
Design Patterns
in Modern C++20

Reusable Approaches for Object-
Oriented Software Design
—
Second Edition
—
Dmitri Nesteruk

Design Patterns in
Modern C++20

Reusable Approaches
for Object-Oriented

Software Design

Second Edition

Dmitri Nesteruk

Design Patterns in Modern C++20: Reusable Approaches for

Object-Oriented Software Design

ISBN-13 (pbk): 978-1-4842-7294-7		 ISBN-13 (electronic): 978-1-4842-7295-4
https://doi.org/10.1007/978-1-4842-7295-4

Copyright © 2022 by Dmitri Nesteruk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Clark van der Beken on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484272947. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dmitri Nesteruk
St. Petersburg, Russia

https://doi.org/10.1007/978-1-4842-7295-4

iii

About the Author��xi

About the Technical Reviewers��xiii

Table of Contents

Chapter 1: �Introduction���1

Who This Book Is For��2

On Code Examples���3

On Developer Tools���4

Preface to the Second Edition��5

Important Concepts��6

Curiously Recurring Template Pattern��6

Mixin Inheritance��8

Old-Fashioned Static Polymorphism��8

Static Polymorphism with Concepts���11

Properties���12

The SOLID Design Principles��14

Single Responsibility Principle���15

Open-Closed Principle��17

Liskov Substitution Principle��26

Interface Segregation Principle��29

Dependency Inversion Principle���33

iv

Part I: Creational Patterns��41

Chapter 2: �Builder��43

Scenario���43

Simple Builder��45

Fluent Builder���46

Communicating Intent��47

Groovy-Style Builder��49

Composite Builder��52

Builder Parameter��57

Builder Inheritance���59

Summary���65

Chapter 3: �Factories��67

Scenario���67

Factory Method��70

Factory���72

Factory Methods and Polymorphism���75

Nested Factory���76

Abstract Factory���78

Functional Factory���82

Object Tracking��83

Summary���85

Chapter 4: �Prototype��87

Object Construction��87

Ordinary Duplication��88

Duplication via Copy Construction���89

Virtual Constructor���92

Table of Contents

v

Serialization���94

Prototype Factory���98

Summary���99

Chapter 5: �Singleton��101

Singleton As Global Object���102

Classic Implementation��103

Thread Safety���105

The Trouble with Singleton��107

Per-Thread Singleton��111

Ambient Context���114

Singletons and Inversion of Control��118

Monostate���119

Summary��120

Part II: Structural Patterns���121

Chapter 6: �Adapter��123

Scenario���123

Adapter��126

Adapter Temporaries��128

Bidirectional Converter��131

Summary���133

Chapter 7: �Bridge���135

The Pimpl Idiom���135

Bridge��138

Summary���141

Table of Contents

vi

Chapter 8: �Composite��143

Array-Backed Properties��145

Grouping Graphic Objects��148

Neural Networks��150

Shrink-Wrapping the Composite��155

Conceptual Improvements��155

Concepts and Global Operators��157

Composite Specification��159

Summary���161

Chapter 9: �Decorator���163

Scenario���163

Dynamic Decorator��166

Static Decorator���169

Functional Decorator��172

Summary���177

Chapter 10: �Façade��179

Magic Square Generator��180

Fine-Tuning���184

Building a Trading Terminal��185

An Advanced Terminal��187

Where’s the Façade?��189

Summary���190

Chapter 11: �Flyweight���191

User Names��191

Boost.Flyweight���194

String Ranges��195

Table of Contents

vii

Naïve Approach��195

Flyweight Implementation��197

Summary���200

Chapter 12: �Proxy��201

Smart Pointers���201

Property Proxy��202

Virtual Proxy���204

Communication Proxy��207

Value Proxy��210

Summary���214

Part III: Behavioral Patterns���215

Chapter 13: �Chain of Responsibility��217

Scenario���217

Pointer Chain��218

Broker Chain��222

Summary���226

Chapter 14: �Command���229

Scenario���229

Implementing the Command Pattern���230

Undo Operations��232

Composite Command���236

Command Query Separation��240

Summary���243

Table of Contents

viii

Chapter 15: �Interpreter��245

Parsing Integral Numbers��246

Numeric Expression Evaluator���247

Lexing���248

Parsing���251

Using the Lexer and Parser��255

Parsing with Boost.Spirit���255

Abstract Syntax Tree���256

Parser���257

Printer���259

Summary���260

Chapter 16: �Iterator���261

Iterators in the Standard Library��261

Traversing a Binary Tree���264

Iteration with Coroutines��269

Summary���271

Chapter 17: �Mediator���273

Chat Room���273

Mediator with Events���279

Service Bus As Mediator��283

Summary���284

Chapter 18: �Memento��287

Bank Account���287

Undo and Redo���289

Memory Considerations���293

Using Memento for Interop��294

Summary���296

Table of Contents

ix

Chapter 19: �Null Object��297

Scenario���297

Null Object��299

shared_ptr Is Not a Null Object��300

Design Improvements��301

Implicit Null Object���301

Interaction with Other Patterns��303

Summary���304

Chapter 20: �Observer���305

Property Observers��305

Observer<T>��306

Observable<T>��308

Connecting Observers and Observables��310

Dependency Problems���311

Unsubscription and Thread Safety���312

Reentrancy���314

Observer with Boost.Signals2��317

Views���319

Summary���321

Chapter 21: �State���323

State-Driven State Transitions���324

Handmade State Machine��328

Switch-Based State Machine���332

State Machines with Boost.MSM���335

Summary���339

Table of Contents

x

Chapter 22: �Strategy��341

Dynamic Strategy���343

Static Strategy���348

Summary���349

Chapter 23: �Template Method��351

Game Simulation��351

Functional Template Method��354

Summary���356

Chapter 24: �Visitor���357

Intrusive Visitor��358

Reflective Printer���360

What Is Dispatch?��363

Classic Visitor���365

Implementing an Additional Visitor���368

Acyclic Visitor���370

Variants and std::visit���374

Summary���376

�Index��377

Table of Contents

xi

About the Author

Dmitri Nesteruk is a quantitative analyst,

developer, course and book author, and

an occasional conference speaker. His

professional interests lie in software

development and integration practices in the

areas of computation, quantitative finance,

and algorithmic trading. His technological

interests include C# and C++ programming

as well as high-performance computing using

technologies such as CUDA and FPGAs. He

has been a C# MVP since 2009.  

xiii

About the Technical Reviewers

David Pazmino has been developing software applications for 20 years in

Fortune 100 companies. He is an experienced developer in front-end and

back-end development who specializes in developing machine learning

models for financial applications. David has developed many applications

in C++, STL, and ATL for companies using Microsoft technologies.

He currently develops applications in Scala and Python for deep

learning neural networks. David has a degree from Cornell University, a

masters from Pace University in Computer Science, and a masters from

Northwestern in Predictive Analytics.

Massimo Nardone has more than 25 years of experience in security, web/

mobile development, cloud, and IT architecture. His true IT passions are

security and Android. He has been programming and teaching how to

program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL

for more than 20 years. He holds a Master of Science degree in Computing

Science from the University of Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT executive,

project manager, software engineer, research engineer, chief security

architect, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA

architect for many years. His technical skills include security, Android,

cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile development,

MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,

Django CMS, Jekyll, Scratch, and more.

xiv

He worked as visiting lecturer and supervisor for exercises at the

Networking Laboratory of the Helsinki University of Technology (Aalto

University). He holds four international patents (PKI, SIP, SAML, and Proxy

areas). He is currently working for Cognizant as head of cyber security

and CISO to help both internally and externally with clients in areas of

information and cyber security, like strategy, planning, processes, policies,

procedures, governance, awareness, and so forth. In June 2017 he became

a permanent member of the ISACA Finland Board.

Massimo has reviewed more than 45 IT books for different publishing

companies and is the co-author of Pro Spring Security: Securing Spring

Framework 5 and Boot 2-based Java Applications (Apress, 2019), Beginning

EJB in Java EE 8 (Apress, 2018), Pro JPA 2 in Java EE 8 (Apress, 2018), and

Pro Android Games (Apress, 2015).

About the Technical Reviewers

1© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_1

CHAPTER 1

Introduction
The topic of design patterns sounds dry, academically dull, and, in

all honesty, done to death in almost every programming language

imaginable – including programming languages such as JavaScript which

aren’t even properly OOP! So why another book on it? I know that if

you’re reading this, you probably have a limited amount of time to decide

whether this book is worth the investment.

The main reason why this book exists is that C++ is “great again.” After

a long period of stagnation, it’s now evolving and growing, and, despite

the fact that it has to contend with backward C compatibility, good things

are happening – they may not always happen at the pace we’d all like, but

this is a byproduct of the way the evolution of the C++ language standard is

structured.

Now, on to design patterns – we shouldn’t forget that the original

Design Patterns book1 was published with examples in C++ and Smalltalk.

Since then, plenty of programming languages have incorporated

design patterns directly into the language: for example, C# directly

incorporated the Observer pattern with its built-in support for events

(and the corresponding event keyword). C++ has not done the same, at

least not on the syntax level. That said, the introduction of types such as

std::function sure made things a lot simpler for many programming

scenarios.

1 �Erich Gamma et al. (1994), Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley

https://doi.org/10.1007/978-1-4842-7295-4_1

2

Design patterns are also a fun investigation of how a particular

problem can be solved in many different ways, with varying degrees of

technical sophistication and different sorts of trade-offs. Some patterns are

more or less essential and unavoidable, whereas other patterns are more of

a scientific curiosity (but nevertheless will be discussed in this book, since

I’m a completionist).

Readers should be aware that comprehensive solutions to certain

problems (e.g., the Observer pattern) typically result in overengineering,

that is, the creation of structures that are far more complicated than is

necessary for most typical scenarios. While overengineering is a lot of fun

(hey, you get to solve the problem and impress your coworkers), it’s often

not feasible in the real world of time and budgeting constraints.

�Who This Book Is For
This book is intended to be a modern-day update to the classic GoF book,

targeting specifically the C++ programming language. I mean, how many

of you are writing Smalltalk out there? Not many, that would be my guess.2

The goal of this book is to investigate how we can apply Modern C++

(the latest versions of C++ currently available) to the implementations of

classic design patterns. At the same time, it’s also an attempt to flesh out

any new patterns and approaches that could be useful to C++ developers.

Finally, in some places, this book is quite simply a technology demo for

Modern C++, showcasing how some of its latest features (e.g., concepts)

make difficult problems a lot easier to solve.

2 �To be fair, the Pharo variety of Smalltalk has some interesting ideas that I have
since borrowed and adapted to other programming languages. One idea, which I
managed to successfully transplant, is the idea of input-output matching. It works
like this: you give the software desired input and output values, say, abc and 3,
and a piece of software uses combinatorial analysis to derive the expression
x.length() for taking you from one to another.

Chapter 1 Introduction

3

�On Code Examples
The examples in this book are all suitable for putting into production, but a

few simplifications have been made in order to aid readability:

•	 Quite often, you’ll find me using a struct instead of a

class in order to avoid writing the public keyword in

too many places.

•	 I will avoid the std:: prefix, as it can hurt readability,

especially in places where code density is high. If

I’m using string, you can be sure I’m referring to

std::string.

•	 I will avoid adding virtual destructors, whereas, in real

life, it might make sense to add them in certain places.

•	 In some cases, I create and pass parameters by value to

avoid the proliferation of shared_ptr/make_shared/etc.

Smart pointers add another level of complexity, and

their integration into the design patterns presented in

this book is often left as an exercise for the reader.

•	 I will sometimes omit code elements that would

otherwise be necessary for feature-completing a type

(e.g., move constructors) as those take up too much

space. Feature-completing a type is quite often a

separate challenge, somewhat unrelated to the topic at

hand.

•	 There will be plenty of cases where I will omit const,

whereas, under normal circumstances, it would

actually make sense to use it. Const-correctness quite

often causes a split and a doubling of the API surface,

something that doesn’t work well in book format.

Chapter 1 Introduction

4

You should be aware that most of the examples leverage Modern C++

(C++ 14, 17, 20, and beyond) and generally use the latest C++ language

features that are available to developers at the time of writing. For example,

you won’t find many function signatures ending in -> decltype(...)

when C++14 lets us automatically infer the return type. None of the

examples target a particular compiler, but if something doesn’t work with

your chosen compiler,3 you’ll need to find workarounds.

At certain points in time, I will be referring to other programming

languages such as C# or Kotlin. It is often interesting to note how designers

of other languages have implemented a particular feature. C++ is no

stranger to borrowing generally available ideas from other languages:

for example, the introduction of auto and type inference on variable

declarations and return types is present in many other languages.

�On Developer Tools
The code samples in this book were written to work with Modern C++

compilers, such as Clang, GCC, and MSVC. I make the general assumption

that you are using the latest compiler version that is available and thus will

use the latest and greatest language features that are available to me. In

some cases, the advanced language examples will need to be downgraded

for earlier compilers; in others, it might not work out. Naturally, if I use any

experimental language features, they might not work in all compilers until

they catch up to the necessary level of C++ language support.

As far as developer tools are concerned, this book does not focus

on them specifically, so, provided you have an up-to-date compiler, you

should follow the examples just fine: most of them are self-contained

3 �Plenty of compilers, such as the Intel C++ Compiler, do not make it their goal
to support all features of a particular C++ standard as quickly as possible.
Nevertheless, these compilers do have their own loyal followings because they
shine in areas other than feature-completeness such as optimization.

Chapter 1 Introduction

5

single .cpp files, but some examples that involve complex dependencies

or static initialization are spread across several files. Regardless, I’d like

to take this opportunity to remind you that quality developer tools such

as CLion or ReSharper C++ greatly improve the development experience.

For a tiny amount of money that you invest, you get a wealth of additional

functionality that directly translates to improvements in coding speed and

the quality of the code produced.

�Preface to the Second Edition
The world is changing. Some of those changes, such as the pandemic that

we’re currently experiencing worldwide, are a bit frightening. On the other

hand, some changes are good: the C++20 standard has finally been ratified,

and C++20 language features such as modules and concepts are making an

appearance in popular C++ compilers.

We are, of course, far from having a complete implementation in any

given compiler. For example, even if we are able to use modules in our own

code, we still need to wait in order to have modularized implementations

of the Standard Library, Boost, and other popular libraries. But what

we have right now is already changing the way design patterns are

implemented. For example, if, in the past, we wanted to ensure a template

argument implemented some interface, we would use a static_assert.

But now, with C++20, we can leverage concepts, which are reusable

(avoiding cut and paste) and self-descriptive.

With the never-ending evolution of C++, we can all feel as if we were

on a never-ending journey that keeps getting better and better. The only

challenge is to learn how to leverage all the new functionality, a challenge

for which I hope this book can become a useful tool. Enjoy!

Chapter 1 Introduction

6

�Important Concepts
Before we begin, I wanted to briefly mention some of the key concepts

of the C++ world that will be referenced in this book. None of them are

particularly advanced, and most of them will be familiar to experienced

C++ developers.

�Curiously Recurring Template Pattern
I don’t know if it qualifies to be listed as a separate design pattern, but the

curiously recurring template pattern (CRTP) is certainly a pattern of sorts

in the C++ world. The idea is simple: an inheritor passes itself as a template

argument to its base class.

struct Foo : SomeBase<Foo>

{

 ...

}

Why would one ever do that? Well, one reason is to be able to access a

typed this pointer inside a base class implementation.

For example, suppose every single inheritor of SomeBase implements

a begin()/end() pair required for iteration. How can you iterate the

object inside a member of SomeBase, rather than inside the inheritor

class? Intuition suggests that you cannot, because SomeBase itself does not

provide a begin()/end() interface. But if you use CRTP, a derived class can

pass information about itself to the base class:

struct MyClass : SomeBase<MyClass>

{

 class iterator {

Chapter 1 Introduction

7

 // your iterator defined here

 }

 iterator begin() const { ... }

 iterator end() const { ... }

}

This means that, inside the base class, you can cast this to a derived

class type:

template <typename Derived>

struct SomeBase

{

 void foo()

 {

 for (auto& item : *static_cast<Derived*>(this))

 {

 ...

 }

 }

}

When calling foo() on an instance of MyClass, this pointer gets

cast from SomeBase* to MyClass*. We then dereference the pointer

and iterate on it using a range-based for loop which, of course, calls

MyClass::begin() and MyClass::end() behind the scenes.

For a concrete example of this approach, check out Chapter 8,

“Composite.”

Chapter 1 Introduction

8

�Mixin Inheritance
In C++, a class can be defined to inherit from its own template argument,

that is:

template <typename T> struct Mixin : T

{

 ...

}

This approach is called mixin inheritance and allows hierarchical

composition of types. For example, you can make an instance of

Foo<Bar<Baz>> x; that implements the traits of all three classes, without

having to actually construct a brand new FooBarBaz type.

Mixin inheritance is particularly useful together with Concepts

because it allows us to put constraints on the type our mixin inherits from

and lets us deterministically use the base type features without relying on

compile-time errors to tell us we are doing something wrong.

For a concrete example of this approach, check out Chapter 9,

“Decorator.”

�Old-Fashioned Static Polymorphism
Imagine you want to build an alert system that notifies someone about

an event by different means: email, SMS, Telegram, etc. Under the CRTP

paradigm, you could implement a base Notifier class similar to the

following:

template <typename TImpl>

class Notifier {

public:

Chapter 1 Introduction

9

 void AlertSMS(string_view msg)

 {

 impl().SendAlertSMS(msg);

 }

 void AlertEmail(string_view msg)

 {

 impl().SendAlertEmail(msg);

 }

private:

 TImpl& impl() { return static_cast<TImpl&>(*this); }

 friend TImpl;

};

Since TImpl is a template argument, we can call methods on it with

impunity, knowing that, even though we’re not explicitly specifying

that TImpl must inherit from Notifier (we’ll do this soon enough), the

compiler will check that the methods AlertSMS() and AlertEmail() do

actually exist.

This allows us to define a method which sends an alert on all channels:

template <typename TImpl>

void AlertAllChannels(Notifier<TImpl>& notifier, string_view

msg)

{

 notifier.AlertEmail(msg);

 notifier.AlertSMS(msg);

}

Chapter 1 Introduction

10

Now all that remains is to construct implementations of Notifier. For

example, you can build a no-op (see the Null Object pattern) notifier for

testing:

struct TestNotifier: public Notifier<TestNotifier>

{

 void SendAlertSMS(string_view msg){}

 void SendAlertEmail(string_view msg){}

};

And you can use this to do absolutely nothing!

TestNotifier tn;

AlertAllChannels(tn, "testing!"); // just testing!

While this is a workable approach, it has deficiencies, namely:

•	 We end up having two parallel APIs, that is,

AlertSMS()/SendAlertSMS(). We cannot call those

methods the same because then one would hide

another (and your IDE will complain).

•	 The whole impl() thing is weird and feels unnecessary.

You’d expect the alert methods to be virtual in base

class and overriding in the implementing class.

•	 There’s no explicit enforcement that TImpl has any

particular interface; we try to call things to check them

at runtime, but the implementer is not informed about

what we call and where. Concepts can help with this.

Chapter 1 Introduction

11

�Static Polymorphism with Concepts
The solution here is to introduce a concept that requires the presence of

relevant member functions:

template <typename TImpl>

concept IsANotifier = requires(TImpl impl) {

 impl.AlertSMS(string_view{});

 impl.AlertEmail(string_view{});

};

Now, we no longer need the base Notifier class: we can simply

construct the AlertAllChannels method that expects some type that has

all the AlertXxx() methods:

template <IsANotifier TImpl>

void AlertAllChannels(TImpl& impl, string_view msg)

{

 impl.AlertSMS(msg);

 impl.AlertEmail(msg);

}

In this function, the TImpl template argument is required to support

the IsANotifier concept. We can make a class that conforms to this

requirement:

struct TestNotifier

{

 void AlertSMS(string_view msg) {}

 void AlertEmail(string_view msg) {}

};

Chapter 1 Introduction

12

And continue to use it as before. As you can see, we avoid the notion of

a base class altogether.

�Properties
Properties are a topic worth mentioning even though they are not part

of the C++ standard. Despite the fact that properties have already proven

themselves over and over in other programming languages, many C++

programming purists continue to believe that they have no business being

part of C++ and are best implemented as a library solution – something

that doesn’t work particularly well, to be honest.

A property is nothing more than a (typically private) field and a

combination of a getter and a setter. In standard C++, a property looks as

follows:

class Person

{

 int age;

public:

 int get_age() const { return age; }

 void set_age(int value) { age = value; }

};

Plenty of languages (e.g., C#, Kotlin) internalize the notion of a

property by baking it directly into the programming language. While C++

has not done this (and is unlikely to do so anytime in the future), there is

a non-standard declaration specifier called property that you can use in

most compilers (MSVC, Clang, Intel):

class Person

{

Chapter 1 Introduction

13

 int age_;

public:

 int get_age() const { return age_; }

 void set_age(int value) { age_ = value; }

 __declspec(property(get=get_age, put=set_age)) int age;

};

What happens here is, within __declspec(property(...)) field

declaration, you specify the getter and the setter using the keywords get

and put. This then becomes a virtual field – it doesn’t result in any memory

allocations, but attempts to access this field or write to it are replaced by

the compiler with calls to the getter and setter, respectively.

This can be used as follows:

Person p;

p.age = 20; // calls p.set_age(20)

Those not fond of C++ language extensions typically expose properties

as a combination of getter and setter methods, often by keeping the field

private and exposing a pair of identically named (overloaded) methods

with the same name as the field they expose:

class Person

{

 int _age;

public:

 int age() const { return _age; }

 void age(int value) { _age = value; }

}

Chapter 1 Introduction

14

Why is this discussion relevant? In and of themselves, getters and

setters may seem useless: if you have a field that you want people to

modify, expose it as public and be done with it! If, however, you want to

perform additional actions – for example, notifying subscribers that a field

has changed – then the setter is exactly the place where some of the code

should go. This is what we’ll encounter when we talk about the Observer

design pattern.

�The SOLID Design Principles
SOLID is an acronym which stands for the following design principles (and

their abbreviations):

•	 Single Responsibility Principle (SRP)

•	 Open-Closed Principle (OCP)

•	 Liskov Substitution Principle (LSP)

•	 Interface Segregation Principle (ISP)

•	 Dependency Inversion Principle (DIP)

These principles were introduced by Robert C. Martin in the early

2000s – in fact, they are just a selection of five principles out of dozens that

are expressed in Robert’s books and his blog.4 These five particular topics

permeate the discussion of patterns and software design in general, so

before we dive into design patterns (I know you’re all eager to see them),

we’re going to do a brief recap of what the SOLID principles are all about.

4 https://blog.cleancoder.com/

Chapter 1 Introduction

https://blog.cleancoder.com/

15

�Single Responsibility Principle
Suppose you decide to keep a journal of your most intimate thoughts. The

journal has a title and a number of entries. You could model it as follows:

struct Journal

{

 string title;

 vector<string> entries;

 explicit Journal(const string& title) : title{title} {}

};

Now, you could add functionality for adding an entry to the journal,

prefixed by the entry’s ordinal number in the journal. This is easy:

void Journal::add(const string& entry)

{

 static int count = 1;

 entries.push_back(boost::lexical_cast<string>(count++)

 + ": " + entry);

}

And the journal is now usable as

Journal j{"Dear Diary"};

j.add("I cried today");

j.add("I ate a bug");

It makes sense to have this function as part of the Journal class

because adding a journal entry is something the journal actually needs to

do. It is the journal’s responsibility to keep entries, so anything related to

that is fair game.

Chapter 1 Introduction

16

Now suppose you decide to make the journal persist by saving it in a

file. You add this code to the Journal class:

void Journal::save(const string& filename)

{

 ofstream ofs(filename);

 for (auto& s : entries)

 ofs << s << endl;

}

This approach is problematic. The journal’s responsibility is to keep

journal entries, not to write them to disk. If you add the disk-writing

functionality to Journal and similar classes, any change in the approach

to persistence (say, you decide to write to the cloud instead of disk) would

require lots of tiny changes in each of the affected classes.

I want to pause here and make a point: a situation that leads us to

having to do lots of tiny changes in lots of classes, whether related (as in a

hierarchy) or not, is typically a code smell – an indication that something’s

not quite right. Now, it really depends on the situation: if we’re renaming

a symbol that’s being used in a hundred places, I’d argue that’s generally

OK because ReSharper, CLion, or whatever IDE we use will actually let

us perform a refactoring and have the change propagate everywhere. But

when we need to completely rework an interface… well, this can be a very

painful process!

We therefore state that persistence is a separate concern, one that is

better expressed in a separate class, for example:

struct PersistenceManager

{

 static void save(const Journal& j, const string& filename)

Chapter 1 Introduction

17

 {

 ofstream ofs(filename);

 for (auto& s : j.entries)

 ofs << s << endl;

 }

};

And this is precisely what we mean by Single Responsibility: each class

has only one responsibility and therefore has only one reason to change.

Journal would need to change only if there’s something more that needs

to be done with respect to storage of entries – for example, we might

want each entry prefixed by a timestamp, so we would change the add()

function to do exactly that. On the other hand, if we wanted to change the

persistence mechanic, this would be changed in PersistenceManager.

An extreme example of an anti-pattern5 that violates the SRP is called

a God Object. A God Object is a huge class that tries to handle as many

concerns as possible, becoming a monolithic monstrosity that is very

difficult to work with.

Luckily for us, God Objects are easy to recognize and, thanks to

source control systems (just count the number of member functions), the

responsible developer can be quickly identified and adequately punished.

�Open-Closed Principle
Suppose we have an (entirely hypothetical) range of products in a

database. Each product has a color and size and is defined as

5 �An anti-pattern is a design pattern that also, unfortunately, shows up in code
often enough to be recognized globally. The difference between a pattern and an
anti-pattern is that anti-patterns are common examples of bad design, resulting
in code that’s difficult to understand, maintain, and refactor.

Chapter 1 Introduction

18

enum class Color { Red, Green, Blue };

enum class Size { Small, Medium, Large };

struct Product

{

 string name;

 Color color;

 Size size;

};

Now, we want to provide certain filtering capabilities for a given set of

products. We make a filter similar to the following:

struct ProductFilter

{

 typedef vector<Product*> Items;

};

Now, to support filtering products by color, we define a member

function to do exactly that:

ProductFilter::Items ProductFilter::by_color(

 Items items, Color color)

{

 Items result;

 for (auto& i : items)

 if (i->color == color)

 result.push_back(i);

 return result;

}

Chapter 1 Introduction

19

Our current approach of filtering items by color is fine. Our code goes

into production, but, sometime later, the boss comes in and asks us to

implement filtering by size too. So, we jump back into ProductFilter.cpp,

add the following code, and recompile:

ProductFilter::Items ProductFilter::by_size(

 Items items, Size size)

{

 Items result;

 for (auto& i : items)

 if (i->size == size)

 result.push_back(i);

 return result;

}

This feels like outright duplication, doesn’t it? Why don’t we just write

a general method that takes a predicate (a bool-returning std::function)?

Well, one reason could be that different forms of filtering can be done in

different ways: for example, some record types might be indexed and need

to be searched in a specific way; some data types may be amenable to

search on a GPU while others are not.

Our code goes into production, but, once again, the boss comes back

and tells us that now there’s a need to search by both color and size. So

what are we to do but add another function?

ProductFilter::Items ProductFilter::by_color_and_size(

 Items items, Size size, Color color)

{

 Items result;

Chapter 1 Introduction

20

 for (auto& i : items)

 if (i->size == size && i->color == color)

 result.push_back(i);

 return result;

}

What we want from this scenario is to enforce the Open-Closed

Principle that states that a type is open for extension but closed for

modification. In other words, we want filtering that is extensible

(perhaps in a different compilation unit) without having to modify it (and

recompiling something that already works and may have been shipped to

clients).

How can we achieve this? Well, first of all, we conceptually separate

(SRP!) our filtering process into two parts: a filter (a process which takes

all items and only returns some) and a specification (the definition of a

predicate to apply to a data element).

We can make a very simple definition of a specification interface:

template <typename T> struct Specification

{

 virtual bool is_satisfied(T* item) = 0;

};

In the preceding, type T is whatever we choose it to be: it can certainly

be a Product, but it can also be something else. This makes the entire

approach reusable.

Next, we need a way of filtering based on Specification<T>. This is

done by defining, you guessed it, a Filter<T>:

template <typename T> struct Filter

Chapter 1 Introduction

21

{

 virtual vector<T*> filter(

 vector<T*> items,

 Specification<T>& spec) const = 0;

};

Again, all we are doing is specifying the signature for a function called

filter which takes all the items and a specification and returns all items

that conform to the specification. There is an assumption that the items

are stored as a vector<T*>, but in reality, you could pass filter() either

a pair of iterators or some custom-made interface designed specifically

for going through a collection. Regrettably, the C++ language has failed to

standardize the notion of an enumeration or collection, something that

exists in other programming languages (e.g., .NET’s IEnumerable).

Based on the preceding, the implementation of an improved filter is

simple:

struct BetterFilter : Filter<Product>

{

 vector<Product*> filter(

 vector<Product*> items,

 Specification<Product>& spec) override

 {

 vector<Product*> result;

 for (auto& p : items)

 if (spec.is_satisfied(p))

 result.push_back(p);

 return result;

 }

};

Chapter 1 Introduction

22

You can think of a Specification<T> that’s being passed in as a

strongly typed equivalent of an std::function that is constrained only to a

certain number of possible filter specifications.

Now, here’s the easy part. To make a color filter, you make a

ColorSpecification:

struct ColorSpecification : Specification<Product>

{

 Color color;

 explicit ColorSpecification(const Color color) : color{color} {}

 bool is_satisfied(Product* item) override {

 return item->color == color;

 }

};

Armed with this specification, and given a list of products, we can now

filter them as follows:

Product apple{ "Apple", Color::Green, Size::Small };

Product tree{ "Tree", Color::Green, Size::Large };

Product house{ "House", Color::Blue, Size::Large };

vector<Product*> all{ &apple, &tree, &house };

BetterFilter bf;

ColorSpecification green(Color::Green);

auto green_things = bf.filter(all, green);

for (auto& x : green_things)

 cout << x->name << " is green";

Chapter 1 Introduction

23

This code finds “Apple” and “Tree” because they are both green. Now,

the only thing we haven’t implemented so far is searching for size and

color (or, indeed, explained how you would search for size or color, or

mix different criteria). The answer is that you simply make a specification

combinator. For example, for the logical AND, you can make it as follows:6

template <typename T> struct AndSpecification :

Specification<T>

{

 Specification<T>& first;

 Specification<T>& second;

 AndSpecification(Specification<T>& first,

 Specification<T>& second)

 : first{first}, second{second} {}

 bool is_satisfied(T* item) override

 {

 return first.is_satisfied(item) && second.is_satisfied(item);

 }

};

And now, you are free to create composite conditions on the basis of

simpler Specifications. Reusing the green specification we made earlier,

finding something green and big is now as simple as

SizeSpecification large(Size::Large);

ColorSpecification green(Color::Green);

AndSpecification<Product> green_and_large{ large, green };

6 �The choice to store polymorphic references here is completely arbitrary and is a
bit of a trade-off. It’s easy to implement, but you lose an ability to store by value.
One alternative is to use smart pointers, but this makes the implementation a lot
more complicated.

Chapter 1 Introduction

24

auto big_green_things = bf.filter(all, green_and_big);

for (auto& x : big_green_things)

 cout << x->name << " is large and green";

// Tree is large and green

That was a lot of code and quite a few data structures that we’ve

created – take a look at Figure 1-1 for a visual illustration!

Plenty of embellishments are, of course, possible. For example, thanks

to the power of C++, you can simply introduce an operator && for two

Specification<T> objects, thereby making the process of filtering by two

(or more!) criteria extremely simple:

template <typename T> struct Specification

{

 virtual bool is_satisfied(T* item) = 0;

Figure 1-1.  Specification pattern class diagram

Chapter 1 Introduction

25

 AndSpecification<T> operator &&(Specification& other)

 {

 return AndSpecification<T>(*this, other);

 }

};

Of course, post hoc addition of an operator violates OCP, so as an

alternative, you – or the client using Specification – can add an operator

on the global scope later on:

template <typename T> AndSpecification<T> operator&&

 �(const Specification<T>& first,

 const Specification<T>& second)

{

 return { first, second };

}

This can shorten our example just a little:

SizeSpecification large(Size::Large);

ColorSpecification green(Color::Green);

auto big_green_things = bf.filter(all, green && large);

for (auto& x : big_green_things)

 cout << x->name << " is large and green" << endl;

Sadly, you still cannot write a one-liner similar to the following:

auto green_and_big =

 ColorSpecification(Color::Green)

 && SizeSpecification(Size::Large);

Chapter 1 Introduction

26

because these temporaries will die and the constructor does not prolong

their lifetime. There are ways to make this work, but this is outside the

scope of our present discussion.

So let’s recap what the OCP is and how this example enforces it.

Basically, OCP states that you shouldn’t need to go back to code you’ve

already written and tested, and change it. And that’s exactly the guideline

we’re following here! We made Specification<T> and Filter<T> and,

from then on, all we have to do is implement either of the interfaces

(without modifying the interfaces themselves) to implement new filtering

mechanics. This is what is meant by “open for extension, closed for

modification.”

�Liskov Substitution Principle
The Liskov Substitution Principle, named after Barbara Liskov, states that if

an interface takes an object of type Parent, it should equally take an object

of type Child without anything breaking. Let’s take a look at a situation

where LSP is broken.

Here’s a rectangle; it has width and height and a bunch of getters and

setters calculating the area:

class Rectangle

{

protected:

 int width, height;

public:

 Rectangle(const int width, const int height)

 : width{width}, height{height} { }

 int get_width() const { return width; }

 virtual void set_width(const int width) { this->width = width; }

Chapter 1 Introduction

27

 int get_height() const { return height; }

 �virtual void set_height(const int height) { this->height =

height; }

 int area() const { return width * height; }

};

Now let’s suppose we make a special kind of Rectangle called a

Square. This object overrides the setters to set both width and height:

class Square : public Rectangle

{

public:

 Square(int size): Rectangle(size,size) {}

 void set_width(const int width) override {

 this->width = height = width;

 }

 void set_height(const int height) override {

 this->height = width = height;

 }

};

This approach is evil. You cannot see it yet, because it looks very

innocent indeed: the setters simply set both dimensions, what could

possibly go wrong? Well, we can easily construct a function taking a

Rectangle that would blow up when taking a square:

void process(Rectangle& r)

{

 int w = r.get_width();

 r.set_height(10);

Chapter 1 Introduction

28

 cout << "expected area = " << (w * 10)

 << ", got " << r.area() << endl;

}

This function takes the formula Area = Width × Height as an

invariant. It gets the width, sets the height, and rightly expects the product

to be equal to the calculated area. But calling this function with a Square

yields a mismatch:

Square s{5};

process(s); // expected area = 50, got 25

The takeaway from this example (which I admit is a little contrived)

is that process() breaks the LSP by being thoroughly unable to take a

derived type Square instead of the base type Rectangle. If you feed it

a Rectangle, everything is fine, so it might take some time before the

problem shows up in your tests (or in production – hopefully not!).

What’s the solution? Well, there are many. Personally, I’d argue that

the type Square shouldn’t even exist: instead, we can make a Factory (see

Chapter 3, “Factories”) that creates both rectangles and squares:

struct RectangleFactory

{

 static Rectangle create_rectangle(int w, int h);

 static Rectangle create_square(int size);

};

You might also want a way of detecting that a Rectangle is, in fact, a

square:

Chapter 1 Introduction

29

bool Rectangle::is_square() const

{

 return width == height;

}

The nuclear option, in this case, would be to throw an exception in

Square’s set_width()/set_height(), stating that these operations are

unsupported and you should be using set_size() instead. This, however,

violates the principle of least surprise, since you would expect a call to

set_width() to make a meaningful change… am I right?

�Interface Segregation Principle
Oh-kay, here is another contrived example that is nonetheless suitable

for illustrating the problem. Suppose you decide to define a multifunction

printer: a device that can print, scan, and also fax documents. So you

define it like so:

struct MyFavouritePrinter /* : IMachine */

{

 void print(vector<Document*> docs) override;

 void fax(vector<Document*> docs) override;

 void scan(vector<Document*> docs) override;

};

This is fine. Now, suppose you decide to define an interface that needs

to be implemented by everyone who also plans to make a multifunction

printer. So you could use the Extract Interface function in your favorite IDE

and you’ll get something like the following:

struct IMachine

{

 virtual void print(vector<Document*> docs) = 0;

Chapter 1 Introduction

30

 virtual void fax(vector<Document*> docs) = 0;

 virtual void scan(vector<Document*> docs) = 0;

};

This is a problem. The reason it is a problem is that some implementer

of this interface might not need scanning or faxing, just printing. And yet,

you are forcing them to implement those extra features: sure, they can all

be no-op, but why bother with this?

So what the Interface Segregation Principle suggests is you split up

interfaces so that implementers can pick and choose depending on their

needs. Since printing and scanning are different operations (e.g., a scanner

cannot print), we define separate interfaces for these:

struct IPrinter

{

 virtual void print(vector<Document*> docs) = 0;

};

struct IScanner

{

 virtual void scan(vector<Document*> docs) = 0;

};

Then, a printer or a scanner can just implement the required

functionality:

struct Printer : IPrinter

{

 void print(vector<Document*> docs) override;

};

Chapter 1 Introduction

31

struct Scanner : IScanner

{

 void scan(vector<Document*> docs) override;

};

Now, if we really want an IMachine interface, we can define it as a

combination of the aforementioned interfaces:

struct IMachine: IPrinter, IScanner /* IFax and so on */

{

};

And when you come to implement this interface in your concrete

multifunction device, this is the interface to use. For example, you could

use simple delegation to ensure that Machine reuses the functionality

provided by a particular IPrinter and IScanner:

struct Machine : IMachine

{

 IPrinter& printer;

 IScanner& scanner;

 Machine(IPrinter& printer, IScanner& scanner)

 : printer{printer},

 scanner{scanner}

 {

 }

 void print(vector<Document*> docs) override {

 printer.print(docs);

 }

Chapter 1 Introduction

32

 void scan(vector<Document*> docs) override

 {

 scanner.scan(docs);

 }

};

In much the same vein, if you introduced an additional interface (say,

IFax), you could incorporate it as part of the decorator. The entire set of

classes is shown in Figure 1-2.

Figure 1-2.  Interface Segregation Principle class diagram

Chapter 1 Introduction

33

So, just to recap, the idea here is to segregate parts of a complicated

interface into separate interfaces so as to avoid forcing implementers to

implement functionality that they do not really need. Anytime when you

write a plug-in for some complicated application and you’re given an

interface with 20 confusing functions to implement with various no-ops

and return nullptr, more likely than not the API authors have violated

the ISP.

�Dependency Inversion Principle
The original definition of the Dependency Inversion Principle states the

following:7

	 A.	 High-level modules should not depend on low-level

modules. Both should depend on abstractions.

What this statement essentially means is that if you’re

interested in logging, your reporting component should

not depend on a concrete ConsoleLogger, but can

depend on an ILogger interface. In this case, we are

considering the reporting component to be high level

(closer to the business domain), whereas logging, being a

fundamental concern (kind of like file I/O or threading,

but not quite), is considered a low-level module.

	 B.	 Abstractions should not depend on details. Details

should depend on abstractions.

This is, once again, restating that depending on

interfaces or base classes is better than depending on

concrete types. Hopefully, the truth of this statement

7 �Martin, Robert C. (2003), Agile Software Development, Principles, Patterns, and
Practices, Prentice Hall, pp. 127–131

Chapter 1 Introduction

34

is obvious, because such an approach supports better

configurability and testability, especially when you’re

using a good framework to handle these dependencies

for you.

So, now, the main question is: how do we satisfy all of these requirements?

It sure is a lot more work, because now you need to explicitly state that, for

example, a Reporting component depends on an ILogger interface. The

way you would express it is perhaps as follows:

class Reporting

{

 ILogger& logger;

public:

 Reporting(const ILogger& logger) : logger{logger} {}

 void prepare_report()

 {

 logger.log_info("Preparing the report");

 ...

 }

};

}

The problem is that, to initialize this class, we would need to

explicitly call Reporting{ConsoleLogger{}} or something similar. And

what if Reporting is dependent upon five different interfaces? What if

ConsoleLogger has dependencies of its own? We can manage this by

writing a lot of code, but there is a better way.

Chapter 1 Introduction

35

The modern, trendy, fashionable way of doing this is to use dependency

injection: this essentially means using a library such as Boost.DI8 to

automatically satisfy the dependency requirements for a particular

component.

Let’s consider an example of a car which has an engine, but also needs

to write to a log. As it stands, we can say that a car depends on both of these

things. To start with, we may define an engine as

struct Engine

{

 float volume = 5;

 int horse_power = 400;

 friend ostream& operator<< (ostream& os, const Engine& obj)

 {

 return os

 << "volume: " << obj.volume

 << " horse_power: " << obj.horse_power;

 } // thanks, ReSharper!

};

Now, it’s up to us to decide whether or not we want to extract an

IEngine interface and feed it to the car. Maybe we do, maybe we don’t,

and this is typically a design decision. If you envision having a hierarchy of

engines, or you foresee needing a NullEngine (see the Null Object pattern)

for testing purposes, then yes, you do need to abstract away the interfaces.

At any rate, we also want logging, and since this can be done in many

ways (console, email, SMS, pigeon mail, etc.), we probably want to have an

ILogger interface

8 �At the moment, Boost.DI is not yet part of Boost proper; it is part of the boost-
experimental GitHub repository.

Chapter 1 Introduction

36

struct ILogger

{

 virtual ~ILogger() {}

 virtual void Log(const string& s) = 0;

};

as well as some sort of concrete implementation:

struct ConsoleLogger : ILogger

{

 ConsoleLogger() {}

 void Log(const string& s) override

 {

 cout << "LOG: " << s.c_str() << endl;

 }

};

Now, the car we’re about to define depends on both the engine and

the logging component. We need both, but it’s really up to us how to

store them: we can use a pointer, reference, a unique_ptr/shared_ptr,

or something else. We shall define both of the dependent components as

constructor parameters:

struct Car

{

 unique_ptr<Engine> engine;

 shared_ptr<ILogger> logger;

 Car(unique_ptr<Engine> engine,

 const shared_ptr<ILogger>& logger)

 : engine{move(engine)},

Chapter 1 Introduction

37

 logger{logger}

 {

 logger->Log("making a car");

 }

 friend ostream& operator<<(ostream& os, const Car& obj)

 {

 return os << "car with engine: " << *obj.engine;

 }

};

Now, you’re probably expecting to see make_unique/make_shared

calls as we initialize the Car. But we won’t do any of that. Instead, we’ll

use Boost.DI. First of all, we’ll define a binding that binds ILogger to

ConsoleLogger; what this means is, basically, “any time someone asks for

an ILogger give them a ConsoleLogger”:

auto injector = di::make_injector(

 di::bind<ILogger>().to<ConsoleLogger>()

);

And now that we’ve configured the injector, we can use it to create a

car:

auto car = injector.create<shared_ptr<Car>>();

Chapter 1 Introduction

38

This creates a shared_ptr<Car> that points to a fully initialized Car

object, which is exactly what we wanted. The great thing about this

approach is that to change the type of logger being used, we can change it

in a single place (the bind call) and every place where an ILogger appears

can now be using some other logging component that we provide. This

approach also helps us with unit testing and allows us to use stubs (or the

Null Object pattern) instead of mocks.

Alright, with the understanding of the SOLID design principles, we are

now ready to take a look at the design patterns themselves!

Chapter 1 Introduction

PART I

Creational Patterns
Even in the absence of Creational patterns, the act of creating an object in

C++ is fraught with peril. Should we create it on the stack or on the heap?

Should we use a raw pointer, a unique or shared pointer, or something

else entirely? Finally, is creating objects manually still kosher, or should

we instead defer the creation of all key aspects of our infrastructure to

specialized constructs such as Factories (more on them in just a moment!)

or Inversion of Control containers?

Whichever option you choose, creation of objects can still be a chore,

especially if the construction process is complicated or needs to abide

by special rules. So that’s where Creational patterns come from: they are

common approaches related to the creation of objects.

Just in case you are rusty on your basic C++, or smart pointers in

general, here’s a brief recap of the way objects are created in C++:

•	 Stack allocation creates an object on the stack. The

object will be cleaned up automatically at the end of

the scope (you can make an artificial scope anywhere

with a pair of curly braces). The object will call the

destructor at the very end of the scope provided

you assign this object to a variable; if you don’t,

the destructor will be called immediately. (This can

ruin some implementations of the Memento design

pattern, as we’ll discover later.)

40

•	 Heap allocation using a raw pointer puts the object

on the heap (a.k.a. the free store). Foo* foo = new

Foo creates a new instance of Foo and leaves open the

question of who is in charge of cleaning up the object.

The GSL1 owner<T> tries to introduce some idea of

“ownership” of a raw pointer but doesn’t involve any

cleanup code – you still have to write it yourself.

•	 A unique pointer (unique_ptr) can take a heap-

allocated pointer and manage it so that it’s cleaned

up automatically when there is no longer a reference

to it. A unique pointer really is unique: you cannot

make copies of it, and you cannot pass it into another

function without losing control of the original.

•	 A shared pointer (shared_ptr) takes a heap-allocated

pointer and manages it, but allows the sharing of this

pointer around in code. The owned pointer is only

cleaned up when there are no components holding on

to the pointer.

•	 A weak pointer (weak_ptr) is a smart but non-owning

pointer, holding a weak reference to an object managed

by a shared_ptr. You need to convert it to a shared_ptr

in order to be able to actually access the referenced

object. One of its uses is to break circular references of

shared_ptrs.

Most design patterns do not take a particular opinion on how an object

should be created and returned, leaving it up to a developer. For example,

1 �The Guideline Support Library (https://github.com/Microsoft/GSL) is a set of
functions and types that are suggested by the C++ Core Guidelines. This library
includes many types, among them the owner<T> type used to indicate ownership
of a pointer.

Part I Creational Patterns

https://github.com/Microsoft/GSL

41

a factory might construct objects as unique_ptrs, but when you need a

very large number of these objects, raw pointers might be a better choice.

Now, let us discuss how to return objects from functions. If you are

returning anything bigger than a word-sized value, there are several ways

of returning something from a function. The first, and most obvious, is

Foo make_foo(int n)

{

 return Foo{n};

}

It may appear to you that, in this example, a full copy of Foo is being

made, thereby wasting valuable resources. But it isn’t always so. Say you

define Foo as

struct Foo

{

 Foo(int n) {}

 Foo(const Foo&) { cout << "COPY CONSTRUCTOR!!!\n"; }

};

You will find that the copy constructor may be called anywhere from

zero to two times: the exact number of calls depends on the compiler.

Return value optimization (RVO) is a compiler feature that specifically

prevents those extra copies being made (since they don’t really affect

how the code behaves). In complex scenarios, however, you really cannot

rely on RVO happening, but when it comes to choosing whether or not to

optimize return values, I prefer to follow Knuth.2

2 �Donald Knuth, famous for his The Art of Computer Programming series of books,
once wrote a paper which included the claim that “premature optimization is the
root of all evil.” C++ makes premature optimization very tempting, but you should
resist the temptation until (a) you understand exactly what you’re doing and (b)
you actually experience a performance effect that requires optimization.

Part I Creational Patterns

42

Another approach is, of course, to return a smart pointer such as a

unique_ptr:

unique_ptr<Foo> make_foo(int n)

{

 return make_unique<Foo>(n);

}

This is very safe, but also opinionated: you’ve chosen the smart pointer

for the user. What if they don’t like smart pointers? What if they would

prefer a shared_ptr instead? This means they would have to perform

additional conversions and manipulations.

The third and final option is to use a raw pointer, perhaps in tandem

with GSL’s owner<T>. This way, you are not enforcing the cleanup of the

allocated object, but you are sending a very clear message that it is the

caller’s responsibility:

owner<Foo*> make_foo(int n)

{

 return new Foo(n);

}

You can consider this approach as giving the user a hint: I’m returning

a pointer and it’s up to you to take care of the pointer from now on. Of

course, now the caller of make_foo() needs to handle the pointer: either by

correctly calling delete or by wrapping it in a unique_ptr or shared_ptr.

Keep in mind that owner<T> says nothing about copying.

All of these options are equally valid, and it’s difficult to say which

option is best.

Part I Creational Patterns

43© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_2

CHAPTER 2

Builder
The Builder pattern is concerned with the creation of complicated objects,

that is, objects that cannot be built up in a single-line constructor call.

These types of objects may themselves be composed of other objects and

may involve less than obvious logic, necessitating a separate component

specifically dedicated to object construction.

I suppose it’s worth noting beforehand that, while I said the Builder is

concerned with complicated objects, we’ll be taking a look at a rather trivial

example. This is done purely for the purposes of space optimization, so

that the complexity of the domain logic doesn’t interfere with the reader’s

ability to appreciate the actual implementation of the pattern.

�Scenario
Let’s imagine that we are building a component that renders web pages.

To start with, we shall output a simple unordered list with two items

containing the words hello and world. A very simplistic implementation

might look as follows:

string words[] = { "hello", "world" };

ostringstream oss;

oss << "";

for (auto w : words)

https://doi.org/10.1007/978-1-4842-7295-4_2

44

 oss << " " << w << "";

oss << "";

printf(oss.str().c_str());

This does in fact give us what we want, but the approach is not very

flexible. How would we change this from a bulleted list to a numbered list?

How can we add another item after the list has been created? Clearly, in

this rigid scheme of ours, this is not possible.

We might, therefore, go the OOP route and define an HtmlElement

class to store information about each tag:

struct HtmlElement

{

 string name, text;

 vector<HtmlElement> elements;

 HtmlElement() {}

 HtmlElement(const string& name, const string& text)

 : name(name), text(text) { }

 string str(int indent = 0) const

 {

 // pretty-print the contents

 // (implementation omitted)

 }

}

Armed with this approach, we can now create our list in a more

sensible fashion:

string words[] = { "hello", "world" };

HtmlElement list{"ul", ""};

Chapter 2 Builder

45

for (auto w : words)

 list.elements.emplace_back("li", w);

printf(list.str().c_str());

This works fine and gives us a more controllable, OOP-driven

representation of a list of items. But the process of building up

each HtmlElement is not very convenient, and we can improve it by

implementing the Builder pattern.

�Simple Builder
The Builder pattern simply tries to outsource the piecewise construction

of an object into a separate class. Our first attempt might yield something

like this:

struct HtmlBuilder

{

 HtmlElement root;

 HtmlBuilder(string root_name) { root.name = root_name; }

 void add_child(string child_name, string child_text)

 {

 root.elements.emplace_back(child_name, child_text);

 }

 string str() { return root.str(); }

};

Chapter 2 Builder

46

This is a dedicated component for building up an HTML element. The

add_child() method is intended to be used to add additional children to the

current element, each child being a name-text pair. It can be used as follows:

HtmlBuilder builder{ "ul" };

builder.add_child("li", "hello");

builder.add_child("li", "world");

cout << builder.str() << endl;

You’ll notice that, at the moment, the add_child() function is void-

returning. There are many things we could use the return value for, but one

of the most common uses of the return value is to help us build a fluent

interface.

�Fluent Builder
Let’s change our definition of add_child() to the following:

HtmlBuilder& add_child(string child_name, string child_text)

{

 root.elements.emplace_back(child_name, child_text);

 return *this;

}

By returning a reference to the builder itself, the builder calls can now

be chained. This is what’s called a fluent interface:

HtmlBuilder builder{ "ul" };

builder.add_child("li", "hello")

 .add_child("li", "world");

cout << builder.str() << endl;

Chapter 2 Builder

47

The choice of references or pointers is entirely up to you. If you want to

chain calls with the -> operator, you can define add_child() like this:

HtmlBuilder* add_child(string child_name, string child_text)

{

 root.elements.emplace_back(child_name, child_text);

 return this;

}

And then use it like this:

HtmlBuilder builder{"ul"};

builder->add_child("li", "hello")

 ->add_child("li", "world");

cout << builder << endl;

�Communicating Intent
We have a dedicated Builder implemented for an HTML element, but how

will the users of our classes know how to use it? One idea is to simply force

them to use the builder whenever they are constructing an object. Here’s

what you need to do:

struct HtmlElement

{

 string name;

 string text;

 vector<HtmlElement> elements;

 const size_t indent_size = 2;

Chapter 2 Builder

48

 static unique_ptr<HtmlBuilder> create(const string& root_name)

 {

 return make_unique<HtmlBuilder>(root_name);

 }

protected: // hide all constructors

 HtmlElement() {}

 HtmlElement(const string& name, const string& text)

 : name{name}, text{text}

 {

 }

};

Our approach is two-pronged. First, we have hidden all constructors,

so they are no longer available. We have, however, created a factory

method (see Chapter 3, “Factories”) for creating a builder right out of the

HtmlElement. And it’s a static method too. Here’s how one would go about

using it:

auto builder = HtmlElement::create("ul");

builder.add_child("li", "hello").add_child("li", "world");

cout << builder.str() << endl;

But let’s not forget that our ultimate goal is to build an HtmlElement,

not just a builder for it! So the icing on the cake can be an implementation

of an implicit conversion operator that yield the final value:

struct HtmlBuilder

{

 operator HtmlElement() const { return root; }

 HtmlElement root;

 // other operations omitted

};

Chapter 2 Builder

49

Anyways, the addition of the operator allows us to write the following:

HtmlElement e = HtmlElement::build("ul")

 .add_child("li", "hello")

 .add_child("li", "world");

cout << e.str() << endl;

Regrettably, there is no way of explicitly telling other users to use the

API in this manner. Hopefully the restriction on constructors coupled

with the presence of the static build() function gets the user to use the

builder, but, in addition to the operator, it might make sense to also add a

corresponding build() function to HtmlBuilder itself:

HtmlElement HtmlBuilder::build() const

{

 return root;

}

�Groovy-Style Builder
This example is a minor digression from dedicated builders since there

is really no builder in sight. It is simply an alternative means of object

construction.

Programming languages such as Groovy, Kotlin, and others all try

to show off how great they are at building DSLs by supporting syntactic

constructs that make the process better. But why should C++ be any

different? Thanks to initializer lists, we can effectively build an HTML-

compatible DSL using ordinary classes.

Chapter 2 Builder

50

First of all, we’ll define an HTML tag:

struct Tag

{

 string name;

 string text;

 vector<Tag> children;

 vector<pair<string, string>> attributes;

 friend ostream& operator<<(ostream& os, const Tag& tag)

 {

 // implementation omitted

 }

};

So far, we have a Tag that can store its name, text, children (inner tags),

and even HTML attributes. We also have some pretty-printing code that’s

too boring to show here.

Now we can give it a couple of protected constructors (because we

don’t want anyone to actually instantiate this directly). Our previous

experiments have taught us that we have at least two cases:

•	 A tag initialized by name and text (e.g., a list item)

•	 A tag initialized by name and a collection of children

That second case is more interesting; we’ll use a parameter of type

vector:

struct Tag

{

 ...

protected:

Chapter 2 Builder

51

 Tag(const string& name, const string& text)

 : name{name}, text{text} {}

 Tag(const string& name, const vector<Tag>& children)

 : name{name}, children{children} {}

};

Now we can inherit from this Tag class, but only for valid HTML tags

(thereby constraining our DSL). Let’s define two tags: one for a paragraph

and another for an image:

struct P : Tag

{

 explicit P(const string& text)

 : Tag{"p", text} {}

 P(initializer_list<Tag> children)

 : Tag("p", children) {}

};

struct IMG : Tag

{

 explicit IMG(const string& url)

 : Tag{"img", ""}

 {

 attributes.emplace_back({"src", url});

 }

};

These constructors further constrain our API. A paragraph, according

to these constructors, can only contain either text or a set of children.

An image, on the other hand, can contain no other tag, but must have an

attribute called img with the provided address.

Chapter 2 Builder

52

And now, the prestige of this magic trick… thanks to uniform

initialization and all the constructors we’ve spawned, we can write the

following:

cout <<

 P {

 IMG { "http://pokemon.com/pikachu.png" }

 }

 << endl;

Isn’t this great? We’ve built a mini-DSL for paragraphs and images, and

this model can easily be extended to support other tags. And there’s no

add_child() call in sight!

�Composite Builder
We are going to finish off the discussion of Builder with an example where

multiple builders are used to build up a single object. Let’s say we decide

to record some information about a person:

class Person

{

 // address

 string street_address, post_code, city;

 // employment

 string company_name, position;

 int annual_income = 0;

 Person() {}

};

Chapter 2 Builder

53

There are two aspects to Person: their address and employment

information. What if we want to have separate builders for each – how

can we provide the most convenient API? To do this, we’ll construct a

composite builder. This construction is not trivial, so pay attention – even

though we want separate builders for job and address information, we’ll

spawn no less than four distinct classes. Figure 2-1 provides a visual

illustration of what we intend to build.

We’ll call the first class PersonBuilderBase:

class PersonBuilderBase

{

protected:

 Person& person;

 explicit PersonBuilderBase(Person& person)

 : person{person} {}

Figure 2-1.  Composite builder class diagram

Chapter 2 Builder

54

public:

 operator Person()

 {

 return move(person);

 }

 // builder facets

 PersonAddressBuilder lives() const;

 PersonJobBuilder works() const;

};

This is much more complicated than our simple Builder earlier, so let’s

discuss each member in turn:

•	 person is a reference to the object that’s being built.

This may seem rather strange, but it’s done deliberately

for the sub-builders. Note that the physical storage of

Person is not present in this class. This is critical! The

root class only holds a reference, not the constructed

object.

•	 The reference-assigning constructor is protected so

that only the inheritors (PersonAddressBuilder and

PersonJobBuilder) can use it.

•	 operator Person is a trick that we’ve done before. I’m

making the assumption that Person has a properly

defined move constructor – it’s easy to generate one in

an IDE.

•	 lives() and works() are functions returning builder

facets: those sub-builders that initialize the address

and employment information separately.

Chapter 2 Builder

55

Now, the only thing that is missing from this base class is the actual

object that’s being constructed. Where is it? Well, it’s actually stored in

an inheritor that we’ll call, ahem, PersonBuilder. That’s the class that we

expect people to actually use:

class PersonBuilder : public PersonBuilderBase

{

 Person p; // object being built

public:

 PersonBuilder() : PersonBuilderBase{p} {}

};

So this is where the built-up object is actually built. This class isn’t

meant to be inherited: it’s only meant as a utility that lets us initiate the

process of setting up a builder.1

To find out why exactly we ended up with different public and

protected constructors, let’s take a look at the implementation of one of the

sub-builders:

class PersonAddressBuilder : public PersonBuilderBase

{

 typedef PersonAddressBuilder self;

public:

 explicit PersonAddressBuilder(Person& person)

 : PersonBuilderBase{ person } {}

 self& at(string street_address)

 {

1 �This approach to separating the hierarchy into two separate base classes so as
to avoid duplication of Person instances was suggested by @CodedByATool on
GitHub – thanks for the idea!

Chapter 2 Builder

56

 person.street_address = street_address;

 return *this;

 }

 self& with_postcode(string post_code) { ... }

 self& in(string city) { ... }

};

As you can see, PersonAddressBuilder provides a fluent interface

for building up a person’s address. Note that it actually inherits from

PersonBuilderBase (meaning it has acquired the lives() and works()

member functions) and calls the base constructor, passing a reference. It

doesn’t inherit from PersonBuilder though – if it did, we’d create far too

many Person instances, and truth be told, we only really need one.

As you can guess, PersonJobBuilder is implemented in identical

fashion. Both of the classes, as well as PersonBuilder, are declared as

friend classes inside Person so as to be able to access its private members.

And now, the moment you’ve been waiting for: an example of these

builders in action:

Person p = Person::create()

 .lives().at("123 London Road")

 .with_postcode("SW1 1GB")

 .in("London")

 .works().at("PragmaSoft")

 .as_a("Consultant")

 .earning(10e6);

Can you see what’s happening here? We use the create() function to get

ourselves a builder and use the lives() function to get us a PersonAddress

Builder, but once we’re done initializing the address information, we simply

call works() and switch to using a PersonJobBuilder instead.

Chapter 2 Builder

57

When we’re done with the building process, we use the same trick as

before to get the object being built up as a Person. Note that once this is

done, the builder is unusable, since we moved the Person with move().

�Builder Parameter
As I have demonstrated, the only way to coerce the client to use a builder

rather than constructing the object directly is to make the object’s

constructors inaccessible. There are situations, however, when you want

to explicitly force the user to interact with the builder from the outset,

possibly concealing even the object they’re actually building.

For example, suppose you have an API for sending emails, where each

email is described internally like this:

class Email {

public:

 string from, to, subject, body;

 // possibly other members here

};

Note that I said internally here – you have no desire to let the user

interact with this class directly, perhaps because there is some additional

service information stored in it. Some parts of the email (e.g., the subject)

are optional, so the object doesn’t have to be fully specified.

You decide to implement a fluent builder that people will use for

constructing an Email behind the scenes. It may appear as follows:

class EmailBuilder{

 Email& email;

public:

 explicit EmailBuilder(Email &email) : email(email) {}

Chapter 2 Builder

58

 EmailBuilder& from(string from)

 {

 email.from = from;

 return *this;

 }

 // other fluent members here

};

Now, to coerce the client to use only the builder for sending emails,

you can implement a MailService as follows:

class MailService

{

 class Email { ... }; // keep it private

public:

 class EmailBuilder { ... };

 void send_email(function<void(EmailBuilder&)> builder)

 {

 Email email;

 EmailBuilder b{email};

 builder(b);

 send_email_impl(email);

 }

private:

 void send_email_impl(const Email& email)

 {

 // actually send the email

 }

};

Chapter 2 Builder

59

As you can see, the send_email() method that clients are meant to use

takes a function, not just a set of parameters or a prepackaged object. This

function takes an EmailBuilder reference and then is expected to use this

builder to construct the body of the message. Once that is done, we use the

internal mechanics of MailService to process a fully initialized Email.

You’ll notice there’s a clever bit of subterfuge here: instead of storing

a reference to an email internally, the builder gets that reference in the

constructor argument. The reason why we implement it this way is so that

EmailBuilder wouldn’t have to expose an Email publicly anywhere in its

API.

Here’s what the use of this API looks like from the client’s perspective:

MailService ms;

ms.send_email([&](auto& eb) {

 eb.from("foo@bar.com")

 .to("bar@baz.com")

 .subject("hello")

 .body("Hello, how are you?");

});

Long story short, the Builder Parameter approach forces the consumer

of your API to use a builder, whether they like it or not. This function-

based trick that we employ ensures that the client has a way of receiving an

already-initialized builder object.

�Builder Inheritance
One interesting problem that doesn’t just affect the fluent Builder but any

class with a fluent interface is the problem of inheritance. Is it possible

(and realistic) for a fluent builder to inherit from another fluent builder? It

is, but it’s not easy.

Chapter 2 Builder

60

Here is the problem. Suppose you start out with the following (very

trivial) object that you want to build up:

class Person

{

public:

 string name, position, date_of_birth;

 friend ostream& operator<<(ostream& os, const Person& obj)

 {

 return os

 << "name: " << obj.name

 << " position: " << obj.position

 << " date_of_birth: " << obj.date_of_birth;

 }

};

You make a base class Builder that facilitates the construction of

Person objects:

class PersonBuilder

{

protected:

 Person person;

public:

 [[nodiscard]] Person build() const {

 return person;

 }

};

Chapter 2 Builder

61

followed by a dedicated class for specifying the Person’s name:

class PersonInfoBuilder : public PersonBuilder

{

public:

 PersonInfoBuilder& called(const string& name)

 {

 person.name = name;

 return *this;

 }

};

This works, and there is absolutely no issue with it. But now,

suppose we decide to subclass PersonInfoBuilder so as to also specify

employment information. You might write something like this:

class PersonJobBuilder : public PersonInfoBuilder

{

public:

 PersonJobBuilder& works_as(const string& position)

 {

 person.position = position;

 return *this;

 }

};

Chapter 2 Builder

62

Sadly, we’ve now broken the fluent interface and rendered the entire

set-up unusable:

PersonJobBuilder pb;
auto person =
 pb.called("Dmitri")
 .works_as("Programmer") // will not compile
 .build();

Why won’t the preceding code compile? It’s simple: called() returns

*this, which is of type PersonInfoBuilder&; this simply doesn’t have the

works_as() method!

You might think the situation is hopeless, but it’s not: you can design

your fluent APIs with inheritance in mind, but it’s going to be a bit tricky.

Let’s take a look at what’s involved by redesigning the PersonInfoBuilder

class. Here is its new incarnation:

template <typename TSelf>
class PersonInfoBuilder : public PersonBuilder
{
public:

 TSelf& called(const string& name)
 {
 person.name = name;
 return static_cast<TSelf&>(*this);
 // alternatively, *static_cast<TSelf*>(this)
 }
};

Well, this is classic CRTP. We introduce a new template

argument, TSelf. We expect this argument to inherit from

PersonInfoBuilder<TSelf>. This may seem odd, particularly because

there isn’t a single concept or static_assert in sight – sadly, in C++ self-

referential checks like this are impossible because at a point where you

need to perform those, you don’t yet have a complete type.

Chapter 2 Builder

63

The biggest problem in fluent interface inheritance is being able to

return a *this reference that is typed to the class you’re currently in, even

if you are calling a fluent interface member of a base class. The only way

to efficiently propagate this is by having a template parameter (the TSelf)

that permeates the entire inheritance hierarchy.

To appreciate this, we need to look at PersonJobBuilder too:

template <typename TSelf>

class PersonJobBuilder :

 public PersonInfoBuilder<PersonJobBuilder<TSelf>>

{

public:

 TSelf& works_as(const string& position)

 {

 this->person.position = position;

 return static_cast<TSelf&>(*this);

 }

};

Look at the base class! It’s not just an ordinary PersonInfoBuilder as

before; instead, it’s a PersonInfoBuilder<PersonJobBuilder<TSelf>>!

So when we inherit from a PersonInfoBuilder, we set its TSelf to

PersonJobBuilder so that all of its fluent interfaces return the correct type,

not just the type of the owning class.

Does this make sense? If not, take your time and look through the

source code once again. Here, let’s test your understanding: suppose I

introduce another member called date_of_birth and a corresponding

PersonDateOfBirthBuilder, what class would it inherit from?

Chapter 2 Builder

64

If you answered

PersonInfoBuilder<PersonJobBuilder<PersonBirthDateBuilder<SELF>>>

then you are wrong, but I cannot blame you for trying. Think about it:

PersonJobBuilder is already a PersonInfoBuilder, so that information

doesn’t need to be restated explicitly as part of the inheritance type list.

Instead, you would define the builder as follows:

template <typename TSelf>

class PersonBirthDateBuilder

 : public PersonJobBuilder<PersonBirthDateBuilder<TSelf>>

{

public:

 TSelf& born_on(const string& date_of_birth)

 {

 this->person.date_of_birth = date_of_birth;

 return static_cast<TSelf&>(*this);

 }

};

The final question is this: how do we actually construct such a builder,

considering that it always takes a template argument? Well, I’m afraid

you now need a new type, not just a variable. So, somewhere, you need to

construct something like the following:

class MyBuilder : public PersonBirthDateBuilder<MyBuilder> {};

This is probably the most annoying implementation detail: the fact that

you need to have a non-template inheritor of a recursive template type in

order to use it.

Chapter 2 Builder

65

That said, putting everything together, you can now use the builder,

leveraging all methods in the inheritance chain:

MyBuilder mb;

auto me =

 mb.called("Dmitri")

 .works_as("Programmer")

 .born_on("01/01/1980")

 .build();

cout << me;

// name: Dmitri position: Programmer date_of_birth: 01/01/1980

�Summary
The goal of the Builder pattern is to define a component dedicated entirely

to piecewise construction of a complicated object or set of objects. We

have observed the following key characteristics of a Builder:

•	 Builders can have a fluent interface that is usable for

complicated construction using a single invocation

chain. To support this, builder functions should return

this or *this.

•	 To force the user of the API to use a Builder, we can

make the target object’s constructors inaccessible and

then define a static create() function that returns the

builder.

•	 A builder can be coerced to the object itself by defining

the appropriate operator.

Chapter 2 Builder

66

•	 Groovy-style builders are possible in C++ thanks to

uniform initializer syntax. This approach is very general

and allows for the creation of diverse DSLs.

•	 A single builder interface can expose multiple sub-

builders. Through clever use of inheritance and fluent

interfaces, one can jump from one builder to another

with ease.

Just to reiterate something that I’ve already mentioned, the use of

the Builder pattern makes sense when the construction of the object is a

nontrivial process. Simple objects that are unambiguously constructed

from a limited number of sensibly named constructor parameters

should probably use a constructor (or dependency injection) without

necessitating a Builder as such.

Chapter 2 Builder

67© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_3

CHAPTER 3

Factories
I had a problem and tried to use Java, now I have a
ProblemFactory.

—Old Java joke

This chapter covers two GoF patterns at the same time: factory method and

abstract factory. These patterns are closely related, so we’ll discuss them

together.

�Scenario
We’re going to consider a very simple model of building construction

where a building is made of walls. A wall is a structure consisting of

•	 Start and end 2D points defining the two bottom points

of the wall

•	 The wall elevation, that is, the height or the z coordinate

of the bottom of the wall relative to some baseline

•	 The height of the wall

https://doi.org/10.1007/978-1-4842-7295-4_3

68

We can model this wall as

class Wall

{

 Point2D start, end;

 int elevation, height;

public:

 Wall(Point2D start, Point2D end, int elevation, int height)

 �: start{start}, end{end}, elevation{elevation}, height

{height} { }

};

To make things a bit more complicated, we can expand this “thin” wall

into a SolidWall that has information about the width of the wall (i.e., how

thick it is) and what material it’s made of:

enum class Material

{

 brick,

 aerated_concrete,

 drywall

};

class SolidWall : public Wall

{

 int width;

 Material material;

public:

 SolidWall(Point2D start, Point2D end, int elevation,

 int height, int width, Material material)

 : Wall{start, end, elevation, height},

 width{width}, material{material} {}

};

Chapter 3 Factories

69

At the moment, both classes have public constructors that can be

called directly. However, in the case of SolidWall, let’s imagine that we

decide to introduce a few real-world constraints. For example, let’s assume

that

•	 Aerated concrete cannot be used for underground

construction.

•	 Minimum brick wall width is 120mm.1

These constraints need to be incorporated into the construction of a

SolidWall, but how? Since a constructor cannot return an arbitrary data

type, a reasonable way to validate input is to throw exceptions:

SolidWall::SolidWall(const Point2D start, const Point2D end,

 const int elevation,

 const int height, const int width,

 const Material material)

 : Wall{start, end, elevation, height},

 width{width}, material{material}

{

 if (elevation < 0 && material == Material::aerated_concrete)

 throw invalid_argument("elevation");

 if (width < 120 && material == Material::brick)

 throw invalid_argument("width");

}

There are many reasons why this might not be the best approach.

First, one might argue that validation is a separate concern, and if the

number and complexity of these checks increases, it feels wrong to include

them in the constructor. But the real problem is that we’re constrained

1 �This assumes that the standard brick size is 250×120×65mm. Standard brick
dimensions vary from country to country.

Chapter 3 Factories

70

to exceptions: we cannot, for example, simply refuse to construct a

SolidWall, returning some error code or null value.

In truth, if we’re using block materials, we cannot use arbitrary walls.

The problem is that factories which make those blocks produce a few

fixed sizes that are most useful to builders. As a consequence of this, we

ourselves can only build specific types of walls.

�Factory Method
Let’s remove the validation code from the constructor for now and make

the constructor protected. We can now add a pair of static methods that

would construct a SolidWall with predefined sizes and materials:

class SolidWall : public Wall

{

 int width;

 Material material;

protected:

 �SolidWall(const Point2D start, const Point2D end,

 const int elevation,

 const int height, const int width, const Material material);

public:

 static SolidWall create_main(Point2D start, Point2D end,

 int elevation, int height)

 {

 return SolidWall{start, end, elevation, height,

 375, Material::aerated_concrete};

 }

 st�atic unique_ptr<SolidWall> create_partition(Point2D start,

Point2D end,

 int elevation, int height)

Chapter 3 Factories

71

 {

 return make_unique<SolidWall>(start, end, elevation,

 height, 120, Material::brick);

 }

};

The manner in which an object is returned is entirely up to you. In

the case of the construction of a main wall (375mm aerated concrete),

we return the constructed object by value. In the second method, used

to create partition walls, we use 120mm bricks and return the wall as a

unique_ptr.

Both of the static methods are called factory methods. They coerce the

user to create these specific types of walls rather than just any arbitrary

type. A factory method would be used thus:

const auto main_wall = SolidWall::create_main({0,0}, {0,3000},

2700, 3000);

cout << main_wall << "\n";

// start: (0,0) end: (0,3000) elevation: 2700 height: 3000

// width: 375 material: aerated concrete

The choice to make the constructor protected is optional: you can keep

both some predefined factory methods and have a public fully-initializing

constructor if this model suits you. Alternatively, you can make it private if

you don’t plan on inheriting from this class.

Chapter 3 Factories

72

�Factory
You’ll notice that in the factory methods, we got rid of validation. Some

of it is no longer necessary, but we still cannot allow aerated concrete

underground. We could, for example, redefine the factory method like this:

static shared_ptr<SolidWall> create_main(Point2D start,

 Point2D end, int elevation, int height)

{

 if (elevation < 0) return {};

 re�turn make_shared<SolidWall>(start, end, elevation, height,

375, Material::aerated_concrete);

}

Note that the design choice here is to use a shared_ptr and return a

default value if the validation fails. This allows us to have a factory method

that can say no if some parameters are not satisfied:

// this will fail

const auto also_main_wall =

 SolidWall::create_main({0,0}, {10000,0}, -2000, 3000);

if (!also_main_wall)

 cout << "Main wall not created\n";

But imagine that interior walls cannot be created if they intersect other

interior walls. How would you implement this? You need to track every

partition wall created so far, but where would you store this information?

It doesn’t make sense to store it in SolidWall – particularly if similar

mechanisms also require polymorphic interactions.

Chapter 3 Factories

73

In order to solve this, we introduce a factory: a separate class whose

responsibility is to construct objects of a particular type. We can define

WallFactory as

class WallFactory

{

 static vector<weak_ptr<Wall>> walls;

public:

 static shared_ptr<SolidWall> create_main(Point2D start,

 Point2D end, int elevation, int height)

 {

 // as before

 }

 st�atic shared_ptr<SolidWall> create_partition(Point2D start,

Point2D end,

 int elevation, int height)

 {

 const auto this_wall =

 �new SolidWall{start, end, elevation, height, 120,

Material::brick};

 // ensure we don't intersect other walls

 for (const auto wall: walls)

 {

 if (auto p = wall.lock())

 {

 if (this_wall->intersects(*p))

 {

 delete this_wall;

 return {};

 }

 }

 }

Chapter 3 Factories

74

 shared_ptr<SolidWall> ptr(this_wall);

 walls.push_back(ptr);

 return ptr;

 }

};

This code keeps every constructed wall inside a vector<weak_

ptr<Wall>>. We first of all construct a SolidWall the old-fashioned

way, that is, using new, and then check whether or not it intersects any

of the existing walls. If it does, we delete it and return a default pointer.

Otherwise, we wrap the raw pointer with a shared_ptr, store it as a weak_

ptr, and then return it.

There are a few important things that need to be noted here:

•	 If we want to keep the SolidWall constructor private

or protected, the SolidWall class must declare friend

class WallFactory, which is a clear violation of OCP.

•	 Even if we had declared the friend class, we would still

not be able to use make_shared. This isn’t an issue here

(since we’re keeping a weak_ptr), but in general, this

can also be a problem.

We can now start using the factory instead of the class it creates:

const auto partition = WallFactory::create_partition(

 {2000,0}, {2000,4000}, 0, 2700);

cout << *partition << "\n";

// start: (2000,0) end: (2000,4000) elevation: 0

// height: 2700 width: 120 material: brick

Chapter 3 Factories

75

�Factory Methods and Polymorphism
One advantage of factory methods, whether they belong to the constructed

object or are held in separate factories, is that such a method can return

polymorphic types. Of course, this throws out the idea of returning

by value (since this would cause slicing), but we can return pointers –

whether ordinary or smart.

Here’s an example: suppose we decide to introduce an enum class that

would specify that we need either a basic wall (remember, we have a Wall

base class) or a SolidWall – either a main wall or partition wall.

enum class WallType

{

 basic,

 main,

 partition

};

We can define the following polymorphic factory method:

static shared_ptr<Wall> create_wall(WallType type, Point2D

start,

 Point2D end, int elevation, int height)

{

 switch (type)

 {

 case WallType::main:

 return make_shared<SolidWall>(start, end, elevation, height,

 375, Material::aerated_concrete);

 case WallType::partition:

 return make_shared<SolidWall>(start, end, elevation, height,

 120, Material::brick);

 case WallType::basic:

Chapter 3 Factories

76

 //return make_shared<Wall>(start, end, elevation, height);

 �return shared_ptr<Wall>{new Wall(start, end, elevation,

height)};

 }

 return {};

}

I have once again removed any trace of validation from this method to

simplify things. As you can see, the return type here is shared_ptr<Wall>,

but in some cases, we construct a shared_ptr<SolidWall> instead. Here is

how you would use this method:

const auto also_partition =

 �WallFactory::create_wall(WallType::partition, {0,0},

{5000,0}, 0, 4200);

if (also_partition)

 cout << *dynamic_pointer_cast<SolidWall>(also_partition) << "\n";

When working with polymorphic factory methods, you need to be

aware of the obvious things: anything that’s not virtual will be taken from

the base class. For example, if both Wall and SolidWall define ostream&

operator<<, without a dynamic_pointer_cast you’ll only be seeing the

output for the Wall portion of the class.

�Nested Factory
Up until now, our migration path from constructor to factory has been as

follows:

•	 We made the object’s constructor protected.

•	 We declared the factory to be a friend of the object

being constructed. If you have a hierarchy of types, this

operation needs to be done for every single element in

the hierarchy – not very convenient!

Chapter 3 Factories

77

•	 We created the objects inside factory methods and

returned them as shared_ptrs. Notice that inside the

factory methods, we don’t call make_shared – because,

sadly, we cannot.

The biggest issue with all of this is the entanglement between the

object and the factory which creates it. If the factory is constructed after

the object, and we control the source code, the inclusion of the friend

declaration is an obvious violation of OCP. But if the factory is being

made for an object you do not even own, making it a friend isn’t even a

possibility.

There is a third option which must also be considered if you are

prepared to entangle the factory and the object right from the start. This

approach is to create a nested (inner) factory, that is, the approach where

the factory is defined within the object itself:

class Wall

{

 // other members as before

private:

 class BasicWallFactory

 {

 BasicWallFactory() = default;

 public:

 �shared_ptr<Wall> create(const Point2D start,

 const Point2D end,

 const int elevation, const int height)

 {

 Wall* wall = new Wall(start, end, elevation, height);

 return shared_ptr<Wall>(wall);

 }

 };

Chapter 3 Factories

78

public:

 static BasicWallFactory factory;

};

There are a few things to note about the BasicWallFactory class:

•	 The factory itself is in a private block and has a private

constructor. This is done so nobody tries to initialize it

directly.

•	 The factory method is not static, unlike the previous

examples we’ve seen.

•	 The Wall class exposes the factory as a static field.2

This allows us to use the factory as follows:

auto basic = Wall::factory.create({0,0}, {5000,0}, 0, 3000);

cout << *basic << "\n";

An entirely different set of choices would have to be made if you

alter the design presented here. For example, if you were to put the

BasicWallFactory class into a public block instead, you wouldn’t need to

put a friend declaration into the factory. Or, for example, if you find the

use of both :: and . annoying, you can make the factory’s methods static

too and call the factory method as Wall::factory::create().

�Abstract Factory
So far, we’ve been looking at the construction of a single object.

Sometimes, you might be involved in the creation of families of objects.

This is actually a pretty rare case, so unlike factory method and just plain

2 �In this case, as in many others, I tend to omit the code that initializes static
variables with default values.

Chapter 3 Factories

79

old Factory pattern, abstract factory is a pattern that only shows up in

complicated systems. We need to talk about it, anyway, primarily for

historical reasons.

Here’s a simple scenario: suppose you are working at a café that

serves tea and coffee. These two hot beverages are made through entirely

different apparatus that we can both model as factories, of sorts. Tea and

coffee can actually be served both hot or cold, but let’s focus on the hot

variety. First of all, we can define what a HotDrink is:

struct HotDrink

{

 virtual void prepare(int volume) = 0;

};

The function prepare is what we would call to prepare a hot drink with

a specific volume. For example, for a type Tea, it would be implemented as

struct Tea : HotDrink

{

 void prepare(int volume) override

 {

 �cout << "Take tea bag, boil water, pour " << volume

 << "ml, add some lemon" << endl;

 }

};

and similarly for the Coffee type. At this point, we could write a hypothetical

make_drink() function that would take the name of a drink and make that

drink. Given a discrete set of cases, it can look rather tedious:

unique_ptr<HotDrink> make_drink(string type)

{

 unique_ptr<HotDrink> drink;

 if (type == "tea")

Chapter 3 Factories

80

 {

 drink = make_unique<Tea>();

 drink->prepare(200);

 }

 else

 {

 drink = make_unique<Coffee>();

 drink->prepare(50);

 }

 return drink;

}

Now, remember, different drinks are made by different machinery. In

our case, we’re interested in hot drinks, which we’ll model through the

aptly named HotDrinkFactory:

class HotDrinkFactory

{

public:

 virtual unique_ptr<HotDrink> make() const = 0;

};

This type happens to be an abstract factory: it’s a factory with a specific

interface, but it’s abstract, which means that even though it can feature as a

function argument, for example, we would need concrete implementations

to actually make the drinks. For example, in the case of making Coffee, we

could write

class CoffeeFactory : public HotDrinkFactory

{

public:

 unique_ptr<HotDrink> make() const override

Chapter 3 Factories

81

 {

 return make_unique<Coffee>();

 }

}

And the same goes for TeaFactory as before. Now, suppose we want to

define a higher-level interface for making different drinks, hot or cold. We

could make a type called DrinkFactory that would itself contain references

to the various factories that are available:

class DrinkFactory

{

 map<string, unique_ptr<HotDrinkFactory>> hot_factories;

public:

 DrinkFactory()

 {

 hot_factories["coffee"] = make_unique<CoffeeFactory>();

 hot_factories["tea"] = make_unique<TeaFactory>();

 }

 unique_ptr<HotDrink> make_drink(const string& name)

 {

 auto drink = hot_factories[name]->make();

 drink->prepare(200); // oops!

 return drink;

 }

};

Here we made an assumption that we want drinks dispensed based

on their name rather than some integer or enum member. We simply make

a map of strings and the associated factories: the actual factory type is

HotDrinkFactory (our abstract factory), and we store them through smart

pointers rather than directly (makes sense, because we want to prevent

object slicing).

Chapter 3 Factories

82

Now, when someone wants a drink, we find the relevant factory

(think of a coffee shop assistant walking to the right machine), create the

beverage, prepare exactly the volume required (I’ve set it to a constant

in the preceding listing; feel free to promote it to a parameter), and then

return the relevant drink. That’s all there is to it.

�Functional Factory
One last thing I wanted to mention: when we use the term factory, we

typically mean one of two things:

•	 A class that knows how to create objects

•	 A function that, when called, creates an object

The second option is not just a factory method in a classical sense. If

someone passes an argument of type function<> (or just a basic function

pointer) that returns a variable of type T, this is typically referred to as a

Factory too and not a factory method. This may seem a little weird, but

when you consider the idea that a method is synonymous with member

function, it makes a bit more sense.

void construct(function<T()> f)

{

 T t = f();

 // use t somehow

}

Lucky for us, functions can be stored in variables, which means that

instead of just storing a pointer to the factory (as we do in DrinkFactory),

we can internalize the process of preparing exactly 200ml of a liquid. This

Chapter 3 Factories

83

is done by switching from factories to simply using function blocks, for

example:

class DrinkWithVolumeFactory

{

 map<string, function<unique_ptr<HotDrink>()>> factories;

public:

 DrinkWithVolumeFactory()

 {

 factories["tea"] = [] {

 auto tea = make_unique<Tea>();

 tea->prepare(200);

 return tea;

 }; // similar for Coffee

 }

};

Of course, having taken this approach, we are now reduced to calling

the stored factory directly, that is:

inline unique_ptr<HotDrink>

DrinkWithVolumeFactory::make_drink(const string& name)

{

 return factories[name]();

}

And this can then be used as before.

�Object Tracking
Compared to calling a constructor, a factory is a little harder to use (being

less obvious than a constructor), so it would be nice if there was a benefit

associated with this trade-off. One benefit of using factories is you can

Chapter 3 Factories

84

track all the objects that have been constructed. We have already seen it

before when we created a WallFactory.

The benefits are

•	 You know how many objects of a particular type have

been created.

•	 You can perform modification of an entire class (in the

mathematical sense) of objects, either modifying them

or replacing them entirely.

•	 If you’ve given out a smart pointer, you can look at its

reference count to determine the number of places

where the object is used.

A Service Locator or an Inversion of Control container can adopt this

approach. Such a container can construct objects as shared_ptrs but

internally store weak_ptrs that can subsequently be not only inspected

but, for example, replaced entirely at runtime by new objects.

As soon as you introduce this sort of construction, you have an ability

to iterate over all the objects of type MyClass ever constructed. Remember,

since these are weak_ptrs, at some point you’ll need to clean up all the

ones that are expired().

This technique allows for a “runtime-compiled” approach where

parts of the source code can be altered and recompiled while the

application is running, and all existing instances of a particular object can

be transparently replaced with updated instances without breaking the

program and forcing us to recompile. This approach is, however, rather

complicated, and a demonstration of such an implementation is beyond

the scope of this book.

Chapter 3 Factories

85

�Summary
Let’s recap the terminology:

•	 A factory method is a class member that is used for

creating an object. It typically replaces a constructor.

•	 A factory is typically a separate class that knows how

to construct objects, though, if you pass a function (as

in function or similar) that constructs objects, this

argument is also called a factory.

•	 An abstract factory is, as its name suggests, an abstract

class that can be inherited by concrete classes that offer

a family of types. Abstract factories are rare in the wild.

A factory has several critical advantages over a constructor call,

namely:

•	 A factory can say no, meaning that instead of actually

returning an object, it can return, for example, a

default-initialized smart pointer, an optional<T> or a

nullptr.

•	 A factory method can be polymorphic, so it can return

a parent class/interface, or a pointer thereof. It can also

support the return of different data types using other

means, for example, via a variant.

•	 Naming is better and unconstrained, unlike the

constructor name. You can call the factory methods

whatever you want.

•	 A factory can implement caching and other storage

optimizations; it is also a natural choice for approaches

such as pooling or the Singleton pattern (more on this

later).

Chapter 3 Factories

86

•	 Factories can be used to encapsulate other concerns

(as per Separation of Concerns) such as validation.

Factory is different from Builder in that, with a Factory, you typically

create an object in one go, whereas with Builder, you construct the object

piecewise by providing information in parts.

Chapter 3 Factories

87© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_4

CHAPTER 4

Prototype
Think about something you use every day, like a car or a mobile phone.

Chances are, it wasn’t designed from scratch; instead, the manufacturer

chose an existing design, made some improvements, made it visually

distinctive from the old design (so people could show off), and started

selling it, retiring the old product. It’s a natural state of affairs, and in the

software world, we get a similar situation: sometimes, instead of creating

an entire object from scratch (the Factory and Builder patterns can help

here), you want to take a preconstructed object and either use a copy of it

(which is easy) or, alternatively, customize it a little.

And this leads us to the idea of having a Prototype: a model object that

we can make copies of, customize those copies, and then use them. The

challenge of the Prototype pattern is really the copying part; everything

else is easy.

�Object Construction
Most of object construction happens using, ahem, constructors. But if

you’ve got an object configured already, why not simply copy that object

instead of creating an identical one? This is particularly relevant if you’ve

had to apply the Builder pattern to simplify piecewise object construction.

Let’s consider a simple example, but one that clearly shows duplication:

Contact john{ "John Doe", Address{"123 East Dr", "London", 10 } };

Contact jane{ "Jane Doe", Address{"123 East Dr", "London", 11 } };

https://doi.org/10.1007/978-1-4842-7295-4_4

88

Both john and jane work in the same building, but in different offices.

Many other people might work at 123 East Dr in London, so what we want

to avoid is repeated initialization of the address. How can we do it?

The fact is the Prototype pattern is all about copying objects. And, of

course, we do not have a universal way of actually copying an object, but

there are options, and we’ll choose some of them.

�Ordinary Duplication
If what you are copying is a value, and the object you’re copying stores

everything through values, there’s no problem. For example, if you define

Contact and Address from the preceding example as

class Address

{

public:

 string street, city;

 int suite;

}

class Contact

{

public:

 string name;

 Address address;

}

there’s absolutely no issue in making copies using the assignment =

operator:

// here is the prototype:

Contact worker{"", Address{"123 East Dr", "London", 0}};

Chapter 4 Prototype

89

// make a copy of prototype and customize it

Contact john = worker;

john.name = "John Doe";

john.address.suite = 10;

In practice, this “by value” approach is quite a rare occurrence. In

many cases, the inner Address object would be a pointer or a reference, for

example:

class Contact

{

public:

 string name;

 Address *address; // pointer (reference, shared_ptr, etc.)

 ~Contact() { delete address; }

}

This throws a spanner in the works because now the line Contact

jane = john copies the address pointer, so both john and jane and every

other copy of the prototype share the same address, which we definitely do

not want.

�Duplication via Copy Construction
The simplest way of avoiding duplication is to ensure that copy

constructors are defined on all the constituent parts (in this case, Contact

and Address) that make up the object. For example, if we go with the idea

of storing the address via an owned pointer, that is:

class Contact

{

public:

 string name;

Chapter 4 Prototype

90

 Address* address;

}

then you would need to create a copy constructor. There are actually two

ways to do this, in our case. The head-on approach would look something

like this:

Contact(const Contact& other)

 : name{other.name}

 //, address{ new Address{*other.address} }

{

 address = new Address(

 other.address->street,

 other.address->city,

 other.address->suite

);

}

Unfortunately, this approach is not sufficiently generic. It will certainly

work in this case (provided Address has a constructor that initializes all

its members), but what if Address decides to fragment its street part

into an object consisting of street name, house number, and additional

information? Then you’ll have that same copying problem again.

A sensible thing to do here would be to also define a copy constructor

on Address. In our case, it’s rather trivial:

Address(const string& street, const string& city,

 const int suite)

 : street{street}, city{city}, suite{suite} {}

Chapter 4 Prototype

91

Now we can rewrite the Contact constructor to reuse this copy

constructor, that is:

Contact(const Contact& other)

 : name{other.name}

 , address{ new Address{*other.address} } {}

Mind you, if you use ReSharper’s generator for Copy and Move
Operations, it will also give you operator= which, in our case, would be

defined as

Contact& operator=(const Contact& other)

{

 if (this == &other)

 return *this;

 name = other.name;

 address = other.address;

 return *this;

}

That’s much better. Now, we can construct a prototype as before and

then reuse it:

Contact worker{"", new Address{"123 East Dr", "London", 0}};

Contact john{worker}; // or: Contact john = worker;

john.name = "John";

john.suite = 10;

This approach works, and it works well. The only real issue here, and

one that cannot be solved easily, is the amount of extra effort required

to implement all those copy constructors. Granted, a tool like ReSharper

Chapter 4 Prototype

92

makes quick work of most scenarios, but there are plenty of caveats. For

example, what do you think would happen if I wrote

Contact john = worker;

and forgot to implement copy assignment for Address (but not for

Contact)? That’s right, the program would still compile. It’s a little better

with copy constructors because if you try to call one and it’s missing,

you get an error, whereas operator = is ubiquitous even if you haven’t

customized it to give it special behavior.

Here is another issue: suppose you start using something like a double

pointer (e.g., void**)? Or a unique_ptr? Even with all their magic, tools like

ReSharper and CLion are unlikely to generate correct code at this point, so

rapid-firing code generation on these types might not be the best idea.

�Virtual Constructor
The use of a copy constructor is rather limiting. One problem is that in

order to make a deep copy of a variable, you need to know exactly what

type that variable is. Consider a situation where an ExtendedAddress

inherits from Address:

class ExtendedAddress : public Address

{

public:

 string country, postcode;

 ExtendedAddress(const string &street, const string &city,

 �const int suite, const string &country,

 const string &postcode)

 : Address(street, city, suite)

 , country{country}, postcode{postcode} {}

};

Chapter 4 Prototype

93

Say you want to make a copy of a polymorphic variable:

ExtendedAddress ea = ...;

Address& a = ea;

// how do you deep-copy `a`?

This will be a problem because you don’t really know what the

most derived type of variable a actually is. That and the fact that copy

constructors cannot be virtual leads us to seek other ways of creating

copies of objects.

First of all, let us take the Address object and introduce a virtual

clone() method. Our first attempt may look something like this:

virtual Address clone()

{

 return Address{street, city, suite};

}

Sadly, this will not work for purposes of inheritance. Remember, in the

derived object, we want to return an ExtendedAddress, but our interface

specifies the return type as just Address. We need polymorphism, which

implies the use of pointers. Let’s try again:

virtual Address* clone()

{

 return new Address{street, city, suite};

}

We can now do the same in the inheritor, but provide a covariant

return type:

ExtendedAddress* clone() override {

 return new ExtendedAddress(street, city, suite,

 country, postcode);

}

Chapter 4 Prototype

94

Now we can safely call clone() on polymorphic objects without

worrying that some part of the object will be missing:

ExtendedAddress ea{"123 West Dr", "London", 123, "UK", "SW101EG"};

Address& a = ea; // upcast

auto cloned = a.clone();

And this works! The cloned variable is now a pointer to a deep-copied

ExtendedAddress. Of course, its type is Address* so if you need those

extra members, you’ll either need a dynamic_cast or to call some virtual

methods. For example, printing with cout << cloned will, unfortunately,

only output data from the base class because the stream output operator is

not virtual.

If, for some reason, you want copy constructors regardless, clone()

could be simplified to

ExtendedAddress* clone() override {

 return new ExtendedAddress(*this);

}

All the work will then be done in the copy constructor.

One downside of this clone() approach is the compiler does not check

that you’ve implemented clone() in every class in the hierarchy (and there

is no way to enforce these checks). For example, if you forget to implement

clone() inside ExtendedAddress, this demo will still compile and run just

fine, but behind the scenes, the call to clone() will construct an Address

rather than an ExtendedAddress.

�Serialization
Designers of other programming languages have encountered this same

problem of having to explicitly define copying operations on entire object

graphs and quickly realized that a class needs to be “trivially serializable” –

Chapter 4 Prototype

95

that, by default, you should be able to take a class and write it to a string or

a stream without having to anoint the class or its members with any extra

annotations (well, maybe an attribute or two, at most).

Why is this relevant to the problem at hand? Because if you can

serialize something to a file or to memory, you can then deserialize it,

preserving all the information, including all the dependent objects. Isn’t

this convenient? Well…

Unlike other programming languages, regrettably, C++ does not offer

us any free lunch when it comes to serialization. We cannot, for example,

take a complicated object graph and serialize the entire graph to a file.

Why not? In other programming languages, compiled binaries include not

just executable code but plenty of metadata, and serialization is possible

through a feature called reflection – which is so far unavailable in C++.

If we want serialization, then, just like with explicit copying operations,

we need to implement it ourselves. Luckily, rather than fiddling bits and

thinking of ways to serialize an std::string, we can use a ready-made

library called Boost.Serialization to take care of some of this for us. Here’s

an example of how we would add serialization support to an Address type:

class Address

{

public:

 string street;

 string city;

 int suite;

private:

 friend class boost::serialization::access;

 template<class Ar> void serialize(

 Ar& ar,

 const unsigned int version)

Chapter 4 Prototype

96

 {

 ar & street;

 ar & city;

 ar & suite;

 }

}

This may seem a bit backward, but the net result is that we’ve specified,

using the & operator on all the parts of the Address that we would need

to write to wherever we would be saving the object. Note that this is a

member function for both saving and loading the data. It is possible to tell

Boost to perform different operations on saving and loading, but this isn’t

particularly relevant to our prototyping needs.

Now, we also need to perform the same manipulation for the Contact

type. Here we go:

class Contact

{

public:

 string name;

 Address* address = nullptr;

private:

 friend class boost::serialization::access;

 template<class Ar> void serialize(Ar& ar,

 const unsigned int version)

 {

 ar & name;

 ar & address; // note, no * here

 }

};

Chapter 4 Prototype

97

The structure of this serialize() function is more or less the same,

but notice an interesting detail: instead of accessing the address as ar

& *address, we still serialize it as ar & address, without dereferencing

the pointer. Boost is smart enough to figure out what’s going on and will

serialize/deserialize things just fine even if address is set to nullptr.

So, if you want to implement the Prototype pattern this way, you need

to implement serialize() on every single possible type that may appear

in the object graph. But once you do, you can define a way of cloning an

object via serialization/deserialization:

template <typename T> T clone(T obj)

{

 // 1. Serialize the object

 ostringstream oss;

 boost::archive::text_oarchive oa(oss);

 oa << obj;

 string s = oss.str();

 // 2. Deserialize it

 istringstream iss(oss.str());

 boost::archive::text_iarchive ia(iss);

 T result;

 ia >> result;

 return result;

}

And now, having a contact called john, you can simply write

Contact jane = clone(john);

jane.name = "Jane"; // and so on

and then customize jane to your heart’s content. If you want, you can also

put this clone() function into a Serializable<T> mixin class and then

Chapter 4 Prototype

98

inherit from it in all objects that require cloning. This may be tedious if you

have a large hierarchy of types, though.

�Prototype Factory
If you have predefined objects that you want to replicate, where do you actually

store them? A global variable? Perhaps. In fact, suppose our company has both

main and auxiliary offices. We can declare global variables like this:

Contact main{ "", new Address{ "123 East Dr", "London", 0 } };

Contact aux{ "", new Address{ "123B East Dr", "London", 0 } };

We could, for example, stick these definitions into Contact.h so

anyone using the Contact class would be able to take one of these global

variables and make a copy of them. But a more sensible approach would

be to have some sort of dedicated class that would store the prototypes and

hand out customized copies of said prototypes on demand. This would

give us additional flexibility. For example, we could make utility functions

and hand out properly initialized unique_ptrs:

class EmployeeFactory

{

 static Contact main;

 static Contact aux;

 static unique_ptr<Contact> NewEmployee(

 string name, int suite, Contact& proto)

 {

 auto result = make_unique<Contact>(proto);

 result->name = name;

 result->address->suite = suite;

 return result;

 }

Chapter 4 Prototype

99

public:

 �static unique_ptr<Contact> NewMainOfficeEmployee(

 string name, int suite)

 {

 return NewEmployee(name, suite, main);

 }

 �static unique_ptr<Contact> NewAuxOfficeEmployee(

 string name, int suite)

 {

 return NewEmployee(name, suite, aux);

 }

};

This can now be used as follows:

auto john = EmployeeFactory::NewAuxOfficeEmployee("John Doe", 123);

auto jane = EmployeeFactory::NewMainOfficeEmployee("Jane Doe", 125);

Why use a factory? Well, consider the situation where we copy a

prototype and then forget to customize it. It will have some blank strings and

zeros where actual data should be. Using the approaches from our discussion

of Factories, we can, for example, make all non-fully-initializing constructors

private and declare EmployeeFactory as a friend class, and there you go –

now the client has no way of getting a partially constructed Contact.

�Summary
The Prototype design pattern embodies the notion of deep copying of

objects so that, instead of doing full initialization each time, you can take a

premade object, copy it, change it a little bit, and then use it independently

of the original.

Chapter 4 Prototype

100

There are really two ways of implementing the Prototype pattern in

C++, and both of them require manual manipulation. They are

•	 Writing code that correctly duplicates your object, that

is, performs a deep copy. This can be done in a copy

constructor/copy assignment operator or in a separate

member function.

•	 Write code for the support of serialization/

deserialization and then use this mechanism to

implement cloning as serialization immediately

followed by deserialization. This has extra

computational cost; its significance depends on how

often you need to do the copying. The only advantage

of this approach, compared to using, say, copy

constructors, is that you get serialization for free.

Whichever approach you choose, some work will be required. Tools

that support code generations (e.g., IDEs such as ReSharper and CLion)

can help here if you decide to choose either of these two approaches.

Finally, don’t forget that if you store all data by value, you don’t really

have a problem; operator = is all you need.

Chapter 4 Prototype

101© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_5

CHAPTER 5

Singleton
When discussing which patterns to drop, we found that we
still love them all. (Not really – I'm in favor of dropping
Singleton. Its use is almost always a design smell.)

—Erich Gamma

The Singleton is the most hated design pattern in the (rather limited)

history of design patterns. Just stating that, however, doesn’t mean you

shouldn’t use the singleton: a toilet brush is not the most pleasant device

either, but sometimes it’s simply necessary.

The Singleton design pattern grew out of a very simple idea that

you should only have one instance of a particular component in your

application. For example, a component that loads a database into memory

and offers a read-only interface is a prime candidate for a Singleton since

it really doesn’t make sense to waste memory storing several identical

datasets. In fact, your application might have constraints such that two or

more instances of the database simply won’t fit into memory or will result

in such a lack of memory as to cause the program to malfunction.

https://doi.org/10.1007/978-1-4842-7295-4_5

102

�Singleton As Global Object
The naïve approach to this problem is to simply agree that we are not going

to instantiate this object more than once:

struct Database

{

 /**

 * \brief Please do not create more than one instance.

 */

 Database() {}

};

The problem with this approach, apart from the fact that your

developer colleagues might simply ignore the advice, is that objects can be

created in stealthy ways where the call to the constructor isn’t immediately

obvious. This can be anything – copy construction/assignment, a make_

unique() call, or the use of an IoC container.

The most obvious idea that comes to mind is to offer a single, static

global object:

static Database database{};

The trouble with global static objects is that their initialization order

in different compilation units is undefined. This can lead to unpleasant

effects, like a one global object referring to another when the latter

hasn’t yet been initialized. There’s also the issue of discoverability: how

does the client know that a global variable exists? Discovering classes is

somewhat easier because Go to Type gives a much more reduced set than

autocompletion after ::.

Chapter 5 Singleton

103

One way to mitigate this is to offer a global (or indeed, member)

function which exposes the necessary object:

Database& get_database()

{

 static Database database;

 return database;

}

This function can be called to get a reference to the database. You

should be aware, however, that thread safety for this is only guaranteed

since C++11, and you should check whether your compiler is actually

prepared to insert locks to prevent concurrent access while the static

object is initializing.

Of course, it’s very easy for this scenario to go bad: if Database decides

to use some other, similarly exposed, singleton in its destructor, the

program is likely to blow up. This raises more of a philosophical point: is it

OK for singletons to refer to other singletons?

�Classic Implementation
One aspect of the previous implementations that has been completely

neglected is the prevention of the construction of additional objects.

Having a global static Database doesn’t really prevent anyone from making

another instance.

We can easily turn life sour for those interested in making more

than one instance of an object – simply put a static counter right in the

constructor and throw if the value is ever incremented:

struct Database

{

 Database()

 {

Chapter 5 Singleton

104

 static int instance_count {0};

 if (++instance_count > 1)

 throw exception("Cannot make >1 database!");

 }

};

This is a particularly hostile approach to the problem: even though

it prevents the creation of more than one instance by throwing an

exception, it fails to communicate the fact that we don’t want anyone

calling the constructor more than once. Even if you adorn this with plenty

of documentation, I guarantee there will still be some poor soul trying to

call this more than once in some nondeterministic setting. Probably in

production too!

The only way to prevent explicit construction of Database is to once

again make its constructor private and introduce the aforementioned

function as a member function to return the one and only instance:

struct Database

{

protected:

 Database() { /* do what you need to do */ }s

public:

 static Database& get()

 {

 // thread-safe since C++11

 static Database database;

 return database;

 }

 Database(Database const&) = delete;

 Database(Database&&) = delete;

 Database& operator=(Database const&) = delete;

 Database& operator=(Database &&) = delete;

};

Chapter 5 Singleton

105

Note how we completely removed any possibility of creating Database

instances by hiding the constructor and deleting copy/move

constructor/assignment operators. In pre-C++11 days, you would simply

make the copy constructor/assignment private to achieve roughly the

same result. As an alternative to doing this by hand, you might want to

check out boost::noncopyable, a class that you can inherit that adds

similar definitions in terms of hiding the members… except it doesn’t

affect move construction/assignment.

I will reiterate, once again, that if database depends on other static

or global variables, using them in its destructor is not safe, as destruction

order for these objects is not deterministic, and you might actually be

calling objects that have already been destroyed.

Finally, in a particularly nasty trick, you can implement get() as a

heap allocation (so that only the pointer, not the entire object, is static).

static Database& get() {

 static Database* database = new Database();

 return *database;

}

This implementation relies on the assumption that Database lives

until the end of the program, and the use of a pointer instead of a reference

ensures that a destructor, even if you make one (which, if you do, would

have to be public), is never called. And no, this code doesn’t cause a

memory leak.

�Thread Safety
As I’ve already mentioned, initialization of a singleton in the manner listed

earlier is thread-safe since C++11, meaning that if two threads were to

simultaneously call get(), we would never run into a situation where the

database would be created twice.

Chapter 5 Singleton

106

Prior to C++11, you would construct the singleton using an approach

called double-checked locking. A typical implementation would look like this:

struct Database

{

 // same members as before, but then...

 static Database& instance();

private:

 static boost::atomic<Database*> instance;

 static boost::mutex mtx;

};

Database& Database::instance()

{

 Database* db = instance.load(boost::memory_order_consume);

 if (!db)

 {

 boost::mutex::scoped_lock lock(mtx);

 db = instance.load(boost::memory_order_consume);

 if (!db)

 {

 db = new Database();

 instance.store(db, boost::memory_order_release);

 }

 }

}

Since this book is concerned with Modern C++, we won’t dwell on this

approach any further.

Chapter 5 Singleton

107

�The Trouble with Singleton
Let’s suppose that our database contains a list of capital cities and their

populations:

Tokyo

33200000

New York

17800000

... etc

The interface that our singleton database is going to conform to is

class Database

{

public:

 virtual int get_population(const string& name) = 0;

};

We have a single member function that gets us the population for a

given city. Now, let us suppose that this interface is adopted by a concrete

implementation called SingletonDatabase that implements the singleton

the same way as we’ve done before:

class SingletonDatabase : public Database

{

 SingletonDatabase() { /* read data from database */ }

 map<string, int> capitals;

public:

 SingletonDatabase(SingletonDatabase const&) = delete;

 void operator=(SingletonDatabase const&) = delete;

 static SingletonDatabase& get()

 {

 static SingletonDatabase db;

Chapter 5 Singleton

108

 return db;

 }

 int get_population(const string& name) override

 {

 return capitals[name];

 }

};

The constructor of the database reads the names and populations

of various capitals from a text file and stores them in a map. The get_

population() method is used as an accessor to get the population of a

given city.

As we noted before, the real problem with singletons like the one we

defined is their use in other components. Here’s what I mean: suppose

that, on the basis of the preceding, we build a component for calculating

the sum total population of several different cities:

struct SingletonRecordFinder

{

 int total_population(vector<string> names)

 {

 int result = 0;

 for (auto& name : names)

 result += SingletonDatabase::get().get_population(name);

 return result;

 }

};

Chapter 5 Singleton

109

The trouble is that SingletonRecordFinder is now firmly dependent

on SingletonDatabase. This presents an issue for testing: if we want to

check that SingletonRecordFinder works correctly, we need to use data

from the actual database, that is:

TEST(RecordFinderTests, SingletonTotalPopulationTest)

{

 SingletonRecordFinder rf;

 vector<string> names{ "Seoul", "Mexico City" };

 int tp = rf.total_population(names);

 EXPECT_EQ(17500000 + 17400000, tp);

}

This is a terrible unit test. It tries to read a live database (something

that you typically don’t want to do too often), but it’s also very fragile,

because it depends on the concrete values in the database. What if the

population of Seoul changes (as a result of North Korea opening its

borders, perhaps)? Then the test will break. But of course, many people

run tests on continuous integration systems that are isolated from live

databases, which makes the approach even more dubious.

This test is also bad for ideological reasons. Remember, we want a unit

test where the unit we’re testing is the SingletonRecordFinder. However,

the test we wrote is not a unit test but an integration test because the record

finder uses SingletonDatabase, so in effect we’re testing both systems at the

same time. Nothing wrong with that if an integration test is what you wanted,

but we would really prefer to test the record finder in isolation.

So we know we don’t want to use an actual database in a test. Can we

replace the database with some dummy component that we can control

from within our tests? Well, in our current design, this is impossible, and it

is precisely this inflexibility that is the Singleton’s downfall.

So, what can we do? Well, for one, we need to stop depending on

SingletonDatabase explicitly. Since all we need is something implementing

Chapter 5 Singleton

110

the Database interface, we can create a new ConfigurableRecordFinder

that lets us configure where the data comes from:

struct ConfigurableRecordFinder

{

 explicit ConfigurableRecordFinder(Database& db)

 : db{db} {}

 int total_population(vector<string> names)

 {

 int result = 0;

 for (auto& name : names)

 result += db.get_population(name);

 return result;

 }

 Database& db;

};

We now use the db reference instead of using the singleton explicitly.

This lets us make a dummy database specifically for testing the record

finder:

class DummyDatabase : public Database

{

 map<string, int> capitals;

public:

 DummyDatabase()

 {

 capitals["alpha"] = 1;

 capitals["beta"] = 2;

 capitals["gamma"] = 3;

 }

Chapter 5 Singleton

111

 int get_population(const string& name) override {

 return capitals[name];

 }

};

And now, we can rewrite our unit test to take advantage of this

DummyDatabase:

TEST(RecordFinderTests, DummyTotalPopulationTest)

{

 DummyDatabase db{};

 ConfigurableRecordFinder rf{ db };

 EXPECT_EQ(4, rf.total_population(

 vector<string>{"alpha", "gamma"}));

}

This test is more robust because if data changes in the actual database,

we won’t have to adjust our unit test values – the dummy data stays the

same. Also, it opens interesting possibilities. We can now run tests against

an empty database or, say, a database whose size is greater than the

available RAM. You get the idea.

�Per-Thread Singleton
We’ve mentioned thread safety in relation to the construction of the singleton,

but what about thread safety with respect to a Singleton’s own operations? It

might be the case that instead of one singleton shared between all threads in

an application, you need one singleton to exist per thread.

Chapter 5 Singleton

112

The construction of the per-thread singleton is identical to the one

we’ve already seen before, except that the variable is now marked thread_

local:

class PerThreadSingleton

{

 PerThreadSingleton()

 {

 id = this_thread::get_id();

 }

public:

 thread::id id;

 static PerThreadSingleton& get()

 {

 thread_local PerThreadSingleton instance;

 return instance;

 }

};

Our listing preserves the thread id for illustration purposes; you don’t

need to keep it if you don’t want to. Now, to verify we’re really getting one

instance per thread, we can run something like

thread t1([]()

{

 cout << "t1: " << PerThreadSingleton::get().id << "\n";

});

thread t2([]()

{

 cout << "t2: " << PerThreadSingleton::get().id << "\n";

 cout << "t2 again: " << PerThreadSingleton::get().id << "\n";

});

Chapter 5 Singleton

113

t1.join();

t2.join();

This gives the output

txt

t2: 22712

t1: 22708

t2 again: 22712

Thread-local singletons solve peculiar problems. For example, say,

you’ve got a dependency graph similar to the following:

 needs needs

A ------> B ------> C

 needs

A ------> C

Now, say, you spawn off 20 threads which all create an instance of

A. The component A needs C twice: directly, and also indirectly through

B. Now, if C is stateful and mutated in each thread, you cannot have one

global CSingleton, but what you can do is create per-thread singletons.

That way, an operation A will use the same instance of C both by itself and

indirectly through B.

And, of course, an added benefit is that within a thread-local singleton

you don’t have to worry about thread safety, so you can use, say, a map

instead of a concurrent_hash_map.

Chapter 5 Singleton

114

�Ambient Context
Say, you’re making building plans. You need to add walls to the ground

floor of a house. These walls will have different positions, but the wall

height for the entire floor will probably remain the same.

You can keep typing in the same value into dozens of method calls,

but you don’t want to. Nor do you want to declare a variable and pass that

instead. You want to have some sort of global setting for wall height, the

requirements being that

	 1.	 You can set a wall height, and it will be used as the

default value.

	 2.	 But sometimes you want to do a few walls with a

different height and then revert to the previous

value.

	 3.	 And sometimes you want to specify the exact height

via the API.

The height of the wall in this scenario is part of an ambient context:

a set of states that are meaningful to a certain set of operations being

undertaken at a particular point in time.

You can pass in an ambient context as an injected parameter into

dozens of APIs, but this involves having lots of parameters and probably

lots of delegate factories too! The only way to avoid this is to create a static

construct addressable from within every point within the application.

Let’s start defining the ambient context class:

class BuildingContext final

{

 int height{0};

 BuildingContext() = default;

Chapter 5 Singleton

115

As you can see, our ambient context class

•	 Is final: typically, it makes very little sense to support

inheritance of ambient contexts.

•	 Has a private constructor, so it cannot be instantiated

directly.

•	 Has a property for the height of the walls we plan

to build. This property is read-only; we provide a

get_height() accessor, but it cannot be modified from

outside the class.

Moving on, we see some interesting members:

static stack<BuildingContext> stack;

// later initialized with

stack<BuildingContext> BuildingContext::stack(

 {BuildingContext{}});

Our ambient context statically stores several instances in a stack.

Why? Take a look at Requirement 2 from our earlier list. Sometimes we

want to build several walls (e.g., a chimney) at a height drastically different

to the currently used height. How do we do this? We create a new state and

push it on the stack. When we’re done, we pop the stack and return to the

old value.

Speaking of which, here is how one would do this:

class Token

{

public:

 ~Token()

 {

 if (stack.size() > 1) stack.pop();

 }

};

Chapter 5 Singleton

116

static Token with_height(int height)

{

 auto copy = current();

 copy.height = height;

 stack.push(copy);

 return Token{};

}

The with_height() method is just a helper piece of API. It creates a copy

of the current context, alters it, and then puts the altered copy on the stack.

The returned Token is a memento class only usable for its destructor. The

idea is to define a scope and store the token in it (sadly, we cannot omit the

variable declaration), causing the destructor to pop the value off the stack.

Now, given that we have a stack of states, the current ambient context

is simply whatever exists on top of the stack. Notice our previously defined

static constructor ensures that there’s always at least one state there.

static BuildingContext current()

{

 return stack.top();

}

I will omit most of the plumbing required for this demo to work (see

the source code for details), but I want to show you how you would handle

Requirement 3 – an ability to override the ambient context value if needed.

A Wall class with an optionally ambient height could be defined as

Wall::Wall(const Point2D &start, const Point2D &anEnd,

 optional<int> height = nullopt)

 : start{start}, end{anEnd}

{

 this->height = height.value_or(

 BuildingContext::current().get_height());

}

Chapter 5 Singleton

117

Thus, you can either provide your own value (in which case, height

will be non-null) or let the class take it from the ambient context.

The use of the ambient context would appear as follows:

Building house;

// set default height to 3000

auto _ = BuildingContext::with_height(3000);

house.walls.emplace_back(Wall{{0,0}, {5000,0}});

house.walls.emplace_back(Wall{{0,0}, {0,4000}});

{ // temporarily set wall height to 3500

 auto _ = BuildingContext::with_height(3500);

 // now all added walls will use this height by default

 house.walls.emplace_back(Wall{{5000,0}, {7000,0}});

} // height reverts back to 3000 at end of scope

// uses wall height 3000 again

house.walls.emplace_back(Wall{{0,4000}, {3000,4000}});

// overrides to use wall height of 4000

house.walls.emplace_back(Wall{{0,4000}, {3000,4000}, 4000});

Having to declare auto _ variables is an unfortunate result of the fact

that without variable declarations, the tokens returned by with_height()

will be destroyed instantly, losing our height settings. Perhaps marking the

method with [nodiscard] is a good idea.

An alternative way of dealing with the scoping issue is to accept a

function in the body of with_height():

static void with_height(int height, function<void()> action)

{

 auto copy = current();

 copy.height = height;

 stack.push(copy);

Chapter 5 Singleton

118

 action();

 stack.pop();

}

With this approach, you can use an ambient context as follows:

BuildingContext::with_height(4000, [&]()

{

 house.walls.emplace_back(Wall{{0,0}, {5000,5000}});

});

Thus, within the scope of the lambda, the wall height will be set to 4000

and will revert to the previous setting at the end of the with_height() call.

This approach obviates the Token class entirely. Also, this approach is not

thread-safe; if you need concurrency, you need to lock the method (perhaps

with a mutex) because otherwise two callers can push a value onto the stack

and end up working with just one value instead of two distinct ones.

�Singletons and Inversion of Control
The approach of explicitly making a component a singleton is distinctly

invasive, and a decision to stop treating the class as a Singleton down the

line will end up particularly costly. An alternative solution is to adopt a

convention where, instead of directly enforcing the lifetime of a class, this

function is outsourced to an Inversion of Control (IoC) container.

Here’s what defining a singleton component looks like when using the

Boost.DI dependency injection framework:

auto injector = di::make_injector(

 di::bind<IFoo>.to<Foo>.in(di::singleton),

 // other configuration steps here

);

Chapter 5 Singleton

119

In the preceding code, I use the letter I to indicate an interface type.

Essentially, what the di::bind line says is that whenever we need a

component that has a member of type IFoo, we initialize that component

with a singleton instance of Foo.

Many developers believe that using a singleton in a DI container is the

only socially acceptable use of a singleton. At least, with this approach, if

you need to replace a singleton with something else, you can do it in one

central place: the container configuration code. An added benefit is that

you won’t have to implement any singleton logic yourself, which prevents

possible errors. Oh and did I mention that Boost.DI is thread-safe?

�Monostate
Monostate is a variation on the Singleton pattern. It is a class that behaves

like a singleton while appearing as an ordinary class.

class Printer

{

 static int id;

public:

 int get_id() const { return id; }

 void set_id(int value) { id = value; }

};

Can you see what’s happening here? The class appears as an ordinary

class with getters and setters, but they actually work on static data!

This might seem like a really neat trick: you let people instantiate

Printer, but they all refer to the same data. However, how are users

supposed to know this? A user will happily instantiate two printers, assign

them different ids, and will be very surprised when both of them are

identical!

Chapter 5 Singleton

120

The Monostate approach works to some degree and has a couple

of advantages. For example, it is easy to inherit, it can leverage

polymorphism, and its lifetime is reasonably well defined (but then again,

you might not always wish it so). Its greatest advantage is that you can take

an existing object that’s already used throughout the system and patch it

up to behave in a Monostate way, and provided your system works fine

with the non-plurality of object instances, you’ve got yourself a Singleton-

like implementation with no extra code needing to be rewritten.

The disadvantages are obvious too: it is an intrusive approach

(converting an ordinary object to a Monostate is not easy), and its use of

static members means it always takes up space, even when it’s not needed.

Ultimately, Monostate’s greatest downfall is that it makes very optimistic

assumptions that the class fields are always exposed through getters and

setters. If they are being accessed directly, your refactoring is almost

doomed to fail.1

�Summary
Singletons aren’t totally evil, but, when used carelessly, they’ll mess up the

testability and refactorability of your application. If you really must use

a singleton, try avoiding using it directly (as in writing SomeComponent.

get().foo()) and instead specify it as a dependency (e.g., a constructor

argument) where all dependencies are satisfied from a single location in

your application (e.g., an Inversion of Control container).

1 �To be fair, you can have your cake and eat it to, but you will need to use the non-
standard __declspec(property) extension to do it.

Chapter 5 Singleton

PART II

Structural Patterns
As the name suggests, Structural patterns are all about setting up the

structure of your application so as to improve SOLID conformance as well

as general usability and refactorability of your code.

When it comes to determining the structure of an object, we can

employ two fairly well-known methods:

•	 Inheritance: An object automagically acquires the

non-private fields and functions of its base class

or classes. To allow instantiation, the object must

implement every pure virtual member from its parents;

if it does not, it is abstract and cannot be created

(but you can inherit from it).

•	 Composition: Generally implies that the child cannot

exist without the parent. Think of an object having

members of owner<T> type: when the object gets

destroyed, they get destroyed with it.

•	 Aggregation: An object can contain another object, but

that object can also exist independently. Think of an

object having members of type T* or shared_ptr<T>.

122

Nowadays, both composition and aggregation are treated in an

identical fashion. If you have a Person class with a field of type Address,

you have a choice as to whether Address is an external type or a nested

type. In either case, provided it’s public, you can instantiate it as either

Address or Person::Address, respectively.

I would argue that using the word composition when we really mean

aggregation has become so commonplace that we may as well use them

in interchangeable fashion. Here’s some proof: when we talk about IoC

containers, we speak of a composition root. But wait, doesn’t the IoC

container control the lifetime of each object individually? It does, and so

we’re using the word “composition” when we really mean “aggregation”

here.

Part II Structural Patterns

123© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_6

CHAPTER 6

Adapter
I used to travel quite a lot, and a travel adapter which lets me plug a

European plug into a UK or US socket1 is a very good analogy to what’s

going on with the Adapter pattern: we are given an interface, but we want a

different one, and building an adapter over the interface is what gets us to

where we want to be.

�Scenario
Here’s a trivial example: suppose you’re working with a library that’s

great at drawing pixels. You, on the other hand, work with geometric

objects – lines, rectangles, that sort of thing. You want to keep working

with those objects but also need the rendering, so you need to adapt your

geometry to pixel-based representation.

We begin our demo by defining two simple domain objects: a Point

class that represents a two-dimensional point in Cartesian space (which

can be assumed to correspond directly to the screen grid) and a Line

segment defined by the start and end points.

1 �Just in case you’re European like me and want to complain that everyone should
be using European sockets: no, the UK design is technically better and safer, so if
we did want just one standard, the UK one would be the one to go for.

https://doi.org/10.1007/978-1-4842-7295-4_6

124

struct Point

{

 int x, y;

};

struct Line

{

 Point start, end;

};

Let’s now theorize about vector geometry. A typical vector object is

likely to be defined by a collection of Line objects. Instead of inheriting

from a vector<Line>, we can just define a pair of pure virtual iterator

methods:

struct VectorObject

{

 virtual vector<Line>::iterator begin() = 0;

 virtual vector<Line>::iterator end() = 0;

};

So this way, if you want to define, say, a Rectangle, you can keep

a bunch of lines in a vector<Line>-typed field and simply expose its

endpoints:

struct VectorRectangle : VectorObject

{

 VectorRectangle(int x, int y, int width, int height)

 {

 lines.emplace_back(Line{ Point{x, y}, Point{x + width, y} });

 �lines.emplace_back(Line{ Point{x + width, y}, Point{x +

width, y + height} });

 lines.emplace_back(Line{ Point{x, y}, Point{x, y + height} });

Chapter 6 Adapter

125

 �lines.emplace_back(Line{ Point{x,y + height}, Point{x +

width, y + height} });

 }

 vector<Line>::iterator begin() override {

 return lines.begin();

 }

 vector<Line>::iterator end() override {

 return lines.end();

 }

private:

 vector<Line> lines;

};

Now, here’s the set-up. Suppose we want to draw lines on screen.

Rectangles, even! Unfortunately, we cannot, because the only interface for

drawing is literally this:

vo�id DrawPoints(CPaintDC& dc, vector<Point>::iterator start,

vector<Point>::iterator end)

{

 for (auto i = start; i != end; ++i)

 dc.SetPixel(i->x, i->y, 0);

}

I’m using the CPaintDC class from MFC (Microsoft Foundation Classes)

here, specifically a SetPixel() method that, as you may have guessed, sets

a particular pixel color (in our case, 0 = black) at particular coordinates.

The problem in our scenario is simple: we need to provide pixel

coordinates to render graphics, but we only have vector objects.

Chapter 6 Adapter

126

�Adapter
Say, we want to draw a couple of rectangles:

vector<shared_ptr<VectorObject>> vectorObjects{

 make_shared<VectorRectangle>(10,10,100,100),

 make_shared<VectorRectangle>(30,30,60,60)

}

In order to draw these objects, we need to convert every one of them

from a series of lines into a rather large number of points. For this, we

make a separate adapter class that will store the points and expose them as

a pair of iterators.

struct LineToPointAdapter

{

 typedef vector<Point> Points;

 LineToPointAdapter(Line& line)

 {

 // TODO

 }

 virtual Points::iterator begin() { return points.begin(); }

 virtual Points::iterator end() { return points.end(); }

private:

 Points points;

};

The conversion from a line to a number of points happens right in

the constructor, so the adapter is eager:2 it does its work as soon as it is

constructed. The actual code for the conversion is also rather simple:

2 �Could we have made the adapter lazy? Sure, we could just save the line locally
(because it’s a reference and we don’t want it to go stale or change) and then,

Chapter 6 Adapter

127

LineToPointAdapter(Line& line)

{

 int left = min(line.start.x, line.end.x);

 int right = max(line.start.x, line.end.x);

 int top = min(line.start.y, line.end.y);

 int bottom = max(line.start.y, line.end.y);

 int dx = right - left;

 int dy = line.end.y - line.start.y;

 // we only support vertical or horizontal lines

 if (dx == 0)

 { // vertical

 for (int y = top; y <= bottom; ++y)

 {

 points.emplace_back(Point{ left,y });

 }

 }

 else if (dy == 0)

 { // horizontal

 for (int x = left; x <= right; ++x)

 {

 points.emplace_back(Point{ x, top });

 }

 }

}

The preceding code is trivial: we only handle perfectly vertical or

horizontal lines and ignore everything else. Whether a line is horizontal

or vertical, we construct a set of adjacent points that represent the lines in

whenever someone called begin(), perform initialization if it hasn’t been done
already. However, if we had several adapter members, this init check would have
to be repeated in every single member.

Chapter 6 Adapter

128

terms of pixels. We avoid diagonal lines and the associated issues related to

representing these lines smoothly (e.g., anti-aliasing).

We can now use this adapter to actually render some objects. We take

the two rectangles defined earlier and simply render them like this:

for (const auto& obj : vectorObjects)

{

 for (const auto& line : *obj)

 {

 LineToPointAdapter lpo{ line };

 DrawPoints(dc, lpo.begin(), lpo.end());

 }

}

Here is what is happening:

•	 We take a vector of shared_ptr<GraphicObject> and

go through every single one.

•	 We iterate directly on the dereferenced object (thus

*obj), which results in the invocation of member

begin()/end() functions.

•	 For every line that we iterate, we construct a separate

LineToPointAdapter.

•	 And finally, we call DrawPoints(), which iterates the set

of points the adapter has generated behind the scenes.

�Adapter Temporaries
There’s a major problem with our code, though: DrawPoints() gets called

on literally every screen refresh that we might need, which means the same

data for same line objects gets regenerated by the adapter, like a zillion

times. What can we do about it?

Chapter 6 Adapter

129

Well, on the one hand, we can predefine all the points at application

start-up, for example:

vector<Point> points;

for (auto& o : vectorObjects)

{

 for (auto& l : *o)

 {

 LineToPointAdapter lpo{ l };

 for (auto& p : lpo)

 points.push_back(p);

 }

}

and then the implementation of DrawPoints() simplifies to

DrawPoints(dc, points.begin(), points.end());

But let’s suppose, for a moment, that the original set of vectorObjects

can change. We don’t know how they will change, but we do want to cache

point data for all the unchanged ones and regenerate it for the modified

ones.

First of all, to avoid regeneration, we need unique ways of identifying

lines, which transitively means we need unique ways of identifying points.

ReSharper’s Generate | Hash function to the rescue:

struct Point

{

 int x, y;

 friend size_t hash_value(const Point& obj)

 {

 size_t seed = 0x725C686F;

 boost::hash_combine(seed, obj.x);

 boost::hash_combine(seed, obj.y);

Chapter 6 Adapter

130

 return seed;

 }

};

struct Line

{

 Point start, end;

 friend size_t hash_value(const Line& obj)

 {

 size_t seed = 0x719E6B16;

 boost::hash_combine(seed, obj.start);

 boost::hash_combine(seed, obj.end);

 return seed;

 }

};

I’ve opted for Boost’s hash implementation. Now, we can build a

new LineToPointCachingAdapter such that it caches the points and

regenerates them only when necessary. The implementation is almost the

same except for the following nuances.

First, the adapter now has a cache, which is map from the computed

hash value to the set of points:

static map<size_t, Points> cache;

The type size_t here is precisely the type returned from Boost’s hash

functions. Now, when it comes to iterating the points generated, we yield

them as follows:

virtual Points::iterator begin() { return cache[line_hash].

begin(); }

virtual Points::iterator end() { return cache[line_hash].end(); }

Chapter 6 Adapter

131

And here is the fun part of the algorithm: before generating the points,

we check whether they’ve been generated already. If they have, we just

exit; if they haven’t, we generate them and add them to the cache:

LineToPointCachingAdapter(Line& line)

{

 static boost::hash<Line> hash;

 line_hash = hash(line); // note: line_hash is a field!

 if (cache.find(line_hash) != cache.end())

 return; // we already have it

 Points points;

 // same code as before

 cache[line_hash] = points;

}

Yay! Thanks to hash functions and caching, we’ve drastically cut

down on the number of conversions being made. The only problem that

remains is the removal of old points after they are no longer needed. This

challenging problem is left as an exercise for the reader.

�Bidirectional Converter
One problem when constructing user interfaces is being able to map

UI control inputs to variables. For example, a text field that requires a

numeric input will always, by design, store its internal state as a string,

whereas what we might want to do is record the value as a number and,

furthermore, perform some validation to ensure that a valid number was

entered.

Chapter 6 Adapter

132

Quite often, what we want is a bidirectional binding: we want UI inputs

to modify the underlying variable (e.g., a class field), but, at the same time,

we want to make sure that if the variable was modified behind the scenes,

the UI would be correspondingly updated.

We could define a stand-alone bidirectional converter by introducing a

base class such as

template <typename TFrom, typename TTo> class Converter

{

public:

 virtual TTo Convert(const TFrom& from) = 0;

 virtual TFrom ConvertBack(const TTo& to) = 0;

};

Thus, you could explicitly define a converter between, say, an integer

and a string like so:

class IntToStringConverter : Converter<int, string>

{

public:

 string Convert(const int &from) override

 {

 return to_string(from);

 }

 int ConvertBack(const string &to) override

 {

 int result;

 try {

 result = stoi(to);

 }

Chapter 6 Adapter

133

 catch (...)

 {

 return numeric_limits<int>::min();

 }

 }

};

Here is how you would use it:

IntToStringConverter converter;

cout << converter.Convert(123) << "\n"; // 123

cout << converter.ConvertBack("456") << "\n"; // 456

cout << converter.ConvertBack("xyz") << "\n"; // -2147483648

The last case is particularly interesting because it means that if

the user enters something that doesn’t parse as an int, we return the

minimum numeric value instead. This is not the best approach in a real-

world setting, since in most cases, you’d want to apply some validation

beforehand and show an error message.

In the real world, we need to handle many concerns simultaneously:

not only having an adapter to convert the values to and from but also

validation, and for conversions to be done automatically on changes (via

the Observer pattern).

�Summary
Adapter is a very simple concept: it allows you to adapt the interface you

have to the interface you need. The only real issue with adapters is that in

the process of adaptation, you sometimes end up generating temporary

data so as to satisfy some other interface. And when this happens, we turn

to caching: ensuring that new data is only generated when necessary. Oh,

and you’ll need to do a bit more work if you want to clean up stale data

when the cached objects have changed.

Chapter 6 Adapter

134

Another concern that we haven’t really addressed is laziness: the

current adapter implementation performs the conversion as soon as it

is created. What if you only want the work to be done when the adapter

is actually used? This is rather easy to do and is left as an exercise for the

reader.

Chapter 6 Adapter

135© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_7

CHAPTER 7

Bridge
If you’ve been paying attention to the latest advances in C++ compilers

(GCC, Clang, and MSVC in particular), you might have noticed that

compilation speeds are improving. In particular, compilers are getting

more and more incremental, so that instead of rebuilding the entire

translation unit, the compiler can actually only rebuild the definitions that

have changed and reuse the rest.

The reason I’m bringing up C++ compilation is because “one weird

trick” has been consistently used by developers in an attempt to speed up

compilation in the past.

I am, of course, talking about…

�The Pimpl Idiom
Let me first explain the technical side of what happens in the Pimpl idiom.

Suppose you decide to make a Person class that stores a person’s name

and allows them to print a greeting. Instead of defining Person’s members

as you normally would, you proceed to define the class like so:

struct Person

{

 string name;

 void greet();

 Person();

 ~Person();

https://doi.org/10.1007/978-1-4842-7295-4_7

136

 class PersonImpl;

 PersonImpl *impl; // good place for gsl::owner<T>

};

Well, this is weird. Seems an awful lot of work for a simple class. Let’s

see… we have the name and the greet() function, but why bother with the

constructor and destructor? And what’s this class PersonImpl?

What you’re looking at is a class that chooses to hide its

implementation in yet another class, helpfully called PersonImpl. It is

critical to note that this class is not defined in the header file, but rather

resides in the .cpp file (Person.cpp, so Person and PersonImpl are

colocated). Its definition is as simple as

struct Person::PersonImpl

{

 void greet(Person* p);

}

The original Person class forward-declares PersonImpl and proceeds

to keep a pointer to it. It is precisely this pointer that gets initialized in

Person's constructor and gets destroyed in the destructor; feel free to use

smart pointers if it makes you feel better.

Person::Person()

 : impl(new PersonImpl) {}

Person::~Person() { delete impl; }

And now, we get to implement Person::greet() which, as you may

have guessed, just passes control onto PersonImpl::greet():

void Person::greet()

{

 impl->greet(this);

}

Chapter 7 Bridge

137

void Person::PersonImpl::greet(Person* p)

{

 printf("hello %s", p->name.c_str());

}

So… that’s the Pimpl idiom in a nutshell, so the only question is why?

Why bother jumping through all the hoops, delegating greet() and

passing this pointer? There are three advantages to this approach:

•	 A larger proportion of the class implementation is

actually hidden. If your Person class required a rich API

full of private/protected members, you’d be exposing

all those details to your clients, even if they could never

access those members due to private/protected

access modifiers. With Pimpl, they can only be given

the public interface.

•	 Modifying the data members of the hidden Impl class

does not affect binary compatibility.

•	 The header file only needs to include the header files

needed for the declaration, not the implementation.

For example, if Person requires a private member of

type vector<string>, you would be forced to #include

both <vector> and <string> in the Person.h header

(and this is transitive, so anyone using Person.h would

be including them too). With the Pimpl idiom, this can

be done in the .cpp file instead.

This allows us to preserve a clean, non-changing header file. A side effect

of this is reduced compilation speed. And, what’s important for us, the Pimpl

idiom is actually a good illustration of the Bridge pattern: in our case, the

pimpl opaque pointer (opaque is opposite of transparent, i.e., you have no idea

what’s behind it) acts as a bridge, gluing the members of a public interface

with their underlying implementation that’s hidden away in the .cpp file.

Chapter 7 Bridge

138

�Bridge
The Pimpl idiom is a very specific illustration of the Bridge design pattern,

so let’s take a look at something more general. Suppose you have two

classes (in the mathematical sense) of objects: geometric shapes and the

renderers that can draw them on the screen.

Just as with our illustration of the Adapter pattern, we’ll assume that

rendering can happen in vector and raster form (though we won’t be

writing any actual drawing code here), and, in terms of shapes, let’s restrict

ourselves to just circles.

First of all, here is the Renderer base class:

struct Renderer

{

 virtual void render_circle(float x, float y, float radius) = 0;

};

We can construct vector and raster implementations easily; I’ll just

emulate actual rendering in the following with some code to write things

to the console:

struct VectorRenderer : Renderer

{

 void render_circle(float x, float y, float radius) override

 {

 cout << "Rasterizing circle of radius " << radius << endl;

 }

};

struct RasterRenderer : Renderer

{

 void render_circle(float x, float y, float radius) override

 {

Chapter 7 Bridge

139

 cout << "Drawing a vector circle of radius " << radius << endl;

 }

};

The base class Shape shall keep a reference to the renderer; the shape

will support self-rendering with the draw() member function and will also

support the resize() operation:

struct Shape

{

protected:

 Renderer& renderer;

 Shape(Renderer& renderer) : renderer{ renderer } {}

public:

 virtual void draw() = 0;

 virtual void resize(float factor) = 0;

};

You’ll notice that the Shape class rakes a reference to a Renderer.

This happens to be the bridge that we build. We can now create an

implementation of the Shape class, supplying additional information such

as the position of the circle’s center as well as the radius.

struct Circle : Shape

{

 float x, y, radius;

 Circle(Renderer& renderer, float x, float y, float radius)

 : Shape{renderer}, x{x}, y{y}, radius{radius} {}

 void draw() override

 {

 renderer.render_circle(x, y, radius);

 }

Chapter 7 Bridge

140

 void resize(float factor) override

 {

 radius *= factor;

 }

};

Okay, so this pattern is exposed rather quickly, and the interesting part

is, of course, in draw(): that’s where we use the bridge to connect the Circle

(which has information about its location and size) to the process of rendering.

And the exact thing which is the bridge here is a Renderer, for example:

RasterRenderer rr;

Circle raster_circle{ rr, 5,5,5 };

raster_circle.draw();

raster_circle.resize(2);

raster_circle.draw();

In this code, the bridge is the RasterRenderer: you make it and pass

a reference into Circle, and from then on, calls to draw() would use this

RasterRenderer as the bridge, drawing the circle. If you need to fine-tune

the circle, you can resize() it, and the rendering will still work just fine, as

the renderer doesn’t know or care about the Circle and doesn’t even take

it as reference!

Chapter 7 Bridge

141

Figure 7-1 shows a class diagram of our Bridge implementation.

�Summary
The Bridge is a rather simple concept, serving as a connector or glue,

connecting two pieces together. The use of abstraction (interfaces) allows

components to interact with one another without really being aware of the

concrete implementations.

That said, the participants of the Bridge pattern do need to be aware

of each other’s existence. Specifically, a Circle needs a reference to the

Renderer and, conversely, the Renderer knows how to specifically draw

circles (thus, the name of the draw_circle() member function). This

can be contrasted with the Mediator pattern, which allows objects to

communicate without being directly aware of each other.

Figure 7-1.  Bridge class diagram

Chapter 7 Bridge

143© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_8

CHAPTER 8

Composite
It’s a fact of life that objects are quite often composed of other objects (or,

in other words, they aggregate other objects). Remember, we agreed to

equate aggregation and composition at the start of this part of the book.

There are very few ways for an object to advertise that it’s composed

of something. Fields, by themselves, do not constitute an interface unless

you make virtual getters and setters. You can advertise classes as being

composed of a collection of objects by implementing begin()/end()

members, but keep in mind that this doesn’t actually state a lot: after all,

you can do anything you want in those methods. Similarly, you can try to

advertise that you are a container of a specific type by doing an iterator

typedef, but is anyone really going to check it?

An alternative to the use of the begin()/end() pair is the use of

coroutines. These special functions’ primary role is to allow the caller

to suspend execution, but a byproduct is that they effectively expose

generators that can yield a “resumable” sequence of values. We typically

talk about generator functions, so if you wanted to define a generator class,

you’d have to make a design choice about where the primary generator

function would be. One choice would be to create a functor, that is:

class Values

{

public:

 generator<int> operator()()

 {

https://doi.org/10.1007/978-1-4842-7295-4_8

144

 co_yield 1;

 co_yield 2;

 co_yield 3;

 }

};

This allows us to invoke the functor in a common for loop and get the

values thus:

Values v;

for (auto i : v())

 cout << i << ' '; // 1 2 3

On the other hand, this option does not aid discoverability in any way.

Discoverability is often ignored entirely by C++ API creators, but I feel it

is important to directly communicate this fact to the client. I could try to

improvise a marker interface:

template <typename T> class Contains

{

 virtual generator<T> operator()() = 0;

};

But this is still a half-measure.

Another option for advertising being a container is… inheriting from

a container. This is mostly fine: even though STL containers do not have

virtual destructors, if you don’t need anything in your destructor either,

and you don’t envisage people inheriting from your type, then everything

is fine – go ahead and inherit from vector, nothing bad should happen.

So, back to the issue, what is the Composite pattern about? Essentially,

we try to give single objects and groups of objects an identical interface.

And sure, it’s easy to just define an interface and implement it in both

objects. But equally you can try leveraging duck typing mechanisms such

Chapter 8 Composite

145

as begin()/end() where applicable.1 Duck typing, in general, is a terrible

idea because it relies on secret knowledge instead of being explicitly

defined in an interface somewhere. By the way, nothing prevents you

from making an explicit interface with begin() and end(), but what is the

iterator type?

�Array-Backed Properties
The Composite design pattern is typically applied to entire classes, but

before we get to that, I want to show you how it can be used on the scale of

properties. By the term property, I am of course referring to the class’ fields

as well as the way those fields are exposed to the API consumer.

Imagine a computer game with creatures that have different numeric

traits. Each creature can have a strength value, an agility value, and so

on. So this is very easy to define:

class Creature

{

 int strength, agility, intelligence;

public:

 int get_strength() const

 {

 return strength;

 }

 void set_strength(int strength)

 {

1 �To be fair, the begin()/end() duopoly is excessive if all you care about is forward
iteration until the end of the collection; you could take a cue from Swift and
define an interface with a single member such as optional<T> next(). This way,
you can just call next() until it gives you an empty value by writing something
like while (auto item = foo.next()) { ... }.

Chapter 8 Composite

146

 Creature::strength = strength;

 }

 // other getter and setters here

};

So far, so good. But now imagine you want to calculate some aggregate

statistics on the creature. For example, you want to know the sum of

its statistics, the average value across all statistics, as well as, say, the

highest value. Since our data is fragmented into fields, we end up with the

following implementation:

class Creature

{

 // other members here

 int sum() const {

 return strength + agility + intelligence;

 }

 double average() const {

 return sum() / 3.0;

 }

 int max() const {

 return ::max(::max(strength, agility), intelligence);

 }

};

This implementation is unpleasant for a number of reasons:

•	 When calculating the sum of all statistics, I could easily

make a mistake and forget one of them.

•	 When calculating the average, I’m using a bona fide

magic number 3.0 that corresponds to the number of

fields that are used in the calculation.

Chapter 8 Composite

147

•	 When calculating the maximum, I have to construct

pairs of pairs of max() calls.

The code is terrible as is, but now imagine adding another property to

the mix. This would require truly awful refactoring of sum(), average(),

max(), and any other aggregate calculation. Can this be avoided? Well, it

turns out it can.

The approach of using array-backed properties is as follows. First of all,

we define enumeration members for all the required properties and then

proceed to create an array of the appropriate size:

class Creature

{

 enum Abilities { str, agl, intl, count };

 array<int, count> abilities;

};

The preceding enum definition has an extra value called count which

tells us how many elements we have in total. Note that we are using an

enum, not an enum class, which makes the use of those members a little bit

easier.

We can now define getters and setters for strength, agility, etc. being

projected into our backing array, for example:

int get_strength() const { return abilities[str]; }

void set_strength(int value) { abilities[str] = value; }

// same for other properties

This is the kind of code that your IDE will not generate for you, but

that’s a small price to pay for the flexibility.

Chapter 8 Composite

148

Now, here come the awesome parts: our calculations of sum(),

average(), and max() become trivial because, in all of those cases, all we

have to do is iterate an array:

int sum() const {

 return accumulate(abilities.begin(), abilities.end(), 0);

}

double average() const {

 return sum() / (double)count;

}

int max() const {

 return *max_element(abilities.begin(), abilities.end());

}

Isn’t this great? Not only is the code a lot easier to write and maintain,

but adding a new property to the class is as simple as adding a new enum

member and a getter-setter pair; the aggregates need not change at all!

�Grouping Graphic Objects
Think of an application such as PowerPoint where you can select several

different objects and drag them as one. And yet, if you were to select a

single object, you can grab that object too. Same goes for rendering: you

can render an individual graphic object, or you can group several shapes

together and they get drawn as one group.

The implementation of this approach is rather easy because it relies on

just a single interface such as the following:

struct GraphicObject

{

 virtual void draw() = 0;

};

Chapter 8 Composite

149

Now, from the name, you could be forgiven for thinking that a

GraphicObject is always scalar, that is, it always represents a single item.

However, think about it: several rectangles and circles grouped together

represent a Composite graphic object (hence the name of the Composite

design pattern). So just as I can define, say, a circle:

struct Circle : GraphicObject

{

 void draw() override

 {

 cout << "Circle" << endl;

 }

};

In a similar vein, I can define a GraphicObject that is made up of

several other graphic objects. Yes, the relationship can be infinitely

recursive:

struct Group : GraphicObject

{

 string name;

 explicit Group(const string& name)

 : name{name} {}

 void draw() override

 {

 cout << "Group " << name.c_str() << " contains:" << endl;

 for (auto&& o : objects)

 o->draw();

 }

 vector<GraphicObject*> objects;

};

Chapter 8 Composite

150

Both a scalar Circle and any Group are drawable insofar as they

both implement the draw() function. Group keeps a vector of pointers to

other graphic objects (those can be Groups too!) and uses that vector for

rendering itself.

Here’s how this API can be used:

Group root("root");

Circle c1, c2;

root.objects.push_back(&c1);

Group subgroup("sub");

subgroup.objects.push_back(&c2);

root.objects.push_back(&subgroup);

root.draw();

The preceding code generates the following output:

Group root contains:

 - Circle

 - Group sub contains:

 - Circle

And this… is the simplest implementation of the Composite design

pattern, albeit with a custom interface that we ourselves have defined.

Now, how would this pattern look if we tried to adopt the approach of

some of the other, more standardized ways of iterating objects?

�Neural Networks
Machine learning is the hot new thing, and I hope it stays this way, or

I’ll have to update this paragraph. Part of machine learning is the use of

artificial neural networks: software constructs which attempt to mimic the

way neurons work in our brain.

Chapter 8 Composite

151

The central element of neural networks is, of course, a neuron. A

neuron can produce a (typically numeric) output value as a function of its

inputs, and we can feed that value on to other connections in the network.

We’re going to concern ourselves with connections only, so we’ll model

the neuron thus:

struct Neuron

{

 vector<Neuron*> in, out;

 unsigned int id;

 Neuron()

 {

 static int id = 1;

 this->id = id++;

 }

};

I’ve thrown in the id field for identification. Now, what you probably

want to do is connect one neuron to another, which can be done using

template<> void connect_to<Neuron>(Neuron& other)

{

 out.push_back(&other);

 other.in.push_back(this);

}

This function does fairly predictable things: it sets up connections

between the current (this) neuron and some other one. So far so good.

Chapter 8 Composite

152

Now, suppose we also want to create neuron layers. A layer is quite

simply a specific number of neurons grouped together. Let us commit the

cardinal sin of inheriting from vector:

struct NeuronLayer : vector<Neuron>

{

 NeuronLayer(int count)

 {

 while (count --> 0)

 emplace_back(Neuron{});

 }

};

Looks good, right? I’ve even thrown in the arrow operator --> for you

to enjoy.2 But now, we’ve got a bit of a problem.

The problem is this: we want to be able to have neurons connectable to

neuron layers. Broadly speaking, we want this to work:

Neuron n1, n2;

NeuronLayer layer1, layer2;

n1.connect_to(n2);

n1.connect_to(layer1);

layer1.connect_to(n1);

layer1.connect_to(layer2);

As you can see, we’ve got four distinct cases to take care of:

	 1.	 Neuron connecting to another neuron

	 2.	 Neuron connecting to layer

2 �There is, of course, no --> operator; it’s quite simply the postfix decrement --
followed by greater than >. The effect, though, is exactly as the --> arrow suggests: in
while (count --> 0), we iterate until count reaches zero. You can do similar tricks
with “operators” such as <--, --->, etc.

Chapter 8 Composite

153

	 3.	 Layer connecting to neuron

	 4.	 Layer connecting to another layer

As you may have guessed, there’s no way in Baator that we’ll be making

four overloads of the connect_to() member function. What if there were

three distinct classes – would you realistically consider creating nine

functions? I do not think so.

Instead, what we are going to do is slot in a base class – we can totally

do that, thanks to multiple inheritance. So, how about the following?

template <typename Self>

struct SomeNeurons

{

 template <typename T> void connect_to(T& other)

 {

 for (Neuron& from : *static_cast<Self*>(this))

 {

 for (Neuron& to : other)

 {

 from.out.push_back(&to);

 to.in.push_back(&from);

 }

 }

 }

};

The implementation of connect_to() is definitely worth discussing.

As you can see, it’s a template member function that takes T and then

proceeds to iterate *this and T&’s neurons pairwise, interconnecting each

pair. But there is a caveat: we cannot just iterate *this, since this will give

us a SomeNeurons& and what we’re after is the actual type.

This is why we are forced to make SomeNeurons& come a template

class where the template argument Self refers to the inheritor class. We

Chapter 8 Composite

154

then proceed to cast the this pointer to Self* before dereferencing it

and iterating the contents. This implies that Neuron must inherit from

SomeNeurons<Neuron> – a small price to pay for the convenience.

All that is left is to implement SomeNeurons::begin() and end() in

both Neuron and NeuronLayer for the range-based for loops to actually

work.

Since NeuronLayer inherits from vector<Neuron>, explicit

implementation of the begin()/end() pairs is not required – it’s

automatically present there already. But the Neuron does need a way to

iterate… itself, basically. It needs to yield itself as the only iterable element.

This can be done as follows:

Neuron* begin() override { return this; }

Neuron* end() override { return this + 1; }

I’ll give you a moment or two to appreciate the fiendishness

of this design. It is precisely this piece of magic that makes

SomeNeurons::connect_to() possible. In short, we’ve made a singular

(scalar) object behave like an iterable collection of objects. This allows all

of the following uses:

Neuron neuron, neuron2;

NeuronLayer layer, layer2;

neuron.connect_to(neuron2);

neuron.connect_to(layer);

layer.connect_to(neuron);

layer.connect_to(layer2);

Not to mention the fact that if you were to introduce a new container

(say, some NeuronRing), all you would have to do is inherit from

SomeNeurons<NeuronRing> and implement begin()/end() and the new

class will be immediately connectable to both Neurons and NeuronLayers.

Chapter 8 Composite

155

�Shrink-Wrapping the Composite
We can construct a base class that would indicate that an object is a scalar:

template <typename T> class Scalar : public SomeNeurons<T>

{

public:

 T* begin() { return reinterpret_cast<T*>(this); }

 T* end() { return reinterpret_cast<T*>(this) + 1; }

};

Here we kill two birds with one stone: we inherit the connect_to()

method from SomeNeurons and also implement the begin()/end() pair for

a scalar value. We would thus define the Neuron class as

class Neuron : public Scalar<Neuron>

{

 // as before

}

And continue using it as before.

�Conceptual Improvements
At the moment, the SomeNeuron class connects Neuron-containing things

through duck typing. We could make a minor improvement by explicitly

requiring that both of the connected types need to be iterable. To do so, we

define a concept:

template <typename T> concept Iterable =

 requires(T& t)

 {

 t.begin();

 t.end();

Chapter 8 Composite

156

 } || requires (T& t)

 {

 begin(t);

 end(t);

 };

This concept is of limited use, however. It’s very tempting to write

something like

template <Iterable Self> // <-- a nightmare

struct SomeNeurons

{

 template <Iterable T> // <-- okay

 void connect_to(T& other)

 {

 // as before

 }

};

Declaring the connect_to() parameter as Iterable is fine. Declaring

the type parameter Self to the class as Iterable is another matter entirely.

From the outset, you could be forgiven for thinking that it should “just

work,” but it doesn’t.

Consider the prior definition of the Scalar class. Since it inherits from

SomeNeurons<T>, we need to constrain T to be iterable:

template <Iterable T> class Scalar : public SomeNeurons<T>

{

 // as before

};

However, this approach makes the definition of the Neuron class

impossible. Remember, Neuron is defined as

struct Neuron : Scalar<Neuron>

Chapter 8 Composite

157

Since Scalar explicitly requires that its type argument is iterable, we

require that Neuron be iterable in situ, whereas it only becomes iterable

due to inheritance from Scalar, and not before. Notice that even the order

of inheritance does not matter here. For example, if you stopped Scalar

inheriting from SomeNeurons and then defined Neuron as

struct Neuron : Scalar<Neuron>, SomeNeurons<Neuron>

it would still not compile despite the latter parent’s requirements being

fully satisfied by the former. What can I say, I guess concept-enabled CRTP

is impossible.

�Concepts and Global Operators
Now, I must admit, having a base class with a single function is a bit of

a code smell. We can sort of tolerate it because C++ does not support

extension methods (which would make short work of this), but let’s take a

look at an example where we would get rid of the SomeNeurons base class

completely.

For my demo, I’m going to assume that we want to connect structures

using operators instead of inherited methods. The -> operator is a natural

choice, but, sadly, this operator can only be a member function, which

would normally take us back to the idea of using a base class, where such a

function could indeed be defined.

Being sly, however, we are going to introduce a different creature:

operator --> which is, of course, just an amalgamation of the -- and >

operators. The trick in the system is a two-step process:

	 1.	 Define a non-member operator -- which returns a

special proxy class.

	 2.	 Give that proxy class the member > operator that is a

functional copy of connect_to() from earlier.

Chapter 8 Composite

158

First, here’s what the – operator would look like:

template <Iterable T> ConnectionProxy<T> operator--(T&& item, int)

{

 return ConnectionProxy<T>{item};

}

And here is the complete proxy:

template <Iterable T> class ConnectionProxy

{

 T& item;

public:

 explicit ConnectionProxy(T& item) : item{item} {}

 template <Iterable U> void operator>(U& other)

 {

 for (Neuron& from : item)

 {

 for (Neuron& to : other)

 {

 from.out.push_back(&to);

 to.in.push_back(&from);

 }

 }

 }

};

This allows us to connect two neurons, using very neat-looking code:

Neuron n1, n2;

n1-->n2;

Sadly, the discoverability of this approach is nonexistent: finding a

single operator is bad enough, but finding a combination of two operators

Chapter 8 Composite

159

is a near-impossible challenge for a client. But hey, at least now you know

how to define funky-looking operators.

�Composite Specification
When I introduced the Open-Closed Principle, I gave a demo of the

Specification pattern. The key aspects of the pattern were base types

Filter and Specification that allowed us to use inheritance to build

an extensible filtering framework that conformed to the OCP. Part of

that implementation involved combinators – specifications what would

combine several specifications together using AND or OR operators.

Both AndSpecification and OrSpecification made use of two

operands (which we called first and second), but that restriction was

completely arbitrary: in fact, we could have combined more than two

elements together, and, furthermore, we could improve the OOP model

with a reusable base class such as the following:

template <typename T> struct CompositeSpecification :

Specification<T>

{

protected:

 vector<unique_ptr<Specification<T>>> specs;

 �template<typename... Specs> CompositeSpecification(Specs...

specs)

 {

 this->specs.reserve(sizeof...(Specs));

 �(this->specs.push_back(make_unique<Specs>(move(specs))),

...);

 }

};

Chapter 8 Composite

160

The preceding code takes a number of specifications and stores them

in a vector of owning Specification<T> pointers, thus dealing with

issues of object slicing and polymorphic vectors. We’ve had to make use

of variadics because an initializer_list<Specification<T>> would

introduce slicing and, furthermore, had to use push_back() because of

constness issues in the vector initializer.

With this approach, the AndSpecification combinator can now be

implemented as

template <typename T> struct AndSpecification :

CompositeSpecification<T>

{

 template<typename... Specs> AndSpecification(Specs... specs)

 : CompositeSpecification<T>{specs...} {}

 bool is_satisfied(T* item) const override

 {

 return all_of(this->specs.begin(), this->specs.end(),

 [=](const auto& s) { return s->is_satisfied(item); });

 }

};

This class simply repeats the constructor (I’ve omitted any hint of perfect

 forwarding for clarity) and provides an implementation of is_satisfied().

The intended use of the preceding class is as follows:

auto spec = AndSpecification<Product>{green, large, cheap};

As you can see, all this combinator does is check that every single

specification in specs is satisfied by the item. Similarly, if you wanted to

implement an OrCombinator, you would use any_of() instead of all_

of(). You could even make specifications that would support other, more

complicated criteria. For example, you could make a composite such that

the item is required to satisfy at most/at least/specifically a number of

specifications contained within.

Chapter 8 Composite

161

�Summary
The Composite design pattern allows us to provide identical interfaces

for individual objects and collections of objects. This can be done either

through the explicit use of interface members or, alternatively, through

duck typing – for example, range-based for loops don’t require you to

inherit anything and work on the basis of the typing having suitable-

looking begin()/end() members.

It is precisely these begin()/end() members that allow a scalar

type to masquerade as a “collection.” It is also interesting to note

that the nested for loops of our connect_to() function are able to

connect the two constructs together despite them having different

iterator types: Neuron returns a Neuron*, whereas NeuronLayer returns

vector<Neuron>::iterator – these two are not quite the same thing. Ahh,

the magic of templates!

Finally, I must admit that all of these jumps through hoops are

necessary only if you want to have a single member function. If you are

happy with calling a global function or if you are happy with having more

than one connect_to() implementation, the base class SomeNeurons is

unnecessary.

Chapter 8 Composite

163© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_9

CHAPTER 9

Decorator
You’re working with a class your colleague wrote, and you want to extend

that class’ functionality. How would you do it, without modifying the

original code? Well, one approach is inheritance: you make a derived class,

add the functionality you need, maybe even override something, and

you’re good to go.

Right, except this doesn’t always work, and there are many reasons

why. For example, you typically wouldn’t want to inherit from, say,

std::vector, due to its lack of a virtual destructor, or from an int (which

is just impossible). But the most critical reason why inheritance doesn’t

work is the scenario where you need several enhancements, and you want

to keep those enhancements separate because of the Single Responsibility

Principle.

The Decorator pattern allows us to enhance existing types without

either modifying the original types (and breaking the Open-Closed

Principle) or causing an explosion of the number of derived types.

�Scenario
Here is what I mean by multiple enhancements: suppose we have a class

called Shape that represents graphical shapes (circle, square, and so

on) and we need to give shapes color or a transparency value. We can

make two inheritors called ColoredShape and TransparentShape, but

then we also need to take into account the fact that someone will want a

https://doi.org/10.1007/978-1-4842-7295-4_9

164

ColoredTransparentShape. So we’ve generated three classes to support

two enhancements; if we had three enhancements, we would need seven

(seven!) distinct classes. Figure 9-1 presents a Venn diagram showing all

the partitions generated by an intersection of three sets.

And let’s not forget that we actually want different shapes (Square,

Circle, etc.) – what base class would those inherit from? With 3

enhancements and 2 distinct shapes, the number of classes would jump

up to 14. Clearly, this is an unmanageable situation – even if you are using

a tool for code generation!

Let’s actually write some code for this. Suppose we define an abstract

class called Shape:

struct Shape

{

 virtual string str() const = 0;

};

Figure 9-1.  Number of combinations of three sets. Intersections of
larger numbers of sets become progressively more difficult to visualize

Chapter 9 Decorator

165

In this abstract class, str() is a virtual function we’ll use to provide a

textual representation of a particular shape, useful for our console-based

demos.

We can now implement shapes such as Circle or Square that inherit

from Shape:

struct Circle : Shape

{

 float radius;

 explicit Circle(const float radius)

 : radius{radius} {}

 void resize(float factor) { radius *= factor; }

 string str() const override

 {

 ostringstream oss;

 oss << "A circle of radius " << radius;

 return oss.str();

 }

}; // Square implementation omitted

We already know that ordinary inheritance alone does not offer us

an efficient way to provide enhancements to shapes, so we must turn to

composition – which is the mechanism that the Decorator pattern uses to

enhance objects. There are actually two distinct approaches to this – and

several other patterns – that we need to discuss:

•	 Dynamic composition allows you to compose

something at runtime, typically by passing around

references. It allows maximum flexibility since the

composition can happen at runtime in response to, for

example, the user’s input.

Chapter 9 Decorator

166

•	 Static composition implies that the object and its

enhancements are composed at compile time via

the use of templates. This means the exact set of

enhancements on an object needs to be known at the

moment of compilation, since it cannot be modified

later.

If this sounds a bit too cryptic, don’t worry – we are going to implement

the Decorator in both dynamic and static ways, so all will become clear

very soon.

�Dynamic Decorator
Suppose we want to enhance shapes with a bit of color. We use

composition instead of inheritance to implement a ColoredShape that

simply takes a reference to an already-constructed Shape and enhances it:

struct ColoredShape : Shape

{

 Shape& shape;

 string color;

 ColoredShape(Shape& shape, const string& color)

 : shape{shape}, color{color} {}

 string str() const override

 {

 ostringstream oss;

 oss << shape.str() << " has the color " << color;

 return oss.str();

 }

};

Chapter 9 Decorator

167

As you can see, ColoredShape is itself a Shape (conforming to an

interface that exposes str()), but it also keeps a reference to the shape it

decorates – here it is an ordinary reference, but you’re welcome to use a

pointer, shared_ptr, or something else.

In addition to extra information about a shape’s color, the

ColoredShape can also have additional member functions such as

void ColoredShape::make_dark() {

 if (constexpr auto dark = "dark "; !color.starts_with(dark))

 color.insert(0, dark);

}

Well, that’s some gratuitous use of constexpr, if-init, and C++20’s

starts_with() for you. Mind you, that function is about 20 years too late,

as I’m sure you’ll agree.

Here’s how you would use this decorator:

Circle circle{0.5f};

ColoredShape redCircle{circle, "red"};

cout << redCircle.str();

// A circle of radius 0.5 has the color red

redCircle.make_dark();

cout << redCircle.str();

// A circle of radius 0.5 has the color dark red

If we now want another enhancement that adds transparency to

shapes, this is also trivial:

struct TransparentShape : Shape

{

 Shape& shape;

 uint8_t transparency;

 TransparentShape(Shape& shape, const uint8_t transparency)

Chapter 9 Decorator

168

 : shape{shape}, transparency{transparency} {}

 string str() const override

 {

 ostringstream oss;

 oss << shape.str() << " has "

 << static_cast<float>(transparency) / 255.f*100.f

 << "% transparency";

 return oss.str();

 }

};

We now have an enhancement that takes a transparency value in the

0–255 range and reports it as a percentage value. We can now use the

enhancement on its own:

Square square{3};

TransparentShape demiSquare{square, 85};

cout << demiSquare.str();

// A square with side 3 has 33.333% transparency

But the great thing about this dynamic approach is we can compose

both ColoredShape and TransparentShape together to make a shape that

has both color and transparency:

Circle c{23};

ColoredShape cs{c, "green"};

TransparentShape myCircle{cs, 64};

cout << myCircle.str();

// A circle of radius 23 has the color green has 25.098%

// transparency

Chapter 9 Decorator

169

If it’s your intention to create such a structure in one line of code, you’d

have to make adjustments to your code. At the moment, you cannot write

something like

TransparentShape{ColoredShape{Circle{23}, "green"}, 64};

To get this to work, you would need to change the way you store

references to the decorated object, by either using rvalue references, const

references, or some other mechanism. It will work in MSVC due to its non-

standard extension which allows to bind rvalue references to lvalues, but

this is a non-portable solution.

Now, to be fair, one thing you also can do (though doesn’t make much

sense) is repeat the same decorator more than once. For example, it

doesn’t make sense to have a ColoredShape{ColoredShape{...}}, but it

will work, giving somewhat conflicting results. And if you decide to fight

against it with assertions or some OOP magic – well, you can do that, but I

wonder how you will handle something like

ColoredShape{TransparentShape{ColoredShape{...}}}

This is much more challenging to detect, and even though it’s possible,

I would argue it’s simply not worth checking. We need to assume some

sanity on the part of the programmer.

�Static Decorator
Did you notice that when setting up the scenario, we gave Circle a

function called resize() that wasn’t part of the Shape interface? As you

may have guessed, since it’s not part of Shape, you really cannot call it from

a decorator. Here’s what I mean:

Circle circle{3};

ColoredShape redCircle{circle, "red"};

redCircle.resize(2); // won't compile!

Chapter 9 Decorator

170

Suppose you don’t really care whether you can compose objects

at runtime or not, but you really do care about being able to access all

the fields and member functions of a decorated object. Is it possible to

construct such a decorator?

Well, in actual fact, it is, and it’s done through templates and

inheritance – but not the kind of inheritance that causes a state space

explosion. Instead, we shall apply something called mixin inheritance, an

approach when the class inherits from its own template argument.

So here’s the idea – we’ll make a new ColoredShape, one that inherits

from a template parameter.

template <typename T> struct ColoredShape : T

{

 string color;

 string str() const override

 {

 ostringstream oss;

 oss << T::str() << " has the color " << color;

 return oss.str();

 }

}; // implementation of TransparentShape<T> omitted

One point of concern is how to make sure that the type parameter T

inherits from shape. There are two options here:

•	 Use a static assert, that is,

template <typename T> struct ColoredShape2 : T

{

 static_assert(is_base_of_v<Shape, T>,

 "Template argument must be a Shape");

 // as before

};

Chapter 9 Decorator

171

•	 Use concepts.

Armed with implementations of ColoredShape<T> and

TransparentShape<T>, we can now compose them into a colored,

transparent shape:

ColoredShape<TransparentShape<Square>> square{"blue"};

square.size = 2;

square.transparency = 0.5;

cout << square.str();

// can call square's own members

square.resize(3);

Isn’t this great? Well, great but not perfect: we seem to have lost the

full use of our constructors, so even though we are able to initialize the

outermost class, we cannot fully construct a shape with specific size, color,

and transparency in a single line of code.

To put the icing (decorations!) on our cake, let’s give ColoredShape

and TransparentShape forwarding constructors. These constructors will

take two arguments: the first shall be the argument specific to the current

template class, and the second will be a generic parameter pack that we’ll

forward to our base class. Here’s what I mean:

template <typename T> struct TransparentShape : T

{

 uint8_t transparency;

 template<typename...Args>

 TransparentShape(const uint8_t transparency, Args...args)

 : T(std::forward<Args>(args)...)

 , transparency{ transparency } {}

 ...

}; // same for ColoredShape

Chapter 9 Decorator

172

Just to reiterate, this constructor can accept any number of arguments,

where the first argument gets used to initialize the transparency value and

the rest are simply forwarded to the constructor of the base class, whatever

that happens to be. Unfortunately, the set of arguments has to be reversed.

The number of constructor parameters naturally has to be correct,

and the program will fail to compile if their number or the types of values

are incorrect. This also places certain restrictions on the way constructors

can be called, since a forwarding constructor will always try to “fill”

the available constructors depending on what’s actually available. In

situations where nested constructors have overloads, you may be unable to

instantiate the objects you need with one-line syntax.

Oh, and be sure to never make these constructors explicit or you’ll

run afoul of C++’s copy-list-initialization rules when composing the

decorators together. Now, how about actually using all this goodness?

ColoredShape<TransparentShape<Square>> sq{ "red", 51, 5 };

cout << sq.str();

// A square with side 5 has 20% transparency has the color red

Tada! As you can see, the constructor parameters get “distributed”

among the constructors of the inheritance chain: the value "red" goes into

ColoredShape, 51 goes into TransparentShape, and the value of 5 is fed to

Square.

�Functional Decorator
While the Decorator pattern is typically applied to classes, it can be equally

applied to functions. For example, suppose there’s a particular operation in

your code that’s giving you trouble: you want to record all the times when

Chapter 9 Decorator

173

this is called and analyze the statistics in Excel. Well, this can certainly be

done just by putting some code before and after the call, that is:

cout << "Entering function XYZ\n";

// do the work

cout << "Exiting function XYZ\n";

This works just fine, but isn’t good in terms of Separation of Concerns:

we really want to store the logging functionality somewhere so that we can

reuse it and enhance it when necessary.

There are different approaches to how to do this. One approach

is to simply feed the entire unit of work as a function to some logging

component similar to the following:

struct Logger

{

 function<void()> func;

 string name;

 Logger(const function<void()>& func, const string& name)

 : func{func}, name{name} {}

 void operator()() const

 {

 cout << "Entering " << name << "\n";

 func();

 cout << "Exiting " << name << "\n";

 }

};

With this approach, you could write the following:

Logger([]() { cout << "Hello\n"; }, "HelloFunction")();

// Entering HelloFunction

// Hello

// Exiting HelloFunction

Chapter 9 Decorator

174

There is always an option of passing in the function not as an

std::function, but as a template argument. This results in a slight

variation of the preceding:

template <typename Func>

struct Logger2

{

 Func func;

 string name;

 Logger2(const Func& func, const string& name)

 : func{func}, name{name} {}

 void operator()() const

 {

 cout << "Entering " << name << endl;

 func();

 cout << "Exiting " << name << endl;

 }

};

The use of this implementation is exactly the same. We can make a

utility function to actually create such a logger:

template <typename Func> auto make_logger2(Func func,

 const string& name)

{

 return Logger2<Func>{ func, name };

}

and then use it like this:

auto call = make_logger2([]() {cout << "Hello!" << endl; },

"HelloFunction");

call(); // output same as before

Chapter 9 Decorator

175

“What’s the point?”, you might ask. Well… we now have an ability to

create a decorator (with the decorated function inside it) and to call it at

the time of our choosing.

Now, here’s a challenge for you: what if you wanted to log the

invocation of the function add(), defined as follows:

double add(double a, double b)

{

 cout << a << "+" << b << "=" << (a + b) << endl;

 return a + b;

}

but you also wanted to get the return value? Yep, a return value returned

from the logger. Not so easy! But certainly not impossible. Let’s make yet

another incarnation of our logger:

template <typename R, typename... Args>

struct Logger3<R(Args...)>

{

 Logger3(function<R(Args...)> func, const string& name)

 : func{func}, name{name} {}

 R operator() (Args ...args)

 {

 cout << "Entering " << name << endl;

 R result = func(args...);

 cout << "Exiting " << name << endl;

 return result;

 }

 function<R(Args ...)> func;

 string name;

};

Chapter 9 Decorator

176

In the preceding, the template argument R refers to the type of the

return value, and Args refers to the types of arguments the function takes.

The decorator holds on to the function and calls it when necessary; the

only difference is that operator() returns an R, so you don’t lose the return

value.

We can construct another utility make_ function:

template <typename R, typename... Args>

auto make_logger3(R (*func)(Args...), const string& name)

{

 return Logger3<R(Args...)>(

 function<R(Args...)>(func),

 name);

}

And notice how, instead of going for an std::function, I’ve defined

the first argument as an ordinary function pointer. We can now use this

function to instantiate the logged invocation and use it:

auto logged_add = make_logger3(add, "Add");

auto result = logged_add(2, 3);

Of course, make_logger3 can be supplanted with dependency

injection. The upside of this approach would be an ability to

•	 Dynamically turn logging on and off by providing a Null

Object (see the corresponding chapter) instead of an

actual logger.

•	 Disable the actual invocation of the code being logged

(again, by substituting a different logger).

All in all, another useful tool on the developer’s toolbelt. I leave the

weaving of this approach into dependency injection as an exercise for the

reader.

Chapter 9 Decorator

177

�Summary
A decorator gives a class additional functionality while adhering to the

OCP. Its crucial aspect is composability: several decorators can be applied

to an object in any order. We’ve looked at the following types of decorators:

•	 Dynamic decorators which can store references

(or even store the entire values, if you want!) of the

decorated objects and provide dynamic (runtime)

composability at the expense of not being able to

access the underlying objects’ own members.

•	 Static decorators use mixin inheritance (inheriting from

template parameter) to compose decorators at compile

time. This loses any sort of runtime flexibility (you

cannot recompose objects) but gives you access to the

underlying object’s members. These objects are also

fully initializable through constructor forwarding.

•	 Functional decorators can wrap either blocks of code or

particular functions to allow composition of behaviors.

It’s worth mentioning that in languages which do not allow multiple

inheritance, decorators are also used to simulate it by aggregating more

than one object and then providing an interface that is the set union of the

interfaces of the aggregated objects.

Chapter 9 Decorator

179© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_10

CHAPTER 10

Façade
First, let’s get the linguistic issue out of the way: that little hook on the letter

Ç is called a cedilla and the letter itself is pronounced as an S, so the word

“façade” is pronounced as fah-saad. The particularly pedantic among you

are welcome to use the letter Ç/ç in your code, since most compilers treat

it just fine, but you will need to save the source code in a suitable encoding

(I recommend UTF-8) in order for the compiler to process it correctly.1

Now, about the pattern itself… essentially, the best analogy I can think

of is a typical house. When you buy a house, you generally care about

the exterior and the interior. You are less concerned about the internals:

electrical systems, insulation, sanitation, that sort of thing. Those parts are

all equally important, but we want them to “just work” without breaking.

You’re much more likely to be buying new furniture than changing the

wiring of your boiler.

The same idea applies to software: sometimes you need to interact with

a complicated system in a simple way. By “system” we could mean a set of

components or just a single component with a rather complicated API.

1 �Over the years, I have seen many silly tricks involving the use of Unicode
(typically UTF-8) encoding in source files. The most insidious case is one
where a developer insisted on calling some identifiers this – it was, of course, a
completely valid identifier because the letter i in this was a Ukrainian letter i,
not a Latin one.

https://doi.org/10.1007/978-1-4842-7295-4_10

180

�Magic Square Generator
While a proper Façade demo requires that we make super-complicated

systems that actually warrant a Façade to be put in front of them, let us

consider a trivialized example: the process of making magic squares. A

magic square is a matrix such as

	

1 14 14 4

11 8 6 9

8 10 10 5

13 2 3 15

�

�

�
�
�
�

�

�

�
�
�
�

	

If you add up the values in any row, any column, or any diagonal,

you’ll get the same number – in this case, 33. If we want to generate our

own magic squares, we can imagine it as an interplay of three different

subsystems:

•	 Generator: A component which simply generates a

sequence of random numbers of a particular size

•	 Splitter: A component that takes a rectangular

matrix and outputs a set of lists representing all rows,

columns, and diagonals in the matrix

•	 Verifier: A component that checks that the sums of all

lists passed into it are the same

We begin by implementing the Generator:

struct Generator

{

 virtual vector<int> generate(const int count) const

 {

 vector<int> result(count);

Chapter 10 Façade

181

 generate(result.begin(), result.end(),

 [&]() { return 1 + rand()%9; });

 return result;

 }

}

The Generator can give us a vector of a particular size filled with

random values generated by a particular algorithm. Here I use the simple

rand() for brevity. To make a magic square, we call the generate()

method N times to generate N rows, resulting in an N×N square.

The next component, called a Splitter, takes the generated 2D matrix

and uses it to produce unique elements representing all the rows, columns,

and diagonals of a matrix. For example, given an input matrix

	

1 2

3 4

�

�
�

�

�
� 	

the splitter will produce the following set of values:

	

1 2

3 4

1 3

2 4

1 4

2 3

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
� 	

These values represent all the rows, columns, and diagonals of the

initial 2×2 matrix. The interface of the Splitter is the following:

struct Splitter

{

 vector<vector<int>> split(vector<vector<int>> array) const

 {

Chapter 10 Façade

182

 // implementation omitted

 }

};

The implementation of Splitter is rather long-winded, so I’ve omitted

it here – take a look at the source code for its exact details. As you can see,

the Splitter returns a vector of vectors (a 2D matrix).

Our final component, Verifier, checks that those lists all add up to the

same number:

struct Verifier

{

 bool verify(vector<vector<int>> array) const

 {

 if (array.empty()) return false;

 �auto expected = accumulate(array[0].begin(),

 array[0].end(), 0);

 return all_of(array.begin(), array.end(), [=](auto& inner)

 {

 �return accumulate(inner.begin(), inner.end(), 0) ==

expected;

 });

 }

};

So there you have it – we have three different subsystems that are

expected to work in concert in order to generate random magic squares.

But are they easy to use? If we gave these classes to a client, they would

really struggle to operate them correctly. So, how can we make their lives

better?

Chapter 10 Façade

183

The answer is simple: we build a Façade, essentially a wrapper class

that hides all these implementation details and provides a very simple

interface. Of course, it uses all the three classes behind the scenes:

struct MagicSquareGenerator

{

 vector<vector<int>> generate(int size)

 {

 Generator g;

 Splitter s;

 Verifier v;

 vector<vector<int>> square;

 do

 {

 square.clear();

 for (int i = 0; i < size; ++i)

 square.emplace_back(g.generate(size));

 } while (!v.verify(s.split(square)));

 return square;

 }

};

And there you have it! Now, if the client wants to generate a 3×3 magic

square, all they have to do is call

MagicSquareGenerator gen;

auto square = gen.generate(3);

And they’ll get something like

	

3 1 5

5 3 1

1 5 3

�

�

�
�
�

�

�

�
�
� 	

Chapter 10 Façade

184

�Fine-Tuning
Quite often, you want to allow power users to customize and extend the

behavior of a façade with additional features. For example, a magic square

façade may wish to allow the user to provide a custom number generator.

To implement this, first of all, we change Generate() to take each of the

subsystems as template parameters:

template <typename G = Generator,

 typename S = Splitter,

 typename V = Verifier>

struct MagicSquareGenerator

{

 vector<vector<int>> generate(int size)

 {

 G g;

 S s;

 V v;

 // rest of code as before

 }

}

We could, if we wanted to, add further restrictions requiring that

parameters G, S, and V inherit from the corresponding classes.

Now, if the user wants to ensure all the values in a row are unique,

they can make a UniqueGenerator that ensures that all the numbers in the

generated set are unique:

struct UniqueGenerator : Generator

{

 vector<int> generate(const int count) const override

 {

 vector<int> result;

Chapter 10 Façade

185

 do

 {

 result = Generator::generate(count);

 } while (set<int>(result.begin(),result.end()).size()

 != result.size());

 return result;

 }

};

We can then feed this new generator into the Façade, thereby getting

a different magic Square. Notice we only provide the first template

parameter, using the defaults for Splitter and Verifier.

MagicSquareGenerator<UniqueGenerator> gen;

auto square = gen.generate(3);

This gives us

	

8 1 6

3 5 7

4 9 2

�

�

�
�
�

�

�

�
�
� 	

Of course, it’s really impractical to generate magic squares this way,

but what this example demonstrates is that you can hide complicated

interactions between different systems behind a Façade and that you can

also incorporate a certain amount of configurability so that users can

customize the internal operations of the mechanism should the need arise.

�Building a Trading Terminal
I’ve spent a lot of time working in areas of quant finance and algorithmic

trading. As you can probably guess, what’s required of a good trading

terminal is quick delivery of information into a trader’s brain: you want

things to be rendered as fast as possible, without any lag.

Chapter 10 Façade

186

Most of financial data (except for the charts) is actually rendered in

plain text: white characters on a black screen. This is, in a way, similar to

the way the terminal/console/command-line interface works in your own

operating system.

The first part of a terminal window is the buffer. This is where the

rendered characters are stored. A buffer is a rectangular area of memory,

typically a 1D2 or 2D char or wchar_t array. A buffer can be much larger

than the visible area of the terminal window, so it can store some historical

output that you can scroll back to.

Typically, a buffer has a pointer (e.g., an integer) specifying the

current input line. That way, a full buffer doesn’t reallocate all lines; it just

overwrites the oldest one.

Then there’s the idea of a viewport. A viewport renders a part of

the particular buffer. A buffer can be huge, so a viewport just takes a

rectangular area out of that buffer and renders that. Naturally, the size of

the viewport has to be less than or equal to the size of the buffer.

Finally, there’s the console (terminal window) itself. The console

shows the viewport, allows scrolling up and down, and even accepts user

input. The console is, in fact, a façade: a simplified representation of what

is a rather complicated set-up behind the scenes.

Typically, most users interact with a single buffer and viewport. It is,

however, possible to have a console window where you have, say, the area

split vertically between two viewports, each having their corresponding

buffers. This can be done using utilities such as the screen Linux

command.

2 �Most buffers are one dimensional. The reason for this is that it’s easier to pass a
single pointer somewhere than a double pointer, and using an array or vector
doesn’t make much sense when the size of the structure is deterministic and
immutable. Another advantage to the 1D approach is that when it comes to GPU
processing, platforms such as CUDA use up to six dimensions for addressing
anyway, so after a while, computing a 1D index from an N-dimensional block/
grid position becomes second nature.

Chapter 10 Façade

187

�An Advanced Terminal
One problem with a typical operating system terminal is that it is extremely

slow if you pipe a lot of data into it. For example, a Windows terminal

window (cmd.exe) uses GDI to render the characters, which is completely

unnecessary. In a fast-paced trading environment, you want the rendering

to be hardware-accelerated: characters should be preseted as pre-

rendered textures placed on a surface using an API such as OpenGL.3

A trading terminal consists of multiple buffers and viewports, as

illustrated in Figure 10-1. In a typical set-up, different buffers might be

getting updated concurrently with data from various exchanges or trading

bots, and all of this information needs to be presented on a single screen.4

3 �We also use ASCII, since Unicode is rarely, if ever, required. Having 1 char = 1
byte is a good practice if you don’t need to support extra character sets. While not
relevant to the discussion at hand, it also greatly simplifies the implementation of
string processing algorithms on both GPUs and CPUs.

4 �Actually, we use multiple screens, which makes the implementation even more
challenging.

Figure 10-1.  Visual illustration of how a console is organized

Chapter 10 Façade

188

Buffers also provide functionality that is a lot more exciting than just a

1D or 2D linear storage. For example, a TableBuffer might be defined as

struct TableBuffer : Buffer

{

 �TableBuffer(vector<TableColumnSpec> spec, int totalHeight) {

... }

 struct TableColumnSpec

 {

 string header;

 int width;

 enum class TableColumnAlignment {

 Left, Center, Right

 } alignment;

 }

};

In other words, a buffer can take some specification and build a table

(yes, a food old-fashioned ASCII-formatted table!) and present it on

screen.

A viewport is in charge of getting data from the buffer. Some of its

characteristics include

•	 A reference to the buffer it’s showing.

•	 Its size.

•	 If the viewport is smaller than the buffer, it needs to

specify which part of the buffer it is going to show. This

is expressed in absolute x-y coordinates.

•	 The location of the viewport on the overall console

window.

•	 The location of the cursor, assuming this viewport is

currently taking user input.

Chapter 10 Façade

189

�Where’s the Façade?
The console itself is the façade in this particular system. Internally, the

console has to manage many different objects:

struct Console

{

 vector<Viewport*> viewports;

 Size charSize, gridSize;

 ...

};

Initialization of the console is, typically, a very complicated affair.

However, since it’s a Façade, it actually tries to provide a really accessible

API. This might either take a number of sensible parameters to initialize all

the guts from.

Console::Console(bool fullscreen, int char_width, int char_

height,

 int width, int height, optional<Size> client_size)

{

 // single buffer and viewport created here

 // linked together and added to appropriate collections

 // image textures generated

 // �grid size calculated depending on whether we want

fullscreen mode

}

Chapter 10 Façade

190

Alternatively, one might pack all the arguments into a single Parameter

Object which, again, has some sensible defaults:

Console::Console(const ConsoleCreationParameters& ccp) { ... }

struct ConsoleCreationParameters

{

 optional<Size> client_size;

 int character_width{10};

 int character_height{14};

 int width{20};

 int height{30};

 bool fullscreen{false};

 bool create_default_view_and_buffer{true};

};

Naturally, any particular set of defaults can have dynamic and static

variations:

•	 Dynamically provided parameters filled in a structure

(as in our ConsoleCreationParameters) can be

changed at runtime.

•	 Providers supplied statically as template arguments.

The choice of each depends on whether the values need to be mutable.

For example, if the console doesn’t support resizing, you can take width/

height as template arguments, again, with sensible defaults.

�Summary
The Façade design pattern is a way of putting a simple interface in front of

one or more complicated subsystems. It provides for ease of use yet, at the

same time, may expose customization points for power users to fine-tune

the operation of the façade.

Chapter 10 Façade

191© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_11

CHAPTER 11

Flyweight
A Flyweight (also sometimes called a token or a cookie) is a temporary

component which acts as a “smart reference” to something. Typically,

flyweights are used in situations where you have a very large number of

very similar objects, and you want to minimize the amount of memory that

is dedicated to storing all these values.

Let’s take a look at some scenarios where this pattern becomes

relevant.

�User Names
Imagine a massively multiplayer online game. I bet you $20 there’s more

than one user called John Smith – quite simply because it is a popular

name. So if we were to store that name over and over (in ASCII), we would

be spending at least 11 bytes for every such user, possibly more. Instead,

we could store the name once and then store a pointer to every user with

that name. That’s quite a saving assuming user names do repeat.

It would, perhaps, make even more sense to fragment the name into

first and last names: that way, Fitzgerald Smith would be represented by

two pointers, pointing to first and last names, respectively. In fact, we can

cut down the number of bytes used if we use indices instead of pointers.

You don’t expect there to be 2^64 unique first and last names, do you?

https://doi.org/10.1007/978-1-4842-7295-4_11

192

To begin with, we can typedef a data type used for the key. We can also

tweak it later.

typedef uint16_t key;

With this definition, we can make a user defined as follows:

struct User

{

 User(const string& first_name, const string& last_name)

 : first_name{add(first_name)}, last_name{add(last_name)} {}

⋮
protected:

 key first_name, last_name;

 static bimap<key, string> names;

 static key seed;

 static key add(const string& s) { ... }

};

As you can see, the constructor initializes the members first_name

and last_name with the result of calling a private add() function. This

function inserts the key-value pairs (keys are generated from a seed) into

the names structure as necessary. I’m using a boost::bimap (bidirectional

map) here, because it makes it easier to search for duplicates – remember,

if the first or last name is already in the bimap, we just return an index to it.

So here is the implementation of the add() function:

static key User::add(const string& s)

{

 auto it = names.right.find(s);

 if (it == names.right.end())

 {

 // add it

 names.insert({++seed, s});

Chapter 11 Flyweight

193

 return seed;

 }

 return it->second;

}

This is a fairly standard implementation of the get or add mechanic.

You might want to consult bimap’s documentation for more info on how it

works if you haven’t met it before.1

So now, if we want to actually expose the first and last names (the fields

are protected and are of type key, not very useful!), we can provide the

appropriate getters and setters:

const string& get_first_name() const

{

 return names.left.find(last_name)->second;

}

const string& get_last_name() const

{

 return names.left.find(last_name)->second;

}

For example, to define a User’s stream output operator, you could

simply write

friend ostream& operator<<(ostream& os, const User& obj)

{

 return os

 << "first_name: " << obj.get_first_name()

 << " last_name: " << obj.get_last_name();

}

1 www.boost.org/doc/libs/1_73_0/libs/bimap/doc/html/index.html

Chapter 11 Flyweight

http://www.boost.org/doc/libs/1_73_0/libs/bimap/doc/html/index.html

194

And that’s it. I am not going to offer statistics on the amount of space

saved (this really depends on your sample size and how you choose to

encode strings), but hopefully it’s obvious that, in the case of a large

number of repeating user names, the savings are significant – especially if

you choose a smaller data type for the key.

�Boost.Flyweight
In the previous example, I have hand-crafted a Flyweight even though I

could have reused one available as a Boost library. The boost::flyweight

type does exactly what it says on the tin: constructs a space-saving

flyweight.

This makes the implementation of the User class rather trivial:

struct User2

{

 flyweight<string> first_name, last_name;

 User2(const string& first_name, const string& last_name)

 : first_name{first_name},

 last_name{last_name} {}

};

And you can verify that it is in fact a flyweight by running the following

code:

User2 john_doe{ "John", "Doe" };

User2 jane_doe{ "Jane", "Doe" };

cout << boolalpha <<

 �(&jane_doe.last_name.get() == &john_doe.last_name.get());

// true

Chapter 11 Flyweight

195

�String Ranges
If we call string::substring(), should that return us a brand new

constructed string? The jury is out: if you want to manipulate it then

sure, but what if you want changes to the substring to affect the original

object? Some programming languages (e.g., Swift, Rust) explicitly return a

substring as a range which is, again, an implementation of the Flyweight

pattern that saves on the amount of memory used, in addition to allowing

us to manipulate the underlying object through the range.

The C++ equivalent to a range of a string is a string_view, and there

are additional variations for arrays – anything to avoid copying data!

In C++, string_view has made its appearance long after the string

data type, and the way its use was incorporated was to allow an implicit

conversion from a string, that is:

string s = "hello world!";

string_view sv = string_view(s).substr(0, 5);

We are going to construct our own, very trivial, string range. We shall

assume that we’ve got some text stored in a containing class, and we want

to grab a range of that text and capitalize it, kind of like something a word

processor or IDE might do. We could just modify the underlying text and be

done with it, but let’s assume we want to keep the plain text in its original

state and only capitalize letters for when we use the stream output operator.

�Naïve Approach
A very silly way of solving the problem would be to define a bool array

whose size matches the plain-text string, and the flags indicate whether we

capitalize the character or not. We can implement it like this:

class FormattedText

{

 string plainText;

Chapter 11 Flyweight

196

 bool *caps;

public:

 explicit FormattedText(const string& plainText)

 : plainText{plainText}

 {

 caps = new bool[plainText.length()];

 }

 ~FormattedText()

 {

 delete[] caps;

 }

};

We can now make a utility method for capitalizing a particular range of

letters within a piece of text.

void capitalize(int start, int end)

{

 for (int i = start; i <= end; ++i)

 caps[i] = true;

}

Now we can define a stream output operator that makes use of the

Boolean mask:

friend ostream& operator<<(ostream& os,

 const FormattedText& obj)

{

 string s;

 for (int i = 0; i < obj.plainText.length(); ++i)

 {

 char c = obj.plainText[i];

Chapter 11 Flyweight

197

 s += (obj.caps[i] ? toupper(c) : c);

 }

 return os << s;

}

Don’t get me wrong, this approach works:

FormattedText ft("This is a brave new world");

ft.capitalize(10, 15);

cout << ft; // This is a BRAVE new world

But, again, it’s very silly to define every single character as having a

Boolean flag, when just the start and end markers will do. This approach also

fails to scale. Imagine if you also want to underline text or make it italic – in

this case, you’d be introducing even more space-wasting Boolean arrays.

Sure, Boolean values do support a certain amount of compactification (let’s

not mention vector<bool>!), but even so, this approach is wasteful.

Let us try to use the Flyweight pattern again.

�Flyweight Implementation
Let’s implement a BetterFormattedText that makes use of the Flyweight

design pattern. We’ll begin by defining both the outer class and the nested

TextRange class that happens to be our Flyweight:

class BetterFormattedText

{

public:

 struct TextRange

 {

 int start, end;

 bool capitalize{false};

 // other options here, e.g. bold, italic, etc.

Chapter 11 Flyweight

198

 // determine our range covers a particular position

 bool covers(int position) const

 {

 return position >= start && position <= end;

 }

 };

private:

 string plain_text;

 vector<TextRange> formatting;

};

As you can see, TextRange just stores the start and end points to

which it applies, as well as the actual formatting information – whether

we want to capitalize text as well as any other formatting option (e.g.,

bold, italic, etc.). It has just a single member function covers() that helps

us determine whether this piece of formatting needs to be applied to the

character at the given position.

BetterFormattedText stores a vector of TextRange flyweights and is

able to construct new ones on demand:

TextRange& get_range(int start, int end)

{

 formatting.emplace_back(TextRange{ start, end });

 return *formatting.rbegin();

}

Three things are happening in this listing:

	 1.	 A new TextRange is constructed.

	 2.	 It gets moved into the vector.

	 3.	 A reference to the last element is returned.

Chapter 11 Flyweight

199

We don’t really check duplicate ranges in our implementation –

something that would also be in the spirit of Flyweight-based space economy.

We can now implement operator<< for BetterFormattedText:

friend ostream& operator<<(ostream& os,

 const BetterFormattedText& obj)

{

 string s;

 for (size_t i = 0; i < obj.plain_text.length(); i++)

 {

 auto c = obj.plain_text[i];

 for (const auto& rng : obj.formatting)

 {

 if (rng.covers(i) && rng.capitalize)

 c = toupper(c);

 s += c;

 }

 }

 return os << s;

}

Again, all we do is go through each character and check whether

there’s any range that covers it. If there is, we apply whatever the range

specifies, in our case, capitalization. Note that this set-up allows ranges

to freely overlap. Naturally, such a linear search over every single range

is inefficient, but we’ll let it happen here because we’re concerned with

memory savings rather than performance.

We can now use all that we’ve constructed to capitalize that same word

as before, albeit with a slightly different, more flexible, API:

BetterFormattedText bft("This is a brave new world");

bft.get_range(10, 15).capitalize = true;

cout << bft; // This is a BRAVE new world

Chapter 11 Flyweight

200

�Summary
The Flyweight pattern is fundamentally a space-saving technique. Its

exact incarnations are diverse: sometimes you have the Flyweight being

returned as an API token that allows you to perform modifications of

whoever has spawned it, and sometimes the Flyweight is implicit, hiding

behind the scenes – as in the case of our User, where the client isn’t meant

to know about the Flyweight actually being used.

Chapter 11 Flyweight

201© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_12

CHAPTER 12

Proxy
When we looked at the Decorator design pattern, we saw the different ways

of enhancing the functionality of an object. The Proxy design pattern is

similar, but its goal is to preserve exactly (or as closely as possible) the API

that is being used while offering certain internal enhancements.

Proxy isn’t a homogeneous pattern because the different kinds of

proxies people build are quite numerous and serve entirely different

purposes. In this chapter, we’ll take a look at a selection of different proxy

objects, and you can find more online and in literature.

�Smart Pointers
The simplest and most direct illustration of the Proxy pattern is a smart

pointer. A smart pointer is a wrapper for a pointer that also keeps a

reference count and overrides certain operators, but all in all, it provides

you the interface that you would get in an ordinary pointer:

struct BankAccount

{

 void deposit(int amount) { ... }

};

BankAccount *ba = new BankAccount;

ba->deposit(123);

auto ba2 = make_shared<BankAccount>();

ba2->deposit(123); // same API!

https://doi.org/10.1007/978-1-4842-7295-4_12

202

So a smart pointer can also be used as a substitute in locations where

an ordinary pointer is expected. For example, if (ba) { ... } is valid

whether ba is a pointer or a smart pointer. *ba will, in both cases, get you

the underlying object. And so on.

There are, of course, differences, the most obvious one being that you

don’t have to call delete on a smart pointer. But apart from that, it really

tries to be as close to an ordinary pointer as possible.

�Property Proxy
The term property in other programming languages is used to indicate a

combination of a (backing) field together with getter/setter methods for

that field. There is no built-in property support in C++;1 the most common

approach is to create a pair of get/set methods with names similar to the

underlying field. However, this implies that to manipulate x.foo, we would

have to call x.get_foo() and x.set_foo(value), respectively. But if we

want to keep using field access syntax (i.e., keep writing x.foo) while giving

it particular accessor/mutator behaviors, we can build a property proxy.

Essentially, a property proxy is a class that can masquerade as an

ordinary field in terms of usage semantics. We can define it like this:

template <typename T> struct Property

{

 T value;

 Property(const T initial_value)

 {

 *this = initial_value; // invokes operator =

 }

1 �If you are happy with non-standard C++, check out the __declspec(property)
extension, which is implemented in many modern compilers including Clang,
MSVC, and GCC.

Chapter 12 Proxy

203

 operator T()

 {

 // perform some getter action

 return value;

 }

 T operator =(T new_value)

 {

 // perform some setter action

 return value = new_value;

 }

};

In the preceding implementation, I’ve added comments in places that

you would typically customize (or replace outright), which correspond

roughly to the location of getters/setters. One possible customization, for

example, would be to put additional notification code in the setter so as to

implement observable properties (as per the Observer pattern).

Our class Property<T> is, essentially, a drop-in replacement for the

underlying T, whatever that happens to be. It works by simply allowing

conversion to and from T, letting both use the value field behind the

scenes. You can now replace an ordinary field with this type:

struct Creature

{

 Property<int> strength{ 10 };

 Property<int> agility{ 5 };

};

And the typical operations on a field will work also on a field of a

property proxy type:

Creature creature;

creature.agility = 20; // calls Property<int>::operator =

auto x = creature.strength; // calls Property<int>::operator T

Chapter 12 Proxy

204

One possible extension to the property proxy is to introduce pseudo

strong typing, perhaps by having a Property<T, int Tag> so that values

with different intentions are defined by different types. This is useful if, for

example, you want to support some sort of arithmetic on like types so that,

for example, two strength values can be added together, but strength and

agility values cannot.

�Virtual Proxy
If you try to dereference a nullptr or an uninitialized pointer, you’re

asking for trouble. However, there are situations where you only want the

object constructed when it’s accessed, and you don’t want to allocate it

prematurely, thus keeping it as a nullptr or similar until the time comes to

actually use it.

This approach is called lazy instantiation or lazy loading. If you know

exactly where you’re going to need lazy behaviors, you can plan ahead and

make special provisions for them. But if you don’t, you can build a proxy

that takes an existing object and makes it lazy. We call this a virtual proxy

because the underlying object might not even exist, so instead of accessing

something concrete, we’re accessing something virtual.

Imagine a typical Image interface:

struct Image

{

 virtual void draw() = 0;

};

An eager (opposite of lazy) implementation of a Bitmap, which

implements the Image interface, would load the image from a file on

construction, even if that image isn’t actually required for anything. (And

yes, the following code is an emulation.)

Chapter 12 Proxy

205

struct Bitmap : Image

{

 Bitmap(const string& filename)

 {

 cout << "Loading image from " << filename << endl;

 // image gets loaded here

 }

 void draw() override

 {

 cout << "Drawing image " << filename << endl;

 }

};

The very act of constructing this Bitmap will trigger the loading of the

image:

Bitmap img{ "pokemon.png" }; // Loading image from pokemon.png

That’s not quite what we want. What we want is a kind of bitmap that

only loads itself when the draw() method is called. Now, I suppose we

could jump back into Bitmap and make it lazy, but let us assume it is set in

stone and is not modifiable (or inheritable, for that matter).

What we can do in this situation is build a virtual proxy that will

aggregate the original Bitmap, provide an identical interface, and also

reuse the original Bitmap’s functionality:

struct LazyBitmap : Image

{

 LazyBitmap(const string& filename)

 : filename(filename) {}

 ~LazyBitmap() { delete bmp; }

 void draw() override

 {

Chapter 12 Proxy

206

 if (!bmp)

 bmp = new Bitmap(filename);

 bmp->draw();

 }

private:

 Bitmap *bmp{nullptr};

 string filename;

};

Here we are. As you can see, the constructor of this LazyBitmap is a lot

less “heavy”: all it does is store the name of the file to load the image from,

and that’s it – the image doesn’t get loaded immediately.

All of the magic happens in draw(): this is where we check the

bmp pointer to see whether the underlying (eager!) bitmap has been

constructed. If it hasn’t, we construct it and then call its draw() function to

actually draw the image.

Now suppose we have some API that uses an Image type:

void draw_image(Image& img)

{

 cout << "About to draw the image" << endl;

 img.draw();

 cout << "Done drawing the image" << endl;

}

We can use that API with an instance of LazyBitmap instead of Bitmap

(hooray, polymorphism!) to render the image, loading it in a lazy fashion:

LazyBitmap img{ "pokemon.png" };

draw_image(img); // image loaded here

// About to draw the image

// Loading image from pokemon.png

Chapter 12 Proxy

207

// Drawing image pokemon.png

// Done drawing the image

That’s it, our virtual proxy allows us to do lazy loading!

�Communication Proxy
Suppose you call a member function foo() on an object of type Bar. Your

typical assumption is that Bar has been allocated on the same machine

as the one running your code, and you similarly expect Bar::foo() to

execute in the same process.

Now, imagine that you make a design decision to move Bar and all

its members off to a different machine on the network. But you still want

the old code to work! If you want to keep going as before, you’ll need a

communication proxy – a component that proxies the calls “over the wire”

and of course collects results, if necessary.

Let’s implement a simple ping pong service to illustrate this. First, we

define an interface:

struct Pingable

{

 virtual wstring ping(const wstring& message) = 0;

};

If we are building ping pong in-process, we can implement Pong as

follows:

struct Pong : Pingable

{

 wstring ping(const wstring& message) override

 {

 return message + L" pong";

 }

};

Chapter 12 Proxy

208

Basically, you ping a Pong and it appends the word " pong" to the end

of the message and returns that message. Notice how I’m not using an

ostringstream& here, but instead making a new string on each turn: this

API is simple to replicate as a web service.

We can now try out this set-up and see how it works in-process:

void tryit(Pingable& pp)

{

 wcout << pp.ping(L"ping") << "\n";

}

Pong pp;

for (int i = 0; i < 3; ++i)

{

 tryit(pp);

}

The end result is that we print "ping pong" three times, just as we

wanted.

So now, suppose you decide to relocate the Pingable service to a web

server far, far away. Perhaps you even decide to use some other platform,

such as ASP.NET, instead of C++:

[Route("api/[controller]")]

public class PingPongController : Controller

{

 [HttpGet("{msg}")]

 public string Get(string msg)

 {

 return msg + " pong";

 }

} // achievement unlocked: use C# in a C++ book

Chapter 12 Proxy

209

With this set-up, we’ll build a communication proxy called RemotePong

that will be used in place of Pong. Microsoft’s REST SDK comes in handy

here.2

struct RemotePong : Pingable

{

 wstring ping(const wstring& message) override

 {

 wstring result;

 http_client client(U("http://localhost:9149/"));

 uri_builder builder(U("/api/pingpong/"));

 builder.append(message);

 pplx::task<wstring> task = client.request(

 methods::GET, builder.to_string())

 .then([=](http_response r)

 {

 return r.extract_string();

 });

 task.wait();

 return task.get();

 }

};

If you are not used to the REST SDK, the preceding code might

seem a little bewildering; in addition to REST support, the SDK uses the

Concurrency Runtime, a Microsoft library for, you guessed it, concurrency

support.

2 �The Microsoft REST SDK is a C++ library for working with REST services.
It is both open source and cross-platform. You can find it on GitHub:
https://github.com/Microsoft/cpprestsdk

Chapter 12 Proxy

https://github.com/Microsoft/cpprestsdk
https://github.com/Microsoft/cpprestsdk

210

With this implemented, we can now make a single change:

RemotePong pp; // was Pong

for (int i = 0; i < 3; ++i)

{

 tryit(pp);

}

And that’s it, you get the same output, but the actual implementation

can be running on ASP.NET in a Docker container somewhere halfway

around the world.

�Value Proxy
A value proxy is, as the name suggests, a proxy for a single value.

Value proxies typically wrap primitive types and provide augmented

functionality depending on their use.

Consider an example where you need to pass some values into a

function. The function may take concrete, fixed values, but it can also take

a random value from a predefined set, with a concrete value chosen at

runtime.

One approach would be to modify this function and introduce several

overloads, but, instead, we are going to modify the function parameter

types. Let us introduce a helper class Value<T>:

template <typename T> struct Value

{

 virtual operator T() const = 0;

};

This class has only one pure virtual member that performs an implicit

cast to type T whenever the compiler feels like such a cast could be useful.

Chapter 12 Proxy

211

On the basis of this, we can introduce a class Const<T> that represents

a constant value:

template <typename T> struct Const : Value<T>

{

 const T v;

 Const() : v{} {}

 Const(T v) : v{v} {}

 operator T() const override

 {

 return v;

 }

};

This class acts as a wrapper for type T and will return the contained

value whenever someone asks for it. Also notice that its constructors are

not explicit. This means we can use it like this:

const Const<int> life{42};

cout << life/2 << "\n"; // 21

In a similar fashion, we can inherit Value<T> to introduce a value that

is chosen randomly among several different options, each having equal

probability:

template <typename T> struct OneOf : Value<T>

{

 vector<T> values;

 OneOf() : values{{T{}}} {} // :)

 OneOf(initializer_list<T> values) : values{values} {}

 operator T() const override

 {

Chapter 12 Proxy

212

 return values[rand() % values.size()];

 }

};

This allows us to initialize the container with a bunch of values and

have it produce one at random whenever someone asks for it:

OneOf<int> stuff{ 1, 3, 5 };

cout << stuff << "\n"; // will print 1, 3 or 5

We can now make use of these types in an application. For example,

say, you’re testing a new dark theme for your application. You don’t know

whether your clients will like it, though. You can define a function such as

void draw_ui(const Value<bool>& use_dark_theme)

{

 if (use_dark_theme)

 cout << "Using dark theme\n";

 else

 cout << "Using normal theme\n";

}

Now, while you perform A/B testing, you can call the function as

follows:

OneOf<bool> dark{true, false};

draw_ui(dark);

Once you know your users do like the dark theme better, you can

simply replace the variable with a Const and you’re done:

Const<bool> dark{true};

draw_ui(dark);

Chapter 12 Proxy

213

Notice that, unfortunately, there is no way to simply call draw_

ui(true) because there are no implicit conversions from bool to const

Value<bool>&.

The alternative is that you specify the receiving function “normally”:

void draw_ui(bool use_dark_theme)

{

 if (use_dark_theme)

 cout << "Using dark theme\n";

 else

 cout << "Using normal theme\n";

}

And then proceed to specify the argument at the call site, that is:

OneOf<bool> dark{true, false};

draw_ui(dark);

// or

draw_ui(true);

The difference between the two approaches is obvious.

In the case where you pass a reference to a Value, you need to keep

operating on objects within the hierarchy, but inside the function, you can

use the implicit conversion to generate values more than once – and these

values can be different on each call!

On the other hand, the use of Value at the call site means you can

replace it with a literal such as true without loss of generality. This

approach also follows the principle of least surprise since any client that

sees a Value<T> as a parameter type will have to waste precious time

searching for this hierarchy of types and learning how to work with it.

Chapter 12 Proxy

214

�Summary
This chapter has presented a number of proxies. Unlike the Decorator

pattern, the Proxy doesn’t try to expand the functionality of an object

by adding new members (unless it can’t be helped) – all it tries to do is

enhance the underlying behavior of existing members. A proxy is intended

as a drop-in replacement.

Plenty of different proxies exist:

•	 Property proxies are stand-in objects that can replace

fields and perform additional operations during

assignment and/or access.

•	 Value proxies replace individual (scalar) values while

augmenting them with additional functionality.

•	 Virtual proxies provide virtual access to the underlying

object and can implement behaviors such as lazy

loading. You may feel like you’re working with a real

object, but the underlying implementation may not

have been created yet and can, for example, be loaded

on demand.

•	 Communication proxies allow us to change the

physical location of the object (e.g., move it to the

cloud) but allow us to use the same API.

•	 Logging proxies allow you to perform logging in

addition to calling the underlying functions.

There are lots of other proxies out there, and chances are that the ones

you build yourself will not fall into a pre-existing category, but will, instead,

perform some action specific to your domain.

Chapter 12 Proxy

PART III

Behavioral Patterns
When most people hear about behavioral patterns, it’s primarily

mentioned in the field of psychology, and the idea of getting people

or animals to do what you want. Well, in a way, all of coding is about

programs doing what you want, so behavioral software design patterns

cover a very wide range of behaviors that are, nonetheless, quite common

in programming.

As an example, consider the domain of software engineering. We have

languages that are compiled, which involves lexing, parsing, and a million

other things (the Interpreter pattern) and, having constructed an abstract

syntax tree (AST) for a program, we might want to analyze the program

for possible bugs (the Visitor pattern). All of these are behaviors that are

common enough to be expressed as patterns, and this is why we are here

today.

Unlike Creational patterns (which are concerned exclusively with

the creation of objects) or Structural patterns (which are concerned with

composition/aggregation/inheritance of objects), Behavioral design

patterns do not follow a central theme. While there are certain similarities

between different patterns (e.g., Strategy and Template Method do the

same thing in different ways), most patterns present unique approaches to

solving particular problems.

217© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_13

CHAPTER 13

Chain of
Responsibility
Consider the typical example of corporate malpractice: insider trading,

when a trader has been caught red-handed trading on inside information.

Who is to blame for this? If management didn’t know, it’s the trader. But

maybe the trader’s peers were in on it, in which case the group manager

might be the one responsible. Or perhaps the practice is institutional, in

which case it’s the CEO who would take the blame.

This is an example of a responsibility chain: you have several different

elements of a system that can all process a message, one after another. As a

concept, it’s rather easy to implement, since all that’s implied is the use of

a list.

�Scenario
Imagine a computer game where each creature has a name and two

characteristic values – attack and defense:

struct Creature

{

 string name;

 int attack, defense;

 // constructor and << here

};

https://doi.org/10.1007/978-1-4842-7295-4_13

218

As the creature progresses through the game, it might acquire an item

(e.g., a magic sword), or it might end up getting enchanted. In either case,

its attack and defense values will be modified by something we’ll call a

CreatureModifier.

Furthermore, situations where several modifiers are applied are

not uncommon, so we need to be able to stack modifiers on top of one

another, allowing them to be applied in the order they were attached.

Let’s see how we can implement this.

�Pointer Chain
We shall implement CreatureModifier as follows:

class CreatureModifier

{

 CreatureModifier* next{nullptr};

protected:

 Creature& creature; // alternative: pointer or shared_ptr

public:

 explicit CreatureModifier(Creature& creature)

 : creature(creature) {}

 void add(CreatureModifier* cm)

 {

 if (next) next->add(cm);

 else next = cm;

 }

 virtual void handle()

 {

 if (next) next->handle(); // critical!

 }

};

Chapter 13 Chain of Responsibility

219

There are a lot of things happening here, so let’s discuss them in turn:

•	 The class takes and stores a reference to the Creature it

plans to modify.

•	 The class doesn’t really do much, but it’s not abstract:

all its members have implementations.

•	 The next member points to an optional

CreatureModifier following this one. The implication

is, of course, that the modifier it points to is an inheritor

of CreatureModifier.

•	 The function add() adds another creature modifier

to the modifier chain. This is done recursively: if the

current modifier is nullptr, we set it to that; otherwise,

we traverse the entire chain and put it on the end.

•	 The function handle() simply handles the next item

in the chain, if it exists; it has no behavior of its own.

The fact that it’s virtual implies that it’s meant to be

overridden.

So far, all we have is an implementation of a poor man’s append-only

singly linked list. But when we start inheriting from it, things will hopefully

become more clear. For example, here is how you would make a modifier

that would double the creature’s attack value:

class DoubleAttackModifier : public CreatureModifier

{

public:

 explicit DoubleAttackModifier(Creature& creature)

 : CreatureModifier(creature) {}

 void handle() override

 {

Chapter 13 Chain of Responsibility

220

 creature.attack *= 2;

 CreatureModifier::handle();

 }

};

Alright, finally we’re getting somewhere. This modifier inherits from

CreatureModifier and in its handle() method does two things: doubles

the attack value and calls handle() from the base class. The second

part is critical: the only way in which a chain of modifiers can be applied

is if every inheritor doesn’t forget to call the base at the end of its own

handle() implementation.

Here is another, more complicated modifier. This modifier increases

the defense of creatures with attack of 2 or less by 1:

class IncreaseDefenseModifier : public CreatureModifier

{

public:

 explicit IncreaseDefenseModifier(Creature& creature)

 : CreatureModifier(creature) {}

 void handle() override

 {

 if (creature.attack <= 2) creature.defense += 1;

 CreatureModifier::handle();

 }

};

Again we call the base class at the end. Putting it all together, we can

now make a creature and apply a combination of modifiers to it:

Creature goblin{ "Goblin", 1, 1 };

CreatureModifier root{ goblin };

DoubleAttackModifier r1{ goblin };

Chapter 13 Chain of Responsibility

221

DoubleAttackModifier r1_2{ goblin };

IncreaseDefenseModifier r2{ goblin };

root.add(&r1);

root.add(&r1_2);

root.add(&r2);

root.handle();

cout << goblin << endl;

// name: Goblin attack: 4 defense: 1

As you can see, the goblin is a 4/1 because its attack got doubled twice

and the defense modifier, while added, did not affect its defense score.

Here’s another curious point. Suppose you decide to cast a spell

on a creature such that no bonus can be applied to it. Is it easy to do?

Quite easy, actually, because all you have to do is avoid calling the base

handle(). This avoids executing the entire chain:

class NoBonusesModifier : public CreatureModifier

{

public:

 explicit NoBonusesModifier(Creature& creature)

 : CreatureModifier(creature) {}

 void handle() override

 {

 // nothing here!

 }

};

That’s it! Now, if you slot the NoBonusesModifier at the beginning of

the chain, no further elements will be applied. This raises an interesting

point regarding how a Chain of Responsibility (CoR) will be treated. In

most cases, you’ll encounter Chain of Responsibility as a singly linked list

Chapter 13 Chain of Responsibility

222

with items appended onto the end. But in some cases, you can customize

this list, for example, sorting items by priority in some sort of map<int,

Modifier*> or similar structure.

�Broker Chain
The example with the pointer chain is very artificial. In the real world,

you’d want creatures to be able to take on and lose bonuses arbitrarily,

something which an append-only linked list does not support.

Furthermore, you don’t want to modify the underlying creature stats

permanently (as we did) – instead, you want to keep modifications

temporary.

One way to implement Chain of Responsibility is through a centralized

component. This component can keep a list of all modifiers available in

the game and can facilitate queries for a particular creature’s attack or

defense by ensuring that all relevant bonuses are applied.

The component that we are going to build is called an event broker.

Since it’s connected to every participating component, it represents the

Mediator design pattern, and, further, since it responds to queries through

events, it leverages the Observer design pattern that is discussed later in

the book.

Let’s build one. First of all, we’ll define a structure called Game that will

represent, well, a game that’s being played:

struct Game // mediator

{

 signal<void(Query&)> queries;

};

We are using Boost.Signals2 library for keeping a signal called queries.

What this lets us do is fire this signal and have it handled by ever slot

Chapter 13 Chain of Responsibility

223

(listening component). But what do events have to do with querying a

creature’s attack or defense?

Well, imagine that you want to query a creature’s statistic. You could

certainly try to read a field, but remember – we need to apply all the

modifiers before the final value is known. So instead we’ll encapsulate a

query in a separate object (this is the Command pattern1) defined as follows:

struct Query

{

 string creature_name;

 enum Argument { attack, defense } argument;

 int result;

};

What we’ve done here is encapsulated the concept of querying a

particular value from a creature. To make a query, we need to provide the

name of the creature and specify which statistic we’re interested in. It is

precisely this value (well, a reference to it) that will be constructed and

used by Game::queries to apply the modifiers and return the final value.

Now, let’s move on to the definition of Creature. It is very similar to what

we had before. The only difference in terms of fields is a reference to a Game:

class Creature

{

 Game& game;

 int attack, defense;

public:

 string name;

1 �Actually, there’s a bit of confusion here. The concept of Command Query
Separation (CQS) suggests the separation of operations into commands (which
mutate state and yield no value) and queries (which do not mutate anything
but yield a value). The GoF does not have a concept of a Query, so we let any
encapsulated instruction to a component be called a Command.

Chapter 13 Chain of Responsibility

224

 Creature(Game& game, ...) : game{game}, ... { ... }

 // other members here

};

Now, notice how attack and defense are private. This means that

to get at the final (post-modifier) attack value, you would need to call a

separate getter function, for example:

int Creature::get_attack() const

{

 Query q{ name, Query::Argument::attack, attack };

 game.queries(q);

 return q.result;

}

This is where the magic happens! Instead of just returning a value

or statically applying some pointer-based chain, what we do is create a

Query with the right arguments and then send the query off to be handled

by whoever is subscribed to Game::queries. Every single subscribed

component gets a chance to modify the baseline attack value.

So let’s now implement the modifiers. Once again, we’ll make a base

class, but this time around, it won’t have a handle() method:

class CreatureModifier

{

 Game& game;

 Creature& creature;

public:

 CreatureModifier(Game& game, Creature& creature)

 : game(game), creature(creature) {}

};

Chapter 13 Chain of Responsibility

225

The modifier base class isn’t particularly interesting. In fact, you

could get away with not using it at all, since all it does is ensure that the

constructor is called with the right arguments. But since we’ve gone with

this approach, let’s now inherit CreatureModifier and see how one would

perform actual modifications:

class DoubleAttackModifier : public CreatureModifier

{

 connection conn;

public:

 DoubleAttackModifier(Game& game, Creature& creature)

 : CreatureModifier(game, creature)

 {

 conn = game.queries.connect([&](Query& q)

 {

 if (q.creature_name == creature.name &&

 q.argument == Query::Argument::attack)

 q.result *= 2;

 });

 }

 ~DoubleAttackModifier() { conn.disconnect(); }

};

All the magic happens in the constructor (and destructor); no

additional methods are required. In the constructor, we use the Game

reference to grab hold of the Game::queries signal and connect to it,

specifying a lambda that doubles the attack. Naturally, the lambda must

make a couple of checks: we need to make sure that we are augmenting

the right creature (we compare by name) and that the statistic we’re after

is, in fact, attack. Both pieces of information are kept inside the Query

reference, as is the initial result value that we modify.

Chapter 13 Chain of Responsibility

226

We also take care to store the signal connection so that we break

it when the object is destroyed. This way, we can apply the modifier

temporarily and let it fizzle out when, for example, the modifier goes out of

scope.

Putting it all together, we get the following:

Game game;

Creature goblin{ game, "Strong Goblin", 2, 2 };

cout << goblin;

// name: Strong Goblin attack: 2 defense: 2

{

 DoubleAttackModifier dam{ game, goblin };

 cout << goblin;

 // name: Strong Goblin attack: 4 defense: 2

}

cout << goblin;

// name: Strong Goblin attack: 2 defense: 2

What’s happening here? Well, prior to being modified, the goblin is a

2/2. Then, we manufacture a scope, within which the goblin is affected by a

DoubleAttackModifier, so inside the scope, it is a 4/2 creature. As soon as

we exit the scope, the modifier’s destructor triggers and it disconnects itself

from the broker, thus no longer affecting the values when they are queried.

Consequently, the goblin reverts to being a 2/2 creature once again.

�Summary
Chain of Responsibility is a very simple design pattern that lets

components process a command (or a query) in turn. The simplest

implementation of CoR is one where you simply make a pointer chain,

and, in theory, you could replace it with just an ordinary vector or,

perhaps, a list if you wanted fast removal as well.

Chapter 13 Chain of Responsibility

227

A more sophisticated Broker Chain implementation that also leverages

Mediator and Observer patterns allows us to process queries on an event

(signal), letting each subscriber perform modifications of the originally

passed object (it’s a single reference that goes through the entire chain)

before the final values are returned to the client.

Chapter 13 Chain of Responsibility

229© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_14

CHAPTER 14

Command
Think about a trivial variable assignment, such as meaningOfLife = 42.

The variable got assigned, but there’s no record anywhere that the

assignment took place. Nobody can give us the previous value. We cannot

take the fact of assignment and serialize it somewhere. This is problematic,

because without a record of the change, we are unable to roll back to

previous values, perform audits, or do history-based debugging.1

The Command design pattern proposes that instead of working with

objects directly by manipulating them through their APIs, we send them

commands: instructions on how to do something. A command is nothing

more than a data class with its members describing what to do and how to

do it. Let’s take a look at a typical scenario.

�Scenario
Let’s try to model a typical bank account that has a balance and an overdraft

limit. We’ll implement deposit() and withdraw() functions on it:

struct BankAccount

{

 int balance = 0;

 int overdraft_limit = -500;

1 �We do have dedicated historical debugging tools such as Visual Studio’s
IntelliTrace.

https://doi.org/10.1007/978-1-4842-7295-4_14

230

 void deposit(int amount)

 {

 balance += amount;

 cout << "deposited " << amount << ", balance is now " <<

 balance << "\n";

 }

 void withdraw(int amount)

 {

 if (balance - amount >= overdraft_limit)

 {

 balance -= amount;

 cout << "withdrew " << amount << ", balance is now " <<

 balance << "\n";

 }

 }

};

Now we can call the member functions directly, of course, but

let us suppose that, for audit purposes, we need to make a record

of every deposit and withdrawal made, and we cannot do it right

inside BankAccount because – guess what – we’ve already designed,

implemented, and tested that class.

�Implementing the Command Pattern
We’ll begin by defining an interface for a command.

struct Command

{

 virtual void call() const = 0;

};

Chapter 14 Command

231

Having made the interface, we can now use it to define a

BankAccountCommand that will encapsulate information about what to do

with a bank account:

struct BankAccountCommand : Command

{

 BankAccount& account;

 enum Action { deposit, withdraw } action;

 int amount;

 �Ba�nkAccountCommand(BankAccount& account, const Action action,

const int amount)

 : account(account), action(action), amount(amount) {}

The information contained in the command includes the following:

•	 The account to operate upon.

•	 The action to take; both the set of options and the

variable to store those options are defined in a single

declaration.

•	 The amount to deposit or withdraw.

Once the client provides this information, we can take it and use it to

perform the deposit or withdrawal:

void call() const override

{

 switch (action)

 {

 case deposit:

 account.deposit(amount);

 break;

Chapter 14 Command

232

 case withdraw:

 account.withdraw(amount);

 break;

 }

}

With this approach, we can create the command and then perform

modifications of the account right on the command:

BankAccount ba;

Command cmd{ba, BankAccountCommand::deposit, 100};

cmd.call();

This will deposit 100 dollars into our account. Easy! And if you’re

worried that we’re still exposing the original deposit() and withdraw()

member functions to the client, you can make them private and simply

designate BankAccountCommand as a friend class.

�Undo Operations
Since a command encapsulates all information about some modification

of a BankAccount, it can equally roll back this modification and return its

target object to its previous state.

To begin with, we need to decide whether to stick undo-related

operations into our Command interface. I will do it here for purposes of

brevity, but in general, this is a design decision that needs to respect the

Interface Segregation Principle that we discussed at the beginning of the

book. For example, if you envisage some commands being final and not

subject to undo mechanics, it might make sense to split Command into, say,

Callable and Undoable.

Chapter 14 Command

233

Anyways, here’s the updated Command; note I have deliberately removed

const from the functions:

struct Command

{

 virtual void call() = 0;

 virtual void undo() = 0;

};

And here is a naïve implementation of BankAccountCommand::undo(),

motivated by the (incorrect, but working) assumption that account deposit

and withdrawal are symmetric operations:

void undo() override

{

 switch (action)

 {

 case withdraw:

 account.deposit(amount);

 break;

 case deposit:

 account.withdraw(amount);

 break;

 }

}

Why is this implementation broken? Because if you tried to withdraw

an amount equal to the GDP of a developed nation, you would not be

successful, but when rolling back the transaction, we don’t have a way of

telling that it failed!

Chapter 14 Command

234

To get this information, we modify withdraw() to return a success flag:

bool withdraw(int amount)

{

 if (balance - amount >= overdraft_limit)

 {

 balance -= amount;

 cout << "withdrew " << amount << ", balance now " <<

 balance << "\n";

 return true;

 }

 return false;

}

That’s much better! We can now modify the entire

BankAccountCommand to do two things:

•	 Set a success flag when a withdrawal is made.

•	 Use this flag when undo() is called.

Here we go:

struct BankAccountCommand : Command

{

 ...

 bool withdrawal_succeeded;

 BankAccountCommand(BankAccount& account, const Action action,

 const int amount)

 : ..., withdrawal_succeeded{false} {}

 void call() override

 {

 switch (action)

 {

Chapter 14 Command

235

 ...

 case withdraw:

 withdrawal_succeeded = account.withdraw(amount);

 break;

 }

 }

Do you now see why I removed const from the members of Command?

Now that we are assigning a member variable withdrawal_succeeded, we

can no longer claim that call() is const. I suppose I could have kept it on

undo(), but there’s very little benefit in that.

Okay, so now we have the flag, we can improve our implementation of

undo():

void undo() override

{

 switch (action)

 {

 case withdraw:

 if (withdrawal_succeeded)

 account.deposit(amount);

 break;

 ...

 }

}

Tada! We can finally undo withdraw commands in a consistent fashion.

The goal of this exercise was, of course, to illustrate that in addition

to storing information about the action to perform, a Command can also

store some intermediate information that is useful for things like audits: if

you detect a series of 100 failed withdrawal attempts, you can investigate a

potential hack.

Chapter 14 Command

236

�Composite Command
A transfer of money from account A to account B can be simulated with

two commands:

	 1.	 Withdraw $X from A

	 2.	 Deposit $X to B

It would be nice if instead of creating and calling these two commands,

we could just create and call a single command that encapsulates both

of them. This is the essence of the Composite design pattern that we’ll

discuss later.

Let’s define a skeleton composite command. I’m going to inherit

from vector <BankAccountCommand> – this can be problematic since

std::vector doesn’t have a virtual destructor, but it’s not a problem in our

case. So here is a very simple definition:

struct CompositeBankAccountCommand :

vector<BankAccountCommand>, Command

{

 �CompositeBankAccountCommand(const initializer_list<value_

type>& items)

 : vector<BankAccountCommand>(items) {}

 void call() override

 {

 for (auto& cmd : *this)

 cmd.call();

 }

Chapter 14 Command

237

 void undo() override

 {

 for (auto it = rbegin(); it != rend(); ++it)

 it->undo();

 }

};

The CompositeBankAccountCommand is both a vector and a Command,

which fits the definition of the Composite design pattern. I’ve added a

constructor that takes an initializer list (very useful!) and implemented

both undo() and redo() operations. Note that the undo() process goes

through commands in reverse order; hopefully I don’t have to explain why

you’d want this as default behavior.

So now, how about a composite command specifically for transferring

money? I would define it as follows:

struct MoneyTransferCommand : CompositeBankAccountCommand

{

 MoneyTransferCommand(BankAccount& from,

 BankAccount& to, int amount) :

 CompositeBankAccountCommand

 {

 �BankAccountCommand{from, BankAccountCommand::withdraw,

amount},

 �BankAccountCommand{to, BankAccountCommand::deposit,

amount}

 } {}

};

Here we’re reuse the base class constructor to initialize the object

with the two commands and then reuse the base class’ call()/undo()

implementations.

Chapter 14 Command

238

But wait, that’s not right, is it? The base class implementations don’t

quite cut it because they don’t incorporate the idea of failure. If I fail to

withdraw money from A, I shouldn’t deposit that money to B: the entire

chain should cancel itself.

To support this idea, more drastic changes are required. We need to

•	 Add a succeeded flag to Command.

•	 Record the success or failure of every operation.

•	 Ensure that the command can only be undone if it

originally succeeded.

•	 Introduce a new in-between class called

DependentCompositeCommand that is very careful about

actually rolling back the commands.

When calling each command, we only do so if the previous one

succeeded; otherwise, we simply set the success flag to false.

void call() override

{

 bool ok = true;

 for (auto& cmd : *this)

 {

 if (ok)

 {

 cmd.call();

 ok = cmd.succeeded;

 }

 else

 {

 cmd.succeeded = false;

 }

 }

}

Chapter 14 Command

239

There is no need to override the undo() because each of our

commands checks its own success flag and undoes the operation only if

it’s set to true. Figure 14-1 shows a visual summary.

Figure 14-1.  Composite command class diagram

One can imagine an even more restrictive mechanic where a

composite command only succeeds if all of its parts succeed (think about

a transfer where the withdrawal succeeds but the deposit fails – would you

want it to go through?) – this is a bit harder to implement, and I again leave

it as an exercise to the reader.

The entire purpose of this section was to illustrate how a simple

Command-based approach can get quite complicated when real-world

business requirements are taken into account. Whether or not you actually

need this complexity… well, that is up to you.

Chapter 14 Command

240

�Command Query Separation
The notion of Command Query Separation (CQS) is the idea that

operations in a system fall broadly into the following two categories:

•	 Commands, which are instructions for the system to

perform some operation that involves mutation of

state, but yields no value

•	 Queries, which are requests for information that yield

values but do not mutate state

Any object that presently exposes its state directly for reading and

writing can hide its state (make it private) and then, instead of providing

getter and setter pairs, can offer a singular interface. Here’s what I mean:

suppose we have a Creature with two properties called strength and

agility. We can define the creature thus:

class Creature

{

 int strength, agility;

public:

 Creature(int strength, int agility)

 : strength{strength}, agility{agility} {}

 void process_command(const CreatureCommand& cc);

 int process_query(const CreatureQuery& q) const;

};

As you can see, there are no getters and setters, but we do have two

(just two!) API members called process_command() and process_query()

that are meant to be used for all interactions with Creature objects. Both

Chapter 14 Command

241

of these are dedicated classes which, together with the CreatureAbility

enumeration, are defined as follows:

enum class CreatureAbility { strength, agility };

struct CreatureCommand

{

 enum Action { set, increaseBy, decreaseBy } action;

 CreatureAbility ability;

 int amount;

};

struct CreatureQuery

{

 CreatureAbility ability;

};

As you can see, the command describes what member you want to

change and how you want to change it and by how much. The query object

only specifies what to query, and we assume that the result of the query

is returned from the function, rather than set in the query object itself (if

other objects affect this one, as we have seen already, that’s how you would

do it instead).

So here is the process_command() definition:

void Creature::process_command(const CreatureCommand &cc)

{

 int* ability;

 switch (cc.ability)

 {

 case CreatureAbility::strength:

 ability = &strength;

 break;

Chapter 14 Command

242

 case CreatureAbility::agility:

 ability = &agility;

 break;

 }

 switch (cc.action)

 {

 case CreatureCommand::set:

 *ability = cc.amount;

 break;

 case CreatureCommand::increaseBy:

 *ability += cc.amount;

 break;

 case CreatureCommand::decreaseBy:

 *ability -= cc.amount;

 break;

 }

}

And here is the much simpler process_query() definition:

int Creature::process_query(const CreatureQuery &q) const

{

 switch (q.ability)

 {

 case CreatureAbility::strength: return strength;

 case CreatureAbility::agility: return agility;

 }

 return 0;

}

If you want logging or persistence of these commands and queries, you

now have just two locations whether this needs to be done. The only real

Chapter 14 Command

243

issue with all of this is how difficult the API is to work with for someone

who just wants to manipulate the object in a familiar manner.

Luckily for us, we can always manufacture getter/setter pairs if we

want to; these would just call the process_ methods with appropriate

arguments:

void Creature::set_strength(int value)

{

 process_command(CreatureCommand{

 CreatureCommand::set, CreatureAbility::strength, value

 });

}

int Creature::get_strength() const

{

 return process_query(CreatureQuery{CreatureAbility::strength});

}

This is, admittedly, a very simplistic illustration of what actually

happens inside systems that do CQS, but it hopefully gives an idea of how

one can split all object interfaces into Command and Query parts.

�Summary
The Command design pattern is simple: what it basically suggests is that

objects can communicate with one another using special objects that

encapsulate instructions, rather than specifying those same instructions as

arguments to a method.

Sometimes, you don’t want such an object to mutate the target or

cause it to do something specific; instead, you want to use such an object

to inquire a value from the target, in which case we typically call such

an object a Query. While, in most cases, a query is an immutable object

that relies on the return type of the method, there are situations (see, e.g.,

Chapter 14 Command

244

the Chain of Responsibility Broker Chain example) when you want the

result that’s being returned to be modified by other components. But the

components themselves are still not modified, only the result is.

Commands are used a lot in UI systems to encapsulate typical actions

(e.g., copy or paste) and then allow a single command to be invoked by

several different means. For example, you can copy by using the top-level

application menu, a button on the toolbar, or by pressing a keyboard

shortcut. Finally, these actions can be combined into macros – sequences

of actions that can be recorded and then replayed at will.

Chapter 14 Command

245© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_15

CHAPTER 15

Interpreter
The goal of the Interpreter design pattern is, as you may have guessed, to

interpret input, particularly textual input – although, to be fair, it really

doesn’t matter. The notion of an Interpreter relates directly to Compiler

Theory and similar courses taught at universities. Since we don’t have

nearly enough space here to delve into the complexities of different types

of parsers and whatnot, the purpose of this chapter is to simply show some

examples of the kinds of things you might want to interpret.

Here are a few fairly obvious ones:

•	 Numeric literals such as 42 or 1.234e12 need to be

interpreted to be stored efficiently in binary. In C++,

these operations are covered both via C APIs such as

stof() and more sophisticated libraries such as Boost.

LexicalCast.

•	 Regular expressions help us find patterns in text, but

they are themselves a separate, embedded domain-

specific language (DSL). And naturally, before using

them, they must be interpreted correctly.

•	 Any structured data, be it CSV, XML, JSON, or

something more complicated, requires interpretation

before it can be used.

https://doi.org/10.1007/978-1-4842-7295-4_15

246

•	 At the pinnacle of the application of Interpreter, we

have fully fledged programming languages. After all, a

compiler or interpreter for a language like C or Python

must actually understand the language before making

something executable.

Given the proliferation and diversity of challenges related to

interpretation, we shall simply look at some examples. These serve to

illustrate how one can build an Interpreter: either by making something

from scratch or by leveraging a library that helps do these things at an

industrial scale.

�Parsing Integral Numbers
The parsing of numbers is a key operation that is often optimized

(redesigned) by developers of algorithmic trading systems. The default

implementations provided by the Standard Library are very flexible and

can handle many different number formats, but in real life the stock

market typically feeds you data with a single uniform format (e.g., just

positive integers), allowing us to trade flexibility for performance and to

create much faster (orders of magnitude) parsers.

Consider a method such as atoi(). This method is very powerful: not

only can it parse the string "12345" but it can do the following:

•	 Perform validation, returning an error value if the

number doesn’t parse.

•	 Parse numbers prefixed by zero (e.g., 007) or with a plus

(e.g., +88).

•	 Parse numbers that have a decimal point (even if they

are integers).

•	 Detect numbers greater than maximum or less than

minimum.

Chapter 15 Interpreter

247

A similar function, stoi(), uses exceptions so that parsing invalid data

does not result in undefined behavior.

This is all well and good, but completely unnecessary if we expect data

to always be valid and to fall within some predictable range (as market

asset prices typically do). Consequently, we can eschew the various bells

and whistles and define a function such as

int better_atoi(const char* str)

{

 int val{0};

 while(*str) {

 val = val*10 + (*str++ - '0');

 }

 return val;

}

This function offers, on my machine, a five-fold increase in

performance compared to the system call. As I’m sure you’ll agree, this is a

very large performance increase for a zero-effort implementation!

A real-world integer parsing function, used “in anger” in an

algorithmic trading system, gives sub-nanosecond performance, which

implies a 25× performance improvement when compared to the standard

atoi() call. For such an implementation, C++ alone is insufficient, forcing

us to dive into the depth of SIMD intrinsics.

�Numeric Expression Evaluator
Let’s imagine that we decide to parse very simple mathematical

expressions such as 3+(5-4), that is, we’ll restrict ourselves to addition,

subtraction, and round brackets. We want a program that can read such an

expression and, of course, calculate the expression’s final value.

Chapter 15 Interpreter

248

We are going to build the calculator by hand, without resorting to any

parsing framework. This should hopefully highlight some of the complexity

involved in parsing textual input.

�Lexing
The first step to interpreting an expression is called lexing, and it involves

turning a sequence of character into a sequence of tokens. A token is

typically a primitive syntactic element, and we should end up with a flat

sequence of these. In our case, a token can be

•	 An integer

•	 An operator (plus or minus)

•	 An opening or closing parenthesis

Thus, we can define the following structure:

struct Token

{

 enum Type { integer, plus, minus, lparen, rparen } type;

 string text;

 explicit Token(Type type, const string& text)

 : type{type}, text{text} {}

 friend ostream& operator<<(ostream& os, const Token& obj)

 {

 return os << "`" << obj.text << "`";

 }

};

You’ll note that Token is not an enum because, apart from the type, we

also want to store the text that this token relates to, since it is not always

predefined. In this particular case, we store the token as a string, whereas

Chapter 15 Interpreter

249

if we assume that tokens only live as long as the input does and need not

be modified, we can use a string_view instead.

So now, given a string containing an expression, we can define a

lexing process that will turn textual input into a vector<Token>:

vector<Token> lex(const string& input)

{

 vector<Token> result;

 for (int i = 0; i < input.size(); ++i)

 {

 switch (input[i])

 {

 case '+':

 result.emplace_back(Token::plus, "+");

 break;

 case '-':

 result.emplace_back(Token::minus, "-");

 break;

 case '(':

 result.emplace_back(Token::lparen, "(");

 break;

 case ')':

 result.emplace_back(Token::rparen, ")");

 break;

 default:

 // number ???

 }

 }

}

Chapter 15 Interpreter

250

Parsing predefined tokens is easy. In fact, we could have added them

as a

map<BinaryOperation::Type, char>

to simplify things. But parsing a number is not so easy. If we hit a 1, we

should wait and see what the next character is. For this, we define a

separate routine:

ostringstream buffer;

buffer << input[i];

for (int j = i + 1; j < input.size(); ++j)

{

 if (isdigit(input[j]))

 {

 buffer << input[j];

 ++i;

 }

 else

 {

 result.emplace_back(Token::integer, buffer.str());

 buffer.str("");

 break;

 }

}

if (auto str = buffer.str(); str.length() > 0)

 result.emplace_back(Token::integer, str);

Essentially, while we keep reading (pumping) digits, we add them to

the buffer. When we’re done, we make a Token out of the entire buffer and

add it to the resulting vector – this can happen either when we encounter

something that’s not a number (such as a parenthesis) or once we’ve

reached the end of input.

Chapter 15 Interpreter

251

�Parsing
The process of parsing turns a sequence of tokens into meaningful,

typically object-oriented, structures. At the top, it’s often useful to have an

abstract parent type that all elements of the tree implement:

struct Element

{

 virtual int eval() const = 0;

};

The type’s eval() function evaluates this element’s numeric value.

Next, we can create an element for storing integral values (such as 1, 5,

or 42):

struct Integer : Element

{

 int value;

 explicit Integer(const int value)

 : value(value) {}

 int eval() const override { return value; }

};

If we don’t have an Integer, we must have an operation such as

addition or subtraction. In our case, all operations are binary, meaning

they have two parts. For example, 2+3 in our model can be represented in

pseudocode as BinaryOperation{Literal{2}, Literal{3}, addition}:

struct BinaryOperation : Element

{

 enum Type { addition, subtraction } type;

 shared_ptr<Element> lhs, rhs;

Chapter 15 Interpreter

252

 int eval() const override

 {

 if (type == addition)

 return lhs->eval() + rhs->eval();

 return lhs->eval() - rhs->eval();

 }

};

Note that, in the preceding, I’m using an enum instead of an enum class

so that I can write BinaryOperation::addition later on.

But anyways, on to the parsing process. All we need to do is turn a

sequence of Tokens into a binary tree of Expressions. From the outset, it

can look as follows:

shared_ptr<Element> parse(const vector<Token>& tokens)

{

 auto result = make_unique<BinaryOperation>();

 bool have_lhs = false; // this will need some explaining :)

 for (size_t i = 0; i < tokens.size(); i++)

 {

 auto token = tokens[i];

 switch(token.type)

 {

 // process each of the tokens in turn

 }

 }

 return result;

}

The only thing we need to discuss is the have_lhs variable. Remember,

what we are trying to get is a tree, and at the root of that tree, we expect

a BinaryExpression which, by definition, has left and right sides. But

Chapter 15 Interpreter

253

when we are on a number, how do we know if it’s the left or right side of an

expression? That’s right, we don’t, which is why we track this.

Now let’s go through these case by case. First, integers – these map

directly to our Integer construct, so all we have to do is turn text into a

number. (Incidentally, we could have also done this at the lexing stage if

we wanted to.)

case Token::integer:

{

 int value = boost::lexical_cast<int>(token.text);

 auto integer = make_shared<Integer>(value);

 if (!have_lhs) {

 result->lhs = integer;

 have_lhs = true;

 }

 else result->rhs = integer;

}

The plus and minus tokens simply determine the type of the operation

we’re currently processing, so they’re easy:

case Token::plus:

 result->type = BinaryOperation::addition;

 break;

case Token::minus:

 result->type = BinaryOperation::subtraction;

 break;

And then there’s the left parenthesis. Yep, just the left, we don’t detect

the right one explicitly. Basically, the idea here is simple: find the closing

right parenthesis (I’m ignoring nested brackets for now), rip out the entire

Chapter 15 Interpreter

254

subexpression, parse() it recursively, and set as the left- or right-hand side

of the expression we’re currently working with:

case Token::lparen:

{

 int j = i;

 for (; j < tokens.size(); ++j)

 if (tokens[j].type == Token::rparen)

 break; // found it!

 vector<Token> subexpression(&tokens[i + 1], &tokens[j]);

 auto element = parse(subexpression);

 if (!have_lhs)

 {

 result->lhs = element;

 have_lhs = true;

 }

 else result->rhs = element;

 i = j; // advance

}

In a real-world scenario, you’d want a lot more safety features in

here: not just handling nested parentheses (which I think is a must), but

handling incorrect expressions where the closing parenthesis is missing. If

it is indeed missing, how would you handle it? Throw an exception? Try to

parse whatever’s left and assume the closing is at the very end? Something

else? All of these issues are left as the exercise to the reader.

From experience with C++ itself, we know that making meaningful

error messages for parsing errors is very hard. In fact, you will find a

phenomenon called skipping where, in doubt, the lexer or parser will

attempt to skip incorrect code until it meets something meaningful:

precisely this approach is adopted by static analysis tools that are expected

to work correctly on incomplete code as the user is typing it.

Chapter 15 Interpreter

255

�Using the Lexer and Parser
With both lex() and parse() implemented, we can finally parse the

expression and calculate its value:

string input{ "(13-4)-(12+1)" };

auto tokens = lex(input);

auto parsed = parse(tokens);

cout << input << " = " << parsed->eval() << endl;

// prints "(13-4)-(12+1) = -4"

�Parsing with Boost.Spirit
In the real world, unless micro-optimizations such as SIMD are involved,

hardly anyone hand-rolls parsers for something complicated. Sure, if

you are parsing a “trivial” data storage format such as XML or JSON,

hand-rolling the parser is easy. But if you are implementing your own

DSL (domain-specific language) or programming language, this is not an

option.

Boost.Spirit is a library which helps the creation of parsers by providing

succinct (though not particularly intuitive) APIs for the construction of

parsers. The library does not attempt to explicitly separate the lexing and

parsing stages (unless you really want to), allowing you to define how

textual constructs get mapped onto objects of types you define.

Let me show you some examples of using Boost.Spirit with the Tlön

programming language.1

1 �Tlön is a toy language that I built to demo the idea of “if you don’t like existing
languages, build a new one.” It uses Boost.Spirit and cross-compiles (transpiles)
into C++. It is open source and can be found at https://github.com/nesteruk/tlon

Chapter 15 Interpreter

https://github.com/nesteruk/tlon

256

�Abstract Syntax Tree
To start with, you need your AST (abstract syntax tree). In this respect, I

simply make a base class that supports the Visitor design pattern, since

traversal of these structures is very important:

struct ast_element

{

 virtual ~ast_element() = default;

 virtual void accept(ast_element_visitor& visitor) = 0;

};

This interface is then used to define different code constructs in my

language, for example:

struct property : ast_element

{

 vector<wstring> names;

 type_specification type;

 bool is_constant{ false };

 wstring default_value;

 void accept(ast_element_visitor& visitor) override

 {

 visitor.visit(*this);

 }

};

This definition of a property has four different parts, each stored in a

publically accessible field. Note that it uses a type_specification, which

is itself another ast_element.

Chapter 15 Interpreter

257

Every single class of an AST needs to be adapted for Boost.Fusion –

another Boost library that supports a fusion (hence the name) of compile

time (metaprogramming) and runtime algorithms. The adaptation code is

simple enough:

BOOST_FUSION_ADAPT_STRUCT(

 tlön::property,

 (vector<wstring>, names),

 (tlön::type_specification, type),

 (bool, is_constant),

 (wstring, default_value)

)

Spirit has no trouble parsing into common data types such as an

std::vector or std::optional. It does have a bit more problems with

polymorphism: rather than having your AST types inherit from one

another, Spirit prefers that you use a variant, that is:

typedef variant<function_body, property, function_signature>

class_member;

�Parser
Boost.Spirit lets us define the parser as a set of rules. The syntax that is

used is very similar to regular expressions or BNF notation, except the

operators are placed before the symbol, not after. Here is an example rule:

class_declaration_rule %=

 lit(L"class ") >> +(alnum) % '.'

 �>> -(lit(L"(") >> -parameter_declaration_rule % ',' >>

lit(")"))

 >> "{"

 �>> *(function_body_rule | property_rule | function_signature_rule)

 >> "}";

Chapter 15 Interpreter

258

The preceding expects a class declaration to start with the word

class. It then expects one or more words (each word is one or more

alphanumeric characters, thus +(alnum)), separated with periods '.' –

this is what the % operator is used for. The result, as you may have guessed,

would map onto a vector. Subsequently, after the curly braces, we expect

zero or more definitions of functions, properties, or function signatures –

the fields these would be mapped to correspond to our prior definition

using a variant.

Naturally, some element is the “root” of the entire hierarchy of AST

elements. In our case, this root is called a file (surprise!), and here is a

function that both parses the file and pretty-prints it:

template<typename TLanguagePrinter, typename Iterator>

wstring parse(Iterator first, Iterator last)

{

 using spirit::qi::phrase_parse;

 file f;

 file_parser<wstring::const_iterator> fp{};

 auto b = phrase_parse(first, last, fp, space, f);

 if (b)

 {

 return TLanguagePrinter{}.pretty_print(f);

 }

 return wstring(L"FAIL");

}

The type TLanguagePrinter is essentially a visitor that knows how to

render our AST in a specific language, such as C++.

Chapter 15 Interpreter

259

�Printer
Having parsed the language, we might want to compile it or, in my case,

transpile it into some other language. This is rather easy considering that

we have previously implemented an accept() method into the entire AST

hierarchy.

The only challenge is what to do with the variant types, because those

need special visitors. In the case of std::variant, what you are after is

std::visit(), but since we are using a boost::variant, the function to

call for is boost::accept_visitor(). This function requires that you give

it an instance of a class inheriting from static_visitor, with function call

overloads for every possible type. Here’s an example:

struct default_value_visitor : static_visitor<>

{

 cpp_printer& printer;

 explicit default_value_visitor(cpp_printer& printer)

 : printer{printer} {}

 void operator()(const basic_type& bt) const

 {

 // for a scalar value, we just dump its default

 printer.buffer << printer.default_value_for(bt.name);

 }

 void operator()(const tuple_signature& ts) const

 {

 for (auto& e : ts.elements)

 {

 this->operator()(e.type);

 printer.buffer << ", ";

 }

Chapter 15 Interpreter

260

 printer.backtrack(2);

 }

};

You would then call accept_visitor(foo, default_value_

visitor{...}) and the correct overload will be called depending on the

type of object actually stored in the variant.

�Summary
Comparatively speaking, the Interpreter design pattern is somewhat

uncommon – the challenges of building parsers is nowadays considered

inessential, which is why I see it being removed from Computer Science

courses in many universities. Also, unless you plan to work in language

design or, say, making tools for static code analysis, you are unlikely to find

the skills in building parsers in high demand.

That said, the challenge of interpretation is a whole separate field of

Computer Science that a single chapter of a Design Patterns book cannot

reasonably do justice to. If you are interested in the subject, I recommend

you check out frameworks such as Lex/Yacc, ANTLR, and many others that

are specifically geared for lexer/parser construction. I can also recommend

writing static analysis plug-ins for popular IDEs – this is a great way to get a

feel for how real ASTs look and how they are traversed and modified.

Chapter 15 Interpreter

261© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_16

CHAPTER 16

Iterator
Whenever you start working with complicated data structures, you

encounter the problem of traversal. This can be handled in different ways,

but the most common way of traversing, say, a vector is using something

called an iterator.

An iterator is, quite simply, an object that can point to an element

of a collection and also knows how to move to the next element in the

collection. As such, it is only required to implement the ++ operator and

the != operator (so you can compare two iterators and check if they point

to the same thing). That’s it.

The C++ Standard Library makes heavy use of iterators, so we shall

discuss the way they are used there, and then we’ll take a look at how to

make our own iterators and what the limitations of iterators are.

�Iterators in the Standard Library
Imagine you have a list of names such as

vector<string> names{ "john", "jane", "jill", "jack" };

If you want to get the first name in the names collection, you call a

function called begin(). This function doesn’t give you the first name by

value or by reference; instead, it gives you an iterator:

vector<string>::iterator it = names.begin(); // begin(names)

https://doi.org/10.1007/978-1-4842-7295-4_16

262

The function begin() exists as both a member function of vector and

a global function. The global one is particularly useful for arrays (C-style

arrays, not std::array) because they cannot have member functions.

So begin() returns an iterator which you can think of as a pointer:

in the case of a vector, it has similar mechanics. For example, you can

dereference the iterator to print the actual name:

cout << "first name is " << *it << "\n";

// first name is john

The iterator that we are given knows how to advance, that is, move to

point to the next element. It’s important to realize that the ++ refers to the

idea of moving forward, that is, it is not the same as a ++ for pointers where

you increase a memory address.

++it; // now points to jane

We can also use the iterator (same way as a pointer) to modify the

element it points to:

it->append(" goodall"s);

cout << "second name is " << *it << "\n";

// second name is jane goodall

Now, the counterpart to begin() is, of course, end(), but it doesn’t

point to the last element – instead, it points to the element after the last

one. Here’s a clumsy illustration:

 1 2 3 4

 begin() ^ ^ end()

Chapter 16 Iterator

263

You can use end() as the terminating condition. For example, let’s

print the rest of those names using our it iterator variable:

while (++it != names.end())

{

 cout << "another name: " << *it << "\n";

}

// another name: jill

// another name: jack

In addition to begin() and end(), we also have rbegin() and rend()

which allow us to move backward through the collection. In this case, as

you may have guessed, rbegin() points to the last element and rend() to

one before the first.

for (auto ri = rbegin(names); ri != rend(names); ++ri)

{

 cout << *ri;

 if (ri + 1 != rend(names)) // iterator arithmetic

 cout << ", ";

}

cout << endl;

// jack, jill, jane goodall, john

There are two things worth pointing out here. First, even though we

are going through the vector backward, we still use the ++ operator on the

iterator. Second, we are allowed to do arithmetic: again, when I write ri + 1,

this refers to the element just before ri and not after.

Chapter 16 Iterator

264

We can also have constant iterators which do not allow modification

of the object: they are returned through cbegin()/cend() and, of course,

there are reverse varieties crbegin()/crend() too:

vector<string>::const_reverse_iterator jack = crbegin(names);

// won't work

*jack += " reacher";

Finally, it’s worth mentioning the Modern C++ gem, a range-based for

loop that serves as a shorthand for iterating all the way from a container’s

begin() until we reach its end():

for (auto& name : names)

 cout << "name = " << name << "\n";

Notice that the iterator is automatically dereferenced here: the variable

name is a reference, but you could equally iterate by value.

�Traversing a Binary Tree
Let’s go through the classic Computer Science exercise of traversing a

binary tree. First of all, we shall define a node of this tree as follows:

template <typename T> struct Node

{

 T value;

 Node<T> *left{nullptr};

 Node<T> *right{nullptr};

 Node<T> *parent{nullptr};

 BinaryTree<T>* tree{nullptr};

};

Chapter 16 Iterator

265

Each node has a pointer to its left and right branches, its parent (if it

has one), and also to the entire tree. A node can be constructed either on

its own or with a specification of its children:

explicit Node(const T& value)

 : value(value) {}

Node(const T& value, Node<T>* const left, Node<T>* const right)

 : value{value}, left{left}, right{right}

{

 this->left->tree = this->right->tree = tree;

 this->left->parent = this->right->parent = this;

}

Finally, we introduce a utility member function to set the tree pointer.

This is done recursively across all of the Node’s children:

void set_tree(BinaryTree<T>* t)

{

 tree = t;

 if (left) left->set_tree(t);

 if (right) right->set_tree(t);

}

Armed with this, we can now define a structure called BinaryTree – it

is precisely this structure that will permit iteration.

template <typename T> struct BinaryTree

{

 Node<T>* root = nullptr;

 explicit BinaryTree(Node<T>* const root)

 : root{ root }

Chapter 16 Iterator

266

 {

 root->set_tree(this);

 }

};

Now we can define an iterator for the tree. There are three common ways

of iterating a binary tree, and the one we’ll implement first is pre-order:

•	 We return the element as soon as it is encountered.

•	 We recursively traverse the left subtree.

•	 We recursively traverse the right subtree.

So let’s start with a constructor:

template <typename U>

struct PreOrderIterator

{

 Node<U>* current;

 explicit PreOrderIterator(Node<U>* current)

 : current{current} {}

 // other members here

};

We need to define operator != to compare with other iterators. Since

our iterator acts as a pointer, this is trivial:

bool operator!=(const PreOrderIterator<U>& other)

{

 return current != other.current;

}

Chapter 16 Iterator

267

We also need the * operator for dereferencing:

Node<U>& operator*() { return *current; }

Now, here comes the hard part: traversing the tree. The challenge

here is that we cannot make the algorithm recursive – remember, traversal

happens in the ++ operator, so we end up implementing it as follows:

PreOrderIterator<U>& operator++()

{

 if (current->right)

 {

 current = current->right;

 while (current->left)

 current = current->left;

 }

 else

 {

 Node<T>* p = current->parent;

 while (p && current == p->right)

 {

 current = p;

 p = p->parent;

 }

 current = p;

 }

 return *this;

}

This is quite messy! Furthermore, it looks nothing like the classic

implementation of tree traversal you’d find on Wikipedia, precisely

because we don’t have recursion available to us. We’ll get back to this in a

while.

Chapter 16 Iterator

268

Now, the final question is how to expose the iterator from our

BinaryTree. If we were to define it as the default iterator for the tree, we

could populate its members as follows:

typedef PreOrderIterator<T> iterator;

iterator begin()

{

 Node<T>* n = root;

 if (n)

 while (n->left)

 n = n->left;

 return iterator{ n };

}

iterator end()

{

 return iterator{ nullptr };

}

It’s worth noting that, in begin(), iteration doesn’t start from the root

of the entire tree; instead, it starts from the leftmost available node.

Now that all the pieces are in place, here is how we would do the

traversal:

BinaryTree<string> family{

 new Node<string>{"me",

 new Node<string>{"mother",

 new Node<string>{"mother's mother"},

 new Node<string>{"mother's father"}

 },

 new Node<string>{"father"}

 }

};

Chapter 16 Iterator

269

for (auto it = family.begin(); it != family.end(); ++it)

{

 cout << (*it)->value << "\n";

}

You could also expose this form of traversal as a separate object, that is:

class pre_order_traversal

{

 BinaryTree<T>& tree;

public:

 pre_order_traversal(BinaryTree<T>& tree) : tree{tree} {}

 iterator begin() { return tree.begin(); }

 iterator end() { return tree.end(); }

} pre_order;

to be used as

for (const auto& it: family.pre_order)

{

 cout << it.value << "\n";

}

Similarly, one could define in_order and post_order traversal

algorithms to expose appropriate iterators.

�Iteration with Coroutines
In our traversal code, operator++ is, sadly, an unreadable mess that

doesn’t match anything you’d read about tree traversal on Wikipedia.1 Our

code works, but it only works because we pre-initialize the iterator to start

1 https://en.wikipedia.org/wiki/Tree_traversal

Chapter 16 Iterator

https://en.wikipedia.org/wiki/Tree_traversal

270

at the leftmost node instead of the root node, which is also a rather strange

thing to do.

This problem exists because the ++ operator function is not resumable:

it cannot keep its stack between calls, and, as a result, recursion is

impossible. Now, what if we had a mechanism to have our cake and eat it

too: resumable functions that can perform proper recursion? Well, that’s

exactly what coroutines are for.

Coroutines are a C++20 feature. The support for coroutines lives

in the <coroutine> header, but the support for generators is currently

not part of the Standard Library. Consequently, you would either need

to find an implementation or to check whether your compiler ships

with an implementation already. For example, when using MSVC,

and implementation of the generator<T> type can be found in the

<experimental/generator> header.

With coroutines, we can implement post-order tree traversal as follows:

generator<Node<T>*> post_order_impl(Node<T>* node) const

{

 if (node)

 {

 for (auto x : post_order_impl(node->left))

 co_yield x;

 for (auto y : post_order_impl(node->right))

 co_yield y;

 co_yield node;

 }

}

generator<Node<T>*> post_order() const

{

 return post_order_impl(root);

}

Chapter 16 Iterator

271

Isn’t this great? The algorithm is finally readable again! Furthermore,

there’s no begin()/end() in sight: we simply return a generator, which

is a type specifically designed to progressively return values that are fed

to it with co_yield. After each of the values is yielded, we can suspend

execution and do something else (say, print the value), and then resume

the iteration without losing the context. This is what makes recursion

possible and allows us to write this:

for (auto it: family.post_order())

{

 cout << it->value << endl;

}

Coroutines are the future of C++ and solve lots of problems for which

conventional iterators are either ugly or unsuitable.

�Summary
The Iterator design pattern is omnipresent in C++ in both explicit and

implicit (e.g., range-based for) forms. Different types of iterators exist for

iterating different objects: for example, reverse iterators might apply to a

vector, but not to a singly linked list.

Implementing your own iterator is as simple as providing the ++ and

!= operators. Most iterators are simply pointer façades and are meant to be

used to traverse the collection once before they are thrown away.

Coroutines fix some of the issues present in iterators: they allow state

to be preserved between calls – something that other languages (e.g., C#)

have implemented a long time ago. As a consequence, coroutines allow us

to write recursive algorithms that need to yield values one after another

and preserve the position of the iterator between the calls.

Chapter 16 Iterator

273© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_17

CHAPTER 17

Mediator
A large proportion of the code we write has different components (classes)

that communicate with one another through direct references or pointers.

However, there are situations when you don’t want objects to be aware of

each other’s presence. Or, perhaps you do want them to be aware of one

another, but you still don’t want them to communicate through pointers

or references because those can go stale and the last thing you want is to

dereference a nullptr.

The Mediator design pattern is a mechanism for facilitating

communication between the components. Naturally, the mediator itself

needs to be accessible by every component taking part, which means it

should either be a global static variable or, alternatively, just a reference

that gets injected into every component.

�Chat Room
Your typical Internet chat room is the classic example of the Mediator

design pattern, so let’s implement it before we move on to the more

complicated examples.

The most trivial implementation of a participant in a chat room can be

as simple as

struct Person

{

https://doi.org/10.1007/978-1-4842-7295-4_17

274

 string name;

 ChatRoom* room{nullptr};

 vector<string> chat_log;

 Person(const string& name);

 void receive(const string& origin, const string& message);

 void say(const string& message) const;

 void pm(const string& who, const string& message) const;

};

What we have is a person that has a name (user id), a chat log, and

a pointer to the ChatRoom they are in. We have a constructor and three

member functions, specifically:

•	 receive() allows us to receive a message. Typically,

what this function would do is show the message on the

user’s screen and also add it to their chat log. Note that

different users can have very different chat logs.

•	 say() allows the person to broadcast a message to

everyone in the room.

•	 pm() is private messaging functionality. You need to

specify the name of the person the message is intended

for.

Both say() and pm() just relay operations to the chat room. Speaking

of which, let’s actually implement ChatRoom – it’s not particularly

complicated:

struct ChatRoom

{

 vector<Person*> people; // assume append-only

 void join(Person* p);

Chapter 17 Mediator

275

 void broadcast(const string& origin, const string& message);

 void message(const string& origin, const string& who,

 const string& message);

};

Whether to use pointers, references, or, say, a shared_ptr for actually

storing a list of chat room participants is ultimately up to you: the only

restriction is that a vector<> cannot store references. I have decided to go

with pointers here. The ChatRoom API is very simple:

•	 join() gets a person to join the room. We are not going

to implement leave(), instead deferring the idea to a

subsequent example in this chapter.

•	 broadcast() sends the message to everyone except, of

course, the person that sent it in the first place.

•	 message() sends a private message.

The implementation of join() is as follows:

void ChatRoom::join(Person* p)

{

 string join_msg = p->name + " joins the chat";

 broadcast("room", join_msg);

 p->room = this;

 people.push_back(p);

}

Just like a classic IRC chat room, we broadcast the message that

someone has joined to everyone in the room. The origin in this case is

specified as "room" rather than the person that’s joined. We then set the

person’s room pointer and add them to the list of people in the room.

Now, let’s look at the broadcast() member function. This is where a

message is sent to every room participant. Remember, each participant has

Chapter 17 Mediator

276

its own Person::receive() function for processing the message, so the

implementation is somewhat trivial:

void ChatRoom::broadcast(const string& origin, const string&

message)

{

 for (auto p : people)

 if (p->name != origin)

 p->receive(origin, message);

}

Whether or not we want to prevent a broadcast message to be relayed

to ourselves is a point of debate, but I’m actively avoiding it here. Everyone

else gets the message, though.

Finally, here is private messaging implemented with message():

void ChatRoom::message(const string& origin,

 const string& who, const string& message)

{

 auto target = find_if(begin(people), end(people),

 [&](const Person* p) { return p->name == who; });

 if (target != end(people))

 {

 (*target)->receive(origin, message);

 }

}

This searches for the recipient in the list of people and, if the recipient

is found (because who knows, they could have left the room), dispatches

the message to that person.

Chapter 17 Mediator

277

Coming back to Person’s implementations of say() and pm(), here

they are:

void Person::say(const string& message) const

{

 room->broadcast(name, message);

}

void Person::pm(const string& who, const string& message) const

{

 room->message(name, who, message);

}

As for receive(), well, this is a good place to actually display the

message on screen as well as add it to the chat log.

void Person::receive(const string& origin, const string&

message)

{

 string s{ origin + ": \"" + message + "\"" };

 cout << "[" << name << "'s chat session] " << s << "\n";

 chat_log.emplace_back(s);

}

We go the extra mile here by displaying not just who the message came

from but whose chat session we’re currently in – this will be useful for

diagnosing who said what and when.

Here is the scenario that we’ll run through:

ChatRoom room;

Person john{ "john" };

Person jane{ "jane" };

room.join(&john);

room.join(&jane);

Chapter 17 Mediator

278

john.say("hi room");

jane.say("oh, hey john");

Person simon("simon");

room.join(&simon);

simon.say("hi everyone!");

jane.pm("simon", "glad you could join us, simon");

Here is the output the program produces:

[john's chat session] room: "jane joins the chat"

[jane's chat session] john: "hi room"

[john's chat session] jane: "oh, hey john"

[john's chat session] room: "simon joins the chat"

[jane's chat session] room: "simon joins the chat"

[john's chat session] simon: "hi everyone!"

[jane's chat session] simon: "hi everyone!"

[simon's chat session] jane: "glad you could join us, simon"

See Figure 17-1 for a visual illustration of the calls involved in this chat

session.

Chapter 17 Mediator

279

�Mediator with Events
In the chat room example, we’ve encountered a consistent theme: the

participants need notification whenever someone posts a message. This

seems like a perfect scenario for the Observer pattern, which is discussed

later in the book: the idea of the mediator having an event that is shared

by all participants; participants can then subscribe to the event to receive

notifications, and they can also cause the event to fire, thus triggering said

notifications.

Figure 17-1.  Visualized chat session

Chapter 17 Mediator

280

Events are not built into C++ (unlike, e.g., C#), so we’ll use a library

solution for this demo. Boost.Signals2 offers us the requisite functionality,

albeit with a slightly different terminology: we typically speak of signals

(objects which generate a notification) and slots (functions that handle

notifications).

Instead of redoing the chat room once again, let’s go for a simpler

example: imagine a game of football (soccer) with players and a football

coach. When the coach sees their team scoring, they naturally want to

congratulate the player. Of course, they need some information about the

event, like who scored the goal and how many goals they have scored so

far.

We can introduce a base class for any sort of event data:

struct EventData

{

 virtual ~EventData() = default;

 virtual void print() const = 0;

};

I’ve added the print() function so that each event can be printed to

the command line and also a virtual destructor to make ReSharper shut up

about it. Now, we can derive from this class in order to store some goal-

related data:

struct PlayerScoredData : EventData

{

 string player_name;

 int goals_scored_so_far;

 �PlayerScoredData(const string& player_name,

 const int goals_scored_so_far)

 : player_name(player_name),

 goals_scored_so_far(goals_scored_so_far) {}

Chapter 17 Mediator

281

 void print() const override

 {

 cout << player_name << " has scored! (their "

 << goals_scored_so_far << " goal)" << "\n";

 }

};

We are once again going to build a mediator, but it will have no

behaviors! With an event-driven infrastructure, they are no longer needed:

struct Game

{

 signal<void(EventData*)> events; // observer

};

In fact, you could get away with just having a global signal variable

and not make a Game class at all, but we are using the principle of least

surprise here, and if a Game& is injected into a component, we know there’s

a clear dependency there.

We can now construct the Player class. A player has a name, the

number of goals they scored during the match, and a reference to the

mediator Game, of course:

struct Player

{

 string name;

 int goals_scored = 0;

 Game& game;

 Player(const string& name, Game& game)

 : name(name), game(game) {}

 void score()

 {

Chapter 17 Mediator

282

 goals_scored++;

 PlayerScoredData ps{name, goals_scored};

 game.events(&ps);

 }

};

The Player::score() is the interesting function here: it uses the

events signal to create a PlayerScoredData and post it for all subscribers

to see. Who gets this event? Why, a Coach, of course:

struct Coach

{

 Game& game;

 explicit Coach(Game& game) : game(game)

 {

 // celebrate if player has scored <3 goals

 game.events.connect([](EventData* e)

 {

 �PlayerScoredData* ps = dynamic_

cast<PlayerScoredData*>(e);

 if (ps && ps->goals_scored_so_far < 3)

 {

 �cout << "coach says: well done, " << ps->player_name

 << "\n";

 }

 });

 }

};

The implementation of the Coach class is simple; our coach doesn’t

even get a name. But we do give them a constructor where a subscription

is created to game.events such that, whenever something happens, the

coach gets to process the event data in the provided lambda (slot).

Chapter 17 Mediator

283

Notice that the argument type of the lambda is EventData* – we don’t

know if a player has scored or has been sent off, so we need dynamic_cast

(or a similar mechanism) to determine we’ve got the right type.

The interesting thing is that all the magic happens at the set-up stage:

there’s no need to explicitly enlist slots for a particular signal. The client is

free to create objects using their constructors and then, when the player

scores, the notifications are sent:

Game game;

Player player{ "Sam", game };

Coach coach{ game };

player.score();

player.score();

player.score(); // ignored by coach

This produces the following output:

coach says: well done, Sam

coach says: well done, Sam

The output is only two lines long because, on the third goal, the coach

isn’t impressed anymore.

�Service Bus As Mediator
Both of our discussions of Mediator have centered on what are essentially

synchronous implementations: as one component generates some sort

of event, another component on that same thread of execution gets to

process it. This isn’t quite how it works in the real world. For example, in

a chat room, the chat room participants are on different corners of the

world, whereas the chat room itself is hosted on some central server. The

participants send messages and receive replies asynchronously and in

separate processes.

Chapter 17 Mediator

284

In practice, what you have is a form of bidirectional communication

that leverages much more functionality than the programming language

alone provides. In the case of general-purpose communication on the

Internet, for example, this might happen through the use of WebSockets,

a mechanism for providing full-duplex (i.e., two-way) communication

channels over a TCP connection. In the case of a corporate message

exchange system, a mediator would leverage whatever underlying

technology is used to send messages: something like Microsoft Message

Queuing (MSMQ), Azure Service Bus, or something similar.

As soon as these forms of communication become asynchronous,

we end up encountering yet another problem: how do we know that a

message has been delivered? In our synchronous call example, we could

have certainty, but in a set-up where you fire off a message, you need a

mechanism that ensures durability: in other words, you need to ensure

that, even in the case of a power outage that takes out some participant,

the message still persists somewhere and gets to stick around until

whoever is meant to process it is back online. This is ensured by separate

mechanisms such as Transactional Message Queuing.

Of course, sometimes you simply do not care. You fire off messages

into the abyss and, if they’re lost, well, that’s just tough luck.

�Summary
The Mediator design pattern essentially proposes an introduction of an

in-between component that everyone in a system has a reference to and

can use to communicate with one another. Instead of direct memory

addresses, communication can happen through identifiers (usernames,

unique IDs, etc.).

The simplest implementation of a mediator is a member list and a

function that goes through the list and does what it’s intended to do –

whether on every element of the list or selectively.

Chapter 17 Mediator

285

A more sophisticated implementation of Mediator can use events to

allow participants to subscribe (and unsubscribe) to things happening

in the system. This way, messages sent from one component to another

can be treated as events. In this set-up, it is also easy for participants to

unsubscribe to certain events if they are no longer interested in them, or if

they are about to leave the system altogether.

Chapter 17 Mediator

287© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_18

CHAPTER 18

Memento
When we looked at the Command design pattern, we noted that recording

a list of every single change theoretically allows you to roll back the system

to any point in time – after all, you’ve kept a record of all the modifications.

Sometimes, though, you don’t really care about playing back the state

of the system, but you do care about being able to roll back the system to a

particular state, if need be.

This is precisely what the Memento pattern does: it stores the state of

the system and returns it as a dedicated, read-only object with no behavior

of its own. This “token,” if you will, can be used only for feeding it back into

the system to restore it to the state it represents.

�Bank Account
Let’s use an example of a bank account that we’ve made before:

class BankAccount

{

 const int balance = 0;

public:

 explicit BankAccount(const int balance)

 : balance(balance) {}

https://doi.org/10.1007/978-1-4842-7295-4_18

288

This time, we decide to make a bank account with only a deposit()

method. Instead of it being void as in previous examples, deposit() will

now be made to return a Memento:

Memento deposit(int amount)

{

 balance += amount;

 return { balance };

}

and the Memento will then be usable for rolling back the account to the

previous state:

void restore(const Memento& m)

{

 balance = m.balance;

}

As for the memento itself, we can go for a trivial implementation:

class Memento final

{

 int balance;

public:

 Memento(int balance)

 : balance(balance) {}

 friend class BankAccount;

};

There are two things to point out here:

•	 The Memento class is immutable. Imagine if you could,

in fact, change the balance: you could roll back the

account to a state it was never in!

Chapter 18 Memento

289

•	 The memento declares BankAccount as a friend class.

This allows the account to use the balance field. An

alternative that would also have worked is to make

Memento an inner class of BankAccount.

And here is how one would go about using such a set-up:

void memento()

{

 BankAccount ba{ 100 };

 auto m1 = ba.deposit(50);

 auto m2 = ba.deposit(25);

 cout << ba << "\n"; // Balance: 175

 // undo to m1

 ba.restore(m1);

 cout << ba << "\n"; // Balance: 150

 // redo

 ba.restore(m2);

 cout << ba << "\n"; // Balance: 175

}

This implementation is good enough, though there are some things

missing. For example, you never get a Memento representing the opening

balance because a constructor cannot return a value. You could stick a

pointer in there, but it seems a bit ugly.

�Undo and Redo
What if you were to store every Memento generated by BankAccount? In this

case, you’d have a situation similar to our implementation of the Command

pattern, where undo and redo operations are a byproduct of this recording.

Let’s see how we can get undo/redo functionality with a Memento.

Chapter 18 Memento

290

We’ll introduce a new bank account class, BankAccount2, that’s going

to keep hold of every single Memento it ever generates:

class BankAccount2 // supports undo/redo

{

 int balance = 0;

 vector<shared_ptr<Memento>> changes;

 int current;

public:

 explicit BankAccount2(const int balance) : balance(balance)

 {

 changes.emplace_back(make_shared<Memento>(balance));

 current = 0;

 }

We have now solved the problem of returning to the initial balance: the

memento for the initial change is stored as well. Of course, this memento

isn’t actually returned, so in order to roll back to it, well, I suppose you

could implement some reset() function or something – totally up to you.

In the preceding code, we are using shared_ptr to store the mementos,

and we also use shared_ptr to return them. Furthermore, we are using the

current field as a “pointer” into the list of changes, so that if we do decide

to undo and move back a step, we can always redo and revert to something

we just had.

Now, here’s the implementation of the deposit() function:

shared_ptr<Memento> deposit(int amount)

{

 balance += amount;

 auto m = make_shared<Memento>(balance);

 changes.push_back(m);

 ++current;

Chapter 18 Memento

291

 return m;

}

Now here comes the fun stuff (we’re still listing members of

BankAccount2, by the way). We add a method to restore the account state

based on a memento:

void restore(const shared_ptr<Memento>& m)

{

 if (m)

 {

 balance = m->balance;

 changes.push_back(m);

 current = changes.size() - 1;

 }

}

The restoration process is significantly different to the one we’ve

looked at earlier. First, we actually check that the shared_ptr is initialized –

this is relevant because we now have a way of signaling no-ops: just return

a default value. Also, when we restore a memento, we actually push that

memento into the list of changes so an undo operation will work correctly

on it.

Now, here is the (rather tricky) implementation of undo():

shared_ptr<Memento> undo()

{

 if (current > 0)

 {

 --current;

 auto m = changes[current];

 balance = m->balance;

Chapter 18 Memento

292

 return m;

 }

 return{};

}

We can only undo() if the current pointer is greater than zero. If that’s the

case, we move the pointer back, grab the change at that position, apply it, and

then return that change. If we cannot roll back to a previous memento, we

return a default-constructed shared_ptr, for which we check in restore().

The implementation of redo() is very similar:

shared_ptr<Memento> redo()

{

 if (current + 1 < changes.size())

 {

 ++current;

 auto m = changes[current];

 balance = m->balance;

 return m;

 }

 return{};

}

Again, we need to be able to redo something: if we can, we do it safely,

if not – we do nothing and return an empty pointer. Putting it all together,

we can now start using the undo/redo functionality:

BankAccount2 ba{ 100 };

ba.deposit(50);

ba.deposit(25); // balance = 175

cout << ba << "\n";

ba.undo();

cout << "Undo 1: " << ba << "\n"; // Undo 1: 150

Chapter 18 Memento

293

ba.undo();

cout << "Undo 2: " << ba << "\n"; // Undo 2: 100

ba.redo();

cout << "Redo 2: " << ba << "\n"; // Redo 2: 150

ba.undo(); // back to 100 again

�Memory Considerations
Our simplified example demonstrates the idea of saving only one variable:

the account balance. In the real world, an object could have a multitude

of states, such that memory considerations would come into play when

storing a possibly infinite set of object snapshots.

One very simple idea is to replace the vector with a circular buffer of

limited size. For example, the following member declaration will store

only the five latest changes to the account, and when a subsequent change

arrives, it will simply overwrite the oldest:

class BankAccount3 // limited undo/redo

{

 boost::circular_buffer<shared_ptr<Memento>> changes{5};

 // as before

};

Curiously, when using smart pointers, this approach will not interfere

with a client’s ability to restore an account to any earlier state, even a state

that is no longer stored in the account’s finite-sized buffer.

Chapter 18 Memento

294

�Using Memento for Interop
If you are interested in using C++ libraries from a different programming

language, the easiest solution is to expose global C/C++ functions from a

dynamic library and then invoke these functions using a suitable bridging

technology such as Java Native Interface (JNI) or .NET Platform Invocation

Services (P/Invoke).

This isn’t really a problem if you want to pass simple bits of data, such

as numbers or arrays, back and forth. For example, .NET has functionality

for pinning1 an array and sending it to the “native” side for processing. It

works fine, most of the time.

Problems arise when you allocate an object-oriented construct (i.e.,

a class) inside a C++ library and want to return this object to the caller.

This isn’t straightforward, because there is no universal protocol for

passing native-code OOP structures between languages.2 Apart from

truly exotic solutions such as using bridging languages (e.g., Microsoft’s

Managed C++, which is a C++ variant that has .NET support), this problem

is typically handled by serializing (encoding) all the data on one side

and then unpacking it on the other side. There are many ways of doing

this, including simple ones such as serializing data as XML or JSON or

complicated, industry-grade solutions such as Google’s Protocol Buffers.3

In some cases, though, you don’t really need to return the full object

itself. Instead, you simply want to return a handle so that this handle

can be subsequently used on the C/C++ side again. You don’t even need

1 In .NET, objects can be relocated, so an object’s memory address can change.
Pinning ensures the object stays in place in memory, so its address can be taken
and used in native code.

2 On the .NET side of things, the Common Language Specification (.NET CLS) is an
example of exactly such a requirement that allows all .NET-supporting languages
to interoperate through a set of commonly supported data types.

3 Protocol Buffers currently support C++, C#, Java, Python, and many other
languages. See https://developers.google.com/protocol-buffers for details.

Chapter 18 Memento

https://developers.google.com/protocol-buffers

295

the extra memory traffic passing objects back and forth. There are many

reasons why you’d want to do this, but the main reason is that you want

only one side to manage the object’s lifetime, since managing it on both

sides is a nightmare that nobody really needs.

What you do in this case is you return a Memento. This can be

anything – a string identifier, an integer, a globally unique identifier

(GUID) – anything that lets you refer to the object later on. The receiving

side then holds on to the token and uses that token to tell the native code

when some operations on the underlying object are required.

This approach introduces an issue with lifetime management. Suppose

we want the underlying object to live for as long as we have the token.

How can we implement this? Well, this would mean that, on the C++ side,

the token lives forever, whereas on the other side, we adorn it in a special

construct (e.g., IDisposable in .NET) that has a destructor (or equivalent)

function sending a message back to the C++ side that the token has been

destroyed. But what if we copy the token and have two or more instances of

it? Then we end up having to build a reference-counted system for tokens:

something that is quite possible, but introduces extra complexity in our

system.

There is also a symmetric problem: what if the C++ side has destroyed

the object that the token represents? This can happen explicitly or behind

the scenes when, for example, a smart pointer is used. If we try to use the

corresponding token, additional checks need to be made to ensure the

token is actually valid, and some sort of meaningful return value needs to

be given to the native call in order to tell the other side that the token has

gone stale. Again, this is extra work.

Chapter 18 Memento

296

�Summary
The Memento pattern is all about handing out tokens that can be used

to restore the system to a prior state. Typically, the token contains all the

information necessary to move the system to a particular state, and if it’s

small enough, you can also use it to record all the states of the system so

as to allow not just the arbitrary resetting of the system to a prior state, but

controlled navigation backward (undo) and forward (redo) of all the states

the system was in.

Chapter 18 Memento

297© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_19

CHAPTER 19

Null Object
We don’t always choose the interfaces we work with. For example, I’d

rather have my car drive me to my destination by itself, without me having

to give 100% of my attention to the road and the dangerous lunatics

driving next to me. And it’s the same with software: sometimes you don’t

really want a piece of functionality, but it’s built in as part of interface

requirements. This means you have to provide some value even if you

don’t need this particular piece of functionality.

So what do you do? You make a Null Object.

�Scenario
Suppose you inherited a library that uses the following interface:

struct Logger

{

 virtual ~Logger() = default;

 virtual void info(const string& s) = 0;

 virtual void warn(const string& s) = 0;

};

https://doi.org/10.1007/978-1-4842-7295-4_19

298

This interface is used in bank account operations:

class BankAccount

{

 shared_ptr<Logger> log;

public:

 string name;

 int balance = 0;

 BankAccount(const shared_ptr<Logger>& logger,

 const string& name, int balance)

 : log{logger}, name{name}, balance{balance} { }

 // more members here

};

In fact, BankAccount can have member functions similar to

void BankAccount::deposit(int amount)

{

 balance += amount;

 log->info("Deposited $" + to_string(amount)

 + " to " + name + ", balance is now $" + to_string(balance));

}

So, what’s the problem here? Well, if you do need logging, there’s no

problem, you just implement your own logging class

struct ConsoleLogger : Logger

{

 void info(const string& s) override

 {

 cout << "INFO: " << s << endl;

 }

Chapter 19 Null Object

299

 void warn(const string& s) override

 {

 cout << "WARNING!!! " << s << endl;

 }

};

and you can use it straightaway. But what if you don’t want logging at all?

This is where you need a Null Object.

�Null Object
Look at BankAccount’s constructor once again:

BankAccount(const shared_ptr<Logger>& logger,

 const string& name, int balance)

Since the constructor takes a logger, it is unsafe to assume that you can

get away with just passing it an uninitialized shared_ptr<BankAccount>.

BankAccount could be checking the pointer internally before dispatching

on it, but you don’t know that it does, and without extra documentation it’s

impossible to tell.

As a consequence, the only thing that would be reasonable to pass into

BankAccount is a Null Object – a class which conforms to the interface but

contains no functionality:

struct NullLogger final : Logger

{

 void info(const string& s) override {}

 void warn(const string& s) override {}

};

Chapter 19 Null Object

300

Now, you can make an instance of NullLogger using make_shared

and pass it to every component that is expecting a shared_ptr<Logger>

reference. Furthermore, if you are using dependency injection, you can

ensure this value gets injected into the right places automatically.

Naturally, it makes sense for a Null Object to be a Singleton too, since

such an object is, in most cases, stateless. You can either explicitly turn

it into a singleton (see the Singleton chapter) or simply configure the

component to be a singleton in your DI container.

It’s worth noting that this approach has limitations when it comes

to functions that return values or manipulate internal state. For

example, if either of the calls returns a bool success flag, the Null Object

implementation would probably deterministically return a value of true

just to be safe. But, in more complicated scenarios, there might not be a

predictable way of making a Null Object that ensures consistency when

interacting with its consumer.

�shared_ptr Is Not a Null Object
It’s important to note that shared_ptr and other smart pointer classes

are not null objects themselves. A null object is something that preserves

correct operation (does a no-op). But invocations on an uninitialized

smart pointers crash and burn:

shared_ptr<int> n;

int x = *n + 1; // ouch!

What’s interesting to note is that there is no way of making smart

pointers “safe” from the perspective of invocation. In other words, you

cannot write such a smart pointer where foo->bar() would magically

become a no-op if foo is uninitialized. The reason for this is both the prefix

* and postfix -> operators simply proxy the underlying (raw) pointer over.

And there’s no way of doing a no-op on a pointer member function call.

Chapter 19 Null Object

301

�Design Improvements
Stop and think for a moment: if BankAccount was under your control,

could you improve the interface such that it is easier to use? Well, here are

some ideas:

•	 Put pointer checks everywhere. This sorts out the

correctness on the BankAccount’s end but doesn’t stop

getting library users confused. Remember, you’re still

not communicating that the pointer can be null.

•	 Add a default argument value, something like const

shared_ptr<Logger>& logger = no_logging where

no_logging is, say, some member of the BankAccount

class. Even if this is the case, you would still have to

perform checks on the pointer value in every location

where you want to use the object.

•	 Use the optional type. This is idiomatically correct and

communicates intent but leads to the horror of passing

in an optional<shared_ptr<T>> and the subsequent

check of whether an optional is empty or not.

�Implicit Null Object
There’s another radical idea which involves a double hop around the

Logger interface. It involves subdividing the process of logging into

invocation (we want a nice Logger interface) and operation (what the

logger actually does). So, consider the following:

struct OptionalLogger : Logger

{

 shared_ptr<Logger> impl;

 static shared_ptr<Logger> no_logging;

Chapter 19 Null Object

302

 Logger(const shared_ptr<Logger>& logger) : impl{logger} {}

 virtual void info(сonst string& s) override {
 if (impl) impl->info(s); // null check here

 }

 // and similar checks for other members

};

// a static instance of a null object

shared_ptr<Logger> BankAccount::no_logging{};

So now we’ve abstracted away invocation from implementation. What

we do now is redefine the BankAccount constructor as follows:

shared_ptr<OptionalLogger> logger;

BankAccount(const string& name, int balance,

 const shared_ptr<Logger>& logger = no_logging)

 : log{make_shared<OptionalLogger>(logger)},

 name{name},

 balance{balance} { }

As you can see, there’s clever subterfuge here: we are taking a Logger

but storing an OptionalLogger wrapper (this is the Virtual Proxy design

pattern – see Chapter 12, “Proxy”). Now, all the calls to this optional logger

are safe – they only “happen” if the underlying object is available:

BankAccount account{ "primary account", 1000 };

account.deposit(2000); // no crash

The proxy object that we implemented is essentially a customized

version of the Pimpl idiom with built-in nullptr checks.

Chapter 19 Null Object

303

�Interaction with Other Patterns
The Null Object can also appear together with a number of other design

patterns. We’ve mentioned previously that a Null Object is a good fit for

the Singleton pattern because in most cases you don’t need more than one

instance. At the very least, it is declared final.

Another example of pattern interaction is a Null Strategy, especially

if a consumer is using multiple strategies one after another. For example,

an ETL (Extract, Transform and Load) operation might mandate separate

strategies for extracting data, transforming it in some way and then loading

it into some sort of database. If you just want to read the data and store

it without the data being transformed in any way, you might need a Null

Strategy for the Transform part of the overall process.

A visitable Null Object can be useful as part of a hierarchy visited

by the Visitor design pattern. For example, if every element of a

mathematical expression is by definition a binary expression, a unary

expression such as −X would have to be defined, in pseudocode, as

Subtract{Value{0},Value{X}}. This may fail to be a workable solution

because, were you to write a PrinterVisitor for printing such an

expression, this visitor would print 0-X instead of -X. Thus, you would

instead define an expression as, perhaps, Subtract{Null,Value{X}} that

would omit printing the Null value entirely, simply printing the remaining

-X as intended. Some implementations of the Visitor design pattern could

be taught to simply ignore the Null type completely.

The “classic” implementation of the State design pattern (see Chapter 21,

“State”) that performs state-driven state transitions may also optionally

include a state which can potentially lack most or all behaviors. For

example, a configurable traffic light system may consist of red, green, and

amber states, with the amber state being optional. A client that does not

need the amber state would supplant (perhaps inherit) the amber state

such that, for example, a transition to that state will automatically result

Chapter 19 Null Object

304

in a further transition to the next state. This naturally implies that the

entire state machine is constructed in such a way as to make this sort of

replacement possible.

�Summary
The Null Object pattern raises an issue of API design: what kinds of

assumptions can we make about the objects we depend upon? If we are

taking a pointer (raw or smart), do we then have an obligation to check this

pointer on every use?

If you feel no such obligation, then the only way the client can

implement a Null Object is to construct a no-op implementation of the

required interface and pass that instance where required. This only works

well with functions, though: if the object’s fields are also being used, for

example, then you are in real trouble.

If you want to proactively support the idea of Null Objects being passed

as arguments, you need to be explicit about it: either specify the parameter

type as std::optional, give the parameter a default value that hints at a

built-in Null Object (e.g., = no_logging), or just write documentation that

explains what kind of value is expected at this location.

Chapter 19 Null Object

305© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_20

CHAPTER 20

Observer
The Observer pattern is a popular and necessary pattern, so it is surprising

that, unlike other languages (e.g., C#), neither C++ nor the Standard

Library comes with a ready-to-use implementation. Nonetheless, a

safe, properly implemented Observer (if there can be such a thing) is a

technically sophisticated construct, so in this chapter, we’ll investigate it

with all its gory details.

�Property Observers
People get old. It’s a fact of life. But when someone gets older by a year,

we might want to congratulate them on their birthday. But how? Given a

definition such as

struct Person

{

 int age;

 Person(int age) : age{age} {}

};

How do we know when a person’s age changes? We don’t. To

see changes, we could try polling: reading a person’s age every 100

milliseconds and comparing the new value with the previous. This

approach will work but is tedious and does not scale. We need to be

smarter about this.

https://doi.org/10.1007/978-1-4842-7295-4_20

306

We know that we want to be informed on every write to a person’s age

field. Well, the only way to catch this is to make a setter, that is:

struct Person

{

 int get_age() const { return age; }

 void set_age(const int value) { age = value; }

private:

 int age;

};

The setter set_age() is where we can notify whoever cares that age

has, in fact, changed. But how?

�Observer<T>
Well, one approach is to define some sort of base class that would need to

be inherited by anyone interested in getting Person’s changes:

struct PersonListener

{

 virtual void person_changed(Person& p,

 const string& property_name) = 0;

};

However, this approach is quite stifling because property changes

can occur on types other than Person and we would not want to spawn

additional classes for those too. Here’s something a little more generic:

template<typename T> struct Observer

{

 �virtual void field_changed(T& source,

 const string& field_name) = 0;

};

Chapter 20 Observer

307

The two parameters in field_changed() are, hopefully, self-explanatory.

The first is a reference to the object whose field actually changed, and the

second is the name of the field. Yes, the name is passed as a string, which

does hurt the refactorability of our code (what if the field name changes?).1

This implementation would allow us to observe changes to a Person

class and, for example, write them to the command line:

struct ConsolePersonObserver : Observer<Person>

{

 �void field_changed(Person& source, const string& field_name)

override

 {

 if (field_name == "age")

 {

 cout << "Person's age has changed to "

 << source.get_age() << ".\n";

 }

 }

};

The flexibility we introduced into the scenario would allow us, for

example, to observe property changes on multiple classes. For instance, if

we add class Creature to the mix, you can now observe on both:

struct ConsolePersonObserver : Observer<Person>, Observer<Creature>

{

 void field_changed(Person& source, ...) { ... }

 void field_changed(Creature& source, ...) { ... }

};

1 By contrast with C++, C# has explicitly solved this problem twice in successive
releases. First, it introduced an attribute called [CallerMemberName] that inserted
the name of calling function/property as the string value of a parameter. A second
release simply introduced nameof(Foo) which would take the name of a symbol
and turn it into a string.

Chapter 20 Observer

308

Another alternative is to use std::any and do away with a generic

implementation. Try it!

�Observable<T>
Let’s get back to the Person class. Since it is about to become an observable

class, it has to take on new responsibilities, namely:

•	 Keeping a private list of all the observers interested in

Person’s changes

•	 Letting the observers subscribe()/unsubscribe() to

changes in Person

•	 Informing all observers when a change is actually made

with notify()

All of this functionality can quite happily be moved to a separate base

class so as to avoid replicating it for every potential observable:

template <typename T> struct Observable

{

 void notify(T& source, const string& name) { ... }

 void subscribe(Observer<T>* f) { observers.push_back(f); }

 void unsubscribe(Observer<T>* f) { ... }

private:

 vector<Observer<T>*> observers;

};

The subscribe() method just adds a new observer to the private

list of observers. The list of observers isn’t exposed to anyone – not even

to the derived class. We don’t want people arbitrarily manipulating this

collection.

Chapter 20 Observer

309

Next up, we need to implement notify(). The idea is simple – go

through every observer and invoke its field_changed() one after another:

void notify(T& source, const string& name)

{

 for (auto obs : observers)

 obs->field_changed(source, name);

}

It’s not enough to inherit from Observable<T>, though: our class also

needs to do its part in calling notify() whenever a field is changed.

Consider the setter set_age(), for example. It now has three

responsibilities:

•	 Check that the name has actually changed. If age

is 20 and we are assigning 20 to it, there is no point

performing any assignment or notification.

•	 Assign the field to the appropriate value.

•	 Call notify() with the right arguments.

Consequently, the new implementation of set_age() would look

something like the following:

struct Person : Observable<Person>

{

 void set_age(const int age)

 {

 if (this->age == age) return;

 this->age = age;

 notify(*this, "age");

 }

private:

 int age;

};

Chapter 20 Observer

310

�Connecting Observers and Observables
We are now ready to start using the infrastructure we created in order

to get notifications on Person’s field changes (well, we could call them

properties, really). Here’s a reminder of what our observer looks like:

struct ConsolePersonObserver : Observer<Person>

{

 void field_changed(Person& source,

 const string& field_name) override

 {

 cout << "Person's " << field_name << " has changed to "

 << source.get_age() << ".\n";

 }

};

And here is how we use it:

Person p{ 20 };

ConsolePersonObserver cpo;

p.subscribe(&cpo);

p.set_age(21); // Person's age has changed to 21.

p.set_age(22); // Person's age has changed to 22.

So long as you don’t concern yourself with issues around property

dependencies and thread safety/reentrancy, you can stop here, take this

implementation, and start using it. If you want to see discussions of more

sophisticated approaches, read on.

Chapter 20 Observer

311

�Dependency Problems
People aged 16 or older (could be different in your country) can vote. So

suppose we want to be notified of changes to a person’s voting rights. First,

let’s assume that our Person type has the following getter:

bool get_can_vote() const { return age >= 16; }

Note that get_can_vote() has no backing field and no setter (we could

introduce such a field, but it would be self-evidently redundant), yet we

also feel obliged to notify() on it. But how? Well, we could try to find

what causes can_vote to change… that’s right, set_age() does! So if we

want notifications on changes in voting status, these need to be done in

set_age(). Get ready, you’re in for a surprise!

void set_age(int value) const

{

 if (age == value) return;

 auto old_can_vote = can_vote(); // store old value

 age = value;

 notify(*this, "age");

 if (old_can_vote != can_vote()) // check value has changed

 notify(*this, "can_vote");

}

There’s far too much happening inside this function. Not only do we check

whether age has changed, we also check that can_vote has changed and

notify on it too! You can probably guess this approach doesn’t scale well, right?

Imagine can_vote being dependent on two fields, say, age and citizenship – it

means both of their setters have to handle can_vote notifications. And what if

age also affects ten other properties this way? This is an unworkable solution

that would lead to brittle code that’s impossible to maintain, since relationships

between variables need to be tracked manually.

Chapter 20 Observer

312

In this scenario, can_vote is a dependent property of age. The challenge

of dependent properties is essentially the challenge of tools such as Excel:

given lots of dependencies between different cells, how do you know

which cells to recalculate when one of them changes?

Property dependencies can, of course, be expressed some sort of

map<string, vector<string>> what would keep a list of properties

affected by a property (or, inversely, all the properties that affect a

particular property). The sad thing is that this map would have to be

defined by hand, and keeping it in sync with actual code is rather tricky.

�Unsubscription and Thread Safety
One thing that I’ve neglected to discuss is how an observer might

unsubscribe() from an observable. Generally, you want to remove

yourself from the list of observers, which, in a single-threaded scenario, is

as simple as

void unsubscribe(Observer<T>* observer)

{

 observers.erase(

 remove(observers.begin(), observers.end(), observer),

 observers.end());

};

While the use of the erase-remove idiom is technically correct, it is only

correct in a single-threaded scenario. std::vector is not thread-safe, so

calling, say, subscribe() and unsubscribe() at the same time could lead

to unintended consequences, since both methods modify the vector.

Chapter 20 Observer

313

This is easily cured by simply putting a lock on all of observable’s

operations:

template <typename T> struct Observable

{

 void notify(T& source, const string& name)

 {

 scoped_lock<mutex> lock{ mtx };

 ...

 }

 void subscribe(Observer<T>* f)

 {

 scoped_lock<mutex> lock{ mtx };

 ...

 }

 void unsubscribe(Observer<T>* o)

 {

 scoped_lock<mutex> lock{ mtx };

 ...

 }

private:

 vector<Observer<T>*> observers;

 mutex mtx;

};

Another, very viable, alternative is to use something like a concurrent_

vector from PPL/TPL.2 Naturally you lose ordering guarantees (in other words,

adding two objects one after another doesn’t guarantee they are notified in

order), but it certainly saves you from having to manage locks yourself.

2 The Microsoft Parallel Patterns Library and the Intel Task Parallel Library (TPL)
have similar thread-safe container classes.

Chapter 20 Observer

314

�Reentrancy
The last implementation provides some thread safety through locking

any of the three key methods whenever someone needs it. But now let’s

imagine the following scenario: you have a TrafficAdministration

component that keeps monitoring a person until they’re old enough to

drive. When they’re 17, the component unsubscribes:

struct TrafficAdministration : Observer<Person>

{

 void TrafficAdministration::field_changed(

 Person& source, const string& field_name) override

 {

 if (field_name == "age")

 {

 if (source.get_age() < 17)

 �cout << "Whoa there, you are not old enough to

drive!\n";

 else

 {

 // �oh, ok, they are old enough, let's not monitor them

anymore

 cout << "We no longer care!\n";

 source.unsubscribe(this);

 }

 }

 }

};

Chapter 20 Observer

315

When age turns to 17, the overall chain of calls will be

notify() --> field_changed() --> unsubscribe()

This is a problem because, in unsubscribe(), we end up trying to take

a lock that’s already taken. This is a reentrancy problem. There are different

ways to handle this:

•	 One way is to simply prohibit such situations. After

all, at least in this particular case, it’s very obvious that

reentrancy is taking place here.

•	 Another way is to bail out on the idea of removing

elements from the collection. Instead, we could go for

something like

void unsubscribe(Observer<T>* o)

{

 auto it = find(observers.begin(), observers.end(), o);

 if (it != observers.end())

 *it = nullptr;

}

And, subsequently, when you notify(), you just need an extra check:

void notify(T& source, const string& name)

{

for (auto obs : observers)

 if (obs)

 obs->field_changed(source, name);

}

Of course, this only solves possible contention between notify() and

subscribe(). If you were to, for example, subscribe() and unsubscribe()

at the same time, this is still concurrent modification of a collection – and it

can still fail. So, at the very least, you might want to keep a lock there.

Chapter 20 Observer

316

Yet another possibility is to just make a copy of the entire collection in

notify(). You do need the lock still; you just don’t apply it to notifications.

Here’s what I mean:

void notify(T& source, const string& name)

{

 vector<Observer<T>*> observers_copy;

 {

 lock_guard<mutex_t> lock{ mtx };

 observers_copy = observers;

 }

 for (auto obs : observers_copy)

 if (obs)

 obs->field_changed(source, name);

}

In this implementation, we do take a lock, but, by the time we call

field_changed, the lock has been released, since it’s only created in the

artificial scope used to copy the vector. I wouldn’t worry about efficiency

here, since a vector of pointers doesn’t take up that much memory.

Finally, it’s always possible to replace a mutex by a recursive_mutex.

Generally speaking, recursive mutexes are hated by most developers

(plenty of proof can be found on StackOverflow), not just due to

performance implications but more due to the fact that in the majority of

cases (just like Observer example), you can get away with using ordinary,

non-recursive variants if you design your code a bit better.

There are some interesting practical concerns that we haven’t really

discussed here. They include the following:

•	 What happens if the same observer is added twice?

•	 If I allow duplicate observers, does ubsubscribe()

remove every single instance?

Chapter 20 Observer

317

•	 How is the behavior affected if we use a different

container? For example, we decide to prevent

duplicates by using an std::set or boost::unordered_

set; what does this imply for ordinary operations?

•	 What if I want observers that are ranked by priority?

These and other practical concerns are all manageable once your

foundations are solid. We won’t spend further time discussing them here.

�Observer with Boost.Signals2
There are many prepackaged implementation of the Observer pattern, and

probably the most well known is the Boost.Signals2 library.3 Essentially,

this library provides a type called signal that represents a signal in C++

terminology (called event elsewhere). This signal can be subscribed to by

providing a function or lambda. It can also be unsubscribed to and, when

you want to notify on this, it can be fired.

Using Boost.Signals2, we can define Observable<T>:

template <typename T>

struct Observable

{

 signal<void(T&, const string&)> property_changed;

};

3 See www.boost.org/doc/libs/1_76_0/doc/html/signals2.html for more info.

Chapter 20 Observer

http://www.boost.org/doc/libs/1_76_0/doc/html/signals2.html

318

And its invocation looks as follows:

struct Person : Observable<Person>

{

 ...

 void set_age(const int age)

 {

 if (this->age == age) return;

 this->age = age;

 property_changed(*this, "age");

 }

};

The actual use of the API would directly use the signal unless, of

course, you decided to add member functions to make it easier:

Person p{123};

auto conn = p.property_changed.connect([](Person&, const

string& prop_name)

{

 cout << prop_name << " has been changed" << endl;

});

p.set_age(20); // age has been changed

// later, optionally

conn.disconnect();

The result of a connect() call is a connection object that can also

be used to unsubscribe when you no longer need notifications from the

signal.

Chapter 20 Observer

319

�Views
There’s a big, huge, glaring problem with property observers: the approach

is intrusive and clearly goes against the idea of separation of concerns.

Change notification is a separate concern, so adding it right into your

domain objects might not be the best idea – especially considering that it

is only one of a number of concerns (others include validation, automatic

data type conversions, etc.) that may become evident at a later stage once

the domain is already well defined.

So, imagine you decide to change your mind and move from the use

of Observable<T> to the use of some completely different construct. If you

had scattered Observable throughout your domain objects, you’d have to

meticulously go through each one, modifying each property to use the new

paradigm, not to mention the fact that you’d have to modify those classes

as well to stop using the old interfaces and start using the new ones. This is

tedious and error-prone and precisely the kind of thing we’re trying to avoid.

So, if you want change notifications handled outside of the objects that

change, where would you add them? It shouldn’t be hard – after all, we’ve

seen patterns such as Decorator that are designed for this exact purpose.

One approach is to put another object in front of your domain object

that would handle change notifications and other things besides. This is

what we would typically called a view – it is this thing that would be bound

to UI, for example.

To use views, you would keep your objects simple, using ordinary

properties (or even public fields!) without embellishing them with any

extra behaviors:

struct Person

{

 string name;

};

Chapter 20 Observer

320

In fact, it’s worth keeping the data objects as simple as possible; this

is what’s known as a data class in languages such as Kotlin. Now what you

do is build a view on top of the object. The view can incorporate other

concerns, including property observers:

struct PersonView : Observable<Person>

{

 explicit PersonView(const Person& person)

 : person(person) {}

 string& get_name()

 {

 return person.name;

 }

 void set_name(const string& value)

 {

 if (value != person.name) return;

 person.name = value;

 property_changed(person, "name");

 }

protected:

 Person& person;

};

This view we’ve created is, of course, a Decorator. It wraps the

underlying object with getters/setters that perform the notifications. If you

need even more complexity, this is the place to add it.

Now, with the view constructed, it can be plugged into the rest of the

application. For example, if your app has a user interface with an editable

text field, that field could interact with name getter and setter in the view.

Chapter 20 Observer

321

�Summary
Let’s recap the main design decisions when implementing Observer:

•	 Decide what information you want your observable to

communicate. For example, if you are handling field/

property changes, you can include the name of the

property. You can also specify old/new values, but

passing the type could be problematic.

•	 Do you want your observers to be entire classes, or are

you OK with just having a list of virtual functions?

•	 How do you want to handle observers unsubscribing?

–– If you don’t plan to support unsubscription, congratulations,

you’ll save a lot of effort implementing the Observer since

there are no removal issues in reentrancy scenarios.

–– If you plan to support an explicit unsubscribe() function,

maybe you don’t want to erase-remove right in the function, but

instead mark your elements for removal and remove them later?

–– If you don’t like the idea of dispatching on a (possibly null)

raw pointer, consider using a weak_ptr instead.

•	 Will the functions of an Observer<T> be invoked from

several different threads? If they are, you need to

protect your subscription list:

–– You can put a scoped_lock on all relevant functions.

–– Or you can use a thread-safe collection such as the TBB/PPL

concurrent_vector. You lose ordering guarantees but get

thread safety, not such a bad trade-off.

•	 Are multiple subscriptions from the same source

allowed? If they are, you cannot use an std::set.

Chapter 20 Observer

322

Without a doubt, some of the code presented in this chapter is an

example of overthinking and overengineering a problem way beyond what

most people would want to achieve.

There is, sadly, no ideal implementation of Observer that ticks all the

boxes. Whichever implementation you go for, some compromises are

expected.

Chapter 20 Observer

323© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_21

CHAPTER 21

State
I must confess: my behavior is governed by my state. If I didn’t get enough

sleep, I’m going to be a bit tired. If I had a drink, I wouldn’t get behind the

wheel. All of these are states and they govern my behavior: how I feel, what

I can and cannot do.

I can, of course, transition from one state to another. I can go get a

coffee, and this will take me from sleepy to alert (I hope!). So we can think

of coffee as a trigger that causes a transition of yours truly from sleepy to

just about awake. Here, let me clumsily illustrate it for you:1

 coffee

sleepy --------> alert

So, the State design pattern is a very simple idea: state controls

behavior, state can be changed, the only thing which the jury is out on is

who triggers the state change.

There are, fundamentally, two ways:

•	 States are actual classes with behaviors, and these

behaviors switch the actual state from one to another.

•	 States and transitions are just enumerations. We

have a special component called a state machine that

performs the actual transitions.

1 �I don’t actually drink coffee. This is just of the many white lies I have woven into
this book :)

https://doi.org/10.1007/978-1-4842-7295-4_21

324

Both of these approaches are viable, but it’s really the second approach

that is the most common. We’ll take a look at both of them, but I must

admit I’ll glance over the first one, since this isn’t how people typically do

things.

�State-Driven State Transitions
We’ll begin with the most trivial example out there: a light switch. It can

only be in the on and off states. We’re going to build a model where any

state is capable of switching to some other state: while this reflects the

“classic” implementation of the State design pattern (as per GoF book), it’s

not something I’d recommend.

First, let’s model the light switch. All it has is a pointer to the current

state and some means of switching from one state to another:

class LightSwitch

{

 State *state{nullptr};

public:

 LightSwitch()

 {

 state = new OffState();

 }

 void set_state(State* state)

 {

 this->state = state;

 }

};

Chapter 21 State

325

This all looks perfectly reasonable. We can now define the State

which, in this particular case, is going to be an actual class.

struct State

{

 virtual void on(LightSwitch *ls)

 {

 cout << "Light is already on\n";

 }

 virtual void off(LightSwitch *ls)

 {

 cout << "Light is already off\n";

 }

};

This implementation is far from intuitive, so much so that we need to

discuss it slowly and carefully, because from the outset, nothing about the

State class makes sense.

First of all, State is not abstract! You’d think that a state you have no

way (or reason!) of reaching would be abstract. But it’s not.

Second, State allows the switching from one state to another. This…

to a reasonable person, it makes no sense. Imagine the light switch: it’s the

switch that changes states. The state itself isn’t expected to change itself,

and yet it appears this is exactly what it does.

Third, perhaps most bewildering, the default behavior of State::on/

off claims that we are already in this state! This will come together,

somewhat, as we implement the rest of the example.

Chapter 21 State

326

We now implement the On and Off states:

struct OnState : State

{

 OnState() { cout << "Light turned on\n"; }

 void off(LightSwitch* ls) override;

};

struct OffState : State

{

 OffState() { cout << "Light turned off\n"; }

 void on(LightSwitch* ls) override;

};

The implementations of OnState::off and OffState::on allow the

state itself to switch itself to another state! Here’s what it looks like:

void OnState::off(LightSwitch* ls)

{

 cout << "Switching light off...\n";

 ls->set_state(new OffState());

 delete this;

} // same for OffState::on

So this is where the switching happens. This implementation contains

the bizarre invocation of delete this, something you don’t often see

in real-world C++. delete this makes a very dangerous assumption

of where the state is initially allocated. The example could be rewritten

with, say, smart pointers, but using ordinary pointers and heap allocation

highlights clearly that the state is being actively destroyed here. If the

state had a destructor, it would trigger and you would perform additional

cleanup here.

Chapter 21 State

327

Of course, we do want the switch itself to switch states too, which looks

like this:

class LightSwitch

{

 ...

 void on() { state->on(this); }

 void off() { state->off(this); }

};

So, putting it all together, we can run the following scenario:

LightSwitch ls; // Light turned off

ls.on(); // Switching light on...

 // Light turned on

ls.off(); // Switching light off...

 // Light turned off

ls.off(); // Light is already off

I must admit: I don’t like this approach, because it is not intuitive. Sure,

the state can be informed (Observer pattern) that we’re moving into it. But

the idea of state switching itself to another state – which is the “classic”

implementation of the State pattern as per the GoF book – doesn’t seem

particularly palatable.

If we were to clumsily illustrate a transition from OffState to OnState,

it needs to be illustrated as

 LightSwitch::on() -> OffState::on()

OffState -------------------------------------> OnState

On the other hand, the transition from OnState to OnState uses the

base State class, the one that tells you that you are already in that state:

 LightSwitch::on() -> State::on()

OnState ----------------------------------> OnState

Chapter 21 State

328

The example presented here may seem particularly artificial, so we are

now going to look at another handmade set-up, one where the states and

transitions are reduced to enumeration members.

�Handmade State Machine
Let us try to define a state machine for a typical phone conversation. First

of all, we’ll describe the states of a phone:

enum class State

{

 off_hook,

 connecting,

 connected,

 on_hold,

 on_hook

};

We can now also define transitions between states, also as an enum

class:

enum class Trigger

{

 call_dialed,

 hung_up,

 call_connected,

 placed_on_hold,

 taken_off_hold,

 left_message,

 stop_using_phone

};

Chapter 21 State

329

Now, the exact rules of this state machine, that is, what transitions are

possible, need to be stored somewhere.

map<State, vector<pair<Trigger, State>>> rules;

This is a little clumsy, but essentially the key of the map is the

State we’re moving from, and the value is a set of Trigger-State pairs

representing possible triggers while in this state and the state you move

into when you use the trigger.

Let’s initialize this data structure:

rules[State::off_hook] = {

 {Trigger::call_dialed, State::connecting},

 {Trigger::stop_using_phone, State::on_hook}

};

rules[State::connecting] = {

 {Trigger::hung_up, State::off_hook},

 {Trigger::call_connected, State::connected}

};

// more rules here

We also need a starting state, and we can also add an exit (terminal)

state if we want the state machine to stop executing once that state is

reached:

State currentState{ State::off_hook },

 exitState{ State::on_hook };

Having made this, we don’t necessarily have to build a separate

component for actually running (we use the term orchestrating) a state

Chapter 21 State

330

machine. For example, if we wanted to build an interactive model of the

telephone, we could do it thus:

while (true)

{

 cout << "The phone is currently " << currentState << endl;

select_trigger:

 cout << "Select a trigger:" << "\n";

 int i = 0;

 for (auto item : rules[currentState])

 {

 cout << i++ << ". " << item.first << "\n";

 }

 int input;

 cin >> input;

 if (input < 0 || (input+1) > rules[currentState].size())

 {

 cout << "Incorrect option. Please try again." << "\n";

 goto select_trigger;

 }

 currentState = rules[currentState][input].second;

 if (currentState == exitState) break;

}

First of all, yes, I do use goto; this is a good illustration of where it’s

appropriate. As for the algorithm itself, we let the user select one of the

available triggers on the current state (operator << has been implemented

for both State and Trigger behind the scenes), and, provided the trigger

is valid, we transition to it by using that rules map that we created earlier.

Chapter 21 State

331

Finally, if the state we’ve reached is the exit state, we jump out of the

loop. Here’s a sample interaction with the program:

The phone is currently off the hook

Select a trigger:

0. call dialed

1. putting phone on hook

0

The phone is currently connecting

Select a trigger:

0. hung up

1. call connected

1

The phone is currently connected

Select a trigger:

0. left message

1. hung up

2. placed on hold

2

The phone is currently on hold

Select a trigger:

0. taken off hold

1. hung up

1

The phone is currently off the hook

Select a trigger:

0. call dialed

1. putting phone on hook

1

We are done using the phone

Chapter 21 State

332

This hand-rolled state machine’s main benefit is that it is very easy to

understand: states and transitions are ordinary enumerations, the set of

transitions is defined in a simple std::map, and the start and end states are

simple variables.

�Switch-Based State Machine
In our exploration of state machines, we have progressed from the

needlessly complicated classic example where states are represented

by classes to a handcrafted example where states are represented as

enumeration members, and now we shall experience one final step of

degradation, as we stop using dedicated data types for transitions.

But our simplifications won’t end there: instead of jumping from one

method call to another, we’ll confine ourselves to an infinitely repeating

switch statement where state will be examined and transitions will

happen by virtue of the state changing.

The scenario I want you to consider is a combination lock. The lock has

a four-digit code (e.g., 1234) that you enter one digit at a time. As you enter

the code, if you make a mistake, you get the "FAILED" output, but if you

enter all digits correctly, you get "UNLOCKED" instead and you exit the state

machine.

We shall still encode the states using an enumeration:

enum class State

{

 locked,

 failed,

 unlocked

};

Chapter 21 State

333

The entire scenario that we want to run can fit into a single listing:

const string code{"1274"};

auto state{State::locked};

string entry;

while (true)

{

 switch (state)

 {

 case State::locked:

 {

 entry += (char)getchar();

 getchar(); // consume return

 if (entry == code)

 {

 state = State::unlocked;

 break;

 }

 if (!code.starts_with(entry))

 {

 state = State::failed;

 }

 break;

 }

 case State::failed:

 cout << "FAILED\n";

 return;

Chapter 21 State

334

 case State::unlocked:

 cout << "UNLOCKED\n";

 return;

 }

}

Here’s a sample interaction if you use the correct code:

1

2

3

4

UNLOCKED

Here’s an interaction if you make an error during the code entry

process:

1

2

7

FAILED

As you can see, this is still very much a state machine, albeit one that

lacks any structure. You couldn’t examine it from the top level and be able

to tell what all the possible states and transitions are. It is not clear, unless

you really examine the code, how the transitions happen – and we’re lucky

there are no goto statements here to make jumps between the cases!

This Switch-Based State Machine approach is viable for scenarios

with very small numbers of states and transitions. It loses out on structure,

readability, and maintainability but can work as a quick patch if you do

need a state machine quickly and are too lazy to make a list of all the

transition rules as a separate data structure.

Overall, this approach does not scale and is difficult to manage, so I

would not recommend it in production code. The only exception would be

Chapter 21 State

335

if such a machine was made using code generation on the basis of some

external model.

�State Machines with Boost.MSM
In the real world, state machines are more complicated. Sometimes, you

want some action to occur when a state is reached. At other times, you

want transitions to be conditional, that is, you want a transition to occur

only if some condition predicate is satisfied.

When using Boost.MSM (Meta State Machine), a state machine library

that’s part of Boost, your state machine is a class that inherits from state_

machine_def via CRTP:

struct PhoneStateMachine : state_machine_def<PhoneStateMachine>

{

 bool angry{ false };

I’ve added a bool indicating whether the caller is angry (because of

being put on hold); we’ll use it a little bit later. Now, each state can also

reside in the state machine and is expected to inherit from the state class:

struct OffHook : state<> {};

struct Connecting : state<>

{

 template <class Event, class FSM>

 void on_entry(Event const& evt, FSM&)

 {

 cout << "We are connecting..." << endl;

 }

 // also on_exit

};

// other states omitted

Chapter 21 State

336

As you can see, the state can also define behaviors that happen when

you enter or exit a particular state.

You can also define behaviors to be executed on a transition (rather

than when you’ve reached a state). Transitions are also classes, but

they don’t need to inherit from anything; instead, they need to provide

operator() with a particular signature:

struct PhoneBeingDestroyed

{

 �template <class EVT, class FSM, class SourceState, class

TargetState>

 void operator()(EVT const&, FSM&, SourceState&, TargetState&)

 {

 cout << "Phone breaks into a million pieces" << endl;

 }

};

As you may have guessed, the arguments give you references to the

state machine and the states you’re going from and to.

Lastly, we have guard conditions: these dictate whether or not we can

actually use a transition in the first place. Now, our Boolean variable angry

is not in the form usable by MSM, so we need to wrap it:

struct CanDestroyPhone

{

 �template <class EVT, class FSM, class SourceState, class

TargetState>

 �bool operator()(EVT const&, FSM& fsm, SourceState&,

TargetState&)

 {

 return fsm.angry;

 }

};

Chapter 21 State

337

This defines a guard condition called CanDestroyPhone, which we can

later use when we define the state machine.

For defining state machine rules, Boost.MSM uses MPL

(MetaProgramming Library). Specifically, the transition table is defined as

an mpl::vector with each row containing, in turn,

•	 The source state

•	 The transition

•	 The target state

•	 An optional action to execute

•	 An optional guard condition

So with all of that, we can define some phone-calling rules as follows:

struct transition_table : mpl::vector <

 Row<OffHook, CallDialed, Connecting>,

 Row<Connecting, CallConnected, Connected>,

 Row<Connected, PlacedOnHold, OnHold>,

 Row<OnHold, PhoneThrownIntoWall, PhoneDestroyed,

 PhoneBeingDestroyed, CanDestroyPhone>

> {};

The last row of our transition_table is the most interesting: it

specifies that we can only attempt to destroy phone subject to the

CanDestroyPhone guard condition, and when the phone is actually being

destroyed, the PhoneBeingDestroyed action should be executed.

Unlike states, transitions such as CallDialed are classes that can be

defined outside the state machine class. They don’t have to inherit from

any base class and can easily be empty, but they do have to be types.

Chapter 21 State

338

Now, there are a couple more things we can add. First, we add

the starting condition, and since we’re using Boost.MSM, the starting

condition is a typedef, not a variable:

typedef OffHook initial_state;

Finally, we can define an action to occur if there are no possible

transitions. It could happen! For example, after you smash the phone, you

cannot use it anymore, right?

template <class FSM, class Event>

void no_transition(Event const& e, FSM&, int state)

{

 cout << "No transition from state " << state_names[state]

 << " on event " << typeid(e).name() << endl;

}

Boost MSM divides the state machine into the front end (that’s what

we just wrote) and the back end (the part that runs it). Using the back-end

API, we can construct the state machine from our state machine definition:

msm::back::state_machine<PhoneStateMachine> phone;

Now, assuming the existence of the info() function which just prints

the state we’re in, we can try orchestrating the following scenario:

info(); // The phone is currently off hook

phone.process_event(CallDialed{}); // We are connecting...

info(); // The phone is currently connecting

phone.process_event(CallConnected{});

info(); // The phone is currently connected

phone.process_event(PlacedOnHold{});

info(); // The phone is currently on hold

Chapter 21 State

339

phone.process_event(PhoneThrownIntoWall{});

// Phone breaks into a million pieces

info(); // The phone is currently destroyed

phone.process_event(CallDialed{});

// �No transition from state destroyed on event struct

CallDialed

So this is how you define a more sophisticated, industry-strength state

machine.

�Summary
First of all, it’s worth highlighting that Boost.MSM is one of two alternative

state machine implementations in Boost, the other being Boost.Statechart.

I’m pretty sure there are plenty of other state machine implementations

out there.

Secondly, there’s a lot more to state machines than that. For example,

many libraries support the idea of hierarchical state machines: for

example, a state of Sick can contain many different substates such as Flu

or Chickenpox. If you are in state Flu, you are also assumed to be in the

state Sick.

Finally, it’s worth highlighting again how far modern state machines

are from the State design pattern in its original form. The existence of

duplicate APIs (e.g., LightSwitch::on/off vs. State::on/off) as well as

the presence of self-deletion are definite code smells. Don’t get me wrong –

the approach works, but it’s unintuitive and cumbersome.

Chapter 21 State

341© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_22

CHAPTER 22

Strategy
You’ll be surprised to know that you have probably used the Strategy

pattern in your everyday interactions with the Standard Library. After all,

any time you specify a particular sorting algorithm, for example, you are

specifying a sorting strategy, that is, providing a partial definition of the

overall algorithm:

vector<int> values{3,1,5,2,4};

sort(values.begin(), values.end(), less<>{});

for (int x : values)

 cout << x << ' '; // 1 2 3 4 5

In the preceding, the function less is a sorting strategy for the overall

sorting algorithm. less is simply a wrapper template function for the <

operator, so the sorting operation gets us elements from the smallest to the

largest.

In functional programming parlance, sort() is a higher-order function,

that is, a function that takes other functions. C++ provides two ways of

making it happen:

•	 A function takes a function as a template parameter.

This is unfriendly to the client because code

completion hints will offer no information about what

the signature of the function argument should be.

https://doi.org/10.1007/978-1-4842-7295-4_22

342

•	 A function takes a function as a proper function

pointer, std::function, or something similar. This is

a lot more friendly because you can tell what form the

function parameter should take.

As for the way the functional parameter is actually constructed, well,

in the case of algorithms such as sort(), the strategy can be provided

either as a reference to some callable construct (e.g., a functor) or you can

provide it in place by using a lambda:

vector<int> values{3,1,5,2,4};

sort(values.begin(), values.end(),

 [=](int a, int b) { return a > b; });

for (int x : values)

 cout << x << ' '; // 5 4 3 2 1

While the strategy used in a sort() is perishable (it only lives for

the duration of the call), nothing prevents you from saving the strategy

in a variable and then reusing it whenever necessary. There are many

advantages to defining strategies as classes, including

•	 A class-based strategy can be stateful.

•	 A strategy can be composed of several methods, all

describing constituent parts of a strategy.

•	 Strategies can inherit other strategies, which allows for

easy reuse.

•	 Strategy dependencies can be described using

interfaces rather than function signatures.

•	 A chosen default strategy can be configured in an IoC

container.

Chapter 22 Strategy

343

In other words, defining strategies as classes can be useful, particularly

when strategies are complicated, configurable, or composed of multiple

parts.

In C++ parlance, another word for strategy is policy.

�Dynamic Strategy
Suppose you decide to take an array or vector of several strings and output

them as a list,

•	 just

•	 like

•	 this

If you think about the different output formats, you probably know that

you need to take each element and output it with some additional markup.

But in the case of languages such as HTML or LaTeX, the list will also need

the start and end tags or markers.

We can formulate a strategy for rendering a list:

•	 Render the opening tag/element.

•	 For each of the list items, render that item.

•	 Render the closing tag/element.

Different strategies can be formulated for different output formats, and

these strategies can be then fed into a general, non-changing algorithm to

generate the text.

This is yet another pattern that exists in dynamic (runtime-

replaceable) and static (template-composed, fixed) incarnations. Let’s take

a look at both of them.

Chapter 22 Strategy

344

Our goal is to print a simple list of text items in the following format:

enum class OutputFormat

{

 markdown,

 html

};

The skeleton of our strategy will be defined in the following base class:

struct ListStrategy

{

 virtual void start(ostringstream& oss) {};

 �virtual void add_list_item(ostringstream& oss,

 const string& item) {};

 virtual void end(ostringstream& oss) {};

};

A design decision has been made to make the base class nonabstract;

this way, it’s effectively a kind of Null Object (should you ever need one).

The intent is that inheritors can override only the necessary methods while

leaving others with their no-op implementations.

Now let us jump to our text processing component. This component

would have a list-specific member function called, say, append_list().

struct TextProcessor

{

 void append_list(const vector<string> items)

 {

 list_strategy->start(oss);

 for (auto& item : items)

 list_strategy->add_list_item(oss, item);

Chapter 22 Strategy

345

 list_strategy->end(oss);

 }

private:

 ostringstream oss;

 unique_ptr<ListStrategy> list_strategy;

};

We’ve got a buffer called oss where all the output goes, the strategy

that we’re using for rendering lists, and of course append_list() which

specifies the set of steps that need to be taken to actually render a list with

a given strategy.

Now, pay attention here. Composition, as used here, is one of two possible

options that can be taken to allow concrete implementations of a skeleton

algorithm. Instead, we could add functions such as add_list_item() as

virtual members to be overridden by derived classes: that’s what the Template

Method pattern does.

Anyways, back to our discussion. We can now go ahead and implement

different strategies for lists, such as a HtmlListStrategy:

struct HtmlListStrategy : ListStrategy

{

 void start(ostringstream& oss) override

 {

 oss << "\n";

 }

 void end(ostringstream& oss) override

 {

 oss << "\n";

 }

 �void add_list_item(ostringstream& oss, const string& item)

override

 {

Chapter 22 Strategy

346

 oss << " " << item << "\n";

 }

};

By implementing the overrides, we fill in the gaps that specify how to

process lists. We would implement a MarkdownListStrategy in a similar

fashion, but because Markdown does not need opening/closing tags, we

would only override the add_list_item() function:

struct MarkdownListStrategy : ListStrategy

{

 void add_list_item(ostringstream& oss,

 const string& item) override

 {

 oss << " * " << item;

 }

};

We can now start using the TextProcessor, feeding it different

strategies and getting different results, for example:

TextProcessor tp{OutputFormat::markdown};

tp.append_list({"foo", "bar", "baz"});

cout << tp.str() << endl;

// * foo

// * bar

// * baz

Chapter 22 Strategy

347

We can make provisions for strategies to be switchable at runtime –

this is precisely why we call this implementation a dynamic strategy. This

is done in the set_output_format() function, whose implementation is

trivial:

void set_output_format(const OutputFormat format)

{

 switch(format)

 {

 case OutputFormat::markdown:

 list_strategy = make_unique<MarkdownListStrategy>();

 break;

 case OutputFormat::html:

 list_strategy = make_unique<HtmlListStrategy>();

 break;

 }

}

Now, switching from one strategy to another is simple, and you get to

see the results straightaway:

tp.clear(); // clears the text processor's buffer

tp.set_output_format(OutputFormat::Html);

tp.append_list({"foo", "bar", "baz"});

cout << tp.str() << endl;

//

// foo

// bar

// baz

//

Chapter 22 Strategy

348

�Static Strategy
Thanks to the magic of templates, you can bake any strategy right into the

type. Only minimal changes are necessary to the TextStrategy class:

template <typename LS>

struct TextProcessor

{

 void append_list(const vector<string> items)

 {

 list_strategy.start(oss);

 for (auto& item : items)

 list_strategy.add_list_item(oss, item);

 list_strategy.end(oss);

 }

 // other functions unchanged

private:

 ostringstream oss;

 LS list_strategy; // strategy instantiated here

};

All that’s changed is that we added the LS template argument, made a

member strategy with this type, and started using it instead of the pointer

we had previously. The results of append_list() are identical.

// markdown

TextProcessor<MarkdownListStrategy> tpm;

tpm.append_list({"foo", "bar", "baz"});

cout << tpm.str() << endl;

// html

TextProcessor<HtmlListStrategy> tph;

tph.append_list({"foo", "bar", "baz"});

cout << tph.str() << endl;

Chapter 22 Strategy

349

The output from the preceding example is the same as for the dynamic

strategy. Note that we’ve had to make two instances of TextProcessor,

each with a distinct list-handling strategy.

�Summary
The Strategy design pattern allows you to define a skeleton of an algorithm

and then use composition to supply the missing implementation details.

This approach exists in different incarnations:

•	 Functional strategy is when a strategy is passed as a

functor or lambda that you (typically) do not intend to

hold on to.

•	 Dynamic strategy keeps a pointer/reference to the

strategy being used. Want to change to a different

strategy? Just change the reference. Easy!

•	 Static strategy requires that you choose the strategy at

compile time and stick with it – there is no scope for

changing your mind later on.

Should one use dynamic or static strategies? Well, dynamic ones allow

reconfiguration of the objects after they have been constructed. Imagine

a UI setting which controls the form of the textual output: what would you

rather have, a switchable TextProcessor or two variables of type TextProc

essor<MarkdownStrategy> and TextProcessor<HtmlStrategy>? It’s really

up to you.

On a final note, you can constrain the set of strategies a type takes:

instead of allowing a general ListStrategy argument, one can take an

std::variant that lists the only permitted types that can be passed in.

Chapter 22 Strategy

351© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_23

CHAPTER 23

Template Method
The Strategy and Template Method design patterns are very similar, so

much so that, just like with Factories, I would be very tempted to merge

those patterns into a single Skeleton Method design pattern. I will resist

the urge.

The difference between Strategy and Template Method is that Strategy

uses composition (whether static or dynamic), whereas Template Method

uses inheritance. But the core principle of defining the skeleton of an

algorithm in one place and its implementation details in other places

remain, once again observing the Open-Closed Principle.

�Game Simulation
Most board games are very similar: the game starts (some sort of set-up

takes place), players take turns until a winner is decided, and then the

winner can be announced. It doesn’t matter what the game is – chess,

checkers, or something else – we can define the algorithm as follows:

class Game

{

 void run()

 {

 start();

 while (!have_winner())

https://doi.org/10.1007/978-1-4842-7295-4_23

352

 take_turn();

 cout << "Player " << get_winner() << " wins.\n";

 }

As you can see, the run() method, which runs the game, simply calls

a set of other methods. These are pure virtual methods and also have

protected visibility, so they don’t get accidentally invoked on their own:

protected:

 virtual void start() = 0;

 virtual bool have_winner() = 0;

 virtual void take_turn() = 0;

 virtual int get_winner() = 0;

To be fair, some of these methods, especially void-returning ones, do

not necessarily have to be pure virtual. For example, if some games have

no explicit start() procedure, having start() as pure virtual violates ISP,

since members which do not need it would still have to implement it. In

Chapter 22, “Strategy,” we deliberately made a strategy with virtual no-op

methods, but with Template Method, the case is not so clear-cut.

Now, in addition to these members, we can have certain public

members that are relevant to all games – the number of players and the

index of the current player:

class Game

{

public:

 explicit Game(int number_of_players)

 : number_of_players{number_of_players} {}

protected:

 int current_player{ 0 };

 int number_of_players;

}; // other members omitted

Chapter 23 Template Method

353

From here on out, the Game class can be extended to implement a game

of chess:

class Chess : public Game

{

public:

 explicit Chess() : Game{ 2 } {}

protected:

 void start() override {}

 bool have_winner() override { return turns == max_turns; }

 void take_turn() override

 {

 turns++;

 current_player = (current_player + 1) % number_of_players;

 }

 int get_winner() override { return current_player;}

private:

 int turns{ 0 }, max_turns{ 10 };

};

A game of chess involves two players, so that’s fed into the constructor.

We then proceed to override all the necessary functions, implementing

some very simple simulation logic for ending the game after ten turns.

Here is the output:

Starting a game of chess with 2 players

Turn 0 taken by player 0

Turn 1 taken by player 1

...

Turn 8 taken by player 0

Turn 9 taken by player 1

Player 0 wins.

And that’s pretty much all there is to it!

Chapter 23 Template Method

354

�Functional Template Method
While the canonical template method leverages inheritance, Modern C++

also allows for a functional variation. In this case, the lines are greatly

blurred between the Strategy and Template Method design patterns

because, in both, we are essentially talking about higher-order functions.

The functional approach to Template Method is to simply define

a stand-alone function run_game() that takes the templated parts as

parameters. As always, when defining a higher-order function, we have

two options:

•	 Strongly typing the accepted functions as function

pointers, std::functions, or similar constructs.

•	 Using templates to loosely define the parameters.

This lets us pass in diverse structures, from functors to

lambdas, as parameters.

Our functional definition will still feature a structure that collects some

information about a game:

struct GameState

{

 int current_player, winning_player;

 int number_of_players;

};

We now define the template method as before, the only difference

being that it’s not part of any class, and, as a result, instead of using

members that are meant to be overridden, all those members get turned

into template parameters:

template<typename FnStartAction,

 typename FnTakeTurnAction,

 typename FnHaveWinnerAction>

Chapter 23 Template Method

355

void run_game(GameState initial_state,

 FnStartAction start_action,

 FnTakeTurnAction take_turn_action,

 FnHaveWinnerAction have_winner_action)

{

 GameState state = initial_state;

 start_action(state);

 while (!have_winner_action(state))

 {

 take_turn_action(state);

 }

 cout << "Player " << state.winning_player << " wins.\n";

}

Our run_game() takes the initial state and a bunch of functions or

function-like objects. These can be defined anywhere – you can use heavy

constructs such as functors, but it’s easy to just define a couple of lambda

functions:

int turn{0}, max_turns{10};

GameState state{0, -1, 2};

auto start = [](GameState& s)

{

 cout << "Starting a game of chess with " <<

 s.number_of_players << " players\n";

};

auto take_turn = [&](GameState& s)

{

 cout << "Turn " << turn++ << " taken by player"

 << s.current_player << "\n";

Chapter 23 Template Method

356

 �s.current_player = (s.current_player + 1) % s.number_of_

players;

 s.winning_player = s.current_player;

};

auto have_winner = [&](GameState& s)

{

 return turn == max_turns;

};

Note that we also define some additional state (specific to our

simulation) that our lambda functions use. With all of this assembled, we

can call our template method:

run_game(state, start, take_turn, have_winner);

The output of this program is exactly as before.

�Summary
Unlike the Strategy, which uses composition and thus branches into

static and dynamic variations, Template Method uses inheritance, and,

as a consequence, it can only be static, since there is no way to fiddle the

inheritance characteristics of an object once it’s been constructed.

The only design decision in a Template Method is whether you want

the methods used by the Template Method to be pure virtual or actually

have a body, even if that body is empty. If you foresee some methods being

unnecessary for some inheritors, go ahead and make them no-op ones.

A functional variation of Template Method blurs the lines between

Strategy and Template Method, since it doesn’t leverage OOP. It is not as

user-friendly as the OOP variety since it doesn’t group related functions

together and doesn’t provide default no-op stubs that can be overridden only

when necessary. Finally, the template-based implementation is even more

unfriendly because it doesn’t specify required function signatures in the body.

Chapter 23 Template Method

357© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4_24

CHAPTER 24

Visitor
Once you’ve got a hierarchy of types, unless you have access to the source

code, it is impossible to add a function to each member of the hierarchy.

This is a problem that requires some advance planning and gives birth to

the Visitor pattern.

Here’s a simple example: suppose you have parsed a mathematical

expression (with the use of the Interpreter pattern, of course!) composed of

double values and addition operators, for example:

(1.0 + (2.0 + 3.0))

This expression can be presented as a hierarchy similar to the

following:

struct Expression

{

 // nothing here (yet)

};

struct DoubleExpression : Expression

{

 double value;

 explicit DoubleExpression(const double value)

 : value{value} {}

};

https://doi.org/10.1007/978-1-4842-7295-4_24

358

struct AdditionExpression : Expression

{

 Expression *left, *right;

 �AdditionExpression(Expression* const left, Expression* const

right)

 : left{left}, right{right} {}

 ~AdditionExpression()

 {

 delete left; delete right;

 }

};

Given this hierarchy of objects, suppose you want to add some

behavior to the various Expression inheritors (we only have two for now,

but this number can grow). How would you do it?

�Intrusive Visitor
We’ll start with the most direct approach, one that breaks the Open-Closed

Principle. Essentially, we are going to jump into our already-written code

and modify the Expression interface (and, by association, every derived

class):

struct Expression

{

 virtual void print(ostringstream& oss) = 0;

};

Chapter 24 Visitor

359

In addition to breaking the OCP, this modification hinges on the

assumption that you actually have access to the hierarchy’s source

code – something that’s not always guaranteed. But we’ve got to start

somewhere, right? So with this change, we need to implement print()

in DoubleExpression (that’s easy, so I’ll omit it here) as well as in

AdditionExpression:

struct AdditionExpression : Expression

{

 Expression *left, *right;

 ...

 void print(ostringstream& oss) override

 {

 oss << "(";

 left->print(oss);

 oss << "+";

 right->print(oss);

 oss << ")";

 }

};

Ooh, this is fun! We are polymorphically and recursively calling

print() on subexpressions. Wonderful, let’s test this out:

auto e = new AdditionExpression{

 new DoubleExpression{1},

 new AdditionExpression{

 new DoubleExpression{2},

 new DoubleExpression{3}

 }

};

Chapter 24 Visitor

360

ostringstream oss;

e->print(oss);

cout << oss.str() << endl; // prints (1+(2+3))

Well, this was easy. But now imagine you’ve got ten classes in the

hierarchy (not uncommon, by the way, in real-world scenarios) and you

need to add some new eval() operation. That’s ten modifications that

need to be done in ten different classes. But OCP isn’t the real problem.

The real problem is SRP. You see, a problem such as printing is a

separate concern. Rather than stating that every expression should print

itself, why not introduce an ExpessionPrinter that knows how to print

expressions? And, later on, you can introduce an ExpressionEvaluator

that knows how to perform the actual calculations. All without affecting

the Expression hierarchy in any way.

�Reflective Printer
Now that we’ve decided to make a separate printer component, let’s get rid

of print() member functions (but keep the base class, of course). There’s

a caveat here: you cannot leave the Expression class empty. Why? Because

you only get polymorphic behavior if you actually have something virtual

in it. So, for now, let’s stick a virtual destructor in there, that will do!

struct Expression

{

 virtual ~Expression() = default;

};

Now let’s try to implement an ExpressionPrinter. Our first instinct

would be to write something like this:

Chapter 24 Visitor

361

struct ExpressionPrinter

{

 void print(DoubleExpression *de, ostringstream& oss) const

 {

 oss << de->value;

 }

 void print(AdditionExpression *ae, ostringstream& oss) const

 {

 oss << "(";

 print(ae->left, oss);

 oss << "+";

 print(ae->right, oss);

 oss << ")";

 }

};

This code will not compile. C++ knows that, say, ae->left is an

Expression, but since it doesn’t check the type at runtime (unlike various

dynamically typed languages), it doesn’t know which overload of print()

to call. Too bad!

What can be done here? Well, only one thing – remove the overloads

and check the type at runtime:

struct ExpressionPrinter

{

 void print(Expression *e)

 {

 if (auto de = dynamic_cast<DoubleExpression*>(e))

 {

 oss << de->value;

 }

Chapter 24 Visitor

362

 else if (auto ae = dynamic_cast<AdditionExpression*>(e))

 {

 oss << "(";

 print(ae->left, oss);

 oss << "+";

 print(ae->right, oss);

 oss << ")";

 }

 }

 string str() const { return oss.str(); }

private:

 ostringstream oss;

};

The preceding is actually a usable solution:

auto e = new AdditionExpression{

 new DoubleExpression{ 1 },

 new AdditionExpression{

 new DoubleExpression{ 2 },

 new DoubleExpression{ 3 }

 }

};

ExpressionPrinter ep;

ep.print(e);

cout << ep.str() << endl; // prints "(1+(2+3))"

Chapter 24 Visitor

363

This approach has a fairly significant downside: the compiler will not

check that you have, in fact, implemented printing for every single element

in the hierarchy.1 When a new element gets added, you can keep using

ExpressionPrinter without modification, and it will just skip over any

element of the new type.

It is also important to realize that the type cast checks are order-

sensitive: if you have a hierarchy with Parent and Child, you need to check

for Child before you check for Parent, and if you screw up the order, you’ll

never process Child correctly. Now imagine a complicated inheritance

hierarchy – your visit() implementation becomes tightly bound to the

inheritance ordering within that hierarchy. If this happened automatically

somehow, that would be great, but doing it by hand is error-prone and just

tedious.

Nevertheless, this approach gives a viable solution. Seriously, it’s

quite possible to stop here and never go any further in the Visitor pattern:

dynamic_cast isn’t that expensive, and I think many developers will

remember to cover every single type of object in that if statement.

�What Is Dispatch?
Whenever people speak of visitors, the word dispatch is brought up.

What is it? Well, put simply, “dispatch” is a problem of figuring out which

function to call – specifically, how many pieces of information are required

in order to call the correct function.

1 There are, sometimes, benefits to automatically skipping certain types. One such
case is when you need to feed the visitor a Null Visitable – an object which does
absolutely nothing and does not require anything from any visitor but needs to be
there due to, say, API requirements.

Chapter 24 Visitor

364

Here’s a simple example:

struct Stuff {}

struct Foo : Stuff {}

struct Bar : Stuff {}

void func(Foo* foo) {}

void func(Bar* bar) {}

Now, if I make an ordinary Foo object, I’ll have no problem calling

func() with it:

Foo *foo = new Foo;

func(foo); // ok

But if I decide to cast it to a base class pointer, the compiler will not

know which overload to call:

Stuff *stuff = new Foo;

func(stuff); // oops!

// do we call foo(Foo*) or foo(Bar*)?

Now, let’s think about this polymorphically: is there any way we can

coerce the system to invoke the correct overload without any runtime

(dynamic_cast and similar) checks? Turns out there is.

See, when you call something on a Stuff, that call can be polymorphic

(thanks to a vtable) and it can be dispatched right to the necessary

component, which in turn can call the necessary overload. This is called

double dispatch because

	 1.	 First you do a polymorphic call on the actual object.

	 2.	 Inside the polymorphic call, you call the overload.

Since, inside the object, this has a precise type (e.g.,

a Foo* or Bar*), the right overload is triggered.

Chapter 24 Visitor

365

Here’s what I mean:

struct Stuff {

 virtual void call() = 0;

}

struct Foo : Stuff {

 void call() override { func(this); }

}

struct Bar : Stuff {

 void call() override { func(this); }

}

void func(Foo* foo) {}

void func(Bar* bar) {}

Can you see what’s happening here? We cannot just stick one generic

call() implementation into Stuff: the distinct implementations must be

in their respective classes so that the this pointer is suitably typed.

This implementation lets you write the following:

Stuff *stuff = new Foo;

stuff->call(); // effectively calls func(stuff);

�Classic Visitor
The “classic” implementation of the Visitor design pattern uses double

dispatch. There are conventions as to what the visitor member functions

are called:

•	 Member functions of the visitor are typically called

visit().

•	 Member functions implemented throughout the

hierarchy are typically called accept().

Chapter 24 Visitor

366

We can now throw away that virtual destructor from our Expression

base class, because we’ve actually got something else to put in there – the

virtual accept() function:

struct Expression

{

 virtual void accept(ExpressionVisitor *visitor) = 0;

};

As you can see, our code refers to an (abstract) class named

ExpressionVisitor that can serve as a base class for various visitors such

as ExpressionPrinter, ExpressionEvaluator, and similar. I’ve chosen to

take a pointer here, but you can use a reference instead.

Now, every single inheritor of Expression is now required to

implement accept() in an identical way, namely:

void accept(ExpressionVisitor* visitor) override

{

 visitor->visit(this);

}

On the other side, we can define the ExpressionVisitor as follows:

struct ExpressionVisitor

{

 virtual void visit(DoubleExpression* de) = 0;

 virtual void visit(AdditionExpression* ae) = 0;

};

Notice that we must define overloads for all objects; otherwise, we

would get a compilation error when implementing the corresponding

accept(). We can now inherit from this class to define our

ExpressionPrinter:

Chapter 24 Visitor

367

struct ExpressionPrinter : ExpressionVisitor

{

 ostringstream oss;

 string str() const { return oss.str(); }

 void visit(DoubleExpression* de) override;

 void visit(AdditionExpression* ae) override;

};

The implementation of the visit() functions should be fairly obvious,

since we’ve seen it more than once already, but I’ll show it once again:

void ExpressionPrinter::visit(AdditionExpression* ae)

{

 oss << "(";

 ae->left->accept(this);

 oss << "+";

 ae->right->accept(this);

 oss << ")";

}

Notice how the calls now happen on the subexpressions themselves,

leveraging double dispatch once again. As for the usage of the new double

dispatch Visitor, here it is:

void main()

{

 auto e = new AdditionExpression{

 // as before

 };

 ostringstream oss;

 ExpressionPrinter ep;

 ep.visit(e);

 cout << ep.str(); // (1+(2+3))

}

Chapter 24 Visitor

368

�Implementing an Additional Visitor
So, what is the advantage of this approach? The advantage is you have

to implement the accept() member through the hierarchy just once.

You’ll never have to touch a member of the hierarchy again. For example,

suppose you now want to have a way of evaluating the result of the

expression. This is easy

struct ExpressionEvaluator : ExpressionVisitor

{

 double result;

 void visit(DoubleExpression* de) override;

 void visit(AdditionExpression* ae) override;

};

but one needs to keep in mind that visit() is currently declared as a void

method, so the implementation might look a little bit weird:

void ExpressionEvaluator::visit(DoubleExpression* de)

{

 result = de->value;

}

void ExpressionEvaluator::visit(AdditionExpression* ae)

{

 ae->left->accept(this);

 auto temp = result;

 ae->right->accept(this);

 result += temp;

}

Chapter 24 Visitor

369

The way we handle AdditionExpression is a byproduct of an inability

to return values from accept() and is a little bit tricky. Essentially, we

evaluate the left part and cache the value. Then we evaluate the right part

(so result is set) and then increase it by the value we cached, thereby

producing the sum. Not exactly intuitive code!

Still, it works just fine:

auto e = new AdditionExpression{ /* as before */ };

ExpressionPrinter printer;

ExpressionEvaluator evaluator;

printer.visit(e);

evaluator.visit(e);

cout << printer.str() << " = " << evaluator.result << endl;

// prints "(1+(2+3)) = 6"

And, in the same vein, you can add lots of other different visitors,

honoring OCP and having fun in the process. Figure 24-1 shows a class

diagram of the different structures we’ve built.

Chapter 24 Visitor

370

�Acyclic Visitor
Now is a good time to mention that there are actually two strains, if you

will, of the Visitor design pattern. They are

•	 Cyclic Visitor, which is based on function overloading.

Due to the cyclic dependency between the hierarchy

(which must be aware of the visitor’s type) and the

visitor (which must be aware of every class in the

hierarchy), the use of the approach is limited to stable

hierarchies that are infrequently updated.

Figure 24-1.  Classic visitor class diagram

Chapter 24 Visitor

371

•	 Acyclic Visitor, which is based on RTTI. The advantage

here is the absence of limitations on visited hierarchies,

but, as you may have guessed, there are performance

implications.

The first step in the implementation of the Acyclic Visitor is the actual

visitor interface. Instead of defining a visit() overload for every single

type in the hierarchy, we make things as generic as possible:

template <typename Visitable>

struct Visitor

{

 virtual void visit(Visitable& obj) = 0;

};

We need each element in our domain model to be able to accept such

a visitor, but since every specialization is unique, what we do is introduce a

marker interface – an empty class nothing but a virtual destructor:

struct VisitorBase // marker interface

{

 virtual ~VisitorBase() = default;

};

This class is empty, but we will use it as a parameter in the accept()

method in whichever object we want to actually visit. Now, what we can do

is redefine our Expression class from before as follows:

struct Expression

{

 virtual ~Expression() = default;

 virtual void accept(VisitorBase& obj)

Chapter 24 Visitor

372

 {

 using EV = Visitor<Expression>;

 if (auto ev = dynamic_cast<EV*>(&obj))

 ev->visit(*this);

 }

};

So here’s now the new accept() method works: we take a VisitorBase

but then try to cast it to a Visitor<T> where T is the type we’re currently

in. If the cast succeeds, the visitor in question knows how to visit our type,

and so we call its visit() method. If it fails, it’s a no-op. It is critical to

understand why obj itself does not have a visit() that we could call on

it. If it did, it would require an overload for every single type that would

be interested in calling it, which is precisely what introduces a cyclic

dependency.

This implementation of accept() unfortunately needs to be added

to every member of the hierarchy, with the dynamic_cast checking for

the appropriate type. You can try to simplify this by introducing a macro,

but that’s really the only thing you can do – it’s impossible to introduce

some sort of CRTP and still have it all function correctly (try it – make a

Visitable<TChild> and see where this gets you).

After implementing accept() in other parts of our model, we can put

everything together by once again defining an ExpressionPrinter, but

this time around, it would look as follows:

struct ExpressionPrinter : VisitorBase,

 Visitor<DoubleExpression>,

 Visitor<AdditionExpression>

{

 void visit(DoubleExpression &obj) override;

 void visit(AdditionExpression &obj) override;

Chapter 24 Visitor

373

Figure 24-2.  Acyclic Visitor class diagram

 string str() const { return oss.str(); }

private:

 ostringstream oss;

};

Here, we implement the VisitorBase marker interface as well as a

Visitor<T> for every T that we want to visit. If we omit a particular type T

(e.g., suppose I comment out Visitor<DoubleExpression>), the program

will still compile, and the corresponding accept() call, if it happens, will

simply execute as a no-op.

In the preceding, the implementations of the visit() methods are

virtually identical to what we had in the classic visitor implementation,

and so are the results. Figure 24-2 shows the structures we’ve built.

One downside to the Acyclic Visitor is the performance cost associated

with dynamic_cast being everywhere. Empirical evidence suggests it’s

about 10× slower than a classic visitor. To lower the performance cost,

there are alternatives to RTTI such as various CTTI libraries (e.g., Boost.

TypeIndex), which try to adorn classes with compile-time tags that can be

used for type comparisons. The performance advantage, when compared

to RTTI, is often quite dramatic.

Chapter 24 Visitor

374

�Variants and std::visit
While not directly related to the classic Visitor pattern, it’s worth

mentioning std::visit, if only because its name suggests something to do

with the Visitor pattern. Essentially, std::visit is a way of accessing the

correct part of a variant type.

Here’s an example: suppose you have an address, and part of that

address is a field called house. Now, a house can be just a number (as in

“123 London Road”) or it can have a name such as “Montefiore Castle.” So

you can define the variant as follows:

variant<string, int> house;

// house = "Montefiore Castle";

house = 221;

Either of the two assignments is valid. But what if we decide to print

the house name or number? To do this, we can first define a type that

has function call overloads for the different types of members inside the

variant:

struct AddressPrinter

{

 void operator()(const string& house_name) const {

 cout << "A house called " << house_name << "\n";

 }

 void operator()(const int house_number) const {

 cout << "House number " << house_number << "\n";

 }

};

Chapter 24 Visitor

375

Now, this type can be used in conjunction with std::visit(), a library

function that applies this visitor to the variant type:

AddressPrinter ap;

visit(ap, house); // House number 221

It’s also possible to define the set of visitor functions in place thanks to

some Modern C++ magic. What we need to do is construct a lambda with

type of auto&, get the underlying type, compare it using if constexpr, and

process accordingly:

visit([](auto& arg) {

 using T = decay_t<decltype(arg)>;

 if constexpr (is_same_v<T, string>)

 {

 cout << "A house called " << arg.c_str() << "\n";

 }

 else

 {

 cout << "House number " << arg << "\n";

 }

}, house);

Naturally, in addition to constructing and using the lambda in place, it

is possible to also save it in a variable for later reuse.

Chapter 24 Visitor

376

�Summary
The Visitor design pattern allows us to add some behavior to every type in

a hierarchy of types. The approaches we have seen include

•	 Intrusive: Adding a virtual method to every single

object in the hierarchy. Possible (assuming you have

access to source code) but breaks OCP.

•	 Reflective: Adding a separate visitor that requires no

changes to the objects; uses dynamic_cast whenever

runtime dispatch is needed.

•	 Classic (double dispatch): The entire hierarchy does get

modified, but just once and in a very generic way. Each

element of the hierarchy learns to accept() a visitor.

We then subclass the visitor to enhance the hierarchy’s

functionality.

•	 Acyclic: Just like the Reflective variety, it performs

casting in order to dispatch correctly. However, it

breaks the circular dependency between visitor and

visitee and allows for more flexible composition of

visitors.

The Visitor appears quite often in tandem with the Interpreter pattern:

having interpreted some textual input and transformed it into object-

oriented structures, we need to, for example, render the abstract syntax

tree in a particular way. Visitor helps propagate an ostringstream (or

similar accumulator object) throughout the entire hierarchy and collate

the data together.

Chapter 24 Visitor

377© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/10.1007/978-1-4842-7295-4

Index

A
Abstract factory

CoffeeFactory, 80
definition, 79
DrinkFactory, 81
HotDrinkFactory, 80, 81
prepare function, 79
scenario, 79

Abstract syntax tree (AST), 256, 257
accept() method, 366, 371, 372
Adapter

bidirectional
converter, 131, 133

cartesian space, 123
constructor, 126, 127
rectangle, 124–126
temporaries, 128–130
two rectangles, 128
vector geometry, 124

Anti-pattern, 17
append_list(), 348
Array-backed properties

creature, 145, 146
enumeration members, 147
getters/setters, 147
implementation, 146
parts, 148
statistics, 146

B
Binary tree

constructor, 266
default iterator, 268
iterating, 266
node

construction, 265
definition, 264

* operator, 267
traversing, 267–269
tree pointer, 265

Boost.Spirit
AST, 256, 257
definition, 255
parser, 257, 258
printer, 259, 260

Bridge
adapter pattern, 138, 140
implementation, 141
pattern, 141
Pimpl idiom, 135–137
RasterRenderer, 140

Broker chain
constructor, 225
creature, 223
CreatureModifier, 225
event broker, 222
Game structure, 222

https://doi.org/10.1007/978-1-4842-7295-4

378

getter function, 224
handle() method, 224
modifier, 226
pointer-based chain, 224
queries, 222, 223

Builder
communicating intent, 47, 49
HtmlElement class, 44
implementation, 43
inheritance (see Builder

inheritance)
list, 44
objects, 43

Builder inheritance
chain, 65
construction, 64
definition, 64
fluent interface/rendering, 62
Person objects, 60
PersonDateOfBirthBuilder, 63
PersonInfoBuilder, 61–63
person information, 60
PersonJobBuilder, 63
Person objects, 60
Person’s name, 61
template argument, 62

Builder parameter
API, 59
email, 57
fluent builder, 57
function-based trick, 59
MailService, 58
send_email() method, 59

C
Chain of Responsibility (CoR)

creature, 217
CreatureModifier, 218
implementation, 222

Chat room
API, 275
broadcast() member function,

275
implementation, 274
join(), 275
member functions, 274
message(), 276
output, 278
participant, 273, 274
receive(), 277
say()/pm(), 277
session, 277–279

Code examples, 3, 4
Command

definition, 229
deposit() function, 229, 230
implementation

BankAccountCommand, 231
deposit/withdrawal, 231, 232
interface, 230
modifications, 232

withdraw() function, 229, 230
Command Query Separation (CQS)

API members, 240
categories, 240
Creature, 240
CreatureAbility, 241

Broker chain (cont.)

INDEX

379

logging/persistence, 242
process_command(), 241, 242
process_ methods, 243
process_query(), 242

Communication proxy
ASP.NET, 208
interface, 207
Pingable service, 208
Pong, 207, 208
RemotePong, 209, 210
REST SDK, 209
set-up, 208

Compiler Theory, 245
Composite builder

class diagram, 53
members, 54
PersonAddressBuilder class, 56
PersonBuilderBase class, 53, 54
PersonBuilder class, 55
person information, 52
PersonJobBuilder class, 56
sub-builders, 55

Composite command
base class constructor, 237
class diagram, 239
CompositeBankAccount

Command, 236, 237
drastic changes, 238
money transfer

commands, 236, 237
success flag, 238
undo()/redo()

operations, 237
Composite specification, 159, 160

Copy construction
address, 90
constituent parts, 89
double pointer, 92
head-on approach, 90
operator=, 91
prototype, 91

Coroutines, 143, 270, 271
C++, properties, 12, 14
Curiously recurring template

pattern (CRTP), 6, 7

D
Decorator

circle/square, 165
dynamic composition, 165
enhancements, 163, 164
functional (see Functional

decorator)
Shape class, 163, 164
static composition, 166
Venn diagram, 168

Dependency Inversion Principle
(DIP)

ConsoleLogger, 34, 37
constructor parameters, 36, 37
definition, 33
dependent

components, 36, 37
engine, 35
ILogger, 35, 38
ILogger interface, 34, 35, 38
implementation, 36

INDEX

380

injector, 37
reporting, 34

deposit() function, 288, 290
Design patterns, 2
Developer tools, 4, 5
Discoverability, 144
Domain-specific language

(DSL), 245
Double-checked locking, 106
Double dispatch, 364
draw_circle() member

function, 141
draw() member function, 139
Duck typing mechanisms, 144
Dynamic decorator

color, 168
ColoredShape, 166
decorated object, 169
member functions, 167
transparency, 167, 168
uses, 167

E
Extract Interface function, 29

F
Façade

magic square generator, 180
trading terminal

advanced terminal, 187, 188

buffer, 186
console, 189, 190
quant finance/algorithmic

trading, 185
Factories

block
materials, 70

class, 82
exceptions, 69
factory class, 74
factory method, 72
function, 82
interior, 72
object tracking, 83, 84
parameters, 72
real-world

constraints, 69
SolidWall, 68, 74
validation, 69
wall, 67, 68
WallFactor, 73, 74

Factory methods/polymorphism,
70, 71, 75, 76

Fluent builder, 46, 47, 57, 59
Flyweight

Boost.Flyweight, 194
definition, 191
implementation

BetterFormattedText,
197, 198

linear search, 199
operator<< for

BetterFormattedText, 199
TextRange, 198

Dependency Inversion Principle
(DIP) (cont.)

INDEX

381

Functional decorator
add() function, 175
code, 173
function, 173
implementation, 174
logged invocation, 176
logger, 175
make_ function, 176
make_logger3, 176
template argument, 174

Functional factory, 82, 83
Functor, 143, 144

G, H
generate() method, 181
Generators, 143
get_population() method, 108
Globally unique identifier

(GUID), 295
Graphic objects

API, 150
draw() function, 150
GraphicObject, 149
implementation, 148
output, 150

greet() function, 136
Groovy-style Builder

cases, 50
HTML tags, 50, 51
img attribute, 51, 52
protected

constructors, 50
vector parameter, 50, 51

I
Interface Segregation Principle (ISP)

class diagram, 32
IMachine interface, 31
implementation, 30
implementers, 30
IPrinter/IScanner, 31
multifunction printer, 29

Interpreter, 245, 246
Iterator

definition, 261
Standard Library

begin() function, 261, 262
cbegin()/cend(), 264
end() function, 262, 263
for loop, 264
names, 261
pointers, 262
rbegin()/rend(), 263

J, K
Java Native Interface (JNI), 294

L
Lazy instantiation/lazy loading, 204
Liskov Substitution Principle (LSP)

calculated area, 28
factories, 28
nuclear option, 29
process(), 28
rectangle, 26, 27
Square, 27

INDEX

382

M
Machine learning, 150
Magic square generator

component, 182, 183
custom number generator, 184
definition, 180
example, 181
implementations, 180
splitter/verifier, 185
subsystems, 180
UniqueGenerator, 184

Mediator
definition, 273
events

base class, 280
Coach class, 282
EventData*, 283
mediator, 281
output, 283
Player class, 281, 282
PlayerScoredData, 282
print() function, 280
ReSharper, 280
set-up stage, 283
signal variable, 281
signals/slots, 280

service bus, 283, 284
Mediator design pattern, 222
Memento

bank account, 287–289
Interop, 294, 295
memory, 293
pattern, 287
undo/redo, 289–292

MetaProgramming Library (MPL),
337

Meta State Machine (MSM), 335
Micro-optimizations, 255
Microsoft Message Queuing

(MSMQ), 284
Mixin inheritance, 8
Monostate approach, 119, 120

N
Naïve approach, 102
Nested factory

BasicWallFactory class, 78
entanglement, 77
friend declaration, 77, 78
migration path, 76

Neural networks
cases, 152
composite,

shrink-wrapping, 155
concepts/global

operators, 157, 159
connection, 151
connect_to() member

function, 153
improvements, 155, 157
layers, 152
neuron, 151, 154
NeuronLayer, 154
SomeNeurons&, 154
uses, 154
vector, 152

Neuron, 151

INDEX

383

Null object
API design, 304
constructor, 299
design improvements, 301
design patterns, 303
implicit, 301, 302
library, 297
member functions, 298
shared_ptr, 300

Numeric expression evaluator
lexing

parsing, 250
tokens, 248
vector<Token>, 249, 250

parsing
binary operations, 251, 252
elements, 251
eval() function, 251
expressions, 252
have_lhs variable, 252
integer, 253
parentheses, 254
parse(), 254
plus/minus tokens, 253
skipping, 254

Numeric literals, 245

O
Object construction, 87, 88
Observer

Boost.Signals2 library, 317, 318
connecting observables, 310
definition, 305

dependency problems, 311
observable <T>, 308, 309
property, 305, 306
reentrancy, 314, 315, 317
std::set, 335
unsubscription/thread safety,

312, 313
views, 319, 320

Observer design pattern, 222
Old-fashioned static

polymorphism, 8, 10
Open-Closed Principle (OCP)

color, 18, 19
ColorSpecification, 22
combinator, 23
filtering, 18, 19
Filter<T>, 20
implementation, 21
operator &&, 24
post hoc addition, 25, 26
products, 17, 22
size, 19
specification interface, 20
specification pattern, 24

Ordinary duplication, 88, 89

P, Q
Parser, 257, 258
Parsing integral numbers, 246, 247
Pointer chain

attack value, 219, 220
CreatureModifier, 218, 219
creatures, 220

INDEX

384

handle() method, 220, 221
modifiers, 220, 221
NoBonusesModifier, 221

Polymorphism, 75, 76
Principle of least surprise, 29
print() member functions, 360
Printer, 259, 260
Property proxy

customization, 203
definition, 202, 203
extension, 204
field, 203
Property<T> class, 203
uses, 202

Prototype factory, 98, 99
Proxy, 201

R
Regular expressions, 245
reset() function, 290
resize() operation, 139
run() method, 352
Runtime-compiled

approach, 84

S
Serialization

address type, 95
& operator, 96
Boost.Serialization, 95
contact type, 96, 97

deserialization, 97
serialize() function, 97

set_output_format() function, 347
SetPixel() method, 125
Simple Builder, 45
Single Responsibility Principle

(SRP), 15–17, 163
Singleton

ambient context, 114, 116–118
definition, 101
global object, 102, 103
implementation

aforementioned
function, 104

constructor, 103
DummyDatabas, 111
heap allocation, 105
interface, 107, 109, 110
thread safety, 105, 106

IoC, 118
monostate, 119, 120
per-thread, 111–113

SingletonDatabase, 107
Smart pointers, 201, 202
State

Boost.MSM, 335–339
definition, 323
driven state transitions, 324–327
handmade, 328, 329, 331
switch-based state machine,

332–334
State machine, 304, 323, 328
Static decorator

ColoredShape, 170

Pointer chain (cont.)

INDEX

385

ColoredShape<T>/
TransparentShape<T>, 171

concepts, 171
constructors, 171, 172
copy-list-initialization

rules, 172
inheritance, 170
reiteration, 172
resize() function, 169
static assert, 170

Static polymorphism, 11
Strategy pattern

advantages, 342
C++, 341
definition, 341
dynamic, 343–347
sort(), 342
static, 348, 349

String ranges
Flyweight implementation,

197–199
Naïve approach

Boolean flag, 197
implementation, 195, 196
stream output operator, 196
utility method, 196

string_view, 195
substring, 195

T
Template method

functional approach, 354, 355
functional variation, 356

game simulation, 351–353
Trivial variable assignment, 229

U
Undo operations

BankAccountCommand:
undo(), 233, 234

callable/undoable, 232
undo(), 235
swithdraw(), 234

User names
add() function, 192, 193
bimap, 192, 193
getters/setters, 193
pointers, 191
space, 194
stream output

operator, 193
typedef, 192
user, 192

V
Value proxy

A/B testing, 212
approaches, 213
call site, 213
Const, 212
Const<T> class, 211
dark theme, 212
draw_ui(true), 213
random, 210, 212
Value<T> class, 210, 211

INDEX

386

Virtual constructor
address, 93
clone() method, 93, 94
covariant, 93
ExtendedAddress, 92
polymorphic variable, 93
polymorphism, 93

Virtual proxy
Bitmap, 205, 206
draw() method, 205, 206
image interface, 204, 205
image type, 206
LazyBitmap, 206

visit() functions, 367
Visitor

classic, 365

acyclic, 370–373
double dispatch, 367
ExpressionVisitor, 366
implementation, 368, 370
member functions, 365
variants/std, 374, 375

dispatch, 363–365
expression, 357, 358
interpreter pattern, 376
intrusive, 358, 359
reflective, 360, 361, 363

W, X, Y, Z
WebSockets, 284
with_height() method, 116, 117

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Chapter 1: Introduction
	Who This Book Is For
	On Code Examples
	On Developer Tools
	Preface to the Second Edition
	Important Concepts
	Curiously Recurring Template Pattern
	Mixin Inheritance
	Old-Fashioned Static Polymorphism
	Static Polymorphism with Concepts
	Properties

	The SOLID Design Principles
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Dependency Inversion Principle

	Part I: Creational
	Chapter 2: Builder
	Scenario
	Simple Builder
	Fluent Builder
	Communicating Intent
	Groovy-Style Builder
	Composite Builder
	Builder Parameter
	Builder Inheritance
	Summary

	Chapter 3: Factories
	Scenario
	Factory Method
	Factory
	Factory Methods and Polymorphism
	Nested Factory
	Abstract Factory
	Functional Factory
	Object Tracking
	Summary

	Chapter 4: Prototype
	Object Construction
	Ordinary Duplication
	Duplication via Copy Construction
	Virtual Constructor
	Serialization
	Prototype Factory
	Summary

	Chapter 5: Singleton
	Singleton As Global Object
	Classic Implementation
	Thread Safety

	The Trouble with Singleton
	Per-Thread Singleton
	Ambient Context
	Singletons and Inversion of Control
	Monostate
	Summary

	Part II: Structural
	Chapter 6: Adapter
	Scenario
	Adapter
	Adapter Temporaries
	Bidirectional Converter
	Summary

	Chapter 7: Bridge
	The Pimpl Idiom
	Bridge
	Summary

	Chapter 8: Composite
	Array-Backed Properties
	Grouping Graphic Objects
	Neural Networks
	Shrink-Wrapping the Composite
	Conceptual Improvements
	Concepts and Global Operators

	Composite Specification
	Summary

	Chapter 9: Decorator
	Scenario
	Dynamic Decorator
	Static Decorator
	Functional Decorator
	Summary

	Chapter 10: Façade
	Magic Square Generator
	Fine-Tuning

	Building a Trading Terminal
	An Advanced Terminal
	Where’s the Façade?

	Summary

	Chapter 11: Flyweight
	User Names
	Boost.Flyweight
	String Ranges
	Naïve Approach
	Flyweight Implementation

	Summary

	Chapter 12: Proxy
	Smart Pointers
	Property Proxy
	Virtual Proxy
	Communication Proxy
	Value Proxy
	Summary

	Part III: Behavioral
	Chapter 13: Chain of Responsibility
	Scenario
	Pointer Chain
	Broker Chain
	Summary

	Chapter 14: Command
	Scenario
	Implementing the Command Pattern
	Undo Operations
	Composite Command
	Command Query Separation
	Summary

	Chapter 15: Interpreter
	Parsing Integral Numbers
	Numeric Expression Evaluator
	Lexing
	Parsing
	Using the Lexer and Parser

	Parsing with Boost.Spirit
	Abstract Syntax Tree
	Parser
	Printer

	Summary

	Chapter 16: Iterator
	Iterators in the Standard Library
	Traversing a Binary Tree
	Iteration with Coroutines
	Summary

	Chapter 17: Mediator
	Chat Room
	Mediator with Events
	Service Bus As Mediator
	Summary

	Chapter 18: Memento
	Bank Account
	Undo and Redo
	Memory Considerations
	Using Memento for Interop
	Summary

	Chapter 19: Null Object
	Scenario
	Null Object

	shared_ptr Is Not a Null Object
	Design Improvements
	Implicit Null Object
	Interaction with Other Patterns
	Summary

	Chapter 20: Observer
	Property Observers
	Observer<T>
	Observable<T>
	Connecting Observers and Observables
	Dependency Problems
	Unsubscription and Thread Safety
	Reentrancy
	Observer with Boost.Signals2
	Views
	Summary

	Chapter 21: State
	State-Driven State Transitions
	Handmade State Machine
	Switch-Based State Machine
	State Machines with Boost.MSM
	Summary

	Chapter 22: Strategy
	Dynamic Strategy
	Static Strategy
	Summary

	Chapter 23: Template Method
	Game Simulation
	Functional Template Method
	Summary

	Chapter 24: Visitor
	Intrusive Visitor
	Reflective Printer
	What Is Dispatch?
	Classic Visitor
	Implementing an Additional Visitor

	Acyclic Visitor
	Variants and std::visit
	Summary

	Index

