for each item we will use an insertion3.
hint. Since we have no hint in the beginning to start with, we will just do the first
insertion pointing to the end iterator of the map.

 auto insert_it (std::end(m));

We will now insert items from the alphabet backward while always using the4.
iterator hint we have, and then reinitialize it to the return value of the insert
function. The next item will be inserted just before the hint.

 for (const auto &s : {"z", "y", "x", "w"}) {
 insert_it = m.insert(insert_it, {s, 1});
 }

And just for the sake of showing how it is not done, we insert a string which will5.
be put at the leftmost position in the map, but give it a completely wrong hint,
which points to the rightmost position in the map--the end.

 m.insert(std::end(m), {"a", 1});

Finally, we just print what we have.6.

 for (const auto & [key, value] : m) {
 std::cout << """ << key << "": " << value << ", ";
 }
 std::cout << 'n';
 }

And this is the output we get when we compile and run the program. Obviously,7.
the wrong insertion hint did not hurt too much, as the map ordering is still
correct.

 "a": 1, "b": 1, "c": 2, "d": 3, "w": 1, "x": 1, "y": 1, "z": 1,

How it works...
The only difference to normal map insertions in this recipe was the additional hint iterator.
And we spoke about correct and wrong hints.

STL Containers Chapter 19

[543]

A correct hint will point to an existing element, which is greater than the element to be
inserted so that the newly inserted key will be just before the hint. If this does not apply for
the hint the user provided during an insertion, the insert function will fall back to a
nonoptimized insertion, yielding O(log(n)) performance again.

For the first insertion, we got the end iterator of the map, because we had no better hint to
start with. After installing a "z" in the tree, we knew that installing "y" will insert a new item
just in front of the "z", which qualified it to be a correct hint. This applies to "x" as well, if
put into the tree after inserting the "y", and so on. This is why it is possible to use the
iterator, which was returned by the last insertion for the next insertion.

It is important to know, that before C++11, insertion hints were considered
correct when they pointed before the position of the newly inserted item.

There's more...
Interestingly, a wrong hint does not even destroy or disturb the order of the items in the
map, so how does that even work, and what did that mean, that the insertion time is
amortized O(1)?

The std::map is usually implemented using a binary search tree. When inserting a new
key into a search tree, it is compared against the keys of the other nodes, beginning from the
top. If the key is smaller or larger than the key of one node, then the search algorithm
branches left or right to go down to the next deeper node. While doing that, the search
algorithm will stop at the point where it reached the maximum depth of the current tree,
where it will put the new node with its key. It is possible that this step destroyed the tree's
balance, so it will also correct that using a re-balancing algorithm afterward as a
housekeeping task.

When we insert items into a tree with key values which are direct neighbors of each other
(just as the integer 1 is a neighbor of the integer 2, because no other integer fits between
them), they can often also be inserted just next to each other in the tree, too. It can easily be
checked if this is true for a certain key and an accompanying hint. And if this situation
applies, the search algorithm step can be omitted, which spares some crucial runtime.
Afterward, the re-balancing algorithm might nevertheless have to be run.

STL Containers Chapter 19

[544]

When such an optimization can often be done, but not always, this can still lead to an average
performance gain. It is possible to show a resulting runtime complexity which settles down
after multiple insertions, and then it's called amortized complexity.

If the insertion hint is wrong, the insertion function will simply waive the hint and start over
using the search algorithm. This works correctly but is obviously slower.

Efficiently modifying the keys of std::map
items
Since the std::map data structure maps from keys to values in a way that the keys are
always unique and sorted, it is of crucial value that users cannot modify the keys of map
nodes that are already inserted. In order to prevent the user from modifying the key items
of perfectly sorted map nodes, the const qualifier is added to the key type.

This kind of restriction is perfectly sane because it makes it harder for the user to use
std::map the wrong way. But what shall we do if we really need to change the keys of
some map items?

Prior to C++17, we had to remove the items of which we need to change the key value from
the tree, in order to reinsert them. The downside of this approach is that this always
needlessly reallocates some memory, which sounds bad in terms of performance.

STL Containers Chapter 19

[545]

Since C++17, we can remove and reinsert map nodes without any reallocation of memory.
We will see how that works in this recipe.

How to do it...
We implement a little application that orders the placement of drivers in a fictional race in
an std::map structure. While drivers pass each other during the race, we need to
change their placement keys, which we do the new C++17 way.

Let's first include the necessary headers and declare that we use namespace std.1.

 #include <iostream>
 #include <map>

 using namespace std;

We will print the race placements before and after manipulating the map2.
structure, so let's implement a little helper function for that.

 template <typename M>
 void print(const M &m)
 {
 cout << "Race placement:n";
 for (const auto &[placement, driver] : m) {
 cout << placement << ": " << driver << 'n';
 }
 }

In the main function, we instantiate and initialize a map that maps from integer3.
values that denote the driver's place to strings that contain the driver's name. We
also print the map because we will modify it in the next steps.

 int main()
 {
 map<int, string> race_placement {
 {1, "Mario"}, {2, "Luigi"}, {3, "Bowser"},
 {4, "Peach"}, {5, "Yoshi"}, {6, "Koopa"},
 {7, "Toad"}, {8, "Donkey Kong Jr."}
 };
 print(race_placement);

STL Containers Chapter 19

[546]

Let's say that during one race lap, Bowser had a little accident and dropped to the4.
last place and Donkey Kong Jr. took the chance to jump from the last place to the
third place. In that case, we first need to extract their map nodes from the map
because this is the only way to manipulate their keys. The extract function is a
new C++17 feature. It removes items from a map without any allocation-related
side effects. Let's also open a new scope for this task.

 {
 auto a (race_placement.extract(3));
 auto b (race_placement.extract(8));

Now we can swap Bowser's and Donkey Kong Jr.'s keys. While the keys of map5.
nodes are usually not mutable because they are declared const, we can modify
the keys of items which we extracted using the extract method.

 swap(a.key(), b.key());

std::map's insert method got a new overload in C++17 that accepts the6.
handles of extracted nodes, in order to insert them without touching the allocator.

 race_placement.insert(move(a));
 race_placement.insert(move(b));
 }

After leaving the scope, we're done. We print the new race placement and let the7.
application terminate.

 print(race_placement);
 }

Compiling and running the program yields the following output. We see the race8.
placement in the fresh map instance first, and then we see it again after swapping
Bowser's and Donkey Kong Jr.'s positions.

 $./mapnode_key_modification
 Race placement:
 1: Mario
 2: Luigi
 3: Bowser
 4: Peach
 5: Yoshi
 6: Koopa
 7: Toad
 8: Donkey Kong Jr.
 Race placement:
 1: Mario

STL Containers Chapter 19

[547]

 2: Luigi
 3: Donkey Kong Jr.
 4: Peach
 5: Yoshi
 6: Koopa
 7: Toad
 8: Bowser

How it works...
In C++17, std::map got a new member function extract. It comes in two flavors:

node_type extract(const_iterator position);
node_type extract(const key_type& x);

In this recipe, we used the second one, which accepts a key and then finds and extracts the
map node that matches the key parameter. The first one accepts an iterator, which implies
that it is faster because it doesn't need to search for the item.

If we try to extract an item that doesn't exist with the second method (the one that searches
using a key), it returns an empty node_type instance. The empty() member method
returns us a Boolean value that tells whether a node_type instance is empty or not.
Accessing any other method on an empty instance leads to undefined behavior.

After extracting nodes, we were able to modify their keys using the key() method, which
gives us nonconst access to the key, although keys are usually const.

Note that in order to reinsert the nodes into the map again, we had to move them into the
insert function. This makes sense because extract is all about avoiding unnecessary
copies and allocations. Note that while we move a node_type instance, this does not result
in actual moves of any of the container values.

There's more...
Map nodes that have been extracted using the extract method are actually very versatile.
We can extract nodes from a map instance and insert it into any other map or even multimap
instance. It does also work between unordered_map and unordered_multimap instances,
as well as with set/multiset and respective unordered_set/unordered_multiset.

STL Containers Chapter 19

[548]

In order to move items between different map/set structures, the types of key, value, and
allocator need to be identical. Note that even if that is the case, we cannot move nodes from
a map to an unordered_map, or from a set to an unordered_set.

Using std::unordered_map with custom
types
If we use std::unordered_map instead of std::map, we have a different degree of
freedom for the choice of the key type which shall be used. std::map demands that there is
a natural order between all key items. This way, items can be sorted. But what if we want,
for example, mathematical vectors as a key type? There is no meaning in a smaller < relation
for such types, as a vector (0, 1) is not smaller or larger than (1, 0). They just point in
different directions. This is completely fine for std::unordered_map because it will not
distinguish items via their smaller/greater ordering relationship but via hash values. The
only thing we need to do is to implement a hash function for our own type, and an equal to ==
operator implementation, which tells whether two objects are identical. This section will
demonstrate this in an example.

How to do it...
In this section, we will define a simple coord struct, which has no default hash function, so
we need to define it ourselves. Then we put it to use by mapping coord values to numbers.

We first include what's needed in order to print and use std::unordered_map.1.

 #include <iostream>
 #include <unordered_map>

Then we define our own custom struct, which is not trivially hashable by existing2.
hash functions:

 struct coord {
 int x;
 int y;
 };

STL Containers Chapter 19

[549]

We do not only need a hash function in order to use the structure as a key for a3.
hash map, it also needs a comparison operator implementation:

 bool operator==(const coord &l, const coord &r)
 {
 return l.x == r.x && l.y == r.y;
 }

In order to extend the STL's own hashing capabilities, we will open the std4.
namespace and create our own std::hash template struct specialization. It
contains the same using type alias clauses as other hash specializations.

 namespace std
 {
 template <>
 struct hash<coord>
 {
 using argument_type = coord;
 using result_type = size_t;

The meat of this struct is the operator() definition. We are just adding the5.
numeric member values of struct coord, which is a poor hashing technique,
but for the sake of showing how to implement it, it's good enough. A good hash
function tries to distribute values as evenly over the whole value range as
possible, in order to reduce the amount of hash collisions.

 result_type operator()(const argument_type &c) const
 {
 return static_cast<result_type>(c.x)
 + static_cast<result_type>(c.y);
 }
 };
 }

STL Containers Chapter 19

[550]

We can now instantiate a new std::unordered_map instance, which accepts6.
struct coord instances as a key, and maps it to arbitrary values. As this recipe
is about enabling our own types for std::unordered_map, this is pretty much it
already. Let's instantiate a hash-based map with our own type, fill it with some
items, and print its :

 int main()
 {

 std::unordered_map<coord, int> m {{{0, 0}, 1}, {{0, 1}, 2},
 {{2, 1}, 3}};
 for (const auto & [key, value] : m) {
 std::cout << "{(" << key.x << ", " << key.y
 << "): " << value << "} ";
 }
 std::cout << 'n';
 }

Compiling and running the program yields the following output:7.

 $./custom_type_unordered_map
 {(2, 1): 3} {(0, 1): 2} {(0, 0): 1}

How it works...
Usually, when we instantiate a hash-based map implementation like
std::unordered_map, we write:

std::unordered_map<key_type, value_type> my_unordered_map;

It is not too obvious that there happens a lot of magic in the background when the compiler
creates our std::unordered_map specialization. So, let's have a look at the complete
template-type definition of it:

template<
 class Key,
 class T,
 class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>,
 class Allocator = std::allocator< std::pair<const Key, T> >
> class unordered_map;

STL Containers Chapter 19

[551]

The first two template types are those we filled with coord and int, which is the simple
and obvious part. The other three template types are optional, as they are automatically
filled with existing standard template classes, which themselves take template types. Those
are fed with our choice for the first two parameters as default values.

Regarding this recipe, the class Hash template parameter is the interesting one: when we
do not explicitly define anything else, it is going to be specialized on
std::hash<key_type>. The STL already contains std::hash specializations for a lot of
types such as std::hash<std::string>, std::hash<int>, std::hash<unique_ptr>,
and many more. These classes know how to deal with such specific types in order to
calculate optimal hash values from them.

However, the STL does not know how to calculate a hash value from our struct coord,
yet. So what we did was to just define another specialization, which knows how to deal with
it. The compiler can now go through the list of all std::hash specializations it knows, and
will find our implementation to match it with the type we provided as key type.

If we did not add a new std::hash<coord> specialization, and named it my_hash_type
instead, we could still use it with the following instantiation line:

std::unordered_map<coord, value_type, my_hash_type> my_unordered_map;

That is obviously more to type, and not as nice to read as when the compiler finds the right
hashing implementation itself.

Filtering duplicates from user input and
printing them in alphabetical order with
std::set
std::set is a strange container: It kind of works like std::map, but it contains only keys
as values, no key-value pairs. So it can hardly be used as a way to map values of one type to
the other. Seemingly, just because there are less obvious use cases for it, a lot of developers
do not even know about its existence. Then they start to implement things themselves,
although std::set would be of great help in some of these situations.

This section shows how to put std::set to use in an example where we collect potentially
many different items, in order to filter them and output a selection of the unique ones.

STL Containers Chapter 19

[552]

How to do it...
In this section, we will read a stream of words from the standard input. All unique words
are put into an std::set instance. This way we can then enumerate all unique words from
the stream.

We will use several different STL types, for which we need to include multiple1.
headers.

 #include <iostream>
 #include <set>
 #include <string>
 #include <iterator>

In order to spare us some typing, we will declare that we are using namespace2.
std:

 using namespace std;

Now we're already writing the actual program, which begins with the main3.
function instantiating an std::set which stores strings.

 int main()
 {
 set<string> s;

The next thing to do is to get the user input. We're just reading from standard4.
input, and do that using the handy istream_iterator.

 istream_iterator<string> it {cin};
 istream_iterator<string> end;

Having a pair of begin and end iterators, which represent the user input, we can5.
just fill the set from it using an std::inserter.

 copy(it, end, inserter(s, s.end()));

That's already it. In order to see what unique words we got from standard input,6.
we just print the content of our set.

 for (const auto word : s) {
 cout << word << ", ";
 }
 cout << 'n';
 }

STL Containers Chapter 19

[553]

Let's compile and run our program with the following input. We get the7.
following output for the preceding input, where all duplicates are stripped out,
and the words which were unique, are sorted alphabetically.

 $ echo "a a a b c foo bar foobar foo bar bar" | ./program
 a, b, bar, c, foo, foobar,

How it works...
This program consists of two interesting parts. The first part is using
std::istream_iterator to access the user input, and the second part is to combine this
with our std::set instance using the std::copy algorithm, after we wrapped it into an
std::inserter instance! It might look surprising that there is only one line of code which
does all the work of tokenizing the input, putting it into the alphabetically sorted set, and
dropping all duplicates.

std::istream_iterator
This class is really interesting in cases where we want to process masses of data of the same
type from a stream, which is exactly the case in this recipe: we parse the whole input word
by word and put it into the set in the form of std::string instances.

The std::istream_iterator takes one template parameter. That is the type of the input
we want to have. We chose std::string because we assume text words, but it could also
have been float numbers, for example. It can basically be every type for which it is
possible to write cin >> var;. The constructor accepts an istream instance. The standard
input is represented by the global input stream object std::cin, which is an acceptable
istream parameter in this case.

istream_iterator<string> it {cin};

The input stream iterator it which we have instantiated, is able to do two things: when it is
dereferenced (*it), it yields the current input symbol. As we have typed the iterator to
std::string via its template parameter, that symbol will be a string containing one word.
When it is incremented (++it), it will jump to the next word, which we can access by
dereferencing again.

STL Containers Chapter 19

[554]

But wait, we need to be careful after every increment before we dereference it again. If the
standard input ran empty, the iterator must not be dereferenced again. Instead, we should
terminate the loop in which we dereference the iterator to get at every word. The abort
condition, which lets us know that the iterator became invalid, is a comparison with the end
iterator. If it == end holds, we are past the end of the input.

We create the end iterator by creating an std::istream_iterator instance with its
parameterless standard constructor. It has the purpose of being the counterpart of the
comparison which shall act as the abort condition in every iteration:

istream_iterator<string> end;

As soon as std::cin runs empty, our it iterator instance will notice that and make a
comparison with end returning true.

std::inserter
We used the it and end pair as input iterators in the std::copy call. The third parameter
must be an output iterator. For that, we cannot just take s.begin() or s.end(). In an
empty set, both are the same, so we are not even allowed to dereference it, regardless if that is
for reading from it or assigning to it.

This is where std::inserter comes into play. It is a function which returns an
std::insert_iterator that behaves like an iterator but does something else than what
usual iterators do. When we increment it, it does nothing. When we dereference it and
assign something to it, it will take the container it is attached to, and insert that value as a
new item into it!

When instantiating an std::insert_iterator via std::inserter, two parameters are
needed:

auto insert_it = inserter(s, s.end());

The s is our set, and s.end() is an iterator that points to where the new item shall be
inserted. For an empty set which we start with, this makes as much sense as s.begin().
When used for other data structures as vectors or lists, that second parameter is crucial for
defining where the insert iterator shall insert new items.

STL Containers Chapter 19

[555]

Putting it together
In the end, all the action happens during the std::copy call:

copy(input_iterator_begin, input_iterator_end, insert_iterator);

This call pulls the next word token out of std::cin via the input iterator and pushes it into
our std::set. Afterward, it increments both iterators, and checks whether the input
iterator is equal to the input end iterator counterpart. If it is not, then there are still words
left in the standard input, so it will repeat.

Duplicate words are automatically dropped. If the set already contains a specific word,
adding it again has no effect. This would be different in an std::multiset as, in contrast, it
would accept duplicates.

Implementing a simple RPN calculator with
std::stack
The std::stack is an adapter class which lets the user push objects onto it like on a real
stack of objects, and pop objects down from it again. In this section, we construct a reverse
polish notation (RPN) calculator around that data structure, in order to show how to use it.

The RPN is a notation that can be used to express mathematical expressions in a way that is
really simple to parse. In RPN, 1 + 2 is 1 2 +. Operands first, then the operation. Another
example: (1 + 2) * 3 would be 1 2 + 3 * in RPN and that already shows why it is
easier to parse, as we do not need parentheses to define subexpressions.

STL Containers Chapter 19

[556]

How to do it...
In this section, we will read a mathematical expression in RPN from the standard input, and
then feed it into a function that evaluates it. In the end, we print the numeric result back to
the user.

We will use a lot of helpers from the STL, so there are a few includes:1.

 #include <iostream>
 #include <stack>
 #include <iterator>
 #include <map>
 #include <sstream>
 #include <cassert>
 #include <vector>
 #include <stdexcept>
 #include <cmath>

And we do also declare that we are using namespace std in order to spare us2.
some typing.

 using namespace std;

Then, we immediately start implementing our RPN parser. It will accept an3.
iterator pair, which denotes the beginning and end of a mathematical expression
in string form, which will be consumed token by token.

 template <typename IT>
 double evaluate_rpn(IT it, IT end)
 {

While we iterate through the tokens, we need to memorize all operands on the4.
way until we see an operation. This is where we need a stack. All the numbers will
be parsed and saved in double precision floating point, so it's going to be a stack
of double values.

 stack<double> val_stack;

STL Containers Chapter 19

[557]

In order to comfortably access elements on the stack, we implement a helper. It5.
modifies the stack by pulling the highest item from it and then returns that item.
This way we can perform this task in one single step later.

 auto pop_stack ([&](){
 auto r (val_stack.top());
 val_stack.pop();
 return r;
 });

Another preparation is to define all the supported mathematical operations. We6.
save them in a map, which associates every operation token with the actual
operation. The operations are represented by callable lambdas, which take two
operands, add or multiply them, for example, and then return the result.

 map<string, double (*)(double, double)> ops {
 {"+", [](double a, double b) { return a + b; }},
 {"-", [](double a, double b) { return a - b; }},
 {"*", [](double a, double b) { return a * b; }},
 {"/", [](double a, double b) { return a / b; }},
 {"^", [](double a, double b) { return pow(a, b); }},
 {"%", [](double a, double b) { return fmod(a, b); }},
 };

Now we can finally iterate through the input. Assuming that the input iterators7.
give us strings, we feed a new std::stringstream per token, because it can
parse numbers.

 for (; it != end; ++it) {
 stringstream ss {*it};

Now with every token, we try to get a double value out of it. If that succeeds, we8.
have an operand, which we push on the stack.

 if (double val; ss >> val) {
 val_stack.push(val);
 }

STL Containers Chapter 19

[558]

If it does not succeed, it must be something other than an operator; in that case, it9.
can only be an operand. Knowing that all the operations we support are binary, we
need to pop the last two operands from the stack.

 else {
 const auto r {pop_stack()};
 const auto l {pop_stack()};

Now we get the operand from dereferencing the iterator it, which already emits10.
strings. By querying the ops map, we get a lambda object which accepts the two
operands l and r as parameters.

 try {
 const auto & op (ops.at(*it));
 const double result {op(l, r)};
 val_stack.push(result);
 }

We surrounded the application of the math part with a try clause, so we can11.
catch possibly occurring exceptions. The at call of the map will throw an
out_of_range exception in case the user provides a mathematical operation we
don't know of. In that case, we will rethrow a different exception, which says
invalid argument and carries the operation string which was unknown to us.

 catch (const out_of_range &) {
 throw invalid_argument(*it);
 }

That's already it. As soon as the loop terminates, we have the final result on the12.
stack. So we return just that. (At this point, we could assert if the stack size is 1. If
it wasn't, then there would be missing operations.)

 }
 }
 return val_stack.top();
 }

STL Containers Chapter 19

[559]

Now we can use our little RPN parser. In order to do this, we wrap the standard13.
input into an std::istream_iterator pair, and feed that into the RPN parser
function. Finally, we print the result:

 int main()
 {
 try {
 cout << evaluate_rpn(istream_iterator<string>{cin}, {})
 << 'n';
 }

We do again have that line wrapped into a try clause because there's still the14.
possibility that the user input contains operations we did not implement. In that
case, we must catch the exception which we throw in such cases, and print an
error message:

 catch (const invalid_argument &e) {
 cout << "Invalid operator: " << e.what() << 'n';
 }
 }

After compiling the program, we can play around with it. The input "3 1 2 + *15.
2 /" represents the expression (3 * (1 + 2)) / 2 and yields the correct
result:

 $ echo "3 1 2 + * 2 /" | ./rpn_calculator
 4.5

How it works...
The whole recipe revolves around pushing operands onto the stack until we see an
operation in the input. In that situation, we pop the last two operands from the stack again,
apply the operation to them, and push the result onto the stack again. In order to
understand all of the code in this recipe, it is important to understand how we distinguish
operands and operations from the input, how we handle our stack, and how we select and
apply the right mathematical operation.

Stack handling
We push items onto the stack, simply using the push function of std::stack:

val_stack.push(val);

STL Containers Chapter 19

[560]

Popping values from it looks a bit more complicated because we implemented a lambda for
that, which captures a reference to the val_stack object. Let's look at the same code,
enhanced with some more comments:

auto pop_stack ([&](){
 auto r (val_stack.top()); // Get top value copy
 val_stack.pop(); // Throw away top value
 return r; // Return copy
});

This lambda is necessary to get the top value of the stack and remove it from there in one
step. The interface of std::stack is not designed in a way which would allow doing that
in a single call. However, defining a lambda is quick and easy, so we can now get values like
this:

double top_value {pop_stack()};

Distinguishing operands from operations from user
input
In the main loop of evaluate_rpn, we take the current string token from the iterator and
then see whether it is an operand or not. If the string can be parsed into a double variable,
then it is a number, and hence also an operand. We consider everything which is not easily
parseable as a number (such as "+", for example) to be an operation.

The naked code skeleton for exactly this task is as follows:

stringstream ss {*it};
if (double val; ss >> val) {
 // It's a number!
} else {
 // It's something else than a number - an operation!
}

The stream operator >> tells us if it is a number. First, we wrapped the string into an
std::stringstream. Then we use the stringstream object's capability to stream from an
std::string into a double variable, which involves parsing. If the parsing fails, we know
that it does so, because we asked it to parse something into a number, which is no number.

STL Containers Chapter 19

[561]

Selecting and applying the right mathematical operation
After we realize that the current user input token is not a number, we just assume that it is
an operation, such as + or *. Then we query our map, which we called ops, to look that
operation up and return us a function, which accepts two operands, and returns the sum, or
the product, or whatever is appropriate.

The type of the map itself looks relatively complicated:

map<string, double (*)(double, double)> ops { ... };

It maps from string to double (*)(double, double). What does the latter mean? This
type description shall read "pointer to a function which takes two doubles, and returns a double".
Imagine that the (*) part is the name of the function, such as in double sum(double,
double), which is immediately easier to read. The trick here is that our
lambda [](double, double) { return /* some double */ } is convertible to a
function pointer that actually matches that pointer description. Lambdas that don't capture
anything are generally convertible to function pointers.

This way, we can conveniently ask the map for the correct operation:

const auto & op (ops.at(*it));
const double result {op(l, r)};

The map implicitly does another job for us: If we say ops.at("foo"), then "foo" is a valid
key value, but we did not store any operation named like this. In such a case, the map will
throw an exception, which we catch in the recipe. We rethrow a different exception
whenever we catch it, in order to provide a descriptive meaning of this error case. The user
will know better what an invalid argument exception means, compared to an out of
range exception. Note that the user of the evaluate_rpn function might not have read its
implementation, hence it might be unknown that we are using a map inside at all.

There's more...
As the evaluate_rpn function accepts iterators, it is very easy to feed it with different
inputs than the standard input stream. This makes it very easy to test, or to adapt to
different sources of user input.

STL Containers Chapter 19

[562]

Feeding it with iterators from a string stream or from a string vector, for example, looks like
the following code, for which evaluate_rpn does not have to be changed at all:

int main()
{
 stringstream s {"3 2 1 + * 2 /"};
 cout << evaluate_rpn(istream_iterator<string>{s}, {}) << 'n';

 vector<string> v {"3", "2", "1", "+", "*", "2", "/"};
 cout << evaluate_rpn(begin(v), end(v)) << 'n';
}

Use iterators wherever it makes sense. This makes your code very
composable and reusable.

Implementing a word frequency counter with
std::map
The std::map is very useful when categorizing something in order to collect statistics
about that data. By attaching modifiable payload objects to every key which represents an
object category, it is pretty simple to implement a histogram of word frequencies for
example. This is what we will do in this section.

How to do it...
In this section, we will read all user input from standard input, which might, for example,
be a text file containing an essay. We tokenize the input to words, in order to count which
word occurs how often.

As always, we need to include all the headers from the data structures we are1.
going to use.

 #include <iostream>
 #include <map>
 #include <vector>
 #include <algorithm>
 #include <iomanip>

STL Containers Chapter 19

[563]

To spare us some typing, we declare that we use namespace std.2.

 using namespace std;

We will use one helper function in order to crop possibly appended commas,3.
dots, or colons from words.

 string filter_punctuation(const string &s)
 {
 const char *forbidden {".,:; "};
 const auto idx_start (s.find_first_not_of(forbidden));
 const auto idx_end (s.find_last_not_of(forbidden));
 return s.substr(idx_start, idx_end - idx_start + 1);
 }

Now we start with the actual program. We will collect a map that associates4.
every word we see with a counter of that word's frequency. Additionally, we
maintain a variable which records the size of the longest word we've seen so far,
so we can indent the word frequency table nicely when we print it at the end of
the program.

 int main()
 {
 map<string, size_t> words;
 int max_word_len {0};

When we stream from std::cin into an std::string variable, the input stream5.
will cut out white space on the way. This way we get the input word by word.

 string s;
 while (cin >> s) {

The word which we have now, could contain a comma, dots, or a colon, because6.
it might be at the end of a sentence or similar. We filter that out with the helper
function we defined before.

 auto filtered (filter_punctuation(s));

In case this word is the longest word so far, we need to update the7.
max_word_len variable.

 max_word_len = max<int>(max_word_len, filtered.length());

STL Containers Chapter 19

[564]

Now we will increment the counter value of the word in our words map. If it8.
occurs for the first time, it is implicitly created before we increment it.

 ++words[filtered];
 }

After the loop terminated, we know that we saved all unique words from the9.
input stream in the words map, paired with a counter denoting every word's
frequency. The map uses words as keys and is sorted by their alphabetical order.
What we want is to print all words sorted by their frequency, so the words with
the highest frequency shall come first. In order to get that, we will first instantiate
a vector where all these word-frequency pairs fit in and move them from the map
to the vector.

 vector<pair<string, size_t>> word_counts;
 word_counts.reserve(words.size());
 move(begin(words), end(words), back_inserter(word_counts));

The vector does now still contain all word-frequency pairs in the same order as10.
the words map maintained them. Now we sort it again, in order to have the most
frequent words at the beginning, and the least frequent ones at the end.

 sort(begin(word_counts), end(word_counts),
 [](const auto &a, const auto &b) {
 return a.second > b.second;
 });

All data is in order now, so we push it out to the user terminal. Using the11.
std::setw stream manipulator, we format the data in a nicely indented format,
so it looks kind of like a table.

 cout << "# " << setw(max_word_len) << "<WORD>" << " #<COUNT>n";
 for (const auto & [word, count] : word_counts) {
 cout << setw(max_word_len + 2) << word << " #"
 << count << 'n';
 }
 }

STL Containers Chapter 19

[565]

After compiling the program, we can pipe any text file into it in order to get a12.
frequency table.

 $ cat lorem_ipsum.txt | ./word_frequency_counter
 # <WORD> #<COUNT>
 et #574
 dolor #302
 sed #273
 diam #273
 sit #259
 ipsum #259
 ...

How it works...
This recipe concentrates on collecting all words in an std::map and then shoves all items
out of the map and into an std::vector, which is then sorted differently, in order to print
the data. Why?

Let's look at an example. When we count the word frequency in the string "a a b c b b
b d c c", we would get the following map content:

a -> 2
b -> 4
c -> 3
d -> 1

However, that is not the order which we want to present to the user. The program should
print b first because it has the highest frequency. Then c, then a, then d. Unfortunately, we
cannot request the map to give us the "key with the highest associated value", then the "key with
the second highest associated value", and so on.

Here, the vector comes into play. We typed the vector to contain pairs of strings and
counter values. This way it can hold items exactly in the form as they drop out of the map.

vector<pair<string, size_t>> word_counts;

STL Containers Chapter 19

[566]

Then we fill the vector using the word-frequency pairs using the std::move algorithm.
This has the advantage that the part of the strings which is maintained on the heap will not
be duplicated, but will be moved over from the map to the vector. This way we can avoid a
lot of copies.

move(begin(words), end(words), back_inserter(word_counts));

Some STL implementations use short string optimization--if the string is
not too long, it will not be allocated on the heap and stored in the string
object directly instead. In that case, a move is not faster. But moves are
also never slower!

The next interesting step is the sort operation, which uses a lambda as a custom comparison
operator:

sort(begin(word_counts), end(word_counts),
 [](const auto &a, const auto &b) { return a.second > b.second; });

The sort algorithm will take items pairwise, and compare them, which is what sort
algorithms do. By providing that lambda function, the comparison does not just compare if
a is smaller than b (which is the default implementation), but also compares if a.second is
larger than b.second. Note that all objects are pairs of strings and their counter values, and
by writing a.second we access the word's counter value. This way we move all high-
frequency words toward the beginning of the vector, and the low-frequency ones to the
back.

Implement a writing style helper tool for
finding very long sentences in text with
std::multimap
Whenever a lot of items shall be stored in a sorted manner, and the key by which they are
sorted can occur multiple times, std::multimap is a good choice.

Let's find an example use case: When writing text in German, it is okay to use very long
sentences. When writing texts in English, it is not. We will implement a tool that helps
German authors to analyze their English text files, focusing on the length of all sentences. In
order to help the author in improving the text style, it will group the sentences by their
length. This way the author can pick the longest ones and break them down.

STL Containers Chapter 19

[567]

How to do it...
In this section, we will read all user input from standard input, which we will tokenize by
whole sentences, and not words. Then we will collect all sentences in an std::multimap
paired with a variable carrying their length. Afterward, we output all sentences, sorted by
their length, back to the user.

As usual, we need to include all needed headers. std::multimap comes from1.
the same header as std::map.

 #include <iostream>
 #include <iterator>
 #include <map>
 #include <algorithm>

We use a lot of functions from namespace std, so we declare its use2.
automatically.

 using namespace std;

When we tokenize strings by extracting what's between dot characters in the text,3.
we will get text sentences surrounded by white space such as spaces, new line
symbols, and so on. These would increase their size in a wrong way, so we filter
them out using a helper function, which we now define.

 string filter_ws(const string &s)
 {
 const char *ws {" rnt"};
 const auto a (s.find_first_not_of(ws));
 const auto b (s.find_last_not_of(ws));
 if (a == string::npos) {
 return {};
 }
 return s.substr(a, b);
 }

The actual sentence length counting function shall take a giant string containing4.
all the text, and then return an std::multimap, which maps sorted sentence
lengths to the sentences.

 multimap<size_t, string> get_sentence_stats(const string &content)
 {

STL Containers Chapter 19

[568]

We begin by declaring the multimap structure, which is intended to be the return5.
value, and some iterators. As we will have a loop, we need an end iterator. Then
we use two iterators in order to point to consecutive dots within the text.
Everything between is a text sentence.

 multimap<size_t, string> ret;
 const auto end_it (end(content));
 auto it1 (begin(content));
 auto it2 (find(it1, end_it, '.'));

The it2 will be always one dot further than it1. As long as it1 did not reach6.
the end of the text, we are fine. The second condition checks whether it2 is really
at least some characters further. If that was not the case, there would be no
characters left to read between them.

 while (it1 != end_it && distance(it1, it2) > 0) {

We create a string from all characters between the iterators, and filter all white7.
space from its beginning and end, in order to count the length of the pure
sentence.

 string s {filter_ws({it1, it2})};

It's possible that the sentence does not contain anything other than white space.8.
In that case, we simply drop it. Otherwise, we count its length by determining
how many words there are. This is easy, as there are single spaces between all
words. Then we save the word count together with the sentence in the multimap.

 if (s.length() > 0) {
 const auto words (count(begin(s), end(s), ' ') + 1);
 ret.emplace(make_pair(words, move(s)));
 }

For the next loop iteration, we put the leading iterator it1 on the next sentence's9.
dot character. The following iterator it2 is put one character after the old position
of the leading iterator.

 it1 = next(it2, 1);
 it2 = find(it1, end_it, '.');
 }

STL Containers Chapter 19

[569]

After the loop is terminated, the multimap contains all sentences paired with10.
their word count and can be returned.

 return ret;
 }

Now we put the function to use. First, we tell std::cin to not skip white space,11.
as we want sentences with spaces in one piece. In order to read the whole file, we
initialize an std::string from input stream iterators which encapsulate
std::cin.

 int main()
 {
 cin.unsetf(ios::skipws);
 string content {istream_iterator<char>{cin}, {}};

As we only need the multimap result for printing, we put the12.
get_sentence_stats call directly in the loop and feed it with our string. In the
loop body, we print the items line by line.

 for (const auto & [word_count, sentence]
 : get_sentence_stats(content)) {
 cout << word_count << " words: " << sentence << ".n";
 }
 }

After compiling the code, we can feed the app with text from any text file. An13.
example Lorem Ipsum text yields the following output. As the output is very
long for long text with many sentences, it prints the shortest sentences first and
the longest last. This way we see the longest sentences first as terminals usually
scroll to the end of the output automatically.

 $ cat lorem_ipsum.txt | ./sentence_length
 ...
 10 words: Nam quam nunc, blandit vel, luctus pulvinar,
 hendrerit id, lorem.
 10 words: Sed consequat, leo eget bibendum sodales,
 augue velit cursus nunc,.
 12 words: Cum sociis natoque penatibus et magnis dis
 parturient montes, nascetur ridiculus mus.
 17 words: Maecenas tempus, tellus eget condimentum rhoncus,
 sem quam semper libero, sit amet adipiscing sem neque sed ipsum.

STL Containers Chapter 19

[570]

How it works...
The whole recipe concentrates on breaking down a large string into sentences of text, which
are assessed for their length, and then ordered in a multimap. Because std::multimap
itself is so easy to use, the complex part of the program is the loop, which iterates over the
sentences:

const auto end_it (end(content));
auto it1 (begin(content)); // (1) Beginning of string
auto it2 (find(it1, end_it, '.')); // (1) First '.' dot

while (it1 != end_it && std::distance(it1, it2) > 0) {
 string sentence {it1, it2};

 // Do something with the sentence string...

 it1 = std::next(it2, 1); // One character past current '.' dot
 it2 = find(it1, end_it, '.'); // Next dot, or end of string
}

Let's look at the code with the following diagram in mind, which consists of three sentences:

STL Containers Chapter 19

[571]

The it1 and it2 are always moved forward through the string together. This way they
always point to the beginning and end of one sentence. The std::find algorithm helps us a
lot in that regard because it works like "start at the current position and then return an iterator
to the next dot character. If there is none, return the end iterator."

After we extract a sentence string, we determine how many words it contains, so we can
insert it into the multimap. We are using the number of words as the key for the map nodes,
and the string itself as the payload object associated with it. There can easily be multiple
sentences which have the same length. This would render us unable to insert them all into
one std::map. But since we use std::multimap, this is no problem, because it can easily
handle multiple keys of the same value. It will keep them all ordered in line, which is what
we need to enumerate all sentences by their length and output them to the user.

 There's more...
After having read the whole file into one large string, we iterate through the string and
create copies of every sentence again. This is not necessary, as we also could have used
std::string_view, which will be covered later in this book.

Another way to iteratively get the strings between two consecutive dots is
std::regex_iterator, which will also be covered in a later chapter of this book.

Implementing a personal to-do list using
std::priority_queue
The std::priority_queue is another container adapter class, such as std::stack. It is a
wrapper around another data structure (std::vector by default) and provides a queue-
like interface for it. This means that items can stepwise be pushed into it, and stepwise be
popped out of it again. What is pushed into it first, will be popped out of it first. This is
usually also abbreviated as a first in, first out (FIFO) queue. This is the opposite of a stack,
where the last item pushed onto it is popped out of it first.

While we just described the behavior of std::queue, this section shows how
std::priority_queue works. That adapter is special, as it does not only take FIFO
characteristics into account but also mixes it with priorities. This means that the FIFO
principle is kind of broken down into sub-FIFO queues, which are ordered by the priorities
their items have.

STL Containers Chapter 19

[572]

How to do it...
In this section, we will set up a cheap to-do list organizing structure. We do not parse user
input in order to keep this program short and concentrate on std::priority_queue. So
we're just filling an unordered list of to-do items with priorities and descriptions into a
priority queue, and then read them out like from a FIFO queue data structure, but grouped
by the priorities of the individual items.

We need to include some headers first. std::priority_queue is in the header1.
file <queue>.

 #include <iostream>
 #include <queue>
 #include <tuple>
 #include <string>

How do we store to-do items in the priority queue? The thing is, we cannot add2.
items and additionally attach a priority to them. The priority queue will try to use
the natural order of all items in the queue. We could now implement our own
struct todo_item, and give it a priority number, and a string to-
do description, and then implement the comparison operator < in order to make
them orderable. Alternatively, we can just take std::pair, which enables us to
aggregate two things in one type and implements comparison for us
automatically.

 int main()
 {
 using item_type = std::pair<int, std::string>;

We now have a new type item_type, which consists of an integer priority and a3.
string description. So, let's instantiate a priority queue, which maintains such
items.

 std::priority_queue<item_type> q;

STL Containers Chapter 19

[573]

We will now fill the priority queue with different items which have different4.
priorities. The goal is to provide an unstructured list, and then the priority queue
tells us what to do in which order. If there are comics to read, and homework to do,
of course, the homework must be done first. Unfortunately,
std::priority_queue has no constructor, which accepts the initializer lists,
which we can use to fill the queue from the beginning on. (With a vector or a
normal list, it would have worked that way.) So we first define the list and insert
it in the next step.

 std::initializer_list<item_type> il {
 {1, "dishes"},
 {0, "watch tv"},
 {2, "do homework"},
 {0, "read comics"},
 };

We can now comfortably iterate through the unordered list of to-do items and5.
insert them step by step using the push function.

 for (const auto &p : il) {
 q.push(p);
 }

All items are implicitly sorted, and therefore we have a queue which gives us out6.
items with the highest priority.

 while(!q.empty()) {
 std::cout << q.top().first << ": " << q.top().second << 'n';
 q.pop();
 }
 std::cout << 'n';
 }

Let's compile and run our program. Indeed, it tells us, to do our homework first,7.
and after washing the dishes, we can finally watch TV and read comics.

 $./main
 2: do homework
 1: dishes
 0: watch tv
 0: read comics

STL Containers Chapter 19

[574]

How it works...
The std::priority list is very easy to use. We have only used three functions:

The q.push(item) pushes an item into the queue.1.
The q.top() returns a reference to the item which is coming out of the queue2.
first.
The q.pop() removes the frontmost item in the queue.3.

But how did the item ordering work? We grouped a priority integer and a to-do item
description string into an std::pair and got automatic ordering. If we have an
std::pair<int, std::string> instance p, we can write p.first to access the integer
part, and p.second to access the string part. We did that in the loop which prints out all to-
do items.

But how did the priority queue infer that {2, "do homework"} is more important than {0,
"watch tv"}, without us telling it to compare the numeric part?

The comparison operator < handles different cases. Let's assume we compare left <
right and left and right are pairs.

The left.first != right.first, then it returns left.first <1.
right.first.
The left.first == right.first, then it returns left.second <2.
right.second.

This way, we can order the items as we need. The only important thing is that the priority is
the first member of the pair, and the description is the second member of the pair. Otherwise,
std::priority_queue would order the items in a way where it looks like the alphabetic
order of the items is more important than their priorities. (In that case, watch TV would be
suggested as the first thing to do, and do homework some time later. That would at least be
great for those of us who are lazy!)

20
Iterators

We cover the following recipes in this chapter:

Building your own iterable range
Making your own iterators compatible with STL iterator categories
Using iterator wrappers to fill generic data structures
Implementing algorithms in terms of iterators
Iterating the other way around using reverse iterator adapters
Terminating iterations over ranges with iterator sentinels
Automatically checking iterator code with checked iterators
Building your own zip iterator adapter

Introduction
Iterators are an extremely important concept in C++. The STL aims to be as flexible and generic
as possible, and iterators are a great help in that regard. Unfortunately, they are sometimes
a bit tedious to use, which is why many novices avoid them and fall back to C-Style C++. A
programmer who avoids iterators basically waives half the potential of the STL. This chapter
deals with iterators and quickly casts some light on how they work. That very quick
introduction is probably not enough, but the recipes are really here to give a good feeling for
iterator internals.

Iterators Chapter 20

[576]

Most container classes, but also old-school C-style arrays, in one or the other way, contain a
range of data items. A lot of day-to-day tasks that process a lot of data items do not care how
to get at that data. However, if we regard, for example, an array of integers and a linked list
of integers and want to calculate the sum of all the items of both the structures, we would
end up with two different algorithms, which could look like the following:

One algorithm, which deals with the array by checking its size and summing it
up as follows:

 int sum {0};
 for (size_t i {0}; i < array_size; ++i) { sum += array[i]; }

Another algorithm, which deals with the linked list by iterating until it reaches its
end:

 int sum {0};
 while (list_node != nullptr) {
 sum += list_node->value; list_node = list_node->next;
 }

Both of them are about summing up integers, but how large is the percentage of characters
that we typed, which is directly related to the actual summing up task? And does one of
them work with a third kind of data structure, let's say std::map, or do we have to
implement another version of it? Without iterators, this would lead us into ridiculous
directions.

Only with the help of iterators is it possible to implement this in a generic form:

int sum {0};
for (int i : array_or_vector_or_map_or_list) { sum += i; }

This pretty and short, so-called, range-based for loop has been in existence since C++11. It
is just a syntax sugar, which expands to something similar to the following code:

{
 auto && __range = array_or_vector_or_map_or_list ;
 auto __begin = std::begin(__range);
 auto __end = std::end(__range);
 for (; __begin != __end; ++__begin) {
 int i = *__begin;
 sum += i;
 }
}

Iterators Chapter 20

[577]

This is an old hat for everyone who has worked with iterators already and looks completely
magic for everyone who didn't. Imagine our vector of integers looks like the following:

The std::begin(vector) command is the same as vector.begin() and returns us an
iterator that points to the first item (the 1). std::end(vector) is the same as
vector.end() and returns an iterator that points at one item past the last item (past the 5).

In every iteration, the loop checks if the begin iterator is non-equal to the end iterator. If so,
it will dereference the begin iterator and thus access the integer value it points to. Then, it
increments the iterator, repeats the comparison against the end iterator, and so on. In that
moment, it helps to read the loop code again while imagining that the iterators are plain C-
style pointers. In fact, plain C-style pointers are also a valid kind of iterators.

Iterator categories
There are multiple categories of iterators, and they have different limitations. They are not
too hard to memorize, just remember that the capabilities one category requires are
inherited from the next powerful category. The whole point of iterator categories is that if
an algorithm knows what kind of iterator it is dealing with, it can be implemented in an
optimized way. This way, the programmer can lean back and express his intent, while the
compiler can choose the optimal implementation for the given task.

Iterators Chapter 20

[578]

Let's go through them in the right order:

Input iterator
Input iterators can be dereferenced only for reading the values they point to. Once they are
incremented, the last value they pointed to has been invalidated during the incrementation.
This means that it is not possible to iterate over such a range multiple times. The
std::istream_iterator is an example for this category.

Forward iterator
Forward iterators are the same as input iterators, but they differ in that regard that the
ranges they represent can be iterated over multiple times. The std::forward_list
iterators are an example of that. Such a list can only be iterated over forward, not backward,
but it can be iterated over as often as we like to.

Bidirectional iterator
The bidirectional iterator, as the name suggests, can be incremented and decremented, in
order to iterate forward or backward. The iterators of std::list, std::set, and
std::map, for example, support that.

Iterators Chapter 20

[579]

Random access iterator
Random access iterators allow jumping over multiple values at once, instead of single-
stepping. This is the case for iterators of std::vector and std::deque.

Contiguous iterator
This category specifies all of the aforementioned requirements, plus the requirement that
the data that is being iterated through lies in contiguous memory, like it does in an array, or
std::vector.

Output iterator
Output iterators are detached from the other categories. This is because an iterator can be a
pure output iterator, which can only be incremented and used to write to the data it points
to. If they are being read from, the value will be undefined.

Mutable iterator
If an iterator is an output iterator and one of the other categories at the same time, it is a
mutable iterator. It can be read from and written to. If we obtain an iterator from a non-
const container instance, it will usually be of this kind.

Building your own iterable range
We already realized that iterators are, kind of, the standard interface for iterations over
containers of all kinds. We just need to implement the prefix increment operator, ++, the
dereference operator, *, and the object comparison operator, ==, and then we already have a
primitive iterator that fits into the fancy C++11 range-based for loop.

In order to get used to this a bit more, this recipe shows how to implement an iterator that
just emits a range of numbers when iterating through it. It is not backed by any container
structure or anything similar. The numbers are generated ad hoc while iterating.

Iterators Chapter 20

[580]

How to do it...
In this recipe, we will implement our own iterator class, and then, we will iterate through it:

First, we include the header, which enables us to print to the terminal:1.

 #include <iostream>

Our iterator class will be called num_iterator:2.

 class num_iterator {

Its only data member is an integer. That integer is used for counting. The3.
constructor is for initializing it. It is generally a good form to make constructors
explicit, which create a type from another type to avoid accidental implicit
conversion. Note that we also provide a default value for position. This makes
the instances of the num_iterator class default-constructible. Although we will
not use the default constructor in the whole recipe, this is really important
because some STL algorithms depend on iterators being default-constructible:

 int i;
 public:

 explicit num_iterator(int position = 0) : i{position} {}

When dereferencing our iterator (*it), it will emit an integer:4.

 int operator*() const { return i; }

Incrementing the iterator (++it) will just increment its internal counter, i:5.

 num_iterator& operator++() {
 ++i;
 return *this;
 }

A for loop will compare the iterator against the end iterator. If they are unequal,6.
it will continue iterating:

 bool operator!=(const num_iterator &other) const {
 return i != other.i;
 }
 };

Iterators Chapter 20

[581]

That was the iterator class. We still need an intermediate object for writing for7.
(int i : intermediate(a, b)) {...}, which then contains the begin and
end iterator, which is preprogrammed to iterate from a to b. We call it
num_range:

 class num_range {

It contains two integer members, which denote at which number the iteration8.
shall start, and which number is the first number past the last number. This
means if we want to iterate from 0 to 9, a is set to 0 and b to 10:

 int a;
 int b;

 public:
 num_range(int from, int to)
 : a{from}, b{to}
 {}

There are only two member functions that we need to implement: the begin and9.
end functions. Both return iterators that point to the beginning and the end of the
numeric range:

 num_iterator begin() const { return num_iterator{a}; }
 num_iterator end() const { return num_iterator{b}; }
 };

That's it. We can use it. Let's write a main function which just iterates over a10.
range that goes from 100 to 109 and prints all its values:

 int main()
 {
 for (int i : num_range{100, 110}) {
 std::cout << i << ", ";
 }
 std::cout << 'n';
 }

Compiling and running the program yields the following terminal output:11.

 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

Iterators Chapter 20

[582]

How it works...
Consider that we write the following code:

for (auto x : range) { code_block; }

The compiler will evaluate it to the following:

{
 auto __begin = std::begin(range);
 auto __end = std::end(range);
 for (; __begin != __end; ++__begin) {
 auto x = *__begin;
 code_block
 }
}

While looking at this code, it becomes obvious that the only requirements for the iterators
are the following three operators:

operator!=: unequal comparison
operator++: prefix increment
operator*: dereference

The requirements of the range are that it has a begin and an end method, which return two
iterators that denote the beginning and the end of a range.

In this book, we're mostly using std::begin(x) instead of x.begin().
This is generally a good style because std::begin(x) automatically calls
x.begin() if that member method is available. If x is an array that does
not have a begin() method, std::begin(x) will automatically find out
how to deal with it. The same applies to std::end(x). User defined types
that do not provide begin()/end() members do not work with
std::begin/std::end.

What we did in this recipe is just fit a simple number counting algorithm into the forward
iterator interface. Implementing an iterator and a range always involves this minimum
amount of boilerplate code, which can be a little bit annoying on the one hand. A look at the
loop that uses num_range is, on the other hand, very rewarding because it looks so perfectly
simple!

Iterators Chapter 20

[583]

Scroll back and have a thorough look on which of the methods of the
iterator and the range class are const. Forgetting to make those functions
const can make the compiler reject your code in a lot of situations because
it is a common thing to iterate over const objects.

Making your own iterators compatible with
STL iterator categories
Whatever own container data structure we come up with, in order to effectively mix it with
all the STL goodness, we need to make them provide iterator interfaces. In the last section,
we learned how to do that, but we do soon realize that some STL algorithms do not compile
well with our custom iterators. Why?

The problem is that a lot of STL algorithms try to find out more about the iterators they are
asked by us to deal with. Different iterator categories have different capabilities, and hence,
there might be different possibilities to implement the same algorithm. For example, if we
copy plain numbers from one std::vector to another, this may be implemented with a fast
memcpy call. If we copy data from or to std::list, this is not possible any longer and the
items have to be copied individually one by one. The implementers of the STL algorithms
put a lot of thought into this kind of automatic optimization. In order to help them, we can
equip our iterators with some information about them. This section shows how to achieve
the same.

How to do it...
In this section, we will implement a primitive iterator that counts numbers and use it
together with an STL algorithm, which initially does not compile with it. Then we do what's
necessary to make it STL-compatible.

First, we need to include some headers, as always:1.

 #include <iostream>
 #include <algorithm>

Iterators Chapter 20

[584]

Then we implement a primitive number counting iterator, as in the previous2.
section. When iterating over it, it will emit plain increasing integers. The
num_range acts as a handy begin and end iterator donor:

 class num_iterator
 {
 int i;
 public:
 explicit num_iterator(int position = 0) : i{position} {}
 int operator*() const { return i; }
 num_iterator& operator++() {
 ++i;
 return *this;
 }
 bool operator!=(const num_iterator &other) const {
 return i != other.i;
 }
 bool operator==(const num_iterator &other) const {
 return !(*this != other);
 }
 };
 class num_range {
 int a;
 int b;
 public:
 num_range(int from, int to)
 : a{from}, b{to}
 {}
 num_iterator begin() const { return num_iterator{a}; }
 num_iterator end() const { return num_iterator{b}; }
 };

In order to keep the std:: namespace prefix out and keep the code readable, we3.
declare that we use namespace std:

 using namespace std;

Iterators Chapter 20

[585]

Let's now just instantiate a range that goes from 100 to 109. Note that the value4.
110 is the position of the end iterator. This means that 110 is the first number that
is outside the range (which is why it goes from 100 to 109):

 int main()
 {
 num_range r {100, 110};

And now, we use it with std::minmax_element. This algorithm returns us5.
std::pair with two members: an iterator pointing to the lowest value and
another iterator pointing to the highest value in the range. These are, of course,
100 and 109 because that's how we constructed the range:

 auto [min_it, max_it] (minmax_element(begin(r), end(r)));
 cout << *min_it << " - " << *max_it << 'n';
 }

Compiling the code leads to the following error message. It's some error related6.
to std::iterator_traits. More on that later. It might happen that there are
other errors on other compilers and/or STL library implementations or no errors at
all. This error message occurs with clang version 5.0.0 (trunk 299766):

In order to fix this, we need to activate iterator trait functionality for our iterator7.
class. Just after the definition of num_iterator, we write the following template
structure specialization of the std::iterator_traits type. It tells the STL that
our num_iterator is of the category forward iterator, and it iterates over int
values:

 namespace std {
 struct iterator_traits<num_iterator> {

 using iterator_category = std::forward_iterator_tag;

 using value_type = int;

 using difference_type = void;
 using pointer = int*;

Iterators Chapter 20

[586]

 using reference = int&;

 };
 }

Let's compile it again; we can see that it works! The output of the min/max8.
function is the following, which is just what we expect:

 100 - 109

How it works...
Some STL algorithms need to know the characteristics of the iterator type they are used
with. Some others need to know the type of items the iterators iterate over. This has
different implementation reasons.

However, all STL algorithms will access this type information via
std::iterator_traits<my_iterator>, assuming that the iterator type is my_iterator.
This traits class contains up to five different type member definitions:

difference_type: What type results from writing it1 - it2?
value_type: Of what type is the item which we access with *it (note that this is
void for pure output iterators)?
pointer: Of what type must a pointer be in order to point to an item?
reference: Of what type must a reference be in order to reference an item?
iterator_category: Which category does the iterator belong to?

The pointer, reference, and difference_type type definitions do not make sense for
our num_iterator, as it doesn't iterate over real memory values (we just return int values
but they are not persistently available like in an array). Therefore it's better to not define
them because if an algorithm depends on those items being referenceable in memory, it
might be buggy when combined with our iterator.

There's more...
Until C++17, it was encouraged to let iterator types just inherit from std::iterator<...>,
which automatically populates our class with all the type definitions. This still works, but it
is discouraged since C++17.

Iterators Chapter 20

[587]

Using iterator adapters to fill generic data
structures
In a lot of situations, we want to fill any container with masses of data, but the data source
and the container have no common interface. In such a situation, we would need to write our
own hand-crafted algorithms that just deal with the question of how to shove data from the
source to the sink. Usually, this distracts us from our actual work of solving a specific
problem.

Tasks where we simply transport data between conceptually different data structures can
be implemented with a one-liner code, thanks to another abstraction provided by the STL:
iterator adapters. This section demonstrates the use of some of them in order to give a
feeling how useful they are.

How to do it...
In this section, we use some iterator wrappers just for the sake of showing that they exist
and how they can help us in everyday programming tasks.

We need to include some headers first:1.

 #include <iostream>
 #include <string>
 #include <iterator>
 #include <sstream>
 #include <deque>

Declaring that we use namespace std spares us some typing later:2.

 using namespace std;

We start with std::istream_iterator. We specialize it on int. This way, it3.
will try to parse the standard input to integers. For example, if we iterate over it,
it will look as if it was std::vector<int>. The end iterator is instantiated of the
same type but without any constructor arguments:

 int main()
 {
 istream_iterator<int> it_cin {cin};
 istream_iterator<int> end_cin;

Iterators Chapter 20

[588]

Next, we instantiate std::deque<int> and just copy over all the integers from4.
the standard input into the deque. The deque itself is not an iterator, so we wrap
it into std::back_insert_iterator using the std::back_inserter helper
function. This special iterator wrapper will execute v.push_back(item) with
each of the items we get from the standard input. This way the deque is grown
automatically!

 deque<int> v;

 copy(it_cin, end_cin, back_inserter(v));

In the next exercise, we use std::istringstream to copy items into the middle5.
of the deque. So, let's first define some example numbers in the form of a string
and instantiate the stream object from it:

 istringstream sstr {"123 456 789"};

Then, we need a hint of where to insert into the deque. It will be the middle, so6.
we use the begin pointer of the deque and feed it to the std::next function. The
second argument of this function says that it will return an iterator advanced by
v.size() / 2 steps, that is, half the deque. (We cast v.size() to int because
the second parameter of std::next is difference_type of the iterator used as
the first parameter. In this case, this is a signed integer type. Depending on the
compiler flags, the compiler might warn at this point if we didn't cast explicitly.)

 auto deque_middle (next(begin(v),
 static_cast<int>(v.size()) / 2));

Now, we can copy parsed integers step by step from the input string stream into7.
the deque. Again, the end iterator of a stream iterator wrapper is just an empty
std::istream_iterator<int> without constructor arguments (that is, the
empty {} braces in the code line). The deque is wrapped into an inserter
wrapper, which is an std::insert_iterator, which is pointed to the deque's
middle using the deque_middle iterator:

 copy(istream_iterator<int>{sstr}, {}, inserter(v, deque_middle));

Now, let's use std::front_insert_iterator to insert some items at the front8.
of the deque:

 initializer_list<int> il2 {-1, -2, -3};
 copy(begin(il2), end(il2), front_inserter(v));

Iterators Chapter 20

[589]

In the last step, we print the whole content of the deque out to the user shell. The9.
std::ostream_iterator works like an output iterator which, in our case, just
forwards all the integers it gets copied from to std::cout and then appends ",
" after each item:

 copy(begin(v), end(v), ostream_iterator<int>{cout, ", "});
 cout << 'n';
 }

Compiling and running the program yields the following output. Can you10.
identify which number was inserted by which code line?

 $ echo "1 2 3 4 5" | ./main
 -3, -2, -1, 1, 2, 123, 456, 789, 3, 4, 5,

How it works...
We used a lot of different iterator adapters in this section. They all have one thing in
common, which is they wrap an object into an iterator that is not an iterator itself.

std::back_insert_iterator
The back_insert_iterator can be wrapped around std::vector, std::deque,
std::list, and so on. It will call the container's push_back method, which inserts the new
item past the existing items. If the container instance is not large enough, it will be grown
automatically.

std::front_insert_iterator
The front_insert_iterator does exactly the same thing as back_insert_iterator,
but it calls the container's push_front method, which inserts the new item before all the
existing items. Note that for a container like std::vector, this means that all the existing
items need to be moved one slot further in order to leave space for the new item at the front.

Iterators Chapter 20

[590]

std::insert_iterator
This iterator adapter is similar to the other inserters, but is able to insert new items between
existing ones. The std::inserter helper function which constructs such a wrapper takes
two arguments. The first argument is the container and the second argument is an iterator
that points to the position where new items shall be inserted.

std::istream_iterator
The istream_iterator is another very handy adapter. It can be used with any
std::istream object (which can be the standard input or files for example) and will try to
parse the input from that stream object according to the template parameter it was
instantiated with. In this section, we used std::istream_iterator<int>(std::cin),
which pulls integers out of the standard input for us.

The special thing about streams is that we often cannot know in advance how long the
stream is. That leaves the question, where will the end iterator point to if we do not know
where the stream's end is? The way this works is that the iterator knows when it reaches the
end of the stream. When it is compared to the end iterator, it will effectively not really
compare itself with the end iterator but return if the stream has any tokens left. That's why
the end iterator constructor does not take any arguments.

std::ostream_iterator
The ostream_iterator is the same thing as the istream_iterator, but it works the
other way around: It doesn't take tokens from an input stream--it pushes tokens into an
output stream. Another difference to istream_iterator is that its constructor takes a
second argument, which is a string that shall be pushed into the output stream after each
item. That is useful because this way we can print a separating ", " or a new line after each
item.

Iterators Chapter 20

[591]

Implementing algorithms in terms of
iterators
Iterators usually iterate by moving their position from one item of a container to another. But
they do not necessarily need to iterate over data structures at all. Iterators can also be used
to implement algorithms, in which case, they would calculate the next value when they are
incremented (++it) and return that value when they are dereferenced (*it).

In this section, we demonstrate this by implementing the Fibonacci function in form of an
iterator. The Fibonacci function is recursively defined like this: F(n) = F(n - 1) + F(n
- 2). It starts with the beginning values of F(0) = 0 and F(1) = 1. This leads to the
following number sequence:

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0) = 1

F(3) = F(2) + F(1) = 2

F(4) = F(3) + F(2) = 3

F(5) = F(4) + F(3) = 5

F(6) = F(5) + F(4) = 8

... and so on

If we implement this in the form of a callable function that returns the Fibonacci value for
any number, n, we will end up with a recursive self-calling function, or a loop
implementation. This is fine, but what if we write some program where have to consume
Fibonacci numbers in some pattern, one after the other? We would have two possibilities--
either we recalculate all the recursive calls for every new Fibonacci number, which is a
waste of computing time, or we save the last two Fibonacci numbers as temporary variables
and use them to calculate the next. In the latter case, we reimplemented the Fibonacci
algorithm loop implementation. It seems that we would end up mixing Fibonacci code with
our actual code, which solves a different problem:

size_t a {0};
size_t b {1};

for (size_t i {0}; i < N; ++i) {
 const size_t old_b {b};
 b += a;
 a = old_b;
 // do something with b, which is the current fibonacci number

Iterators Chapter 20

[592]

}

Iterators are an interesting way out of this. How about wrapping the steps that we do in the
loop-based iterative Fibonacci implementation in the prefix increment ++ operator
implementation of a Fibonacci value iterator? This is pretty easy, as this section
demonstrates.

How to do it...
In this section, we concentrate on implementing an iterator that generates numbers from the
Fibonacci number sequence while iterating over it.

In order to be able to print the Fibonacci numbers to the terminal, we need to1.
include a header first:

 #include <iostream>

We call the Fibonacci iterator, fibit. It will carry a member i, which saves the2.
index position in the Fibonacci sequence, and a and b will be the variables that
hold the last two Fibonacci values. If instantiated with the default constructor, a
Fibonacci iterator will be initialized to the value F(0):

 class fibit
 {
 size_t i {0};
 size_t a {0};
 size_t b {1};

Next, we define the standard constructor and another constructor, which allows3.
us to initialize the iterator at any Fibonacci number step:

 public:
 fibit() = default;
 explicit fibit(size_t i_)
 : i{i_}
 {}

When dereferencing our iterator (*it), it will just emit the Fibonacci number of4.
the current step:

 size_t operator*() const { return b; }

Iterators Chapter 20

[593]

When incrementing the iterator (++it), it will move its state to the next Fibonacci5.
number. This function contains the same code as the loop-based Fibonacci
implementation:

 fibit& operator++() {
 const size_t old_b {b};
 b += a;
 a = old_b;
 ++i;
 return *this;
 }

When used in a loop, the incremented iterator is compared against an end6.
iterator, for which we need to define the != operator. We are only comparing the
step at which the Fibonacci iterators currently reside, which makes it easier to
define the end iterator for step 1000000, for example, as we do not need to
expensively calculate such a high Fibonacci number in advance:

 bool operator!=(const fibit &o) const { return i != o.i; }
 };

In order to be able to use the Fibonacci iterator in the range-based for loop, we7.
have to implement a range class beforehand. We call it fib_range, and its
constructor will accept one parameter that tells how far in the Fibonacci range we
want to iterate:

 class fib_range
 {
 size_t end_n;
 public:
 fib_range(size_t end_n_)
 : end_n{end_n_}
 {}

Its begin and end functions return iterators which point to the positions, F(0)8.
and F(end_n):

 fibit begin() const { return fibit{}; }
 fibit end() const { return fibit{end_n}; }
 };

Iterators Chapter 20

[594]

Okay, now let's forget about all the iterator-related boilerplate code. We do not9.
need to touch it again as we have a helper class now which nicely hides all the
implementation details from us! Let's print the first 10 Fibonacci numbers:

 int main()
 {
 for (size_t i : fib_range(10)) {
 std::cout << i << ", ";
 }
 std::cout << 'n';
 }

Compiling and running the program yields the following shell output:10.

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

There's more...
In order to use this iterator with the STL, it must support the std::iterator_traits
class. To see how to do that, have a look at the other recipe, which deals with exactly that
matter: Making your own iterators compatible with STL iterator categories.

Try to think in terms of iterators. This leads to very elegant code in many
situations. Don't worry about performance: compilers find it trivial to
optimize away the iterator-related boilerplate code!

In order to keep the example simple, we did not do anything about this, but if we do
publish the Fibonacci iterator as a library, it would become apparent that it has a usability
flaw--a fibit instance that was created with a constructor parameter will only be used as
an end iterator because it does not contain valid Fibonacci values. Our tiny library does not
enforce such usage. There are different possibilities to fix it:

Make the fibit(size_t i_) constructor private and declare the fib_range
class as a friend of the fibit class. This way, users can only use it the right way.
Use iterator sentinels in order to prevent users to dereference the end iterator.
Have a look at the recipe in which we introduce those: Terminating iterations over
ranges with iterator sentinels

Iterators Chapter 20

[595]

Iterating the other way around using reverse
iterator adapters
Sometimes, it is valuable to iterate over a range the other way around, not forward but
backward. The range-based for loop, as well as all STL algorithms usually iterate over the
given ranges by incrementing iterators, although iterating backward requires decrementing
them. Of course, it is possible to wrap iterators into a layer that transforms an increment call
effectively into a decrement call. This sounds like a lot of boilerplate code for every type on
which we would like to support that.

The STL provides a helpful reverse-iterator adapter, which helps us set up such iterators.

How to do it...
In this section, we will use reverse iterators in different ways, just to show how they are
used:

We need to include some headers first, as always:1.

 #include <iostream>
 #include <list>
 #include <iterator>

Next, we declare that we use namespace std in order to spare us some typing:2.

 using namespace std;

For the sake of having something to iterate over, let's instantiate a list of integers:3.

 int main()
 {
 list<int> l {1, 2, 3, 4, 5};

Now let's print these integers in the reverse form. In order to do that, we iterate4.
over the list by using the rbegin and rend functions of std::list and shove
those values out via the standard output using the handy ostream_iterator
adapter:

 copy(l.rbegin(), l.rend(), ostream_iterator<int>{cout, ", "});
 cout << 'n';

Iterators Chapter 20

[596]

If a container does not provide handy rbegin and rend functions but at least5.
provides bidirectional iterators, the std::make_reverse_iterator function
helps out. It accepts normal iterators and converts them to reverse iterators:

 copy(make_reverse_iterator(end(l)),
 make_reverse_iterator(begin(l)),
 ostream_iterator<int>{cout, ", "});
 cout << 'n';
 }

Compiling and running our program yields the following output:6.

 5, 4, 3, 2, 1,
 5, 4, 3, 2, 1,

How it works...
In order to be able to transform a normal iterator into a reverse iterator, it must at least have
support for bidirectional iteration. This requirement is fulfilled by any iterator of the
bidirectional category or higher.

A reverse iterator kind of contains a normal iterator and mimics its interface completely, but
it rewires the increment operation to a decrement operation.

The next detail is about the begin and end iterator positions. Let's have a look at the
following diagram, which shows a standard numeric sequence kept in an iterable range. If
the sequence goes from 1 to 5, then the begin iterator has to point to the element 1, and the
end iterator must point one element past 5:

Iterators Chapter 20

[597]

When defining reverse iterators, the rbegin iterator must point to 5, and the rend iterator
must point to the element before 1. Turn the book upside down, and see that it completely
makes sense.

If we want our own custom container classes to support reverse iteration, we do not need to
implement all these details ourselves; we can just wrap the normal iterators into reverse
iterators by using the std::make_reverse_iterator helper function, and it does all the
operator rewiring and offset corrections for us.

Terminating iterations over ranges with
iterator sentinels
Both STL algorithms and the range-based for loop assume that the begin and end positions
of the iteration are known in advance. In some situations, however, it is hardly possible to
know the end position before reaching it by iteration.

A very simple example for this is iterating over plain C-Style strings, the length of which is
not known before runtime. The code which iterates over such strings usually looks like this:

for (const char *c_ponter = some_c_string; *c_pointer != ''; ++c_pointer) {
 const char c = *c_pointer;
 // do something with c
}

The only way to put this into a range-based for loop seems to be wrapping it into an
std::string, which has begin() and end() functions:

for (char c : std::string(some_c_string)) { /* do something with c */ }

However, the constructor of std::string will iterate over the whole string before our for
loop can iterate over it. Since C++17, we also have std::string_view, but its constructor
will also iterate through the string once. This is not worth the real hassle for short strings,
but this is also only an example for a problem class, which can be worth the hassle in other
situations. The std::istream_iterator also has to deal with this when it captures input
from std::cin, as its end iterator cannot realistically point to the end of the user input
while the user is still typing keys.

Iterators Chapter 20

[598]

C++17 comes with the great news that it does not constrain begin and end iterators to be of
the same type. This section demonstrates how to put this little rule change to great use.

How to do it...
In this section, we will build an iterator together with a range class, which enables us to
iterate over a string with unknown length, without finding the end position in advance.

First, as always, we need to include headers:1.

 #include <iostream>

The iterator sentinel is a very central element of this section. Surprisingly, its class2.
definition can stay completely empty:

 class cstring_iterator_sentinel {};

Now we implement the iterator. It will contain a string pointer, which is the3.
container we iterate over:

 class cstring_iterator {
 const char *s {nullptr};

The constructor just initializes the internal string pointer to whatever string the4.
user provides. Let's make the constructor explicit in order to prevent accidental
implicit conversions from strings to string iterators:

 public:
 explicit cstring_iterator(const char *str)
 : s{str}
 {}

When dereferencing the iterator at some point, it will just return the character5.
value at this position:

 char operator*() const { return *s; }

Incrementing the iterator just increments the position in the string:6.

 cstring_iterator& operator++() {
 ++s;
 return *this;
 }

Iterators Chapter 20

[599]

This is the interesting part. We implement the != operator for comparison, as it is7.
used by STL algorithms and the range-based for loop. However, this time, we do
not implement it for the comparison of iterators with other iterators, but for
comparing iterators with sentinels. When we compare an iterator with another
iterator we can only check if their internal string pointers both point to the same
address, which is somewhat limiting. By comparing against an empty sentinel
object, we can perform a completely different semantic–we check if the character
our iterator points to is a terminating '' character because this represents the end
of the string!

 bool operator!=(const cstring_iterator_sentinel) const {
 return s != nullptr && *s != '';
 }
 };

In order to use this in a range-based for loop, we need a range class around it,8.
which emits the begin and end iterators:

 class cstring_range {
 const char *s {nullptr};

The only thing the user needs to provide during instantiation is the string that9.
will be iterated over:

 public:
 cstring_range(const char *str)
 : s{str}
 {}

We return a normal cstring_iterator from the begin() function, which10.
points to the beginning of the string. From the end() function, we just return the
sentinel type. Note that without the sentinel type, we would also return an
iterator, but from where should we know the end of the string if we didn't search
for it in advance?

 cstring_iterator begin() const {
 return cstring_iterator{s};
 }
 cstring_iterator_sentinel end() const {
 return {};
 }
 };

Iterators Chapter 20

[600]

That's it. We can immediately use it. Strings that come from the user are one11.
example of an input we cannot know the length of in advance. In order to force
the user to give some input, we will abort the program if the user did not provide
at least one parameter when launching the program in the shell:

 int main(int argc, char *argv[])
 {
 if (argc < 2) {
 std::cout << "Please provide one parameter.n";
 return 1;
 }

If the program is still being executed up to this point, then we know that12.
argv[1] contains some user string:

 for (char c : cstring_range(argv[1])) {
 std::cout << c;
 }
 std::cout << 'n';
 }

Compiling and running the program yields the following output:13.

 $./main "abcdef"
 abcdef

That the loop prints what we just entered is not a surprise, as this is just quite a micro-
example for the implementation of a sentinel-based iterator range. This iteration
termination method will help you in implementing your own iterators wherever you
run into a situation where the comparison with an end position approach is not helpful.

Automatically checking iterator code with
checked iterators
No matter how useful iterators are, and what generic interface they represent, iterators can
easily be misused, just as pointers. When dealing with pointers, code must be written in a
way that it never dereferences them when they point to invalid memory locations. Same
applies to iterators, but there are a lot of rules that state when an iterator is valid and when it
is invalidated. Those can easily be learned by studying the STL documentation a bit, but it
will still always be possible to write buggy code.

Iterators Chapter 20

[601]

In the best case, such buggy code blows up in front of the developer while it is being tested,
and not on the client's machine. However, in many cases, the code just silently seems to
work, although it dereferences dangling pointers, iterators, and so on. In such cases, we
want to be eagerly alarmed if we produce code showing undefined behavior.

Fortunately, there's help! The GNU STL implementation has a debug mode, and the GNU
C++ compiler as well as the LLVM clang C++ compiler both support additional libraries that
can be used to produce extra-sensitive and verbose binaries for us, which immediately blow
up on a large variety of bugs. This is easy to use and super useful, as we will demonstrate in
this section. The Microsoft Visual C++ standard library also provides a possibility to activate
additional checks.

How to do it...
In this section, we'll write a program that deliberately accesses an invalidated iterator:

First, we include headers.1.

 #include <iostream>
 #include <vector>

Now, let's instantiate a vector of integers and get an iterator to the first item, the2.
value 1. We apply shrink_to_fit() on the vector in order to ensure that its
capacity is really 3, as its implementation might allocate more memory than
necessary as a little reserve to make future item insertions faster:

 int main()
 {
 std::vector<int> v {1, 2, 3};
 v.shrink_to_fit();
 const auto it (std::begin(v));

Then we print the dereferenced iterator, which is completely fine:3.

 std::cout << *it << 'n';

Next, let's append a new number to the vector. As the vector is not large enough4.
to take another number, it will automatically increase its size. It does this by
allocating a new and larger chunk of memory, moving all the existing items to
that new chunk and then deleting the old memory chunk:

 v.push_back(123);

Iterators Chapter 20

[602]

Now, let's print 1 from the vector through this iterator again. This is bad. Why?5.
Well, when the vector moved all its values to the new chunk of memory and
threw away the old chunk, it did not tell the iterator about this change. This
means that the iterator is still pointing to the old location, and we cannot know
what really happened to it since then:

 std::cout << *it << 'n'; // bad bad bad!
 }

Compiling and running this program leads to a flawless execution. The app6.
doesn't crash, but what it prints when dereferencing the invalidated pointer is
pretty much random. Leaving it like this is pretty dangerous, but at this point, no
one tells us about that bug if we don't see it ourselves:

Debug flags come to the rescue! The GNU STL implementation supports a7.
preprocessor macro called _GLIBCXX_DEBUG, which activates a lot of sanity
checking code in the STL. This makes the program slower, but it finds bugs. We
can activate it by adding a -D_GLIBCXX_DEBUG flag to our compiler command
line, or define it in the head of the code file before the include lines. As you can
see, it kills the app in the mactivate different sanitizers. Let's compile the code
with clan useful (the activation flag for checked iterators with the Microsoft
Visual C++ compiler is /D_ITERATOR_DEBUG_LEVEL=1):

Iterators Chapter 20

[603]

The LLVM/clang implementation of the STL also has debug flags, but they serve8.
the purpose of debugging the STL itself, not user code. For user code, you can
activate different sanitizers. Let's compile the code with clang using the -
fsanitize=address -fsanitize=undefined flags and see what happens:

Wow, this is a very precise description of what went wrong. The screenshot would have
spanned multiple pages of this book if it had not been truncated. Note that this is not a clang-
only feature, as it also works with GCC.

If you get runtime errors because some library is missing, then your
compiler did not automatically ship with libasan and libubsan. Try to
install them via your package manager or something similar.

How it works...
As we have seen, we did not need to change anything in the code in order to get this kind of
tripwire feature for buggy code. It basically came for free, just by appending some compiler
flags to the command line when compiling the program.

Iterators Chapter 20

[604]

This feature is implemented by sanitizers. A sanitizer usually consists of an additional
compiler module and a runtime library. When sanitizers are activated, the compiler will
add additional information and code to the binary, which results from our program. At
runtime, the sanitizer libraries that are then linked into the program binary can, for
example, replace the malloc and free functions in order to analyze how the program deals
with the memory it acquires.

Sanitizers can detect different kinds of bugs. Just to list a few valuable examples:

Out-of-bounds: This triggers whenever we access an array, vector, or anything
similar outside its legitimate memory range.
Use-after-free: This triggers if we reference heap memory after it was already
freed (which we did in this section).
Integer overflow: This triggers if an integer variable overflows by calculating
with values that do not fit into the variable. For signed integers, the arithmetic
wraparound is undefined behavior.
Pointer alignment: Some architectures cannot access memory if it has a weird
alignment in memory.

There are many more such bugs that sanitizers can detect.

It is not feasible to always activate all available sanitizers because they make the program
slower. However, it is good style to always activate sanitizers in your unit tests and
integration tests.

There's more...
There are a lot of different sanitizers for different bug categories, and they are all still under
development. We can and should inform ourselves on the internet about how we can
improve our test binaries. The GCC and LLVM project homepages list their sanitizing
capabilities in their online documentation pages:

https:/​/ ​gcc. ​gnu. ​org/ ​onlinedocs/ ​gcc/ ​Instrumentation- ​Options. ​html

http:/​/​clang. ​llvm. ​org/ ​docs/ ​index. ​html (look for sanitizers in the table of
contents)

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html

Iterators Chapter 20

[605]

Thorough testing with sanitizers is something that every programmer should be aware of
and should always be doing. Unfortunately, this is not the case in alarmingly many
companies, although buggy code is the most important entry point for all the malware and
computer viruses out there.

When you get a new job as a software developer, check if your team really uses all the
sanitizing possibilities there are. If not, you have the unique chance to fix important and
sneaky bugs on your first day at work!

Building your own zip iterator adapter
Different programming languages lead to different programming styles. This is, because
there are different ways to express things, and they are differing in their elegance for each
use case. That is no surprise because every language was designed with specific objectives.

A very special kind of programming style is purely functional programming. It is magically
different from the imperative programming which C or C++ programmers are used to. While
this style is very different, it enables extremely elegant code in many situations.

One example of this elegance is the implementation of formulas, such as the mathematical
dot product. Given two mathematical vectors, applying the dot product to them means
pairwise multiplying of the numbers at the same positions in the vector and then summing
up all of those multiplied values. The dot product of two vectors (a, b, c) * (d, e, f)
is (a * e + b * e + c * f). Of course, we can do that with C and C++, too. It could
look like the following:

std::vector<double> a {1.0, 2.0, 3.0};
std::vector<double> b {4.0, 5.0, 6.0};

double sum {0};
for (size_t i {0}; i < a.size(); ++i) {
 sum += a[i] * b[i];
}
// sum = 32.0

How does it look like in those languages that can be considered more elegant?

Iterators Chapter 20

[606]

Haskell is a purely functional language, and this is how you can calculate the dot product of
two vectors with a magical one-liner:

Python is not a purely functional language, but it supports similar patterns to some extent,
as seen in the next example:

The STL provides a specific algorithm called std::inner_product, which solves this
specific problem in one line, too. But the point is that in many other languages, such code
can be written on the fly in only one line without specific library functions that support that
exact purpose.

Without delving into the explanations of such foreign syntax, an important commonality in
both examples is the magical zip function. What does it do? It takes the two vectors a and b
and transforms them to a mixed vector. Example: [a1, a2, a3] and [b1, b2, b3] result
in [(a1, b1), (a2, b2), (a3, b3)] when they are zipped together. Have a close
look at it; it's really similar to how zip fasteners work!

The relevant point is that it is now possible to iterate over one combined range where
pairwise multiplications can be done and then summed up to an accumulator variable.
Exactly the same happens in the Haskell and Python examples, without adding any loop or
index variable noise.

It will not be possible to make the C++ code exactly as elegant and generic as in Haskell or
Python, but this section explains how to implement similar magic using iterators, by
implementing a zip iterator. The example problem of calculating the dot product of two
vectors is solved more elegantly by specific libraries, which are beyond the scope of this
book. However, this section tries to show how much iterator-based libraries can help in
writing expressive code by providing extremely generic building blocks.

Iterators Chapter 20

[607]

How to do it...
In this section, we will recreate the zip function as known from Haskell or Python. It will be
hardcoded to vectors of double variables in order to not distract from iterator mechanics:

First, we need to include some headers:1.

 #include <iostream>
 #include <vector>
 #include <numeric>

Next, we define the zip_iterator class. While iterating over a zip_iterator2.
range, we will get a pair of values from the two containers at every iteration step.
This means that we iterate over two containers at the same time:

 class zip_iterator {

The zip iterator needs to save two iterators, one for each container:3.

 using it_type = std::vector<double>::iterator;

 it_type it1;
 it_type it2;

The constructor simply saves the iterators from the two containers that we would4.
like to iterate over:

 public:
 zip_iterator(it_type iterator1, it_type iterator2)
 : it1{iterator1}, it2{iterator2}
 {}

Incrementing the zip iterator means incrementing both the member iterators:5.

 zip_iterator& operator++() {
 ++it1;
 ++it2;
 return *this;
 }

Iterators Chapter 20

[608]

Two zip iterators are unequal if both the member iterators are unequal to their6.
counterparts in the other zip iterator. Usually, one would use logical or (||)
instead of and (&&), but imagine that the ranges are not of equal length. In such a
case, it would not be possible to match both the end iterators at the same time.
This way, we can abort the loop when we reach the first end iterator of either
range:

 bool operator!=(const zip_iterator& o) const {
 return it1 != o.it1 && it2 != o.it2;
 }

The equality comparison operator is just implemented using the other operator,7.
but negating the result:

 bool operator==(const zip_iterator& o) const {
 return !operator!=(o);
 }

Dereferencing the zip iterator gives access to the elements of both the containers8.
at the same position:

 std::pair<double, double> operator*() const {
 return {*it1, *it2};
 }
 };

This was the iterator code. We need to make the iterator compatible with STL9.
algorithms, so we define the needed type trait boilerplate code for that. It
basically says that this iterator is just a forward iterator, and it returns pairs of
double values when dereferenced. Although we do not use difference_type in
this recipe, different implementations of the STL might need it in order to
compile:

 namespace std {
 template <>
 struct iterator_traits<zip_iterator> {
 using iterator_category = std::forward_iterator_tag;
 using value_type = std::pair<double, double>;
 using difference_type = long int;
 };
 }

Iterators Chapter 20

[609]

The next step is to define a range class that returns us zip iterators from its begin10.
and end functions:

 class zipper {
 using vec_type = std::vector<double>;
 vec_type &vec1;
 vec_type &vec2;

It needs to reference two existing containers in order to form zip iterators from11.
them:

 public:
 zipper(vec_type &va, vec_type &vb)
 : vec1{va}, vec2{vb}
 {}

The begin and end functions just feed pairs of begin and end pointers in order to12.
construct zip iterator instances from that:

 zip_iterator begin() const {
 return {std::begin(vec1), std::begin(vec2)};
 }
 zip_iterator end() const {
 return {std::end(vec1), std::end(vec2)};
 }
 };

Just as in the Haskell and Python examples, we define two vectors of double13.
values. We also define that we use namespace std within the main function by
default:

 int main()
 {
 using namespace std;
 vector<double> a {1.0, 2.0, 3.0};
 vector<double> b {4.0, 5.0, 6.0};

The zipper object combines them to one vector-like range where we see pairs of a14.
and b values:

 zipper zipped {a, b};

Iterators Chapter 20

[610]

We will use std::accumulate in order to sum all the items of the range15.
together. We can't do it directly because that would mean that we sum up the
instances of std::pair<double, double> for which the concept of sum is not
defined. Therefore, we will define a helper lambda that takes a pair, multiplies its
members, and adds it to an accumulator. The std::accumulate works well
with lambdas with such a signature:

 const auto add_product ([](double sum, const auto &p) {
 return sum + p.first * p.second;
 });

Now, we feed it to std::accumulate, together with the begin and end iterator16.
pair of the zipped ranges and a start value of 0.0 for the accumulator variable,
which, in the end, contains the sum of the products:

 const auto dot_product (accumulate(
 begin(zipped), end(zipped), 0.0, add_product));

Let's print the dot product result:17.

 cout << dot_product << 'n';
 }

Compiling and running the program yields the correct result:18.

 32

There's more...
OK, that was a lot of work for a little bit of syntax sugar, and it's still not as elegant as
Haskell code can be without any effort. A big flaw is the hardcoded nature of our little zip
iterator--it only works on the std::vector ranges of double variables. With a bit of
template code and some type traits, the zipper can be made more generic. This way, it could
combine lists and vectors, or deques and maps, even if these are specialized on completely
different container item types.

The amount of work and thought needed in order to really and correctly make such classes
generic is not to be underestimated. Luckily, such libraries do already exist. One popular
non-STL library is the Boost zip_iterator. It is very generic and easy to use.

Iterators Chapter 20

[611]

By the way, if you came here to see the most elegant way to do a dot product in C++, and
don't really care about the concept of zip-iterators, you should have a look at
std::valarray. See for yourself:

#include <iostream>
#include <valarray>

int main()
{
 std::valarray<double> a {1.0, 2.0, 3.0};
 std::valarray<double> b {4.0, 5.0, 6.0};

 std::cout << (a * b).sum() << 'n';
}

Ranges library
There is a very, very interesting C++ library, which supports zippers and all other kinds of
magic iterator adapters, filters, and so on: the ranges library. It is inspired by the Boost
ranges library, and for some time, it looked like it would find its way into C++17, but
unfortunately, we will have to wait for the next standard. The reason why this is so
unfortunate is that it will vigorously improve the possibilities of writing expressive and fast
code in C++ by composing complex functionality from generic and simple blocks of code.

There are some very simple examples in its documentation:

Calculating the sum of the squares of all numbers from 1 to 10:1.

 const int sum = accumulate(view::ints(1)
 | view::transform([](int i){return i*i;})
 | view::take(10), 0);

Filtering out all uneven numbers from a numeric vector, and transforming the2.
rest to strings:

 std::vector<int> v {1,2,3,4,5,6,7,8,9,10};
 auto rng = v | view::remove_if([](int i){return i % 2 == 1;})
 | view::transform([](int i){return std::to_string(i);});
 // rng == {"2"s,"4"s,"6"s,"8"s,"10"s};

If you are interested and can't wait for the next C++ standard, have a look at the ranges
documentation at https:/ ​/ ​ericniebler. ​github. ​io/ ​range- ​v3/ ​.

https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/

21
Lambda Expressions

We will cover the following recipes in this chapter:

Defining functions on the run using lambda expressions
Adding polymorphy by wrapping lambdas into std::function
Composing functions by concatenation
Creating complex predicates with logical conjunction
Calling multiple functions with the same input
Implementing transform_if using std::accumulate and lambdas
Generating cartesian product pairs of any input at compile time

Introduction
One important new feature of C++11 was lambda expressions. In C++14 and C++17, the
lambda expressions got some new additions, which have made them even more powerful.
But first, what is a lambda expression?

Lambda expressions or lambda functions construct closures. A closure is a very generic
term for unnamed objects that can be called like functions. In order to provide such a
capability in C++, such an object must implement the () function calling operator, with or
without parameters. Constructing such an object without lambda expressions before C++11
could still look like the following:

#include <iostream>
#include <string>

int main() {
 struct name_greeter {
 std::string name;

 void operator()() {

Lambda Expressions Chapter 21

[613]

 std::cout << "Hello, " << name << 'n';
 }
 };

 name_greeter greet_john_doe {"John Doe"};
 greet_john_doe();
}

Instances of the name_greeter struct obviously carry a string with them. Note that both
this structure type and instance are not unnamed but lambda expressions can be, as we will
see. In terms of closures, we would say they capture a string. When the example instance is
called like a function without parameters, it prints "Hello, John Doe" because we
constructed it with this name.

Since C++11, it has become easier to create such closures:

#include <iostream>

int main() {
 auto greet_john_doe ([] {
 std::cout << "Hello, John Doen";
 });

 greet_john_doe();
}

That's it. The whole struct, name_greeter, is replaced by a little [] { /* do something
*/ } construct, which might look a bit like magic at first, but the first section of this chapter
will explain it thoroughly in all the possible variants.

Lambda expressions are of a great help to make code generic and tidy. They can be used as
parameters for very generic algorithms in order to specialize what those do when
processing specific user-defined types. They can also be used to wrap work packages
together with data in order to be run in threads or just to save work and postpone the actual
execution. Since C++11 came out, more and more libraries work with lambda expressions
because they became a very natural thing in C++. Another use case is metaprogramming,
because lambda expressions can also be evaluated at compile time. However, we are not
going much into that direction, as this would quickly blast the scope of this book.

Lambda Expressions Chapter 21

[614]

This chapter does heavily rely on some functional programming patterns, which might look
weird to novices or programmers who are already experienced but not with such patterns.
If you see lambda expressions in the coming recipes that return lambda expressions, which
again return lambda expressions, please don't feel frustrated or confused too quickly. We
are pushing the boundaries a bit in order to prepare ourselves for modern C++, where
functional programming patterns occur with increasing regularity. If some code in the
following recipes looks a bit too complex, take your time to understand it. Once you got
through this, complex lambda expressions in real projects in the wild will not confuse you
any longer.

Defining functions on the run using lambda
expressions
With lambda expressions, we can encapsulate code in order to call it later, and that also
might be somewhere else because we can copy them around. We can also just encapsulate
code to call it multiple times with slightly different parameters without having to
implement a whole new function class for that task.

The syntax of lambda expressions was really new in C++11, and it has slightly evolved with
the next two standard versions until C++17. In this section, we will see what lambda
expressions can look like and what they mean.

How to do it...
We are going to write a little program in which we play with lambda expressions in order
to get a feeling for them:

Lambda expressions do not need any library support, but we are going to write1.
messages to the terminal and use strings, so we need the headers for this:

 #include <iostream>
 #include <string>

Lambda Expressions Chapter 21

[615]

Everything happens in the main function this time. We define two function2.
objects that take no parameters and return integer constants with the values, 1
and 2. Note that the return statement is surrounded by curly brackets {}, like it is
in normal functions, and the () parentheses, which denote a parameterless
function, are optional, we don't provide them in the second lambda expression.
But the [] brackets have to be there:

 int main()
 {
 auto just_one ([](){ return 1; });
 auto just_two ([] { return 2; });

Now, we can call both the function objects just by writing the names of the3.
variables they are saved to and appending the parentheses. In this single line,
they are indistinguishable from normal functions for the reader:

 std::cout << just_one() << ", " << just_two() << 'n';

Now let's forget about those and define another function object, which is called4.
plus because it takes two parameters and returns their sum:

 auto plus ([](auto l, auto r) { return l + r; });

This is also easy to use, just like any other binary function. As we defined its5.
parameters to be of the auto type, it will work with anything that defines the
plus operator +, just as strings do:

 std::cout << plus(1, 2) << 'n';
 std::cout << plus(std::string{"a"}, "b") << 'n';

We do not need to store a lambda expression in a variable in order to use it. We6.
can also define it in place and then write the parameters in parentheses just
behind it (1, 2):

 std::cout
 << [](auto l, auto r){ return l + r; }(1, 2)
 << 'n';

Lambda Expressions Chapter 21

[616]

Next, we will define a closure that carries an integer counter value around with it.7.
Whenever we call it, it increments its counter value and returns the new value. In
order to tell it that it has an internal counter variable, we write count = 0 within
the brackets to tell it that there is a variable count initialized to the integer value
0. In order to allow it to modify its own captured variables, we use the mutable
keyword, as the compiler would not allow it otherwise:

 auto counter (
 [count = 0] () mutable { return ++count; }
);

Now, let's call the function object five times and print the values it returns, so we8.
can see the increasing number values later:

 for (size_t i {0}; i < 5; ++i) {
 std::cout << counter() << ", ";
 }
 std::cout << 'n';

We can also take existing variables and capture them by reference instead of9.
giving a closure its own value copy. This way, the captured variable can be
incremented by the closure, but it is still accessible outside. In order to do so, we
write &a between the brackets, where the & means that we store only a reference to
the variable, not a copy:

 int a {0};
 auto incrementer ([&a] { ++a; });

If this works, then we should be able to call this function object multiple times,10.
and then observe that it has really changed the value of variable a:

 incrementer();
 incrementer();
 incrementer();

 std::cout
 << "Value of 'a' after 3 incrementer() calls: "
 << a << 'n';

Lambda Expressions Chapter 21

[617]

The last example is currying. Currying means that we take a function that can11.
accept some parameters and store it in another function object, which accepts
fewer parameters. In this case, we store the plus function and only accept one
parameter, which we forward to the plus function. The other parameter is the
value 10, which we save in the function object. This way, we get a function,
which we call plus_ten because it can add that value to the single parameter it
accepts:

 auto plus_ten ([=] (int x) { return plus(10, x); });
 std::cout << plus_ten(5) << 'n';
 }

Before compiling and running the program, go through the code again and try to12.
foresee what it will print to the terminal. Then run it and check against the real
output:

 1, 2
 3
 ab
 3
 1, 2, 3, 4, 5,
 Value of a after 3 incrementer() calls: 3
 15

How it works...
What we just did was not overly complicated--we added numbers, and incremented and
printed them. We even concatenated strings with a function object, which was implemented
to add up numbers. But for anyone who didn't know lambda expression syntax yet, it might
have looked confusing.

So, let's first have a look at all the lambda expression peculiarities:

Lambda Expressions Chapter 21

[618]

We can usually omit most of this, which spares us some typing, in the average case. The
shortest lambda expression possible is []{}. It accepts no parameters, captures nothing,
and essentially does nothing.

So what does the rest mean?

Capture list
Specifies if and what we capture. There are several forms to do so. There are two lazy
variants:

If we write [=] () {...}, we capture every variable the closure references from
outside by value, which means that the values are copied
Writing [&] () {...} means that everything the closure references outside is
only captured by reference, which does not lead to a copy.

Of course, we can set the capturing settings for every variable individually. Writing [a,
&b] () {...} means, that we capture the variable a by value, and b by reference. This is
more typing work, but it's generally safer to be that verbose because we cannot accidentally
capture something we don't want to capture from outside.

In the recipe, we defined a lambda expression as such: [count=0] () {...}. In this
special case, we did not capture any variable from outside, but we defined a new one called
count. Its type is deduced from the value we initialized it with, namely 0, so it's an int.

It is also possible to capture some variables by value and some, by reference, as in:

[a, &b] () {...}: This captures a by copy and b by reference.
[&, a] () {...}: This captures a by copy and any other used variable by
reference.
[=, &b, i{22}, this] () {...}: This captures b by reference, this by
copy, initializes a new variable i with value 22, and captures any other used
variable by copy.

If you try to capture a member variable of an object, you cannot do this
directly using [member_a] () {...}. Instead, you have to capture either
this or *this.

Lambda Expressions Chapter 21

[619]

mutable (optional)
If the function object should be able to modify the variables it captures by copy ([=]), it must
be defined mutable. This includes calling non-const methods of captured objects.

constexpr (optional)
If we mark the lambda expression explicitly as constexpr, the compiler will error out if it
does not satisfy the criteria of constexpr functions. The advantage of constexpr functions
and lambda expressions is that the compiler can evaluate their result at compile time if they
are called with compile-time constant parameters. This leads to less code in the binary later.

If we do not explicitly declare the lambda expression to be constexpr but it fits the
requirements for that, it will be implicitly constexpr anyway. If we want a lambda
expression to be constexpr, it helps to be explicit because the compiler will then help us by
erroring out if we did it wrong.

exception attr (optional)
This is the place to specify if the function object can throw exceptions when it's called and
runs into an error case.

return type (optional)
If we want to have ultimate control over the return type, we may not want the compiler to
deduce it for us automatically. In such a case, we can just write [] () -> Foo {}, which
tells the compiler that we will really always return the Foo type.

Adding polymorphy by wrapping lambdas
into std::function
Let's say we want to write an observer function for some kind of value, which might change
sometimes, which then notifies other objects; like a gas pressure indicator, or a stock price,
or something similar. Whenever the value changes, a list of observer objects should be
called, which then react their way.

Lambda Expressions Chapter 21

[620]

In order to implement this, we could store a range of observer function objects in a vector,
which all accept an int variable as the parameter, which represents the observed value. We
do not know what these function objects do in particular when they are called with the new
value, but we also don't care.

Of what type will that vector of function objects be? The std::vector<void (*)(int)>
type would be correct if we were capturing pointers to functions with signatures such as
void f(int);. This would indeed also work with any lambda expression that does not
capture any variables, such as [](int x) {...}. But a lambda expression that captures
something is actually a completely different type compared with a normal function because it's
not just a function pointer. It is an object that couples a certain amount of data with a
function! Think of pre-C++11 times, when there were no lambdas. Classes and structs are
the natural way of coupling data with functions, and if you change the data member types
of a class, you get a completely different class type. It's just natural that a vector can't store
completely different types using the same type name.

Telling the user that it's only possible to save observer function objects that do not capture
anything is bad because it limits the number of use cases very much. How can we allow the
user to store any kind of function object, only constraining to the call interface, which takes
a specific set of parameters that represent the value that shall be observed?

This section shows how to solve this problem using std::function, which can act as a
polymorphic wrapper around any lambda expression, no matter if and what it captures.

How to do it...
In this section, we are going to create several lambda expressions that are completely
different in regard to the variable types they capture but have the same function call
signature in common. These will be saved in one vector using std::function:

Let's first do some necessary includes:1.

 #include <iostream>
 #include <deque>
 #include <list>
 #include <vector>
 #include <functional>

Lambda Expressions Chapter 21

[621]

We implement a little function that returns a lambda expression. It accepts a2.
container and returns a function object that captures that container by reference.
The function object itself accepts an integer parameter. Whenever that function
object is fed with an integer, it will append that integer to the container it captures:

 static auto consumer (auto &container){
 return [&] (auto value) {
 container.push_back(value);
 };
 }

Another little helper function will print whatever container instance we provide3.
as a parameter:

 static void print (const auto &c)
 {
 for (auto i : c) {
 std::cout << i << ", ";
 }
 std::cout << 'n';
 }

In the main function, we first instantiate a deque, a list, and a vector, which4.
all store integers:

 int main()
 {
 std::deque<int> d;
 std::list<int> l;
 std::vector<int> v;

Now we use the consumer function with our container instances, d, l, and v: we5.
produce consumer function objects for those and store them all in a vector
instance. Then we have a vector that stores three function objects. These function
objects each capture a reference to one of the container objects. These container
objects are of completely different types and so are the function objects.
Nevertheless, the vector holds instances of std::function<void(int)>. All
the function objects are implicitly wrapped into such std::function objects,
which are then stored in the vector:

 const std::vector<std::function<void(int)>> consumers
 {consumer(d), consumer(l), consumer(v)};

Lambda Expressions Chapter 21

[622]

Now, we feed 10 integer values to all the data structures by looping over the6.
values and then looping over the consumer function objects, which we call with
those values:

 for (size_t i {0}; i < 10; ++i) {
 for (auto &&consume : consumers) {
 consume(i);
 }
 }

All the three containers should now contain the same 10 number values. Let's7.
print their content:

 print(d);
 print(l);
 print(v);
 }

Compiling and running the program yields the following output, which is just8.
what we expect:

 $./std_function
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

How it works...
The complicated part of this recipe is the following line:

const std::vector<std::function<void(int)>> consumers
 {consumer(d), consumer(l), consumer(v)};

The objects d, l, and v are each wrapped into a consumer(...) call. This call returns
function objects, which then each capture references to one of d, l, and v. Although these
function objects all accept int values as parameters, the fact that they capture completely
different variables also makes them completely different types. This is like trying to stuff
variables of type A, B, and C into a vector, although these types have nothing in common.

Lambda Expressions Chapter 21

[623]

In order to fix this, we need to find a common type, which can store very different function
objects, that is, std::function. An std::function<void(int)> object can store any
function object or traditional function, which accepts an integer parameter and returns
nothing. It decouples its type from the underlying function object type, using polymorphy.
Consider we write something like this:

std::function<void(int)> f (
 [&vector](int x) { vector.push_back(x); });

Here, the function object which is constructed from the lambda expression is wrapped into
an std::function object, and whenever we call f(123), this leads to a virtual function call,
which is redirected to the actual function object inside it.

While storing function objects, std::function instances apply some intelligence. If we
capture more and more variables in a lambda expression, it must grow larger. If its size is
not too large, std::function can store it within itself. If the size of the stored function
object is too large, std::function will allocate a chunk of memory on the heap and then
store the large function object there. This does not affect the functionality of our code, but
we should know about this because this can impact the performance of our code.

A lot of novice programmers think or hope that std::function<...>
actually expresses the type of a lambda expression. No, it doesn't. It is a
polymorphic library helper, which is useful for wrapping lambda
expressions and erasing their type differences.

Composing functions by concatenation
A lot of tasks are not really worthy of being implemented in completely custom code. Let's,
for example, have a look on how a programmer might solve the task of finding out how
many unique words a text contains with the programming language Haskell. The first line
defines a function unique_words and the second one demonstrates its use with an example
string:

Lambda Expressions Chapter 21

[624]

Wow, that is short! Without explaining Haskell syntax too much, let's see what the code
does. It defines the function called unique_words, which applies a series of functions to its
input. It first maps all the characters from the input to lowercase with map toLower. This
way, words like FOO and foo can be regarded as the same word. Then, the words function
splits a sentence into individual words, as from "foo bar baz" to ["foo", "bar",
"baz"]. Next step is sorting the new list of words. This way, a word sequence such as
["a", "b", "a"] becomes ["a", "a", "b"]. Now, the group function takes over. It
groups consecutive equal words into grouped lists, so ["a", "a", "b"] becomes [
["a", "a"], ["b"]]. The job is now nearly done, as we now only need to count how
many groups of equal words we got, which is exactly what the length function does.

This is a wonderful style of programming, as we can read what happens from right to left
because we are just, kind of, describing a transformation pipeline. We don't need to care
how the individual pieces are implemented (unless it turns out that they are slow or buggy).

However, we are not here to praise Haskell but to improve our C++ skills. It is possible to
work like this in C++ too. We will not completely reach the elegance of the Haskell example
but we still have the fastest programming language there is. This example explains how to
imitate function concatenation in C++ with lambda expressions.

How to do it...
In this section, we define some simple toy function objects and concatenate them, so we get a
single function that applies the simple toy functions after each other to the input we give it.
In order to do so, we write our own concatenation helper function:

First, we need some includes:1.

 #include <iostream>
 #include <functional>

Then, we implement the helper function, concat, which arbitrarily takes many2.
parameters. These parameters will be functions, such as f, g, and h, and the result
will be another function object that applies f(g(h(...))) on any input:

 template <typename T, typename ...Ts>
 auto concat(T t, Ts ...ts)
 {

Lambda Expressions Chapter 21

[625]

Now, it gets a little complicated. When the user provides functions f, g, and h,3.
we will evaluate this to f(concat(g, h)), which again expands to f(g(
concat(h))), where the recursion aborts, so we get f(g(h(...))). This
chain of function calls representing the concatenation of these user functions is
captured by a lambda expression, which can later take some parameters, p, and
then forward them to f(g(h(p))). This lambda expression is what we return.
The if constexpr construct checks whether we are in a recursion step with
more than one function to concatenate left:

 if constexpr (sizeof...(ts) > 0) {
 return [=](auto ...parameters) {
 return t(concat(ts...)(parameters...));
 };
 }

The other branch of the if constexpr construct is selected by the compiler if we4.
are at the end of the recursion. In such a case, we just return the function, t,
because it is the only parameter left:

 else {
 return t;
 }
 }

Now, let's use our cool new function concatenation helper with some functions5.
we want to see concatenated. Let's begin with the main function, where we define
two cheap simple function objects:

 int main()
 {
 auto twice ([] (int i) { return i * 2; });
 auto thrice ([] (int i) { return i * 3; });

Now let's concatenate. We concatenate our two multiplier function objects with6.
the STL function, std::plus<int>, which takes two parameters and simply
returns their sum. This way, we get a function that does twice(thrice(plus(
a, b))).

 auto combined (
 concat(twice, thrice, std::plus<int>{})
);

Lambda Expressions Chapter 21

[626]

Now let's use it. The combined function looks like a single normal function now,7.
and the compiler is also able to concatenate those functions without any
unnecessary overhead:

 std::cout << combined(2, 3) << 'n';
 }

Compiling and running our program yields the following output, which we also8.
expected, because 2 * 3 * (2 + 3) is 30:

 $./concatenation
 30

How it works...
The complicated thing in this section is the concat function. It looks horribly complicated
because it unpacks the parameter pack ts into another lambda expression, which
recursively calls concat again, with less parameters:

template <typename T, typename ...Ts>
auto concat(T t, Ts ...ts)
{
 if constexpr (sizeof...(ts) > 0) {
 return [=](auto ...parameters) {
 return t(concat(ts...)(parameters...));
 };
 } else {
 return [=](auto ...parameters) {
 return t(parameters...);
 };
 }
}

Let's write a simpler version, which concatenates exactly three functions:

template <typename F, typename G, typename H>
auto concat(F f, G g, H h)
{
 return [=](auto ... params) {
 return f(g(h(params...)));
 };
}

Lambda Expressions Chapter 21

[627]

This already looks similar, but less complicated. We return a lambda expression, which
captures f, g, and h. This lambda expression arbitrarily accepts many parameters and just
forwards them to a call chain of f, g, and h. When we write auto combined (concat(f,
g, h)), and later call that function object with two parameters, such as combined(2, 3),
then the 2, 3 are represented by the params pack from the preceding concat function.

Looking at the much more complex, generic concat function again; the only thing we do
really differently is the f (g(h(params...))) concatenation. Instead, we write f(
concat(g, h))(params...), which evaluates to f(g(concat(h)))(params...)
in the next recursive call, which then finally results in f(g(h(params...))).

Creating complex predicates with logical
conjunction
When filtering data with generic code, we end up defining predicates, which tell what data
we want, and what data we do not want. Sometimes predicates are the combinations of
different predicates.

When filtering strings, for example, we could implement a predicate that returns true if its
input string begins with "foo". Another predicate could return true if its input string ends
with "bar".

Instead of writing custom predicates all the time, we can reuse predicates by combining
them. If we want to filter strings that begin with "foo" and end with "bar", we can just
pick our existing predicates and combine them with a logical and. In this section, we play
with lambda expressions in order to find a comfortable way to do this.

How to do it...
We will implement very simple string filter predicates, and then we will combine them with
a little helper function that does the combination for us in a generic way.

As always, we'll include some headers first:1.

 #include <iostream>
 #include <functional>
 #include <string>
 #include <iterator>
 #include <algorithm>

Lambda Expressions Chapter 21

[628]

Because we are going to need them later, we implement two simple predicate2.
functions. The first one tells if a string begins with the character 'a' and the
second one tells if a string ends with the character 'b':

 static bool begins_with_a (const std::string &s)
 {
 return s.find("a") == 0;
 }

 static bool ends_with_b (const std::string &s)
 {
 return s.rfind("b") == s.length() - 1;
 }

Now, let's implement a helper function, which we call combine. It takes a binary3.
function as its first parameter, which could be the logical AND function or the
logical OR function, for example. Then, it takes two other parameters, which shall
be two predicate functions that are then combined:

 template <typename A, typename B, typename F>
 auto combine(F binary_func, A a, B b)
 {

We simply return a lambda expression that captures the new predicate4.
combination. It forwards a parameter to both predicates and, then, puts the results
of both into the binary function and returns its result:

 return [=](auto param) {
 return binary_func(a(param), b(param));
 };
 }

Let's state that we use the std namespace to spare us some typing in the main5.
function:

 using namespace std;

Lambda Expressions Chapter 21

[629]

Now, let's combine our two predicate functions in another predicate function,6.
which tells if a given string begins with a and ends with b, as "ab" does or
"axxxb". As the binary function, we choose std::logical_and. It is a template
class that needs to be instantiated, so we use it with curly braces in order to
instantiate it. Note that we don't provide a template parameter because for this
class, it defaults to void. This specialization of the class deduces all parameter
types automatically:

 int main()
 {
 auto a_xxx_b (combine(
 logical_and<>{},
 begins_with_a, ends_with_b));

We iterate over the standard input and print all words back to the terminal,7.
which satisfies our predicate:

 copy_if(istream_iterator<string>{cin}, {},
 ostream_iterator<string>{cout, ", "},
 a_xxx_b);
 cout << 'n';
 }

Compiling and running the program yields the following output. We feed the8.
program with four words, but only two satisfy the predicate criteria:

 $ echo "ac cb ab axxxb" | ./combine
 ab, axxxb,

There's more...
The STL already provides a useful bunch of functional objects such as std::logical_and,
std::logical_or, as well as many others, so we do not need to reimplement them in
every project. It's a good idea to have a look at the C++ reference and explore what's there
already:
http:/​/​en.​cppreference. ​com/ ​w/ ​cpp/ ​utility/ ​functional

http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional

Lambda Expressions Chapter 21

[630]

Calling multiple functions with the same
input
There are a lot of tasks, which lead to repetitive code. A lot of repetitive code can be
eliminated easily using lambda expressions and a lambda expression helper that wraps
such repetitive tasks is created very quickly.

In this section, we will play with lambda expressions in order to forward a single call with
all its parameters to multiple receivers. This is going to happen without any data structures
in between, so the compiler has a simple job to generate a binary without overhead.

How to do it...
We are going to write a lambda expression helper, which forwards a single call to multiple
objects, and another lambda expression helper, which forwards a single call to multiple
calls of other functions. In our example, we are going to use this to print a single message
with different printer functions:

Let's include the STL header we need for printing first:1.

 #include <iostream>

At first, we implement the multicall function, which is central to this recipe. It2.
accepts an arbitrary number of functions as parameters and returns a lambda
expression that accepts one parameter. It forwards this parameter to all the
functions that were provided before. This way, we can define auto call_all
(multicall(f, g, h)), and then, call_all(123) leads to a sequence of
calls,f(123); g(123); h(123);. This function looks really complicated
because we need a syntax trick in order to expand the parameter pack,
functions, into a series of calls by using an std::initializer_list
constructor:

 static auto multicall (auto ...functions)
 {
 return [=](auto x) {
 (void)std::initializer_list<int>{
 ((void)functions(x), 0)...
 };
 };
 }

Lambda Expressions Chapter 21

[631]

The next helper accepts a function, f, and a pack of parameters, xs. What it does3.
is it calls f with each of those parameters. This way, a for_each(f, 1, 2, 3)
call leads to a series of calls: f(1); f(2); f(3);. This function essentially uses
the same syntax trick to expand the parameter pack, xs, to a series of function
calls, as the other function before:

 static auto for_each (auto f, auto ...xs) {
 (void)std::initializer_list<int>{
 ((void)f(xs), 0)...
 };
 }

The brace_print function accepts two characters and returns a new function4.
object, which accepts one parameter, x. It will print it, surrounded by the two
characters we just captured before:

 static auto brace_print (char a, char b) {
 return [=] (auto x) {
 std::cout << a << x << b << ", ";
 };
 }

Now, we can finally put everything to use in the main function. At first, we5.
define functions f, g, and h. They represent print functions that accept values and
print them surrounded by different braces/parentheses each. The nl function
takes any parameter and just prints a line break character:

 int main()
 {
 auto f (brace_print('(', ')'));
 auto g (brace_print('[', ']'));
 auto h (brace_print('{', '}'));
 auto nl ([](auto) { std::cout << 'n'; });

Let's combine all of them using our multicall helper:6.

 auto call_fgh (multicall(f, g, h, nl));

Lambda Expressions Chapter 21

[632]

For each of the numbers we provide, we want to see them individually printed7.
three times surrounded by different pairs of braces/parentheses. This way, we
can do a single function call and end up with five calls to our multifunction,
which does another four calls to f, g, h, and nl.

 for_each(call_fgh, 1, 2, 3, 4, 5);
 }

Before compiling and running, think about what output to expect:8.

 $./multicaller
 (1), [1], {1},
 (2), [2], {2},
 (3), [3], {3},
 (4), [4], {4},
 (5), [5], {5},

How it works...
The helpers we just implemented look horribly complicated. This is because we expand
parameter packs with std::initializer_list. Why did we even use that data
structure? Let's have a look at for_each again:

auto for_each ([](auto f, auto ...xs) {
 (void)std::initializer_list<int>{
 ((void)f(xs), 0)...
 };
});

The heart of this function is the f(xs) expression. xs is a parameter pack, and we need to
unpack it in order to get the individual values out of it and feed them to individual f calls.
Unfortunately, we cannot just write f(xs)... using the ... notation, which we already
know.

Lambda Expressions Chapter 21

[633]

What we can do is constructing a list of values using std::initializer_list, which has
a variadic constructor. An expression such as return
std::initializer_list<int>{f(xs)...}; does the job, but it has downsides. Let's have
a look at an implementation of for_each which does just this, so it looks simpler than what
we have:

auto for_each ([](auto f, auto ...xs) {
 return std::initializer_list<int>{f(xs)...};
});

This is easier to grasp, but its downsides are the following:

It constructs an actual initializer list of return values from all the f calls. At this1.
point, we do not care about the return values.
It returns that initializer list, although we want a "fire and forget" function, which2.
returns nothing.
It's possible that f is a function, which does not even return anything, in which3.
case, this would not even compile.

The much more complicated for_each function fixes all these problems. It does the
following things to achieve that:

It does not return the initializer list, but it casts the whole expression to void1.
using (void)std::initializer_list<int>{...}.
Within the initializer expression, it wraps f(xs)... into an (f(xs), 0)...2.
expression. This leads to the return value being thrown away, while 0 is put into
the initializer list.
The f(xs) in the (f(xs), 0)... expression is again cast to void, so the return3.
value is really not processed anywhere if it has any.

Putting all this together unluckily leads to an ugly construct, but it does it's work right and
compiles with a whole variety of function objects, regardless of whether they return
anything or what they return.

A nice detail of this technique is that the order in which the function calls are applied is
guaranteed to be in a strict sequence.

Casting anything using the old C-style notation (void)expression is
advised against because C++ has its own cast operators. We should have
used reinterpret_cast<void>(expression) instead, but this would
have decreased the readability of the code further.

Lambda Expressions Chapter 21

[634]

Implementing transform_if using
std::accumulate and lambdas
Most developers who have used std::copy_if and std::transform may have asked
themselves already, why there is no std::transform_if. The std::copy_if function
copies items from a source range to a destination range, but skips the items that are not
selected by a user-defined predicate function. The std::transform unconditionally copies
all items from a source range to a destination range but transforms them in between. The
transformation is provided by a user-defined function, which might do simple things, such
as multiplying numbers or transforming items to completely different types.

Such functions have been there for a long time now, but there is still no
std::transform_if function. In this section, we are going to implement this function. It
would be easy to do this by just implementing a function that iterates over the ranges while
copying all the items that are selected by a predicate function and transforming them in
between. However, we'll use this occasion to delve deeper into lambda expressions.

How to do it...
We are going to build our own transform_if function which works by supplying
std::accumulate with the right function objects:

We need to include some headers, as always:1.

 #include <iostream>
 #include <iterator>
 #include <numeric>

First, we will implement a function called map. It accepts an input-transforming2.
function as parameter and returns a function object, which works well together
with std::accumulate:

 template <typename T>
 auto map(T fn)
 {

Lambda Expressions Chapter 21

[635]

What we return is a function object that accepts a reduce function. When this3.
object is called with such a reduce function, it returns another function object,
which accepts an accumulator and an input parameter. It calls the reduce function
on this accumulator and the fn transformed input variable. Don't worry if this
looks complicated, we'll put it together later and see how it really works:

 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 return reduce_fn(accum, fn(input));
 };
 };
 }

Now we implement a function called filter. It works exactly the same way as4.
the map function, but it leaves the input untouched, while the map function
transforms it using a transform function. Instead, we accept a predicate function
and skip input variables without reducing them in case they are not accepted by
the predicate function:

 template <typename T>
 auto filter(T predicate)
 {

The two lambda expressions have exactly the same function signature as the5.
expressions in the map function. The only difference is that the input parameter
is left untouched. The predicate function is used to distinguish if we call the
reduce_fn function on the input or if we just reach the accumulator forward
without any change:

 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 if (predicate(input)) {
 return reduce_fn(accum, input);
 } else {
 return accum;
 }
 };
 };
 }

Lambda Expressions Chapter 21

[636]

Now let's finally use those helpers. We instantiate iterators that let us read integer6.
values from the standard input:

 int main()
 {
 std::istream_iterator<int> it {std::cin};
 std::istream_iterator<int> end_it;

Then we define a predicate function, even, which just returns true if we have an7.
even number. The transformation function twice multiplies its integer parameter
with the factor 2:

 auto even ([](int i) { return i % 2 == 0; });
 auto twice ([](int i) { return i * 2; });

The std::accumulate function takes a range of values and accumulates them.8.
Accumulating means summing the values up with the + operator in the default
case. We want to provide our own accumulation function. This way, we do not
maintain a sum of the values. What we do is we assign each value of the range to
the dereferenced iterator, it, and then return this iterator after advancing it
further:

 auto copy_and_advance ([](auto it, auto input) {
 *it = input;
 return ++it;
 });

Now we finally put together the pieces. We iterate over the standard input and9.
provide an output, ostream_iterator, which prints to the terminal. The
copy_and_advance function object works on that output iterator by assigning
the user input integers to it. Assigning to the output iterator effectively prints the
assigned items. But we only want the even numbers from the user input, and we
want to multiply them. To achieve this, we wrap the copy_and_advance function
into an even filter and then into a twice mapper:

 std::accumulate(it, end_it,
 std::ostream_iterator<int>{std::cout, ", "},
 filter(even)(
 map(twice)(
 copy_and_advance
)
));
 std::cout << 'n';
 }

Lambda Expressions Chapter 21

[637]

Compiling and running the program leads to the following output. The values 1,10.
3, and 5 are dropped because they are not even, and the values 2, 4, and 6 are
printed after they have been doubled:

 $ echo "1 2 3 4 5 6" | ./transform_if
 4, 8, 12,

How it works...
This recipe looks really complicated because we are nesting lambda expressions a lot. In
order to understand how this works, let's first have a look at the inner workings of
std::accumulate. This is how it will look like in a typical STL implementation:

template <typename T, typename F>
T accumulate(InputIterator first, InputIterator last, T init, F f)
{
 for (; first != last; ++first) {
 init = f(init, *first);
 }
 return init;
}

The function parameter, f, does the main work here, while the loop collects its results in the
user provided init variable. In a usual example case, the iterator range may represent a
vector of numbers, such as 0, 1, 2, 3, 4, and the init value is 0. The f function is then
just a binary function that might calculate the sum of two items using the + operator.

In this example case, the loop just sums up all the items into the init variable, such as in
init = (((0 + 1) + 2) + 3) + 4. Writing it down like this makes obvious that
std::accumulate is just a general folding function. Folding a range means applying a
binary operation to an accumulator variable and stepwise every item contained in the range
(the result of each operation is then the accumulator value for the next one). As this function
is so general, we can do all kinds of things with it, just like implementing
std::transform_if! The f function is then also called the reduce function.

Lambda Expressions Chapter 21

[638]

A very direct implementation of transform_if will look as follows:

template <typename InputIterator, typename OutputIterator,
 typename P, typename Transform>
OutputIterator transform_if(InputIterator first, InputIterator last,
 OutputIterator out,
 P predicate, Transform trans)
{
 for (; first != last; ++first) {
 if (predicate(*first)) {
 *out = trans(*first);
 ++out;
 }
 }
 return out;
}

This looks quite similar to std::accumulate, if we regard the parameter out as the init
variable, and somehow get function f to substitute the if-construct and its body!

We actually did that. We constructed that if-construct and its body with the binary function
object we provided as a parameter to std::accumulate:

auto copy_and_advance ([](auto it, auto input) {
 *it = input;
 return ++it;
});

The std::accumulate function puts the init variable into the binary function's it
parameter. The second parameter is the current value from the source range per loop
iteration step. We provided an output iterator as the init parameter of std::accumulate..
This way, std::accumulate does not calculate a sum, but forwards the items it iterates
over to another range. This means that we just reimplemented std::copy without any
predicate and transformation, yet.

The filtering using a predicate was added by us by wrapping the copy_and_advance
function object into another function object, which employs a predicate function:

template <typename T>
auto filter(T predicate)
{
 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 if (predicate(input)) {
 return reduce_fn(accum, input);
 } else {

Lambda Expressions Chapter 21

[639]

 return accum;
 }
 };
 };
}

This construction does not look too simple at first but have a look at the if construct. If the
predicate function returns true, it forwards the parameters to the reduce_fn function,
which is copy_and_advance in our case. If the predicate returns false, the accum
variable, which is the init variable of std::accumulate, is just returned without change.
This implements the skipping part of a filter operation. The if construct is located within the
inner lambda expression, which has the same binary function signature as the
copy_and_advance function, which makes it a fitting substitute.

Now we are able to filter but are still not transforming. This is done with the map function
helper:

template <typename T>
auto map(T fn)
{
 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 return reduce_fn(accum, fn(input));
 };
 };
}

This code looks much easier. It again contains an inner lambda expression, which has the
same signature as copy_and_advance has, so it can substitute it. The implementation just
forwards the input values but transforms the right parameter of the binary function call with
the fn function.

Later, when we used those helpers, we wrote the following expression:

filter(even)(
 map(twice)(
 copy_and_advance
)
)

The filter(even) call captures the even predicate and gives us a function, which takes a
binary function in order to wrap it into another binary function, which does additional
filtering. The map(twice) function does the same with the twice transformation function
but wraps the binary function, copy_and_advance, into another binary function, which
always transforms the right parameter.

Lambda Expressions Chapter 21

[640]

Without any optimization, we would get a horribly complicated nested construction of
functions that call functions and do only a very little amount of work in between. However,
it is a very simple task for the compiler to optimize all the code. The resulting binary is as
simple as if it resulted from a more direct implementation of transform_if. We pay
nothing in terms of performance this way. But what we get is a very nice composability of
functions because we were able to stick the even predicate together with the twice
transformation function, nearly as simply as if they were lego bricks.

Generating cartesian product pairs of any
input at compile time
Lambda expressions in combination with parameter packs can be used for complex tasks. In
this section, we will implement a function object that accepts an arbitrary number of input
parameters and generates the cartesian product of this set with itself.

The cartesian product is a mathematical operation. It is noted as A x B, meaning the
cartesian product of set A and set B. The result is another single set, which contains pairs of
all item combinations of the sets A and B. The operation basically means, combine every item
from A with every item from B. The following diagram illustrates the operation:

In the preceding diagram, if A = (x, y, z), and B = (1, 2, 3), then the cartesian
product is (x, 1), (x, 2), (x, 3), (y, 1), (y, 2), and so on.

If we decide that A and B are the same set, say (1, 2), then the cartesian product of that is
(1, 1), (1, 2), (2, 1), and (2, 2). In some cases, this might be declared redundant,
because the combination of items with themselves (like in (1, 1)) or redundant
combinations of (1, 2) and (2, 1) may not be needed. In such a case, the cartesian
product can be filtered with a simple rule.

Lambda Expressions Chapter 21

[641]

In this section, we will implement the cartesian product without any loops but with lambda
expressions and parameter pack unpacking.

How to do it...
We implement a function object that accepts a function, f, and a set of parameters. The
function object will create the cartesian product of the parameter set, filter out the redundant
parts, and call the f function with each of them:

We only need to include the STL header that is needed for printing:1.

 #include <iostream>

Then, we define a simple helper function that prints a pair of values, and we2.
begin implementing the main function:

 static void print(int x, int y)
 {
 std::cout << "(" << x << ", " << y << ")n";
 }

 int main()
 {

The hard part starts now. We first implement a helper for the cartesian3.
function that we are going to implement in the next step. This function accepts a
parameter, f, which will be the print function when we use it later. The other
parameters are x and the parameter pack rest. These contain the actual items of
which we want to have the cartesian product. Look at the f(x, rest)
expression: for x=1 and rest=2, 3, 4, this will result in calls such as f(1, 2);
f(1, 3); f(1, 4);. The (x < rest) test is for removing redundancy in the
generated pairs. We will look at this in more detail later:

 constexpr auto call_cart (
 [=](auto f, auto x, auto ...rest) constexpr {
 (void)std::initializer_list<int>{
 (((x < rest)
 ? (void)f(x, rest)
 : (void)0)
 ,0)...
 };
 });

Lambda Expressions Chapter 21

[642]

The cartesian function is the most complex piece of code in this whole recipe. It4.
accepts the parameter pack xs and returns a function object that captures it. The
returned function object accepts a function object, f.
For a parameter pack, xs=1, 2, 3, the inner lambda expression will generate
the following calls: call_cart(f, 1, 1, 2, 3); call_cart(f, 2, 1, 2,
3); call_cart(f, 3, 1, 2, 3);. From that range of calls, we can generate
all the cartesian product pairs we need.
Note that we use the ... notation for expanding the xs parameter pack twice,
which looks weird at first. The first occurrence of ... expands the entire xs
parameter pack into the call_cart call. The second occurrence leads to multiple
call_cart calls with a differing second parameter:

 constexpr auto cartesian ([=](auto ...xs) constexpr {
 return [=] (auto f) constexpr {
 (void)std::initializer_list<int>{
 ((void)call_cart(f, xs, xs...), 0)...
 };
 };
 });

Now, let's generate the cartesian product of the numeric set 1, 2, 3 and print5.
the pairs. Without the redundant pairs, this should result in the number pairs,
(1, 2), (2, 3), and (1, 3). More combinations are not possible if we ignore
the order and do not want the same number in one pair. This means that we do
not want (1, 1), and consider (1, 2) and (2, 1) the same pair.
First, we let cartesian generate a function object that already contains all
possible pairs and accepts our print function. Then, we use it to let our print
function being called with all these pairs.
We declare the print_cart variable, constexpr, so we can guarantee that the
function object it holds (and all the pairs it generates) is created at compile time:

 constexpr auto print_cart (cartesian(1, 2, 3));

 print_cart(print);
 }

Lambda Expressions Chapter 21

[643]

Compiling and running yields the following output, just as expected. Play6.
around with the code by removing the (x < xs) conditional in the call_cart
function and see that we get the full cartesian product with redundant pairs and
the same number pairs:

 $./cartesian_product
 (1, 2)
 (1, 3)
 (2, 3)

How it works...
That was another really complicated-looking lambda expression construct. But as soon as
we understand this thoroughly, we will not be confused by any lambda expression anytime
soon!

So, let's have a detailed look at it. We should get a mental picture of what needs to happen:

These are three steps:

We take our set 1, 2, 3 and compose three new sets from it. The first part of1.
each of these sets is consecutively a single item from the set, and the second part
is the whole set itself.
We combine the first item with every item from the set and get as many pairs out2.
of it.
From these resulting pairs, we only pick the ones that are not redundant (as for3.
example (1, 2) and (2, 1) are redundant) and not same-numbered (as for
example (1, 1)).

Lambda Expressions Chapter 21

[644]

Now, back to the implementation:

 constexpr auto cartesian ([=](auto ...xs) constexpr {
 return [=](auto f) constexpr {
 (void)std::initializer_list<int>{
 ((void)call_cart(f, xs, xs...), 0)...
 };
 };
 });

The inner expression, call_cart(xs, xs...), exactly represents the separation of (1,
2, 3) into those new sets, such as 1, [1, 2, 3]. The full expression,
((void)call_cart(f, xs, xs...), 0)... with the other ... outside, does this
separation for every value of the set, so we also get 2, [1, 2, 3] and 3, [1, 2, 3].

Step 2 and step 3 are done by call_cart:

auto call_cart ([](auto f, auto x, auto ...rest) constexpr {
 (void)std::initializer_list<int>{
 (((x < rest)
 ? (void)f(x, rest)
 : (void)0)
 ,0)...
 };
});

Parameter x always contains the single value picked from the set, and rest contains the
whole set again. Let's ignore the (x < rest) conditional at first. Here, the expression f(x,
rest), together with the ... parameter pack expansion generates the function calls f(1,
1), f(1, 2), and so on, which results in the pairs being printed. This was step 2.

Step 3 is achieved by filtering out only the pairs where (x < rest) applies.

We made all lambda expressions and the variables holding them constexpr. By doing so,
we can now guarantee that the compiler will evaluate their code at compile time and
compile a binary that already contains all the number pairs instead of calculating them at
runtime. Note that this only happens if all the function arguments we provide to a constexpr
function are known at compile time already.

22
STL Algorithm Basics

We will cover the following recipes in this chapter:

Copying items from containers to other containers
Sorting containers
Removing specific items from containers
Transforming the contents of containers
Finding items in ordered and unordered vectors
Limiting the values of a vector to a specific numeric range with std::clamp
Locating patterns in strings with std::search and choosing the optimal
implementation
Sampling large vectors
Generating permutations of input sequences
Implementing a dictionary merging tool

STL Algorithm Basics Chapter 22

[646]

Introduction
The STL does not only contain data structures but also algorithms, of course. While data
structures help store and maintain data in different ways with different motivations and
targets, algorithms apply specific transformations to the data in such data structures.

Let's have a look at a standard task, such as summing up items from a vector. This can be
done easily by looping over the vector and summing up all the items into an accumulator
variable called sum:

 vector<int> v {100, 400, 200 /*, ... */ };

 int sum {0};
 for (int i : v) { sum += i; }

 cout << sum << 'n';

But because this is quite a standard task, there is also an STL algorithm for this:

cout << accumulate(begin(v), end(v), 0) << 'n';

In this case, the handcrafted loop variant is not much longer, and it is also not significantly
harder to read than a one-liner which says what it does: accumulate. In a lot of cases,
however, it is awkward to read a 10-line code loop just to realize, "Did I just have to study
the whole loop in order to understand that it does a standard task, X?", rather than seeing
one line of code, which uses a standard algorithm whose name clearly states what it does,
such as accumulate, copy, move, transform, or shuffle.

The basic idea is to provide a rich variety of algorithms that can be used by programmers
on a daily basis in order to reduce the need to repeatedly reimplement them. This way,
programmers can just use off the shelf algorithm implementations and concentrate on the
new problems, instead of wasting time on problems that already have been solved by the STL.
Another perspective is correctness--if a programmer implements the same thing again and
again for a hundred times, there is some probability that this may introduce a slight error in
one or the other attempt. This would be completely unnecessary and also very embarrassing
if, for example, it is pointed out by a colleague during code review, whereas at the same
time, a standard algorithm could have been used.

STL Algorithm Basics Chapter 22

[647]

Another important point of STL algorithms is efficiency. Many STL algorithms provide
multiple specialized implementations of the same algorithm, which do things differently,
depending on the iterator type they are being used with. For example, if all the elements in a
vector of integers should be zeroed, this can be done with the STL algorithm std::fill.
Because the iterator of a vector can already tell the compiler that it iterates over contiguous
memory, it can select the implementation of std::fill which uses the C procedure
memset. If the programmer changes the container type from vector to list, then the STL
algorithm cannot use memset any longer and has to iterate over the list in order to zero the
items individually. In case the programmer uses memset himself, the implementation
would be unnecessarily hardcoded to using vectors or arrays because most other data
structures do not save their data in contiguous memory chunks. In most cases, it makes
little sense to try to be smart, as the implementers of the STL may already have
implemented the same ideas, which can be used for free.

Let's summarize the preceding points. Using STL algorithms is good for:

Maintainability: The names of the algorithms already state in a straightforward
manner what they do. Explicit loops are rarely both better to read and as data-
structure agnostic as standard algorithms.
Correctness: The STL has been written and reviewed by experts, and used and
tested by so many people that you are pretty unlikely to reach the same degree of
correctness when reimplementing the complex parts of it.
Efficiency: STL algorithms are, by default, at least as efficient as most
handcrafted loops.

Most algorithms work on iterators. The concept of how iterators work is already explained
in Chapter 20, Iterators. In this chapter, we'll concentrate on using STL algorithms for
different problems in order to get a feeling of how they can be profitably put to use.
Showing all STL algorithms would blow up this book to a very boring C++ reference,
although there is already a C++ reference publicly available.

The best way to become an STL ninja is having the C++ reference always at hand or, at least,
saved in a browser bookmark. When solving a task, every programmer should have a look
at it with the question back in his mind, "Is there an STL algorithm for my problem?", before
writing code himself.

STL Algorithm Basics Chapter 22

[648]

A very good and complete C++ reference is available for online viewing at:

http:/​/​cppreference. ​com

It can also be downloaded for offline viewing.

In job interviews, good fluency with the STL algorithms is often regarded
as an indicator of a strong knowledge of C++.

Copying items from containers to other
containers
The most important STL data structures have iterator support. This means that it is at least
possible to get iterators via begin() and end() functions, which point to the data
structure's underlying payload data and allow to iterate over that data. The iteration always
looks the same, no matter what kind of data structure is iterated over.

We can get iterators from vectors, lists, deques, maps, and so on. Using iterator adaptors,
we can even get iterators as an interface to files, standard input, and standard output.
Moreover, as we saw in the previous chapter, we can even wrap iterator interfaces around
algorithms. Now, where we can access everything with iterators, we can combine them
with STL algorithms, which accept iterators as parameters.

A really nice way to show how iterators help abstract the nature of different data structures
away is the std::copy algorithm, which just copies items from one set of iterators to an
output iterator. Where such algorithms are used, the nature of the underlying data structure
is not really relevant any longer. In order to demonstrate this, we will play a bit with
std::copy.

http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com

STL Algorithm Basics Chapter 22

[649]

How to do it...
In this section, we will use different variants of std::copy:

Let's first include all headers we need for the data structures we use.1.
Additionally, we declare that we use the std namespace:

 #include <iostream>
 #include <vector>
 #include <map>
 #include <string>
 #include <tuple>
 #include <iterator>
 #include <algorithm>

 using namespace std;

We will use pairs of integer and string values in the following. In order to nicely2.
print them, we should first overload the << stream operator for them:

 namespace std {
 ostream& operator<<(ostream &os, const pair<int, string> &p)
 {
 return os << "(" << p.first << ", " << p.second << ")";
 }
 }

In the main function, we fill a vector of integer-string pairs with some default3.
values. And we declare a map variable, which associates integer values with
string values:

 int main()
 {
 vector<pair<int, string>> v {
 {1, "one"}, {2, "two"}, {3, "three"},
 {4, "four"}, {5, "five"}};
 map<int, string> m;

STL Algorithm Basics Chapter 22

[650]

Now, we use std::copy_n to copy exactly three integer-string pairs from the4.
front of the vector to the map. Because vectors and maps are completely different
data structures, we need to transform the items from the vector using the
insert_iterator adapter. The std::inserter function produces such an
adapter for us. Please be always aware that using algorithms like std::copy_n
combined with insert iterators is the most generic way to copy/insert items to
other data structures, but not the fastest. Using the data structure-specific member
functions for inserting items is usually the most efficient way:

 copy_n(begin(v), 3, inserter(m, begin(m)));

Let's print what's in the map afterward. Throughout the book, we have often5.
been printing a container's content using the std::copy function. The
std::ostream_iterator helps a lot in that regard because it allows us to treat
the user shell's standard output as another container we can copy data into:

 auto shell_it (ostream_iterator<pair<int, string>>{cout,
 ", "});
 copy(begin(m), end(m), shell_it);
 cout << 'n';

Let's clear the map again for the next experiment. This time, we move items from6.
the vector to the map, and this time, it's all the items:

 m.clear();
 move(begin(v), end(v), inserter(m, begin(m)));

We print the new content of the map again. Moreover, as std::move is an7.
algorithm that also alters the data source, we will print the source vector too. This
way, we can see what happened to it when it acted as a move source:

 copy(begin(m), end(m), shell_it);
 cout << 'n';
 copy(begin(v), end(v), shell_it);
 cout << 'n';
 }

STL Algorithm Basics Chapter 22

[651]

Let's compile and run the program and see what it says. The first two lines are8.
simple. They reflect what the map contained after applying the copy_n and move
algorithms. The third line is interesting because it shows that the strings in the
vector that we used as move source are now empty. This is because the content of
the strings has not been copied but efficiently moved (which means that the map
uses the string data in heap memory that was previously referenced by the string
objects in the vector). We should usually not access items that were a move
source before we reassigned them, but let's ignore that for the sake of this
experiment:

 $./copying_items
 (1, one), (2, two), (3, three),
 (1, one), (2, two), (3, three), (4, four), (5, five),
 (1,), (2,), (3,), (4,), (5,),

How it works...
As std::copy is one of the simplest STL algorithms, its implementation is very short. Let's
have a look at how it could be implemented:

template <typename InputIterator, typename OutputIterator>
OutputIterator copy(InputIterator it, InputIterator end_it,
 OutputIterator out_it)
{
 for (; it != end_it; ++it, ++out_it) {
 *out_it = *it;
 }
 return out_it;
}

This looks exactly as one would implement the copying of items from one iterable range to
the other by hand, naively. At this point, one could also ask, "So why not implementing it
by hand, the loop is simple enough and I don't even need the return value?", which is, of
course, a good question.

STL Algorithm Basics Chapter 22

[652]

While std::copy is not the best example for making code significantly shorter, a lot of
other algorithms with more complex implementations are. What is not obvious is the
hidden automatic optimization of such STL algorithms. If we happen to use std::copy
with data structures that store their items in contiguous memory (as std::vector and
std::array do), and the items themselves are trivially copy assignable, then the compiler
will select a completely different implementation (which assumes the iterator types to be
pointers):

template <typename InputIterator, typename OutputIterator>
OutputIterator copy(InputIterator it, InputIterator end_it,
 OutputIterator out_it)
{
 const size_t num_items (distance(it, end_it));
 memmove(out_it, it, num_items * sizeof(*it));
 return it + num_items;
}

This is a simplified version of how the memmove variant of the std::copy algorithm can
look in a typical STL implementation. It is faster than the standard loop version, and this
time, it is also not as nice to read. But nevertheless, std::copy users automatically profit
from it if their argument types comply with the requirements of this optimization. The
compiler selects the fastest implementation possible for the chosen algorithm, while the
user code nicely expresses what the algorithm does without tainting the code with too many
details of the how.

STL algorithms often simply provide the best trade-off between readability and optimal
implementation.

Types are usually trivially copy assignable if they only consist of one or
multiple (wrapped by a class/struct) scalar types or classes, which can
safely be moved using memcopy/memmove without the need to invoke a
user-defined copy assignment operator.

We also used std::move. It works exactly like std::copy, but it applies std::move(*it)
to the source iterator in the loop in order to cast lvalues to rvalues. This makes the compiler
select the move assignment operator of the target object instead of the copy assignment
operator. For a lot of complex objects, this performs better but destroys the source object.

STL Algorithm Basics Chapter 22

[653]

Sorting containers
Sorting values is quite a standard task, and it can be done in various ways. Every computer
science student who was tortured with having to learn a majority of existing sorting
algorithms (together with their performance and stability trade-offs for exams) knows that.

Because this is a solved problem, programmers should not waste their time in solving it
again, except if it is for learning purposes.

How to do it...
In this section, we are going to play with std::sort and std::partial_sort:

First, we include all that's necessary and declare that we use the std namespace:1.

 #include <iostream>
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <random>

 using namespace std;

We will print the state of a vector of integers multiple times, so let's abbreviate2.
this task by writing a small procedure:

 static void print(const vector<int> &v)
 {
 copy(begin(v), end(v), ostream_iterator<int>{cout, ", "});
 cout << 'n';
 }

We begin with a vector that contains some example numbers:3.

 int main()
 {
 vector<int> v {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

STL Algorithm Basics Chapter 22

[654]

Because we will shuffle the vector multiple times in order to play with different4.
sort functions, we need a random number generator:

 random_device rd;
 mt19937 g {rd()};

The std::is_sorted function tells us if the content of a container is sorted. This5.
line should print 1:

 cout << is_sorted(begin(v), end(v)) << 'n';

With std::shuffle, we shake around the content of the vector in order to sort it6.
again later. The first two arguments denote the range that will be shuffled and
the third argument is the random number generator:

 shuffle(begin(v), end(v), g);

The is_sorted function should now return false so that 0 is printed, and the7.
values in the vector should be the same but in a different order. We will see after
we have printed both again to the shell:

 cout << is_sorted(begin(v), end(v)) << 'n';
 print(v);

Now, we reestablish the original item ordering by using std::sort. The same8.
prints to the terminal should now again give us the sorted ordering from the
beginning:

 sort(begin(v), end(v));
 cout << is_sorted(begin(v), end(v)) << 'n';
 print(v);

STL Algorithm Basics Chapter 22

[655]

Another interesting function is std::partition. Maybe, we do not want to9.
fully sort the list because it is sufficient to just have the items that are smaller than
some value at the front. So, let's partition the vector in order to move all the items
that are smaller than 5 to the front and print it:

 shuffle(begin(v), end(v), g);
 partition(begin(v), end(v), [] (int i) { return i < 5; });
 print(v);

The next sort-related function is std::partial_sort. We can use it to sort the10.
content of a container, but only to some extent. It will put the N smallest of all
vector elements in the first half of the vector in a sorted order. The rest will reside
in the second half, which will not be sorted:

 shuffle(begin(v), end(v), g);
 auto middle (next(begin(v), int(v.size()) / 2));
 partial_sort(begin(v), middle, end(v));
 print(v);

What if we want to sort a data structure that has no comparison operator? Let's11.
define one and make a vector of such items:

 struct mystruct {
 int a;
 int b;
 };
 vector<mystruct> mv {{5, 100}, {1, 50}, {-123, 1000},
 {3, 70}, {-10, 20}};

The std::sort function optionally accepts a comparison function as its third12.
argument. Let's use that and provide it with such a function. Just to show that
this is possible, we compare them by their second field, b. This way, they will
appear in the order of mystruct::b and not mystruct::a:

 sort(begin(mv), end(mv),
 [] (const mystruct &lhs, const mystruct &rhs) {
 return lhs.b < rhs.b;
 });

STL Algorithm Basics Chapter 22

[656]

The last step is printing the sorted vector of mystruct items:13.

 for (const auto &[a, b] : mv) {
 cout << "{" << a << ", " << b << "} ";
 }
 cout << 'n';
 }

Let's compile and run our program.14.
The first 1 results from the std::is_sorted call after initializing the sorted
vector. Then, we shuffled the vector and got a 0 from the second is_sorted call.
The third line shows all the vector items after the shuffling. The next 1 is the
result of the is_sorted call after sorting it again with std::sort.
Then, we shuffled the whole vector again and partitioned it using
std::partition. We can see that all the items that are less than 5 are also to the
left of 5 in the vector. All items that are greater than 5 are to its right. Apart from
that, they seem shuffled.
The second last line shows the result of std::partial_sort. All items up to the
middle appear strictly sorted but the rest do not.
In the last line, we can see our vector of mystruct instances. They are strictly
sorted by their second member values:

 $./sorting_containers
 1
 0
 7, 1, 4, 6, 8, 9, 5, 2, 3, 10,
 1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
 1, 2, 4, 3, 5, 7, 8, 10, 9, 6,
 1, 2, 3, 4, 5, 9, 8, 10, 7, 6,
 {-10, 20} {1, 50} {3, 70} {5, 100} {-123, 1000}

STL Algorithm Basics Chapter 22

[657]

How it works...
We have used different algorithms, which have to do with sorting:

Algorithm Purpose

std::sort Accepts a range as arguments and simply sorts it.

std::is_sorted Accepts a range as argument and tells if that range is sorted.

std::shuffle
This is, kind of, the reverse operation to sorting; it accepts a range as
arguments and shuffles its items around.

std::partial_sort
Accepts a range as arguments and another iterator, which tells until
where the input range should be sorted. Behind that iterator, the rest
of the items appear unsorted.

std::partition
Accepts a range and a predicate function. All items for which the
predicate function returns true are moved to the front of the range.
The rest is moved to the back.

For objects that do not have a comparison operator < implementation, it is possible to
provide custom comparison functions. These should always have a signature such as bool
function_name(const T &lhs, const T &rhs) and should not have any side effects
during execution.

There are also other algorithms such as std::stable_sort, which also sort but preserve
the order of items with the same sort key and std::stable_partition.

std::sort has different implementations for sorting. Depending on the
nature of the iterator arguments, it is implemented as selection sort,
insertion sort, merge sort, or completely optimized for a smaller number
of items. On the user side, we usually do not even need to care.

Removing specific items from containers
Copying, transforming, and filtering are perhaps the most common operations on ranges of
data. In this section, we concentrate on filtering items.

STL Algorithm Basics Chapter 22

[658]

Filtering items out of data structures, or simply removing specific ones, works completely
differently for different data structures. In linked lists (such as std::list), for example, a
node can be removed by making its predecessor point to its successor. After a node is
removed from the link chain in this way, it can be given back to the allocator. In
contiguously storing data structures (std::vector, std::array, and, to some extent,
std::deque), items can only be removed by overwriting them with other items. If an item
slot is marked to be removed, all the items that are behind it must be moved one slot further
to the front in order to fill the gap. This sounds like a lot of hassle, but if we want to simply
remove whitespace from a string, for example, this should be achievable without much
code.

When having either data structure at hand, we do not really want to care how to remove an
item. It should just happen. This is what std::remove and std::remove_if can do for us.

How to do it...
We will transform a vector's content by removing items in different ways:

Let's import all the needed headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include <iterator>

 using namespace std;

A short print helper function will print our vector:2.

 void print(const vector<int> &v)
 {
 copy(begin(v), end(v), ostream_iterator<int>{cout, ", "});
 cout << 'n';
 }

STL Algorithm Basics Chapter 22

[659]

We'll begin with an example vector containing some simple integer values. We'll3.
also print it, so we can see how it changes with the function we apply to it later:

 int main()
 {
 vector<int> v {1, 2, 3, 4, 5, 6};
 print(v);

Now let's remove all the items with the value 2 from the vector. std::remove4.
moves the other items in a way that the one value 2 we actually have in the
vector vanishes. Because the vector's actual content is shorter after removing
items, std::remove returns us an iterator pointing to the new end. The items
between the new end iterator and the old end iterator are to be considered
garbage, so we tell the vector to erase them. We surround the two removal lines
with a new scope because the new_end iterator is invalidated afterward anyway,
so it can go out of scope immediately:

 {
 const auto new_end (remove(begin(v), end(v), 2));
 v.erase(new_end, end(v));
 }
 print(v);

Now let's remove all the odd numbers. In order to do so, we implement a5.
predicate, which tells us if a number is odd and feed it into the std::remove_if
function, which accepts such predicates:

 {
 auto odd_number ([](int i) { return i % 2 != 0; });
 const auto new_end (
 remove_if(begin(v), end(v), odd_number));
 v.erase(new_end, end(v));
 }
 print(v);

STL Algorithm Basics Chapter 22

[660]

The next algorithm we try out is std::replace. We use it to overwrite all values6.
of 4 with the value 123. The std::replace function also exists as
std::replace_if, which also accepts predicate functions:

 replace(begin(v), end(v), 4, 123);
 print(v);

Let's pump completely new values into the vector and create two new empty7.
vectors in order to do another experiment with those:

 v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 vector<int> v2;
 vector<int> v3;

Then, we implement a predicate for odd numbers again and another predicate8.
function, which tells the opposite if a number is even:

 auto odd_number ([](int i) { return i % 2 != 0; });
 auto even_number ([](int i) { return i % 2 == 0; });

The next two lines do exactly the same thing. They copy even values to the9.
vectors, v2 and v3. The first line does this with the std::remove_copy_if
algorithm, which copies everything from a source container to another container
which does not fulfill the predicate constraint. The other line uses std::copy_if,
which copies everything that does fulfill the predicate constraint:

 remove_copy_if(begin(v), end(v),
 back_inserter(v2), odd_number);
 copy_if(begin(v), end(v),
 back_inserter(v3), even_number);

Printing both the vectors should now result in the same output:10.

 print(v2);
 print(v3);
 }

STL Algorithm Basics Chapter 22

[661]

Let's compile and run the program. The first output line shows the vector after its11.
initialization. The second line shows it after removing all the values of 2. The next
line shows the result of removing all the odd numbers. Before the fourth line, we
replaced all the values of 4 with 123.
The last two lines show vectors v2 and v3:

 $./removing_items_from_containers
 1, 2, 3, 4, 5, 6,
 1, 3, 4, 5, 6,
 4, 6,
 123, 6,
 2, 4, 6, 8, 10,
 2, 4, 6, 8, 10,

How it works...
We have used different algorithms, which have to do with filtering:

Algorithm Purpose

std::remove
Accepts a range and a value as arguments and removes any
occurrence of the value. Returns a new end iterator of the modified
range.

std::replace
Accepts a range and two values as arguments and replaces all the
occurrences of the first value with the second value.

std::remove_copy
Accepts a range, an output iterator, and a value as arguments and
copies all the values that are not equal to the given value from the
range to the output iterator.

std::replace_copy
Works similar to std::replace but analogous to
std::remove_copy. The source range is not altered.

std::copy_if
Works like std::copy but additionally accepts a predicate function
as an argument in order to copy only the values that the predicate
accepts, which makes it a filter function.

For every one of the listed algorithms, there also exists an *_if version,
which accepts a predicate function instead of a value, which then decides
which values are to be removed or replaced.

STL Algorithm Basics Chapter 22

[662]

Transforming the contents of containers
If std::copy is the simplest STL algorithm for application on ranges, std::transform is
the second simplest STL algorithm. Just as copy, it copies items from one range to another
but additionally accepts a transformation function. This transformation function can alter
the value of the input type before it is assigned to an item in the destination range.
Furthermore, it can even construct a completely different type, which is useful if the source
range and destination range differ in their payload item types. It is simple to use but still
very useful, which makes it an ordinary standard component used in portable day-to-day
programs.

How to do it...
In this section, we are going to use std::transform in order to modify the items of a
vector while copying them:

As always, we first need to include all the necessary headers and to spare us1.
some typing, we declare that we use the std namespace:

 #include <iostream>
 #include <vector>
 #include <string>
 #include <sstream>
 #include <algorithm>
 #include <iterator>

 using namespace std;

A vector with some simple integers will do the job as an example source data2.
structure:

 int main()
 {
 vector<int> v {1, 2, 3, 4, 5};

STL Algorithm Basics Chapter 22

[663]

Now, we copy all the items to an ostream_iterator adapter in order to print3.
them. The transform function accepts a function object, which accepts items of
the container payload type and transforms them during each copy operation. In
this case, we calculate the square of each number item, so the code will print the
squares of the items in the vector without us having to store them anywhere:

 transform(begin(v), end(v),
 ostream_iterator<int>{cout, ", "},
 [] (int i) { return i * i; });
 cout << 'n';

Let's do another transformation. From the number 3, for example, we could4.
generate a nicely readable string such as 3^2 = 9. The following
int_to_string function object does just that using the std::stringstream
object:

 auto int_to_string ([](int i) {
 stringstream ss;
 ss << i << "^2 = " << i * i;
 return ss.str();
 });

The function we just implemented returns us string values from integer values.5.
We could also say it maps from integers to strings. Using the transform function,
we can copy all such mappings from the integer vector into a string vector:

 vector<string> vs;
 transform(begin(v), end(v), back_inserter(vs),
 int_to_string);

After printing those, we're done:6.

 copy(begin(vs), end(vs),
 ostream_iterator<string>{cout, "n"});
 }

STL Algorithm Basics Chapter 22

[664]

Let's compile and run the program:7.

 $./transforming_items_in_containers
 1, 4, 9, 16, 25,
 1^2 = 1
 2^2 = 4
 3^2 = 9
 4^2 = 16
 5^2 = 25

How it works...
The std::transform function works exactly like std::copy but while copy-assigning the
values from the source iterator to the destination iterator, it applies the user-provided
transformation function to the value before assigning the result to the destination iterator.

Finding items in ordered and unordered
vectors
Often, we need to tell if some kind of item exists within some range. And if it does, we often
also need to modify it or to access other data associated with it.

There are different strategies for finding items. If the items are present in a sorted order,
then we can do a binary search, which is faster than linearly going through the items one by
one. If it is not sorted, we are stuck with linear traversal again.

The typical STL search algorithms can do both for us, so it's good to know them and their
characteristics. This section is about the simple linear search algorithm std::find, the
binary search version std::equal_range, and their variants.

STL Algorithm Basics Chapter 22

[665]

How to do it...
In this section, we are going to use linear and binary search algorithms on a small example
data set:

We first include all the necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <vector>
 #include <list>
 #include <algorithm>
 #include <string>

 using namespace std;

Our data set will consist of city structs, which just save a city's name, and its2.
population count:

 struct city {
 string name;
 unsigned population;
 };

Search algorithms need to be able to compare one item to the other, so we3.
overload the == operator for the city struct instances:

 bool operator==(const city &a, const city &b) {
 return a.name == b.name && a.population == b.population;
 }

We also want to print the city instances, so we overload the stream operator, <<:4.

 ostream& operator<<(ostream &os, const city &city) {
 return os << "{" << city.name << ", "
 << city.population << "}";
 }

STL Algorithm Basics Chapter 22

[666]

Search functions typically return iterators. These iterators point to the item if they5.
found it or, otherwise, to the end iterator of the underlying container. In the last
case, we are not allowed to access such an iterator. Because we are going to print
our search results, we implement a function that returns us another function
object, which encapsulates the end iterator of a data structure. When used for
printing, it will compare its iterator argument against the end iterator and then
print the item or, otherwise, just <end>:

 template <typename C>
 static auto opt_print (const C &container)
 {
 return [end_it (end(container))] (const auto &item) {
 if (item != end_it) {
 cout << *item << 'n';
 } else {
 cout << "<end>n";
 }
 };
 }

We start with an example vector of some German cities:6.

 int main()
 {
 const vector<city> c {
 {"Aachen", 246000},
 {"Berlin", 3502000},
 {"Braunschweig", 251000},
 {"Cologne", 1060000}
 };

Using this helper, we build a city printer function, which captures the end7.
iterator of our city vector c:

 auto print_city (opt_print(c));

We use std::find to find the item in the vector, which saves the city item of8.
Cologne. At first, this search looks pointless because we get exactly the item we
searched for. But we did not know its position in the vector before, and the find
function returns us just that. However, we could, for example, make the operator
== of the city struct that we overloaded only compare the city name, then we
could search just using the city name, without even knowing its population. But
that would not be a good design. In the next step, we will do it differently:

STL Algorithm Basics Chapter 22

[667]

 {
 auto found_cologne (find(begin(c), end(c),
 city{"Cologne", 1060000}));
 print_city(found_cologne);
 }

Without knowing the population count of a city, and also without tampering9.
with its == operator, we can search only by comparing its name with the vector's
content. The std::find_if function accepts a predicate function object instead
of a specific value. This way, we can search for the Cologne city item when we
only know its name:

 {
 auto found_cologne (find_if(begin(c), end(c),
 [] (const auto &item) {
 return item.name == "Cologne";
 }));
 print_city(found_cologne);
 }

In order to make searching a bit prettier and expressive, we can implement10.
predicate builders. The population_higher_than function object accepts a
population size and returns us a function that tells if a city instance has a larger
population than the captured value. Let's use it to search for a German city with
more than two million inhabitants in our small example set. Within the given
vector, that city is only Berlin:

 {
 auto population_more_than ([](unsigned i) {
 return [=] (const city &item) {
 return item.population > i;
 };
 });
 auto found_large (find_if(begin(c), end(c),
 population_more_than(2000000)));
 print_city(found_large);
 }

STL Algorithm Basics Chapter 22

[668]

The search functions we just used, traverse our containers linearly. Thus they11.
have a runtime complexity of O(n). The STL also has binary search functions,
which work within O(log(n)). Let's generate a new example data set, which just
consists of some integer values, and build another print function for that:

 const vector<int> v {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 auto print_int (opt_print(v));

The std::binary_search function returns boolean values and just tells us if it12.
found an item, but it does not return the item itself. It is important that the
container we are searching in is sorted because otherwise, binary search doesn't
work correctly:

 bool contains_7 {binary_search(begin(v), end(v), 7)};
 cout << contains_7 << 'n';

In order to get the items we are searching for, we need other STL functions. One13.
of them is std::equal_range. It does not return an iterator for the item we
found, but a pair of iterators. The first iterator points to the first item that is not
smaller than the value we've been looking for. The second iterator points to the
first item that is larger than it. In our range, which goes from 1 to 10, the first
iterator points to the actual 7, because it is the first item, that is not smaller than
7. The second iterator points to the 8 because it's the first item that is larger than
7. If we had multiple values of 7, both the iterators would, in fact, represent a
subrange of items:

 auto [lower_it, upper_it] (
 equal_range(begin(v), end(v), 7));
 print_int(lower_it);
 print_int(upper_it);

STL Algorithm Basics Chapter 22

[669]

If we just need one iterator; we can use std::lower_bound or14.
std::upper_bound. The lower_bound function only returns an iterator to the
first item that is not smaller than what we searched. The upper_bound function
returns an iterator to the first item that is larger than what we searched for:

 print_int(lower_bound(begin(v), end(v), 7));
 print_int(upper_bound(begin(v), end(v), 7));
 }

Let's compile and run the program to see if the output matches our assumptions:15.

 $./finding_items
 {Cologne, 1060000}
 {Cologne, 1060000}
 {Berlin, 3502000}
 1
 7
 8
 7
 8

How it works...
These are the search algorithms we have used in this recipe:

Algorithm Purpose

std::find
Accepts a search range and a comparison value as arguments.
Returns an iterator that points to the first item equal to the
comparison value. Searches linearly.

std::find_if
Works like std::find but uses a predicate function instead of a
comparison value.

std::binary_search
Accepts a search range and a comparison value as arguments.
Performs a binary search and returns true if the range contains that
value.

std::lower_bound
Accepts a search range and a comparison value, and then performs a
binary search for the first item that is not smaller than the comparison
value. Returns an iterator pointing to that item.

std::upper_bound
Works like std::lower_bound but returns an iterator to the first
item that is larger than the comparison value.

STL Algorithm Basics Chapter 22

[670]

std::equal_range

Accepts a search range and a comparison value and, then, returns a
pair of iterators. The first iterator is the result of
std::lower_bound and the second iterator is the result of
std::upper_bound.

All these functions accept custom comparison functions as an optional additional argument.
This way, the search can be customized, as we did in the recipe.

Let's have a closer look at how std::equal_range works. Imagine that we have a vector, v
= {0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 8}, and call equal_range(begin(v),
end(v), 7); in order to perform a binary search for the value 7. As equal_range returns
us a pair of lower bound and upper bound iterators, these should afterward denote the
range {7, 7, 7}, as there are so many values of 7 in the sorted vector. Check out the
following diagram for more clarity:

At first, equal_range uses the typical binary search approach until it trips into the range of
values not smaller than the search value. Then, it splits up to a lower_bound call and an
upper_bound call in order to bundle their return values in a pair as the return value.

In order to get a binary search function, which just returns the first item that fits the
requirements, we could implement the following:

template <typename Iterator, typename T>
Iterator standard_binary_search(Iterator it, Iterator end_it, T value)
{
 const auto potential_match (lower_bound(it, end_it, value));
 if (potential_match != end_it && value == *potential_match) {
 return potential_match;
 }
 return end_it;
}

STL Algorithm Basics Chapter 22

[671]

This function uses std::lower_bound in order to find the first item not smaller than
value. The resulting potential_match can then have three different cases it points to:

No item is not smaller than value. In this case, it is identical to end_it.
The first item that is not smaller than value is also larger than value. Therefore
we must signal that we did not find it by returning end_it.
The item that potential_match points to is equal to value. So, it is not only a
potential match, but it is an actual match. Therefore we can return it.

If our type T does not support the == operator, it must at least support the < operator for the
binary search. Then, we can rewrite the comparison to !(value < *potential_match)
&& !(*potential_match < value). If it is neither smaller, nor larger, then it must be
equal.

One potential reason why the STL does not provide such a function out of the box is the
missing knowledge about the possibility that there are multiple hits, as in the diagram
where we have multiple values of 7.

Note that data structures such as std::map, std::set, and so on have
their own find functions. These are, of course, faster than the more general
algorithms because they are tightly coupled with the data structure's
implementation and data representation.

Limiting the values of a vector to a specific
numeric range with std::clamp
In a lot of applications, we get numeric data from somewhere. Before we can plot or
otherwise process it, it may need to be normalized because the values differ randomly far
from each other.

Usually, this would mean a little std::transform call over the data structure that holds all
these values, combined with a simple scaling function. But if we do not know how large or
small the values are, we need to go through the data first in order to find the right
dimensions for the scaling function.

The STL contains useful functions for this purpose: std::minmax_element and
std::clamp. Using these and combining them with some lambda expression glue, we can
perform such a task easily.

STL Algorithm Basics Chapter 22

[672]

How to do it...
In this section, we will normalize the values of a vector from an example numeric range to a
normalized one in two different ways, one of them using std::minmax_element and one
using std::clamp:

As always, we first need to include the following headers and declare that we use1.
the std namespace:

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include <iterator>

 using namespace std;

We implement a function for later use, which accepts the minimum and2.
maximum values of a range, and a new maximum so that it can project values
from the old range to a smaller range that we want to have. The function object
takes such values and returns another function object, which does exactly that
transformation. For the sake of simplicity, the new minimum is 0, so no matter
what offset the old data had, its normalized values will always be relative to 0.
For the sake of readability, we ignore the possibility that max and min could be of
the same value, which would lead to a division by zero:

 static auto norm (int min, int max, int new_max)
 {
 const double diff (max - min);
 return [=] (int val) {
 return int((val - min) / diff * new_max);
 };
 }

Another function object builder called clampval returns a function object that3.
captures the min and max values and calls std::clamp on values with those
values, in order to limit their values to this range:

 static auto clampval (int min, int max)
 {
 return [=] (int val) -> int {
 return clamp(val, min, max);
 };
 }

STL Algorithm Basics Chapter 22

[673]

The data we are going to normalize is a vector of varying values. This could be,4.
for example, some kind of heat data, landscape height, or stock prices over time:

 int main()
 {
 vector<int> v {0, 1000, 5, 250, 300, 800, 900, 321};

In order to be able to normalize the data, we need the highest and lowest values.5.
The std::minmax_element function is of a great help here. It returns us a pair
of iterators to exactly those two values:

 const auto [min_it, max_it] (
 minmax_element(begin(v), end(v)));

We will copy all the values from the first vector to a second one. Let's instantiate6.
the second vector and prepare it to accept as many new items as we have in the
first vector:

 vector<int> v_norm;
 v_norm.reserve(v.size());

Using std::transform, we copy the values from the first vector to the second.7.
While copying the items, they will be transformed with our normalization helper.
The minimum and maximum values of the old vector are 0 and 1000. The
minimum and maximum values after normalization are 0 and 255:

 transform(begin(v), end(v), back_inserter(v_norm),
 norm(*min_it, *max_it, 255));

Before we implement the other normalization strategy, we print what we have by8.
now:

 copy(begin(v_norm), end(v_norm),
 ostream_iterator<int>{cout, ", "});
 cout << 'n';

We reuse the same normalized vector with the other helper clampval, which9.
clamps the old range to the range with the minimum of 0 and the maximum of
255:

 transform(begin(v), end(v), begin(v_norm),
 clampval(0, 255));

STL Algorithm Basics Chapter 22

[674]

After printing these values too, we're done:10.

 copy(begin(v_norm), end(v_norm),
 ostream_iterator<int>{cout, ", "});
 cout << 'n';
 }

Let's compile and run the program. Having the values reduced to values from 011.
to 255, we could use them as brightness values for RGB color codes, for example:

 $./reducing_range_in_vector
 0, 255, 1, 63, 76, 204, 229, 81,
 0, 255, 5, 250, 255, 255, 255, 255,

When we plot the data, we get the following graphs. As we can see, the approach12.
where we divide the values by the difference between the min and max values is a
linear transformation of the original data. The clamped graph loses some
information. Both variations can be useful in different situations:

STL Algorithm Basics Chapter 22

[675]

How it works...
Apart from std::transform we used two algorithms:

std::minmax_element simply accepts the begin and end iterators of an input range. It
loops through the range and records the largest and the smallest element on the way to its
end. These values are returned in a pair, which we then used for our scaling function.

The std::clamp function, in contrast, does not operate on an iterable range. It accepts
three values: an input value, a min value, and a max value. The output of this function is the
input value cut-off in a way that it lies between the allowed minimum and maximum. We
could also write max(min_val, min(max_val, x)) instead of std::clamp(x,
min_val, max_val).

Locating patterns in strings with std::search
and choosing the optimal implementation
Searching for a string in a string is a slightly different problem than finding one object in a
range. On the one hand, a string is, of course, an iterable range (of characters) too. On the
other hand, finding a string in a string means finding a range in another range. And this
comes along with multiple comparisons per potential match position, so we need some
other algorithm for that.

std::string already contains a find function, which can do exactly what we are talking
about; nevertheless we'll concentrate on std::search in this section. Although
std::search might be used on strings mostly, it works on all kinds of containers. The
more interesting feature of std::search is that since C++17, it has a slightly different
additional interface and allows for simply exchanging the search algorithm itself. These
algorithms are optimized and can be freely chosen by the user, depending on what is better
in which use case. Additionally, we could implement our own search algorithms and plug
them into std::search if we ever come up with anything better than what is already
provided.

STL Algorithm Basics Chapter 22

[676]

How to do it...
We will use the new std::search function with strings and try its different variations
with searcher objects:

First, we will include all the necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <functional>

 using namespace std;

We will print substrings from the positions the search algorithm returns to us, so2.
let's implement a little helper for that:

 template <typename Itr>
 static void print(Itr it, size_t chars)
 {
 copy_n(it, chars, ostream_iterator<char>{cout});
 cout << 'n';
 }

A lorem-ipsum style string will work as our example string, within which we will3.
search a substring. In this case, this is "elitr":

 int main()
 {
 const string long_string {
 "Lorem ipsum dolor sit amet, consetetur"
 " sadipscing elitr, sed diam nonumy eirmod"};
 const string needle {"elitr"};

STL Algorithm Basics Chapter 22

[677]

The old std::search interface accepts the begin/end iterators of the string4.
within which we are searching a specific substring and the begin/end iterators of
the substring. It then returns an iterator pointing to the substring it was able to
find. If it didn't find the string, the returned iterator will be the end iterator:

 {
 auto match (search(begin(long_string), end(long_string),
 begin(needle), end(needle)));
 print(match, 5);
 }

The C++17 version of std::search does not accept two pairs of iterators but one5.
pair of begin/end iterators and a searcher object. The std::default_searcher
takes the begin/end pair of iterators of the substring that we are searching for in
the larger string:

 {
 auto match (search(begin(long_string), end(long_string),
 default_searcher(begin(needle), end(needle))));
 print(match, 5);
 }

The point of this change is that it is easy to switch the search algorithm this way.6.
The std::boyer_moore_searcher uses the Boyer-Moore search algorithm for a
faster search:

 {
 auto match (search(begin(long_string), end(long_string),
 boyer_moore_searcher(begin(needle),
 end(needle))));
 print(match, 5);
 }

STL Algorithm Basics Chapter 22

[678]

The C++17 STL comes with three different searcher object implementations. The7.
third one is the Boyer-Moore-Horspool search algorithm implementation:

 {
 auto match (search(begin(long_string), end(long_string),
 boyer_moore_horspool_searcher(begin(needle),
 end(needle))));
 print(match, 5);
 }
 }

Let's compile and run our program. We should see the same string everywhere if8.
it runs correctly:

 $./pattern_search_string
 elitr
 elitr
 elitr
 elitr

How it works...
We utilized four different ways to use std::search in order to get exactly the same result.
Which one should we prefer in what situation?

Let's assume our large string within which we search the pattern is called s, and the pattern
is called p. Then, std::search(begin(s), end(s), begin(p), end(p)); and
std::search(begin(s), end(s), default_searcher(begin(p), end(p)); do
exactly the same thing.

The other searcher function objects are implemented with more sophisticated search
algorithms:

std::default_searcher: This redirects to legacy std::search
implementation
std::boyer_moore_searcher: This uses the Boyer-Moore search algorithm
std::boyer_moore_horspool_searcher: This analogously uses the Boyer-
Moore-Horspool algorithm

STL Algorithm Basics Chapter 22

[679]

What makes the other algorithms so special? The Boyer-Moore algorithm was developed
with a specific idea--the search pattern is compared with the string, beginning at the
pattern's end, from right to left. If the character in the search string differs from the character
in the pattern at the overlay position and does not even occur in the pattern, then it is clear
that the pattern can be shifted over the search string by its full length. Have a look at the
following diagram, where this happens in step 1. If the character being currently compared
differs from the pattern's character at this position but is contained by the pattern, then the
algorithm knows by how many characters the pattern needs to be shifted to the right in
order to correctly align to at least that character, and then, it starts over with the right-to-left
comparison. In the diagram, this happens in step 2. This way, the Boyer-Moore algorithm
can omit a whole lot of unnecessary comparisons, compared with a naive search
implementation:

Of course, this would have become the new default search algorithm if it hadn't brought its
own trade-offs. It is faster than the default algorithm, but it needs fast lookup data structures
in order to determine which characters are contained in the search pattern and at which
offset they are located. The compiler will select differently complex implementations of
those, depending on the underlying types of which the pattern consists (varying between
hash maps for complex types and primitive lookup tables for types such as char). In the
end, this means that the default search implementation will be faster if the search string is
not too large. If the search itself takes some significant time, then the Boyer-Moore
algorithm can lead to performance gains in the dimension of a constant factor.

STL Algorithm Basics Chapter 22

[680]

The Boyer-Moore-Horspool algorithm is a simplification of the Boyer-Moore algorithm. It
drops the bad character rule, which leads to shifts of the whole pattern width if a search
string character that does not occur in the pattern string is found. The trade-off of this
decision is that it is slightly slower than the unmodified version of Boyer-Moore, but it also
needs fewer data structures for its operation.

Do not try to reason about which algorithm should be faster in a specific
case. Always measure the performance of your code with data samples that
are typical for your users and base your decision on the results.

Sampling large vectors
When there are very large amounts of numeric data that need to be processed in some
situations, it may not be possible to process it all in feasible time. In such situations, the data
could be sampled in order to reduce the total amount of data for further processing, which
then speeds up the whole program. In other situations, this might be done not to reduce the
amount of work for processing but for saving or transferring the data.

A naive idea of sampling could be to only pick every Nth data point. This might be fine in a
lot of cases, but in signal processing, for example, it could lead to a mathematical
phenomenon called aliasing. If the distance between every sample is varied by a small
random offset, aliasing can be reduced. Have a look at the following diagram, which shows
an extreme case just to illustrate the point--while the original signal consists of a sine wave,
the triangle points on the graph are sampling points that are sampled at exactly every 100th
data point. Unfortunately, the signal has the same y-value at these points! The graph which
results from connecting the dots looks like a perfectly straight horizontal line. The square
points, however, show what we get when we sample every 100 + random(-15, +15)
points. Here, the signal still looks very different from the original signal, but it is at least not
completely gone as in the fixed step size sampling case.

STL Algorithm Basics Chapter 22

[681]

The std::sample function does not add random alterations to sample points with fixed
offset but chooses completely random points; therefore, it works a bit differently from this
example:

How to do it...
We will sample a very large vector of random data. This random data shows a normal
distribution. After sampling it, the resulting points should still show a normal distribution,
which we will check:

First, we need to include everything we use and declare that we use the std1.
namespace in order to spare us some typing:

 #include <iostream>
 #include <vector>
 #include <random>
 #include <algorithm>
 #include <iterator>
 #include <map>
 #include <iomanip>

 using namespace std;

STL Algorithm Basics Chapter 22

[682]

It is easier to play around with the code if we configure specific characteristics of2.
our algorithm in their own constant variables. These are the size of the large
random vector and the number of samples that we are going to take from it:

 int main()
 {
 const size_t data_points {100000};
 const size_t sample_points {100};

The large, randomly filled vector should get numbers from a random number3.
generator, which gives out numbers from a normal distribution. Any normal
distribution can be characterized by the mean value and the standard deviation
from the mean value:

 const int mean {10};
 const size_t dev {3};

Now, we set up the random generator. First, we instantiate a random device and4.
call it once to get a seed for the constructor of a random generator. Then, we
instantiate a distribution object that applies normal distribution to the random
output:

 random_device rd;
 mt19937 gen {rd()};
 normal_distribution<> d {mean, dev};

Now, we instantiate a vector of integers and fill it with a lot of random numbers.5.
This is achieved using the std::generate_n algorithm, which will call a
generator function object to feed its return value into our vector using a
back_inserter iterator. The generator function object just wraps around the
d(gen) expression, which gets a random number from the random device and
feeds it into the distribution object:

 vector<int> v;
 v.reserve(data_points);
 generate_n(back_inserter(v), data_points,
 [&] { return d(gen); });

STL Algorithm Basics Chapter 22

[683]

Now, we instantiate another vector that will contain the much smaller set of6.
samples:

 vector<int> samples;
 v.reserve(sample_points);

The std::sample algorithm works similar to std::copy, but it takes two7.
additional parameters: the number of samples, which it shall take from the input
range, and a random number generator object, which it will consult to get random
sampling positions:

 sample(begin(v), end(v), back_inserter(samples),
 sample_points, mt19937{random_device{}()});

We're already done with the sampling. The rest of the code is for displaying8.
purposes. The input data has a normal distribution, and if the sampling
algorithm works well, then the sampled vector should show a normal
distribution too. To see how much of a normal distribution is left, we will print a
histogram of the values:

 map<int, size_t> hist;

 for (int i : samples) { ++hist[i]; }

Finally, we loop over all the items in order to print our histogram:9.

 for (const auto &[value, count] : hist) {
 cout << setw(2) << value << " "
 << string(count, '*') << 'n';
 }
 }

STL Algorithm Basics Chapter 22

[684]

After compiling and running the program, we see that the sampled vector still10.
roughly shows the characteristics of a normal distribution:

How it works...
The std::sample algorithm is a new algorithm, which came with C++17. Its signature
looks like this:

template<class InIterator, class OutIterator,
 class Distance, class UniformRandomBitGenerator>
OutIterator sample(InIterator first, InIterator last,
 SampleIterator out, Distance n,
 UniformRandomBitGenerator&& g);

The input range is denoted by the first and last iterators, while out is the output
operator. These iterators have exactly the same function as in std::copy; items are copied
from one range to the other. The std::sample algorithm is special in the regard that it will
copy only a part of the input range because it samples only n items. It uses uniform
distribution internally, so every data point in the source range gets chosen with the same
probability.

STL Algorithm Basics Chapter 22

[685]

Generating permutations of input sequences
When testing code that must deal with sequences of inputs where the order of the
arguments is not important, it is beneficial to test whether it results in the same output for
all possible permutations of that input. Such a test could, for example, check whether a self-
implemented sort algorithm sorts correctly.

No matter for what reason we need all permutations of some value range,
std::next_permutation can conveniently do it for us. We can invoke it on a modifiable
range, and it changes the order of its items to the next lexicographical permutation.

How to do it...
In this section, we will write a program that reads multiple word strings from a standard
input, and then we will use std::next_permutation to generate and print all the
permutations of those strings:

First things first again; we include all the necessary headers and declare that we1.
use the std namespace:

 #include <iostream>
 #include <vector>
 #include <string>
 #include <iterator>
 #include <algorithm>

 using namespace std;

We begin with a vector of strings, which we feed with the whole standard input.2.
The next step is sorting the vector:

 int main()
 {
 vector<string> v {istream_iterator<string>{cin}, {}};
 sort(begin(v), end(v));

STL Algorithm Basics Chapter 22

[686]

Now, we print the vector's content on the user terminal. Afterward, we call3.
std::next_permutation. It systematically shuffles the vector to generate a
permutation of its items, which we then print again. The next_permutation
will return false as soon as the last permutation was reached:

 do {
 copy(begin(v), end(v),
 ostream_iterator<string>{cout, ", "});
 cout << 'n';
 } while (next_permutation(begin(v), end(v)));
 }

Let's compile and run the function with some example input:4.

 $ echo "a b c" | ./input_permutations
 a, b, c,
 a, c, b,
 b, a, c,
 b, c, a,
 c, a, b,
 c, b, a,

How it works...
The std::next_permutation algorithm is a bit weird to use. This is because it accepts
only a begin/end pair of iterators and then returns true if it is able to find the next
permutation. Otherwise, it returns false. But what does the next permutation even mean?

The algorithm with which std::next_permutation finds the next lexicographical order
of the items, works as follows:

Find the largest index i such that v[i - 1] < v[i]. If there is none, then return1.
false.
Now, find the largest index j such that j >= i and v[j] > v[i - 1].2.
Swap the items at position j and position i - 1.3.
Reverse the order of the items from position i to the end of the range.4.
Return true.5.

STL Algorithm Basics Chapter 22

[687]

The individually permuted orders we get out of this will always appear in the same
sequence. In order to see all the possible permutations, we sorted the array first, because if
we entered "c b a", for example, the algorithm would terminate immediately, as this
already is the last lexicographic order of the elements.

Implementing a dictionary merging tool
Imagine that we have a sorted list of things, and someone else comes up with another sorted
list of things, and we want to share the lists with each other. The best idea is to combine
both the lists. The combination of both the lists should be sorted too, as this way, it is easy
to look it up for specific items.

Such an operation is also called a merge. In order to merge two sorted ranges of items, we
would intuitively create a new range and feed it with items from both the lists. For every
item transfer, we would have to compare the frontmost items of our input ranges in order
to always select the smallest one from what is left from the input. Otherwise, the output
range would not be sorted any longer. The following diagram illustrates it better:

The std::merge algorithm can do exactly that for us, so we do not need to fiddle around
too much. In this section, we will see how to use the algorithm.

STL Algorithm Basics Chapter 22

[688]

How to do it...
We are going to build up a cheap dictionary of one-to-one mappings from English words to
their German translations, and store them in std::deque structures. The program will read
such a dictionary from a file and one from standard input, and print one large merged
dictionary on the standard output again.

There are a lot of headers to include this time, and we declare that we use the std1.
namespace:

 #include <iostream>
 #include <algorithm>
 #include <iterator>
 #include <deque>
 #include <tuple>
 #include <string>
 #include <fstream>

 using namespace std;

A dictionary entry should consist of a symmetric mapping from a string in one2.
language to a string in another language:

 using dict_entry = pair<string, string>;

We are going to both print such pairs to the terminal and read them from user3.
input, so we need to overload the << and >> operators:

 namespace std {
 ostream& operator<<(ostream &os, const dict_entry p)
 {
 return os << p.first << " " << p.second;
 }
 istream& operator>>(istream &is, dict_entry &p)
 {
 return is >> p.first >> p.second;
 }
 }

STL Algorithm Basics Chapter 22

[689]

A helper function that accepts any input stream object will help us in building a4.
dictionary from it. It constructs std::deque of dictionary entry pairs, and they
are all read from the input stream until it is empty. Before returning it, we sort it:

 template <typename IS>
 deque<dict_entry> from_instream(IS &&is)
 {
 deque<dict_entry> d {istream_iterator<dict_entry>{is}, {}};
 sort(begin(d), end(d));
 return d;
 }

We create two individual dictionary data structures from different input streams.5.
One input stream is opened from the dict.txt file, which we assume to exist. It
contains word pairs, line by line. The other stream is the standard input:

 int main()
 {
 const auto dict1 (from_instream(ifstream{"dict.txt"}));
 const auto dict2 (from_instream(cin));

As the helper function, from_instream, has already sorted both the dictionaries6.
for us, we can feed them directly into the std::merge algorithm. It accepts two
input ranges via its begin/end iterator pairs, and one output. The output will be
the user shell:

 merge(begin(dict1), end(dict1),
 begin(dict2), end(dict2),
 ostream_iterator<dict_entry>{cout, "n"});
 }

We can compile the program now, but before running it, we should create the7.
dict.txt file with some example content. Let's fill it with some English words
and their translations to German:

 car auto
 cellphone handy
 house haus

STL Algorithm Basics Chapter 22

[690]

Now, we can launch the program while piping some English-German8.
translations into its standard input. The output is a merged and still sorted
dictionary, which contains the translations of both the inputs. We could create a
new dictionary file from that:

 $ echo "table tisch fish fisch dog hund" | ./dictionary_merge
 car auto
 cellphone handy
 dog hund
 fish fisch
 house haus
 table tisch

How it works...
The std::merge algorithm accepts two pairs of begin/end iterators, which denote the input
ranges. These ranges must be sorted. The fifth parameter is an output iterator that accepts
the incoming items during the merge.

There is also a variant called std::inplace_merge. This algorithm does the same as the
other, but it does not need an output iterator because it works in place, as the name already
suggests. It takes three parameters: a begin iterator, a middle iterator, and an end iterator.
These iterators must all reference data in the same data structure. The middle iterator is at
the same time the end iterator of the first range, and the begin iterator of the second range.
This means that this algorithm handles a single range, which actually consists of two
consecutive ranges, such as, for example, {A, C, B, D}. The first subrange is {A, C} and
the second subrange is {B, D}. The std::inplace_merge algorithm can then merge both
within the same data structure, which results in {A, B, C, D}.

23
Advanced Use of STL

Algorithms
We will cover the following recipes in this chapter:

Implementing a trie class using STL algorithms
Implementing a search input suggestion generator with tries
Implementing the Fourier transform formula with STL numeric algorithms
Calculating the error sum of two vectors
Implementing an ASCII Mandelbrot renderer
Building our own algorithm - split
Composing useful algorithms from standard algorithms - gather
Removing consecutive whitespace between words
Compressing and decompressing strings

Introduction
In the last chapter, we visited basic STL algorithms and performed simple tasks with them
in order to get a feeling of the typical STL interface: most STL algorithms accept one or more
ranges in the form of iterator pairs as input/output parameters. They often also accept
predicate functions, custom comparison functions, or transformation functions. In the end,
they mostly return iterators again because these can often be fed into some other algorithm
afterward.

Advanced Use of STL Algorithms Chapter 23

[692]

While STL algorithms aim to be minimal, their interfaces also try to be as general as
possible. This enables maximum code reuse potential but does not always look too pretty.
An experienced C++ coder who knows all algorithms has a better time reading other
people's code if it tries to express as many ideas using STL algorithms as possible. This
leads to a maximized common ground of comprehension between coder and reader. A
programmer's brain can simply parse the name of a well-known algorithm more quickly
than it can understand a complex loop, which does a mainly similar, but in some detail a
slightly different, job.

At this point, we are using STL data structures so intuitively that we can nicely avoid
pointers, raw arrays, and other crude legacy structures. The next step is lifting our
comprehension of STL algorithms up to the levels where we can avoid the use of
handcrafted loop-control-structure complexes by expressing them in terms of well-known
STL algorithms. Often, this is a real improvement because code becomes simply shorter and
more readable while at the same time being more general and data-structure agnostic. It is
practically always possible to avoid writing handcrafted loops and taking an algorithm out
of the std namespace instead, but sometimes, it admittedly leads to awkward code. We are
not going to differentiate between what is awkward and what is not; we'll only explore the
possibilities.

In this chapter, we will use STL algorithms in creative ways in order to look for new
horizons and to see how things can be implemented with modern C++. On the way, we will
implement our own STL-like algorithms, which can easily be combined with existing data
structures and other algorithms designed in the same way. We will also combine existing
STL algorithms to get new algorithms, which were not there before. Such combined
algorithms allow for more complex algorithms on top of the existing ones, while they are
themselves extremely short and readable this way. While on this little trip, we will also see
where exactly STL algorithms suffer from reusability or prettiness. Only when we know all
the ways well can we best decide which way is the right one.

Implementing a trie class using STL
algorithms
The so-called trie data structure poses an interesting way to store data in an easily
searchable manner. When segmenting sentences of text into lists of words, it is often
possible to combine the first few words that some sentences have in common.

Advanced Use of STL Algorithms Chapter 23

[693]

Let's have a look at the following diagram, where the sentences "hi how are you" and
"hi how do you do" are saved in a tree-like data structure. The first words they have in
common are "hi how", and then they differ and split up like a tree:

Because the trie data structure combines common prefixes, it is also called prefix tree. It is
very easy to implement such a data structure with what the STL gives us already. This
section concentrates on implementing our own trie class.

How to do it...
In this section, we will implement our own prefix tree only made from STL data structures
and algorithms.

We will include all the headers from the STL parts we use and declare that we1.
use the std namespace by default:

 #include <iostream>
 #include <optional>
 #include <algorithm>
 #include <functional>
 #include <iterator>
 #include <map>
 #include <vector>
 #include <string>

 using namespace std;

The entire program revolves around a trie for which we have to implement a2.
class first. In our implementation, a trie is basically a recursive map of maps.
Every trie node contains a map, which maps from an instance of the payload type
T to the next trie node:

 template <typename T>
 class trie
 {
 map<T, trie> tries;

Advanced Use of STL Algorithms Chapter 23

[694]

The code for inserting new item sequences is simple. The user provides a3.
begin/end iterator pair and we loop through it recursively. If the user input
sequence is {1, 2, 3}, then we look up 1 in the subtrie and then look up 2 in
the next subtrie, in order to get the subtrie for 3. If any of those subtries did not
exist before, they are implicitly added by the [] operator of std::map:

 public:
 template <typename It>
 void insert(It it, It end_it) {
 if (it == end_it) { return; }
 tries[*it].insert(next(it), end_it);
 }

We also define convenience functions, which enable the user to just provide a4.
container of items, which are then automatically queried for iterators:

 template <typename C>
 void insert(const C &container) {
 insert(begin(container), end(container));
 }

In order to allow the user to write my_trie.insert({"a", "b", "c"});, we5.
must help the compiler a bit to correctly deduce all the types from that line, so we
add a function, which overloads the insert interface with an initializer_list
parameter:

 void insert(const initializer_list<T> &il) {
 insert(begin(il), end(il));
 }

We will also want to see what's in a trie, so we need a print function. In order to6.
print, we can do a depth-first-search through the trie. On the way from the root
node down to the first leaf, we record all payload items we have seen already.
This way, we have a complete sequence together once we reach the leaf, which is
trivially printable. We see that we reached a leaf when tries.empty() is true.
After the recursive print call, we pop off the last added payload item again:

 void print(vector<T> &v) const {
 if (tries.empty()) {
 copy(begin(v), end(v),
 ostream_iterator<T>{cout, " "});
 cout << 'n';
 }
 for (const auto &p : tries) {
 v.push_back(p.first);

Advanced Use of STL Algorithms Chapter 23

[695]

 p.second.print(v);
 v.pop_back();
 }
 }

The recursive print function passes around a reference to a printable list of7.
payload items, but the user should call it without any parameters. Therefore, we
define a parameterless print function, which constructs the helper list object:

 void print() const {
 vector<T> v;
 print(v);
 }

Now that we can construct and print tries, we may want to search for subtries.8.
The idea is that if the trie contains sequences such as {a, b, c} and {a, b, d,
e}, and we give it a sequence, {a, b}, for search, it would return us the subtrie
that contains the {c} and {d, e} parts. If we find the subtrie, we return a const
reference to it. The possibility exists that there is no such subtrie in case the trie
does not contain the sequence we are searching for. In such cases, we still need to
return something. The std::optional is a nice helper because we can return an
empty optional object if there is no match:

 template <typename It>
 optional<reference_wrapper<const trie>>
 subtrie(It it, It end_it) const {
 if (it == end_it) { return ref(*this); }
 auto found (tries.find(*it));
 if (found == end(tries)) { return {}; }
 return found->second.subtrie(next(it), end_it);
 }

Similar to the insert method, we provide a one-parameter version of the9.
subtrie method, which automatically takes iterators from the input container:

 template <typename C>
 auto subtrie(const C &c) {
 return subtrie(begin(c), end(c));
 }
 };

Advanced Use of STL Algorithms Chapter 23

[696]

That's already it. Let's put the new trie class to use in our main function by10.
instantiating a trie specialized on std::string objects and fill it with some
example content:

 int main()
 {
 trie<string> t;
 t.insert({"hi", "how", "are", "you"});
 t.insert({"hi", "i", "am", "great", "thanks"});
 t.insert({"what", "are", "you", "doing"});
 t.insert({"i", "am", "watching", "a", "movie"});

Let's first print the whole trie:11.

 cout << "recorded sentences:n";
 t.print();

Then we obtain the subtrie for all the input sentences that start with "hi", and12.
print it:

 cout << "npossible suggestions after "hi":n";
 if (auto st (t.subtrie(initializer_list<string>{"hi"}));
 st) {
 st->get().print();
 }
 }

Compiling and running the program shows that it does indeed return us only the13.
two sentences that start with "hi", when we query the trie for exactly that
subtrie:

 $./trie
 recorded sentences:
 hi how are you
 hi i am great thanks
 i am watching a movie
 what are you doing
 possible suggestions after "hi":
 how are you
 i am great thanks

Advanced Use of STL Algorithms Chapter 23

[697]

How it works...
Interestingly, the code for word sequence insertion is shorter and simpler than the code for
looking up a given word sequence in a subtrie. So, let's first have a look at the insertion code:

template <typename It>
void trie::insert(It it, It end_it) {
 if (it == end_it) { return; }
 tries[*it].insert(next(it), end_it);
}

The pair of iterators, it and end_it, represent the word sequence to be inserted. The
tries[*it] element looks up the first word in the sequence in the subtrie, and then,
.insert(next(it), end_it) restarts the same function on that lower subtrie, with the
iterator one word further advanced. The if (it == end_it) { return; } line just
aborts the recursion. The empty return statement does nothing, which is a bit weird at first.
All the insertion happens in the tries[*it] statement. The bracket operator [] of
std::map either returns an existing item for the given key or it creates one with that key.
The associated value (the mapped type is a trie in this recipe) is constructed from its default
constructor. This way, we are implicitly creating a new trie branch whenever we are looking
up unknown words.

Looking up in a subtrie looks more complicated because we were not able to hide so much
in implicit code:

template <typename It>
optional<reference_wrapper<const trie>>
subtrie(It it, It end_it) const {
 if (it == end_it) { return ref(*this); }
 auto found (tries.find(*it));
 if (found == end(tries)) { return {}; }

 return found->second.subtrie(next(it), end_it);
}

This code basically revolves around the auto found (tries.find(*it)); statement.
Instead of looking up the next deeper trie node using the bracket operator ([]), we use
find. If we use the [] operator for lookups, the trie will create missing items for us, which is
not what we want when just looking up whether an item exists! (By the way, try doing that.
The class method is const, so this will not even be possible. This can be quite a life saver,
which helps us in preventing bugs.)

Advanced Use of STL Algorithms Chapter 23

[698]

Another scary looking detail is the return type, optional<reference_wrapper<const
trie>>. We chose std::optional as the wrapper because it is possible that there is no
such subtrie for the input sequence we are looking for. If we only inserted "hello my
friend", there will be no "goodbye my friend" sequence to look up. In such cases, we
just return {}, which gives the caller an empty optional object. This still does not explain
why we use reference_wrapper instead of just writing optional<const trie &>. The
point here is that an optional instance with a member variable of the trie& type is not
reassignable and hence would not compile. Implementing a reference using
reference_wrapper leads to reassignable objects.

Implementing a search input suggestion
generator with tries
When entering something into a search engine on the Internet, the interface often tries to
guess how the full search query will look. This guessing is usually based on popular search
queries from the past. Sometimes, such search engine guesses are quite funny because it
appears that people type weird queries into search engines.

In this section, we are going to use the trie class that we implemented in the previous recipe
and build a little search query suggestion engine.

Advanced Use of STL Algorithms Chapter 23

[699]

How to do it...
In this section, we will implement a terminal app, which accepts some input and then tries
to guess what the user might want to look for, based on a cheap text file database:

As always, includes come first, and we define that we use the std namespace:1.

 #include <iostream>
 #include <optional>
 #include <algorithm>
 #include <functional>
 #include <iterator>
 #include <map>
 #include <list>
 #include <string>
 #include <sstream>
 #include <fstream>

 using namespace std;

We use the trie implementation from the trie recipe:2.

 template <typename T>
 class trie
 {
 map<T, trie> tries;
 public:
 template <typename It>
 void insert(It it, It end_it) {
 if (it == end_it) { return; }
 tries[*it].insert(next(it), end_it);
 }

 template <typename C>
 void insert(const C &container) {
 insert(begin(container), end(container));
 }
 void insert(const initializer_list<T> &il) {
 insert(begin(il), end(il));
 }
 void print(list<T> &l) const {
 if (tries.empty()) {
 copy(begin(l), end(l),
 ostream_iterator<T>{cout, " "});
 cout << 'n';
 }
 for (const auto &p : tries) {

Advanced Use of STL Algorithms Chapter 23

[700]

 l.push_back(p.first);
 p.second.print(l);
 l.pop_back();
 }
 }
 void print() const {
 list<T> l;
 print(l);
 }
 template <typename It>
 optional<reference_wrapper<const trie>>
 subtrie(It it, It end_it) const {
 if (it == end_it) { return ref(*this); }
 auto found (tries.find(*it));
 if (found == end(tries)) { return {}; }
 return found->second.subtrie(next(it), end_it);
 }
 template <typename C>
 auto subtrie(const C &c) const {
 return subtrie(begin(c), end(c));
 }
 };

Let's add a little helper function that prints a line that prompts the user to enter3.
some text:

 static void prompt()
 {
 cout << "Next input please:n > ";
 }

Advanced Use of STL Algorithms Chapter 23

[701]

In the main function, we open a text file, which acts as our sentence database. We4.
read that text file line by line and feed those lines into a trie:

 int main()
 {
 trie<string> t;
 fstream infile {"db.txt"};
 for (string line; getline(infile, line);) {
 istringstream iss {line};
 t.insert(istream_iterator<string>{iss}, {});
 }

Now that we have constructed the trie from the content in the text file, we need to5.
implement an interface for the user to query it. We prompt the user to enter some
text and wait for a whole line of input:

 prompt();
 for (string line; getline(cin, line);) {
 istringstream iss {line};

With that text input, we query the trie in order to get a subtrie from it. If we have6.
such an input sequence in the text file already, then we can print how the input
can be continued, just as in the search engine suggestion feature. If we do not find
a matching subtrie, we just tell the user:

 if (auto st (t.subtrie(istream_iterator<string>{iss}, {}));
 st) {
 cout << "Suggestions:n";
 st->get().print();
 } else {
 cout << "No suggestions found.n";
 }

Afterward, we print the prompt text again and wait for the next line of user7.
input. That's it.

 cout << "----------------n";
 prompt();
 }
 }

Advanced Use of STL Algorithms Chapter 23

[702]

Before thinking about launching the program, we need to fill some content into8.
db.txt. The input can be really anything, and it does not even need to be sorted.
Each line of text will be one trie sequence:

 do ghosts exist
 do goldfish sleep
 do guinea pigs bite
 how wrong can you be
 how could trump become president
 how could this happen to me
 how did bruce lee die
 how did you learn c++
 what would aliens look like
 what would macgiver do
 what would bjarne stroustrup do
 ...

We need to create db.txt before we can run the program. Its content could look9.
like this:

 hi how are you
 hi i am great thanks
 do ghosts exist
 do goldfish sleep
 do guinea pigs bite
 how wrong can you be
 how could trump become president
 how could this happen to me
 how did bruce lee die
 how did you learn c++
 what would aliens look like
 what would macgiver do
 what would bjarne stroustrup do
 what would chuck norris do
 why do cats like boxes
 why does it rain
 why is the sky blue
 why do cats hate water
 why do cats hate dogs
 why is c++ so hard

Advanced Use of STL Algorithms Chapter 23

[703]

Compiling and running the program and entering some input looks like the10.
following:

 $./word_suggestion
 Next input please:
 > what would
 Suggestions:
 aliens look like
 bjarne stroustrup do
 chuck norris do
 macgiver do

 Next input please:
 > why do
 Suggestions:
 cats hate dogs
 cats hate water
 cats like boxes

 Next input please:
 >

How it works...
How a trie works was explained in the last recipe, but how we fill it and how we query it
looks a bit strange here. Let's have a closer look at the code snippet that fills the empty trie
with the content of the text database file:

fstream infile {"db.txt"};
for (string line; getline(infile, line);) {
 istringstream iss {line};
 t.insert(istream_iterator<string>{iss}, {});
}

The loop fills the string line with the content of the text file, line by line. Then, we copy the
string into an istringstream object. From such an input stream object, we can create an
istream_iterator, which is useful because our trie does not only accept a container
instance for looking up subtries but also primarily iterators. This way, we do not need to
construct a vector or a list of words and can directly consume the string. The last piece of
unnecessary memory allocations could be avoided by moving the content of line into iss.
Unfortunately, std::istringstream does not provide a constructor that accepts
std::string values to be moved. It will copy its input string, nevertheless.

Advanced Use of STL Algorithms Chapter 23

[704]

When reading the user's input to look it up in the trie, we use exactly the same strategy but
we do not use an input file stream. We use std::cin, instead. This works completely
identically for our use case because trie::subtrie works with iterators just as
trie::insert does.

There's more...
It is possible to add counter variables to each node of the trie. This way, it is possible to count
how often a prefix occurs in some input. From that, we could sort our suggestions by their
occurrence frequency, which is actually what search engines do. Word suggestions for
smartphone touchscreen text input could also be implemented this way.

This modification is left as an exercise for the reader.

Implementing the Fourier transform formula
with STL numeric algorithms
The Fourier transformation is a very important and famous formula in signal processing. It
was invented nearly 200 years ago, but with computers, the number of use cases for it really
skyrocketed. It is used in audio/image/video compression, audio filters, medical imaging
devices, cell phone apps that identify music tracks while listening to them on the fly, and so
on.

Because of the vastness of general numeric application scenarios (not only because of the
Fourier transformation of course), the STL also tries to be useful in the context of numeric
computation. The Fourier transformation is only one example among them but a tricky one
too. The formula itself looks like the following:

Advanced Use of STL Algorithms Chapter 23

[705]

The transformation it describes is basically a sum. Each element of the sum is the
multiplication of a data point of the input signal vector, and the expression exp(-2 * i * ...).
The maths behind this is a bit scary for everyone who does not know about complex
numbers (or who just does not like maths), but it is also not really necessary to completely
understand the maths in order to implement it. When having a close look at the formula, it
says that the sum symbol loops over every data point of the signal (which is N elements
long) using the loop variable j. The variable k is another loop variable because the Fourier
transformation is not for calculating a single value, but a vector of values. In this vector,
every data point represents the intensity and phase of a certain repetitive wave frequency,
which is or is not a part of the original signal. When implementing this with manual loops,
we will end up with code similar to the following:

csignal fourier_transform(const csignal &s) {
 csignal t(s.size());
 const double pol {-2.0 * M_PI / s.size()};

 for (size_t k {0}; k < s.size(); ++k) {
 for (size_t j {0}; j < s.size(); ++j) {
 t[k] += s[j] * polar(1.0, pol * k * j);
 }
 }
 return t;
}

The csignal type may be an std::vector vector of complex numbers. For complex
numbers, there is an std::complex STL class, which helps represent those. The
std::polar function basically does the exp(-i * 2 * ...) part.

This works well already, but we are going to implement it using STL tools.

How to do it...
In this section, we are going to implement the Fourier transformation and its backward
transformation and then play around with it to transform some signals:

First, we include all the headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <complex>
 #include <vector>
 #include <algorithm>
 #include <iterator>
 #include <numeric>

Advanced Use of STL Algorithms Chapter 23

[706]

 #include <valarray>
 #include <cmath>

 using namespace std;

A data point of a signal is a complex number and shall be represented by2.
std::complex, specialized on the double type. This way, the type alias cmplx
stands for two coupled double values, which represent the real and the imaginary
parts of a complex number. A whole signal is a vector of such items, which we
alias to the csignal type:

 using cmplx = complex<double>;
 using csignal = vector<cmplx>;

In order to iterate over an up-counting numeric sequence, we take the numeric3.
iterator from the numeric iterator recipe. The variables k and j in the formula
shall iterate over such sequences:

 class num_iterator {
 size_t i;
 public:
 explicit num_iterator(size_t position) : i{position} {}
 size_t operator*() const { return i; }
 num_iterator& operator++() {
 ++i;
 return *this;
 }
 bool operator!=(const num_iterator &other) const {
 return i != other.i;
 }
 };

Advanced Use of STL Algorithms Chapter 23

[707]

The Fourier transformation function shall just take a signal and return a new4.
signal. The returned signal represents the Fourier transformation of the input
signal. As the back transformation from a Fourier transformed signal back to the
original signal is very similar, we provide an optional bool parameter, which
chooses the transformation direction. Note that bool parameters are generally
bad practice, especially if we use multiple bool parameters in a function
signature. Here we just have one for brevity.
The first thing we do is allocate a new signal vector with the size of the initial
signal:

 csignal fourier_transform(const csignal &s, bool back = false)
 {
 csignal t (s.size());

There are two factors in the formula, which always look the same. Let's pack5.
them in their own variables:

 const double pol {2.0 * M_PI * (back ? -1.0 : 1.0)};
 const double div {back ? 1.0 : double(s.size())};

The std::accumulate algorithm is a fitting choice for executing formulas that6.
sum up items. We are going to use accumulate on a range of up-counting
numeric values. From these values, we can form the individual summands of
each step. The std::accumulate algorithm calls a binary function on every step.
The first parameter of this function is the current value of the part of sum that was
already calculated in the previous steps, and its second parameter is the next
value from the range. We look up the value of signal s at the current position and
multiply it with the complex factor, pol. Then, we return the new partly sum.
The binary function is wrapped into another lambda expression because we are
going to use different values of j for every accumulate call. Because this is a
two-dimensional loop algorithm, the inner lambda is for the inner loop and the
outer lambda is for the outer loop:

 auto sum_up ([=, &s] (size_t j) {
 return [=, &s] (cmplx c, size_t k) {
 return c + s[k] *
 polar(1.0, pol * k * j / double(s.size()));
 };
 });

Advanced Use of STL Algorithms Chapter 23

[708]

The inner loop part of the Fourier transform is now executed by7.
std::accumulate. For every j position of the algorithm, we calculate the sum
of all the summands for positions i = 0...N. This idea is wrapped into a lambda
expression, which we will execute for every data point in the resulting Fourier
transformation vector:

 auto to_ft ([=, &s](size_t j){
 return accumulate(num_iterator{0},
 num_iterator{s.size()},
 cmplx{},
 sum_up(j))
 / div;
 });

None of the Fourier code has been executed until this point. We only prepared a8.
lot of functional code, which we'll put to action now. An std::transform call
will generate values j = 0...N, which is our outer loop. The transformed values all
go to the vector t, which we then return to the caller:

 transform(num_iterator{0}, num_iterator{s.size()},
 begin(t), to_ft);
 return t;
 }

We are going to implement some functions that help us set up function objects for9.
signal generation. The first one is a cosine signal generator. It returns a lambda
expression that can generate a cosine signal with the period length that was
provided as a parameter. The signal itself can be of arbitrary length, but it has a
fixed period length. A period length of N means that the signal will repeat itself
after N steps. The lambda expression does not accept any parameters. We can call
it repeatedly, and for every call, it returns us the signal data point of the next
point in time:

 static auto gen_cosine (size_t period_len){
 return [period_len, n{0}] () mutable {
 return cos(double(n++) * 2.0 * M_PI / period_len);
 };
 }

Advanced Use of STL Algorithms Chapter 23

[709]

Another signal we are going to generate is the square wave. It oscillates between10.
the values -1 and +1 and has no other values than those. The formula looks
complicated, but it simply transforms the linearly up-counting value n to +1 and
-1, with an oscillating period length of period_len.
Note that we initialize n to a different value from 0 this time. This way, our
square wave starts at the phase where its output values begin at +1:

 static auto gen_square_wave (size_t period_len)
 {
 return [period_len, n{period_len*7/4}] () mutable {
 return ((n++ * 2 / period_len) % 2) * 2 - 1.0;
 };
 }

Generating an actual signal from such generators can be achieved by allocating a11.
new vector and filling it with the values generated from repeating signal
generator function calls. The std::generate does this job. It accepts a begin/end
iterator pair and a generator function. For every valid iterator position, it does
*it = gen(). By wrapping this code into a function, we can easily generate
signal vectors:

 template <typename F>
 static csignal signal_from_generator(size_t len, F gen)
 {
 csignal r (len);
 generate(begin(r), end(r), gen);
 return r;
 }

In the end, we need to print the resulting signals. We can simply print a signal by12.
copying its values into an output stream iterator, but we need to transform the
data first because the data points of our signals are complex value pairs. At this
point, we are only interested in the real value part of every data point; hence, we
throw it through an std::transform call, which extracts only this part:

 static void print_signal (const csignal &s)
 {
 auto real_val ([](cmplx c) { return c.real(); });
 transform(begin(s), end(s),
 ostream_iterator<double>{cout, " "}, real_val);
 cout << 'n';
 }

Advanced Use of STL Algorithms Chapter 23

[710]

The Fourier formula is now implemented, but we have no signals to transform13.
yet. That is what we do in the main function. Let's first define a standard signal
length to which all the signals comply.

 int main()
 {
 const size_t sig_len {100};

Let's now generate signals, transform them, and print them, which happens in14.
the next three steps. The first step is to generate a cosine signal and a square wave
signal. Both have the same total signal length and period length:

 auto cosine (signal_from_generator(sig_len,
 gen_cosine(sig_len / 2)));
 auto square_wave (signal_from_generator(sig_len,
 gen_square_wave(sig_len / 2)));

We have a cosine function and a square wave signal now. In order to generate a15.
third one in the middle between them, we take the square wave signal and
calculate its Fourier transform (saved in the trans_sqw vector). The Fourier
transform of a square wave has a specific form, and we are going to manipulate it
a bit. All items from index 10 till (signal_length - 10) are set to 0.0. The
rest remains untouched. Transforming this altered Fourier transformation back to
the signal time representation will give us a different signal. We will see how that
looks in the end:

 auto trans_sqw (fourier_transform(square_wave));
 fill (next(begin(trans_sqw), 10), prev(end(trans_sqw), 10), 0);
 auto mid (fourier_transform(trans_sqw, true));

Now we have three signals: cosine, mid, and square_wave. For every signal,16.
we print the signal itself and its Fourier transformation. The output of the whole
program will consist of six very long lines of printed double value lists:

 print_signal(cosine);
 print_signal(fourier_transform(cosine));
 print_signal(mid);
 print_signal(trans_sqw);
 print_signal(square_wave);
 print_signal(fourier_transform(square_wave));
 }

Advanced Use of STL Algorithms Chapter 23

[711]

Compiling and running the program leads to the terminal getting filled with lots17.
of numeric values. If we plot the output, we get the following image:

How it works...
This program contains two complicated sections. One is the Fourier transformation itself,
and the other is the generation of signals with mutable lambda expressions.

Let's concentrate on the Fourier transformation first. The core of the raw loop
implementation (which we did not use for our implementation but had a look at in the
introduction) looks like the following:

for (size_t k {0}; k < s.size(); ++k) {
 for (size_t j {0}; j < s.size(); ++j) {
 t[k] += s[j] * polar(1.0, pol * k * j / double(s.size()));
 }
}

Advanced Use of STL Algorithms Chapter 23

[712]

With the STL algorithms, std::transform and std::accumulate, we wrote code, which
can be summarized to the following pseudo code:

transform(num_iterator{0}, num_iterator{s.size()}, ...
 accumulate((num_iterator0}, num_iterator{s.size()}, ...
 c + s[k] * polar(1.0, pol * k * j / double(s.size()));

The result is exactly the same compared with the loop variant. This is arguably an example
situation where the strict use of STL algorithms does not lead to better code. Nevertheless,
this algorithm implementation is agnostic over the data structure choice. It would also work
on lists (although that would not make too much sense in our situation). Another upside is
that the C++17 STL algorithms are easy to parallelize (which we examine in another chapter
of this book), whereas raw loops have to be restructured to support multiprocessing (unless
we use external libraries like OpenMP for example, but these do actually restructure the
loops for us).

The other complicated part was the signal generation. Let's have another look at
gen_cosine:

static auto gen_cosine (size_t period_len)
{
 return [period_len, n{0}] () mutable {
 return cos(double(n++) * 2.0 * M_PI / period_len);
 };
}

Each instance of the lambda expression represents a function object that modifies its own
state on every call. Its state consists of the variables, period_len and n. The n variable is
the one which is modified on every call. The signal has a different value at every time point,
and n++ represents the increasing time points. In order to get an actual signal vector out of
it, we created the helper signal_from_generator:

template <typename F>
static auto signal_from_generator(size_t len, F gen)
{
 csignal r (len);
 generate(begin(r), end(r), gen);
 return r;
}

Advanced Use of STL Algorithms Chapter 23

[713]

This helper allocates a signal vector with a length of choice and calls std::generate to fill
it with data points. For every item of the vector r, it calls the function object gen once,
which is just the kind of self-modifying function object we can create with gen_cosine.

Unfortunately, the STL way does not make this code more elegant. As
soon as the ranges library joins the STL club (which is hopefully the case
with C++20), this will most probably change.

Calculating the error sum of two vectors
There are different possibilities to calculate the numerical error between a target value and
an actual value. Measuring the difference between signals consisting of many data points
usually involves loops and subtraction of corresponding data points, and so on.

One simple formula to calculate this error between a signal a and a signal b is the following:

For every i, it calculates a[i] - b[i], squares that difference (this way, negative and positive
differences become comparable), and, finally, sums those values up. This is again a situation
where one could use a loop, but for fun reasons, we will do it with an STL algorithm. The
good thing is that we get data-structure independence for free this way. Our algorithm will
work on vectors and on list-like data structures, where no direct indexing is possible.

How to do it...
In this section, we are going to create two signals and calculate their error sum:

As always, the include statements come first. Then, we declare that we use the1.
std namespace:

 #include <iostream>
 #include <cmath>
 #include <algorithm>
 #include <numeric>

Advanced Use of STL Algorithms Chapter 23

[714]

 #include <vector>
 #include <iterator>

 using namespace std;

We are going to calculate the error sum of two signals. The two signals will be a2.
sine wave and a copy of it, but with a different value type--the original sine wave
is saved in a vector of double variables and its copy is saved in a vector of int
variables. Because copying a value from a double variable to an int variable
cuts its decimal part after the point, we have some loss. Let's name the vector of
double values as, which stands for analog signal and the vector of int values ds,
which stands for digital signal. The error sum will then later tell us how large the
loss actually is:

 int main()
 {
 const size_t sig_len {100};
 vector<double> as (sig_len); // a for analog
 vector<int> ds (sig_len); // d for digital

In order to generate a sine wave signal, we implement a little lambda expression3.
with a mutable counter value n. We can call it as often as we want, and for every
call, it will return us the value for the next point in time of a sine wave. The
std::generate call fills the signal vector with the generated signal, and the
std::copy call copies all the values from the vector of double variables to the
vector of int variables afterward:

 auto sin_gen ([n{0}] () mutable {
 return 5.0 * sin(n++ * 2.0 * M_PI / 100);
 });
 generate(begin(as), end(as), sin_gen);
 copy(begin(as), end(as), begin(ds));

Let's first print the signals, as this way, they can be plotted later:4.

 copy(begin(as), end(as),
 ostream_iterator<double>{cout, " "});
 cout << 'n';
 copy(begin(ds), end(ds),
 ostream_iterator<double>{cout, " "});
 cout << 'n';

Advanced Use of STL Algorithms Chapter 23

[715]

Now to the actual error sum, we use std::inner_product because it can easily5.
be adapted to calculate the difference between every two corresponding elements
of our signal vectors. It will iterate through both the ranges, pick items at the
same corresponding positions in the ranges, calculate the difference between
them, square it, and accumulate the results:

 cout << inner_product(begin(as), end(as), begin(ds),
 0.0, std::plus<double>{},
 [](double a, double b) {
 return pow(a - b, 2);
 })
 << 'n';
 }

Compiling and running the program gives us two long lines of signal output and6.
a third line, which contains a single output value, which is the error between both
the signals. The error is 40.889. If we calculate the error in a continuous manner,
first for the first pair of items, then for the first two pairs of items, then for the
first three pairs of items, and so on, then we get the accumulated error curve,
which is visible on the plotted graph as shown:

Advanced Use of STL Algorithms Chapter 23

[716]

How it works...
In this recipe, we stuffed the task of looping through two vectors, getting the difference
between their corresponding values, squaring them, and finally summing them up into one
std::inner_product call. On the way, the only code we crafted ourselves was the lambda
expression [](double a, double b) { return pow(a - b, 2); }, which takes the
difference of its arguments and squares it.

A glance at a possible implementation of std::inner_product shows us why and how
this works:

template<class InIt1, class InIt2, class T, class F, class G>
T inner_product(InIt1 it1, InIt1 end1, InIt2 it2, T val,
 F bin_op1, G bin_op2)
{
 while (it1 != end1) {
 val = bin_op1(val, bin_op2(*it1, *it2));
 ++it1;
 ++it2;
 }
 return value;
}

The algorithm accepts a pair of begin/end iterators of the first range, and another begin
iterator of the second range. In our case, they are the vectors from which we want to
calculate the error sum. The next character is the initial value val. We have initialized it to
0.0. Then, the algorithm accepts two binary functions, namely bin_op1 and bin_op2.

At this point, we might realize that this algorithm is really similar to std::accumulate.
The only difference is that std::accumulate works on only one range. If we exchange the
bin_op2(*it1, *it2) statement with *it, then we have basically restored the
accumulate algorithm. We can, therefore, regard std::inner_product as a version of
std::accumulate that zips a pair of input ranges.

In our case, the zipper function is pow(a - b, 2), and that's it. For the other function,
bin_op1, we chose std::plus<double> because we want all the squares to be summed
together.

Advanced Use of STL Algorithms Chapter 23

[717]

Implementing an ASCII Mandelbrot renderer
In 1975, the mathematician Benoît Mandelbrot coined the term fractal. A fractal is a
mathematical figure or set, which has certain interesting mathematical properties, but in the
end, it just looks like a piece of art. Fractals also look infinitely repetitive when being zoomed
in. One of the most popular fractals is the Mandelbrot set, which can be seen on the following
poster:

A picture of the Mandelbrot set can be generated by iterating a specific formula:

Advanced Use of STL Algorithms Chapter 23

[718]

The variables z and c are complex numbers. The Mandelbrot set consists of all such values of
c for which the formula converges if it is applied often enough. This is the colored part of the
poster. Some values converge earlier, some converge later, so they can be visualized with
different colors. Some do not converge at all--these are painted black.

The STL comes with the useful std::complex class, and we will try to implement the
formula without explicit loops, just for the sake of getting to know the STL better.

How to do it...
In this section, we are going to print the same image from the wall poster as a little piece of
ASCII art in the terminal:

First, we include all the headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <algorithm>
 #include <iterator>
 #include <complex>
 #include <numeric>
 #include <vector>

 using namespace std;

The Mandelbrot set and formula operate on complex numbers. So, we define a2.
type alias, cmplx to be of class std::complex, specializing on double values.

 using cmplx = complex<double>;

It is possible to hack together all the code for an ASCII Mandelbrot image in3.
something around 20 lines of code, but we will implement each logical step in a
separate form, and then assemble all the steps in the end. The first step is
implementing a function that scales from integer coordinates to floating point
coordinates. What we have in the beginning is columns and rows of character
positions on the terminal. What we want are complex-typed coordinates in the
coordinate system of the Mandelbrot set. For this, we implement a function that
accepts parameters that describe the geometry of the user terminal coordinate
system, and the system we want to transform to. Those values are used to build a
lambda expression, which is returned. The lambda expression accepts an int
coordinate and returns a double coordinate:

 static auto scaler(int min_from, int max_from,
 double min_to, double max_to)

Advanced Use of STL Algorithms Chapter 23

[719]

 {
 const int w_from {max_from - min_from};
 const double w_to {max_to - min_to};
 const int mid_from {(max_from - min_from) / 2 + min_from};
 const double mid_to {(max_to - min_to) / 2.0 + min_to};
 return [=] (int from) {
 return double(from - mid_from) / w_from * w_to + mid_to;
 };
 }

Now we can transform points on one dimension, but the Mandelbrot set exists in4.
a two-dimensional coordinate system. In order to translate from one (x, y)
coordinate system to another, we combine an x-scaler and a y-scaler and
construct a cmplx instance from their output:

 template <typename A, typename B>
 static auto scaled_cmplx(A scaler_x, B scaler_y)
 {
 return [=](int x, int y) {
 return cmplx{scaler_x(x), scaler_y(y)};
 };
 }

After being able to transform coordinates to the right dimensions, we can now5.
implement the Mandelbrot formula. The function that we're implementing now
knows absolutely nothing about the concept of terminal windows or linear plane
transformations, so we can concentrate on the Mandelbrot math. We square z
and add c to it in a loop until its abs value is smaller than 2. For some
coordinates, this never happens, so we also break out of the loop if the number of
iterations exceeds max_iterations. In the end, we return the number of
iterations we had to do until the abs value converged:

 static auto mandelbrot_iterations(cmplx c)
 {
 cmplx z {};
 size_t iterations {0};
 const size_t max_iterations {1000};
 while (abs(z) < 2 && iterations < max_iterations) {
 ++iterations;
 z = pow(z, 2) + c;
 }
 return iterations;
 }

Advanced Use of STL Algorithms Chapter 23

[720]

We can now begin with the main function, where we define the terminal6.
dimensions and instantiate a function object, scale, which scales our coordinate
values for both axes:

 int main()
 {
 const size_t w {100};
 const size_t h {40};
 auto scale (scaled_cmplx(
 scaler(0, w, -2.0, 1.0),
 scaler(0, h, -1.0, 1.0)
));

In order to have a one-dimensional iteration over the whole image, we write7.
another transformation function that accepts a one-dimensional i coordinate. It
calculates (x, y) coordinates from that, based on our assumed line of characters
width. After breaking i down to the row and column numbers, it transforms
them with our scale function and returns the complex coordinate.

 auto i_to_xy ([=](int i) { return scale(i % w, i / w); });

What we can do now is transform from one-dimensional coordinates (the int8.
type), via two-dimensional coordinates (the (int, int) type), to Mandelbrot set
coordinates (the cmplx type), and then calculate the number of iterations from
there (the int type again). Let's combine all that in one function, which sets up
this call chain for us:

 auto to_iteration_count ([=](int i) {
 return mandelbrot_iterations(i_to_xy(i));
 });

Advanced Use of STL Algorithms Chapter 23

[721]

Now we can set up all the data. We assume that our resulting ASCII image is w9.
characters wide and h characters high. This can be saved in a one-dimensional
vector that has w * h elements. We fill this vector using std::iota with the
value range, 0 ... (w*h - 1). These numbers can be used as an input source for our
constructed transformation function range, which we just encapsulated in
to_iteration_count:

 vector<int> v (w * h);
 iota(begin(v), end(v), 0);
 transform(begin(v), end(v), begin(v), to_iteration_count);

That's basically it. We now have the v vector, which we initialized with one-10.
dimensional coordinates, but which then got overwritten by Mandelbrot iteration
counters. From this, we can now print a pretty image. We could just make the
terminal window w characters wide, then we would not need to print line break
symbols in between. But we can also kind of creatively misuse std::accumulate
to do the line breaks for us. The std::accumulate uses a binary function to
reduce a range. We provide it a binary function, which accepts an output iterator
(and which we will link to the terminal in the next step), and a single value from
the range. We print this value as a * character if the number of iterations is higher
than 50. Otherwise, we just print a space character. If we are on a row end
(because the counter variable n is evenly divisible by w), we print a line break
symbol:

 auto binfunc ([w, n{0}] (auto output_it, int x) mutable {
 ++output_it = (x > 50 ? '' : ' ');
 if (++n % w == 0) { ++output_it = 'n'; }
 return output_it;
 });

By calling std:accumulate on the input range, combined with our binary print11.
function and an ostream_iterator, we can flush the calculated Mandelbrot set
out to the terminal window:

 accumulate(begin(v), end(v), ostream_iterator<char>{cout},
 binfunc);
 }

Advanced Use of STL Algorithms Chapter 23

[722]

Compiling and running the program leads to the following output, which looks12.
like the initial detailed Mandelbrot image, but in a simplified form:

How it works...
The whole calculation took part during an std::transform call over a one-dimensional
array:

vector<int> v (w * h);
iota(begin(v), end(v), 0);
transform(begin(v), end(v), begin(v), to_iteration_count);

Advanced Use of STL Algorithms Chapter 23

[723]

So, what exactly happened, and why does it work this way? The to_iteration_count
function is basically a call chain from i_to_xy, over scale to mandelbrot_iterations.
The following diagram illustrates the transformation steps:

This way, we can use the index of a one-dimensional array as input, and get the number of
Mandelbrot formula iterations at the point of the two-dimensional plane, which this array
point represents. The good thing is that these three transformations are completely agnostic
about each other. Code with such a separation of concerns can be tested very nicely because
each component can be tested individually without the others. This way, it is easy to find
and fix bugs, or just reason about its correctness.

Building our own algorithm - split
In some situations, the existing STL algorithms are not enough. But nothing hinders us from
implementing our own. Before solving a specific problem, we should think about it firmly
in order to realize that many problems can be solved in generic ways. If we regularly pile
up some new library code while solving our own problems, then we are also helping our
fellow programmers when they have similar problems to solve. Key is to know when it is
generic enough and when not to go for more genericity than needed--else we end up with a
new general purpose language.

In this recipe, we are implementing an algorithm, which we will call split. It can split any
range of items at each occurrence of a specific value, and it copies the chunks that result
from that into an output range.

Advanced Use of STL Algorithms Chapter 23

[724]

How to do it...
In this section, we are going to implement our own STL-like algorithm called split, and
then we check it out by splitting an example string:

First things first, we include some STL library parts and declare that we use the1.
std namespace:

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <list>

 using namespace std;

The whole algorithm this section revolves around is split. It accepts a begin/end2.
pair of input iterators, and an output iterator, which makes it similar to
std::copy or std::transform at first. The other parameters are split_val
and bin_func. The split_val parameter is the value we are searching for in the
input range, which represents a splitting point at which we cut the input interval.
The bin_func parameter is a function that transforms a pair of iterators that
mark the beginning and the end of such a split chunk subrange. We iterate
through the input range using std::find, so we jump from occurrence to
occurrence of split_val values. When splitting a long string into its individual
words, we would jump from space character to space character. On every split
value, we stop by to form a chunk and feed it into the output range:

 template <typename InIt, typename OutIt, typename T, typename F>
 InIt split(InIt it, InIt end_it, OutIt out_it, T split_val,
 F bin_func)
 {
 while (it != end_it) {
 auto slice_end (find(it, end_it, split_val));
 *out_it++ = bin_func(it, slice_end);
 if (slice_end == end_it) { return end_it; }
 it = next(slice_end);
 }
 return it;
 }

Advanced Use of STL Algorithms Chapter 23

[725]

Let's use the new algorithm. We construct a string that we want to split. The item3.
that marks the end of the last chunk, and the beginning of the next chunk, shall
be the dash character '-':

 int main()
 {
 const string s {"a-b-c-d-e-f-g"};

Whenever the algorithm calls its bin_func on a pair of iterators, we want to4.
construct a new string from it:

 auto binfunc ([](auto it_a, auto it_b) {
 return string(it_a, it_b);
 });

The output range will be an std::list of strings. We can now call the split5.
algorithm, which has a similar design compared to all the other STL algorithms:

 list<string> l;
 split(begin(s), end(s), back_inserter(l), '-', binfunc);

In order to see what we got, let's print the new chunked list of strings:6.

 copy(begin(l), end(l), ostream_iterator<string>{cout, "n"});
 }

Compiling and running the program yields the following output. It contains no7.
dashes anymore and shows that it has isolated the individual words (which are,
of course, only single characters in our example string):

 $./split
 a
 b
 c
 d
 e
 f
 g

Advanced Use of STL Algorithms Chapter 23

[726]

How it works...
The split algorithm works in a similar manner to std::transform because it accepts a
pair of begin/end iterators of an input range and an output iterator. It does something with
the input range, which, in the end, results in assignments to the output iterator. Apart from
that, it accepts an item value called split_val and a binary function. Let's revisit the
whole implementation to fully understand it:

template <typename InIt, typename OutIt, typename T, typename F>
InIt split(InIt it, InIt end_it, OutIt out_it, T split_val, F bin_func)
{
 while (it != end_it) {
 auto slice_end (find(it, end_it, split_val));
 *out_it++ = bin_func(it, slice_end);

 if (slice_end == end_it) { return end_it; }
 it = next(slice_end);
 }
 return it;
}

The loop demands to iterate until the end of the input range. During each iteration, an
std::find call is used to find the next element in the input range, which equals to
split_val. In our case, that element is the dash character ('-') because we want to split
our input string at all the dash positions. The next dash position is now saved in
slice_end. After the loop iteration, the it iterator is put on the next item past that split
position. This way, the loop jumps directly from dash to dash, instead of over every
individual item.

In this constellation, the iterator it points to the beginning of the last slice, while
slice_end points to the end of the last slice. Both these iterators, in combination, mark the
beginning and end of the subrange that represents exactly one slice between two dash
symbols. In a string, "foo-bar-baz", this would mean that we have three loop iterations
and we get a pair of iterators every time, which surround one word. But we do not actually
want iterators but substrings. The binary function, bin_func, does just that for us. When
we called split, we gave it the following binary function:

[](auto it_a, auto it_b) {
 return string(it_a, it_b);
}

Advanced Use of STL Algorithms Chapter 23

[727]

The split function throws every pair of iterators through bin_func, before feeding it into
the output iterator. And we actually get string instances out of bin_func, which results in
"foo", "bar", and "baz":

There's more...
An interesting alternative to implementing our own algorithm for splitting strings would be
implementing an iterator that does the same. We are not going to implement such an iterator
at this point, but let's have a brief look at such a scenario.

The iterator would need to jump between delimiters on every increment. Whenever it is
dereferenced, it needs to create a string object from the iterator positions it currently points
to, which it could do using a binary function such as binfunc, which we used before.

If we had an iterator class called split_iterator, instead of an algorithm split, the user
code would look as follows:

string s {"a-b-c-d-e-f-g"};
list<string> l;

auto binfunc ([](auto it_a, auto it_b) {
 return string(it_a, it_b);
});

copy(split_iterator{begin(s), end(s), ‘-‘, binfunc},{}, back_inserter(l));

The downside of this approach is that implementing an iterator is usually more complicated
than a single function. Also, there are many subtle edges in iterator code that can lead to
bugs, so an iterator solution needs more tedious testing. On the other hand, it is very simple
to combine such an iterator with the other STL algorithms.

Composing useful algorithms from standard
algorithms - gather
A very nice example for the composability of STL algorithms is gather. Sean Parent,
principal scientist at Adobe Systems at the time, popularized this algorithm because it is
both useful and short. The way it is implemented, it is the ideal poster child for the idea of
STL algorithm composition.

Advanced Use of STL Algorithms Chapter 23

[728]

The gather algorithm operates on ranges of arbitrary item types. It modifies the order of
the items in such a way that specific items are gathered around a specific position, chosen
by the caller.

How to do it...
In this section, we will implement the gather algorithm and a bonus variation of it.
Afterward, we see how it can be put to use:

First, we add all the STL include statements. Then, we declare that we use the1.
std namespace:

 #include <iostream>
 #include <algorithm>
 #include <string>
 #include <functional>

 using namespace std;

The gather algorithm is a nice example of standard algorithm composition.2.
gather accepts a begin/end iterator pair, and another iterator gather_pos,
which points somewhere in between. The last parameter is a predicate function.
Using this predicate function, the algorithm will push all that items that do satisfy
the predicate near the gather_pos iterator. The implementation of the item
movement is done by std::stable_partition. The return value of the gather
algorithm is a pair of iterators. These iterators are returned from the
stable_partition calls, and this way, they mark the beginning and the end of
the now gathered range:

 template <typename It, typename F>
 pair<It, It> gather(It first, It last, It gather_pos, F predicate)
 {
 return {stable_partition(first, gather_pos, not_fn(predicate)),
 stable_partition(gather_pos, last, predicate)};
 }

Advanced Use of STL Algorithms Chapter 23

[729]

Another variant of gather is gather_sort. It basically works the same way as3.
gather, but it does not accept a unary predicate function; it accepts a binary
comparison function instead. This way, it is possible to gather the values near
gather_pos, which appear smallest or largest:

 template <typename It>

 void gather_sort(It first, It last, It gather_pos)

 {

 using T = typename std::iterator_traits<It>::value_type;

 stable_sort(first, gather_pos, greater<T>{});

 stable_sort(gather_pos, last, less<T>{});

 }

Let's put those algorithms to use. We start with a predicate, which tells if a given4.
character argument is the 'a' character. We construct a string, which consists of
wildly interleaved 'a' and '_' characters:

 int main()
 {
 auto is_a ([](char c) { return c == 'a'; });
 string a {"a_a_a_a_a_a_a_a_a_a_a"};

We construct an iterator, which points to the middle of our new string. Let's call5.
gather on it and see what happens. The 'a' characters should be gathered
around the middle afterward:

 auto middle (begin(a) + a.size() / 2);

 gather(begin(a), end(a), middle, is_a);
 cout << a << 'n';

Let's call gather again, but this time, the gather_pos iterator is not in the6.
middle but the beginning:

 gather(begin(a), end(a), begin(a), is_a);
 cout << a << 'n';

Advanced Use of STL Algorithms Chapter 23

[730]

In a third call, we gather items around the end iterator:7.

 gather(begin(a), end(a), end(a), is_a);
 cout << a << 'n';

With a last call of gather, we try to gather all the 'a' characters around the8.
middle again. This will not work as expected, and we will later see why:

 // This will NOT work as naively expected
 gather(begin(a), end(a), middle, is_a);
 cout << a << 'n';

We construct another string with underscore characters and some number values.9.
On that input sequence, we apply gather_sort. The gather_pos iterator is the
middle of the string, and the binary comparison function is std::less<char>:

 string b {"_9_2_4_7_3_8_1_6_5_0_"};
 gather_sort(begin(b), end(b), begin(b) + b.size() / 2,
 less<char>{});
 cout << b << 'n';
 }

Compiling and running the program yields the following interesting output. The10.
first three lines look like expected, but the fourth line looks like gather did
nothing to the string.
In the last line, we can see the result of the gather_short function. The numbers
appear sorted towards either direction:

 $./gather
 _____aaaaaaaaaaa_____
 aaaaaaaaaaa__________
 __________aaaaaaaaaaa
 __________aaaaaaaaaaa
 _____9743201568______

Advanced Use of STL Algorithms Chapter 23

[731]

How it works...
Initially, the gather algorithm is hard to grasp because it is very short but has a seemingly
complex task. Therefore, let's step through it:

The initial state is a range of items, for which we present a predicate function. In1.
the diagram, all items for which our predicate function returns true, are painted
in gray. The iterators a and c mark the whole range, and iterator b points to a
pivot element. The pivot element is the element around which we want to gather
all the gray items.
The gather algorithm calls std::stable_partition on the range [a, b) and2.
while doing that, it uses a negated version of the predicate. It negates the predicate
because std::stable_partition moves all items for which the predicate
returns true to the front. We want exactly the opposite to happen.

Advanced Use of STL Algorithms Chapter 23

[732]

Another std::stable_partition call is done but, this time, on the range, [b,3.
c), and without negating the predicate. The gray items are moved to the front of
the input range, which means they are all moved towards the pivot element
pointed at by b.
The items are now gathered around b and the algorithm returns iterators to the4.
beginning and the end of the now consecutive range of gray items.

We called gather multiple times on the same range. At first, we gathered all the items
around the middle of the range. Then we gathered the items around begin() and then
around end() of the range. These cases are interesting because they always lead one of the
std::stable_partition calls to operate on an empty range, which results in no action.

We did the last call to gather again with the parameters (begin, end, middle) of the
range, and that did not work. Why? At first, this looks like a bug, but actually, it is not.

Imagine the character range, "aabb", together with a predicate function, is_character_a,
which is only true for the 'a' items--if we call it with a third iterator pointing to the middle
of the character range, we would observe the same bug. The reason is that the first
stable_partition call would operate on the subrange, "aa", and the other
stable_partition call operates on the range, "bb". This series of calls cannot result in
"baab", which we initially naively hoped.

In order to get what we want in the last case, we could use
std::rotate(begin, begin + 1, end);

The gather_sort modification is basically the same as gather. The only difference is that
it does not accept a unary predicate function but a binary comparison function, just like
std::sort. And instead of calling std::stable_partition twice, it calls
std::stable_sort twice.

The negation of the comparison function cannot be done with not_fn, just like we did in
the gather algorithm because not_fn does not work on binary functions.

Advanced Use of STL Algorithms Chapter 23

[733]

Removing consecutive whitespace between
words
Because strings are often read from user input, they may contain wild formatting and often
need to be sanitized. One example of this is strings containing too many whitespace.

In this section, we will implement a slick whitespace filtering algorithm, which removes
excess whitespace from strings but leaves single whitespace characters untouched. We call
that algorithm remove_multi_whitespace, and its interface will look very STL-like.

How to do it...
In this section, we will implement the remove_multi_whitespace algorithm and check
out how it works:

As always, we do some includes first and then declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <string>
 #include <algorithm>

 using namespace std;

We implement a new STL-style algorithm called remove_multi_whitespace.2.
This algorithm removes clustered occurrences of whitespace, but no single
spaces. This means that a string line "a b" stays unchanged, but a string like
"a b" is shrunk to "a b". In order to accomplish this, we use std::unique with
a custom binary predicate function. The std::unqiue walks through an iterable
range and always looks at consecutive pairs of payload items. Then it asks the
predicate functions whether two items are equal. If they are, then std::unique
removes one of them. Afterward, the range does not contain subranges with
equal items sitting next to each other. Predicate functions that are usually applied
in this context tell whether two items are equal. What we do, is give
std::unique a predicate, which tells if there are two consecutive spaces in order
to get those removed. Just like std::unique, we accept a pair of begin/end
iterators, and then return an iterator pointing to the new end of the range:

 template <typename It>
 It remove_multi_whitespace(It it, It end_it)
 {

Advanced Use of STL Algorithms Chapter 23

[734]

 return unique(it, end_it, [](const auto &a, const auto &b) {
 return isspace(a) && isspace(b);
 });
 }

That is already it. Let's construct a string that contains some unnecessary3.
whitespace:

 int main()
 {
 string s {"fooo bar t baz"};
 cout << s << 'n';

Now, we use the erase-remove idiom on the string in order to get rid of the excess4.
whitespace characters:

 s.erase(remove_multi_whitespace(begin(s), end(s)), end(s));

 cout << s << 'n';
 }

Compiling and running the program yields the following output:5.

 $./remove_consecutive_whitespace
 fooo bar baz
 fooo bar baz

How it works...
We solved the whole complexity of the problem without any loop or manual comparison of
items. We only provided a predicate function, which tells if two given characters are
whitespace characters. Then we fed that predicate into std::unique and poof, all the excess
whitespace vanished. While this chapter also contains some recipes where we had to fight a
bit more to express our programs with STL algorithms, this algorithm is a really nice and
short example.

Advanced Use of STL Algorithms Chapter 23

[735]

How does this interesting combination work in detail? Let's have a look at a possible
implementation of std::unique first:

template<typename It, typename P>
It unique(It it, It end, P p)
{
 if (it == end) { return end; }

 It result {it};
 while (++it != end) {
 if (!p(*result, *it) && ++result != it) {
 *result = std::move(*it);
 }
 }
 return ++result;
}

The loop steps over the range items, while they do not satisfy the predicate condition. At
the point where an item satisfies the predicate, it moves such an item one item past the old
position, where the predicate fired the last time. The version of std::unique that does not
accept an additional predicate function checks whether two neighbor items are equal. This
way, it wipes out repeated characters as it can , for example, transform "abbbbbbc" to
"abc".

What we want is not wiping out all characters which are repetitive, but repetitive whitespace.
Therefore, our predicate does not say "both argument characters are equal", but "both argument
characters are whitespace characters".

One last thing to note is that neither std::unique nor remove_multi_whitespace really
removes character items from the underlying string. They only move characters within the
string according to their semantics and tell where its new end is. The removal of all now-
obsolete characters from the new end till the old end must still be done. This is why we
wrote the following:

s.erase(remove_multi_whitespace(begin(s), end(s)), end(s));

Advanced Use of STL Algorithms Chapter 23

[736]

This adheres to the erase-remove idiom, which we already know from vectors and lists.

Compressing and decompressing strings
This section deals with a relatively popular task in coding interviews. The basic idea is a
function, which takes a string like "aaaaabbbbbbbccc" and transforms it to a shorter
string "a5b7c3". It is "a5" because there are five 'a' characters. And then it is "b7"
because there are seven 'b' characters. This is a very simple compression algorithm. For
normal text, it is of reduced utility because normal language is usually not so repetitive that
its text representation would become shorter with this compression scheme. However, it is
relatively easy to implement even if we have to do it on a whiteboard without a computer.
The tricky part is that it is easy to write a buggy code if the program is not structured very
well from the beginning. Dealing with strings is generally not a hard thing, but the chances
of implementing buffer overflow bugs lurk around a lot here if legacy C-style formatting
functions are used.

Let's try an STL approach to implementing string compression and decompression using
this simple scheme.

How to do it...
In this section, we will implement simple compress and decompress functions for strings:

We include some STL libraries first, then we declare that we use the std1.
namespace:

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <sstream>
 #include <tuple>

 using namespace std;

Advanced Use of STL Algorithms Chapter 23

[737]

For our cheap compression algorithm, we try to find chunks of text containing2.
ranges of the same characters, and we compress those individually. Whenever we
start at one string position, we want to find the first position where it contains a
different character. We use std::find to find the first character in the range,
which is different than the character at the current position. Afterward, we return
a tuple containing an iterator to that first different item, the character variable c,
which fills the range at hand, and the number of occurrences that this subrange
contains:

 template <typename It>
 tuple<It, char, size_t> occurrences(It it, It end_it)
 {
 if (it == end_it) { return {it, '?', 0}; }
 const char c {*it};
 const auto diff (find_if(it, end_it,
 [c](char x) { return c != x; }));
 return {diff, c, distance(it, diff)};
 }

The compress algorithm continuously calls the occurrences function. This3.
way, we jump from one same character group to another. The r << c << n line
pushes the character into the output stream and then the number of occurrences
it has in this part of the input string. The output is a string stream that
automatically grows with our output. In the end, we return a string object from it,
which contains the compressed string:

 string compress(const string &s)
 {
 const auto end_it (end(s));
 stringstream r;

 for (auto it (begin(s)); it != end_it;) {
 const auto [next_diff, c, n] (occurrences(it, end_it));
 r << c << n;
 it = next_diff;
 }
 return r.str();
 }

Advanced Use of STL Algorithms Chapter 23

[738]

The decompress method works similarly, but it is much simpler. It continuously4.
tries to get a character value out of the input stream and, then, the following
number. From those two values, it can construct a string containing the character
as often as the number says. In the end, we again return a string from the output
stream. By the way, this decompress function is not safe. It can be exploited
easily. Can you guess, how? We will have a look at this problem later:

 string decompress(const string &s)
 {
 stringstream ss{s};
 stringstream r;
 char c;
 size_t n;
 while (ss >> c >> n) { r << string(n, c); }
 return r.str();
 }

In our main function, we construct a simple string with a lot of repetition, on5.
which the algorithm works very well. Let's print the compressed version, and
then the compressed and again decompressed version. In the end, we should get
the same string as we initially constructed:

 int main()
 {
 string s {"aaaaaaaaabbbbbbbbbccccccccccc"};
 cout << compress(s) << 'n';
 cout << decompress(compress(s)) << 'n';
 }

Compiling and running the program yields the following output:6.

 $./compress
 a9b9c11
 aaaaaaaaabbbbbbbbbccccccccccc

How it works...
This program basically revolves around two functions: compress and decompress.

The decompress function is really simple because it only consists of variable declarations, a
line of code, which actually does something, and the following return statement. The code
line which does something is the following one:

while (ss >> c >> n) { r << string(n, c); }

Advanced Use of STL Algorithms Chapter 23

[739]

It continuously reads the character, c, and the counter variable, n, out of the string stream,
ss. The stringstream class hides a lot of string parsing magic from us at this point. While
that succeeds, it constructs a decompressed string chunk into the string stream, from which
the final result string can be returned back to the caller of decompress. If c = 'a' and n =
5, the expression string(n, c) will result in a string with the content, "aaaaa".

The compress function is more complex. We also wrote a little helper function for it. We
called that helper function occurences. So, let's first have a glance at occurrences. The
following diagram shows how it works:

The occurences function accepts two parameters: an iterator pointing to the beginning of a
character sequence within a range and the end iterator of that range. Using find_if, it
finds the first character that is different from the character initially being pointed at. In the
diagram, this is the iterator, diff. The difference between that new position and the old
iterator position is the number of equal items (diff - it equals 6 in the diagram). After
calculating this information, the diff iterator can be reused in order to execute the next
search. Therefore, we pack diff, the character of the subrange, and the length of the
subrange into a tuple and return it.

With the information lined up like this, we can jump from subrange to subrange and push
the intermediate results into the compressed target string:

for (auto it (begin(s)); it != end_it;) {
 const auto [next_diff, c, n] (occurrences(it, end_it));
 r << c << n;
 it = next_diff;
}

Advanced Use of STL Algorithms Chapter 23

[740]

There's more...
In step 4, we mentioned that the decompress function is not safe. Indeed, it can easily be
exploited.

Imagine the following input string: "a00000". Compressing it will result in the substring
"a1" because there is only one character, 'a'. That is followed by five times '0', which
will result in "05". Together, this results in the compressed string "a105". Unfortunately,
this compressed string says "105 times the character 'a'". This has nothing to do with our
initial input string. Even worse, if we decompress it, we get from a six-character string to a
105-character string. Imagine the same with larger numbers--the user can easily blow up our
heap usage because our algorithm is not prepared for such inputs.

In order to prevent this, the compress function could, for example, reject input with
numbers, or it could mask them in a special way. And the decompress algorithm could
take another conditional, which puts an upper bound on the resulting string size. I am
leaving this as an exercise for you.

24
Strings, Stream Classes, and

Regular Expressions
We will cover the following recipes in this chapter:

Creating, concatenating, and transforming strings
Trimming whitespace from the beginning and end of strings
Getting the comfort of std::string without the cost of constructing
std::string objects
Reading values from user input
Counting all words in a file
Formatting your output with I/O stream manipulators
Initializing complex objects from file input
Filling containers from std::istream iterators
Generic printing with std::ostream iterators
Redirect output to files for specific code sections
Creating custom string classes by inheriting from std::char_traits
Tokenizing input with the regular expression library
Comfortably pretty printing numbers differently per context on the fly
Catching readable exceptions from std::iostream errors

Strings, Stream Classes, and Regular Expressions Chapter 24

[742]

Introduction
This chapter is devoted to string handling, parsing, and printing of arbitrary data. For such
jobs, STL provides its I/O stream library. The library basically consists of the following
classes, which are each depicted in gray boxes:

The arrows show the inheritance scheme of the classes. This might look very overwhelming
at first, but we will get to use most of these classes in this chapter and get familiar with
them class by class. When looking at those classes in the C++ STL documentation, we will
not find them directly with these exact names. That is because the names in the diagram are
what we see as application programmers, but they are really mostly just typedefs of classes
with a basic_ class name prefix (for example, we will have an easier job searching the STL
documentation for basic_istream rather than istream). The basic_* I/O stream classes
are templates that can be specialized for different character types. The classes in the
diagram are specialized on char values. We will use these specializations throughout the
book. If we prefix those class names with the w character, we get wistream, wostream, and
so on--these are the specialization typedefs for wchar_t instead of char, for example.

Strings, Stream Classes, and Regular Expressions Chapter 24

[743]

At the top of the diagram, we see std::ios_base. We will basically never use it directly,
but it is listed for completeness because all other classes inherit from it. The next
specialization is std::ios which embodies the idea of an object which maintains a stream
of data, that can be in good state, run empty of data state (EOF), or some kind of fail state.

The first specializations we are going to actually use are std::istream and
std::ostream. The "i" and the "o" prefix stand for input and output. We have seen them
in our earliest days of C++ programming in the simplest examples in form of the objects
std::cout and std::cin (but also std::cerr). These are instances of those classes,
which are always globally available. We do data output via ostream and input via
istream.

A class which inherits from both istream and ostream is iostream. It combines both
input and output capabilities. When we understand how all classes from the trio consisting
of istream, ostream and iostream can be used, we basically are ready to immediately
put all following ones to use, too:

ifstream, ofstream and fstream inherit from istream, ostream and iostream
respectively, but lift their capabilities to redirect the I/O from and to files from the
computer's filesystem.

The istringstream, ostringstream and iostringstream work pretty analogously.
They help build strings in memory, and/or consuming data from them.

Creating, concatenating, and transforming
strings
Even C++ programmers from the very old days will know about std::string. While
string handling is tedious and painful in C, especially when parsing, concatenating, copying
them, and so on, std::string is a real step forward regarding simplicity and safety.

Thanks to C++11, we don't even need to copy strings when we want to transfer ownership
to some other function or data structure anymore because we can move them. This way,
there's not much overhead involved in most cases.

Strings, Stream Classes, and Regular Expressions Chapter 24

[744]

The std::string got a few new features here and there over the last few standard
increments. What is completely new in C++17 is std::string_view. We will play with
both a bit (but there is another recipe, which concentrates more on std::string_view-
only features) to get a feeling of them and how they work in the C++17 era.

How to do it...
We will create strings and string views and do basic concatenation and transformation with
them in this section:

As always, we first include header files and declare that we use the std1.
namespace:

 #include <iostream>
 #include <string>
 #include <string_view>
 #include <sstream>
 #include <algorithm>

 using namespace std;

Let's first create string objects. The most obvious way is instantiating an object a2.
of class string. We control its content by giving the constructor a C-style string
(which will be embedded in the binary as a static array containing characters
after compiling). The constructor will copy it and make it the content of string
object a. Alternatively, instead of initializing it from a C-style string, we can use
the string literal operator ""s. It creates a string object on the fly. Using that to
construct object b, we can even use automatic type deduction:

 int main()
 {
 string a { "a" };
 auto b ("b"s);

Strings, Stream Classes, and Regular Expressions Chapter 24

[745]

The strings we just created are copying their input from the constructor argument3.
into their own buffer. In order to not copy, but reference the underlying string, we
can use string_view instances. This class does also have a literal operator, and
it is called ""sv:

 string_view c { "c" };
 auto d ("d"sv);

Okay, now let's play with our strings and string views. For both types, there are4.
operator<< overloads for the std::ostream class, so they can be printed
comfortably:

 cout << a << ", " << b << 'n';
 cout << c << ", " << d << 'n';

The string class overloads operator+, so we can add two strings and get their5.
concatenation as a result. This way, "a" + "b" results in "ab". Concatenating a
and b this way is easy. With a and c, it is not that easy, because c is not a string,
but a string_view. We have to get the string out of c first, and this can be done
by constructing a new string from c, and then adding it to a. At this point one
could ask, "Wait, why are you copying c into an intermediate string object just in
order to add it to a? Can't you avoid that copy by using c.data()?" That is a nice
idea, but it has a flaw--string_view instances do not have to carry zero-
terminated strings. And this is a problem that can lead to buffer overflows:

 cout << a + b << 'n';
 cout << a + string{c} << 'n';

Let's create a new string, which contains all of the strings and string views we just6.
created. By using std::ostringstream, we can print any variable into a stream
object that behaves exactly like std::cout, but it doesn't print to the shell.
Instead, it prints into a string buffer. After we streamed all the variables with some
separating space between them using operator<<, we can construct and print a
new string object from that with o.str():

 ostringstream o;
 o << a << " " << b << " " << c << " " << d;
 auto concatenated (o.str());
 cout << concatenated << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[746]

We can now also transform that new string by converting all its letters to upper7.
case, for example. The C library function toupper, which maps lower-case
characters to upper-case characters and leaves other characters unchanged, is
already available and can be combined with std::transform because a string is
basically also an iterable container object with char items:

 transform(begin(concatenated), end(concatenated),
 begin(concatenated), ::toupper);
 cout << concatenated << 'n';
 }

Compiling and running the program leads to the following output, which is just8.
what we expected:

 $./creating_strings
 a, b
 c, d
 ab
 ac
 a b c d
 A B C D

How it works...
Obviously, strings can be added with the + operator like numbers, but that has nothing to
do with math but results in concatenated strings. In order to mix this with string_view, we
need to convert to std::string first.

However, it is really important to note that when mixing strings and string views in code,
we must never assume that the underlying string behind a string_view is zero terminated!
This is why we would rather write "abc"s + string{some_string_view} than "abc"s
+ some_string_view.data(). Aside from that, std::string provides a member
function, append, which can handle string_view instances, but it alters the string instead
of returning a new one with the string view content appended.

std::string_view is useful, but be cautious when mixing it with strings
and string functions. We cannot assume that they are zero-terminated,
which breaks things quickly in a standard string environment.
Fortunately, there are often proper function overloads, which can deal
with them the right way.

Strings, Stream Classes, and Regular Expressions Chapter 24

[747]

If we want to do complex string concatenation with formatting and so on, we should
however not do that piece by piece on string instances. The std::stringstream,
std::ostringstream, and std::istringstream classes are much better suited for this,
as they enhance the memory management while appending, and provide all the formatting
features we know from streams in general. The std::ostringstream class is what we
chose in this section because we were going to create a string instead of parsing it. An
std::istringstream instance could have been instantiated from an existing string, which
we could have then comfortably parsed into variables of other types. If we want to combine
both, std::stringstream is the perfect all-rounder.

Trimming whitespace from the beginning
and end of strings
Especially when obtaining strings from user input, they are often polluted with unneeded
white space. In another recipe, we removed excess whitespace that occurred between
words.

Let's now have a look at strings that are surrounded by whitespace and remove that. The
std::string has some nice helper functions for getting this job done.

After reading this recipe that shows how to do this with plain string
objects, make sure to also read the following recipe. There we will see how
to avoid unnecessary copies or data modifications with the new
std::string_view class.

How to do it...
In this section, we will write a helper function that identifies surrounding white space in a
string and returns a copy without that, and then we are going to test it briefly.

As always, the header includes and using directive come first:1.

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <cctype>

 using namespace std;

Strings, Stream Classes, and Regular Expressions Chapter 24

[748]

Our function to trim whitespace surrounding a string takes a const reference to2.
an existing string. It will return a new string without any surrounding
whitespace:

 string trim_whitespace_surrounding(const string &s)
 {

The std::string provides two handy functions, which help us a lot. The first is3.
string::find_first_not_of, which accepts a string containing all the
characters we want to skip over. This is, of course, whitespace, meaning the
characters space ' ', tab 't', and new line, 'n'. It returns us the first non-
whitespace character position. If there is only whitespace in the string, it returns
string::npos. This means that there is only an empty string left if we trim
whitespace from it. So, in such a case, let's just return an empty string:

 const char whitespace[] {" tn"};
 const size_t first (s.find_first_not_of(whitespace));
 if (string::npos == first) { return {}; }

We know now where the new string has to begin, but we don't yet know where it4.
has to end. Therefore, we use the other handy string function
string::find_last_not_of. It will return us the last character position in the
string which is no whitespace:

 const size_t last (s.find_last_not_of(whitespace));

Using string::substr, we can now return the part of the string, which is5.
surrounded by whitespace but without the white space. This function takes two
parameters--a position in the string to begin with and the number of characters after
this position:

 return s.substr(first, (last - first + 1));
 }

That's it. Let's write a main function in which we create a string that surrounds a6.
text sentence with all kinds of whitespace, in order to trim it:

 int main()
 {
 string s {" tn string surrounded by ugly"
 " whitespace tn "};

Strings, Stream Classes, and Regular Expressions Chapter 24

[749]

We print the untrimmed and trimmed versions of the string. By surrounding the7.
string with brackets, it's more obvious which whitespace belonged to it prior to
trimming:

 cout << "{" << s << "}n";
 cout << "{"
 << trim_whitespace_surrounding(s)
 << "}n";
 }

Compiling and running the program yields us the output we expected:8.

 $./trim_whitespace
 {
 string surrounded by ugly whitespace
 }
 {string surrounded by ugly whitespace}

How it works...
In this section, we used string::find_first_not_of and
string::find_last_not_of. Both functions accept a C-style string, which acts as a list of
characters that should be skipped while searching a different character. If we have a string
instance that carries the string, "foo bar", and we call find_first_not_of("bfo ") on
it, it will return us the value 5, because the 'a' character is the first one that is not in the
"bfo " string. The order of the characters in the argument string is not important.

The same functions exist with inverted logic, although we did not use them in this recipe:
string::find_first_of and string::find_last_of.

Similar to iterator based functions, we need to check if these functions return an actual
position in the string or a value that denotes that they did not find a character position
fulfilling the constraints. If they did not find one, they return string::npos.

From the character positions we retrieved from these functions in our helper function, we
built us a substring without surrounding whitespace, using string::substring. This
function accepts a relative offset and a string length and then returns a new string instance
with its own memory, which contains only that substring. For example,
string{"abcdef"}.substr(2, 2) will return us a new string "cd".

Strings, Stream Classes, and Regular Expressions Chapter 24

[750]

Getting the comfort of std::string without the
cost of constructing std::string objects
The std::string class is a really useful class because it simplifies dealing with strings so
much. A flaw is that if we want to pass around a substring of it, we need to pass a pointer
and a length variable, two iterators, or a copy of the substring. We did that in the previous
recipe, where we removed the surrounding whitespace from a string by taking a copy of the
substring range that does not contain the surrounding whitespace.

If we want to pass a string or a substring to a library that does not even support
std::string, we can only provide a raw string pointer, which is a bit disappointing,
because it sets us back to the old C days. Just as with the substring problem, a raw pointer
does not carry information about the string length with it. This way, one would have to
implement a bundle of a pointer and a string length.

In a simplified way, this is exactly what std::string_view is. It is available since C++17
and provides a way to pair a pointer to some string together with that string's size. It
embodies the idea of having a reference type for arrays of data.

If we design functions which formerly accepted std::string instances as parameters, but
did not change them in a way that would require the string instances to reallocate the
memory that holds the actual string payload, we could now use std::string_view and
be more compatible with libraries that are STL-agnostic. We could let other libraries
provide a string_view view on the payload strings behind their complex string
implementations and then use that in our STL code. This way, the string_view class acts
as a minimal and useful interface, which can be shared among different libraries.

Another cool thing is that string_view can be used as a non-copy reference to substrings
of larger string objects. There are a lot of possibilities to use it profitably. In this section, we
will play around with string_view in order to get a feeling for its ups and downs. We will
also see how we can hide the surrounding whitespace from strings by adapting string views
instead of modifying or copying the actual string. This method avoids unnecessary copying
or data modification.

Strings, Stream Classes, and Regular Expressions Chapter 24

[751]

How to do it...
We are going to implement a function that relies on some string_view features, and then,
we see how many different types we can feed into it:

The header includes and using directive come first:1.

 #include <iostream>
 #include <string_view>

 using namespace std;

We implement a function that accepts a string_view as its only argument:2.

 void print(string_view v)
 {

Before doing anything with the input string, we remove any leading and trailing3.
whitespace. We are not going to change the string, but the view on the string by
narrowing it down to the actual non-whitespace part of the string. The
find_first_not_of function will find the first character in the string, which is
not space (' '), not a tab character ('t'), and not a newline character ('n'). With
remove_prefix, we advance the internal string_view pointer to the first non-
whitespace character. In case the string contains only whitespace, the
find_first_not_of function returns the value npos, which is size_type(-1).
As size_type is an unsigned variable, this boils down to a very large number.
So, we take the smaller one of both: words_begin or the string view's size:

 const auto words_begin (v.find_first_not_of(" tn"));
 v.remove_prefix(min(words_begin, v.size()));

We do the same with trailing whitespace. The remove_suffix shrinks down the4.
view's size variable:

 const auto words_end (v.find_last_not_of(" tn"));
 if (words_end != string_view::npos) {
 v.remove_suffix(v.size() - words_end - 1);
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[752]

Now we can print the string view and its length:5.

 cout << "length: " << v.length()
 << " [" << v << "]n";
 }

In our main function, we play around with the new print function by feeding it6.
with completely different argument types. First, we give it a runtime char*
string from the argv pointer. At runtime, it contains the file name of our
executable. Then, we give it an empty string_view instance. We then feed it
with a C-style static character string, and with a ""sv literal, which constructs us
a string_view on the fly. And finally, we give it an std::string. The nice
thing is that none of these arguments are modified or copied in order to call the
print function. No heap allocations happen. For many and/or large strings, this
is very efficient:

 int main(int argc, char *argv[])
 {
 print(argv[0]);
 print({});
 print("a const char * array");
 print("an std::string_view literal"sv);
 print("an std::string instance"s);

We did not test the whitespace removal feature. So, let's give it a string that has a7.
lot of leading and trailing whitespace:

 print(" tn foobar n t ");

Another cool feature is that the strings string_view gives us access to do not8.
have to be zero-terminated. If we construct a string, such as "abc", without a
trailing zero, the print function can still safely handle it because string_view
also carries the size of the string it points to:

 char cstr[] {'a', 'b', 'c'};
 print(string_view(cstr, sizeof(cstr)));
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[753]

Compiling and running the program yields the following output. All the strings9.
are correctly handled. The string we filled with lots of leading and trailing
whitespace is correctly filtered, and the abc string without zero termination is
also correctly printed without any buffer overflows:

 $./string_view
 length: 17 [./string_view]
 length: 0 []
 length: 20 [a const char * array]
 length: 27 [an std::string_view literal]
 length: 23 [an std::string instance]
 length: 6 [foobar]
 length: 3 [abc]

How it works...
We have just seen that we can call a function that accepts a string_view argument with
basically anything that is string like in the sense that it stores characters in a contiguous
way. No copy of the underlying string was made in any of our print calls.

It is interesting to note that in our print(argv[0]) call, the string view automatically
determined the string length because this is a zero-terminated string by convention. The
other way around, one cannot assume that it is possible to determine a string_view
instances's data length by counting the number of items until a zero terminator is reached.
Because of this, we must always be careful about where we reach around a pointer to the
string view data using string_view::data(). Usual string functions mostly assume zero
termination and, thus, can buffer overflow very badly with raw pointers to the payload of a
string view. It is always better to use interfaces that already expect a string view.

Apart from that, we get a lot of the luxury interface we know from std::string already.

Use std::string_view for passing strings or substrings where you want
to avoid copies or heap allocations, without losing the comfort of string
classes. But be aware of the fact that std::string_view drops the
assumption that strings are zero terminated.

Strings, Stream Classes, and Regular Expressions Chapter 24

[754]

Reading values from user input
A lot of recipes in this book read values from an input source, such as standard input or a
file, and do something with it. This time we concentrate only on the reading and learn more
about error handling, which becomes important if reading something from a stream did not
go well and we need to handle it other than terminating the whole program.

We will only read from user input in this recipe, but as soon as we know how to do that, we
also know how to read from any other stream. User input is read via std::cin, and that is
essentially an input stream object, such as instances of ifstream and istringstream are.

How to do it...
In this section, we are going to read user input into different variables, and see how to
handle errors, as well as how to do a little bit more complex tokenizing of input into useful
chunks:

We only need iostream this time. So, let's include this single header and declare1.
that we use the std namespace by default:

 #include <iostream>

 using namespace std;

Let's first prompt the user to enter two numbers. We will parse them into an int2.
and a double variable. The user can separate them with white space. 1 2.3, for
example, is a valid input:

 int main()
 {
 cout << "Please Enter two numbers:n> ";
 int x;
 double y;

Parsing and error checking is done at the same time in the condition part of our3.
if branch. Only if both the numbers could be parsed are they meaningful to us
and we print them:

 if (cin >> x >> y) {
 cout << "You entered: " << x
 << " and " << y << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[755]

If the parsing did not succeed for any reason, we tell the user that the parsing did4.
not go well. The cin stream object is now in a fail state and will not give us other
input until we clear the fail state again. In order to be able to parse a new input
afterward, we call cin.clear() and drop all input we received until now. The
dropping is done with cin.ignore, where we specify that we are dropping the
maximum number of characters until we finally see a newline character, which is
also dropped. Everything after that is interesting input again:

 } else {
 cout << "Oh no, that did not go well!n";
 cin.clear();
 cin.ignore(
 std::numeric_limits<std::streamsize>::max(),
 'n');
 }

Let's now ask for some other input. We let the user enter names. As names can5.
consist multiple words separated by spaces, the space character is not a good
separator any longer. Therefore, we use std::getline, which accepts a stream
object, such as cin, a string reference where it will copy the input into, and a
separating character. Let's choose comma (,) as the separating character. By not
just using cin alone and by using cin >> ws as a stream parameter for getline
instead, we can make cin drop any leading whitespace before any name. In
every loop step, we print the current name, but if a name is empty, we drop out
of the loop:

 cout << "now please enter some "
 "comma-separated names:n> ";
 for (string s; getline(cin >> ws, s, ',');) {
 if (s.empty()) { break; }
 cout << "name: "" << s << ""n";
 }
 }

Compiling and running the program leads to the following output, in which we6.
assumingly entered only valid inputs. The numbers are "1 2", which are parsed
correctly, and then we enter some names which are then also listed correctly. An
empty name input in the form of two consecutive commas quits the loop:

 $./strings_from_user_input
 Please Enter two numbers:
 > 1 2
 You entered: 1 and 2
 now please enter some comma-separated names:

Strings, Stream Classes, and Regular Expressions Chapter 24

[756]

 > john doe, ellen ripley, alice, chuck norris,,
 name: "john doe"
 name: "ellen ripley"
 name: "alice"
 name: "chuck norris"

When running the program again, while entering bad numbers in the beginning,7.
we see that the program correctly takes the other branch, drops the bad input and
correctly continues with the name listening. Play around with the cin.clear()
and cin.ignore(...) lines to see how that tampers with the name reading
code:

 $./strings_from_user_input
 Please Enter two numbers:
 > a b
 Oh no, that did not go well!
 now please enter some comma-separated names:
 > bud spencer, terence hill,,
 name: "bud spencer"
 name: "terence hill"

How it works...
We did some complex input retrieval in this section. The first noticeable thing is that we
always did the retrieval and error checking at the same time.

The result of the expression cin >> x is again a reference to cin. This way, we can write
cin >> x >> y >> z >> At the same time, it is possible to convert it into a Boolean
value by using it in a Boolean context such as if conditions. The Boolean value tells us if
the last read was successful. That is why we were able to write if (cin >> x >> y)
{...}.

Strings, Stream Classes, and Regular Expressions Chapter 24

[757]

If we, for example, try to read an integer, but the input contains "foobar" as the next
token, then parsing this into the integer is not possible and the stream object enters a fail
state. This is only critical for the parsing attempt but not for the whole program. It is okay to
reset it and then to try anything else. In our recipe program, we tried to read a list of names
after a potentially failing attempt to read two numbers. In the case of a failing attempt to
read those numbers in, we used cin.clear() to put cin back into a working state. But
then, its internal cursor was still on what we typed instead of numbers. In order to drop this
old input and clear the pipe for the names input, we used the very long expression,
cin.ignore(std::numeric_limits<std::streamsize>::max(), 'n');. This is
necessary to clear whatever is in the buffer at this point, because we want to start with a
really fresh buffer when we ask the user for a list of names.

The following loop might look strange at first, too:

for (string s; getline(cin >> ws, s, ',');) { ... }

In the conditional part of the for loop, we use getline. The getline function accepts an
input stream object, a string reference as an output parameter, and a delimiter character. By
default, the delimiter character is the newline symbol. Here, we defined it to be the comma
(,) character, so all the names in a list, such as "john, carl, frank", are read
individually.

So far, so good. But what does it mean to provide the cin >> ws function as a stream
object? This makes cin first flush all the whitespace, which lead before the next non-
whitespace character and after the last comma. Looking back at the "john, carl, frank"
example, we would get the substrings "john", " carl", and " frank" without using ws.
Notice the unnecessary leading space characters for carl and frank? These effectively
vanish because of our ws pretreatment of the input stream.

Counting all words in a file
Let's say we read a text file and we want to count the number of words in the text. We
define that one word is a range of characters between whitespace characters. How do we do
it?

We could count the number of spaces, for example, because there must be spaces between
words. In the sentence, "John has a funny little dog.", we have five space
characters, so we could say there are six words.

Strings, Stream Classes, and Regular Expressions Chapter 24

[758]

What if we have a sentence with whitespace noise, such as " John has t anfunny
little dog ."? There are way too many unnecessary spaces in this string, and it's not
even only spaces. From the other recipes in this book, we already learned how we can
remove such excess whitespace. So, we could first preprocess the string into a normal
sentence form and then apply the strategy of counting space characters. Yes, that is doable,
but there is a much easier way. Why shouldn't we use what the STL already provides us?

In addition to finding an elegant solution for this problem, we will let the user choose if we
shall count the words from the standard input or a text file.

How to do it...
In this section, we will write a one-liner function that counts the words from an input
buffer, and let the user choose where the input buffer reads from:

Let's include all the necessary headers first and declare that we use the std1.
namespace:

 #include <iostream>
 #include <fstream>
 #include <string>
 #include <algorithm>
 #include <iterator>

 using namespace std;

Our wordcount function accepts an input stream, for example, cin. It creates an2.
std::input_iterator iterator, which tokenizes the strings out of the stream
and then feeds them to std::distance. The distance parameter accepts two
iterators as arguments and tries to determine how many incrementing steps are
needed in order to get from one iterator position to the other. For random access
iterators, this is simple because they implement the mathematical difference
operation (operator-). Such iterators can be subtracted from each other like
pointers. An istream_iterator however, is a forward iterator and must be
advanced until it equals the end iterator. Eventually, the number of steps needed
is the number of words:

 template <typename T>
 size_t wordcount(T &is)
 {
 return distance(istream_iterator<string>{is}, {});
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[759]

In our main function, we let the user choose if the input stream will be std::cin3.
or an input file:

 int main(int argc, char **argv)
 {
 size_t wc;

If the user launches the program in the shell together with a file name (such as $4.
./count_all_words some_textfile.txt), then we obtain that filename from
the argv command-line parameter array and open it, in order to feed the new
input file stream into wordcount:

 if (argc == 2) {
 ifstream ifs {argv[1]};
 wc = wordcount(ifs);

If the user launched the program without any parameter, we assume that the5.
input comes from standard input:

 } else {
 wc = wordcount(cin);
 }

That's already it, so we just print the number of words we saved in the variable6.
wc:

 cout << "There are " << wc << " wordsn";
 };

Let's compile and run the program. First, we feed the program from standard7.
input without any file parameter. We can either pipe an echo call with some
words into it or launch the program and enter some words from the keyboard. In
the latter case, we can stop the input by pressing Ctrl+D. This is how echoing
some words into the program looks:

 $ echo "foo bar baz" | ./count_all_words
 There are 3 words

When launching the program with its source code file as input, it will count how8.
many words it consists of:

 $./count_all_words count_all_words.cpp
 There are 61 words

Strings, Stream Classes, and Regular Expressions Chapter 24

[760]

How it works...
There is not much left to say; most of it has been explained while implementing it as this
program is very short. One thing we could elaborate on a bit is the fact that we used
std::cin and an std::ifstream instance in a completely interchangeable way. The cin
is of the std::istream type, and std::ifstream inherits from std::istream. Have a
look at the class inheritance diagram at the beginning of this chapter. This way, they are
completely interchangeable, even at runtime.

Keep your code modular by using stream abstractions. This helps
decouple source code parts and makes your code easy to test because you
can just inject any other matching type of stream.

Formatting your output with I/O stream
manipulators
In many cases, just printing out strings and numbers is not enough. Sometimes, numbers
need to be printed as decimal numbers, sometimes as hexadecimal, and sometimes even as
octal. Sometimes we want to see a "0x" prefix in front of hexadecimal numbers, sometimes
not.

When printing floating-point numbers, there are also a lot of things we may want to have
an influence on. Should the decimal values always be printed with the same precision?
Should they be printed at all? Or perhaps, we want a scientific notation?

Apart from scientific presentation and hexadecimal, octal, and so on, we also want to
present the user output in a tidy form. Some output can be arranged in tables, for example,
in order to make it as readable as possible.

All these things are, of course, possible with output streams. Some of these settings are also
important when parsing values from input streams. In this recipe, we will get a feeling of
such so-called I/O manipulators by playing around with them. Sometimes, they appear
tricky, so we will also get into some details.

Strings, Stream Classes, and Regular Expressions Chapter 24

[761]

How to do it...
In this section, we will print numbers with wildly varying format settings, in order to get
familiar with I/O manipulators:

First, we include all the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <locale>

 using namespace std;

Next, we define a helper function that prints a single integer value with different2.
styles. It accepts a padding width and a filling character for padding, which is set
to space ' ' by default:

 void print_aligned_demo(int val,
 size_t width,
 char fill_char = ' ')
 {

With setw, we can set the minimum number of characters output for printing a3.
number. If we print 123 with a width of 6, for example, we get " 123", or "123
". We can control on which side the padding occurs with std::left,
std::right, and std::internal. When printing numbers in the decimal form,
internal looks identical to right. But if we print the value 0x1, for example,
with a width of 6 and with internal, we get "0x 6". The setfill manipulator
defines the character that will be used for padding. We will try different styles:

 cout << "================n";
 cout << setfill(fill_char);
 cout << left << setw(width) << val << 'n';
 cout << right << setw(width) << val << 'n';
 cout << internal << setw(width) << val << 'n';
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[762]

In the main function, we start using the function we just implemented. At first,4.
we print the value 12345, with a width of 15. We do this twice, but the second
time, we use the '_' character for padding:

 int main()
 {
 print_aligned_demo(123456, 15);
 print_aligned_demo(123456, 15, '_');

Afterward, we print the value 0x123abc with the same width as before.5.
However, before doing this, we apply std::hex and std::showbase to tell the
output stream object cout that it should print numbers in the hexadecimal
format and that it should prepend "0x" to them so that it is obvious that they are
to be interpreted as hex:

 cout << hex << showbase;
 print_aligned_demo(0x123abc, 15);

We can do the same with oct, which tells cout to use the octal system for6.
printing numbers. The showbase is still active, so 0 will be prepended to every
printed number:

 cout << oct;
 print_aligned_demo(0123456, 15);

With hex and uppercase, we get the 'x' in "0x" printed upper case. The 'abc'7.
in '0x123abc' is also upper cased:

 cout << "A hex number with upper case letters: "
 << hex << uppercase << 0x123abc << 'n';

If we want to print 100 in the decimal format again, we have to remember that8.
we switched the stream to hex before. By using dec, we can put it back to
normal:

 cout << "A number: " << 100 << 'n';
 cout << dec;
 cout << "Oops. now in decimal again: " << 100 << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[763]

We can also configure how Boolean values are printed. By default, true is9.
printed as 1 and false as 0. With boolalpha, we can set it to a text
representation:

 cout << "true/false values: "
 << true << ", " << false << 'n';
 cout << boolalpha
 << "true/false values: "
 << true << ", " << false << 'n';

Let's have a look at floating-point variables of the float and double types. If we10.
print a number such as 12.3, it is printed as 12.3, of course. If we have a number
such as 12.0, the output stream will just drop the decimal point, which we can
change with showpoint. Using this, the decimal point is always displayed:

 cout << "doubles: "
 << 12.3 << ", "
 << 12.0 << ", "
 << showpoint << 12.0 << 'n';

The representation of a floating-point number can be scientific or fixed.11.
scientific means that the number is normalized to such a form that the first
digit is the only digit before the decimal point, and then the exponent is printed,
which is needed to multiply the number back to its actual size. For example, the
value 300.0 would be printed as "3.0E2", because 300 equals 3.0 * 10^2.
fixed reverts back to the normal decimal point notation:

 cout << "scientific double: " << scientific
 << 123000000000.123 << 'n';
 cout << "fixed double: " << fixed
 << 123000000000.123 << 'n';

Apart from the notation, we can also decide with what precision a floating-point12.
number is printed. Let's create a very small value and print it with 10 digits after
the decimal point, and once with just one digit after the decimal point:

 cout << "Very precise double: "
 << setprecision(10) << 0.0000000001 << 'n';
 cout << "Less precise double: "
 << setprecision(1) << 0.0000000001 << 'n';
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[764]

Compiling and running the program yields us the following lengthy output.13.
Those four first blocks of output are from the print helper function that tampered
around with the setw and left/right/internal modifiers. Afterward, we
played with the casing of base representations, Boolean representation, and
floating-point formatting. It is a good idea to play with each of these to get
familiar with them:

 $./formatting
 ================
 123456
 123456
 123456
 ================
 123456_________
 _________123456
 _________123456
 ================
 0x123abc
 0x123abc
 0x 123abc
 ================
 0123456
 0123456
 0123456
 A hex number with upper case letters: 0X123ABC
 A number: 0X64
 Oops. now in decimal again: 100
 true/false values: 1, 0
 true/false values: true, false
 doubles: 12.3, 12, 12.0000
 scientific double: 1.230000E+11
 fixed double: 123000000000.123001
 Very precise double: 0.0000000001
 Less precise double: 0.0

Strings, Stream Classes, and Regular Expressions Chapter 24

[765]

How it works...
All these, sometimes pretty long, << foo << bar stream expressions are really confusing if
it is not clear to the reader what each of them does. Therefore, let's have a look at a table of
existing formatting modifiers. They are all to be placed in a input_stream >> modifier
or output_stream << modifier expression and then affect the following input or
output:

Symbol Meaning

setprecision(int n)
Sets the precision parameter when printing or parsing floating-
point values.

showpoint / noshowpoint
Enables or disables the printing of the decimal point of
floating-point numbers even if they do not have any
decimal places.

fixed / scientific /
hexfloat / defaultfloat

Numbers can be printed in a fixed style (which is the most
intuitive one) or scientific style. fixed and scientific
stand for these modes. hexfloat activates both modes, which
formats floating-point numbers in hexadecimal floating-point
notation. defaultfloat deactivates both modes.

showpos / noshowpos Enable or disable printing a '+' prefix for positive floating-
point values.

setw(int n)
Read or write exactly n characters. When reading, this
truncates the input. When printing, padding is applied if the
output would be shorter than n characters.

setfill(char c)
When applying padding (see setw), fill the output with
character values, c. The default is space (' ').

internal / left / right

left and right control where the padding for fixed-width
prints (see setw) occurs. internal puts padding characters
in the middle between integers and their negative sign, the hex
prefix and a hexadecimally printed value, or monetary units
and values.

dec / hex / oct Integral values can be printed and parsed in the decimal,
hexadecimal, and octal base systems.

Strings, Stream Classes, and Regular Expressions Chapter 24

[766]

setbase(int n)

This is the numeric synonymous function to dec/hex/oct,
which are equivalent if used with the values 10/16/8. Other
values reset the base choice to 0, which leads to decimal
printing again, or parsing based on the prefix of the input.

quoted(string)
Prints string in quotes or parse from quoted input, and then
drops the quotes. string can be a String class instance or a C-
style character array.

boolalpha / noboolalpha Prints or parses Boolean values as/from alphabetical
representation rather than 1/0 strings.

showbase / noshowbase Enables or disables base-prefixes when printing or parsing
numbers. For hex, this is 0x; for octal it is 0.

uppercase / nouppercase Enables or disables upper casing or alphabetical characters
when printing floating-point and hexadecimal values.

The best way to get familiar with those is studying their variety a bit and playing with
them.

When playing with them, however, we might have noticed already that most of these
modifiers appear to be sticky and a few of them, not so. Sticky means that once applied, they
appear to influence the input/output forever until they are reset again. The only non-sticky
ones from this table are setw and quoted. They only affect the next item in the
input/output. This is important to know because if we print some output with certain
formatting, we should tidy up our stream object formatting settings afterward, because the
next output from unrelated code may otherwise look crazy. Same applies to input parsing,
where things can break with the wrong I/O manipulator options.

We did not really use any of those because they do not have to do anything with
formatting, but for the reason of completeness, we should also have a look at some other
stream state manipulators:

Symbol Meaning

skipws / noskipws Enables or disables the feature of input streams skipping whitespace

unitbuf /
nounitbuf

Enables or disables immediate output buffer flushing after any output
operation

ws
Can be used on input streams to skip any whitespace at the head of the
stream

ends Writes a string-terminating '' character into a stream

Strings, Stream Classes, and Regular Expressions Chapter 24

[767]

flush Immediately flushes out whatever is in the output buffer

endl Inserts a 'n' character into an output stream and flushes the output

From these, only skipws/noskipws and unitbuf/nounitbuf appear sticky.

Initializing complex objects from file input
Reading in individual integers, floats, and word strings is really easy, because the >>
operator of input stream objects is overloaded for all these types, and input streams
conveniently drop all in-between whitespace for us.

But what if we have a more complex structure that we want to read from an input stream,
and if we need to read strings that contain more than one word (as they would normally be
chunked into single words because of the whitespace skipping)?

For any type, it is possible to provide another input stream operator>> overload, and we
are going to see how to do it.

How to do it...
In this section, we'll define a custom data structure and provide facilities to read such items
from input streams as standard input:

We need to include some headers first and for comfort, we declare that we use1.
the std namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <vector>

 using namespace std;

Strings, Stream Classes, and Regular Expressions Chapter 24

[768]

As a complex object example, we define a city structure. A city shall have a2.
name, a population count, and geographic coordinates:

 struct city {
 string name;
 size_t population;
 double latitude;
 double longitude;
 };

In order to be able to read such a city from a serial input stream, we need to3.
overload the stream function operator>>. In this operator, we first skip all the
leading whitespace with ws, because we do not want whitespace to pollute the
city name. Then, we read a whole line of text input. This implies that in the input
file, there is a whole text line only carrying the name of a city object. Then, after a
newline character, a whitespace-separated list of numbers follows, indicating the
population, the geographic latitude, and the longitude:

 istream& operator>>(istream &is, city &c)
 {
 is >> ws;
 getline(is, c.name);
 is >> c.population
 >> c.latitude
 >> c.longitude;
 return is;
 }

In our main function, we create a vector that can hold a range of city items. We4.
fill it using std::copy. The input of the copy call is an istream_iterator
range. By giving it the city struct type as a template parameter, it will use the
operator>> function overload, which we just implemented:

 int main()
 {
 vector<city> l;
 copy(istream_iterator<city>{cin}, {},
 back_inserter(l));

Strings, Stream Classes, and Regular Expressions Chapter 24

[769]

In order to see whether our city parsing went right, we print what we got in the5.
list. The I/O formatting, left << setw(15) <<, leads to the city name being
filled with whitespace, so we get our output in a nicely readable form:

 for (const auto &[name, pop, lat, lon] : l) {
 cout << left << setw(15) << name
 << " population=" << pop
 << " lat=" << lat
 << " lon=" << lon << 'n';
 }
 }

The text file from which we will feed our program looks like this. There are four6.
example cities with their population count and geographical coordinates:

 Braunschweig
 250000 52.268874 10.526770
 Berlin
 4000000 52.520007 13.404954
 New York City
 8406000 40.712784 -74.005941
 Mexico City
 8851000 19.432608 -99.133208

Compiling and running the program yields the following output, which is what7.
we expected. Try to tamper around with the input file by adding some
unnecessary whitespace before the city names in order to see how it gets filtered
out:

 $ cat cities.txt | ./initialize_complex_objects
 Braunschweig population=250000 lat=52.2689 lon=10.5268
 Berlin population=4000000 lat=52.52 lon=13.405
 New York City population=8406000 lat=40.7128 lon=-74.0059
 Mexico City population=8851000 lat=19.4326 lon=-99.1332

How it works...
This was another short recipe again. The only thing we did was creating a new struct city,
then we overloaded std::istream iterator's operator>> for this type and that's it. This
already enabled us to deserialize city items from standard input using
istream_iterator<city>.

Strings, Stream Classes, and Regular Expressions Chapter 24

[770]

There might be an open question left regarding error checking. For that, let's have a look at
the operator>> implementation again:

 istream& operator>>(istream &is, city &c)
 {
 is >> ws;
 getline(is, c.name);
 is >> c.population >> c.latitude >> c.longitude;
 return is;
 }

We are reading a lot of different things. What happens if one of them fails and the next one
doesn't? Does that mean that we are potentially reading all following items with a bad
"offset" in the token stream? No, this cannot happen. As soon as one of these items cannot
be parsed from the input stream, the input stream object enters an error state and refuses to
parse anything further. This means that if for example c.population or c.latitude
cannot be parsed, the remaining >> operands just "drop through", and we leave this
operator function scope with a half-deserialized city object.

On the caller side, we are notified by this when we write if (input_stream >>
city_object). Such a streaming expression is implicitly converted to a bool value when
used as a conditional expression. It returns false if the input stream object is in an error
state. Knowing that we can reset the stream and do whatever is appropriate.

In this recipe, we did not write such if conditionals ourselves because we let
std::istream_iterator<city> do the deserialization. The operator++ implementation
of this iterator class also checks for errors while parsing. If any errors occur, it will refuse
iterating further. In this state, it returns true when it is compared to the end iterator, which
makes the copy algorithm terminate. This way, we are safe.

Filling containers from std::istream iterators
In the last recipe, we learned how we can assemble compound data structures from an
input stream and then fill lists or vectors with those.

Strings, Stream Classes, and Regular Expressions Chapter 24

[771]

This time, we make it a little bit harder by filling an std::map from standard input. The
problem here is that we cannot just fill a single structure with values and push it back into a
linear container like a list or a vector is because map divides its payload into key and value
parts. It is, however, not completely different, as we will see.

After studying this recipe, we will feel comfortable with serializing and deserializing
complex data structures from and to character streams.

How to do it...
We are going to define another structure like in the last recipe, but this time we are going to
fill it into a map, which makes it more complicated because this container maps from keys
to values instead of just holding all values in a list:

First, we include all the needed headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <map>
 #include <iterator>
 #include <algorithm>
 #include <numeric>

 using namespace std;

We want to maintain a little Internet meme database. Let's say a meme has a2.
name, a description, and the year when it was born or invented. We will save
them in an std::map, where the name is the key, and the other information is
bunched up in a struct as the value associated with the key:

 struct meme {
 string description;
 size_t year;
 };

Strings, Stream Classes, and Regular Expressions Chapter 24

[772]

Let's first ignore the key and just implement a stream operator>> function3.
overload for struct meme. We assume that the description is surrounded by
quotation marks, followed by the year. This would look like "some
description" 2017 in a text file. As the description is surrounded by quotation
marks, it can contain whitespace because we know that everything between the
quotation marks belongs to it. By reading with is >>
quoted(m.description), the quotation marks are automatically used as
delimiters and dropped afterward. This is very convenient. Just after that, we
read the year number:

 istream& operator>>(istream &is, meme &m) {
 return is >> quoted(m.description) >> m.year;
 }

OK, now we take the meme's name as the key for the map into account. In order4.
to insert a meme into the map, we need an std::pair<key_type,
value_type> instance. key_type is string, of course, and value_type is
meme. The name is allowed to contain spaces too, so we use the same quoted
wrapper as for the description. p.first is the name and p.second is the whole
meme structure associated with it. It will be fed into the other operator>>
implementation that we just implemented:

 istream& operator >>(istream &is,
 pair<string, meme> &p) {
 return is >> quoted(p.first) >> p.second;
 }

Okay, that's it. Let's write a main function, which instantiates a map, and fill that5.
map. Because we overloaded the stream function operator>>,
istream_iterator can deal with this type directly. We let it deserialize our
meme items from standard input and use an inserter iterator in order to pump
them into the map:

 int main()
 {
 map<string, meme> m;
 copy(istream_iterator<pair<string, meme>>{cin},
 {},
 inserter(m, end(m)));

Strings, Stream Classes, and Regular Expressions Chapter 24

[773]

Before we print what we have, let's first find out what's the longest meme name in6.
the map. We use std::accumulate for this. It gets an initial value 0u (u for
unsigned) and will visit the map element-wise in order to merge them together. In
terms of accumulate, merging usually means adding. In our case, we want no
numeric sum of anything, but the largest string length. In order to get that, we
provide accumulate a helper function, max_func, which takes the current
maximum size variable (which must be unsigned because string lengths are
unsigned) and compares it to the length of the current item's meme name string,
in order to take the maximum of both values. This will happen for each element.
The accumulate function's final return value is the maximum meme name
length:

 auto max_func ([](size_t old_max,
 const auto &b) {
 return max(old_max, b.first.length());
 });
 size_t width {accumulate(begin(m), end(m),
 0u, max_func)};

Now, let's quickly loop through the map and print each item. We use << left7.
<< setw(width) to get a nice table-like printing:

 for (const auto &[meme_name, meme_desc] : m) {
 const auto &[desc, year] = meme_desc;
 cout << left << setw(width) << meme_name
 << " : " << desc
 << ", " << year << 'n';
 }
 }

That's it. We need a small Internet meme database file, so let's fill a text file with8.
some examples:

 "Doge" "Very Shiba Inu. so dog. much funny. wow." 2013
 "Pepe" "Anthropomorphic frog" 2016
 "Gabe" "Musical dog on maximum borkdrive" 2016
 "Honey Badger" "Crazy nastyass honey badger" 2011
 "Dramatic Chipmunk" "Chipmunk with a very dramatic look" 2007

Strings, Stream Classes, and Regular Expressions Chapter 24

[774]

Compiling and running the program with the example meme database yields the9.
following output:

 $ cat memes.txt | ./filling_containers
 Doge : Very Shiba Inu. so dog. much funny. wow., 2013
 Dramatic Chipmunk : Chipmunk with a very dramatic look, 2007
 Gabe : Musical dog on maximum borkdrive, 2016
 Honey Badger : Crazy nastyass honey badger, 2011
 Pepe : Anthropomorphic frog, 2016

How it works...
There were three specialties in this recipe. One was that we did not fill a normal vector or a
list from a serial character stream, but a more complex container like std::map. The other
was that we used those magic quoted stream manipulators. And the last was the
accumulate call, which finds out the largest key string size.

Let's start with the map part. Our struct meme only contains a description field and
year. The name of the Internet meme is not part of this structure because it is used as the
key for the map. When we insert something into a map, we can provide an std::pair with
a key type and a value type. This is what we did. We first implemented stream operator>>
for struct meme, and then we did the same for pair<string, meme>. Then we used
istream_iterator<pair<string, meme>>{cin} to get such items out of the standard
input, and fed them into the map using inserter(m, end(m)).

When we deserialized meme items from the stream, we allowed the names and descriptions
to contain whitespace. This was easily possible, although we only used one line per meme
because we quoted those fields. An example of the line format is as follows: "Name with
spaces" "Description with spaces" 123

When dealing with quoted strings both in input and output, std::quoted is a great help. If
we have a string, s, printing it using cout << quoted(s) will put it in quotes. If we
deserialize a string from a stream, for example, via cin >> quoted(s), it will read the
next quotation mark, fill the string with what is following, and continue until it sees the
next quotation mark, no matter how many whitespace are involved.

Strings, Stream Classes, and Regular Expressions Chapter 24

[775]

The last strange looking thing was max_func in our accumulate call:

auto max_func ([](size_t old_max, const auto &b) {
 return max(old_max, b.first.length());
});

size_t width {accumulate(begin(m), end(m), 0u, max_func)};

Apparently, max_func accepts a size_t argument and another auto-typed argument
which turns out to be a pair item from the map. This looks really weird at first as most
binary reduction functions accept arguments of identical types and then merge them
together with some operation, just as std::plus does. In this case, it is really different
because we are not merging actual pair items. We only pick the key string length from
every pair, drop the rest, and then reduce the resulting size_t values with the max function.

In the accumulate call, the first call of max_func gets the 0u value we initially provided as
the left argument and a reference to the first pair item on the right side. This results in a
max(0u, string_length) return value, which is the left argument in the next call with
the next pair item as the right parameter, and so on.

Generic printing with std::ostream iterators
It is pretty easy to print anything with output streams, as the STL is already shipped with
many useful operator<< overloads for the most basic types. This way, data structures
containing items of such types can easily be printed using the std::ostream_iterator
class, which we've already done quite often in this book.

In this recipe, we will concentrate on how to do this with a custom type, and what else we
can do to manipulate printing via template type choices without much code at the caller
side.

Strings, Stream Classes, and Regular Expressions Chapter 24

[776]

How to do it...
We will play with std::ostream_iterator by enabling for combination with a new
custom class and have a look into its implicit conversion capabilities, which can help us
with printing:

The include files come first and then we declare that we use the std namespace1.
by default:

 #include <iostream>
 #include <vector>
 #include <iterator>
 #include <unordered_map>
 #include <algorithm>

 using namespace std;

Let's implement a transformation function, which maps numbers to strings. It2.
shall return "one" for the value 1, "two" for the value 2, and so on:

 string word_num(int i) {

We fill a hash map with the mappings we need in order to access them later:3.

 unordered_map<int, string> m {
 {1, "one"}, {2, "two"}, {3, "three"},
 {4, "four"}, {5, "five"}, //...
 };

Now, we can feed the hash map's find function with the argument, i, and return4.
what it finds. If it doesn't find anything, because there is no translation for a
given number, we return the string, "unknown":

 const auto match (m.find(i));
 if (match == end(m)) { return "unknown"; }
 return match->second;
 };

Another thing with which we will play later with is struct bork. It only5.
contains an integer and is also implicitly constructible from an integer. It has a
print function, which accepts an output stream reference and prints the "bork"
string repeatedly, depending on the value of its member integer borks:

 struct bork {
 int borks;
 bork(int i) : borks{i} {}

Strings, Stream Classes, and Regular Expressions Chapter 24

[777]

 void print(ostream& os) const {
 fill_n(ostream_iterator<string>{os, " "},
 borks, "bork!"s);
 }
 };

In order to gain convenience with bork::print we overload operator<< for6.
stream objects, so they automatically call bork::print whenever bork objects
are streamed into an output stream:

 ostream& operator<<(ostream &os, const bork &b) {
 b.print(os);
 return os;
 }

Now we can finally begin implementing the actual main function. We initially7.
just create a vector with some example values:

 int main()
 {
 const vector<int> v {1, 2, 3, 4, 5};

Objects of type ostream_iterator need a template parameter, which denotes8.
which type of variables they can print. If we write ostream_iterator<T>, it
will later use ostream& operator(ostream&, const T&) for printing. This is
exactly what we implemented before for the bork type, for example. This time,
we are just printing integers, so it is ostream_iterator<int>. It shall use cout
for printing, so we provide it as the constructor parameter. We go through our
vector in a loop and assign each item i to the dereferenced output iterator. This is
how stream iterators are used by STL algorithms too:

 ostream_iterator<int> oit {cout};
 for (int i : v) { *oit = i; }
 cout << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[778]

The output of the iterator we just produced is fine, but it prints the number9.
without any separator. If we want a bit of separating whitespace between all
printed items, we can provide a custom spacing string as a second parameter of
the output stream iterator's constructor. This way, it prints "1, 2, 3, 4, 5, "
instead of "12345". Unfortunately, we cannot easily tell it to drop the comma-
space string after the last number, because the iterator does not know of its end
before it reaches it:

 ostream_iterator<int> oit_comma {cout, ", "};
 for (int i : v) { *oit_comma = i; }
 cout << 'n';

Assigning items to an output stream iterator in order to print them is not a wrong10.
way to use it, but this is not what they were invented for. The idea is to use them
in combination with algorithms. The simplest one is std::copy. We can provide
the begin and end iterators of the vector as an input range and the output stream
iterator as the output iterator. It will print all the numbers of the vector. Let's do
that with both the output iterators and later compare the output with the loops
we wrote before:

 copy(begin(v), end(v), oit);
 cout << 'n';
 copy(begin(v), end(v), oit_comma);
 cout << 'n';

Remember the function, word_num, which maps numbers to strings, as 1 to11.
"one", 2 to "two", and so on? Yes, we can use those for printing too. We just
need to use an output stream operator, which is template specialized on string
because we are not printing integers any longer. And instead of std::copy, we
use std::transform because it allows us to apply a transformation function to
each item in the input range before copying it to the output range:

 transform(begin(v), end(v),
 ostream_iterator<string>{cout, " "},
 word_num);
 cout << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[779]

The last output line in this program finally puts struct bork to use. We could,12.
but do not provide a transformation function to std::transform. Instead, we
can just create an output stream iterator, which is specialized on the bork type in
an std::copy call. This leads to the bork instances being implicitly created from
the input range integers. That will give us some interesting output:

 copy(begin(v), end(v),
 ostream_iterator<bork>{cout, "n"});
 }

Compiling and running the program yields us the following output. The first two13.
lines are completely identical to the next two lines, which is what we suspected.
Then, we get nice, written-out number strings in a line, followed by a lot of
bork! strings. These occur in multiple lines because we used a "n" separator
string instead of spaces for those:

 $./ostream_printing
 12345
 1, 2, 3, 4, 5,
 12345
 1, 2, 3, 4, 5,
 one two three four five
 bork!
 bork! bork!
 bork! bork! bork!
 bork! bork! bork! bork!
 bork! bork! bork! bork! bork!

How it works...
We have seen that std::ostream_iterator is really just a syntax hack, which kind of
squeezes the act of printing into the form and syntax of an iterator. Incrementing such an
iterator does nothing. Dereferencing it only returns us a proxy object whose assignment
operator forwards its argument to an output stream.

Output stream iterators that are specialized on a type T (as in ostream_iterator<T>)
work with all types for which an ostream& operator<<(ostream&, const T&)
implementation is provided.

Strings, Stream Classes, and Regular Expressions Chapter 24

[780]

ostream_iterator always tries to call operator<< for the type it was specialized for, via
its template parameter. It will try to implicitly convert types if the same is allowed. When
we iterate over a range of A-typed items but we copy those items over to
output_iterator instances, this will work if A is implicitly convertible to B. We did
exactly the same thing with struct bork: a bork instance is implicitly convertible from an
integer value. That is why it was so easy to throw a lot of "bork!" strings onto the user
shell.

If implicit conversion is not possible, we can do that ourselves, using std::transform,
which is what we did in combination with the word_num function.

Note that it is, in general, bad style to allow implicit conversions for custom
types because this is a common source of bugs that are really hard to find
later. In our example use case, the implicit constructor is more useful than
dangerous because the class is used for nothing else but printing.

Redirecting output to files for specific code
sections
The std::cout provides a really nice way to print whatever we want, whenever we want
because it is simple to use, easily extensible, and globally accessible. Even if we want to
print special messages, such as error messages, which we want to isolate from normal
messages, we can just use std::cerr, which is the same as cout but prints to the standard
error channel instead of the standard output channel.

We might have some more complicated desires for logging sometimes. Let's say, for
example, we want to redirect the output of a function to a file, or we want to mute the output
of a function, without changing the function at all. Perhaps, it is a library function we
cannot access the source code of. Maybe, it was never designed to write to a file but we
want its output in a file.

Strings, Stream Classes, and Regular Expressions Chapter 24

[781]

It is indeed possible to redirect the output of stream objects. In this recipe, we are going to
see how to do that in a very simple and elegant way.

How to do it...
We are going to implement a helper class that solves the problem of redirecting a stream
and reverting that redirection again with constructor/destructor magic. And then we see
how we can put it to use:

We only need the headers for input, output, and file streams this time. And we1.
declare the std namespace as a default namespace for lookup:

 #include <iostream>
 #include <fstream>

 using namespace std;

We implement a class, which holds a file stream object and a pointer to a stream2.
buffer. The cout as a stream object has an internal stream buffer, which we can
simply exchange. And while we exchange it, we can save what it was before, so
we can undo any change later. We could look its type up in the C++ reference, but
we can also use decltype to find out what type cout.rdbuf() returns. This is
not generally good practice in all situations, but in this case, it's just a pointer
type:

 class redirect_cout_region
 {
 using buftype = decltype(cout.rdbuf());
 ofstream ofs;
 buftype buf_backup;

Strings, Stream Classes, and Regular Expressions Chapter 24

[782]

The constructor of our class accepts a filename string as its only parameter. The3.
filename is used to initialize the file stream member, ofs. After initializing it, we
can feed it into cout as a new stream buffer. The same function that accepts the
new buffer also returns a pointer to the old one, so we can save it in order to
restore it later:

 public:
 explicit
 redirect_cout_region (const string &filename)
 : ofs{filename},
 buf_backup{cout.rdbuf(ofs.rdbuf())}
 {}

The default constructor does the same as the other constructor. The difference is,4.
that it does not open any file. Feeding a default-constructed file stream buffer into
the cout stream buffer leads to cout being kind of deactivated. It will just drop its
input we give it for printing. This can also be useful in some situations:

 redirect_cout_region()
 : ofs{},
 buf_backup{cout.rdbuf(ofs.rdbuf())}
 {}

The destructor just restores our change. When an object of this class runs out of5.
scope, the stream buffer of cout is the old one again:

 ~redirect_cout_region() {
 cout.rdbuf(buf_backup);
 }
 };

Let's mock an output-heavy function, so we can play with it later:6.

 void my_output_heavy_function()
 {
 cout << "some outputn";
 cout << "this function does really heavy workn";
 cout << "... and lots of it...n";
 // ...
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[783]

In the main function, we first produce some completely normal output:7.

 int main()
 {
 cout << "Readable from normal stdoutn";

Now we're opening another scope, and the first thing we do in this scope is8.
instantiating our new class with a text file parameter. File streams open files in
read and write mode by default, so it creates this file for us. Any following output
will now be redirected to this file, although we use cout for printing:

 {
 redirect_cout_region _ {"output.txt"};
 cout << "Only visible in output.txtn";
 my_output_heavy_function();
 }

After leaving the scope, the file is closed and the output is redirected to the9.
normal standard output again. Let's now open another scope in which we
instantiate the same class, but via its default constructor. This way the following
printed line of text will not be visible anywhere. It will just be dropped:

 {
 redirect_cout_region _;
 cout << "This output will "
 "completely vanishn";
 }

After leaving that scope also, our standard output is resurrected and the last line10.
of text output will be readable in the shell again:

 cout << "Readable from normal stdout againn";
 }

Compiling and running the program yields the output as we expected it. Only11.
the very first and the very last lines of output are visible in the shell:

 $./log_regions
 Readable from normal stdout
 Readable from normal stdout again

Strings, Stream Classes, and Regular Expressions Chapter 24

[784]

We can see that a new file, output.txt, has been created and contains the12.
output of the first scope. The output of the second scope vanishes completely:

 $ cat output.txt
 Only visible in output.txt
 some output
 this function does really heavy work
 ... and lots of it...

How it works...
Every stream object has an internal buffer for which it acts as a front end. Such buffers are
exchangeable. If we have a stream object, s, and want to save its buffer into a variable, a,
and install a new buffer, b, this looks like the following: a = s.rdbuf(b). Restoring it can
be simply done with s.rdbuf(a).

This is exactly what we did in this recipe. Another cool thing is that we can stack those
redirect_cout_region helpers:

{
 cout << "print to standard outputn";

 redirect_cout_region la {"a.txt"};
 cout << "print to a.txtn";
 redirect_cout_region lb {"b.txt"};
 cout << "print to b.txtn";
}
cout << "print to standard output againn";

This works because objects are destructed in the opposite order of their construction. The
concept behind this pattern that uses the tight coupling between construction and
destruction of objects is called Resource Acquisition Is Initialization (RAII).

Strings, Stream Classes, and Regular Expressions Chapter 24

[785]

There is one really important thing that should be mentioned--the initialization order of the
member variables of the redirect_cout_region class:

class redirect_cout_region {
 using buftype = decltype(cout.rdbuf());

 ofstream ofs;
 buftype buf_backup;

public:
 explicit
 redirect_cout_region(const string &filename)
 : ofs{filename},
 buf_backup{cout.rdbuf(ofs.rdbuf())}
 {}

...

As we can see, the member, buf_backup, is constructed from an expression that depends
on ofs. This obviously means that ofs needs to be initialized before buf_backup.
Interestingly, the order in which these members are initialized does not depend on the order
of the initializer list items. The initialization order only depends on the order of the member
declarations!

If one class member variable needs to be initialized after another member
variable, they must also appear in that order in the class member
declaration. The order of their appearance in the initializer list of the
constructor is not critical.

Creating custom string classes by inheriting
from std::char_traits
The std::string is extremely useful. However, as soon as people need a string class with
slightly different semantics for string handling, some tend to write their own string class.

Strings, Stream Classes, and Regular Expressions Chapter 24

[786]

Writing your own string class is rarely a good idea because safe string handling is hard.
Fortunately, std::string is only a specializing typedef of the template class,
std::basic_string. This class contains all the complicated memory handling stuff, but it
does not impose any policy on how strings are copied, compared, and so on. This is
something that is imported into basic_string by accepting a template parameter that
contains a traits class.

In this recipe, we will see how to build our own trait classes and, this way, how to create
custom strings without reimplementing anything.

How to do it...
We are going to implement two different custom string classes: lc_string and
ci_string. The first class constructs lower case strings from any string input. The other
class does not transform any string, but it can do case-insensitive string comparison:

Let's include the few necessary headers first and then declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <algorithm>
 #include <string>

 using namespace std;

Then we reimplement the std::tolower function, which is already defined in2.
<cctype>. The already existing function is fine, but it is not constexpr. Some
string functions are constexpr since C++17, however, and we want to be able
to make use of that with our own custom string trait class. The function maps
upper-case characters to lower case and leaves other characters unchanged:

 static constexpr char tolow(char c) {
 switch (c) {
 case 'A'...'Z': return c - 'A' + 'a';
 default: return c;
 }
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[787]

The std::basic_string class accepts three template parameters: the3.
underlying character type, a character traits class, and an allocator type. We are
only changing the character traits class in this section because it defines the
behavior of strings. In order to reimplement only what should differ from the
ordinary strings, we are publicly inheriting from the standard traits class:

 class lc_traits : public char_traits<char> {
 public:

Our class accepts input strings but transforms them to lower case. There is one4.
function, which does this character-wise, so we can put our own tolow function
here. This function is constexpr, which is why we reimplemented ourselves a
constexpr tolow function:

 static constexpr
 void assign(char_type& r, const char_type& a) {
 r = tolow(a);
 }

The other function handles the copying of an entire string into its own memory.5.
We use an std::transform call to copy all the characters from the source string
to the internal destination string and, at the same time, map every character to its
lower-case version:

 static char_type* copy(char_type* dest,
 const char_type* src,
 size_t count) {
 transform(src, src + count, dest, tolow);
 return dest;
 }
 };

The other trait helps build a string class that effectively transforms strings to6.
lower case. We are going to write another trait that leaves the actual string
payload untouched but which is case insensitive when it comes to comparing
strings. We inherit from the existing standard character traits class again, and this
time, we redefine some other member functions:

 class ci_traits : public char_traits<char> {
 public:

Strings, Stream Classes, and Regular Expressions Chapter 24

[788]

The eq function tells whether two characters are equal. We do this too, but we7.
compare their lower-case versions. This way 'A' equals 'a':

 static constexpr bool eq(char_type a, char_type b) {
 return tolow(a) == tolow(b);
 }

The lt function tells whether the value of a is less than the value of b. We apply8.
the correct logical operator for that, just after lower-casing both the characters
again:

 static constexpr bool lt(char_type a, char_type b) {
 return tolow(a) < tolow(b);
 }

The last two functions worked on character-wise input and the next two9.
functions work on string-wise input. The compare function works similar to the
old-school strncmp function. It returns 0 if both the strings are equal within the
length that count defines. If they differ, it returns a negative or positive number,
which tells which input string is lexicographically smaller. Calculating the
difference between both the characters at every position must, of course, be done
on their lower-case versions. The nice thing is that this whole loop code has been
part of a constexpr function since C++14:

 static constexpr int compare(const char_type* s1,
 const char_type* s2,
 size_t count) {
 for (; count; ++s1, ++s2, --count) {
 const char_type diff (tolow(*s1) - tolow(*s2));
 if (diff < 0) { return -1; }
 else if (diff > 0) { return +1; }
 }
 return 0;
 }

The last function we need to implement for our case-insensitive string class is10.
find. For a given input string, p, and length, count, it finds the position of a
character, ch. Then, it returns a pointer to the first occurrence of that character, or
it returns nullptr if there is none. The comparison in this function has to be
done using the tolow "glasses" in order to make the search case-insensitive.
Unfortunately, we cannot use std::find_if, because it is not constexpr, and
must write a loop ourselves:

 static constexpr

Strings, Stream Classes, and Regular Expressions Chapter 24

[789]

 const char_type* find(const char_type* p,
 size_t count,
 const char_type& ch) {
 const char_type find_c {tolow(ch)};
 for (; count != 0; --count, ++p) {
 if (find_c == tolow(*p)) { return p; }
 }
 return nullptr;
 }
 };

Okay, that's it for the traits. Since we have them in place now, we can define two11.
new string class types. lc_string means lower-case string. ci_string means
case-insensitive string. Both the classes only differ from std::string by their
character traits class:

 using lc_string = basic_string<char, lc_traits>;
 using ci_string = basic_string<char, ci_traits>;

In order to make the output streams accept these new classes for printing, we12.
quickly need to overload the stream operator<<:

 ostream& operator<<(ostream& os, const lc_string& str) {
 return os.write(str.data(), str.size());
 }
 ostream& operator<<(ostream& os, const ci_string& str) {
 return os.write(str.data(), str.size());
 }

Now we can finally begin implementing the actual program. Let's instantiate a13.
normal string, a lower-case string, and a case-insensitive string, and print them
immediately. They should all look normal on the terminal, but the lower case
strings should be all lower-cased:

 int main()
 {
 cout << " string: "
 << string{"Foo Bar Baz"} << 'n'
 << "lc_string: "
 << lc_string{"Foo Bar Baz"} << 'n'
 << "ci_string: "
 << ci_string{"Foo Bar Baz"} << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[790]

In order to test the case-insensitive string, we can instantiate two strings that are14.
basically equal but differ in the casing of some characters. When doing a really
case-insensitive comparison, they should appear equal nevertheless:

 ci_string user_input {"MaGiC PaSsWoRd!"};
 ci_string password {"magic password!"};

So, let's compare them and print that they match if they do:15.

 if (user_input == password) {
 cout << "Passwords match: "" << user_input
 << "" == "" << password << ""n";
 }
 }

Compiling and running the program yields us the expected results. When we16.
first printed the same string three times in different types, we got unchanged
results, but the lc_string instance is all lower case. The comparison of the two
strings that only differ in their character casing was indeed successful and yields
us the right output:

 $./custom_string
 string: Foo Bar Baz
 lc_string: foo bar baz
 ci_string: Foo Bar Baz
 Passwords match: "MaGiC PaSsWoRd!" == "magic password!"

How it works...
All the subclassing, and function reimplementing we did will surely look a bit crazy for
beginners. Where did all the function signatures come from, of which we magically knew
that we need to reimplement?

Let's first have a look where std::string really comes from:

template <
 class CharT,
 class Traits = std::char_traits<CharT>,
 class Allocator = std::allocator<CharT>
 >
class basic_string;

Strings, Stream Classes, and Regular Expressions Chapter 24

[791]

The std::string is really an std::basic_string<char> and that expands to
std::basic_string<char, std::char_traits<char>, std::allocator<char>>.
Okay, that is a long type description, but what does it mean? The point of all of this is that it
is possible to base a string not only on single-byte char items but also on other, larger,
types. This enables for string types, which can handle more than the typical American
ASCII character set. This is not something we will have a look into now.

The char_traits<char> class, however, contains algorithms that basic_string needs
for its operation. The knows how to compare, find, and copy characters and strings.

The allocator<char> class is also a traits class, but its special job is handling string
allocation and deallocation. This is not important for us at this time as the default behavior
satisfies our needs.

If we want a string class to behave differently, we can try to reuse as much as possible from
what basic_string and char_traits already provide. And this is what we did. We
implemented two char_traits subclasses called case_insentitive and lower_caser
and configured two completely new string types with them by using them as substitutes for
the standard char_traits type.

In order to explore what other possibilities there are to adapt
basic_string to your own needs, look up the C++ STL documentation
for std::char_traits and see what other functions it has that can be
reimplemented.

Tokenizing input with the regular expression
library
When parsing or transforming strings in complex ways or breaking them into chunks,
regular expressions are a great help. In many programming languages, they are already built
in because they are so useful and handy.

If you do not know regular expressions yet, have a look at the Wikipedia article about them,
for example. They will surely extend your horizon, as it is easy to see how useful they are
when parsing any kind of text. Regular expressions can, for example, test whether an e-mail
address string or an IP address string is valid, find and extract substrings out of large
strings, which follow a complex pattern, and so on.

Strings, Stream Classes, and Regular Expressions Chapter 24

[792]

In this recipe, we will extract all the links out of an HTML file and list them for the user. The
code will be amazingly short because we have regular expression support built in the C++
STL since C++11.

How to do it...
We are going to define a regular expression that detects links, and we apply it to an HTML
file in order to pretty print all the links that occur in that file:

Let's first include all the necessary headers, and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iterator>
 #include <regex>
 #include <algorithm>
 #include <iomanip>

 using namespace std;

We will later generate an iterable range, which consists of strings. These strings2.
always occur in pairs of a link and a link description. Therefore, let's write a little
helper function, which pretty prints these:

 template <typename InputIt>
 void print(InputIt it, InputIt end_it)
 {
 while (it != end_it) {

In each loop step, we increment the iterator twice and take copies of the link and3.
the link description they contain. Between the two iterator dereferences, we add
another guarding if branch that checks whether we prematurely reached the end
of the iterable range, just for safety:

 const string link {*it++};
 if (it == end_it) { break; }
 const string desc {*it++};

Strings, Stream Classes, and Regular Expressions Chapter 24

[793]

Now, let's print the link with its description in a nicely prettified form and that's4.
it:

 cout << left << setw(28) << desc
 << " : " << link << 'n';
 }
 }

In the main function, we are reading in everything that comes from standard5.
input. To do this, we are constructing a string from the whole standard input via
an input stream iterator. In order to prevent tokenizing, because we want the
whole user input as-is, we use noskipws. This modifier deactivates whitespace
skipping and tokenizing:

 int main()
 {
 cin >> noskipws;
 const std::string in {istream_iterator<char>{cin}, {}};

Now we need to define a regular expression that describes how we assume an6.
HTML link to look. The parentheses, (), within the regular expression define
groups. These are the parts of the link we want to access--the URL it links to, and
its description:

 const regex link_re {
 "<a href="([^"]*)"[^<]*>([^<]*)"};

The sregex_token_iterator class has the same look and feel as of7.
istream_iterator. We give it the whole string as iterable input range and the
regular expression we just defined. There is also a third parameter, {1, 2},
which is an initializer list of integer values. It defines that we want to iterate over
the groups 1 and 2 from the expressions it captures:

 sregex_token_iterator it {
 begin(in), end(in), link_re, {1, 2}};

Now we have an iterator that will emit the links and link descriptions if it finds8.
any. We provide it together with a default constructed iterator of the same type to
the print function we implemented before:

 print(it, {});
 }

Strings, Stream Classes, and Regular Expressions Chapter 24

[794]

Compiling and running the program gives us the following output. I ran the9.
curl program on the ISO C++ homepage, which simply downloads an HTML
page from the Internet. Of course, it would also be possible to write cat
some_html_file.html | ./link_extraction. The regular expression we
used is pretty much hardcoded to a fixed assumption of how links look in the
HTML document. It may be exercised by you to make it more general:

 $ curl -s "https://isocpp.org/blog" | ./link_extraction
 Sign In / Suggest an Article : https://isocpp.org/member/login
 Register : https://isocpp.org/member/register
 Get Started! : https://isocpp.org/get-started
 Tour : https://isocpp.org/tour
 C++ Super-FAQ : https://isocpp.org/faq
 Blog : https://isocpp.org/blog
 Forums : https://isocpp.org/forums
 Standardization : https://isocpp.org/std
 About : https://isocpp.org/about
 Current ISO C++ status : https://isocpp.org/std/status
 (...and many more...)

How it works...
Regular expressions (or regex in short) are extremely useful. They can look really cryptic,
but it is worth learning how they work. A short regex can spare us writing many lines of
code if we did the matching manually.

In this recipe, we first instantiated an object of type regex. We fed its constructor with a
string that describes a regular expression. A very simple regular expression is ".", which
matches every character because a dot is the regex wildcard. If we write "a", then this
matches only on the 'a' characters. If we write "ab*", then this means "one a, and zero or
arbitrarily many b characters". And so on. Regular expressions are another large topic, and
there are great explanations on Wikipedia and other websites or literature.

Strings, Stream Classes, and Regular Expressions Chapter 24

[795]

Let's have another look at our regular expression that matches what we assume to be HTML
links. A simple HTML link can look like A great
link. We want the some_url.com/foo part, as well as A great link. So we came
up with the following regular expression, which contains groups for matching substrings:

The whole match itself is always Group 0. In this case, this is the full <a href
 string. The quoted href-part that contains the URL being linked to is Group 1. The (
) parentheses in the regular expression define such a . The other one is the part between the
<a ...> and , which contains the link description.

There are various STL functions that accept regex objects, but we directly used a regex
token iterator adapter, which is a high-level abstraction that uses std::regex_search
under the hood in order to automate recurring matching work. We instantiated it like this:

sregex_token_iterator it {begin(in), end(in), link_re, {1, 2}};

The begin and end part denote our input string over which the regex token iterator shall
iterate and match all links. The is, of course, the complex regular expression we
implemented to match links. The {1, 2} part is the next complicated looking thing. It
instructs the token iterator to stop on each full match and first yield Group 1, then after
incrementing the iterator to yield Group 2, and after incrementing it again, it would finally
search for the next match in the string. This somewhat intelligent behavior really spares us
some code lines.

Strings, Stream Classes, and Regular Expressions Chapter 24

[796]

Let's have a look at another example to make sure we got the idea. Let's imagine the regular
expression, "a(b*)(c*)". It will match strings that contain an a character, then none or
arbitrarily many b characters, and then none or arbitrarily many c characters:

const string s {" abc abbccc "};
const regex re {"a(b*)(c*)"};

sregex_token_iterator it {begin(s), end(s), re, {1, 2}};

print(*it); // prints b
++it;
print(*it); // prints c
++it;
print(*it); // prints bb
++it;
print(*it); // prints ccc

There is also the std::regex_iterator class, which emits the substrings that are between
regex matches.

Comfortably pretty printing numbers
differently per context on the fly
In the last recipe, we learned how to format the output with output streams. And while
doing the same, we realized two facts:

Most I/O manipulators are sticky, so we have to revert their effect after use in
order to not tamper with other unrelated code, which also prints
It can be very tedious and does not look very readable if we have to set up long
chains of I/O manipulators in order to get only a few variables printed with
specific formatting

A lot of people do not like I/O streams for such reasons, and even in C++, they still use
printf for formatting their strings.

In this recipe, we will see how to format types on the fly without too much I/O manipulator
noise in our code.

Strings, Stream Classes, and Regular Expressions Chapter 24

[797]

How to do it...
We are going to implement a class, format_guard, which can automatically revert any
format setting. Additionally, we add a wrapper type, which can contain any value, but
when it is printed, it gets special formatting without burdening us with I/O manipulator
noise:

First, we include some headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <iomanip>

 using namespace std;

The helper class that tidies up our stream formatting states for us is called2.
format_guard. Its constructor saves the formatting flags, which std::cout has
set at the moment. Its destructor restores them to the state it had when the
constructor was called. This effectively revokes any formatting settings that were
applied in between:

 class format_guard {
 decltype(cout.flags()) f {cout.flags()};
 public:
 ~format_guard() { cout.flags(f); }
 };

Another little helper class is scientific_type. Because it's a class template, it3.
can wrap any payload type as a member variable. It basically does nothing:

 template <typename T>
 struct scientific_type {
 T value;
 explicit scientific_type(T val) : value{val} {}
 };

Strings, Stream Classes, and Regular Expressions Chapter 24

[798]

We can define completely custom formatting settings for any type that was4.
wrapped into scientific_type before because if we overload the stream
operator>> for it, the stream library executes completely different code when
printing such types. This way, we can print scientific values in scientific floating-
point notation, with uppercase formatting and explicit + prefix if they have
positive values. We do also use our format_guard class in order to tidy up all
our settings when leaving this function again:

 template <typename T>
 ostream& operator<<(ostream &os, const scientific_type<T> &w) {
 format_guard _;
 os << scientific << uppercase << showpos;
 return os << w.value;
 }

In the main function, we will first play around with the format_guard class. We5.
open a new scope, first get an instance of the class, and then we apply some wild
formatting flags to std::cout:

 int main()
 {
 {
 format_guard _;
 cout << hex << scientific << showbase << uppercase;
 cout << "Numbers with special formatting:n";
 cout << 0x123abc << 'n';
 cout << 0.123456789 << 'n';
 }

After we printed some numbers with many formatting flags enabled, we left the6.
scope again. While this happened, the destructor of format_guard tidied the
formatting up. In order to test this, we are printing exactly the same numbers
again. They should appear different:

 cout << "Same numbers, but normal formatting again:n";
 cout << 0x123abc << 'n';
 cout << 0.123456789 << 'n';

Strings, Stream Classes, and Regular Expressions Chapter 24

[799]

Now we put scientific_type to use. Let's print three floating-point numbers7.
in a row. We wrap the second number in scientific_type. This way, it is
printed in our special scientific style, but the numbers before and after it get
default formatting. At the same time, we avoid ugly formatting line noise:

 cout << "Mixed formatting: "
 << 123.0 << " "
 << scientific_type{123.0} << " "
 << 123.456 << 'n';
 }

Compiling and running the program yields us the following result. The first two8.
numbers are printed with specific formatting. The next two numbers appear with
default formatting, which shows us that our format_guard works just nicely.
The three numbers in the last lines also look just as expected. Only the one in the
middle has the formatting of scientific_type, the rest has default formatting:

 $./pretty_print_on_the_fly
 Numbers with special formatting:
 0X123ABC
 1.234568E-01
 Same numbers, but normal formatting again:
 1194684
 0.123457
 Mixed formatting: 123 +1.230000E+02 123.456

Catching readable exceptions from
std::iostream errors
In none of the recipes in this chapter, we used exceptions to catch errors. While this is
certainly possible, working on stream objects without exceptions is already very convenient.
If we try to parse in 10 values, but this fails somewhere in the middle, the whole stream
object sets itself into a fail state and stops further parsing. This way, we do not run into the
danger of parsing variables from the wrong offset in the stream. We can just do the parsing
in a conditional, such as if (cin >> foo >> bar >> ...). If this fails, we handle it. It
does not appear very advantageous to embrace parsing in a try { ... } catch ...
block.

In fact, the C++ I/O stream library already existed before there were exceptions in C++.
Exception support was added later, which might be an explanation why they are not a first-
class supported feature in the stream library.

Strings, Stream Classes, and Regular Expressions Chapter 24

[800]

In order to use exceptions in the stream library, we must configure each stream object
individually to throw an exception, whenever it sets itself into a fail state. Unfortunately,
the error explanations in the exception objects, which we can then catch later, are not
thoroughly standardized. This leads to not really helpful error messages, as we will see in
this section. If we really want to use exceptions with stream objects, we can additionally poll
the C library for filesystem error states to get some additional information.

In this section, we are going to write a program that can fail in different ways, handle those
with exceptions, and see how to squeeze more information out of those afterward.

How to do it...
We will implement a program that opens a file (which might fail), and then we'll read an
integer out of it (which might fail, too). We do this with activated exceptions and then we
see how we can handle those:

First, we include some headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <fstream>
 #include <system_error>
 #include <cstring>

 using namespace std;

If we want to use stream objects with exceptions, we have to enable them first. In2.
order to get a file stream object to throw an exception if the file we are letting it
access does not exist, or if there are parsing errors, we need to set some fail bits in
an exception mask. If we do something afterward that fails, it will trigger an
exception. By activating failbit and badbit, we enable exceptions for
filesystem errors and parsing errors:

 int main()
 {
 ifstream f;
 f.exceptions(f.failbit | f.badbit);

Strings, Stream Classes, and Regular Expressions Chapter 24

[801]

Now we can open a try block and access a file. If opening the file is successful,3.
we try to read an integer from it. Only if both steps succeed, we print the integer:

 try {
 f.open("non_existant.txt");

 int i;
 f >> i;

 cout << "integer has value: " << i << 'n';
 }

In both the expected possibilities of an error, an instance of4.
std::ios_base::failure is thrown. This object has a what() member
function, which ought to explain what triggered the exception. Unfortunately, the
standardization of this message was left out, and it does not give too much
information. However, we can at least distinguish if there is a filesystem problem
(because the file does not exist, for example) or a format parsing problem. The
global variable, errno, has been there even before C++ was invented, and it is set
to an error value, which we can check now. The strerror function translates
from an error number to a human readable string. If errno is 0, there is, at least,
no filesystem error:

 catch (ios_base::failure& e) {
 cerr << "Caught error: ";
 if (errno) {
 cerr << strerror(errno) << 'n';
 } else {
 cerr << e.what() << 'n';
 }
 }
 }

Compiling the program and running it in two different scenarios yields the5.
following output. If the file to be opened does exist but parsing an integer from it
was not possible, we get an iostream_category error message:

 $./readable_error_msg
 Caught error: ios_base::clear: unspecified iostream_category error

Strings, Stream Classes, and Regular Expressions Chapter 24

[802]

If the file does not exist, we will be notified about this with a different message6.
from strerror(errno):

 $./readable_error_msg
 Caught error: No such file or directory

How it works...
We have seen that we can enable exceptions per stream object, s, with
s.exceptions(s.failbit | s.badbit). This means, that there is no way to use, for
example, the std::ifstream instance's constructor for opening a file if we want to get an
exception when opening that file is not possible:

ifstream f {"non_existant.txt"};
f.exceptions(...); // too late for an exception

This is a pity because exceptions actually promise that they make error handling less
clumsy compared to old-school C-style code, which is riddled with loads of if branches,
which handle errors after every step.

If we played around trying to provoke various reasons for streams to fail, we would realize
that there are no different exceptions being thrown. This way, we can only find out when we
get an error, but not what specific error (This is, of course, not true for exception handling in
general, but for the STL stream library). That is why we additionally consulted the value of
errno. This global variable is an ancient construct, which has already been used in the old
days when there were no C++ or exceptions in general.

If any system-related function has seen an error condition, it is able to set the errno
variable to something other than 0 (0 describes the absence of errors), and then the caller is
able to read that error number and look up what its value means. The only problem with
this is that when we have a multithreaded application, and all the threads use functions that
can set this error variable, whose error value is it? If we read it even though there is no error,
it could carry an error value because some other system function running in a different thread
may have experienced an error. Luckily, this flaw has been gone since C++11, where every
thread in a process sees its own errno variable.

Without elaborating the ups and downs of an ancient error indication method, it can give us
useful extra information when an exception is triggered on system-based things such as file
streams. Exceptions tell us when it happened, and errno can tell us what happened if it
happened at the system level.

25
Utility Classes

In this chapter, we will cover the following recipes:

Converting between different time units using std::ratio
Converting between absolute and relative times with std::chrono
Safely signalizing failure with std::optional
Applying functions on tuples
Quickly composing data structures with std::tuple
Replacing void* with std::any for more type safety
Storing different types with std::variant
Automatically handling resources with std::unique_ptr
Automatically handling shared heap memory with std::shared_ptr
Dealing with weak pointers to shared objects
Simplifying resource handling of legacy APIs with smart pointers
Sharing different member values of the same object
Generating random numbers and choosing the right random number engine
Generating random numbers and letting the STL shape specific distributions

Utility Classes Chapter 25

[804]

Introduction
This chapter is dedicated to utility classes that are very useful for solving very specific tasks.
Some of them are indeed so useful that we will most probably see them extremely often in
any C++ program snippet in the future or have at least already seen them sprinkled over all
other chapters in this book.

The first two recipes are about measuring and taking the time. We will also see how to
convert between different time units and how to jump between points in time.

Then, we will have a look at the optional, variant, and any types (which all came with
C++14 and C++17) as well as some tuple tricks in another five recipes.

Since C++11, we also got sophisticated smart pointer types, namely unique_ptr,
shared_ptr, and weak_ptr, which are an enormously effective help regarding memory
management, which is why we will have a dedicated look at them in five recipes.

Finally, we will have a panoramic view of the library parts of the STL that are about
generating random numbers. Apart from learning about the most important characteristics of
the STL's random engines, we will also learn how to apply shaping to random numbers in
order to get distributions that fit our actual needs.

Converting between different time units
using std::ratio
Since C++11, the STL contains some new types and functions for taking, measuring, and
displaying time. This part of the library exists in the std::chrono namespace and has
some sophisticated details.

In this recipe, we will concentrate on measuring time spans and how to convert the result of
the measurement between units, such as seconds, milliseconds, and microseconds. The STL
provides facilities, which enable us to define our own time units and convert between them
seamlessly.

Utility Classes Chapter 25

[805]

How to do it...
In this section, we will write a little game that prompts the user to enter a specific word. The
time that the user needs to type this word into the keyboard is measured and displayed in
multiple time units:

At first, we need to include all the necessary headers. For reasons of comfort, we1.
declare that we use the std namespace by default:

 #include <iostream>
 #include <chrono>
 #include <ratio>
 #include <cmath>
 #include <iomanip>
 #include <optional>

 using namespace std;

The chrono::duration as a type for time durations usually refers to multiples2.
or fractions of seconds. All the STL time duration units refer to integer typed
duration specializations. In this recipe, we are going to specialize on double. In
the recipe after this one, we will concentrate more on the existing time unit
definitions that are already built into the STL:

 using seconds = chrono::duration<double>;

One millisecond is a fraction of a second, so we define this unit by referring to3.
seconds. The ratio_multiply template parameter applies the STL-predefined
milli factor to seconds::period, which gives us the fraction we want. The
ratio_multiply template is basically a meta programming function for
multiplying ratios:

 using milliseconds = chrono::duration<
 double, ratio_multiply<seconds::period, milli>>;

It's the same thing with microseconds. While a millisecond is a milli-fraction of4.
a second, a microsecond is a micro-fraction of a second:

 using microseconds = chrono::duration<
 double, ratio_multiply<seconds::period, micro>>;

Utility Classes Chapter 25

[806]

Now we are going to implement a function, which reads a string from user input5.
and measures how long it took the user to type the input. It takes no arguments
and returns us the user input string as well as the elapsed time, bundled in a pair:

 static pair<string, seconds> get_input()
 {
 string s;

We need to take the time from the beginning of the period during which user6.
input occurs and after it. Taking a time snapshot looks like this:

 const auto tic (chrono::steady_clock::now());

The actual capturing of user input takes place now. If we are not successful, we7.
just return a default-initialized tuple. The caller will see that he got an empty
input string:

 if (!(cin >> s)) {
 return {{}, {}};
 }

In the case of success, we continue by taking another time snapshot. Then we8.
return the input string and the difference between both time points. Note that
both are absolute time points, but by calculating the difference, we get a duration:

 const auto toc (chrono::steady_clock::now());
 return {s, toc - tic};
 }

Let's implement the actual program now. We loop until the user enters the input9.
string correctly. In every loop step, we ask the user to please enter the string
"C++17" and, then, call our get_input function:

 int main()
 {
 while (true) {
 cout << "Please type the word "C++17" as"
 " fast as you can.n> ";
 const auto [user_input, diff] = get_input();

Utility Classes Chapter 25

[807]

Then we check the input. If the input is empty, we interpret this as a request to10.
exit the whole program:

 if (user_input == "") { break; }

If the user correctly types "C++17", we express our congratulations and then11.
print the time the user needed to type the word correctly. The diff.count()
method returns the number of seconds as a floating point number. If we had used
the original STL seconds duration type, then we would have got a rounded
integer value, not a fraction. By feeding the milliseconds or microseconds
constructor with our diff variable before calling count(), we get the same
value transformed to a different unit:

 if (user_input == "C++17") {
 cout << "Bravo. You did it in:n"
 << fixed << setprecision(2)
 << setw(12) << diff.count()
 << " seconds.n"
 << setw(12) << milliseconds(diff).count()
 << " milliseconds.n"
 << setw(12) << microseconds(diff).count()
 << " microseconds.n";
 break;

If the user has a typo in the input, we let him try again:12.

 } else {
 cout << "Sorry, your input does not match."
 " You may try again.n";
 }
 }
 }

Compiling and running the program leads to the following output. At first, with13.
a typo, the program repeatedly asks for the correct input word. After typing the
word correctly, it displays how long it took us to type it in three different time
units:

 $./ratio_conversion
 Please type the word "C++17" as fast as you can.
 > c+17
 Sorry, your input does not match. You may try again.
 Please type the word "C++17" as fast as you can.
 > C++17

Utility Classes Chapter 25

[808]

 Bravo. You did it in:
 1.48 seconds.
 1480.10 milliseconds.
 1480099.00 microseconds.

How it works...
While this section is all about converting between different time units, we first had to
choose one of the three available clock objects. There is generally the choice between
system_clock, steady_clock, and high_resolution_clock in the std::chrono
namespace. What are the differences between them? Let's have a closer look:

Clock Characteristics

system_clock
This represents the system-wide real-time "wall" clock. It is the
right choice if we want to obtain the local time.

steady_clock

This clock is promised to be monotonic. This means that it will
never be set back by any amount of time. This can happen to
other clocks when their time is corrected by minimal amounts, or
even when the time is switched between winter and summer
time.

high_resolution_clock
This is the clock with the most fine-grained clock tick period the
STL implementation can provide.

Since we measured the time distance, or duration from one absolute point in time and the
other absolute point in time (which we captured in the variables tic and toc), we are not
interested if those points in time were globally skewed. Even if the clock was 112 years, 5
hours, 10 minutes, and 1 second (or whatever) late or ahead of time, then this does not
make a difference on the difference between them. The only important thing is that after we
save the time point tic and before we save the time point toc, the clock must not be micro-
adjusted (which happens on many systems from time to time) because that would distort
our measurement. For these requirements, steady_clock is the optimal choice. Its
implementation can be based on the processor's timestamp counter, which always counts
up monotonously since the system was started.

Utility Classes Chapter 25

[809]

Okay, now with the right time object choice, we are able to save points in time via
chrono::steady_clock::now(). The now function returns us a
chrono::time_point<chrono::steady_clock> typed value. The difference between
two such values (as in toc - tic) is a time span, or duration of type chrono::duration.
As this is the central type of this section, this gets a little complicated now. Let's have a
closer look at the template type interface of duration:

template<
 class Rep,
 class Period = std::ratio<1>
> class duration;

The parameters we can change are called Rep and Period. Rep is easy to explain: this is just
the numeric variable type that is used to save the time value. For the existing STL time
units, this is usually long long int. In this recipe, we chose double. Because of our
choice, we can save time values in seconds by default and then convert them to milli- or
microseconds. If we save the time duration of 1.2345 seconds in the chrono::seconds
type, then it would be rounded to one full second. This way, we would have to save the
time difference between tic and toc in chrono::microseconds and could then convert
to less-fine-grained units. With our double choice for Rep, we can convert up and down
and lose only a minimal amount of precision, which does not hurt in this example.

We used Rep = double for all our time units, so they differed only in our choice of the
Period parameter:

using seconds = chrono::duration<double>;
using milliseconds = chrono::duration<double,
 ratio_multiply<seconds::period, milli>>;
using microseconds = chrono::duration<double,
 ratio_multiply<seconds::period, micro>>;

While seconds is the simplest unit to describe, as it works with Period = ratio<1>, the
others have to be adjusted. As one millisecond is a thousandth of a second, we multiply the
seconds::period (which is just a getter function to the Period parameter) with milli,
which is a type alias for std::ratio<1, 1000> (std::ratio<a, b> represents the
fractional value a/b). The ratio_multiply type is basically a compile time function, which
represents the type that results from multiplying one ratio type with another.

Maybe this sounds too complicated, so let's have a look at an example:
ratio_multiply<ratio<2, 3>, ratio<4, 5>> results in ratio<8, 15> because
(2/3) * (4/5) = 8/15.

Utility Classes Chapter 25

[810]

Our resulting type definitions are equivalent to the following definitions:

using seconds = chrono::duration<double, ratio<1, 1>>;
using milliseconds = chrono::duration<double, ratio<1, 1000>>;
using microseconds = chrono::duration<double, ratio<1, 1000000>>;

Having these types lined up, it is easy to convert between them. If we have a time duration
d of type seconds, we can transform it to milliseconds just by feeding it through the
constructor of the other type, that is, milliseconds(d).

There's more...
In other tutorials or books, you might run across duration_cast whenever time durations
are transformed. If we have a duration value of type chrono::milliseconds and want to
transform it to chrono::hours, for example, we do indeed need to write
duration_cast<chrono::hours>(milliseconds_value) because these units depend
on integer types. Transforming from fine-grained units to less-fine-grained units leads to
precision loss in that case, which is why we need a duration_cast. For double- or float-
based duration units, this is not needed.

Converting between absolute and relative
times with std::chrono
Until C++11, it was quite a hassle to take the wall clock time and just print it, because C++
did not have its own time library. It was always necessary to call functions of the C library,
which looks very archaic, considering that such calls could be encapsulated nicely into their
own classes.

Since C++11, the STL provides the chrono library, which makes time-related tasks much
easier to implement.

In this recipe, we are going to take the local time, print it, and play around by adding
different time offsets, which is a really comfortable thing to do with std::chrono.

Utility Classes Chapter 25

[811]

How to do it...
We are going to save the current time and print it. Additionally, our program will add
different offsets to the saved time point and print the resulting time points too:

The typical include lines come first; then, we declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <chrono>

 using namespace std;

We are going to print absolute time points. These will come along in the form of2.
the chrono::time_point type template, so we will just overload the output
stream operator for it. There are different ways to print the date and/or time part
of a time point. We will just use the %c standard formatting. We could, of course,
also print only the time, only the date, only the year, or whatever comes to our
mind. All the conversions between the different types before we can finally apply
put_time look a bit clunky, but we are only doing this once:

 ostream& operator<<(ostream &os,
 const chrono::time_point<chrono::system_clock> &t)
 {
 const auto tt (chrono::system_clock::to_time_t(t));
 const auto loct (std::localtime(&tt));
 return os << put_time(loct, "%c");
 }

There are already STL type definitions for seconds, minutes, hours, and so on.3.
We will add the days type now. This is easy; we just have to specialize the
chrono::duration template by referring to hours and multiply with 24,
because a full day has 24 hours:

 using days = chrono::duration<
 chrono::hours::rep,
 ratio_multiply<chrono::hours::period, ratio<24>>>;

Utility Classes Chapter 25

[812]

In order to be able to express a duration in multiples of days in the most elegant4.
way, we can define our own days literal operator. Now, we can write 3_days to
construct a value that represents three days:

 constexpr days operator ""_days(unsigned long long h)
 {
 return days{h};
 }

In the actual program, we will take a time snapshot, which we simply print5.
afterward. This is very easy and comfortable because we already implemented
the right operator overload for this:

 int main()
 {
 auto now (chrono::system_clock::now());
 cout << "The current date and time is " << now << 'n';

Having saved the current time in the now variable, we can add arbitrary6.
durations to it and print those too. Let's add 12 hours to the current time and
print what time we will have in 12 hours:

 chrono::hours chrono_12h {12};
 cout << "In 12 hours, it will be "
 << (now + chrono_12h)<< 'n';

By declaring that we use the chrono_literals namespace by default, we7.
unlock all the existing duration literals for hours, seconds, and so on. This way,
we can elegantly print what time it was 12 hours and 15 minutes ago, or 7 days
ago:

 using namespace chrono_literals;
 cout << "12 hours and 15 minutes ago, it was "
 << (now - 12h - 15min) << 'n'
 << "1 week ago, it was "
 << (now - 7_days) << 'n';
 }

Utility Classes Chapter 25

[813]

Compiling and running the program yields the following output. Because we8.
used %c as the format string for time formatting, we get a pretty complete
description in a specific format. By playing around with different format strings,
we can get it in any format we like. Note that the time format is not 12 hours
AM/PM but 24 hours because the app is run on a European system:

 $./relative_absolute_times
 The current date and time is Fri May 5 13:20:38 2017
 In 12 hours, it will be Sat May 6 01:20:38 2017
 12 hours and 15 minutes ago, it was Fri May 5 01:05:38 2017
 1 week ago, it was Fri Apr 28 13:20:38 2017

How it works...
We obtained the current time point from std::chrono::system_clock. This STL clock
class is the only one that can transform its time point values to a time structure that can be
displayed as a human-readable time description string.

In order to print such time points, we implemented operator<< for output streams:

ostream& operator<<(ostream &os,
 const chrono::time_point<chrono::system_clock> &t)
{
 const auto tt (chrono::system_clock::to_time_t(t));
 const auto loct (std::localtime(&tt));
 return os << put_time(loct, "%c");
}

What happens here first, is that we transform from
chrono::time_point<chrono::system_clock> to std::time_t. Values of this type
can be transformed to a local wall clock relevant time value, which we do with
std::localtime. This function returns us a pointer to a converted value (don't worry
about the maintenance of the memory behind this pointer; it is a static object not allocated
on the heap), which we can now finally print.

The std::put_time function accepts such an object together with a time format string.
"%c" displays a standard date-time string, such as Sun Mar 12 11:33:40 2017. We
could also have written "%m/%d/%y"; then the program would have printed the time in the
format, 03/12/17. The whole list of existing format string modifiers for time is very long,
but it is nicely documented to its full extent in the online C++ reference.

Utility Classes Chapter 25

[814]

Aside from printing, we also added time offsets to our time point. This is very easy because
we can express time durations, such as 12 hours and 15 minutes as 12h + 15min. The
chrono_literals namespace already provides handy type literals for hours (h), minutes
(min), seconds (s), milliseconds (ms), microseconds (us), and nanoseconds (ns).

Adding such a duration value to a time point value creates a new time point value because
these types have the right operator+ and operator- overloads, which is why it is so
simple to add and display offsets in time.

Safely signalizing failure with std::optional
When a program communicates with the outside world and relies on values it gets from
there, then all kinds of failures can happen.

This means that whenever we write a function that ought to return a value, but that can also
possibly fail, then this must be reflected in some change of the function interface. We have
several possibilities. Let's see how we can design the interface of a function that will return
a string, but that could also fail:

Use a success-indicating return value and output parameters: bool
get_string(string&);

Return a pointer (or a smart pointer) that can be set to nullptr if there is a
failure: string* get_string();
Throw an exception in the case of failure and leave the function signature very
simple: string get_string();

All these approaches have different advantages and disadvantages. Since C++17, there is a
new type that can be used to solve such a problem in a different way: std::optional. The
notion of an optional value comes from purely functional programming languages (where
they are sometimes called Maybe types) and can lead to very elegant code.

We can wrap optional around our own types in order to signal empty or erroneous values.
In this recipe, we will learn how to do that.

Utility Classes Chapter 25

[815]

How to do it...
In this section, we will implement a program that reads integers from the user and sums
them up. Because the user can always input random things instead of numbers, we will see
how optional can improve our error handling:

First, we include all the needed headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <optional>

 using namespace std;

Let's define an integer type, which, maybe, contains a value. The std::optional2.
type does exactly that. By wrapping any type into optional, we give it an
additional possible state, which reflects that it currently has no value:

 using oint = optional<int>;

By having defined an optional integer type, we can express that a function that3.
usually returns an integer can also possibly fail. If we take an integer from user
input, this can possibly fail because the user might not always enter an integer
even though we asked him to do so. Returning an optional integer is perfect in
this case. If reading an integer succeeds, we feed it into the optional<int>
constructor. Otherwise, we return a default constructed optional, which signals
failure or emptiness:

 oint read_int()
 {
 int i;
 if (cin >> i) { return {i}; }
 return {};
 }

Utility Classes Chapter 25

[816]

We can do more than returning integers from functions that can possibly fail.4.
What if we calculate the sum of two optional integers? This can only lead to a real
numeric sum if both the operands contain an actual value. In any other case, we
return an empty optional variable. This function needs a little more explanation:
by implicitly transforming the optional<int> variables, a and b, to boolean
expressions (by writing !a and !b), we get to know whether they contain actual
values. If they do, we can access them like pointers or iterators by simply
dereferencing them with *a and *b:

 oint operator+(oint a, oint b)
 {
 if (!a || !b) { return {}; }
 return {*a + *b};
 }

Adding a normal integer to an optional integer follows the same logic:5.

 oint operator+(oint a, int b)
 {
 if (!a) { return {}; }
 return {*a + b};
 }

Let's now write a program that does something with optional integers. We let the6.
user enter two numbers:

 int main()
 {
 cout << "Please enter 2 integers.n> ";
 auto a {read_int()};
 auto b {read_int()};

Then we add those input numbers and additionally add the value 10 to their7.
sum. Since a and b are optional integers, sum will also be an optional integer type
variable:

 auto sum (a + b + 10);

Utility Classes Chapter 25

[817]

If a and/or b do not contain a value, then sum cannot possibly contain a value8.
either. The nice thing about our optional integers now is that we do not need to
explicitly check a and b. What happens when we sum up empty optionals is
perfectly sane and defined behavior because we defined operator+ in a safe
way for those types. This way, we can arbitrarily add many possibly empty
optional integers, and we'll only need to check the resulting optional value. If it
contains a value, then we can safely access and print it:

 if (sum) {
 cout << *a << " + " << *b << " + 10 = "
 << *sum << 'n';

If the user enters something non-numeric, we error out:9.

 } else {
 cout << "sorry, the input was "
 "something else than 2 numbers.n";
 }
 }

That's it. When we compile and run the program, we get the following output:10.

 $./optional
 Please enter 2 integers.
 > 1 2
 1 + 2 + 10 = 13

Running the program again and entering something non-numeric yields the error11.
message we prepared for this case:

 $./optional
 Please enter 2 integers.
 > 2 z
 sorry, the input was something else than 2 numbers.

How it works...
Working with optional is generally very simple and convenient. If we want to attach the
notion of possible failure or optionality to any type T, we can just wrap it into
std::optional<T> and that's it.

Utility Classes Chapter 25

[818]

Whenever we get such a value from somewhere, we have to check whether it is in the
empty state or whether it contains a real value. The bool optional::has_value()
function does that for us. If it returns true, we may access the value. Accessing the value of
an optional can be done with T& optional::value().

Instead of always writing if (x.has_value()) {...} and x.value(), we can also write
if (x) {...} and *x. The std::optional type defines explicit conversion to bool and
operator* in such a way that dealing with an optional type is similar to dealing with a
pointer.

Another handy operator helper that is good to know is the operator-> overload of
optional. If we have a struct Foo { int a; string b; } type and want to access
one of its members through an optional<Foo> variable, x, then we can write x->a or
x->b. Of course, we should first check whether x actually has a value.

If we try to access an optional value even though it does not have a value, then it will throw
std::logic_error. This way, it is possible to mess around with a lot of optional values
without always checking them. Using a try-catch clause, we could write code in the
following form:

cout << "Please enter 3 numbers:n";

try {
 cout << "Sum: "
 << (*read_int() + *read_int() + *read_int())
 << 'n';
} catch (const std::bad_optional_access &) {
 cout << "Unfortunately you did not enter 3 numbersn";
}

Another gimmick of std::optional is optional::value_or. If we want to take an
optional's value and fall back to a default value if it is in the empty state, then this is of help.
x = optional_var.value_or(123) does this job in one concise line, where 123 is the
fallback default value.

Utility Classes Chapter 25

[819]

Applying functions on tuples
Since C++11, the STL provides std::tuple. This type allows us to sporadically bundle
multiple values into a single variable and reach them around. The notion of tuples has been
there for a long time in a lot of programming languages, and some recipes in this book are
already devoted to this type because it is extremely versatile to use.

However, we sometimes end up with values bundled up in a tuple and then need to call
functions with their individual members. Unpacking the members individually for every
function argument is very tedious (and error-prone if we introduce a typo somewhere). The
tedious form looks like this: func(get<0>(tup), get<1>(tup), get<2>(tup),
...);.

In this recipe, you will learn how to pack and unpack values to and from tuples in an
elegant way, in order to call some functions that don't know about tuples.

How to do it...
We are going to implement a program that packs and unpacks values to and from tuples.
Then, we will see how to call functions that know nothing about tuples with values from
tuples:

First, we include a lot of headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <iomanip>
 #include <tuple>
 #include <functional>
 #include <string>
 #include <list>

 using namespace std;

Let's first define a function that takes multiple parameters describing a student2.
and prints them. A lot of legacy- or C-function interfaces look similar.:

 static void print_student(size_t id, const string &name, double gpa)
 {
 cout << "Student " << quoted(name)
 << ", ID: " << id
 << ", GPA: " << gpa << 'n';
 }

Utility Classes Chapter 25

[820]

In the actual program, we define a tuple type on the fly and fill it with3.
meaningful student data:

 int main()
 {
 using student = tuple<size_t, string, double>;
 student john {123, "John Doe"s, 3.7};

In order to print such an object, we can decompose it to its individual members4.
and call print_student with those individual variables:

 {
 const auto &[id, name, gpa] = john;
 print_student(id, name, gpa);
 }
 cout << "-----n";

Let's create a whole set of students in the form of an initializer list of student5.
tuples:

 auto arguments_for_later = {
 make_tuple(234, "John Doe"s, 3.7),
 make_tuple(345, "Billy Foo"s, 4.0),
 make_tuple(456, "Cathy Bar"s, 3.5),
 };

We can still relatively comfortably print them all, but in order to decompose the6.
tuple, we need to care how many elements such tuples have. If we have to write
such code, then we will also have to restructure it in case the function call
interface changes:

 for (const auto &[id, name, gpa] : arguments_for_later) {
 print_student(id, name, gpa);
 }
 cout << "-----n";

We can do better. Without even knowing the argument types of print_student7.
or the number of members in a student tuple, we can directly forward the tuple's
content to the function using std::apply. This function accepts a function
pointer or a function object and a tuple and then unpacks the tuple in order to call
the function with the tuple members as parameters:

 apply(print_student, john);
 cout << "-----n";

Utility Classes Chapter 25

[821]

This also works nicely in a loop, of course:8.

 for (const auto &args : arguments_for_later) {
 apply(print_student, args);
 }
 cout << "-----n";
 }

Compiling and running the program shows that both ways work, as we assumed:9.

 $./apply_functions_on_tuples
 Student "John Doe", ID: 123, GPA: 3.7

 Student "John Doe", ID: 234, GPA: 3.7
 Student "Billy Foo", ID: 345, GPA: 4
 Student "Cathy Bar", ID: 456, GPA: 3.5

 Student "John Doe", ID: 123, GPA: 3.7

 Student "John Doe", ID: 234, GPA: 3.7
 Student "Billy Foo", ID: 345, GPA: 4
 Student "Cathy Bar", ID: 456, GPA: 3.5

How it works...
The std::apply is a compile-time helper that helps us work more agnostic about the types
we handle in our code.

Imagine we have a tuple t with the values (123, "abc"s, 456.0). This tuple has the
type, tuple<int, string, double>. Additionally, assume that we have a function f
with the signature int f(int, string, double) (the types can also be references).

Then, we can write x = apply(f, t), which will result in a function call, x = f(123,
"abc"s, 456.0). The apply method does even return to us what f returns.

Utility Classes Chapter 25

[822]

Quickly composing data structures with
std::tuple
Let's have a look at a basic use case for tuples that we most probably already know. We can
define a structure as follows, in order to just bundle some variables:

struct Foo {
 int a;
 string b;
 float c;
};

Instead of defining a structure as in the preceding example, we can also define a tuple:

using Foo = tuple<int, string, float>;

We can access its items using the index number of the type from the type list. In order to
access the first member of a tuple, t, we can use std::get<0>(t) to access the second
member we write std::get<1>, and so on. If the index number is too large, then the
compiler will even safely error out.

Throughout the book, we have already used the decomposition capabilities of C++17 for
tuples. They allow us to decompose a tuple quickly by just writing auto [a, b, c] =
some_tuple in order to access its individual items.

Composing and decomposing single data structures are not the only things we can do with
tuples. We can also concatenate or split tuples, or do all kinds of magic. In this recipe, we
will play around with such capabilities in order to learn how to do it.

How to do it...
In this section, we will write a program that can print any tuple on the fly. In addition to
that, we will write a function that can zip tuples together:

We need to include a number of headers first and then we declare that we use the1.
std namespace by default:

 #include <iostream>
 #include <tuple>
 #include <list>
 #include <utility>
 #include <string>

Utility Classes Chapter 25

[823]

 #include <iterator>
 #include <numeric>
 #include <algorithm>

 using namespace std;

As we will be dealing with tuples, it will be interesting to display their content.2.
Therefore, we will now implement a very generic function that can print any
tuple that consists of printable types. The function accepts an output stream
reference os, which will be used to do the actual printing, and a variadic
argument list, which carries all the tuple members. We decompose all the
arguments into the first element and put it into the argument, v, and the rest,
which is stored in the argument pack vs...:

 template <typename T, typename ... Ts>
 void print_args(ostream &os, const T &v, const Ts &...vs)
 {
 os << v;

If there are arguments left in the parameter pack, vs, these are printed3.
interleaved with ", " using the initializer_list expansion trick. You
learned about this trick in the Chapter 21, Lambda Expressions:

 (void)initializer_list<int>{((os << ", " << vs), 0)...};
 }

We can now print arbitrary sets of arguments by writing print_args(cout, 1,4.
2, "foo", 3, "bar"), for example. But this has nothing to do with tuples yet.
In order to print tuples, we overload the stream output operator << for any case
of tuples by implementing a template function that matches on any tuple
specialization:

 template <typename ... Ts>
 ostream& operator<<(ostream &os, const tuple<Ts...> &t)
 {

Now it gets a little complicated. We first use a lambda expression that arbitrarily5.
accepts many parameters. Whenever it is called, it prepends the os argument to
those arguments and then calls print_args with the resulting new list of
arguments. This means that a call to capt_tup(...some parameters...)
leads to a print_args(os, ...some parameters...) call:

 auto print_to_os ([&os](const auto &...xs) {
 print_args(os, xs...);

Utility Classes Chapter 25

[824]

 });

Now we can do the actual tuple unpacking magic. We use std::apply to6.
unpack the tuple. All values will be taken out of the tuple then and lined up as
function arguments for the function that we provide as the first argument. This
just means that if we have a tuple, t = (1, 2, 3), and call apply(capt_tup,
t), then this will lead to a function call, capt_tup(1, 2, 3), which in turn
leads to the function call, print_args(os, 1, 2, 3). This is just what we
need. As a nice extra, we surround the printing with parentheses:

 os << "(";
 apply(print_to_os, t);
 return os << ")";
 }

Okay, now we wrote some complicated code that will make our life much easier7.
when we want to print a tuple. But we can do a lot more with tuples. Let's, for
example, write a function that accepts an iterable range, such as a vector or a list
of numbers, as an argument. This function will then iterate over that range and
then return us the sum of all the numbers in the range and bundle that with the
minimum of all values, the maximum of all values, and the numeric average of
them. By packing these four values into a tuple, we can return them as a single
object without defining an additional structure type:

 template <typename T>
 tuple<double, double, double, double>
 sum_min_max_avg(const T &range)
 {

The std::minmax_element function returns us a pair of iterators that8.
respectively point to the minimum and maximum values of the input range. The
std::accumulate method sums up all the values in its input range. This is all
we need to return the four values that fit in our tuple!

 auto min_max (minmax_element(begin(range), end(range)));
 auto sum (accumulate(begin(range), end(range), 0.0));
 return {sum, *min_max.first, *min_max.second,
 sum / range.size()};
 }

Utility Classes Chapter 25

[825]

Before implementing the main program, we will implement one last magic helper9.
function. I call it magic because it really looks complicated at first, but after
understanding how it works, it will turn out as a really slick and nice helper. It
will zip two tuples. This means that if we feed it a tuple, (1, 2, 3), and another
tuple, ('a', 'b', 'c'), it will return a tuple (1, 'a', 2, 'b', 3, 'c'):

 template <typename T1, typename T2>
 static auto zip(const T1 &a, const T2 &b)
 {

Now we arrived at the most complex lines of code of this recipe. We create a10.
function object, z, which accepts an arbitrary number of arguments. It then
returns another function object that captures all these arguments in a parameter
pack, xs, but also accepts another arbitrary number of arguments. Let's sink this
in for a moment. Within this inner function object, we can access both lists of
arguments in the form of the parameter packs, xs and ys. And now let's have a
look what we actually do with these parameter packs. The expression,
make_tuple(xs, ys)..., groups the parameter packs item wise. This means
that if we have xs = 1, 2, 3 and ys = 'a', 'b', 'c', this will result in a
new parameter pack, (1, 'a'), (2, 'b'), (3, 'c'). This is a comma-
separated list of three tuples. In order to get them all grouped in one tuple, we use
std::tuple_cat, which accepts an arbitrary number of tuples and repacks them
into one tuple. This way we get a nice (1, 'a', 2, 'b', 3, 'c') tuple:

 auto z ([](auto ...xs) {
 return [xs...](auto ...ys) {
 return tuple_cat(make_tuple(xs, ys) ...);
 };
 });

The last step is unwrapping all the values from the input tuples, a and b, and11.
pushing them into z. The expression, apply(z, a), puts all the values from a
into the parameter pack xs, and apply(..., b) puts all the values of b into the
parameter pack ys. The resulting tuple is the large zipped one, which we return
to the caller:

 return apply(apply(z, a), b);
 }

Utility Classes Chapter 25

[826]

We invested a considerable amount of lines into helper/library code. Let's now12.
finally put it to use. First, we construct some arbitrary tuples. The student
contains ID, name, and GPA score of a student. The student_desc contains
strings that describe what those fields mean in human-readable form. The
std::make_tuple is a really nice helper because it automatically deduces the
type of all the arguments and creates a suitable tuple type:

 int main()
 {
 auto student_desc (make_tuple("ID", "Name", "GPA"));
 auto student (make_tuple(123456, "John Doe", 3.7));

Let's just print what we have. This is really simple because we just implemented13.
the right operator<< overload for that:

 cout << student_desc << 'n'
 << student << 'n';

We can also group both the tuples on the fly with std::tuple_cat and print14.
them like this:

 cout << tuple_cat(student_desc, student) << 'n';

We can also create a new zipped tuple with our zip function and also print it:15.

 auto zipped (zip(student_desc, student));
 cout << zipped << 'n';

Let's not forget our sum_min_max_avg function. We create an initializer list that16.
contains some numbers and feed it into this function. To make it a little bit more
complicated, we create another tuple of the same size, which contains some
describing strings. By zipping these tuples, we get a nice, interleaved output, as
we will see when we run the program:

 auto numbers = {0.0, 1.0, 2.0, 3.0, 4.0};
 cout << zip(
 make_tuple("Sum", "Minimum", "Maximum", "Average"),
 sum_min_max_avg(numbers))
 << 'n';
 }

Utility Classes Chapter 25

[827]

Compiling and running the program yields the following output. The first two17.
lines are just the individual student and student_desc tuples. Line 3 is the
tuple composition we got by using tuple_cat. Line 4 contains the zipped
student tuple. In the last line, we see the sum, minimum, maximum, and average
value of the numeric list we last created. Because of the zipping, it is really easy
to see what each value means:

 $./tuple
 (ID, Name, GPA)
 (123456, John Doe, 3.7)
 (ID, Name, GPA, 123456, John Doe, 3.7)
 (ID, 123456, Name, John Doe, GPA, 3.7)
 (Sum, 10, Minimum, 0, Maximum, 4, Average, 2)

How it works...
Some of the code in this section is admittedly complicated. We wrote an operator<<
implementation for tuples, which looks very complex but supports all kinds of tuples that
themselves consist of printable types. Then we implemented the sum_min_max_avg
function, which just returns a tuple. Another very complicated thing to get our head around
was the function zip.

The easiest part was sum_min_max_avg. The point about it is that when we define a
function that returns an instance tuple<Foo, Bar, Baz> f(), we can just write return
{foo_instance, bar_instance, baz_instance}; in that function to construct such a
tuple. If you have trouble understanding the STL algorithms we used in the
sum_min_max_avg function, then you might want to have a look at the Chapter 22, STL
Algorithm Basics of this book, where we already had a closer look at them.

The other code was so complicated that we dedicate the specific helpers their own
subsections:

operator<< for tuples
Before we even touched operator<< for output streams, we implemented the print_args
function. Due to its variadic argument nature, it accepts any number and type of
arguments, as long as the first one is an ostream instance:

template <typename T, typename ... Ts>
void print_args(ostream &os, const T &v, const Ts &...vs)
{

Utility Classes Chapter 25

[828]

 os << v;

 (void)initializer_list<int>{((os << ", " << vs), 0)...};
}

This function prints the first item, v, and then prints all the other items from the parameter
pack, vs. We print the first item individually because we want to have all items interleaved
with ", " but we do not want this string leading or trailing the whole list (as in "1, 2, 3,
" or ", 1, 2, 3"). We learned about the initializer_list expansion trick in Chapter
21, Lambda Expressions, in the recipe Calling multiple functions with the same input.

Having that function lined up, we have everything we need in order to print tuples. Our
operator<< implementation looks as follows:

template <typename ... Ts>
ostream& operator<<(ostream &os, const tuple<Ts...> &t)
{
 auto capt_tup ([&os](const auto &...xs) {
 print_args(os, xs...);
 });

 os << "(";
 apply(capt_tup, t);
 return os << ")";
}

The first thing we do is defining the function object, capt_tup. When we call
capt_tup(foo, bar, whatever), this results in the call, print_args(os, foo, bar,
whatever). The only thing this function object does is prepend the output stream object os
to its variadic list of arguments.

Afterward, we use std::apply in order to unpack all the items from tuple t. If this step
looks too complicated, please have a look at the recipe before this one, which is dedicated to
demonstrating how std::apply works.

The zip function for tuples
The zip function accepts two tuples, but looks horribly complicated, although it has a very
crisp implementation:

template <typename T1, typename T2>
auto zip(const T1 &a, const T2 &b)
{
 auto z ([](auto ...xs) {

Utility Classes Chapter 25

[829]

 return [xs...](auto ...ys) {
 return tuple_cat(make_tuple(xs, ys) ...);
 };
 });
 return apply(apply(z, a), b);
}

In order to understand this code better, imagine for a moment that the tuple a carries the
values, 1, 2, 3, and tuple b carries the values, 'a', 'b', 'c'.

In such a case, calling apply(z, a) leads to a function call z(1, 2, 3), which returns
another function object that captures those values, 1, 2, 3, in the parameter pack xs.
When this function object is then called with apply(z(1, 2, 3), b), it gets the values,
'a', 'b', 'c', stuffed into the parameter pack, ys. This is basically the same as if we
called z(1, 2, 3)('a', 'b', 'c') directly.

Okay, now that we have xs = (1, 2, 3) and ys = ('a', 'b', 'c'), what happens
then? The expression tuple_cat(make_tuple(xs, ys) ...) does the following magic;
have a look at the diagram:

At first, the items from xs and ys are zipped together by interleaving them pairwise. This
"pairwise interleaving" happens in the make_tuple(xs, ys) ... expression. This
initially only leads to a variadic list of tuples with two items each. In order to get one large
tuple, we apply tuple_cat on them and then we finally get a large concatenated tuple that
contains all the members of the initial tuples in an interleaved manner.

Utility Classes Chapter 25

[830]

Replacing void* with std::any for more type
safety
It can happen that we want to store items of any type in a variable. For such a variable, we
then need to be able to check whether it contains anything, and if it does, we need to be able
to distinguish what it contains. All this needs to happen in a type-safe manner.

In the past, we were basically able to store pointers to various objects in a void* pointer. A
void typed pointer alone cannot tell us what kind of object it points to, so we would need
to handcraft some kind of additional mechanism that tells us what to expect. Such code
quickly leads to quirky looking and unsafe code.

Another addition of C++17 to the STL is the std::any type. It is designed to hold variables
of any kind and provides facilities that enable for type-safe inspection and access to it.

In this recipe, we will play around with this utility type in order to get a feeling of it.

How to do it...
We will implement a function that tries to be able to print everything. It uses std::any as
its argument type:

First, we include some necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <iomanip>
 #include <list>
 #include <any>
 #include <iterator>

 using namespace std;

In order to reduce the number of angle bracket syntax in the following program,2.
we define an alias for list<int>, which we will use later:

 using int_list = list<int>;

Utility Classes Chapter 25

[831]

Let's implement a function that claims to be able to print anything. The promise is3.
that it prints anything provided as an argument in the form of an std::any
variable:

 void print_anything(const std::any &a)
 {

The first thing we need to check is if the argument contains anything or if it is just4.
an empty any instance. If it is empty, then there is no sense in trying to figure out
how to print it:

 if (!a.has_value()) {
 cout << "Nothing.n";

If it is not empty, we can try to compare it with different types until we see a5.
match. The first type to try is string. If it is a string, we can cast a to a string
typed reference using std::any_cast and just print it. We put the string in
quotes for cosmetic reasons:

 } else if (a.type() == typeid(string)) {
 cout << "It's a string: "
 << quoted(any_cast<const string&>(a)) << 'n';

If it is not a string, it might be an int. In case this type matches, we can use6.
any_cast<int> to obtain the actual int value:

 } else if (a.type() == typeid(int)) {
 cout << "It's an integer: "
 << any_cast<int>(a) << 'n';

std::any does not only work with such simple types as string and int. We7.
can also put a whole map or list or whatever composed complex data structure
into an any variable. Let's see if the input is a list of integers, and if it is, we can
just print it like we would print a list:

 } else if (a.type() == typeid(int_list)) {
 const auto &l (any_cast<const int_list&>(a));
 cout << "It's a list: ";
 copy(begin(l), end(l),
 ostream_iterator<int>{cout, ", "});
 cout << 'n';

Utility Classes Chapter 25

[832]

If none of these types match, we run out of type guesses. Let's give up in that case8.
and tell the user that we have no idea how to print this:

 } else {
 cout << "Can't handle this item.n";
 }
 }

In the main function, we can now call this function with arbitrary types. We can9.
call it with an empty any variable using {} or feed it with a string "abc" or an
integer. Because std::any can be constructed from such types implicitly, there is
no syntax overhead. We can even construct a whole list and throw it into this
function:

 int main()
 {
 print_anything({});
 print_anything("abc"s);
 print_anything(123);
 print_anything(int_list{1, 2, 3});

If we are going to put objects that are really expensive to copy into an any10.
variable, we can also perform an in-place construction. Let's try this with our list
type. The in_place_type_t<int_list>{} expression is an empty object that
gives the constructor of any enough information to know what we are going to
construct. The second parameter, {1, 2, 3}, is just an initializer list that will be
fed to the int_list embedded in the any variable for construction. This way, we
avoid unnecessary copies or moves:

 print_anything(any(in_place_type_t<int_list>{}, {1, 2, 3}));
 }

Compiling and running the program yields the following output, which is just11.
what we expected:

 $./any
 Nothing.
 It's a string: "abc"
 It's an integer: 123
 It's a list: 1, 2, 3,
 It's a list: 1, 2, 3,

Utility Classes Chapter 25

[833]

How it works...
The std::any type is similar in one regard to std::optional--it has a has_value()
method that tells if an instance carries a value or not. But apart from that, it can contain
literally anything, so it is more complex to handle compared with optional.

Before accessing the content of an any variable, we need to find out what type it carries and,
then, cast it to that type.

Finding out if an any instance holds a type T value can be done with a comparison:
x.type() == typeid(T). If this comparison results in true, then we can use any_cast
to get at the content.

Note that any_cast<T>(x) returns a copy of the internal T value in x. If we want a reference
in order to avoid copying of complex objects, we need to use any_cast<T&>(x). This is
what we did when we accessed the internal string or list<int> objects in this section's
code.

If we cast an instance of any to the wrong type, it will throw an
std::bad_any_cast exception.

Storing different types with std::variant
There are not only struct and class primitives in C++ that enable us to compose types. If
we want to express that some variable can hold either some type A or a type B (or C, or
whatever), we can use union. The problem with unions is that they cannot tell us they were
actually initialized to which of the types that they can hold.

Consider the following code:

union U {
 int a;
 char *b;
 float c;
};

void func(U u) { std::cout << u.b << 'n'; }

Utility Classes Chapter 25

[834]

If we call the func function with a union that was initialized to hold an integer via member
a, there is nothing that prevents us from accessing it, as if it was initialized to store a pointer
to a string via member b. All kinds of bugs can be spread from such code. Before we start to
pack our union with an auxiliary variable that tells us to what it was initialized in order to
gain some safety, we can directly use std::variant, which came with C++17.

The variant is kind of the new-school, type-safe, and efficient union type. It does not use
the heap, so it is as space-efficient and time-efficient as a union-based handcrafted solution
could be, so we do not have to implement it ourselves. It can store anything apart from
references, arrays, or the void type.

In this recipe, we will construct an example that profits from variant in order to get a
feeling of how to use this cool new addition to the STL.

How to do it...
Let's implement a program that knows the types, cat and dog, and that stores a mixed list
of cats and dogs without using any runtime polymorphy:

First, we include all the needed headers and define that we use the std1.
namespace:

 #include <iostream>
 #include <variant>
 #include <list>
 #include <string>
 #include <algorithm>

 using namespace std;

Next, we implement two classes that have similar functionality but are not2.
related to each other in any other way, in contrast to classes that, for example,
inherit from the same interface or a similar interface. The first class is cat. A cat
object has a name and can say meow:

 class cat {
 string name;

 public:
 cat(string n) : name{n} {}

Utility Classes Chapter 25

[835]

 void meow() const {
 cout << name << " says Meow!n";
 }
 };

The other class is dog. A dog object does not say meow but woof, of course:3.

 class dog {
 string name;
 public:
 dog(string n) : name{n} {}
 void woof() const {
 cout << name << " says Woof!n";
 }
 };

Now we can define an animal type, which is just a type alias to4.
std::variant<dog, cat>. This is basically the same as an old-school union but
has all the extra features that variant provides:

 using animal = variant<dog, cat>;

Before we write the main program, we implement two helpers first. One helper is5.
an animal predicate. By calling is_type<cat>(...) or is_type<dog>(...),
we can find out if an animal variant instance holds a cat or a dog. The
implementation just calls holds_alternative, which is a generic predicate
function for variant types:

 template <typename T>
 bool is_type(const animal &a) {
 return holds_alternative<T>(a);
 }

The second helper is a structure that acts as a function object. It is a twofold6.
function object because it implements operator() twice. One implementation is
an overload that accepts dogs and the other accepts cats. For these types, it just
calls the woof or the meow function:

 struct animal_voice
 {
 void operator()(const dog &d) const { d.woof(); }
 void operator()(const cat &c) const { c.meow(); }
 };

Utility Classes Chapter 25

[836]

Let's put these types and helpers to use. First, we define a list of animal variant7.
instances and fill it with cats and dogs:

 int main()
 {
 list<animal> l {cat{"Tuba"}, dog{"Balou"}, cat{"Bobby"}};

Now, we print the contents of the list three times, and each time in a different8.
way. One way is using variant::index(). Because animal is an alias of
variant<dog, cat>, a return value of 0 means that the variant holds a dog
instance. Index 1 means it is a cat. The order of the types in the variant
specialization is the key here. In the switch case block, we access the variant with
get<T> in order to get the actual cat or dog instance inside:

 for (const animal &a : l) {
 switch (a.index()) {
 case 0:
 get<dog>(a).woof();
 break;
 case 1:
 get<cat>(a).meow();
 break;
 }
 }
 cout << "-----n";

Instead of using the numeric index of the type, we can also explicitly ask for9.
every type. The get_if<dog> returns a dog-typed pointer to the internal dog
instance. If there is no dog instance inside, then the pointer is null. This way, we
can try to get at different types until we finally succeed:

 for (const animal &a : l) {
 if (const auto d (get_if<dog>(&a)); d) {
 d->woof();
 } else if (const auto c (get_if<cat>(&a)); c) {
 c->meow();
 }
 }
 cout << "-----n";

Utility Classes Chapter 25

[837]

The last and most elegant way is variant::visit. This function accepts a10.
function object and a variant instance. The function object must implement
different overloads for all the possible types the variant can hold. We
implemented a structure with the right operator() overloads before, so we can
use it here:

 for (const animal &a : l) {
 visit(animal_voice{}, a);
 }
 cout << "-----n";

At last, we will count the number of cats and dogs in the variant list. The11.
is_type<T> predicate can be specialized on cat and dog and can then be used
in combination with std::count_if to return us the number of instances of this
type:

 cout << "There are "
 << count_if(begin(l), end(l), is_type<cat>)
 << " cats and "
 << count_if(begin(l), end(l), is_type<dog>)
 << " dogs in the list.n";
 }

Compiling and running the program first yields the same list printed three times.12.
After that, we see that the is_type predicates combined with count_if work
just fine:

 $./variant
 Tuba says Meow!
 Balou says Woof!
 Bobby says Meow!

 Tuba says Meow!
 Balou says Woof!
 Bobby says Meow!

 Tuba says Meow!
 Balou says Woof!
 Bobby says Meow!

 There are 2 cats and 1 dogs in the list.

Utility Classes Chapter 25

[838]

How it works...
The std::variant type is kind of similar to std::any because both can hold objects of
different types, and we need to distinguish at runtime what exactly they hold before we try
to access their content.

On the other hand, std::variant is different from std::any in the regard that we must
declare what it shall be able to store in the form of a template type list. An instance of
std::variant<A, B, C> must hold one instance of type A, B, or C. There is no possibility
to hold none of them, which means that std::variant has no notion of optionality.

A variant of type, variant<A, B, C>, mimics a union type that could look like the
following:

union U {
 A a;
 B b;
 C c;
};

The problem with unions is that we need to build our own mechanisms to distinguish if it
was initialized with an A, B, or C variable. The std::variant type can do this for us
without much hassle.

In the code in this section, we used three different ways to handle the content of a variant
variable.

The first way was the index() function of variant. For a variant type variant<A, B,
C> it can return index 0 if it was initialized to hold an A type, or 1 for B, or 2 for C, and so on
for more complex variants.

The next way is the get_if<T> function. It accepts the address of a variant object and
returns a T-typed pointer to its content. If the T type is wrong, then this pointer will be a
null pointer. It is also possible to call get<T>(x) on a variant variable in order to get a
reference to its content, but if that does not succeed, this function throws an exception
(before doing such get-casts, checking for the right type can be done with the Boolean
predicate holds_alternative<T>(x)).

The last way to access the variant is the std::visit function. It accepts a function object
and a variant instance. The visit function then checks of which type the content of the
variant is and then calls the right operator() overload of the function object.

Utility Classes Chapter 25

[839]

For exactly this purpose, we implemented the animal_voice type because it can be used in
combination with visit and variant<dog, cat>:

struct animal_voice
{
 void operator()(const dog &d) const { d.woof(); }
 void operator()(const cat &c) const { c.meow(); }
};

The visit-way of accessing variants can be considered the most elegant one because the
code sections that actually access the variant do not need to be hardcoded to the types the
variant can hold. This makes our code easier to extend.

The claim that a variant type cannot hold no value was not completely
true. By adding the std::monostate type to its type list, it can indeed be
initialized to hold no value.

Automatically handling resources with
std::unique_ptr
Since C++11, the STL provides smart pointers that really help keep track of dynamic
memory and its disposal. Even before C++11, there was a class called auto_ptr that was
already able to do automatic memory disposal, but it was easy to use the wrong way.

However, with the C++11-generation smart pointers, we seldom need to write new and
delete ourselves, which is a really good thing. Smart pointers are a shiny example of
automatic memory management. If we maintain dynamically allocated objects with
unique_ptr, we are basically safe from memory leaks, because upon its destruction this
class automatically calls delete on the object it maintains.

A unique pointer expresses ownership of the object it points to and follows its responsibility
of freeing its memory again if it is no longer used. This class has the potential of relieving us
forever from memory leaks (at least together with its companions shared_ptr and
weak_ptr, but in this recipe, we solely concentrate on unique_ptr). And the best thing is
that it imposes no overhead on space and runtime performance, compared with code with
raw pointers and manual memory management. (Okay, it still sets its internal raw pointer
to nullptr internally after destruction of the object it points to, which cannot always be
optimized away. Most manually written code that manages dynamic memory does the
same, though.)

Utility Classes Chapter 25

[840]

In this recipe, we will a look at unique_ptr and how to use it.

How to do it...
We will write a program that shows us how unique_ptr handles memory by creating a
custom type that adds some debug messages upon its construction and destruction. Then,
we will play around with unique pointers, maintaining dynamically allocated instances of
it:

First, we include the necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <memory>

 using namespace std;

We are going to implement a little class for the object we are going to manage2.
using unique_ptr. Its constructor and destructor print to the terminal, so we can
see later when it is actually automatically deleted:

 class Foo
 {
 public:
 string name;

 Foo(string n)
 : name{move(n)}
 { cout << "CTOR " << name << 'n'; }

 ~Foo() { cout << "DTOR " << name << 'n'; }
 };

Utility Classes Chapter 25

[841]

In order to see what limitations a function has that accepts unique pointers as3.
arguments, we just implement one. It processes a Foo item by printing its name.
Note that while unique pointers are smart, overhead-free, and comfortably safe,
they can still be null. This means that we still have to check them before we
dereference them:

 void process_item(unique_ptr<Foo> p)
 {
 if (!p) { return; }
 cout << "Processing " << p->name << 'n';
 }

In the main function, we will open another scope, create two Foo objects on the4.
heap, and manage both with unique pointers. We create the first one explicitly on
the heap using the new operator and then put it into the constructor of the
unique_ptr<Foo> variable, p1. We create the unique pointer, p2, by calling
make_unique<Foo> with the arguments we would otherwise directly give the
constructor of Foo. This is the more elegant way because we can use auto type
deduction and the first time we can access the object, it is already managed by
unique_ptr:

 int main()
 {
 {
 unique_ptr<Foo> p1 {new Foo{"foo"}};
 auto p2 (make_unique<Foo>("bar"));
 }

After we left the scope, both objects are destructed immediately and their5.
memory is released to the heap. Let's have a look at the process_item function
and how to use it with unique_ptr now. If we construct a new Foo instance,
managed by a unique_ptr in the function call, then its lifetime is reduced to the
scope of the function. When process_item returns, the object is destroyed:

 process_item(make_unique<Foo>("foo1"));

Utility Classes Chapter 25

[842]

If we want to call process_item with an object that already existed before the6.
call, then we need to transfer ownership because that function takes a unique_ptr
by value, which means that calling it would lead to a copy. But unique_ptr
cannot be copied, it can only be moved. Let's create two new Foo objects and move
one into process_item. By looking at the terminal output later, we will see that
foo2 is destroyed when process_item returns because we transferred
ownership to it. foo3 will continue living until the main function returns:

 auto p1 (make_unique<Foo>("foo2"));
 auto p2 (make_unique<Foo>("foo3"));
 process_item(move(p1));
 cout << "End of main()n";
 }

Let's compile and run the program. At first, we see the constructor and destructor7.
calls of foo and bar. They are indeed destroyed just after the program leaves the
additional scope. Note that the objects are destroyed in the opposite order of their
creation. The next constructor line comes from foo1, which is the item we created
during the process_item call. It is indeed destroyed immediately after the
function call. Then we created foo2 and foo3. foo2 is destroyed immediately
after the process_item call where we transferred the ownership. The other item,
foo3, in comparison, is destroyed after the last code line in the main function:

 $./unique_ptr
 CTOR foo
 CTOR bar
 DTOR bar
 DTOR foo
 CTOR foo1
 Processing foo1
 DTOR foo1
 CTOR foo2
 CTOR foo3
 Processing foo2
 DTOR foo2
 End of main()
 DTOR foo3

Utility Classes Chapter 25

[843]

How it works...
Handling heap objects with std::unique_ptr is really simple. After we initialized a
unique pointer to hold a pointer to some object, there is no way we can accidentally forget
about deleting it on some code path.

If we assign some new pointer to a unique pointer, then it will always first delete the old
object it pointed to and then store the new pointer. On a unique pointer variable, x, we can
also call x.reset() to just delete the object it points to immediately without assigning a
new pointer. Another equivalent alternative to reassigning via x = new_pointer is
x.reset(new_pointer).

There is indeed one single way to release an object from the management
of unique_ptr without deleting it. The release function does that, but
using this function is not advisable in most situations.

Since pointers need to be checked before they are actually dereferenced, they overload the
right operators in a way that enables them to mimic raw pointers. Conditionals like if (p)
{...} and if (p != nullptr) {...} perform the same way as we would check a raw
pointer.

Dereferencing a unique pointer can be done via the get() function, which returns a raw
pointer to the object that can be dereferenced, or directly via operator*, which again
mimics raw pointers.

One important characteristic of unique_ptr is that its instances cannot be copied but can be
moved from one unique_ptr variable to the other. This is why we had to move an existing
unique pointer into the process_item function. If we were able to copy a unique pointer,
then this would mean that the object being pointed to is owned by two unique pointers,
although this contradicts the design of a unique pointer that is the only owner (and later the
"deleter") of the underlying object.

Since there are data structures, such as unique_ptr and shared_ptr,
there is rarely any reason to create heap objects directly with new and
delete them manually. Use such classes wherever you can! Especially
unique_ptr imposes no overhead at runtime.

Utility Classes Chapter 25

[844]

Automatically handling shared heap memory
with std::shared_ptr
In the last recipe, we learned how to use unique_ptr. This is an enormously useful and
important class because it helps us manage dynamically allocated objects. However, it can
only handle single ownership. It is not possible to let multiple objects own the same
dynamically allocated object because, then, it would be unclear who has to delete it later.

The pointer type, shared_ptr, was designed for specifically this case. Shared pointers can
be copied arbitrarily often. An internal reference counting mechanism tracks how many
objects are still maintaining a pointer to the payload object. Only the last shared pointer that
goes out of scope will call delete on the payload object. This way, we can be sure that we
do not get memory leaks because objects are deleted automatically after use. At the same
time, we can be sure that they are not deleted too early, or too often (every created object
must only be deleted once).

In this recipe, you will learn how to use shared_ptr to automatically manage dynamic
objects that are shared between multiple owners and see what's different when comparing
it with unique_ptr:

How to do it...
We are going to write a program that is similar to the program we wrote in the unique_ptr
recipe in order to get insights into the usage and principles of shared_ptr:

At first, we just include the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <memory>

 using namespace std;

Then we define a little helper class, which helps us see when instances of it are2.
actually created and destroyed. We will manage instances of it with shared_ptr:

 class Foo
 {
 public:
 string name;
 Foo(string n)

Utility Classes Chapter 25

[845]

 : name{move(n)}
 { cout << "CTOR " << name << 'n'; }
 ~Foo() { cout << "DTOR " << name << 'n'; }
 };

Next, we implement a function that takes a shared pointer to a Foo instance by3.
value. Accepting shared pointers as arguments by value is more interesting than
accepting them by reference because in this case, they need to be copied, which
changes their internal reference counter, as we will see:

 void f(shared_ptr<Foo> sp)
 {
 cout << "f: use counter at "
 << sp.use_count() << 'n';
 }

In the main function, we declare an empty shared pointer. By default4.
constructing it, it is effectively a null pointer:

 int main()
 {
 shared_ptr<Foo> fa;

Next, we open another scope and instantiate two Foo objects. We create the first5.
one using the new operator and then feed it into the constructor of a new
shared_ptr. Then we create the second instance using make_shared<Foo>,
which creates a Foo instance from the parameters we provide. This is the more
elegant method because we can use auto type deduction and the object is already
managed when we have the chance to access it for the first time. This is very
similar to the unique_ptr recipe at this point:

 {
 cout << "Inner scope beginn";
 shared_ptr<Foo> f1 {new Foo{"foo"}};
 auto f2 (make_shared<Foo>("bar"));

Utility Classes Chapter 25

[846]

Since shared pointers can be shared, they need to track how many parties share6.
them. This is done with an internal reference counter or use counter. We can print
its value using use_count. The value is exactly 1 at this point because we did not
copy it yet. We can copy f1 to fa, which increases the use counter to 2.

 cout << "f1's use counter at " << f1.use_count() << 'n';
 fa = f1;
 cout << "f1's use counter at " << f1.use_count() << 'n';

While we're leaving the scope, the shared pointers f1 and f2 are destroyed. The7.
f1 variable's reference counter is decremented to 1 again, making fa the only
owner of the Foo instance. While f2 is destroyed, its reference counter is
decremented to 0. In this case, the shared_ptr pointer's destructor will call
delete on this object, which disposes of it:

 }
 cout << "Back to outer scopen";

 cout << fa.use_count() << 'n';

Now, let's call the f function with our shared pointer in two different ways. At8.
first, we call it naively by copying fa. The f function will then print that the
reference counter has the value 2. In the second call to f, we move the pointer
into the function. This makes f the only owner of the object:

 cout << "first f() calln";
 f(fa);
 cout << "second f() calln";
 f(move(fa));

After f is returned, the Foo instance is destroyed immediately because we do not9.
have ownership of it any longer. Therefore, all the objects are already destroyed
when the main function returns:

 cout << "end of main()n";
 }

Utility Classes Chapter 25

[847]

Compiling and running the program yields the following output. In the10.
beginning, we see "foo" and "bar" created. After we copied f1 (which points to
"foo"), its reference counter was incremented to 2. While leaving the scope,
"bar" is destroyed because the shared pointer to it being the subject of
destruction is the only owner. The single 1 in the output is the reference count of
fa, which is now the only owner of "foo". Afterward, we called function f
twice. On the first call, we copied fa into it, which gave it a reference counter of 2
again. On the second call, we moved it into f, which did not alter its reference
counter. Moreover, because f is the only owner of "foo" at this point, the object
is destroyed immediately after f leaves the scope. This way, no other heap objects
are destroyed after the last print line in main:

 $./shared_ptr
 Inner scope begin
 CTOR foo
 CTOR bar
 f1's use counter at 1
 f1's use counter at 2
 DTOR bar
 Back to outer scope
 1
 first f() call
 f: use counter at 2
 second f() call
 f: use counter at 1
 DTOR foo
 end of main()

How it works...
When constructing and deleting objects, shared_ptr works basically like unique_ptr.
Constructing shared pointers works similarly as creating unique pointers (although there is
a function make_shared that creates shared objects as a pendant to unique_ptr pointer's
make_unique function).

Utility Classes Chapter 25

[848]

The major difference from unique_ptr is that we can copy the shared_ptr instances
because shared pointers maintain a so-called control block together with the object they
manage. The control block contains a pointer to the payload object and a reference counter
or use counter. If there are N number of shared_ptr instances pointing to the object, then
the use counter also has the value N. Whenever a shared_ptr instance is destructed, then
its destructor decrements this internal use counter. The last shared pointer to such an object
will hit the condition that it decrements the use counter to 0 during its destruction. This is,
then, the shared pointer instance, which calls the delete operator on the payload object!
This way, we can't possibly suffer from memory leaks because the object's use count is
automatically tracked.

To illustrate this a bit more, let's have a look at the following diagram:

Utility Classes Chapter 25

[849]

In step 1, we have two shared_ptr instances managing an object of type Foo. The use
counter is at value 2. Then, shared_ptr2 is destroyed, which decrements the use counter
to 1. The Foo instance is not destroyed yet because there is still the other shared pointer. In
step 3, the last shared pointer is destroyed too. This leads to the use counter being
decremented to 0. Step 4 happens immediately after step 3. Both the control block and the
instance of Foo are destroyed and their memory is released to the heap.

Equipped with shared_ptr and unique_ptr, we can automatically deal with most
dynamically allocated objects without having to worry about memory leaks any longer.
There is, however, one important caveat to consider--imagine we have two objects on the
heap that contain shared pointers to each other, and some other shared pointer points to
one of them from somewhere else. If that external shared pointer goes out of scope, then
both objects still have the use counters with nonzero values because they reference each other.
This leads to a memory leak. Shared pointers should not be used in this case because such
cyclic reference chains prevent the use counter of such objects to ever reach 0.

There's more...
Look at the following code. What if you are told that it contains a potential memory leak?

void function(shared_ptr<A>, shared_ptr, int);
// "function" is defined somewhere else

// ...somewhere later in the code:
function(new A{}, new B{}, other_function());

"Where is the memory leak?", one might ask, since the newly allocated objects A and B are
immediately fed into shared_ptr types, and then we are safe from memory leaks.

Yes, it is true that we are safe from memory leaks as soon as the pointers are captured in the
shared_ptr instances. The problem is a bit fiddly to grasp.

When we call a function, f(x(), y(), z()), the compiler needs to assemble code that
calls x(), y(), and z() first so that it can forward their return values to f. What gets us
very bad in combination with the example from before is that the compiler can execute
these function calls to x, y, and z in any order.

Utility Classes Chapter 25

[850]

Looking back at the example, what happens if the compiler decides to structure the code in
a way where at first new A{} is called, then other_function(), and then new B{} is
called, before the results of these functions are finally fed into function? If
other_function() throws an exception, we get a memory leak because we still have an
unmanaged object, A, on the heap because we just allocated it but did not have a chance to
hand it to the management of shared_ptr. No matter how we catch the exception, the
handle to the object is gone and we cannot delete it!

There are two easy ways to circumvent this problem:

// 1.)
function(make_shared<A>(), make_shared(), other_function());

// 2.)
shared_ptr<A> ap {new A{}};
shared_ptr bp {new B{}};
function(ap, bp, other_function());

This way, the objects are already managed by shared_ptr, no matter who throws what
exception afterward.

Dealing with weak pointers to shared objects
In the recipe about shared_ptr, we learned how useful and easy to use shared pointers
are. Together with unique_ptr, they pose an invaluable improvement for code that needs
to manage dynamically allocated objects.

Whenever we copy shared_ptr, we increment its internal reference counter. As long as we
hold our shared pointer copy, the object being pointed to will not be deleted. But what if we
want some kind of weak pointer, which enables us to get at the object as long as it exists but
does not prevent its destruction? And how do we determine if the object still exists, then?

In such situations, weak_ptr is our companion. It is a little bit more complicated to use than
unique_ptr and shared_ptr, but after following this recipe, we will be ready to use it.

Utility Classes Chapter 25

[851]

How to do it...
We will implement a program that maintains objects with shared_ptr instances, and then,
we mix in weak_ptr to see how this changes the behavior of smart pointer memory
handling:

At first, we include the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <memory>

 using namespace std;

Next, we implement a class that prints a message in its destructor2.
implementation. This way, we can simply check when an item is actually
destroyed later in the program output:

 struct Foo {
 int value;
 Foo(int i) : value{i} {}
 ~Foo() { cout << "DTOR Foo " << value << 'n'; }
 };

Let's also implement a function that prints information about a weak pointer, so3.
we can print a weak pointer's state at different points of our program. The
expired function of weak_ptr tells us if the object it points to still really exists,
because holding a weak pointer to an object does not prolong its lifetime! The
use_count counter tells us how many shared_ptr instances are currently
pointing to the object in question:

 void weak_ptr_info(const weak_ptr<Foo> &p)
 {
 cout << "---------" << boolalpha
 << "nexpired: " << p.expired()
 << "nuse_count: " << p.use_count()
 << "ncontent: ";

Utility Classes Chapter 25

[852]

If we want to access the actual object, we need to call the lock function. It returns4.
us a shared pointer to the object. In case the object does not exist any longer, the
shared pointer we got from it is effectively a null pointer. We need to check that,
and then we can access it:

 if (const auto sp (p.lock()); sp) {
 cout << sp->value << 'n';
 } else {
 cout << "<null>n";
 }
 }

Let's instantiate an empty weak pointer in the main function and print its content5.
which is, of course, empty at first:

 int main()
 {
 weak_ptr<Foo> weak_foo;
 weak_ptr_info(weak_foo);

In a new scope, we instantiate a new shared pointer with a fresh instance of the6.
Foo class. Then we copy it to the weak pointer. Note that this will not increment
the reference count of the shared pointer. The reference counter is 1 because only
one shared pointer owns it:

 {
 auto shared_foo (make_shared<Foo>(1337));
 weak_foo = shared_foo;

Let's call the weak pointer function before we leave the scope and, again, after we7.
leave the scope. The Foo instance should be destroyed immediately, although a
weak pointer points to it:

 weak_ptr_info(weak_foo);
 }
 weak_ptr_info(weak_foo);
 }

Utility Classes Chapter 25

[853]

Compiling and running the program yields us three times the output of the8.
weak_ptr_info function. In the first call, the weak pointer is empty. In the
second call, it already points to the Foo instance we created and is able to
dereference it after locking it. Before the third call, we leave the inner scope, which
triggers the destructor of the Foo instance, as we expected. Afterward, it is not
possible to get at the content of the deleted Foo item via the weak pointer any
longer, and the weak pointer correctly recognizes that it has expired:

 $./weak_ptr

 expired: true
 use_count: 0
 content: <null>

 expired: false
 use_count: 1
 content: 1337
 DTOR Foo 1337

 expired: true
 use_count: 0
 content: <null>

How it works...
Weak pointers provide us a way to point at an object maintained by shared pointers
without incrementing its use counter. Okay, a raw pointer could do the same, but a raw
pointer cannot tell us if it is dangling or not. A weak pointer can!

Utility Classes Chapter 25

[854]

In order to understand how weak pointers as an addition to shared pointers work, let's
directly jump to an illustrating diagram:

Utility Classes Chapter 25

[855]

The flow is similar to the diagram in the recipe about shared pointers. In step 1, we have
two shared pointers and a weak pointer pointing to the object of type Foo. Although there
are three objects pointing to it, only the shared pointers manipulate its use counter, which is
why it has the value 2. The weak pointer only manipulates a weak counter of the control
block. In steps 2 and 3, the shared pointer instances are destroyed, which leads stepwise to a
use counter of 0. In step 4, this results in the Foo object being deleted, but the control block
stays there. The weak pointer still needs the control block in order to distinguish if it
dangles or not. Only when the last weak pointer that still points to a control block also goes
out of scope, the control block is deleted.

We can also say that a dangling weak pointer has expired. In order to check for this attribute,
we can ask weak_ptr pointer's expired method, which returns a boolean value. If it is
true, then we cannot dereference the weak pointer because there is no object to dereference
any longer.

In order to dereference a weak pointer, we need to call lock(). This is safe and convenient
because this function returns us a shared pointer. As long as we hold this shared pointer,
the object behind it cannot vanish because we incremented the use counter by locking it. If
the object is deleted, shortly before the lock() call, then the shared pointer it returns is
effectively a null pointer.

Simplifying resource handling of legacy
APIs with smart pointers
Smart pointers (unique_ptr, shared_ptr, and weak_ptr) are extremely useful, and it is,
in general, safe to say that a programmer should always use these instead of allocating and
freeing memory manually.

But what if objects cannot be allocated using the new operator and/or cannot be freed again
using delete? Many legacy libraries come with their own allocation/destruction functions.
It seems that this would be a problem because we learned that smart pointers rely on new
and delete. If the creation and/or destruction of specific types of objects relies on specific
factory functions' deleter interfaces, does this prevent us from getting the humongous
benefits of smart pointers?

Utility Classes Chapter 25

[856]

Not at all. In this recipe, we will see that we only need to perform very minimal
customizations on smart pointers in order to let them follow specific procedures for
allocation and destruction of specific objects.

How to do it...
In this section, we will define a type that cannot be allocated with new directly and, also,
cannot be released again using delete. As this prevents it from being used with smart
pointers directly, we perform the necessary little adaptions to instances of unique_ptr and
smart_ptr:

As always, we first include the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <memory>
 #include <string>

 using namespace std;

Next, we declare a class that has its constructor and destructor declared private.2.
This way, we simulate the problem that we have to access specific functions that
create and destroy instances of it:

 class Foo
 {
 string name;
 Foo(string n)
 : name{n}
 { cout << "CTOR " << name << 'n'; }
 ~Foo() { cout << "DTOR " << name << 'n';}

Utility Classes Chapter 25

[857]

The static methods, create_foo and destroy_foo, then create and destroy the3.
Foo instances. They work with raw pointers. This simulates the situation of a
legacy C API, which prevents us from using them with normal shared_ptr
pointers directly:

 public:
 static Foo* create_foo(string s) {
 return new Foo{move(s)};
 }

 static void destroy_foo(Foo *p) { delete p; }
 };

Now, let's make such objects manageable by shared_ptr. We can, of course, put4.
the pointer we get from create_foo into the constructor of a shared pointer.
Only the destruction is tricky because the default deleter of shared_ptr would
do it wrong. The trick is that we can give shared_ptr a custom deleter. The
function signature that a deleter function or callable object needs to have is
already the same as that of the destroy_foo function. If the function we need to
call for destroying the object is more complicated, we can simply wrap it into a
lambda expression:

 static shared_ptr<Foo> make_shared_foo(string s)
 {
 return {Foo::create_foo(move(s)), Foo::destroy_foo};
 }

Note that make_shared_foo returns a usual shared_ptr<Foo> instance5.
because giving it a custom deleter did not change its type. This is because
shared_ptr uses virtual function calls to hide such details. Unique pointers do
not impose any overhead, which makes the same trick unfeasible for them. Here,
we need to change the type of the unique_ptr. As a second template parameter,
we give it void (*)(Foo*), which is exactly the type of pointer to the function,
destroy_foo:

 static unique_ptr<Foo, void (*)(Foo*)> make_unique_foo(string s)
 {
 return {Foo::create_foo(move(s)), Foo::destroy_foo};
 }

Utility Classes Chapter 25

[858]

In the main function, we just instantiate both a shared pointer and a unique6.
pointer instance. In the program output, we will see if they are really, correctly,
and automatically destroyed:

 int main()
 {
 auto ps (make_shared_foo("shared Foo instance"));
 auto pu (make_unique_foo("unique Foo instance"));
 }

Compiling and running the program yields the following output, which is luckily7.
just what we expected:

 $./legacy_shared_ptr
 CTOR shared Foo instance
 CTOR unique Foo instance
 DTOR unique Foo instance
 DTOR shared Foo instance

How it works...
Usually, unique_ptr and shared_ptr just call delete on their internal pointers,
whenever they ought to destroy the object they maintain. In this section, we constructed a
class which can neither be allocated the C++ way using x = new Foo{123} nor can it be
destructed with delete x directly.

The Foo::create_foo function just returns a plain raw pointer to a newly constructed Foo
instance, so this causes no further problems because smart pointers work with raw pointers
anyway.

The problem we had to deal with is that we need to teach unique_ptr and shared_ptr
how to destruct an object if the default way is not the right one.

In that regard, both the smart pointer types differ a little bit. In order to define a custom
deleter for unique_ptr, we have to alter its type. Because the type signature of the Foo
deleter is void Foo::destroy_foo(Foo*);, the type of the unique_ptr maintaining a
Foo instance must be unique_ptr<Foo, void (*)(Foo*)>. Now, it can hold a function
pointer to destroy_foo, which we provide it as a second constructor parameter in our
make_unique_foo function.

Utility Classes Chapter 25

[859]

If giving unique_ptr a custom deleter function forces us to change its type, why were we
able to do the same with shared_ptr without changing its type? The only thing we had to
do there was giving shared_ptr a second constructor parameter, and that's it. Why can't it
be as easy for unique_ptr as it is for shared_ptr?

The reason why it is so simple to just provide shared_ptr some kind of callable deleter
object without altering the shared pointer's type lies in the nature of shared pointers, which
maintain a control block. The control block of shared pointers is an object with virtual
functions. This means that the control block of a standard shared pointer compared with the
type of a control block of a shared pointer with a custom deleter is different! When we want
a unique pointer to use a custom deleter, then this changes the type of the unique pointer.
When we want a shared pointer to use a custom deleter, then this changes the type of the
internal control block, which is invisible to us because this difference is hidden behind a
virtual function interface.

It would be possible to do the same trick with unique pointers, but then, this would imply a
certain runtime overhead on them. This is not what we want because unique pointers
promise to be completely overhead free at runtime.

Sharing different member values of the same
object
Let's imagine we are maintaining a shared pointer to some complex, composed, and
dynamically allocated object. Then, we want to start a new thread that does some time-
consuming work on a member of this complex object. If we want to release this shared
pointer now, the object will be deleted while the other thread is still accessing it. If we don't
want to give the thread object the pointer to the whole complex object because that would
mess with our nice interface, or for other reasons, does this mean that we have to do manual
memory management now?

No. It is possible to use shared pointers that on one hand, point to a member of a large
shared object, while on the other hand, perform automatic memory management for the
entire initial object.

In this example, we will create such a scenario (without threads to keep it simple) in order
to get a feeling for this handy feature of shared_ptr.

Utility Classes Chapter 25

[860]

How to do it...
We are going to define a structure that is composed of multiple members. Then, we allocate
an instance of this structure on the heap that is maintained by a shared pointer. From this
shared pointer, we obtain more shared pointers that do not point to the actual object but to
its members:

We include the necessary headers first and then declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <memory>
 #include <string>

 using namespace std;

Then we define a class that has different members. We will let shared pointers2.
point to the individual members. In order to be able to see when the class is
created and destroyed, we let its constructor and destructor print messages:

 struct person {
 string name;
 size_t age;
 person(string n, size_t a)
 : name{move(n)}, age{a}
 { cout << "CTOR " << name << 'n'; }
 ~person() { cout << "DTOR " << name << 'n'; }
 };

Let's define shared pointers that have the right types to point to the name and age3.
member variables of a person class instance:

 int main()
 {
 shared_ptr<string> shared_name;
 shared_ptr<size_t> shared_age;

Next, we enter a new scope, create such a person object, and let a shared pointer4.
manage it:

 {
 auto sperson (make_shared<person>("John Doe", 30));

Utility Classes Chapter 25

[861]

Then, we let the first two shared pointers point to its name and age members. The5.
trick is that we use a specific constructor of shared_ptr, which accepts a shared
pointer and a pointer to a member of the shared object. This way, we can manage
the object while not pointing at the object itself!

 shared_name = shared_ptr<string>(sperson, &sperson->name);
 shared_age = shared_ptr<size_t>(sperson, &sperson->age);
 }

After leaving the scope, we print the person's name and age values. This is only6.
legal if the object is still allocated:

 cout << "name: " << *shared_name
 << "nage: " << *shared_age << 'n';
 }

Compiling and running the program yields the following output. From the7.
destructor message, we see that the object is indeed still alive and allocated when
we access the person's name and age values via the member pointers!

 $./shared_members
 CTOR John Doe
 name: John Doe
 age: 30
 DTOR John Doe

How it works...
In this section, we first created a shared pointer that manages a dynamically allocated
person object. Then we made two other smart pointers point to the person object, but they
both did not directly point to the person object itself but instead to its members, name and
age.

Utility Classes Chapter 25

[862]

To summarize what kind of scenario we just created, let's have a look at the following
diagram:

Note that shared_ptr1 points to the person object directly, while shared_name and
shared_age point to the name and the age members of the same object. Apparently, they
still manage the object's entire lifetime. This is possible because the internal control block
pointers still point to the same control block, no matter what sub-object the individual
shared pointers point to.

In this scenario, the use count of the control block is 3. This way, the person object is not
destroyed when shared_ptr1 is destroyed because the other shared pointers still own the
object.

When creating such shared pointer instances that point to members of the shared object, the
syntax looks a bit strange. In order to obtain a shared_ptr<string> that points to the
name member of a shared person, we need to write the following:

auto sperson (make_shared<person>("John Doe", 30));
auto sname (shared_ptr<string>(sperson, &sperson->name));

In order to get a specific pointer to a member of a shared object, we instantiate a shared
pointer with a type specialization of the member we want to access. This is why we write
shared_ptr<string>. Then, in the constructor, we first provide the original shared
pointer that maintains the person object and, as a second argument, the address of the
object the new shared pointer will use when we dereference it.

Utility Classes Chapter 25

[863]

Generating random numbers and choosing
the right random number engine
In order to get random numbers for whatever purpose, C++ programmers usually basically
used the rand() function of the C library before C++11. Since C++11, there has been a whole
suite of random number generators that serve different purposes and have different
characteristics.

These generators are not completely self-explanatory, so we will have a look at all of them
in this recipe. In the end, we will see in what ways they differ, how to choose the right one,
and that we will most probably never use all of them.

How to do it...
We will implement a procedure that prints a nice illustrating histogram of the numbers a
random generator produces. Then, we will run all STL random number generator engines
through this procedure and learn from the results. This program contains many repetitive
lines, so it might be advantageous to just copy the source code from the code repository
accompanying this book on the Internet instead of typing all the repetitive code manually.

At first, we include all the necessary headers and then declare that we use the1.
std namespace by default:

 #include <iostream>
 #include <string>
 #include <vector>
 #include <random>
 #include <iomanip>
 #include <limits>
 #include <cstdlib>
 #include <algorithm>

 using namespace std;

Utility Classes Chapter 25

[864]

Then we implement a helper function, which helps us maintain and print some2.
statistics for each type of random number engine. It accepts two parameters: the
number of partitions and the number of samples. We will see immediately what
these are for. The type of random generator is defined via the template parameter
RD. The first thing we do in this function is define an alias type for the resulting
numeric type of the numbers the generator returns. We also make sure that we
have at least 10 partitions:

 template <typename RD>
 void histogram(size_t partitions, size_t samples)
 {
 using rand_t = typename RD::result_type;
 partitions = max<size_t>(partitions, 10);

Next, we instantiate an actual generator instance of type RD. Then, we define a3.
divisor variable called div. All random number engines emit random numbers
within the range from 0 to RD::max(). The function argument, partitions,
allows the caller to choose by how many partitions we divide every random
number range. By dividing the largest possible value by the number of partitions,
we know how large every partition is:

 RD rd;
 rand_t div ((double(RD::max()) + 1) / partitions);

Next, we instantiate a vector of counter variables. It is exactly as large as the4.
number of partitions we have. Then, we get as many random values out of the
random engine as the variable samples says. The expression, rd(), gets a
random number from the generator and shifts its internal state to prepare it for
returning the next random number. By dividing every random number by div,
we get the partition number it falls into and can increment the right counter in
the vector of counters:

 vector<size_t> v (partitions);
 for (size_t i {0}; i < samples; ++i) {
 ++v[rd() / div];
 }

Utility Classes Chapter 25

[865]

Now we have a nice coarse-grained histogram of sample values. In order to print5.
it, we need to know a little bit more about its actual counter values. Let's extract
its largest value using the max_element algorithm. We then divide this largest
counter value by 100. This way, we can divide all the counter values by max_div
and print a lot of stars on the terminal without exceeding the width of 100. If the
largest counter contains a number less than 100, because we did not use so many
samples, we use max in order to get a minimal divisor of 1:

 rand_t max_elm (*max_element(begin(v), end(v)));
 rand_t max_div (max(max_elm / 100, rand_t(1)));

Let's now print the histogram to the terminal. Every partition gets its own line on6.
the terminal. By dividing its counter value by max_div and print so many
asterisk symbols '*', we get histogram lines that fit into the terminal:

 for (size_t i {0}; i < partitions; ++i) {
 cout << setw(2) << i << ": "
 << string(v[i] / max_div, '*') << 'n';
 }
 }

Okay, that's it. Now to the main program. We let the user define how many7.
partitions and samples should be used:

 int main(int argc, char **argv)
 {
 if (argc != 3) {
 cout << "Usage: " << argv[0]
 << " <partitions> <samples>n";
 return 1;
 }

We then read those variables from the command line. Of course, the command8.
line consists of strings, which we can convert to numbers using std::stoull
(stoull is an abbreviation for string to unsigned long long):

 size_t partitions {stoull(argv[1])};
 size_t samples {stoull(argv[2])};

Utility Classes Chapter 25

[866]

Now we call our histogram helper function on every random number engine the9.
STL provides. This makes this recipe very long and repetitive. Better copy the
example from the Internet. The output of this program is really interesting to look
at. We start with random_device. This device tries to distribute the randomness
equally over all the possible values:

 cout << "random_device" << 'n';
 histogram<random_device>(partitions, samples);

The next random engine we try is default_random_engine. What kind of10.
engine this type refers to is implementation-specific. It can be any of the following
random engines:

 cout << "ndefault_random_engine" << 'n';
 histogram<default_random_engine>(partitions, samples);

Then we try it on all the other engines:11.

 cout << "nminstd_rand0" << 'n';
 histogram<minstd_rand0>(partitions, samples);
 cout << "nminstd_rand" << 'n';
 histogram<minstd_rand>(partitions, samples);
 cout << "nmt19937" << 'n';
 histogram<mt19937>(partitions, samples);
 cout << "nmt19937_64" << 'n';
 histogram<mt19937_64>(partitions, samples);
 cout << "nranlux24_base" << 'n';
 histogram<ranlux24_base>(partitions, samples);
 cout << "nranlux48_base" << 'n';
 histogram<ranlux48_base>(partitions, samples);
 cout << "nranlux24" << 'n';
 histogram<ranlux24>(partitions, samples);
 cout << "nranlux48" << 'n';
 histogram<ranlux48>(partitions, samples);
 cout << "nknuth_b" << 'n';
 histogram<knuth_b>(partitions, samples);
 }

Utility Classes Chapter 25

[867]

Compiling and running the program yields interesting results. We will see a long12.
list of output, and we'll see that all the random engines have different
characteristics. Let's first run the program with 10 partitions and only 1000
samples:

Utility Classes Chapter 25

[868]

Then, we run the same program again. This time it is still 10 partitions but13.
1,000,000 samples. It becomes very obvious that the histograms look much
cleaner, when we take more samples from them. This is an important observation:

How it works...
In general, any random number generator needs to be instantiated as an object before use.
The resulting object can be called like a function without parameters because it overloads
operator(). Every call will then lead to a new random number. It is that simple.

Utility Classes Chapter 25

[869]

In this section, we wrote a program that is much more complex than that in order to get a
bit more information about random number generators. Please play around with the
resulting program by launching it with different command-line arguments and realize the
following facts:

The more samples we take, the more equal our partition counters appear.
The inequality of the partition counters wildly differs between individual
engines.
For a large number of samples, it becomes apparent that the performance of the
individual random engines differs.
Run the program with a low amount of samples multiple times. The distribution
patterns look the same all the time--the random engines produce the same random
number sequences repeatedly, which means they are not random at all. Such
engines are called deterministic because their random numbers can be predicted.
The only exception is std::random_device.

As we can see, there are a few characteristics to consider. For most standard applications,
std::default_random_engine will be completely sufficient. Experts of cryptography or
similarly security-sensitive topics will choose wisely between the engines they use, but for
us average programmers, this is not too important when we write apps with some
randomness.

We should carry home the following three facts from this recipe:

Usually, std::default_random_engine is a good default choice for the1.
average application.
If we really need non-deterministic random numbers, std::random_device2.
provides us such.
We can feed the constructor of any random engine with a real random number3.
from std::random_device (or maybe a timestamp from the system clock), in
order to make it produce different random numbers each time. This is called
seeding.

Note that std::random_device can possibly fall back to one of the
deterministic engines if the library has no support for nondeterministic
random engines.

Utility Classes Chapter 25

[870]

Generating random numbers and letting the
STL shape specific distributions
In the last recipe, we learned some bits about the STL random number engines. Generating
random numbers this or the other way is often only half of the work.

Another question is, what do we need those numbers for? Are we programmatically
"flipping a coin"? People used to do this using rand() % 2, which results in values of 0
and 1 that can then be mapped to head or tail. Fair enough; we do not need a library for that
(although randomness experts know that just using the lowest few bits of a random number
does not always lead to high-quality random numbers).

What if we want to model a die? Then, we could surely write (rand() % 6) + 1, in order
to represent the result after rolling the die. There is still no pressing library needed for such
simple tasks.

What if we want to model something that happens with an exact probability of 66%? Okay,
then we can come up with a formula like bool yesno = (rand() % 100 > 66). (Oh
wait, should it be >=, or is > correct?)

Apart from that, how do we model an unfair die whose sides do not all have the same
probability? Or how do we model more complex distributions? Such problems can quickly
evolve to scientific tasks. In order to concentrate on our primary problems, let's have a look
at what the STL already provides in order to help us.

The STL contains more than a dozen distribution algorithms that can shape random
numbers for specific needs. In this recipe, we are going to have a very brief look at all of
them, and a closer look at the most generally useful ones.

How to do it...
We are going to generate random numbers, shape them, and print their distribution
patterns to the terminal. This way, we can get to know all of them and understand the most
important ones, which is useful if we ever need to model something specific with
randomness in mind:

At first, we include all the needed headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <iomanip>

Utility Classes Chapter 25

[871]

 #include <random>
 #include <map>
 #include <string>
 #include <algorithm>

 using namespace std;

For every distribution the STL provides, we will print a histogram in order to see2.
its characteristics because every distribution looks very special. It accepts a
distribution as an argument and the number of samples that shall be taken from
it. Then, we instantiate the default random engine and a map. The map maps
from the values we obtained from the distribution to counters that count how
often which value occurred. The reason for why we always instantiate a random
engine is that all distributions are just used as a shaping function for random
numbers that still need to be generated by a random engine:

 template <typename T>
 void print_distro(T distro, size_t samples)
 {
 default_random_engine e;
 map<int, size_t> m;

We take as many samples as the samples variable says and feed the map3.
counters with them. This way, we get a nice histogram. While calling e() alone
would get us a raw random number from the random engine, distro(e) shapes
the random numbers through the distribution object.

 for (size_t i {0}; i < samples; ++i) {
 m[distro(e)] += 1;
 }

In order to get a terminal output that fits into the terminal window, we need to4.
know the largest counter value. The max_element function helps us in finding
the largest value by comparing all the associated counters in the map and
returning us an iterator to the largest counter node. Knowing this value, we can
determine by what value we need to divide all the counter values in order to fit
the output into the terminal window:

 size_t max_elm (max_element(begin(m), end(m),
 [](const auto &a, const auto &b) {
 return a.second < b.second;
 })->second);
 size_t max_div (max(max_elm / 100, size_t(1)));

Utility Classes Chapter 25

[872]

Now, we loop through the map and print a bar of asterisk symbols '*' for all5.
counters which have a significant size. We drop the others because some
distribution engines spread the numbers over such large domains that it would
completely flood our terminal windows:

 for (const auto [randval, count] : m) {
 if (count < max_elm / 200) { continue; }
 cout << setw(3) << randval << " : "
 << string(count / max_div, '*') << 'n';
 }
 }

In the main function, we check if the user provided us exactly one parameter,6.
which tells us how many samples to take from each distribution. If the user
provided none or multiple parameters, we error out.

 int main(int argc, char **argv)
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0]
 << " <samples>n";
 return 1;
 }

We convert the command-line argument string to a number using std::stoull:7.

 size_t samples {stoull(argv[1])};

At first, we try the uniform_int_distribution and normal_distribution.8.
These are the most typical distributions used where random numbers are needed.
Everyone who ever had stochastic as a topic in maths at school will most
probably have heard about these already. The uniform distribution accepts two
values, denoting the lower and the upper bound of the range they shall distribute
random values over. By choosing 0 and 9, we will get equally often occurring
values between (including) 0 and 9. The normal distribution accepts a mean value
and a standard derivation as arguments:

 cout << "uniform_int_distributionn";
 print_distro(uniform_int_distribution<int>{0, 9}, samples);
 cout << "normal_distributionn";
 print_distro(normal_distribution<double>{0.0, 2.0}, samples);

Utility Classes Chapter 25

[873]

Another really interesting distribution is piecewise_constant_distribution.9.
It accepts two input ranges as arguments. The first range contains numbers that
denote the limits of intervals. By defining it as 0, 5, 10, 30, we get one
interval that spans from 0 to 4, then, an interval that spans from 5 to 9, and the
last interval spanning from 10 to 29. The other input range defines the weights of
the input ranges. By setting those weights to 0.2, 0.3, 0.5, the intervals are
hit by random numbers with the chances of 20%, 30%, and 50%. Within every
interval, all the values are hit with equal probability:

 initializer_list<double> intervals {0, 5, 10, 30};
 initializer_list<double> weights {0.2, 0.3, 0.5};
 cout << "piecewise_constant_distributionn";
 print_distro(
 piecewise_constant_distribution<double>{
 begin(intervals), end(intervals),
 begin(weights)},
 samples);

The piecewise_linear_distribution is constructed similarly, but its weight10.
characteristics work completely differently. For every interval boundary point,
there is one weight value. In the transition from one boundary to the other, the
probability is linearly interpolated. We use the same interval list but a different
list of weight values.

 cout << "piecewise_linear_distributionn";
 initializer_list<double> weights2 {0, 1, 1, 0};
 print_distro(
 piecewise_linear_distribution<double>{
 begin(intervals), end(intervals), begin(weights2)},
 samples);

The Bernoulli distribution is another important distribution because it distributes11.
only yes/no, hit/miss, or head/tail values with a specific probability. Its output
values are only 0 or 1. Another interesting distribution, which is useful in many
cases, is discrete_distribution. In our case, we initialize it to the discrete
values 1, 2, 4, 8. These values are interpreted as weights for the possible
output values 0 to 3:

 cout << "bernoulli_distributionn";
 print_distro(std::bernoulli_distribution{0.75}, samples);
 cout << "discrete_distributionn";
 print_distro(discrete_distribution<int>{{1, 2, 4, 8}}, samples);

Utility Classes Chapter 25

[874]

There are a lot of different other distribution engines. They are very special and12.
useful in very specific situations. If you have never heard about them, they may
not be for you. However, since our program will produce nice distribution
histograms, we will print them all, for curiosity reasons:

 cout << "binomial_distributionn";
 print_distro(binomial_distribution<int>{10, 0.3}, samples);
 cout << "negative_binomial_distributionn";
 print_distro(
 negative_binomial_distribution<int>{10, 0.8},
 samples);
 cout << "geometric_distributionn";
 print_distro(geometric_distribution<int>{0.4}, samples);
 cout << "exponential_distributionn";
 print_distro(exponential_distribution<double>{0.4}, samples);
 cout << "gamma_distributionn";
 print_distro(gamma_distribution<double>{1.5, 1.0}, samples);
 cout << "weibull_distributionn";
 print_distro(weibull_distribution<double>{1.5, 1.0}, samples);
 cout << "extreme_value_distributionn";
 print_distro(
 extreme_value_distribution<double>{0.0, 1.0},
 samples);
 cout << "lognormal_distributionn";
 print_distro(lognormal_distribution<double>{0.5, 0.5}, samples);
 cout << "chi_squared_distributionn";
 print_distro(chi_squared_distribution<double>{1.0}, samples);
 cout << "cauchy_distributionn";
 print_distro(cauchy_distribution<double>{0.0, 0.1}, samples);
 cout << "fisher_f_distributionn";
 print_distro(fisher_f_distribution<double>{1.0, 1.0}, samples);
 cout << "student_t_distributionn";
 print_distro(student_t_distribution<double>{1.0}, samples);
 }

Utility Classes Chapter 25

[875]

Compiling and running the program yields the following output. Let's first run13.
the program with 1000 samples per distribution:

Utility Classes Chapter 25

[876]

Another run with 1,000,000 samples per distribution shows that the histograms14.
appear much cleaner and more typical for each distribution. But we also see
which ones are slow, and which ones are fast, while they are being generated:

Utility Classes Chapter 25

[877]

How it works...
While we usually do not care too much about the random number engine, as long it is fast
and produces numbers that are as random as possible, the distribution is something we
should choose wisely, depending on the problem we like to solve (or create).

In order to use any distribution, we first need to instantiate a distribution object from it. We
have seen that different distributions take different constructor arguments. In the recipe
description, we went a bit too briefly over some distribution engines because most of them
are too special and/or too complex to cover here. But don't worry, they are all documented
in detail in the C++ STL documentation.

However, as soon as we have a distribution instantiated, we can call it like a function that
accepts a random engine object as its only parameter. What happens then is that the
distribution engine takes a random value from the random engine, applies some magic
shaping (which completely depends on the choice of the distribution engine, of course), and
then returns us a shaped random value. This leads to completely different histograms, as we
saw after executing the program.

The most comprehensive way to get to know the different distributions is playing around
with the program we just wrote. In addition to that, let's summarize the most important
distributions. For all the distributions that occur in our program but not in the following
table, please consult the C++ STL documentation if you are interested:

Distribution Description

uniform_int_distribution

This distribution accepts a lower and an upper bound value
as constructor arguments. It does, then, give us random
numbers that always fall into the interval between
(including) those bounds. The probability for each of the
values in this interval is the same, which gives us a
histogram with a flat shape. This distribution is
representative of rolling a die, for example, because each side
of the die has the same probability to occur.

normal_distribution

The normal distribution, or Gauss distribution, occurs
practically everywhere in nature. Its STL version accepts a
mean value and a standard derivation value as constructor
parameters and forms a roof-like shape in the histogram. If
we compare the body size or IQ of humans or other animals,
or the grades of students, we will realize that these numbers
are also normal-distributed.

Utility Classes Chapter 25

[878]

bernoulli_distribution

The Bernoulli distribution is perfect if we want to flip a coin
or get a yes/no answer. It emits only the values 0 or 1 and its
only constructor parameter is the probability for the value of
1.

discrete_distribution

The discrete distribution is interesting if we only want a very
limited, discrete set of values for which we want to define
the probability for every individual value. Its constructor
takes a list of weights and will emit random numbers with
probabilities depending on their weight. If we want to model
randomly distributed blood groups, of which there are only
four different ones that have specific probabilities, then this
engine is a perfect match.

26
Parallelism and Concurrency

In this chapter, we will cover the following recipes:

Automatically parallelizing code that uses standard algorithms
Putting a program to sleep for specific amounts of time
Starting and stopping threads
Performing exception-safe shared locking with std::unique_lock and
std::shared_lock

Avoiding deadlocks with std::scoped_lock
Synchronizing concurrent std::cout use
Safely postponing initialization with std::call_once
Pushing the execution of tasks into the background using std::async
Implementing the producer/consumer idiom with std::condition_variable
Implementing the multiple producers/consumers idiom with
std::condition_variable

Parallelizing the ASCII Mandelbrot renderer using std::async
Implementing a tiny automatic parallelization library with std::future

Introduction
Before C++11, C++ didn't have much support for parallelization. This does not mean that
starting, controlling, stopping, and synchronizing threads was not possible, but it was
necessary to use operating system-specific libraries because threads are inherently
operating system-related.

Parallelism and Concurrency Chapter 26

[880]

With C++11, we got std::thread, which enables basic portable thread control across all
operating systems. For synchronizing threads, C++11 also introduced mutex classes and
comfortable RAII-style lock wrappers. In addition to that, std::condition_variable
allows for flexible event notification between threads.

Some other really interesting additions are std::async and std::future--we can now
wrap arbitrary normal functions into std::async calls in order to execute them
asynchronously in the background. Such wrapped functions return std::future objects
that promise to contain the result of the function later, so we can do something else before
we wait for its arrival.

Another actually enormous improvement to the STL are execution policies, which can be
added to 69 of the already existing algorithms. This addition means that we can just add a
single execution policy argument to the existing standard algorithm calls in our old
programs and get parallelization without complex rewrites.

In this chapter, we will go through all these additions in order to learn the most important
things about them. Afterward, we'll have enough oversight of the parallelization support in
the C++17 STL. We do not cover all the details, but the most important ones. The overview
gained from this book helps in quickly understanding the rest of the parallel programming
mechanisms, which you can always look up in the C++ 17 STL documentation online.

Finally, this chapter contains two bonus recipes. In one recipe, we will parallelize the
Mandelbrot ASCII renderer from Chapter 23, Advance Use of STL Algorithms, with only
minimal changes. In the last recipe, we will implement a tiny library that helps parallelizing
complex tasks implicitly and automatically.

Automatically parallelizing code that uses
standard algorithms
C++17 came with one really major extension for parallelism: execution policies for standard
algorithms. Sixty nine algorithms were extended to accept execution policies in order to run
parallel on multiple cores, and even with enabled vectorization.

For the user, this means that if we already use STL algorithms everywhere, we get a nice
parallelization bonus for free. We can easily give our applications subsequent parallelization
by simply adding a single execution policy argument to our existing STL algorithm calls.

Parallelism and Concurrency Chapter 26

[881]

In this recipe, we will implement a simple program (with a not too serious use case
scenario) that lines up multiple STL algorithm calls. While using these, we will see how
easy it is to use C++17 execution policies in order to let them run multithreaded. In the last
subsections of this section, we will have a closer look at the different execution policies.

How to do it...
In this section, we will write a program that uses some standard algorithms. The program
itself is more of an example of how real-life scenarios can look than doing actual real-life
work situation. While using these standard algorithms, we are embedding execution
policies in order to speed the code up:

First, we need to include some headers and declare that we use the std1.
namespace. The execution header is a new one; it came with C++17:

 #include <iostream>
 #include <vector>
 #include <random>
 #include <algorithm>
 #include <execution>

 using namespace std;

Just for the sake of the example, we'll declare a predicate function that tells2.
whether a number is odd. We will use it later:

 static bool odd(int n) { return n % 2; }

Let's first define a large vector in our main function. We will fill it with a lot of3.
data so that it takes some time to do calculations on it. The execution speed of this
code will vary a lot, depending on the computer this code is executed on.
Smaller/larger vector sizes might be better on different computers:

 int main()
 {
 vector<int> d (50000000);

Parallelism and Concurrency Chapter 26

[882]

In order to get a lot of random data for the vector, let's instantiate a random4.
number generator along with a distribution and pack them up in a callable object.
If this looks strange to you, please first have a look at the recipes that deal with
random number generators and distributions in Chapter 25, Utility Classes:

 mt19937 gen;
 uniform_int_distribution<int> dis(0, 100000);
 auto rand_num ([=] () mutable { return dis(gen); });

Now, let's use the std::generate algorithm to fill the vector with random data.5.
There is a new C++17 version of this algorithm, which can take a new kind of
argument: an execution policy. We put in std::par here, which allows for
automatic parallelization of this code. By doing this, we allow for multiple
threads to start filling the vector together, which reduces the execution time if the
computer has more than one CPU, which is usually the case with modern
computers:

 generate(execution::par, begin(d), end(d), rand_num);

The std::sort method should also already be familiar. The C++17 version does6.
also support an additional argument defining the execution policy:

 sort(execution::par, begin(d), end(d));

The same applies to std::reverse:7.

 reverse(execution::par, begin(d), end(d));

Then we use std::count_if to count all the odd numbers in the vector. And we8.
can even parallelize that by just adding an execution policy again!

 auto odds (count_if(execution::par, begin(d), end(d), odd));

This whole program did not do any real scientific work, as we were just going to9.
have a look on how to parallelize standard algorithms, but let's print something
in the end:

 cout << (100.0 * odds / d.size())
 << "% of the numbers are odd.n";
 }

Parallelism and Concurrency Chapter 26

[883]

Compiling and running the program gives us the following output. At this point,10.
it is interesting to see how the execution speed differs when using the algorithms
without an execution policy compared with all the other execution policies.
Doing this is left as an exercise for the reader. Try it; the available execution
policies are seq, par, and par_vec. We should get different execution times for
each of them:

 $./auto_parallel
 50.4% of the numbers are odd.

How it works...
Especially since this recipe did not distract us with any complicated real-life problem
solution, we were able to fully concentrate on the standard library function calls. It is pretty
obvious that the their parallelized versions are hardly different from the classic sequential
ones. They only differ by one additional argument, which is the execution policy.

Let's have a look at the invocations and answer three central questions:

generate(execution::par, begin(d), end(d), rand_num);
sort(execution::par, begin(d), end(d));
reverse(execution::par, begin(d), end(d));

auto odds (count_if(execution::par, begin(d), end(d), odd));

Which STL algorithms can we parallelize this way?
Sixty nine of the existing STL algorithms were upgraded to support parallelism in the C++17
standard, and there are seven new ones that also support parallelism. While such an
upgrade might be pretty invasive for the implementation, not much has changed in terms of
their interface--they all got an additional ExecutionPolicy&& policy argument, and
that's it. This does not mean that we always have to provide an execution policy argument. It
is just that they additionally support accepting an execution policy as their first argument.

Parallelism and Concurrency Chapter 26

[884]

These are the 69 upgraded standard algorithms. There are also the seven new ones that
support execution policies from the beginning (highlighted in bold):

std::adjacent_difference
std::adjacent_find
std::all_of
std::any_of
std::copy
std::copy_if
std::copy_n
std::count
std::count_if
std::equal
std::exclusive_scan
std::fill
std::fill_n
std::find
std::find_end
std::find_first_of
std::find_if
std::find_if_not
std::for_each
std::for_each_n
std::generate
std::generate_n
std::includes
std::inclusive_scan
std::inner_product

std::inplace_merge
std::is_heap
std::is_heap_until
std::is_partitioned
std::is_sorted
std::is_sorted_until
std::lexicographical_compare
std::max_element
std::merge
std::min_element
std::minmax_element
std::mismatch
std::move
std::none_of
std::nth_element
std::partial_sort
std::partial_sort_copy
std::partition
std::partition_copy
std::remove
std::remove_copy
std::remove_copy_if
std::remove_if
std::replace
std::replace_copy
std::replace_copy_if

std::replace_if
std::reverse
std::reverse_copy
std::rotate
std::rotate_copy
std::search
std::search_n
std::set_difference
std::set_intersection
std::set_symmetric_difference
std::set_union
std::sort
std::stable_partition
std::stable_sort
std::swap_ranges
std::transform
std::transform_exclusive_scan
std::transform_inclusive_scan
std::transform_reduce
std::uninitialized_copy
std::uninitialized_copy_n
std::uninitialized_fill
std::uninitialized_fill_n
std::unique
std::unique_copy

Having these algorithms upgraded is great news! The more our old programs utilize STL
algorithms, the easier we can add parallelism to them retroactively. Note that this does not
mean that such changes make every program automatically N times faster because
multiprogramming is quite a bit more complex than that.

However, instead of designing our own complicated parallel algorithms using
std::thread, std::async, or by including external libraries, we can now parallelize
standard tasks in a very elegant, operating system-independent way.

How do those execution policies work?
The execution policy tells which strategy we allow for the automatic parallelization of our
standard algorithm calls.

Parallelism and Concurrency Chapter 26

[885]

The following three policy types exist in the std::execution namespace:

Policy Meaning

sequenced_policy

The algorithm has to be executed in a sequential form
similar to the original algorithm without an execution
policy. The globally available instance has the name
std::execution::seq.

parallel_policy

The algorithm may be executed with multiple threads
that share the work in a parallel fashion. The globally
available instance has the name
std::execution::par.

parallel_unsequenced_policy

The algorithm may be executed with multiple threads
sharing the work. In addition to that, it is permissible
to vectorize the code. In this case, container access can
be interleaved between threads and also within the
same thread due to vectorization. The globally
available instance has the name
std::execution::par_unseq.

The execution policies imply specific constraints for us. The stricter the specific constraints,
the more parallelization strategy measures we can allow:

All element access functions used by the parallelized algorithm must not cause
deadlocks or data races
In the case of parallelism and vectorization, all the access functions must not use
any kind of blocking synchronization

As long as we comply with these rules, we should be free from bugs introduced by using
the parallel versions of the STL algorithms.

Note that just using parallel STL algorithms correctly does not always lead
to guaranteed speedup. Depending on the problem we try to solve, the
problem size, and the efficiency of our data structures and other access
methods, measurable speedup will vary very much or not occur at all.
Multiprogramming is still hard.

Parallelism and Concurrency Chapter 26

[886]

What does vectorization mean?
Vectorization is a feature that both the CPU and the compiler need to support. Let's have a
quick glance at a simple example to briefly understand what vectorization is and how it
works. Imagine we want to sum up numbers from a very large vector. A plain
implementation of this task can look like this:

std::vector<int> v {1, 2, 3, 4, 5, 6, 7 /*...*/};

int sum {std::accumulate(v.begin(), v.end(), 0)};

The compiler will eventually generate a loop from the accumulate call, which could look
like this:

int sum {0};
for (size_t i {0}; i < v.size(); ++i) {
 sum += v[i];
}

Proceeding from this point, with vectorization allowed and enabled, the compiler could
then produce the following code. The loop does four accumulation steps in one loop step
and also does four times fewer iterations. For the sake of simplicity, the example does not
deal with the remainder if the vector does not contain N * 4 elements:

int sum {0};
for (size_t i {0}; i < v.size() / 4; i += 4) {
 sum += v[i] + v[i+1] + v[i + 2] + v[i + 3];
}
// if v.size() / 4 has a remainder,
// real code has to deal with that also.

Why should it do this? Many CPUs provide instructions that can perform mathematical
operations such as sum += v[i] + v[i+1] + v[i + 2] + v[i + 3]; in just one step.
Pressing as many mathematical operations into as few instructions as possible is the target
because this speeds up the program.

Automatic vectorization is hard because the compiler needs to understand our program to
some degree in order to make our program faster but without tampering with its correctness.
At least, we can help the compiler by using standard algorithms as often as possible because
those are easier to grasp for the compiler than complicated handcrafted loops with complex
data flow dependencies.

Parallelism and Concurrency Chapter 26

[887]

Putting a program to sleep for specific
amounts of time
A nice and simple possibility to control threads came with C++11. It introduced the
this_thread namespace, which includes functions that affect only the caller thread. It
contains two different functions that allow putting a thread to sleep for a certain amount of
time, so we do not need to use any external or operating system-dependent libraries for
such tasks any longer.

In this recipe, we concentrate on how to suspend threads for a certain amount of time, or
how to put them to sleep.

How to do it...
We will write a short program that just puts the main thread to sleep for certain amounts of
time:

Let's first include all the needed headers and declare that we'll use the std and1.
chrono_literals namespaces. The chrono_literals namespace contains
handy abbreviations for creating time-span values:

 #include <iostream>
 #include <chrono>
 #include <thread>

 using namespace std;
 using namespace chrono_literals;

Let's immediately put the main thread to sleep for 5 seconds and 3002.
milliseconds. Thanks to chrono_literals, we can express this in a very
readable format:

 int main()
 {
 cout << "Going to sleep for 5 seconds"
 " and 300 milli seconds.n";
 this_thread::sleep_for(5s + 300ms);

Parallelism and Concurrency Chapter 26

[888]

The last sleep statement was relative. We can also express absolute sleep3.
requests. Let's sleep until the point in time, which is now plus 3 seconds:

 cout << "Going to sleep for another 3 seconds.n";
 this_thread::sleep_until(
 chrono::high_resolution_clock::now() + 3s);

Before quitting the program, let's print something else to signal the end of the4.
second sleep period:

 cout << "That's it.n";
 }

Compiling and running the program yields the following results. Linux, Mac,5.
and other UNIX-like operating systems provide the time command, which
accepts another command in order to execute it and stop the time it takes.
Running our program with time shows that it ran 8.32 seconds, which is
roughly the 5.3 and 3 seconds we let our program sleep. When running the
program, it is possible to count the time between the arrival of the printed lines
on the terminal:

 $ time ./sleep
 Going to sleep for 5 seconds and 300 milli seconds.
 Going to sleep for another 3 seconds.
 That's it.
 real 0m8.320s
 user 0m0.005s
 sys 0m0.003s

How it works...
The sleep_for and sleep_until functions have been added to C++11 and reside in the
std::this_thread namespace. They block the current thread (not the whole process or
program) for a specific amount of time. A thread does not consume CPU time while it is
blocked. It is just put into an inactive state by the operating system. The operating system
does, of course, remind itself of waking the thread up again. The best thing about this is that
we do not need to care which operating system our program runs on because the STL
abstracts this detail away from us.

Parallelism and Concurrency Chapter 26

[889]

The this_thread::sleep_for function accepts a chrono::duration value. In the
simplest case, this is just 1s or 5s + 300ms, just like in our example code. In order to get
such nice literals for time spans, we need to declare using namespace
std::chrono_literals;.

The this_thread::sleep_until function accepts a chrono::time_point instead of a
time span. This is comfortable if we wish to put the thread to sleep until some specific wall
clock time.

The timing for waking up is only as accurate as the operating system allows. This will be
generally accurate enough with most operating systems, but it might become difficult if
some application needs nanosecond-granularity.

Another possibility to put a thread to sleep for a short time is this_thread::yield. It
accepts no arguments, which means that we cannot know for how long the execution of a
thread is placed back. The reason is that this function does not really implement the notion
of sleeping or parking a thread. It just tells the operating system in a cooperative way that it
can reschedule any other thread of any other process. If there are none, then the thread will
be executed again immediately. For this reason, yield is often less useful than just sleeping
for a minimal, but specified, amount of time.

Starting and stopping threads
Another addition that came with C++11 is the std::thread class. It provides a clean and
simple way to start and stop threads, without any need for external libraries or to know
how the operating system implements this. It's all just included in the STL.

In this recipe, we will implement a program that starts and stops threads. There are some
minor details to know what to do with threads once they are started, so we will go through
these too.

Parallelism and Concurrency Chapter 26

[890]

How to do it...
We will start multiple threads and see how our program behaves when we unleash
multiple processor cores to execute parts of its code at the same time:

At first, we need to include only two headers and then we declare that we use the1.
std and chrono_literals namespaces:

 #include <iostream>
 #include <thread>

 using namespace std;
 using namespace chrono_literals;

In order to start a thread, we need to be able to tell what code should be executed2.
by it. So, let's define a function that can be executed. Functions are natural
potential entry points for threads. The example function accepts an argument, i,
which acts as the thread ID. This way we can tell which print line came from
which thread later. Additionally, we use the thread ID to let all threads wait for
different amounts of time, so we can be sure that they do not try to use cout at
exactly the same time. If they did, that would garble the output. Another recipe in
this chapter deals specifically with this problem:

 static void thread_with_param(int i)
 {
 this_thread::sleep_for(1ms * i);
 cout << "Hello from thread " << i << 'n';
 this_thread::sleep_for(1s * i);
 cout << "Bye from thread " << i << 'n';
 }

Parallelism and Concurrency Chapter 26

[891]

In the main function, we can, just out of curiosity, print how many threads can be3.
run at the same time, using std::thread::hardware_concurrency. This
depends on how many cores the machine really has and how many cores are
supported by the STL implementation. This means that this might be a different
number on every other computer:

 int main()
 {
 cout << thread::hardware_concurrency()
 << " concurrent threads are supported.n";

Let's now finally start threads. With different IDs for each one, we start three4.
threads. When instantiating a thread with an expression such as thread t {f,
x}, this leads to a call of f(x) by the new thread. This ,way we can give the
thread_with_param functions different arguments for each thread:

 thread t1 {thread_with_param, 1};
 thread t2 {thread_with_param, 2};
 thread t3 {thread_with_param, 3};

Since these threads are freely running, we need to stop them again when they are5.
done with their work. We do this using the join function. It will block the calling
thread until the thread we try to join returns:

 t1.join();
 t2.join();

An alternative to joining is detaching. If we do not call join or detach, the whole6.
application will be terminated with a lot of smoke and noise as soon as the
destructor of the thread object is executed. By calling detach, we tell thread
that we really want to let thread number 3 to continue running, even after its
thread instance is destructed:

 t3.detach();

Before quitting the main function and the whole program, we print another7.
message:

 cout << "Threads joined.n";
 }

Parallelism and Concurrency Chapter 26

[892]

Compiling and running the code shows the following output. We can see that my8.
machine has eight CPU cores. Then, we see the hello messages from all the
threads, but the bye messages only from the two threads we actually joined.
Thread 3 is still in its waiting period of 3 seconds, but the whole program does
already terminate after the second thread has finished waiting for 2 seconds. This
way, we cannot see the bye message from thread 3 because it was simply killed
without any chance for completion (and without noise):

 $./threads
 8 concurrent threads are supported.
 Hello from thread 1
 Hello from thread 2
 Hello from thread 3
 Bye from thread 1
 Bye from thread 2
 Threads joined.

How it works...
Starting and stopping threads is a very simple thing to do. Multiprogramming starts to be
complicated where threads need to work together (sharing resources, waiting for each
other, and so on).

In order to start a thread, we first need some function that will be executed by it. The
function does not need to be special, as a thread could execute practically every function.
Let's pin down a minimal example program that starts a thread and waits for its
completion:

void f(int i) { cout << i << 'n'; }

int main()
{
 thread t {f, 123};
 t.join();
}

The constructor call of std::thread accepts a function pointer or a callable object,
followed by arguments that should be used with the function call. It is, of course, also
possible to start a thread on a function that doesn't accept any parameters.

Parallelism and Concurrency Chapter 26

[893]

If the system has multiple CPU cores, then the threads can run parallel and concurrently.
What is the difference between parallel and concurrent? If the computer has only one CPU
core, then there can be a lot of threads that run in parallel but never concurrently because
one CPU core can only run one thread at a time. The threads are then run in an interleaved
way where every thread is executed for some parts of a second, then paused, and then the
next thread gets a time slice (for human users, this looks like they run at the same time). If
they do not need to share a CPU core, then they can run concurrently, as in really at the same
time.

At this point, we have absolutely no control over the following details:

The order in which the threads are interleaved when sharing a CPU core.
The priority of a thread, or which one is more important than the other.
The fact that threads are really distributed among all the CPU cores or if the
operating system just pins them to the same core. It is indeed possible that all our
threads run on only a single core, although the machine has more than 100 cores.

Most operating systems provide possibilities to control also these facets of
multiprogramming, but such features are, at this point, not included in the STL.

However, we can start and stop threads and tell them when to work on what and when to
pause. That should be enough for a large class of applications. What we did in this section
was we started three additional threads. Afterward, we joined most of them and detached the
last one. Let's summarize in a simple diagram what happened:

Reading the diagram from top to the bottom, it shows one point in time where we split the
program workflow to four threads in total. We started three additional threads that did
something (namely waiting and printing), but after starting the threads, the main thread
executing the main function remained without work.

Parallelism and Concurrency Chapter 26

[894]

Whenever a thread has finished executing the function it was started with, it will return
from this function. The standard library then does some tidy up work that results in the
thread being removed from the operating system's schedule, and maybe in its destruction,
but we do not need to worry about it.

The only thing we need to worry about is joining. When a thread calls function x.join() on
another thread object, it is put to sleep until thread x returns. Note that we are out of luck
if the thread is trapped in an endless loop! If we want a thread to continue living until it
decides to terminate itself, we can call x.detach(). After doing so, we have no external
control over the thread any longer. No matter what we decide--we must always join or
detach threads. If we don't do one of the two, the destructor of the thread object will call
std::terminate(), which leads to an abrupt application shutdown.

The moment when our main function returns, the whole application is, of course,
terminated. However, at the same time, our detached thread, t3, was still sleeping before
printing its bye message to the terminal. The operating system didn't care--it just terminated
our whole program without waiting for that thread to finish. This is something we need to
consider. If that additional thread had to complete something important, we would have to
make the main function wait for it.

Performing exception safe shared locking
with std::unique_lock and std::shared_lock
Since the operation of threads is a heavily operating system support-related thing and the
STL provides good operating system-agnostic interfaces for that, it is also wise to provide
STL support for synchronization between threads. This way, we can not only start and stop
threads without external libraries but also synchronize them with abstractions from a single
unified library: the STL.

In this recipe, we will have a look at STL mutex classes and RAII lock abstractions. While
we play around with some of them in our concrete recipe implementation, we will also get
an overview of more synchronization helpers that the STL provides.

Parallelism and Concurrency Chapter 26

[895]

How to do it...
We are going to write a program that uses an std::shared_mutex instance in its exclusive
and shared modes and to see what that means. Additionally, we do not call the lock and
unlock functions ourselves but do the locking with automatic unlocking using RAII helpers:

First, we need to include all necessary headers. Because we use STL functions and1.
data structures all the time together with time literals, we declare that we use the
std and chrono_literal namespaces:

 #include <iostream>
 #include <shared_mutex>
 #include <thread>
 #include <vector>

 using namespace std;
 using namespace chrono_literals;

The whole program revolves around one shared mutex, so let's define a global2.
instance for the sake of simplicity:

 shared_mutex shared_mut;

We are going to use the std::shared_lock and std::unique_lock RAII3.
helpers. In order to make their names appear less clumsy, we define short type
aliases for them:

 using shrd_lck = shared_lock<shared_mutex>;
 using uniq_lck = unique_lock<shared_mutex>;

Before beginning with the main function, we define two helper functions that4.
both try to lock the mutex in exclusive mode. This function here will instantiate a
unique_lock instance on the shared mutex. The second constructor argument
defer_lock tells the object to keep the lock unlocked. Otherwise, its constructor
would try to lock the mutex and then block until it succeeds. Then we call
try_lock on the exclusive_lock object. This call will return immediately and
its boolean return value tells us if it got the lock or if the mutex was locked
already somewhere else:

 static void print_exclusive()
 {
 uniq_lck l {shared_mut, defer_lock};
 if (l.try_lock()) {
 cout << "Got exclusive lock.n";
 } else {

Parallelism and Concurrency Chapter 26

[896]

 cout << "Unable to lock exclusively.n";
 }
 }

The other helper function tries to lock the mutex in exclusive mode, too. It blocks5.
until it gets the lock. Then we simulate some error case by throwing an exception
(which carries just a plain integer number instead of a more complex exception
object). Although this leads to an immediate exit of the context in which we hold
a locked mutex, the mutex will cleanly be released again. That is because the
destructor of unique_lock will release the lock in any case by design:

 static void exclusive_throw()
 {
 uniq_lck l {shared_mut};
 throw 123;
 }

Now to the main function. First, we open up another scope and instantiate a6.
shared_lock instance. Its constructor immediately locks the mutex in shared
mode. We will see what this means in the next steps:

 int main()
 {
 {
 shrd_lck sl1 {shared_mut};
 cout << "shared lock once.n";

Now we open yet another scope and instantiate a second shared_lock instance7.
on the same mutex. We have two shared_lock instances now, and they both
hold a shared lock on the mutex. In fact, we could instantiate arbitrarily many
shared_lock instances on the same mutex. Then we call print_exclusive,
which tries to lock the mutex in exclusive mode. This will not succeed because it is
locked in shared mode already:

 {
 shrd_lck sl2 {shared_mut};
 cout << "shared lock twice.n";
 print_exclusive();
 }

Parallelism and Concurrency Chapter 26

[897]

After leaving the latest scope, the destructor of the shared_lock sl2 releases its8.
shared lock on the mutex. The print_exclusive function will again fail because
the mutex is still in shared lock mode:

 cout << "shared lock once again.n";
 print_exclusive();

 }
 cout << "lock is free.n";

After leaving also the other scope, all shared_lock objects are destroyed, and9.
the mutex is in unlocked state again. Now we can finally lock the mutex in
exclusive mode. Let's do this by calling exclusive_throw and then
print_exclusive. Remember that we throw an exception in
exclusive_throw. But because unique_lock is an RAII object that gives us
exception safety, the mutex will be unlocked again no matter how we return from
exclusive_throw. This way print_exclusive will not block on an
erroneously still locked mutex:

 try {
 exclusive_throw();
 } catch (int e) {
 cout << "Got exception " << e << 'n';
 }
 print_exclusive();
 }

Compiling and running the code yields the following output. The first two lines10.
show that we got the two shared lock instances. Then the print_exclusive
function fails to lock the mutex in exclusive mode. After leaving the inner scope
and unlocking the second shared lock, the print_exclusive function still fails.
After leaving the other scope too, which finally released the mutex again,
exclusive_throw and print_exclusive are finally able to lock the mutex:

 $./shared_lock
 shared lock once.
 shared lock twice.
 Unable to lock exclusively.
 shared lock once again.
 Unable to lock exclusively.
 lock is free.
 Got exception 123
 Got exclusive lock.

Parallelism and Concurrency Chapter 26

[898]

How it works...
When looking at the C++ documentation, it is at first a little confusing that there are
different mutex classes and RAII lock-helpers. Before looking at our concrete code sample,
let us summarize what the STL has available for us.

Mutex classes
The term mutex stands for mutual exclusion. In order to prevent that concurrently running
threads alter the same object in a non-orchestrated way that might lead to data corruption,
we can use mutex objects. The STL provides different mutex classes with different
specialties. They all have in common that they have a lock and an unlock method.

Whenever a thread is the first one to call lock() on a mutex that was not locked before, it
owns the mutex. At this point, other threads will block on their lock calls, until the first
thread calls unlock again. std::mutex can do exactly this.

There are many different mutex classes in the STL:

Type name Description

mutex
Standard mutex with a lock and an unlock method.
Provides an additional nonblocking try_lock method.

timed_mutex
Same as mutex, but provides additional try_lock_for and
try_lock_until methods that allow for timing out instead
of blocking forever.

recursive_mutex

Same as mutex, but if a thread locked an instance of it
already, it can call lock multiple times on the same mutex
object without blocking. It is released after the owning thread
called unlock as often as it called lock.

recursive_timed_mutex
Provides the features of both timed_mutex and
recursive_mutex.

Parallelism and Concurrency Chapter 26

[899]

Type name Description

shared_mutex

This mutex is special in that regard, that it can be locked in
exclusive mode and in shared mode. In exclusive mode, it
shows the same behavior as the standard mutex class. If a
thread locks it in shared mode, it is possible for other threads
to lock it in shared mode, too. It will then be unlocked as soon
as the last shared mode lock owner releases it. While a lock is
locked in shared mode, it is not possible to obtain exclusive
ownership. This is very similar to the behavior of
shared_ptr, only that it does not manage memory, but lock
ownership.

shared_timed_mutex
Combines the features of shared_mutex and timed_mutex
for both exclusive and shared mode.

Lock classes
Everything is nice and easy as long as threads do just lock a mutex, access some
concurrence protected object and unlock the mutex again. As soon as a forgetful
programmer misses to unlock a mutex somewhere after locking it, or an exception is
thrown while a mutex is still locked, things look ugly pretty quick. In the best case, the
program just hangs immediately and the missing unlock call is identified quickly. Such
bugs, however, are very similar to memory leaks, which also occur when there are missing
explicit delete calls.

When regarding memory management, we have unique_ptr, shared_ptr and weak_ptr.
Those helpers provide very convenient ways to avoid memory leaks. Such helpers exist for
mutexes, too. The simplest one is std::lock_guard. It can be used as follows:

void critical_function()
{
 lock_guard<mutex> l {some_mutex};

 // critical section
}

Parallelism and Concurrency Chapter 26

[900]

lock_guard element's constructor accepts a mutex, on which it calls lock immediately.
The whole constructor call will block until it obtains the lock on the mutex. Upon
destruction, it unlocks the mutex again. This way it is hard to get the lock/unlock cycle
wrong because it happens automatically.

The C++17 STL provides the following different RAII lock-helpers. They all accept a
template argument that shall be of the same type as the mutex (although, since C++17, the
compiler can deduce that type itself):

Name Description

lock_guard
This class provides nothing else than a constructor and a destructor, which
lock and unlock a mutex.

scoped_lock
Similar to lock_guard, but supports arbitrarily many mutexes in its
constructor. Will release them in opposite order in its destructor.

unique_lock

Locks a mutex in exclusive mode. The constructor also accepts arguments
that instruct it to timeout instead of blocking forever on the lock call. It is
also possible to not lock the mutex at all, or to assume that it is locked
already, or to only try locking the mutex. Additional methods allow to lock
and unlock the mutex during the unique_lock lock's lifetime.

shared_lock
Same as unique_lock, but all operations are applied on the mutex in
shared mode.

While lock_guard and scoped_lock have dead-simple interfaces that only consist of
constructor and destructor, unique_lock and shared_lock are more complicated, but
also more versatile. We will see in later recipes of this chapter, how else they can be used if
not for plain simple lock regions.

Let's get back to the recipe code now. Although we only ran the code in single thread
context, we have seen how it is meant to use the lock helpers. The shrd_lck type alias
stands for shared_lock<shared_mutex> and allows us to lock an instance multiple times
in shared mode. As long as sl1 and sl2 exist, no print_exclusive call is able to lock the
mutex in exclusive mode. This is still simple.

Parallelism and Concurrency Chapter 26

[901]

Now let's get to the exclusively locking functions that came later in the main function:

int main()
{
 {
 shrd_lck sl1 {shared_mut};
 {
 shrd_lck sl2 {shared_mut};

 print_exclusive();
 }
 print_exclusive();
 }
 try {
 exclusive_throw();
 } catch (int e) {
 cout << "Got exception " << e << 'n';
 }
 print_exclusive();
}

One important detail is that after returning from exclusive_throw, the
print_exclusive function is able to lock the mutex again, although exclusive_throw
did not exit cleanly due to the exception it throws.

Let's have another look at print_exclusive because it used a strange constructor call:

void print_exclusive()
{
 uniq_lck l {shared_mut, defer_lock};

 if (l.try_lock()) {
 // ...
 }
}

We did not only provide shared_mut but also defer_lock as constructor arguments for
unique_lock in this procedure. defer_lock is an empty global object that can be used to
select a different constructor of unique_lock that simply does not lock the mutex. By
doing so, we are able to call l.try_lock() later, which does not block. In case the mutex is
locked already, we can do something else. If it was indeed possible to get the lock, we still
have the destructor tidying up after us.

Parallelism and Concurrency Chapter 26

[902]

Avoiding deadlocks with std::scoped_lock
If deadlocks had occurred in road traffic, they would have looked like the following
situation:

In order to get the traffic flow going again, we either need a large crane that randomly picks
one car from the center of the street intersection and removes it. If that is not possible, then
we need enough drivers to be cooperative. The deadlock can be solved by all drivers in one
direction driving several meters backwards, making space for the other drivers to continue.

In multithreaded programs, such situations, of course, need to be avoided strictly by the
programmer. It is however too easy to fail in that regard when the program is really
complex.

In this recipe, we are going to write code which intentionally provokes a deadlock situation.
Then we will see how to write code that acquires the same resources that led the other code
into a deadlock, but use the new STL lock class std::scoped_lock that came with C++17,
in order to avoid this mistake.

Parallelism and Concurrency Chapter 26

[903]

How to do it...
The code of this section contains two pairs of functions that ought to be executed by
concurrent threads, and that acquire two resources in form of mutexes. One pair provokes a
deadlock and the other avoids it. In the main function, we are going to try them out:

Let's first include all needed headers and declare that we use namespace std and1.
chrono_literals:

 #include <iostream>
 #include <thread>
 #include <mutex>

 using namespace std;
 using namespace chrono_literals;

Then we instantiate two mutex objects which we need in order to run into a2.
deadlock:

 mutex mut_a;
 mutex mut_b;

In order to provoke a deadlock with two resources, we need two functions. One3.
function tries to lock mutex A and then mutex B, while the other function will do
that in the opposite order. By letting both functions sleep a bit between the locks,
we can make sure that this code blocks forever on a deadlock. (This is for
demonstration purposes. A program without some sleep lines might run
successfully without a deadlock sometimes if we start it repeatedly.)
Note that we do not use the 'n' character in order to print a line break, but we
use endl. endl does not only perform a line break but also flushes the stream
buffer of cout, so we can be sure that prints are not bunched up and postponed:

 static void deadlock_func_1()
 {
 cout << "bad f1 acquiring mutex A..." << endl;
 lock_guard<mutex> la {mut_a};
 this_thread::sleep_for(100ms);
 cout << "bad f1 acquiring mutex B..." << endl;
 lock_guard<mutex> lb {mut_b};
 cout << "bad f1 got both mutexes." << endl;
 }

Parallelism and Concurrency Chapter 26

[904]

As promised in the last step, deadlock_func_2 looks exactly same as4.
deadlock_func_1, but it locks mutex A and B in the opposite order:

 static void deadlock_func_2()
 {
 cout << "bad f2 acquiring mutex B..." << endl;
 lock_guard<mutex> lb {mut_b};
 this_thread::sleep_for(100ms);
 cout << "bad f2 acquiring mutex A..." << endl;
 lock_guard<mutex> la {mut_a};
 cout << "bad f2 got both mutexes." << endl;
 }

Now we write a deadlock-free variant of those two functions we just5.
implemented. They use the class scoped_lock, which locks all mutexes we
provide as constructor arguments. Its destructor unlocks them again. While
locking the mutexes, it internally applies a deadlock avoidance strategy for us.
Note that both functions still use mutex A and B in opposite order:

 static void sane_func_1()
 {
 scoped_lock l {mut_a, mut_b};
 cout << "sane f1 got both mutexes." << endl;
 }
 static void sane_func_2()
 {
 scoped_lock l {mut_b, mut_a};
 cout << "sane f2 got both mutexes." << endl;
 }

Parallelism and Concurrency Chapter 26

[905]

In the main function, we will go through two scenarios. First, we use the sane6.
functions in multithreaded context:

 int main()
 {
 {
 thread t1 {sane_func_1};
 thread t2 {sane_func_2};
 t1.join();
 t2.join();
 }

Then we use the deadlock-provoking functions that do not utilize any deadlock7.
avoidance strategy:

 {
 thread t1 {deadlock_func_1};
 thread t2 {deadlock_func_2};
 t1.join();
 t2.join();
 }
 }

Compiling and running the program yields the following output. The first two8.
lines show that the sane locking function scenario works and both functions
return without blocking forever. The other two functions run into a deadlock. We
can tell that this is a deadlock because we see the print lines that tell that the
individual threads try to lock mutexes A and B and then wait forever. Both do not
reach the point where they successfully locked both mutexes. We can let this
program run for hours, days, and years, and nothing will happen.
This application needs to be killed from outside, for example by pressing the keys
Ctrl + C:

 $./avoid_deadlock
 sane f1 got both mutexes
 sane f2 got both mutexes
 bad f2 acquiring mutex B...
 bad f1 acquiring mutex A...
 bad f1 acquiring mutex B...
 bad f2 acquiring mutex A...

Parallelism and Concurrency Chapter 26

[906]

How it works...
By implementing code that willfully causes a deadlock, we've seen how quick such an
unwanted scenario can happen. In a large project, where multiple programmers write code
that needs to share a common set of mutex-protected resources, all programmers need to
comply with the same order when locking and unlocking mutexes. While such strategies or
rules are really easy to follow, they are also easy to forget. Another term for this problem is
lock order inversion.

scoped_lock is a real help in such situations. It came with C++17 and works the same way
as lock_guard and unique_lock work: its constructor performs the locking, and its
destructor the unlocking of a mutex. scoped_lock's specialty is that it can do this with
multiple mutexes.

scoped_lock uses the std::lock function, which applies a special algorithm that
performs a series of try_lock calls on all the mutexes provided, in order to prevent
deadlocking. Therefore it is perfectly safe to use scoped_lock or call std::lock on the
same set of locks, but in different orders.

Synchronizing concurrent std::cout use
One inconvenience in multithreaded programs is that we must practically secure every data
structure they modify, with mutexes or other measures that protect from uncontrolled
concurrent modification.

One data structure that is typically used very often for printing is std::cout. If multiple
threads access cout concurrently, then the output will appear in interesting mixed patterns
on the terminal. In order to prevent this, we would need to write our own function that
prints in a concurrency-safe fashion.

We are going to learn how to provide a cout wrapper that consists of minimal code itself
and that is as comfortable to use as cout.

Parallelism and Concurrency Chapter 26

[907]

How to do it...
In this section, we are going to implement a program that prints to the terminal
concurrently from many threads. In order to prevent garbling of the messages due to
concurrency, we implement a little helper class that synchronizes printing between threads:

As always, the includes come first:1.

 #include <iostream>
 #include <thread>
 #include <mutex>
 #include <sstream>
 #include <vector>

 using namespace std;

Then we implement our helper class, which we call pcout. The p stands for2.
parallel because it works in a synchronized way for parallel contexts. The idea is
that pcout publicly inherits from stringstream. This way we can use
operator<< on instances of it. As soon as a pcout instance is destroyed, its
destructor locks a mutex and then prints the content of the stringstream buffer.
We will see how to use it in the next step:

 struct pcout : public stringstream {
 static inline mutex cout_mutex;
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 cout.flush();
 }
 };

Now let's write two functions that can be executed by additional threads. Both3.
accept a thread ID as arguments. Then, their only difference is that the first one
simply uses cout for printing. The other one looks nearly identical, but instead of
using cout directly, it instantiates pcout. This instance is a temporary object that
lives only exactly for this line of code. After all operator<< calls have been
executed, the internal string stream is filled with what we want to print. Then
pcout instance's destructor is called. We have seen what the destructor does: it
locks a specific mutex all pcout instances share along and prints:

 static void print_cout(int id)
 {
 cout << "cout hello from " << id << 'n';
 }

Parallelism and Concurrency Chapter 26

[908]

 static void print_pcout(int id)
 {
 pcout{} << "pcout hello from " << id << 'n';
 }

Let's try it out. First, we are going to use print_cout, which just uses cout for4.
printing. We start 10 threads which concurrently print their strings and wait until
they finish:

 int main()
 {
 vector<thread> v;
 for (size_t i {0}; i < 10; ++i) {
 v.emplace_back(print_cout, i);
 }
 for (auto &t : v) { t.join(); }

Then we do the same thing with the print_pcout function:5.

 cout << "=====================n";
 v.clear();
 for (size_t i {0}; i < 10; ++i) {
 v.emplace_back(print_pcout, i);
 }
 for (auto &t : v) { t.join(); }
 }

Compiling and running the program yields the following result. As we see, the6.
first 10 prints are completely garbled. This is how it can look like when cout is
used concurrently without locking. The last 10 lines of the program are the
print_pcout lines which do not show any signs of garbling. We can see that
they are printed from different threads because their order appears randomized
every time when we run the program again:

Parallelism and Concurrency Chapter 26

[909]

How it works...
Ok, we've built this "cout wrapper" that automatically serializes concurrent printing
attempts. How does it work?

Let's do the same steps our pcout helper does in a manual manner without any magic.
First, it instantiates a string stream and accepts the input we feed into it:

stringstream ss;
ss << "This is some printed line " << 123 << 'n';

Then it locks a globally available mutex:

{
 lock_guard<mutex> l {cout_mutex};

In this locked scope, it accesses the content of string stream ss, prints it, and releases the
mutex again by leaving the scope. The cout.flush() line tells the stream object to print to
the terminal immediately. Without this line, a program might run faster because multiple
printed lines can be bunched up and printed in a single run later. In our recipes, we will like
to see all output lines immediately, so we use the flush method:

 cout << ss.rdbuf();
 cout.flush();
}

Parallelism and Concurrency Chapter 26

[910]

Ok, this is simple enough but tedious to write if we have to to the same thing again and
again. We can shorten down the stringstream instantiation as follows:

stringstream{} << "This is some printed line " << 123 << 'n';

This instantiates a string stream object, feeds everything we want to print into it and then
destructs it again. The lifetime of the string stream is reduced to just this line. Afterward, we
cannot print it any longer, because we cannot access it. Which code is the last that is able to
access the stream's content? It is the destructor of stringstream.

We cannot modify stringstream instance's member methods, but we can extend them by
wrapping our own type around it via inheritance:

struct pcout : public stringstream {
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 cout.flush();
 }
};

This class is still a string stream and we can use it like any other string stream. The only
difference is that it will lock a mutex and print its own buffer using cout.

We also moved the cout_mutex object into struct pcout as a static instance so we have
both bundled in one place.

Safely postponing initialization with
std::call_once
Sometimes we have specific code sections that can be run in parallel context by multiple
threads with the obligation that some setup code must be executed exactly once before
executing the actual functions. A simple solution is to just execute the existing setup
function before the program enters a state from which parallel code can be executed from
time to time.

Parallelism and Concurrency Chapter 26

[911]

The drawbacks of such an approach are the following ones:

If the parallel function comes from a library, the user must not forget to call the
setup function. That does not make the library easier to use.
If the setup function is expensive in some way, and it might not even need to be
executed in case the parallel functions that need this setup are not even always
used, then we need code that decides when/if to run it.

In this recipe, we will have a look at std::call_once, which is a helper function that
solves this problem for us in a simple to use and elegant implicit way.

How to do it...
We are going to write a program that starts multiple threads with exactly the same code.
Although they are programmed to execute exactly the same code, our example setup
function will only be called once:

First, we need to include all the necessary headers:1.

 #include <iostream>
 #include <thread>
 #include <mutex>
 #include <vector>

 using namespace std;

We are going to use std::call_once later. In order to use it, we need an2.
instance of once_flag somewhere. It is needed for the synchronization of all
threads that use call_once on a specific function:

 once_flag callflag;

The function which must be only executed once is the following one. It just prints3.
a single exclamation mark:

 static void once_print()
 {
 cout << '!';
 }

Parallelism and Concurrency Chapter 26

[912]

All threads will execute the print function. The first thing we do is calling the4.
function once_print through the function std::call_once. call_once needs
the variable callflag we defined before. It will use it to orchestrate the threads:

 static void print(size_t x)
 {
 std::call_once(callflag, once_print);
 cout << x;
 }

Ok, let's now start 10 threads which all use the print function:5.

 int main()
 {
 vector<thread> v;
 for (size_t i {0}; i < 10; ++i) {
 v.emplace_back(print, i);
 }
 for (auto &t : v) { t.join(); }
 cout << 'n';
 }

Compiling and running yields the following output. First, we see the exclamation6.
mark from the once_print function. Then we see all thread IDs. call_once did
not only make sure that once_print was only called once. Additionally, it
synchronized all threads, so that no ID is printed before once_print was
executed:

 $./call_once
 !1239406758

How it works...
std:call_once works like a barrier. It maintains access to a function (or a callable object).
The first thread to reach it gets to execute the function. Until it has finished, any other
thread that reaches the call_once line is blocked. After the first thread returns from the
function, all other threads are released, too.

Parallelism and Concurrency Chapter 26

[913]

In order to organize this little choreography, a variable is needed from which the other
threads can determine if they must wait and when they are released again. This is what our
variable once_flag callflag; is for. Every call_once line also needs a once_flag
instance as the argument prepending the function that shall be called only once.

Another nice detail is: If it happens, that the thread which is selected to execute the function
in call_once fails because some exception is thrown, then the next thread is allowed to
execute the function again. This happens in the hope that it will not throw an exception the
next time.

Pushing the execution of tasks into the
background using std::async
Whenever we want some code to be executed in the background, we can simply start a new
thread that executes this code. While this happens, we can do something else and then wait
for the result. It's simple:

std::thread t {my_function, arg1, arg2, ...};
// do something else
t.join(); // wait for thread to finish

But then the inconvenience starts: t.join() does not give us the return value of
my_function. In order to get at that, we need to write a function that calls my_function
and stores its return value in some variable that is also accessible for the first thread in
which we started the new thread. If such situations occur repeatedly, then this represents
quite a bunch of boilerplate code we have to write again and again.

Since C++11, we have std::async which can do exactly this job for us and not only that. In
this recipe, we are going to write a simple program that does multiple things at the same
time using asynchronous function calls. As std::async is a bit more powerful than that
alone, we will have a closer look at its different facets.

Parallelism and Concurrency Chapter 26

[914]

How to do it...
We are going to implement a program that does multiple different things concurrently but
instead of explicitly starting threads, we use std::async and std::future:

First, we include all necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <iomanip>
 #include <map>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <future>

 using namespace std;

We implement three functions which have nothing to do with parallelism but do2.
interesting tasks. The first function accepts a string and creates a histogram of all
characters occurring within that string:

 static map<char, size_t> histogram(const string &s)
 {
 map<char, size_t> m;
 for (char c : s) { m[c] += 1; }
 return m;
 }

The second function does also accept a string and returns a sorted copy of it:3.

 static string sorted(string s)
 {
 sort(begin(s), end(s));
 return s;
 }

Parallelism and Concurrency Chapter 26

[915]

The third one counts how many vowels exist within the string it accepts:4.

 static bool is_vowel(char c)
 {
 char vowels[] {"aeiou"};
 return end(vowels) !=
 find(begin(vowels), end(vowels), c);
 }
 static size_t vowels(const string &s)
 {
 return count_if(begin(s), end(s), is_vowel);
 }

In the main function, we read the whole standard input into a string. In order to5.
not segment the input into words, we deactivate ios::skipws. This way we get
one large string, no matter how much white space the input contains. We use
pop_back on the resulting string afterward because we got one string
terminating '' character too much this way:

 int main()
 {
 cin.unsetf(ios::skipws);
 string input {istream_iterator<char>{cin}, {}};
 input.pop_back();

Now let's get the return values from all the functions we implemented before. In6.
order to speed the execution up for very long input, we launch them
asynchronously. The std::async function accepts a policy, a function, and
arguments for that function. We call histogram, sorted, and vowels with
launch::async as a policy (we will see later what that means). All functions get
the same input string as arguments:

 auto hist (async(launch::async,
 histogram, input));
 auto sorted_str (async(launch::async,
 sorted, input));
 auto vowel_count (async(launch::async,
 vowels, input));

Parallelism and Concurrency Chapter 26

[916]

The async calls return immediately because they do not actually execute our7.
functions. Instead, they set up synchronization structures which will obtain the
results of the function calls later. The results are now being calculated
concurrently by additional threads. In the meantime, we are free to do whatever
we want, as we can pick up those values later. The return values hist,
sorted_str and vowel_count are of the types the functions histogram,
sorted, and vowels return, but they were wrapped in a future type by
std::async. Objects of this type express that they will contain their values at
some point in time. By using .get() on all of them, we can make the main
function block until the values arrive, and then use them for printing:

 for (const auto &[c, count] : hist.get()) {
 cout << c << ": " << count << 'n';
 }
 cout << "Sorted string: "
 << quoted(sorted_str.get()) << 'n'
 << "Total vowels: "
 << vowel_count.get() << 'n';
 }

Compiling and running the code looks like the following. We use a short example8.
string that does not really make it worth being parallelized, but for the sake of
this example, the code is nevertheless executed concurrently. Additionally, the
overall structure of the program did not change much compared to a naive
sequential version of it:

 $ echo "foo bar baz foobazinga" | ./async
 : 3
 a: 4
 b: 3
 f: 2
 g: 1
 i: 1
 n: 1
 o: 4
 r: 1
 z: 2
 Sorted string: " aaaabbbffginoooorzz"
 Total vowels: 9

Parallelism and Concurrency Chapter 26

[917]

How it works...
If we would not have used std::async the serial unparallelized code could have looked as
simple as that:

auto hist (histogram(input));
auto sorted_str (sorted(input));
auto vowel_count (vowels(input));

for (const auto &[c, count] : hist) {
 cout << c << ": " << count << 'n';
}
cout << "Sorted string: " << quoted(sorted_str) << 'n';
cout << "Total vowels: " << vowel_count << 'n';

The only thing we did in order to parallelize the code was the following. We wrapped the
three function calls into async(launch::async, ...) calls. This way these three
functions are not executed by the main thread we are currently running in. Instead, async
starts new threads and lets them execute the functions concurrently. This way we get to
execute only the overhead of starting another thread and can continue with the next line of
code, while all the work happens in the background:

auto hist (async(launch::async, histogram, input));
auto sorted_str (async(launch::async, sorted, input));
auto vowel_count (async(launch::async, vowels, input));

for (const auto &[c, count] : hist.get()) {
 cout << c << ": " << count << 'n';
}
cout << "Sorted string: "
 << quoted(sorted_str.get()) << 'n'
 << "Total vowels: "
 << vowel_count.get() << 'n';

While histogram for example, returns us a map instance, async(..., histogram, ...)
does return us a map that was wrapped in a future object before. This future object is
kind of an empty placeholder until the thread that executes the histogram function returns.
The resulting map is then placed into the future object so we can finally access it. The get
function then gives us access to the encapsulated result.

Let's have a look at another minimal example. Consider the following code snippet:

auto x (f(1, 2, 3));
cout << x;

Parallelism and Concurrency Chapter 26

[918]

Instead of writing the preceding code, we can also do the following:

auto x (async(launch::async, f, 1, 2, 3));
cout << x.get();

That's basically it. Executing tasks in the background might have never been easier in
standard C++. There is still one thing left to resolve: What does launch::async mean?
launch::async is a flag that defines the launch policy. There are two policy flags which
allow for three constellations:

Policy choice Meaning

launch::async
The function is guaranteed to be executed by another
thread.

launch::deferred

The function is executed by the same thread, but later (lazy
evaluation). Execution then happens when get or wait is
called on the future. If none of both happens, the function is
not called at all.

launch::async |
launch::deferred

Having both flags set, the STL's async implementation is
free to choose which policy shall be followed. This is the
default choice if no policy is provided.

By just calling async(f, 1, 2, 3) without a policy argument, we
automatically select both policies. The implementation of async is then
free to choose which policy to employ. This means that we cannot be sure
that another thread is started at all, or if the execution is just deferred in
the current thread.

There's more...
There is indeed one last thing we should know about. Suppose, we write code as follows:

async(launch::async, f);
async(launch::async, g);

This might have the motivation of executing functions f and g (we do not care about their
return values in this example) in concurrent threads and then doing different things at the
same time. While running such code, we will notice that the code blocks on this calls, which
is most probably not what we want.

Parallelism and Concurrency Chapter 26

[919]

So why does it block? Isn't async all about nonblocking asynchronous calls? Yes it is, but
there is one special peculiarity: if a future was obtained from an async call with the
launch::async policy, then its destructor performs a blocking wait.

This means that both the async calls from this short example are blocking because the
lifetime of the futures they return ends in the same line! We can fix this by capturing their
return values in variables with a longer lifetime.

Implementing the producer/consumer idiom
with std::condition_variable
In this recipe, we are going to implement a typical producer/consumer program with
multiple threads. The general idea is that there is one thread that produces items and puts
them into a queue. Then there is another thread that consumes such items. If there is
nothing to produce, the producer thread sleeps. If there is no item in the queue to consume,
the consumer sleeps.

Since the queue that both threads have access to is also modified by both whenever an item
is produced or consumed, it needs to be protected by a mutex.

Another thing to consider is: What does the consumer do if there is no item in the queue?
Does it poll the queue every second until it sees new items? That is not necessary because
we can let the consumer wait for wakeup events that are triggered by the producer,
whenever there are new items.

C++11 provides a nice data structure called std::condition_variable for this kind of
events. In this recipe, we are going to implement a simple producer/consumer app that
takes advantage of this.

How to do it...
We are going to implement a simple producer/consumer program which runs a single
producer of values in its own thread, as well as a single consumer thread in another thread:

First, we need to perform all the needed includes:1.

 #include <iostream>
 #include <queue>
 #include <tuple>
 #include <condition_variable>

Parallelism and Concurrency Chapter 26

[920]

 #include <thread>

 using namespace std;
 using namespace chrono_literals;

We instantiate a queue of simple numeric values and call it q. The producer will2.
push values into it, and the consumer will take values out of it. In order to
synchronize both, we need a mutex. In addition to that, we instantiate a
condition_variable cv. The variable finished will be the producer's way to
tell the consumer that no more values will follow:

 queue<size_t> q;
 mutex mut;
 condition_variable cv;
 bool finished {false};

Let's first implement the producer function. It accepts an argument items which3.
limits the maximum number of items for production. In a simple loop, it will
sleep 100 milliseconds for every item, which simulates some computational
complexity. Then we lock the mutex that synchronizes access to the queue. After
successful production and insertion to the queue, we call cv.notify_all().
This function wakes the consumer up. We will see later at the consumer side how
this works:

 static void producer(size_t items) {
 for (size_t i {0}; i < items; ++i) {
 this_thread::sleep_for(100ms);
 {
 lock_guard<mutex> lk {mut};
 q.push(i);
 }
 cv.notify_all();
 }

After having produced all items, we lock the mutex again because we are going4.
to change to set the finished bit. Then we call cv.notify_all() again:

 {
 lock_guard<mutex> lk {mut};
 finished = true;
 }
 cv.notify_all();
 }

Parallelism and Concurrency Chapter 26

[921]

Now we can implement the consumer function. It takes no arguments because it5.
will blindly consume until the queue runs empty. In a loop that is executed as
long as finished is not set, it will first lock the mutex that protects both the
queue and the finished flag. As soon as it has the lock, it calls cv.wait with the
lock and a lambda expression as arguments. The lambda expression is a predicate
that tells if the producer thread is still alive and if there is anything to consume in
the queue:

 static void consumer() {
 while (!finished) {
 unique_lock<mutex> l {mut};
 cv.wait(l, [] { return !q.empty() || finished; });

The cv.wait call unlocks the lock and waits until the condition described by the6.
predicate function holds. Then, it locks the mutex again and consumes everything
from the queue until it appears empty. If the producer is still alive, it will iterate
through the loop again. Otherwise, it will terminate because finished is set,
which is the producer's way to signal that there are no further items being
produced:

 while (!q.empty()) {
 cout << "Got " << q.front()
 << " from queue.n";
 q.pop();
 }
 }
 }

In the main function, we start a producer thread which produces 10 items, and a7.
consumer thread. Then we wait until their completion and terminate the
program:

 int main() {
 thread t1 {producer, 10};
 thread t2 {consumer};
 t1.join();
 t2.join();
 cout << "finished!n";
 }

Parallelism and Concurrency Chapter 26

[922]

Compiling and running the program yields the following output. When the8.
program is executed, we can see that there is some time (100 milliseconds)
between each line, because the production of items takes some time:

 $./producer_consumer
 Got 0 from queue.
 Got 1 from queue.
 Got 2 from queue.
 Got 3 from queue.
 Got 4 from queue.
 Got 5 from queue.
 Got 6 from queue.
 Got 7 from queue.
 Got 8 from queue.
 Got 9 from queue.
 finished!

How it works...
In this recipe, we simply started two threads. The first thread produces items and puts them
into a queue. The other takes items out of the queue. Whenever one of those threads touches
the queue in any way, it locks the common mutex mut which is accessible for both. This
way we made sure that it cannot happen that both threads manipulate the queue's state at
the same time.

Apart from the queue and the mutex, we declared generally four variables that were
involved in the producer-consumer thing:

queue<size_t> q;
mutex mut;
condition_variable cv;
bool finished {false};

The variable finished is easy to explain. It was set to true when the producer finished
producing its fixed amount of items. When the consumer sees that this variable is true, it
consumes the last items in the queue and stops consuming. But what is the
condition_variable cv for? We used cv in two different contexts. One of the contexts
was waiting for a specific condition, and the other was signaling that condition.

Parallelism and Concurrency Chapter 26

[923]

The consumer side that waits for a specific condition looks like this. The consumer thread
loops over a block that first locks mutex mut in a unique_lock. Then it calls cv.wait:

while (!finished) {
 unique_lock<mutex> l {mut};

 cv.wait(l, [] { return !q.empty() || finished; });

 while (!q.empty()) {
 // consume
 }
}

This code is somewhat equivalent to the following alternative code. We will elaborate soon
why it is not really the same:

while (!finished) {
 unique_lock<mutex> l {mut};

 while (q.empty() && !finished) {
 l.unlock();
 l.lock();
 }

 while (!q.empty()) {
 // consume
 }
}

This means that we generally first acquire the lock and then check what scenario we have:

Are there items to consume? Then keep the lock, consume, release the lock, and1.
start over.
Else, if there are no consumable items but the producer is still alive, release the2.
mutex to give the producer a chance of adding items to the queue. Then, try to
lock it again in hope that the situation changes and we get to see situation 1.

The real reason why the cv.wait line is not equivalent to the while (q.empty() && ...
) construct is, that we cannot simply loop over a l.unlock(); l.lock(); cycle. If the
producer thread is inactive for some time, then this would lead to continuous locking and
unlocking of the mutex, which makes no sense because it needlessly burns CPU cycles.

Parallelism and Concurrency Chapter 26

[924]

An expression like cv.wait(lock, predicate) will wait until predicate() returns
true. But it does not do this by continuously unlocking and locking lock. In order to wake
a thread up that blocks on the wait call of a condition_variable object, another thread
has to call the notify_one() or notify_all() method on the same object. Only then the
waiting thread(s) is/are kicked out of their sleep in order to check if predicate() holds.

The nice thing about the wait call checking the predicate is that if there is a spurious
wakeup call, the thread will go to sleep immediately again. This means that it does not
really harm the program flow (but maybe the performance) if we have too many notify
calls.

On the producer side, we just called cv.notify_all() after the producer inserted an item
to the queue and after it produced its last item and set the finished flag to true. This was
enough to direct the consumer.

Implementing the multiple
producers/consumers idiom with
std::condition_variable
Let's pick up the producer/consumer problem from the last recipe and make it a bit more
complicated: We make multiple producers produce items and multiple consumers consume
them. In addition to that, we define that the queue shall not exceed a maximum size.

This way not only the consumers have to sleep from time to time if there are no items in the
queue, but also the producers have to sleep from time to time when there are enough items
in the queue.

We are going to see how to solve this problem with multiple std::condition_variable
objects and will also use them in slightly different ways than in the last recipe.

Parallelism and Concurrency Chapter 26

[925]

How to do it...
In this section, we are going to implement a program just like in the recipe before, but this
time with multiple producers and multiple consumers:

First, we need to include all needed headers and we declare that we use1.
namespace std and chrono_literals:

 #include <iostream>
 #include <iomanip>
 #include <sstream>
 #include <vector>
 #include <queue>
 #include <thread>
 #include <mutex>
 #include <condition_variable>
 #include <chrono>

 using namespace std;
 using namespace chrono_literals;

Then we implement the synchronized printing helper from the other recipe in2.
this chapter because we are going to do a lot of concurrent printing:

 struct pcout : public stringstream {
 static inline mutex cout_mutex;
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 }
 };

All producers write values into the same queue and all consumers will also take3.
values out of this queue. In addition to that queue, we need a mutex that protects
both the queue and a flag that can tell if the production was stopped at some
point:

 queue<size_t> q;
 mutex q_mutex;
 bool production_stopped {false};

Parallelism and Concurrency Chapter 26

[926]

We are going to employ two different condition_variables in this program.4.
In the single producer/consumer recipe, we had a condition_variable telling
that there are new items in the queue. In this case, we make it a bit more
complicated. We want the producers to produce until the queue contains a
certain stock amount of items. If that stock amount is reached, they shall sleep. This
way the go_consume variable can be used to wake up consumers which then, in
turn, can wake up the producers with the go_produce variable again:

 condition_variable go_produce;
 condition_variable go_consume;

The producer function accepts a producer ID number, a total number of items to5.
produce and a stock limit as arguments. It then enters its own production loop.
There, it first locks the queue's mutex and unlocks it again in the
go_produce.wait call. It waits for the condition that the queue size is below the
stock threshold:

 static void producer(size_t id, size_t items, size_t stock)
 {
 for (size_t i = 0; i < items; ++i) {
 unique_lock<mutex> lock(q_mutex);
 go_produce.wait(lock,
 [&] { return q.size() < stock; });

After the producer was woken up, it produces an item and pushes it into the6.
queue. The queue value is calculated from the expression id * 100 + i. This
way we can later see which producer produced it because the hundreds in the
number are the producer ID. We also print the production event to the terminal.
The format of the printing may look strange, but it will align nicely with the
consumer output in the terminal later:

 q.push(id * 100 + i);
 pcout{} << " Producer " << id << " --> item "
 << setw(3) << q.back() << 'n';

Parallelism and Concurrency Chapter 26

[927]

After production, we can wake up sleeping consumers. A sleeping period of 907.
milliseconds simulates that producing items takes some time:

 go_consume.notify_all();
 this_thread::sleep_for(90ms);
 }
 pcout{} << "EXIT: Producer " << id << 'n';
 }

Now to the consumer function that only accepts a consumer ID as an argument. It8.
shall continue waiting for items if the production has not stopped, or the queue is
not empty. If the queue is empty, but the production has not stopped, then it is
possible that there might be new items soon:

 static void consumer(size_t id)
 {
 while (!production_stopped || !q.empty()) {
 unique_lock<mutex> lock(q_mutex);

After locking the queue mutex, we unlock it again in order to wait on the9.
go_consume event variable. The lambda expression argument describes that we
want to return from the wait call when the queue contains items. The second
argument 1s tells that we do not want to wait forever. If it takes longer than 1
second, we want to drop out of the wait function. We can distinguish if the
wait_for function returned because the predicate condition holds, or if we
dropped out of it because of a timeout because it will return false in case of the
timeout. If there are new items in the queue, we consume them and print this
event to the terminal:

 if (go_consume.wait_for(lock, 1s,
 [] { return !q.empty(); })) {
 pcout{} << " item "
 << setw(3) << q.front()
 << " --> Consumer "
 << id << 'n';
 q.pop();

Parallelism and Concurrency Chapter 26

[928]

After item consumption, we notify the producers and sleep for 130 milliseconds10.
to simulate that consuming items is also time-consuming:

 go_produce.notify_all();
 this_thread::sleep_for(130ms);
 }
 }
 pcout{} << "EXIT: Producer " << id << 'n';
 }

In the main function, we instantiate a vector for worker threads and another for11.
consumer threads:

 int main()
 {
 vector<thread> workers;
 vector<thread> consumers;

Then we spawn three producer threads and five consumer threads:12.

 for (size_t i = 0; i < 3; ++i) {
 workers.emplace_back(producer, i, 15, 5);
 }
 for (size_t i = 0; i < 5; ++i) {
 consumers.emplace_back(consumer, i);
 }

We first let the producer threads finish. As soon as all of them have returned, we13.
set the production_stopped flag, which will lead the consumers to finish, too.
We need to collect those and then we can quit the program:

 for (auto &t : workers) { t.join(); }
 production_stopped = true;
 for (auto &t : consumers) { t.join(); }
 }

Parallelism and Concurrency Chapter 26

[929]

Compiling and running the program leads to the following output. The output is14.
very long, which is why it is truncated here. We can see that the producers go to
sleep from time to time, and let the consumers eat up some items until they
finally produce again. It is interesting to alter the wait times for
producers/consumers, as well as manipulating the number of
producers/consumers and stock items because this completely changes the
output patterns:

 $./multi_producer_consumer
 Producer 0 --> item 0
 Producer 1 --> item 100
 item 0 --> Consumer 0
 Producer 2 --> item 200
 item 100 --> Consumer 1
 item 200 --> Consumer 2
 Producer 0 --> item 1
 Producer 1 --> item 101
 item 1 --> Consumer 0
 ...
 Producer 0 --> item 14
 EXIT: Producer 0
 Producer 1 --> item 114
 EXIT: Producer 1
 item 14 --> Consumer 0
 Producer 2 --> item 214
 EXIT: Producer 2
 item 114 --> Consumer 1
 item 214 --> Consumer 2
 EXIT: Consumer 2
 EXIT: Consumer 3
 EXIT: Consumer 4
 EXIT: Consumer 0
 EXIT: Consumer 1

How it works...
This recipe is an extension of the preceding recipe. Instead of synchronizing only one
producer with one consumer, we implemented a program that synchronizes M producers
with N consumers. On top of that, not only the consumers go to sleep if there are no items
for them left, but also the producers go to sleep as soon as the item queue becomes too long.

Parallelism and Concurrency Chapter 26

[930]

When multiple consumers wait for the same queue to fill up, then this would generally also
work with the consumer code from the one producer/one consumer scenario. As long as
only one thread locks the mutex that protects the queue and then takes items out of it, the
code is safe. It does not matter how many threads are waiting for the lock at the same time.
The same applies to the producers, as in both scenarios the only important thing is that the
queue is never accessed by more than one thread at a time.

So what makes this program really more complex than just running the one producer/one
consumer example with more threads is the fact that we make the producer threads stop as
soon as the item queue length reached a certain threshold. In order to meet that
requirement, we implemented two different signals with their own condition_variable:

The go_produce signals the event that the queue is not completely filled to the1.
maximum and the producers may fill it up again.
The go_consume signals the event that the queue reached its maximum length2.
and consumers are free to consume items again.

This way producers fill items into the queue and signal the go_consume event to the
consuming threads, which wait on the following line:

if (go_consume.wait_for(lock, 1s, [] { return !q.empty(); })) {
 // got the event without timeout
}

The producers, on the other hand, wait on the following line until they are allowed to
produce again:

go_produce.wait(lock, [&] { return q.size() < stock; });

One interesting detail is that we do not let consumers wait forever. In the
go_consume.wait_for call, we additionally added a timeout argument of 1 second. This
is the exit mechanism for consumers: if the queue is empty for longer than a second, maybe
there are no active producers any longer.

For the sake of simplicity, the code tries to keep the queue length always at the maximum. A
more sophisticated program could let the consumer threads push a wake-up notification,
only if the queue has only half the size of its maximum length. This way producers would be
woken up before the queue runs empty again, but not unnecessarily earlier when there are
still enough items in the queue.

Parallelism and Concurrency Chapter 26

[931]

One situation that condition_variable solves elegantly for us is the following: If a
consumer fires the go_produce notification, there might be a horde of producers racing to
produce the next item. If only one item is missing, then there will only be one producer
producing it. If all producers would always produce an item as soon as the go_produce
event is fired, we would often see the case that the queue is filled above its allowed
maximum.

Let's imagine the situation that we have (max - 1) items in the queue and want one new
item produced so that the queue is filled up again. No matter if a consumer thread calls
go_produce.notify_one() (which would wake up only one waiting thread) or
go_produce.notify_all() (which wakes up all waiting threads), we have the guarantee
that only one producer thread will exit the go_produce.wait call, because, for all other
producer threads, the q.size() < stock wait condition doesn't hold any longer as soon
as they get the mutex after being woken up.

Parallelizing the ASCII Mandelbrot renderer
using std::async
Remember the ASCII Mandelbrot renderer from Chapter 23, Advanced Use of STL algorithms?
In this recipe, we will make it use threads in order to speed its calculation time a bit up.

First, we will modify the line in the original program that limits the number of iterations for
every selected coordinate. This will make the program slower and its results more accurate
than we can actually display on the terminal, but then we have a nice example target for
parallelization.

Then, we will apply minor modifications to the program and see how the whole program
runs faster. After those modifications, the program runs with std::async and
std::future. In order to fully understand this recipe, it is crucial to understand the
original program.

Parallelism and Concurrency Chapter 26

[932]

How to do it...
In this section, we take the ASCII Mandelbrot fractal renderer that we implemented in
Chapter 23, Advanced Use of STL Algorithms. First, we are going to make the calculation take
much more time by incrementing the calculation limit. Then we get some speedup by doing
only four little changes to the program in order to parallelize it:

In order to follow the steps, it is best to just copy the whole program from the1.
other recipe. Then follow the instructions in the following steps in order to do all
needed adjustments. All differences from the original program are highlighted in
bold.
The first change is an additional header, <future>:

 #include <iostream>
 #include <algorithm>
 #include <iterator>
 #include <complex>
 #include <numeric>
 #include <vector>
 #include <future>

 using namespace std;

The scaler and scaled_cmplx functions don't need any change:2.

 using cmplx = complex<double>;
 static auto scaler(int min_from, int max_from,
 double min_to, double max_to)
 {
 const int w_from {max_from - min_from};
 const double w_to {max_to - min_to};
 const int mid_from {(max_from - min_from) / 2 + min_from};
 const double mid_to {(max_to - min_to) / 2.0 + min_to};
 return [=] (int from) {
 return double(from - mid_from) / w_from * w_to + mid_to;
 };
 }
 template <typename A, typename B>

Parallelism and Concurrency Chapter 26

[933]

 static auto scaled_cmplx(A scaler_x, B scaler_y)
 {
 return [=](int x, int y) {
 return cmplx{scaler_x(x), scaler_y(y)};
 };
 }

In the function mandelbrot_iterations, we are just going to increment the3.
number of iterations in order to make the program a bit more computation-
heavy:

 static auto mandelbrot_iterations(cmplx c)
 {
 cmplx z {};
 size_t iterations {0};
 const size_t max_iterations {100000};
 while (abs(z) < 2 && iterations < max_iterations) {
 ++iterations;
 z = pow(z, 2) + c;
 }
 return iterations;
 }

Then we have a part of the main function that does not need any change again:4.

 int main()
 {
 const size_t w {100};
 const size_t h {40};
 auto scale (scaled_cmplx(
 scaler(0, w, -2.0, 1.0),
 scaler(0, h, -1.0, 1.0)
));
 auto i_to_xy ([=](int x) {
 return scale(x % w, x / w);
 });

In the to_iteration_count function, we do not call5.
mandelbrot_iterations(x_to_xy(x)) directly any longer, but make the call
asynchronous using std::async:

 auto to_iteration_count ([=](int x) {
 return async(launch::async,
 mandelbrot_iterations, i_to_xy(x));
 });

Parallelism and Concurrency Chapter 26

[934]

Before the last change, the function to_iteration_count returned us the6.
number of iterations a specific coordinate needs for the Mandelbrot algorithm to
converge. Now it returns a future variable that will contain the same value later
because it is computed asynchronously. Because of this, we need a vector that
holds all the future values, so let's just add one. The output iterator we provide
transform as the third argument must be the begin iterator of the new output
vector r:

 vector<int> v (w * h);
 vector<future<size_t>> r (w * h);
 iota(begin(v), end(v), 0);
 transform(begin(v), end(v), begin(r),
 to_iteration_count);

The accumulate call which did all the printing for us doesn't get size_t values7.
as its second argument any longer, but future<size_t> values. We need to
adapt it to this type (if we had used auto& as its type from the beginning then
this would not even be necessary), and then we need to call x.get() where we
just accessed x before, in order to wait for the value to arrive:

 auto binfunc ([w, n{0}] (auto output_it, future<size_t> &x)
 mutable {
 ++output_it = (x.get() > 50 ? '' : ' ');
 if (++n % w == 0) { ++output_it = 'n'; }
 return output_it;
 });
 accumulate(begin(r), end(r),
 ostream_iterator<char>{cout}, binfunc);
 }

Compiling and running gives us the same output as before. The only interesting8.
difference is the execution speed. If we increase the number of iterations for the
original version of the program, too, then the parallelized version should
compute faster. On my computer with four CPU cores with hyperthreading
(which results in 8 virtual cores), I get different results with GCC and clang. The
best speedup is 5.3, and the worst is 3.8. The results will also vary across
machines, of course.

Parallelism and Concurrency Chapter 26

[935]

How it works...
It is crucial to understand the whole program first because then it is clear that all the CPU-
intense work happens in one line of code in the main function:

transform(begin(v), end(v), begin(r), to_iteration_count);

The vector v contains all the indices that are mapped to complex coordinates, which are
then in turn iterated over with the Mandelbrot algorithm. The result of each iteration is
saved in vector r.

In the original program, this is the single line which consumes all the processing time for
calculating the fractal image. All code that precedes it is just set up work and all code that
follows it is just for printing. This means that parallelizing this line is key to more
performance.

One possible approach to parallelizing this is to break up the whole linear range from
begin(v) to end(v) into chunks of the same size and distribute them evenly across all
cores. This way all cores would share the amount of work. If we used the parallel version of
std::transform with a parallel execution policy, this would exactly be the case.
Unfortunately, this is not the right strategy for this problem, because every single point in
the Mandelbrot set shows a very individual number of iterations.

Our approach here is to make every single vector item which represents an individually
printed character cell on the terminal later an asynchronously calculated future value. As
source and target vector are w * h items large, which means 100 * 40 in our case, we
have a vector of 4000 future values that are calculated asynchronously. If our system had
4000 CPU cores, then this would mean that we start 4000 threads that do the Mandelbrot
iteration really concurrently. On a normal system with fewer cores, the CPUs will just
process one asynchronous item after the other per core.

While the transform call with the asynchronized version of to_iteration_count itself
does no calculation but setting up of threads and future objects, it returns practically
immediately. The original version of the program blocked at this point because the
iterations took so long.

The parallelized version of the program does of course block somewhere, too. The function
that prints all our values on the terminal must access the results from within the futures. In
order to do that, it calls x.get() on all the values. And this is the trick: while it waits for
the first value to be printed, a lot of other values are calculated at the same time. So if the
get() call of the first future returns, the next future might be ready for printing already
too!

Parallelism and Concurrency Chapter 26

[936]

In case w * h results in much larger numbers, there will be some measurable overhead in
creating and synchronizing all these futures. In this case, the overhead is not too significant.
On my laptop with an Intel i7 processor with 4 hyperthreading capable cores (which results
in eight virtual cores), the parallel version of this program ran more than 3-5 times faster
compared to the original program. The ideal parallelization would make it indeed 8 times
faster. Of course, this speedup will vary between different computers, because it depends
on a lot of factors.

Implementing a tiny automatic parallelization
library with std::future
Most complex tasks can be broken down into subtasks. From all subtasks, we can draw an
directed acyclic graph (DAG) that describes which subtask depends on what other
subtasks in order to finish the higher level task. Let us, for example, imagine that we want
to produce the string "foo bar foo bar this that ", and we can only do this by
creating single words and concatenate those with other words, or with themselves. Let's say
this functionality is provided by three primitive functions create, concat, and twice.

Taking this into account, we can draw the following DAG that visualizes the dependencies
between them in order to get the final result:

Parallelism and Concurrency Chapter 26

[937]

When implementing this in code, it is clear that everything can be implemented in a serial
manner on one CPU core. Alternatively, all subtasks that depend on no other subtasks or
other subtasks that already have been finished, can be executed concurrently on multiple
CPU cores.

It might perhaps seem tedious to write such code, even with std::async because the
dependencies between the subtasks need to be modeled. In this recipe, we will implement
two little library helper functions that help to transform the normal functions create,
concat, and twice to functions that work asynchronously. With those, we will find a really
elegant way to set up the dependency graph. During execution, the graph will parallelize
itself in a seemingly intelligent way in order to calculate the result as fast as possible.

How to do it...
In this section, we are going to implement some functions that simulate computation-
intensive tasks that depend on each other, and let them run as parallel as possible:

Let's first include all the necessary headers:1.

 #include <iostream>
 #include <iomanip>
 #include <thread>
 #include <string>
 #include <sstream>
 #include <future>

 using namespace std;
 using namespace chrono_literals;

We need to synchronize concurrent access to cout, so let's use the2.
synchronization helper from the other recipe in this chapter:

 struct pcout : public stringstream {
 static inline mutex cout_mutex;
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 cout.flush();
 }
 };

Parallelism and Concurrency Chapter 26

[938]

Now let's implement three functions which transform strings. The first function3.
shall create an std::string object from a C-string. We let it sleep for 3 seconds
to simulate that string creation is computation-heavy:

 static string create(const char *s)
 {
 pcout{} << "3s CREATE " << quoted(s) << 'n';
 this_thread::sleep_for(3s);
 return {s};
 }

The next function accepts two string objects as arguments and returns their4.
concatenation. We give it 5-second wait time to simulate that this is a time-
consuming task:

 static string concat(const string &a, const string &b)
 {
 pcout{} << "5s CONCAT "
 << quoted(a) << " "
 << quoted(b) << 'n';
 this_thread::sleep_for(5s);
 return a + b;
 }

The last computation-heavy function accepts a string and concatenates it with5.
itself. It shall take 3 seconds to do this:

 static string twice(const string &s)
 {
 pcout{} << "3s TWICE " << quoted(s) << 'n';
 this_thread::sleep_for(3s);
 return s + s;
 }

We could now already use those functions in a serial program, but we want to get6.
some elegant automatic parallelization. So let's implement some helpers for this.
Attention please, the following three functions look really complicated.
asynchronize accepts a function f and returns a callable object that captures it.
We can call this callable object with any number of arguments, and then it will
capture those together with f in another callable object which it returns to us.
This last callable object can be called without arguments. It does then call f
asynchronously with all the arguments it captures:

 template <typename F>
 static auto asynchronize(F f)
 {

Parallelism and Concurrency Chapter 26

[939]

 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async, f, xs...);
 };
 };
 }

The next function will be used by the function we declare in the next step7.
afterward. It accepts a function f, and captures it in a callable object that it
returns. That object can be called with a number of future objects. It will then call
.get() on all the futures, apply f to them and return its result:

 template <typename F>
 static auto fut_unwrap(F f)
 {
 return [f](auto ... xs) {
 return f(xs.get()...);
 };
 }

The last helper function does also accept a function f. It returns a callable object8.
that captures f. That callable object can be called with any number of callable
objects as arguments, which it returns captured together with f in another
callable object. That final callable object can then be called without arguments. It
does then call all the callable objects that are captured in the xs... pack. These
return futures which need to be unwrapped with fut_unwrap. The future-
unwrapping and actual application of the real function f on the real values from
the futures does again happen asynchronously using std::async:

 template <typename F>
 static auto async_adapter(F f)
 {
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async,
 fut_unwrap(f), xs()...);
 };
 };
 }

Parallelism and Concurrency Chapter 26

[940]

Ok, that was maybe kind of a crazy ride that was slightly reminiscent of the9.
movie "Inception" because of the lambda expressions that return lambda
expressions. We will have a very detailed look at this voodoo-code later. Now
let's take the functions create, concat, and twice and make them
asynchronous. The function async_adapter makes a completely normal
function wait for future arguments and return a future result. It is kind of a
translating wrapper from the synchronous to the asynchronous world. We apply
it to concat and twice. We must use asynchronize on create because it shall
return a future, but we will feed it with real values instead of futures. The task
dependency chain must begin with create calls:

 int main()
 {
 auto pcreate (asynchronize(create));
 auto pconcat (async_adapter(concat));
 auto ptwice (async_adapter(twice));

Now we have automatically parallelizing functions that have the same names as10.
the original synchronous ones, but with a p-prefix. Let us now set up a complex
example dependency tree. First, we create the strings "foo " and "bar ", which
we immediately concatenate to "foo bar ". This string is then concatenated
with itself using twice. Then we create the strings "this " and "that ", which
we concatenate to "this that ". Finally, we concatenate the results to "foo
bar foo bar this that ". The result shall be saved in the variable callable.
Then finally call callable().get() in order to start the computation and wait
for its return value, in order to also print that. No computation is done before we
call callable(), and after this call, all the magic starts:

 auto result (
 pconcat(
 ptwice(
 pconcat(
 pcreate("foo "),
 pcreate("bar "))),
 pconcat(
 pcreate("this "),
 pcreate("that "))));
 cout << "Setup done. Nothing executed yet.n";
 cout << result().get() << 'n';
 }

Parallelism and Concurrency Chapter 26

[941]

Compiling and running the program shows that all the create calls are11.
performed at the same time, and then the other calls are performed. It looks as if
they were scheduled intelligently. The whole program runs for 16 seconds. If the
steps were not performed in parallel, it would take 30 seconds to complete. Note
that we need a system with at least four CPU cores to be able to perform all
create calls at the same time. If the system had fewer CPU cores, then some calls
would have to share CPUs which would of course then consume more time:

 $./chains
 Setup done. Nothing executed yet.
 3s CREATE "foo "
 3s CREATE "bar "
 3s CREATE "this "
 3s CREATE "that "
 5s CONCAT "this " "that "
 5s CONCAT "foo " "bar "
 3s TWICE "foo bar "
 5s CONCAT "foo bar foo bar " "this that "
 foo bar foo bar this that

How it works...
A plain serial version of this program without any async and future magic would look
like the following:

int main()
{
 string result {
 concat(
 twice(
 concat(
 create("foo "),
 create("bar "))),
 concat(
 create("this "),
 create("that "))) };

 cout << result << 'n';
}

In this recipe, we wrote the helper functions async_adapter and asynchronize that
helped us create new functions from create, concat, and twice. We called those new
asynchronous functions pcreate, pconcat, and ptwice.

Parallelism and Concurrency Chapter 26

[942]

Let us first ignore the complexity of the implementation of async_adapter and
asynchronize, in order to first have a look what this got us.

The serial version looks similar to this code:

string result {concat(...)};
cout << result << 'n';

The parallelized version looks similar to the following:

auto result (pconcat(...));
cout << result().get() << 'n';

Okay, now we get at the complicated part. The type of the parallelized result is not string,
but a callable object that returns a future<string> on which we can call get(). This
might indeed look crazy at first.

So, how and why did we exactly end up with callable objects that return futures? The
problem with our create, concat, and twice methods is, that they are slow. (okay, we
made them artificially slow, because we tried to model real life tasks that consume a lot of
CPU time). But we identified that the dependency tree which describes the data flow has
independent parts that could be executed in parallel. Let's have a look at two example
schedules:

Parallelism and Concurrency Chapter 26

[943]

On the left side, we see a single core schedule. All the function calls have to be done one after
each other because we have only a single CPU. That means, that when create costs 3
seconds, concat costs 5 seconds and twice costs 3 seconds, it will take 30 seconds to get
the end result.

On the right side, we see a parallel schedule where as much is done in parallel as the
dependencies between the function calls allow. In an ideal world with four cores, we can
create all substrings at the same time, then concatenate them and so on. The minimal time to
get the result with an optimal parallel schedule is 16 seconds. We cannot go faster if we
cannot make the function calls themselves faster. With just four CPU cores we can achieve
this execution time. We measurably achieved the optimal schedule. How did it work?

We could naively write the following code:

auto a (async(launch::async, create, "foo "));
auto b (async(launch::async, create, "bar "));
auto c (async(launch::async, create, "this "));
auto d (async(launch::async, create, "that "));
auto e (async(launch::async, concat, a.get(), b.get()));
auto f (async(launch::async, concat, c.get(), d.get()));
auto g (async(launch::async, twice, e.get()));
auto h (async(launch::async, concat, g.get(), f.get()));

This is a good start for a, b, c, and d, which represent the four substrings to begin with.
These are created asynchronously in the background. Unfortunately, this code blocks on the
line where we initialize e. In order to concatenate a and b, we need to call get() on both of
them, which blocks until these values are ready. Obviously, this is not a good idea, because
the parallelization stops being parallel on the first get() call. We need a better strategy.

Okay, so let us roll out the complicated helper functions we wrote. The first one is
asynchronize:

template <typename F>
static auto asynchronize(F f)
{
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async, f, xs...);
 };
 };
}

Parallelism and Concurrency Chapter 26

[944]

When we have a function int f(int, int) then we can do the following:

auto f2 (asynchronize(f));
auto f3 (f2(1, 2));
auto f4 (f3());
int result { f4.get() };

f2 is our asynchronous version of f. It can be called with the same arguments like f,
because it mimics f. Then it returns a callable object, which we save in f3. f3 now captures
f and the arguments 1, 2, but it did not call anything yet. This is just about the capturing.

When we call f3() now, then we finally get a future, because f3() does the
async(launch::async, f, 1, 2); call! In that sense, the semantic meaning of f3 is
"Take the captured function and the arguments, and throw them together into std::async.".

The inner lambda expression that does not accept any arguments gives us an indirection.
With it, we can set up work for parallel dispatch but do not have to call anything that
blocks, yet. We follow the same principle in the much more complicated function
async_adapter:

template <typename F>
static auto async_adapter(F f)
{
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async, fut_unwrap(f), xs()...);
 };
 };
}

This function does also first return a function that mimics f because it accepts the same
arguments. Then that function returns a callable object that again accepts no arguments.
And then that callable object finally differs from the other helper function.

Parallelism and Concurrency Chapter 26

[945]

What does the async(launch::async, fut_unwrap(f), xs()...); line mean? The
xs()... part means, that all arguments that are saved in pack xs are assumed to be
callable objects (like the ones we are creating all the time!), and so they are all called without
arguments. Those callable objects that we are producing all the time themselves produce
future values, on which we can call get(). This is where fut_unwrap comes into play:

template <typename F>
static auto fut_unwrap(F f)
{
 return [f](auto ... xs) {
 return f(xs.get()...);
 };
}

fut_unwrap just transforms a function f into a function object that accepts a range of
arguments. This function object does then call .get() on all of them and then finally
forwards them to f.

Take your time to digest all of this. When we used this in our main function, then the auto
result (pconcat(...)); call chain did just construct a large callable object that contains
all functions and all arguments. No async call was done at this point yet. Then, when we
called result(), we unleashed a little avalanche of async and .get() calls that come just in
the right order to not block each other. In fact, no get() call happens before not all async
calls have been dispatched.

In the end, we can finally call .get() on the future value that result() returned, and
there we have our final string.

27
Filesystem

In this chapter, we will cover the following recipes:

Implementing a path normalizer
Getting canonical file paths from relative paths
Listing all files in directories
Implementing a grep-like text search tool
Implementing an automatic file renamer
Implementing a disk usage counter
Calculating statistics about file types
Implementing a tool that reduces folder size by substituting duplicates with
symlinks

Introduction
Working with filesystem paths is always tedious if we don't have a library that helps us
because there are many conditions that we need to handle.

Some paths are absolute, some are relative, and maybe they are not even straightforward
because they also contain . (current directory) and .. (parent directory) indirections. Then,
at the same time, different operating systems use the slash / to separate directories (Linux,
MacOS, and different UNIX derivatives), or the backslash (Windows). And of course there
are different types of files.

Filesystem Chapter 27

[947]

Since every other program that handles filesystem-related things needs such functionality,
it is great to have the new filesystem library in the C++17 STL. The best thing about it is that
it works the same way for different operating systems, so we don't have to write different
code for versions of our programs that support different operating systems.

In this chapter, we will first see how the path class works, because it is most central to
anything else in this library. Then, we will see how powerful but yet simple to use
directory_iterator and recursive_directory_iterator classes are, while we do
useful things with files. In the end, we will use some small and simple example tools that do
some real-life tasks related to the filesystem. From this point, it will be easy to build more
complex tools.

Implementing a path normalizer
We start this chapter with a very simple example around the std::filesystem::path
class and a helper function that intelligently normalizes filesystem paths.

The result of this recipe is a little application that takes any filesystem path and returns us
the same path in normalized form. Normalized means that we get an absolute path that
contains no . or .. path indirections.

While implementing that, we will also see what details we need to pay attention to when
working with this basic part of the filesystem library.

How to do it...
In this section, we will implement a program that just accepts a filesystem path as a
command-line argument and then prints it in normalized form.

Includes come first, and then we declare that we use namespace std and1.
filesystem.

 #include <iostream>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Filesystem Chapter 27

[948]

In the main function, we check whether the user provided a command-line2.
argument. If that is not the case, we error out and print how to use the program.
If a path was provided, we instantiate a filesystem::path object from it.

 int main(int argc, char *argv[])
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0] << " <path>n";
 return 1;
 }
 const path dir {argv[1]};

Since we can instantiate path objects from any string, we cannot be sure if the3.
path really exists on the filesystem of the computer. In order to do that, we can
use the filesystem::exists function. If it doesn't, we simply error out again.

 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.n";
 return 1;
 }

Okay, at this point, we are pretty sure that the user provided some existing path4.
knowing that we can ask for a normalized version of it, which we then print.
filesystem::canonical returns us another path object. We could print it
directly, but the path type overload of the << operator surrounds paths with
quotation marks. In order to avoid that, we can print a path through its
.c_str() or .string() method.

 cout << canonical(dir).c_str() << 'n';
 }

Let's compile the program and play with it. When we execute it in my home5.
directory on the relative path "src", it will print the full absolute path.

 $./normalizer src
 /Users/tfc/src

Filesystem Chapter 27

[949]

When we run the program in my home directory again, but give it a quirky6.
relative path description that first enters my Desktop folder, then steps out of it
again using .., then enters the Documents folder and steps out again in order to
finally enter the src directory, the program prints the same path as before!

 $./normalizer Desktop/../Documents/../src
 /Users/tfc/src

How it works...
As a starter on std::filesystem, this recipe is still fairly short and straightforward. We
initialized a path object from a string that contains a filesystem path description. The
std::filesystem::path class plays a very central role whenever we use the filesystem
library because most of the functions and classes relate to it.

Using the filesystem::exists function, we were able to check if the path really exists.
Up to that point, we could not be sure about that, because it is indeed possible to create
path objects that do not relate to an existing filesystem object. exists just accepts a path
instance and returns true if it really exists. The function is already able to determine itself if
we gave it an absolute or a relative path, which makes it very comfortable to use.

Finally, we used filesystem::canonical on the directory in order to print it in
normalized form.

path canonical(const path& p, const path& base = current_path());

canonical accepts a path and as an optional second argument, it accepts another path. The
second path base is prepended to path p if p is a relative path. After doing that, canonical
tries to remove any . and .. path indirections.

While printing, we used the .c_str() method on the canonicalized path. The reason for
this is that the overload of operator<< for output streams surrounds paths with quotation
marks, which we may not always want.

There's more...
canonical throws a filesystem_error type exception if the path we want to
canonicalize does not exist. In order to prevent that, we checked our filesystem path with
exists. But was that check really sufficient to avoid getting unhandled exceptions? No.

Filesystem Chapter 27

[950]

Both exists and canonical can throw bad_alloc exceptions. If those hit us, one could
argue that the program is doomed anyway. A far more critical, and also much more
probable problem would occur if, between us checking if the file exists and canonicalizing
it, someone else renames or deletes the underlying file! In that case, canonical would
throw a filesystem_error, although we checked for the file's existence before.

Most filesystem functions have an additional overload that takes the same arguments, but
also an std::error_code reference.

path canonical(const path& p, const path& base = current_path());
path canonical(const path& p, error_code& ec);
path canonical(const std::filesystem::path& p,
 const std::filesystem::path& base,
 std::error_code& ec);

This way we can choose if we surround our filesystem function calls with try-catch
constructs or check the errors manually. Note that this only changes the behavior of
filesystem-related errors! With and without the ec parameter, more fundamental exceptions,
for example, bad_alloc, can still be thrown if the system runs out of memory.

Getting canonical file paths from relative
paths
In the last recipe, we already canonicalized/normalized paths. The filesystem::path
class is, of course, capable of more things than just holding and checking paths. It also helps
us in composing paths from strings easily, and also to decompose them again.

At this point, path does already abstract operating system details away from us, but there
are also certain instances where we still need to keep such details in mind.

We will see how to deal with paths and their composition/decomposition by playing
around with absolute and relative paths.

Filesystem Chapter 27

[951]

How to do it...
In this section, we will play around with absolute and relative paths in order to see the
strengths of the path class and the helper functions around it.

First, we include all the necessary headers and declare that we use namespace1.
std and sfilesystem.

 #include <iostream>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Then, we declare an example path. At this point, it is not important that the text2.
file it refers to really exists. There are some functions, however, that throw
exceptions if the underlying file does not exist.

 int main()
 {
 path p {"testdir/foobar.txt"};

We will have a look at four different filesystem library functions now.3.
current_path returns us the path the program is currently executed in, the
working directory. absolute accepts a relative path like our path p and returns the
absolute, nonambiguous path in the whole filesystem. system_complete does
practically the same as absolute on Linux, MacOS, or UNIX-like operating
systems. On Windows, we would get the absolute path additionally prepended
by the disk volume letter (for example, "C:"). canonical does again the same as
absolute does, but then additionally removes any "." (short for "this directory")
or ".." (short for "one directory up") indirections. We will play with such
indirections in the following steps:

 cout << "current_path : " << current_path()
 << "nabsolute_path : " << absolute(p)
 << "nsystem_complete : " << system_complete(p)
 << "ncanonical(p) : " << canonical(p)
 << 'n';

Another nice thing about the path class is that it overloads the / operator. This4.
way we can concatenate folder names and filenames using / and compose paths
from that. Let's try it out and print a composed path.

 cout << path{"testdir"} / "foobar.txt" << 'n';

Filesystem Chapter 27

[952]

Let's play with canonical and composed paths. By giving canonical a relative5.
path such as "foobar.txt" and a composed absolute path current_path() /
"testdir", it should return us the existing absolute path. In another call, we
give it our path p (which is "testdir/foobar.txt") and provide it an absolute
path that is current_path(), which directs us into "testdir" and up again.
This should be the same as current_path(), because of the indirection. In both
calls, canonical should return us the same absolute path.

 cout << "canonical testdir : "
 << canonical("foobar.txt",
 current_path() / "testdir")
 << "ncanonical testdir 2 : "
 << canonical(p, current_path() / "testdir/..")
 << 'n';

We can also test for the equivalence of two paths that are not canonical.6.
equivalence canonicalizes the paths, which it accepts as arguments and returns
true if they describe the same path after all. For this test, the path must really
exist, otherwise, it throws an exception.

 cout << "equivalence: "
 << equivalent("testdir/foobar.txt",
 "testdir/../testdir/foobar.txt")
 << 'n';
 }

Compiling and running the program yields the following output.7.
current_path() returns the home folder on my laptop because I executed the
application from there. Our relative path p has been prepended with this
directory by absolute_path, system_complete, and canonical. We see that
absolute_path and system_complete yield exactly the same path on my
system because it is a Mac (it would be the same on Linux). On a Windows
machine, system_complete would have prepended "C:", or whatever drive the
working directory is located in.

 $./canonical_filepath
 current_path : "/Users/tfc"
 absolute_path : "/Users/tfc/testdir/foobar.txt"
 system_complete : "/Users/tfc/testdir/foobar.txt"
 canonical(p) : "/Users/tfc/testdir/foobar.txt"
 "testdir/foobar.txt"
 canonical testdir : "/Users/tfc/testdir/foobar.txt"
 canonical testdir 2 : "/Users/tfc/testdir/foobar.txt"
 equivalence: 1

Filesystem Chapter 27

[953]

We do not handle any exceptions in our short program. If we remove the8.
foobar.txt file in the testdir directory, then the program aborts its execution
due to an exception. The canonical function requires the path to exist. There is
also a weakly_canonical function that does not come with this requirement.

 $./canonial_filepath
 current_path : "/Users/tfc"
 absolute_path : "/Users/tfc/testdir/foobar.txt"
 system_complete : "/Users/tfc/testdir/foobar.txt"
 terminate called after throwing an instance of
 'std::filesystem::v1::__cxx11::filesystem_error'
 what(): filesystem error: cannot canonicalize:
 No such file or directory [testdir/foobar.txt] [/Users/tfc]

How it works...
The goal of this recipe is to see how easy it is to compose new paths on the fly. This is
mainly because the path class has a handy overload for the / operator. In addition to that,
the filesystem functions get along well with relative and absolute paths, as well as with
paths that contain . and .. indirections.

There is quite a jungle of functions that return parts of a path instance, with or without
transformations. We are not going to list all functions there are here because a short glance
into the C++ reference is the best way to get an oversight.

The member functions of the path class, however, might be worth a closer look. Let's see
which part of a path is returned by what member function of path. The following diagram
also shows how Windows paths are slightly different from UNIX/Linux paths.

Filesystem Chapter 27

[954]

You can see that the diagram shows what the member functions of path return for an
absolute path. For relative paths, root_path, root_name, and root_directory are empty.
relative_path then just returns the path if it is relative already.

Listing all files in directories
Of course, every operating system that offers filesystem support also comes with some kind
of utility that does just list all files within a directory in the filesystem. The simplest
examples are the ls command on Linux, MacOS, and other UNIX-related operating
systems. In DOS and Windows, there is the dir command. Both list all files in a directory
and provide supplemental information such as file size, permissions, and so on.

Reimplementing such a tool is, however, also a nice standard task to get going with
directory and file traversal. So, let's just do that!

Our own ls/dir utility will be able to list all items in a directory by name, indicate what
kind of items there are, list their access permission flags, and display the number of bytes
they occupy on the filesystem.

How to do it...
In this section, we will implement a little tool that lists all files in any user provided
directory. It will not only list the filenames, but also their type, size, and access permissions.

First, we need to include some headers and declare that we use the namespaces1.
std and filesystem by default.

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <numeric>
 #include <algorithm>
 #include <vector>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Filesystem Chapter 27

[955]

One helper function that we are going to need is file_info. It accepts a2.
directory_entry object reference and extracts the path from it, as well as a
file_status object (using the status function), which contains file type and
permission information. Finally, it also extracts the size of the entry if it is a
regular file. For directories or other special files, we plainly return a size of 0. All
this information is bundled into a tuple.

 static tuple<path, file_status, size_t>
 file_info(const directory_entry &entry)
 {
 const auto fs (status(entry));
 return {entry.path(),
 fs,
 is_regular_file(fs) ? file_size(entry.path()) : 0u};
 }

Another helper function that we will need is type_char. A path cannot only3.
represent directories and simple text/binary files. Operating systems provide a
variety of other types that abstract something else, such as hardware device
interfaces in the form of so-called character/block files. The STL filesystem library
provides a lot of predicate functions for them. This way we can return the letter
'd' for directories, the letter 'f' for regular files, and so on.

 static char type_char(file_status fs)
 {
 if (is_directory(fs)) { return 'd'; }
 else if (is_symlink(fs)) { return 'l'; }
 else if (is_character_file(fs)) { return 'c'; }
 else if (is_block_file(fs)) { return 'b'; }
 else if (is_fifo(fs)) { return 'p'; }
 else if (is_socket(fs)) { return 's'; }
 else if (is_other(fs)) { return 'o'; }
 else if (is_regular_file(fs)) { return 'f'; }
 return '?';
 }

Filesystem Chapter 27

[956]

Yet another helper we will need is the rwx function. It accepts a perms variable4.
(which is just an enum class type from the filesystem library) and returns a string
such as "rwxrwxrwx" that describes the file's permission settings. The first group
of "rwx" characters describes the read, write, and execution permissions for the
owner of the file. The next group describes the same rights for all users that are
part of the user group the file belongs to. The last character group describes which
rights everyone else has for accessing the file. A string such as "rwxrwxrwx"
means that everyone can access the object in any way. "rw-r--r--" means that
only the owner can read and modify the file, while anyone else can only read it.
We just compose a string from such read/write/execute character values,
permission bit by permission bit. A lambda expression helps us with the
repetitive work of checking if the perms variable p contains a specific owner bit
and then returns '-' or the right character.

 static string rwx(perms p)
 {
 auto check ([p](perms bit, char c) {
 return (p & bit) == perms::none ? '-' : c;
 });
 return {check(perms::owner_read, 'r'),
 check(perms::owner_write, 'w'),
 check(perms::owner_exec, 'x'),
 check(perms::group_read, 'r'),
 check(perms::group_write, 'w'),
 check(perms::group_exec, 'x'),
 check(perms::others_read, 'r'),
 check(perms::others_write, 'w'),
 check(perms::others_exec, 'x')};
 }

Filesystem Chapter 27

[957]

Finally, the last helper function accepts an integral file size and converts it to a5.
better to read form. We just ignore the period while dividing numbers down and
floor them to the nearest kilo, mega, or giga boundary.

 static string size_string(size_t size)
 {
 stringstream ss;
 if (size >= 1000000000) {
 ss << (size / 1000000000) << 'G';
 } else if (size >= 1000000) {
 ss << (size / 1000000) << 'M';
 } else if (size >= 1000) {
 ss << (size / 1000) << 'K';
 } else { ss << size << 'B'; }
 return ss.str();
 }

Now we can finally implement the main function. We begin with checking if the6.
user provided a path in the command line. If he didn't, we just take the current
directory ".". Then, we check if the directory exists. If it doesn't, we can't possibly
list any files.

 int main(int argc, char *argv[])
 {
 path dir {argc > 1 ? argv[1] : "."};
 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.n";
 return 1;
 }

Now, we will fill a vector with file information tuples just like our first helper7.
function file_info returns from directory_entry objects. We instantiate a
directory_iterator and give its constructor the path object, which we
created in the last step. While iterating with the directory iterator, we transform
the directory_entry objects to file information tuples and insert them into the
vector.

 vector<tuple<path, file_status, size_t>> items;
 transform(directory_iterator{dir}, {},
 back_inserter(items), file_info);

Filesystem Chapter 27

[958]

Now we have all information saved in the vector items and can simply print it8.
using all the helper functions we wrote.

 for (const auto &[path, status, size] : items) {
 cout << type_char(status)
 << rwx(status.permissions()) << " "
 << setw(4) << right << size_string(size)
 << " " << path.filename().c_str()
 << 'n';
 }
 }

Compiling and running the project with a file path in the offline version of the9.
C++ documentation yields the following output. We see that the folder only
contains directories and plain files because there are only 'd' and 'f' entries as
first characters of all output lines. These files have different access permissions,
and of course different sizes. Note that the files appear in alphabetical order of
their names, but we cannot really rely on that because alphabetic ordering is not
required by the C++17 standard.

 $./list ~/Documents/cpp_reference/en/cpp
 drwxrwxr-x 0B algorithm
 frw-r--r-- 88K algorithm.html
 drwxrwxr-x 0B atomic
 frw-r--r-- 35K atomic.html
 drwxrwxr-x 0B chrono
 frw-r--r-- 34K chrono.html
 frw-r--r-- 21K comment.html
 frw-r--r-- 21K comments.html
 frw-r--r-- 220K compiler_support.html
 drwxrwxr-x 0B concept
 frw-r--r-- 67K concept.html
 drwxr-xr-x 0B container
 frw-r--r-- 285K container.html
 drwxrwxr-x 0B error
 frw-r--r-- 52K error.html

How it works...
In this recipe, we iterated over files, and for every file, we checked its status and size. While
all our per-file operations are fairly straightforward and simple, our actual directory
traversal looked a bit magic.

Filesystem Chapter 27

[959]

In order to traverse our directory, we just instantiated a directory_iterator and then
iterated over it. Traversing a directory is fantastically simple with the filesystem library.

for (const directory_entry &e : directory_iterator{dir}) {
 // do something
}

There is not much more to say about this class apart from the following things:

It visits every element of the directory once
The order in which the directory elements are iterated is unspecified
Directory elements . and .. are already filtered out

However, it might be noticeable that directory_iterator seems to be an iterator, and an
iterable range at the same time. Why? In the minimal for loop example we just had a look at,
it was used as an iterable range. In the actual recipe code, we used it like an iterator:

transform(directory_iterator{dir}, {},
 back_inserter(items), file_info);

The truth is, it is just an iterator class type, but the std::begin and std::end functions
provide overloads for this type. This way we can call the begin and end function on this
kind of iterator and they return us iterators again. That might look strange at first sight, but
it makes this class more useful.

Implementing a grep-like text search tool
Most operating systems come equipped with some kind of local search engine. Users can
fire it up with some keyboard shortcut and then just enter what local file they are looking
for.

Before such features came up, command-line users already searched through files with
tools such as grep or awk. The user can simply type "grep -r foobar ." and the tool will
crawl recursively through the current directory and find any file that contains the
"foobar" string.

In this recipe, we will implement exactly such an application. Our little grep clone will just
accept a pattern from the command line, and then recursively search through the directory
we are in at the time of the application start. It will then print the name of every file that
matches our pattern. The pattern matching will be applied linewise, so we can also print on
which exact line numbers a file is matching the pattern.

Filesystem Chapter 27

[960]

How to do it...
We will implement a little tool that searches for user-provided text patterns in files. The tool
works similar to the UNIX tool grep, but will not be as mature and powerful, for the sake of
simplicity.

First, we need to include all the necessary headers and declare that we use1.
namespace std and filesystem.

 #include <iostream>
 #include <fstream>
 #include <regex>
 #include <vector>
 #include <string>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

We implement a helper function first. It accepts a file path and a regular2.
expression object that describes the pattern we are looking for. Then, we
instantiate a vector that shall contain pairs of matching line numbers and their
content. And we instantiate an input file stream object from which we will read
and pattern-match the content, line by line.

 static vector<pair<size_t, string>>
 matches(const path &p, const regex &re)
 {
 vector<pair<size_t, string>> d;
 ifstream is {p.c_str()};

We traverse the file line by line using the getline function. regex_search3.
returns true if the string contains our pattern. If this is the case, then we put the
line number and the string into the vector. Finally, we return all collected
matches.

 string s;
 for (size_t line {1}; getline(is, s); ++line) {
 if (regex_search(begin(s), end(s), re)) {
 d.emplace_back(line, move(s));
 }
 }
 return d;
 }

Filesystem Chapter 27

[961]

In the main function, we first check whether the user provided a command-line4.
argument that we can use as the pattern. If not, we error out.

 int main(int argc, char *argv[])
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0] << " <pattern>n";
 return 1;
 }

Next, we construct a regular expression object from the input pattern. If the5.
pattern is not a valid regular expression, this would lead to an exception. If such
an exception occurs, we catch it and error out.

 regex pattern;
 try { pattern = regex{argv[1]}; }
 catch (const regex_error &e) {
 cout << "Invalid regular expression provided.n";
 return 1;
 }

Now, we can finally iterate over the filesystem and look for pattern matches. We6.
use recursive_directory_iterator to iterate over all the files in the working
directory. It works exactly like directory_iterator in the previous recipe, but
it also descends down into subdirectories. This way we don't have to manage
recursion. On every entry, we call our helper function matches.

 for (const auto &entry :
 recursive_directory_iterator{current_path()}) {
 auto ms (matches(entry.path(), pattern));

For every match (if any) we print the file path, its line number, and the matching7.
line's complete content.

 for (const auto &[number, content] : ms) {
 cout << entry.path().c_str() << ":" << number
 << " - " << content << 'n';
 }
 }
 }

Filesystem Chapter 27

[962]

Let's prepare a file called "foobar.txt", which contains some test lines we can8.
search for.

 foo
 bar
 baz

Compiling and running yields the following output. I launched the app in the9.
/Users/tfc/testdir folder on my laptop, first with the pattern "bar". Within
that directory, it found the second line of our foobar.txt file and another file
"text1.txt" that is located in testdir/dir1.

 $./grepper bar
 /Users/tfc/testdir/dir1/text1.txt:1 - foo bar bla blubb
 /Users/tfc/testdir/foobar.txt:2 - bar

Launching the app again, but this time with the pattern "baz", it finds the third10.
line of our example text file.

 $./grepper baz
 /Users/tfc/testdir/foobar.txt:3 - baz

How it works...
Setting up and using a regular expression in order to filter the content of files is certainly
the main task of this recipe. However, let's concentrate on
recursive_directory_iterator because filtering recursively iterated files was just our
motivation to use this special iterator class in this recipe.

Just like directory_iterator, recursive_directory_iterator iterates over elements
of a directory. Its specialty is to do this recursively, as its name tells. Whenever it hits a
filesystem element that is a directory, it will yield a directory_entry instance to this path,
but then also descend down into it in order to iterate its children, too.

recursive_directory_iterator has some interesting member functions:

depth(): This tells us how many levels the iterator has currently descended
down into subdirectories.
recursion_pending(): This tells us if the iterator is going to descend down
after the element it currently points to.

Filesystem Chapter 27

[963]

disable_recursion_pending(): This can be called to keep the iterator from
descending into the next subdirectory if it is currently pointing to a directory into
which it would descend. This means that calling this method has no effect if we
call it too early.
pop(): This aborts the current recursion level and goes one level up in the
directory hierarchy to continue from there.

There's more...
Another thing to know about is the directory_options enum class. The constructor of
recursive_directory_iterator does indeed accept a value of this type as a second
argument. The default value which we have been implicitly using is
directory_options::none. The other values are:

follow_directory_symlink: This allows the recursive iterator to follow
symbolic links to directories
skip_permission_denied: This tells the iterator to skip directories that would
otherwise result in errors because permission to access is denied by the filesystem

These options can be combined with the | operator.

Implementing an automatic file renamer
This recipe is motivated by a situation I find myself in pretty often. When collecting picture
files from holidays, for example, from different friends and also different photo devices in
one folder, the file endings often look different. Some JPEG files have a .jpg extension,
some have .jpeg, and some others even have .JPEG.

Some people might prefer to homogenize all extensions. It would be useful to rename all
files with a single command. At the same time, we could remove spaces ' ' and substitute
them by underscores '_', for example.

In this recipe, we will implement such a tool and call it renamer. It will accept a range of
input patterns and their substitutes like this:

$ renamer jpeg jpg JPEG jpg

Filesystem Chapter 27

[964]

In that case, renamer will iterate recursively through the current directory and search for
the patterns jpeg and JPEG in all filenames. It will substitute both with jpg.

How to do it...
We will implement a tool that recursively scans all files within a directory and matches their
filenames with patterns. All matches are replaced with user provided tokens and the
affected files are renamed accordingly.

First, we need to include a few headers and declare that we use namespaces std1.
and filesystem.

 #include <iostream>
 #include <regex>
 #include <vector>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

We implement a short helper function that accepts an input file path in the form2.
of a string and a range of replacement pairs. Each replacement pair consists of a
pattern and its replacement. While looping through the replacement range, we
use regex_replace to feed it with the input string and let it return the
transformed string. Afterward, we return the resulting string.

 template <typename T>
 static string replace(string s, const T &replacements)
 {
 for (const auto &[pattern, repl] : replacements) {
 s = regex_replace(s, pattern, repl);
 }
 return s;
 }

Filesystem Chapter 27

[965]

In the main function, we first validate the command line. We accept command-3.
line arguments in pairs because we want patterns together with their
replacements. The first element of argv is always the executable name. This
means that if the user provides at least one pair or more, then argc must be odd
and not smaller than 3.

 int main(int argc, char *argv[])
 {
 if (argc < 3 || argc % 2 != 1) {
 cout << "Usage: " << argv[0]
 << " <pattern> <replacement> ...n";
 return 1;
 }

Once we checked that there are pairs of input, we will fill a vector with these.4.

 vector<pair<regex, string>> patterns;
 for (int i {1}; i < argc; i += 2) {
 patterns.emplace_back(argv[i], argv[i + 1]);
 }

Now we can iterate over the filesystem. For the sake of simplicity, we just define5.
the application's current path as the directory to iterate over.
For every directory entry, we extract its original path to the opath variable. Then,
we take only the filename without the rest of this path and transform it according
to the list of patterns and replacements we collected before. We take a copy of
opath, call it rpath, and replace its filename part with the new filename.

 for (const auto &entry :
 recursive_directory_iterator{current_path()}) {
 path opath {entry.path()};
 string rname {replace(opath.filename().string(),
 patterns)};
 path rpath {opath};
 rpath.replace_filename(rname);

Filesystem Chapter 27

[966]

For all files that are affected by our patterns, we print that we rename them. In6.
case the resulting filename from replacing the patterns does already exist, we
can't proceed. Let's just skip such files. We could of course alternatively just
append some number to the path or something else to resolve the name clash.

 if (opath != rpath) {
 cout << opath.c_str() << " --> "
 << rpath.filename().c_str() << 'n';
 if (exists(rpath)) {
 cout << "Error: Can't rename."
 " Destination file exists.n";
 } else {
 rename(opath, rpath);
 }
 }
 }
 }

Compiling and running the program in an example directory yields the following7.
output. I have put some JPEG pictures into the directory but have given them
different name endings jpg, jpeg, and JPEG. Then, I executed the program with
the patterns jpeg and JPEG and chose jpg as the replacement for both. The result
is a folder with homogenous filename extensions.

 $ ls
 birthday_party.jpeg holiday_in_dubai.jpg holiday_in_spain.jpg
 trip_to_new_york.JPEG
 $../renamer jpeg jpg JPEG jpg
 /Users/tfc/pictures/birthday_party.jpeg --> birthday_party.jpg
 /Users/tfc/pictures/trip_to_new_york.JPEG --> trip_to_new_york.jpg
 $ ls
 birthday_party.jpg holiday_in_dubai.jpg holiday_in_spain.jpg
 trip_to_new_york.jpg

Implementing a disk usage counter
We already implemented a tool that works like ls on Linux/MacOS, or dir on Windows,
but just as these tools, it doesn't print the file size for directories.

In order to get the size equivalent of a directory, we would have to descend down into it
and sum up the size of all files that it contains.

Filesystem Chapter 27

[967]

In this recipe, we will implement a tool that does just that. The tool can be run on any folder
and will summarize the accumulated size of all directory entries.

How to do it...
In this section, we will implement an app that iterates over a directory and lists the file size
of each entry. This is simple for regular files, but if we are looking at a directory entry that
itself is a directory, then we have to look into it and summarize the size of all the files it
holds.

First, we need to include all the necessary headers and declare that we use1.
namespace std and filesystem.

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <numeric>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Then we implement a helper function that accepts a directory_entry as an2.
argument and returns its size in the filesystem. If it is not a directory, we simply
return the file size calculated by file_size.

 static size_t entry_size(const directory_entry &entry)
 {
 if (!is_directory(entry)) { return file_size(entry); }

If it is a directory, we need to iterate over all its entries and calculate their size.3.
We end up calling our own entry_size helper function recursively if we
stumble upon subdirectories again.

 return accumulate(directory_iterator{entry}, {}, 0u,
 [](size_t accum, const directory_entry &e) {
 return accum + entry_size(e);
 });
 }

Filesystem Chapter 27

[968]

For better readability, we use the same size_string function as in other recipes4.
in this chapter. It just divides large file sizes in to shorter and nicer ones to read
strings with kilo, mega, or giga suffix.

 static string size_string(size_t size)
 {
 stringstream ss;
 if (size >= 1000000000) {
 ss << (size / 1000000000) << 'G';
 } else if (size >= 1000000) {
 ss << (size / 1000000) << 'M';
 } else if (size >= 1000) {
 ss << (size / 1000) << 'K';
 } else { ss << size << 'B'; }
 return ss.str();
 }

The first thing we need to do in the main function is to check whether the user5.
provided a filesystem path on the command line. If that is not the case, we just
take the current folder. Before proceeding, we check whether it exists.

 int main(int argc, char *argv[])
 {
 path dir {argc > 1 ? argv[1] : "."};
 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.n";
 return 1;
 }

Now, we can iterate over all directory entries and print their sizes and names.6.

 for (const auto &entry : directory_iterator{dir}) {
 cout << setw(5) << right
 << size_string(entry_size(entry))
 << " " << entry.path().filename().c_str()
 << 'n';
 }
 }

Filesystem Chapter 27

[969]

Compiling and running the program yields the following results. I launched it in7.
a folder in the C++ offline reference. As it contains subfolders too, our recursive
file size summary helper is immediately helpful.

 $./file_size ~/Documents/cpp_reference/en/
 19M c
 12K c.html
 147M cpp
 17K cpp.html
 22K index.html
 22K Main_Page.html

How it works...
The whole program revolves around using file_size on regular files. If the program sees
a directory, it recursively descends down into it and calls file_size on all its entries.

The only thing we did to distinguish if we call file_size directly or if we need the
recursion strategy was asking the is_directory predicate. This works well for directories
that only contain regular files and directories.

As simple as our example program is, it would crash under the following conditions,
because of unhandled exceptions:

file_size only works on regular files and symbolic links. It throws an
exception in any other case.
Although file_size works on symbolic links, it still throws an exception if we
call it on a broken symbolic link.

In order to make this example recipe program more mature, we need more defensive
programming against the wrong type of files and handling of exceptions.

Calculating statistics about file types
In the last recipe, we implemented a tool that lists the size of all members of any directory.

In this recipe, we will be counting sizes recursively, too, but this time we will accumulate
the size of each file to their filename extension. This way we can print the user a table that
lists how many files of each file type we have, and what the average size of such file types
is.

Filesystem Chapter 27

[970]

How to do it...
In this section, we will implement a little tool that recursively iterates over a given
directory. While doing that, it counts the number and size of all files, grouped by their
extensions. Finally, it prints which filename extensions exist within that directory, how
many there are per extension, and their average file size.

We need to include necessary headers and we declare that we use namespace std1.
and filesystem.

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <map>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

The size_string function was already helpful in other recipes. It transforms file2.
sizes to human-readable strings.

 static string size_string(size_t size)
 {
 stringstream ss;
 if (size >= 1000000000) {
 ss << (size / 1000000000) << 'G';
 } else if (size >= 1000000) {
 ss << (size / 1000000) << 'M';
 } else if (size >= 1000) {
 ss << (size / 1000) << 'K';
 } else { ss << size << 'B'; }
 return ss.str();
 }

Filesystem Chapter 27

[971]

Then, we implement a helper function that accepts a path object as its argument3.
and iterates over all files within that path. On its way, it collects all information in
a map that maps from filename extensions to pairs that contain the total number
and accumulated size of all files that have the same extension.

 static map<string, pair<size_t, size_t>> ext_stats(const path &dir)
 {
 map<string, pair<size_t, size_t>> m;
 for (const auto &entry :
 recursive_directory_iterator{dir}) {

If a directory entry is a directory itself, we skip it. Skipping it at this point does4.
not mean that we are not recursively descending into it.
recursive_directory_iterator still does that, but we do not want to look at
the directory entries themselves.

 const path p {entry.path()};
 const file_status fs {status(p)};
 if (is_directory(fs)) { continue; }

Next, we extract the extension part of the directory entry string. If it has no5.
extension, we simply skip it.

 const string ext {p.extension().string()};
 if (ext.length() == 0) { continue; }

Next, we calculate the size of the file we are looking at. Then, we look up the6.
aggregate object in the map for this extension. If there are yet none at this point, it
is created implicitly. We simply increment the file count and add the file size to
the size accumulator.

 const size_t size {file_size(p)};

 auto &[size_accum, count] = m[ext];
 size_accum += size;
 count += 1;
 }

Filesystem Chapter 27

[972]

Afterward, we return the map.7.

 return m;
 }

In the main function, we take either a user-provided path from the command line8.
or the current directory. Of course, we need to check whether it exists because it
would not make sense to continue otherwise.

 int main(int argc, char *argv[])
 {
 path dir {argc > 1 ? argv[1] : "."};
 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.n";
 return 1;
 }

We can immediately iterate over the map that ext_stats gives us. Because the9.
accum_size items in the map contain the sum of all files with the same
extension, we divide this sum by the total number of such files before printing it.

 for (const auto &[ext, stats] : ext_stats(dir)) {
 const auto &[accum_size, count] = stats;
 cout << setw(15) << left << ext << ": "
 << setw(4) << right << count
 << " items, avg size "
 << setw(4) << size_string(accum_size / count)
 << 'n';
 }
 }

Compiling and running the program yields the following output. I gave it a10.
folder from the offline C++ reference as a command-line argument.

 $./file_type ~/Documents/cpp_reference/
 .css : 2 items, avg size 41K
 .gif : 7 items, avg size 902B
 .html : 4355 items, avg size 38K
 .js : 3 items, avg size 4K
 .php : 1 items, avg size 739B
 .png : 34 items, avg size 2K
 .svg : 53 items, avg size 6K
 .ttf : 2 items, avg size 421K

Filesystem Chapter 27

[973]

Implementing a tool that reduces folder size
by substituting duplicates with symlinks
There are a lot of tools that compress data in various ways. The most famous examples for
file packing algorithms/formats are ZIP and RAR. Such tools try to reduce the size of files
by reducing internal redundancy.

Before compressing files in archives, a very simple way to reduce disk usage is just deleting
duplicate files. In this recipe, we will implement a little tool that crawls a directory
recursively. While crawling, it will look for files that have the same content. If it finds such
files, it will remove all duplicates but one. All removed files will be substituted with
symbolic links that point to the now unique file. This saves spaces without any
compression, while at the same time preserving all data.

How to do it...
In this section, we will implement a little tool that finds out which files in a directory are
duplicates of each other. With that knowledge, it will remove all but one of all duplicated
files, and substitute them with symbolic links, which reduces the folder size.

Make sure to have a backup of your system's data. We will be playing with
STL functions that remove files. A simply misspelled path in such a
program can lead to a program that greedily removes too many files in
unwanted ways.

First, we need to include the necessary headers and then we declare that we use1.
namespace std and filesystem by default.

 #include <iostream>
 #include <fstream>
 #include <unordered_map>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Filesystem Chapter 27

[974]

In order to find out which files are duplicates of each other, we will construct a2.
hash map that maps from hashes of file content to the path of the first file from
which that hash was generated. It would be a better idea to use a production hash
algorithm for files such as MD5 or an SHA variant. In order to keep the recipe
clean and simple, we just read the whole file into a string and then use the same
hash function object that unordered_map already uses for strings to calculate
hashes.

 static size_t hash_from_path(const path &p)
 {
 ifstream is {p.c_str(),
 ios::in | ios::binary};
 if (!is) { throw errno; }
 string s;
 is.seekg(0, ios::end);
 s.reserve(is.tellg());
 is.seekg(0, ios::beg);
 s.assign(istreambuf_iterator<char>{is}, {});
 return hash<string>{}(s);
 }

Then we implement the function that constructs such a hash map and deletes3.
duplicates. It iterates recursively through a directory and its subdirectories.

 static size_t reduce_dupes(const path &dir)
 {
 unordered_map<size_t, path> m;
 size_t count {0};
 for (const auto &entry :
 recursive_directory_iterator{dir}) {

Filesystem Chapter 27

[975]

For every directory entry, it checks whether it is a directory itself. All directory4.
items are skipped. For every file, we generate its hash value and try to insert it
into the hash map. If the hash map already contains the same hash, then this
means that we already inserted a file with the same hash. This means that we just
found a duplicate! In case of a clash during insertion, the second value in the pair
that try_emplace returns is false.

 const path p {entry.path()};
 if (is_directory(p)) { continue; }
 const auto &[it, success] =
 m.try_emplace(hash_from_path(p), p);

Using the return values from try_emplace, we can tell the user that we just5.
inserted a file because we have seen its hash for the first time. In case we found a
duplicate, we tell the user what other file it is a duplicate of and delete it. After
deletion, we create a symbolic link that replaces the duplicate.

 if (!success) {
 cout << "Removed " << p.c_str()
 << " because it is a duplicate of "
 << it->second.c_str() << 'n';
 remove(p);
 create_symlink(absolute(it->second), p);
 ++count;
 }

After the filesystem iteration, we return the number of files we deleted and6.
replaced with symlinks.

 }
 return count;
 }

In the main function, we make sure that the user provided a directory on the7.
command line, and that this directory exists.

 int main(int argc, char *argv[])
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0] << " <path>n";
 return 1;
 }
 path dir {argv[1]};

Filesystem Chapter 27

[976]

 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.n";
 return 1;
 }

The only thing we need to do now is to call reduce_dupes on this directory and8.
print how many files it deleted.

 const size_t dupes {reduce_dupes(dir)};
 cout << "Removed " << dupes << " duplicates.n";
 }

Compiling and running the program on an example directory that contains some9.
duplicate files looks like the following. I used the du tool to check the folder size
before and after launching our program to demonstrate that the approach works.

 $ du -sh dupe_dir
 1.1M dupe_dir
 $./dupe_compress dupe_dir
 Removed dupe_dir/dir2/bar.jpg because it is a duplicate of
 dupe_dir/dir1/bar.jpg
 Removed dupe_dir/dir2/base10.png because it is a duplicate of
 dupe_dir/dir1/base10.png
 Removed dupe_dir/dir2/baz.jpeg because it is a duplicate of
 dupe_dir/dir1/baz.jpeg
 Removed dupe_dir/dir2/feed_fish.jpg because it is a duplicate of
 dupe_dir/dir1/feed_fish.jpg
 Removed dupe_dir/dir2/foo.jpg because it is a duplicate of
 dupe_dir/dir1/foo.jpg
 Removed dupe_dir/dir2/fox.jpg because it is a duplicate of
 dupe_dir/dir1/fox.jpg
 Removed 6 duplicates.
 $ du -sh dupe_dir
 584K dupe_dir

Filesystem Chapter 27

[977]

How it works...
We used the create_symlink function in order to make a filesystem entry point to another
file in the filesystem. This way we can avoid having duplicate files. We could also have set a
hard link using create_hard_link. Semantically, this is similar, but hard links have other
technical implications than soft links. Different filesystem formats might not support hard
links at all, or only a certain number of hard links that refer to the same file. Another
problem is that hard links cannot link from one filesystem to the other.

However, apart from implementation details, there is one blatant error source when using
create_symlink or create_hard_link. The following lines contain a bug. Can you spot
it immediately?

path a {"some_dir/some_file.txt"};
path b {"other_dir/other_file.txt"};
remove(b);
create_symlink(a, b);

Nothing bad happens when executing this program, but the symlink will be broken. The
symlink points to "some_dir/some_file.txt", which is wrong. The problem is that it
should really either point to "/absolute/path/some_dir/some_file.txt", or
"../some_dir/some_file.txt". The create_symlink call uses a correct absolute path
if we write it as follows:

create_symlink(absolute(a), b);

create_symlink does not check whether the path we are linking to is
correct.

There's more...
We already noticed that our hash function is a too simple one. For the sake of keeping this
recipe simple and without external dependencies, we chose this way.

What is the problem with our hash function? There are actually two problems:

We read the whole file into a string. This is disastrous for files that are larger than
our system memory.
The C++ hash function trait hash<string> is most probably not designed for
such hashes.

Filesystem Chapter 27

[978]

If we are looking for a better hash function, we should take one that is fast, memory-
friendly, and that makes sure that no two really large but different files get the same hash.
The latter requirement is maybe the most important one. If we decide that one file is a
duplicate of the other although they do not contain the same data, we surely have some data
loss after deleting it.

Better hash algorithms are, for example, MD5 or one of the SHA variants. In order to get
access to such functions in our program, we could use the OpenSSL cryptography API, for
example.

Bibliography
This Learning Path combines some of the best that Packt has to offer in one complete,
curated package. It includes content from the following Packt products:

 Mastering C++ Programming, Jeganathan Swaminathan
Mastering C++ Multithreading, Maya Posch
C++17 STL Cookbook, Jacek Galowicz

Index

A
absolute time
 and relative time, converting with std**chrono

810

acyclic directed graph (DAG) 936
Agile 250
algorithms
 composing, from standard gather algorithm 727
 implementing, in terms of iterators 591
aliasing 680
amortized complexity 544
API 314
Argonne National Laboratory (ANL) 452
ASCII Mandelbrot renderer
 implementing 717
 parallelizing, with std**async 931
associative containers
 about 30
 map 34
 multimap 37
 multiset 36
 set 31
 unordered maps 39
 unordered multimaps 39
 unordered multisets 39
 unordered sets 38
asymmetric multiprocessing (AMP)
 about 295
 versus symmetric multiprocessing (SMP) 295
asynchronous message
 compiling 307
 passing, Concurrency support library used 306
atomic flag 445
atomic operations
 about 427
 atomic flag 445

 C++11 atomics 438
 compilers 438
 example 441, 443
 GCC 434
 memory order 445
 non-class functions 442
 Visual C++ 428
atomics 379
auto_ptr 78, 81
automatic file renamer
 implementing 963

B
BDD test case
 building 237, 238, 239
 running 239, 241
behavior-driven development (BDD)
 about 209
 test-first development approach 227, 228, 229,

230, 231, 232, 234, 235, 236, 237
bidirectional iterator 578
binary folds 517
Binary Search Tree (BST) 31
Boost 330
Boost.Thread API 355
Boyer-Moore algorithm 679
Boyer-Moore-Horspool algorithm 680
bracket initializer rules
 profiting from 503
BSDs
 Open MPI, installing 459
bundled return values
 unpacking, structured bindings used 495

[981]

C
C++ BDD frameworks 210, 211
C++ standard 355
C++ threads 334
C++11 atomics
 about 438
 atomic functions 440
 generic functions 440
C++11 thread
 about 374
 async 378
 launch policy 379
 packaged_task 377
 promise 375
 shared future 376
C++14 356
C++
 reference 648
 thread support library 284
C-style macro 48
canonical file paths
 obtaining, from relative paths 950
cartesian product
 about 640
 pairs, generating of input at compile time 640
Certified SCRUM Developer (CSD) 251
checked iterators
 iterator code, verifying 600
class templates 57, 60
clock objects
 characteristics 808
cluster hardware 455
cluster scheduler
 using 463
code quality
 functional 250
 structural 250
code refactoring 249
code smell
 about 264
 comment smell 264
 conditional complexity 267
 data class 268
 dead code 267

 duplicate code 266
 feature envy 268
 large class 267
 long method 265
 long parameter list 265
 Primitive Obsession (PO) 268
code
 parallelizing, that uses standard algorithms 880
command-line interface (CLI) 96
common myths and questions, TDD 158
compare-and-swap (CAS) 421
compile time decisions
 simplifying, with constexpr if 508
compile time
 cartesian product pairs, generating of input 640
compilers 438
Completely Fair Scheduler (CFS) 298
complex objects
 initializing, from file input 767
complex predicates
 creating, with logical conjunction 627
concatenation
 functions, composing 623
Concurrency support library
 used, for passing asynchronous message 306
concurrency tasks
 program, compiling 308
concurrency
 about 304
 program, compiling 305
 tasks 307
 used, for exception handling 311
condition variable
 about 370, 372, 373
 condition_variable_any class 373
 thread exit, notifying 373
conditional complexity 267
constexpr if
 compile time decisions, simplifying 508
constructor calls
 deducing, template class type result 505
constructor dependency injection 205
container adapters
 about 40
 priority queue 44

[982]

 queue 42
 stack 40
containers
 contents, transforming 662
 filling, from std**istream iterators 770
 items, copying to other containers 648
 items, removing 657
 sorting 653
contents
 transforming, of containers 662
contiguous iterator 579
Cucumber test case
 dry running 226, 227
 executing 225, 226
 project, integrating in cucumber-cpp

CMakeLists.txt 224, 225
 testing 242, 243, 244, 245, 246
 writing 218, 219, 220, 221, 222
cucumber-cpp framework
 building 214
 installing, in Ubuntu 211, 212
 prerequisite software, installing 212, 213, 214
 test cases, executing 215
Current Program State Register (CPSR) 290
custom sort() function
 non-template version 55
custom string classes
 creation, by inheriting from std 785
custom types
 std**unordered map, using 548

D
data classes 268
data race 415
data structures
 composing, with std**tuple 822
data
 r/w-locks, using 353
 shared pointers, using 353
 sharing 352
dead code 267
deadlocks
 about 411
 avoiding, with std**scoped lock 902
debugging

 starting 380
definitely lost type 397
Dekker's algorithm 303
demo application
 tracing 299, 300
Dependency Inversion (DI) 260
deque container
 about 28
 commonly used APIs 29
development environment
 Linux 482
 setting up 482
 Windows 482
dictionary merging tool
 implementing 687
different member values
 sharing, of same object 859
directories
 files, listing 954
disk usage counter
 implementing 966
dispatcher 344, 346, 347
distributed computing
 about 449
 cluster hardware 455
 in nutshell 449
 MPI 451
 MPI applications, compiling 454
distributed version control system (DVCS) 161
distribution
 Bernoulli distribution 878
 discrete distribution 878
 normal distribution 877
 uniform int distributions 877
domain-specific language (DSL) 209
dynamic analysis tools
 about 387
 alternatives 388
 basic use 405
 C++11 threads support 408
 data races 405
 DRD 405
 features 407
 Helgrind 398
 limitations 388

[983]

 lock order, issues 404
 memcheck 389
 pthreads API, misuse 403
Dynamic Link Library 106

E
erase-remove idiom
 using, on std**vector 524
error types, memcheck
 destination, overlapping 396
 fishy argument values 397
 illegal frees 396
 illegal read / illegal write errors 392
 memory leak detection 397
 mismatched deallocation 396
 source, overlapping 396
 unaddressable system call values 394
 uninitialized system call values 394
 uninitialized values, using 392
Exception Level 0 (EL0) 290
exception safe shared locking
 lock classes 899
 mutex classes 898
 std**shared_lock 894
 with std**unique_lock 894
Executable and Linkable Format (ELF) 285
explicit class specializations 61, 64
Extended Base Pointer (EBP) 292

F
failure
 signalizing, with std**optional 814
feature envy 268
feature file 215, 216
Fiber Local Storage (FLS) 329
Fibonacci iterator 594
file input
 complex objects, initializing 767
file types
 statistics, calculating 969
files
 listing, in directories 954
 output, redirecting to 780
filtering

 algorithms used 661
first in, first out (FIFO) 42, 104, 571
Flynn's taxonomy
 about 294
 Multiple Instruction, Multiple Data (MIMD) 294
 Multiple Instruction, Single Data (MISD) 294
 Single Instruction, Multiple Data (SIMD) 294
 Single Instruction, Single Data (SISD) 294
fold expressions
 about 516
 handy helper functions, implementing 515
folder size
 reducing, with symlinks and tool implementing

973

folding 516
format guard 797
format types
 implementing 796
formatting modifiers 765
forward iterator 578
forward_list container
 about 23, 25
 code walkthrough 25
 commonly used APIs 25
 sample code 24
Fourier transform formula
 about 704
 implementing, with STL numeric algorithms 704
fractal 717
function templates
 defining 50
 overloading 52
functional objects
 reference 629
functions
 applying, on tuples 819
 capture list 618
 composing, by concatenation 623
 constexpr 619
 defining, on run with lambda expressions 614
 exception attr 619
 mutable 619
 return type 619
functors, STL 11, 12
future

[984]

 versus threads 423

G
GCC
 about 434
 memory order 437
generic data structures
 filling, iterator adapters used 587
generic programming
 about 46
 function templates 48
Gherkin language
 about 209, 211
 supported spoken languages 217
Git 161
Goods and Services Tax (GST) 254
Google Mock Framework (gmock) 220
Google test framework
 about 161
 and mock, building as static library without

installing 164, 165
 download link 161
 installing, on Ubuntu 161, 162
 test case, writing 166, 167, 169
 using, in Visual Studio IDE 170, 171, 172, 173,

174, 175, 176, 177, 178
GPGPU (General Purpose Computing on Graphics

Processing Units) 295, 475, 489
GPGPU processing model
 about 475
 implementations 476
 OpenCL 477
 OpenCL versions 478
GPU memory management 488
Graphical User Interface (GUI) 96
graphics processors (GPUs) 294
grep-like text search tool
 implementing 959
GUI application, with box layout
 writing 118, 121
GUI application, with grid layout
 writing 122, 125
GUI application, with horizontal layout
 writing 109, 113
GUI application, with vertical layout

 writing 114, 117
GUI-based application 278

H
handy helper functions
 implementing, with fold expressions 515
 multiple insertions, verifying 520
 multiple items, pushing into vector 521
 parameters, verifying within range 521
 ranges, matching against individual items 519
header-only libraries
 enabling, with inline variables 512
Helgrind, dynamic analysis tools
 basic use 398, 401
high-level view 337
host file
 creating 462
human-machine-interface (HMI) 96
humble debugger
 about 381
 back traces 385
 GDB 382
 multithreaded code, debugging 383
Hyper-Threading (HT) 293

I
I/O manipulators 760
I/O stream manipulators
 used, for output formatting 760
if statement
 variable scopes, limiting 499
indirectly lost type 397
initialization
 postponing, with std**call_once 910
 static order 423
inline variables
 header-only libraries, enabling 512
input iterator 578
input sequences
 permutations, generating 685
input
 tokenizing, with regular expression library 791
insertion hint semantics
 of std**map**insert 541

[985]

insertion hints 543
Instructions Per Second (IPC) 294
Integrated Development Environments (IDEs) 101
inter-process communication (IPC) 285
interface segregation 258
Inversion of Control (IOC) 262
items
 copying, from containers to other containers 648
 finding, in ordered vector 664
 finding, in unordered vectors 664
 inserting, into std**map conditionally 537
 inserting, into std**map efficiently 537
 removing, from containers 657
iterable range
 building 579
iterations
 terminating, over ranges with iterator sentinels

597

iterator adapters
 about 587
 std**back insert iterator 589
 std**front_insert_iterator 589
 std**insert_iterator 590
 std**istream_iterator 590
 std**ostream_iterator 590
 using, to fill generic data structures 587
iterator categories
 about 577
 bidirectional iterator 578
 contiguous iterator 579
 forward iterator 578
 input iterator 578
 mutable iterator 579
 output iterator 579
 random access iterator 579
iterator code
 verifying, with checked iterators 600
iterator sentinels
 iterations, terminating over ranges 597
iterators, STL
 about 8, 9
 bidirectional iterators 10
 forward iterators 10
 input iterators 10
 output iterators 10

 random-access iterators 11
iterators
 about 575
 algorithms, implementing 591
 compatibility, with STL iterator categories 583

J
jobs
 cluster scheduler, using 463
 distributing, across nodes 461
 executing 463
 host file, creating 462
 MPI node, setting up 462

K
keys
 modifying, of std**map items 544

L
lambda expressions
 about 612
 used, for defining functions on run 614
lambdas
 used, for implementing transform if 634
 wrapping, into std**function for polymorphy

adding 619
Last In First Out (LIFO) philosophy 40
launch policy 918
layouts 108
legacy APIs
 resource handling, simplified with smart pointers

855

Linux
 about 482
 Open MPI, installing 459
Liskov substitution principle (LSP) 257
list STL container
 about 20, 21, 22
 commonly used APIs 23
lock classes 899
locks
 using 422
logical conjunction
 complex predicates, creating 627

[986]

long parameter list (LPL) 266
loosely coupled multiprocessing 296

M
make
 installing, on Ubuntu 163
makefile 348
map container
 about 34
 code walkthrough 35
 commonly used APIs 36
math application
 writing, by combining multiple layouts 146, 151,

155

memcheck, dynamic analysis tools
 basic use 389
 error types 392
memory management 73
memory order
 about 445
 relaxed ordering 446
 release-acquire ordering 446
 release-consume ordering 447
 sequentially-consistent ordering 447
 volatile keyword 448
merge 687
Meta-Object Compiler (moc) 97
MPI (Message Passing Interface)
 about 451
 applications, compiling 454
 basic concepts 451
 download link 460
 implementations 452
 potential issues 473
 reference 453
 using 453
MPI communication
 about 464
 advances communication 469
 broadcasting 470
 example 468
 gathering 470
 MPI data types 465
 reference 468
 scattering 470

MPI data types
 about 465
 custom types 466
MPI node
 setting up 462
MPICH 452
MSYS2
 reference 460
multiple functions
 calling, with same input 630
multiprocessing
 combined, with multithreading 296
multithreaded application
 about 272, 273, 275
 makefile 276, 278
multithreaded code
 breakpoints 384
multithreading
 about 271, 410, 489
 defining 292, 293
 Flynn's taxonomy 294
 loosely coupled multiprocessing 295
 multiprocessing, combined 296
 simultaneous multithreading (SMT) 297
 symmetric multiprocessing (SMP), versus

asymmetric multiprocessing (AMP) 294
 temporal multithreading (TMT) 296
 tightly coupled multiprocessing 295
 types 296
mutex classes 898
mutual exclusion (mutex)
 about 301, 362, 420
 basic use 362
 hardware 302
 implementations 301
 lock guard 366
 non-blocking locking 364
 recursive mutex 368
 recursive timed mutex 369
 scoped lock 368
 software 303
 timed mutex 365
 unique lock 367

[987]

N
nodes
 jobs, distributing 461
non-class functions 442
null object design pattern 267

O
object
 different member values, sharing 859
observer design pattern 97
One Definition Rule (ODR) 513
open closed principle (OCP) 254
Open MPI
 installing 459
 installing, on BSDs 459
 installing, on Linux 459
 installing, on Windows 459
OpenCL 477
OpenCL 1.0 478
OpenCL 1.1
 about 478
 features 478
OpenCL 1.2
 about 479
 features 479
OpenCL 2.0
 about 480
 features 480
OpenCL 2.1
 about 480
 features 481
OpenCL 2.2
 about 481
 features 481
OpenCL application 483, 487
OpenCL versions
 about 478
 OpenCL 1.0 478
 OpenCL 1.1 478
 OpenCL 1.2 479
 OpenCL 2.0 480
 OpenCL 2.1 480
 OpenCL 2.2 481
operating system (OS) 285

optimal implementation
 selecting 675
ordered vectors
 items, finding 664
output iterator 579
output
 application output 349
 formatting, with I/O stream manipulators 760
 redirecting, to files 780

P
parallelization
 about 879
 code, that uses standard algorithms 880
 execution policies, working 884
 library, implementing with std**future 936
 STL algorithms, supporting 883
 vectorization 886
partial template specialization 69, 71
path normalizer
 implementing 947
permutations
 generating, of input sequences 685
personal to do list
 implementing, std**priority queue used 571
POCO library
 about 331
 synchronization 333
 thread class 331
 thread local storage (TLS) 332
 thread pool 332
policy flags 918
polymorphy
 adding, by wrapping lambdas into std**function

619

Portable Operating System Interface (POSIX) 314
POSIX pthreads 280
POSIX threads (Pthreads)
 about 314, 315
 condition variables 321, 323
 mutexes 320
 semaphores 324
 synchronization 323
 thread local storage (TLC) 325
 thread management 318

[988]

 Windows support 318
possibly lost type 398
predicates 627
Primitive Obsession (PO) 268
priority queue
 about 44
 commonly used APIs 44, 45
Process State (PSTATE) 291
processes
 defining 285, 286
producer/consumer idiom
 implementing, with std**condition variable 919
producers/consumers idiom
 implementing, with std**condition variable 924
Program State Register (PSR) 290
program
 suspending, for specific time with thread 887
pthreads library
 used, for creating threads 281

Q
QDialog 137
Qt 5.7.0
 installing, in Ubuntu 16.04 98
Qt applications
 stacked layout, using 137, 144
Qt console application
 writing 100, 103
Qt Core 100
Qt GUI application
 writing 103
Qt multithreading API
 implementing 334
Qt Widgets 103
Qt
 about 98
 reference 98
queue
 about 42
 commonly used APIs 42
QWidget 137

R
random access iterator 579

random number engine
 selecting 863
random numbers
 generating 863, 870
ranges library
 about 611
 reference 611
raw pointers
 issues 74, 77
read/write lock (rwlock)
 about 323
 using 353
readable exceptions
 catching from std**iostream errors 799
recommended cucumber-cpp project folder

structure 218
regular expression library
 input, tokenizing 791
regular expressions 742
relative paths
 canonical file paths, obtaining from 950
Resource Acquisition Is Initialization (RAII) 784
resource handling
 simplifying, of legacy APIs with smart pointers

855

resources
 handling, with std**unique ptr 839
resulting template class type
 deducing, with constructor 505
return value optimization (RVO) 499
reverse iterator adapters
 about 595
 using, for iterating other way round 595
Reverse Polish Notation (RPN) 178
RPN calculator
 implementing, with std**stack 555

S
sanitizers
 about 604
 detecting, bugs example 604
 references 604
Saved Program State Register (SPSR) 290
scheduler
 about 297, 337

[989]

 dispatcher 344, 346
 high-level view 337
 implementation 338, 339
 makefile 348
 output 349, 351
 request class 340
 worker class 342, 344
Scrum 250
search input suggestion generator
 implementing, with trie 698
sequence containers, STL
 about 13
 array 13
 deque container 28
 forward list 23
 list 20
 vector 16
set container
 about 31
 code walkthrough 33
 commonly used APIs 34
shared heap memory
 handling, with std**shared_ptr 844
shared mutex 369
shared objects
 weak pointers, dealing with 850
shared pointers
 using 353
shared timed mutex 370
shared_ptr 87
signals 126, 136
single responsibility principle (SRP) 252, 253
slim reader/writer (SRW) 329
slots 126, 136
smart pointers
 about 77
 auto_ptr 78
 resource handling, simplified of legacy APIs 855
 shared_ptr 87
 unique_ptr 84
 weak_ptr 90
SOLID design principle
 about 251
 DI 260
 interface segregation 258

 LSP 257
 OCP 254
 SRP 252
sorting
 algorithms used 657
split algorithm
 building 723
Stack Pointer (SP) 290
stack
 about 40, 291
 commonly used APIs 41, 42
stacked layout
 using, in Qt applications 137
standard algorithms
 code, parallelizing 880
standard gather algorithm
 algorithms, composing 727
Standard Template Library (STL)
 about 7, 314, 354
 associative containers 30
 container adapters 40
 sequence containers 13
Standard Template Library architecture
 about 7
 algorithms 8
 containers 11
 functors 11
 iterators 8, 9
static order
 of initialization 423
std**accumulate
 used, for implementing transform if 634
std**any
 void*, replacing with 830
std**async
 used, for pushing the execution task to

background 913
 using, for parallelizing ASCII Mandelbrot

renderer 931
std**back insert iterator 589
std**binary_search algorithm 669
std**call once
 initialization, postponing 910
std**call_once
 using 911

[990]

std**char_traits
 inheriting, custom string classes creation 785
std**chrono
 absolute and relative times, converting between

810

std**clamp
 vector, values limiting to numeric range 671
std**condition_variable
 about 919
 producer/consumer idiom, implementing 919
 producers/consumers idiom, implementing 924
std**count use
 synchronizing, concurrently 906
std**equal_range 670
std**find algorithm 669
std**find if algorithm 669
std**front_insert_iterator 589
std**function
 polymorphy, added by wrapping lambdas 619
std**future
 parallelization library, implementing 936
std**insert_iterator 590
std**iostream errors
 readable exceptions, catching 799
std**istream iterator
 containers, filling 770
std**istream_iterator
 about 590
std**lower_bound 669
std**map items
 keys, modifying 544
std**map**insert
 insertion hint semantics 541
std**map
 items, inserting conditionally 537
 items, inserting efficiently 537
 word frequency counter, implementing 562
std**multimap
 writing style helper tool, implementing to find long

sentences in texts 566
std**optional
 failure, signalizing 814
std**ostream iterators
 generic printing 775
std**ostream_iterator 590

std**priority_queue
 used, for implementing personal to do list 571
std**ratio
 used, for converting time units 804
std**scoped lock
 deadlock, avoiding 902
std**shared_lock
 exception safe shared locking 894
std**shared_ptr
 shared heap memory, handling 844
std**stack
 handling 559
 mathematical operation, applying 561
 mathematical operation, selecting 561
 operands, distinguishing from operations 560
 operands, distinguishing from user input 560
 RPN calculator, implementing 555
std**string
 benefits 750
std**tuple
 data structures, composing with 822
std**unique_lock
 exception safe shared locking 894
std**unique_ptr
 resources, handling with 839
std**unordered map
 using, with custom types 548
std**upper_bound 669
std**variant
 different types, storing 833
std**vector
 erase-remove idiom, using 524
 instances, accessing 532
 instances, sorting 534
STL algorithms
 about 8, 583, 647, 692
 benefits 647
 for distribution 870
 used, for implementing trie class 692
STL array container
 about 13
 code walkthrough 14
 commonly used APIs 14
STL containers 11
STL iterator categories

[991]

 iterators, compatibility 583
STL numeric algorithms
 Fourier transform formula, implementing 704
STL threading API
 about 354
 Boost.Thread API 354
stream classes 742
stream state manipulators 766
strings
 about 742
 compressing 736
 concatenating 743
 creating 743
 decompressing 736
 patterns, locating with std**search 675
 transforming 743
 whitespace, trimming from beginning 747
 whitespace, trimming from end 747
structured bindings
 about 495
 using, to unpack bundled return values 495
switch statement
 variable scopes, limiting 499
symlinks
 used, reducing folder size and tool implementing

973

symmetric multiprocessing (SMP)
 about 295
 versus asymmetric multiprocessing (AMP) 295

T
Task State Structure (TSS) 287
tasks
 about 307
 execution, pushing to background std**async

used 913
 in x86 (32-bit and 64-bit) 287, 290
 using, with thread support library 309
temporal multithreading (TMT) 296
test-and-set (TAS) 421
Test-driven Development (TDD)
 about 157, 158
 common myths and questions 158, 159, 160
 implementing 178, 179, 180, 181, 183, 184,

185, 187, 188, 190, 191, 193, 194, 196, 197,

198, 199
 legacy code with dependency, testing 199, 201,

202, 203, 204, 205, 207
 versus, Behavior-driven development (BDD) 210
text file
 words, counting 757
thread class
 about 356
 basic use 357
 detach 361
 parameters, passing 357
 return value 358
 sleeping 360
 swap 361
 thread id 359
 threads, moving 358
 yield 361
thread function
 binding, with packaged_task 310
thread local storage (TLS) 330
thread support library
 tasks, using 309
threads
 compiling 283
 creating, with pthreads library 281
 defining 285, 286
 executing 283
 security 336, 347
 starting 889
 stopping 889
 versus future 423
tightly coupled multiprocessing 296
time units
 converting, std**ratio used 804
tool
 implementing, for reducing folder size with

symlinks 973
transform if
 implementing, lambdas used 634
 implementing, std**accumulate used 634
trie class
 implementing, STL algorithms used 692
trie
 about 692
 search input suggestion generator, implementing

698

tripwire feature 603
tuples
 functions, applying 819
 operator 827
 zip function 828

U
Ubuntu 16.04
 Qt 5.7.0, installing 98
 reference 98
unary fold 517
unique_ptr 84
unit testing frameworks, for C++ 160, 161
unordered vectors
 items, finding 664
unpacking 495
unsorted std**vector
 items, deleting in O (1) time 528
user input
 values, reading from 754

V
Valgrind
 reference 388
values
 reading, from user input 754
variable scopes
 limiting, to if statement 499
 limiting, to switch statement 499
vector, sequence container
 about 16
 code walkthrough 17, 19, 20
 commonly used vector APIs 18
 pitfalls 20
vectorization 886

vectors
 error sum, calculating 713
 sampling 680
 values, limiting to numeric range with std**clamp

671

Visual C++ 428
void*
 replacing, with std**any 830

W
weak pointers
 dealing with, to shared objects 850
weak_ptr
 about 90
 circular dependency 93
Windows threads
 about 326
 advanced management 329
 condition variables 330
 synchronization 329
 thread local storage (TLS) 330
 thread management 326, 327
Windows
 about 482
 Open MPI, installing 459
word frequency counter
 implementing, with std**map 562
words
 consecutive whitespace, removing 733
writing style helper tool
 implementing, to find long sentences in text with

std**multimap 566

Z
zip iterator adapter
 building 605
 ranges library 611

	Cover
	Title Page - Courses
	Copyright and Credits - Courses
	Packt Upsell - Courses
	Table of Contents
	Preface
	Module 1: Mastering C++ Programming
	Chapter 1: Introduction to C++17 Standard Template Library
	The Standard Template Library architecture
	Algorithms
	Iterators
	Containers
	Functors

	Sequence containers
	Array
	Code walkthrough
	Commonly used APIs in an array

	Vector
	Code walkthrough
	Commonly used vector APIs
	Code walkthrough
	Pitfalls of a vector

	List
	Commonly used APIs in a list

	Forward list
	Code walkthrough
	Commonly used APIs in a forward_list container

	Deque
	Commonly used APIs in a deque

	Associative containers
	Set
	Code walkthrough
	Commonly used APIs in a set

	Map
	Code walkthrough
	Commonly used APIs in a map

	Multiset
	Multimap
	Unordered sets
	Unordered maps
	Unordered multisets
	Unordered multimaps

	Container adapters
	Stack
	Commonly used APIs in a stack

	Queue
	Commonly used APIs in a queue

	Priority queue
	Commonly used APIs in a priority queue

	Summary

	Chapter 2: Template Programming
	Generic programming
	Function templates
	Code walkthrough

	Overloading function templates
	Code walkthrough

	Class template
	Code walkthrough

	Explicit class specializations
	Code walkthrough

	Partial template specialization

	Summary

	Chapter 3: Smart Pointers
	Memory management
	Issues with raw pointers
	Smart pointers
	auto_ptr
	Code walkthrough - Part 1
	Code walkthrough - Part 2

	unique_ptr
	Code walkthrough

	shared_ptr
	Code walkthrough

	weak_ptr
	Circular dependency

	Summary

	Chapter 4: Developing GUI Applications in C++
	Qt
	Installing Qt 5.7.0 in Ubuntu 16.04

	Qt Core
	Writing our first Qt console application

	Qt Widgets
	Writing our first Qt GUI application

	Layouts
	Writing a GUI application with a horizontal layout
	Writing a GUI application with a vertical layout
	Writing a GUI application with a box layout
	Writing a GUI application with a grid layout

	Signals and slots
	Using stacked layout in Qt applications
	Writing a simple math application combining multiple layouts

	Summary

	Chapter 5: Test-Driven Development
	TDD
	Common myths and questions around TDD
	Does it take more efforts for a developer to write a unit test?
	Is code coverage metrics good or bad?
	Does TDD work for complex legacy projects?
	Is TDD even applicable for embedded or products that involve hardware?

	Unit testing frameworks for C++
	Google test framework
	Installing Google test framework on Ubuntu
	How to build google test and mock together as one single static library without installing?
	Writing our first test case using the Google test framework
	Using Google test framework in Visual Studio IDE

	TDD in action
	Testing a piece of legacy code that has dependency

	Summary

	Chapter 6: Behavior-Driven Development
	Behavior-driven development
	TDD versus BDD
	C++ BDD frameworks
	The Gherkin language
	Installing cucumber-cpp in Ubuntu
	Installing the cucumber-cpp framework prerequisite software
	Building and executing the test cases

	Feature file
	Spoken languages supported by Gherkin
	The recommended cucumber-cpp project folder structure
	Writing our first Cucumber test case
	Integrating our project in cucumber-cpp CMakeLists.txt
	Executing our test case

	Dry running your cucumber test cases
	BDD - a test-first development approach
	Let's build and run our BDD test case
	It's testing time!

	Summary

	Chapter 7: Code Smells and Clean Code Practices
	Code refactoring
	Code smell
	What is agile?
	SOLID design principle
	Single responsibility principle
	Open closed principle
	Liskov substitution principle
	Interface segregation
	Dependency inversion

	Code smell
	Comment smell
	Long method
	Long parameter list
	Duplicate code
	Conditional complexity
	Large class
	Dead code
	Primitive obsession
	Data class
	Feature envy

	Summary

	Module 2: Mastering C++ Multithreading
	Chapter 8: Revisiting Multithreading
	Getting started
	The multithreaded application
	Makefile

	Other applications
	Summary

	Chapter 9: Multithreading Implementation on the Processor and OS
	Introduction to POSIX pthreads
	Creating threads with the pthreads library
	How to compile and run

	Does C++ support threads natively?
	Defining processes and threads
	Tasks in x86 (32-bit and 64-bit)
	Process state in ARM

	The stack
	Defining multithreading
	Flynn's taxonomy
	Symmetric versus asymmetric multiprocessing
	Loosely and tightly coupled multiprocessing
	Combining multiprocessing with multithreading
	Multithreading types
	Temporal multithreading
	Simultaneous multithreading (SMT)

	Schedulers
	Tracing the demo application
	Mutual exclusion implementations
	Hardware
	Software

	Concurrency
	How to compile and run
	Asynchronous message passing using the concurrency support library
	How to compile and run

	Concurrency tasks
	How to compile and run

	Using tasks with a thread support library
	How to compile and run

	Binding the thread procedure and its input to packaged_task
	How to compile and run

	Exception handling with the concurrency library
	How to compile and run
	What did you learn?

	Summary

	Chapter 10: C++ Multithreading APIs
	API overview
	POSIX threads
	Windows support
	PThreads thread management
	Mutexes
	Condition variables
	Synchronization
	Semaphores
	Thread local storage (TLC)

	Windows threads
	Thread management
	Advanced management
	Synchronization
	Condition variables
	Thread local storage

	Boost
	Thread class
	Thread pool
	Thread local storage (TLS)
	Synchronization

	C++ threads
	Putting it together
	Summary

	Chapter 11: Thread Synchronization and Communication
	Safety first
	The scheduler
	High-level view
	Implementation
	Request class
	Worker class

	Dispatcher
	Makefile
	Output

	Sharing data
	Using r/w-locks
	Using shared pointers

	Summary

	Chapter 12: Native C++ Threads and Primitives
	The STL threading API
	Boost.Thread API

	The 2011 standard
	C++14
	Thread class
	Basic use
	Passing parameters
	Return value
	Moving threads
	Thread ID
	Sleeping
	Yield
	Detach
	Swap

	Mutex
	Basic use
	Non-blocking locking

	Timed mutex
	Lock guard
	Unique lock
	Scoped lock
	Recursive mutex
	Recursive timed mutex

	Shared mutex
	Shared timed mutex

	Condition variable
	Condition_variable_any
	Notify all at thread exit

	Future
	Promise
	Shared future

	Packaged_task
	Async
	Launch policy

	Atomics
	Summary

	Chapter 13: Debugging Multithreaded Code
	When to start debugging
	The humble debugger
	GDB
	Debugging multithreaded code
	Breakpoints
	Back traces

	Dynamic analysis tools
	Limitations
	Alternatives
	Memcheck
	Basic use
	Error types
	Illegal read / illegal write errors
	Use of uninitialized values
	Uninitialized or unaddressable system call values
	Illegal frees
	Mismatched deallocation
	Overlapping source and destination
	Fishy argument values
	Memory leak detection

	Helgrind
	Basic use

	Misuse of the pthreads API
	Lock order problems
	Data races
	DRD
	Basic use
	Features
	C++11 threads support

	Summary

	Chapter 14: Best Practices
	Proper multithreading
	Wrongful expectations - deadlocks
	Being careless - data races
	Mutexes aren't magic
	Locks are fancy mutexes
	Threads versus the future
	Static order of initialization
	Summary

	Chapter 15: Atomic Operations - Working with the Hardware
	Atomic operations
	Visual C++
	GCC
	Memory order

	Other compilers
	C++11 atomics
	Example
	Non-class functions
	Example
	Atomic flag
	Memory order
	Relaxed ordering
	Release-acquire ordering
	Release-consume ordering
	Sequentially-consistent ordering
	Volatile keyword

	Summary

	Chapter 16: Multithreading with Distributed Computing
	Distributed computing, in a nutshell
	MPI
	Implementations
	Using MPI

	Compiling MPI applications
	The cluster hardware

	Installing Open MPI
	Linux and BSDs
	Windows

	Distributing jobs across nodes
	Setting up an MPI node
	Creating the MPI host file
	Running the job
	Using a cluster scheduler

	MPI communication
	MPI data types
	Custom types

	Basic communication
	Advanced communication
	Broadcasting
	Scattering and gathering

	MPI versus threads
	Potential issues
	Summary

	Chapter 17: Multithreading with GPGPU
	The GPGPU processing model
	Implementations
	OpenCL
	Common OpenCL applications
	OpenCL versions
	OpenCL 1.0
	OpenCL 1.1
	OpenCL 1.2
	OpenCL 2.0
	OpenCL 2.1
	OpenCL 2.2

	Setting up a development environment
	Linux
	Windows
	OS X/MacOS

	A basic OpenCL application
	GPU memory management
	GPGPU and multithreading
	Latency

	Potential issues
	Debugging GPGPU applications
	Summary

	Module 3: C++17 STL Cookbook
	Chapter 18: The New C++17 Features
	Introduction
	Using structured bindings to unpack bundled return values
	How to do it...
	How it works...
	There's more...

	Limiting variable scopes to if and switch statements
	How to do it...
	How it works...
	There's more...

	Profiting from the new bracket initializer rules
	How to do it...
	How it works...

	Letting the constructor automatically deduce the resulting template class type
	How to do it...
	How it works...
	There's more...

	Simplifying compile time decisions with constexpr-if
	How to do it...
	How it works...
	There's more...

	Enabling header-only libraries with inline variables
	How it's done...
	How it works...
	There's more...

	Implementing handy helper functions with fold expressions
	How to do it...
	How it works...
	There's more...
	Match ranges against individual items
	Check if multiple insertions into a set are successful
	Check if all the parameters are within a certain range
	Pushing multiple items into a vector

	Chapter 19: STL Containers
	Using the erase-remove idiom on std::vector
	How to do it...
	How it works...
	There's more...

	Deleting items from an unsorted std::vector in O(1) time
	How to do it...
	How it works...

	Accessing std::vector instances the fast or the safe way
	How to do it...
	How it works...
	There's more...

	Keeping std::vector instances sorted
	How to do it...
	How it works...
	There's more...

	Inserting items efficiently and conditionally into std::map
	How to do it...
	How it works...
	There's more...

	Knowing the new insertion hint semantics of std::map::insert
	How to do it...
	How it works...
	There's more...

	Efficiently modifying the keys of std::map items
	How to do it...
	How it works...
	There's more...

	Using std::unordered_map with custom types
	How to do it...
	How it works...

	Filtering duplicates from user input and printing them in alphabetical order with std::set
	How to do it...
	How it works...
	std::istream_iterator
	std::inserter
	Putting it together

	Implementing a simple RPN calculator with std::stack
	How to do it...
	How it works...
	Stack handling
	Distinguishing operands from operations from user input
	Selecting and applying the right mathematical operation

	There's more...

	Implementing a word frequency counter with std::map
	How to do it...
	How it works...

	Implement a writing style helper tool for finding very long sentences in text with std::multimap
	How to do it...
	How it works...
	 There's more...

	Implementing a personal to-do list using std::priority_queue
	How to do it...
	How it works...

	Chapter 20: Iterators
	Introduction
	Iterator categories
	Input iterator
	Forward iterator
	Bidirectional iterator
	Random access iterator
	Contiguous iterator
	Output iterator
	Mutable iterator

	Building your own iterable range
	How to do it...
	How it works...

	Making your own iterators compatible with STL iterator categories
	How to do it...
	How it works...
	There's more...

	Using iterator adapters to fill generic data structures
	How to do it...
	How it works...
	std::back_insert_iterator
	std::front_insert_iterator
	std::insert_iterator
	std::istream_iterator
	std::ostream_iterator

	Implementing algorithms in terms of iterators
	How to do it...
	There's more...

	Iterating the other way around using reverse iterator adapters
	How to do it...
	How it works...

	Terminating iterations over ranges with iterator sentinels
	How to do it...

	Automatically checking iterator code with checked iterators
	How to do it...
	How it works...
	There's more...

	Building your own zip iterator adapter
	How to do it...
	There's more...
	Ranges library

	Chapter 21: Lambda Expressions
	Introduction
	Defining functions on the run using lambda expressions
	How to do it...
	How it works...
	Capture list
	mutable (optional)
	constexpr (optional)
	exception attr (optional)
	return type (optional)

	Adding polymorphy by wrapping lambdas into std::function
	How to do it...
	How it works...

	Composing functions by concatenation
	How to do it...
	How it works...

	Creating complex predicates with logical conjunction
	How to do it...
	There's more...

	Calling multiple functions with the same input
	How to do it...
	How it works...

	Implementing transform_if using std::accumulate and lambdas
	How to do it...
	How it works...

	Generating cartesian product pairs of any input at compile time
	How to do it...
	How it works...

	Chapter 22: STL Algorithm Basics
	Introduction
	Copying items from containers to other containers
	How to do it...
	How it works...

	Sorting containers
	How to do it...
	How it works...

	Removing specific items from containers
	How to do it...
	How it works...

	Transforming the contents of containers
	How to do it...
	How it works...

	Finding items in ordered and unordered vectors
	How to do it...
	How it works...

	Limiting the values of a vector to a specific numeric range with std::clamp
	How to do it...
	How it works...

	Locating patterns in strings with std::search and choosing the optimal implementation
	How to do it...
	How it works...

	Sampling large vectors
	How to do it...
	How it works...

	Generating permutations of input sequences
	How to do it...
	How it works...

	Implementing a dictionary merging tool
	How to do it...
	How it works...

	Chapter 23: Advanced Use of STL Algorithms
	Introduction
	Implementing a trie class using STL algorithms
	How to do it...
	How it works...

	Implementing a search input suggestion generator with tries
	How to do it...
	How it works...
	There's more...

	Implementing the Fourier transform formula with STL numeric algorithms
	How to do it...
	How it works...

	Calculating the error sum of two vectors
	How to do it...
	How it works...

	Implementing an ASCII Mandelbrot renderer
	How to do it...
	How it works...

	Building our own algorithm - split
	How to do it...
	How it works...
	There's more...

	Composing useful algorithms from standard algorithms - gather
	How to do it...
	How it works...

	Removing consecutive whitespace between words
	How to do it...
	How it works...

	Compressing and decompressing strings
	How to do it...
	How it works...
	There's more...

	Chapter 24: Strings, Stream Classes, and Regular Expressions
	Introduction
	Creating, concatenating, and transforming strings
	How to do it...
	How it works...

	Trimming whitespace from the beginning and end of strings
	How to do it...
	How it works...

	Getting the comfort of std::string without the cost of constructing std::string objects
	How to do it...
	How it works...

	Reading values from user input
	How to do it...
	How it works...

	Counting all words in a file
	How to do it...
	How it works...

	Formatting your output with I/O stream manipulators
	How to do it...
	How it works...

	Initializing complex objects from file input
	How to do it...
	How it works...

	Filling containers from std::istream iterators
	How to do it...
	How it works...

	Generic printing with std::ostream iterators
	How to do it...
	How it works...

	Redirecting output to files for specific code sections
	How to do it...
	How it works...

	Creating custom string classes by inheriting from std::char_traits
	How to do it...
	How it works...

	Tokenizing input with the regular expression library
	How to do it...
	How it works...

	Comfortably pretty printing numbers differently per context on the fly
	How to do it...

	Catching readable exceptions from std::iostream errors
	How to do it...
	How it works...

	Chapter 25: Utility Classes
	Introduction
	Converting between different time units using std::ratio
	How to do it...
	How it works...
	There's more...

	Converting between absolute and relative times with std::chrono
	How to do it...
	How it works...

	Safely signalizing failure with std::optional
	How to do it...
	How it works...

	Applying functions on tuples
	How to do it...
	How it works...

	Quickly composing data structures with std::tuple
	How to do it...
	How it works...
	operator<< for tuples
	The zip function for tuples

	Replacing void* with std::any for more type safety
	How to do it...
	How it works...

	Storing different types with std::variant
	How to do it...
	How it works...

	Automatically handling resources with std::unique_ptr
	How to do it...
	How it works...

	Automatically handling shared heap memory with std::shared_ptr
	How to do it...
	How it works...
	There's more...

	Dealing with weak pointers to shared objects
	How to do it...
	How it works...

	Simplifying resource handling of legacy APIs with smart pointers
	How to do it...
	How it works...

	Sharing different member values of the same object
	How to do it...
	How it works...

	Generating random numbers and choosing the right random number engine
	How to do it...
	How it works...

	Generating random numbers and letting the STL shape specific distributions
	How to do it...
	How it works...

	Chapter 26: Parallelism and Concurrency
	Introduction
	Automatically parallelizing code that uses standard algorithms
	How to do it...
	How it works...
	Which STL algorithms can we parallelize this way?
	How do those execution policies work?
	What does vectorization mean?

	Putting a program to sleep for specific amounts of time
	How to do it...
	How it works...

	Starting and stopping threads
	How to do it...
	How it works...

	Performing exception safe shared locking with std::unique_lock and std::shared_lock
	How to do it...
	How it works...
	Mutex classes
	Lock classes

	Avoiding deadlocks with std::scoped_lock
	How to do it...
	How it works...

	Synchronizing concurrent std::cout use
	How to do it...
	How it works...

	Safely postponing initialization with std::call_once
	How to do it...
	How it works...

	Pushing the execution of tasks into the background using std::async
	How to do it...
	How it works...
	There's more...

	Implementing the producer/consumer idiom with std::condition_variable
	How to do it...
	How it works...

	Implementing the multiple producers/consumers idiom with std::condition_variable
	How to do it...
	How it works...

	Parallelizing the ASCII Mandelbrot renderer using std::async
	How to do it...
	How it works...

	Implementing a tiny automatic parallelization library with std::future
	How to do it...
	How it works...

	Chapter 27: Filesystem
	Introduction
	Implementing a path normalizer
	How to do it...
	How it works...
	There's more...

	Getting canonical file paths from relative paths
	How to do it...
	How it works...

	Listing all files in directories
	How to do it...
	How it works...

	Implementing a grep-like text search tool
	How to do it...
	How it works...
	There's more...

	Implementing an automatic file renamer
	How to do it...

	Implementing a disk usage counter
	How to do it...
	How it works...

	Calculating statistics about file types
	How to do it...

	Implementing a tool that reduces folder size by substituting duplicates with symlinks
	How to do it...
	How it works...
	There's more...

	Bibliography
	Index

