

Deciphering Object-Oriented
Programming with C++

A practical, in-depth guide to implementing object-oriented
design principles to create robust code

Dorothy R. Kirk

BIRMINGHAM—MUMBAI

Deciphering Object-Oriented Programming with C++
Copyright © 2022 Dorothy R. Kirk

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the author, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Associate Group Product Manager: Gebin George
Content Development Editor: Rosal Colaco
Senior Editor: Tiksha Abhimanyu Lad
Technical Editor: Jubit Pincy
Copy Editor: Safis Editing
Project Manager: Prajakta Naik
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Prashant Ghare
Marketing Coordinator: Sonakshi Bubbar

First published: September 2022
Production reference: 1020922

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80461-390-0

www.packt.com

http://www.packt.com

To my family, especially my two children.

For my oldest, a dedicated and brilliant physicist, astronomer, and
astrophysicist.

For my youngest, a superlative writer and advocate for equality and our planet.

May they make our world (and universe) a better place.

– Dorothy R. Kirk

C o n t r i b u t o r s

About the author
Dorothy R. Kirk has specialized in object-oriented (OO) technologies since nearly their inception.
She began as an early adopter of C++ at General Electric in research and development (R&D). After
working on various projects, she was one of 10 charter members to start GE’s Advanced Concepts
Center to commercially utilize OO technologies. She later started her own OO training and consulting
business, specializing in OOP using C++ and Java. She additionally programs in Python. She has
developed and taught many OO courses and has clients spanning industries such as academia, finance,
transportation, software, embedded systems, manufacturing, and medical imaging. She has also taught
C++ and OO courses at Penn State University.

Ms. Kirk has earned a Bachelor of Science degree in Computer and Information Sciences from the
University of Delaware and a Master of Science degree in Computer Science from Temple University.

Ms. Kirk is married and has two grown children; she and her family live on a horse farm in Pennsylvania.

I want to thank those who have consistently supported my endeavors, including
my husband, children, parents, sister, extended family, and close friends. I also
want to thank the many people at Packt who have contributed to this project,

including Tiksha Abhimanyu Lad, Rosal Colaco, and Jubit Pincy, and especially
Alok Dhuri and Prajakta Naik, who have worked with me often and tirelessly.

About the reviewers
Vinícius G. Mendonça is a professor at PUCPR and a mentor at Apple Developer Academy. He has
a master’s degree in Computer Vision and Image Processing (PUCPR) and a specialization degree in
Game Development (Universidade Positivo). He is also one of the authors of the book Learn OpenCV
4 by Building Projects, also by Packt Publishing.

He has been in this field since 1996. His former experience includes designing and programming
a multithreaded framework for PBX tests at Siemens, coordination of Aurélio Dictionary software
(including its apps for Android, IOS, and Windows phones), and coordination of an augmented
reality educational activity for Positivo’s Mesa Alfabeto, presented at CEBIT. Currently, he works with
server-side Node.js at a company called Tenet Tech.

First of all, I would like to thank Thais, my spouse and the love of my life, for
being a wonderful partner and for supporting me every day. I’d also like to

thank my daughters: Mariana, Alice, Laura, Helena, and Renata – you’re the
best, girls! Also, my compliments to my stepson, Bruno, who makes me proud,

since he is also becoming a skilled programmer and listens to my technical
mumbo jumbo all day. You are my reason to live, and I love you all.

Yacob Cohen-Arazi (Kobi), a husband and father to three kids, is a Principal Software Engineer
with over 20 years of experience, currently working at Qualcomm in San Diego, California. He now
works on the next generation of 5G cellular and radio access networks, and in his previous roles, he
also worked on automotive, machine learning, Wi-Fi, and 4G domains. Kobi is an expert in C++
and enjoys sharing his knowledge with the community. He has led the San Diego C++ Meetup for
the past 3 years, where he presents various topics on advanced, modern C++ constructs. In his free
time, Kobi likes cycling, swimming, and spending time with his family. He holds a bachelor’s degree
in Computer Science from The Academic College of Tel Aviv-Yaffo.

Table of Contents

Preface xvii

Part 1: C++ Building Block Essentials

1
Understanding Basic C++ Assumptions 3

Technical requirements 4
Reviewing basic C++ language syntax 4
Comment styles 4
Variable declarations and standard data types 4
Variables and array basics 5

Recapping basic I/O 7
The iostream library 7
Basic iostream manipulators 9

Revisiting control structures,
statements, and looping 10
Control structures – if, else if, and else 10

Looping constructs – while, do while, and for
loops 11

Reviewing C++ operators 14
Revisiting function basics 15
Reviewing user defined type basics 17
struct 18
typedef and “using” alias declaration 19
class 19
enum and strongly-typed enum 20

Recapping namespace basics 22
Summary 25
Questions 25

2
Adding Language Necessities 27

Technical requirements 27
Using the const and constexpr
qualifiers 28
const and constexpr variables 28

const qualification with functions 31

Working with function prototypes 32
Defining function prototypes 32
Naming arguments in function prototypes 34

Table of Contentsviii

Adding default values to function prototypes 35
Prototyping with different default values in
different scopes 36

Understanding function overloading 38
Learning the basics of function overloading 38

Eliminating excessive overloading with
standard type conversion 41
Ambiguities arising from function
overloading and type conversion 43

Summary 45
Questions 46

3
Indirect Addressing – Pointers 47

Technical requirements 48
Understanding pointer basics and
memory allocation 48
Revisiting pointer basics 49
Using the address-of and dereference operators 49
Using operators new() and delete() 50
Creating and using pointers to user defined
types 51

Allocating and deallocating arrays at
runtime 53
Dynamically allocating single dimension arrays 53
Dynamically allocating 2-D arrays – an array
of pointers 57
Dynamically allocating 2-D arrays – pointers
to pointers 60
Dynamically allocating N-D arrays – pointers
to pointers to pointers 62

Using pointers with functions 65
Passing pointers as arguments to functions 65
Using pointers as return values from functions 68

Using the const qualifier with pointers 70
Using pointers to constant objects 70
Using constant pointers to objects 71
Using constant pointers to constant objects 72
Using pointers to constant objects as function
arguments and as return types from functions 73

Using pointers to objects of
unspecified types 76
Creating void pointers 77

Looking ahead to smart pointers for
safety 78
Summary 79
Questions 80

4
Indirect Addressing – References 83

Technical requirements 84
Understanding reference basics 84
Declaring, initializing, and accessing references 84
Referencing existing objects of user defined
types 87

Using references with functions 88
Passing references as arguments to functions 89
Using references as return values from
functions 92

Table of Contents ix

Using the const qualifier with
references 94
Using references to constant objects 95
Using pointers to constant objects as function
arguments and as return types from functions 96

Realizing underlying implementation
and restrictions 98
Understanding when we must use pointers
instead of references 99

Summary 100
Questions 101

Part 2: Implementing Object-Oriented Concepts
in C++

5
Exploring Classes in Detail 105

Technical requirements 106
Introducing object-oriented
terminology and concepts 106
Understanding object-oriented terminology 107
Understanding object-oriented concepts 108

Understanding class and member
function basics 109
Examining member function
internals; the “this” pointer 113
Using access labels and access
regions 117
Understanding constructors 122
Applying constructor basics and
overloading constructors 122
Constructors and in-class initializers 126

Creating copy constructors 127
Creating conversion constructors 134

Understanding destructors 139
Applying destructor basics and proper usage 140

Applying qualifiers to data members
and member functions 144
Adding inline functions for potential
efficiency 144
Adding const data members and the member
initialization list 148
Using const member functions 154
Utilizing static data members and static
member functions 157

Summary 164
Questions 165

6
Implementing Hierarchies with Single Inheritance 167

Technical requirements 168 Expanding object-oriented concepts
and terminology 168
Deciphering generalization and specialization 169

Table of Contentsx

Understanding single inheritance
basics 169
Defining base and derived classes and
accessing inherited members 170
Examining inherited access regions 172
Specifying a class as final 173

Understanding inherited
constructors and destructors 174
Implicit constructor and destructor
invocations 174
Usage of member initialization list to select
a base class constructor 175
Putting all the pieces together 177

Implementation inheritance –
changing the purpose of inheritance 185
Modifying access labels in the base class list
by using protected or private base classes 185
Creating a base class to illustrate
implementation inheritance 187
Using a private base class to implement one
class in terms of another 192
Using a protected base class to implement one
class in terms of another 195

Summary 201
Questions 202

7
Utilizing Dynamic Binding through Polymorphism 203

Technical requirements 204
Understanding the OO concept of
polymorphism 204
Implementing polymorphism with
virtual functions 205
Defining virtual functions and overriding
base class methods 205
Generalizing derived class objects 208
Utilizing virtual destructors 209

Putting all the pieces together 211
Considering function hiding 219

Understanding dynamic binding 224
Comprehending runtime binding of methods
to operations 224
Interpreting the v-table in detail 226

Summary 230
Questions 231

8
Mastering Abstract Classes 233

Technical requirements 234
Understanding the OO concept of
an abstract class 234
Implementing abstract classes with
pure virtual functions 234
Creating interfaces 236

Generalizing derived class objects as
abstract types 239
Putting all the pieces together 240
Summary 251
Questions 251

Table of Contents xi

9
Exploring Multiple Inheritance 253

Technical requirements 254
Understanding multiple inheritance
mechanics 254
Examining reasonable uses for
multiple inheritance 261
Supporting Is-A and mix-in relationships 262
Supporting Has-A relationships 263

Creating a diamond-shaped
hierarchy 263
Utilizing virtual base classes to
eliminate duplication 267
Considering discriminators and
alternate designs 275
Summary 277
Questions 278

10
Implementing Association, Aggregation, and Composition 279

Technical requirements 280
Understanding aggregation and
composition 280
Defining and implementing composition 280
Defining and implementing a generalized
aggregation 287

Understanding association 288
Implementing association 289
Utilizing backlink maintenance and
reference counting 298

Summary 299
Questions 300

Part 3: Expanding Your C++ Programming
Repertoire

11
Handling Exceptions 305

Technical requirements 306
Understanding exception handling 306
Utilizing exception handling with try, throw,
and catch 306

Exploring exception handling mechanics
with typical variations 310

Utilizing exception hierarchies 318
Using standard exception objects 318

Table of Contentsxii

Creating customized exception classes 319
Creating hierarchies of user defined
exception types 324

Summary 324
Questions 325

12
Friends and Operator Overloading 327

Technical requirements 328
Understanding friend classes and
friend functions 328
Using friend functions and friend classes 329
Making access safer when using friends 331

Deciphering operator overloading
essentials 334
Implementing operator functions and
knowing when friends might be necessary 336

Summary 343
Questions 344

13
Working with Templates 347

Technical requirements 348
Exploring template basics to
genericize code 348
Examining the motivation for templates 348

Understanding template functions
and classes 350
Creating and using template functions 351
Creating and using template classes 353

Examining a full program example 356

Making templates more flexible and
extensible 361
Adding operator overloading to further
genericize template code 361

Summary 363
Questions 364

14
Understanding STL Basics 365

Technical requirements 365
Surveying the contents and purpose
of the STL 366

Understanding how to use essential
STL containers 367
Using STL list 368
Using STL iterator 370
Using STL vector 373
Using STL deque 375

Table of Contents xiii

Using STL stack 378
Using STL queue 380
Using STL priority queue 382
Examining STL map 383

Examining STL map using a functor 387

Customizing STL containers 389
Summary 390
Questions 391

15
Testing Classes and Components 393

Technical requirements 394
Contemplating OO testing 394
Understanding the canonical class
form 394
Default constructor 395
Copy constructor 396
Overloaded assignment operator 396
Virtual destructor 396
Move copy constructor 397
Move assignment operator 397
Bringing the components of canonical class
form together 398

Ensuring a class is robust 405

Creating drivers to test classes 405
Testing related classes 408
Testing classes related through inheritance,
association, or aggregation 408

Testing exception handling
mechanisms 410
Embedding exception handling in
constructors to create robust classes 411

Summary 411
Questions 412

Part 4: Design Patterns and Idioms in C++

16
Using the Observer Pattern 415

Technical requirements 415
Utilizing design patterns 416
Understanding the Observer pattern 417

Implementing the Observer pattern 418
Creating an Observer, Subject, and domain-
specific derived classes 418

Summary 433
Questions 433

Table of Contentsxiv

17
Applying the Factory Pattern 435

Technical requirements 435
Understanding the Factory Method
pattern 436
Implementing the Factory Method
pattern 437
Including the Factory Method in the
Product class 437

Creating an Object Factory class to
encapsulate the Factory Method 445

Summary 449
Questions 450

18
Applying the Adapter Pattern 451

Technical requirements 451
Understanding the Adapter pattern 452
Implementing the Adapter pattern 453
Using an Adapter to provide a necessary
interface to an existing class 453

Using an Adapter as a wrapper 465

Summary 469
Questions 470

19
Using the Singleton Pattern 471

Technical requirements 471
Understanding the Singleton pattern 472
Implementing the Singleton pattern 473
Using a simple implementation 473
An alternate simple implementation 477

Using a more robust paired-class
implementation 480
Using a registry to allow many classes to
utilize Singleton 491

Summary 492
Questions 493

Table of Contents xv

20
Removing Implementation Details Using the pImpl Pattern 495

Technical requirements 496
Understanding the pImpl pattern 496
Implementing the pImpl pattern 497
Organizing file and class contents to apply the
pattern basics 497

Improving the pattern with a unique pointer 506

Understanding pImpl pattern trade-
offs 511
Summary 512
Questions 513

Part 5: Considerations for Safer Programming
in C++

21
Making C++ Safer 517

Technical requirements 518
Revisiting smart pointers 518
Using smart pointers – unique 519
Using smart pointers – shared 522
Using smart pointers – weak 524
Exploring a complementary idea – RAII 527

Embracing additional C++ features
promoting safety 528
Revisiting range for loops 529
Using auto for type safety 529
Preferring STL for simple containers 530

Applying const as needed 531

Considering thread safety 534
Multithreaded programming overview 535
Multithreaded programming scenarios 536

Utilizing core programming
guidelines 536
Examining guideline essentials 537
Adopting a programming guideline 543
Understanding resources for programming
safely in C++ 543

Summary 543

Assessments 545

Chapter 1, Understanding Basic C++
Assumptions 545
Chapter 2, Adding Language
Necessities 546

Chapter 3, Indirect Addressing:
Pointers 546
Chapter 4, Indirect Addressing:
References 547

Table of Contentsxvi

Chapter 5, Exploring Classes in
Detail 547
Chapter 6, Implementing Hierarchies
with Single Inheritance 547
Chapter 7, Utilizing Dynamic
Binding through Polymorphism 547
Chapter 8, Mastering Abstract
Classes 548
Chapter 9, Exploring Multiple
Inheritance 548
Chapter 10, Implementing
Association, Aggregation, and
Composition 548
Chapter 11, Handling Exceptions 548
Chapter 12, Friends and Operator
Overloading 549

Chapter 13, Working with
Templates 549
Chapter 14, Understanding STL
Basics 549
Chapter 15, Testing Classes and
Components 549
Chapter 16, Using the Observer
Pattern 549
Chapter 17, Applying the Factory
Pattern 550
Chapter 18, Applying the Adapter
Pattern 550
Chapter 19, Using the Singleton
Pattern 550
Chapter 20, Removing
Implementation Details Using the
pImpl Pattern 551

Index 553

Other Books You May Enjoy 566

Preface

Companies choose to utilize C++ for its speed; however, object-oriented (OO) software design leads
to more robust code that is easier to modify and maintain. Understanding how to utilize C++ as an
object-oriented language is, therefore, essential. Programming in C++ won’t guarantee object-oriented
programming (OOP) – you must understand OO concepts and how they map to C++ language features
and programming techniques. Additionally, programmers will want to harness additional skills beyond
OOP to make code more generic and robust, as well as employ well-tested, creative solutions that
can be found in popular design patterns. It is also critical for programmers to understand language
features and conventions that can make C++ a safer language to use.

A programmer who learns how to use C++ as an object-oriented language, following safe programming
conventions, will become a valuable C++ developer – a developer whose code is easy to maintain,
modify, and be understood by others.

This book has step-by-step explanations of essential OO concepts, paired with practical examples in
code and often with diagrams so you can truly understand how and why things work. Self-assessment
questions are available to test your skills.

This book first provides necessary building blocks of skills (which may not be object-oriented) that
provide the essential foundation on which to build OOP skills. Next, OO concepts will be described
and paired with language features as well as coding techniques so that you can understand how to use
C++ as an OOP language successfully. Additionally, more advanced skills are added to augment the
programmer’s repertoire, including friend function/classes, operator overloading, templates (to build
more generic code), exception handling (to build robust code), Standard Template Library (STL) basics,
as well as design patterns and idioms. The book wraps up by re-examining programming constructs
presented throughout the book, paired with conventions that lead to safer programming in C++. The
end goal is to enable you to produce robust code that is easy to maintain and understand by others.

By the end of this book, you will understand both essential and advanced OO concepts and how to
implement these concepts in C++. You will have a versatile toolkit of C++ programming skills. You
will additionally understand ways to make safer, more robust, and easily maintainable code, as well
as understand how to employ well-tested design patterns as part of your programming repertoire.

Prefacexviii

Who this book is for?
Programmers wanting to utilize C++ for OOP will find this book essential to understand how to
implement OO designs in C++ through both language features and refined programming techniques,
while creating robust and easily maintainable code. This OOP book assumes prior programming
experience; however, if you have limited or no prior C++ experience, the early chapters will help you
learn essential C++ skills to serve as the basis for the many OOP sections, advanced features, design
patterns, and conventions to promote safe programming in C++.

What this book covers
Chapter 1, Understanding Basic C++ Assumptions, provides a concise review of basic language features
that are assumed knowledge within the book. Existing programmers can quickly grasp the language
basics reviewed in this first chapter.

Chapter 2, Adding Language Necessities, reviews non-OO features that are critical C++ building blocks:
const qualifiers, function prototyping (default values), and function overloading.

Chapter 3, Indirect Addressing – Pointers, reviews pointers in C++, including memory allocation/
deallocation, pointer usage/dereferencing, usage in function arguments, void pointers, and introduces
the concept of smart pointers.

Chapter 4, Indirect Addressing – References, introduces references as an alternative to pointers, including
initialization, function arguments/return values, and const qualification.

Chapter 5, Exploring Classes in Detail, introduces OOP by first exploring OO and the concepts of
encapsulation and information hiding, and then covers class features in detail: member functions,
the this pointer, access labels and regions, constructors, destructor, and qualifiers on data members
and member functions (const, static, and inline).

Chapter 6, Implementing Hierarchies with Single Inheritance, details generalization and specialization
using single inheritance. This chapter covers inheriting members, the use of base class constructors,
inherited access regions, order of construction/destruction, final classes, as well as public versus
private and protected base classes, and how this changes the meaning of inheritance.

Chapter 7, Utilizing Dynamic Binding through Polymorphism, describes the OO concept of polymorphism
and then distinguishes operation from method, details virtual functions and runtime binding of
methods to operations (including how the v-table works), and differentiates the use of virtual,
override, and final.

Chapter 8, Mastering Abstract Classes, explains the OO concept of abstract classes, their implementation
using pure virtual functions, the OO concept of an interface and how to implement it, as well as up
and down casting within a public inheritance hierarchy.

What this book covers xix

Chapter 9, Exploring Multiple Inheritance, details how to use multiple inheritance as well as its
controversy in OO designs. This chapter covers virtual base classes, diamond-shaped hierarchies, and
when to consider alternate designs by examining the OO concept of a discriminator.

Chapter 10, Implementing Association, Aggregation, and Composition, describes the OO concepts of
association, aggregation, and composition and how to implement each concept using pointers, sets
of pointers, containment, and sometimes references.

Chapter 11, Handling Exceptions, explains how to try, throw, and catch exceptions by considering
many exception scenarios. This chapter shows how to extend an exception handling hierarchy.

Chapter 12, Friends and Operator Overloading, explains the proper use of friend functions and classes,
and examines operator overloading (which may use friends) to allow an operator to work with user
defined types in the same way it works with standard types.

Chapter 13, Working with Templates, details template functions and classes to genericize certain types
of code to work with any data type. This chapter also shows how operator overloading can make
selected code more generic for any type to further support the use of templates.

Chapter 14, Understanding STL Basics, introduces the Standard Template Library in C++ and
demonstrates how to use common containers, such as list, iterator, deque, stack, queue,
priority_queue, and map. Additionally, STL algorithms and functors are introduced.

Chapter 15, Testing Classes and Components, illustrates OO testing methods using the canonical class
form and drivers to test classes, and shows how to test classes related through inheritance, association,
and aggregation. This chapter also shows how to test classes that utilize exception handling.

Chapter 16, Using the Observer Pattern, introduces design patterns overall and then explains the
Observer pattern, with an in-depth example illustrating the components of the pattern.

Chapter 17, Applying the Factory Pattern, introduces the Factory Method pattern and showcases
its implementation with and without an Object Factory. It also compares an Object Factory to an
Abstract Factory.

Chapter 18, Applying the Adapter Pattern, examines the Adapter pattern, providing strategies and
examples utilizing inheritance versus association to implement the pattern. Additionally, this chapter
demonstrates a wrapper class as a simple Adapter.

Chapter 19, Using the Singleton Pattern, examines in detail the Singleton pattern with a sophisticated
paired-class implementation. Singleton registries are also introduced.

Chapter 20, Removing Implementation Details Using the pImpl Pattern, describes the pImpl pattern,
which is used to reduce compile-time dependencies within code. A detailed implementation is explored
using unique pointers. Performance issues are explored relating to the pattern.

Prefacexx

Chapter 21, Making C++ Safer, revisits topics covered throughout the book, with the intention of
identifying core programming guidelines that can be used to make C++ a safer language for the
development of robust software.

Assessments contains all the answers to the questions from every chapter.

To get the most out of this book
It is assumed that you have a current C++ compiler available. You will want to try the many online
code examples! You can use any C++ compiler; however, C++17 or higher is recommended. The code
presented will be C++20 compliant. Minimally, please download g++ from https://gcc.gnu.org.

Please keep in mind that though there is an ISO standard for C++, some compilers vary and interpret
the standard with very slight differences.

If you are using the digital version of this book, we advise you to type the code yourself or access the
code from the book’s GitHub repository (a link is available in the next section). Doing so will help
you avoid any potential errors related to the copying and pasting of code.

Trying the coding examples as you read the book is highly recommended. Completing the Assessments
will further enhance your grasp of each new concept.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP. If
there’s an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3pylFkV.

https://gcc.gnu.org
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://bit.ly/3pylFkV

Download the color images xxi

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/ZvNhC.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “With
that in mind, let’s take a look at our Adapter class, Humanoid.”

A block of code is set as follows:

class Humanoid: private Person // Humanoid is abstract

{

protected:

 void SetTitle(const string &t) { ModifyTitle(t); }

public:

 Humanoid() = default;

 Humanoid(const string &, const string &,

 const string &, const string &);

 // class definition continues

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

 const string &GetSecondaryName() const

 { return GetFirstName(); }

 const string &GetPrimaryName() const

 { return GetLastName(); }

Any command-line input or output is written as follows:

Orkan Mork McConnell

Nanu nanu

Romulan Donatra Jarok

jolan'tru

Earthling Eve Xu

Hello

https://packt.link/ZvNhC

Prefacexxii

Earthling Eve Xu

Bonjour

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Deciphering Object-Oriented Programming with C++, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-804-61390-8

Part 1:
C++ Building Block

Essentials

The goal of this part is to ensure that you have a strong background in non-OO C++ skills with
which to build the forthcoming OOP skills in C++. This is the shortest section of the book,
designed to quickly get you up to speed in preparation for OOP and more advanced book chapters.

The first chapter quickly reviews the basic skills that you are assumed to have to progress through
the book: basic language syntax, looping constructs, operators, function usage, user defined type
basics (struct, typedef, class basics, using statement, enum, strongly-typed enum), and
namespace basics. The next chapter discusses const qualified variables, function prototyping,
prototyping with default values, and function overloading.

The subsequent chapter covers indirect addressing with pointers by introducing new() and
delete() to allocate basic types of data, dynamically allocating arrays of 1, 2, and N dimensions,
managing memory with delete, passing parameters as arguments to functions, using void
pointers, and an overview of smart pointers. This section concludes with a chapter featuring
indirect addressing with references that will take you through a review of reference basics,
references to existing objects, and as arguments to functions.

Although this book will gradually progress to use smart pointers as a preference (and recommends
smart pointers for safety), gaining proficiency with native C++ pointers will be an important
skill to have. This skill will be crucial for modifying and deciphering existing code with native
pointers, as well as for clearly understanding the potential misuses and pitfalls of native pointers.

This part comprises the following chapters:

• Chapter 1, Understanding Basic C++ Assumptions

• Chapter 2, Adding Language Necessities

• Chapter 3, Indirect Addressing – Pointers

• Chapter 4, Indirect Addressing – References

2 Part 1: C++ Building Block Essentials

1
Understanding Basic C++

Assumptions

This chapter will briefly identify the basic language syntax, constructs, and features of C++, which you
are assumed to have from familiarity either with the basic syntax of C++, C, Java, or similar languages.
These core language features will be reviewed concisely. If these basic syntax skills are not familiar
to you after completing this chapter, please first take the time to explore a more basic syntax-driven
C++ text before continuing with this book. The goal of this chapter is not to teach each of the assumed
skills in detail but to briefly provide a synopsis of each basic language feature to allow you to quickly
recall a skill that should already be in your programming repertoire.

In this chapter, we will cover the following main topics:

• Basic language syntax

• Basic I/O

• Control structures, statements, and looping

• Operators

• Function basics

• User defined type basics

• Namespace basics

By the end of this chapter, you’ll have a succinct review of the very basic C++ language skills in
which you’re assumed to be proficient. These skills will be necessary in order to move forward with
the next chapter successfully. Because most of these features do not utilize OO features of C++, I will
refrain from using OO terminology (as much as possible) and will instead introduce appropriate OO
terminology when we move into the OO sections of this book.

Understanding Basic C++ Assumptions4

Technical requirements
Please ensure that you have a current C++ compiler available; you’ll want to try many of the online
code examples. Minimally, please download g++ from https://gcc.gnu.org.

Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter01. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first
full program in Chapter 1, Understanding Basic C++ Assumptions, can be found in the subdirectory
Chapter01 in a file named Chp1-Ex1.cpp under the aforementioned GitHub directory.

The Code in Action (CiA) video for this chapter can be viewed at: https://bit.ly/3PtOYjf.

Reviewing basic C++ language syntax
In this section, we will briefly review basic C++ syntax. We’ll assume that you are either a C++
programmer with non-OO programming skills, or that you’ve programmed in C, Java, or a similar
strongly typed checked language with related syntax. You may also be a long-standing professional
programmer who is able to pick up another language’s basics quickly. Let’s begin our brief review.

Comment styles

Two styles of comments are available in C++:

• The /* */ style provides for comments spanning multiple lines of code. This style may
not be nested with other comments of this same style.

• The // style of comment provides for a simple comment to the end of the current line.

Using the two comment styles together can allow for nested comments, which can be useful when
debugging code.

Variable declarations and standard data types

Variables may be of any length, and may consist of letters, digits, and underscores. Variables are case
sensitive and must begin with a letter or an underscore. Standard data types in C++ include the following:

• int: To store whole numbers

• float: To store floating point values

• double: To store double precision floating point values

https://gcc.gnu.org
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter01
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter01
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter01
https://bit.ly/3PtOYjf
https://bit.ly/3c6oQdK.

Reviewing basic C++ language syntax 5

• char: To store a single character

• bool: For boolean values of true or false

Here are a few straightforward examples using the aforementioned standard data types:

int x = 5;

int a = x;

float y = 9.87;

float y2 = 10.76f; // optional 'f' suffix on float literal

float b = y;

double yy = 123456.78;

double c = yy;

char z = 'Z';

char d = z;

bool test = true;

bool e = test;

bool f = !test;

Reviewing the previous fragment of code, note that a variable can be assigned a literal value, such
as int x = 5; or that a variable may be assigned the value or contents of another variable, such
as int a = x;. These examples illustrate this ability with various standard data types. Note that
for the bool type, the value can be set to true or false, or to the opposite of one of those values
using ! (not).

Variables and array basics

Arrays can be declared of any data type. The array name represents the starting address of the
contiguous memory associated with the array’s contents. Arrays are zero-based in C++, meaning they
are indexed starting with array element[0] rather than array element[1]. Most importantly,
range checking is not performed on arrays in C++; if you access an element outside the size of an array,
you are accessing memory belonging to another variable, and your code will likely fault very soon.

Let’s review some simple array declarations (some with initialization), and an assignment:

char name[10] = "Dorothy"; // size is larger than needed

float grades[20]; // array is not initialized; caution!

Understanding Basic C++ Assumptions6

grades[0] = 4.0; // assign a value to one element of array

float scores[] = {3.3, 4.3, 4.0, 3.7}; // initialized array

Notice that the first array, name, contains 10 char elements, which are initialized to the seven characters
in the string literal "Dorothy", followed by the null character ('\0'). The array currently has two
unused elements at the end. The elements in the array can be accessed individually using name[0]
through name[9], as arrays in C++ are zero-based. Similarly, the array above, which is identified
by the variable grades, has 20 elements, none of which are initialized. Any array value accessed
prior to initialization or assignment can contain any value; this is true for any uninitialized variable.
Notice that just after the array grades is declared, its 0th element is assigned a value of 4.0. Finally,
notice that the array of float, scores, is declared and initialized with values. Though we could
have specified an array size within the [] pair, we did not – the compiler is able to calculate the size
based upon the number of elements in our initialization. Initializing an array when possible (even
using zeros), is always the safest style to utilize.

Arrays of characters are often conceptualized as strings. Many standard string functions exist in
libraries such as <cstring>. Arrays of characters should be null-terminated if they are to be treated
as strings. When arrays of characters are initialized with a string of characters, the null character is
added automatically. However, if characters are added one by one to the array via assignment, it would
then be the programmer’s job to add the null character ('\0') as the final element in the array.

In addition to strings implemented using arrays of characters (or a pointer to characters), there is a
safer data type from the C++ Standard Library, std::string. We will understand the details of
this type once we master classes in Chapter 5, Exploring Classes in Detail; however, let us introduce
string now as an easier and less error-prone way to create strings of characters. You will need to
understand both representations; the array of char (and pointer to char) implementations will
inevitably appear in C++ library and other existing code. Yet you may prefer string in new code
for its ease and safety.

Let’s see some basic examples:

// size of array can be calculated by initializer

char book1[] = "C++ Programming";

char book2[25]; // this string is uninitialized; caution!

// use caution as to not overflow destination (book2)

strcpy(book2, "OO Programming with C++");

strcmp(book1, book2);

length = strlen(book2);

string book3 = "Advanced C++ Programming"; // safer usage

string book4("OOP with C++"); // alt. way to init. string

string book5(book4); // create book5 using book4 as a basis

Recapping basic I/O 7

Here, the first variable book1 is declared and initialized to a string literal of "C++ Programming";
the size of the array will be calculated by the length of the quoted string value plus one for the null
character ('\0'). Next, variable book2 is declared to be an array of 25 characters in length, but is
not initialized with a value. Next, the function strcpy() from <cstring> is used to copy the
string literal "OO Programming with C++" into the variable book2. Note that strcpy()
will automatically add the null-terminating character to the destination string. On the next line,
strcmp(), also from <cstring>, is used to lexicographically compare the contents of variables
book1 and book2. This function returns an integer value, which can be captured in another variable
or used in a comparison. Lastly, the function strlen() is used to count the number of characters
in book2 (excluding the null character).

Lastly, notice that book3 and book4 are each of type string, illustrating two different manners
to initialize a string. Also notice that book5 is initialized using book4 as a basis. As we will soon
discover, there are many safety features built into the string class to promote safe string usage.
Though we have reviewed examples featuring two of several manners to represent strings (a native
array of characters versus the string class), we will most often utilize std::string for its safety.
Nonetheless, we have now seen various functions, such as strcpy() and strlen(), that operate
on native C++ strings (as we will inevitably come across them in existing code). It is important to
note that the C++ community is moving away from native C++ strings – that is, those implemented
using an array of (or pointer to) characters.

Now that we have successfully reviewed basic C++ language features such as comment styles, variable
declarations, standard data types, and array basics, let’s move forward to recap another fundamental
language feature of C++: basic keyboard input and output using the <iostream> library.

Recapping basic I/O
In this section, we’ll briefly review simple character-based input and output with the keyboard and
monitor. Simple manipulators will also be reviewed to both explain the underlying mechanics of I/O
buffers and to provide basic enhancements and formatting.

The iostream library

One of the easiest mechanisms for input and output in C++ is the use of the <iostream> library.
The header file <iostream> contains definitions of data types istream and ostream. Instances of
these data types, cin, cout, cerr, and clog, are incorporated by including the std namespace.
The <iostream> library facilitates simple I/O and can be used as follows:

• cin can be used in conjunction with the extraction operator >> for buffered input

• cout can be used in conjunction with the insertion operator << for buffered output

• cerr (unbuffered) and clog (buffered) can also be used in conjunction with the insertion
operator, but for errors

Understanding Basic C++ Assumptions8

Let’s review an example showcasing simple I/O:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-
Programming-with-CPP/blob/main/Chapter01/Chp1-Ex1.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

int main()

{

 char name[20]; // caution, uninitialized array of char

 int age = 0;

 cout << "Please enter a name and an age: ";

 cin >> name >> age; // caution, may overflow name var.

 cout << "Hello " << name;

 cout << ". You are " << age << " years old." << endl;

 return 0;

}

First, we include the <iostream> library and indicate that we’re using the std namespace to gain
usage of cin and cout (more on namespaces later in this chapter). Next, we introduce the main()
function, which is the entry point in our application. Here, we declare two variables, name and age,
neither of which is initialized. Next, we prompt the user for input by placing the string "Please
enter a name and an age: " in the buffer associated with cout. When the buffer associated
with cout is flushed, the user will see this prompt on the screen.

The keyboard input string is then placed in the buffer associated with cout using the extraction
operator <<. Conveniently, one mechanism that automatically flushes the buffer associated with cout
is the use of cin to read keyboard input into variables, such as seen on the next line, where we read
the user input into the variables name and age, respectively.

Next, we print out a greeting of "Hello" to the user, followed by the name entered, followed by
an indication of their age, gathered from the second piece of user input. The endl at the end of this
line both places a newline character '\n' into the output buffer and ensures that the output buffer
is flushed – more of that next. The return 0; declaration simply returns a program exit status to
the programming shell, in this case, the value 0. Notice that the main() function indicates an int
for a return value to ensure this is possible.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex1.cpp

Recapping basic I/O 9

Basic iostream manipulators

Often, it is desirable to be able to manipulate the contents of the buffers associated with cin, cout,
and cerr. Manipulators allow the internal state of these objects to be modified, which affects how
their associated buffers are formatted and manipulated. Manipulators are defined in the <iomanip>
header file. Common manipulator examples include the following:

• endl: Places a newline character ('\n') in the buffer associated with cout then flushes the
buffer

• flush: Clears the contents of the output stream

• setprecision(int): Defines the precision (number of digits) used to output floating
point numbers

• setw(int): Sets the width for input and output

• ws: Removes whitespace characters from the buffer

Let’s see a simple example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex2.cpp

#include <iostream>

#include <iomanip>

using namespace std; // we'll limit the namespace shortly

int main()

{

 char name[20]; // caution; uninitialized array

 float gpa = 0.0; // grade point average

 cout << "Please enter a name and a gpa: ";

 cin >> setw(20) >> name >> gpa; // won't overflow name

 cout << "Hello " << name << flush;

 cout << ". GPA is: " << setprecision(3) << gpa << endl;

 return 0;

}

In this example, first, notice the inclusion of the <iomanip> header file. Also, notice that setw(20)
is used to ensure that we do not overflow the name variable, which is only 20 characters long; setw()
will automatically deduct one from the size provided to ensure there is room for the null character.
Notice that flush is used on the second output line – it’s not necessary here to flush the output
buffer; this manipulator merely demonstrates how a flush may be applied. On the last output line

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex2.cpp

Understanding Basic C++ Assumptions10

with cout, notice that setprecision(3) is used to print the floating point gpa. Three points of
precision account for the decimal point plus two places to the right of the decimal. Finally, notice that
we add the endl manipulator to the buffer associated with cout. The endl manipulator will first
insert a newline character ('\n') into the buffer and then flush the buffer. For performance, if you
don’t need a buffer flush to immediately see the output, using a newline character alone is more efficient.

Now that we have reviewed simple input and output using the <iostream> library, let’s move
forward by briefly reviewing control structures, statements, and looping constructs.

Revisiting control structures, statements, and looping
C++ has a variety of control structures and looping constructs that allow for non-sequential program
flow. Each can be coupled with simple or compound statements. Simple statements end with a
semicolon; more compound statements are enclosed in a block of code using a pair of brackets {}.
In this section, we will be revisiting various types of control structures (if, else if, and else),
and looping constructs (while, do while, and for) to recap simple methods for non-sequential
program flow within our code.

Control structures – if, else if, and else

Conditional statements using if, else if, and else can be used with simple statements or a block
of statements. Note that an if clause can be used without a following else if or else clause.
Actually, else if is really a condensed version of an else clause with a nested if clause inside
of it. Practically speaking, developers flatten the nested use into else if format for readability and
to save excess indenting. Let’s see an example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex3.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

int main()

{

 int x = 0;

 cout << "Enter an integer: ";

 cin >> x;

 if (x == 0)

 cout << "x is 0" << endl;

 else if (x < 0)

 cout << "x is negative" << endl;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex3.cpp

Revisiting control structures, statements, and looping 11

 else

 {

 cout << "x is positive";

 cout << "and ten times x is: " << x * 10 << endl;

 }

 return 0;

}

Notice that in the preceding else clause, multiple statements are bundled into a block of code, whereas
in the if and else if conditions, only a single statement follows each condition. As a side note, in
C++, any non-zero value is considered to be true. So, for example, testing if (x) would imply that x
is not equal to zero – it would not be necessary to write if (x !=0), except possibly for readability.

It is worth mentioning that in C++, it is wise to adopt a set of consistent coding conventions and
practices (as do many teams and organizations). As a straightforward example, the placement of
brackets may be specified in a coding standard (such as starting the { on the same line as the keyword
else, or on the line below the keyword else with the number of spaces it should be indented).
Another convention may be that even a single statement following an else keyword be included in
a block using brackets. Following a consistent set of coding conventions will allow your code to be
more easily read and maintained by others.

Looping constructs – while, do while, and for loops

C++ has several looping constructs. Let’s take a moment to review a brief example for each style,
starting with the while and do while loop constructs:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex4.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

int main()

{

 int i = 0;

 while (i < 10)

 {

 cout << i << endl;

 i++;

 }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex4.cpp

Understanding Basic C++ Assumptions12

 i = 0;

 do

 {

 cout << i << endl;

 i++;

 } while (i < 10);

 return 0;

}

With the while loop, the condition to enter the loop must evaluate to true prior to each entry of the
loop body. However, with the do while loop, the first entry to the loop body is guaranteed – the
condition is then evaluated before another iteration through the loop body. In the preceding example,
both the while and do while loops are executed 10 times, each printing values 0-9 for variable i.

Next, let’s review a typical for loop. The for loop has three parts within the (). First, there is a
statement that is executed exactly once and is often used to initialize a loop control variable. Next,
separated on both sides by semicolons in the center of the () is an expression. This expression is
evaluated each time before entering the body of the loop. The body of the loop is only entered if this
expression evaluates to true. Lastly, the third part within the () is a second statement. This statement
is executed immediately after executing the body of the loop and is often used to modify a loop control
variable. Following this second statement, the center expression is re-evaluated. Here is an example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex5.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

int main()

{

 // though we'll prefer to declare i within the loop

 // construct, let's understand scope in both scenarios

 int i;

 for (i = 0; i < 10; i++)

 cout << i << endl;

 for (int j = 0; j < 10; j++) // preferred declaration

 cout << j << endl; // of loop control variable

 return 0;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex5.cpp

Revisiting control structures, statements, and looping 13

Here, we have two for loops. Prior to the first loop, variable i is declared. Variable i is then initialized
with a value of 0 in statement 1 between the loop parentheses (). The loop condition is tested, and
if true, the loop body is then entered and executed, followed by statement 2 being executed prior to
the loop condition being retested. This loop is executed 10 times for i values 0 through 9. The second
for loop is similar, with the only difference being variable j is both declared and initialized within
statement 1 of the loop construct. Note that variable j only has scope for the for loop itself, whereas
variable i has scope of the entire block in which it is declared, from its declaration point forward.

Let’s quickly see an example using nested loops. The looping constructs can be of any type, but in the
following, we’ll review nested for loops:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex6.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

int main()

{

 for (int i = 0; i < 10; i++)

 {

 cout << i << endl;

 for (int j = 0; j < 10; j++)

 cout << j << endl;

 cout << "\n";

 }

 return 0;

}

Here, the outer loop will execute ten times with i values of 0 through 9. For each value of i, the
inner loop will execute ten times, with j values of 0 through 9. Remember, with for loops, the loop
control variable is automatically incremented with the i++ or j++ within the loop construct. Had
a while loop been used, the programmer would need to remember to increment the loop control
variable in the last line of the body of each such loop.

Now that we have reviewed control structures, statements, and looping constructs in C++, we can
move onward by briefly recalling C++’s operators.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex6.cpp

Understanding Basic C++ Assumptions14

Reviewing C++ operators
Unary, binary, and ternary operators exist in C++. C++ allows operators to have different meanings
based on the context of usage. C++ also allows programmers to redefine the meaning of selected
operators when used in the context of at least one user defined type. The operators are listed in the
following concise list. We’ll see examples of these operators throughout the remainder of this section
and throughout the course. Here is a synopsis of the binary, unary, and ternary operators in C++:

Figure 1.1 – C++ operators

Revisiting function basics 15

In the aforementioned binary operator list, notice how many of the operators have “shortcut” versions
when paired with the assignment operator =. For example, a = a * b can be written equivalently
using a shortcut operator a *= b. Let’s take a look at an example that incorporates an assortment
of operators, including the usage of a shortcut operator:

score += 5;

score++;

if (score == 100)

 cout << "You have a perfect score!" << endl;

else

 cout << "Your score is: " << score << endl;

// equivalent to if - else above, but using ?: operator

(score == 100)? cout << "You have a perfect score" << endl:

 cout << "Your score is: " << score << endl;

In the previous code fragment, notice the use of the shortcut operator +=. Here, the statement score
+= 5; is equivalent to score = score + 5;. Next, the unary increment operator ++ is used
to increment score by 1. Then we see the equality operator == to compare score with a value of
100. Finally, we see an example of the ternary operator ?: to replace a simple if - else statement.
It is instructive to note that ?: is not preferred by some programmers, yet it is always interesting to
review an example of its use.

Now that we have very briefly recapped the operators in C++, let’s revisit function basics.

Revisiting function basics
A function identifier must begin with a letter or underscore and may also contain digits. The function’s
return type, argument list, and return value are optional. The basic form of a C++ function is as follows:

<return type> FunctionName (<argumentType argument1, …>)

{

 expression 1…N;

 <return value/expression;>

}

Understanding Basic C++ Assumptions16

Let’s review a simple function:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex7.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

int Minimum(int a, int b)

{

 if (a < b)

 return a;

 else

 return b;

}

int main()

{

 int x = 0, y = 0;

 cout << "Enter two integers: ";

 cin >> x >> y;

 cout << "The minimum is: " << Minimum(x, y) << endl;

 return 0;

}

In the preceding simple example, first, a function Minimum() is defined. It has a return type of
int and it takes two integer arguments: formal parameters a and b. In the main() function,
Minimum() is called with actual parameters x and y. The call to Minimum() is permitted within
the cout statement because Minimum() returns an integer value; this value is passed along to the
extraction operator (<<) in conjunction with printing. In fact, the string "The minimum is: "
is first placed into the buffer associated with cout, followed by the return value from calling function
Minimum(). The output buffer is then flushed by endl (which first places a newline character in
the buffer before flushing).

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex7.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex7.cpp

Reviewing user defined type basics 17

Notice that the function is first defined in the file and then called later in the file in the main()
function. Strong type checking is performed on the call to the function by comparing the parameter
types and their usage in the call to the function’s definition. What happens, however, when the function
call precedes its definition? Or if the call to the function is in a separate file from its definition?

In these cases, the default action is for the compiler to assume a certain signature to the function, such
as an integer return type, and that the formal parameters will match the types of arguments in the
function call. Often, the default assumptions are incorrect; when the compiler then encounters the
function definition later in the file (or when another file is linked in), an error will be raised indicating
that the function call and definition do not match.

These issues have historically been solved with a forward declaration of a function included at the top
of a file where the function will be called. Forward declarations consist of the function return type,
function name and types, and the number of parameters. In C++, a forward declaration has been
improved upon and is instead known as a function prototype. Since there are many interesting details
surrounding function prototyping, this topic will be covered in reasonable detail in the next chapter.

Important note
The specifier [[nodiscard]] can optionally be added to precede the return type of a function.
This specifier is used to indicate that the return value from a function must not be ignored – that
is, it must be captured in a variable or utilized in an expression. Should the function’s return
value consequently be ignored, a compiler warning will be issued. Note that the nodiscard
qualifier can be added to the function prototype and optionally to the definition (or required
in a definition if there is no prototype). Ideally, nodiscard should appear in both locations.

As we move to the object-oriented sections in this book (Chapter 5, Exploring Classes in Detail, and
beyond), we will learn that there are many more details and quite interesting features relating to
functions. Nonetheless, we have sufficiently recalled the basics needed to move forward. Next, let’s
continue our C++ language review with user defined types.

Reviewing user defined type basics
C++ offers several mechanisms to create user defined types. Bundling together like characteristics
into one data type (later, we’ll also add relevant behaviors) will form the basis for an object-oriented
concept known as encapsulation explored in a later section of this text. For now, let’s review the basic
mechanisms to bundle together only data in struct, class, and typedef (to a lesser extent).
We will also review enumerated types to represent lists of integers more meaningfully.

Understanding Basic C++ Assumptions18

struct

A C++ structure in its simplest form can be used to collect common data elements together in a single
unit. Variables may then be declared of the composite data type. The dot operator is used to access
specific members of each structure variable. Here is a structure used in its most simple fashion:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex8.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

struct student

{

 string name;

 float semesterGrades[5];

 float gpa;

};

int main()

{

 student s1;

 s1.name = "George Katz";

 s1.semesterGrades[0] = 3.0;

 s1.semesterGrades[1] = 4.0;

 s1.gpa = 3.5;

 cout << s1.name << " has GPA: " << s1.gpa << endl;

 return 0;

}

Stylistically, type names are typically in lowercase when using structs. In the preceding example, we
declare the user defined type student using a struct. Type student has three fields or data
members: name, semesterGrades, and gpa. In the main() function, a variable s1 of type
student is declared; the dot operator is used to access each of the variable’s data members. Since
structs are typically not used for OO programming in C++, we’re not going to yet introduce significant
OO terminology relating to their use. It’s worthy to note that in C++, the tag student also becomes
the type name (unlike in C, where a variable declaration would need the word struct to precede
the type).

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex8.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex8.cpp

Reviewing user defined type basics 19

typedef and “using” alias declaration

A typedef declaration can be used to provide a more mnemonic representation for data types. In
C++, the relative need for a typedef has been eliminated in usage with a struct. Historically, a
typedef in C allowed the bundling together of the keyword struct and the structure tag to create
a user defined type. However, in C++, as the structure tag automatically becomes the type, a typedef
then becomes wholly unnecessary for a struct. Typedefs can still be used with standard types for
enhanced readability in code, but in this fashion, the typedef is not being used to bundle together
like data elements, such as with a struct. As a related historical note, #define (a preprocessor
directive and macro replacement) was once used to create more mnemonic types, but typedef (and
using) are certainly preferred. It’s worthy to note when viewing older code.

A using statement can be used as an alternative to a simple typedef to create an alias for a type,
known as an alias-declaration. The using statement can also be used to simplify more complex types
(such as providing an alias for complex declarations when using the Standard Template Library or
declaring function pointers). The current trend is to favor a using alias-declaration to a typedef.

Let’s take a look at a simple typedef compared to a simple using alias-declaration:

typedef float dollars;

using money = float;

In the previous declaration, the new type dollars can be used interchangeably with the type float.
Likewise, the new alias money can also be used interchangeably with type float. It is not productive
to demonstrate the archaic use of typedef with a structure, so let’s move on to the most used user
defined type in C++, the class.

class

A class in its simplest form can be used nearly like a struct to bundle together related data
into a single data type. In Chapter 5, Exploring Classes in Detail, we’ll see that a class is typically
also used to bundle related functions together with the new data type. Grouping together data and
behaviors relevant to that data is the basis of encapsulation. For now, let’s see a class in its simplest
form, much like a struct:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex9.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

class Student

{

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex9.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex9.cpp

Understanding Basic C++ Assumptions20

public:

 string name;

 float semesterGrades[5];

 float gpa;

};

int main()

{

 Student s1;

 s1.name = "George Katz";

 s1.semesterGrades[0] = 3.0;

 s1.semesterGrades[1] = 4.0;

 s1.gpa = 3.5;

 cout << s1.name << " has GPA: " << s1.gpa << endl;

 return 0;

}

Notice that the previous code is very similar to that used in the struct example. The main difference
is the keyword class instead of the keyword struct and the addition of the access label public: at
the beginning of the class definition (more on that in Chapter 5, Exploring Classes in Detail). Stylistically,
the capitalization of the first letter in the data type, such as Student, is typical for classes. We’ll
see that classes have a wealth more features and are the building blocks for OO programming. We’ll
introduce new terminology such as instance, to be used rather than variable. However, this section is
only a review of skills assumed, so we’ll need to wait to get to the exciting OO features of the language.
Spoiler alert: all the wonderful things classes will be able to do also applies to structs; however, we’ll
see that structs stylistically won’t be used to exemplify OO programming.

enum and strongly-typed enum

Traditional enumerated types may be used to mnemonically represent lists of integers. Unless otherwise
initialized, integer values in the enumeration begin with zero and increase by one throughout the list.
Two enumerated types may not utilize the same enumerator names.

Strongly-typed enumerated types improve upon traditional enumerated types. Strongly-typed enums
default to represent lists of integers, but may be used to represent any integral type, such as int, short
int, long int, char, or bool. The enumerators are not exported to the surrounding scope, so
enumerators may be reused between types. Strongly-typed enums allow forward declarations of their
type (allowing such uses as these types as arguments to functions before the enumerator declaration).

Reviewing user defined type basics 21

Let’s now see an example of traditional enums and strongly-typed enums:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex10.cpp

#include <iostream>

using namespace std; // we'll limit the namespace shortly

// traditional enumerated types

enum day {Sunday, Monday, Tuesday, Wednesday, Thursday,

 Friday, Saturday};

enum workDay {Mon = 1, Tues, Wed, Thurs, Fri};

// strongly-typed enumerated types can be a struct or class

enum struct WinterHoliday {Diwali, Hanukkah, ThreeKings,

 WinterSolstice, StLucia, StNicholas, Christmas, Kwanzaa};

enum class Holiday : short int {NewYear = 1, MLK, Memorial,

 Independence, Labor, Thanksgiving};

int main()

{

 day birthday = Monday;

 workDay payday = Fri;

 WinterHoliday myTradition = WinterHoliday::StNicholas;

 Holiday favorite = Holiday::NewYear;

 cout << "Birthday is " << birthday << endl;

 cout << "Payday is " << payday << endl;

 cout << "Traditional Winter holiday is " <<

 static_cast<int> (myTradition) << endl;

 cout << "Favorite holiday is " <<

 static_cast<short int> (favorite) << endl;

 return 0;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex10.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex10.cpp

Understanding Basic C++ Assumptions22

In the previous example, the traditional enumerated type day has values of 0 through 6, starting
with Sunday. The traditional enumerated type workDay has values of 1 through 5, starting with
Mon. Notice the explicit use of Mon = 1 as the first item in the enumerated type has been used to
override the default starting value of 0. Interestingly, we may not repeat enumerators between two
enumerated types. For that reason, you will notice that Mon is used as an enumerator in workDay
because Monday has already been used in the enumerated type day. Now, when we create variables
such as birthday or payday, we can use meaningful enumerated types to initialize or assign values,
such as Monday or Fri. As meaningful as the enumerators may be within the code, please note that
the values when manipulated or printed will be their corresponding integer values.

Moving forward to consider the strongly-typed enumerated types in the previous example, the
enum for WinterHoliday is defined using a struct. Default values for the enumerators are
integers, starting with the value of 0 (as with the traditional enums). However, notice that the enum
for Holiday specifies the enumerators to be of type short int. Additionally, we choose to
start the first item in the enumerated type with value 1, rather than 0. Notice when we print out
the strongly-typed enumerators that we must cast the type using a static_cast to the type of
the enumerator. This is because the insertion operator knows how to handle selected types, but
these types do not include strongly-typed enums; therefore, we cast our enumerated type to a type
understood by the insertion operator.

Now that we have revisited simple user defined types in C++, including struct, typedef (and
using an alias), class, and enum, we are ready to move onward to reviewing our next language
necessity, the namespace.

Recapping namespace basics
The namespace utility was added to C++ to add a scoping level beyond global scope to applications.
This feature can be used to allow two or more libraries to be utilized without concern that they may
contain duplicative data types, functions, or identifiers. The programmer needs to activate the desired
namespace in each relevant portion of their application with the keyword using. Programmers
can also create their own namespaces (usually for creating reusable library code) and activate each
namespace as applicable. In the previous examples, we’ve seen the simple use of the std namespace
to include cin and cout, which are instances of istream and ostream (whose definitions are
found in <iostream>). Let’s review how we can create namespaces ourselves:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex11.cpp

#include <iostream>

// using namespace std; // Do not open entire std namespace

using std::cout; // Instead, activate individual elements

using std::endl; // within the namespace as needed

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex11.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter01/Chp1-Ex11.cpp

Recapping namespace basics 23

namespace DataTypes

{

 int total;

 class LinkList

 { // full class definition …

 };

 class Stack

 { // full class definition …

 };

};

namespace AbstractDataTypes

{

 class Stack

 { // full class definition …

 };

 class Queue

 { // full class description …

 };

};

// Add entries to the AbstractDataTypes namespace

namespace AbstractDataTypes

{

 int total;

 class Tree

 { // full class definition …

 };

};

int main()

{

 using namespace AbstractDataTypes; //activate namespace

 using DataTypes::LinkList; // activate only LinkList

 LinkList list1; // LinkList is found in DataTypes

Understanding Basic C++ Assumptions24

 Stack stack1; // Stack is found in AbstractDataTypes

 total = 5; // total from active AbstractDataTypes

 DataTypes::total = 85;// specify non-active mbr., total

 cout << "total " << total << "\n";

 cout << "DataTypes::total " << DataTypes::total;

 cout << endl;

 return 0;

}

In the second line of the preceding code (which is commented out), we notice the keyword using
applied to indicate that we’d like to use or activate the entire std namespace. Preferably, on the
following two lines of code, we can instead activate only the elements in the standard namespace that
we will be needing, such as std::cout or std::endl. We can utilize using to open existing
libraries (or individual elements within those libraries) that may contain useful classes; the keyword
using activates the namespace to which a given library may belong. Next in the code, a user specified
namespace is created called DataTypes, using the namespace keyword. Within this namespace
exists a variable total, and two class definitions: LinkList and Stack. Following this namespace, a
second namespace, AbstractDataTypes, is created and includes two class definitions: Stack and
Queue. Additionally, the namespace AbstractDataTypes is augmented by a second occurrence
of the namespace definition in which a variable total and a class definition for Tree are added.

In the main() function, first, the AbstractDataTypes namespace is opened with the using
keyword. This activates all names in this namespace. Next, the keyword using is combined with the
scope resolution operator (::) to only activate the LinkList class definition from the DataTypes
namespace. Had there also been a LinkList class within the AbstractDataType namespace,
the initial visible LinkList would now be hidden by the activation of DataTypes::LinkList.

Next, a variable of type LinkList is declared, whose definition comes from the DataTypes
namespace. A variable of type Stack is next declared; though both namespaces have a Stack class
definition, there is no ambiguity since only one Stack has been activated. Next, we use cin to read
into total, which is active from the AbstractDataTypes namespace. Lastly, we use the scope
resolution operator to explicitly read into DataTypes::total, a variable that would otherwise
be hidden. One caveat to note: should two or more namespaces contain the same identifier, the one
last opened will preside, hiding all previous occurrences.

It is considered good practice to activate only the elements of a namespace we wish to utilize. From
the aforementioned example, we can see potential ambiguity that can otherwise arise.

Summary 25

Summary
In this chapter, we reviewed core C++ syntax and non-OO language features to refresh your existing
skill set. These features include basic language syntax, basic I/O with <iostream>, control structures/
statements/looping, operator basics, function basics, simple user defined types, and namespaces.
Most importantly, you are now ready to move to the next chapter, in which we will expand on some
of these ideas with additional language necessities such as const qualified variables, understanding
and using prototypes (including with default values), and function overloading.

The ideas in the next chapter begin to move us closer to our goal for OO programming, as many of
these aggregate skills are used often and matter of factly as we move deeper into the language. It is
important to remember that in C++, you can do anything, whether you mean to do so or not. There
is great power in the language, and having a solid base for its many nuances and features is crucial.
Over the next couple of chapters, the solid groundwork will be laid with an arsenal of non-OO C++
skills, so that we may realistically engage OO programming in C++ with a high level of understanding
and success.

Questions
1. Describe a situation in which flush, rather than endl, may be useful for clearing the contents

of the buffer associated with cout.

2. The unary operator ++ can be used as a pre- or post-increment operator, such as i++ or ++i.
Can you describe a situation in which choosing a pre- versus post-increment for ++ would
have different consequences in the code?

3. Create a simple program using a struct or class to make a user defined type for Book.
Add data members for title, author, and number of pages. Create two variables of type Book
and use the dot operator . to fill in the data members for each such instance. Use iostreams
to both prompt the user for input values, and to print each Book instance when complete. Use
only features covered in this chapter.

2
A d d i n g L a n g u a g e

N e c e s s i t i e s

This chapter will introduce necessary non-OO features of C++ that are critical building blocks for
C++’s object-oriented features. The features presented in this chapter represent topics that you will
see matter-of-factly used from this point onward in the book. C++ is a language shrouded in areas of
gray; from this chapter forward, you will become versed in not only language features, but in language
nuances. The goal of this chapter will be to begin enhancing your skills from those of an average C++
programmer to one who is capable of operating among language subtleties successfully while creating
maintainable code.

In this chapter, we will cover the following main topics:

• The const qualifier

• Function prototyping

• Function overloading

By the end of this chapter, you will understand non-OO features such as the const qualifier, function
prototyping (including using default values), and function overloading (including how standard type
conversion affects overloaded function choices and may create potential ambiguities). Many of these
seemingly straightforward topics include an assortment of interesting details and nuances. These skills
will be necessary in order to move forward with the next chapters in the book successfully.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter02. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter02
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter02
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter02

Adding Language Necessities28

program in Chapter 2, Adding Language Necessities, can be found in the subdirectory Chapter02
in a file named Chp2-Ex1.cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3CM65dF.

Using the const and constexpr qualifiers
In this section, we will add the const and constexpr qualifiers to variables, and discuss how they
can be added to functions in both their input parameters and as return values. These qualifiers will be
used quite liberally as we move forward in the C++ language. The use of const and constexpr
can enable values to be initialized, yet never again modified. Functions can advertise that they will not
modify their input parameters, or that their return value may only be captured (but not modified) by
using const or constexpr. These qualifiers help make C++ a more secure language. Let’s take a
look at const and constexpr in action.

const and constexpr variables

A const qualified variable is a variable that must be initialized, and may never be assigned a new
value. It is seemingly a paradox to pair the usage of const and a variable together – const implies
not to change, yet the concept of a variable is to inherently hold different values. Nonetheless, it is
useful to have a strongly type-checked variable whose one and only value can be determined at run
time. The keyword const is added to the variable declaration.

Similarly, a variable declared using constexpr is a constant qualified variable – one that may be
initialized and never assigned a new value. The usage of constexpr is becoming preferred whenever
its use is possible.

In some situations, the value of a constant is not known at compile time. An example might be if
user input or the return value of a function is used to initialize a constant. A const variable may be
easily initialized at runtime. A constexpr can often, but not always be initialized at runtime. We
will consider various scenarios in our example.

Let’s consider a few examples in the following program. We will break this program into two segments
for a more targeted explanation, however, the full program example can be found in its entirety at
the following link:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex1.cpp

#include <iostream>

#include <iomanip>

#include <cstring> // though, we'll prefer std:: string,

// char [] demos the const qualifier easily in cases below

https://bit.ly/3CM65dF
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex1.cpp

Using the const and constexpr qualifiers 29

using std::cout; // preferable to: using namespace std;

using std::cin;

using std::endl;

using std::setw;

// simple const variable declaration and initialization

// Convention will capitalize those known at compile time

// (those taking the place of a former macro #define)

const int MAX = 50;

// simple constexpr var. declaration and init. (preferred)

constexpr int LARGEST = 50;

constexpr int Minimum(int a, int b)

// function definition w formal parameters

{

 return (a < b)? a : b; // conditional operator ?:

}

In the previous program segment, notice how we declare a variable with the const qualifier preceding
the data type. Here, const int MAX = 50; simply initializes MAX to 50. MAX may not be
modified via assignment later in the code. Out of convention, simple const and constexpr
qualified variables (taking the place of once used #define macros) are often capitalized, whereas
values that are calculated (or might be calculated) are declared using typical naming conventions.
Next, we introduce a constant variable using constexpr int LARGEST = 50; to declare
a variable that likewise cannot be modified. This option is becoming the preferred usage but is not
always possible to utilize.

Next, we have the definition for function Minimum(); notice the use of the ternary conditional
operator ?: in this function body. Also notice that this function’s return value is qualified with
constexpr (we will examine this shortly). Next, let’s examine the body of the main() function
as we continue with the remainder of this program:

int main()

{

 int x = 0, y = 0;

 // Since 'a', 'b' could be calculated at runtime

 // (such as from values read in), we will use lowercase

 constexpr int a = 10, b = 15;// both 'a', 'b' are const

 cout << "Enter two <int> values: ";

Adding Language Necessities30

 cin >> x >> y;

 // const variable initialized w return val. of a fn.

 const int min = Minimum(x, y);

 cout << "Minimum is: " << min << endl;

 // constexpr initialized with return value of function

 constexpr int smallest = Minimum(a, b);

 cout << "Smallest of " << a << " " << b << " is: "

 << smallest << endl;

 char bigName[MAX] = {""}; // const used to size array

 char largeName[LARGEST] = {""}; // same for constexpr

 cout << "Enter two names: ";

 cin >> setw(MAX) >> bigName >> setw(LARGEST) >>

 largeName;

 const int namelen = strlen(bigName);

 cout << "Length of name 1: " << namelen << endl;

 cout << "Length of name 2: " << strlen(largeName) <<

 endl;

 return 0;

}

In main(), let’s consider the sequence of code in which we prompt the user to "Enter two
values: " into variables x and y, respectively. Here, we call a function Minimum(x,y) and pass
as actual parameters our two values x and y, which were just read in using cin and the extraction
operator >>. Notice that alongside the const variable declaration of min, we initialize min with
the return value of the function call Minimum(). It is important to note that setting min is bundled
as a single declaration and initialization. Had this been broken into two lines of code – a variable
declaration followed by an assignment – the compiler would have flagged an error. Variables qualified
with const may only be initialized with a value, and never assigned a value after declaration.

Next, we initialize smallest with the return value of function Minimum(a, b);. Notice that
the parameters a and b are literal values that can be determined at compile time. Also notice the
return value of the Minimum() function has been qualified with constexpr. This qualification
is necessary in order for constexpr smallest to be initialized with the function’s return value.
Note that had we tried to pass x and y to Minimum() to set smallest, we would get an error,
as the values of x and y are not literal values.

In the last sequence of code in the previous example, notice that we use MAX (defined in the earlier
segment of this full program example) to define a size for the fixed-sized array bigName in the
declaration char bigName[MAX];. We similarly use LARGEST to define a size for the fixed-size

Using the const and constexpr qualifiers 31

array largeName. Here we see that either the const or constexpr can be used to size an array
in this manner. We then further use MAX in setw(MAX) and LARGEST in setw(LARGEST)
to ensure that we do not overflow bigName or largeName, while reading keyboard input with
cin using the extraction operator >>. Finally, we initialize variable const int namelen with
the return value of function strlen(bigname) and print this value out using cout. Note that
because strlen() is not a function whose value is qualified with constexpr, we cannot use
this return value to initialize a constexpr.

The output to accompany the aforementioned full program example is as follows:

Enter two <int> values: 39 17

Minimum is: 17

Smallest of 10 15 is: 10

Enter two names: Gabby Dorothy

Length of name 1: 5

Length of name 2: 7

Now that we have seen how to const and constexpr qualify variables, let’s consider constant
qualification with functions.

const qualification with functions

The keywords const and constexpr can also be used in conjunction with functions. These
qualifiers can be used among parameters to indicate that the parameters themselves will not be modified.
This is a useful feature—the caller of the function will understand that the function will not modify
input parameters qualified in these manners. However, because non-pointer (and non-reference)
variables are passed by value to functions as copies of the actual parameters on the stack, const or
constexpr qualifying these inherent copies of parameters does not serve a purpose. Hence, const
or constexpr qualifying parameters that are of standard data types is not necessary.

The same principle applies to return values from functions. A return value from a function can be
const or constexpr qualified; however, unless a pointer (or reference) is returned, the item
passed back on the stack as the return value is a copy. For this reason, const qualified return values
are more meaningful when the return type is a pointer to a constant object (which we will cover in
Chapter 3, Indirect Addressing: Pointers, and beyond). Note that a constexpr qualified return value
is required of a function whose return value will be used to initialize a constexpr variable, as we
have seen in our previous example. As one final use of const, we can utilize this keyword when we
move onto OO details for a class to specify that a particular member function will not modify any
data members of that class. We will look at this scenario in Chapter 5, Exploring Classes in Detail.

Adding Language Necessities32

Now that we understand the use of the const and constexpr qualifiers for variables and have
seen potential uses of const and constexpr in conjunction with functions, let us move onward
to the next language feature in this chapter: function prototypes.

Working with function prototypes
In this section, we will examine the mechanics of function prototyping, such as necessary placement
in files and across multiple files for greater program flexibility. We will also add optional names to
prototype arguments, as well as understand how and why we may choose to add default values to C++
prototypes. Function prototypes ensure C++ code is strongly type-checked.

Prior to proceeding to function prototypes, let’s take a moment to review some necessary programming
terms. A function definition refers to the body of code comprising a function, whereas a declaration
of a function (also known as a forward declaration) merely introduces a function name with its
return type and argument types. Forward declarations allow the compiler to perform strong type
checking between the function call and its definition by instead comparing the call with the forward
declaration. Forward declarations are useful because function definitions do not always appear in a
file prior to a function call; sometimes, function definitions appear in a separate file from their calls.

Defining function prototypes

A function prototype is a forward declaration of a function that describes how a function should be
correctly invoked. A prototype ensures strong type checking between a function call and its definition.
A simple function prototype consists of the following:

• Function’s return type

• Function’s name

• Function’s type and number of arguments

A function prototype allows a function call to precede the function’s definition or allows for calls to
functions that exist in separate files. As we learn about more C++ language features, such as exceptions,
we will see that additional elements contribute to a function’s extended prototype (and extended
signature). For now, let’s examine a simple example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex2.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std:: endl;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex2.cpp

Working with function prototypes 33

[[nodiscard]] int Minimum(int, int); // fn. prototype

int main()

{

 int x = 5, y = 89;

 // function call with actual parameters

 cout << Minimum(x, y) << endl;

 return 0;

}

[[nodiscard]] int Minimum(int a, int b) // fn. definition

 // with formal parameters

{

 return (a < b)? a : b;

}

Notice that we prototype int Minimum(int, int); near the beginning of the aforementioned
example. This prototype lets the compiler know that any calls to Minimum() should take two integer
arguments and should return an integer value (we’ll discuss type conversions later in this section).

Also notice the use of [[nodiscard]] preceding the return type of the function. This indicates
that the programmer should store the return value or otherwise utilize the return value (such as in an
expression). The compiler will issue a warning if the return value of this function is ignored.

Next, in the main() function, we call the function Minimum(x, y). At this point, the compiler
checks that the function call matches the aforementioned prototype with respect to type and number of
arguments, and return type. Namely, that the two arguments are integers (or could easily be converted
to integers) and that the return type is an integer (or could easily be converted to an integer). The return
value will be utilized as a value to print using cout. Lastly, the function Minimum() is defined
in the file. Should the function definition not match the prototype, the compiler will raise an error.

The existence of the prototype allows the call of a given function to be fully type-checked prior to
the function’s definition being seen by the compiler. The current example is of course contrived to
demonstrate this point; we could have instead switched the order in which Minimum() and main()
appear in the file. However, imagine that the definition of Minimum() was contained in a separate
file (the more typical scenario). In this case, the prototype will appear at the top of the file that will
call this function (along with header file inclusions) so that the function call can be fully type-checked
against the prototype.

In the aforementioned multiple file scenario, the file containing the function definition will be separately
compiled. It will then be the linker’s job to ensure that when multiple files are linked together, the
function definition and all prototypes match so that the linker can resolve any references to such

Adding Language Necessities34

function calls. Should the prototypes not match the function definition, the linker will not be able to
link the various sections of code together into one compiled unit.

Let’s take a look at this example’s output:

5

Now that we understand function prototype basics, let’s see how we can add optional argument names
to function prototypes.

Naming arguments in function prototypes

Function prototypes may optionally contain names that may differ from those in either the formal or
actual parameter lists. Argument names are ignored by the compiler, yet can often enhance readability.
Let’s revisit our previous example, adding optional argument names in the function prototype:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex3.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

// function prototype with optional argument names

[[nodiscard]] int Minimum(int arg1, int arg2);

int main()

{

 int x = 5, y = 89;

 cout << Minimum(x, y) << endl; // function call

 return 0;

}

[[nodiscard]] int Minimum(int a, int b) // fn. definition

{

 return (a < b)? a : b;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex3.cpp

Working with function prototypes 35

This example is nearly identical to the one preceding it. However, notice that the function prototype
contains named arguments arg1 and arg2. These identifiers are immediately ignored by the compiler.
As such, these named arguments do not need to match either the formal or actual parameters of the
function and are optionally present merely to enhance readability.

The output to accompany this example is the same as the previous example:

5

Next, let’s move forward with our discussion by adding a useful feature to function prototypes: default
values.

Adding default values to function prototypes

Default values may be specified in function prototypes. These values will be used in the absence of
actual parameters in the function call and will serve as the actual parameters themselves. Default
values adhere to the following criteria:

• Default values must be specified from right to left in the function prototype, without omitting
any values.

• Actual parameters are substituted from left to right in the function call; hence the right to left
order for default value specification in the prototype is significant.

A function prototype may have all, some, or none of its values filled with default values, as long as the
default values adhere to the aforementioned specifications.

Let’s see an example using default values:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex4.cpp

#include <iostream>

using std::cout; // preferred to: using namespaces std;

using std::endl;

// fn. prototype with one default value

[[nodiscard]] int Minimum(int arg1, int arg2 = 100000);

int main()

{

 int x = 5, y = 89;

 cout << Minimum(x) << endl; // function call with only

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex4.cpp

Adding Language Necessities36

 // one argument (uses default)

 cout << Minimum(x, y) << endl; // no default vals used

 return 0;

}

[[nodiscard]] int Minimum(int a, int b) // fn. definition

{

 return (a < b)? a : b;

}

In this example, notice that a default value is added to the rightmost argument in the function
prototype for int Minimum(int arg1, int arg2 = 100000);. This means that when
Minimum() is called from main(), it may be called with either one argument, Minimum(x), or
with two arguments, Minimum(x, y). When Minimum() is called with a single argument, the
single argument is bound to the leftmost argument in the formal parameters of the function, and the
default value is bound to the next sequential argument in the formal parameter list. However, when
Minimum() is called with two arguments, both of the actual parameters are bound to the formal
parameters in the function; the default value is not used.

Here is the output for this example:

5

5

Now that we have a handle on default values within a function prototype, let’s expand on this idea by
using different default values with prototypes in various program scopes.

Prototyping with different default values in different scopes

Functions may be prototyped in different scopes with different default values. This allows functions
to be built generically and customized through prototypes within multiple applications or for use in
multiple sections of code.

Here is an example illustrating multiple prototypes for the same function (in different scopes) using
different default values:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex5.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex5.cpp

Working with function prototypes 37

// standard function prototype

[[nodiscard]] int Minimum(int, int);

void Function1(int x)

{

 // local prototype with default value

 [[nodiscard]] int Minimum(int arg1, int arg2 = 500);

 cout << Minimum(x) << endl;

}

void Function2(int x)

{

 // local prototype with default value

 [[nodiscard]] int Minimum(int arg1, int arg2 = 90);

 cout << Minimum(x) << endl;

}

[[nodiscard]] int Minimum(int a, int b) // fn. definition

{

 return (a < b)? a : b;

}

int main()

{

 Function1(30);

 Function2(450);

 return 0;

}

In this example, notice that int Minimum(int, int); is prototyped near the top of the
file. Then notice that Minimum() is re-prototyped in the more local scope of Function1()
as int Minimum(int arg1, int arg2 = 500);, specifying a default value of 500
for its rightmost argument. Likewise, in the scope of Function2(), function Minimum() is
re-prototyped as int Minimum(int arg1, int arg2 = 90);, specifying a default
value of 90 in the rightmost argument. When Minimum() is called from within Function1()
or Function2(), the local prototypes in each of these function scopes, respectively, will be used
– each with their own default values.

Adding Language Necessities38

In this fashion, specific areas of a program may be easily customized with default values that may be
meaningful within a specific portion of an application. However, be sure to only employ re-prototyping
of a function with individualized default values within the scope of a calling function to ensure that
this customization can be easily contained within the safety of a very limited scope. Never re-prototype
a function in global scope with differing default values – this could lead to unexpected and error-
prone results.

The output for the example is as follows:

30

90

Having now explored function prototypes with respect to default usage in single and multiple files,
using default values in prototypes, and re-prototyping functions in different scopes with individual
default values, we are now able to move forward with the last major topic in this chapter: function
overloading.

Understanding function overloading
C++ allows for two or more functions that share a similar purpose, yet differ in the types or number of
arguments they take, to co-exist with the same function name. This is known as function overloading.
This allows more generic function calls to be made, leaving the compiler to choose the correct version
of the function based on the type of the variable (object) using the function. In this section, we will add
default values to the basics of function overloading to provide flexibility and customization. We will
also learn how standard type conversions may impact function overloading, and potential ambiguities
that may arise (as well as how to resolve those types of uncertainties).

Learning the basics of function overloading

When two or more functions with the same name exist, the differentiating factor between these
similar functions will be their signature. By varying a function’s signature, two or more functions
with otherwise identical names may exist in the same namespace. Function overloading depends on
the signature of a function as follows:

• The signature of a function refers to a function’s name, plus its type and number of arguments.

• A function’s return type is not included as part of its signature.

• Two or more functions with the same purpose may share the same name, provided that their
signatures differ.

A function’s signature helps provide an internal, “mangled” name for each function. This encoding
scheme guarantees that each function is uniquely represented internally to the compiler.

Understanding function overloading 39

Let’s take a few minutes to understand a slightly larger example that will incorporate function
overloading. To simplify the explanation, this example is broken into three segments; nonetheless,
the full program can be found in its entirety at the following link:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex6.cpp

#include <iostream>

#include <cmath>

using std::cout; // preferred to: using namespace std;

using std::endl;

constexpr float PI = 3.14159;

class Circle // simple user defined type declarations

{

public:

 float radius;

 float area;

};

class Rectangle

{

public:

 float length;

 float width;

 float area;

};

void Display(Circle); // 'overloaded' fn. prototypes

void Display(Rectangle); // since they differ in signature

At the beginning of this example, notice that we include the math library with #include <cmath>,
to provide access to basic math functions, such as pow(). Next, notice the class definitions for
Circle and Rectangle, each with relevant data members (radius and area for Circle;
length, width, and area for Rectangle). Once these types have been defined, prototypes
for two overloaded Display() functions are shown. Since the prototypes for the two display
functions utilize user defined types Circle and Rectangle, it is important that Circle and

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex6.cpp

Adding Language Necessities40

Rectangle have both previously been defined. Now, let’s examine the body of the main() function
as we continue with the next segment of this program:

int main()

{

 Circle myCircle;

 Rectangle myRect;

 Rectangle mySquare;

 myCircle.radius = 5.0;

 myCircle.area = PI * pow(myCircle.radius, 2.0);

 myRect.length = 2.0;

 myRect.width = 4.0;

 myRect.area = myRect.length * myRect.width;

 mySquare.length = 4.0;

 mySquare.width = 4.0;

 mySquare.area = mySquare.length * mySquare.width;

 Display(myCircle); // invoke: void display(Circle)

 Display(myRect); // invoke: void display(Rectangle)

 Display(mySquare);

 return 0;

}

Now, in the main() function, we declare a variable of type Circle and two variables of type
Rectangle. We then proceed to load the data members for each of these variables in main() using
the dot operator (.) with appropriate values. Next in main(), there are three calls to Display(). The
first function call, Display(myCircle), will call the version of Display() that takes a Circle
as a formal parameter because the actual parameter passed to this function is in fact of user defined
type Circle. The next two function calls, Display(myRect) and Display(mySquare),
will call the overloaded version of Display() that takes a Rectangle as a formal parameter
because the actual parameters passed in each of these two calls are of type Rectangle themselves.
Let’s complete this program by examining both function definitions for Display():

void Display (Circle c)

{

 cout << "Circle with radius " << c.radius;

Understanding function overloading 41

 cout << " has an area of " << c.area << endl;

}

void Display (Rectangle r)

{

 cout << "Rectangle with length " << r.length;

 cout << " and width " << r.width;

 cout << " has an area of " << r.area << endl;

}

Notice in the final segment of this example that both versions of Display() are defined. One of the
functions takes a Circle as the formal parameter, and the overloaded version takes a Rectangle
as its formal parameter. Each function body accesses data members specific to each of its formal
parameter types, yet the overall functionality of each function is similar in that, in each case, a specific
shape (Circle or Rectangle) is displayed.

Let’s take a look at the output for this full program example:

Circle with radius 5 has an area of 78.5397

Rectangle with length 2 and width 4 has an area of 8

Rectangle with length 4 and width 4 has an area of 16

Next, let’s add to our discussion of function overloading by understanding how standard type conversion
allows for one function to be used by multiple data types. This can allow function overloading to be
used more selectively.

Eliminating excessive overloading with standard type conversion

Basic language types can be converted from one type to another automatically by the compiler. This
allows the language to supply a smaller set of operators to manipulate standard types than would
otherwise be necessary. Standard type conversion can also eliminate the need for function overloading
when preserving the exact data type of the function parameters is not crucial. Promotion and demotion
between standard types are often handled transparently, without explicit casting, in expressions
including assignments and operations.

Here is an example illustrating simple standard type conversions. This example does not include
function overloading:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex7.cpp

#include <iostream>

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex7.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex7.cpp

Adding Language Necessities42

using std::cout; // preferred to: using namespace std;

using std::endl;

int Maximum(double, double); // function prototype

int main()

{

 int result = 0;

 int m = 6, n = 10;

 float x = 5.7, y = 9.89;

 result = Maximum(x, y);

 cout << "Result is: " << result << endl;

 cout << "The maximum is: " << Maximum(m, n) << endl;

 return 0;

}

int Maximum(double a, double b) // function definition

{

 return (a > b)? a : b;

}

In this example, the Maximum() function takes two double precision floating-point numbers as
parameters, and the function returns the result as an int. First, notice that int Maximum(double,
double); is prototyped near the top of the program and is defined at the bottom of this same file.

Now, in the main() function, notice that we have three int variables defined: result, a, and
x. The latter two are initialized with values of 6 and 10, respectively. We also have two floats defined
and initialized: float x = 5.7, y = 9.89;. In the first call to function Maximum(), we
use x and y as actual parameters. These two floating-point numbers are promoted to double precision
floating-point numbers, and the function is called as expected.

This is an example of standard type conversion. Let’s notice that the return value of int
Maximum(double, double) is an integer – not a double. This means that the value returned
from this function (either formal parameter a or b) will be a copy of a or b, first truncated to an
integer before being used as a return value. This return value is neatly assigned to result, which
has been declared an int in main(). These are all examples of standard type conversion.

Understanding function overloading 43

Next, Maximum() is called with actual parameters m and n. Similar to the previous function call,
the integers m and n are promoted to doubles and the function is called as expected. The return value
will also be truncated back to an int, and this value will be passed to cout for printing as an integer.

The output for this example is as follows:

Result is: 9

The maximum is: 10

Now that we understand how function overloading and standard type conversions work, let’s examine
a situation where the two combined could create an ambiguous function call.

Ambiguities arising from function overloading and type
conversion

When a function is invoked and the formal and actual parameters match exactly in type, no ambiguities
arise with respect to which of a selection of overloaded functions should be called – the function with
the exact match is the obvious choice. However, when a function is called and the formal and actual
parameters differ in type, standard type conversion may be performed on the actual parameters, as
necessary. There are situations, however, when the formal and actual parameter types do not match,
and overloaded functions exist. In these cases, it may be difficult for the compiler to select which
function should be selected as the best match. In these cases, a compiler error is generated indicating
that the available choices paired with the function call itself are ambiguous. Explicit type casting or
re-prototyping the desired choice in a more local scope can help correct these otherwise ambiguous
situations.

Let’s review a simple function illustrating the function overloading, standard type conversion, and
potential ambiguity:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex8.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

int Maximum (int, int); // overloaded function prototypes

float Maximum (float, float);

int main()

{

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex8.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter02/Chp2-Ex8.cpp

Adding Language Necessities44

 char a = 'A', b = 'B';

 float x = 5.7, y = 9.89;

 int m = 6, n = 10;

 cout << "The max is: " << Maximum(a, b) << endl;

 cout << "The max is: " << Maximum(x, y) << endl;

 cout << "The max is: " << Maximum(m, n) << endl;

 // The following (ambiguous) line generates a compiler

 // error - there are two equally good fn. candidates

 // cout << "The maximum is: " << Maximum(a, y) << endl;

 // We can force a choice by using an explicit typecast

 cout << "The max is: " <<

 Maximum(static_cast<float>(a), y) << endl;

 return 0;

}

int Maximum (int arg1, int arg2) // function definition

{

 return (arg1 > arg2)? arg1 : arg2;

}

float Maximum (float arg1, float arg2) // overloaded fn.

{

 return (arg1 > arg2)? arg1 : arg2;

}

In this preceding simple example, two versions of Maximum() are both prototyped and defined.
These functions are overloaded; notice that their names are the same, but they differ in the types of
arguments that they utilize. Also note that their return types differ; however, since return type is not
part of a function’s signature, the return types need not match.

Summary 45

Next, in main(), two variables each of type char, int, and float are declared and initialized.
Next, Maximum(a, b) is called and the two char actual parameters are converted to integers
(using their ASCII equivalents) to match the Maximum(int, int) version of this function.
This is the match closest to the char argument types of a and b: Maximum(int, int) versus
Maximum(float, float). Then, Maximum(x, y) is called with two floats, and this call will
exactly match the Maximum(float, float) version of this function. Similarly, Maximum(m,
n) will be called and will perfectly match the Maximum(int, int) version of this function.

Now, notice the next function call (which, not coincidentally, is commented out): Maximum(a, y).
Here, the first actual parameter perfectly matches the first argument in Maximum(int, int),
yet the second actual parameter perfectly matches the second argument in Maximum(float,
float). And for the non-matching parameter, a type conversion could be applied – but it is not!
Instead, this function call is flagged by the compiler as an ambiguous function call since either of the
overloaded functions could be an appropriate match.

On the line of code Maximum((float) a, y), notice that the function call to Maximum((float)
a, y) forces an explicit typecast to the first actual parameter a, resolving any potential ambiguity
of which overloaded function to call. With parameter a now cast to be a float, this function call
easily matches Maximum(float, float), and is no longer considered ambiguous. Type casting
can be a tool to disambiguate crazy situations such as these.

Here is the output to accompany our example:

The maximum is: 66

The maximum is: 9.89

The maximum is: 10

The maximum is: 65

Summary
In this chapter, we learned about additional non-OO C++ features that are essential building blocks
needed to base C++’s object-oriented features. These language necessities include using the const
qualifier, understanding function prototypes, using default values in prototypes, function overloading,
how standard type conversion affects overloaded function choices, and how possible ambiguities may
arise (and be resolved).

Very importantly, you are now ready to move forward to the next chapter in which we will explore indirect
addressing using pointers in reasonable detail. The matter-of-fact skills that you have accumulated in
this chapter will help you more easily navigate each progressively more detailed chapter to ensure you
are ready to easily tackle the OO concepts starting in Chapter 5, Exploring Classes in Detail.

Remember, C++ is a language filled with more gray areas than most other languages. The subtle nuances
you are accumulating with your skill set will enhance your value as a C++ developer – one who can not
only navigate and understand existing nuanced code but one who can create easily maintainable code.

Adding Language Necessities46

Questions
1. What is the signature of a function and how is a function’s signature related to name mangling

in C++? How do you think this facilitates how overloaded functions are handled internally
by the compiler?

2. Write a small C++ program to prompt a user to enter information regarding a Student, and
print out the data. Use the following steps to write your code:

a. Create a data type for Student using a class or struct. Student information
should minimally include firstName, lastName, gpa, and the currentCourse
in which the Student is registered. This information may be stored in a simple class.
You may utilize either char arrays to represent the string fields since we have not yet
covered pointers, or you may (preferably) utilize the string type. Also, you may read
in this information in the main() function rather than creating a separate function to
read in the data (since the latter will require knowledge of pointers or references). Please
do not use global (that is, external variables).

b. Create a function to print out all the data for the Student. Remember to prototype this
function. Use a default value of 4.0 for gpa in the prototype of this function. Call this
function two ways: once passing in each argument explicitly, and once using the default gpa.

c. Now, overload the print function with one that either prints out selected data (for example,
lastName and gpa) or with a version of this function that takes a Student as an
argument (but not a pointer or reference to a Student – we’ll do that later). Remember
to prototype this function.

d. Use iostreams for I/O.

3
Indirect Addressing – Pointers

This chapter will provide a thorough understanding of how to utilize pointers in C++. Though it is
assumed that you have some prior experience with indirect addressing, we will start at the beginning.
Pointers are a ground-level and pervasive feature of the language – one you must thoroughly understand
and be able to utilize with ease. Many other languages use indirect addressing through references
alone; however, in C++ you must roll up your sleeves and understand how to use and return heap
memory correctly and effectively with pointers. You will see pointers heavily used throughout code
from other programmers; there is no sensible way to ignore their use. Misusing pointers can create
the most difficult errors to find in a program. A thorough understanding of indirect addressing using
pointers is a necessity in C++ to create successful and maintainable code.

In this chapter, you will additionally preview the concept of a smart pointer, which can help alleviate
the difficulty and potential pitfalls that may easily arise with native pointers. Nonetheless, you will
need to have a facility with all types of pointers in order to successfully use existing class libraries or
to integrate with or maintain existing code.

The goal of this chapter will be to build or enhance your understanding of indirect addressing
using pointers so that you can easily understand and modify others’ code, as well as write original,
sophisticated, error-free C++ code yourself.

In this chapter, we will cover the following main topics:

• Pointer basics, including access, and memory allocation and release – for standard and user
defined types

• Dynamically allocating arrays of 1, 2, and N dimensions, and managing their memory release

• Pointers as arguments to functions and as return values from functions

• Adding the const qualifier to pointer variables

• Using void pointers – pointers to objects of unspecified types

• Looking ahead to smart pointers to alleviate typical pointer usage errors

Indirect Addressing – Pointers48

By the end of this chapter, you will understand how to allocate memory from the heap using new()
for simple and complex data types, as well as mark the memory for return to the heap management
facility using delete(). You will be able to dynamically allocate arrays of any data type and of
any number of dimensions, as well as understand basic memory management for releasing memory
when it is no longer needed in your applications, to avoid memory leakage. You will be able to pass
pointers as arguments to functions with any level of indirection – that is, pointers to data, pointers to
pointers to data, and so on. You will understand how and why to combine the const qualification with
pointers – to the data, to the pointer itself, or to both. You will additionally understand how to declare
and utilize generic pointers with no type – void pointers – and understand the situations in which
they may prove useful. Lastly, you will preview the concept of a smart pointer to alleviate potential
pointer conundrums and usage errors. These skills will be necessary in order to move forward with
the next chapters in the book successfully.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter03. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter03 in a file named Chp3-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3AtBPlV.

Understanding pointer basics and memory allocation
In this section, we will review pointer basics as well as introduce operators applicable to pointers, such
as the address-of operator, the dereference operator, and operators new() and delete(). We will
employ the address-of operator & to calculate the address of an existing variable, and conversely, we
will apply the dereference operator * to a pointer variable to go to the address contained within the
variable. We will see examples of memory allocation on the heap, as well as how to mark that same
memory for potential reuse by returning it to the free list when we are done with it.

Using pointer variables allows our applications to have greater flexibility. At runtime, we can determine
the quantity of a certain data type we may need (such as in a dynamically allocated array), organize data
in data structures that facilitate sorting (such as in a linked list), or gain speed by passing an address
of a large piece of data to a function (rather than passing a copy of the entire piece of data itself).
Pointers have many uses, and we will see many examples throughout this chapter and throughout the
course. Let’s start at the beginning with pointer basics.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter03
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter03
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter03
https://bit.ly/3AtBPlV

Understanding pointer basics and memory allocation 49

Revisiting pointer basics

First and foremost, let us review the meaning of a pointer variable. A pointer variable is one that may
contain an address, and memory at that address may contain relevant data. It is typical to say that the
pointer variable points to an address containing the relevant data. The value of the pointer variable
itself is an address, not the data we are after. When we then go to that address, we find the data of
interest. This is known as indirect addressing. To summarize, the content of a pointer variable is
an address; if you then go to that address, you find the data. This is for a single level of indirection.

A pointer variable may point to the existing memory of a non-pointer variable, or it may point to
memory that is dynamically allocated on the heap. The latter case is the most usual situation. Unless
a pointer variable is properly initialized or assigned a value, the content of the pointer variable is
meaningless and does not represent a usable address. A large mistake can be assuming that a pointer
variable has been properly initialized when it may not have been. Let us look at some basic operators
that are useful with pointers. We will start with the address-of & and the dereference operator *.

Using the address-of and dereference operators

The address-of operator & can be applied to a variable to determine its location in memory. The
dereference operator * can be applied to a pointer variable to obtain the value of the data at the valid
address contained within the pointer variable.

Let’s see a simple example:

int x = 10;

int *pointerToX = nullptr; // pointer variable which may

 // someday point to an integer

pointerToX = &x; // assign memory loc. of x to pointerToX

cout << "x: " << x << " and *pointerToX: " << *pointerToX;

Notice in the previous segment of code that we first declare and initialize variable x to 10. Next, we
declare int *pointerToX = nullptr; to state that variable pointerToX may someday point
to an integer, yet it is initialized with a nullptr for safety. Had we not initialized this variable with a
nullptr, it would have been uninitialized and, therefore, would not contain a valid memory address.

Moving forward in the code to the line pointerToX = &x;, we assign the memory location
of x using the address-of operator (&) as the value of pointerToX, which is waiting to be filled
with a valid address of some integer. On the last line of this code fragment, we print out both x and
*pointerToX. Here, we are using the dereference operator * with the variable pointerToX. The
dereference operator tells us to go to the address contained in the variable pointerToX. At that
address, we find the data value of integer 10.

Indirect Addressing – Pointers50

Here is the output this fragment would generate as a full program:

X: 10 and *pointerToX: 10

Important note
For efficiency, C++ does not neatly initialize all memory with zeros when an application starts,
nor does C++ ensure that memory is conveniently empty, without values, when paired with a
variable. The memory simply has in it what was previously stored there; C++ memory is not
considered clean. Because memory is not given to a programmer clean in C++, the contents
of a newly declared pointer variable, unless properly initialized or assigned a value, should not
be construed to contain a valid address.

In the preceding example, we used the address-of operator & to calculate the address of an existing
integer in memory, and we set our pointer variable to point to that memory. Instead, let us introduce
operators new() and delete() to allow us to utilize dynamically allocated heap memory for use
with pointer variables.

Using operators new() and delete()

Operator new() can be utilized to obtain dynamically allocated memory from the heap. A pointer
variable may choose to point to memory that is dynamically allocated at runtime, rather than to point
to another variable’s existing memory. This gives us flexibility as to when we want to allocate the
memory, and how many pieces of such memory we may choose to have. Operator delete() can
then be applied to a pointer variable to mark memory we no longer require, returning the memory
to the heap management facility for later reuse in the application. It is important to understand that
once we delete() a pointer variable, we should no longer use the address contained within that
variable as a valid address.

Let’s take a look at simple memory allocation and release using a basic data type:

int *y = nullptr; // ptr y may someday point to an int

y = new int; // y pts to uninit. memory allocated on heap

*y = 17; // dereference y to load the newly allocated

 // memory with a value of 17

cout << "*y is: " << *y << endl;

delete y; // relinquish the allocated memory

// alternative ptr declaration, mem alloc., initialization

int *z = new int(22);

cout << "*z is: " << *z << endl;

delete z; // relinquish heap memory

Understanding pointer basics and memory allocation 51

In the previous program segment, we first declare pointer variable y with int *y = nullptr;.
Here, y may someday contain the address of an integer, yet it is meanwhile safely initialized with a
nullptr. On the next line, we allocate memory from the heap large enough to accommodate an
integer with y = new int;, storing that address in pointer variable y. Next, with *y = 17;,
we dereference y and store the value of 17 in the memory location pointed to by y. After printing
out the value of *y, we then decide that we are done with the memory y points to and return it to
the heap management facility by using operator delete(). It is important to note that variable y
still contains the memory address it obtained with its call to new(); however, y should no longer
use this relinquished memory.

Towards the end of the previous program segment, we alternatively declare pointer variable z, allocate
heap memory for it to point to, and initialize that memory with int *z = new int(22);.
Notice that we likewise deallocate the heap memory using delete z;.

Important note
It is the programmer’s responsibility to remember that once memory has been deallocated,
you should never again dereference that pointer variable; please understand that that address
may have been reissued to another variable through another call to new() elsewhere in the
program. A safeguard would be to reset a pointer to nullptr once its memory has been
deallocated with delete().

Now that we understand pointer basics with simple data types, let us move onward by allocating more
complex data types, as well as understanding the notation necessary to utilize and access members
of user defined data types.

Creating and using pointers to user defined types

Next, let us examine how to declare pointers to user defined types, and how to allocate their associated
memory on the heap. To dynamically allocate a user defined type, the pointer will first be declared of
that type. The pointer then must either be initialized or assigned a valid memory address – the memory
can either be that of an existing variable or newly allocated heap memory. Once the address for the
appropriate memory has been placed within the pointer variable, the -> operator may be utilized to
access struct or class members. Alternatively, the (*ptr).member notation may be used to access
struct or class members.

Let’s see a basic example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex1.cpp

#include <iostream>

using std::cout;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex1.cpp

Indirect Addressing – Pointers52

using std::endl;

struct collection

{

 int x;

 float y;

};

int main()

{

 collection *item = nullptr; // pointer declaration

 item = new collection; // memory allocation

 item->x = 9; // use -> to access data member x

 (*item).y = 120.77; // alt. notation to access member y

 cout << (*item).x << " " << item->y << endl;

 delete item; // relinquish memory

 return 0;

}

First, in the aforementioned program, we have declared a user defined type of collection, with data
members x and y. Next, we declare item as a pointer to that type with collection *item =
nullptr; while initializing the pointer with a nullptr for safety. Then, we allocate heap memory
for item to point to, using operator new(). Now, we assign values to the x and y members of item,
respectively, using either the -> operator or the (*). member access notation. In either case, the
notation means to first dereference the pointer and then choose the appropriate data member. It’s
pretty straightforward with the (*). notation – the parentheses show us that the pointer dereference
happens first, and then the choice of the member happens next with the . (member selection) operator.
The -> shorthand notation indicates pointer dereference followed by member selection. After we use
cout with the insertion operator << to print the appropriate values, we decide that we no longer
need the memory associated with item and issue a delete item; to mark this segment of heap
memory for return to the free list.

Let’s take a look at this example’s output:

9 120.77

Allocating and deallocating arrays at runtime 53

Let us also take a look at the memory layout for this example. The memory address (9000) used is
arbitrary – just an example address that may be generated by new().

Figure 3.1 – Memory model for Chp3-Ex1.cpp

Now that we know how to allocate and release memory for user defined types, let’s move forward
and dynamically allocate arrays of any data type.

Allocating and deallocating arrays at runtime
Arrays may be dynamically allocated so that their size may be determined at runtime. Dynamically
allocated arrays may be of any type, including user defined types. Determining the size of an array at
runtime can be a space-saving advantage and gives us programming flexibility. Rather than allocating
a fixed-sized array of the largest possible quantity needed (potentially wasting space), you can instead
allocate the necessary size determined by various factors at runtime. You have the additional flexibility
to delete and reallocate an array should the need arise to change an array’s size. Arrays of any number
of dimensions can be dynamically allocated.

In this section, we will examine how to dynamically allocate arrays of both basic and user defined
data types, and of single and multiple dimensions. Let’s get started.

Dynamically allocating single dimension arrays

Single-dimension arrays may be dynamically allocated so that their size may be determined at runtime.
We will use a pointer to represent each array and will allocate the required memory with operator
new(). Once the array is allocated, standard array notation can be used to access each array element.

Indirect Addressing – Pointers54

Let’s take a look at a simple example. We’ll break it into two segments, however, the full program
example can be found using the following link:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex2.cpp

#include <iostream>

using std::cout;

using std::cin;

using std:::endl;

using std::flush;

struct collection

{

 int x;

 float y;

};

int main()

{

 int numElements = 0;

 int *intArray = nullptr; // pointer declarations to

 collection *collectionArray = nullptr; // future arrays

 cout << "How many elements would you like? " << flush;

 cin >> numElements;

 intArray = new int[numElements]; // alloc. array bodies

 collectionArray = new collection[numElements];

 // continued …

In the first part of this program, we first declare a user defined type, collection, using a struct.
Next, we declare an integer variable to hold the number of elements we would like to prompt the
user to enter to select as the size for our two arrays. We also declare a pointer to an integer with int
*intArray;, and a pointer to a collection using collection *collectionArray;.
These declarations state that these pointers may one day each, respectively, point to one or more
integers, or one or more objects of type collection. These variables, once allocated, will comprise
our two arrays.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex2.cpp

Allocating and deallocating arrays at runtime 55

After prompting the user to enter the number of elements desired using cin and the extraction operator
>>, we dynamically allocate both an array of integers of that size and an array of collection of
that size. We use operator new() in both cases: intArray = new int[numElements];
and collectionArray = new collection[numElements];. The bracketed quantity
of numElements indicates that the respective chunks of memory requested for each data type will
be large enough to accommodate that many sequential elements of the relevant data type. That is,
intArray will have memory allocated to accommodate numElements multiplied by the size
needed for an integer. Note that an object’s data type is known because the data type of what will
be pointed to is included in the pointer declaration itself. The appropriate amount of memory for
collectionArray will be similarly provided for with its respective call to operator new().

Let’s continue by examining the remaining code in this example program:

 // load each array with values

 for (int i = 0; i < numElements; i++)

 {

 intArray[i] = i; // load each array w values using

 collectionArray[i].x = i; // array notation []

 collectionArray[i].y = i + .5;

 // alternatively use ptr notation to print values

 cout << *(intArray + i) << " ";

 cout << (*(collectionArray + i)).y << endl;

 }

 delete [] intArray; // mark memory for deletion

 delete [] collectionArray;

 return 0;

}

Next, as we continue this example with the for loop, notice that we are using a typical array notation
of [] to access each element of the two arrays, even though the arrays have been dynamically allocated.
Because collectionArray is a dynamically allocated array of user defined types, we must also
use . notation to access individual data members within each array element. Though using standard
array notation makes accessing dynamically arrays quite simple, you may alternatively use pointer
notation to access the memory.

Within the loop, notice that we incrementally print both the elements of intArray and the y member
of collectionArray using pointer notation. In the expression *(intArray +i), the identifier
intArray represents the starting address of the array. By adding i offsets to this address, you are
now at the address of the ith element in this array. By dereferencing this composite address with *,
you will now go to the proper address to retrieve the relevant integer data, which is then printed using

Indirect Addressing – Pointers56

cout and the insertion operator <<. Likewise, with (*(collectionArray + i)).y, we first
add i to the starting address of collectionArray, then using (), we dereference that address
with *. Since this is a user defined type, we must then use . to select the appropriate data member y.

Lastly, in this example, we demonstrate how to deallocate memory that we no longer need using
delete(). Though a simple statement of delete intArray; would suffice for the dynamically
allocated array of standard types, we instead choose delete [] intArray; to be consistent with
the required manner for deletion for dynamically allocated arrays of user defined types. That is, the
more complex statement of delete [] collectionArray; is necessary for the proper deletion
of an array of user defined types. In all cases, the memory associated with each dynamically allocated
array will be returned to the free-list, and can then be reused when heap memory is again allocated
with subsequent calls to operator new(). However, as we will later see, the [] used with delete()
will allow for a special clean-up function to be applied to each array element of a user defined type
before the memory is relinquished. Additionally, consistency is appreciated: if you allocate with
new(), relinquish the memory with delete(); if you allocate with new [], then relinquish with
delete []. This consistent pairing will also keep your program working as intended should any of
these aforementioned operators be overloaded (that is, redefined) at a future date by the programmer.

It is crucial to remember not to dereference a pointer variable once its memory has been marked for
deletion. Though that address will remain in the pointer variable until you assign the pointer a new
address (or null pointer), once memory is marked for deletion, the memory in question might have
been already reused by a subsequent call to new() elsewhere in the program. This is one of many
ways you must be diligent when using pointers in C++.

The output to accompany the full program example is as follows:

How many elements would you like? 3

0 0.5

1 1.5

2 2.5

Let’s additionally take a look at the memory layout for this example. The memory addresses (8500 and
9500) used are arbitrary – they are example addresses on the heap that may be generated by new().

Allocating and deallocating arrays at runtime 57

Figure 3.2 – Memory model for Chp3-Ex2.cpp

Next, let’s move forward with our discussion on dynamically allocated arrays by allocating arrays of
multiple dimensions.

Dynamically allocating 2-D arrays – an array of pointers

Two or more dimensioned arrays may also be dynamically allocated. For a 2-D array, the column
dimension may be dynamically allocated and the row dimension may remain fixed, or both dimensions
may be dynamically allocated. Allocating one or more dimensions dynamically allows the programmer
to account for run time decisions regarding the array size.

Let’s first consider the case where we have a fixed number of rows and a variable amount of entries in
each of those rows (which would be the column dimension). For simplicity, we will assume that the
number of entries in each row is the same from row to row, but it need not be. We can model a 2-D
array with a fixed number of rows and a run-time-determined amount of entries in each of those
rows (the column dimension) using an array of pointers.

Let’s consider an example to illustrate a 2-D array where the column dimension is dynamically allocated:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex3.cpp

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

using std::flush;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex3.cpp

Indirect Addressing – Pointers58

constexpr int NUMROWS = 5; // convention to use uppercase

 // since value is known at compile time

int main()

{

 float *TwoDimArray[NUMROWS] = { }; // init. to nullptrs

 int numColumns = 0;

 cout << "Enter number of columns: ";

 cin >> numColumns;

 for (int i = 0; i < NUMROWS; i++)

 {

 // allocate column quantity for each row

 TwoDimArray[i] = new float [numColumns];

 // load each column entry with data

 for (int j = 0; j < numColumns; j++)

 {

 TwoDimArray[i][j] = i + j + .05;

 cout << TwoDimArray[i][j] << " ";

 }

 cout << endl; // print newline between rows

 }

 for (int i = 0; i < NUMROWS; i++)

 delete [] TwoDimArray[i]; // del col. for each row

 return 0;

}

In this example, notice that we initially declare an array of pointers to floats using float
*TwoDimArray[NUMROWS];. For safety, we initialize each of these pointers to nullptr. Sometimes,
it is helpful to read pointer declarations from right to left; that is, we have an array NUMROWS in size
that contains pointers to floating-point numbers. More specifically, we have a fixed-sized array of
pointers where each pointer entry can point to one or more contiguous floating-point numbers. The
number of entries pointed to in each row comprises the column dimension.

Next, we prompt the user for the number of column entries. Here, we are assuming that each row will
have the same number of entries in it (to make the column dimension); however, it is possible that
each row could have a different total number of entries. By assuming each row will have a uniform
number of entries, we have a straightforward loop using i to allocate the column quantity for each
row using TwoDimArray[i] = new float [numColumns];.

Allocating and deallocating arrays at runtime 59

In the nested loop that uses j as an index, we simply load values for each column entry of the row
specified by i in the outer loop. The arbitrary assignment of TwoDimArray[i][j] = i + j
+ .05; loads an interesting value into each element. In the nested loop indexed on j, we also print
out each column entry for row i.

Lastly, the program illustrates how to deallocate the dynamically allocated memory. Since the memory
was allocated in a loop over a fixed number of rows – one memory allocation to gather memory to
comprise each row’s column entries – the deallocation will work similarly. For each of the rows, we
utilize the statement: delete [] TwoDimArray[i];.

The output for the example is as follows:

Enter number of columns: 3

0.05 1.05 2.05

1.05 2.05 3.05

2.05 3.05 4.05

3.05 4.05 5.05

4.05 5.05 6.05

Next, let’s take a look at the memory layout for this example. As in previous memory diagrams, the
memory addresses used are arbitrary – they are example addresses on the heap as may be generated
by new().

Figure 3.3 – Memory model for Chp3-Ex3.cpp

Indirect Addressing – Pointers60

Now that we have seen how to utilize an array of pointers to model a 2-D array, let’s move onward to
see how we can model a 2-D array using a pointer to a pointer so that we may choose both dimensions
at runtime.

Dynamically allocating 2-D arrays – pointers to pointers

Dynamically allocating both the row and column dimensions for an array can add necessary runtime
flexibility to a program. To achieve this ultimate flexibility, a 2-D array can be modeled using a pointer
to a pointer of the desired data type. Initially, the dimension representing the number of rows will be
allocated. Next, for each row, the number of elements in each row will be allocated. As with the last
example using an array of pointers, the number of elements in each row (the column entries) need
not be uniform in size across rows. However, to accurately model the concept of a 2-D array, it is
assumed that the column size will be allocated uniformly from row to row.

Let’s consider an example to illustrate a 2-D array where both the row and column dimensions are
dynamically allocated:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex4.cpp

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

using std::flush;

int main()

{

 int numRows = 0, numColumns = 0;

 float **TwoDimArray = nullptr; // pointer to a pointer

 cout << "Enter number of rows: " << flush;

 cin >> numRows;

 TwoDimArray = new float * [numRows]; // alloc. row ptrs

 cout << "Enter number of Columns: ";

 cin >> numColumns;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex4.cpp

Allocating and deallocating arrays at runtime 61

 for (int i = 0; i < numRows; i++)

 {

 // allocate column quantity for each row

 TwoDimArray[i] = new float [numColumns];

 // load each column entry with data

 for (int j = 0; j < numColumns; j++)

 {

 TwoDimArray[i][j] = i + j + .05;

 cout << TwoDimArray[i][j] << " ";

 }

 cout << end; // print newline between rows

 }

 for (i = 0; i < numRows; i++)

 delete [] TwoDimArray[i]; // del col. for each row

 delete [] TwoDimArray; // delete allocated rows

 return 0;

}

In this example, notice that we initially declare a pointer to a pointer of type float using: float
**TwoDimArray;. Reading this declaration from right to left, we see that TwoDimArray is a
pointer to a pointer to float. More specifically, we understand that TwoDimArray will contain
the address of one or more contiguous pointers, each of which may point to one or more contiguous
floating-point numbers.

Now, we prompt the user for the number of row entries. We follow this input with the allocation to a
set of float pointers, TwoDimArray = new float * [numRows];. This allocation creates a
numRows quantity of contiguous float pointers.

Just as in the previous example, we prompt the user for how many columns in each row we would like
to have. Just as before, in the outer loop indexed on i, we allocate the column entries for each row. In
the nested loop indexed on j, we again assign values to our array entries and print them just as before.

Lastly, the program continues with the memory deallocation. Just as before, the column entries for
each row are deallocated within a loop. Additionally, however, we need to deallocate the dynamically
allocated number of row entries. We do this with delete [] TwoDimArray;.

The output for this program is slightly more flexible, as we can enter at runtime the number of both
the desired rows and columns:

Enter number of rows: 3

Enter number of columns: 4

Indirect Addressing – Pointers62

0.05 1.05 2.05 3.05

1.05 2.05 3.05 4.05

2.05 3.05 4.05 5.05

Let’s again take a look at the memory model for this program. As a reminder, just as in previous
memory diagrams, the memory addresses used are arbitrary – they are example addresses on the
heap as may be generated by new().

Figure 3.4 – Memory model for Chp3-Ex4.cpp

Now that we have seen how to utilize pointers to pointers to model a 2-D array, let’s move onward to
see how we may model arrays of any number of dimensions using pointers to pointers to pointers,
and so on. In C++, you can model any dimensionality of a dynamically allocated array, so long as
you can imagine it!

Dynamically allocating N-D arrays – pointers to pointers to
pointers

In C++, you can model any dimensionality of a dynamically allocated array. You need only to be
able to imagine it, declare the appropriate levels of pointers, and make the required levels of memory
allocation (and eventual deallocation).

Let’s take a look at the pattern you will need to follow:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex5.cpp

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex5.cpp

Allocating and deallocating arrays at runtime 63

using std::flush;

int main()

{

 int dim1 = 0, dim2 = 0, dim3 = 0;

 int ***ThreeDimArray = nullptr; // 3D dyn. alloc. array

 cout << "Enter dim 1, dim 2, dim 3: ";

 cin >> dim1 >> dim2 >> dim3;

 ThreeDimArray = new int ** [dim1]; // allocate dim 1

 for (int i = 0; i < dim1; i++)

 {

 ThreeDimArray[i] = new int * [dim2]; // alloc dim 2

 for (int j = 0; j < dim2; j++)

 {

 // allocate dim 3

 ThreeDimArray[i][j] = new int [dim3];

 for (int k = 0; k < dim3; k++)

 {

 ThreeDimArray[i][j][k] = i + j + k;

 cout << ThreeDimArray[i][j][k] << " ";

 }

 cout << endl; // print '\n' between dimensions

 }

 cout << end; // print '\n' between dimensions

 }

 for (int i = 0; i < dim1; i++)

 {

 for (int j = 0; j < dim2; j++)

 delete [] ThreeDimArray[i][j]; // release dim 3

 delete [] ThreeDimArray[i]; // release dim 2

 }

 delete [] ThreeDimArray; // release dim 1

 return 0;

}

Indirect Addressing – Pointers64

In this example, notice that we use three levels of indirection to specify the variable to represent the
3-D array int ***ThreeDimArray;. We subsequently allocate the required memory for each
level of indirection. The first allocation is ThreeDimArray = new int ** [dim1];, which
allocates dimension 1’s set of pointers to pointers. Next, in a loop iterating over i, and for each element
in dimension 1, we allocate ThreeDimArray[i] = new int * [dim2]; to allocate the
pointers to integers for the second dimension of the array. And in a nested loop iterating over j, and
for each element in dimension 2, we allocate ThreeDimArray[i][j] = new int [dim3];
to allocate the integers themselves in a quantity specified by dim3.

As in the last two examples, we initialize the array elements in the inner loops and print their values.
At this point, you will undoubtedly notice the similarities between this program and its predecessor.
A pattern for the allocation is emerging.

Lastly, we will deallocate the three levels of memory in a manner similar – yet in reverse – to the
levels of allocation. We use a nested loop iterating over j to release the memory of the innermost
level, followed by the memory release in the outer loop that iterates over i. Finally, we relinquish the
memory for the initial dimension with a simple call to delete [] ThreeDimArray;.

The output for this example is as follows:

Enter dim1, dim2, dim3: 2 4 3

0 1 2

1 2 3

2 3 4

3 4 5

1 2 3

2 3 4

3 4 5

4 5 6

Now that we have seen how to model a 3-D array using pointers to pointers to pointers, a pattern has
emerged to show us how to declare the required level and number of pointers to model an N-D array.
We can also see the pattern for the necessary allocations. Multidimensional arrays can become quite
large, especially if you were forced to model them with the largest potentially necessary fixed-sized
array. The beauty of modeling with pointers to pointers (to pointers, and so on) for each level of a
necessary multi-dimensional array is that you can allocate exactly a size that may be determined at
runtime. To make usage easy, array notation using [] can be used as an alternative to pointer notation
to access the elements in the dynamically allocated array. C++ has a lot of flexibility stemming from
pointers. Dynamically allocated arrays demonstrate one such flexibility.

Using pointers with functions 65

Let’s now move forward with our understanding of pointers and consider their usage in functions.

Using pointers with functions
Functions in C++ will undoubtedly take arguments. We have seen many examples in the previous
chapters illustrating function prototypes and function definitions. Now, let’s augment our understanding
of functions by passing pointers as arguments to functions, and using pointers as return values from
a function.

Passing pointers as arguments to functions

Arguments passed from actual to formal parameters in a function call are by default copied on the
stack. In order to modify the contents of a variable as an argument to a function, a pointer to that
argument must instead be used as a function parameter.

Any time an actual parameter is passed to a function in C++, a copy of something is made and passed
on the stack to that function. For example, if an integer is passed as an actual parameter to a function,
a copy of that integer is made and then passed on the stack to the function to be received as the formal
parameter. Changing the formal parameter in the scope of the function would only change the copy
of the data that was passed into the function.

Should we instead require the ability to modify a function’s parameters, it is then necessary that we
pass a pointer to the desired data as a parameter to the function. In C++, passing a pointer as an
actual parameter copies this address on the stack, and the copy of the address is received as the formal
parameter in the function. However, using the copy of the address, we can still go to that address (by
dereferencing that pointer) to access the desired data and make changes to the desired data.

To reiterate, something is always copied on the stack when you pass a parameter in C++. If you pass
a non-pointer variable, you get a copy of that data passed on the stack to the function. Changes made
to that data in the scope of that function are local changes only and do not persist when the function
returns. The local copy is simply popped off the stack at the conclusion of the function. However, if
you pass a pointer to a function, though the address stored in the pointer variable is still copied on
the stack and passed to the function, you can still dereference the copy of the pointer to access the
real data at the desired address.

You always need to be one step back from that which you want to modify. If you want to change a
standard data type, pass a pointer to that type. If you want to change the value of the pointer itself (the
address), you must pass a pointer to that pointer as a parameter to the function. Remember, a copy of
something is passed to the function on the stack. You cannot change that copy beyond the scope of
the function. Pass the address of that which you want to change – you are still passing a copy of that
address, but using it will get you to the real data.

Indirect Addressing – Pointers66

Let’s take a few minutes to understand an example illustrating passing pointers as arguments to functions.
Here, we will begin by examining two functions that contribute to the following full program example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex6.cpp

void TryToAddOne(int arg)

{

 arg++;

}

void AddOne(int *arg)

{

 (*arg)++;

}

Examining the previous functions, notice that TryToAddOne() takes an int as a formal parameter,
while AddOne() takes an int * as a formal parameter.

In TryToAddOne(), an integer passed to the function is merely a copy of the actual parameter sent
to the function. This parameter is referred to as arg in the formal parameter list. Incrementing the
value of arg by one in the body of the function is a local change only within TryToAddOne(). Once
the function completes, the formal parameter, arg, is popped off the stack and the actual parameter
in the call to this function will not have been modified.

However, notice that AddOne() takes an int * as a formal parameter. The address of the actual
integer parameter will be copied on the stack and received as the formal parameter, arg. Using the
copy of that address, we dereference the pointer arg using *, then increment the integer value at
that address using ++ in the line of code: (*arg)++;. When this function completes, the actual
parameter will have been modified because we have passed a copy of the pointer to that integer, rather
than a copy of the integer itself.

Let’s examine the remainder of this program:

#include <iostream>

using std::cout;

using std::endl;

void TryToAddOne(int); // function prototypes

void AddOne(int *);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex6.cpp

Using pointers with functions 67

int main()

{

 int x = 10, *y = nullptr;

 y = new int; // allocate y's memory

 *y = 15; // dereference y to assign a value

 cout << "x: " << x << " and *y: " << *y << endl;

 TryToAddOne(x); // unsuccessful, call by value

 TryToAddOne(*y); // still unsuccessful

 cout << "x: " << x << " and *y: " << *y << endl;

 AddOne(&x); // successful, passing an address

 AddOne(y); // also successful

 cout << "x: " << x << " and *y: " << *y << endl;

 delete y; // relinquish heap memory

 return 0;

}

Notice the function prototypes at the top of this program segment. They will match the function
definitions in the previous segment of code. Now, in the main() function, we declare and initialize
int x = 10; and declare a pointer: int *y;. We allocate the memory for y using new() and
then assign a value by dereferencing the pointer with *y = 15;. We print out the respective values
of x and *y as a baseline.

Next, we call TryToAddOne(x); followed by TryToAddOne(*y);. In both cases, we are
passing integers as actual parameters to the function. Variable x is declared to be an integer, and *y
refers to the integer pointed to by y. Neither of these function calls will result in the actual parameter
being changed, which we can verify when their respective values are next printed using cout and
the insertion operator <<.

Finally, we call AddOne(&x); followed by AddOne(y);. In both cases, we are passing a copy
of an address as the actual parameter to the function. Of course, &x is the address of variable x, so
this works. Likewise, y itself is an address – it is declared as a pointer variable. Recall that inside the
AddOne() function, the formal parameter is first dereferenced and then incremented in the body
of the function: (*arg)++;. We can use a copy of a pointer to access actual data.

Here is the output for the full program example:

x: 10 and *y: 15

x: 10 and *y: 15

x: 11 and *y: 16

Indirect Addressing – Pointers68

Next, let us add to our discussion of using pointers with functions by using pointers as return values
from functions.

Using pointers as return values from functions

Functions may return pointers to data via their return statements. When returning a pointer via the
return statement of a function, be sure that the memory that is pointed to will persist after the function
call is completed. Do not return a pointer to stack memory that is local to the function. That is, do
not return a pointer to local variables defined on the stack within the function. However, returning a
pointer to memory allocated using new() within the function is acceptable. As the allocated memory
will be on the heap, it will exist past the function call.

Let’s see an example to illustrate these concepts:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex7.cpp

#include <iostream>

#include <iomanip>

using std::cin;

using std::cout;

using std::endl;

using std::flush;

using std::setw;

constexpr int MAX = 20;

[[nodiscard]] char *createName(); // function prototype

int main()

{

 char *name = nullptr; // pointer declaration and init.

 name = createName(); // function will allocate memory

 cout << "Name: " << name << endl;

 delete [] name; // del alloc. memory (in a diff. scope

 return 0; // than allocated); this can be error prone!

}

[[nodiscard]] char *createName()

{

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex7.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex7.cpp

Using pointers with functions 69

 char *temp = new char[MAX];

 cout << "Enter name: " << flush;

 cin >> setw(MAX) >> temp; // ensure no overflow of temp

 return temp;

}

In this example, constexpr int MAX = 20; is defined and then char *createName();
is prototyped, indicating that this function takes no arguments, yet returns a pointer to one or more
characters.

In the main() function, a local variable: char *name; is defined, but not initialized. Next,
createName() is called and its return value is used to assign a value to name. Notice that both
name and the function’s return type are of type char *.

In the call to createName(), notice that a local variable char *temp = new char[MAX]; is
both defined and allocated to point to a fixed amount of memory on the heap using operator new().
The user is then prompted to enter a name and that name is stored in temp. The local variable temp
is then returned from createName().

In createName(), it is important that the memory for temp be comprised of heap memory so that
it will persist beyond the scope of this function. Here, a copy of the address stored in temp will be
copied onto the stack in the area reserved for a return value from the function. Fortunately, that address
refers to heap memory. The assignment name = createName(); in main() will capture this
address and copy it to be stored into the name variable, which is local to main(). Since the memory
allocated in createName() is on the heap, this memory will exist once the function completes.

Just as important to note, had temp been defined as char temp[MAX]; in createName(),
the memory comprising temp would have existed on the stack and would have been local to
createName(). Once createName() returns to main(), the memory for this variable would
have been popped off the stack and been unavailable for proper use – even if that address had been
captured in a pointer variable within main(). This is another potential pointer trap in C++. When
returning a pointer from a function, always ensure that the memory to which the pointer points exists
beyond the extent of the function.

The output for this example is:

Enter name: Gabrielle

Name: Gabrielle

Now that we understand how pointers can be used within parameters to functions and as return values
from functions, let’s move forward by examining further pointer nuances.

Indirect Addressing – Pointers70

Using the const qualifier with pointers
The const qualifier can be used to qualify pointers in several different ways. The keyword const
can be applied to the data pointed to, to the pointer itself, or both. By using the const qualifier in
these ways, C++ offers means to protect values in a program that may be meant to be initialized but
never again modified. Let’s examine each of these various scenarios. We will also be combining const
qualified pointers with return values from functions to understand which of these various scenarios
are reasonable to implement.

Using pointers to constant objects

A pointer to a constant object may be specified so that the object that is pointed to may not be directly
modified. A dereferenced pointer to this object may not be used as an l-value in any assignment. An
l-value means a value that can be modified, and that occurs on the left-hand side of an assignment.

Let’s introduce a simple example to understand the situation:

// const qualified str; the data pointed to will be const

const char *constData = "constant";

const char *moreConstData = nullptr;

// regular strings, defined. One is loaded using strcpy()

char *regularString = nullptr;

char *anotherRegularString = new char[8]; // sized to fit

 // this string

strcpy(anotherRegularString, "regular");

// Trying to modify data marked as const will not work

// strcpy(constData, "Can I do this? "); // NO!

// Trying to circumvent by having a char * point to

// a const char * also will not work

// regularString = constData; // NO!

// But we can treat a char * more strictly by assigning to

// const char *. It will be const from that viewpoint only

moreConstData = anotherRegularString; // Yes - can do this!

Using the const qualifier with pointers 71

Here, we’ve introduced const char *constData = "constant";. The pointer points to
data, which is initialized, and which may never again be modified through this identifier. For example,
should we try to alter this value using a strcpy, where constData is the destination string, the
compiler will issue an error.

Also, trying to circumvent the situation by trying to store constData into a pointer of the same (but
not const) type, will generate a compiler error, such as in the line of code regularString =
constData;. Of course, in C++, you can do anything if you try hard enough, so an explicit typecast
here will work, but is purposely not shown. An explicit typecast will still generate a compiler warning
to allow you to question whether this is truly something you intend to do. When we move forward
with OO concepts, we will introduce ways to further protect data so that this type of circumvention
can be eliminated.

On the last line of the previous code, notice that we store the address of a regular string into const
char *moreConstData. This is allowed – you can always treat something with more respect than
it was defined to have (just not less). This means that when using the identifier moreConstData,
this string may not be modified. However, using its own identifier, which is defined as char
*anotherRegularString;, this string may be changed. This seems inconsistent, but it is not.
The const char * variable chose to point to a char * – elevating its protection for a particular
situation. If the const char * truly wanted to point to an immutable object, it would have chosen
to instead point to another const char * variable.

Next, let’s see a variation on this theme.

Using constant pointers to objects

A constant pointer to an object is a pointer that is initialized to point to a specific object. This pointer
may never be assigned to point to another object. This pointer itself may not be used as an l-value in
an assignment.

Let’s review a simple example:

// Define, allocate, load simple strings using strcpy()

char *regularString = new char[36]; // sized for str below

strcpy(regularString, "I am a modifiable string");

char *anotherRegularString = new char[21]; // sized for

 // string below

strcpy(anotherRegularString, "I am also modifiable");

// Define a const pointer to a string; must be initialized

char *const constPtrString = regularString; // Ok

Indirect Addressing – Pointers72

// You may not modify a const pointer to point elsewhere

// constPtrString = anotherRegularString; // No!

// But you may change the data which you point to

strcpy(constPtrString, "I can change the value"); // Yes

In this example, two regular char * variables (regularString and anotherRegularString)
are defined and loaded with string literals. Next, char *const constPtrString =
regularString; is defined and initialized to point to a modifiable string. Because the const
qualification is on the pointer itself and not the data pointed to, the pointer itself must be initialized with a
value at declaration. Notice that the line of code: constPtrString = anotherRegularString;
would generate a compiler error because a const pointer cannot be on the left hand of an assignment.
However, because the const qualification is not applicable to the data pointed to, a strcpy may
be used to modify the value of the data as is seen in strcpy(constPtrString, "I can
change the value");.

Next, let us combine the const qualifier on both the pointer and the data which is pointed to.

Using constant pointers to constant objects

A constant pointer to a constant object is a pointer that is established to point to a specific object
and to unmodifiable data. The pointer itself must be initialized to a given object, which is (hopefully)
initialized with appropriate values. Neither the object nor the pointer may be modified or used as
l-values in assignments.

Here is an example:

// Define two regular strings and load using strcpy()

char *regularString = new char[36]; // sized for str below

strcpy(regularString, "I am a modifiable string");

char *anotherRegularString = new char[21]; // sized for

 // string below

strcpy(anotherRegularString, "I am also modifiable");

// Define const ptr to a const object; must be initialized

const char *const constStringandPtr = regularString; // Ok

Using the const qualifier with pointers 73

// Trying to change the pointer or the data is illegal

constStringandPtr = anotherRegularString; // No! Can't

 // modify address

strcpy(constStringandPtr, "Nope"); // No! Can't modify data

In this example, two regular char * variables are declared, regularString and
anotherRegularString. Each is initialized with a string literal. Next, we introduce const
char *const constStringandPtr = regularString;, which is a const qualified
pointer to data that is also treated as const. Notice that this variable must be initialized because
the pointer itself cannot be an l-value in a later assignment. You will also want to ensure that this
pointer is initialized with a meaningful value, as the data that is pointed to also cannot be changed (as
illustrated by the strcpy statement, which would generate a compiler error). Combining const
on the pointer as well as the data pointed to is a strict way to safeguard data.

Tip – deciphering pointer declarations
To read complex pointer declarations, it often helps to read the declaration backward – from
right to left. For example, the pointer declaration const char *p1 = "hi!"; would be
interpreted as p1 is a pointer to (one or more) characters that are constant. The declaration
const char *const p2 = p1; would be read as p2 is a constant pointer to (one or
more) characters that are constant.

Finally, let us move forward to understand the implications of const qualifying pointers, which
serve as function parameters or as return values from functions.

Using pointers to constant objects as function arguments and as
return types from functions

Copying arguments on the stack that are user defined types can be time-consuming. Passing a pointer
as a function argument is speedier, yet permits the dereferenced object to possibly be modified in the
scope of the function. Passing a pointer to a constant object as a function argument provides both
speed and safety for the argument in question. The dereferenced pointer simply may not be an l-value
in the scope of the function in question. The same principle holds true for the return value from a
function. Constant qualifying the data pointed to insists that the caller of the function must also
store the return value in a pointer to a constant object, ensuring the object’s long-term immutability.

Indirect Addressing – Pointers74

Let’s take a look at an example to examine these ideas:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex8.cpp

#include <iostream>

#include <iomanip>

#include <cstring> // we'll generally prefer std::string,

 // however, let's understand ptr concept shown here

using std::cout;

using std::endl;

char suffix = 'A';

const char *GenId(const char *); // function prototype

int main()

{

 const char *newId1, *newId2; // pointer declarations

 newId1 = GenId("Group"); // func. will allocate memory

 newId2 = GenId("Group");

 cout << "New ids: " << newId1 << " " << newId2 << endl;

 delete [] newId1; // delete allocated memory

 delete [] newId2; // caution: deleting in different

 // scope than allocation can

 // lead to potential errors

 return 0;

}

const char *GenId(const char *base)

{

 char *temp = new char[strlen(base) + 2];

 strcpy(temp, base); // use base to initialize string

 temp[strlen(base)] = suffix++; // Append suffix to base

 temp[strlen(base) + 1] = '\0'; // Add null character

 return temp; // temp will be upcast to a const char *

 // to be treated more restrictively than

 // it was defined

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex8.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex8.cpp

Using the const qualifier with pointers 75

In this example, we begin with a global variable to store an initial suffix, char *suffix = 'A';,
and the prototype for the function: const char *GenId(const char *base);. In main(),
we declare, but do not initialize, const char* newId1, *newId2;, which will eventually
hold the IDs generated by GenId().

Next, we call GenId() twice, passing a string literal "Group" to this function as the actual parameter.
This parameter is received as a formal parameter: const char *base. The return value of this
function will be used to assign values to newId1 and newId2, respectively.

Looking more closely, we see that the call to GenId("Group") passes the string literal "Group" as
the actual parameter, which is received as const char *base in the formal parameter list of the
function definition. This means that when using the identifier base, this string may not be modified.

Next, within GenId(), we declare local pointer variable temp on the stack and allocate enough
heap memory for temp to point to, to accommodate the string pointed to by base plus an extra
character for the suffix to be added, plus one for the null character to terminate the new string. Note
that strlen() counts the number of characters in a string, excluding the null character. Now, by using
strcpy(), base is copied into temp. Then, using the assignment temp[strlen(base)] =
suffix++;, the letter stored in suffix is added to the string pointed to by temp (and suffix is
incremented to the next letter for the next time we call this function). Remember that arrays are zero-
based in C++ when adding characters to the end of a given string. For example, if "Group" comprises
five characters in array temp’s positions 0 through 4, then the next character (from suffix) would
be added at position 5 in temp (overwriting the current null character). In the next line of code, the
null character is re-added to the end of the new string pointed to by temp, as all strings need to be
null terminated. Note that, whereas strcpy() will automatically null-terminate a string, once you
resort to a single-character replacement, such as by adding the suffix to the string, you then need to
re-add the null character to the new overall string yourself.

Lastly, in this function, temp is returned. Notice that though temp is declared as a char *, it
is returned as a const char *. This means that the string will be treated in a more restrictive
fashion upon its return to main() than it was treated in the body of the function. In essence, it has
been upcast to a const char *. The implication is that since the return value of this function
is a const char *, only a pointer of type const char * can capture the return value of this
function. This is required so that the string cannot be treated in a less restrictive fashion than intended
by the creator of function GenId(). Had newId1 and newId2 been declared of type char *
rather than const char *, they would not have been allowed to serve as l-values to capture the
return value of GenId().

At the end of main(), we delete the memory associated with newId1 and newId2. Notice that the
memory for these pointer variables was allocated and released in different scopes within the program.
The programmer must always be diligent to keep track of memory allocation and release in C++.
Forgetting to deallocate memory can lead to memory leakage within an application.

Indirect Addressing – Pointers76

Here is the output to accompany our example:

New ids: GroupA GroupB

Now that we have an understanding of how and why to const qualify pointers, let’s take a look at
how and why we might choose a generic pointer type by considering void pointers.

Using pointers to objects of unspecified types
Sometimes, programmers ask why they cannot simply have a generic pointer. That is, why must we
always declare the type of data to which the pointer will eventually point, such as int *ptr;?
C++ certainly does allow us to create pointers without associated types, but C++ then requires the
programmer to keep track of things that would normally be done on their behalf. Nonetheless, we
will see why void pointers are useful and what the programmer must undertake when using more
generic void pointers in this section.

It is important to note that void pointers require careful handling, and their misuse can be extremely
dangerous. We will, much later in the book, see a safer alternative to genericize types (including pointers)
in Chapter 13, Working with Templates. Nonetheless, there are careful encapsulated techniques that use
an underlying implementation of a void * for efficiency, paired with a safe wrapper of a template.
We will see that templates are expanded for every type needed and can sometimes lead to template
bloat. In these cases, a safe pairing of a template with an underlying void * implementation gives
us both safety and efficiency.

To understand a void pointer, let us first consider why a type is typically associated with a pointer
variable. Typically, declaring the type with the pointer gives C++ information about how to conduct
pointer arithmetic or index into a dynamically allocated array of that pointer type. That is, if we have
allocated int *ptr = new int [10];, we have 10 consecutive integers. Using either the array
notation of ptr[3] = 5; or the pointer arithmetic of *(ptr + 3) = 5; to access one such
element in this dynamically allocated set relies on the size of the data type int to internally allow
C++ to understand how large each element is and how to move from one such item to the next. The
data type also tells C++, once it has arrived at an appropriate memory address, how to interpret the
memory. For example, an int and a float may have the same storage size on a given machine,
however, the two’s complement memory layout of an int versus the mantissa, exponent layout of a
float is quite different. C++’s knowledge of how to interpret the given memory is crucial, and the
data type of the pointer does just that.

However, the need still exists to have a more generic pointer. For example, you may want a pointer that
might point to an integer in one situation, yet to a set of user defined types in another situation. Using
a void * allows just this to happen. But what about type? What happens when you dereference a
void pointer? If C++ does not know how many bytes to go from one element in a set to another, how
can it index into a dynamically allocated array of void pointers? How will it interpret the bytes once
at an address? What is the type?

Using pointers to objects of unspecified types 77

The answer is that you, the programmer, must personally remember what you are pointing to at all
times. Without the type associated with the pointer, the compiler cannot do this for you. And when
it is time to dereference the void pointer, you will be in charge of correctly remembering the ultimate
type involved and performing the appropriate type cast on that pointer.

Let’s take a look at the mechanics and logistics of what is involved.

Creating void pointers

Pointers to objects of unspecified types may be specified by using void *. The void pointer may then
point to an object of any type. Explicit casting must be used in order to dereference actual memory
pointed to by the void *. Explicit casting must also be used in C++ to assign memory pointed to by
a void * to a pointer variable of a known type. It is the programmer’s responsibility to ensure that
the dereferenced data types are the same before making the assignment. Should the programmer be
incorrect, there will be an elusive pointer mistake to find elsewhere in the code.

Here is an example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex9.cpp

#include <iostream>

using std::cout;

using std::endl;

int main()

{

 void *unspecified = nullptr; // may point to any

 // data type

 int *x = nullptr;

 unspecified = new int; // void ptr now points to an int

 // void * must be cast to int * before dereferencing

 *(static_cast<int *>(unspecified)) = 89;

 // let x point to the memory that unspecified points to

 x = static_cast<int *>(unspecified);

 cout << *x << " " << *(static_cast<int *>(unspecified))

 << endl;

 delete static_cast<int *>(unspecified);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex9.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter03/Chp3-Ex9.cpp

Indirect Addressing – Pointers78

 return 0;

}

In this example, the declaration void *unspecified; creates a pointer that may, one day, point to
memory that can be of any data type. The declaration int *x; declares a pointer that may someday
point to one or more consecutive integers.

The assignment *(static_cast<int *>(unspecified)) = 89; first uses an explicit
typecast to cast unspecified to an (int *) and then dereferences the int * to place the value
of 89 in memory. It is important to note that this typecast must be done before unspecified may be
dereferenced – otherwise, C++ does not understand how to interpret the memory that unspecified
points to. Also note that if you accidentally typecast unspecified to the wrong type, the compiler
would let you proceed, as typecasts are seen as a “just do it” command to the compiler. It is your job,
as the programmer, to remember what type of data your void * points.

Lastly, we would like x to point to where unspecified points. Variable x is an integer and needs to
point to one or more integers. Variable unspecified truly points to an integer, but since the data
type of unspecified is void *, we must use an explicit typecast to make the following assignment
work: x = static_cast<int *>(unspecified) ;. Also, programmatically, we hope that
we are correct and that we have remembered that unspecified truly points to an int; knowing
the correct memory layout is important should the int * ever be dereferenced. Otherwise, we have
just forced an assignment between pointers of different types, leaving a lurking error in our program.

Here is the output to accompany our program:

89 89

There are many creative uses of void pointers in C++. Some techniques use void *’s for generic
pointer manipulations and pair this inner processing with a thin layer on top to cast the data into a
known data type. The thin top layers can be further genericized with the C++ feature of templates.
Using templates, only one version of the explicit type casts is maintained by the programmer, yet many
versions are truly made available on your behalf – one per actual concrete data type needed. These
ideas encompass advanced techniques, but we will see several of them in the chapters ahead, starting
with Chapter 13, Working with Templates.

Looking ahead to smart pointers for safety
We have seen many uses of pointers to add flexibility and efficiency to our programs. However, we
have also seen that with the power that pointers can provide comes potential havoc! Dereferencing
uninitialized pointers can take us to non-existent memory locations that will inevitably crash our
programs. Accidentally dereferencing memory that we have marked for deletion is similarly destructive
– the memory address may have already been reused by the heap management facility elsewhere in
our program. Neglecting to delete dynamically allocated memory when we are done with it will cause
memory leaks. Even more challenging is allocating memory in one scope and expecting to remember

Summary 79

to delete that memory in another scope. Or, consider what happens when two or more pointers point
to the same piece of heap memory. Which pointer is responsible for deleting the memory? This is an
issue we will see several times throughout the book with various solutions. These issues are just a few
of the potential landmines we may step on when we utilize pointers.

You may ask whether there is another way to have the benefits of dynamically allocated memory, and
yet have a safety net to govern its use. Fortunately, the answer is yes. The concept is a smart pointer,
and there are several types of smart pointers in C++, including unique_ptr, shared_ptr,
and weak_ptr. The premise of a smart pointer is that it is a class to safely wrap the usage of a raw
pointer, minimally handling the proper deallocation of heap memory when the outer smart pointer
goes out of scope.

However, to best understand smart pointers, we will need to understand Chapter 5, Exploring Classes
in Detail, Chapter 12, Friends and Operator Overloading, and Chapter 13, Working with Templates.
After understanding these core C++ features, smart pointers will be a meaningful option for us to
embrace for pointer safety in the new code that we create. Will you still need to understand how to
use native pointers in C++? Yes. It is inevitable that you will utilize many class libraries in C++ that
heavily use native pointers, so you will need to understand their usage as well. Additionally, you may be
integrating with, or maintaining, existing C++ code that is heavily native pointer reliant. You may also
look online at many C++ forums or tutorials, and native pointers will inevitably pop up there as well.

The bottom line is that as C++ programmers, we need to understand how to use native C++ pointers,
yet also understand their dangers, potential misuse, and pitfalls. Then, once we have mastered classes,
operator overloading, and templates, we can add smart pointers to our repertoire and wisely choose to
use them in our wholly new code. Yet, we will be prepared for any C++ situation by also understanding
native C++ pointers.

With that in mind, we will continue gaining facility with native C++ pointers until we have best laid
the groundwork to add these useful smart pointer classes into our repertoire. Then, we will see each
smart pointer type in full detail.

Summary
In this chapter, we have learned many aspects surrounding pointers in C++. We have seen how to allocate
memory from the heap using new() and how to relinquish that memory to the heap management
facility using delete(). We have seen examples using both standard and user defined types. We
have also understood why we may want to dynamically allocate arrays and have seen how to do so for
1, 2, and N dimensions. We have seen how to release the corresponding memory using delete[].
We have reviewed functions by adding pointers as parameters to functions and as return values from
functions. We have also learned how to const qualify pointers as well as the data to which they point
(or both) and why you may want to do so. We have seen one way to genericize pointers by introducing
void pointers. Lastly, we have looked ahead to the concept of smart pointers.

Indirect Addressing – Pointers80

All of the skills using pointers from this chapter will be used freely in the upcoming chapters. C++
expects programmers to have great facility using pointers. Pointers allow the language great freedom
and efficiency to utilize a vast number of data structures and to employ creative programming solutions.
However, pointers can provide a massive way to introduce errors into a program with memory leakage,
returning pointers to memory that no longer exists, dereferencing pointers that have been deleted,
and so on. Not to worry; we will utilize many examples going forward using pointers so that you
will be able to manipulate pointers with great facility. Additionally, we will later add specific types of
smart pointers to our upcoming programming repertoire to allow us to use add pointer safety when
constructing code from scratch.

Most importantly, you are now ready to move forward to Chapter 4, Indirect Addressing – References,
in which we will explore indirect addressing using references. Once you have understood both types
of indirect addressing – pointers and references – and can manipulate either with ease, we will take
on the core object-oriented concepts in this book, starting in Chapter 5, Exploring Classes in Detail.

Questions
1. Modify and augment your C++ program from Chapter 2, Adding Language Necessities, Question

2, as follows:

a. Create a function, ReadData(), which accepts a pointer to a Student as an argument to
allow for firstName, lastName, and gpa, and the currentCourseEnrolled to
be entered from the keyboard within the function and stored as the input parameter’s data.

b. Modify firstName, lastName, and currentCourseEnrolled to be modeled
as char * (or string) in your Student class instead of using fixed-sized arrays (as
they may have been modeled in Chapter 2, Adding Language Necessities). You may utilize
a temp variable that is a fixed size to initially capture user input for these values, and
then allocate the proper, respective sizes for each of these data members. Note that using
a string will be the simplest and safest approach.

c. Rewrite, if necessary, the Print() function from your solution in Chapter 2, Adding
Language Necessities, to take a Student as a parameter for Printd().

d. Overload the Print() function with one that takes a const Student * as a parameter.
Which one is more efficient? Why?

e. In main(), create an array of pointers to Student to accommodate five students.
Allocate each Student, call ReadData() for each Student, and then Print()
each Student using a selection from your previous functions. When done, remember
to delete() the memory for each Student allocated.

Questions 81

f. Also in main(), create an array of void pointers that is the same size as the array of pointers
to Student. Set each element in the array of void pointers to point to a corresponding
Student from the array of Student pointers. Call the version of Print() that takes a
const Student * as a parameter for each element in the void * array. Hint: you will
need to cast void * elements to type Student * prior to making certain assignments
and function calls.

2. Write the following pointer declarations that include a const qualification:

a. Write a declaration for a pointer to a constant object. Assume the object is of type Student.
Hint: read your declaration from right to left to verify correctness.

b. Write a declaration for a constant pointer to a non-constant object. Again, assume the
object is of type Student.

c. Write a declaration for a constant pointer to a constant object. The object will again be of
type Student.

3. Why does passing an argument of type const Student * to Print() in your preceding
program make sense, yet passing a parameter of type Student * const does not make sense?

4. Can you think of programming situations that may require a dynamically allocated 3-D array?
What about a dynamically allocated array with more dimensions?

4
Indirect Addressing –

References

This chapter will examine how to utilize references in C++. References can often, but not always, be
used as an alternative to pointers for indirect addressing. Though you have prior experience with
indirect addressing from our last chapter using pointers, we will start at the beginning to understand
C++ references.

References, like pointers, are a language feature you must be able to utilize with ease. Many other
languages use references for indirect addressing without requiring the thorough understanding that
C++ imposes to correctly utilize both pointers and references. Just as with pointers, you will see
references frequently used throughout code from other programmers. You may be pleased that using
references will provide notational ease when writing applications compared to pointers.

Unfortunately, references cannot be used as a substitute for pointers in all situations requiring indirect
addressing. Therefore, a thorough understanding of indirect addressing using both pointers and
references is a necessity in C++ to create successful and maintainable code.

The goal of this chapter will be to complement your understanding of indirect addressing using
pointers with knowing how to use C++ references as an alternative. Understanding both techniques
of indirect addressing will enable you to be a better programmer, to easily understand and modify
others’ code, as well as to write original, mature, and competent C++ code yourself.

In this chapter, we will cover the following main topics:

• Reference basics – declaring, initializing, accessing, and referencing existing objects

• Using references with functions as arguments and as return values

• Using the const qualifier with references

• Understanding underlying implementation, and when references cannot be utilized

Indirect Addressing – References84

By the end of this chapter, you will understand how to declare, initialize, and access references; you
will understand how to reference existing objects in memory. You will be able to use references as
arguments to functions, and understand how they may be used as return values from functions.

You will also fathom how the const qualifier may apply to references as variables and be utilized
with both a function’s parameters and return type. You will be able to distinguish when references
can be used in lieu of pointers, and in which situations they cannot provide a substitute for pointers.
These skills will be necessary in order to move forward with the next chapters in the book successfully.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter04. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter04 in a file named Chp4-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3ptaMRK.

Understanding reference basics
In this section, we will revisit reference basics as well as introduce operators applicable to references,
such as the reference operator &. We will employ the reference operator (&) to establish a reference to the
existing variable. Like pointer variables, reference variables refer to memory that is defined elsewhere.

Using reference variables allows us to use a more straightforward notation than the notation that
pointers use when using indirectly accessed memory. Many programmers appreciate the clarity in
the notation of a reference versus a pointer variable. But, behind the scenes, memory must always be
properly allocated and released; some portion of memory that is referenced may come from the heap.
The programmer will undoubtedly need to deal with pointers for some portion of their overall code.

We will discern when references and pointers are interchangeable, and when they are not. Let’s get
started with the basic notation for declaring and using reference variables.

Declaring, initializing, and accessing references

Let’s begin with the meaning of a reference variable. A C++ reference is an alias or a means for
referring to another variable. A reference is specified using the reference operator &. A reference must
be initialized (at declaration) and may never be assigned to reference another object. The reference
and the initializer must be of the same type. Since the reference and the object being referenced share
the same memory, either variable may be used to modify the contents of the shared memory location.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter04
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter04
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter04
https://bit.ly/3ptaMRK

Understanding reference basics 85

A reference variable, behind the scenes, can be compared to a pointer variable in that it holds the
address of the variable that it is referencing. Unlike a pointer variable, any usage of the reference
variable automatically dereferences the variable to go to the address that it contains; the dereference
operator * is simply not needed with references. Dereferencing is automatic and implied with each
use of a reference variable.

Let’s take a look at an example illustrating reference basics:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex1.cpp

#include <iostream>

using std::cout;

using std::endl;

int main()

{

 int x = 10;

 int *p = new int; // allocate memory for ptr variable

 *p = 20; // dereference and assign value

 int &refInt1 = x; // reference to an integer

 int &refInt2 = *p; // also a reference to an integer

 cout << x << " " << *p << " ";

 cout << refInt1 << " " << refInt2 << endl;

 x++; // updates x and refInt1

 (*p)++; // updates *p and refInt2

 cout << x << " " << *p << " ";

 cout << refInt1 << " " << refInt2 << endl;

 refInt1++; // updates refInt1 and x

 refInt2++; // updates refInt2 and *p

 cout << x << " " << *p << " ";

 cout << refInt1 << " " << refInt2 << endl;

 delete p; // relinquish p's memory

 return 0;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex1.cpp

Indirect Addressing – References86

In the preceding example, we first declare and initialize int x = 10; and then declare and allocate
int *p = new int;. We then assign the integer value 20 to *p.

Next, we declare and initialize two reference variables, refInt1 and refInt2. In the first reference
declaration and initialization, int &refInt1 = x;, we establish refInt1 to refer to the variable
x. It helps to read the reference declaration from right to left. Here, we are saying to use x to initialize
refInt1, which is a reference (&) to an integer. Notice that both the initializer, x, is an integer and
that refInt1 is declared to be a reference to an integer; their types match. This is important. The
code will not compile if the types differ. Likewise, the declaration and initialization int &refInt2
= *p; also establishes refInt2 as a reference to an integer. Which one? The one pointed to by p.
This is why p is dereferenced using * to go to the integer itself.

Now, we print out x, *p, refInt1, and refInt2; we can verify that x and refInt1 have the
same value of 10, and *p and refInt2 also have the same value of 20.

Next, using the original variables, we increment both x and *p by one. Not only does this increment
the values of x and *p, but the values of refInt1 and refInt2. Repeating the printing of these
four values, we again notice that x and refInt1 have the value of 11, while *p and refInt2
have the value of 21.

Finally, we use the reference variables to increment the shared memory. We increment both refInt1
and *refint2 by one and this also increments the values of the original variables x and *p. This
is because the memory is one and the same between the original variable and the reference to that
variable. That is, the reference can be thought of as an alias to the original variable. We conclude the
program by again printing out the four variables.

Here is the output:

10 20 10 20

11 21 11 21

12 22 12 22

Important note
Remember, a reference variable must be initialized to the variable it will refer to. The reference
may never be assigned to another variable. More precisely, we cannot rebind the reference to
another entity. The reference and its initializer must be the same type.

Now that we have a handle on how to declare simple references, let’s take a more complete look at
referencing existing objects, such as those to user defined types.

Understanding reference basics 87

Referencing existing objects of user defined types

Should a reference to an object of a struct or class type be defined, the object being referenced is
simply accessed using the . (member selection) operator. Again, it is not necessary (such as it is with
pointers) to first use the dereference operator to go to the object being referenced before choosing
the desired member.

Let’s take a look at an example in which we reference a user defined type:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex2.cpp

#include <iostream>

using std::cout;

using std::endl;

using std::string;

class Student // very simple class – we will add to it

{ // in our next chapter

public:

 string name;

 float gpa;

};

int main()

{

 Student s1;

 Student &sRef = s1; // establish a reference to s1

 s1.name = "Katje Katz"; // fill in the data

 s1.gpa = 3.75;

 cout << s1.name << " has GPA: " << s1.gpa << endl;

 cout << sRef.name << " has GPA: " << sRef.gpa << endl;

 sRef.name = "George Katz"; // change the data

 sRef.gpa = 3.25;

 cout << s1.name << " has GPA: " << s1.gpa << endl;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex2.cpp

Indirect Addressing – References88

 cout << sRef.name << " has GPA: " << sRef.gpa << endl;

 return 0;

}

In the first part of this program, we define a user defined type, Student, using a class. Next,
we declare a variable s1 of type Student using Student s1;. Now, we declare and initialize a
reference to a Student using Student &sRef = s1;. Here, we declare sRef to reference a
specific Student, namely s1. Notice that both s1 is of type Student and the reference type of
sRef is also that of type Student.

Now, we load some initial data into s1.name and s1.gpa using two simple assignments. Consequently,
this alters the value of sRef since s1 and sRef refer to the same memory. That is, sRef is an alias
for s1.

We print out various data members for s1 and sRef and notice that they contain the same values.

Now, we load new values into sRef.name and sRef.gpa using assignments. Similarly, we print
out various data members for s1 and sRef and notice that again, the values for both have changed.
Again, we can see that they reference the same memory.

The output to accompany this program is as follows:

Katje Katz has GPA: 3.75

Katje Katz has GPA: 3.75

George Katz has GPA: 3.25

George Katz has GPA: 3.25

Let’s now move forward with our understanding of references by considering their usage in functions.

Using references with functions
So far, we have minimally demonstrated references by using them to establish an alias for an existing
variable. Instead, let’s put forth a meaningful use of references, such as when they are used in function
calls. We know most functions in C++ will take arguments, and we have seen many examples in the
previous chapters illustrating function prototypes and function definitions. Now, let’s augment our
understanding of functions by passing references as arguments to functions, and using references as
return values from functions.

Using references with functions 89

Passing references as arguments to functions

References may be used as arguments to functions to achieve call-by-reference, rather than call-by-
value, parameter passing. References can alleviate the need for pointer notation in the scope of the
function in question as well as in the call to that function. Object or . (member selection) notation
is used to access struct or class members for formal parameters that are references.

In order to modify the contents of a variable passed as an argument to a function, a reference (or
pointer) to that argument must be used as a function parameter. Just as with a pointer, when a reference
is passed to a function, a copy of the address representing the reference is passed to the function.
However, within the function, any usage of a formal parameter that is a reference will automatically
and implicitly be dereferenced, allowing the user to use object rather than pointer notation. As with
passing a pointer variable, passing a reference variable to a function will allow the memory referenced
by that parameter to be modified.

When examining a function call (apart from its prototype), it will not be obvious whether an object
passed to that function is passed by value or by reference. That is, whether the entire object will be
copied on the stack or whether a reference to that object will instead be passed on the stack. This is
because object notation is used when manipulating references, and the function calls for these two
scenarios will use the same syntax.

Diligent use of function prototypes will solve the mystery of what a function definition looks like and
whether its arguments are objects or references to objects. Remember, a function definition may be
defined in a separate file from any calls to that function, and not be easily available to view. Note that
this ambiguity does not come up with pointers specified in a function call; it is immediately obvious
that an address is being sent to a function based on how the variable is declared.

Let’s take a few minutes to understand an example illustrating passing references as arguments to
functions. Here, we will begin by examining three functions, which contribute to the following full
program example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex3.cpp

void AddOne(int &arg) // These two fns. are overloaded

{

 arg++;

}

void AddOne(int *arg) // Overloaded function definition

{

 (*arg)++;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex3.cpp

Indirect Addressing – References90

void Display(int &arg) // Function parameter establishes

 // a reference to arg

{

 cout << arg << " " << flush;

}

Examining the previous functions, notice that AddOne(int &arg) takes a reference to an int as a
formal parameter, while AddOne(int *arg) takes a pointer to an int as a formal parameter. These
functions are overloaded. The types of their actual parameters will determine which version is called.

Now let’s consider Display(int &arg). This function takes a reference to an integer. Notice that
object (not pointer) notation is used to print arg within this function’s definition.

Now, let’s examine the remainder of this program:

#include <iostream>

using std::cout;

using std::flush;

void AddOne(int &); // function prototypes

void AddOne(int *);

void Display(int &);

int main()

{

 int x = 10, *y = nullptr;

 y = new int; // allocate y's memory

 *y = 15; // dereference y to assign a value

 Display(x);

 Display(*y);

 AddOne(x); // calls ref. version (with an object)

 AddOne(*y); // also calls reference version

 Display(x); // Based on prototype, we see we are

 Display(*y); // passing by ref. Without prototype,

 // we may have guessed it was by value.

 AddOne(&x); // calls pointer version

 AddOne(y); // also calls pointer version

Using references with functions 91

 Display(x);

 Display(*y);

 delete y; // relinquish y's memory

 return 0;

}

Notice the function prototypes at the top of this program segment. They will match the function
definitions in the previous segment of code. Now, in the main() function, we declare and initialize
int x = 10; and declare a pointer int *y;. We allocate the memory for y using new() and
then assign a value by dereferencing the pointer with *y = 15;. We print out the respective values
of x and *y as a baseline using successive calls to Display().

Next, we call AddOne(x) followed by AddOne(*y). Variable x is declared to be an integer and
*y refers to the integer pointed to by y. In both cases, we are passing integers as actual parameters to
the version of the overloaded function with the signature void AddOne(int &);. In both cases,
the formal parameters will be changed in the function, as we are passing by reference. We can verify
this when their respective values are next printed using successive calls to Display(). Note that in
the function call AddOne(x);, the reference to the actual parameter x is established by the formal
parameter arg (in the function’s parameter list) at the time of the function call.

In comparison, we then call AddOne(&x); followed by AddOne(y);. In both cases, we are calling
the overloaded version of this function with the signature void AddOne(int *);. In each case,
we are passing a copy of an address as the actual parameter to the function. Naturally, &x is the address
of variable x, so this works. Likewise, y itself is an address – it is declared as a pointer variable. We
again verify that their respective values are again changed with two calls to Display().

Notice, in each call to Display(), we pass an object of type int. Looking at the function call
alone, we cannot determine whether this function will take an int as an actual parameter (which
would imply the value could not be changed), or an int & as an actual parameter (which would
imply that the value could be modified). Either of these is a possibility. However, by looking at the
function prototype, we can clearly see that this function takes an int & as a parameter, and from this,
we understand that the parameter may likely be modified. This is one of the many reasons function
prototypes are helpful.

Here is the output for the full program example:

10 15 11 16 12 17

Now, let’s add to our discussion of using references with functions by using references as return values
from functions.

Indirect Addressing – References92

Using references as return values from functions

Functions may return references to data via their return statements. We will see a requirement to
return data by reference when we overload operators for user defined types in Chapter 12, Friends
and Operator Overloading. With operator overloading, returning a value from a function using a
pointer will not be an option to preserve the operator’s original syntax. We must return a reference
(or a reference qualified with const); this will also allow overloaded operators to enjoy cascaded
use. Additionally, understanding how to return objects by reference will be useful as we explore the
C++ Standard Template Library in Chapter 14, Understanding STL Basics.

When returning a reference via the return statement of a function, be sure that the memory that is
referred to will persist after the function call is completed. Do not return a reference to a local variable
defined on the stack within the function; this memory will be popped off the stack the moment the
function completes.

Since we cannot return a reference to a local variable within the function, and since returning a
reference to an external variable is pointless, you may ask where the data that we return a reference
to will reside. This data will inevitably be on the heap. Heap memory will exist past the extent of the
function call. In most circumstances, the heap memory will have been allocated elsewhere; however,
on rare occasions, the memory may have been allocated within this function. In this unusual situation,
you must remember to relinquish the allocated heap memory when it is no longer required.

Deleting heap memory through a reference (versus pointer) variable will require you to use the
address-of operator, &, to pass the required address to operator delete(). Even though reference
variables contain the address of the object they are referencing, the use of a reference identifier is
always in its dereferenced state. It is rare that the need may arise to delete memory using a reference
variable; we will discuss a meaningful (yet rare) example in Chapter 10, Implementing Association,
Aggregation, and Composition.

Important note
The following example illustrates syntactically how to return a reference from a function,
which you will utilize when we overload operators to allow their cascaded use, for example.
However, it is not recommended to use references to return newly allocated heap memory (in
most cases, the heap memory will have been allocated elsewhere). It is a common convention
to use references to signal to other programmers that there is no need for memory management
for that variable. Nevertheless, rare scenarios for such deletions via references may be seen in
existing code (as with the aforementioned rare usage with associations), so it is useful to see
how such a rare deletion may be done.

Using references with functions 93

Let’s see an example to illustrate the mechanics of using a reference as a return value from a function:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex4.cpp

#include <iostream>

using std::cout;

using std::endl;

int &CreateId(); // function prototype

int main()

{

 int &id1 = CreateId(); // reference established

 int &id2 = CreateId();

 cout << "Id1: " << id1 << " Id2: " << id2 << endl;

 delete &id1; // Here, '&' is address-of, not reference

 delete &id2; // to calculate address to pass delete()

 return 0; // It is unusual to delete in fashion shown,

} // using the addr. of a ref. Also, deleting in

 // a diff. scope than alloc. can be error prone

int &CreateId() // Function returns a reference to an int

{

 static int count = 100; // initialize with first id

 int *memory = new int;

 *memory = count++; // use count as id, then increment

 return *memory;

}

In this example, we see int &CreateId(); prototyped towards the top of the program. This tells
us that CreateId() will return a reference to an integer. The return value must be used to initialize
a variable of type int &.

Toward the bottom of the program, we see the function definition for CreateId(). Notice that this
function first declares a static counter, which is initialized exactly once to 100. Because this local
variable is static, it will preserve its value from function call to function call. We then increment
this counter by one a few lines later. The static variable, count, will be used as a basis to generate a
unique ID.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex4.cpp

Indirect Addressing – References94

Next, in CreateId(), we allocate space for an integer on the heap and point to it using the local
variable memory. We then load *memory with the value of count and then increase count for the
next time we enter this function. We then use *memory as the return value of this function. Notice
that *memory is an integer (the one pointed to on the heap by the variable memory). When we return
it from the function, it is returned as a reference to that integer. When returning a reference from a
function, always ensure that the memory that is referenced exists beyond the extent of the function.

Now, let’s look at our main() function. Here, we initialize a reference variable id1 with the return
value of our first call to CreateId() in the following function call and initialization: int &id1
= CreateId();. Note that the reference id1 must be initialized when it is declared, and we have
met that requirement with the aforementioned line of code.

We repeat this process with id2, initializing this reference with the return value of CreateId().
We then print both id1 and id2. By printing both id1 and id2, you can see that each ID variable
has its own memory and maintains its own data values.

Next, we must remember to deallocate the memory that CreateId() allocated on our behalf. We
must use operator delete(). Wait, operator delete() expects a pointer to the memory that will
be deleted. Variables id1 and id2 are both references, not pointers. True, they each contain an address
because each is inherently implemented as a pointer, but any use of their respective identifiers is always
in a dereferenced state. To circumvent this dilemma, we simply take the address of reference variables
id1 and id2 prior to calling delete(), such as delete &id1;. It is rare that you would need
to delete memory via a reference variable, but now you know how to do so should the need arise.

The output for this example is as follows:

Id1: 100 Id2: 101

Now that we understand how references can be used within parameters to functions and as return
values from functions, let’s move forward by examining further reference nuances.

Using the const qualifier with references
The const qualifier can be used to qualify the data in which references are initialized or refer to. We
can also use const qualified references as arguments to functions and as return values from functions.

It is important to understand that a reference is implemented as a constant pointer in C++. That is,
the address contained within the reference variable is a fixed address. This explains why a reference
variable must be initialized to the object to which it will refer, and may not later be updated using
an assignment. This also explains why constant qualifying the reference itself (and not just the data
that it refers to) does not make sense. This variety of const qualification is already implied with its
underlying implementation.

Let’s take a look at these various scenarios using const with references.

Using the const qualifier with references 95

Using references to constant objects

The const qualifier can be used to indicate that the data to which references are initialized are
unmodifiable. In this fashion, the alias always refers to a fixed piece of memory, and the value of that
variable may not be changed using the alias itself. The reference, once specified as constant, implies
that neither the reference nor its value may be changed. Again, the reference itself may not be changed
due to its underlying implementation as a constant qualified pointer. A const qualified reference
may not be used as an l-value in any assignment.

Note
Recall, an l-value is a value that can be modified and that occurs on the left-hand side of an
assignment.

Let’s introduce a simple example to understand the situation:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex5.cpp

#include <iostream>

using std::cout;

using std::endl;

int main()

{

 int x = 5;

 const int &refInt = x;

 cout << x << " " << refInt << endl;

 // refInt = 6; // Illegal -- refInt is const

 x = 7; // we can inadvertently change refInt

 cout << x << " " << refInt << endl;

 return 0;

}

In the previous example, notice that we declare int x = 5; and then we establish a constant
reference to that integer with the declaration: const int &refInt = x;. Next, we print out
both values for a baseline and notice that they are identical. This makes sense; they reference the
same integer memory.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex5.cpp

Indirect Addressing – References96

Next, in the commented-out piece of code, //refInt = 6;, we try to modify the data that the
reference refers to. Because refInt is qualified as const, this is illegal; this is the reason why we
commented out this line of code.

However, on the following line of code, we assign x a value of 7. Since refInt refers to this same
memory, its value will also be modified. Wait, isn’t refInt constant? Yes, by qualifying refInt
as const, we are indicating that its value will not be modified using the identifier refInt. This
memory can still be modified using x.

But wait, isn’t this a problem? No, if refInt truly wants to refer to something unmodifiable, it can
instead initialize itself with a const int, not an int. This subtle point is something to remember in
C++ so you can write code for exactly the scenario you intend to have, understanding the significance
and consequences of each choice.

The output for this example is as follows:

5 5

7 7

Next, let’s see a variation on the const qualification theme.

Using pointers to constant objects as function arguments and as
return types from functions

Using const qualification with function parameters cannot just allow the speed of passing an
argument by reference, but the safety of passing an argument by value. It is a useful feature in C++.

A function that takes a reference to an object as a parameter often has less overhead than a comparable
version of the function that takes a copy of an object as a parameter. This most notably occurs when
the object type that would be otherwise copied on the stack is large. Passing a reference as a formal
parameter is speedier, yet permits the actual parameter to be potentially modified in the scope of the
function. Passing a reference to a constant object as a function argument provides both speed and
safety for the argument in question. The reference qualified as const in the parameter list simply
may not be an l-value in the scope of the function in question.

The same benefit of const qualified references exists for the return value from a function. Constant
qualifying the data referenced insists that the caller of the function must also store the return value
in a reference to a constant object, ensuring the object may not be modified.

Using the const qualifier with references 97

Let’s take a look at an example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex6.cpp

#include <iostream>

using std::cout;

using std::cin;

using std::endl;

struct collection

{

 int x;

 float y;

};

void Update(collection &); // function prototypes

void Print(const collection &);

int main()

{

 collection collect1, *collect2 = nullptr;

 collect2 = new collection; // allocate mem. from heap

 Update(collect1); // a ref to the object is passed

 Update(*collect2); // same here: *collect2 is an object

 Print(collect1);

 Print(*collect2);

 delete collect2; // delete heap memory

 return 0;

}

void Update(collection &c)

{

 cout << "Enter <int> and <float> members: ";

 cin >> c.x >> c.y;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex6.cpp

Indirect Addressing – References98

void Print(const collection &c)

{

 cout << "x member: " << c.x;

 cout << " y member: " << c.y << endl;

}

In this example, we first define a simple struct collection with data members x and y. Next,
we prototype Update(collection &); and Print(const collection &);. Notice
that Print() constant qualifies the data being referenced as the input parameter. This means that
this function will enjoy the speed of passing this parameter by reference, and the safety of passing
the parameter by value.

Notice, towards the end of the program, we see the definitions for both Update() and Print().
Both take references as arguments, however, the parameter to Print() is constant qualified: void
Print(const collection &);. Notice that both functions use the . (member selection)
notation within each function body to access the relevant data members.

In main(), we declare two variables, collect1 of type collection, and collect2, which is
a pointer to a collection (and whose memory is subsequently allocated). We call Update() for
both collect1 and *collect2, and in each case, a reference to the applicable object is passed to
the Update() function. In the case of collect2, which is a pointer variable, the actual parameter
must first dereference *collect2 to go to the object being referenced before calling this function.

Finally, in main(), we call Print() successively for both collect1 and *collect2. Here,
Print() will reference each object serving as a formal parameter as constant qualified referenced
data, ensuring that no modifications of either input parameter are possible within the scope of the
Print() function.

Here is the output to accompany our example:

Enter x and y members: 33 23.77

Enter x and y members: 10 12.11

x member: 33 y member: 23.77

x member: 10 y member: 12.11

Now that we have an understanding of when const qualified references are useful, let’s take a look
at when we can use references in lieu of pointers, and when we cannot.

Realizing underlying implementation and restrictions
References can ease the notation required for indirect referencing. However, there are situations in
which references simply cannot take the place of pointers. To understand these situations, it is useful
to review the underlying implementation of a reference in C++.

Realizing underlying implementation and restrictions 99

References are implemented as constant pointers, hence they must be initialized. Once initialized,
references may not refer to a different object (though the value of the object being referenced can be
changed).

To understand the implementation, let’s consider a sample reference declaration: int &intVar =
x;. From an implementation aspect, it is as though the former variable declaration is instead declared
as int *const intVar = &x;. Note that the & symbol shown on the left-hand side of an
initialization takes on the meaning of reference, whereas the & symbol shown on the right-hand side
of an initialization or assignment implies address-of. These two declarations illustrate how a reference
is defined versus its underlying implementation.

Even though a reference is implemented as a constant pointer, the usage of the reference variable is
as if the underlying constant pointer has been dereferenced. For this reason, you cannot initialize a
reference with a nullptr – not only can a nullptr not be dereferenced but since references can
only be initialized and not reset, the opportunity would be lost to establish the reference variable to
refer to a meaningful object. This also holds true for references to pointers.

Next, let’s understand in which situations we cannot use references.

Understanding when we must use pointers instead of references

Based on the underlying implementation of references (as const pointers), most of the restrictions
for reference usage make sense. For example, references to references are generally not allowed; each
level of indirection would need to be initialized upfront and that often takes multiple steps, such as
when using pointers. However, we will see r-value references (&&) in Chapter 15, Testing Classes
and Components, where we will examine various move operations. Arrays of references are also not
permitted (each element would need to be initialized immediately); nonetheless, arrays of pointers
are always an option. Also, pointers to references are not permitted; however, references to pointers
are permitted (as are pointers to pointers).

Let’s take a look at the mechanics of an interesting allowable reference case that we have not yet explored:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex7.cpp

#include <iostream>

using std::cout;

using std::endl;

int main()

{

 int *ptr = new int;

 *ptr = 20;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex7.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter04/Chp4-Ex7.cpp

Indirect Addressing – References100

 int *&refPtr = ptr; // establish a reference to a ptr

 cout << *ptr << " " << *refPtr << endl;

 delete ptr;

 return 0;

}

In this example, we declare int *ptr; and then allocate the memory for ptr (consolidated on
one line). We then assign a value of 20 to *p.

Next, we declare int *&refPtr = ptr;, which is a reference to a pointer of type int. It helps to
read the declaration from right to left. As such, we use ptr to initialize refPtr, which is a reference
to a pointer to an int. In this case, the two types match; ptr is a pointer to an int, so refPtr must
also then reference a pointer to an int. We then print out the value of both *ptr and *refPtr
and can see that they are the same.

Here is the output to accompany our program:

20 20

With this example, we have seen yet another interesting use of references. We also understand the
restrictions placed upon using references, all of which are driven by their underlying implementation.

Summary
In this chapter, we have learned numerous aspects of C++ references. We have taken the time to
understand reference basics, such as declaring and initializing reference variables to existing objects,
as well as how to access reference components for basic and user defined types.

We have seen how to utilize references in a meaningful fashion with functions, both as input parameters
and as a return value. We have also seen when it is reasonable to apply the const qualifier to references,
as well as seen how this concept can be combined with parameters and return values from functions.
Lastly, we have seen the underlying implementation of references. This has helped explain some of
the restrictions references encompass, as well as understand which cases of indirect addressing will
require the use of pointers instead of references.

As with pointers, all of the skills using references from this chapter will be used freely in the upcoming
chapters. C++ allows programmers to have a more convenient notation for indirect addressing using
references; however, programmers are expected to utilize either for indirect addressing with relative ease.

Finally, you are now ready to move forward to Chapter 5, Exploring Classes in Detail, in which we
begin the object-oriented features of C++. This is what we have been waiting for; let’s get started!

Questions 101

Questions
1. Modify and augment your C++ program from Chapter 3, Indirect Addressing – Pointers,

Question 1 as follows:

a. Overload your ReadData() function with a version that accepts a Student & parameter
to allow firstName, lastName, currentCourseEnrolled, and gpa to be entered
from the keyboard within the function.

b. Replace the Print() function that takes a Student from your previous solution to
instead take a const Student & as a parameter for Print().

c. Create variables of type Student and of type Student * in main(). Now, call the
various versions of ReadData(), and Print(). Do the pointer variables necessarily
need to call the versions of these functions that accept pointers, and do the non-pointer
variables necessarily need to call the versions of these functions that accept references?
Why or why not?

Part 2:
Implementing

Object-Oriented
Concepts in C++

The goal of this part is to understand how to implement OO designs using both C++ language
features and proven programming techniques. C++ can be used for many paradigms of coding;
programmers must strive to program in an OO fashion in C++ (it’s not automatic). This is the
largest section of the book, as understanding how to map language features and implementation
techniques to OO concepts is paramount.

The initial chapter in this section explores classes in great detail, beginning by describing the
OO concepts of encapsulation and information hiding. Language features such as member
functions, the this pointer, access regions in detail, constructors in detail (including the copy
constructor, the member initialization list, and in-class initialization), destructor, qualifiers on
member functions (const, static, and inline), and qualifiers on data members (const
and static) are examined in depth.

The next chapter in this section tackles single inheritance basics with the OO concepts of
generalization and specialization, detailing inherited constructors through the member initialization
list, the order of construction and destruction, and understanding inherited access regions. Final
classes are explored. This chapter pushes deeper by exploring public versus protected and private
base classes and how these language features change the OO meaning of inheritance.

The subsequent chapter delves into the OO concept of polymorphism with respect to understanding
the concept as well as its implementation in C++ using virtual functions. The virtual,
override, and final keywords are explored. Dynamic binding of an operation to a specific
method is examined. The virtual function table is explored to explain runtime binding.

The next chapter explains abstract classes in detail, pairing the OO concept with its implementation
using pure virtual functions. The OO concept of an interface (not explicitly in C++) is introduced
and a method for implementation is reviewed. Casting up and down the inheritance hierarchy
completes this chapter.

The next chapter explores multiple inheritance and the potential issues that may arise from using
this feature. Virtual base classes are detailed as well as the OO concept of a discriminator to help
determine whether multiple inheritance is the best design for a given scenario or if another may
exist.

The final chapter in this section introduces the concepts of association, aggregation, and composition
and how to implement these common object relationships using pointers or references, sets of
pointers, or embedded objects.

This part comprises the following chapters:

• Chapter 5, Exploring Classes in Detail

• Chapter 6, Implementing Hierarchies with Single Inheritance

• Chapter 7, Utilizing Dynamic Binding through Polymorphism

• Chapter 8, Mastering Abstract Classes

• Chapter 9, Exploring Multiple Inheritance

• Chapter 10, Implementing Association, Aggregation, and Composition

Part 2: Implementing Object-Oriented Concepts in C++104

5
E x p l o r i n g C l a s s e s i n D e t a i l

This chapter will begin our pursuit of object-oriented programming (OOP) in C++. We will begin by
introducing object-oriented (OO) concepts and then progress to understanding how these concepts
can be implemented in C++. Many times, implementing OOP ideas will be through direct language
support, such as the features in this chapter. Sometimes, however, we will utilize various programming
techniques to implement object-oriented concepts. These techniques will be seen in later chapters.
In all cases, it is important to understand the object-oriented concepts and how these concepts relate
to well-thought-out designs, and then have a clear understanding of how to implement these designs
with robust code.

This chapter will detail C++ class usage in extreme detail. Subtle features and nuances are detailed
beyond the basics. The goal of this chapter will be to allow you to understand OO concepts, and for
you to begin to think in terms of object-oriented programming. Embracing core OO ideals, such as
encapsulation and information hiding, will allow you to write code that is easier to maintain, and will
allow you to modify others’ code more easily.

In this chapter, we will cover the following main topics:

• Defining object-oriented terminology and concepts – object, class, instance, encapsulation
and information hiding

• Applying class and member function basics

• Examining member function internals; the this pointer

• Using access labels and access regions

• Understanding constructors – default, overloaded, copy, conversion constructors, and
in-class initializers

• Understanding destructors and their proper usage

• Applying qualifiers to data members and member functions – inline, const, and static

Exploring Classes in Detail106

By the end of this chapter, you will understand core object-oriented terminology applicable to classes,
and how key OO ideas such as encapsulation and information hiding will lead to software that is
easier to maintain.

You will also appreciate how C++ provides built-in language features to support object-oriented
programming. You will become well versed in the use of member functions and will understand their
underlying implementation through the this pointer. You will understand how to correctly use
access labels and access regions to promote encapsulation and information hiding.

You will understand how constructors can be used to initialize objects, and the many varieties
of constructors from basic to typical (overloaded) to the copy constructor, and even conversion
constructors. Similarly, you will understand how to make proper use of the destructor prior to an
object’s end of existence.

You will also understand how qualifiers, such as const, static, and inline, may be applied
to member functions to support either object-oriented concepts or efficiency. Likewise, you will
understand how to apply qualifiers, such as const and static, to data members to additionally
support OO ideals.

C++ can be used as an object-oriented programming language, but it is not automatic. To do so, you must
understand OO concepts, ideology, and language features that will allow you to support this endeavor.
Let us begin our pursuit of writing code that is easier to modify and maintain by understanding the
core and essential building block found in object-oriented C++ programs, the C++ class.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter05. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter05 in a file named Chp5-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3KaiQ39.

Introducing object-oriented terminology and concepts
In this section, we will introduce core object-oriented concepts as well as applicable terminology that
will accompany these key ideas. Though new terms will come up throughout this chapter, we will
begin with essential terms necessary to begin our journey in this section.

Let’s get started with basic object-oriented terminology.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter05
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter05
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter05
https://bit.ly/3KaiQ39

Introducing object-oriented terminology and concepts 107

Understanding object-oriented terminology

We will begin with basic object-oriented terminology, and then as we introduce new concepts, we
will extend the terminology to include C++ specific terminology.

The terms object, class, and instance are all important and related terms with which we can start our
definitions. An object embodies a meaningful grouping of characteristics and behaviors. An object
can be manipulated and can receive the action or consequences of a behavior. Objects may undergo
transformations and can change repeatedly over time. Objects can interact with other objects.

The term object, at times, may be used to describe the blueprint for groupings of like items. The
term class may be used interchangeably with this usage of an object. The term object may also (and
more often) be used to describe a specific item in such a grouping. The term instance may be used
interchangeably with this meaning of an object. The context of usage will often make clear which
meaning of the term object is being applied. To avoid potential confusion, the terms class and instance
can preferably be used.

Let’s consider some examples, using the aforementioned terms:

Objects also have components. The characteristics of a class are referred to as attributes. Behaviors of
a class are referred to as operations. The specific implementation of a behavior or operation is referred
to as its method. In other words, the method is how an operation is implemented, or the body of
code defining the function, whereas the operation is the function’s prototype or protocol for usage.

Let’s consider some high-level examples, using the aforementioned terms:

Exploring Classes in Detail108

Each instance of a class will most likely have distinct values for its attributes. For example:

Now that we have the basic OO terms under our belt, let’s move on to important object-oriented
concepts that are relevant to this chapter.

Understanding object-oriented concepts

The key object-oriented concepts relating to this chapter are encapsulation and information hiding.
Incorporating these interrelated ideals into your design will provide the basis for writing more easily
modifiable and maintainable programs.

The grouping of meaningful characteristics (attributes) and behaviors (operations) that operate on
those attributes, bundled together in a single unit, is known as encapsulation. In C++, we typically
group these items together in a class. The interface to each class instance is made through operations
that model the behaviors relevant to each class. These operations may additionally modify the internal
state of the object by changing the values of its attributes. Concealing attributes within a class and
providing an interface for operating on those details leads us to explore the supportive concept of
information hiding.

Information hiding refers to the process of abstracting the details of performing an operation into
a class method. That is, the user needs only to understand which operation to utilize and its overall
purpose; the implementation details are hidden within the method (function’s body). In this fashion,
changing the underlying implementation (method) will not change the operation’s interface. Information
hiding can additionally refer to keeping the underlying implementation of a class’ attributes hidden. We
will explore this further when we introduce access regions. Information hiding is a means to achieve
proper encapsulation of a class. A properly encapsulated class will enable proper class abstraction
and thus the support of OO designs.

Object-oriented systems are inherently more easily maintained because classes allow upgrades and
modifications to be made quickly and without impact to the entire system due to encapsulation and
information hiding.

Understanding class and member function basics 109

Understanding class and member function basics
A C++ class is a fundamental building block in C++ that allows a programmer to specify a user
defined type, encapsulating related data and behaviors. A C++ class definition will contain attributes,
operations, and sometimes methods. C++ classes support encapsulation.

Creating a variable of a class type is known as instantiation. The attributes in a class are known as
data members in C++. Operations in a class are known as member functions in C++ and are used
to model behaviors. In OO terms, an operation implies the signature of a function, or its prototype
(declaration), and the method implies its underlying implementation or the body of the function
(definition). In some OO languages, the term method is used more loosely to imply either the operation
or its method, based on the context of usage. In C++, the terms data member and member function
are most often used.

The prototype for a member function must be placed in a class definition. Most often, the member
function definition is placed outside of the class definition. The scope resolution operator :: is then
used to associate a given member function definition to the class in which it is a member. Dot . or
arrow -> notation is used to access all class members, including member functions, depending on
whether we are accessing members through an instance or through a pointer to an instance.

C++ structures may also be used to encapsulate data and their related behaviors. A C++ struct
can do anything a C++ class can do; in fact, class is implemented in terms of struct in C++.
Though structures and classes may behave identically (other than default visibility), classes are more
often used to model objects, relationships between object types, and implement object-oriented systems.

Let’s take a look at a simple example in which we instantiate a class and a struct, each with
member functions, for comparison with one another. We will break this example into several segments.
The full program example can be found in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex1.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

struct student

{

 string name;

 float gpa;

 void Initialize(string, float); // fn. prototype

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex1.cpp

Exploring Classes in Detail110

 void Print();

};

class University

{

public:

 string name;

 int numStudents;

 void Initialize(string, int); // fn. prototype

 void Print();

};

In the preceding example, we first define a student type using a struct, and a University
type using a class. Notice, by convention, that user defined types created using structures are not
capitalized, yet user defined types created using classes begin with a capital letter. Also notice that the
class definition requires the label public: toward the beginning of its definition. We will explore
the use of this label later in this chapter; however, for now, the public label is present so that this
class will have the same default visibility of its members as does the struct.

In both the class and struct definitions, notice the function prototypes for Initialize()
and Print(). We will tie these prototypes to member function definitions in the next program
segment using ::, the scope resolution operator.

Let’s examine the various member function definitions:

void student::Initialize(string n, float avg)

{

 name = n; // simple assignment

 gpa = avg; // we'll see preferred init. shortly

}

void student::Print()

{

 cout << name << " GPA: " << gpa << endl;

}

void University::Initialize(string n, int num)

{

 name = n; // simple assignment; we will see

Understanding class and member function basics 111

 numStudents = num; // preferred initialization shortly

}

void University::Print()

{

 cout << name << " Enrollment: " << numStudents << endl;

}

Now, let’s review the various member function definitions for each user defined type. The definitions for
void student::Initialize(string, float), void student::Print(), void
University::Initialize(string, int), and void University::Print()
appear consecutively in the preceding fragment. Notice how the scope resolution operator :: allows
us to tie the relevant function definition back to the class or struct in which it is a member.

Additionally, notice that in each Initialize() member function, the input parameters are used
as values to load the relevant data members for a specific instance of a specific class or struct type.
For example, in the function definition of void University::Initialize(string
n, int num), the input parameter num is used to initialize numStudents for a particular
University instance.

Note
The scope resolution operator :: associates member function definitions with the class (or
struct) in which they are a member.

Let’s see how member functions are called by considering main() in this example:

int main()

{

 student s1; // instantiate a student (struct instance)

 s1.Initialize("Gabby Doone", 4.0);

 s1.Print();

 University u1; // instantiate a University (class)

 u1.Initialize("GWU", 25600);

 u1.Print();

 University *u2; // pointer declaration

 u2 = new University(); // instantiation with new()

 u2->Initialize("UMD", 40500);

Exploring Classes in Detail112

 u2->Print(); // or alternatively: (*u2).Print();

 delete u2;

 return 0;

}

Here, in main(), we simply define a variable, s1, of type student, and a variable, u1, of type
University. In object-oriented terms, it is preferable to say that s1 is an instance of student,
and u1 is an instance of University. The instantiation occurs when the memory for an object
is made available. For this reason, declaring pointer variable u2 using: University *u2; does
not instantiate a University; it merely declares a pointer to a possible future instance. Rather,
on the following line, u2 = new University();, we instantiate a University when the
memory is allocated.

For each of the instances, we initialize their data members by calling their respective
Initialize() member functions, such as s1.Initialize("Gabby Doone", 4.0);
or u1.Initialize("UMD", 4500);. We then call Print() through each respective
instance, such as u2->Print();. Recall that u2->Print(); may also be written as (*u2).
Print();, which more easily allows us to remember that the instance here is *u2, whereas u2 is
a pointer to that instance.

Notice that when we call Initialize() through s1, we call student::Initialize()
because s1 is of type student, and we initialize s1’s data members in the body of this function.
Similarly, when we call Print() through u1 or *u2, we call University::Print() because
u1 and *u2 are of type University and we subsequently print out a particular university’s data
members.

Since instance u1 was dynamically allocated on the heap, we are responsible for releasing its memory
using delete() toward the end of main().

The output to accompany this program is as follows:

Gabby Doone GPA: 4.4

GWU Enrollment: 25600

UMD Enrollment: 40500

Now that we are creating class definitions with their associated member function definitions, it is
important to know how developers typically organize their code in files. Most often, a class will be
broken into a header (.h) file, which will contain the class definition, and a source code (.cpp)
file, which will #include the header file, and then follow with the member function definitions
themselves. For example, a class named University would have a University.h header file
and a University.cpp source code file.

Now, let’s move forward with our understanding of the details of how member functions work by
examining the this pointer.

Examining member function internals; the “this” pointer 113

Examining member function internals; the “this” pointer
So far, we have noticed that member functions are invoked through objects. We have noticed that in
the scope of a member function, it is the data members (and other member functions) of the particular
object that invoked the function that may be utilized (in addition to any input parameters). Alas, how,
and why does this work?

It turns out that most often, member functions are invoked through objects. Whenever a member
function is invoked in this fashion, that member function receives a pointer to the instance that invoked
the function. A pointer to the object calling the function is then passed as an implicit first argument
to the function. The name of this pointer is this.

Though the this pointer may be referred to explicitly in the definition of each such member function,
it usually is not. Even without its explicit use, the data members utilized in the scope of the function
belong to this, a pointer to the object that invoked the function.

Let us take a look at a full program example. Though the example is broken into segments, the full
program can be found in the following GitHub location:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex2.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string, one

 // pointer data member will illustrate

 // important concepts

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student

{

// for now, let's put everything public access region

public:

 string firstName; // data members

 string lastName;

 char middleInitial;

 float gpa;

 char *currentCourse; // ptr to illustrate key concepts

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex2.cpp

Exploring Classes in Detail114

 // member function prototypes

 void Initialize(string, string, char, float,

 const char *);

 void Print();

};

In the first segment of the program, we define class Student with a variety of data members, and
two member function prototypes. For now, we will place everything in the public access region.

Now, let’s examine the member function definitions for void Student::Initialize() and
void Student::Print(). We will also examine how each of these functions looks internally
to C++:

// Member function definition

void Student::Initialize(string fn, string ln, char mi,

 float gpa, const char *course)

{

 firstName = fn;

 lastName = ln;

 this->middleInitial = mi; // optional use of 'this'

 this->gpa = gpa; // required, explicit use of 'this'

 // remember to allocate memory for ptr data members

 currentCourse = new char [strlen(course) + 1];

 strcpy(currentCourse, course);

}

// It is as if Student::Initialize() is written as:

// void Student_Initialize_str_str_char_float_constchar*

// (Student *const this, string fn, string ln,

// char mi, float avg, const char *course)

// {

// this->firstName = fn;

// this->lastName = ln;

// this->middleInitial = mi;

// this->gpa = avg;

// this->currentCourse = new char [strlen(course) + 1];

// strcpy(this->currentCourse, course);

// }

Examining member function internals; the “this” pointer 115

// Member function definition

void Student::Print()

{

 cout << firstName << " ";

 cout << middleInitial << ". ";

 cout << lastName << " has a gpa of: ";

 cout << gpa << " and is enrolled in: ";

 cout << currentCourse << endl;

}

// It is as if Student::Print() is written as:

// void Student_Print(Student *const this)

// {

// cout << this->firstName << " ";

// cout << this->middleInitial << ". ";

// cout << this->lastName << " has a gpa of: ";

// cout << this->gpa << " and is enrolled in: ";

// cout << this->currentCourse << endl;

// }

First, we see the member function definition for void Student::Initialize(), which
takes a variety of parameters. Notice that in the body of this function, we first assign input parameter
fn to data member firstName. We proceed similarly, using the various input parameters, to
initialize the various data members for the specific object that will invoke this function. Also notice
that we allocate memory for pointer data member currentCourse to be enough characters to
hold what input parameter course requires (plus one for the terminating null character). We then
strcpy() the string from the input parameter, course, to data member currentCourse.

Also, notice in void Student::Initialize(), the assignment this->middleInitial
= mi;. Here, we have an optional, explicit use of the this pointer. It is not necessary or customary
in this situation to qualify middleInitial with this, but we may choose to do so. However, in
the assignment this->gpa = gpa;, the use of this is required. Why? Notice that the input
parameter is named gpa and the data member is also gpa. Simply assigning gpa = gpa; would
set the most local version of gpa (the input parameter) to itself and would not affect the data member.
Here, disambiguating gpa with this on the left-hand side of the assignment indicates to set the
data member, gpa, which is pointed to by this, to the value of the input parameter, gpa. Another
solution is to use distinct names for data members versus input parameters, such as renaming gpa
in the formal parameter list to avg (which we will do in later versions of this code).

Now, notice the commented-out version of void Student::Initialize(), which is
below the utilized version of void Student::Initialize(). Here, we can see how most

Exploring Classes in Detail116

member functions are internally represented. First, notice that the name of the function is name
mangled to include the data types of its parameters. This is internally how functions are represented,
and consequentially, allows function overloading (that is, two functions with seemingly the same
name; internally, each has a unique name). Next, notice that among the input parameters, there is
an additional, first, input parameter. The name of this additional (hidden) input parameter is this,
and it is defined as Student *const this.

Now, in the body of the internalized function view of void Student::Initialize(), notice
that each data member’s name is preceded with this. We are, in fact, accessing the data member of
an object that is pointed to by this. Where is this defined? Recall that this is the implicit first
input parameter to this function, and is a constant pointer to the object that invoked this function.

Similarly, we can review the member function definition for void Student::Print().
In this function, each data member is neatly printed out using cout and the insertion operator
<<. However, notice below this function definition, the commented-out internal version of void
Student::Print(). Again, this is actually an implicit input parameter of type Student
*const. Also, each data member usage is preceded with access through the this pointer, such as
this->gpa. Again, we can clearly see that a specific instance’s members are accessed in the scope
of a member function; these members are implicitly accessed through the this pointer.

Lastly, note that explicit use of this is permitted in the body of a member function. We can almost
always precede usage of a data member or member function, accessed in the body of a member
function, with explicit use of this. Later in this chapter, we will see the one contrary case (using a
static method). Also, later in this book, we will see situations in which explicit usage of this will be
necessary to implement more intermediate-level OO concepts.

Nonetheless, let’s move forward by examining main() to complete this program example:

int main()

{

 Student s1; // instance

 Student *s2 = new Student; // ptr to an instance

 s1.Initialize("Mary", "Jacobs", 'I', 3.9, "C++");

 s2->Initialize("Sam", "Nelson", 'B', 3.2, "C++");

 s1.Print();

 s2->Print(); // or use (*s2).Print();

 delete [] s1.currentCourse; // delete dynamically

 delete [] s2->currentCourse; // allocated data members

 delete s2; // delete dynamically allocated instance

 return 0;

}

Using access labels and access regions 117

In the last segment of this program, we instantiate Student twice in main(). Student s1 is an
instance, whereas s2 is a pointer to a Student. Next, we utilize either . or -> notation to invoke
the various member functions through each relevant instance.

Note, when s1 invokes Initialize(), the this pointer (in the scope of the member function)
will point to s1. It will be as if &s1 is passed as a first argument to this function. Likewise, when *s2
invokes Initialize(), the this pointer will point to s2; it will be as if s2 (which is already a
pointer) is passed as an implicit first argument to this function.

After each instance invokes Print() to display the data members for each Student, notice that
we release various levels of dynamically allocated memory. We start with the dynamically allocated
data members for each instance, releasing each such member using delete(). Then, because s2
is a pointer to an instance that we have dynamically allocated, we must also remember to release the
heap memory comprising the instance itself. We again do so with delete s2;.

Here is the output for the full program example:

Mary I. Jacobs has a gpa of: 3.9 and is enrolled in: C++

Sam B. Nelson has a gpa of: 3.2 and is enrolled in: C++

Now, let’s add to our understanding of classes and information hiding by examining access labels
and regions.

Using access labels and access regions
Labels may be introduced into a class (or structure) definition to control the access or visibility of
class (or structure) members. By controlling the direct access of members from various scopes in our
application, we can support encapsulation and information hiding. That is, we can insist that users
of our classes use the functions that we select, with the protocols we select, to manipulate data and
other member functions within the class in ways we, the programmers, find reasonable and acceptable.
Furthermore, we can hide the implementation details of the class by advertising to the user only the
desired public interface for a given class.

Data members or member functions, collectively referred to as members, can be individually labeled,
or grouped together into access regions. The three labels or access regions that may be specified are
as follows:

• private: Data members and member functions in this access region are only accessible within
the scope of the class. The scope of a class includes member functions of that class.

• protected: Behaves like private until we introduce inheritance. When inheritance is introduced,
protected will provide a mechanism for allowing access within the derived class scope.

• public: Data members and member functions in this access region are accessible from any
scope in the program.

Exploring Classes in Detail118

Reminder
Data members and member functions are most always accessed via instances. You will ask,
in what scope is my instance?, and may I access a particular member from this particular scope?

As many members as required by the programmer may be grouped under a given label or access
region. Should access labels be omitted in a class definition, the default member access is private.
If access labels are omitted in a structure definition, default member access is public. When access
labels are explicitly introduced, rather than relying on default visibility, a class and a struct are
identical. Nonetheless, in object-oriented programming, we tend to utilize classes for user defined types.

It is interesting to note that data members, when grouped into an access region collectively under the
same access label, are guaranteed to be laid out in memory in the order specified. However, if multiple
access regions exist containing data members within a given class, the compiler is free to reorder those
respective groupings for efficient memory layout.

Let’s examine an example to illustrate access regions. Though this example will be broken into several
segments, the full example will be shown and can also be found in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex3.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string,

// one ptr data member will illustrate important concepts

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student

{

// private members are accessible only within the scope of

// the class (that is, within member functions or friends)

private:

 string firstName; // data members

 string lastName;

 char middleInitial;

 float gpa;

 char *currentCourse; // ptr to illustrate key concepts

public: // public members are accessible from any scope

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex3.cpp

Using access labels and access regions 119

 // member function prototypes

 void Initialize();

 void Initialize(string, string, char, float,

 const char *);

 void CleanUp();

 void Print();

};

In this example, we first define the Student class. Notice that we add a private access region
near the top of the class definition and place all of the data members within this region. This placement
will ensure that these data members will only be able to be directly accessed and modified within the
scope of this class, which means by member functions of this class (and friends, which we will much
later see). By limiting the access of data members only to member functions of their own class, safe
handling of those data members is ensured; only access through intended and safe functions that the
class designer has introduced themself will be allowed.

Next, notice that the label public has been added in the class definition prior to the prototypes of
the member functions. The implication is that these functions will be accessible in any scope of our
program. Of course, we will generally need to access these functions each via an instance. But the
instance can be in the scope of main() or any other function (even in the scope of another class’
member functions) when the instance accesses these public member functions. This is known as a
class’ public interface.

Access regions support encapsulation and information hiding
A good rule of thumb is to place your data members in the private access region and
then specify a safe, appropriate public interface to access them using public member
functions. By doing so, the only access to data members is in manners that the class designer
has intended, through member functions the class designer has written, which have been well
tested. With this strategy, the underlying implementation of the class may also be changed
without causing any calls to the public interface to change. This practice supports encapsulation
and information hiding.

Let’s continue by taking a look at the various member function definitions in our program:

void Student::Initialize()

{ // even though string data members are initialized with

 // empty strings, we are showing how to clear these

 // strings, should Initialize() be called more than 1x

 firstName.clear();

 lastName.clear();

Exploring Classes in Detail120

 middleInitial = '\0'; // null character

 gpa = 0.0;

 currentCourse = nullptr;

}

// Overloaded member function definition

void Student::Initialize(string fn, string ln, char mi,

 float avg, const char *course)

{

 firstName = fn;

 lastName = ln;

 middleInitial = mi;

 gpa = avg;

 // dynamically allocate memory for pointer data member

 currentCourse = new char [strlen(course) + 1];

 strcpy(currentCourse, course);

}

// Member function definition

void Student::CleanUp()

{ // deallocate previously allocated memory

 delete [] currentCourse;

}

// Member function definition

void Student::Print()

{

 cout << firstName << " " << middleInitial << ". ";

 cout << lastName << " has gpa: " << gpa;

 cout << " and enrolled in: " << currentCourse << endl;

}

Here, we have defined the various member functions that were prototyped in our class definition.
Notice the use of the scope resolution operator :: to tie the class name to the member function name.
Internally, these two identifiers are name mangled together to provide a unique, internal function name.
Notice that the void Student::Initialize() function has been overloaded; one version
simply initializes all data members to some form of null or zero, whereas the overloaded version uses
input parameters to initialize the various data members.

Using access labels and access regions 121

Now, let’s continue by examining our main() function in the following segment of code:

int main()

{

 Student s1;

 // Initialize() is public; accessible from any scope

 s1.Initialize("Ming", "Li", 'I', 3.9, "C++", "178GW");

 s1.Print(); // public Print() accessible from main()

 // Error! private firstName is not accessible in main()

 // cout << s1.firstName << endl;

 // CleanUp() is public, accessible from any scope

 s1.CleanUp();

 return 0;

}

In the aforementioned main() function, we first instantiate a Student with the declaration
Student s1;. Next, s1 invokes the Initialize() function with the signature matching the
parameters provided. Since this member function is in the public access region, it can be accessed
in any scope of our program, including main(). Similarly, s1 invokes Print(), which is also
public. These functions are in the Student class’ public interface, and represent some of the core
functionality for manipulating any given Student instance.

Next, in the commented-out line of code, notice that s1 tries to access firstName directly using
s1.firstName. Because firstName is private, this data member can only be accessed in
the scope of its own class, which means member functions (and later friends) of its class. The main()
function is not a member function of Student, hence s1 may not access firstName in the scope
of main(), that is, a scope outside its own class.

Lastly, we invoke s1.CleanUp();, which also works because CleanUp() is public and is
hence accessible from any scope (including main()).

The output for this complete example is as follows:

Ming I. Li has gpa: 3.9 and enrolled in: C++

Now that we understand how access regions work, let’s move forward by examining a concept known
as a constructor, and the various types of constructors available within C++.

Exploring Classes in Detail122

Understanding constructors
Did you notice how convenient it has been for the program examples in this chapter to have an
Initialize() member function for each class or struct? Certainly, it is desirable to
initialize all data members for a given instance. More so, it is crucial to ensure that data members
for any instance have bonafide values, as we know that memory is not provided clean or zeroed-out
by C++. Accessing an uninitialized data member, and utilizing its value as if it were bonafide, is a
potential pitfall awaiting the careless programmer.

Initializing each data member individually each time a class is instantiated can be tedious work.
What if we simply overlook setting a value? What if the values are private, and are therefore
not directly accessible? We have seen that an Initialize() function is beneficial because once
written, it provides a means to set all data members for a given instance. The only drawback is that
the programmer must now remember to call Initialize() on each instance in the application.
Instead, what if there is a way to ensure that an Initialize() function is called every time a
class is instantiated? What if we could overload a variety of versions to initialize an instance, and the
appropriate version could be called based on data available at the time? This premise is the basis for a
constructor in C++. The language provides for an overloaded series of initialization functions, which
will be automatically called once the memory for an instance becomes available.

Let’s take a look at this family of initialization member functions by examining the C++ constructor.

Applying constructor basics and overloading constructors

A constructor is a member function that is automatically invoked after the memory for an instance is
made available. Constructors are used to initialize the data members that comprise a newly instantiated
object (except for static data members, which we’ll examine later in this chapter). A constructor will
have the same name as the class or struct in which it is a member. Constructors may be overloaded,
which enables a class (or struct) to define multiple means by which to initialize an object. The
return type of a constructor may not be specified.

Should your class or struct not contain a constructor, one will be made for you in the public
access region, with no arguments. This is known as a default constructor. Behind the scenes, every
time an object is instantiated, a constructor call is patched in by the compiler. When a class without
a constructor is instantiated, the default constructor is patched in as a function call immediately
following the instantiation. This system-supplied member function will have an empty body (method)
and it will be linked into your program so that any compiler-added, implicit calls to this function upon
instantiation can occur without a linker error. As needed per the design, a programmer may often
write their own default (no-argument) constructor; that is, one that is used for the default means of
instantiation with no arguments.

Most programmers provide at least one constructor, in addition to their own no-argument, default
constructor. Recall that constructors can be overloaded. It is important to note that if you provide any
constructor yourself, you will not then receive the system supplied no-argument default constructor,
and that subsequently using such an interface for instantiation will cause a compiler error.

Understanding constructors 123

Reminder
Constructors have the same name as the class. You may not specify their return type. They can
be overloaded. The compiler only creates a public, default (no-argument) constructor if you
have not provided any constructors (that is, means for instantiation) in your class.

Let’s introduce a simple example to understand constructor basics:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex4.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class University

{

private:

 string name;

 int numStudents;

public:

 // constructor prototypes

 University(); // default constructor

 University(const string &, int);

 void Print();

 void CleanUp();

};

University::University()

{ // Because a string is a class type, all strings are

 // constructed with an empty value by default.

 // For that reason, we do not need to explicitly

 // initialize strings if an empty string is desired.

 // We'll see a preferred manner of initialization

 // for all data members shortly in this chapter.

 // Hence, name is constructed by default (empty string)

 numStudents = 0;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex4.cpp

Exploring Classes in Detail124

}

University::University(const string &n, int num)

{ // any pointer data members should be allocated here

 name = n; // assignment between strings is deep assign.

 numStudents = num;

}

void University::Print()

{

 cout << "University: " << name;

 cout << " Enrollment: " << numStudents << endl;

}

void University::CleanUp()

{ // deallocate any previously allocated memory

}

int main()

{

 University u1; // Implicit call to default constructor

 // alternate constructor instantiation and invocation

 University u2("University of Delaware", 23800);

 University u3{"Temple University", 20500}; // note {}

 u1.Print();

 u2.Print();

 u3.Print();

 u1.CleanUp();

 u2.CleanUp();

 u3.CleanUp();

 return 0;

}

In the previous program segment, we first define class University; the data members are
private, and the three member functions are public. Notice that the first two member functions
prototyped are constructors. Both have the same name as the class; neither has its return type specified.
The two constructors are overloaded, in that each has a different signature.

Understanding constructors 125

Next, notice that the three member functions are defined. Notice the use of the scope resolution
operator :: preceding each member function name, in each of their definitions. Each constructor
provides a different means for initializing an instance. The void University::Print()
member function merely provides a means to provide simple output for our example.

Now, in main(), let’s create three instances of University. The first line of code, University
u1;, instantiates a University and then implicitly invokes the default constructor to initialize the
data members. On the next line of code, University u2("University of Delaware",
23800);, we instantiate a second University. Once the memory for that instance has been
made available on the stack in main(), the constructor matching the signature of the arguments
provided, namely University::University(const string &, int), will be implicitly
invoked to initialize the instance.

Finally, we instantiate a third University using University u3{"Temple University",
20500};, which also makes use of the alternate constructor. Notice the use of {}’s versus ()’s in
the instantiation and construction of u3. Either style may be utilized. The latter style was introduced
in an effort to create uniformity; neither construct results in a performance advantage.

We can see that based upon how we instantiate an object, we can specify which constructor we would
like to be called on our behalf to perform the initialization.

The output for this example is as follows:

University: Enrollment: 0

University: University of Delaware Enrollment: 23800

University: Temple Enrollment: 20000

Parameter comparison
Did you notice the signature to the alternate University constructor is University(const
string &, int);? That is, the first parameter is a const string & rather than a
string, as used in previous examples for our Initialize() member function? Both are
acceptable. A string parameter will pass a copy of the formal parameter on the stack to the
member function. If the formal parameter is a string literal in quotes (such as "University
of Delaware"), a string instance will first be made to house this literal string of
characters. In comparison, if the parameter to the constructor is a const string &, then
a reference to the formal parameter will be passed to this function and the object referenced
will be treated as const. In the body of the constructor, we use assignment to copy the value
of the input parameter to the data member. Not to worry, the implementation of the assignment
operator for the string class performs a deep assignment from the source to the destination
string. The implication is that we do not have to worry about the data member sharing memory
(that is, not having its own copy) with the initialization data (string). Therefore, either use of a
string or const string & as a parameter for the constructor is acceptable.

Now, let’s complement our use of constructors with in-class initializers.

Exploring Classes in Detail126

Constructors and in-class initializers

In addition to initializing data members within a constructor, a class may optionally contain in-class
initializers. That is, default values that can be specified in a class definition as a means to initialize data
members in the absence of specific constructor initialization (or assignment) of those data members.

Let’s consider a revision of our previous example:

class University

{

private:

 string name {"None"}; // in-class initializer to be

 int numStudents {0}; // used when values not set in

 // constructor

 // Above line same as: int numStudents = 0;

public:

 University(); // default constructor

 // assume remainder of class def is as previously shown

};

University::University()

{ // Because there are no initializations (or

 // assignments) of data members name, numStudents

 // in this constructor, the in-class initializer

 // values will persist.

 // This constructor, with its signature, is still

 // required for the instantiation below, in main()

}

// assume remaining member functions exist here

int main()

{

 University u1; // in-class initializers are used

}

In the previous code fragment, notice that our class definition for University contains two in-class
initializers for data members name and numStudents. These values will be used to initialize data
members for a University instance when a University constructor does not otherwise set
these values. More specifically, if a University constructor uses initialization to set these values,
the in-class initializers will be ignored (we will see formal constructor initialization with the member
initialization list shortly in this chapter).

Understanding constructors 127

Additionally, if a constructor sets these data members through assignment within the body of a
constructor (as we have seen in the previous constructor example), the assignments will overwrite any
in-class initialization that was otherwise done on our behalf. However, if we do not set data members
in a constructor (as shown in the current code fragment), the in-class initializers will be utilized.

In-class initializers can be used to simplify default constructors or to alleviate default values specified
within a constructor’s prototype (a style that is becoming less popular).

As we have seen in this example, in-class initializers can lead to a default constructor having no work
(that is, initialization) remaining to be conducted in the method body itself. Yet, we can see that in some
cases, a default constructor is necessary if we would like to use the default interface for instantiation. In
cases such as these, =default may be added to the prototype of the default constructor to indicate
that the system-supplied default constructor (with an empty body) should be linked in on our behalf,
alleviating our need to provide an empty, default constructor ourselves (as in our previous example).

With this improvement, our class definition will become the following:

class University

{

private:

 string name {"None"}; // in-class init. to be used when

 int numStudents {0}; // values not set in constructor

public:

 // request the default constructor be linked in

 University() = default;

 University(const string &, int);

 void Print();

 void CleanUp();

};

In the previous class definition, we have now requested the system-supplied default constructor (with
an empty body) in a situation where we would not have otherwise gotten one automatically (because
we have provided a constructor with another signature). We have saved specifying an empty-bodied
default constructor ourselves, as in our original example.

Next, let’s add to our knowledge of constructors by examining a copy constructor.

Creating copy constructors

A copy constructor is a specialized constructor that is invoked whenever a copy of an object may need
to be made. Copy constructors may be invoked during the construction of another object. They may
also be invoked when an object is passed by value to a function via an input parameter or returned
by value from a function.

Exploring Classes in Detail128

Often, it is easier to make a copy of an object and modify the copy slightly than to construct a new
object with its individual attributes from scratch. This is especially true if a programmer requires
a copy of an object that has undergone many changes during the life of the application. It may be
impossible to recall the order of various transformations that may have been applied to the object in
question in order to create a duplicate. Instead, having the means to copy an object is desirable, and
possibly crucial.

The signature of a copy constructor is ClassName::ClassName(const ClassName &);.
Notice that a single object is explicitly passed as a parameter, and that parameter will be a reference
to a constant object. The copy constructor, as do most member functions, will receive an implicit
argument to the function, the this pointer. The purpose of the copy constructor’s definition will be
to make a copy of the explicit parameter to initialize the object pointed to by this.

If no copy constructor is implemented by the class (or struct) designer, one will be provided
for you (in the public access region) that performs a shallow, member-wise copy. This is unlikely
not what you want if you have data members in your class that are pointers. Instead, the best thing to
do is to write a copy constructor yourself, and write it to perform a deep copy (allocating memory as
necessary) for data members that are pointers.

Should the programmer wish to disallow copying during construction, =delete can be used in the
prototype of the copy constructor as follows:

 // disallow copying during construction

 Student(const Student &) = delete; // prototype

Alternatively, if the programmer wishes to prohibit object copying, a copy constructor may be prototyped
in the private access region. In this case, the compiler will link in the default copy constructor
(which performs a shallow copy), but it will be considered private. Therefore, instantiations that
would utilize the copy constructor outside the scope of the class will be prohibited. This technique
is used less frequently since the advent of =delete; however, it may be seen in existing code, so it
is useful to understand.

Let’s examine a copy constructor, starting with the class definition. Though the program is presented
in several fragments, the full program example may be found in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex5.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string,

// one ptr data member will illustrate important concepts

using std::cout; // preferred to: using namespace std;

using std::endl;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex5.cpp

Understanding constructors 129

using std::string;

class Student

{

private:

 // data members

 string firstName;

 string lastName;

 char middleInitial;

 float gpa;

 char *currentCourse; // ptr to illustrate key concepts

public:

 // member function prototypes

 Student(); // default constructor

 Student(const string &, const string &, char, float,

 const char *);

 Student(const Student &); // copy constructor proto.

 void CleanUp();

 void Print();

 void SetFirstName(const string &);

};

In this program segment, we start by defining class Student. Notice the usual assortment of
private data members and public member function prototypes, including the default constructor
and an overloaded constructor. Also notice the prototype for the copy constructor Student(const
Student &);.

Next, let’s take a look at the member function definitions with the following continuation of our program:

// default constructor

Student::Student()

{

 // Because firstName and lastName are member objects of

 // type string, they are default constructed and hence

 // 'empty' by default. They HAVE been initialized.

 middleInitial = '\0'; // with a relevant value

 gpa = 0.0;

 currentCourse = 0;

Exploring Classes in Detail130

}

// Alternate constructor member function definition

Student::Student(const string &fn, const string &ln,

 char mi, float avg, const char *course)

{

 firstName = fn; // not to worry, assignment for string

 lastName = ln; // is a deep copy into destination str

 middleInitial = mi;

 gpa = avg;

 // dynamically allocate memory for pointer data member

 currentCourse = new char [strlen(course) + 1];

 strcpy(currentCourse, course);

}

// Copy constructor definition – implement a deep copy

Student::Student(const Student &s)

{ // assignment between strings will do a deep 'copy'

 firstName = s.firstName;

 lastName = s.lastName;

 middleInitial = s.middleInitial;

 gpa = s.gpa;

 // for ptr data members, ensure a deep copy

 // allocate memory for destination

 currentCourse = new char [strlen(s.currentCourse) + 1];

 // then copy contents from source to destination

 strcpy(currentCourse, s.currentCourse);

}

// Member function definition

void Student::CleanUp()

{ // deallocate any previously allocated memory

 delete [] currentCourse;

}

Understanding constructors 131

// Member function definitions

void Student::Print()

{

 cout << firstName << " " << middleInitial << ". ";

 cout << lastName << " has a gpa of: " << gpa;

 cout << " and is enrolled in: " << currentCourse;

 cout << endl;

}

void Student::SetFirstName(const string &fn)

{

 firstName = fn;

}

In the aforementioned code fragment, we have various member function definitions. Most notably,
let’s consider the copy constructor definition, which is the member function with the signature of
Student::Student(const Student &s).

Notice that the input parameter, s, is a reference to a Student that is const. This means that the
source object, which we will be copying from, may not be modified. The destination object, which
we will be copying into, will be the object pointed to by the this pointer.

As we carefully navigate the copy constructor, notice that we successively allocate space, as necessary,
for any pointer data members that belong to the object pointed to by this. The space allocated is
the same size as required by the data members referred to by s. We then carefully copy from source
data member to destination data member. We meticulously ensure that we make an exact copy in the
destination object of the source object.

Notice that we are making a deep copy in the destination object. That is, rather than simply copying
the pointers contained in s.currentCourse to this->currentCourse, for example,
we instead allocate space for this->currentCourse and then copy over the source data. The
result of a shallow copy would instead be that the pointer data members in each object would share
the same dereferenced memory (that is, the memory to which each pointer points). This is most likely
not what you would want in a copy. Also recall that the default behavior of a system-supplied copy
constructor would be to provide a shallow copy from the source to the destination object. It is also
worthy to note that the assignment between two strings such as firstName = s.firstName;
in the copy constructor will perform a deep assignment from source to destination string because
that is the behavior of the assignment operator defined by the string class.

Exploring Classes in Detail132

Now, let’s take a look at our main() function to see the various ways in which the copy constructor
could be invoked:

int main()

{

 // instantiate two Students

 Student s1("Zachary", "Moon", 'R', 3.7, "C++");

 Student s2("Gabrielle", "Doone", 'A', 3.7, "C++");

 // These inits implicitly invoke copy constructor

 Student s3(s1);

 Student s4 = s2;

 s3.SetFirstName("Zack");// alter each object slightly

 s4.SetFirstName("Gabby");

 // This sequence does not invoke copy constructor

 // This is instead an assignment.

 // Student s5("Giselle", "LeBrun", 'A', 3.1, "C++);

 // Student s6;

 // s6 = s5; // this is assignment, not initialization

 s1.Print(); // print each instance

 s3.Print();

 s2.Print();

 s4.Print();

 s1.CleanUp(); // Since some data members are pointers,

 s2.CleanUp(); // let's call a function to delete() them

 s3.CleanUp();

 s4.CleanUp();

 return 0;

}

In main(), we declare two instances of Student, s1 and s2, and each is initialized with the
constructor that matches the signature of Student::Student(const string &, const
string &, char, float, const char *);. Notice that the signature used in instantiation
is how we select which constructor should be implicitly called.

Understanding constructors 133

Next, we instantiate s3 and pass as an argument to its constructor the object s1 with Student
s3(s1);. Here, s1 is of type Student, so this instantiation will match the constructor that accepts
a reference to a Student, the copy constructor. Once in the copy constructor, we know that we will
make a deep copy of s1 to initialize the newly instantiated object, s3, which will be pointed to by
the this pointer in the scope of the copy constructor method.

Additionally, we instantiate s4 with the following line of code: Student s4 = s2;. Here,
because this line of code is an initialization (that is, s4 is both declared and given a value in the same
statement), the copy constructor will also be invoked. The source object of the copy will be s2 and
the destination object will be s4. Notice that we then modify each of the copies (s3 and s4) slightly
by modifying their firstName data members.

Next, in the commented-out section of code, we instantiate two objects of type Student, s5 and s6.
We then try to assign one to the other with s5 = s6;. Though this looks similar to the initialization
between s4 and s2, it is not. The line s5 = s6; is an assignment. Each of the objects existed
previously. As such, the copy constructor is not called for this segment of code. Nonetheless, this code
is legal and has similar implications as with the assignment operator. We will examine these details later
in the book when we discuss operator overloading in Chapter 12, Friends and Operator Overloading.

We then print out objects s1, s2, s3, and s4. Then, we call Cleanup() on each of these four
objects. Why? Each object contained data members that were pointers, so it is appropriate to delete
the heap memory contained within each instance (that is, selected pointer data members) prior to
these outer stack objects going out of scope.

Here is the output to accompany the full program example:

Zachary R. Moon has a gpa of: 3.7 and is enrolled in: C++

Zack R. Moon has a gpa of: 3.7 and is enrolled in: C++

Gabrielle A. Doone has a gpa of: 3.7 and is enrolled in: C++

Gabby A. Doone has a gpa of: 3.7 and is enrolled in: C++

The output for this example shows each original Student instance, paired with its copy. Notice that
each copy has been modified slightly from the original (firstName differs).

Related topic
It is interesting to note that the assignment operator shares many similarities with the copy
constructor, in that it can allow data to be copied from a source to destination instance. However,
the copy constructor is implicitly invoked for the initialization of a new object, whereas the
assignment operator will be invoked when performing an assignment between two existing
objects. Nonetheless, the methods of each will look strikingly similar! We will examine
overloading the assignment operator to customize its behavior to perform a deep assignment
(much like a deep copy) in Chapter 12, Friends and Operator Overloading.

Exploring Classes in Detail134

Now that we have a deep understanding of copy constructors, let’s look at one last variety of constructor,
the conversion constructor.

Creating conversion constructors

Type conversions can be performed from one user defined type to another, or from a standard type to
a user defined type. A conversion constructor is a language mechanism that allows such conversions
to occur.

A conversion constructor is a constructor that accepts one explicit argument of a standard or user
defined type and applies a reasonable conversion or transformation on that object to initialize the
object being instantiated.

Let’s take a look at an example illustrating this idea. Though the example will be broken into several
segments and also abbreviated, the full program can be found in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex6.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string,

// one ptr data member will illustrate important concepts

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student; // forward declaration of Student class

class Employee

{

private:

 string firstName;

 string lastName;

 float salary;

public:

 Employee();

 Employee(const string &, const string &, float);

 Employee(Student &); // conversion constructor

 void Print();

};

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex6.cpp

Understanding constructors 135

class Student

{

private: // data members

 string firstName;

 string lastName;

 char middleInitial;

 float gpa;

 char *currentCourse; // ptr to illustrate key concepts

public:

 // constructor prototypes

 Student(); // default constructor

 Student(const string &, const string &, char, float,

 const char *);

 Student(const Student &); // copy constructor

 void Print();

 void CleanUp();

 float GetGpa(); // access function for private data mbr

 const string &GetFirstName();

 const string &GetLastName();

};

In the previous program segment, we first include a forward declaration to class Student;
– this declaration allows us to refer to the Student type prior to its definition. We then define
class Employee. Notice that this class includes several private data members and three
constructor prototypes – a default, alternative, and conversion constructor. As a side note, notice
that a copy constructor has not been programmer-specified. This means that a default (shallow) copy
constructor will be provided by the compiler. In this case, since there are no pointer data members,
the shallow copy is acceptable.

Nonetheless, let us continue by examining the Employee conversion constructor prototype. Notice
that in the prototype, this constructor takes a single argument. The argument is a Student &, which is
why we needed the forward declaration for Student. Preferably, we might use a const Student
& as the parameter type, but we will need to understand const member functions (later in this chapter)
in order to do so. The type conversion that will take place will be to convert a Student into a newly
constructed Employee. It will be our job to provide a meaningful conversion to accomplish this in
the definition for the conversion constructor, which we will see shortly.

Next, we define our Student class, which is much the same as we have seen in previous examples.

Exploring Classes in Detail136

Now, let us continue with the example to see the member function definitions for Employee and
Student, and our main() function, in the following code segment. To conserve space, selected
member function definitions will be omitted, however, the online code will show the program in
its entirety.

Moving onward, our member functions for Employee and Student are as follows:

Employee::Employee() // default constructor

{

 // Remember, firstName, lastName are member objects of

 // type string; they are default constructed and hence

 // 'empty' by default. They HAVE been initialized.

 salary = 0.0;

}

// alternate constructor

Employee::Employee(const string &fn, const string &ln,

 float money)

{

 firstName = fn;

 lastName = ln;

 salary = money;

}

// conversion constructor param. is a Student not Employee

// Eventually, we can properly const qualify parameter, but

// we'll need to learn about const member functions first…

Employee::Employee(Student &s)

{

 firstName = s.GetFirstName();

 lastName = s.GetLastName();

 if (s.GetGpa() >= 4.0)

 salary = 75000;

 else if (s.GetGpa() >= 3.0)

 salary = 60000;

 else

 salary = 50000;

}

Understanding constructors 137

void Employee::Print()

{

 cout << firstName << " " << lastName << " " << salary;

 cout << endl;

}

// Definitions for Student's default, alternate, copy

// constructors, Print()and CleanUp() have been omitted

// for space, but are same as the prior Student example.

float Student::GetGpa()

{

 return gpa;

}

const string &Student::GetFirstName()

{

 return firstName;

}

const string &Student::GetLastName()

{

 return lastName;

}

In the previous segment of code, we notice several constructor definitions for Employee. We have
a default, alternate, and conversion constructor.

Examining the definition of the Employee conversion constructor, notice that the formal parameter
for the source object is s, which is of type Student. The destination object will be the Employee
that is being constructed, which will be pointed to by the this pointer. In the body of this function,
we carefully copy the firstName and lastName from Student &s to the newly instantiated
Employee. Note that we use access functions const string &Student::GetFirstName()
and const string &Student::GetLastName() to do so (via an instance of Student),
as these data members are private.

Exploring Classes in Detail138

Let’s continue with the conversion constructor. It is our job to provide a meaningful conversion
from one type to another. In that endeavor, we try to establish an initial salary for the Employee
based on the gpa of the source Student object. Because gpa is private, an access function,
Student::GetGpa(), is used to retrieve this value (via the source Student). Notice that
because Employee did not have any dynamically allocated data members, we did not need to allocate
memory to assist in a deep copy in the body of this function.

To conserve space, the member function definitions for the Student default, alternate, and copy
constructor have been omitted, as have the definition for the void Student::Print() and
void Student::CleanUp() member functions. However, they are the same as in the previous
full program example illustrating the Student class.

Notice that access functions for private data members in Student, such as float
Student::GetGpa(), have been added to provide safe access to those data members. Note that
the value returned from float Student::GetGpa() on the stack is a copy of the gpa data
member. The original gpa is in no worry of being breached by the use of this function. The same
applies for member functions const string &Student::GetFirstName() and const
string &Student::GetLastName(), which each returns a const string &, ensuring
that the data that will be returned will not be breached.

Let’s complete our program by examining our main() function:

int main()

{

 Student s1("Giselle", "LeBrun", 'A', 3.5, "C++");

 Employee e1(s1); // conversion constructor

 e1.Print();

 s1.CleanUp(); // CleanUp() will delete() s1's

 return 0; // dynamically allocated data members

}

In our main() function, we instantiate a Student, namely s1, which is implicitly initialized with
the matching constructor. Then we instantiate an Employee, e1, using the conversion constructor in
the call Employee e1(s1);. At a quick glance, it may seem that we are utilizing the Employee
copy constructor. But at a closer look, we notice that the actual parameter s1 is of type Student,
not Employee. Hence, we are using Student s1 as a basis to initialize Employee e1. Note
that in no manner is the Student, s1, harmed or altered in this conversion. For this reason, it
would be preferable to define the source object as a const Student & in the formal parameter
list; once we understand const member functions, which will then be required for usage in the body
of the conversion constructor, we can do so.

To conclude this program, we print out the Employee using Employee::Print(), which
enables us to visualize the conversion we applied for a Student to an Employee.

Understanding destructors 139

Here is the output to accompany our example:

Giselle LeBrun 60000

Before we move forward, there’s one final, subtle detail about conversion constructors that is very
important to understand.

Important note
Any constructor that takes a single argument is considered a conversion constructor, which
can potentially be used to convert the parameter type to the object type of the class to which
it belongs. For example, if you have a constructor in the Student class that takes only a
float, this constructor could be employed not only in the manner shown in the preceding
example but also in places where an argument of type Student is expected (such as a function
call), when an argument of type float is instead supplied. This may not be what you intend,
which is why this interesting feature is being called out. If you don’t want implicit conversions
to take place, you can disable this behavior by declaring the constructor with the explicit
keyword at the beginning of its prototype.

Now that we understand basic, alternative, copy and conversion constructors in C++, let’s move forward
and explore the constructor’s complementary member function, the C++ destructor.

Understanding destructors
Recall how conveniently a class constructor provides us with a way to initialize a newly instantiated
object? Rather than having to remember to call an Initialize() method for each instance of
a given type, the constructor allows initialization automatically. The signature used in construction
helps specify which of a series of constructors should be used.

What about object clean-up? Many classes contain dynamically allocated data members, which are often
allocated in a constructor. Shouldn’t the memory comprising these data members be released when the
programmer is done with an instance? Certainly. We have written a CleanUp() member function
for several of our example programs. And we have remembered to call CleanUp(). Conveniently,
similar to a constructor, C++ has an automatically built-in feature to serve as a clean-up function.
This function is known as the destructor.

Let’s look at the destructor to understand its proper usage.

Exploring Classes in Detail140

Applying destructor basics and proper usage

A destructor is a member function whose purpose is to relinquish the resources an object may have
acquired during its existence. A destructor is automatically invoked when a class or struct instance
has either of the following occur:

• Goes out of scope (this applies to non-pointer variables)

• Is explicitly deallocated using delete (for pointers to objects)

A destructor should (most often) clean up any memory that may have been allocated by the constructor.
The destructor’s name is a ~ character followed by the class name. A destructor will have no
arguments; therefore, it cannot be overloaded. Lastly, the return type for a destructor may not be
specified. Both classes and structures may have destructors.

In addition to deallocating memory that a constructor may have allocated, a destructor may be used
to perform other end-of-life tasks for an instance, such as logging a value to a database. More complex
tasks may include informing objects pointed to by class data members (whose memory is not being
released) that the object at hand will be concluding. This may be important if the linked object contains
a pointer back to the terminating object. We will see examples of this later in the book, in Chapter 10,
Implementing Association, Aggregation, and Composition.

If you have not provided a destructor, the compiler will create and link in a public destructor with
an empty body. This is necessary because a destructor call is automatically patched in just prior to the
point when local instances are popped off the stack, and with delete(), just prior to the memory
release of dynamically allocated instances. It is easier for the compiler to always patch in this call, rather
than constantly looking to see whether your class has a destructor or not. Be sure to provide a class
destructor yourself when there are resources to clean up or dynamically allocated memory requiring
release. If the destructor will be empty, consider using =default in its prototype to acknowledge
its automatic inclusion (and to forego providing a definition yourself); this practice, however, adds
unnecessary code and therefore is becoming less popular.

There are some potential pitfalls. For example, if you forget to delete a dynamically allocated instance,
the destructor call will not be patched in for you. C++ is a language that gives you the flexibility and
power to do (or not do) anything. If you do not delete memory using a given identifier (perhaps two
pointers refer to the same memory), please remember to delete it through the other identifier at a
later date.

There’s one last item worth mentioning. Though you may call a destructor explicitly, you will rarely
ever need to do so. Destructor calls are implicitly patched in by the compiler on your behalf in the
aforementioned scenarios. Only in very few advanced programming situations will you need to
explicitly call a destructor yourself.

Understanding destructors 141

Let’s take a look at a simple example illustrating a class destructor, which will be broken into three
segments. Its full example can be seen in the GitHub repository listed here:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex7.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string,

// one ptr data member will illustrate important concepts

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class University

{

private:

 char *name; // ptr data member shows destructor

 // purpose

 int numStudents;

public:

 // constructor prototypes

 University(); // default constructor

 University(const char *, int); // alternate constructor

 University(const University &); // copy constructor

 ~University(); // destructor prototype

 void Print();

};

In the previous segment of code, we first define class University. Notice the private access
region filled with data members, and the public interface, which includes prototypes for a default,
alternate, and copy constructor, as well as for the destructor and a Print() method.

Next, let’s take a look at the various member function definitions:

University::University() // default constructor

{

 name = nullptr;

 numStudents = 0;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex7.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex7.cpp

Exploring Classes in Detail142

University::University(const char *n, int num)

{ // allocate memory for pointer data member

 name = new char [strlen(n) + 1];

 strcpy(name, n);

 numStudents = num;

}

University::University(const University &u) // copy const

{

 name = new char [strlen(u.name) + 1]; // deep copy

 strcpy(name, u.name);

 numStudents = u.numStudents;

}

University::~University() // destructor definition

{

 delete [] name; // deallocate previously allocated mem

 cout << "Destructor called " << this << endl;

}

void University::Print()

{

 cout << "University: " << name;

 cout << " Enrollment: " << numStudents << endl;

}

In the aforementioned code fragment, we see the various overloaded constructors we are
now accustomed to seeing, plus void University::Print(). The new addition is the
destructor definition.

Notice the destructor University::~University() takes no arguments; it may not be
overloaded. The destructor simply deallocates memory that may have been allocated in any of the
constructors. Note that we simply delete [] name;, which will work whether name points
to a valid address or contains a null pointer (yes, applying delete to a null pointer is OK). We
additionally print the this pointer in the destructor, just for fun, so that we can see the address of
the instance that is approaching non-existence.

Understanding destructors 143

Next, let’s take a look at main() to see when the destructor may be called:

int main()

{

 University u1("Temple University", 39500);

 University *u2 = new University("Boston U", 32500);

 u1.Print();

 u2->Print();

 delete u2; // destructor will be called before delete()

 // and destructor for u1 will be called

 return 0; // before program completes

}

Here, we instantiate two University instances; u1 is an instance, and u2 points to an instance. We
know that u2 is instantiated when its memory becomes available with new() and that once the memory
has become available, the applicable constructor is called. Next, we call University::Print()
for both instances to have some output.

Finally, toward the end of main(), we delete u2 to return this memory to the heap management
facility. Just prior to memory release, with the call to delete(), C++ will patch in a call to the
destructor for the object pointed to by u2. It is as if a secret function call u2->~University();
has been patched in prior to delete u2; (note, this is done automatically, no need for you to do
so as well). The implicit call to the destructor will delete the memory that may have been allocated
for any data members within the class. The memory release is now complete for u2.

What about instance u1? Will its destructor be called? Yes; u1 is a stack instance. Just prior to
its memory being popped off the stack in main(), the compiler will have patched in a call to its
destructor, as if the call u1.~University(); was added on your behalf (again, no need to do
so yourself). For the instance u1, the destructor will also deallocate any memory for data members
that may have been allocated. Likewise, the memory release is now complete for u1.

Notice that in each destructor call, we have printed a message to illustrate when the destructor is
called, and have also printed out the memory address for this to allow you to visualize each specific
instance as it is destructed.

Here is the output to accompany our full program example:

University: Temple University Enrollment: 39500

University: Boston U Enrollment: 32500

Destructor called 0x10d1958

Destructor called 0x60fe74

Exploring Classes in Detail144

With this example, we have now examined the destructor, the complement to the series of class
constructors. Let us move on to another set of useful topics relating to classes: various keyword
qualifications of data members and member functions.

Applying qualifiers to data members and member
functions
In this section, we will investigate qualifiers that can be added to both data members and member
functions. The various qualifiers – inline, const, and static – can support program efficiency,
aid in keeping private data members safe, support encapsulation and information hiding, and additionally
be used to implement various object-oriented concepts.

Let’s get started with the various types of member qualifications.

Adding inline functions for potential efficiency

Imagine a set of short member functions in your program that are repeatedly called by various
instances. As an object-oriented programmer, you appreciate using a public member function to
provide safe and controlled access to private data. However, for very short functions, you worry
about efficiency. That is, the overhead of calling a small function repeatedly. Certainly, it would be
more efficient to just paste in the two or three lines of code comprising the function. Yet, you resist
because that may mean providing public access to otherwise hidden class information, such as data
members, which you are hesitant to do. An inline function can solve this dilemma, allowing you
to have the safety of a member function to access and manipulate your private data, yet the efficiency
of executing several lines of code without the overhead of a function call.

An inline function is a function whose invocation is substituted with the body of the function itself.
Inline functions can help eliminate the overhead associated with calling very small functions.

Why would calling a function have overhead? When a function is called, input parameters (including
this) are pushed onto the stack, space is reserved for a return value of the function (though sometimes
registers are used), and moving to another section of code requires storing information in registers to
jump to that section of code, and so on. Replacing very small function bodies with inline functions
can add to program efficiency.

An inline function may be specified using either of the following mechanisms:

• Placing the function definition inside the class definition

• Placing the keyword inline prior to the return type in the (typical) function definition,
found outside the class definition

Applying qualifiers to data members and member functions 145

Specifying a function as inline in one of the aforementioned two fashions is merely a request to the
compiler to consider the substitution of the function body for its function call. This substitution is not
guaranteed. When might the compiler not actually inline a given function? If a function is recursive, it
cannot be made inline. Likewise, if a function is lengthy, the compiler will not inline the function.
Also, if the function call is dynamically bound with the specific implementation determined at run
time (virtual functions), it cannot be made inline.

An inline function definition should be declared in the header file with the corresponding class
definition. This will allow for any revisions to the function to be re-expanded correctly should the
need arise.

Let’s see an example using inline functions. The program will be broken into two segments, with
some well-known functions removed. However, the full program may be seen in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex8.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string,

 // one ptr data member will illustrate

 // important concepts

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student

{

private:

 // data members

 string firstName;

 string lastName;

 char middleInitial;

 float gpa;

 char *currentCourse; // ptr to illustrate key concepts

public:

 // member function prototypes

 Student(); // default constructor

 Student(const student &, const student &, char, float,

 const char *);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex8.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex8.cpp

Exploring Classes in Detail146

 Student(const Student &); // copy constructor

 ~Student(); // destructor

 void Print();

 // inline function definitions

 const string &GetFirstName() { return firstName; }

 const string &GetLastName() { return lastName; }

 char GetMiddleInitial() { return middleInitial; }

 float GetGpa() { return gpa; }

 const char *GetCurrentCourse()

 { return currentCourse; }

 // prototype only, see inline function definition below

 void SetCurrentCourse(const char *);

};

inline void Student::SetCurrentCourse(const char *c)

{ // notice the detailed work to reset ptr data member;

 // it's more involved than if currentCourse was a str

 delete [] currentCourse;

 currentCourse = new char [strlen(c) + 1];

 strcpy(currentCourse, c);

}

In the previous program fragment, let’s start with the class definition. Notice that several access function
definitions have been added in the class definition itself, namely, functions such as GetFirstName(),
GetLastName(), and so on. Look closely; these functions are actually defined within the class
definition. For example, float GetGpa() { return gpa; } is not just the prototype, but
the full function definition. By virtue of the function placement within the class definition, functions
such as these are considered inline.

These small functions provide safe access to private data members. Notice const char
*GetCurrentCourse(), for example. This function returns a pointer to currentCourse,
which is stored in the class as a char *. But because the return value of this function is a const
char *, this means that anyone calling this function must treat the return value as a const char
*, which means treating it as unmodifiable. Should this function’s return value be stored in a variable,
that variable must also be defined as const char *. By upcasting this pointer to an unmodifiable
version of itself with the return value, we are adding the provision that no one can get their hands on
a private data member (which is a pointer) and then change its value.

Applying qualifiers to data members and member functions 147

Now, notice toward the end of the class definition, we have a prototype for void
SetCurrentCourse(const char *);. Then, outside of this class definition, we will see
the definition for this member function. Notice the keyword inline prior to the void return type
of this function definition. The keyword must be explicitly used here since the function is defined
outside of the class definition. Remember, with either style of inline designation for a method, the
inline specification is merely a request to the compiler to make the substitution of function body
for function call. As with any function, if you provide a prototype (without =default), be sure to
provide a function definition (or else the linker will definitely complain).

Let’s continue this example by examining the remainder of our program:

// Definitions for default, alternate, copy constructor,

// and Print() have been omitted for space,

// but are same as last example for class Student

// the destructor is shown because we have not yet seen

// an example destructor for the Student class

Student::~Student()

{ // deallocate previously allocated memory

 delete [] currentCourse;

}

int main()

{

 Student s1("Jo", "Muritz", 'Z', 4.0, "C++");

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " Enrolled in: " << s1.GetCurrentCourse();

 cout << endl;

 s1.SetCurrentCourse("Advanced C++ Programming");

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " New course: " << s1.GetCurrentCourse();

 cout << endl;

 return 0;

}

Notice that in the remainder of our program example, several member function definitions have been
omitted. The bodies of these functions are identical to the previous example illustrating a Student
class in full, and can also be viewed online.

Exploring Classes in Detail148

Let’s focus instead on our main() function. Here, we instantiate a Student, namely s1. We
then invoke several inline function calls via s1, such as s1.GetFirstName();. Because
Student::GetFirstName() is inline, it is as if we are accessing data member firstName
directly, as the body of this function merely has a return firstName; statement. We have the
safety of using a function to access a private data member (meaning that no one can modify this
data member outside the scope of the class), but the speed of an inline function’s code expansion to
eliminate the overhead of a function call.

Throughout main(), we make several other calls to inline functions in this same manner,
including s1.SetCurrentCourse();. We now have the safety of encapsulated access with
the speed of direct access to data members using small inline functions.

Here is the output to accompany our full program example:

Jo Muritz Enrolled in: C++

Jo Muritz New course: Advanced C++ Programming

Let’s now move onward by investigating another qualifier we can add to class members, the const
qualifier.

Adding const data members and the member initialization list

We have already seen earlier in this book how to constant-qualify variables and the implications of
doing so. To briefly recap, the implication of adding a const qualifier to a variable is that the variable
must be initialized when it is declared and that its value may never again be modified. We previously
also saw how to add const qualification to pointers, such that we could qualify the data being
pointed to, the pointer itself, or both. Let us now examine what it means to add a const qualifier to
data members within a class, and learn about specific language mechanisms that must be employed
to initialize those data members.

Data members that should never be modified should be qualified as const. A const data member
is one that may only be initialized, and never assigned a new value. Just as with const variables,
never modified means that the data member may not be modified using its own identifier. It will then
be our job to ensure that we do not initialize our data members that are pointers to const objects
with objects that are not labeled as const (lest we provide a back door to change our private data).

Keep in mind that in C++, a programmer can always cast the const-ness away from a pointer variable.
Not that they should. Nonetheless, we will employ safety measures to ensure that by using access
regions and appropriate return values from access functions, we do not easily provide modifiable
access to our private data members.

The member initialization list must be used in a constructor to initialize any data members that
are constant, or that are references. A member initialization list offers a mechanism to initialize data
members that may never be l-values in an assignment. A member initialization list may also be used

Applying qualifiers to data members and member functions 149

to initialize non-const data members. For performance reasons, the member initialization list is most
often the preferred way to initialize any data member (const or non-const). The member initialization
list also provides a manner to specify preferred construction for any data members that are of class
types themselves (that is, member objects).

A member initialization list may appear in any constructor, and to indicate this list, simply place a :
after the formal parameter list, followed by a comma-separated list of data members, paired with the
initial value for each data member in parentheses. For example, here we use the member initialization
list to set two data members, gpa and middleInitial:

Student::Student(): gpa(0.0), middleInitial('\0')

{

 // Remember, firstName, lastName are member objects of

 // type string; they are default constructed and hence

 // 'empty' by default. They HAVE been initialized.

 currentCourse = nullptr; // don't worry – we'll change

} // currentCourse to a string next!

Though we have used the member initialization list to initialize two data members in the previous
constructor, we could have used it to set all of the data members! We’ll see this proposition (and
preferred usage) momentarily.

Data members in the member initialization list are initialized in the order in which they appear (that
is, declared) in the class definition (except static data members, which we will see shortly). Next, the
body of the constructor is executed. It is a nice convention to order the data members in the member
initialization list to appear in the same order as the class definition. But remember, the order of actual
initialization matches the order that the data members are specified in the class definition, irrespective
of member initialization list ordering.

It is interesting to note that a reference must use the member initialization list because references
are implemented as constant pointers. That is, the pointer itself points to a specific other object and
may not point elsewhere. The values of that object may change, but the reference always references a
specific object, the one in which it was initialized.

Using const qualification with pointers can be tricky to determine which scenarios require
initialization with this list, and which do not. For example, a pointer to a constant object does not need
to be initialized with the member initialization list. The pointer could point to any object, but once it
does, it may not change the dereferenced value. However, a constant pointer must be initialized with
the member initialization list because the pointer itself is fixed to a specific address.

Exploring Classes in Detail150

Let’s take a look at a const data member and how to use the member initialization list to initialize
its value in a full program example. We will also see how to use this list to initialize non-const data
members. Though this example is segmented and not shown in its entirety, the full program can be
found in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex9.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student

{

private:

 // data members

 string firstName;

 string lastName;

 char middleInitial;

 float gpa;

 string currentCourse; // let's finally change to string

 const int studentId; // added, constant data member

public:

 // member function prototypes

 Student(); // default constructor

 Student(const string &, const string &, char, float,

 const string &, int);

 Student(const Student &); // copy constructor

 ~Student(); // destructor

 void Print();

 const string &GetFirstName() { return firstName; }

 const string &GetLastName() { return lastName; }

 char GetMiddleInitial() { return middleInitial; }

 float GetGpa() { return gpa; }

 const string &GetCurrentCourse()

 { return currentCourse; }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex9.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex9.cpp

Applying qualifiers to data members and member functions 151

 void SetCurrentCourse(const string &); // proto. only

};

In the aforesaid Student class, notice that we have added a data member, const int studentId;,
to the class definition. This data member will require the use of the member initialization list to
initialize this constant data member in each of the constructors.

Let’s take a look at how the use of the member initialization list will work with constructors:

// Definitions for the destructor, Print(), and

// SetCurrentCourse() have been omitted to save space.

// They are similar to what we have seen previously.

// Constructor w/ member init. list to set data mbrs

Student::Student(): firstName(), lastName(),

 middleInitial('\0'), gpa(0.0),

 currentCourse(), studentId(0)

{

 // You may still set data members here, but using above

 // initialization is more efficient than assignment

 // Note: firstName, lastName are shown in member init.

 // list selecting default constructor for init.

 // However, as this is the default action for member

 // objects (string), we don't need to explicitly incl.

 // these members in the member initialization list

 // (nor will we include them in future examples).

}

Student::Student(const string &fn, const string &ln,

 char mi, float avg, const string &course, int id):

 firstName(fn), lastName(ln), middleInitial(mi),

 gpa(avg), currentCourse(course), studentId (id)

{

 // For string data members, the above init. calls

 // the string constructor that matches the arg in ().

 // This is preferred to default constructing a string

 // and then resetting it via assignment in the

 // constructor body.

Exploring Classes in Detail152

}

Student::Student(const Student &s): firstName(s.firstName),

 lastName(s.lastName), middleInitial(s.middleInitial),

 gpa(s.gpa), currentCourse(s.currentCourse),

 studentId(s.studentId)

{

 // remember to do a deep copy for any ptr data members

}

int main()

{

 Student s1("Renee", "Alexander", 'Z', 3.7,

 "C++", 1290);

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " has gpa of: " << s1.GetGpa() << endl;

 return 0;

}

In the preceding code fragment, we see three Student constructors. Notice the various member
initialization lists, designated by a : after the formal parameter list for each of the three constructors.

Of particular interest is the member initialization list usage for data members that are of type string
(or as we’ll later see, of any class type). In this usage, the string data members are constructed using
the member initialization list using the specified constructor; that is, the one whose signature matches
the argument in (). This is inevitably more efficient than default constructing each string (which is
what happened previously behind the scenes) and then resetting its value via assignment within the
constructor method body.

With this in mind, the default string constructor selection in the member initialization list of the
Student default constructor – that is, :firstName(), lastName(), currentCourse()
– is shown to emphasize that these data members are member objects (of type string) and will
be constructed. In this case, they will each be default constructed, which will provide their contents
with an empty string. However, member objects will always be default constructed unless otherwise
directed using the member initialization list. For this reason, the :firstName(), lastName(),
and currentCourse() specifications in the member initialization list are optional and will not
be included in future examples.

Applying qualifiers to data members and member functions 153

Each constructor will make use of the member initialization list to set the values of data members
that are const, such as studentId. Additionally, the member initialization list can be used as
a simple (and more efficient) way to initialize any other data member. We can see examples of the
member initialization list being used to simply set non-const data members by viewing the member
initialization list in either the default or alternate constructor, for example, Student::Student()
: studentId(0), gpa(0.0). In this example, gpa is not const, so its use in the member
initialization list is optional.

Here is the output to accompany our full program example:

Renee Alexander has gpa of: 3.7

Important note
Even though the constructor’s member initialization list is the only mechanism that can be
used to initialize const data members (or those that are references or member objects), it is
also often the preferred mechanism to perform simple initialization for any data member for
performance reasons. In many cases (such as member objects – for example, a string), this
saves data members from being first initialized (constructed themselves) with a default state
and then re-assigned a value in the body of the constructor.

It is interesting to note that programmers may choose to utilize either () or {} in the member
initialization list to initialize data members. Notice the use of {} in the following code:

Student::Student(const string &fn, const string &ln,

 char mi, float avg, const string &course, int id):

 firstName{fn}, lastName{ln}, middleInitial{mi},

 gpa{avg}, currentCourse{course}, studentId{id}

{

}

The {} as used here were originally added for instantiation in C++ (and hence with usage within
member initialization lists to fully construct data members) in an effort to provide a uniform
initialization syntax. The {} also potentially control the narrowing of data types. However, when
std::initializer_list is used with templates (a feature we will see in Chapter 13, Working
with Templates), the {} provides semantic confusion. Due to complexities such as these interfering
with the goal of language uniformity, the next C++ standard may revert to preferring the use of ()
and so shall we. It is interesting to note that neither () nor {} has an advantage from the perspective
of performance.

Next, let’s now move forward by adding the const qualifier to member functions.

Exploring Classes in Detail154

Using const member functions

We have seen the constant qualifier used quite exhaustively now with data. It can also be used in
conjunction with member functions. C++ provides a language mechanism to ensure that selected
functions may not modify data; this mechanism is the const qualifier as applied to member functions.

A const member function is a member function that specifies (and enforces) that the method can
only perform read-only activities on the object invoking the function.

A constant member function means that no portion of this may be modified. However, because
C++ allows typecasting, it is possible to cast this to its non-const counterpart and then change data
members. However, if the class designer truly meant to be able to modify data members, they simply
would not label a member function as const.

Constant instances declared in your program may only invoke const member functions. Otherwise,
these objects could be directly modified.

To label a member function as const, the keyword const should be specified after the argument
list in the function prototype and in the function definition.

Let’s see an example. It will be divided into two sections with some portions omitted; however, the
full example can be seen in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/master/Chapter05/Chp5-Ex10.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student

{

private:

 // data members

 string firstName;

 string lastName;

 char middleInitial;

 float gpa;

 string currentCourse;

 const int studentId; // constant data member

public:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/master/Chapter05/Chp5-Ex10.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/master/Chapter05/Chp5-Ex10.cpp

Applying qualifiers to data members and member functions 155

 // member function prototypes

 Student(); // default constructor

 Student(const string &, const string &, char, float,

 const string &, int);

 Student(const Student &); // copy constructor

 ~Student(); // destructor

 void Print() const;

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const

 { return lastName; }

 char GetMiddleInitial() const { return middleInitial; }

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 int GetStudentId() const { return studentId; }

 void SetCurrentCourse(const string &); // proto. only

};

In the previous program fragment, we see a class definition for Student, which is becoming very
familiar to us. Notice, however, that we have added the const qualifier to most of the access member
functions, that is, to those methods that are only providing read-only access to data.

For example, let us consider float GetGpa() const { return gpa; }. The const
keyword after the argument list indicates that this is a constant member function. Notice that this
function does not modify any data member pointed to by this. It cannot do so, as it is marked as
a const member function.

Now, let’s move on to the remainder of this example:

// Definitions for the constructors, destructor, and

// SetCurrentCourse() have been omitted to save space.

// Student::Print() has been revised, so it is shown below:

void Student::Print() const

{

 cout << firstName << " " << middleInitial << ". ";

 cout << lastName << " with id: " << studentId;

 cout << " and gpa: " << gpa << " is enrolled in: ";

Exploring Classes in Detail156

 cout << currentCourse << endl;

}

int main()

{

 Student s1("Zack", "Moon", 'R', 3.75, "C++", 1378);

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " Enrolled in " << s1.GetCurrentCourse();

 cout << endl;

 s1.SetCurrentCourse("Advanced C++ Programming");

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " New course: " << s1.GetCurrentCourse();

 cout << endl;

 const Student s2("Gabby", "Doone", 'A', 4.0,

 "C++", 2239);

 s2.Print();

 // Not allowed, s2 is const

 // s2.SetCurrentCourse("Advanced C++ Programming");

 return 0;

}

In the remainder of this program, notice that we have again chosen not to include the definitions for
member functions with which we are already familiar, such as the constructors, the destructor, and
void Student::SetCurrentCourse().

Instead, let’s focus our attention on the member function with the signature: void
Student::Print() const. Here, the const keyword after the argument list indicates that
no data members pointed to by this can be altered in the scope of this function. And none are.
Likewise, any member functions called on this within void Student::Print() must also be
const member functions. Otherwise, they could modify this.

Moving forward to examine our main() function, we instantiate a Student, namely s1. This
Student calls several member functions, including some that are const. Student s1 then
changes their current course using Student::SetCurrentCourse(), and then the new
value of this course is printed.

Next, we instantiate another Student, s2, which is qualified as const. Notice that once this
student is instantiated, the only member functions that may be applied to s2 are those that are
labeled as const. Otherwise, the instance may be modified. We then print out data for s2 using
Student::Print();, which is a const member function.

Applying qualifiers to data members and member functions 157

Did you notice the commented-out line of code: s2.SetCurrentCourse("Advanced C++
Programming");? This line is illegal and would not compile, because SetCurrentCourse()
is not a constant member function and is hence inappropriate to be called via a constant instance,
such as s2.

Let’s take a look at the output for the full program example:

Zack Moon Enrolled in C++

Zack Moon New course: Advanced C++ Programming

Gabby A. Doone with id: 2239 and gpa: 3.9 is enrolled in: C++

Now that we have fully explored const member functions, let’s continue to the final section of this
chapter to delve into static data members and static member functions.

Utilizing static data members and static member functions

Now that we have been using C++ classes to define and instantiate objects, let’s add to our knowledge
of object-oriented concepts by exploring the idea of a class attribute. A data member that is intended
to be shared by all instances of a particular class is known as a class attribute.

Typically, each instance of a given class has distinct values for each of its data members. However,
on occasion, it may be useful for all instances of a given class to share one data member containing
a single value. The object-oriented concept of a class attribute can be modeled in C++ using a static
data member.

Static data members themselves are implemented as external (global) variables whose scope is tied
back to the class in question using name mangling. Hence, each static data member can have its scope
limited to the class in question.

Static data members are designated in the class definition with the keyword static preceding the
data type. To finish modeling a static data member, an external variable definition, outside the
class, must additionally follow the static data member specification in the class definition. Storage
for this class member is obtained by the external variable that comprises its underlying implementation.

A static member function is one that encapsulates access to static data members within a class
or structure. A static member function does not receive a this pointer, hence it may only
manipulate static data members and other external (global) variables.

To indicate a static member function, the keyword static must be specified in front of the
function’s return type in the member function prototype only. The keyword static must not appear
in the member function definition. If the keyword static appears in the function definition, the
function will additionally be static in the C programming sense; that is, the function will be limited
in scope to the file in which it is defined.

Exploring Classes in Detail158

Let’s take a look at an example of static data member and member function usage. The following
example will be broken into segments, however, it will appear without any functions omitted or
abbreviated, as it is the final example in this chapter. It can also be found in full in the GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex11.cpp

#include <iostream>

#include <cstring> // though we'll prefer std::string,

// one pointer data member will illustrate one last concept

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

class Student

{

private:

 // data members

 string firstName;

 string lastName;

 char middleInitial;

 float gpa;

 string currentCourse;

 const char *studentId; // pointer to constant string

 static int numStudents; // static data member

public:

 // member function prototypes

 Student(); // default constructor

 Student(const string &, const string &, char, float,

 const string &, const char *);

 Student(const Student &); // copy constructor

 ~Student(); // destructor

 void Print() const;

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 char GetMiddleInitial() const { return middleInitial; }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex11.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter05/Chp5-Ex11.cpp

Applying qualifiers to data members and member functions 159

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const char *GetStudentId() const { return studentId; }

 void SetCurrentCourse(const string &);

 static int GetNumberStudents(); // static mbr function

};

// definition for static data member

// (which is implemented as an external variable)

int Student::numStudents = 0; // notice initial value of 0

 // which is default for integral values

// Definition for static member function

inline int Student::GetNumberStudents()

{

 return numStudents;

}

inline void Student::SetCurrentCourse(const char *c)

{

 // far easier implementation to reset using a string

 currentCourse = c;

}

In the first segment of code comprising our full example, we have our Student class definition. In
the private access region, we have added a data member, static int numStudents;,
to model the object-oriented concept of a class attribute, a data member that will be shared by all
instances of this class.

Next, notice toward the end of this class definition that we have added a static member
function, static int GetNumberStudents();, to provide encapsulated access to the
private data member numStudents. Note the keyword static is added in the prototype
only. If we glance outside of the class definition to find the member function definition of int
Student::GetNumberStudents(), we notice that there is no usage of the static keyword
within the definition of this function itself. The body of this member function simply returns the
shared numStudents, the static data member.

Exploring Classes in Detail160

Also notice that just below the class definition is the external variable definition to support the
implementation of the static data member: int Student::numStudents = 0;. Notice
with this declaration the use of :: (the scope resolution operator) to associate the class name to the
identifier numStudents. Though this data member is implemented as an external variable, and
because the data member is labeled as private, it may only be accessed by member functions within
the Student class. The implementation of a static data member as an external variable helps
us understand where the memory for this shared data comes from; it is not part of any instance of
the class but stored as a separate entity in the global namespace. Also notice that the declaration int
Student::numStudents = 0; initializes this shared variable to a value of zero.

As an interesting aside, notice that the data member studentId has been changed from a const
int to const char *studentId; in this new version of our Student class. Keep in mind
that this means studentId is a pointer to a constant string, not a constant pointer. Because the
memory for the pointer itself is not const, this data member will not need to be initialized using
the member initialization list, but it will require some special handling.

Let’s continue onward to review additional member functions comprising this class:

// Default constructor (note member init. list usage)

// Note: firstName, lastName, currentCourse as member

// objects (type string), will be default constructed

// to empty strings

Student::Student(): middleInitial('\0'), gpa(0.0),

 studentId(nullptr)

{

 numStudents++; // increment static counter

}

// Alternate constructor member function definition

Student::Student(const char *fn, const char *ln, char mi,

 float avg, const char *course, const char *id):

 firstName(fn), lastName(ln), middleInitial(mi),

 gpa(avg), currentCourse(course)

{

 // Because studentId is a const char *, we can't change

 // value pointed to directly! We enlist temp for help.

 char *temp = new char [strlen(id) + 1];

 strcpy (temp, id); // studentId can't be an l-value,

 studentId = temp; // but temp can!

 numStudents++; // increment static counter

Applying qualifiers to data members and member functions 161

}

// copy constructor

Student::Student(const Student &s): firstName(s.firstName),

 lastName(s.lastName),middleInitial(s.middleInitial),

 gpa(s.gpa), currentCourse(s.currentCourse)

{

 delete studentId; // release prev. allocated studentId

 // Because studentId is a const char *, we can't change

 // value pointed to directly! Temp helps w deep copy.

 char *temp = new char [strlen(s.studentId) + 1];

 strcpy (temp, s.studentId); // studentId can't be an

 studentId = temp; // l-value, but temp can!

 numStudents++; // increment static counter

}

Student::~Student() // destructor definition

{

 delete [] studentId;

 numStudents--; // decrement static counter

}

void Student::Print() const

{

 cout << firstName << " " << middleInitial << ". ";

 cout << lastName << " with id: " << studentId;

 cout << " and gpa: " << gpa << " and is enrolled in: ";

 cout << currentCourse << endl;

}

In the previous program segment of member functions, most member functions look as we’ve grown
accustomed to seeing, but there are some subtle differences.

One difference, which relates to our static data member, is that numStudents is incremented in
each of the constructors and decremented in the destructor. Since this static data member is shared
by all instances of class Student, each time a new Student is instantiated, the counter will
increase, and when an instance of a Student ceases to exist and its destructor is implicitly called, the
counter will be decremented to reflect the removal of such an instance. In this way, numStudents
will accurately reflect how many Student instances exist in our application.

Exploring Classes in Detail162

This section of code has a few other interesting details to notice, unrelated to static data members
and member functions. For example, in our class definition, we changed studentId from a const
int to a const char *. This means that the data pointed to is constant, not the pointer itself, so
we are not required to use the member initialization list to initialize this data member.

Nonetheless, in the default constructor, we choose to use the member initialization list to initialize
studentId to a null pointer, nullptr. Recall that we may use the member initialization list for
any data member, but we must use them to initialize const data members. That is, if the const
part equates to memory that is allocated with an instance. Since the memory allocated within the
instance for data member studentId is a pointer and the pointer part of this data member is not
const (just the data pointed to), we do not need to use the member initialization list for this data
member. We just choose to.

However, because studentId is a const char *, this means that the identifier studentId
may not serve as an l-value, or be on the left-hand side of an assignment. In the alternate and copy
constructors, we wish to initialize studentId and need the ability to use studentId as an l-value.
But we cannot. We circumvent this dilemma by instead declaring a helper variable, char *temp;,
and allocating it to contain the amount of memory we need to load the desired data. Then, we load
the desired data into temp, and finally, we have studentId point to temp to establish a value
for studentId. When we leave each constructor, the local pointer temp is popped off the stack;
however, the memory is now captured by studentId and treated as const.

Lastly, in the destructor, we delete the memory associated with const char *studentid, using
delete [] studentId;. It is interesting to note that in less-recent compilers, we instead needed
to typecast studentId to a non-constant char *; that is, delete const_cast<char *>
(studentId);, as operator delete() previously did not expect a constant qualified pointer.

Now that we have completed reviewing new details in the member functions, let us continue by
examining the final portion of this program example:

int main()

{

 Student s1("Nick", "Cole", 'S', 3.65, "C++", "112HAV");

 Student s2("Alex", "Tost", 'A', 3.78, "C++", "674HOP");

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " Enrolled in " << s1.GetCurrentCourse();

 cout << endl;

 cout << s2.GetFirstName() << " " << s2.GetLastName();

 cout << " Enrolled in " << s2.GetCurrentCourse();

 cout << endl;

Applying qualifiers to data members and member functions 163

 // call a static member function in the preferred manner

 cout << "There are " << Student::GetNumberStudents();

 cout << " students" << endl;

 // Though not preferable, we could also use:

 // cout << "There are " << s1.GetNumberStudents();

 // cout << " students" << endl;

 return 0;

}

In the main() function of our program, we start by instantiating two Students, s1 and s2.
As each instance is initialized with a constructor, the shared data member value of numStudents
is incremented to reflect the number of students in our application. Note that the external variable
Student::numStudents, which holds the memory for this shared data member, was initialized to
0 when the program started with the statement earlier in our code: int Student::numStudents
= 0;.

After we print out some details for each Student, we then print out the static data member
numStudents using a static access function Student::GetNumStudents(). The
preferred way to call this function is Student::GetNumStudents();. Because numStudents
is private, only a method of the Student class may access this data member. We have now
provided safe, encapsulated access to a static data member using a static member function.

It is interesting to remember that static member functions do not receive a this pointer, therefore,
the only data they may manipulate will be static data in the class (or other external variables).
Likewise, the only other functions they may call will be other static member functions in the same
class or external non-member functions.

It is also interesting to note that we can seemingly call Student::GetNumStudents() via any
instance, such as s1.GetNumStudents();, as we see in the commented-out section of code.
Though it seems as though we are calling the member function through an instance, the function will
not receive a this pointer. Instead, the compiler reinterprets the call, which is seemingly through an
instance, and replaces the invocation with a call to the internal, name mangled function. It is clearer
from a programming point of view to call static member functions using the first calling method,
and not seemingly through an instance that would never be passed along to the function itself.

Finally, here is the output for our full program example:

Nick Cole Enrolled in C++

Alex Tost Enrolled in C++

There are 2 students

Exploring Classes in Detail164

Now that we have reviewed our final example of this chapter, it is time to recap everything that we
have learned.

Summary
In this chapter, we have begun our journey with object-oriented programming. We have learned many
object-oriented concepts and terms, and have seen how C++ has direct language support to implement
these concepts. We have seen how C++ classes support encapsulation and information hiding, and how
implementing designs supporting these ideals can lead to code that is easier to modify and maintain.

We have detailed class basics, including member functions. We’ve moved deeper into member functions
by examining member function internals, including understanding what the this pointer is and
how it works – including the underlying implementation of member functions that implicitly receive
a this pointer.

We have explored access labels and access regions. By grouping our data members in the private
access region and providing a suite of public member functions to manipulate these data members,
we have found that we can provide a safe, well-controlled, and well-tested means to manipulate data
from the confines of each class. We have seen that making changes to a class can be limited to the
member functions themselves. The user of the class need not know the underlying representation of
data members – these details are hidden and can be changed as needed without causing a wave of
changes elsewhere in an application.

We have deeply explored the many facets of constructors, by examining default, typical (overloaded)
constructors, copy constructors, and even conversion constructors. We have been introduced to the
destructor, and understand its proper usage.

We’ve added additional flavor to our classes by using various qualifiers to both data members and
member functions, such as inline for efficiency, const to safeguard data and to ensure functions
will as well, static data members to model the OO concept of class attributes, and static
methods to provide safe interfaces to these static data members.

By immersing ourselves in object-oriented programming, we have gained a comprehensive set of
skills relating to classes in C++. With a well-rounded set of skills and experience using classes under
our respective belts and an appreciation for object-oriented programming, we can now move forward
with Chapter 6, Implementing Hierarchies with Single Inheritance, to learn how to grow a hierarchy of
related classes. Let’s move forward!

Questions 165

Questions
1. Create a C++ program to encapsulate a Student. You may use portions of your previous

exercises. Try to do this yourself, rather than relying on any online code. You will need this
class as a basis to move forward with future examples; now is a good time to try each feature
on your own. Incorporate the following steps:

a. Create, or modify your previous Student class to fully encapsulate a student. Be sure to
include several data members that be dynamically allocated. Provide several overloaded
constructors to provide the means to initialize your class. Be sure to include a copy
constructor. Also, include a destructor to release any dynamically allocated data members.

b. Add an assortment of access functions to your class to provide safe access to data members
within your class. Decide for which data members you will offer a GetDataMember()
interface, and whether any of these data members should have the ability to be reset after
construction with a SetDataMember() interface. Apply the const and inline
qualifiers to these methods as appropriate.

c. Be sure to utilize appropriate access regions – private for data members, and possibly for
some helper member functions to break up a larger task. Add public member functions
as necessary above and beyond your previous access functions.

d. Include at least one const data member in your class and utilize the member initialization
list to set this member. Add at least one static data member and one static member
function.

e. Instantiate a Student using each constructor signature, including the copy constructor.
Make several instances dynamically allocated using new(). Be sure to delete() each
of these instances when you are done with them (so that their destructor will be called).

6
Implementing Hierarchies with

Single Inheritance

This chapter will extend our pursuit of object-oriented programming in C++. We will begin by
introducing additional OO concepts, such as generalization and specialization, and then understand
how these concepts are implemented in C++ through direct language support. We will begin building
hierarchies of related classes, and understand how each class can become an easier to maintain,
potentially reusable building block in our applications. We will understand how the new OO concepts
presented in this chapter will support well-planned designs, and we will have a clear understanding
of how to implement these designs with robust code in C++.

In this chapter, we will cover the following main topics:

• Object-oriented concepts of generalization and specialization, and Is-A relationships

• Single inheritance basics – defining derived classes, accessing inherited members, understanding
inherited access labels and regions, and final class specification

• Construction and destruction sequence in a single inheritance hierarchy; selecting base class
constructors with the member initialization list

• Modifying access labels in the base class list – public versus private and protected
base classes – to change the OO purpose of inheritance to Implementation Inheritance

By the end of this chapter, you will understand the object-oriented concepts of generalization and
specialization and will know how to use inheritance in C++ as a mechanism to realize these ideals.
You will understand terms such as base and derived classes, as well as OO motivations for building
hierarchies, such as supporting Is-A relationships or supporting implementation inheritance.

Specifically, you will understand how to grow inheritance hierarchies using single inheritance, and how
to access inherited data members and member functions. You will also understand which inherited
members you may directly access, based on their defined access regions.

Implementing Hierarchies with Single Inheritance168

You will understand the order of constructor and destructor invocations when instances of derived
class types are instantiated and destroyed. You will know how to make use of the member initialization
list to select which, from a potential group, of inherited constructors a derived class object may need
to utilize as part of its own construction.

You will also understand how changing access labels in a base class list changes the OO meaning for
the type of inheritance hierarchy you are growing. By examining public versus private and protected
base classes, you will understand different types of hierarchies, such as those built to support Is-A
relationships versus those built to support implementation inheritance.

By understanding the direct language support of single inheritance in C++, you will be able to
implement the OO concepts of generalization and specialization. Each class within your hierarchy
will be a more easily maintained component and can serve as a potential building block for creating
new, more specialized components. Let us further our understanding of C++ as an OOP language by
detailing single inheritance.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter06. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter06 in a file named Chp6-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3R7uNci.

Expanding object-oriented concepts and terminology
In this section, we will introduce essential object-oriented concepts, as well as applicable terminology
that will accompany these key ideas.

From Chapter 5, Exploring Classes in Detail, you now understand the key OO ideas of encapsulation
and information hiding, and how C++ supports these ideals through the C++ class. Now, we will look
at how we can grow a hierarchy of related classes, using a very general class as a building block, and
then extend that class by creating a more specific class. Through growing a hierarchy of related classes
in this repeated fashion, OO systems provide building blocks of potential reuse. Each class within the
hierarchy is encapsulated, so maintenance and upgrades to a specific class can be made more easily
and without impact to the entire system. By incrementally refining each class with a more specific and
more detailed class to build a hierarchy of related classes, specific maintenance for each component
is in a focused area for maintenance and changes.

Let’s start by extending our basic OO terminology.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter06
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter06
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter06
https://bit.ly/3R7uNci

Understanding single inheritance basics 169

Deciphering generalization and specialization

The main object-oriented concepts extending through this chapter are generalization and specialization.
Incorporating these principles into your design will provide the basis for writing more easily modifiable
and maintainable code, and for code that can potentially be reused in related applications.

Generalization describes the process of abstracting commonalities from a grouping of classes and
creating a more generalized class for that grouping to house the common properties and behaviors.
The more generalized class can be known as a base (or parent) class. Generalization can also be used
to collect more general properties and behaviors of a single class into a base class with the expectation
that the new, generalized class can later serve as a building block or basis for additional, more specific
(derived) classes.

Specialization describes the process of deriving a new class from an existing, generalized base class,
for the purpose of adding specific, distinguishable properties and behaviors to adequately represent
the new class. The specialized class can also be referred to as a derived (or child) class. A hierarchy
of classes can incrementally refine their respective properties and behaviors through specialization.

Though reuse is difficult to achieve, the OOP concepts such as generalization and specialization make
reuse more easily obtainable. Reuse can potentially be realized in applications that are similar in nature
or in the same project domain, in continuations of existing projects, or potentially in related domains
where minimally the most generalized classes and associated components can be reused.

Building a hierarchy is a fundamental language feature of C++. Let’s move forward by exploring single
inheritance to put this idea into action.

Understanding single inheritance basics
Inheritance is the C++ language mechanism that allows the concepts of generalization and specialization
to be realized. Single inheritance is when a given class has exactly one immediate base class. Both
single inheritance and multiple inheritance are supported in C++; however, we will focus on single
inheritance in this chapter and will cover multiple inheritance in a later chapter.

Inheritance hierarchies can be built using both classes and structures in C++. Classes, however, are
most often utilized rather than structures to support inheritance and OOP.

Growing an inheritance hierarchy for the purpose of generalization and specialization supports an
Is-A relationship. For example, given a base class of Person and a derived class of Student, we
can say a Student Is-A Person. That is, a Student is a specialization of a Person, adding additional
data members and member functions above and beyond those provided by its base class, Person.
Specifying an Is-A relationship through generalization and specialization is the most typical reason
inheritance is used to create base and derived classes. Later in this chapter, we will look at another
reason to utilize inheritance.

Implementing Hierarchies with Single Inheritance170

Let’s get started by looking at the language mechanics in C++ to specify base and derived classes and
to define an inheritance hierarchy.

Defining base and derived classes and accessing inherited
members

With single inheritance, the derived class specifies who its immediate ancestor or base class is. The
base class does not specify that it has any derived classes.

The derived class simply creates a base class list by adding a : after its class name, followed by the
keyword public (for now), and then the specific base class name. Whenever you see a public
keyword in the base class list, it means that we are using inheritance to specify an Is-A relationship.

Here is a simple example to illustrate the basic syntax:

• Student Is-A derived class of Person:

class Person // base class

{

private:

 string name;

 string title;

public:

 // constructors, destructor,

 // public access functions, public interface etc.

 const string &GetTitle() const { return title; }

};

class Student: public Person // derived class

{

private:

 float gpa;

public:

 // constructors, destructor specific to Student,

 // public access functions, public interface, etc.

 float GetGpa() const { return gpa; }

};

Understanding single inheritance basics 171

Here, the base class is Person, and the derived class is Student. The derived class need
only define additional data members and member functions that augment those specified in
the base class.

Instances of a derived class may generally access public members specified by the derived
class or by any ancestor of the derived class. Inherited members are accessed in the same
fashion as those specified by the derived class. Recall, dot notation (.) is used to access
members of objects, and arrow notation (->) is used to access members of pointers to
objects.

Of course, to make this example complete, we will need to add the applicable constructors,
which we currently assume exist. Naturally, there will be nuances with constructors relating
to inheritance, which we will soon cover in this chapter.

• Simple access of inherited members can be seen using the aforementioned classes as follows:

int main()

{

 // Let's assume the applicable constructors exist

 Person p1("Cyrus Bond", "Mr.");

 Student *s1 = new Student("Anne Lin", "Ms.", 4.0);

 cout << p1.GetTitle() << " " << s1->GetTitle();

 cout << s1->GetGpa() << endl;

 delete s1; // remember to relinquish alloc. memory

 return 0;

}

In the previous code fragment, the derived class instance of Student, pointed to by s1,
can access both base and derived class members, such as Person::GetTitle() and
Student::GetGpa(). The base class instance of Person, p1, can only access its own
members, such as Person::GetTitle().

Implementing Hierarchies with Single Inheritance172

Looking at a memory model for the preceding example, we have the following:

Figure 6.1 – Memory model for current example

Notice that in the preceding memory model, a Student instance is comprised of a Person subobject.
That is, at the memory address indicating the beginning of *s1, a Student, we first see the memory
layout of its Person data members. Then, we see the memory layout of its additional Student data
members. Of course, p1, which is a Person, only contains Person data members.

Access to base and derived class members will be subject to the access regions specified by each class.
Let’s take a look to see how inherited access regions work.

Examining inherited access regions

Access regions, including inherited access regions, define from which scope members, including
inherited members, are directly accessible.

The derived class inherits all members specified in its base class. However, direct access to those
members is subject to the access regions specified in the base class.

Members (both data and function) inherited from the base class are accessible to the derived class as
specified by the access regions that are imposed by the base class. The inherited access regions, and
how they relate to derived class access, are as follows:

• private members defined in the base class are inaccessible outside the scope of the base class.
The scope of a class includes member functions of that class.

Understanding single inheritance basics 173

• protected members defined in the base class are accessible in the scope of the base class and
within the scope of the derived class, or its descendants. This means member functions of
these classes.

• public members defined in the base class are accessible from any scope, including the scope
of the derived class.

In the previous, simple example, we noticed that both a Person and a Student instance accessed
the public member function Person::GetTitle() from the scope of main(). Also, we
noticed that the Student instance accessed its public member Student::GetGpa() from
main(). Generally, outside the scope of a given class, the only members that are accessible are those
that are in the public interface, such as in this example.

We will soon see a larger, full program example in this chapter showcasing the protected access
region. But first, let’s discover an additional specifier that may be useful in determining the shape and
extensibility of our inheritance hierarchy.

Specifying a class as final

In C++, we can indicate that a class may not be further extended within our inheritance hierarchy.
This is known as a leaf-node and can support an OO design to enforce that a given class may not be
further specialized. The keyword final is used in the base class list to designate a class as a final
(unextendible) class or leaf-node.

Here is a simple example to illustrate the basic syntax:

• Given our previous base class Person, Student Is-A derived class of Person. Additionally,
GradStudent Is-A final derived class of Student:

class GradStudent final: public Person // derived class

{

 // class definition

};

Here, GradStudent is specified as a final, unextendible class. Therefore, GradStudent
may not appear in the base class list of a new derived class.

Next, let’s review inherited constructors and destructors so that our upcoming full program example
can provide greater overall utility.

Implementing Hierarchies with Single Inheritance174

Understanding inherited constructors and destructors
Through single inheritance, we can build a hierarchy of related classes. We have seen that when we
instantiate a derived class object, memory for its base class data members is then followed by the
additional memory required for the additional derived class data members. Each of these subobjects
will need to be constructed. Luckily, each class will have defined a suite of constructors for just that
purpose. We then need to understand how the language can be utilized to allow us to specify the
appropriate base class constructor for the base class subobject when instantiating and constructing
a derived class object.

Similarly, when an object of a derived class type is no longer needed and will be destructed, it is
important to note that a destructor for each subobject comprising the derived class instance will be
implicitly called on our behalf.

Let’s take a look at the constructor and destructor sequence in a single inheritance hierarchy, and how
we can make choices when more than one constructor is available for a base class subobject found
in a derived class instance.

Implicit constructor and destructor invocations

Constructors and destructors are two types of member functions that are not explicitly inherited by the
derived class. This means that the signature of a base class constructor may not be used to instantiate a
derived class object. However, we will see that when a derived class object is instantiated, the memory
for both the base and derived class portions of the overall object will be separately initialized using
each class’s respective constructors.

When an object of a derived class type is instantiated, not only will one of its constructors be invoked
but so will one in each of its preceding base classes. The most generalized base class constructor will
first be executed, followed by the constructors all the way down the hierarchy until we arrive at the
derived class constructor that is the same type as the instance at hand.

Similarly, when a derived class instance goes out of scope (or is explicitly deallocated for pointers
to instances), all the relevant destructors will be invoked, but in the opposite order of construction.
First, the derived class destructor will be executed, then all the destructors in an upward fashion for
each preceding base class will be invoked and executed until we reach the most generalized base class.

You may now ask, how may I choose from a set of potential base class constructors for my base class
subobject when instantiating a derived class? Let’s take a more detailed look at the member initialization
list to discover the solution.

Understanding inherited constructors and destructors 175

Usage of member initialization list to select a base class
constructor

The member initialization list may be used to specify which base class constructor should be invoked
when instantiating a derived class object. Each derived class constructor may specify that a different
base class constructor should be used to initialize the given base class portion of the derived class object.

If the derived class constructor’s member initialization list does not specify which base class constructor
should be utilized, the default base class constructor will be invoked.

The member initialization list is specified using a : after the parameter list in the derived class
constructor. To specify which base class constructor should be used, the name of the base class
constructor, followed by parentheses including any values to be passed to that base class constructor,
can be indicated. Based upon the signature of the parameters in the base class list following the base
class name, the appropriate base class constructor will be selected to initialize the base class portion
of the derived class object.

Here is a simple example to illustrate the basic syntax for base class constructor selection:

• Let’s start with the basic class definitions (note that many member functions are omitted, as
are some usual data members):

class Person

{

private:

 string name;

 string title;

public:

 Person() = default; // various constructors

 Person(const string &, const string &);

 Person(const Person &);

 // Assume the public interface, access fns. exist

};

class Student: public Person

{

private:

 float gpa = 0.0; // use in-class initializer

public:

 Student() = default;

 Student(const string &, const string &, float);

Implementing Hierarchies with Single Inheritance176

 // Assume the public interface, access fns. exist

};

• The constructors for the previous class definitions would be as follows (notice two of the derived
class constructors use the member initialization list):

// Base class constructors

// Note: default constructor is included by = default

// specification in Person constructor prototype

Person::Person(const string &n, const string &t):

 name(n), title(t)

{

}

Person::Person(const Person &p):

 name(p.name), title(p.title)

{

}

// Derived class constructors

// Note: default constructor is included by = default

// specification in Student constructor prototype and

// gpa is set with value of in-class initializer (0.0)

Student::Student(const char *n, const char *t,

 float g): Person(n, t), gpa(g)

{

}

Student::Student(const Student &s): Person(s),

 gpa(s.gpa)

{

}

Understanding inherited constructors and destructors 177

In the previous short segment of code, notice that the system-supplied default derived
class constructor, Student::Student(), has been elected with =default added
to the constructor prototype. With an alternate constructor in this class definition, this
specification (or by writing the default constructor ourselves) is necessary if we would
like to support this simple interface for class instantiation. Remember, we only get a
system-supplied default constructor if there are no other constructors (that is, means for
instantiation) in our class definition.

Next, notice in the alternate derived class constructor, Student::Student(const
string &, const string &, float), the use of the member initialization list for
base class construction specification. Here, the Person constructor matching the signature
of Person::Person(const string &, const string &) is selected to
initialize the Person subobject at hand. Also, notice that parameters from the Student
constructor, n and t, are passed up to the aforementioned Person constructor to help
complete the Person subobject initialization. Had we not specified which Person base
class constructor should be used in the member initialization list, the default Person
constructor will be used to initialize the Person base class subobject of Student. The
member initialization list is additionally used in this constructor to initialize data members
introduced within the Student class definition (such as gpa).

Now, notice in the copy constructor for the derived class, Student::Student(const
Student &), the member initialization list is used to select the Person copy constructor,
passing s as a parameter to the Person copy constructor. Here, the object referenced
by s is a Student, however, the top part of Student memory contains Person data
members. Hence, it is acceptable to implicitly upcast the Student to a Person to allow
the Person copy constructor to initialize the Person subobject. Also, in the member
initialization list of the Student copy constructor, the additional data member added by
the Student class definition is initialized, namely, by initializing gpa(s.gpa). These
additional data members could have also been set in the body of this constructor.

Now that we understand how to utilize the member initialization list to specify a base class constructor,
let’s move forward with a complete program example.

Putting all the pieces together

So far in this chapter, we have seen many pieces contributing to a full program example. It is important
to see our code in action, with all its various components. We need to see the basic mechanics of
inheritance, how the member initialization list is used to specify which base class constructor should
implicitly be invoked, and the significance of the protected access region.

Implementing Hierarchies with Single Inheritance178

Let’s take a look at a more complex, full program example to fully illustrate single inheritance. This
example will be broken into segments; the full program can be found in the following GitHub location:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex1.cpp

#include <iostream>

#include <iomanip>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::setprecision;

using std::string;

using std::to_string;

class Person

{

private:

 // data members

 string firstName; // str mbrs are default constructed,

 string lastName; // so don't need in-class initializers

 char middleInitial = '\0'; // in-class initialization

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

protected: // make avail. to derived classes in their scope

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

 // We get default copy constructor and destructor even

 // without the below protypes; hence, commented out

 // Person(const Person &) = default; // def. copy ctor

 // ~Person() = default; // use default destructor

 // inline function definitions

 const string &GetFirstName() const { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex1.cpp

Understanding inherited constructors and destructors 179

 char GetMiddleInitial() const { return middleInitial; }

};

In the previous class definition, we now have a fully-fledged class definition for Person, with many
more details than our simple syntax examples formerly used in this section. Notice that we have
introduced a protected access region and placed member function void ModifyTitle(const
string &); in this access region.

Moving onward, let’s examine the non-line member function definitions for Person:

// Default constructor included with = default in prototype

// With in-class initialization, it is often not necessary

// to write the default constructor yourself.

// alternate constructor

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): firstName(fn),

 lastName(ln), middleInitial(mi), title(t)

{

 // dynamically allocate memory for any ptr data members

}

// We are using default copy constructor; let's see what

// it would look like if we prototyped/defined it ourselves

// (so we may better understand an upcoming discussion with

// the upcoming derived class copy constructor). Also,

// this is what the system-supplied version may look like.

// Person::Person(const Person &p): firstName(p.firstName),

// lastName(p.lastName), middleInitial(p.middleInitial),

// title(p.title)

// {

 // deep copy any pointer data members here

// }

// Using default destructor – no need to write it ourselves

void Person::ModifyTitle(const string &newTitle)

{

Implementing Hierarchies with Single Inheritance180

 title = newTitle;

}

The implementation for the aforesaid Person member functions is as expected. Now, let’s add the
class definition for the derived class, Student, along with its inline function definitions:

class Student: public Person

{

private:

 // data members

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId; // studentId is not modifiable

 static int numStudents; // static data mbr. init. occurs

public: // outside of the class definition

 // member function prototypes

 Student(); // we will provide default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

 ~Student(); // we will provide destructor

 void Print() const;

 void EarnPhD(); // public interface to inherited

 // protected member

 // inline function definitions

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const { return studentId; }

 // prototype only, see inline function definition below

 void SetCurrentCourse(const string &);

 static int GetNumberStudents(); // static mbr function

};

// definition for static data mbr. (implemented as extern)

int Student::numStudents = 0; // notice initial value of 0

Understanding inherited constructors and destructors 181

inline void Student::SetCurrentCourse(const string &c)

{

 currentCourse = c;

}

// Definition for static member function (it's also inline)

inline int Student::GetNumberStudents()

{

 return numStudents;

}

In the preceding definition of Student, class Student is derived from Person using public
inheritance (that is, a public base class), which supports an Is-A relationship. Notice the public
access label after the base class list following the : in the derived class definition (that is, class
Student: public Person). Notice that our Student class has added data members and
member functions above and beyond those that it automatically inherits from Person.

Next, adding in the non-inline Student member functions, we continue growing our code:

// Default constructor uses in-class init. for gpa, while

// currentCourse (string mbr object) is default constructed

Student::Student(): studentId(to_string(numStudents + 100)

 + "Id")

{

 // Since studentId is const, we need to initialize it

 // during construction using member init list (above)

 // Also, remember to dynamically allocate memory for any

 // pointer data mbrs. here (not needed in this example)

 numStudents++; // increment static counter

}

// alternate constructor

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg,

 const string &course, const string &id):

 Person(fn, ln, mi, t),

 gpa(avg), currentCourse(course), studentId(id)

Implementing Hierarchies with Single Inheritance182

{

 // Remember to dynamically allocate memory for any

 // pointer data members (none in this example)

 numStudents++; // increment static counter

}

// copy constructor

Student::Student(const Student &s): Person(s), gpa(s.gpa),

 currentCourse(s.currentCourse),

 studentId(s.studentId)

{

 // deep copy any ptr data mbrs (none in this example)

 numStudents++; // increment static counter

}

// destructor definition

Student::~Student()

{

 // Remember to release memory for any dynamically

 // allocated data members (none in this example)

 numStudents--; // decrement static counter

}

void Student::Print() const

{

 // Private members of Person are not directly accessible

 // within the scope of Student, so we use access fns.

 cout << GetTitle() << " " << GetFirstName() << " ";

 cout << GetMiddleInitial() << ". " << GetLastName();

 cout << " with id: " << studentId << " gpa: ";

 cout << setprecision(2) << gpa;

 cout << " course: " << currentCourse << endl;

}

void Student::EarnPhD()

{

Understanding inherited constructors and destructors 183

 // Protected members defined by the base class are

 // accessible within the scope of the derived class.

 // EarnPhd() provides a public interface to this

 // functionality for derived class instances.

 ModifyTitle("Dr.");

}

In the aforementioned segment of code, we define the non-inline member functions of Student.
Notice that the default constructor merely uses the member initialization list to initialize a data
member, as we did in the last chapter. Since no Person constructor has been specified in the member
initialization list of the default Student constructor, the default Person constructor will be used
to initialize the Person subobject when instantiating a Student with its default constructor.

Next, the alternate constructor for Student uses the member initialization list to specify that the
alternate constructor of Person should be utilized to construct the Person subobject contained
within a given Student instance. Notice that the selected constructor will match the signature
Person::Person(const string &, const string &, char, const string &),
and that selected input parameters from the Student constructor (namely fn, ln, mi, and t) will
be passed as parameters to the Person alternate constructor. The Student constructor’s member
initialization list is then used to initialize additional data members introduced by the Student class.

In the copy constructor for Student, the member initialization list is used to specify that the Person
copy constructor should be called to initialize the Person subobject of the Student instance that
is being constructed. The Student & will be implicitly upcast to a Person & as the Person copy
constructor is called. Recall that the top part of a Student object Is-A Person, so this is fine. Next,
in the remainder of the copy constructor’s member initialization list for Student, we initialize any
remaining data members the Student class has defined. Any data members requiring a deep copy
(such as those that are pointers) may be handled in the body of the copy constructor.

Moving onward, we see a comment indicating the Student destructor. Implicitly, as the last line of
code in this method (whether the destructor is system-supplied or user-written), a call to the Person
destructor is patched in for us by the compiler. This is how the destructor sequence is automated
for us. Consequently, the most specialized portion of the object, the Student pieces, will first be
destructed, followed by the implicit call to the Person destructor to destruct the base class subobject.

Next, in the Print() method for Student, notice that we would like to print out various data
members that are inherited from Person. Alas, these data members are private. We may not access
them outside the scope of the Person class. Nevertheless, the Person class has left us with a public
interface, such as Person::GetTitle() and Person::GetFirstName(), so that we may
access these data members from any scope of our application, including from Student::Print().

Implementing Hierarchies with Single Inheritance184

Finally, we come to the Student::EarnPhD() method. Notice that all this method does is
invoke the protected member function Person::ModifyTitle("Dr.");. Recall that
protected members defined by the base class are accessible within the scope of the derived class.
Student::EarnPhD() is a member function of the derived class. EarnPhD() provides a
public interface to modify the title of a Person, perhaps after checking whether the student has met
graduation requirements. Because Person::ModifyTitle() is not public, instances of Person
or Student must go through a controlled public interface to change their respective titles. Such
interfaces might include methods such as Student::EarnPhD() or Person::GetMarried(),
and so on.

Nonetheless, let’s complete our full program example by examining main():

int main()

{

 Student s1("Jo", "Li", 'U', "Ms.", 3.8,

 "C++", "178PSU");

 // Public members of Person and Student are accessible

 // outside the scope of their respective classes....

 s1.Print();

 s1.SetCurrentCourse("Doctoral Thesis");

 s1.EarnPhD();

 s1.Print();

 cout << "Total number of students: " <<

 Student::GetNumberStudents() << endl;

 return 0;

}

In the last segment of this program, in main(), we simply instantiate a Student, namely s1.
The Student utilizes Student::Print() to print its current data. The Student then sets
her current course set to "Doctoral Thesis" and then invokes Student::EarnPhD();.
Note that any public members of Student or Person are available for s1 to utilize outside
the scope of their class, such as in main(). To complete the example, s1 reprints her details using
Student::Print().

Here is the output for the full program example:

Ms. Jo U. Li with id: 178PSU gpa: 3.9 course: C++

Dr. Jo U. Li with id: 178PSU gpa: 3.9 course: Doctoral Thesis

Total number of students: 1

Implementation inheritance – changing the purpose of inheritance 185

Now that we have competency with the basic mechanics of single inheritance, and have used single
inheritance to model an Is-A relationship, let’s move onward to see how inheritance can be used to
model a different concept by exploring protected and private base classes.

Implementation inheritance – changing the purpose of
inheritance
So far we demonstrated using a public base class, known also as public inheritance. Public base classes
are used to model Is-A relationships and provide the primary motivation behind building an inheritance
hierarchy. This usage supports the concepts of generalization and specialization.

Occasionally, inheritance may be used as a tool to implement one class in terms of another, that
is, by one class using another as its underlying implementation. This is known as implementation
inheritance and it does not support the ideals of generalization and specialization. Yet, implementation
inheritance can provide a quick and easily reusable way to implement one class based upon another. It
is fast and relatively error-free. Many class libraries use this tool without the knowledge of their class
users. It is important to distinguish implementation inheritance from traditional hierarchy building
for the motivation of specifying Is-A relationships.

Implementation inheritance, supported in C++ with private and protected base classes, is exclusive
to C++. Other OOP languages choose to only embrace inheritance for the purpose of modeling Is-A
relationships, which is supported in C++ through public base classes. An OO purist would endeavor
to use inheritance only to support generalization and specialization (Is-A). However, using C++, we
will understand appropriate uses of implementation inheritance so that we may use this language
feature wisely.

Let’s move onward to understand how and why we might utilize this type of inheritance.

Modifying access labels in the base class list by using protected
or private base classes

To reiterate, the usual type of inheritance is public inheritance. The public label is used in the
base class list for a given derived class. However, in the base class list, the keywords protected and
private are also options.

That is, in addition to labeling access regions within a class or structure definition, an access label can
be used in the base class list of a derived class definition to designate how members defined in a base
class are inherited by derived classes.

Inherited members can only be made more restrictive than they were designated to be in the base
class. When the derived class specifies that inherited members should be treated in a more restrictive
fashion, any descendants of that derived class will also be subject to these specifications.

Implementing Hierarchies with Single Inheritance186

Let’s see a quick example of the base class list:

• Recall that most often, a public access label will be specified in the base class list.

• In this example, a public access label is used to specify that a Person is a public base
class of Student. That is, a Student Is-A Person:

class Student: public Person

{

 // usual class definition

};

Access labels specified in the base class list modify inherited access regions as follows:

• public: Public members in the base class are accessible from any scope; protected members
in the base class are accessible from the scope of the base and derived classes. We are familiar
with using a public base class.

• protected: Public and protected members in the base class act as though they are defined as
protected by the derived class (that is, accessible from the scope of the base and derived classes
and any descendants of the derived class).

• private: Public and protected members in the base class act as though they are defined as private
by the derived class, allowing these members to be accessible within the scope of the derived
class, but not within the scope of any of the derived class descendants.

Note
In all cases, class members labeled as private within a class definition, are accessible only within
the scope of the defining class. Modifying the access labels in the base class list can only treat
inherited members more restrictively, never less restrictively.

In the absence of an access label specified in conjunction with the base class, private will be
assumed if the user defined type is a class, and public will be the default if the user defined type
is a struct. A good rule of thumb is to always include the access label in the base class list for a
derived class (or structure) definition.

Implementation inheritance – changing the purpose of inheritance 187

Creating a base class to illustrate implementation inheritance

To understand implementation inheritance, let’s review a base class that may serve as a basis to implement
other classes. We will examine a typical pair of classes to implement an encapsulated LinkList.
Though this example will be broken into several segments, the full example will be shown, and can
also be found in the GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex2.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using Item = int;

class LinkListElement // a 'node' or element of a LinkList

{

private:

 void *data = nullptr; // in-class initialization

 LinkListElement *next = nullptr;

public:

 LinkListElement() = default;

 LinkListElement(Item *i) : data(i), next(nullptr) { }

 ~LinkListElement()

 { delete static_cast<Item *>(data);

 next = nullptr; }

 void *GetData() const { return data; }

 LinkListElement *GetNext() const { return next; }

 void SetNext(LinkListElement *e) { next = e; }

};

class LinkList // an encapsulated LinkList

{

private:

 LinkListElement *head = nullptr; // in-class init.

 LinkListElement *tail = nullptr;

 LinkListElement *current = nullptr;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex2.cpp

Implementing Hierarchies with Single Inheritance188

public:

 LinkList() = default; // required to keep default

 // interface

 LinkList(LinkListElement *);

 ~LinkList();

 void InsertAtFront(Item *);

 LinkListElement *RemoveAtFront();

 void DeleteAtFront();

 int IsEmpty() const { return head == nullptr; }

 void Print() const;

};

We begin the previous segment of code with class definitions for both LinkListElement and
LinkList. The LinkList class will contain data members that are pointers to the head, tail,
and current element in the LinkList. Each of these pointers is of type LinkListElement.
A variety of typical LinkList processing methods are included, such as InsertAtFront(),
RemoveAtFront(), DeleteAtFront(), IsEmpty(), and Print(). Let’s take a quick peek
at the implementation of these methods with the next segment of code:

// default constructor – not necessary to write it

// ourselves with in-class initialization above

LinkList::LinkList(LinkListElement *element)

{

 head = tail = current = element;

}

void LinkList::InsertAtFront(Item *theItem)

{

 LinkListElement *newHead = new

 LinkListElement(theItem);

 newHead->SetNext(head); // newHead->next = head;

 head = newHead;

}

LinkListElement *LinkList::RemoveAtFront()

{

Implementation inheritance – changing the purpose of inheritance 189

 LinkListElement *remove = head;

 head = head->GetNext(); // head = head->next;

 current = head; // reset current for usage elsewhere

 return remove;

}

void LinkList::DeleteAtFront()

{

 LinkListElement *deallocate;

 deallocate = RemoveAtFront();

 delete deallocate; // destructor will both delete data

} // and will set next to nullptr

void LinkList::Print() const

{

 if (!head)

 cout << "<EMPTY>";

 LinkListElement *traverse = head;

 while (traverse)

 {

 Item output = *(static_cast<Item *>

 (traverse->GetData()));

 cout << output << " ";

 traverse = traverse->GetNext();

 }

 cout << endl;

}

LinkList::~LinkList()

{

 while (!IsEmpty())

 DeleteAtFront();

}

Implementing Hierarchies with Single Inheritance190

In the previously mentioned member function definitions, we note that a LinkList can be constructed
either empty or with one element (note the two available constructors). LinkList::InsertAtFront()
adds an item to the front of the list for efficiency. LinkList::RemoveAtFront() removes an item
and returns it to the user, whereas LinkList::DeleteAtFront() removes and deletes the front
item. The LinkList::Print() function allows us to view the LinkList whenever necessary.

Next, let’s see a typical main() function to illustrate how a LinkList can be instantiated and
manipulated:

int main()

{

 // Create a few items, to be data for LinkListElements

 Item *item1 = new Item;

 *item1 = 100;

 Item *item2 = new Item(200);

 // create an element for the Linked List

 LinkListElement *element1 = new LinkListElement(item1);

 // create a linked list and initialize with one element

 LinkList list1(element1);

 // Add some new items to the list and print

 list1.InsertAtFront(item2);

 list1.InsertAtFront(new Item(50)); // add nameless item

 cout << "List 1: ";

 list1.Print(); // print out contents of list

 // delete elements from list, one by one

 while (!(list1.IsEmpty()))

 {

 list1.DeleteAtFront();

 cout << "List 1 after removing an item: ";

 list1.Print();

 }

 // create a second linked list, add some items, print

 LinkList list2;

 list2.InsertAtFront(new Item (3000));

Implementation inheritance – changing the purpose of inheritance 191

 list2.InsertAtFront(new Item (600));

 list2.InsertAtFront(new Item (475));

 cout << "List 2: ";

 list2.Print();

 // delete elements from list, one by one

 while (!(list2.IsEmpty()))

 {

 list2.DeleteAtFront();

 cout << "List 2 after removing an item: ";

 list2.Print();

 }

 return 0;

}

In main(), we create a few items, of type Item, which will later be data for LinkListElement.
We then instantiate a LinkListElement, namely element1, and add it to a newly constructed
LinkList, using LinkList list1(element1);. We then add several items to the list
using LinkList::InsertAtFront(), and call LinkList::Print() to print out
list1 for a baseline. Next, we delete elements from list1, one by one, printing as we go, using
LinkList::DeleteAtFront() and LinkList::Print(), respectively.

Now, we instantiate a second LinkList, namely list2, which starts out empty. We gradually insert
several items using LinkList::InsertAtFront(), then print the list, and then delete each
element, one by one, using LinkList::DeleteAtFront(), printing the revised list with each step.

The point of this example is not to exhaustively review the inner workings of this code. You are
undoubtedly familiar with the concept of a LinkList. More so, the point is to establish this set of
classes, LinkListElement and LinkList, as a set of building blocks in which several Abstract
Data Types can be built.

Nonetheless, the output for the preceding example is as follows:

List 1: 50 200 100

List 1 after removing an item: 200 100

List 1 after removing an item: 100

List 1 after removing an item: <EMPTY>

List 2: 475 600 3000

List 2 after removing an item: 600 3000

Implementing Hierarchies with Single Inheritance192

List 2 after removing an item: 3000

List 2 after removing an item: <EMPTY>

Next, let’s see how LinkList can be used as a private base class.

Using a private base class to implement one class in terms of
another

We have just created a LinkList class to support the basic handling of an encapsulated linked list
data structure. Now, let’s imagine that we would like to implement an Abstract Data Type (ADT),
such as a stack. A stack is an ADT in that it has a set of expected operations to define its interface,
such as Push(), Pop(), IsEmpty(), and perhaps Print().

You may ask how a stack is implemented. The answer is that the implementation does not matter, so
long as it supports the expected interface of the ADT being modeled. Perhaps a stack is implemented
using an array, or perhaps it is implemented in a file. Perhaps it is implemented using a LinkedList.
Each implementation has pros and cons. In fact, the underlying implementation of the ADT might
change, yet users of the ADT should not be affected by such a change. This is the basis of implementation
inheritance. A derived class is implemented in terms of a base class, yet the underlying details of the
base class from which the new class is derived are effectively hidden. These details cannot be directly
used by instances of the derived class (in this case, the ADT). Nonetheless, the base class silently
provides the implementation for the derived class.

We will use this approach to implement a Stack using a LinkedList as its underlying implementation.
To do this, we will have class Stack extend LinkedList using a private base class. Stack
will define a public interface for its users to establish the interface for this ADT, such as Push(),
Pop(), IsEmpty(), and Print(). The implementation of these member functions will make
use of selected LinkedList member functions, but Stack users will not see this, nor will Stack
instances be able to use any LinkList members directly themselves.

Here, we are not saying a Stack Is-A LinkList, but rather, a Stack is implemented in terms of
a LinkedList at the moment—and that underlying implementation could change!

The code to implement Stack is simple. Assume we are using the LinkList and LinkListElement
classes from the previous example. Let’s add the Stack class here. The full program example can be
found in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex3.cpp

class Stack: private LinkList

{

private:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex3.cpp

Implementation inheritance – changing the purpose of inheritance 193

 // no new data members are necessary

public:

 // Constructor / destructor prototypes shown below are

 // not needed; we get both without these prototypes!

 // Commented to remind what's automatically provided

 // Stack() = default; // will call :LinkList() def ctor

 // ~Stack() = default;

 // the public interface for Stack

 void Push(Item *i) { InsertAtFront(i); }

 Item *Pop();

 // It is necessary to redefine these operations because

 // LinkList is a private base class of Stack

 int IsEmpty() const { return LinkList::IsEmpty(); }

 void Print() { LinkList::Print(); }

};

Item *Stack::Pop()

{

 LinkListElement *top;

 top = RemoveAtFront();

 // copy top's data

 Item *item = new Item(*(static_cast<Item *>

 (top->GetData())));

 delete top;

 return item;

}

int main()

{

 Stack stack1; // create a Stack

 // Add some items to the stack, using public interface

 stack1.Push(new Item (3000));

 stack1.Push(new Item (600));

 stack1.Push(new Item (475));

 cout << "Stack 1: ";

 stack1.Print();

Implementing Hierarchies with Single Inheritance194

 // Pop elements from stack, one by one

 while (!(stack1.IsEmpty()))

 {

 stack1.Pop();

 cout << "Stack 1 after popping an item: ";

 stack1.Print();

 }

 return 0;

}

Notice how compact the aforementioned code is for our Stack class! We begin by specifying that
Stack has a private base class of LinkList. Recall that a private base class means that the
protected and public members inherited from LinkList act as though they were defined by
Stack as private (and are only accessible within the scope of Stack, that is, member functions of
Stack). This means that instances of Stack may not use the former public interface of LinkList.
This also means that the underlying implementation of Stack as a LinkList is effectively hidden. Of
course, LinkList instances are not affected in any way and may use their public interface as usual.

We notice that =default has been added to both the Stack constructor and destructor prototypes.
Neither of these methods has work to do because we are not adding any data members to this class;
therefore, the default system-supplied versions are acceptable. Note that if we omitted both the default
constructor and destructor prototypes, we get both system-supplied versions linked in.

We easily define Stack::Push() to simply call LinkList::InsertAtFront(), just as
Stack::Pop() does little more than call LinkList::RemoveAtFront(). Even though
Stack would love to simply use the inherited implementations of LinkList::IsEmpty()
and LinkList::Print(), due to LinkList being a private base class, these functions are
not part of the public interface of Stack. Accordingly, Stack adds an IsEmpty() method that
simply calls LinkList::IsEmpty();. Notice the use of the scope resolution operator to specify
the LinkList::IsEmpty() method; without the base class qualification, we would be adding a
recursive function call! This call to the base class method is allowed because Stack member functions
can call the once public methods of LinkList (they are now treated as private within Stack).
Similarly, Stack::Print() merely calls LinkList::Print().

In the scope of main(), we instantiate a Stack, namely stack1. Using the public interface of Stack,
we easily manipulate stack1 using Stack::Push(), Stack::Pop(), Stack::IsEmpty(),
and Stack::Print().

Implementation inheritance – changing the purpose of inheritance 195

The output for this example is as follows:

Stack 1: 475 600 3000

Stack 1 after popping an item: 600 3000

Stack 1 after popping an item: 3000

Stack 1 after popping an item: <EMPTY>

It is important to note that a pointer to a Stack instance cannot be upcast to be stored as a pointer
to a LinkList. Upcasting is not allowed across a private base class boundary. This would allow
a Stack to reveal its underlying implementation; C++ does not allow this to happen. Here, we see
that a Stack is merely implemented in terms of a LinkList; we are not saying that a Stack
Is-A LinkedList. This is the concept of implementation inheritance in its best light; this example
illustrates implementation inheritance favorably.

Next, let’s move forward to see how we can use a protected base class, and how that differs from
a private base class using implementation inheritance.

Using a protected base class to implement one class in terms of
another

We have just implemented a Stack in terms of a LinkList using a private base class. Now, let’s
implement a Queue and a PriorityQueue. We will implement a Queue using LinkList as a
protected base class, and a PriorityQueue using Queue as a public base class.

Again, Queue and PriorityQueue are Abstract Data Types. It is (relatively) unimportant how a
Queue is implemented. The underlying implementation may change. Implementation inheritance allows
us to implement our Queue using a LinkedList without revealing the underlying implementation
to users of the Queue class.

Now, our class Queue will use LinkedList as a protected base class. Queue will define a
public interface for its users to establish the expected interface for this ADT, such as Enqueue(),
Dequeue(), IsEmpty(), and Print(). The implementation of these member functions will
make use of selected LinkedList member functions, but Queue users will not see this, nor will
Queue instances be able to use any LinkList members directly themselves.

Furthermore, our class PriorityQueue will extend Queue using public inheritance. That’s
right, we’re back to Is-A. We are saying that a PriorityQueue Is-A Queue, and a Queue is
implemented using a LinkedList.

We will just add a priority enqueuing method to our PriorityQueue class; this class will be glad
to inherit the public interface from Queue (but obviously not from LinkList, which luckily is
hidden behind a protected base class at its parent’s level).

Implementing Hierarchies with Single Inheritance196

The code to implement Queue and PriorityQueue is again straightforward. The LinkList base
class needs to be augmented to be more fully functional in order to proceed. The LinkListElement
class can remain the same. We will show the basics of the revised LinkList class with only its class
definition. The full code for both Queue and PriorityQueue will be shown in a separate segment.
The full program example can be found in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex4.cpp

// class LinkListElement is as shown previously

// The enhanced class definition of LinkList is:

class LinkList

{

private:

 LinkListElement *head = nullptr;

 LinkListElement *tail = nullptr;

 LinkListElement *current = nullptr;

public:

 LinkList() = default;

 LinkList(LinkListElement *);

 ~LinkList();

 void InsertAtFront(Item *);

 LinkListElement *RemoveAtFront();

 void DeleteAtFront();

 // Notice additional member functions added

 void InsertBeforeItem(Item *, Item *);

 LinkListElement *RemoveSpecificItem(Item *);

 void DeleteSpecificItem(Item *);

 void InsertAtEnd(Item *);

 LinkListElement *RemoveAtEnd();

 void DeleteAtEnd();

 int IsEmpty() const { return head == nullptr; }

 void Print() const;

};

// Assume we have the implementation for the methods here…

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter06/Chp6-Ex4.cpp

Implementation inheritance – changing the purpose of inheritance 197

Notice that LinkList has been expanded to have a fuller set of features, such as being able to add,
remove, and delete elements at various positions within the LinkList. To keep our examined code
together brief, we will not show the implementation of these methods.

Now, let’s add the class definitions for Queue and PriorityQueue in the next code segment:

class Queue: protected LinkList

{

private:

 // no new data members are necessary

public:

 // Constructor prototype shown below is not needed;

 // we get default w/o prototype (since no other ctor)

 // Commented to remind what's automatically provided

 // Queue() = default; // calls :LinkList() def. ctor

 // Destructor prototype is needed (per virtual keyword)

 virtual ~Queue() = default; // we'll see virtual Chp. 7

 // public interface of Queue

 void Enqueue(Item *i) { InsertAtEnd(i); }

 Item *Dequeue();

 // redefine these methods, LinkList is prot. base class

 int IsEmpty() const { return LinkList::IsEmpty(); }

 void Print() { LinkList::Print(); }

};

Item *Queue::Dequeue()

{

 LinkListElement *front;

 front = RemoveAtFront();

 // make copy of front's data

 Item *item = new Item(*(static_cast<Item *>

 (front->GetData())));

 delete front;

 return item;

}

class PriorityQueue: public Queue

{

Implementing Hierarchies with Single Inheritance198

private:

 // no new data members are necessary

public:

 // Constructor prototype shown below is not needed;

 // we get default w/o protoype (since no other ctor)

 // Commented to remind what's automatically provided

 // PriorityQueue() = default; // calls :Queue()

 // default constructor

 // destructor proto. is not needed for overriden dtor

 // ~PriorityQueue() override = default; // see Chp 7

 void PriorityEnqueue(Item *i1, Item *i2)

 { InsertBeforeItem(i1, i2); } // accessible in this

}; // scope

In the previous segment of code, we define the Queue and PriorityQue classes. Notice that
Queue has a protected base class of LinkList. With a protected base class, the protected
and public members inherited from LinkList act as though they are defined by Queue as
protected, which means that these inherited members are not only accessible within the scope
of Queue, but also within any potential descendants of Queue. As before, these restrictions only
apply to the Queue class, its descendants, and their instances; the LinkList class and its instances
are unaffected.

In the Queue class, no new data members are necessary. The internal implementation is handled by
LinkList. With a protected base class, we are saying that the Queue is implemented using a
LinkList. Nonetheless, we must provide the public interface for Queue and we do so by adding
methods such as Queue::Enqueue(), Queue::Dequeue(), Queue::IsEmpty() and
Queue::Print(). Notice that in their implementations, these methods merely call LinkList
methods to perform the necessary operations. Users of Queue must use Queue’s public interface;
the once public LinkList interface is hidden to Queue instances.

Next, we define PriorityQueue, another ADT. Notice that PriorityQueue defines Queue as a
public base class. We are back to inheritance to support an Is-A relationship. A PriorityQueue
Is-A Queue and can do everything a Queue can do, just a little more. As such, PriorityQueue
inherits as usual from Queue, including Queue’s public interface. PriorityQueue needs only to add
an additional method for priority enqueuing, namely PriorityQueue::PriorityEnqueue().

Since Queue has a protected base class of LinkList, the public interface from LinkList
is considered protected to Queue and its descendants, including PriorityQueue,
so that LinkList’s once public methods are considered protected to both Queue and
PriorityQueue. Notice that PriorityQueue::PriorityEnqueue() makes use of
LinkList::InsertBeforeItem(). This would not be possible if LinkList were a private,
versus a protected, base class of Queue.

Implementation inheritance – changing the purpose of inheritance 199

With the class definitions and implementation in place, let’s continue with our main() function:

int main()

{

 Queue q1; // Queue instance

 q1.Enqueue(new Item(50));

 q1.Enqueue(new Item(67));

 q1.Enqueue(new Item(80));

 q1.Print();

 while (!(q1.IsEmpty()))

 {

 q1.Dequeue();

 q1.Print();

 }

 PriorityQueue q2; // PriorityQueue instance

 Item *item = new Item(167); // save a handle to item

 q2.Enqueue(new Item(67)); // first item added

 q2.Enqueue(item); // second item

 q2.Enqueue(new Item(180)); // third item

 // add new item before an existing item

 q2.PriorityEnqueue(new Item(100), item); // 4th item

 q2.Print();

 while (!(q2.IsEmpty()))

 {

 q2.Dequeue();

 q2.Print();

 }

 return 0;

}

Now, in main(), we instantiate a Queue, namely q1, which utilizes the public interface of Queue.
Note that q1 may not use the once public interface of LinkList. The Queue may only behave like
a Queue, not a LinkList. The ADT of Queue is preserved.

Implementing Hierarchies with Single Inheritance200

Finally, we instantiate a PriorityQueue , namely q2 , which utilizes the public
interface of both Queue and PriorityQueue, such as Queue::Enqueue() and
PriorityQueue::PriorityEnqueue(), respectively. Because a Queue Is-A PriorityQueue
(Queue is the public base class), the typical mechanics of inheritance are in place, allowing
PriorityQueue to utilize the public interface of its ancestors.

The output for this example is as follows:

50 67 80

67 80

80

<EMPTY>

67 100 167 180

100 167 180

167 180

180

<EMPTY>

Finally, we have seen two examples of using implementation inheritance; it is not an often-used feature
of C++. However, you now understand protected or private base classes should you run across
them in library code, application code that you are maintaining, or the rare opportunity in which this
technique may prove useful for a programming task you may encounter.

Optional uses for =default
We have seen =default used in constructor and destructor prototypes to alleviate the user
need to supply such method definitions. However, let’s recall some guidelines for when a
constructor (or destructor) is provided for us automatically. In such cases, using =default with
a constructor or destructor prototype will be more documentative in nature than a requirement;
we will get the same system-supplied method in the absence of the =default prototype.

Using an =default prototype is not necessary if the default constructor is the only constructor in
a class; recall that you will get a system-supplied default constructor if a class has no constructors
(to provide an interface to instantiate the class). Using =default with a default constructor
prototype is crucial, however, if there are other constructors in the class (not including the copy
constructor) and you want to maintain the default object creation (construction) interface. For
the copy constructor, if the default system-supplied version is adequate, you will get this method
regardless of whether you use an =default prototype or omit the prototype entirely. Likewise,
with the destructor, if the system-supplied version is adequate, you will get this version linked
in regardless of whether you use an =default prototype or omit the prototype altogether;
the latter style is becoming more prevalent.

Summary 201

We have now covered the basic features of single inheritance in C++. Let’s quickly review what we’ve
covered before moving to the next chapter.

Summary
In this chapter, we have moved further along our journey with object-oriented programming. We
have added additional OO concepts and terms, and have seen how C++ has direct language support
for these concepts. We have seen how inheritance in C++ supports generalization and specialization.
We have seen how to incrementally build a hierarchy of related classes.

We have seen how to grow inheritance hierarchies using single inheritance, and how to access inherited
data members and member functions. We have reviewed access regions to understand which inherited
members may be directly accessed, based upon the access regions in which the members are defined
in the base class. We know that having a public base class equates to defining an Is-A relationship,
which supports the ideals of generalization and specialization, which is the most commonly used
reason for inheritance.

We have detailed the order of constructor and destructor invocations when instances of derived class
types are instantiated and destroyed. We have seen the member initialization list to select which
inherited constructor a derived class object may choose to utilize as part of its own construction (for
its base class subobject).

We have seen how changing access labels in a base class list changes the OO meaning for the type of
inheritance being used. By comparing public versus private and protected base classes, we
now understand different types of hierarchies, such as those built to support Is-A relationships versus
those built to support implementation inheritance.

We have seen that base classes in our hierarchies may serve as potential building blocks for more
specialized components, leading to potential reuse. Any potential reuse of existing code saves
development time and cuts down on maintenance of otherwise duplicated code.

Through extending our OOP knowledge, we have gained a preliminary set of skills relating to inheritance
and hierarchy building in C++. With the basic mechanics of single inheritance under our belts, we
can now move forward to learn about many more interesting object-oriented concepts and details
relating to inheritance. Continuing to Chapter 7, Utilizing Dynamic Binding through Polymorphism,
we will next learn how to dynamically bind methods to their respective operations in a hierarchy of
related classes.

Implementing Hierarchies with Single Inheritance202

Questions
1. Using your Chapter 5, Exploring Classes in Detail, solution, create a C++ program to build an

inheritance hierarchy, generalizing Person as a base class from the derived class of Student.

a. Decide which data members and member functions of your Student class are more
generic and would be better positioned in a Person class. Build your Person class
with these members, including appropriate constructors (default, alternate, and copy), a
destructor, access member functions, and a suitable public interface. Be sure to place your
data members in the private access region.

b. Using a public base class, derive Student from Person. Remove members from
Student that are now represented in Person. Adjust constructors and the destructor
accordingly. Use the member initialization list to specify base class constructors as needed.

c. Instantiate both Student and Person several times and utilize the appropriate public
interfaces on each. Be sure to dynamically allocate several instances.

d. Add a message using cout as the first line in each of your constructors and as the first
line in your destructors so that you can see the construction and destruction order of
each instance.

2. (Optional) Complete the class hierarchy, which includes LinkList, Queue, and
PriorityQueue, using the online code as a basis. Complete the remaining operations
in the LinkList class, and call them as appropriate in the public interface of Queue and
PriorityQueue.

a. Be sure to add copy constructors for each class (or prototype them in the private access
region or use =delete in the prototype to suppress copying if you truly do not want to
allow copies).

b. Instantiate LinkList using either constructor, then demonstrate how each of your
operations works. Be sure to invoke Print() after adding or deleting an element.

c. Instantiate Queue and PriorityQueue, and demonstrate that each of the operations
in their public interfaces works correctly. Remember to demonstrate the inherited
operations in the public interface of Queue for instances of PriorityQueue.

7
Utilizing Dynamic Binding

through Polymorphism

This chapter will further extend our knowledge of object-oriented programming in C++. We will
begin by introducing a powerful OO concept, polymorphism, and then understand how this idea is
implemented in C++ through direct language support. We will implement polymorphism using virtual
functions in hierarchies of related classes, and understand how we can achieve runtime binding of
a specific derived class method to a more generic, base class operation. We will understand how the
OO concept of polymorphism presented in this chapter will support versatile and robust designs and
easily extensible code in C++.

In this chapter, we will cover the following main topics:

• Understanding the OO concept of polymorphism and why it is important to OOP

• Defining virtual functions, understanding how virtual functions override base class methods
(or halt the overriding process with the final specifier), generalizing derived class objects,
the need for virtual destructors, as well as understanding function hiding

• Understand dynamic (runtime) binding of methods to operations

• Detailed understanding of the virtual function table (v-table)

By the end of this chapter, you will understand the OO concept of polymorphism, and how to
implement this idea in C++ through virtual functions. You will understand how virtual functions
enable the runtime binding of methods to operations in C++. You will see how an operation can be
specified in a base class and overridden with a preferred implementation in a derived class. You will
understand when and why it is important to utilize a virtual destructor.

Utilizing Dynamic Binding through Polymorphism204

You will see how instances of derived classes are often stored using base class pointers and why this is
significant. We will discover that, regardless of how an instance is stored (as its own type or as that of
a base class), the correct version of a virtual function will always be applied through dynamic binding.
Specifically, you will see how runtime binding works under the hood as we examine virtual function
pointers and virtual function tables in C++.

By understanding the direct language support of polymorphism in C++ using virtual functions, you
will be on your way to creating an extensible hierarchy of related classes, featuring dynamic binding
of methods to operations. Let us augment our understanding of C++ as an OOP language by detailing
these ideals.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter07. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter07 in a file named Chp7-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3QQUGxg.

Understanding the OO concept of polymorphism
In this section, we will introduce an essential object-oriented concept, polymorphism.

From Chapter 5, Exploring Classes in Detail, and Chapter 6, Implementing Hierarchies with Single
Inheritance, you now understand the key OO ideas of encapsulation, information hiding, generalization,
and specialization. You know how to encapsulate a class, how to build inheritance hierarchies using
single inheritance, and the various reasons to build hierarchies (such as supporting Is-A relationships
or for the lesser-used reason of supporting implementation inheritance). Let’s begin by extending our
basic OO terminology by exploring polymorphism.

When a base class specifies an operation such that a derived class may redefine the operation in its
class with a more suitable method, the operation is said to be polymorphic. Let’s revisit our definitions
of operation and method, as well as their implications, to understand how these concepts lay the
groundwork for polymorphism:

• In C++, an operation maps to the complete signature of the member function (name plus type
and number of arguments – no return type).

• Additionally, in C++, a method maps to the definition or body of the operation (that is, the
implementation or body of the member function).

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter07
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter07
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter07
https://bit.ly/3QQUGxg

Implementing polymorphism with virtual functions 205

• Recall that in OO terms, an operation implements a behavior of a class. The implementation
of a base class operation may be via several distinct derived class methods.

Polymorphism gives an object the ability to take on many forms, yet have its most relevant behaviors
applied, even when the object may be represented in a more genericized (base class) state than it is
originally defined. This happens in C++ with public inheritance. A derived class object may be more
generically pointed to by a base class pointer through upcasting. Yet, if an operation is defined to be
polymorphic, the specific method applied when the operation is invoked will be the derived class
version, as that is the most appropriate method for the object (irrespective of how it may currently
be genericized as a base class object). Here, the derived class object fulfills the Is-A relationship of the
base class. For example, a Student Is-A Person. Yet, a polymorphic operation will allow Student
behaviors to be revealed on Student objects, even when they have taken on the form of a Person.

As we progress through this chapter, we will see derived class objects taking on the form of their public
base classes, that is, taking on many forms (polymorphism). We will see how a polymorphic operation
can be specified in a base class and overridden with a preferred implementation in a derived class.

Let’s start by looking at the C++ language feature that allows us to implement polymorphism, namely,
virtual functions.

Implementing polymorphism with virtual functions
Polymorphism allows dynamic binding of a method to an operation. Dynamic, or runtime, binding of
a method to an operation is important because derived class instances may be pointed to by base class
objects (that is, by pointers of a base class type). In these situations, the pointer type does not provide
adequate information regarding the correct method that should be applied to the referenced instance.
We need another way – one done at runtime – to determine which method applies to each instance.

Often, it is the case that a pointer to an instance of a derived class type will be generalized as a pointer
to the base class type. When an operation is applied to the pointer, the correct method for what the
object truly is should be applied, rather than the method that seems appropriate for the generalized
pointer type.

Let’s begin with the relevant keywords and logistics necessary to define virtual functions so that we
may implement polymorphism.

Defining virtual functions and overriding base class methods

Virtual functions in C++ directly support polymorphism. A virtual function is as follows:

• A member function that correctly allows methods for a given operation to be overridden
successively in a hierarchy to provide more suitable definitions

• A member function that allows dynamic, rather than the usual static, binding for methods

Utilizing Dynamic Binding through Polymorphism206

A virtual function is specified using the keyword virtual with the following nuances:

• The keyword virtual should precede the return type of the function in its prototype.

• Functions in the derived class with the same name and signature of a virtual function in any
ancestor class redefine the virtual function in those base classes. Here, the keyword virtual
is optional in the derived class prototype.

• Optionally and preferred, the keyword override can be added as part of the extended
signature in the derived class prototype. This recommended practice will allow the compiler to
flag an error if the signature of the intended overridden method does not match the signature as
specified in the base class. The override keyword can eliminate unintended function hiding.

• Functions with the same name, yet a different signature in a derived class, do not redefine a
virtual function in their base class; rather, they hide the methods found in their base classes.

• Additionally, the keyword final can be added as part of the extended signature of a virtual
function prototype if the virtual function in question is not intended to be further overridden
in a derived class.

The derived class need not redefine virtual functions specified in its base class if the inherited methods
are suitable. However, should a derived class redefine an operation with a new method, the same
signature (as specified by the base class) must be used for the overridden method. Furthermore,
derived classes should only redefine virtual functions.

Here is a simple example to illustrate the basic syntax:

• Print() is a virtual function defined in the base class Person. It will be overridden with a
more appropriate implementation in the Student class:

class Person // base class

{

private:

 string name;

 string title;

public:

 // constructors/destructor (will soon be virtual),

 // public access functions, public interface etc.

 virtual void Print() const

 {

 cout << title << " " << name << endl;

 }

};

Implementing polymorphism with virtual functions 207

Here, the base class Person, introduces a virtual function, Print(). By labeling this
function as virtual, the Person class is inviting any future descendants to redefine this
function with a more suitable implementation or method, should they be so motivated.

• The virtual function defined in the base class Person is, in fact, overridden with a more
appropriate implementation in the Student class:

class Student: public Person // derived class

{

private:

 float gpa = 0.0; // in-class initialization

public:

 // constructors, destructor specific to Student,

 // public access functions, public interface, etc.

 void Print() const override

 {

 Person::Print(); // call base class fn to help

 cout << " is a student. GPA: " << gpa << endl;

 }

};

Notice here that the derived class Student introduces a new implementation of
Print() that will override (that is, replace), the definition in Person. Note that if the
implementation of Person::Print() were acceptable to Student, Student would
not be obligated to override this function, even if it is marked as virtual in the base class.
The mechanics of public inheritance would simply allow the derived class to inherit this
method.

But because this function is virtual in Person, Student may opt to redefine this
operation with a more suitable method. Here, it does. In the Student::Print()
implementation, Student first calls Person::Print() to take advantage of
the aforementioned base class function, then prints additional information itself.
Student::Print() is choosing to call a base class function for help; it is not required to
do so if the desired functionality can be implemented fully within its own class scope.

Notice that when Student::Print() is defined to override Person::Print(),
the same signature as specified by the base class is used. This is important. Should a new
signature have been used, we would get into a potential function hiding scenario, which we
will soon discuss in our Considering function hiding subsection within this chapter.

Utilizing Dynamic Binding through Polymorphism208

Note that though the virtual functions in Person and Student are written inline, a
virtual function will almost never be expanded as inline code by the compiler since the
specific method for the operation must be determined at runtime. A very few cases exist for
compiler devirtualization, involving final methods or knowing an instance’s dynamic type;
such rare cases would allow a virtual function to be inlined.

Remember, polymorphic functions are meant to have the ability to override or replace base class
versions of a given function. Function overriding differs from function overloading.

Important distinction
Function overriding is defined by introducing the same function name with the same signature
in a hierarchy of related classes (via virtual functions), whereas the derived class version is
meant to replace the base class version. In contrast, function overloading is defined when two
or more functions with the same name, but with different signatures, exist in the same scope
of the program (such as in the same class).

Additionally, operations not initially specified as virtual when introduced in a base class definition are
not polymorphic and, therefore, should not be overridden in any derived class. This means that if a base
class does not use the keyword virtual when defining an operation, the base class does not intend
for the derived class to redefine this operation with a more suitable derived class method. The base
class instead is insisting that the implementation it has provided is suitable for any of its descendants.
Should the derived class attempt to redefine a non-virtual base class operation, a subtle bug will be
introduced into the application. The error will be that derived class instances stored using derived
class pointers will use the derived class method, yet derived class instances stored using base class
pointers will use the base class definition. Instances should always use their own behavior irrespective
of how they are stored – this is the point of polymorphism. Never redefine a non-virtual function.

Important note
Operations not specified in a base class as virtual in C++ are not polymorphic, and should
never be overridden by a derived class.

Let’s move forward and discover scenarios when we may want to collect derived class objects by a
base class type, and when we may then need to qualify our destructors as virtual.

Generalizing derived class objects

When we view an inheritance hierarchy, it is typically one that employs public base classes; that is, it is
a hierarchy that utilizes public inheritance to express Is-A relationships. When using inheritance in this
manner, we may be motivated to collect groups of related instances together. For example, a hierarchy
of Student specializations might include GraduateStudent, UnderGraduateStudent, and
NonDegreeStudent. Assuming each of these derived classes has a public base class of Student,
it would be appropriate to say a GraduateStudent Is-A Student, and so on.

Implementing polymorphism with virtual functions 209

We may find a reason in our application to group these somewhat-like instances together into one
common set. For example, imagine that we are implementing a billing system for a university. The
university may wish for us to collect all students, regardless of their derived class types, into one set
to process them uniformly, so as to calculate their semester bills.

The Student class may have a polymorphic operation to CalculateSemesterBill(), which
is implemented as a virtual function in Student with a default method. However, selected derived
classes, such as GraduateStudent, may have preferred implementations that they wish to provide by
overriding the operation in their own class with a more appropriate method. A GraduateStudent,
for example, may have a different method to compute their total bill versus a NonDegreeStudent.
Hence, each derived class may override the default implementation of CalculateSemesterBill()
in each of their classes.

Nonetheless, in our bursar application, we can create a set of pointers of type Student, though each
pointer will inevitably point to instances of the derived class types, such as GraduateStudent,
UnderGraduateStudent, and NonDegreeStudent. When instances of derived class types
have been generalized in this fashion, it is appropriate to apply functions (often virtual) to the set as
defined in the base class level corresponding to the pointer type of the collection. Virtual functions
allow these generalized instances to invoke a polymorphic operation to yield their individual derived
class methods or implementations of these functions. This is exactly what we want. But, there are still
more details to understand.

This basic premise of generalizing derived class instances will allow us to understand why we may
need virtual destructors within many of our class definitions. Let’s take a look.

Utilizing virtual destructors

We now can conceptualize situations when grouping derived class instances into a somewhat-like set
stored by their common base class type may be useful. It is actually very powerful to collect sibling
type derived class instances by their base class type and employ virtual functions to allow their distinct
behaviors to shine through.

But, let’s consider what happens when the memory for a derived class instance stored by a base class
pointer goes away. We know its destructor is called, but which one? We actually know that a chain of
destructors is called, starting with the destructor of the object type in question. But how do we know
the actual derived class object type if the instance has been genericized by being stored using a base
class pointer? A virtual destructor solves this issue.

By labeling a destructor as virtual, we are allowing it to be overridden as the starting point in the
destruction sequence for a class and any of its descendants. The choice as to which destructor to use
as the entry point of destruction will be deferred to runtime using dynamic binding, based on the
object’s actual type, not what the pointer type may be that references it. We will soon see how this
process is automated by examining C++’s underlying virtual function table.

Utilizing Dynamic Binding through Polymorphism210

A virtual destructor, unlike all other virtual functions, actually specifies the starting point for a full
sequence of functions to be executed. Recall that as the last line of code in a destructor, the compiler
automatically patches in a call to call the immediate base class destructor, and so on, until we reach
the initial base class in the hierarchy. The destruction chain exists to provide a forum to release
dynamically allocated data members in all subobjects of a given instance. Contrasting this behavior
to other virtual functions, those merely allow the single, correct version of the function to be executed
(unless the programmer chooses to call a base class version of the same function as a helper function
during the derived method implementation).

You may ask why it is important to start the destruction sequence at the proper level. That is, starting
at the level that matches the object’s actual type (versus a generalized pointer type that may point
to the object). Recall that each class may have dynamically allocated data members. The destructor
will deallocate these data members. Starting with the correct level destructor will ensure that you do
not introduce any memory leaks into your application by forgoing appropriate destructors and their
corresponding memory deallocations.

Are virtual destructors always necessary? That is a good question! Virtual destructors are always
necessary when using a public base class hierarchy, that is, when using public inheritance. Recall
that public base classes support Is-A relationships, which easily lead to allowing a derived class
instance to be stored using a pointer of its base class type. For example, a GraduateStudent Is-A
Student, so we can store a GraduateStudent as a Student in times when we require more
generic processing along with its sibling types. We can always upcast in this fashion across a public
inheritance boundary. However, when we use implementation inheritance (that is, private or protected
base classes), upcasting is not allowed. So, for hierarchies employing private or protected inheritance,
virtual destructors are not necessary because upcasting is simply disallowed; hence, it would never be
ambiguous as to which destructor should be the entry point for classes in private and protected base
class hierarchies. As a second example, we did not include a virtual destructor in our LinkedList
class in Chapter 6, Implementing Hierarchies with Single Inheritance; therefore, LinkedList should
only be extended as a protected or private base class. We did, however, include a virtual destructor in
our Queue and PriorityQueue classes because PriorityQueue uses Queue as a public base
class. A PriorityQueue may be upcast to a Queue (but not to a LinkedList), necessitating
the virtual destructor introduction at the Queue and its descendent levels in the hierarchy.

Are the optional keywords virtual and override recommended when overriding a virtual
destructor? Those are also good questions. We know that an overridden destructor is only the starting
point in the destruction sequence. We also know that, unlike other virtual functions, the derived
class destructor will have a unique name from the base class destructor. Even though a derived class
destructor automatically overrides a base class destructor that has been declared as virtual, the
usage of the optional keyword override is recommended in the derived class destructor prototype
for documentation. However, the usage of the optional keyword virtual in the derived class
destructor is generally no longer used. The reasoning is that the override keyword is meant to
provide a safety net to catch spelling mistakes between originally defined and overridden functions.
With destructors, the function names are not the same, hence this safety net is not an error-checking
advantage, but more documentative.

Implementing polymorphism with virtual functions 211

Let’s continue by putting all the necessary pieces together so we can see virtual functions of all varieties,
including destructors, in action.

Putting all the pieces together

So far in this chapter, we have understood the nuances of virtual functions, including virtual destructors.
It is important to see our code in action with all its various components and details. We need to see
in one cohesive program the basic syntax to specify virtual functions, including how we may collect
derived class instances by base class types, and see how virtual destructors play a role.

Let’s take a look at a more complex, full program example to fully illustrate polymorphism, implemented
using virtual functions in C++. This example will be broken into many segments; the full program
can be found in the following GitHub location:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter07/Chp7-Ex1.cpp

#include <iostream>

#include <iomanip>

using std::cout; //preferred to: using namespace std;

using std::endl;

using std::setprecision;

using std::string;

using std::to_string;

constexpr int MAX = 5;

class Person

{

private:

 string firstName;

 string lastName;

 char middleInitial = '\0'; // in-class initialization

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

protected:

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter07/Chp7-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter07/Chp7-Ex1.cpp

Utilizing Dynamic Binding through Polymorphism212

 // copy constructor =default prototype not needed; we

 // get the default version w/o the =default prototype

 // Person(const Person &) = default; // copy const.

 virtual ~Person(); // virtual destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 virtual void Print() const;

 virtual void IsA() const;

 virtual void Greeting(const string &) const;

};

In the aforementioned class definition, we have augmented our familiar class for Person, adding four
virtual functions, namely, the destructor (~Person()), Print(), IsA(), and Greeting(const
string &). Notice that we have simply placed the keyword virtual in front of the return type (if
any) of each member function. The remainder of the class definition is as we have explored in depth
in the previous chapter.

Now, let’s examine the non-inline member function definitions for Person:

// With in-class initialization, writing the default

// constructor is no longer necessary.

// Also, remember that strings are member objects and will

// be default constructed as empty.

// alternate constructor

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): firstName(fn),

 lastName(ln), middleInitial(mi), title(t)

{

 // dynamically allocate memory for any ptr data members

}

// We are choosing to utilize the default copy constructor.

// If we wanted to prototype/define it, here's the method:

// Person::Person(const Person &p):

Implementing polymorphism with virtual functions 213

// firstName(p.firstName), lastName(p.lastName),

// middleInitial(p.middleInitial), title(p.title)

// {

 // deep copy any pointer data members here

// }

Person::~Person()

{

 // release memory for any dynamically alloc. data mbrs.

 cout << "Person destructor <" << firstName << " "

 << lastName << ">" << endl;

}

void Person::ModifyTitle(const string &newTitle)

{ // assignment between strings ensures a deep assignment

 title = newTitle;

}

void Person::Print() const

{

 cout << title << " " << firstName << " ";

 cout << middleInitial << ". " << lastName << endl;

}

void Person::IsA() const

{

 cout << "Person" << endl;

}

void Person::Greeting(const string &msg) const

{

 cout << msg << endl;

}

Utilizing Dynamic Binding through Polymorphism214

In the previous segment of code, we have specified all of the non-inline member functions of Person.
Notice that the four virtual functions – the destructor, Print(), IsA(), and Greeting() – do
not include the virtual keyword in the methods (that is, member function definitions) themselves.

Next, let’s examine the Student class definition and its inline functions:

class Student: public Person

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId;

 static int numStudents; // static data member

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

 ~Student() override; // virtual destructor

 void EarnPhD();

 // inline function definitions

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const

 { return studentId; }

 void SetCurrentCourse(const string &); // proto. only

 // In the derived class, keyword virtual is optional,

 // and not currently recommended. Use override instead.

 void Print() const final override;

 void IsA() const override;

 // note: we choose not to redefine

 // Person::Greeting(const string &) const

 static int GetNumberStudents(); // static mbr. function

};

Implementing polymorphism with virtual functions 215

// definition for static data member

int Student::numStudents = 0; // notice initial value of 0

inline void Student::SetCurrentCourse(const string &c)

{

 currentCourse = c;

}

// Definition for static member function (it's also inline)

inline int Student::GetNumberStudents()

{

 return numStudents;

}

In the previous class definition for Student, we again have all of the assorted components we are
accustomed to seeing to comprise this class. Additionally, notice that we have overridden and redefined
three virtual functions – the destructor, Print(), and IsA() – using the keyword override.
These preferred definitions essentially replace or override the default methods specified for these
operations in the base class.

Notice, however, that we choose not to redefine void Person::Greeting(const string
&), which was introduced as a virtual function in the Person class. Simply inheriting this method
is fine if we find the inherited definition acceptable for instances of the Student class. Furthermore,
notice the additional qualification on Print() with the final qualifier. This keyword indicates
that Print() may not be overridden in derived classes from Student; the method overridden at
the Student level will be the final implementation.

Recall that the meaning of override, when paired with a destructor, is unique, in that it does not
imply that the derived class destructor replaces the base class destructor. Instead, it means that the
derived class (virtual) destructor is the correct beginning point for the chain of destruction sequence
when initiated by derived class instances (irrespective of how they are stored). The virtual derived
class destructor is merely the entry point for the complete destruction sequence.

Also remember, the derived class of Student is not required to override a virtual function that is
defined in Person. Should the Student class find the base class method acceptable, it is automatically
inherited. Virtual functions merely allow the derived class to redefine an operation with a more
appropriate method when so needed.
Next, let’s examine the non-inline Student class member functions:

Student::Student(): studentId(to_string(numStudents + 100)

 + "Id")

{

Utilizing Dynamic Binding through Polymorphism216

 // studentId is const; we need to set at construction.

 // We're using member init list with a unique id based

 // on numStudents + 100), concatenated with string "Id".

 // Remember, string member currentCourse will be default

 // const. with an empty string (it's a member object)

 numStudents++; // set static data member

}

// Alternate constructor member function definition

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg,

 const string &course, const string &id):

 Person(fn, ln, mi, t), gpa(avg),

 currentCourse(course), studentId(id)

{

 // dynamically alloc memory for any pointer data members

 numStudents++;

}

// Copy constructor definition

Student::Student(const Student &s) : Person(s),

 gpa(s.gpa), currentCourse(s.currentCourse),

 studentId(s.studentId)

{

 // deep copy any pointer data mbrs of derived class here

 numStudents++;

}

// destructor definition

Student::~Student()

{

 // release memory for any dynamically alloc. data mbrs

 cout << "Student destructor <" << GetFirstName() << " "

 << GetLastName() << ">" << endl;

}

Implementing polymorphism with virtual functions 217

void Student::EarnPhD()

{

 ModifyTitle("Dr.");

}

void Student::Print() const

{ // need to use access functions as these data members

 // are defined in Person as private

 cout << GetTitle() << " " << GetFirstName() << " ";

 cout << GetMiddleInitial() << ". " << GetLastName();

 cout << " with id: " << studentId << " GPA: ";

 cout << setprecision(3) << " " << gpa;

 cout << " Course: " << currentCourse << endl;

}

void Student::IsA() const

{

 cout << "Student" << endl;

}

In the previously listed section of code, we list the non-inline member function definitions for
Student. Again, notice that the keyword override will not appear in any of the virtual member
function definitions themselves, only in their respective prototypes.

Lastly, let’s examine the main() function:

int main()

{

 Person *people[MAX] = { }; // initialize with nullptrs

 people[0] = new Person("Juliet", "Martinez", 'M',

 "Ms.");

 people[1] = new Student("Hana", "Sato", 'U', "Dr.",

 3.8, "C++", "178PSU");

 people[2] = new Student("Sara", "Kato", 'B', "Dr.",

 3.9, "C++", "272PSU");

 people[3] = new Person("Giselle", "LeBrun", 'R',

 "Miss");

Utilizing Dynamic Binding through Polymorphism218

 people[4] = new Person("Linus", "Van Pelt", 'S',

 "Mr.");

 // We will soon see a safer and more modern way to loop

 // using a range for loop (starting in Chp. 8).

 // Meanwhile, let's notice mechanics for accessing

 // each element.

 for (int i = 0; i < MAX; i++)

 {

 people[i]->IsA();

 cout << " ";

 people[i]->Print();

 }

 for (int i = 0; i < MAX; i++)

 delete people[i]; // engage virtual dest. sequence

 return 0;

}

Here, in main(), we declare an array of pointers to Person. Doing so, allows us to collect both
Person and Student instances in this set. Of course, the only operations we may apply to instances
stored in this generalized fashion are those found in the base class, Person.

Next, we allocate several Person and several Student instances, storing each instance via an
element in the generalized set of pointers. When a Student is stored in this fashion, an upcast to
the base class type is performed (but the instance is not altered in any fashion). Recall that when we
looked at memory layout for derived class instances in Chapter 6, Implementing Hierarchies with Single
Inheritance, we noticed that a Student instance first includes the memory layout of a Person,
followed by the additional memory required for Student data members. This upcast merely points
to the starting point of this collective memory.

Now, we proceed through a loop to apply operations as found in the Person class to all instances in
this generalized collection. These operations happen to be polymorphic. That is, the virtual functions
allow the specific implementation for methods to be called through runtime binding to match the
actual object type (irrespective of the fact that the object may be stored in a generalized pointer).

Lastly, we loop through deleting the dynamically allocated instances of Person and Student,
again using the generalized Person pointers. Because we know delete() will patch in a call to
the destructor, we wisely have made the destructors virtual, enabling dynamic binding to choose
the appropriate starting destructor (in the destruction chain) for each object.

Implementing polymorphism with virtual functions 219

When we look at the output for the aforementioned program, we can see that the specific method
for each object is appropriately called for each virtual function, including the destruction sequence.
Derived class objects have both the derived, then base class destructor invoked and executed. Here is
the output for the full program example:

Person

 Ms. Juliet M. Martinez

Student

 Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Student

 Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Person

 Miss Giselle R. LeBrun

Person

 Mr. Linus S. Van Pelt

Person destructor <Juliet Martinez>

Student destructor <Hana Sato>

Person destructor <Hana Sato>

Student destructor <Sara Kato>

Person destructor <Sara Kato>

Person destructor <Giselle LeBrun>

Person destructor <Linus Van Pelt>

Now that we have competency utilizing the concept of polymorphism and the mechanics of virtual
functions, let’s take a look at a less usual situation relating to virtual functions, that of function hiding.

Considering function hiding

Function hiding is not an often-used feature of C++. In fact, it is often employed quite by accident!
Let’s review a key point we know about inherited member functions to get started. When an operation
is specified by a base class, it is intended to provide a protocol for usage and redefinition (in the case
of virtual functions) for all derived class methods.

Sometimes, a derived class will alter the signature of a method that is intended to redefine an operation
specified by a base class (let’s think of virtual functions). In this case, the new function, which differs in
signature from the operation specified in its ancestor class, will not be considered a virtual redefinition
of the inherited operation. In fact, it will hide inherited methods for the virtual function that have the
same name specified in ancestor classes.

Utilizing Dynamic Binding through Polymorphism220

When programs are compiled, the signature of each function is compared against the class definition
for correct usage. Typically, when a member function is not found in the class that seemingly matches
the instance type, the hierarchy is traversed in an upward fashion until such a match is found or until
the hierarchy is exhausted. Let us take a closer look at what the compiler contemplates:

• When a function is found with the same name as the function being sought out, the signature
is examined to see whether it matches the function call exactly, or if type conversion can
be applied. When the function is found, but type conversion cannot be applied, the normal
traversal sequence is ended.

• Functions that hide virtual functions normally halt this upward search sequence, thus hiding
a virtual function that otherwise may have been invoked. Recall that at compile time, we are
just checking syntax (not deciding which version of a virtual function to call). But if we can’t
find a match, an error is flagged.

• Function hiding is actually considered helpful and was intended by the language. If the class
designer provided a specific function with a given signature and interface, that function should
be used for instances of that type. Hidden or unsuspected functions above in the hierarchy
should not be used in this specific scenario.

Consider the following modification to our previous full program example to, first, illustrate function
hiding, and then provide a more flexible solution for managing function hiding:

• Recall that the Person class introduces virtual void Print() with no parameters.
Imagine that Student, instead of overriding Print() with the same signature, changes the
signature to virtual void Print(const char *):

class Person // base class

{

 // data members

public: // member functions, etc.

 virtual void Print() const;

};

class Student: public Person

{

 // data members

public: // member functions, etc.

 // Newly introduced virtual fn. --

 // Not a redefinition of Person::Print()

 virtual void Print(const string &) const;

};

Implementing polymorphism with virtual functions 221

Notice that the signature of Print() has changed from base to derived class. The derived
class function does not redefine the virtual void Print(); of its base class. It is a
new function that will in fact hide the existence of Person::Print(). This is actually
what was intended, since you may not recall that the base class offers such an operation,
and tracking upward might cause surprising results in your application if you intended
Print(const string &) to be called but Print() is called instead. By adding
this new function, the derived class designer is dictating this interface is the appropriate
Print() for instances of Student.

However, nothing is straightforward in C++. For situations where a Student is
upcast to a Person, the Person::Print() with no arguments will be called. The
Student::Print(const string &) is not a virtual redefinition because it does
not have the same signature. Hence, the Person::Print() will be called for generalized
Student instances. And yet Student::Print(const string &) will be called for
Student instances stored in Student variables. Unfortunately, this is inconsistent with
how an instance will behave if it is stored in its own type versus a generalized type. Though
function hiding was meant to work in this fashion, it may inevitably not be what you would
like to happen. Programmers, beware!

Let’s look at some of the cumbersome code that might ensue:

• Explicit downcasting or use of the scope resolution operator may be required to reveal an
otherwise hidden function:

constexpr int MAX = 2;

int main()

{

 Person *people[MAX] = { }; // init. with nullptrs

 people[0] = new Person("Jim", "Black", 'M',

 "Mr.");

 people[1] = new Student("Kim", "Lin", 'Q', "Dr.",

 3.55, "C++", "334UD");

 people[1]->Print(); // ok, Person::Print() defined

 // people[1]->Print("Go Team!"); // error!

 // explicit downcast to derived type assumes you

 // correctly recall what the object is

 (dynamic_cast<Student *> (people[1]))->

 Print("I have to study");

 // Student stored in its own type

 Student s1("Jafari", "Kanumba", 'B', "Dr.", 3.9,

 "C++", "845BU");

Utilizing Dynamic Binding through Polymorphism222

 // s1.Print(); // error, base class version hidden

 s1.Print("I got an A!"); // works for type Student

 s1.Person::Print(); // works using scope

 // resolution to base class type

 return 0;

}

In the aforementioned example, we have a generalized set of two Person pointers. One
entry points to a Person and one entry points to a Student. Once the Student is
generalized, the only applicable operations are those found in the Person base class.
Therefore, a call to people[1]->Print(); works and a call to people[1]
->Print("Go Team!"); does not work. The latter call to Print(const char *)
is an error at the generalized base class level, even though the object truly is a Student.

If, from a generalized pointer, we wish to call specific functions found at the Student
level in the hierarchy, we will then need to downcast the instance back to its own type
(Student). We add a downcast with the call: (dynamic_cast<Student *>
(people[1]))->Print("I have to study");. Here, we are taking a risk – if
people[1] was actually a Person and not a Student, this would generate a runtime
error. However, by first checking the result of the dynamic cast to Student * prior to
invoking Print(), we can ensure we have made an appropriate cast.

Next, we instantiate Student s1;. Should we try to call s1.Print(), we get a
compiler error – Student::Print(const string &) hides the base class presence
of Person::Print(). Remember, s1 is stored in its own type, Student, and since
Student::Print(const string &) is found, the traversal upward to otherwise
uncover Person::Print() is halted.

Nonetheless, our call to s1.Print("I got an A!"); is successful because
Print(const string &) is found at the Student class level. Lastly, notice that the
call to s1.Person::Print(); works but requires knowledge of the otherwise hidden
function. By using the scope resolution operator (::), we can find the base class version of
Print(). Even though Print() is virtual in the base class (implying dynamic binding),
using the scope resolution operation reverts this call to a statically bound function call.

Let’s propose that we would like to add a new interface to a derived class with a function
that would otherwise hide a base class function. Knowing about function hiding, what
should we ideally do? We could simply override the virtual function as found in the base
class with a new method in the derived class, and then we could overload that function to
add the additional interface. Yes, we’re now both overriding and overloading. That is, we are
overriding the base class function, and overloading the overridden function in the derived
class.

Implementing polymorphism with virtual functions 223

Let’s take a look at what we would now have:

• Here is the more flexible interface to add the new member function while keeping the existing
interface that would otherwise be hidden:

class Person // base class

{

 // data members

public: // member functions, etc.

 virtual void Print() const;

};

class Student: public Person

{

 // data members

public: // member functions, etc.

 // Override the base class method so that this

 // interface is not hidden by overloaded fn. below

 void Print() const override;

 // add the additional interface

 // (which is overloaded)

 // Note: this additional Print() is virtual

 // from this point forward in the hierarchy

 virtual void Print(const string &) const;

};

int main()

{

 Student s1("Zack", "Doone", 'A', "Dr.", 3.9,

 "C++", "769UMD");

 s1.Print(); // this version is no longer hidden.

 s1.Print("I got an A!"); // also works

 s1.Person::Print(); // this is no longer necessary

}

Utilizing Dynamic Binding through Polymorphism224

In the preceding code fragment, the Student class both overrides Person::Print()
with Student::Print() and overloads Student::Print() with
Student::Print(const string &) to envelop the additional desired interface.
Now, for Student objects stored in Student variables, both interfaces are available –
the base class interface is no longer hidden. Of course, Student objects referenced by
Person pointers only have the Person::Print() interface, which is to be expected.

Overall, function hiding does not surface often, but when it does, it is often an unwelcome surprise.
Now you understand what may happen and why, which helps in making you a better programmer.

Now that we have looked at all the uses surrounding virtual functions, let’s look under the hood to
see why virtual functions are able to support dynamic binding of a specific method to an operation.
To thoroughly understand runtime binding, we will need to look at the v-table. Let’s move forward!

Understanding dynamic binding
Now that we have seen how polymorphism is implemented with virtual functions to allow for dynamic
binding of an operation to a specific implementation or method, let’s understand why virtual functions
allow for runtime binding.

Non-virtual functions are statically bound at compile time. That is, the address of the function in
question is determined at compile time, based on the assumed type of the object at hand. For example,
if an object is instantiated of type Student, a function call would have its prototype verified starting
with the Student class, and if not found, the hierarchy would be traversed upward to each base class,
such as Person, to look for the matching prototype. When found, the correct function call would
be patched in. This is how static binding works.

However, a virtual function is a type of function in C++ that employs a dynamic binding at runtime.
At compile time, any virtual function call is merely replaced with a lookup mechanism to delay binding
until runtime. Certainly, each compiler vendor may differ in their implementation of automating
virtual functions. However, there is a widely utilized implementation that involves virtual function
pointers, a virtual function table, and virtual function table entries for each object type containing
virtual functions.

Let’s move forward to investigate how dynamic binding is commonly implemented in C++.

Comprehending runtime binding of methods to operations

We know that virtual functions allow for dynamic binding of an operation (specified in a base class)
to a specific implementation or method (often specified in a derived class). How does this work?

Understanding dynamic binding 225

When a base class specifies one or more new virtual functions (not just redefinitions of an ancestor’s
virtual functions), a virtual function pointer (vptr) is created below the memory comprising a given
instance of that type. This happens at runtime when the memory for an instance is created (on the
stack, heap, or static/extern area). When the instance in question is constructed, not only will the
appropriate constructor be called to initialize the instance, but this vptr will be initialized to point to
the virtual function pointer table (v-table) entry for that class type.

The v-table entry for a given class type will consist of a set of function pointers. These function pointers
are often organized into an array of function pointers. A function pointer is a pointer to an actual
function. By dereferencing this pointer, you will actually invoke the function to which the pointer
points. There is an opportunity to pass arguments to the function, however, in order for this call to be
generic through a function pointer, the arguments must be uniform for any version of this function
that the pointer in question may point to. The premise of a function pointer gives us the ability to point
to different versions of a particular function. That is, we could point to different methods for a given
operation. This is the basis for which we can automate dynamic binding in C++ for virtual functions.

Let’s consider the particular v-table entry for a specific object type. We know that this table entry will
consist of a set of function pointers, such as an array of function pointers. The order in which these
function pointers are arranged will be consistent with the order in which the virtual functions are newly
introduced by a given class. Functions overriding existing virtual functions that were newly introduced
at a higher level in the hierarchy will simply replace table entries with preferred versions of functions
to be called, but will not cause an additional entry to be allocated in the array of function pointers.

So, when the program begins running first in global memory (as a hidden external variable), a v-table
will be set up. This table will contain entries for each object type that contains virtual functions. The
entry for a given object type will contain a set of function pointers (such as an array of function pointers)
that organizes and initializes the dynamically-bound functions for that class. The specific order of
the function pointers will correspond to the order in which the virtual functions were introduced
(possibly by their ancestor class), and the specific function pointers will be initialized to the preferred
versions of these functions for the specific class type in question. That is, the function pointers may
point to overridden methods as specified at their own class level.

Then, when an object of a given type is instantiated, the vptr within that object (there will be one per
subobject level of newly introduced – not redefined – virtual functions) will be set to point to the
corresponding v-table entry for that instance.

It will be useful to see this detail with code and a memory diagram. Let’s look under the hood to see
the code in action!

Utilizing Dynamic Binding through Polymorphism226

Interpreting the v-table in detail

In order to detail the memory model and see the underlying C++ mechanics that will be set up at
runtime, let’s consider our detailed, full program example from this section with base class Person
and derived class Student. As a reminder, we will show the key elements of the program:

• Abbreviated definitions of the Person and Student classes (we’ll omit the data members
and most member function definitions to save space):

class Person

{

private: // data members will be as before

protected: // assume all member funcs. are as before,

public: // but we will show only virtual funcs. here

 virtual ~Person(); // 4 virt fns introduced

 virtual void Print() const; // in Person class

 virtual void IsA() const;

 virtual void Greeting(const string &) const;

};

class Student: public Person

{

private: // data members will be as before

public: // assume all member funcs. are as before,

 // but we will show only virtual functions here

 ~Student() override; // 3 virt fns are overridden

 void Print() const override;

 void IsA() const override;

};

The Person and Student class definitions are as expected. Assume that the data
members and member functions are as shown in the full program example. For brevity, we
have just included the virtual functions introduced or redefined at each level.

Understanding dynamic binding 227

• Revisiting key elements of our main() function in abbreviated form (reduced to three instances):

constexpr int MAX = 3;

int main()

{

 Person *people[MAX] = { }; // init. with nullptrs

 people[0] = new Person("Joy", "Lin", 'M', "Ms.");

 people[1] = new Student("Renee", "Alexander", 'Z',

 "Dr.", 3.95, "C++", "21-MIT");

 people[2] = new Student("Gabby", "Doone", 'A',

 "Ms.", 3.95, "C++", "18-GWU");

 // In Chp. 8, we'll upgrade to a range for loop

 for (int i = 0; i < MAX; i++)

 { // at compile time, modified to:

 people[i]->IsA(); // *(people[i]->vptr[2])()

 people[i]->Print();

 people[i]->Greeting("Hello");

 delete people[i];

 }

 return 0;

}

Notice in our main() function that we instantiate one Person instance and two
Student instances. All are stored in a generic array of pointers of the base class type,
Person. We then iterate through the set calling virtual functions on each instance, namely
IsA(), Print(), Greeting(), and the destructor (which is implicitly called when we
delete each instance).

Utilizing Dynamic Binding through Polymorphism228

Considering the memory model for the previous example, we have the following diagram:

Figure 7.1 – Memory model for the current example

In the aforementioned memory diagram (which follows the preceding program), notice that we have an
array of pointers to the genericized instances of Person. The first instance is, in fact, a Person, and
the second two instances are of type Student. But, as a Student Is-A Person, it is acceptable to
upcast a Student to a Person. The top part of the memory layout is in fact, a Person for each of
the Student instances. For instances that are in fact of type Student, the additional data members
for Student will follow all the memory required for the Person subobject.

Notice that the vptr entries immediately follow the data members for the Person object (or
subobject) for each of the three instances. The location for the vptr is the same offset from the top
of each object. This is because the virtual functions in question are all introduced at the Person level
in the hierarchy. Some may be overridden in the Student class with more appropriate definitions
for Student, but the level in which each is introduced is at the Person level, hence the vptr
below the Person object (or subobject) will reflect a pointer to the list of operations introduced at
the Person level.

Understanding dynamic binding 229

As an aside, let’s say that Student introduced wholly new virtual functions (and not merely
redefinitions of existing virtual functions), such as we saw in the previous function hiding scenario.
There would then be a second vptr entry below the Student subobject with those additional (new
virtual) operations added.

When each object is instantiated, first the appropriate constructors (proceeding up the hierarchy)
will be called for each instance. Additionally, the compiler will patch in a pointer assignment for each
instance’s vptr to be set to the v-table entry corresponding to the object’s type. That is, when a
Person is instantiated, its vptr will point to the v-table entry for Person. When a Student
is instantiated, its vptr will point to the v-table entry for Student.

Let’s assume that the v-table entry for Person or Student contains an array of function pointers
to the appropriate virtual functions for that type. The v-table entry for each type actually has more
information embedded, such as the size of an instance of that type, and so on. To simplify, we will just
look at the portion of the v-table entries that automate the dynamic binding for each class type.

Notice that the v-table entry for Person is an array of four function pointers. Each function
pointer will point to the most suitable version of the destructor, Print(), IsA(), and Greeting()
for a Person. The order in which these function pointers occur corresponds to the order in which
these virtual functions were introduced by this class. That is, vptr[0] will point to the Person
destructor, vptr[1] will point to Person::Print(), and so on.

Now, let’s look at the v-table entry for Student. The order in which the virtual functions (as function
pointers) are laid into the array is the same order as for the Person class. This is because the base
class introduced these functions and the ordering in this array of pointers is set by that level. But
notice that the actual functions that are pointed to have been overridden for Student instances
to mostly be methods that were redefined by the derived class, Student. That is, the Student
destructor is specified (as the starting point for destruction), followed by Student::Print(),
then Student::IsA(), and then Person::Greeting(). Notice that vptr[3] points to
Person::Greeting(). This is because Student did not redefine this function in its class
definition; Student found the Person definition, which is inherited, to be acceptable.

Pairing this memory diagram with the code in our main() function, notice that after we instantiate a
Person and two Student instances, storing each in the genericized Person array of pointers, we
iterate through a loop containing several operations. We uniformly call people[i]->Print();,
then people[i]->IsA();, then people[i]->Greeting("Hello");, and then delete
people[i]; (which patches in a destructor call).

Because each of these functions is virtual, the decision as to which function should be called is deferred
to be looked up at runtime. This is done by accessing each instance’s hidden vptr member, indexing
into the appropriate v-table entry based on the operation at hand, and then dereferencing the
function pointer found at that entry to call the appropriate method. The compiler knows, for example,
that vptr[0] will be the destructor, vptr[1] will be the next virtual function introduced in the
base class definition, and so on, so that the element position in the v-table that should be activated is
easily determined by the name of the polymorphic operation.

Utilizing Dynamic Binding through Polymorphism230

Imagine that a call in main() to people[i]->Print(); was replaced with *(people[i]
->vptr[1])();, which is the syntax for dereferencing a function pointer to call the function
at hand. Notice that we are first accessing which function using people[i]->vptr[1], then
dereferencing the function pointer using *. Notice the parentheses ()at the end of the statement,
which is where any parameters would be passed to the function. Because the code to dereference the
function pointer needs to be uniform, the parameters to any such function must also be uniform. That
is why any virtual functions overridden in a derived class must use the same signature as specified by
the base class. It all makes sense when you look under the hood.

We have now thoroughly examined the OO idea of polymorphism and how it is implemented in C++
using virtual functions. Let’s briefly recap what we’ve covered in this chapter before moving onward
to our next chapter.

Summary
In this chapter, we have moved even further along our journey with object-oriented programming
by understanding how virtual functions in C++ provide direct language support for the OO idea of
polymorphism. We have seen how virtual functions provide dynamic binding of a specific method
to an operation in our inheritance hierarchy.

We have seen how, using virtual functions, an operation specified by a base class can be overridden
by a derived class, providing a more suitable implementation. We have seen that the correct method
for each object can be selected using runtime binding, regardless of whether the object is stored in
its own type or in a generalized type.

We have seen that objects are often generalized using base class pointers and how this can allow the
uniform processing of related derived class types. We have seen that, regardless of how an instance
is stored (as its own type or as that of a base class using a pointer), the correct version of a virtual
function will always be applied through dynamic binding. We have seen that in public inheritance
hierarchies where upcasting may be routinely done, having a virtual destructor is essential.

We have also seen how dynamic binding works through examining a typical compiler implementation
of embedding a vptr into instances, and how these pointers reference v-table entries (containing sets
of member function pointers) relevant to each object type.

We have seen that virtual functions allow us to take advantage of dynamic binding of operations to the
most appropriate methods, enabling us to use C++ as an OOP language to implement robust designs
featuring polymorphism, which promotes easily extensible code.

By extending our OOP knowledge with the utilization of virtual functions, we can now move forward
to include additional object-oriented concepts and details relating to inheritance and polymorphism.
Continuing to Chapter 8, Mastering Abstract Classes, we will next learn how to employ the OO ideal of
abstract classes, along with all the assorted OOP considerations surrounding this next object-oriented
concept. Let’s continue!

Questions 231

Questions
1. Using your Chapter 6, Implementing Hierarchies with Single Inheritance, solution, augment

your inheritance hierarchy to further specialize Student with GraduateStudent and
NonDegreeStudent.

a. Add necessary data members to your GraduateStudent class. Data members to
consider might be dissertation topic or graduate advisor. Include appropriate constructors
(default, alternate, and copy), a destructor, access member functions, and a suitable public
interface. Be sure to place your data members in the private access region. Do the same
for NonDegreeStudent.

b. Add polymorphic operations to Person, Student, GraduateStudent, and
NonDegreeStudent as necessary. Introduce at the Person level virtual functions
IsA() and Print(). Override IsA() and Print() in your derived classes as necessary.
It may be that you override IsA() in Student and GraduateStudent, but choose to
override Print() only in the Student() class. Be sure to include virtual destructors
in each of your classes.

c. Instantiate Student, GraduateStudent, NonDegreeStudent, and Person
several times and utilize the appropriate public interfaces on each. Be sure to dynamically
allocate several instances.

d. Create an array of pointers to Person and allocate instances of Person, Student,
GraduateStudent, and NonDegreeStudent to be members of this array. Once
generalized, only call polymorphic operations that are found at the Person level (and
other public methods of Person). Be sure to delete any dynamically allocated instances.

e. Create an array of pointers to Student and allocate only instances of GraduateStudent
and NonDegreeStudent to be members of this array. Now, call operations that are
found at the Student level to be applied to these generalized instances. Additionally,
utilize operations found at the Person level – they are inherited and additionally available
for generalized Student instances. Be sure to delete any dynamically allocated instances
pointed to in your array.

8
Mastering Abstract Classes

This chapter will continue expanding our knowledge of object-oriented programming in C++. We
will begin by exploring a powerful OO concept, abstract classes, and then progress to understanding
how this idea is implemented in C++ through direct language support.

We will implement abstract classes using pure virtual functions to ultimately support refinements
in a hierarchy of related classes. We will understand how abstract classes augment and pair with our
understanding of polymorphism. We will also recognize how the OO concept of abstract classes
presented in this chapter will support powerful and adaptable designs, allowing us to create easily
extensible C++ code.

In this chapter, we will cover the following main topics:

• Understanding the OO concept of an abstract class

• Implementing abstract classes with pure virtual functions

• Creating interfaces using abstract classes and pure virtual functions

• Generalizing derived class objects using abstract classes, and upcasting and downcasting

By the end of this chapter, you will understand the OO concept of an abstract class, and how to implement
this idea in C++ through pure virtual functions. You will learn how abstract classes containing only
pure virtual functions can define an OOP concept of an interface. You will understand how abstract
classes and interfaces contribute to powerful OO designs.

You will see how we can very easily generalize groups of related, specialized objects using sets of
abstract types. We will further explore up and downcasting within the hierarchy to understand what
is allowed and when such typecasting is reasonable to employ.

By understanding the direct language support of abstract classes in C++ using pure virtual functions,
as well as why creating interfaces is useful, you will have more tools available to create an extensible
hierarchy of related classes. Let us expand our understanding of C++ as an OOP language by
understanding how these concepts are implemented in C++.

Mastering Abstract Classes234

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter08. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter08 in a file named Chp8-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3SZv0jy.

Understanding the OO concept of an abstract class
In this section, we will introduce an essential object-oriented concept, that of an abstract class. This
concept will add to your growing knowledge base of key OO ideas including encapsulation, information
hiding, generalization, specialization, and polymorphism. You know how to encapsulate a class.
You also know how to build inheritance hierarchies using single inheritance, and various reasons to
build hierarchies, such as supporting Is-A relationships or for the lesser-used reason of supporting
implementation inheritance. Furthermore, you know how to employ runtime binding of methods to
operations using the concept of polymorphism, implemented by virtual functions. Let’s extend our
growing OO terminology by exploring abstract classes.

An abstract class is a base class that is intended to collect commonalities that may exist in derived
classes for the purpose of asserting a common interface (that is, a set of operations) on the derived
class. An abstract class does not represent a class that is intended for instantiation. Only objects of
the derived class types may be instantiated.

Let’s start by looking at the C++ language feature that allows us to implement abstract classes, that
is, pure virtual functions.

Implementing abstract classes with pure virtual functions
An abstract class is specified by introducing at least one abstract method (that is, a pure virtual function
prototype) in the class definition. The OO concept of an abstract method is the specification of an
operation with only its protocol for usage (that is, with only the name and signature of the member
function), but with no definition for the function. An abstract method will be polymorphic, in that,
having no definition, it is expected to be redefined by derived classes.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter08
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter08
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter08
https://bit.ly/3SZv0jy

Implementing abstract classes with pure virtual functions 235

A pure virtual function is used to implement the OO concept of an abstract method in C++. A pure
virtual function is specified by a member function whose prototype contains =0 after the arguments
to the function. Additionally, it is important to understand the following nuances regarding pure
virtual functions:

• Usually, definitions for pure virtual functions are not provided. This equates to the operation
(prototype only) being specified at the base class level and all methods (member function
definitions) being supplied at the derived class level.

• Derived classes that do not provide methods for all pure virtual functions introduced by their
base classes are also considered abstract and are therefore not instantiable.

• The =0 in the prototype is merely an indication to the linker that a definition for this function
need not be linked in (or resolved) when creating an executable program.

Note
An abstract class is designated by including one or more pure virtual function prototypes in
the class definition. The optional definitions for these methods are not typically provided.

The reason that pure virtual functions will most often not have a definition is because they are meant
to provide a protocol of usage for polymorphic operations to be implemented in descendent classes.
A pure virtual function designates a class to be abstract; an abstract class cannot be instantiated.
Therefore, a definition provided in a pure virtual function will never be selected as the appropriate
method for a polymorphic operation because instances of the abstract type will never exist. That being
said, a pure virtual function can still provide a definition that could be explicitly called using the scope
resolution operator (::) and base class name. Perhaps, this default behavior might be meaningful as
a helper function used by derived class implementations.

Let’s begin with a brief overview of the syntax required to specify an abstract class. Remember, a
potential keyword of abstract is not used to specify an abstract class. Rather, by merely introducing
one or more pure virtual functions, we have indicated the class to be an abstract class:

class LifeForm // Abstract class definition

{

private:

 // all LifeForms have a lifeExpectancy

 int lifeExpectancy = 0; // in-class initialization

public:

 LifeForm() = default; // def. ctor, uses in-class init

 LifeForm(int life): lifeExpectancy(life) { }

 // Remember, we get default copy, even w/o proto below

 // LifeForm(const LifeForm &form) = default;

Mastering Abstract Classes236

 // Must include prototype to specify virtual destructor

 virtual ~LifeForm() = default; // virtual destructor

 // Recall, [[nodiscard]] requires ret. value to be used

 [[nodiscard]] int GetLifeExpectancy() const

 { return lifeExpectancy; }

 virtual void Print() const = 0; // pure virtual fns.

 virtual string IsA() const = 0;

 virtual string Speak() const = 0;

};

Notice that in the abstract class definition, we have introduced four virtual functions, three of which are
pure virtual functions. The virtual destructor has no memory to release but is indicated as virtual
so that it will be polymorphic, and so that the correct destruction sequence can be applied to derived
class instances stored as pointers to base class types.

The three pure virtual functions, Print(), IsA(), and Speak(), are indicated with =0 in their
prototype. There are no definitions for these operations (though there optionally can be). A pure virtual
function can have a default implementation, but not as an inline function. It will be the derived class’
responsibility to provide methods for these operations using the interface (that is, signature) specified
by this base class definition. Here, the pure virtual functions provide the interface for the polymorphic
operations that will be defined in derived class definitions.

Important note
Abstract classes will certainly have derived classes (since we cannot instantiate an abstract
class itself). In order to allow the virtual destructor mechanism to work appropriately in the
eventual hierarchy, be sure to include a virtual destructor in the abstract class definition. This
will ensure that all derived class destructors are virtual, and can be overridden to provide the
correct entry point in an object’s destruction sequence.

Now, let’s take a deeper look at what it means to have an interface, from an OO perspective.

Creating interfaces
An interface class is an OO concept of a class that is a further refinement of an abstract class.
Whereas an abstract class can contain generalized attributes and default behaviors (by including
data members and default definitions for pure virtual functions or by providing non-virtual member
functions), an interface class will only contain abstract methods. An abstract class in C++ containing
only abstract methods (that is, pure virtual functions with no optional definitions) can be thought
of as an interface class.

Creating interfaces 237

When considering interface classes as implemented in C++, it is useful to remember the following:

• Abstract classes are not instantiable; they provide (via inheritance) the interfaces (that is,
operations) that a derived class must offer.

• Although a pure virtual function may contain an optional implementation (that is, method
body) in the abstract class, this implementation should not be provided if the class wishes to
be considered an interface class in pure OO terms.

• Although an abstract class may have data members, it should not if the class wishes to be
considered an interface class.

• An abstract method, in OO terms, is an operation without a method; it is the interface only
and is implemented in C++ as a pure virtual function.

• As a reminder, be sure to include a virtual destructor prototype in the interface class definition;
this will ensure that derived class destructors will be virtual. The destructor definition should
be empty.

Let’s consider various motivations for having interface classes within our OOP arsenal of implementation
techniques. Some OOP languages follow very strict OO concepts and only allow for the implementation
of very pure OO designs. Other OOP languages, such as C++, offer more flexibility, by allowing more
radical OOP ideas to be implemented by the language directly.

For example, in pure object-oriented terms, inheritance should be reserved for Is-A relationships. We’ve
seen implementation inheritance, which C++ supports through private and protected base classes.
We’ve seen some acceptable uses of implementation inheritance, that is, to implement a new class in
terms of another (with the ability to hide the underlying implementation with the use of protected
and public base classes).

Another example of a fringe OOP feature is that of multiple inheritance. We’ll see in Chapter 9,
Exploring Multiple Inheritance, that C++ allows a class to be derived from more than one base class.
In some cases, we are truly saying that the derived class has an Is-A relationship with potentially many
base classes, but not always.

Some OOP languages do not allow multiple inheritance and those that do not rely more on interface
classes to mix in the functionality of (otherwise) multiple base classes. In these situations, the OOP
language can allow a derived class to implement the functionality as specified in multiple interface
classes without actually using multiple inheritance. Ideally, interfaces are used to mix-in functionality
from multiple classes. These classes, not surprisingly, are sometimes referred to as mix-in classes. In
these situations, we are not saying that the Is-A relationship necessarily applies between derived and
base classes.

Mastering Abstract Classes238

In C++, when we introduce an abstract class with only pure virtual functions, we can think of
creating an interface class. When a new class mixes in functionality from multiple interfaces, we can
think of this in OO terms as using each interface class as a means to mix-in the desired interfaces for
behaviors. Note that the derived classes must override each of the pure virtual functions with their
own implementation; we’re mixing in only the required API.

C++’s implementation of the OO concept of an interface is merely that of an abstract class containing
only pure virtual functions. Here, we’re using public inheritance from an abstract class paired with
polymorphism to simulate the OO concept of an interface class. Note that other languages (such as
Java) implement this idea directly in the language (but then those languages do not support multiple
inheritance). In C++, we can do almost anything, yet it remains important to understand how
to implement OO ideals (even those not offered with direct language support) in reasonable and
meaningful ways.

Let’s see an example to illustrate an abstract class used to implement an interface class:

class Charitable // interface class definition

{ // implemented using an abstract class

public:

 virtual void Give(float) = 0; // interface for 'giving'

 // must include prototype to specify virtual destructor

 virtual ~Charitable() = default; // remember virt. dest

};

class Person: public Charitable // mix-in an 'interface'

{

 // Assume typical Person class definition w/ data

 // members, constructors, member functions exist.

public:

 virtual void Give(float amt) override

 { // implement a means for giving here

 }

 ~Person() override; // virtual destructor prototype

};

// Student Is-A Person which mixes-in Charitable interface

class Student: public Person

{

Generalizing derived class objects as abstract types 239

 // Assume typical Student class definition w/ data

 // members, constructors, member functions exist.

public:

 virtual void Give(float amt) override

 { // Should a Student have little money to give,

 // perhaps they can donate their time equivalent to

 // the desired monetary amount they'd like to give

 }

 ~Student() override; // virtual destructor prototype

};

In the aforementioned class definitions, we first notice a simple interface class, Charitable,
implemented using a restricted abstract class. We include no data members and a pure virtual function
virtual void Give(float) = 0; to define the interface class. We also include a virtual
destructor.

Next, Person is derived from Charitable using public inheritance to implement the Charitable
interface. We simply override virtual void Give(float); to provide a default definition
for giving. We then derive Student from Person; note that a Student Is-A Person that mixes-in
(or implements) the Charitable interface. In our Student class, we choose to redefine virtual
void Give(float); to provide a more suitable Give() definition for Student instances.
Perhaps students have limited finances and opt to donate an amount of their time that is equivalent
to a predetermined monetary amount.

Here, we have used an abstract class in C++ to model the OO concept of an interface class.

Let’s continue with our discussion relating to abstract classes overall by examining how derived class
objects may be collected by abstract class types.

Generalizing derived class objects as abstract types
We’ve seen in Chapter 7, Utilizing Dynamic Binding through Polymorphism, that it is reasonable at
times to group related derived class instances in a collection that is stored using base class pointers.
Doing so allows uniform processing of related derived class types using polymorphic operations as
specified by the base class. We also know that when a polymorphic base class operation is invoked,
the correct derived class method will be invoked at runtime by virtue of the virtual functions and
internal v-table that implement polymorphism in C++.

Mastering Abstract Classes240

You may contemplate, however, whether it is possible to collect a group of related derived class types
by a base class type that is an abstract class. Remember, an abstract class is not instantiable, so how
might we store a derived class object as an object that cannot be instantiated? The solution is to use
pointers (or even a reference). Whereas we cannot collect derived class instances in a set of abstract
base class instances (those types cannot be instantiated), we can collect derived class instances in a
set of pointers of the abstract class type. We may also have a reference of the abstract class type refer
to a derived class instance. We’ve been doing this type of grouping (with base class pointers) since we
learned about polymorphism.

Generalized groups of specialized objects employ implicit upcasting. Undoing such an upcast must be
done using an explicit downcast, and the programmer will need to be correct as to the derived type that
has been previously generalized. An incorrect downcast to the wrong type will cause a runtime error.

When is it necessary to collect derived class objects by base class types, including abstract base class
types? The answer is when it makes sense in your application to process related derived class types
in a more generic way, that is, when the operations specified in the base class type account for all of
the operations you’d like to utilize. Undeniably, you may find just as many situations where keeping
derived class instances in their own type (to utilize specialized operations introduced at the derived
class level) is reasonable. Now you understand what is possible.

Let’s continue by examining a comprehensive example showing abstract classes in action.

Putting all the pieces together
So far in this chapter, we have understood the subtleties of abstract classes, including pure virtual
functions, and how to create interface classes using abstract classes and pure virtual functions. It is
always important to see our code in action, with all its various components and their various nuances.

Let’s take a look at a more complex, full program example to fully illustrate abstract classes, implemented
using pure virtual functions in C++. In this example, we will not further designate an abstract class
as an interface class, but we will take the opportunity to collect related derived class types using a set
of pointers of their abstract base class type. This example will be broken into many segments; the full
program can be found in the following GitHub location:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter08/Chp8-Ex1.cpp

#include <iostream>

#include <iomanip>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::setprecision;

using std::string;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter08/Chp8-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter08/Chp8-Ex1.cpp

Putting all the pieces together 241

using std::to_string;

constexpr int MAX = 5;

class LifeForm // abstract class definition

{

private:

 int lifeExpectancy = 0; // in-class initialization

public:

 LifeForm() = default;

 LifeForm(int life): lifeExpectancy(life) { }

 // Remember, we get the default copy ctor included,

 // even without the prototype below:

 // LifeForm(const LifeForm &) = default;

 // Must include prototype to specify virtual destructor

 virtual ~LifeForm() = default; // virtual destructor

 [[nodiscard]] int GetLifeExpectancy() const

 { return lifeExpectancy; }

 virtual void Print() const = 0; // pure virtual fns.

 virtual string IsA() const = 0;

 virtual string Speak() const = 0;

};

In the aforementioned class definition, we notice that LifeForm is an abstract class. It is an abstract
class because it contains at least one pure virtual function definition. In fact, it contains three pure
virtual function definitions, namely Print(), IsA(), and Speak().

Now, let’s extend Lifeform with a concrete derived class, Cat:

class Cat: public LifeForm

{

private:

 int numberLivesLeft = 9; // in-class initialization

 string name;

 static constexpr int CAT_LIFE = 15; // Life exp for cat

public:

 Cat(): LifeForm(CAT_LIFE) { } // note prior in-class init

Mastering Abstract Classes242

 Cat(int lives): LifeForm(CAT_LIFE),

 numberLivesLeft(lives) { }

 Cat(const string &);

 // Because base class destructor is virtual, ~Cat() is

 // automatically virtual (overridden) whether or not

 // explicitly prototyped. Below prototype not needed:

 // ~Cat() override = default; // virtual destructor

 const string &GetName() const { return name; }

 int GetNumberLivesLeft() const

 { return numberLivesLeft; }

 void Print() const override; // redef pure virt fns

 string IsA() const override { return "Cat"; }

 string Speak() const override { return "Meow!"; }

};

Cat::Cat(const string &n) : LifeForm(CAT_LIFE), name(n)

{ // numLivesLeft will be set with in-class initialization

}

void Cat::Print() const

{

 cout << "\t" << name << " has " << numberLivesLeft;

 cout << " lives left" << endl;

}

In the previous segment of code, we see the class definition for Cat. Notice that Cat has redefined
LifeForm’s pure virtual functions Print(), IsA(), and Speak() by providing definitions for
each of these methods in the Cat class. With the existing methods in place for these functions, any
derived class of Cat may optionally choose to redefine these methods with more suitable versions
(but they are no longer obligated to do so).

Note that if Cat had failed to redefine even one of the pure virtual functions of LifeForm, then
Cat would also be considered an abstract class and therefore not instantiable.

As a reminder, even though virtual functions IsA() and Speak() are written inline to abbreviate
the code, virtual functions will almost never be inlined by the compiler, as their correct method must
be determined at runtime (except for a few cases involving compiler devirtualization, involving final
methods, or when an instance’s dynamic type is known).

Putting all the pieces together 243

Notice that in the Cat constructors, the member initialization list is used to select the LifeForm
constructor that takes an integer argument (that is, :LifeForm(CAT_LIFE)). A value of 15
(CAT_LIFE) is passed up to the LifeForm constructor to initialize lifeExpectancy, defined
in LifeForm, to the value of 15. The member initialization list is additionally used to initialize data
members defined in the Cat class for the cases when in-class initialization is not used (that is, the
value is determined by a parameter to the method).

Now, let’s move forward to the class definition for Person, along with its inline functions:

class Person: public LifeForm

{

private:

 string firstName;

 string lastName;

 char middleInitial = '\0';

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

 static constexpr int PERSON_LIFE = 80; // Life exp of

protected: // a Person

 void ModifyTitle(const string &);

public:

 Person(); // programmer-specified default constructor

 Person(const string &, const string &, char,

 const string &);

 // Default copy constructor prototype is not necessary:

 // Person(const Person &) = default; // copy const.

 // Because base class destructor is virtual, ~Person()

 // is automatically virtual (overridden) whether or not

 // explicitly prototyped. Below prototype not needed:

 // ~Person() override = default; // destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const

 { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 void Print() const override; // redef pure virt fns

 string IsA() const override;

Mastering Abstract Classes244

 string Speak() const override;

};

Notice that Person now extends LifeForm using public inheritance. In previous chapters, Person
was a base class at the top of the inheritance hierarchy. Person redefines the pure virtual functions
from LifeForm, namely, Print(), IsA(), and Speak(). As such, Person is now a concrete
class and can be instantiated.

Now, let’s review the member function definitions for Person:

// select the desired base constructor using mbr. init list

Person::Person(): LifeForm(PERSON_LIFE)

{ // Remember, middleInitial will be set w/ in-class init

 // and the strings will be default constructed to empty

}

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): LifeForm(PERSON_LIFE),

 firstName(fn), lastName(ln),

 middleInitial(mi), title(t)

{

}

// We're using the default copy constructor. But if we did

// choose to prototype and define it, the method would be:

// Person::Person(const Person &p): LifeForm(p),

// firstName(p.firstName), lastName(p.lastName),

// middleInitial(p.middleInitial), title(p.title)

// {

// }

void Person::ModifyTitle(const string &newTitle)

{

 title = newTitle;

}

void Person::Print() const

{

Putting all the pieces together 245

 cout << "\t" << title << " " << firstName << " ";

 cout << middleInitial << ". " << lastName << endl;

}

string Person::IsA() const

{

 return "Person";

}

string Person::Speak() const

{

 return "Hello!";

}

In the Person member functions, notice that we have implementations for Print(), IsA(), and
Speak(). Additionally, notice that in two of the Person constructors, we select :LifeForm(PERSON_
LIFE) in their member initialization lists to call the LifeForm(int) constructor. This call will set
the private inherited data member LifeExpectancy to 80 (PERSON_LIFE) in the LifeForm
subobject of a given Person instance.

Next, let’s review the Student class definition, along with its inline function definitions:

class Student: public Person

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId;

 static int numStudents;

public:

 Student(); // programmer-supplied default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

 ~Student() override; // virtual destructor

 void EarnPhD();

 float GetGpa() const { return gpa; }

Mastering Abstract Classes246

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const

 { return studentId; }

 void SetCurrentCourse(const string &);

 // Redefine not all of the virtrtual function; don't

 // override Person::Speak(). Also, mark Print() as

 // the final override

 void Print() const final override;

 string IsA() const override;

 static int GetNumberStudents();

};

int Student::numStudents = 0; // static data mbr def/init

inline void Student::SetCurrentCourse(const string &c)

{

 currentCourse = c;

}

inline int Student::GetNumberStudents()

{

 return numStudents;

}

The aforementioned class definition for Student looks much as we’ve seen in the past. Student
extends Person using public inheritance because a Student Is-A Person.

Moving forward, we’ll recall the non-inline Student class member functions:

// default constructor

Student::Student(): studentId(to_string(numStudents + 100)

 + "Id")

{ // Set const studentId in mbr init list with unique id

 // (based upon numStudents counter + 100), concatenated

 // with the string "Id". Remember, string member

 // currentCourse will be default constructed with

 // an empty string - it is a member object

Putting all the pieces together 247

 numStudents++;

}

// Alternate constructor member function definition

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg,

 const string &course, const string &id):

 Person(fn, ln, mi, t), gpa(avg),

 currentCourse(course), studentId(id)

{

 numStudents++;

}

// Copy constructor definition

Student::Student(const Student &s) : Person(s),

 gpa(s.gpa),

 currentCourse(s.currentCourse),

 studentId(s.studentId)

{

 numStudents++;

}

// destructor definition

Student::~Student()

{

 numStudents--;

}

void Student::EarnPhD()

{

 ModifyTitle("Dr.");

}

void Student::Print() const

{

 cout << "\t" << GetTitle() << " " << GetFirstName();

Mastering Abstract Classes248

 cout << " " << GetMiddleInitial() << ". "

 << GetLastName();

 cout << " id: " << studentId << "\n\twith gpa: ";

 cout << setprecision(3) << " " << gpa

 << " enrolled in: " << currentCourse << endl;

}

string Student::IsA() const

{

 return "Student";

}

In the previously listed section of code, we see the non-inline member function definitions for
Student. The complete class definition is, at this point, largely familiar to us.

Accordingly, let’s examine the main() function:

int main()

{

 // Notice that we are creating an array of POINTERS to

 // LifeForms. Since LifeForm cannot be instantiated,

 // we could not create an array of LifeForm(s).

 LifeForm *entity[MAX] = { }; // init. with nullptrs

 entity[0] = new Person("Joy", "Lin", 'M', "Ms.");

 entity[1] = new Student("Renee", "Alexander", 'Z',

 "Dr.", 3.95, "C++", "21-MIT");

 entity[2] = new Student("Gabby", "Doone", 'A', "Ms.",

 3.95, "C++", "18-GWU");

 entity[3] = new Cat("Katje");

 entity[4] = new Person("Giselle", "LeBrun", 'R',

 "Miss");

 // Use range for-loop to process each element of entity

 for (LifeForm *item : entity) // each item is a

 { // LifeForm *

 cout << item->Speak();

 cout << " I am a " << item->IsA() << endl;

 item->Print();

 cout << "\tHas a life expectancy of: ";

Putting all the pieces together 249

 cout << item->GetLifeExpectancy();

 cout << "\n";

 }

 for (LifeForm *item : entity) // process each element

 { // in the entity array

 delete item;

 item = nullptr; // ensure deleted ptr isn't used

 }

 return 0;

}

Here, in main(), we declare an array of pointers to LifeForn. Recall, LifeForm is an abstract
class. We could not create an array of LifeForm objects, because that would require us to be able
to instantiate a LifeForm; we can’t – LifeForm is an abstract class.

However, we can create a set of pointers to an abstract type and this allows us to collect related types,
Person, Student, and Cat instances in this set. Of course, the only operations we may apply to
instances stored in this generalized fashion are those found in the abstract base class, LifeForm.

Next, we allocate a variety of Person, Student, and Cat instances, storing each instance via
an element in the generalized set of pointers of type LifeForm. When any of these derived class
instances is stored in this fashion, an implicit upcast to the abstract base class type is performed
(but the instance is not altered in any fashion – we’re just pointing to the most base class subobject
comprising the entire memory layout).

Now, we proceed through a loop to apply operations as found in the abstract class LifeForm to all
instances in this generalized collection, such as Speak(), Print(), and IsA(). These operations
happen to be polymorphic, allowing each instance’s most appropriate implementation to be utilized
via dynamic binding. We additionally invoke GetLifeExpectancy() on each of these instances,
which is a non-virtual function found at the LifeForm level. This function merely returns the life
expectancy of the LifeForm in question.

Lastly, we loop through deleting the dynamically allocated instances of Person, Student, and Cat
again using the generalized LifeForm pointers. We know that delete() will patch in a call to the
destructor, and because the destructor is virtual, the appropriate starting level of the destructor and
proper destruction sequence will commence. Additionally, by setting item = nullptr;, we are
ensuring that the deleted pointer will not be used mistakenly as a bonafide address (we are overwriting
each relinquished address with a nullptr).

Mastering Abstract Classes250

The utility of the abstract class LifeForm in this example is that its use allows us to generalize
common aspects and behaviors of all LifeForm objects together in one base class (such as
lifeExpectancy and GetLifeExpectancy()). The common behaviors also extend to a
set of pure virtual functions with the desired interfaces that all LifeForm objects should have,
namely Print(), IsA(), and Speak().

Important reminder
An abstract class is one that collects common traits of derived classes, yet does not itself represent
a tangible entity or object that should be instantiated. In order to specify a class as abstract, it
must contain at least one pure virtual function.

Looking at the output for the aforementioned program, we can see that objects of various related
derived class types are instantiated and processed uniformly. Here, we’ve collected these objects by
their abstract base class type and have overridden the pure virtual functions in the base class with
meaningful definitions in various derived classes.

Here is the output for the full program example:

Hello! I am a Person

 Ms. Joy M. Lin

 Has a life expectancy of: 80

Hello! I am a Student

 Dr. Renee Z. Alexander id: 21-MIT

 with gpa: 3.95 enrolled in: C++

 Has a life expectancy of: 80

Hello! I am a Student

 Ms. Gabby A. Doone id: 18-GWU

 with gpa: 3.95 enrolled in: C++

 Has a life expectancy of: 80

Meow! I am a Cat

 Katje has 9 lives left

 Has a life expectancy of: 15

Hello! I am a Person

 Miss Giselle R. LeBrun

 Has a life expectancy of: 80

We have now thoroughly examined the OO idea of an abstract class and how it is implemented in
C++ using pure virtual functions, as well as how these ideas can extend to creating OO interfaces.
Let’s briefly recap the language features and OO concepts we’ve covered in this chapter before moving
onward to our next chapter.

Summary 251

Summary
In this chapter, we have continued our progression with object-oriented programming, foremost,
by understanding how pure virtual functions in C++ provide direct language support for the OO
concept of an abstract class. We have explored how abstract classes without data members that do not
contain non-virtual functions can support the OO ideal of an interface class. We’ve talked about how
other OOP languages utilize interface classes, and how C++ may choose to support this paradigm as
well by using such restricted abstract classes. We’ve upcast related derived class types to be stored as
pointers of the abstract base class type, as a typical, and overall very useful, programming technique.

We have seen how abstract classes complement polymorphism not only by providing a class to specify
common attributes and behaviors that derived classes share, but most notably to provide the interfaces
of polymorphic behaviors for the related classes since abstract classes themselves are not instantiable.

By adding abstract classes and potentially the OO concept of interface classes to our programming
repertoire in C++, we are able to implement designs that promote easily extensible code.

We are now ready to continue to Chapter 9, Exploring Multiple Inheritance, to enhance our OOP skills
by next learning how and when to appropriately utilize the concept of multiple inheritance, while
understanding trade-offs and potential design alternatives. Let’s move forward!

Questions
1. Create a hierarchy of shapes using the following guidelines:

a. Create an abstract base class called Shape, which defines an operation to compute the
area of a shape. Do not include a method for the Area() operation. Hint: use a pure
virtual function.

b. Derive classes Rectangle, Circle, and Triangle from Shape using public inheritance.
Optionally, derive class Square from Rectangle. Redefine the operation Area() that
Shape has introduced, in each derived class. Be sure to provide the method to support
the operation in each derived class so that you can later instantiate each type of Shape.

c. Add data members and other member functions as necessary to complete the newly
introduced class definitions. Remember, only common attributes and operations should
be specified in Shape – all others belong in their respective derived classes. Don’t forget
to implement the copy constructor and access functions within each class definition.

d. Create an array of pointers of the abstract class type, Shape. Assign elements in this array
point to instances of type Rectangle, Square, Circle, and Triangle. Since you
are now treating derived class objects as generalized Shape objects, loop through the
array of pointers and invoke the Area() function for each. Be sure to delete() any
dynamically allocated memory you have allocated.

e. Is your abstract Shape class also an interface class in conceptual OO terms? Why, or
why not?

9
Exploring Multiple Inheritance

This chapter will continue broadening our knowledge of object-oriented programming in C++. We
will begin by examining a controversial OO concept, multiple inheritance (MI), understanding why
it is controversial, how it can reasonably be used to support OO designs, as well as when alternative
designs may be more appropriate.

Multiple inheritance can be implemented in C++ with direct language support. In doing so, we will be
faced with several OO design issues. We will be asked to critically evaluate an inheritance hierarchy,
asking ourselves whether we are using the best design possible to represent a potential set of object
relationships. Multiple inheritance can be a powerful OOP tool; using it wisely is paramount. We will
learn when to use MI to sensibly extend our hierarchies.

In this chapter, we will cover the following main topics:

• Understanding multiple inheritance mechanics

• Examining reasonable uses for multiple inheritance

• Creating diamond-shaped hierarchies and exploring issues arising from their usage

• Using virtual base classes to resolve diamond-shaped hierarchy duplication

• Applying discriminators to evaluate the worthiness of a diamond-shaped hierarchy and MI in
a design, as well as considering design alternatives

By the end of this chapter, you will understand the OO concept of multiple inheritance, and how to
implement this idea in C++. You will understand not only the simple mechanics of MI but the reasons
for its usage (mix-in, Is-A or controversially, Has-A).

You will see why MI is controversial in OOP. Having more than one base class can lead to oddly shaped
hierarchies, such as diamond-shaped; these types of hierarchies come with potential implementation
issues. We will see how C++ incorporates a language feature (virtual base classes) to solve these
conundrums, but the solution is not always ideal.

Exploring Multiple Inheritance254

Once we understand the complexities caused by multiple inheritance, we will use OO design metrics,
such as discriminators, to evaluate whether a design using MI is the best solution to represent a set of
object relationships. We’ll look at alternative designs, and you will then be better equipped to understand
not only what multiple inheritance is, but when it’s best utilized. Let us expand our understanding of
C++ as a “you can do anything” OOP language by moving forward with MI.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter09. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter09 in a file named Chp9-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3Cbqt7y.

Understanding multiple inheritance mechanics
In C++, a class can have more than one immediate base class. This is known as multiple inheritance,
and is a very controversial topic in both OO designs and OOP. Let’s begin with the simple mechanics;
we will then move forward to the design issues and programming logistics surrounding MI during
the progression of this chapter.

With multiple inheritance, the derived class specifies who each of its immediate ancestors or base
classes are, using the base class list in its class definition.

In a similar fashion to single inheritance, the constructors and destructors are invoked all the way up the
hierarchy as objects of the derived class type are instantiated and destroyed. Reviewing and expanding
upon the subtleties of construction and destruction for MI, we are reminded of the following logistics:

• The calling sequence for a constructor starts with the derived class, but immediately passes
control to a base constructor, and so on up the hierarchy. Once the calling sequence passes
control to the top of the hierarchy, the execution sequence begins. All the highest-level base
class constructors at the same level are first executed, and so on down the hierarchy until we
arrive at the derived class constructor, whose body is executed last in the construction chain.

• The derived class destructor is invoked and executed first, followed by all the immediate base
class destructors and so on, as we progress up the inheritance hierarchy.

The member initialization list in the derived class constructor may be used to specify which constructor
for each immediate base class should be invoked. In the absence of this specification, the default
constructor will be used for that base class’ constructor.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter09
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter09
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter09
https://bit.ly/3Cbqt7y

Understanding multiple inheritance mechanics 255

Let’s take a look at a typical multiple inheritance example to implement a quintessential application of
MI from an OO design, as well as to understand basic MI syntax in C++. This example will be broken
into many segments; the full program can be found in the following GitHub location:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex1.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

using std::to_string;

class Person

{

private:

 string firstName;

 string lastName;

 char middleInitial = '\0'; // in-class initialization

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

protected:

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

 Person(const Person &) = delete; // prohibit copies

 virtual ~Person(); // destructor prototype

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const

 { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

};

In the previous code segment, we have an expected class definition for Person, containing the class
elements that we are accustomed to defining.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex1.cpp

Exploring Multiple Inheritance256

Next, let’s see the accompanying member functions for this class:

// With in-class initialization, writing the default

// constructor is no longer necessary.

// Also, remember strings are member objects and will

// be default constructed as empty.

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): firstName(fn),

 lastName(ln), middleInitial(mi), title(t)

{

}

// Simple destructor so we can trace the destruction chain

Person::~Person()

{

 cout << "Person destructor <" << firstName << " " <<

 lastName << ">" << endl;

}

void Person::ModifyTitle(const string &newTitle)

{

 title = newTitle;

}

In the previous segment of code, the member function definitions for Person are as expected.
Nonetheless, it is useful to see the Person class defined, as this class will serve as a building block,
and portions of it will be directly accessed in upcoming code segments.

Now, let’s define a new class, BillableEntity:

class BillableEntity

{

private:

 float invoiceAmt = 0.0; // in-class initialization

public:

 BillableEntity() = default;

 BillableEntity(float amt) invoiceAmt(amt) { }

Understanding multiple inheritance mechanics 257

 // prohibit copies with prototype below

 BillableEntity(const BillableEntity &) = delete;

 virtual ~BillableEntity();

 void Pay(float amt) { invoiceAmt -= amt; }

 float GetBalance() const { return invoiceAmt; }

 void Balance() const;

};

// Simple destructor so we can trace destruction chain

BillableEntity::~BillableEntity()

{

 cout << "BillableEntity destructor" << endl;

}

void BillableEntity::Balance() const

{

 if (invoiceAmt)

 cout << "Owed amount: $ " << invoiceAmt << endl;

 else

 cout << "Credit: $ " << 0.0 - invoiceAmt << endl;

}

In the previous BillableEntity class, we define a class containing simple functionality to
encapsulate a billing structure. That is, we have an invoice amount and methods such as Pay() and
GetBalance(). Notice that the copy constructor indicates = delete in its prototype; this will
prohibit copies, which seems appropriate given the nature of this class.

Next, let’s combine the two aforementioned base classes, Person and BillableEntity, to serve
as base classes for our Student class:

class Student: public Person, public BillableEntity

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId;

 static int numStudents;

Exploring Multiple Inheritance258

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &, float);

 Student(const Student &) = delete; // prohibit copies

 ~Student() override;

 void Print() const;

 void EarnPhD();

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const

 { return studentId; }

 void SetCurrentCourse(const string &);

 static int GetNumberStudents();

};

// definition for static data member

int Student::numStudents = 0; // notice initial value of 0

inline void Student::SetCurrentCourse(const string &c)

{

 currentCourse = c;

}

inline int Student::GetNumberStudents()

{

 return numStudents;

}

In the preceding class definition for Student, two public base classes, Person and BillableEntity,
are specified in the base class list for Student. These two base classes are merely comma-separated
in the Student base class list. We have also included the inline function definitions with the class
definition, as these are usually bundled together in a header file.

Understanding multiple inheritance mechanics 259

Let’s further see what accommodations must be made in the remainder of the Student class by
examining its member functions:

// Due to non-specification in the member init list, this

// constructor calls the default base class constructors

Student::Student() : studentId(to_string(numStudents + 100)

 + "Id")

{

 // Note: since studentId is const, we need to set it at

 // construction using member init list. Remember, string

 // members are default constructed w an empty string.

 numStudents++;

}

// The member initialization list specifies which versions

// of each base class constructor should be utilized.

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg,

 const string &course, const string &id, float amt):

 Person(fn, ln, mi, t), BillableEntity(amt),

 gpa(avg), currentCourse(course), studentId(id)

{

 numStudents++;

}

// Simple destructor so we can trace destruction sequence

Student::~Student()

{

 numStudents--;

 cout << "Student destructor <" << GetFirstName() << " "

 << GetLastName() << ">" << endl;

}

void Student::Print() const

{

 cout << GetTitle() << " " << GetFirstName() << " ";

 cout << GetMiddleInitial() << ". " << GetLastName();

Exploring Multiple Inheritance260

 cout << " with id: " << studentId << " has a gpa of: ";

 cout << " " << gpa << " and course: " << currentCourse;

 cout << " with balance: $" << GetBalance() << endl;

}

void Student::EarnPhD()

{

 ModifyTitle("Dr.");

}

Let’s consider the previous code segment. In the default constructor for Student, due to the lack of
base class constructor specification in the member initialization list, the default constructors will be
called for both the Person and BillableEntity base classes.

However, notice that in the alternate Student constructor, we merely comma-separate our two base
class constructor choices in the member initialization list – that is, Person(const string &,
const string &, char, const string &) and BillableEntity(float) – and then
pass various parameters from the Student constructor to the base class constructors using this list.

Finally, let’s take a look at our main() function:

int main()

{

 float tuition1 = 1000.00, tuition2 = 2000.00;

 Student s1("Gabby", "Doone", 'A', "Ms.", 3.9, "C++",

 "178GWU", tuition1);

 Student s2("Zack", "Moon", 'R', "Dr.", 3.9, "C++",

 "272MIT", tuition2);

 // public mbrs. of Person, BillableEntity, Student are

 // accessible from any scope, including main()

 s1.Print();

 s2.Print();

 cout << s1.GetFirstName() << " paid $500.00" << endl;

 s1.Pay(500.00);

 cout << s2.GetFirstName() << " paid $750.00" << endl;

 s2.Pay(750.00);

 cout << s1.GetFirstName() << ": ";

 s1.Balance();

 cout << s2.GetFirstName() << ": ";

Examining reasonable uses for multiple inheritance 261

 s2.Balance();

 return 0;

}

In our main() function in the previous code, we instantiate several Student instances. Notice
that Student instances can utilize any methods in the public interface of Student, Person, or
BillableEntity.

Let’s look at the output for the aforementioned program:

Ms. Gabby A. Doone with id: 178GWU has a gpa of: 3.9 and
course: C++ with balance: $1000

Dr. Zack R. Moon with id: 272MIT has a gpa of: 3.9 and course:
C++ with balance: $2000

Gabby paid $500.00

Zack paid $750.00

Gabby: Owed amount: $ 500

Zack: Owed amount: $ 1250

Student destructor <Zack Moon>

BillableEntity destructor

Person destructor <Zack Moon>

Student destructor <Gabby Doone>

BillableEntity destructor

Person destructor <Gabby Doone>

Notice the destruction sequence in the aforementioned output. We can see each Student instance
invokes the Student destructor, as well as the destructors for each base class (BillableEntity
and Person).

We have now seen the language mechanics for MI with a typically implemented OO design. Now, let’s
move forward by looking at the typical reasons for employing multiple inheritance in OO designs,
some of which are more widely accepted than others.

Examining reasonable uses for multiple inheritance
Multiple inheritance is a controversial concept that arises when creating OO designs. Many OO
designs avoid MI; other designs embrace it with strict usage. Some OOP languages, such as Java, do not
explicitly provide direct language support for multiple inheritance. Instead, they offer interfaces, such
as we’ve modeled in C++ by creating interface classes using abstract classes (restricted to containing
only pure virtual functions) in Chapter 8, Mastering Abstract Classes.

Exploring Multiple Inheritance262

Of course, in C++, inheriting from two interface classes is still a use of multiple inheritance. Though
C++ does not include interface classes within the language, this concept can be simulated by employing
a more restrictive use of MI. For example, we can programmatically streamline abstract classes to
include only pure virtual functions (no data members, and no member functions with definitions)
to mimic the OO design idea of an interface class.

Typical MI conundrums form the basis of why MI is contentious in OOP. Classic MI quandaries will
be detailed in this chapter and can be avoided by restricting MI to the usage of interface classes only,
or through a redesign. This is why some OOP languages only support interface classes versus allowing
unrestricted MI. In C++, you can carefully consider each OO design and choose when to utilize MI,
when to utilize a restrictive form of MI (interface classes), or when to employ a redesign eliminating MI.

C++ is a “you can do anything” programming language. As such, C++ allows multiple inheritance
without restrictions or reservations. As an OO programmer, we will look more closely at typical reasons
to embrace MI. As we move further into this chapter, we will evaluate issues that arise by using MI
and see how C++ solves these issues with additional language features. These MI issues will allow us
to then apply metrics to understand more reasonably when we should use MI and when a redesign
may be more appropriate.

Let’s begin our pursuit of reasonable uses of MI by considering Is-A and mix-in relationships, and
then move to examining the controversial use of MI to implement Has-A relationships.

Supporting Is-A and mix-in relationships

As we have learned with single inheritance, an Is-A relationship is most often used to describe the
relationship between two inherited classes. For example, a Student Is-A Person. The same desired
ideal continues with MI; Is-A relationships are the primary motivations to specify inheritance. In
pure OO designs and programming, inheritance should be used only to support Is-A relationships.

Nonetheless, as we have learned when we looked at interface classes (a concept modeled in C++ using
abstract classes with the restriction of containing only pure virtual functions), mix-in relationships often
apply when we inherit from an interface. Recall that a mix-in relationship is when we use inheritance
to mix-in the functionality of another class, simply because that functionality is useful or meaningful
for the derived class to have. The base class need not be an abstract or interface class, but employing
an ideal OO design, it would be as such.

The mix-in base class represents a class in which an Is-A relationship does not apply. Mix-ins exist
more so with multiple inheritance, at least as the reason supporting the necessity of one of the (many)
base classes. Since C++ has direct language support for multiple inheritance, MI can be used to support
implementing mix-ins (whereas languages such as Java may only use interface classes). In practice, MI
is often used to inherit from one class to support an Is-A relationship and to also inherit from another
class to support a mix-in relationship. In our last example, we saw that a Student Is-A Person,
and a Student chooses to mix-in BillableEntity capabilities.

Creating a diamond-shaped hierarchy 263

Reasonable uses of MI in C++ include supporting both Is-A and mix-in relationships; however, our
discussion would not be complete without next considering an unusual use of MI – implementing
Has-A relationships.

Supporting Has-A relationships

Less commonly, and much more controversially, MI can be used to implement a Has-A relationship,
that is, to model containment, or a whole versus part relationship. We will see in Chapter 10,
Implementing Association, Aggregation, and Composition, a more widely accepted implementation for
Has-A relationships; however, MI provides a very simple implementation. Here, the parts serve as
the base classes. The whole inherits from the parts, automatically including the parts in its memory
layout (and also automatically inheriting the parts’ members and functionality).

For example, a Student Is-A Person and a Student Has-A(n) Id; the usage of the second base
class (Id) is for containment. Id will serve as a base class and Student will be derived from Id to
factor in all that an Id offers. The Id public interface is immediately usable to Student. In fact, any
class that inherits from Id will inherit a uniform interface when utilizing its Id parts. This simplicity
is a driving reason why inheritance is sometimes used to model containment.

However, using inheritance to implement Has-A relationships can cause unnecessary usage of MI,
which can then complicate an inheritance hierarchy. Unnecessary usage of MI is the primary reason
why using inheritance to model Has-A relationships is very controversial and is quite frankly frowned
upon in pure OO designs. Nonetheless, we mention it because you will see some C++ applications
using MI for Has-A implementation.

Let’s move forward to explore other controversial designs employing MI, namely that of a diamond-
shaped hierarchy.

Creating a diamond-shaped hierarchy
When using multiple inheritance, sometimes it is tempting to utilize sibling (or cousin) classes as
base classes for a new derived class. When this happens, the hierarchy is no longer a tree in shape,
but rather, a graph containing a diamond.

Whenever an object of the derived class type is instantiated in such a situation, two copies of the
common base class will be present in the instance of the derived class. Duplication of this sort obviously
wastes space. Additional time is also wasted by calling duplicate constructors and destructors for this
repeated subobject and by maintaining two parallel copies of a subobject (most likely unnecessarily).
Ambiguities also result when trying to access members from this common base class.

Exploring Multiple Inheritance264

Let’s see an example detailing this issue, starting with abbreviated (and simplified) class definitions
of LifeForm, Horse, and Person. Though only portions of the full program example are shown,
the program in its entirety can be found in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex2.cpp

class Lifeform

{ // abbreviated class definition – see full code online

private:

 int lifeExpectancy = 0; // in-class initialization

public:

 LifeForm(int life): lifeExpectancy(life) { }

 [[nodiscard]] int GetLifeExpectancy() const

 { return lifeExpectancy; }

 // additional constructors, destructor, etc.

 virtual void Print() const = 0; // pure virtual funcs.

 virtual string IsA() const = 0;

 virtual string Speak() const = 0;

};

class Horse: public LifeForm

{ // abbreviated class definition

private:

 string name;

 static constexpr int HORSE_LIFE = 35; // life exp Horse

public:

 Horse(): LifeForm(HORSE_LIFE) { }

 // additional constructors, destructor, etc …

 void Print() const override { cout << name << endl; }

 string IsA() const override { return "Horse"; }

 string Speak() const override { return "Neigh!"; }

};

class Person: public LifeForm

{ // abbreviated class definition

private:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex2.cpp

Creating a diamond-shaped hierarchy 265

 string firstName;

 string lastName;

 static constexpr int PERSON_LIFE = 80; // life expect.

 // of Person

 // additional data members (imagine them here)

public:

 Person(): LifeForm(PERSON_LIFE) { }

 // additional constructors, destructor, etc.

 const string &GetFirstName() const

 { return firstName; }

 // additional access methods, etc.

 void Print() const override

 { cout << firstName << " " << lastName << endl; }

 string IsA() const override { return "Person"; }

 string Speak() const override { return "Hello!"; }

};

The previous fragment of code shows skeleton class definitions for LifeForm, Person, and
Horse. Each class shows a default constructor, which merely serves as an example to show how
lifeExpectancy is set for each class. In the default constructors for Person and Horse, the
member initialization list is used to pass a value of 35 (HORSE_LIFE) or 80 (PERSON_LIFE) to
the LifeForm constructor to set this value.

Though the previous class definitions are abbreviated (that is, purposely incomplete) to save space,
let’s assume that each class has appropriate additional constructors defined, an appropriate destructor,
and other necessary member functions.

We notice that LifeForm is an abstract class, in that it offers pure virtual functions: Print(),
IsA(), and Speak(). Both Horse and Person are concrete classes and will be instantiable because
they override these pure virtual functions with virtual functions. These virtual functions are shown
inline, only to make the code compact for viewing (virtual functions will almost never be inlined by
the compiler as their methods are nearly always determined at runtime).

Next, let’s look at a new derived class that will introduce the graph, or diamond shape, in our hierarchy:

class Centaur: public Person, public Horse

{ // abbreviated class definition

public:

 // constructors, destructor, etc …

 void Print() const override

 { cout << GetFirstName() << endl; }

Exploring Multiple Inheritance266

 string IsA() const override { return "Centaur"; }

 string Speak() const override

 { return "Neigh! and Hello!"; }

};

In the previous fragment, we define a new class, Centaur, using multiple inheritance. At first glance,
we truly do mean to assert the Is-A relationship between Centaur and Person, and also between
Centaur and Horse. However, we’ll soon challenge our assertion to test whether it is more of a
combination than a true Is-A relationship.

We will assume that all of the necessary constructors, the destructor, and member functions exist to
make Centaur a well-defined class.

Now, let’s move forward to look at a potential main() function we might utilize:

int main()

{

 Centaur beast("Wild", "Man");

 cout << beast.Speak() << " I'm a " << beast.IsA();

 cout << endl;

 // Ambiguous method call – which LifeForm sub-object?

 // cout << beast.GetLifeExpectancy();

 cout << "It is unclear how many years I will live: ";

 cout << beast.Person::GetLifeExpectancy() << " or ";

 cout << beast.Horse::GetLifeExpectancy() << endl;

 return 0;

}

Here, in main(), we instantiate a Centaur and we name the instance beast. We easily call two
polymorphic operations on beast, namely Speak() and IsA(). Then we try to call the public
inherited GetLifeExpectancy(), which is defined in LifeForm. Its implementation is included
in Lifeform so that Person, Horse, or Centaur do not need to provide a definition (nor should
they – it’s not a virtual function meant to be redefined).

Unfortunately, calls to GetLifeExpectancy() via Centaur instances are ambiguous. This
is because there are two LifeForm subobjects in the beast instance. Remember, Centaur is
derived from Horse, which is derived from LifeForm, providing the memory layout for all the
aforementioned base class data members (Horse and LifeForm). And Centaur is also derived
from Person, which is derived from Lifeform, which contributes the memory layout for Person
and LifeForm within Centaur. The LifeForm piece is duplicated.

Utilizing virtual base classes to eliminate duplication 267

There are two copies of the inherited data member int lifeExpectancy;. There are two subobjects
of LifeForm within the Centaur instance. Therefore, when we try to call GetLifeExpectancy()
through the Centaur instance, the method call is ambiguous. Which lifeExpectancy
are we trying to initialize? Which LifeForm subobject will serve as the this pointer when
GetLifeExpectancy() is called? It is simply not clear, so the compiler will not choose for us.

To disambiguate the GetLifeExpectancy() function call, we must use the scope resolution operator.
We precede the :: operator with the intermediate base class from which we want the LifeForm
subobject. Notice that we call, for example, beast.Horse::GetLifeExpectancy() to choose
the lifeExpectancy from the Horse subobject’s path, which will include LifeForm. This is
awkward, as neither Horse nor Person includes the ambiguous member; lifeExpectancy is
found in LifeForm.

Let’s consider the output for the aforementioned program:

Neigh! and Hello! I'm a Centaur.

It is unclear how many years I will live: 80 or 35.

We can see that designing a hierarchy that includes a diamond shape has drawbacks. These conundrums
include programming ambiguities that need to be resolved in an awkward fashion, duplication in
memory of repeated subobjects, plus time to construct and destruct these duplicate subobjects.

Luckily, C++ has a language feature to alleviate these hardships with diamond-shaped hierarchies.
After all, C++ is a language that will allow us to do anything. Knowing when and whether we should
utilize these features is another concern. Let’s first take a look at the C++ language solution to deal
with diamond-shaped hierarchies and their inherent problems by looking at virtual base classes.

Utilizing virtual base classes to eliminate duplication
We have just seen the MI implementation issues that quickly arise when a diamond shape is included
in an OO design – duplication in memory for a repeated subobject, ambiguity accessing that subobject
(even through inherited member functions), and the duplication of construction and destruction. For
these reasons, pure OO designs will not include graphs in a hierarchy (that is, no diamond shapes).
Yet, we know C++ is a powerhouse of a language and anything is possible. As such, C++ will provide
us with a solution to these issues.

Virtual base classes are a C++ language feature that can alleviate duplication of a common base class
when using multiple inheritance. The keyword virtual is placed in the base class list between the
access label and the base class name of the sibling or cousin class that may later be used as a base class
for the same derived class. Note that knowing two sibling classes may later be combined as common
base classes for a new derived class can be difficult. It is important to note that sibling classes that
do not specify a virtual base class will demand their own copy of the (otherwise) shared base class.

Exploring Multiple Inheritance268

Virtual base classes should be used sparingly in implementation because they place restrictions and
overhead on instances that have such a class as an ancestor class. Restrictions to be aware of include
the following:

• An instance having a virtual base class can use more memory than its non-virtual counterpart
(the instance contains a pointer to the potentially shared base class component).

• Casting from an object of a base class type to a derived class type is prohibited when a virtual
base class is in the ancestor hierarchy.

• The member initialization list of the most derived class must be used to specify which constructor
of the shared object type should be used for initialization. If this specification is ignored, the
default constructor will be used to initialize this subobject.

Let us now look at a full program example that employs virtual base classes. As usual, the full program
can be found in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex3.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

using std::to_string;

class LifeForm

{

private:

 int lifeExpectancy = 0; // in-class initialization

public:

 LifeForm() = default;

 LifeForm(int life): lifeExpectancy(life) { }

 // We're accepting default copy constructor, but if we

 // wanted to write it, it would look like:

 // LifeForm(const LifeForm &form):

 // lifeExpectancy(form.lifeExpectancy) { }

 // prototype necessary to specify virtual dest. below

 virtual ~LifeForm() = default;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter09/Chp9-Ex3.cpp

Utilizing virtual base classes to eliminate duplication 269

 [[nodiscard]] int GetLifeExpectancy() const

 { return lifeExpectancy; }

 virtual void Print() const = 0;

 virtual string IsA() const = 0;

 virtual string Speak() const = 0;

};

In the previous segment of code, we see the full class definition of LifeForm. Notice that the member
functions with bodies are inlined in the class definition. Of course, the compiler will not actually make
inline substitutions for constructors or the virtual destructor; knowing this, it is convenient to write
the methods as inline to make the class compact for reviewing.

Next, let’s see the class definition for Horse:

class Horse: public virtual LifeForm

{

private:

 string name;

 static constexpr int HORSE_LIFE = 35; // Horse life exp

public:

 Horse() : LifeForm(HORSE_LIFE) { }

 Horse(const string &n);

 // Remember, it isn't necessary to proto def. copy ctor

 // Horse(const Horse &) = default;

 // Because base class destructor is virtual, ~Horse()

 // is automatically virtual (overridden) even w/o proto

 // ~Horse() override = default;

 const string &GetName() const { return name; }

 void Print() const override

 { cout << name << endl; }

 string IsA() const override { return "Horse"; }

 string Speak() const override { return "Neigh!"; }

};

Horse::Horse(const string &n) : LifeForm(HORSE_LIFE),

 name(n)

{

}

Exploring Multiple Inheritance270

// We are using the default copy constructor, but if we

// wanted to write it, this is what it would look like:

// Horse::Horse(const Horse &h): LifeForm (h), name(h.name)

// {

// }

In the previous segment of code, we have the full class definition for Horse. Keep in mind that
though certain methods are written as inline for compactness, the compiler will never actually inline
a constructor or destructor. Nor can a virtual function be inlined, as its whole point is to have the
appropriate method determined at runtime (except rare scenarios involving devirtualization).

Here, LifeForm is a virtual base class of Horse. This means that if Horse ever has a sibling (or
cousin) that also inherits from LifeForm using a virtual base class, and those siblings serve as base
classes for a derived class, then those siblings will share their copy of LifeForm. The virtual base
class will reduce storage, reduce extra constructor and destructor calls, and eliminate ambiguity.

Notice the Horse constructors that specify a constructor specification of LifeForm(HORSE_LIFE)
in their member initialization lists. This base class initialization will be ignored if LifeForm actually
is a shared virtual base class, though these constructor specifications are certainly valid for instances
of Horse or for instances of descendants of Horse in which the diamond shape hierarchy does not
apply. In hierarchies where Horse is combined with a sibling class to truly serve as a virtual base
class, the LifeForm(HORSE_LIFE) specification will be ignored and, instead, either the default
LifeForm constructor will be called, or another will be selected at a lower (and unusual) level in
the hierarchy.

Next, let’s see more of this program by looking at additional class definitions, beginning with Person:

class Person: public virtual LifeForm

{

private:

 string firstName;

 string lastName;

 char middleInitial = '\0'; // in-class initialization

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

 static constexpr int PERSON_LIFE = 80; // Life expect.

protected:

 void ModifyTitle(const string &);

public:

 Person(); // default constructor

 Person(const string &, const string &, char,

 const string &);

Utilizing virtual base classes to eliminate duplication 271

 // Default copy constructor prototype is not necessary

 // Person(const Person &) = default; // copy ctor.

 // Because base class destructor is virtual, ~Person()

 // is automatically virtual (overridden) even w/o proto

 // ~Person() override = default; // destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const

 { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 void Print() const override;

 string IsA() const override;

 string Speak() const override;

};

In the prior segment of code, we see that Person has a public virtual base class of LifeForm. Should
Person and a sibling of Person ever be combined using multiple inheritance to be base classes for
a new derived class, those siblings that have indicated a virtual base class of LifeForm will agree to
share a single subobject of LifeForm.

Moving onward, let’s review the member functions of Person:

Person::Person(): LifeForm(PERSON_LIFE)

{ // Note that the base class init list specification of

 // LifeForm(PERSON_LIFE) is ignored if LifeForm is a

 // shared, virtual base class.

} // This is the same in all Person constructors.

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): LifeForm(PERSON_LIFE),

 firstName(fn), lastName(ln),

 middleInitial(mi), title(t)

{

}

// We're using the default copy constructor, but if we

// wrote/prototyped it, here's what the method would be:

Exploring Multiple Inheritance272

// Person::Person(const Person &p): LifeForm(p),

// firstName(p.firstName), lastName(p.lastName),

// middleInitial(p.middleInitial), title(p.title)

// {

// }

void Person::ModifyTitle(const string &newTitle)

{

 title = newTitle;

}

void Person::Print() const

{

 cout << title << " " << firstName << " ";

 cout << middleInitial << ". " << lastName << endl;

}

string Person::IsA() const

{

 return "Person";

}

string Person::Speak() const

{

 return "Hello!";

}

In the aforementioned methods of Person, we see few details that surprise us; the methods are largely
as expected. However, as a reminder, note that the LifeForm(PERSON_LIFE) specifications in
the member initialization lists of the Person constructor will be ignored if Person is combined in
a diamond-shaped hierarchy where the LifeForm subobject becomes shared, rather than duplicated.

Next, let’s take a look at where multiple inheritance comes into play, with the definition of the
Centaur class:

class Centaur: public Person, public Horse

{

private:

Utilizing virtual base classes to eliminate duplication 273

 // no additional data members required, but the below

 // static constexpr eliminates a magic number of 1000

 static constexpr int CENTAUR_LIFE = 1000; //life expect

public:

 Centaur(): LifeForm(CENTAUR_LIFE) { }

 Centaur(const string &, const string &, char = ' ',

 const string & = "Mythological Creature");

 // We don't want default copy constructor due to the

 // needed virtual base class in the mbr init list below

 Centaur(const Centaur &c):

 Person(c), Horse(c), LifeForm(CENTAUR_LIFE) { }

 // Because base class' destructors are virt, ~Centaur()

 // is automatically virtual (overridden) w/o prototype

 // ~Centaur() override = default;

 void Print() const override;

 string IsA() const override;

 string Speak() const override;

};

// Constructors for Centaur need to specify how the shared

// base class LifeForm will be initialized

Centaur::Centaur(const string &fn, const string &ln,

 char mi, const string &title):

 Person(fn, ln, mi, title), Horse(fn),

 LifeForm(CENTAUR_LIFE)

{

 // All initialization has been taken care of in

} // member initialization list

void Centaur::Print() const

{

 cout << "My name is " << GetFirstName();

 cout << ". I am a " << GetTitle() << endl;

}

Exploring Multiple Inheritance274

string Centaur::IsA() const

{

 return "Centaur";

}

string Centaur::Speak() const

{

 return "Neigh! Hello! I'm a master of two languages.";

}

In the aforementioned Centaur class definition, we can see that Centaur has public base classes of
Horse and Person. We are implying that a Centaur Is-A Horse and Centaur Is-A Person.

Notice, however, that the keyword virtual is not used in the base class list with the Centaur
class definition. Yet, Centaur is the level in the hierarchy where the diamond shape is introduced.
This means that we must plan ahead in our design stage to know to utilize the virtual keyword in
the base class list for our Horse and Person class definitions. This is an example of why a proper
design session is critical versus just jumping into implementation.

Also, quite unusually, notice the base class list of Person(fn, ln, mi, title), Horse(fn),
LifeForm(CENTAUR_LIFE) in the Centaur alternate constructor. Here, we not only specify the
preferred constructor of our immediate base classes of Person and Horse, but also the preferred
constructor for their common base class of LifeForm. This is highly unusual. Without LifeForm as a
virtual base class for Horse and Person, Centaur would not be able to specify how to construct the
shared LifeForm piece (that is, by choosing a constructor for other than its immediate base classes).
You also will notice the base class constructor specification of :LifeForm(CENTAUR_LIFE) in
the member initialization list of the default as well as copy constructors for the same purposes. The
virtual base class usage makes the Person and Horse classes less reusable for other applications,
for reasons outlined at the beginning of this subsection.

Let’s take a look at what our main() function entails:

int main()

{

 Centaur beast("Wild", "Man");

 cout << beast.Speak() << endl;

 cout << " I'm a " << beast.IsA() << ". ";

 beast.Print();

 cout << "I will live: ";

 cout << beast.GetLifeExpectancy();// no longer ambiguous

 cout << " years" << endl;

Considering discriminators and alternate designs 275

 return 0;

}

Similar to the main() function in our non-virtual base class example, we can see that Centaur is
likewise instantiated and that virtual functions such as Speak(), IsA(), and Print() are easily
called. Now, however, when we call GetLifeExpectancy() through our beast instance, the
call is no longer ambiguous. There is only one subobject of LifeForm, whose lifeExpectancy
(an integer) has been initialized to 1000 (CENTAUR_LIFE).

Here is the output for the full program example:

Neigh! Hello! I'm a master of two languages.

I am a Centaur. My name is Wild. I am a Mythological Creature.

I will live: 1000 years.

Virtual base classes have solved a difficult MI conundrum. But we have also seen that the code required
to do so is less flexible for future expansion and reuse. As such, virtual base classes should be carefully
and sparingly used only when the design truly supports a diamond-shaped hierarchy. With that in
mind, let’s consider an OO concept of a discriminator, and consider when alternate designs may be
more appropriate.

Considering discriminators and alternate designs
A discriminator is an object-oriented concept that helps outline the reasons why a given class is derived
from its base class. Discriminators tend to characterize the types of groupings of specializations that
exist for a given base class.

For example, in the aforementioned program examples with diamond-shaped hierarchies, we have
the following discriminators (shown in parentheses), outlining our purpose for specializing a new
class from a given base class:

Figure 9.1 – Multiple inheritance diamond-shaped design shown with discriminators

Exploring Multiple Inheritance276

Whenever temptation leads to the creation of a diamond-shaped hierarchy, examining the discriminators
can help us decide whether the design is reasonable, or whether perhaps an alternate design would
prove better. Here are some good design metrics to consider:

• If the discriminators for the sibling classes that are being brought back together are the same,
then the diamond-shaped hierarchy is better off redesigned.

• When the sibling classes do not have unique discriminators, the attributes and behaviors they
will introduce will consist of duplications stemming from having a like-discriminator. Consider
making the discriminator a class to house those commonalities.

• If the discriminators for the sibling classes are unique, then the diamond-shaped hierarchy
may be warranted. In this case, virtual base classes will prove helpful and should be added to
the appropriate locations in the hierarchy.

In the previous example, the discriminator detailing why Horse specializes LifeForm is Equine.
That is, we are specializing LifeForm with equine characteristics and behaviors (hooves, galloping,
neighing, etcetera). Had we derived classes such as Donkey or Zebra from LifeForm, the
discriminator for these classes would also be Equine. Considering the same aforementioned example,
the Person class would have a Humanoid discriminator when specializing LifeForm. Had we
derived classes such as Martian or Romulan from LifeForm, these classes would also have
Humanoid as a discriminator.

Bringing Horse and Person together as base classes for Centaur is combining two base classes with
different discriminators, Equine and Humanoid. As such, wholly different types of characteristics
and behaviors are factored in by each base class. Though an alternate design may be possible, this
design is acceptable (except to OO design purists), and virtual base classes may be used in C++ to
eliminate duplication of the otherwise-replicated LifeForm piece. Bringing two classes together
that share a common base class and that each specializes the base class using distinct discriminators
is an example of how MI and virtual base classes are reasonable in C++.

However, bringing together two classes such as Horse and Donkey (both derived from LifeForm)
together in a derived class such as Mule also creates a diamond-shaped hierarchy. Examining the
discriminators for Horse and Donkey reveals that both have the discriminator of Equine. In this
case, bringing together these two classes using a diamond-shaped design is not the optimal design
choice. Another design choice is possible and preferred. In this case, a preferred solution would be to
make the discriminator, Equine, its own class, and then derive Horse, Donkey, and Mule from
Equine. This would avoid MI and a diamond-shaped hierarchy. Let’s take a look at the two design
options:

Summary 277

Figure 9.2 – Diamond-shaped multiple inheritance redesigned without MI

Reminder
In a diamond-shaped hierarchy, if the discriminators for the combined classes are the same, a better
design is possible (by making the discriminator its own class). However, if the discriminators
are different, consider keeping the diamond-shaped MI hierarchy and then use virtual base
classes to avoid duplication of the common base class subobject.

We have now thoroughly examined the OO concept of a discriminator and have seen how discriminators
can be used to help evaluate the reasonableness of a design. In many cases, designs using diamond-
shaped hierarchies can be redesigned to not only eliminate the diamond shape but to eliminate multiple
inheritance altogether. Let’s briefly recap the MI issues and OO concepts we’ve covered in this chapter
before moving onward to our next chapter.

Summary
In this chapter, we have marched onward with our quest for understanding object-oriented programming
by exploring a controversial OOP topic, that of multiple inheritance. First, in this chapter, we have
understood the simple mechanics of multiple inheritance. Equally important, we have reviewed
reasons for building inheritance hierarchies and possible reasons for using MI (that is, specifying
Is-A, mix-in, and Has-A relationships). We have been reminded that using inheritance to specify
Is-A relationships supports pure OO designs. We have also seen the utility of using MI to implement
mix-in relationships. We have also taken a look at the controversial use of MI to quickly implement a
Has-A relationship; we’ll see in Chapter 10, Implementing Association, Aggregation, and Composition,
a preferred implementation for Has-A.

Exploring Multiple Inheritance278

We have seen how having multiple inheritance in our OO design toolkit can lead to diamond-shaped
hierarchies. We have seen the inevitable issues arising from diamond-shaped hierarchies, such as
duplication in memory, duplication in construction/destruction, and ambiguity in accessing a replicated
subobject. We have also seen that C++ provides a language-supported mechanism to correct these
issues, using virtual base classes. We know that virtual base classes solve a tedious problem, yet they
themselves are not perfect solutions.

In an effort to critique diamond-shaped hierarchies, we have looked at an OO concept of a discriminator
to help us weigh the validity of an OO design using MI in a diamond shape. This has also led us to
understand that alternate designs can apply to a set of objects; sometimes a redesign is a more elegant
approach in which the solution will yield easier, long-term use.

C++ is a “you can do anything” OOP language, and multiple inheritance is a controversial OO concept.
Knowing when certain MI designs may be warranted and understanding language features to help with
those MI issues will make you a better programmer. Knowing when a redesign is in order is also critical.

We are now ready to continue to Chapter 10, Implementing Association, Aggregation, and Composition,
to further enhance our OOP skills by next learning how to represent association, aggregation, and
composition with programming techniques. These upcoming concepts will not have direct language
support, but the concepts are instrumental in our OO arsenal of skills. Let’s move onward!

Questions
1. Type in (or use the online code) for the diamond-shaped hierarchy example in this chapter

that uses virtual base classes. Run it as is. Hint: you may want to add explicit destructors with
cout statements to trace the destruction sequence:

a. How many LifeForm subobjects exist for the instance of Centaur?

b. How many times is the LifeForm constructor (and destructor) invoked? Hint: you may
want to place trace statements using cout in each of your constructors and destructor.

c. Which LifeForm constructor would be invoked if the constructor selections for LifeForm
in the member initialization list of the Centaur constructors were omitted?

2. Now, remove the keyword virtual from the base class list of Person and Horse (that is,
LifeForm will no longer be a virtual base class of Person and Horse. LifeForm will
just be a typical base class of Person and Horse.) Also, remove the LifeForm constructor
selection from the member initialization list of the Centaur constructors. Now, instantiate
Centaur:

a. How many LifeForm subobjects exist for the instance of Centaur?

b. Now, how many times is the LifeForm constructor (and destructor) invoked? Hint: you
may want to add trace statements to your constructors and destructor.

10
Implementing Association,

Aggregation, and Composition

This chapter will continue advancing our knowledge of object-oriented programming in C++. We
will augment our understanding of object relationships by exploring the object-oriented concepts of
association, aggregation, and composition. None of these OO concepts have direct language support
in C++; we will instead learn multiple programming techniques to implement these ideas. We will
also understand which implementation techniques are preferred for various concepts, as well as the
advantages and pitfalls of various practices.

Association, aggregation, and composition occur copiously in OO designs. It is crucial to understand
how to implement these important object relationships.

In this chapter, we will cover the following main topics:

• Understanding the OO concepts of aggregation and composition, and various implementations

• Understanding the OO concept of association and its implementation, including the importance
of backlink maintenance and the utility of reference counting

By the end of this chapter, you will understand the OO concepts of association, aggregation, and
composition, and how to implement these relationships in C++. You will also understand many
housekeeping approaches necessary to keep these relationships up to date, such as reference counting
and backlink maintenance. Though the concepts are relatively straightforward, you will see why
there is a substantial amount of bookkeeping required to maintain accuracy for these types of object
relationships.

Let’s broaden our understanding of C++ as an OOP language by exploring these core object relationships.

Implementing Association, Aggregation, and Composition280

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter10. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter10 in a file named Chp10-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3clgvGe.

Understanding aggregation and composition
The object-oriented concept of aggregation arises in many OO designs. It comes up as frequently
as inheritance does to specify object relationships. Aggregation is used to specify Has-A, whole-
part, and in some cases, containment relationships. A class may contain aggregates of other objects.
Aggregation can be broken into two categories – composition as well as a less strict and generalized
form of aggregation.

Both generalized aggregation and composition imply a Has-A or whole-part relationship. However,
the two differ in the existence requirements between the two related objects. With generalized
aggregation, the objects can exist independently from one another, yet with composition, the objects
cannot exist without one another.

Let’s take a look at each variety of aggregation, starting with composition.

Defining and implementing composition

Composition is the most specialized form of aggregation and is often what most OO designers and
programmers think of when they consider aggregation. Composition implies containment, and is
most often synonymous with a whole-part relationship – that is, the whole entity is composed of one
or more parts. The whole contains the parts. The Has-A relationship will also apply to composition.

The outer object, or whole, can be made up of parts. With composition, parts do not exist without the
whole. Implementation is usually an embedded object – that is, a data member of the contained object
type. On rare occasions, the outer object will contain a pointer or reference to the contained object
type; however, when this occurs, the outer object will be responsible for the creation and destruction
of the inner object. The contained object has no purpose without its outer layer. Likewise, the outer
layer is not ideally complete without its inner, contained pieces.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter10
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter10
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter10
https://bit.ly/3clgvGe

Understanding aggregation and composition 281

Let’s take a look at a composition as typically implemented. The example will illustrate containment
– a Student Has-A(n) Id. More so, we will imply that an Id is a necessary part of a Student
and will not exist without a Student. Id objects on their own serve no purpose. Id objects simply
do not need to exist if they are not a part of a primary object that gives them purpose. Likewise, you
might argue that a Student is incomplete without an Id, though this is a bit subjective! We will
implement the part using an embedded object within the whole.

The composition example will be broken into many segments. Though only portions of the example
are shown, the full program can be found in the following GitHub location:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter10/Chp10-Ex1.cpp

#include <iostream>

#include <iomanip>

using std::cout;

using std::endl;

using std::setprecision;

using std::string;

using std::to_string;

class Id final // the contained 'part'

{ // this class is not intended to be extended

private:

 string idNumber;

public:

 Id() = default;

 Id(const string &id): idNumber(id) { }

 // We get default copy constructor, destructor

 // without including without including prototype

 // Id(const Id &id) = default;

 // ~Id() = default;

 const string &GetId() const { return idNumber; }

};

In the previous code fragment, we have defined an Id class. An Id will be a class that can be contained
by other classes needing a fully functional Id capability. The Id will become a part of any whole object
that may choose to contain it.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter10/Chp10-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter10/Chp10-Ex1.cpp

Implementing Association, Aggregation, and Composition282

Let’s move onward to build a set of classes that will ultimately contain this Id. We will start with a
class we are familiar with, Person:

class Person

{

private:

 string firstName;

 string lastName;

 char middleInitial = '\0'; // in-class initialization

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

protected:

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

 // We get default copy constructor w/o prototype

 // Person(const Person &) = default; // copy ctor.

 // But, we need prototype destructor to add 'virtual'

 virtual ~Person() = default; // virtual destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 // virtual functions

 virtual void Print() const;

 virtual void IsA() const;

 virtual void Greeting(const string &) const;

};

// Assume the member functions for Person exist here

// (they are the same as in previous chapters)

In the previous segment of code, we have defined the Person class, as we are accustomed to
describing it. To abbreviate this example, let us assume that the accompanying member functions
exist as prototyped in the aforementioned class definition. You can reference these member functions
in the earlier provided GitHub link for online code.

Understanding aggregation and composition 283

Now, let’s define our Student class. Though it will contain elements that we are accustomed to
seeing, Student will also contain an Id as an embedded object:

class Student: public Person // 'whole' object

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 static int numStudents;

 Id studentId; // is composed of a 'part'

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

 ~Student() override; // destructor

 // various member functions (many are inline)

 void EarnPhD() { ModifyTitle("Dr."); }

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 void SetCurrentCourse(const string &); // proto. only

 void Print() const override;

 void IsA() const override

 { cout << "Student" << endl; }

 static int GetNumberStudents() { return numStudents; }

 // Access function for embedded Id object

 const string &GetStudentId() const; // prototype only

};

int Student::numStudents = 0; // static data member

inline void Student::SetCurrentCourse(const string &c)

{

 currentCourse = c;

}

Implementing Association, Aggregation, and Composition284

In the preceding Student class, we routinely notice that Student is derived from Person. As
we already know, this means that a Student instance will include the memory layout of a Person,
as a Person subobject.

However, notice the data member, Id studentId;, in the Student class definition. Here,
studentId is of type Id. It is not a pointer, nor is it a reference to an Id. Data member studentId
is an embedded (that is, an aggregate or member) object. This means that when a Student class is
instantiated, not only will the memory from inherited classes be included but also the memory for any
embedded objects. We will need to provide a means to initialize the embedded object, studentId.
Note, we have seen member objects before, such as data members of type string; that is, data
members that are of another class type.

Let’s move forward with the Student member functions to understand how we may initialize,
manipulate, and access the embedded object:

Student::Student(): studentId(to_string(numStudents + 100)

 + "Id")

{

 numStudents++; // increment static counter

}

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg,

 const string &course, const string &id):

 Person(fn, ln, mi, t), gpa(avg),

 currentCourse(course), studentId(id)

{

 numStudents++;

}

Student::Student(const Student &s): Person(s),

 gpa(s.gpa), currentCourse(s.currentCourse),

 studentId(s.studentId)

{

 numStudents++;

}

Student::~Student() // destructor definition

{

Understanding aggregation and composition 285

 numStudents--; // decrement static counter

 // embedded object studentId will also be destructed

}

void Student::Print() const

{

 cout << GetTitle() << " " << GetFirstName() << " ";

 cout << GetMiddleInitial() << ". " << GetLastName();

 cout << " with id: " << studentId.GetId() << " GPA: ";

 cout << setprecision(3) << " " << gpa;

 cout << " Course: " << currentCourse << endl;

}

const string &GetStudentId() const

{

 return studentId.GetId();

}

In the previously listed member functions of Student, let’s begin with our constructors. Notice in
the default constructor, we utilize the member initialization list (:) to specify studentId(to_
string(numStudents + 100) + "Id"). Because studentId is a member object, we
have the opportunity to select (via the member initialization list) which constructor should be used
for its initialization. Here, we merely select the one with the Id(const string &) signature. In
the absence of a specific value to use to initialize Id, we manufacture a string value to serve as the
needed ID.

Similarly, in the alternate constructor for Student, we use the member initialization list to specify
studentId(id), which will also select the Id(const string &) constructor, passing the
parameter id to this constructor.

The copy constructor for Student additionally specifies how to initialize the studentId member
object with the studentId(s.studentId) specification in the member initialization list. Here,
we simply call the copy constructor for Id.

In our destructor for Student, we do not need to deallocate studentId. As this data member
is an embedded (aggregate) object, its memory will go away when the memory for the outer object
goes away. Of course, because studentId is an object itself, its own destructor will first be called
before its memory is released. Under the hood, the compiler will (covertly) patch in a call to the Id
destructor for studentId as the last line of code in the Student destructor. Actually, this will be
the penultimate (next to last) implicit line in the destructor – the last line that will be covertly patched
in will be a call to the Person destructor (to continue the destruction sequence).

Implementing Association, Aggregation, and Composition286

Lastly, in the previous segment of code, let’s notice the call to studentId.GetId(), which occurs
in both Student::Print() and Student::GetStudentId(). Here, the embedded object
studentId calls its own public function Id::GetId() to retrieve its private data member in the
scope of the Student class. Because studentId is private in Student, this embedded object may
only be accessed within the scope of Student (that is, member functions of Student). However,
the addition of Student::GetStudentId() provides a public wrapper for Student instances
in other scopes to retrieve this information.

Finally, let’s take a look at our main() function:

int main()

{

 Student s1("Cyrus", "Bond", 'I', "Mr.", 3.65, "C++",

 "6996CU");

 Student s2("Anne", "Brennan", 'M', "Ms.", 3.95, "C++",

 "909EU");

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " has id #: " << s1.GetStudentId() << endl;

 cout << s2.GetFirstName() << " " << s2.GetLastName();

 cout << " has id #: " << s2.GetStudentId() << endl;

 return 0;

}

In the aforementioned main() function, we instantiate two Student instances: s1 and s2. When
the memory is created (in this case, on the stack) for each Student, memory for any inherited classes
will also be included as subobjects. Additionally, memory for any embedded objects, such as Id, will
also be laid out as a subobject within Student. The memory for the contained object, or part, will
be allocated along with the allocation for the outer object, or whole.

Next, let’s notice the access to the contained piece, the embedded Id object. We start with a call to
s1.GetStudentId(); s1 accesses a Student member function, GetStudentId(). That
student member function will utilize the member object of studentId to call Id::GetId() on
this inner object of type Id. The member function Student::GetStudentId() can implement
this desired public access by simply returning the value that Id::GetId() returns on the embedded
object.

Let’s look at the output for the aforementioned program:

Cyrus Bond has id #: 6996CU

Anne Brennan has id #: 909EU

Understanding aggregation and composition 287

This example details composition with its typical implementation, an embedded object. Let’s now take
a look at a much less used, alternate implementation – that of inheritance.

Considering an alternate implementation for composition

It is useful to understand that composition can alternatively be implemented using inheritance, however,
this is extremely controversial. Remember, inheritance is most often used to implement Is-A and not
Has-A relationships. We briefly described using inheritance to implement Has-A relationships in
Chapter 9, Exploring Multiple Inheritance.

To recap, you would simply inherit from the part, rather than embed the part as a data member. When
doing so, you no longer need to provide wrapper functions to the part, such as we saw in the previous
program, with the Student::GetStudentId() method calling studentId.GetId() to
provide access to its embedded part. The wrapper function was necessary with the embedded object
example, as the part (Id) was private in the whole (Student). Programmers could not have accessed
the private studentId data member of Student outside the scope of Student. Of course,
member functions of Student (such as GetStudentId()) can access their own class’ private data
members and in doing so, can implement the Student::GetStudentId() wrapper function
to provide such (safe) access.

Had inheritance been used, the public interface of Id::GetId() would have been simply inherited
as a public interface in Student, providing simple access without the need to first go through the
embedded object explicitly.

Nonetheless, though inheriting a part is simple in some ways, it vastly compounds multiple inheritance.
We know multiple inheritance can provide many potential complications. Also, using inheritance,
the whole can only contain one of each part – not multiples of a part.

Additionally, implementing a whole-part relationship with inheritance may be confusing when you
compare the implementation to the OO design. Remember, inheritance usually means Is-A and not
Has-A. For these reasons, the most typical and appreciated implementation of an aggregate is through
an embedded object.

Next, let’s move onward by looking at a more general form of aggregation.

Defining and implementing a generalized aggregation

We have looked at the most commonly used form of aggregation in OO designs, that of composition.
Most notably, with composition, we have seen that the part does not have a reason to exist without the
whole. Nonetheless, a more generalized (but less common) form of aggregation exists and is sometimes
specified in OO designs. We will now consider this less common form of aggregation.

In a generalized aggregation, a part may exist without the whole. A part will be created separately
and then attached to the whole at a later point in time. When the whole goes away, a part may then
remain to be salvaged for use with another outer or whole object.

Implementing Association, Aggregation, and Composition288

In a generalized aggregation, the Has-A relationship certainly applies, as does the whole-part
designation. The difference is that the whole object will not create nor destroy a part subobject.
Consider the straightforward example that a Car Has-A(n) Engine. A Car object also Has-A set of
four Tire objects. The Engine or Tire objects can be manufactured separately and then passed to
the constructor of the Car to provide these parts to the whole. Yet should an Engine be destroyed,
a new Engine can easily be swapped out (using a member function), without requiring the entire
Car to be destroyed and then reconstructed.

A generalized aggregation is equivalent to a Has-A relationship, yet we think of this with more flexibility
and permanence of the individual parts as we did with composition. We consider this relationship
as an aggregation simply because we wish to equate the objects with a Has-A meaning. The Has-A
relationship in the Car, Engine, and Tire example is strong; the Engine and Tires are necessary
parts, required to make the whole Car.

Here, implementation typically is with the whole containing a pointer (or set of pointers) to the part(s).
It is important to note that the parts will be passed into a constructor (or another member function)
of the outer object to establish the relationship. The critical marker is that the whole will not create
(nor destroy) the parts, and the parts will never destroy the whole.

Incidentally, the longevity of the individual pieces (and the basic implementation) of a generalized
aggregation will be similar to our next topic – association. Let’s move forward to our next section
to understand the similarities, as well as the OO conceptual differences (sometimes subtle) between
generalized aggregation and association.

Understanding association
An association models a relationship that exists between otherwise unrelated class types. An association
can provide ways for objects to interact to fulfill these relationships. Associations are not used for
Has-A relationships, however, in some cases, there are shades of gray as to whether we’re describing
a bonafide Has-A relationship, or whether we are merely using the phrase Has-A because it sounds
appropriate linguistically.

Multiplicity for associations exists: one-to-one, one-to-many, many-to-one, or many-to-many. For
example, a Student may be associated with a single University, and that University may
be associated with many Student instances; this is a one-to-many association.

Associated objects have an independent existence. That is, two or more objects may be instantiated
and exist independently for a portion of the application. At some point, one object may wish to assert
a dependency or relationship with the other object. Later in the application, the associated objects
may part ways and continue on their own unrelated paths.

Understanding association 289

For example, consider the relationship between a Course and an Instructor. A Course is
associated with an Instructor. A Course requires an Instructor; an Instructor is integral
to the Course. An Instructor may be associated with many Course(s). Yet each part exists
independently – one will not create nor destroy the other. Instructors may also exist independently
without courses; perhaps an instructor is taking time to write a book, is taking a sabbatical, or is a
professor conducting research.

In this example, the association is very similar to a generalized aggregation. In both cases, the related
objects also exist independently. In this case, whether one says that Course Has-A(n) Instructor
or that a Course has a dependency on an Instructor, can be a shade of gray. You may ask yourself
– is it just spoken language that makes me choose the wording of Has-A? Do I instead mean that there
is a necessary link between the two? Perhaps the relationship is an association, and its descriptive
adornment (to further describe the nature of the association) is teaches. You may have arguments
supporting either choice. For this reason, generalized aggregations can be considered specialized
types of associations; we will see that their implementations are the same using independently existing
objects. Nonetheless, we will distinguish a typical association as being a relationship between objects
that decisively do not support a true Has-A relationship.

For example, consider the relationship between University and Instructor. Rather than
thinking of this as a Has-A relationship, we may instead consider the relationship between the two as
that of association; we can think of the adornment describing this relationship as employs. Likewise,
University ascertains a relationship with many Student objects. The association here may be
described by the adornment educates. The distinction can be made that University is made up
of Department objects, Building objects, and components of this nature to support any of its
Has-A relationships through containment, yet its relationships with Instructor objects, Student
objects, and so on are made using associations.

Now that we have distinguished typical associations from generalized aggregations, let’s take a look
at how we can implement associations and some of the complexities involved.

Implementing association

Typically, an association between two or more objects is implemented using pointers or sets of pointers.
The one side is implemented using a pointer to the associated object, whereas the many side of the
relationship is implemented as a set of pointers to the associated objects. A set of pointers may be an
array of pointers, a linked list of pointers, or truly any collection of pointers. Each type of collection
will have its own set of advantages and drawbacks. For example, arrays of pointers are easy to use,
have direct access to specific members, yet have a fixed number of items. Linked lists of pointers can
accommodate any quantity of items, yet accessing a specific element requires traversing past others
to find the desired item.

Implementing Association, Aggregation, and Composition290

Occasionally, a reference may be used to implement the one side of an association. Recall that a
reference must be initialized and cannot at a later date be reset to reference another object. Using a
reference to model an association implies that one instance will be associated with a precise other
instance for the duration of the primary object’s existence. This is extremely restrictive, so references
are used very infrequently to implement associations.

Regardless of the implementation, when the primary object goes away, it will not interfere with (that
is, delete) the associated object.

Let’s see a typical example illustrating the preferred implementation of a one-to-many association, utilizing
a pointer on the one side, and a set of pointers on the many side. In this example, a University
will be associated with many Student instances. And, for simplicity, a Student will be associated
with a single University.

To save space, some portions of this program that are the same as in our last example will not be
shown; however, the program in its entirety can be found in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter10/Chp10-Ex2.cpp

#include <iostream>

#include <iomanip>

using std::cout;

using std::endl;

using std::setprecision;

using std::string;

using std::to_string;

// classes Id and Person are omitted here to save space.

// They will be as shown in previous example: Chp10-Ex1.cpp

class Student; // forward declaration

class University

{

private:

 string name;

 static constexpr int MAX = 25; // max students allowed

 // Notice: each studentBody element is set to a nullptr

 // using in-class initialization

 Student *studentBody[MAX] = { }; // Association to

 // many students

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter10/Chp10-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter10/Chp10-Ex2.cpp

Understanding association 291

 int currentNumStudents = 0; // in-class initialization

public:

 University();

 University(const string &);

 University(const University &) = delete; // no copies

 ~University();

 void EnrollStudent(Student *);

 const string &GetName() const { return name; }

 void PrintStudents() const;

};

In the preceding segment, let’s first notice the forward declaration of class Student;. This
declaration will allow our code to reference the Student type prior to the Student class definition.
In the University class definition, we see that there is an array of pointers to Student. We
also see that the EnrollStudent() method takes a Student * as an argument. The forward
declaration enables such usage of Student prior to its definition.

We also notice that the University has a simple interface with constructors, a destructor, and a
few member functions.

Next, let’s take a look at the University member function definitions:

// Remember, currentNumStudents will be set w in-class init

// and name, as a string member object, will be init to

// empty. And studentBody (array of ptrs) will also set w

// in-class initialization.

University::University()

{

 // in-lieu of in-class init, we could alternatively set

 // studentBody[i] to nullptr iteratively in a loop:

 // (the student body will start out empty)

 // for (int i = 0; i < MAX; i++)

 // studentBody[i] = nullptr;

}

University::University(const string &n): name(n)

{

 // see default constructor for alt init of studentBody

}

Implementing Association, Aggregation, and Composition292

University::~University()

{

 // The University will not delete the students

 for (int i = 0; i < MAX; i++) // only null out

 studentBody[i] = nullptr; // their link

}

void University::EnrollStudent(Student *s)

{

 // set an open slot in the studentBody to point to the

 // Student passed in as an input parameter

 studentBody[currentNumStudents++] = s;

}

void University::PrintStudents()const

{

 cout << name << " has the following students:" << endl;

 // Simple loop to process set of students, however we

 // will soon see safer, more modern ways to iterate

 // over partial arrays w/o writing explicit 'for' loops

 for (int i = 0; i < currentNumStudents; i++)

 {

 cout << "\t" << studentBody[i]->GetFirstName();

 cout << " " << studentBody[i]->GetLastName();

 cout << endl;

 }

}

Taking a closer look at the aforementioned University methods, we can see that in both constructors
for University, we could alternatively null out the pointers to the elements comprising our
studentBody using nullptr (versus our choice of using in-class initialization, which similarly
initializes each element). Likewise, in the destructor, we similarly null out our links to the associated
Student instances. Shortly in this section, we will see that there will be some additional backlink
maintenance required, but for now, the point is that we will not delete the associated Student objects.

Understanding association 293

Since University objects and Student objects will exist independently, neither will create nor
destroy instances of the other type.

We also come across an interesting member function, EnrollStudent(Student *). In this
method, a pointer to a specific Student will be passed in as an input parameter. We merely index
into our array of pointers to Student objects, namely studentBody, and set an unused array
element point to the newly enrolled Student. We keep track of how many current Student objects
exist using a currentNumStudents counter, which is incremented with a post increment after
the pointer assignment to the array is made.

We also notice that the University class has a Print() method that prints the university’s name,
followed by its current student body. It does so by simply accessing each associated Student object in
studentBody and asking each Student instance to invoke the Student::GetFirstName()
and Student::GetLastName() methods.

Next, let’s now take a look at our Student class definition, along with its inline functions. Recall
that we’re assuming that the Person class is the same as seen earlier in this chapter:

class Student: public Person

{

private:

 // data members

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 static int numStudents;

 Id studentId; // part, Student Has-A studentId

 University *univ = nullptr; // Assoc. to Univ object

public:

 // member function prototypes

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &, University *);

 Student(const Student &); // copy constructor

 ~Student() override; // destructor

 void EarnPhD() { ModifyTitle("Dr."); }

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 void SetCurrentCourse(const string &); // proto. only

Implementing Association, Aggregation, and Composition294

 void Print() const override;

 void IsA() const override

 { cout << "Student" << endl; }

 static int GetNumberStudents() { return numStudents; }

 // Access functions for aggregate/associated objects

 const string &GetStudentId() const

 { return studentId.GetId(); }

 const string &GetUniversity() const

 { return univ->GetName(); }

};

int Student::numStudents = 0; // def. of static data mbr.

inline void Student::SetCurrentCourse(const string &c)

{

 currentCourse = c;

}

Here, in the previous code segment, we see the Student class definition. Notice that we have an
association with a University with the pointer data member University *univ = nullptr;
and that this member is initialized to nullptr using in-class initialization.

In the class definition for Student, we can also see there is a wrapper function to encapsulate access to
the student’s university’s name with Student::GetUniversity(). Here, we allow the associated
object, univ, to call its public method University::GetName() and return that value as the
result of Student::GetUniversity().

Now, let’s take a look at the non-inline member functions of Student:

Student::Student(): studentId(to_string(numStudents + 100)

 + "Id")

{

 // no current University association (set to nullptr

 // with in-class initialization)

 numStudents++;

}

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg,

 const string &course, const string &id,

Understanding association 295

 University *univ): Person(fn, ln, mi, t),

 gpa(avg), currentCourse(course), studentId(id)

{

 // establish link to University, then back link

 // note: forward link could also be set in the

 // member initialization list

 this->univ = univ; // required use of ‹this›

 univ->EnrollStudent(this); // another required 'this'

 numStudents++;

}

Student::Student(const Student &s): Person(s),

 gpa(s.gpa), currentCourse(s.currentCourse),

 studentId(s.studentId)

{

 // Notice, these three lines of code are the same as

 // in the alternate constructor – we could instead make

 // a private helper method with this otherwise

 // duplicative code as a means to simplify code

 // maintenance.

 this->univ = s.univ;

 univ->EnrollStudent(this);

 numStudents++;

}

Student::~Student() // destructor

{

 numStudents--;

 univ = nullptr; // a Student does not delete its Univ

 // embedded object studentId will also be destructed

}

void Student::Print() const

{

 cout << GetTitle() << " " << GetFirstName() << " ";

 cout << GetMiddleInitial() << ". " << GetLastName();

Implementing Association, Aggregation, and Composition296

 cout << " with id: " << studentId.GetId() << " GPA: ";

 cout << setprecision(3) << " " << gpa;

 cout << " Course: " << currentCourse << endl;

}

In the preceding code segment, notice that the default Student constructor and the destructor both
only null out their link to the University object (using nullptr). The default constructor has
no way to set this link to an existing object, and should certainly not create a University instance
to do so. Likewise, the Student destructor should not delete the University merely because the
Student object’s life expectancy is complete.

The most interesting part of the preceding code happens in both the alternate constructor and copy
constructor of Student. Let’s examine the alternate constructor. Here, we establish the link to the
associated University as well as the backlink from the University back to the Student.

In the this->univ = univ; line of code, we are assigning the data member, univ (as pointed to
by the this pointer) by setting it to point to where the input parameter, univ, points. Look closely
at the previous class definition – the identifier for the University * is named univ. Additionally,
the input parameter for the University * in the alternate constructor is named univ. We cannot
simply assign univ = univ; in the body of this constructor (or in the member initialization list).
The univ identifier that is in the most local scope is the input parameter, univ. Assigning univ =
univ; would set this parameter to itself. Instead, we disambiguate the univ on the left-hand side
of this assignment using the this pointer. The statement this->univ = univ; sets the data
member univ to the input parameter univ. Could we merely have renamed the input parameter
something different, such as u? Sure, but it is important to understand how to disambiguate an input
parameter and data member with the same identifier when the need arises to do so.

Now, let’s examine the next line of code, univ->EnrollStudent(this);. Now that univ and
this->univ point to the same object, it does not matter which is used to set the backlink. Here,
univ calls EnrollStudent(), which is a public member function in the University class.
No problem, univ is of type University. University::EnrollStudent(Student *)
expects to be passed a pointer to a Student to complete the linkage on the University side.
Luckily, the this pointer in our Student alternate constructor (the scope of the calling function)
is a Student *. The this pointer (in the alternate constructor) is literally the Student * that
we need to create the backlink. Here is another example where the explicit use of the this pointer
is required to complete the task at hand.

Let’s move forward to our main() function:

int main()

{

 University u1("The George Washington University");

 Student s1("Gabby", "Doone", 'A', "Miss", 3.85, "C++",

Understanding association 297

 "4225GWU", &u1);

 Student s2("Giselle", "LeBrun", 'A', "Ms.", 3.45,

 "C++", "1227GWU", &u1);

 Student s3("Eve", "Kendall", 'B', "Ms.", 3.71, "C++",

 "5542GWU", &u1);

 cout << s1.GetFirstName() << " " << s1.GetLastName();

 cout << " attends " << s1.GetUniversity() << endl;

 cout << s2.GetFirstName() << " " << s2.GetLastName();

 cout << " attends " << s2.GetUniversity() << endl;

 cout << s3.GetFirstName() << " " << s3.GetLastName();

 cout << " attends " << s3.GetUniversity() << endl;

 u1.PrintStudents();

 return 0;

}

Finally, in the previous code fragment in our main() function, we can create several independently
existing objects, create an association between them, and then view that relationship in action.

First, we instantiate a University, namely u1. Next, we instantiate three Student objects,
s1, s2, and s3, and associate each to University u1. Note that this association can be set
when we instantiate a Student, or later on, for example, if the Student class supported a
SelectUniveristy(University *) interface to do so.

We then print out each Student, along with the name of the University each Student attends.
Then, we print out the student body for our University, u1. We notice that the link built between
the associated objects is complete in both directions.

Let’s look at the output for the aforementioned program:

Gabby Doone attends The George Washington University

Giselle LeBrun attends The George Washington University

Eve Kendall attends The George Washington University

The George Washington University has the following students:

 Gabby Doone

 Giselle LeBrun

 Eve Kendall

We’ve seen how easily associations can be set up and utilized between related objects. However, a lot
of housekeeping will arise from implementing associations. Let’s move forward to understanding the
necessary and related issues of reference counting and backlink maintenance, which will help with
these housekeeping endeavors.

Implementing Association, Aggregation, and Composition298

Utilizing backlink maintenance and reference counting

In the previous subsection, we have seen how to implement associations using pointers. We’ve seen
how to link an object with a pointer to an object in an associated instance. And we’ve seen how to
complete the circular, two-sided relationship by establishing a backlink.

However, as is typical for associated objects, the relationships are fluid and change over time. For
example, the given Student body will change quite often for a given University, or the various
Course set an Instructor will teach will change each semester. It will be typical, then, to remove
a particular object’s association to another object, and perhaps associate, instead, to a different instance
of that class. But, that also means that the associated object must know to remove its link to the first
mentioned object. This becomes complicated.

For example, consider the Student and Course relationship. A Student is enrolled in many
Course instances. A Course contains an association to many Student instances. This is a many-
to-many association. Let’s imagine that the Student wishes to drop a Course. It is not enough for
a specific Student instance to remove a pointer to a specific Course instance. Additionally, the
Student must let the particular Course instance know that the Student in question should be
removed from that Course’s roster. This is known as backlink maintenance.

Consider what would happen in the above scenario if a Student were to simply null out its link to
the Course it was dropping, and do nothing further. The Student instance in question would be
fine. However, the formerly associated Course instance would still contain a pointer to the Student
in question. Perhaps this would equate to the Student receiving a failing grade in the Course as
the Instructor still thinks the Student in question is enrolled, yet hasn’t been turning in their
homework. In the end, the Student has been affected after all, with the failing grade.

Remember, with associated objects, one object will not delete the other when it is done with the other
object. For example, when a Student drops a Course, they will not delete that Course – only
remove their pointer to the Course in question (and definitely also handle the required backlink
maintenance).

One idea to help us with overall link maintenance is to consider reference counting. The purpose of
reference counting is to keep track of how many pointers may be pointing to a given instance. For
example, if other objects point to a given instance, that instance should not be deleted. Otherwise, the
pointers in the other object will point to deallocated memory, which will lead to numerous runtime
errors.

Let’s consider an association with multiplicity, such as the relationship between a Student and a
Course. A Student should keep track of how many Course pointers are pointing to the Student,
that is, how many Courses the Student is taking. A Student should not be deleted while various
Courses point to that Student. Otherwise, Courses will point to deleted memory. One way to
handle this situation is to check within the Student destructor whether the object (this) contains any
non-null pointers to Course instances. If the object does, it then needs to call a method through each
of the active Course instances to request links to the Student be removed from each such Course.

Summary 299

After each link is removed, the reference counter corresponding to the set of Course instances can
be decremented.

Likewise, link maintenance should occur in the Course class in favor of Student instances.
Course instances should not be deleted until all Student instances enrolled in that Course have
been notified. Keeping a counter of how many Student instances point to a particular instance of
a Course through reference counting is helpful. In this example, it is as simple as maintaining a
variable to reflect the current number of Student instances enrolled in the Course.

We can meticulously conduct link maintenance ourselves, or we may choose to use smart pointers to
manage the lifetime of an associated object. Smart pointers can be found in the C++ Standard Library.
They encapsulate a pointer (that is, wrap a pointer within a class) to add smart features, including
reference counting and memory management. Because smart pointers utilize templates, which we will
not cover until Chapter 13, Working with Templates, we will just mention their potential utility here.

We have now seen the importance of backlink maintenance and the utility of reference counting
to fully support associations and their successful implementation. Let’s now briefly recap the OO
concepts we’ve covered in this chapter – association, aggregation, and composition – before moving
onward to our next chapter.

Summary
In this chapter, we have pressed forward with our pursuit of object-oriented programming by exploring
various object relationships – association, aggregation, and composition. We have understood the
various OO design concepts representing these relationships and have seen that C++ does not offer
direct language support through keywords or specific language features to implement these concepts.

Nonetheless, we have learned several techniques for implementing these core OO relationships, such
as embedded objects for composition and generalized aggregation, or using pointers to implement
association. We have looked at the typical longevity of object existence with these relationships; for
example, with aggregation, by creating and destroying its inner part (through an embedded object, or
more rarely, by allocating and deallocating a pointer member). Or through the independent existence
of associated objects that neither create nor destroy one another. We have also looked under the hood
at the housekeeping required to implement association, particularly associations with multiplicity, by
examining backlink maintenance and reference counting.

We have added key features to our OOP skills through understanding how to implement association,
aggregation, and composition. We have seen examples of how these relationships may even be more
prolific in OO designs than inheritance. By mastering these skills, we have completed our core skillset
of implementing essential OO concepts in C++.

We are now ready to continue to Chapter 11, Handling Exceptions, which will begin our quest to
expand our C++ programming repertoire. Let’s continue forward!

Implementing Association, Aggregation, and Composition300

Questions
1. Add an additional Student constructor to the University/Student example in this

chapter to accept the University constructor argument by reference, rather than by pointer.
For example, in addition to the constructor with the signature Student::Student(const
string &fn, const string &ln, char mi, const string &t, float
avg, const string &course, const string &id, University *univ);,
overload this function with a similar one, but with University &univ as the last parameter.
How does this change the implicit call to this constructor?

Hint: within your overloaded constructor, you will now need to take the address-of (&) the
University reference parameter to set the association (which is stored as a pointer). You
may need to switch to object notation (.) to set the backlink (if you use parameter univ,
versus data member this->univ).

2. Write a C++ program to implement a many-to-many association between objects of type
Course and of type Student. You may choose to build on your previous programs that
encapsulate Student. The many-to-many relationship should work as follows:

a. A given Student may take zero to many Courses, and a given Course will associate to
many Student instances. Encapsulate the Course class to minimally contain a course
name, a set of pointers to associated Student instances, and a reference count to keep
track of the number of Student instances that are in the Course (this will equate to how
many Student instances point to a given instance of a Course). Add the appropriate
interface to reasonably encapsulate this class.

b. Add to your Student class a set of pointers to the Course instances in which that
Student is enrolled. Additionally, keep track of how many Course instances a given
Student is currently enrolled. Add appropriate member functions to support this new
functionality.

c. Model your many-sided associations using either a linked list of pointers (that is, the
data part is a pointer to the associated object) or as an array of pointers to the associated
objects. Note that an array will enforce a limit on the number of associated objects you can
have, however, this may be reasonable because a given Course can only accommodate
a maximum number of Students and a Student may only enroll up to a maximum
number of Courses per semester. If you choose the array of pointers approach, make sure
your implementation includes error checking to accommodate exceeding the maximum
number of associated objects in each array.

d. Be sure to check for simple errors, such as trying to add Students to a Course that is
full, or adding too many Courses to a Student’s schedule (assume there is an upper
bound to five courses per semester).

e. Make sure your destructors do not delete the associated instances.

Questions 301

f. Introduce at least three Student objects, each of which takes two or more Courses.
Additionally, make sure each Course has multiple Students enrolled. Print each
Student, including each Course in which they are enrolled. Likewise, print each
Course, showing each Student enrolled in the Course.

3. (Optional) Enhance your program in Exercise 2 to gain experience with backlink maintenance
and reference counting as follows:

a. Implement a DropCourse() interface for Student. That is, create a Student::
DropCourse(Course *) method in Student. Here, find the Course the Student
wishes to drop in their course list, but before removing the Course, call a method on
that Course to remove the aforementioned Student (that is, this) from the Course.
Hint: you can make a Course::RemoveStudent(Student *)) method to help
with backlink removal.

b. Now, fully implement proper destructors. When a Course is destructed, have the
Course destructor first tell each remaining associated Student to remove their link to
that Course. Likewise, when a Student is destructed, loop through the Student’s
course list to ask those Courses to remove the aforementioned Student (that is, this)
from their student list. You may find reference counting in each class (that is, by checking
numStudents or numCourses) helpful to see whether these tasks must be engaged.

Part 3:
Expanding Your

C++ Programming
Repertoire

The goal of this part is to expand your C++ programming skills, beyond the OOP skills, to
encompass other critical features of C++.

The initial chapter in this section explores exception handling in C++ through understanding
the mechanisms of try, throw, and catch, and through examining many examples to explore
exception mechanics by delving into various exception handling scenarios. Additionally, this
chapter expands exception class hierarchies with new exception classes.

The next chapter digs into the topics of the proper usage of friend functions and friend classes,
as well as operator overloading (which may sometimes require friends), to make operations
polymorphic between built-in and user defined types.

The subsequent chapter explores using C++ templates to help make code generic and usable for
a variety of data types using template functions and template classes. Additionally, this chapter
explains how operator overloading will assist in making template code extensible for virtually
any data type.

In the next chapter, the Standard Template Library in C++ is introduced, and core STL containers
such as list, iterator, deque, stack, queue, priority_queue, and map (including
one using a functor) are examined. Additionally, STL algorithms and functors are introduced.

The final chapter in this section surveys testing OO programs and components by exploring
canonical class form, creating drivers for component testing, testing classes related through
inheritance, association, aggregation, and testing exception-handling mechanisms.

This part comprises the following chapters:

• Chapter 11, Handling Exceptions

• Chapter 12, Friends and Operator Overloading

• Chapter 13, Working with Templates

• Chapter 14, Understanding STL Basics

• Chapter 15, Testing Classes and Components

304 Part 3: Expanding Your C++ Programming Repertoire

11
Handling Exceptions

This chapter will begin our quest to expand your C++ programming repertoire beyond OOP concepts,
with the goal of enabling you to write more robust and extensible code. We will begin this endeavor
by exploring exception handling in C++. Adding language-prescribed methods in our code to handle
errors will allow us to achieve less buggy and more reliable programs. By using the formal exception
handling mechanisms built into the language, we can achieve a uniform handling of errors, which
leads to more easily maintainable code.

In this chapter, we will cover the following main topics:

• Understanding exception handling basics – try, throw, and catch

• Exploring exception handling mechanics – trying code that may raise exceptions, raising
(throwing), catching, and handling exceptions using several variations

• Utilizing exception hierarchies with standard exception objects or by creating customized
exception classes

By the end of this chapter, you will understand how to utilize exception handling in C++. You will
see how to identify an error to raise an exception, transfer control of the program to a designated
area by throwing an exception, and then handle the error by catching the exception and hopefully
repairing the problem at hand.

You will also learn how to utilize standard exceptions from the C++ Standard Library, as well as create
customized exception objects. A hierarchy of exception classes can be designed to add robust error
detection and handling capabilities.

Let’s increase our understanding of C++ by expanding our programming repertoire by exploring the
built-in language mechanisms of exception handling.

Handling Exceptions306

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter11. Each full program example can be found in the GitHub
under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter number,
followed by a dash, followed by the example number in the chapter at hand. For example, the first full
program in this chapter can be found in the subdirectory Chapter11 in a file named Chp11-Ex1.
cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3QZi638.

Understanding exception handling
Error conditions may occur within an application that would prevent a program from continuing
correctly. Such error conditions may include data values that exceed application limits, necessary
input files or databases have become unavailable, heap memory has become exhausted, or any other
imaginable issue. C++ exceptions provide a uniform, language-supported manner for handling
program anomalies.

Prior to the introduction of language supported exception handling mechanisms, each programmer
would handle errors in their own manner, and sometimes not at all. Program errors and exceptions
that are not handled imply that somewhere further in the application, an unexpected result will occur
and the application will most often terminate abnormally. These potential outcomes are certainly
undesirable!

C++ exception handling provides a language supported mechanism to detect and correct program
anomalies so that an application can remain running, rather than ending abruptly.

Let’s take a look at the mechanics, starting with the language supported keywords try, throw, and
catch, which comprise exception handling in C++.

Utilizing exception handling with try, throw, and catch

Exception handling detects a program anomaly, as defined by the programmer or by a class library,
and passes control to another portion of the application where the specific problem may be handled.
Only as a last resort will it be necessary to exit an application.

Let’s begin by taking a look at the keywords that support exception handling. The keywords are as follows:

• try: Allows programmers to try a portion of code that might cause an exception.

• throw: Once an error is found, throw raises the exception. This will cause a jump to the
catch block below the associated try block; throw will allow an argument to be returned to
the associated catch block. The argument thrown may be of any standard or user defined type.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter11
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter11
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter11
https://bit.ly/3QZi638

Understanding exception handling 307

• catch: Designates a block of code designed to seek exceptions that have been thrown, to
attempt to correct the situation. Each catch block in the same scope will handle an exception
of a different type.

When utilizing exception handling, it is useful to review the idea of backtracking. When a sequence of
functions is called, we build up, on the stack, state information applicable to each successive function
call (parameters, local variables, and return value space), as well as the return address for each function.
When an exception is thrown, we may need to unwind the stack to the point of origination where this
sequence of function calls (or try blocks) began, resetting the stack pointer as well. This process is
known as backtracking and allows a program to return to an earlier sequence in the code. Backtracking
applies not only to function calls but to nested blocks including nested try blocks.

Here is a simple example to illustrate basic exception handling syntax and usage. Though portions of
the code are not shown to save space, the complete example can be found in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex1.cpp

// Assume Student class is as seen before, but with one

// additional virtual mbr function. Assume usual headers.

void Student::Validate() // defined as virtual in class def

{ // so derived classes may override

 // check constructed Student; see if standards are met

 // if not, throw an exception

 throw string("Does not meet prerequisites");

}

int main()

{

 Student s1("Sara", "Lin", 'B', "Dr.", 3.9,

 "C++", "23PSU");

 try // Let's 'try' this block of code --

 { // Validate() may raise an exception

 s1.Validate(); // does s1 meet admission standards?

 }

 catch (const string &err)

 {

 cout << err << endl;

 // try to fix problem here…

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex1.cpp

Handling Exceptions308

 exit(1); // only if you can't fix error,

 } // exit as gracefully as possible

 cout << "Moving onward with remainder of code.";

 cout << endl;

 return 0;

}

In the previous code fragment, we can see the keywords try, throw, and catch in action. First, let’s
notice the Student::Validate() member function. Imagine, in this virtual method, we verify
that a Student meets admission standards. If so, the function ends normally. If not, an exception
is thrown. In this example, a simple string is thrown encapsulating the message "Does not
meet prerequisites".

In our main() function, we first instantiate a Student, namely s1. Then, we nest our call to
s1.Validate() within a try block. We are literally saying that we’d like to try this block of code.
Should Student::Validate() work as expected, error-free, our program completes the try block,
skips the catch block(s) below the try block, and merely continues with the code below any catch blocks.

However, should Student::Validate() throw an exception, we will skip any remaining code
in our try block and seek an exception matching the type of const string & in a subsequently
defined catch block. Here, in the matching catch block, our goal is to correct the error if at all possible.
If we are successful, our program will continue with the code below the catcher. If not, our job is to
end the program gracefully.

Let’s look at the output for the aforementioned program:

Student does not meet prerequisites

Next, let us summarize the overall flow of exception handling with the following logistics:

• When a program completes a try block without encountering any thrown exceptions, the code
sequence continues with the statement following the catch block. Multiple catch blocks (with
different argument types) may follow a try block.

• When an exception is thrown, the program must backtrack and return to the try block
containing the originating function call. The program may have to backtrack past multiple
functions. When backtracking occurs, the objects encountered on the stack will be popped
off, and hence destructed.

• Once a program (with an exception raised) backtracks to the function where the try block
was executed, the program will continue with the catch block (following the try block) whose
signature matches the type of the exception that was thrown.

• Type conversion (with the exception of upcasting objects related through public inheritance)
will not be done to match potential catch blocks. However, a catch block with ellipses (…) may
be used as the most general type of catch block and can catch any type of exception.

Understanding exception handling 309

• If a matching catch block does not exist, the program will call terminate() from the C++
Standard Library. Note that terminate() will call abort(); however, the programmer
may instead register another function for terminate() to call via the set_terminate()
function.

Now, let’s see how to register a function with set_terminate(). Though we only show key portions
of the code here, the complete program can be found in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex2.cpp

void AppSpecificTerminate()

{ // first, do what's necessary to end program gracefully

 cout << "Uncaught exception. Program terminating";

 cout << endl;

 exit(1);

}

int main()

{

 set_terminate(AppSpecificTerminate); // register fn.

 return 0;

}

In the previous code fragment, we define our own AppSpecificTerminate() function. This
is the function we wish to have the terminate() function call rather than its default behavior of
calling abort(). Perhaps we use AppSpecificTerminate() to end our application a bit more
gracefully, saving key data structures or database values. Of course, we would also then exit() (or
abort()) ourselves.

In main(), we merely call set_terminate(AppSpecificTerminate) to register our
terminate function with set_terminate(). Now, when abort() would otherwise be called,
our function will be called instead.

It is interesting to note that set_terminate() returns a function pointer to the previously installed
terminate_handler (which upon its first call will be a pointer to abort()). Should we choose
to save this value, we can use it to reinstate previously registered terminate handlers. Notice that we
have not opted to save this function pointer in this example.

Here is what the output would look like for an uncaught exception using the aforementioned code:

Uncaught exception. Program terminating

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex2.cpp

Handling Exceptions310

Keep in mind that functions such as terminate(), abort(), and set_terminate() are from
the Standard Library. Though we may precede their names with the library name using the scope
resolution operator, such as std::terminate(), this is not necessary.

Note
Exception handling is not meant to take the place of simple programmer error checking;
exception handling has greater overhead. Exception handling should be reserved to handle
more severe programmatic errors in a uniform manner and in a common location.

Now that we have seen the basic mechanics for exception handling, let’s take a look at slightly more
complex exception handling examples.

Exploring exception handling mechanics with typical variations

Exception handling can be more sophisticated and flexible than the basic mechanics previously
illustrated. Let’s take a look at various combinations and variations of exception handling basics, as
each may be applicable to different programming situations.

Passing exceptions to outer handlers

Caught exceptions may be passed up to outer handlers for processing. Alternatively, exceptions may
be partially handled and then thrown to outer scopes for further handling.

Let’s build on our previous example to demonstrate this principle. The full program can be seen in
the following GitHub directory:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex3.cpp

// Assume Student class is as seen before, but with

// two additional member fns. Assume usual header files.

void Student::Validate() // defined as virtual in class def

{ // so derived classes may override

 // check constructed student; see if standards are met

 // if not, throw an exception

 throw string("Does not meet prerequisites");

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex3.cpp

Understanding exception handling 311

bool Student::TakePrerequisites()

{

 // Assume this function can correct the issue at hand

 // if not, it returns false

 return false;

}

int main()

{

 Student s1("Alex", "Ren", 'Z', "Dr.", 3.9,

 "C++", "89CU");

 try // illustrates a nested try block

 {

 // Assume another important task occurred in this

 // scope, which may have also raised an exception

 try

 {

 s1.Validate(); // may raise an exception

 }

 catch (const string &err)

 {

 cout << err << endl;

 // try to correct (or partially handle) error.

 // If you cannot, pass exception to outer scope

 if (!s1.TakePrerequisites())

 throw; // re-throw the exception

 }

 }

 catch (const string &err) // outer scope catcher

 { // (e.g. handler)

 cout << err << endl;

 // try to fix problem here…

 exit(1); // only if you can't fix, exit gracefully

 }

 cout << "Moving onward with remainder of code. ";

 cout << endl;

Handling Exceptions312

 return 0;

}

In the aforementioned code, let’s assume that we have our usual header files included and the
usual class definition for Student defined. We will now augment the Student class by
adding the Student::Validate() method (virtual, so that it may be overridden) and the
Student::TakePrerequisites() method (not virtual, descendants should use it as-is).

Notice that our Student::Validate() method throws an exception, which is merely a string
literal containing a message indicating the issue at hand. We can imagine the complete implementation
of the Student::TakePrerequisites() method verifies that the Student has met the
appropriate prerequisites, and returns a boolean value of true or false accordingly.

In our main() function, we now notice a set of nested try blocks. The purpose here is to illustrate
an inner try block that may call a method, such as s1.Validate(), which may raise an exception.
Notice that the same level handler as the inner try block catches this exception. Ideally, an exception
is handled at the level equal to the try block from which it originates, so let’s assume that the catcher
in this scope tries to do so. For example, our innermost catch block presumably tries to correct the
error and tests whether the correction has been made using a call to s1.TakePrerequisites().

But perhaps this catcher is only able to process the exception partially. Perhaps there is the knowledge
that an outer level handler knows how to do the remaining corrections. In such cases, it is acceptable
to re-throw this exception to an outer (nested) level. Our simple throw; statement in the innermost
catch block does just this. Notice that there is a catcher at the outer level. Should the thrown exception
match, type-wise, this outer level will now have the opportunity to further handle the exception and
hopefully correct the problem so that the application can continue. Only if this outer catch block is
unable to correct the error should the application be exited. In our example, each catcher prints out
the string representing the error message; therefore, this message occurs twice in the output.

Let’s look at the output for the aforementioned program:

Student does not meet prerequisites

Student does not meet prerequisites

Now that we have seen how to use nested try and catch blocks, let us move forward to see how a
variety of thrown types and a variety of catch blocks can be used together.

Adding an assortment of handlers

Sometimes, a variety of exceptions may be raised from an inner scope, creating the necessity to craft
handlers for a variety of data types. Exception handlers (that is, catch blocks) can receive an exception
of any data type. We can minimize the number of catchers we introduce by utilizing catch blocks with
base class types; we know that derived class objects (related through public inheritance) can always
be upcast to their base class type. We can also use the ellipses (…) in a catch block to allow us to catch
anything not previously specified.

Understanding exception handling 313

Let’s build on our initial example to illustrate assorted handlers in action. Though abbreviated, our
full program example can be found in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex4.cpp

// Assume Student class is as seen before, but with one

// additional virtual member function, Graduate(). Assume

// a simple Course class exists. All headers are as usual.

void Student::Graduate()

{ // Assume the below if statements are fully implemented

 if (gpa < 2.0) // if gpa doesn't meet requirements

 throw gpa;

 // if Student is short credits, throw number missing

 throw numCreditsMissing; // assume this is an int

 // or if Student is missing a Course, construct, then

 // throw the missing Course as a referenceable object

 // Assume appropriate Course constructor exists

 throw Course("Intro. To Programming", 1234);

 // or if another issue, throw a diagnostic message

 throw string("Does not meet requirements");

}

int main()

{

 Student s1("Ling", "Mau", 'I', "Ms.", 3.1,

 "C++", "55UD");

 try

 {

 s1.Graduate();

 }

 catch (float err)

 {

 cout << "Too low gpa: " << err << endl;

 exit(1); // only if you can't fix, exit gracefully

 }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex4.cpp

Handling Exceptions314

 catch (int err)

 {

 cout << "Missing " << err << " credits" << endl;

 exit(2);

 }

 catch (const Course &err)

 {

 cout << "Need to take: " << err.GetTitle() << endl;

 cout << "Course #: " << err.GetCourseNum() << endl;

 // Ideally, correct the error, and continue program

 exit(3); // Otherwise, exit, gracefully if possible

 }

 catch (const string &err)

 {

 cout << err << endl;

 exit(4);

 }

 catch (...)

 {

 cout << "Exiting" << endl;

 exit(5);

 }

 cout << "Moving onward with remainder of code.";

 cout << endl;

 return 0;

}

In the aforementioned segment of code, we first examine the Student::Graduate() member
function. Here, we can imagine that this method runs through many graduation requirements, and as
such, can potentially raise a variety of different types of exceptions. For example, should the Student
instance have too low of a gpa, a float is thrown as the exception, indicating the student’s poor gpa.
Should the Student have too few credits, an integer is thrown, indicating how many credits the
Student still needs to earn their degree.

Perhaps the most interesting potential error that Student::Graduate() might raise would
be if a required Course is missing from a student’s graduation requirements. In this scenario,
Student::Graduate() would instantiate a new Course object, filling it with the Course name and
number via construction. This anonymous object would then be thrown from Student::Graduate(),

Understanding exception handling 315

much as an anonymous string object may be alternatively thrown in this method. The handler may
then catch the Course (or string) object by reference.

In the main() function, we merely wrap the call to Student::Graduate() within a try block,
as this statement may raise an exception. A sequence of catchers follows the try block – one catch
statement per type of object that may be thrown. The last catch block in this sequence uses ellipses (…),
indicating that this catcher will handle any other type of exception thrown by Student::Graduate()
that has not been caught by the other catchers.

The catch block that is actually engaged is the one in which a Course is caught using const Course
&err. With the const qualifier, we may not modify the Course in the handler, so we may only
apply const member functions to this object.

Note that though each earlier catcher shown merely prints out an error and then exits, ideally, a
catcher would try to correct the error so that the application would not need to terminate, allowing
code below the catch blocks to continue onward.

Let’s look at the output for the aforementioned program:

Need to take: Intro. to Programming

Course #: 1234

Now that we have seen a variety of thrown types and a variety of catch blocks, let us move forward to
understand what we should group together within a single try block.

Grouping together dependent items within a try block

It is important to remember that when a line of code in a try block encounters an exception, the
remainder of the try block is ignored. Instead, the program continues with a matching catcher (or
calls terminate() if no suitable catcher exists). Then, if the error is repaired, the code beyond the
catcher commences. Note that we never return to complete the remainder of the initial try block. The
implication of this behavior is that you should only group together elements within a try block that
go together. That is, if one item causes an exception, it is no longer important to complete the other
item in that grouping.

Keep in mind that the goal of a catcher is to correct an error if at all possible. This means that the
program may continue forward after the applicable catch block. You may ask: Is it now acceptable that
an item was skipped in the associated try block? Should the answer be no, then rewrite your code.
For example, you may want to add a loop around the try-catch grouping such that if an error is
corrected by a catcher, the whole enterprise is retried starting with the initial try block.

Alternatively, make smaller, successive try-catch groupings. That is, try only one important task
in its own try block (followed by applicable catchers). Then try the next task in its own try block with
its associated catchers and so on.

Next, let’s take a look at a way to include in a function’s prototype the type of exceptions it may throw.

Handling Exceptions316

Examining exception specifications in function prototypes

We can optionally specify the types of exceptions a C++ function may throw by extending the signature
of that function to include the object types of what may be thrown. However, because a function may
throw more than one type of exception (or none at all), checking which type is actually thrown must
be done at runtime. For this reason, these augmented specifiers in the function prototype are also
known as dynamic exception specifications. Though deprecated, dynamic exceptions will lay the
groundwork for the noexcept specifier, which we’ll see shortly. Uses of dynamic exceptions also
occur in existing code bases and libraries, so let’s briefly examine its usage.

Let’s see an example using exception types in the extended signature of a function:

void Student::Graduate() throw(float, int,

 Course &, string)

{

 // this method might throw any type included in

 // its extended signature

}

void Student::Enroll() throw()

{

 // this method might throw any type of exception

}

In the aforementioned code fragment, we see two member functions of Student .
Student::Graduate() includes the throw keyword after its parameter list and then, as part of
this method’s extended signature, includes the types of objects that may be thrown from this function.
Notice that the Student::Enroll() method merely has an empty list following throw() in
its extended signature. This means that Student::Enroll() might throw any type of exception.

In both cases, by adding the throw() keyword with optional data types to the signature, we are
providing a means to announce to the user of this function what types of objects might be thrown.
We are then asking programmers to include any calls to this method within a try block followed by
appropriate catchers.

We will see that though the idea of an extended signature seems very helpful, it has unfavorable
issues in practice. For this reason, dynamic exception specifications have been deprecated. Because
you may still see these specifications used in existing code, including Standard Library prototypes
(such as with exceptions), this deprecated feature is still supported by compilers, and you will need
to understand their usage.

Though dynamic exceptions (extended function signatures as previously described) have been
deprecated, a specifier with a similar purpose has been added to the language, the noexcept keyword.

Understanding exception handling 317

 This specifier can be added after the extended signature as follows:

void Student::Graduate() noexcept // will not throw()

{ // same as noexcept(true) in extended signature

} // same as deprecated throw() in ext. signature

void Student::Enroll() noexcept(false) // may throw()

{ // an exception

}

Nonetheless, let’s investigate why unfavorable issues exist relating to dynamic exceptions by looking
at what happens when our application throws exceptions that are not part of a function’s extended
signature.

Dealing with unexpected types of dynamic exceptions

Should an exception be thrown of a type other than that specified in the extended function prototype,
unexpected(), from the C++ Standard Library, will be called. You can register your own function
with unexpected(), much as we registered our own function with set_terminate() earlier
in this chapter.

You can allow your AppSpecificUnexpected() function to rethrow an exception of the type
that the originating function should have thrown; however, if that does not occur, terminate()
will then be called. Furthermore, if no possible matching catcher exists to handle what is correctly
thrown from the originating function (or rethrown by AppSpecificUnexpected()), then
terminate() will be called.

Let’s see how to use set_unexpected() with our own function:

void AppSpecificUnexpected()

{

 cout << "An unexpected type was thrown" << endl;

 // optionally re-throw the correct type, or

 // terminate() will be called.

}

int main()

{

 set_unexpected(AppSpecificUnexpected)

}

Handling Exceptions318

Registering our own function with set_unexpected() is very simple, as illustrated in the
aforementioned code fragment.

Historically, one motivating reason for employing exception specification in a function’s extended
signature was to provide a documentative effect. That is, you could see which exceptions a function
might possibly throw simply by examining its signature. You could then plan to enclose that function
call within a try block and provide appropriate catchers to handle any potential situation.

Nonetheless, regarding dynamic exceptions, it is useful to note that compilers do not check that the
types of exceptions actually thrown in a function body match the types specified in the function’s
extended signature. It is up to the programmer to ensure that they are in sync. Therefore, this deprecated
feature can be error-prone and, overall, less useful than its original intention.

Though well intended, dynamic exceptions are currently unused, except in large quantities of library
code such as the Standard C++ Library. Since you will inevitably utilize these libraries, it is important
to understand these anachronisms.

Important note
Dynamic exception specifications (that is, the ability to specify exception types in a method’s
extended signature) have been deprecated in C++. This is because compilers are not able to
validate their use, which must then be delayed until runtime. Their use, though still supported
(many libraries have such specifications), is now deprecated.

Now that we have seen an assortment of exception handling detection, raising, catching, and (hopefully)
correction schemes, let’s take a look at how we might create a hierarchy of exception classes to add
sophistication to our error handling abilities.

Utilizing exception hierarchies
Creating a class to encapsulate the details relating to a program error seems like a useful endeavor. In
fact, the C++ Standard Library has created one such generic class, exception, to provide the basis
for building an entire hierarchy of useful exception classes.

Let’s take a look at the exception class with its Standard Library descendants, and then how we
may extend exception with our own classes.

Using standard exception objects

The exception class is defined in the C++ Standard Library and is available merely by including
the <exception> header. The exception class includes virtual functions with the following
signatures: virtual const char *what() const noexcept and virtual const
char *what() const throw(). These signatures indicate that derived classes should redefine
what() to return a const char * with a description of the error at hand. The const keyword

Utilizing exception hierarchies 319

after what() indicates that these are const member functions; they will not change any members of
the derived class. The noexcept usage in the first prototype indicates that what() is non-throwing.
The throw() in the extended signature of the second prototype indicates that this function may
throw any type. The usage of throw() in the second signature is a deprecated anachronism and
should not be used in new code.

The std::exception class is the base class of a variety of predefined C++ exception classes,
including bad_alloc, bad_cast, bad_exception, bad_function_call, bad_typeid,
bad_weak_ptr, logic_error, runtime_error, and nested class ios_base::failure.
Many of these derived classes have descendants themselves, adding additional standard exceptions to
the predefined hierarchy of exceptions.

Should a function throw any of the aforementioned exceptions, these exceptions may be caught by
either catching the base class type, exception, or by catching an individual derived class type.
Depending on what course of action your handler will take, you can decide whether you wish to catch
one such exception as its generalized base class type or as its specific type.

Just as the Standard Library has set up a hierarchy of classes based on the exception class, so may
you. Let’s next take a look at how we might do just this!

Creating customized exception classes

As a programmer, you may decide that it is advantageous to establish your own specialized exception
types. Each type can pack useful information into an object detailing just what went wrong with the
application. Additionally, you may be able to pack clues into the object (which will be thrown) as to
how to correct the error at hand. Simply derive your class from the Standard Library exception class.

Let’s take a look at how easily this may be done by examining the critical portions of our next example,
which can be found as a full program in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex5.cpp

#include <iostream>

#include <exception>

// See online code for many using std:: inclusions

class StudentException: public exception

{

private:

 int errCode = 0; // in-class init, will be over-

 // written with bonified value after successful

 // alternate constructor completion

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex5.cpp

Handling Exceptions320

 string details;

public:

 StudentException(const string &det, int num):

 errCode(num), details(det) { }

 // Base class destructor (exception class) is virtual.

 // Override at this level if there's work to do.

 // We can omit the default destructor prototype.

 // ~StudentException() override = default;

 const char *what() const noexcept override

 { // overridden function from exception class

 return "Student Exception";

 }

 int GetCode() const { return errCode; }

 const string &GetDetails() const { return details; }

};

// Assume Student class is as we've seen before, but with

// one additional virtual member function, Graduate()

void Student::Graduate() // fn. may throw StudentException

{

 // if something goes wrong, construct a

 // StudentException, packing it with relevant data,

 // and then throw it as a referenceable object

 throw StudentException("Missing Credits", 4);

}

int main()

{

 Student s1("Alexandra", "Doone", 'G', "Miss", 3.95,

 "C++", "231GWU");

 try

 {

 s1.Graduate();

 }

Utilizing exception hierarchies 321

 catch (const StudentException &e) // catch exc. by ref

 {

 cout << e.what() << endl;

 cout << e.GetCode() << " " << e.GetDetails();

 cout << endl;

 // Grab useful info from e and try to fix problem

 // so that the program can continue.

 exit(1); // only exit if we can't fix the problem!

 }

 return 0;

}

Let’s take a few minutes to examine the previous segment of code. Foremost, notice that we define
our own exception class, StudentException. It is a derived class from the C++ Standard Library
exception class.

The StudentException class contains data members to hold an error code as well as
alphanumeric details describing the error condition using data members errCode and details,
respectively. We have two simple access functions, StudentException::GetCode() and
StudentException::GetDetails(), to easily retrieve these values. As these methods do
not modify the object, they are const member functions.

We notice that the StudentException constructor initializes the two data members – one through
the member initialization list and one in the body of the constructor. We also override the virtual
const char *what() const noexcept method (as introduced by the exception class)
in our StudentException class to return the string of characters "Student Exception".

Next, let’s examine our Student::Graduate() method. This method may throw a
StudentException. If an exception must be thrown, we instantiate one, constructing it with
diagnostic data, and then throw the StudentException from this function. Note that the object
thrown has no local identifier in this method – there’s no need, as any such local variable name would
soon be popped off the stack after the throw occurred.

In our main() function, we wrap our call to s1.Graduate() within a try block, and it is followed
by a catch block that accepts a reference (&) to a StudentException, which we treat as const.
Here, we first call our overridden what() method and then print out the diagnostic details from
within the exception, e. Ideally, we would use this information to try to correct the error at hand and
only exit the application if truly necessary.

Let’s look at the output for the aforementioned program:

Student Exception

4 Missing Credits

Handling Exceptions322

Though the most usual way to create a customized exception class is to derive a class from the Standard
exception class, you may also wish to utilize a different technique, that of an embedded exception class.

Creating a nested exception class

As an alternative implementation, exception handling may be embedded into a class by adding a nested
class definition in the public access region for a particular outer class. The inner class will represent
the customized exception class.

Objects of nested, user defined types may be created and thrown to catchers anticipating such types.
These nested classes are built into the public access region of the outer class, making them easily
available for derived class usage and specialization. In general, exception classes built into an outer
class must be public so that the instances of nested types thrown can be caught and handled outside
the scope of the outer class (that is, in the scope where the primary, outer instance exists).

Let’s take a look at this alternate implementation of an exception class by examining key segments of
code, which can be found as a full program in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex6.cpp

// Assume Student class is as before, but with the addition

// of a nested exception class. All headers are as usual.

class Student: public Person

{

private: // assume usual data members

public: // usual constructors, destructor, and methods

 virtual void Graduate();

 class StudentException // nested exception class

 {

 private:

 int number = 0; // will be over-written after

 // successful alternate constructor

 // note: there is no default constructor

 public:

 StudentException(int num): number(num) { }

 // Remember, it is unnecessary to proto. default ~

 // ~StudentException() = default;

 int GetNum() const { return number; }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter11/Chp11-Ex6.cpp

Utilizing exception hierarchies 323

 };

};

void Student::Graduate()

{ // assume we determine an error and wish to throw

 // the nested exception type

 throw StudentException(5);

}

int main()

{

 Student s1("Ling", "Mau", 'I', "Ms.", 3.1,

 "C++", "55UD");

 try

 {

 s1.Graduate();

 }

 // following is one of many catch blocks in online code

 catch (const Student::StudentException &err)

 {

 cout << "Error: " << err.GetNum() << endl;

 // If you correct error, continue the program

 exit(5); // Otherwise, exit application

 }

 cout << "Moving onward with remainder of code.";

 cout << endl;

 return 0;

}

In the previous code fragments, we expanded our Student class to include a private, nested class called
StudentException. Though the class shown is overly simplified, the nested class ideally should
define a means to catalog the error in question as well as collect any useful diagnostic information.

In our main() function, we instantiate a Student, namely s1. In a try block, we then call
s1.Graduate();. Our Student::Graduate() method presumably checks that the
Student has met graduation requirements, and if not, throws an exception of the nested class type,
Student::StudentException (which will be instantiated as needed).

Handling Exceptions324

Notice that our corresponding catch block utilizes scope resolution to specify the inner class type for
err, the referenced object (that is, const Student::StudentException &err). Though
we ideally would like to correct the program error within the handler, if we cannot, we simply print
a message and exit().

Let’s look at the output for the aforementioned program:

Error: 5

Understanding how to create our own exception class (both as a nested class or derived from
std::exception) is useful. We may additionally wish to create a hierarchy of application-specific
exceptions. Let’s move ahead to see how to do so.

Creating hierarchies of user defined exception types

An application may wish to define a series of classes that support exception handling to raise specific
errors, and hopefully, also provide a means to collect diagnostics for an error so that the error may
be addressed in an appropriate segment of the code.

You may wish to create a subhierarchy, derived from the C++ Standard Library exception, of
your own exception classes. Be sure to use public inheritance. When utilizing these classes, you will
instantiate an object of your desired exception type (filling it with valuable diagnostic information),
and then throw that object.

Also, if you create a hierarchy of exception types, your catchers can catch specific derived class types
or more general base class types. The option is yours, depending on how you will plan to handle the
exception. Keep in mind, however, that if you have a catcher for both the base and derived class types,
place the derived class types first – otherwise your thrown object will first match to the base class type
catcher without realizing that a more appropriate derived class match is available.

We have now seen both the hierarchy of C++ Standard Library exception classes, as well as how to
create and utilize your own exception classes. Let’s now briefly recap the exception features we’ve
learned in this chapter, before moving forward to our next chapter.

Summary
In this chapter, we have begun expanding our C++ programming repertoire beyond OOP language
features to include features that will enable us to write more robust programs. User code can inevitably
be error-prone by nature; using language supported exception handling can help us achieve less buggy
and more reliable code.

Questions 325

We have seen how to utilize the core exception handling features with try, throw, and catch. We’ve
seen a variety of uses of these keywords – throwing exceptions to outer handlers, using an assortment
of handlers featuring various types, and selectively grouping program elements together within a single
try block, for example. We have seen how to register our own functions with set_terminate() and
set_unexpected(). We have seen how to utilize the existing C++ Standard Library exception
hierarchy. We have additionally explored defining our own exception classes to extend this hierarchy.

We have added key features to our C++ skills by exploring exception handling mechanisms. We are
now ready to move forward to Chapter 12, Friends and Operator Overloading, so that we can continue
expanding our C++ programming repertoire with useful language features that will make us better
programmers. Let’s move forward!

Questions
1. Add exception handling to your previous Student / University exercise from Chapter

10, Implementing Association, Aggregation, and Composition, as follows:

a. Should a Student try to enroll in more than the MAX defined number of allowable courses
per Student, throw a TooFullSchedule exception. This class may be derived from
the Standard Library exception class.

b. Should a Student try to enroll in a Course that is already full, have the
Course::AddStudent(Student *) method throw a CourseFull exception.
This class may be derived from the Standard Library exception class.

c. There are many other areas in the Student / University application that could utilize
exception handling. Decide which areas should employ simple error checking and which
are worthy of exception handling.

12
F r i e n d s a n d O p e r a t o r

O v e r l o a d i n g

This chapter will continue our pursuit of expanding your C++ programming repertoire beyond OOP
concepts, with the goal of writing more extensible code. We will next explore friend functions, friend
classes, and operator overloading in C++. We will understand how operator overloading can extend
operators beyond their usage with standard types to behave uniformly with user defined types, and
why this is a powerful OOP tool. We will learn how friend functions and classes can be safely used
to achieve this goal.

In this chapter, we will cover the following main topics:

• Understanding friend functions and friend classes, appropriate reasons to utilize, and measures
to add safety to their usage

• Learning about operator overloading essentials – how and why to overload operators, ensuring
operators are polymorphic between standard and user defined types

• Implementing operator functions and knowing when friends may be necessary

By the end of this chapter, you will unlock the proper usage of friends and understand their utility in
harnessing C++’s ability to overload operators. Though the usage of friend functions and classes can be
exploited, you will instead insist on their contained usage only within two tightly coupled classes. You
will understand how the proper usage of friends can enhance operator overloading, allowing operators
to be extended to support user defined types so they may work associatively with their operands.

Let’s increase our understanding of C++ by expanding your programming repertoire through exploring
friend functions, friend classes, and operator overloading.

Friends and Operator Overloading328

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter12. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter
number, followed by a dash, followed by the example number in the chapter at hand. For example,
the first full program in this chapter can be found in the subdirectory Chapter12 in a file named
Chp12-Ex1.cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3K0f4tb.

Understanding friend classes and friend functions
Encapsulation is a valuable OOP feature that C++ offers through the proper usage of classes and access
regions. Encapsulation offers uniformity in the manner in which data and behaviors are manipulated.
In general, it is unwise to forfeit the encapsulated protection that a class offers.

There are, however, selected programming situations in which breaking encapsulation slightly is
considered more acceptable than the alternative of providing an overly public interface to a class. That
is, when a class needs to provide methods for two classes to cooperate, yet, in general, those methods
are inappropriate to be publicly accessible.

Let’s consider a scenario that may lead us to consider slightly forfeiting (that is, breaking) the sacred
OOP concept of encapsulation:

• Two tightly coupled classes may exist that are not otherwise related to one another. One
class may have one or more associations with the other class and need to manipulate the
other class’s members. Yet, a public interface to allow access to such members would make
these internals overly public and subject to manipulation well beyond the needs of the pair
of tightly coupled classes.

• In this situation, it is a better choice to allow one class in the tightly coupled pair to have access
to the other class’s members versus providing a public interface in the other class that allows
for more manipulation of these members than is generally safe. We will see, momentarily, how
to minimize this prospective loss of encapsulation.

• Selected operator overloading situations, which we will soon see, may require an instance to
have access to its members while in a function that is outside of its class scope. Again, a fully
accessible public interface may be considered dangerous.

Friend functions and friend classes allow this selective breaking of encapsulation to occur. Breaking
encapsulation is serious and should not be done to simply override access regions. Instead, friends
can be used – with added safety measures – when the choices are slightly breaking encapsulation
between two tightly coupled classes or providing an overly public interface that would yield greater
and potentially unwanted access to another class’s members from various scopes in the application.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter12
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter12
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter12
https://bit.ly/3K0f4tb

Understanding friend classes and friend functions 329

Let us take a look at how each may be used, and then we will add the relevant safety measures we
should insist on employing. Let’s start with friend functions and friend classes.

Using friend functions and friend classes

Friend functions are functions that are individually granted extended scope to include the class with
which they are associated. Let’s examine the implications and logistics:

• In the scope of friend functions, an instance of the associated type can access its own members
as if it were in the scope of its own class.

• A friend function needs to be prototyped as a friend in the class definition of the class relinquishing
access (that is, extending its scope).

• The keyword friend is used in front of the prototype that provides access.

• Functions overloading friend functions are not considered friends.

Friend classes are classes in which every member function of the class is a friend function of the
associated class. Let’s examine the logistics:

• A friend class should have a forward declaration in the class definition of the class that is
providing it with access to its members (that is, scope).

• The keyword friend should precede the forward declaration of the class gaining access (that
is, whose scope has been extended).

Important note
Friend classes and friend functions should be utilized sparingly, only when breaking encapsulation
selectively and slightly is it a better choice than offering an overly public interface (that is, a
public interface that would universally offer undesired access to selected members within any
scope of the application).

Let’s begin by examining the syntax for friend classes and friend function declarations. The following
classes do not represent complete class definitions; however, the complete program can be found in
our online in our GitHub repository as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex1.cpp

class Student; // forward declaration of Student class

class Id // Partial class – full class can be found online

{

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex1.cpp

Friends and Operator Overloading330

private:

 string idNumber;

 Student *student = nullptr; // in-class initialization

public: // Assume constructors, destructor, etc. exist

 void SetStudent(Student *);

 // all member fns. of Student are friend fns to/of Id

 friend class Student;

};

// Note: Person class is as often defined; see online code

class Student : public Person

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 static int numStudents;

 Id *studentId = nullptr;

public: // Assume constructors, destructor, etc. exist

 // only the following mbr fn. of Id is a friend fn.

 friend void Id::SetStudent(Student *); // to/of Student

};

In the preceding code fragment, we first notice a friend class definition within the Id class. The
statement friend class Student; indicates that all member functions in Student are
friend functions to Id. This all-inclusive statement is in lieu of naming every function of the Student
class as a friend function of Id.

Also, in the Student class, notice the declaration of friend void Id::SetStudent(Student
*);. This friend function declaration indicates that only this specific member function of Id is a
friend function of Student.

The implication of the friend function prototype friend void Id::SetStudent(Student
*); is that if a Student finds itself in the scope of the Id::SetStudent() method, that
Student may manipulate its own members as though it is in its own scope, namely that of Student.
You may ask, which Student may find itself in the scope of Id::SetStudent(Student
*)? That’s easy, it is the one passed to the method as an input parameter. The result is that the input
parameter of type Student * in the Id::SetStudent() method may access its own private
and protected members as if the Student instance were in its own class scope – it is in the scope
of a friend function.

Understanding friend classes and friend functions 331

Similarly, the implication of the friend class forward declaration: friend class Student;
found in the Id class is that if any Id instance finds itself in a Student method, that Id instance
can access its own private or protected methods as if it were in its own class. The Id instance may
be in any member function of its friend class, Student; it is as though those methods have been
augmented to also have the scope of the Id class.

Notice that the class giving up access – that is, the class widening scope – is the one to announce
friendship. That is, the friend class Student; statement in Id says: If any Id happens to
be in any member function of Student, allow that Id to have full access to its members as if it is
in its own scope. Likewise, the friend function statement in Student indicates that if a Student
instance is found (via the input parameter) in this particular method of Id, it may have access to its
elements fully, as though it were in a member function of its own class. Think in terms of friendship
as a means of augmenting scope.

Now that we have seen the basic mechanics of friend functions and friend classes, let’s employ a simple
contract to make it a bit more appealing to selectively break encapsulation.

Making access safer when using friends

We have seen that two tightly coupled classes, such as those related through an association, may need
to extend their scope somewhat to selectively include one another through the use of friend functions
or friend classes. The alternative is offering a public interface to select elements of each class. However,
consider that you may not want the public interface to those elements to be uniformly accessible to
be used in any scope of the application. You are truly facing a tough choice: utilize friends or provide
an overly public interface.

Though it may make you initially cringe to utilize friends, it may be safer than the alternative of
providing an undesired public interface to class elements.

To lessen the panic that you feel towards the selective breaking of encapsulation that friends allow,
consider adding the following contract to your usage of friends:

• When utilizing friends, to lessen the loss of encapsulation, one class can provide private access
methods to the other class’ data members. Consider making these methods inline for efficiency,
as they are simple access methods (typically single line methods not likely to add software bloat
through their expansion).

• The instance in question should agree to only utilize the private access methods created to
appropriately access its desired members while in the scope of the friend function (even though
it could actually unrestrictedly access any data or methods of its own type in the scope of the
friend function). This informal understanding is, of course, a gentleman’s agreement, and not
language imposed.

Friends and Operator Overloading332

Here is a simple example to illustrate two tightly coupled classes appropriately using a friend class.
Though the main() function and several methods are not shown to save space, the complete example
can be found in our GitHub repository as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex2.cpp

using Item = int;

class LinkList; // forward declaration

class LinkListElement

{

private:

 void *data = nullptr; // in-class initialization

 LinkListElement *next = nullptr;

 // private access methods to be used in scope of friend

 void *GetData() const { return data; }

 LinkListElement *GetNext() const { return next; }

 void SetNext(LinkListElement *e) { next = e; }

public:

 // All member functions of LinkList are friend

 // functions of LinkListElement

 friend class LinkList;

 LinkListElement() = default;

 LinkListElement(Item *i): data(i), next(nullptr) { }

 ~LinkListElement() { delete static_cast<Item *>(data);

 next = nullptr; }

};

// LinkList should only be extended as a protected/private

// base class; it does not contain a virtual destructor. It

// can be used as-is, or as implementation for another ADT.

class LinkList

{

private:

 LinkListElement *head = nullptr, *tail = nullptr,

 *current = nullptr; // in-class init.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex2.cpp

Understanding friend classes and friend functions 333

public:

 LinkList() = default;

 LinkList(LinkListElement *e)

 { head = tail = current = e; }

 void InsertAtFront(Item *);

 LinkListElement *RemoveAtFront();

 void DeleteAtFront() { delete RemoveAtFront(); }

 bool IsEmpty() const { return head == nullptr; }

 void Print() const; // see online definition

 ~LinkList() { while (!IsEmpty()) DeleteAtFront(); }

};

Let’s examine the preceding class definitions for LinkListElement and LinkList. Notice that
in the LinkListElement class, we have three private member functions: void *GetData();,
LinkListElement *GetNext();, and void SetNext(LinkListElement *);.
These three member functions should not be part of the public class interface. It is only appropriate
for these methods to be used within the scope of LinkList, a class that is tightly coupled with
LinkListElement.

Next, notice the friend class LinkList; forward declaration in the LinkListElement
class. This declaration means that all member functions of LinkList are friend functions of
LinkListElement. As a result, any LinkListElement instances that find themselves in
LinkList methods may access their own aforementioned private GetData(), GetNext(),
and SetNext() methods simply because they will be in the scope of a friend class.

Next, let’s take a look at the LinkList class in the preceding code. The class definition itself does not
have any unique declarations with respect to friendship. After all, it is the LinkListElement class
that has widened its scope to include methods of the LinkedList class, not the other way around.

Now, let’s take a look at two selected member functions of the LinkList class. The full complement
of these methods may be found online, at the previously mentioned URL:

void LinkList::InsertAtFront(Item *theItem)

{

 LinkListElement *newHead = new LinkListElement(theItem);

 // Note: temp can access private SetNext() as if it were

 // in its own scope – it is in the scope of a friend fn.

 newHead->SetNext(head);// same as: newHead->next = head;

 head = newHead;

}

Friends and Operator Overloading334

LinkListElement *LinkList::RemoveAtFront()

{

 LinkListElement *remove = head;

 head = head->GetNext(); // head = head->next;

 current = head; // reset current for usage elsewhere

 return remove;

}

As we examine the aforementioned code, we can see that in a sampling of LinkList methods, a
LinkListElement can call private methods on itself because it is in the scope of a friend function
(which is essentially its own scope, widened). For example, in LinkList::InsertAtFront(),
LinkListElement *temp sets its next member to head using temp->SetNext(head).
Certainly, we could have also directly accessed the private data member here using temp->next =
head;. However, we maintained a modicum of encapsulation by LinkListElement providing
private access functions, such as SetNext(), and asking LinkList methods (friend functions)
to have temp utilize private method SetNext(), rather than just directly manipulating the data
member itself.

Because GetData(), GetNext(), and SetNext() in LinkListElement are inline
functions, we do not forfeit performance by providing a sense of encapsulated access to members
data and next.

We can similarly see that other member functions of LinkList, such as RemoveAtFront()
(and Print() which appears in the online code) have LinkListElement instances utilizing
its private access methods, rather than allowing the LinkListElement instances to grab their
private data and next members directly.

LinkListElement and LinkList are iconic examples of two tightly coupled classes in
which it may be better to extend one class to include the other’s scope for access, rather than
providing an overly public interface. After all, we wouldn’t want users in main() to get their hands
on a LinkListElement and apply SetNext(), for example, which could change an entire
LinkedList without the LinkList class’ knowledge.

Now that we have seen the mechanics as well as suggested usage for friend functions and classes,
let’s explore another language feature that may need to utilize friends – that of operator overloading.

Deciphering operator overloading essentials
C++ has a variety of operators in the language. C++ allows most operators to be redefined to include
usage with user defined types; this is known as operator overloading. In this way, user defined types
may utilize the same notation as standard types to perform these well-understood operations. We
can view an overloaded operator as polymorphic in that its same form can be used with a variety of
types – standard and user defined.

Deciphering operator overloading essentials 335

Not all operators may be overloaded in C++. The following operators cannot be overloaded: the member
access operator (.), the ternary conditional operator (?:), the scope resolution operator (::), the
pointer-to-member operator (.*), the sizeof() operator, and the typeid() operator. All the
rest may be overloaded, provided at least one operand is a user defined type.

When overloading an operator, it is important to promote the same meaning that the operator has
for standard types. For example, the extraction operator (<<) is defined when used in conjunction
with cout to print to standard output. This operator can be applied to various standard types, such
as integers, floating-point numbers, character strings, and so on. Should the extraction operator (<<)
be overloaded for a user defined type, such as Student, it should also mean to print to standard
output. In this fashion, operator << is polymorphic when used in the context of an output buffer, such
as cout; that is, it has the same meaning but different implementation for all types.

It is important to note that when overloading an operator in C++, we may not change the predefined
precedence of the operators as they occur in the language. This makes sense – we are not rewriting
the compiler to parse and interpret expressions differently. We are merely extending the meaning of
an operator from its usage with standard types to include usage with user defined types. Operator
precedence will remain unchanged.

An operator function is utilized to redefine or overload an operator in C++. The name of the function
is simply the name operator, followed by the symbol representing the operator which you wish
to overload.

Let’s take a look at the simple syntax of an operator function prototype:

Student &operator+(float gpa, const Student &s);

Here, we intend to provide a means to add a floating-point number and a Student instance using
the C++ addition operator (+). The meaning of this addition might be to average the new floating-
point number with the student’s existing grade point average. Here, the name of the operator function
is operator+().

In the aforementioned prototype, the operator function is not a member function of any class. The left
expected operand will be a float and the right operand will be a Student. The return type of the
function (Student &) allows us to cascade the use of + with multiple operands or be paired with
multiple operators, such as s1 = 3.45 + s2;. The overall concept is that we can define how to
use + with multiple types, provided at least one operand is a user defined type.

There’s actually a lot more involved than the simple syntax shown in the previous prototype. Before
we fully examine a detailed example, let’s first take a look at more logistics relating to implementing
operator functions.

Friends and Operator Overloading336

Implementing operator functions and knowing when friends
might be necessary

An operator function, the mechanism to overload an operator, may be implemented as a member
function or as a regular, external function. Let’s summarize the mechanics of implementing operator
functions with the following key points:

• Operator functions that are implemented as member functions will receive an implicit
argument (the this pointer), plus, at most, one explicit argument. If the left operand in the
overloaded operation is a user defined type in which modifications to the class can easily be
made, implementing the operator function as a member function is reasonable and preferred.

• Operator functions that are implemented as external functions will receive one or two explicit
arguments. If the left operand in the overloaded operation is a standard type or a class type
that is not modifiable, then an external (non-member) function must be used to overload this
operator. This external function may need to be a friend of any object type that is used as
the right-hand function argument.

• Operator functions should most often be implemented reciprocally. That is, when overloading
a binary operator, ensure that it has been defined to work no matter what order the data types
(should they differ) appear in the operator.

Let’s take a look at a full program example to illustrate the mechanics of operator overloading, including
member and non-member functions, as well as scenarios requiring the usage of friends. Though some
well-known portions of the program have been excluded to save space, the full program example can
be found online in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex3.cpp

// Assume usual header files and std namespace inclusions

class Person

{

private:

 string firstName, lastname;

 char middleInitial = '\0';

 char *title = nullptr; // use ptr member to demonstrate

 // deep assignment

protected:

 void ModifyTitle(const string &); // converts to char *

public:

 Person() = default; // default constructor

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter12/Chp12-Ex3.cpp

Deciphering operator overloading essentials 337

 Person(const string &, const string &, char,

 const char *);

 Person(const Person &); // copy constructor

 virtual ~Person(); // virtual destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 const char *GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 virtual void Print() const;

 virtual void IsA() const;

 // overloaded operator functions

 Person &operator=(const Person &); // overloaded assign

 bool operator==(const Person &); // overloaded

 // comparison

 Person &operator+(const string &); // overloaded plus

 // non-mbr friend fn. for op+ (to make associative)

 friend Person &operator+(const string &, Person &);

};

Let’s begin our code examination by first looking at the preceding class definition for Person. In
addition to the class elements that we are accustomed to seeing, we have four operator functions
prototyped: operator=(), operator==(), and operator+() (which is implemented
twice so that the operands to + can be reversed).

Functions for operator=(), operator==(), and one version of operator+() will be
implemented as member functions of this class, whereas the other operator+(), with const
char * and Person parameters, will be implemented as a non-member function and will
additionally necessitate the use of a friend function.

Overloading the assignment operator

Let’s move forward to examine the applicable operator function definitions for this class, starting by
overloading the assignment operator:

// Assume the required constructors, destructor and basic

// member functions prototyped in the class def. exist.

// overloaded assignment operator

Person &Person::operator=(const Person &p)

Friends and Operator Overloading338

{

 if (this != &p) // make sure we're not assigning an

 { // object to itself

 // delete any previously dynamically allocated data

 // from the destination object

 delete title;

 // Also, remember to reallocate memory for any

 // data members that are pointers

 // Then, copy from source to destination object

 // for each data member

 firstName = p.firstName;

 lastName = p.lastName;

 middleInitial = p.middleInitial;

 // Note: a pointer is used for title to demo the

 // necessary steps to implement a deep assignment -

 // otherwise, we would implement title with string

 title = new char[strlen(p.title) + 1]; // mem alloc

 strcpy(title, p.title);

 }

 return *this; // allow for cascaded assignments

}

Let us now review the overloaded assignment operator in the preceding code. It is designated by the
member function Person &Person::operator=(const Person &p);. Here, we will
be assigning memory from a source object, which will be input parameter p, to a destination object,
which will be pointed to by this.

Our first order of business will be to ensure that we are not assigning an object to itself. Should this
be the case, there is no work to be done! We make this check by testing if (this != &p) to see
whether both addresses point to the same object. If we’re not assigning an object to itself, we continue.

Next, within the conditional statement (if), we first deallocate the existing memory for the dynamically
allocated data members pointed to by this. After all, the object on the left-hand of the assignment
pre-exists and undoubtedly has allocations for these data members.

Now, we notice that the core piece of code within the conditional statement looks very similar to that
of the copy constructor. That is, we carefully allocate space for pointer data members to match the sizes
needed from their corresponding data members of input parameter p. We then copy the applicable
data members from input parameter p to the data members pointed to by this. For the char data
member, middleInitial, a memory allocation is not necessary; we merely use an assignment.

Deciphering operator overloading essentials 339

This is also true for the string data members, firstName and lastName. In this segment of
code, we ensure that we have performed a deep assignment for any pointer data members. A shallow
(pointer) assignment, where the source and destination object would otherwise share memory for the
data portions of data members that are pointers, would be a disaster waiting to happen.

Lastly, at the end of our implementation of operator=(), we return *this. Notice that the return
type from this function is a reference to a Person. Since this is a pointer, we merely dereference
it so that we may return a referenceable object. This is done so that assignments between Person
instances can be cascaded; that is, p1 = p2 = p3; where p1, p2, and p3 are each an instance
of Person.

Note
When overloading operator=, always check for self-assignment. That is, make sure you are not
assigning an object to itself. Not only is there no work to be done in the case of self-assignment,
but proceeding with an unnecessary self-assignment can actually create unexpected errors!
For example, if we have dynamically allocated data members, we will be releasing destination
object memory and re-allocating those data members based on the details of the source object’s
memory (which, when being the same object, will have been released). The resulting behavior
can be unpredictable and error-prone.

Should the programmer wish to disallow assignment between two objects, the keyword delete can
be used in the prototype of the overloaded assignment operator as follows:

 // disallow assignment

 Person &operator=(const Person &) = delete;

It is useful to remember that an overloaded assignment operator shares many similarities with the copy
constructor; the same care and cautions apply to both language features. Keep in mind, however, that
the assignment operator will be invoked when conducting an assignment between two pre-existing
objects, whereas the copy constructor is implicitly invoked for initialization following the creation of
a new instance. With the copy constructor, the new instance uses the existing instance as its basis for
initialization; similarly, the left-hand object of the assignment operator uses the right-hand object as
its basis for the assignment.

Important note
An overloaded assignment operator is not inherited by derived classes; therefore, it must be
defined by each class in the hierarchy. Neglecting to overload operator= for a class will
force the compiler to provide you with a default, shallow assignment operator for that class;
this is dangerous for any classes containing data members that are pointers.

Friends and Operator Overloading340

Overloading the comparison operator

Next, let’s take a look at our implementation of the overloaded comparison operator:

// overloaded comparison operator

bool Person::operator==(const Person &p)

{

 // if the objects are the same object, or if the

 // contents are equal, return true. Otherwise, false.

 if (this == &p)

 return true;

 else if ((!firstName.compare(p.firstName)) &&

 (!lastName.compare(p.lastName)) &&

 (!strcmp(title, p.title)) &&

 (middleInitial == p.middleInitial))

 return true;

 else

 return false;

}

Continuing with a segment from our previous program, we overload the comparison operator. It is
designated by the member function int Person::operator==(const Person &p);.
Here, we will be comparing a Person object on the right-hand side of the operator, which will be
referenced by input parameter p, to a Person object on the left-hand side of the operator, which
will be pointed to by this.

Similarly, our first order of business will be to test whether the object on the right-hand side (rhs) is
the same as the object on the left-hand side (lhs). We make this check by testing if (this !=
&p) to see whether both addresses point to the same object. If both addresses point to the same
object, we return the boolean (bool) value of true.

Next, we check whether the two Person objects contain identical values. They may be separate
objects in memory, yet if they contain identical values, we can likewise choose to return a bool value
of true. If there is no match, we then return a bool value of false.

Overloading the addition operator as a member function

Now, let’s take a look at how to overload operator+ for Person and a string:

// overloaded operator + (member function)

Person &Person::operator+(const string &t)

{

Deciphering operator overloading essentials 341

 ModifyTitle(t);

 return *this;

}

Moving forward with the preceding program, we overload the addition operator (+) to be used with
a Person and a string. The operator function is designated by the member function prototype
Person& Person::operator+(const string &t);. The parameter, t, will represent
the right operand of operator+, which is a character string (which will bind to a reference to a
string). The left-hand operand will be pointed to by this. An example use would be p1 + "Miss",
where we wish to add a title to the Person p1 using operator+.

In the body of this member function, we merely use the input parameter t as an argument to
ModifyTitle(), that is, ModifyTitle(t);. We then return *this so that we may cascade
the use of this operator (notice the return type is a Person &).

Overloading the addition operator as a non-member function (using friends)

Now, let’s reverse the order of operands with operator+ to allow for a string and a Person:

// overloaded + operator (not a mbr function)

Person &operator+(const string &t, Person &p)

{

 p.ModifyTitle(t);

 return p;

}

Continuing forward with the preceding program, we would ideally like operator+ to work not
only with a Person and a string but also with the operands reversed, that is, with a string
and a Person. There is no reason this operator should work one way and not the other.

To implement operator+ fully, we next overload operator+() to be used with const
string & and Person. The operator function is designated by the non-member function Person&
operator+(const string &t, Person &p);, which has two explicit input parameters.
The first parameter, t, will represent the left operand of operator+, which is a character string
(binding this parameter to a reference to a string as the first formal parameter in the operator function).
The second parameter, p, will be a reference to the right operand used in operator+. An example
use might be "Miss" + p1, where we wish to add a title to the Person p1 using operator+.
Note that "Miss" will be constructed as a string using the std::string(const char
*) constructor—the string literal is simply the initial value for the string object.

In the body of this non-member function, we merely take input parameter p and apply the protected
method ModifyTitle() using the string of characters specified by parameter t, that is,
p.ModifyTitle(t). However, because Person::ModifyTitle() is protected, Person

Friends and Operator Overloading342

&p may not invoke this method outside of member functions of Person. We are in an external
function; we are not in the scope of Person. Therefore, unless this member function is a friend
of Person, p may not invoke ModifyTitle(). Luckily, Person &operator+(const
string &, Person &); has been prototyped as a friend function in the Person class,
providing the necessary scope to p to allow it to invoke its protected method. It is as if p is in the
scope of Person; it is in the scope of a friend function of Person!

Let us now move forward to our main() function, tying together our many aforementioned code
segments, so we may see how to invoke our operator functions utilizing our overloaded operators:

int main()

{

 Person p1; // default constructed Person

 Person p2("Gabby", "Doone", 'A', "Miss");

 Person p3("Renee", "Alexander", 'Z', "Dr.");

 p1.Print();

 p2.Print();

 p3.Print();

 p1 = p2; // invoke overloaded assignment operator

 p1.Print();

 p2 = "Ms." + p2; // invoke overloaded + operator

 p2.Print(); // then invoke overloaded = operator

 p1 = p2 = p3; // overloaded = can handle cascaded =

 p2.Print();

 p1.Print();

 if (p2 == p2) // overloaded comparison operator

 cout << "Same people" << endl;

 if (p1 == p3)

 cout << "Same people" << endl;

 return 0;

}

Finally, let us examine our main() function for the preceding program. We begin by instantiating
three instances of Person, namely p1, p2, and p3; we then print their values using member function
Print() for each instance.

Now, we invoke our overloaded assignment operator with the statement p1 = p2;. Under the
hood, this translates to the following operator function invocation: p1.operator=(p2);.
From this, we can clearly see that we are invoking the previously defined operator=() method
of Person, which performs a deep copy from source object p2 to destination object p1. We apply
p1.Print(); to see our resulting copy.

Summary 343

Next, we invoke our overloaded operator+ with "Ms." + p2. This portion of this line of code
translates to the following operator function call: operator+("Ms.", p2);. Here, we simply
invoke our previously described operator+() function, which is a non-member function and
friend of the Person class. Because this function returns a Person &, we can cascade this
function call to look more like the usual context of addition and additionally write p2 = "Ms."
+ p2;. In this full line of code, first, operator+() is invoked for "Ms." + p2. The return
value of this invocation is p2, which is then used as the right-hand operand of the cascaded call to
operator=. Notice that the left-hand operand to operator= also happens to be p2. Fortunately,
the overloaded assignment operator checks for self-assignment.

Now, we see a cascaded assignment of p1 = p2 = p3;. Here, we are invoking the overloaded
assignment operator twice. First, we invoke operator= with p2 and p3. The translated call would
be p2.operator=(p3);. Then, using the return value of the first function call, we would invoke
operator= a second time. The nested, translated call for p1 = p2 = p3; would look like this:
p1.operator=(p2.operator=(p3));.

Lastly in this program, we invoke the overloaded comparison operator twice. For example, each
comparison of if (p2 == p2) or if (p1 == p3) merely calls the operator== member
function we have defined previously. Recall that we’ve written this function to report true either if
the objects are the same in memory or simply contain the same values, and return false otherwise.

Let’s take a look at the output for this program:

No first name No last name

Miss Gabby A. Doone

Dr. Renee Z. Alexander

Miss Gabby A. Doone

Ms. Gabby A. Doone

Dr. Renee Z. Alexander

Dr. Renee Z. Alexander

Same people

Same people

We have now seen how to specify and utilize friend classes and friend functions, how to overload
C++ operators, and have seen cases when these two concepts can complement each other. Let us now
briefly recap the features we have learned in this chapter before moving forward to our next chapter.

Summary
In this chapter, we have furthered our C++ programming endeavors beyond OOP language features
to include features that will enable us to write more extensible programs. We have learned how to
utilize friend functions and friend classes and we have learned how to overload operators in C++.

Friends and Operator Overloading344

We have seen that friend functions and classes should be used sparingly and with caution. They
are not meant to provide a blatant means to circumvent access regions. Instead, they are meant
to handle programming situations to allow access between two tightly coupled classes without
providing the alternative of an overly public interface in either of those classes, which could be
misused on a broader scale.

We have seen how to overload operators in C++ using operator functions, both as member and
non-member functions. We have learned that overloading operators will allow us to extend the
meaning of C++ operators to include user defined types in the same way they encompass standard
types. We have also seen that, in some cases, friend functions or classes may come in handy to help
implement operator functions so they may behave associatively.

We have added important features to our C++ repertoire through exploring friends and operator
overloading, the latter of which will help us to ensure code we will soon write using templates can
be used for nearly any data type, contributing to highly extensible and reusable code. We are now
ready to move forward to Chapter 13, Working with Templates, so that we can continue expanding
our C++ programming skills with essential language features that will make us better programmers.
Let’s move ahead!

Questions
1. Overload operator= in your Shape exercise from Chapter 8, Mastering Abstract Classes,

or alternatively, overload operator= in your ongoing LifeForm/Person/Student
classes as follows:

Define operator= in Shape (or LifeForm) and override this method in all of its
derived classes. Hint: the derived implementation of operator=() will do more work
than its ancestor, yet could call its ancestor’s implementation to perform the base class part
of the work.

2. Overload operator<< in your Shape class (or LifeForm class) to print information
about each Shape (or LifeForm). The arguments to this function should be an ostream
& and a Shape & (or a LifeForm &). Note that ostream is from the C++ Standard
Library (using namespace std;).

You may either provide one function, ostream &operator<<(ostream &,
Shape &);, and from it call a polymorphic Print(), which is defined in Shape and
redefined in each derived class. Or, provide multiple operator<< methods to implement
this functionality (one for each derived class). If using the Lifeform hierarchy, substitute
LifeForm for Shape, in the aforementioned operator<< function signature.

3. Create an ArrayInt class to provide safe integer arrays with bounds checking. Overload
operator[] to return an element if it exists in the array, or throw an exception if it is
OutOfBounds. Add other methods to ArrayInt, such as Resize(), RemoveElement(),

Questions 345

and so on. Model the data comprising the array using a dynamically allocated array (that is, using
int *contents) so that you can easily handle resizing. The code would begin as follows:

class ArrayInt // starting point for the class def.

{ // be sure to add: using std::to_string;

private: // and also: using std::out_of_range;

 int numElements = 0; // in-class init.

 int *contents = nullptr; // dynam. alloc. array

public:

 ArrayInt(int size); // set numElements and

 // allocate contents

 // returns a referenceable memory location or

 // throws an exception

 int &operator[](int index)

 {

 if (index < numElements)

 return contents[index];

 else // index is out of bounds

 throw std::out_of_range(

 std::to_string(index));

 }

};

int main()

{

 ArrayInt a1(5); // Create ArrayInt of 5 elements

 try

 {

 a1[4] = 7; // a1.operator[](4) = 7;

 }

 catch (const std::out_of_range &e)

 {

 cout << "Out of range: " << e.what() << endl;

 }

}

13
Working with Templates

This chapter will continue our pursuit of increasing your C++ programming repertoire beyond OOP
concepts, with the continued goal of writing more extensible code. We will next explore creating
generic code using C++ templates – both template functions and template classes. We will learn how
template code, when written correctly, is the pinnacle in code reuse. In addition to exploring how to
create both template functions and template classes, we will also understand how the appropriate use
of operator overloading can make a template function reusable for nearly any type of data.

In this chapter, we will cover the following main topics:

• Exploring template basics to genericize code

• Understanding how to create and use template functions and template classes

• Understanding how operator overloading can make templates more extensible

Many object-oriented languages include the concept of programming with generics, allowing the
types of classes and interfaces to be parameterized themselves. In some languages, generics are merely
wrappers for casting objects to the desired type. In C++, the idea of generics is more comprehensive
and is implemented using templates.

By the end of this chapter, you will be able to design more generic code by building both template
functions and template classes. You will understand how operator overloading can ensure that a
template function can become highly extensible for any data type. By pairing together well-designed
template member functions with operator overloading, you will be able to create highly reusable and
extensible template classes in C++.

Let’s increase our understanding of C++ by expanding your programming repertoire by exploring
templates.

Working with Templates348

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter13. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter13 in a file
named Chp13-Ex1.cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3A7lx0U.

Exploring template basics to genericize code
Templates allow code to be generically specified in a manner that is abstracted from the data types
primarily used within relevant functions or classes. The motivation for creating templates is to generically
specify the definition of functions and classes that we repeatedly want to utilize, but with varying data
types. The individualized versions of these components would otherwise differ only in the core data
type utilized; these key data types can then be extracted and written generically.

When we then opt to utilize such a class or function with a specific type, rather than copying and
pasting existing code from a similar class or function (with preset data types) and changing it slightly,
the preprocessor instead would take the template code and expand it for our requested, bonafide type.
This template expansion capability allows the programmer to write and maintain only one version of
the genericized code, versus the many type-specific versions of code that would otherwise need to be
written. The benefit is also that the preprocessor will do a more accurate expansion of the template
code to a bonafide type than we might have done using a copy, paste, and slight modification method.

Let’s take a moment to further investigate the motivation for using templates in our code.

Examining the motivation for templates

Imagine that we wish to create a class to safely handle dynamically allocated arrays for data type int,
such as we have created in a solution for Question 3 of Chapter 12, Friends and Operator Overloading.
Our motivation may be to have an array type that can grow or shrink to any size (unlike native, fixed-
sized arrays), yet have bounds checking for safe usage (unlike the raw manipulation of a dynamic array
implemented using int *, which would unscrupulously allow us to access elements well beyond the
length of our dynamic array allocation).

We may decide to create an ArrayInt class with the following beginning framework:

class ArrayInt

{

private:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter13
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter13
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter13
https://bit.ly/3A7lx0U

Exploring template basics to genericize code 349

 int numElements = 0; // in-class initialization

 int *contents = nullptr; // dynamically allocated array

public:

 ArrayInt(int size): numElements(size)

 {

 contents = new int [size];

 }

 ~ArrayInt() { delete [] contents; }

 int &operator[](int index) // returns a referenceable

 { // memory location or throws exception

 if (index < numElements)

 return contents[index];

 else // index selected is out of bounds

 throw std::out_of_range(std::to_string(index));

 }

};

int main()

{

 ArrayInt a1(5); // Create an ArrayInt of 5 elements

 try // operator[] could throw an exception

 {

 a1[4] = 7; // a1.operator[](4) = 7;

 }

 catch (const std::out_of_range &e)

 {

 cout << "Out of range: element " << e.what();

 cout << endl;

 }

}

In the previous code segment, notice that our ArrayInt class implements the data structure
comprising the array using int *contents, which is dynamically allocated to the desired size in
the constructor. We have overloaded operator[] to safely return only indexed values in the array
that are within the proper range, and throw a std::out_of_range exception otherwise. We can
add methods to Resize() an ArrayInt and so on. Overall, we love the safety and flexibility of
this class.

Working with Templates350

Now, we may want to have an ArrayFloat class (or later, an ArrayStudent class). Rather than
copying our baseline ArrayInt class and modifying it slightly to create an ArrayFloat class,
for example, we may ask whether there is a more automated way to make this substitution. After all,
what would we change in creating an ArrayFloat class using an ArrayInt class as a starting
point? We would change the type of the data member contents – from an int * to a float *.
We would change the type in the memory allocation in the constructor from contents = new
int [size]; to utilize float instead of int (and similarly so in any reallocation, such as in a
Resize() method).

Rather than copying, pasting, and slightly modifying an ArrayInt class to create an ArrayFloat
class, we can simply use a template class to genericize the type associated with the data manipulated
within this class. Similarly, any functions relying on the specific data type will become template
functions. We will examine the syntax for creating and utilizing templates shortly.

Using templates, we can instead create just one template class called Array where the type is genericized.
At compile time, should the preprocessor detect we have utilized this class for type int or float
in our code, the preprocessor will then provide the necessary template expansions for us. That is, by
copying and pasting (behind the scenes) each template class (and its methods) and substituting in
the data types that the preprocessor identifies we are using.

The resulting code, once expanded under the hood, is no smaller than if we had written the code for
each individual class ourselves. But the point is that we did not have to tediously create, modify, test,
and later maintain each minorly different class ourselves. This is done on our behalf by C++. This is
the noteworthy purpose of template classes and template functions.

Templates are not restricted for use with primitive data types. For example, we may wish to create
an Array of a user defined type, such as Student. We will need to ensure that all of our template
member functions are meaningful for the data types that we actually expand the template class to
utilize. We may need to overload selected operators so that our template member functions can work
seamlessly with user defined types, just as they do with primitive types.

We will later see in this chapter an example illustrating how we may need to overload selected operators
if we choose to expand a template class for user defined types so that the member functions of a class
can work fluidly with any data type. Fortunately, we know how to overload operators!

Let’s move forward to explore the mechanics of specifying and utilizing template functions and
template classes.

Understanding template functions and classes
Templates provide the ability to create generic functions and classes by abstracting the data types
associated with those functions and classes. Template functions and classes can both be carefully
written in such a way as to genericize the relevant data types that underlie these functions and classes.

Let’s begin by examining how to create and utilize template functions.

Understanding template functions and classes 351

Creating and using template functions

Template functions parameterize the types of arguments in a function in addition to the arguments
themselves. Template functions require the body of the function to be applicable to almost any data
type. Template functions can be member or non-member functions. Operator overloading can help
ensure that the bodies of template functions are applicable to user defined types – we’ll see more of
that shortly.

The keyword template, along with angle brackets, < >, and placeholders for the type names are
used to specify a template function and its prototype.

Let’s take a look at a template function that is not a member of a class (we will see examples of template
member functions shortly). This example can be found, as a full working program, in our GitHub
repository as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex1.cpp

// template function prototype

template <class Type1, class Type2> // template preamble

Type2 ChooseFirst(Type1, Type2);

// template function definition

template <class Type1, class Type2> // template preamble

Type2 ChooseFirst(Type1 x, Type2 y)

{

 if (x < y)

 return static_cast<Type2>(x);

 else

 return y;

}

int main()

{

 int value1 = 4, value2 = 7;

 float value3 = 5.67f;

 cout << "First: " << ChooseFirst(value1, value3);

 cout << endl;

 cout << "First: " << ChooseFirst(value2, value1);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex1.cpp

Working with Templates352

 cout << endl;

}

Looking at the previous function example, we first see a template function prototype. The preamble of
template <class Type1, class Type 2> indicates that the prototype will be a template
prototype and that placeholders Type1 and Type2 will be used instead of actual data types. The
placeholders Type1 and Type2 may be (nearly) any name, following the rules of creating identifiers.

Then, to complete the prototype, we see Type2 ChooseFirst(Type1, Type2);, which
indicates that the return type from this function will be of Type2 and that the arguments of the
ChooseFirst() function will be of Type1 and Type2 (which may certainly be expanded to be
the same type).

Next, we see the function definition. It, too, begins with a preamble of template <class Type1,
class Type 2>. Similar to the prototype, the function header Type2 ChooseFirst(Type1
x, Type2 y) indicates that formal parameters x and y are of types Type1 and Type2, respectively.
The body of this function is rather straightforward. We simply determine which of the two parameters
should be ranked first in an ordering of the two values by using a simple comparison with the < operator.

Now, in main(), when the preprocessor portion of the compiler sees a call to ChooseFirst()
with actual parameters, int value1 and float value3, the preprocessor notices that
ChooseFirst() is a template function. If no such version of ChooseFirst() yet exists to
handle an int and a float, the preprocessor copies this template function and replaces Type1
with int and Type2 with float – creating on our behalf the appropriate version of this function
to fit our needs. Notice that when ChooseFirst(value2, value1) is called and the types are
both integers, the placeholder types of Type1 and Type2 will both be replaced with int when the
template function is again expanded (under the hood) in our code by the preprocessor.

Though ChooseFirst() is a simple function, with it we can see the straightforward mechanics
of creating a template function that genericizes key data types. We can also see how the preprocessor
notices how the template function is used and takes on the effort on our behalf to expand this function,
as needed, for our specific type usage.

Let’s take a look at the output for this program:

First: 4

First: 4

Now that we have seen the basic mechanics of template functions, let us move forward to understand
how we can expand this process to include template classes.

Understanding template functions and classes 353

Creating and using template classes

Template classes parameterize the ultimate type of a class definition, and will additionally require
template member functions for any methods that need to know the core data type being manipulated.

The keywords template and class, along with angle brackets, < >, and placeholders for the type
names are used to specify a template class definition.

Let’s take a look at a template class definition and its supporting template member functions. This
example can be found as a complete program (with the necessary #include and using statements)
in our GitHub repository as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex2.cpp

template <class Type> // template class preamble

class Array

{

private:

 int numElements = 0; // in-class initialization

 Type *contents = nullptr;// dynamically allocated array

public:

 // Constructor and destructor will allocate, deallocate

 // heap memory to allow Array to be fluid in its size.

 // Later, you can use a smart pointer – or use the STL

 // vector class (we're building a similar class here!)

 Array(int size): numElements(size),

 contents(new Type [size])

 { // note: allocation is handled in member init. list

 }

 ~Array() { delete [] contents; }

 void Print() const;

 Type &operator[](int index) // returns a referenceable

 { // memory location or throws exception

 if (index < numElements)

 return contents[index];

 else // index is out of bounds

 throw std::out_of_range

 (std::to_string (index));

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex2.cpp

Working with Templates354

 }

 void operator+(Type); // prototype only

};

template <class Type>

void Array<Type>::operator+(Type item)

{

 // resize array as necessary, add new data element and

 // increment numElements

}

template <class Type>

void Array<Type>::Print() const

{

 for (int i = 0; i < numElements; i++)

 cout << contents[i] << " ";

 cout << endl;

}

int main()

{

 // Creation of int Array will trigger template

 // expansion by the preprocessor.

 Array<int> a1(3); // Create an int Array of 3 elements

 try // operator[] could throw an exception

 {

 a1[2] = 12;

 a1[1] = 70; // a1.operator[](1) = 70;

 a1[0] = 2;

 a1[100] = 10;// this assignment throws an exception

 }

 catch (const std::out_of_range &e)

 {

 cout << "Out of range: index " << e.what() << endl;

Understanding template functions and classes 355

 }

 a1.Print();

}

In the preceding class definition, let’s first notice the template class preamble of template <class
Type>. This preamble specifies that the impending class definition will be that of a template class and
that the placeholder Type will be used to genericize the data types primarily used within this class.

We then see the class definition for Array. Data member contents will be of the placeholder type
of Type. Of course, not all data types will need to be genericized. Data member int numElements
is perfectly reasonable as an integer. Next, we see an assortment of member functions prototyped and
some defined inline, including overloaded operator[]. For the member functions defined inline,
a template preamble is not necessary in front of the function definition. The only thing we need to do
for inline functions is to genericize the data type using our placeholder, Type.

Let’s now take a look at selected member functions. In the constructor, we now notice that the memory
allocation of contents = new Type [size]; merely uses the placeholder Type in lieu of
an actual data type. Similarly, for overloaded operator[], the return type of this method is Type.

However, looking at a member function that is not inline, we notice that the template preamble of
template <class Type> must precede the member function definition. For example, let’s consider
the member function definition for void Array<Type>::operator+(Type item);. In
addition to the preamble, the class name (preceding the member function name and scope resolution
operator, ::) in the function definition must be augmented to include the placeholder type <Type>
in angle brackets. Also, any generic function parameters must use the placeholder type of Type.

Now, in our main() function, we merely use the data type of Array<int> to instantiate a safe,
easily resizable array of integers. We could have alternatively used Array<float> had we instead
wanted to instantiate an array of floating-point numbers. Under the hood, when we create an instance
of a specific array type, the preprocessor notices whether we have previously expanded this class for
that type. If not, the class definition and applicable template member functions are copied for us and
the placeholder types are replaced with the type that we need. This is no fewer lines of code than if
we had copied, pasted, and slightly modified the code ourselves; however, the point is that we only
have one version to specify and maintain ourselves. This is less error-prone and easier for long-term
maintenance.

Let’s take a look at the output for this program:

2 70 12

Working with Templates356

An interesting tangent – std::optional
In the previous example, Array<Type>::operator[] throws an out_of_range
exception when the selected index is out of bounds. Sometimes, exception handling can be
programmatically expensive. In such cases, using an optional return type may be a useful
alternative. Remember, a valid return value for operator[] is a reference to the memory
location for the array element in question. For the out-of-bounds index scenario, knowing
we simply cannot return the corresponding memory location for an array element from
this method (it would not make sense), an alternative to exception handling may be to use
std::optional<Type> in the return value of the function.

Let’s next take a look at a different full program example to pull together template functions and
template classes.

Examining a full program example

It is useful to see an additional example that illustrates template functions and template classes. Let
us expand on a LinkList program we reviewed most recently in Chapter 12, Friends and Operator
Overloading; we will upgrade this program to utilize templates.

This complete program can be found in our GitHub repository as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex3.cpp

#include <iostream>

using std::cout; // preferred to: using namespace std;

using std::endl;

// forward declaration with template preamble

template <class Type> class LinkList;

template <class Type> // template preamble for class def.

class LinkListElement

{

private:

 Type *data = nullptr;

 LinkListElement *next = nullptr;

 // private access methods to be used in scope of friend

 Type *GetData() const { return data; }

 LinkListElement *GetNext() const { return next; }

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter13/Chp13-Ex3.cpp

Understanding template functions and classes 357

 void SetNext(LinkListElement *e) { next = e; }

public:

 friend class LinkList<Type>;

 LinkListElement() = default;

 LinkListElement(Type *i): data(i), next(nullptr) { }

 ~LinkListElement(){ delete data; next = nullptr; }

};

// LinkList should only be extended as a protected/private

// base class; it does not contain a virtual destructor. It

// can be used as-is, or as implementation for another ADT.

template <class Type>

class LinkList

{

private:

 LinkListElement<Type> *head = nullptr, *tail = nullptr,

 *current = nullptr;

public:

 LinkList() = default;

 LinkList(LinkListElement<Type> *e)

 { head = tail = current = e; }

 void InsertAtFront(Type *);

 LinkListElement<Type> *RemoveAtFront();

 void DeleteAtFront() { delete RemoveAtFront(); }

 bool IsEmpty() const { return head == nullptr; }

 void Print() const;

 ~LinkList(){ while (!IsEmpty()) DeleteAtFront(); }

};

Let’s examine the preceding template class definitions for LinkListElement and LinkList.
Initially, we notice that the forward declaration of the LinkList class contains the necessary template
preamble of template class <Type>. We also should notice that each class definition itself
contains the same template preamble to dually specify that the class will be a template class and that
the placeholder for the data type will be the identifier Type.

Working with Templates358

In the LinkListElement class, notice that the data type will be Type (the placeholder type). Also
notice that the placeholder for the type will be necessary in the friend class specification of LinkList,
that is, friend class LinkList<Type>;.

In the LinkList class, notice that any reference to the associated class of LinkListElement will
include the type placeholder of <Type>. Notice, for example, this placeholder usage in the data member
declaration of LinkListElement<Type> *head; or the return type of RemoveAtFront(),
which is LinkListElement<Type>. Additionally, notice that the inline function definitions do
not require a template preamble before each method; we are still covered by the preamble occurring
before the class definition itself.

Now, let’s move forward to take a look at the three non-inline member functions of the LinkList class:

template <class Type> // template preamble

void LinkList<Type>::InsertAtFront(Type *theItem)

{

 LinkListElement<Type> *newHead = nullptr;

 newHead = new LinkListElement<Type>(theItem);

 newHead->SetNext(head); // newHead->next = head;

 head = newHead;

}

template <class Type> // template preamble

LinkListElement<Type> *LinkList<Type>::RemoveAtFront()

{

 LinkListElement<Type> *remove = head;

 head = head->GetNext(); // head = head->next;

 current = head; // reset current for usage elsewhere

 return remove;

}

template <class Type> // template preamble

void LinkList<Type>::Print() const

{

 if (!head)

 cout << "<EMPTY>" << endl;

 LinkListElement<Type> *traverse = head;

 while (traverse)

 {

Understanding template functions and classes 359

 Type output = *(traverse->GetData());

 cout << output << ' ';

 traverse = traverse->GetNext();

 }

 cout << endl;

}

As we examine the preceding code, we can see that in the non-inline methods of LinkList, the
template preamble of template <class Type> appears before each member function definition.
We also see that the class name tied with the scope resolution operator to the member function name
is augmented with <Type>, for example, void LinkList<Type>::Print().

We notice that the aforementioned template member functions require some part of their method to
utilize the placeholder type, Type. For example, the InsertAtFront(Type *theItem) method
uses both the placeholder Type as the data type of the formal parameter theItem, and to specify
the associated class LinkListElement<Type> when declaring a local pointer variable temp. The
RemoveAtFront() method similarly utilizes a local variable of type LinkListElement<Type>,
hence necessitating its use as a template function. Similarly, Print() introduces a local variable of
type Type to assist with output.

Let’s now take a look at our main() function to see how we can utilize our template classes:

int main()

{

 LinkList<int> list1; // create a LinkList of integers

 list1.InsertAtFront(new int (3000));

 list1.InsertAtFront(new int (600));

 list1.InsertAtFront(new int (475));

 cout << "List 1: ";

 list1.Print();

 // delete elements from list, one by one

 while (!(list1.IsEmpty()))

 {

 list1.DeleteAtFront();

 cout << "List 1 after removing an item: ";

 list1.Print();

 }

 LinkList<float> list2; // create a LinkList of floats

 list2.InsertAtFront(new float(30.50));

 list2.InsertAtFront(new float (60.89));

Working with Templates360

 list2.InsertAtFront(new float (45.93));

 cout << "List 2: ";

 list2.Print();

}

In our preceding main() function, we utilize our template classes to create two types of linked lists,
that is, a LinkList of integers with the declaration LinkList<int> list1; and a LinkList
of floating-point numbers with the declaration LinkList<float> list2;.

In each case, we instantiate the various link lists, then add elements and print the respective lists.
In the case of the first LinkList instance, we also demonstrate how elements can be successively
removed from the list.

Let’s take a look at the output for this program:

List 1: 475 600 3000

List 1 after removing an item: 600 3000

List 1 after removing an item: 3000

List 1 after removing an item: <EMPTY>

List 2: 45.93 60.89 30.5

Overall, we see that creating a LinkList<int> and a LinkList<float> is very easy. The
template code is simply expanded behind the scenes to accommodate each data type we desire. We
may then ask ourselves, how easy is it to create a linked list of Student instances? Very easy! We
could simply instantiate LinkList<Student> list3; and call the appropriate LinkList
methods, such as list3.InsertAtFront(new Student("George", "Katz", 'C',
"Mr.", 3.2, "C++", "123GWU"));.

Perhaps we would like to include a means to order our elements in the template LinkList class,
such as by adding an OrderedInsert() method (which typically relies on operator< or
operator> for the comparison of elements). Would that work for all data types? That’s a good
question. It could, provided the code written in the method is generic to work for all data types. Can
operator overloading help with this endeavor? Yes!

Now that we have seen the mechanics of template classes and functions in action, let’s consider how
we can ensure that our template classes and functions are fully extensible to work for any data type.
To do this, let’s consider how operator overloading can be of value.

Making templates more flexible and extensible 361

Making templates more flexible and extensible
The addition of templates in C++ gives us the ability to make certain types of classes and functions
generically specified a single time by the programmer, while behind the scenes, the preprocessor
generates many versions of that code on our behalf. However, in order for a class to truly be extensible
to expand for many different user defined types, code written within member functions must be
universally applicable to any type of data. To help with this endeavor, operator overloading can be used
to extend operations that may easily exist for standard types to include definitions for user defined types.

To recap, we know operator overloading can allow simple operators to work not only with standard
types but also with user defined types. By overloading operators in our template code, we can ensure
that our template code is highly reusable and extensible.

Let’s consider how we can strengthen templates with the use of operator overloading.

Adding operator overloading to further genericize template code

Recall that when overloading an operator, it is important to promote the same meaning that the
operator has for standard types. Imagine that we would like to add an OrderedInsert() method
to our LinkList class. The body of this member function might rely on comparing two elements
to see which one should go before the other. The easiest way to do this is using operator<. This
operator is easily defined to work with standard types, but will it work with user defined types? It can,
provided we overload the operator to work with the desired types.

Let’s take a look at an example where we will need to overload an operator to make the member
function code universally applicable:

template <class Type>

void LinkList<Type>::OrderedInsert(Type *theItem)

{

 current = head;

 if (*theItem < *(head->GetData()))

 InsertAtFront(theItem); // add theItem before head

 else

 // Traverse list, add theItem in proper location

}

In the preceding template member function, we rely on operator< to be able to work with any data
type in which we would like to utilize this template class. That is, when the preprocessor expands this
code for a specific, user defined type, the < operator must work for whatever data type this method
has been specifically expanded for.

Working with Templates362

Should we wish to create a LinkList of Student instances and apply an OrderedInsert()
of one Student versus another, we then need to ensure that the comparison with operator<
is defined for two Student instances. Of course, by default, operator< is only defined for
standard types. But, if we simply overload operator< for Student, we can ensure that the
LinkList<Type>::OrderedInsert() method will work for Student data types as well.

Let’s take a look at how we can overload operator< for Student instances, both as a member
function or as a non-member function:

// overload operator < As a member function of Student

bool Student::operator<(const Student &s)

{ // if this->gpa < s.gpa return true, else return false

 return this->gpa < s.gpa;

}

// OR, overload operator < as a non-member function

bool operator<(const Student &s1, const Student &s2)

{ // if s1.gpa < s2.gpa return true, else return false

 return s1.gpa < s2.gpa;

}

In the preceding code, we can recognize operator< implemented as either a member function of
Student or as a non-member function. If you have access to the class definition for Student, the
preferred approach would be to utilize the member function definition for this operator function.
However, sometimes, we do not have access to modify a class. In such cases, we must utilize the
non-member function approach. Nonetheless, in either implementation, we simply compare the gpa
of the two Student instances, and return true if the first instance has a lower gpa than the second
Student instance, and false otherwise.

Now that operator< has been defined for two Student instances, we can return to our prior
template function of LinkList<Type>::OrderedInsert(Type *), which utilizes operator
< for comparison of two objects of type Type in the LinkList. When a LinkList<Student>
is made somewhere in our code, the template code for LinkList and LinkListElement will be
expanded by the preprocessor for Student; Type will be replaced with Student. When the expanded
code is then compiled, the code in the expanded LinkList<Student>::OrderedInsert()
will compile without error, as operator< has been defined for two Student objects.

What happens if we neglect to overload operator< for a given type, however, OrderedInsert()
(or another method relying on operator<) is never called in our code on an object of that same
expanded template type? Believe it or not, the code will compile and work without issue. In this case,
we are not actually calling a function (that is, OrderedInsert()) that would require operator<
to be implemented for that type. Because the function is never called, the template expansion for
that member function is skipped. The compiler has no reason to discover that operator< should

Summary 363

have been overloaded for the type in question (in order for the method to compile successfully). The
uncalled method has simply not been expanded for the compiler to verify.

By using operator overloading to complement template classes and functions, we can make template
code even further extensible by ensuring that typical operators used within method bodies can be
made applicable to any type we would want to utilize in the template expansion. Our code becomes
more widely applicable.

We have now seen how to utilize template functions and classes, and how operator overloading can
enhance templates to create even more extensible code. Let us now briefly recap these concepts before
moving forward to our next chapter.

Summary
In this chapter, we have furthered our C++ programming knowledge beyond OOP language features
to include additional language features that will enable us to write more extensible code. We have
learned how to utilize template functions and template classes, and how operator overloading nicely
supports these endeavors.

We have seen that templates can allow us to generically specify a class or function with respect to the
data type primarily used within that class or function. We have seen that template classes inevitably
utilize template functions because those methods generally need to generically use the data upon
which the class is built. We have seen that by taking advantage of operator overloading for user defined
types, we can take advantage of method bodies written using simple operators to accommodate usage
by more complex data types, making the template code much more useful and extensible.

The power of templates coupled with operator overloading (to make a method usable for nearly any
type) makes C++’s implementation of generics much more powerful than simple type replacement.

We now understand that using templates can allow us to specify a class or function just one time more
abstractly, and allow the preprocessor to generate many versions of that class or function for us, based
upon specific data types that may be needed within the application.

By allowing the preprocessor to expand many versions of a template class or set of template functions
for us based on types needed in an application, the work of creating many similar classes or functions
(and maintaining those versions) is passed to C++, rather than the programmer. In addition to having
less code for the user to maintain, changes made in the template classes or functions need only be
made in one place – the preprocessor will re-expand the code without errors when needed.

We have added additional, useful features to our C++ repertoire through examining templates, which,
combined with operator overloading, will ensure we can write highly extensible and reusable code
for nearly any data type. We are now ready to continue forward with Chapter 14, Understanding STL
Basics, so that we can continue extending our C++ programming skills with useful C++ library features
that will make us better programmers. Let’s move forward!

Working with Templates364

Questions
1. Convert your ArrayInt class from Chapter 12, Friends and Operator Overloading, to a

template Array class to support a dynamically allocated array of any data type that can be
easily resized and has built-in bounds checking.

a. Consider what operators, if any, you will need to overload to allow generic code within
each method to support any user defined types you may wish to store in the template
Array type.

b. Using your template Array class, create an array of Student instances. Utilize various
member functions to demonstrate that various template functions operate correctly.

2. Using the template L i n k L i s t class, complete the implementation for
LinkList<Type>::OrderedInsert(). Create a LinkList of Student
instances in main(). After several Student instances have been inserted in the list using
OrderedInsert(), verify that this method works correctly by displaying each Student
and their gpa. The Student instances should be ordered from lowest to highest gpa. You
may wish to use the online code as a starting point.

14
Understanding STL Basics

This chapter will continue our pursuit of increasing your C++ programming repertoire beyond OOP
concepts by delving into a core C++ library that has become thoroughly integrated into the common
usage of the language. We will explore the Standard Template Library (STL) in C++ by examining
a subset of this library, representing common utilities that can both simplify our programming and
make our code more easily understood by others who are undoubtedly familiar with the STL.

In this chapter, we will cover the following main topics:

• Surveying the contents and purpose of the STL in C++

• Understanding how to use essential STL containers – list, iterator, vector, deque,
stack, queue, priority_queue, map, and map using a functor

• Customizing STL containers

By the end of this chapter, you will be able to utilize core STL classes to enhance your programming
skills. Because you already understand the essential C++ language and OOP features in which libraries
are built, you will see that you now have the ability to navigate and understand nearly any C++ class
library, including the STL. By gaining familiarity with the STL, you will be able to enhance your
programming repertoire significantly and become a more savvy and valuable programmer.

Let’s increase our C++ toolkit by examining a very heavily utilized class library, the STL.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter14. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter14 in a file
named Chp14-Ex1.cpp under the aforementioned GitHub directory.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter14
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter14
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter14

Understanding STL Basics366

The CiA video for this chapter can be viewed at: https://bit.ly/3PCL5IJ.

Surveying the contents and purpose of the STL
The Standard Template Library in C++ is a library of standard classes and utilities that extend the
C++ language. The use of the STL is so pervasive that it is as though the STL is a part of the language
itself; it is an essential and integral part of C++. The STL in C++ has four key components comprising
the library: containers, iterators, functions, and algorithms.

The STL has additionally influenced the C++ Standard Library in providing a set of programming
standards; the two libraries actually share common features and components, most notably containers
and iterators. We’ve already utilized components from the Standard Library, namely <iostream>
for IOStreams, <exception> for exception handling, and <new> for operators new() and
delete(). In this chapter, we will explore many overlapping components between the STL and the
Standard Library in C++.

The STL has a full line of container classes. These classes encapsulate traditional data structures to
allow similar items to be collected together and uniformly processed. There are several categories
of container classes – sequential, associative, and unordered. Let’s summarize these categories and
provide a few examples of each:

• Sequential containers: Implement encapsulated data structures that can be accessed in a
sequential manner, such as list, queue, or stack. It is interesting to note that queue and
stack can be thought of as a customized or adaptive interface for a more basic container, such
as a list. Nonetheless, a queue and stack still provide sequential access to their elements.

• Associative containers: Implement sorted, encapsulated data structures that can be searched
quickly to retrieve an element such as set or map.

• Unordered containers: Implement unordered, encapsulated data structures that can be searched
reasonably quickly, such as unordered_set or unordered_map.

In order for these container classes to be potentially used for any data type (and to preserve strong type
checking), templates are utilized to abstract and genericize the data types of the collected items. In fact,
we built our own container classes using templates in Chapter 13, Working with Templates, including
LinkList and Array, so we already have a basic understanding of templatized container classes!

Additionally, the STL provides a full complement of iterators, which allow us to walk through or
traverse containers. Iterators keep track of our current place without corrupting the content or ordering
of the respective collections of objects. We will see how iterators allow us to process container classes
more safely within the STL.

https://bit.ly/3PCL5IJ

Understanding how to use essential STL containers 367

The STL also contains a plentiful supply of useful algorithms. Examples include sorting, counting
the number of elements in a collection that may satisfy a condition, searching for particular elements
or subsequences within elements, or copying elements in a variety of manners. Additional examples
of algorithms include modifying a sequence of objects (replacing, swapping, and removing values),
partitioning sets into ranges, or merging sets back together. Moreover, the STL contains many other
useful algorithms and utilities.

Lastly, the STL includes functions. Actually, it would be more correct to say that the STL includes
functors, or function objects. Functors are built around the ability to overload operator() (the
function call operator), and by doing so, allow us to achieve parameterized flexibility through a
function pointer. Though this is not an elementary feature of the STL we will immediately (or often)
use, we will see one small, simple example of a functor in this chapter coupled with an STL container
class, in the upcoming section Examining STL map using a functor.

In this chapter, we will focus on the container class section of the STL. Though we won’t examine every
STL container class in the STL, we will review a healthy assortment of these classes. We will notice that
some of these container classes are similar to classes that we have built together in previous chapters
of this book. Incidentally, during the incremental chapter progressions of this book, we have also built
up our C++ language and OOP skills, which are necessary to decode a C++ class library such as STL.

Let’s move forward to take a look at selective STL classes and test our C++ knowledge as we interpret
each class.

Understanding how to use essential STL containers
In this section, we will put our C++ skills to the test by decoding various STL container classes. We
will see that language features we have mastered, from core C++ syntax to OOP skills, have put us in a
position to easily interpret the various components of STL we will now examine. Most notably, we will
put our knowledge of templates to use! Our knowledge of encapsulation and inheritance, for example,
will guide us to understand how to use various methods in STL classes. However, we will notice that
virtual functions and abstract classes are extremely rare in the STL. The best way to gain competence
with a new class within the STL will be to embrace the documentation detailing each class. With
knowledge of C++, we can easily navigate through a given class to decode how to use it successfully.

The container classes in the C++ STL implement various Abstract Data Types (ADTs) by encapsulating
the data structures that implement these higher-level concepts. We will examine core STL containers:
list, iterator, vector, deque, stack, queue, priority_queue, and map.

Let’s begin by examining how to utilize a very basic STL container, list.

Understanding STL Basics368

Using STL list

The STL list class encapsulates the data structures necessary to implement a linked list. We can
say that list implements the Abstract Data Type of a linked list. Recall that we have made our own
linked list by creating LinkedListElement and LinkedList classes in Chapter 6, Implementing
Hierarchies with Inheritance. STL list allows for easy insertion, deletion, and sorting of elements.
Direct access to individual elements (known as random access) is not supported. Rather, you must
iteratively traverse past a prior item in the linked list until you reach the desired item. STL list is a
good example of a sequential container.

STL list actually supports bidirectional sequential access to its elements (it is implemented using a
doubly-linked list). The STL additionally offers forward_list, allowing unidirectional sequential
access to its elements with a smaller footprint than list; forward_list is implemented using a
singly-linked list (much like our LinkedList class).

The STL list class has an assortment of member functions; we’ll start by taking a look at a few
popular methods in this example to get familiar with basic STL container class usage.

Now, let’s take a look at how we can utilize the STL list class. This example can be found, as a full
working program with necessary class definitions, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex1.cpp

#include <list>

using std::list;

int main()

{

 list<Student> studentBody; // create a list

 Student s1("Jul", "Li", 'M', "Ms.", 3.8, "C++",

 "117PSU");

 // Note: simple heap instance below, later you can opt

 // for a smart pointer to ease allocation/deallocation

 Student *s2 = new Student("Deb", "King", 'H', "Dr.",

 3.8, "C++", "544UD");

 // Add Students to the studentBody list.

 studentBody.push_back(s1);

 studentBody.push_back(*s2);

 // The next 3 instances are anonymous objects in main()

 studentBody.push_back(Student("Hana", "Sato", 'U',

 "Dr.", 3.8, "C++", "178PSU"));

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex1.cpp

Understanding how to use essential STL containers 369

 studentBody.push_back(Student("Sara", "Kato", 'B',

 "Dr.", 3.9, "C++", "272PSU"));

 studentBody.push_back(Student("Giselle", "LeBrun", 'R',

 "Ms.", 3.4, "C++", "299TU"));

 while (!studentBody.empty())

 {

 studentBody.front().Print();

 studentBody.pop_front();

 }

 delete s2; // delete any heap instances

 return 0;

}

Let’s examine the aforementioned program segment, where we create and utilize an STL list.
First, we #include <list> to include the appropriate STL header file. We also add using
std::list; to include list from the standard namespace. Now, in main(), we can instantiate a
list using list<Student> studentBody;. Our list will contain Student instances. Then, we
create Student s1 on the stack and Student *s2 on the heap using an allocation with new().

Next, we use list::push_back() to add both s1 and *s2 to the list. Notice that we are passing
objects to push_back(). As we add Student instances to the studentBody list, the list will
make copies of the objects internally and will properly clean up these objects when they are no longer
members of the list. We need to keep in mind that if any of our instances have been allocated on the
heap, such as *s2, we must delete our copy of that instance when we are done with it at the end of
main(). Looking ahead to the end of main(), we can see that we appropriately delete s2;.

Next, we add three more students to the list. These Student instances do not have local identifiers.
These students are instantiated within the call to push_back(), for example, studentBody.
push_back(Student("Hana", "Sato", 'U', "Dr.", 3.8, "C++", "178PSU"));.
Here, we are instantiating an anonymous (stack) object that will be properly popped off the stack and
destructed once the call to push_back() concludes. Keep in mind, push_back() will also create
its own local copy for these instances for their life expectancy within the list.

Now, in a while loop, we repeatedly check whether the list is empty() and if not, we examine the
front() item and call our Student::Print() method. We then use pop_front() to remove
that item from the list.

Let’s take a look at the output for this program:

Ms. Jul M. Li with id: 117PSU GPA: 3.8 Course: C++

Dr. Deb H. King with id: 544UD GPA: 3.8 Course: C++

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Understanding STL Basics370

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Ms. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Now that we have deciphered a simple STL list class, let us move forward to understand the idea
of an iterator to complement a container such as list.

Using STL iterator

Quite often, we will need a non-destructive way to iterate through a collection of objects. For example,
it is important to maintain the first, last, and current position in a given container, especially if the
set may be accessed by more than one method, class, or thread. Using an iterator, the STL provides
a common means to traverse any container class.

The use of iterators has definite benefits. A class can create an iterator that points to the first
member in a collection. Iterators can then be moved to successive next members of the collection.
Iterators can provide access to elements pointed to by the iterator.

Overall, the state information of a container can be maintained by an iterator. Iterators provide
a safe means for interleaved access by abstracting the state information away from the container and
instead into the iterator class.

We can think of an iterator as a bookmark within a book that two or more people are referencing. The
first person reads the book sequentially, leaving the bookmark neatly where they expect to continue
reading. While they step away, another person looks up an important item in the book and moves the
bookmark to another location in the book to save their spot. When the first person returns, they find
that they have lost their current location and are not where they expect to be. Each user should have
had their own bookmark or iterator. The analogy is that an iterator (ideally) allows safe interleaved
access to a resource that may be handled by multiple components within an application. Without an
iterator, you may unintentionally modify a container without another user’s knowledge. STL iterators
mostly, but not always, live up to this ideal goal.

Let’s take a look at how we can utilize an STL iterator. This example can be found as a complete
program in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex2.cpp

#include <list>

#include <iterator>

using std::list;

using std::iterator;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex2.cpp

Understanding how to use essential STL containers 371

bool operator<(const Student &s1, const Student &s2)

{ // overloaded operator< -- required to use list::sort()

 return s1.GetGpa() < s2.GetGpa();

}

int main()

{

 list<Student> studentBody;

 Student s1("Jul", "Li", 'M', "Ms.", 3.8, "C++",

 "117PSU");

 // Add Students to the studentBody list.

 studentBody.push_back(s1);

 // The next Student instances are anonymous objects

 studentBody.push_back(Student("Hana", "Sato", 'U',

 "Dr.", 3.8, "C++", "178PSU"));

 studentBody.push_back(Student("Sara", "Kato", 'B',

 "Dr.", 3.9, "C++", "272PSU"));

 studentBody.push_back(Student("Giselle", "LeBrun", 'R',

 "Ms.", 3.4, "C++", "299TU"));

 studentBody.sort(); // sort() will rely on operator<

 // Though we'll generally prefer range-for loops, let's

 // understand and demo using an iterator for looping.

 // Create a list iterator; set to first item in list.

 // We'll next simplify iterator notation with 'auto'.

 list <Student>::iterator listIter =studentBody.begin();

 while (listIter != studentBody.end())

 {

 Student &temp = *listIter;

 temp.EarnPhD();

 ++listIter; // prefer pre-inc (less expensive)

 }

 // Simplify iterator declaration using 'auto'

 auto autoIter = studentBody.begin();

 while (autoIter != studentBody.end())

 {

 (*autoIter).Print();

Understanding STL Basics372

 ++autoIter;

 }

 return 0;

}

Let’s take a look at our previously defined code segment. Here, we include both the <list>
and <iterator> headers from the STL. We also add using std::list; and using
std::iterator; to include list and iterator from the standard namespace. As in our
previous main() function, we instantiate a list that can contain Student instances using
list<Student> studentbody;. We then instantiate several Student instances and add
them to the list using push_back(). Again, notice that several Student instances are anonymous
objects, having no local identifier in main(). These instances will be popped off the stack when
push_back() completes. This is no problem, as push_back() will create local copies for the list.

Now, we can sort the list using studentBody.sort();. It is important to note that this list
method required us to overload operator< to provide a means of comparison between two Student
instances. Luckily, we have! We have chosen to implement operator< by comparing gpa, but it
could also have used studentId for comparison.

Now that we have a list, we can create an iterator and establish it to refer to the first item of the
list. We do so by declaring list <Student>::iterator listIter = studentBody.
begin();. With the iterator established, we can use it to safely loop through the list from start (as
it is initialized) to end(). We assign a local reference variable temp to the loop iteration’s current first
element in the list with Student &temp = *listIter;. We then call a method on this instance
with temp.EarnPhD();, and then we increment our iterator by one element using ++listIter;.

In the subsequent loop, we simplify our declaration of the iterator using auto. The auto keyword
allows the type of the iterator to be determined by its initial usage. Within this loop, we also eliminate
the usage of temp – we simply deference the iterator first within parentheses and then invoke
Print() by using (*autoIter).Print(). Using ++autoIter simply advances to the next
item in our list for processing.

Let’s take a look at the sorted output for this program (sorted by gpa):

Dr. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Dr. Jul M. Li with id: 117PSU GPA: 3.8 Course: C++

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Now that we have seen an iterator class in action, let’s investigate a variety of additional STL
container classes, starting with vector.

Understanding how to use essential STL containers 373

Using STL vector

The STL vector class implements the Abstract Data Type of a dynamic array. Recall that we have
made our own dynamic array by creating an Array class in Chapter 13, Working with Templates. The
STL version, however, will be far more extensive.

The vector (dynamic or resizable array) will expand as necessary to accommodate additional
elements beyond its initial size. The vector class allows direct (that is, random access) to elements
by overloading operator[]. A vector allows elements to be accessed in constant time through
direct access. It is not necessary to walk past all prior elements to access an element at a specific index.

However, adding elements in the middle of a vector is time-consuming. That is, adding to any
location other than the end of the vector requires all elements past the insertion point to be internally
shuffled; it may also require an internal resizing of the vector.

Clearly, list and vector, by comparison, have different strengths and weaknesses. Each is geared
to different requirements of a collection of data. We can choose the one that best fits our needs.

Let’s take a look at an assortment of common vector member functions. This is far from a complete list:

The STL vector class additionally includes overloaded operator= (assignment replaces
destination vector with source vector), operator== (comparison of vectors, element by element),
and operator[] (returns a reference to the requested location, that is, writable memory).

Let’s take a look at how we can utilize the STL vector class with some of its basic operations. This
example can be found, as a full working program, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex3.cpp

#include <vector>

using std::vector;

int main()

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex3.cpp

Understanding STL Basics374

{ // instantiate two vectors

 vector<Student> studentBody1, studentBody2;

 // add 3 Students, which are anonymous objects

 studentBody1.push_back(Student("Hana", "Sato", 'U',

 "Dr.", 3.8, "C++", "178PSU"));

 studentBody1.push_back(Student("Sara", "Kato", 'B',

 "Dr.", 3.9, "C++", "272PSU"));

 studentBody1.push_back(Student("Giselle", "LeBrun",

 'R', "Ms.", 3.4, "C++", "299TU"));

 // Compare this loop to next loop using an iterator and

 // also to the preferred range-for loop further beyond

 for (int i = 0; i < studentBody1.size(); i++)

 studentBody1[i].Print(); // print first vector

 studentBody2 = studentBody1; // assign one to another

 if (studentBody1 == studentBody2)

 cout << "Vectors are the same" << endl;

 // Notice: auto keyword simplifies iterator declaration

 for (auto iter = studentBody2.begin();

 iter != studentBody2.end(); iter++)

 (*iter).EarnPhD();

 // Preferred range-for loop (and auto to simplify type)

 for (const auto &student : studentBody2)

 student.Print();

 if (!studentBody1.empty()) // clear first vector

 studentBody1.clear();

 return 0;

}

Understanding how to use essential STL containers 375

In the previously listed code segment, we #include <vector> to include the appropriate STL
header file. We also add using std::vector; to include vector from the standard namespace.
Now, in main(), we can instantiate two vectors using vector<Student> studentBody1,
studentBody2;. We can then use the vector::push_back() method to add several Student
instances in succession to our first vector. Again, notice that the Student instances are anonymous
objects in main(). That is, there is no local identifier that references them – they are created only
to be placed into our vector, which makes a local copy of each instance upon insertion. Once we
have elements in our vector, we then loop through our first vector, printing each Student using
studentBody1[i].Print();.

Next, we demonstrate the overloaded assignment operator for vector by assigning one vector to
another using studentBody1 = studentBody2;. Here, we make a deep copy from right to left
in the assignment. We can then test whether the two vectors are equal using the overloaded comparison
operator within a conditional statement, that is, if (studentBody1 == studentBody2).

We then apply EarnPhD() to the contents of the second vector in a for loop using an iterator
specified with auto iter = studentBody2.begin();. The auto keyword allows the type
of the iterator to be determined by its initial usage. We then print out the contents of our second
vector using a preferred range-for loop (as well as using auto to simplify the variable type in the
range-for loop). Finally, we look through our first vector, testing whether it is empty(), and then
clear elements one by one using studentBody1.clear();. We have now seen a sampling of the
vector methods and their capabilities.

Let’s take a look at the output for this program:

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Ms. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Vectors are the same

Everyone to earn a PhD

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Dr. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Next, let’s investigate the STL deque class to further our knowledge of STL containers.

Using STL deque

The STL deque class (pronounced deck) implements the Abstract Data Type of a double-ended queue.
This ADT extends the notion that a queue is first in, first out. Instead, the deque class allows greater
flexibility. Adding elements at either end of a deque is quick. Adding elements in the middle of a
deque is time-consuming. A deque is a sequential container, though more flexible than a list.

Understanding STL Basics376

You might imagine that a deque is a specialization of a queue; it is not. Instead, the flexible deque
class will serve as a basis to implement other container classes, which we will see shortly. In these
cases, private inheritance will allow us to conceal deque as an underlying implementation (with vast
functionality) for more restrictive, specialized classes.

Let’s take a look at an assortment of common deque member functions. This is far from a complete list:

The STL deque class additionally includes overloaded operator= (assignment of the source to
destination deque) and operator[] (returns a reference to requested location – writable memory).

Let’s take a look at how we can utilize the STL deque class. This example can be found, as a full
working program, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex4.cpp

#include <deque>

using std::deque;

int main()

{

 deque<Student> studentBody; // create a deque

 Student s1("Tim", "Lim", 'O', "Mr.", 3.2, "C++",

 "111UD");

 // the remainder of the Students are anonymous objects

 studentBody.push_back(Student("Hana", "Sato", 'U',

 "Dr.",3.8, "C++", "178PSU"));

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex4.cpp

Understanding how to use essential STL containers 377

 studentBody.push_back(Student("Sara", "Kato", 'B',

 "Dr.", 3.9, "C++", "272PSU"));

 studentBody.push_front(Student("Giselle", "LeBrun",

 'R',"Ms.", 3.4, "C++", "299TU"));

 // insert one past the beginning

 studentBody.insert(std::next(studentBody.begin()),

 Student("Anne", "Brennan", 'B', "Ms.", 3.9, "C++",

 "299CU"));

 studentBody[0] = s1; // replace 0th element;

 // no bounds checking!

 while (!studentBody.empty())

 {

 studentBody.front().Print();

 studentBody.pop_front();

 }

 return 0;

}

In the previously listed code segment, we #include <deque> to include the appropriate STL header
file. We also add using std::deque; to include deque from the standard namespace. Now,
in main(), we can instantiate a deque to contain Student instances using deque<Student>
studentBody;. We then call either deque::push_back() or deque::push_front() to
add several Student instances (some anonymous objects) to our deque. We are getting the hang
of this! Now, we insert a Student one position past the front of our deque using studentBody.
insert(std::next(studentBody.begin()), Student("Anne", "Brennan",
'B', "Ms.", 3.9, "C++", "299CU"));.

Next, we take advantage of overloaded operator[] to insert a Student into our deque using
studentBody[0] = s1;. Please be warned that operator[] does not do any bounds checking
on our deque! In this statement, we insert Student s1 into the 0th position in the deque, instead
of the Student that once occupied that position. A safer bet is to use the deque::at() method,
which will incorporate bounds checking. Regarding the aforementioned assignment, we also want
to ensure that operator= has been overloaded for both Person and Student, as each class has
dynamically allocated data members.

Now, we loop through until our deque is empty(), extracting and printing the front element of
the deque using studentBody.front().Print();. With each iteration, we also pop the front
item from our deque using studentBody.pop_front();.

Understanding STL Basics378

Let’s take a look at the output for this program:

Mr. Tim O. Lim with id: 111UD GPA: 3.2 Course: C++

Ms. Anne B. Brennan with id: 299CU GPA: 3.9 Course: C++

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Now that we have a feel for a deque, let’s next investigate the STL stack class.

Using STL stack

The STL stack class implements the Abstract Data Type of a stack. The stack ADT supports the
last in, first out (LIFO) order for the insertion and removal of members. True to form for an ADT,
the STL stack includes a public interface that does not advertise its underlying implementation.
After all, a stack might change its implementation; the ADTs usage should not depend in any manner
on its underlying implementation. The STL stack is considered an adaptive interface of a basic
sequential container.

Recall that we have made our own Stack class in Chapter 6, Implementing Hierarchies with Inheritance,
using a private base class of LinkedList. The STL version will be more extensive; interestingly,
it is implemented using deque as its underlying private base class. With deque as a private base
class of the STL stack, the more versatile underlying capabilities of deque are hidden; only the
applicable methods are used to implement the stack’s public interface. Also, because the means of
implementation is hidden, a stack may be implemented using another container class at a later date
without impacting its usage.

Let’s take a look at an assortment of common stack member functions. This is far from a complete
list. It is important to note that the public interface for stack is far smaller than that of its private
base class, deque:

The STL stack class additionally includes overloaded operator= (assignment of source to destination
stack), operator== and operator!= (equality/inequality of two stacks), and operator< ,
operator>, operator<=, and operator>= (comparison of stacks).

Understanding how to use essential STL containers 379

Let’s take a look at how we can utilize the STL stack class. This example can be found, as a full
working program, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex5.cpp

#include <stack> // template class preamble

using std::stack;

int main()

{

 stack<Student> studentBody; // create a stack

 // add Students to the stack (anonymous objects)

 studentBody.push(Student("Hana", "Sato", 'U', "Dr.",

 3.8, "C++", "178PSU"));

 studentBody.push(Student("Sara", "Kato", 'B', "Dr.",

 3.9, "C++", "272PSU"));

 studentBody.push(Student("Giselle", "LeBrun", 'R',

 "Ms.", 3.4, "C++", "299TU"));

 while (!studentBody.empty())

 {

 studentBody.top().Print();

 studentBody.pop();

 }

 return 0;

}

In the aforementioned code segment, we #include <stack> to include the appropriate STL header
file. We also add using std::stack; to include stack from the standard namespace. Now,
in main(), we can instantiate a stack to contain Student instances using stack<Student>
studentBody;. We then call stack::push() to add several Student instances to our stack.
Notice that we are using the traditional push() method, which contributes to the ADT of a stack.

We then loop through our stack while it is not empty(). Our goal is to access and print the top
element using studentBody.top().Print();. We then neatly pop our top element off the
stack using studentBody.pop();.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex5.cpp

Understanding STL Basics380

Let’s take a look at the output for this program:

Ms. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Next, let’s investigate the STL queue class to further increase our STL container repertoire.

Using STL queue

The STL queue class implements the ADT of a queue. As the stereotypical queue class, STL’s queue
class supports the first in, first out (FIFO) order of insertion and removal of members.

Recall that we made our own Queue class in Chapter 6, Implementing Hierarchies with Inheritance; we
derived our Queue from our LinkedList class using private inheritance. The STL version will be
more extensive; the STL queue class is implemented using deque as its underlying implementation
(also using private inheritance). Remember, because the means of implementation are hidden with
private inheritance, a queue may be implemented using another data type at a later date without
impacting its public interface. The STL queue class is another example of an adaptive interface for
a basic sequential container.

Let’s take a look at an assortment of common queue member functions. This is far from a complete
list. It is important to note that the public interface of queue is far smaller than that of its private
base class, deque:

The STL queue class additionally includes overloaded operator= (assignment of source to destination
queue), operator== and operator!= (equality/inequality of two queues), and operator< ,
operator>, operator<=, and operator>= (comparison of queues).

Understanding how to use essential STL containers 381

Let’s take a look at how we can utilize the STL queue class. This example can be found, as a full
working program, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex6.cpp

#include <queue>

using std::queue;

int main()

{

 queue<Student> studentBody; // create a queue

 // add Students to the queue (anonymous objects)

 studentBody.push(Student("Hana", "Sato", 'U', "Dr.",

 3.8, "C++", "178PSU"));

 studentBody.push(Student("Sara", "Kato", 'B' "Dr.",

 3.9, "C++", "272PSU"));

 studentBody.push(Student("Giselle", "LeBrun", 'R',

 "Ms.", 3.4, "C++", "299TU"));

 while (!studentBody.empty())

 {

 studentBody.front().Print();

 studentBody.pop();

 }

 return 0;

}

In the previous code segment, we first #include <queue> to include the appropriate STL header
file. We also add using std::queue; to include queue from the standard namespace. Now,
in main(), we can instantiate a queue to contain Student instances using queue<Student>
studentBody;. We then call queue::push() to add several Student instances to our queue.
Recall that with the queue ADT, push() implies that we are adding an element at the end of the queue.
Some programmers prefer the term enqueue to describe this operation; however, the STL has selected
to name this operation push(). With the queue ADT, pop() will remove an item from the front
of the queue; a better term is dequeue, however, that is not what the STL has chosen. We can adapt.

We then loop through our queue while it is not empty(). Our goal is to access and print the front
element using studentBody.front().Print();. We then neatly pop our front element off
the queue using studentBody.pop();. Our work is complete.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex6.cpp

Understanding STL Basics382

Let’s take a look at the output for this program:

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

Ms. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Now that we have tried a queue, let’s investigate the STL priority_queue class.

Using STL priority queue

The STL priority_queue class implements the Abstract Data Type of a priority queue. The priority
queue ADT supports a modified FIFO order of insertion and removal of members; the elements are
weighted. The front element is of the largest value (determined by overloaded operator<) and the
rest of the elements follow in sequence from the next greatest to the least. The STL priority_queue
class is considered an adaptive interface for a sequential container.

Recall that we implemented our own PriorityQueue class in Chapter 6, Implementing Hierarchies
with Inheritance. We used public inheritance to allow our PriorityQueue to specialize our Queue
class, adding additional methods to support the priority (weighted) enqueuing scheme. The underlying
implementation of Queue (with private base class LinkedList) was hidden. By using public
inheritance, we allowed our PriorityQueue to be able to be generalized as a Queue through
upcasting (which we understood once we learned about polymorphism and virtual functions in
Chapter 7, Utilizing Dynamic Binding through Polymorphism). We made an acceptable design choice:
PriorityQueue Is-A (specialization of) Queue and at times may be treated in its more general form.
We also recall that neither a Queue nor a PriorityQueue could be upcast to their underlying
implementation of a LinkedList, as Queue was derived privately from LinkedList; we cannot
upcast past a non-public inheritance boundary.

Contrastingly, the STL version of priority_queue is implemented using the STL vector
as its underlying implementation. Recall that because the means of implementation is hidden, a
priority_queue may be implemented using another data type at a later date without impacting
its public interface.

An STL priority_queue allows an inspection, but not a modification, of the top element. The
STL priority_queue does not allow insertion through its elements. That is, elements may only
be added resulting in an order from greatest to least. Accordingly, the top element may be inspected,
and the top element may be removed.

Let’s take a look at an assortment of common priority_queue member functions. This is not a
complete list. It is important to note that the public interface of priority_queue is far smaller
than that of its private base class, vector:

Understanding how to use essential STL containers 383

Unlike the previously examined container classes, the STL priority_queue does not overload
operators, including operator=, operator==, and operator<.

The most interesting method of priority_queue is that of void emplace(args);. This is
the member function that allows the priority enqueuing mechanism to add items to this ADT. We
also notice that top() must be used to return the top element (versus front(), which a queue
utilizes). But then again, an STL priority_queue is not implemented using a queue). To utilize
priority_queue, we #include <queue>, just as we would for a queue.

Because the usage of priority_queue is so similar to queue, we will instead explore it further,
programming-wise, in our question set at the end of this chapter.

Now that we have seen many examples of sequential container types in STL (including adaptive
interfaces), let’s next investigate the STL map class, an associative container.

Examining STL map

The STL map class implements the Abstract Data Type of a hash table. The class map allows for
elements in the hash table or map to be stored and retrieved quickly using a key or index. The key can
be numerical or any other data type. Only one key may be associated with a single element of value.
However, the STL container multimap can be used instead should there be more than one piece of
data that needs to be associated with a single key.

Hash tables (maps) are fast for storage and lookup of data. The performance is a guaranteed O(log(n)).
The STL map is considered an associative container, as it associates a key to a value to quickly retrieve
a value.

Understanding STL Basics384

Let’s take a look at an assortment of common map member functions. This is not a complete list:

The STL class map additionally includes overloaded operator operator== (comparison of maps,
element by element) implemented as a global function. STL map also includes overloaded operator[]
(returns a reference to the map element associated with a key that is used as an index; this is writable
memory).

Let’s take a look at how we can utilize the STL map class. This example can be found, as a full working
program, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex7.cpp

#include <map>

using std::map;

using std::pair;

bool operator<(const Student &s1, const Student &s2)

{ // We need to overload operator< to compare Students

 return s1.GetGpa() < s2.GetGpa();

}

int main()

{

 Student s1("Hana", "Lo", 'U', "Dr.", 3.8, "C++",

 "178UD");

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex7.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex7.cpp

Understanding how to use essential STL containers 385

 Student s2("Ali", "Li", 'B', "Dr.", 3.9, "C++",

 "272UD");

 Student s3("Rui", "Qi", 'R', "Ms.", 3.4, "C++",

 "299TU");

 Student s4("Jiang", "Wu", 'C', "Ms.", 3.8, "C++",

 "887TU");

 // create three pairings of ids to Students

 pair<string, Student> studentPair1

 (s1.GetStudentId(), s1);

 pair<string, Student> studentPair2

 (s2.GetStudentId(), s2);

 pair<string, Student> studentPair3

 (s3.GetStudentId(), s3);

 // Create map of Students w string keys

 map<string, Student> studentBody;

 studentBody.insert(studentPair1); // insert 3 pairs

 studentBody.insert(studentPair2);

 studentBody.insert(studentPair3);

 // insert using virtual indices per map

 studentBody[s4.GetStudentId()] = s4;

 // Iterate through set with map iterator – let's

 // compare to range-for and auto usage just below

 map<string, Student>::iterator mapIter;

 mapIter = studentBody.begin();

 while (mapIter != studentBody.end())

 {

 // set temp to current item in map iterator

 pair<string, Student> temp = *mapIter;

 Student &tempS = temp.second; // get 2nd element

 // access using mapIter

 cout << temp.first << " ";

 cout << temp.second.GetFirstName();

Understanding STL Basics386

 // or access using temporary Student, tempS

 cout << " " << tempS.GetLastName() << endl;

 ++mapIter;

 }

 // Now, let's iterate through our map using a range-for

 // loop and using 'auto' to simplify the declaration

 // (this decomposes the pair to 'id' and 'student')

 for (auto &[id, student] : studentBody)

 cout << id << " " << student.GetFirstName() << " "

 << student.GetLastName() << endl;

 return 0;

}

Let’s examine the preceding code segments. Again, we include the applicable header file with #include
<map>. We also add using std::map; and using std::pair; to include map and pair
from the standard namespace. Next, we instantiate four Student instances. Next, we create three
pair instances to associate a grouping between each Student and its key (that is, with their respective
studentId) using the declaration pair<string, Student> studentPair1 (s1.
GetStudentId(), s1);. This may seem confusing to read, but let’s break this declaration down
into its components. Here, the instance’s data type is pair<string, Student>, the variable
name is studentPair1, and (s1.GetStudentId(), s1) are the arguments passed to the
specific pair instance’s constructor.

We will be making a hash table (map) of Student instances to be indexed by a key (which is their
studentId). Next, we declare a map to hold the collection of Student instances with map<string,
Student> studentBody;. Here, we indicate that the association between the key and element
will be between a string and a Student. We then declare a map iterator with map<string,
Student>::iterator mapIter; using the same data types.

Now, we simply insert the three pair instances into the map. An example of this insertion
is studentBody.insert(studentPair1);. We then insert a fourth Student, s4,
into the map using the map’s overloaded operator[] with the following statement:
studentBody[s4.GetStudentId()] = s4;. Notice that the studentId is used as the
index value in operator[]; this value will become the key value for the Student in the hash table.

Next, we declare and establish the map iterator to the beginning of the map and then process the map
while it is not at the end(). Within the loop, we set a variable, temp, to the pair at the front of the
map, indicated by the map iterator. We also set tempS as a temporary reference to a Student in
the map, which is indicated by temp.second (the second value in the current pair managed by
the map iterator). We now can print out each Student instance’s studentId (the key, which is a
string) using temp.first (the first item in the current pair). In the same statement, we can
then print out each Student instance’s firstName using temp.second.GetFirstName()

Understanding how to use essential STL containers 387

(since the Student corresponding to the key is the second item in the current pair).
Similarly, we could also use tempS.GetLastName() to print a student’s lastName, as tempS
was previously initialized to the second element in the current pair at the beginning of each loop
iteration.

Finally, as an alternative to the more tedious approach demonstrated previously used to iterate through
the map (taking apart the pair manually), let’s examine the final loop in our program. Here, we
utilize a range-for loop to process the map. The use of auto with &[id, student] will specify
the type of data that we will iterate. The brackets ([]) will decompose the pair, binding the iterative
elements to id and student, respectively, as identifiers. Notice the ease at which we can now iterate
over the studentBody map.

Let’s take a look at the output for this program:

178UD Hana Lo

272UD Ali Li

299TU Rui Qi

887TU Jiang Wu

178UD Hana Lo

272UD Ali Li

299TU Rui Qi

887TU Jiang Wu

Next, let’s take a look at an alternative with an STL map, which will introduce us to the STL functor
concept.

Examining STL map using a functor

The STL map class has great flexibility, like many STL classes. In our past map example, we assumed that
a means for comparison was present in our Student class. We had, after all, overloaded operator<
for two Student instances. What happens, however, if we cannot revise a class that has not provided
this overloaded operator and we also choose not to overload operator< as an external function?

Fortunately, we may specify a third data type for the template type expansion when instantiating a
map or map iterator. This additional data type will be a specific type of class, known as a functor. A
functor is an object that can be treated as though it is a function or function pointer. We will create
a class (or struct) to represent our functor type, and within that class (or struct), we must overload
operator(). It is within overloaded operator() that we will provide a means of comparison
for the objects in question. A functor essentially simulates encapsulating a function pointer by
overloading operator().

Understanding STL Basics388

Let’s take a look at how we might revise our map example to utilize a simple functor. This example
can be found, as a full working program, in our GitHub as follows:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex8.cpp

#include <map>

using std::map;

using std::pair;

struct comparison // This struct represents a 'functor'

{ // that is, a 'function object'

 bool operator() (const string &key1,

 const string &key2) const

 {

 int ans = key1.compare(key2);

 if (ans >= 0) return true; // return a boolean

 else return false;

 }

 // default constructor and destructor are adequate

};

int main()

{

 Student s1("Hana", "Sato", 'U', "Dr.", 3.8, "C++",

 "178PSU");

 Student s2("Sara", "Kato", 'B', "Dr.", 3.9, "C++",

 "272PSU");

 Student s3("Jill", "Long", 'R', "Dr.", 3.7, "C++",

 "234PSU");

 // Now, map is maintained in sorted (decreasing) order

 // per ‹comparison› functor using operator()

 map<string, Student, comparison> studentBody;

 map<string, Student, comparison>::iterator mapIter;

 // The remainder of the program is similar to prior

} // map program. See online code for complete example.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex8.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter14/Chp14-Ex8.cpp

Customizing STL containers 389

In the previously mentioned code fragment, we first introduce a user defined type of comparison.
This can be a class or a struct. Within this structure definition, we have overloaded the function
call operator (operator()) and provided a means of comparison between two string keys for
Student instances. This comparison will allow Student instances to be inserted in an order
determined by the comparison functor.

Now, when we instantiate our map and map iterators, we specify as the third parameter for the template
type expansion our comparison type (the functor). And, neatly embedded within this type is the
overloaded function call operator, operator(), which will provide our needed comparison. The
remaining code will be similar to our original map program.

Certainly, functors may be used in additional, more advanced ways beyond what we have seen here with
the container class map. Nonetheless, you now have a flavor for how a functor can apply to the STL.

Now that we have seen how to utilize a variety of STL container classes, let’s consider why we may
want to customize an STL class, and how to do so.

Customizing STL containers
Most classes in C++ can be customized in some fashion, including classes in the STL. However, we
must be aware of design decisions made within the STL that will limit how we may customize these
components. Because the STL container classes purposely do not include virtual destructors or other
virtual functions, we should not use specialization via public inheritance to extend these classes. Note
that C++ will not stop us, but we know from Chapter 7, Using Dynamic Binding through Polymorphism,
that we should never override non-virtual functions. STL’s choice to not include virtual destructors
and other virtual functions to allow further specialization of these classes was a solid design choice
made long ago when STL containers were crafted.

We could, however, use private or protected inheritance, or the concepts of containment or association
to use an STL container class as a building block. That is, to hide the underlying implementation of
a new class, where the STL provides a solid, yet hidden implementation for the new class. We would
simply provide our own public interface for the new class and, under the hood, delegate the work to
our underlying implementation (whether that be a private or protected base class, or a contained or
associated object).

Extreme care and caution must be taken when extending any template class, including those in the
STL using private or protected base classes. This caution will also apply to containing or associating
to other template classes. Template classes are generally not compiled (or syntax checked) until an
instance of the template class with a specific type is created. This means that any derived or wrapper
classes that are created can only be fully tested when instances of specific types are created.

Understanding STL Basics390

Appropriate overloaded operators will need to be put in place for new classes so that these operators
will work automatically with customized types. Keep in mind that some operator functions, such as
operator=, are not explicitly inherited from base to derived class and need to be written with each
new class. This is appropriate since derived classes will likely have more work to accomplish than found
in the generalized versions of operator=. Remember, if you cannot modify the class definition of
a class requiring a selected overloaded operator, you must implement that operator function as an
external function.

In addition to customizing containers, we may also choose to augment an algorithm based on an
existing algorithm within the STL. In this case, we would use one of the many STL functions as part
of a new algorithm’s underlying implementation.

Customizing classes from existing libraries comes up routinely in programming. For example, consider
how we extended the Standard Library exception class to create customized exceptions in Chapter
11, Handling Exceptions (though that scenario utilized public inheritance, which will not apply to
customizing STL classes). Keep in mind that the STL offers a very full complement of container classes.
Rarely will you find the need to augment STL classes – perhaps only with a very domain-specific class
need. Nonetheless, you now know the caveats involved in customizing STL classes. Remember, care
and caution must always be used when augmenting a class. We can now see the need to employ proper
OO component testing for any classes we create.

We have now considered how to potentially customize STL container classes and algorithms within
our programs. We have also seen quite a few STL container class examples in action. Let us now briefly
recap these concepts before moving forward to our next chapter.

Summary
In this chapter, we have furthered our C++ knowledge beyond OOP language features to gain familiarity
with the C++ Standard Template Library. As this library is used so commonly in C++, it is essential
that we understand both the scope and breadth of the classes it contains. We are now prepared to
utilize these useful, well-tested classes in our code.

We have looked at quite a few STL examples; by examining selective STL classes, we should feel
empowered to understand the remainder of the STL (or any C++ library) on our own.

We have seen how to use common and essential STL classes such as list, iterator, vector,
deque, stack, queue, priority_queue, and map. We have also seen how to utilize a functor in
conjunction with a container class. We have been reminded that we now have the tools to potentially
customize any class, even those from class libraries such as STL through private or protected inheritance,
or with containment or association.

Questions 391

We have additionally seen through examining selected STL classes that we have the skills to understand
the remaining depth and breadth of the STL, as well as decode many additional class libraries that
are available to us. As we navigate the prototypes of each member function, we notice key language
concepts, such as the use of const, or that a method returns a reference to an object representing
writable memory. Each prototype reveals the mechanics for the usage of the new class. It is very
exciting to have come this far with our programming endeavors!

We have now added additional, useful features to our C++ repertoire through browsing the STL in
C++. Usage of the STL (to encapsulate traditional data structures) will ensure that our code can easily
be understood by other programmers who are also undoubtedly using the STL. Relying on the well-
tested STL for these common containers and utilities ensures that our code remains more bug-free.

We are now ready to continue forward with Chapter 15, Testing Classes and Components. We want
to complement our C++ programming skills with useful OO component testing skills. Testing skills
will help us understand whether we have created, extended, or augmented classes in a robust fashion.
These skills will make us better programmers. Let’s continue onward!

Questions
1. Replace your template Array class from your exercise from Chapter 13, Working with Templates,

with an STL vector. Create a vector of Student instances. Use vector operations to
insert, retrieve, print, compare, and remove objects from the vector. Alternatively, utilize an
STL list. Use this opportunity to utilize the STL documentation to navigate the full set of
operations available for these classes.

a. Consider what operators, if any, you will need to overload. Consider whether you will
need an iterator to provide safe interleaved access to your collection.

b. Create a second vector of Student instances. Assign one to another. Print both
vectors.

2. Modify the map from this chapter to index the hash table (map) of Student instances based
on lastName rather than studentId.

3. Modify the queue example from this chapter to instead utilize priority_queue. Be sure
to make use of the priority enqueueing mechanism priority_queue::emplace() to
add elements into the priority_queue. You will also need to utilize top() instead of
front(). Note that priority_queue can be found in the <queue> header file.

4. Try out an STL algorithm using sort(). Be sure to #include <algorithm>. Sort an
array of integers. Keep in mind that many containers have sorting mechanisms built in, but
native collection types, such as a language-supplied array, will not (which is why you should
use a basic array of integers).

15
Testing Classes and

Components

This chapter will continue our pursuit of increasing your C++ programming repertoire beyond OOP
concepts through exploring means to test the classes and components that comprise our OO programs.
We will explore various strategies to help ensure that the code we write will be well-tested and robust.

This chapter shows how to test your OO programs through testing individual classes, as well as testing
the various components that work together.

In this chapter, we will cover the following main topics:

• Understanding the canonical class form and creating robust classes

• Creating drivers to test classes

• Testing classes related by inheritance, association, or aggregation

• Testing exception handling mechanisms

By the end of this chapter, you will have various techniques in your programming arsenal to ensure
that your code is well-tested before it goes into production. Having the skills to consistently produce
robust code will help you become a more beneficial programmer.

Let’s increase our C++ skills set by examining various techniques for OO testing.

Testing Classes and Components394

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter15. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter15 in a file
named Chp15-Ex1.cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3AxyLFH.

Contemplating OO testing
Software testing is immensely important prior to any code deployment. Testing object-oriented
software will require different techniques than other types of software. Because OO software contains
relationships between classes, we must understand how to test dependencies and relationships that
may exist between classes. Additionally, each object may progress through different states based on
the order that operations are applied to each instance, as well as through specific interactions with
related objects (for example, via association). The overall flow of control through an OO application is
much more complex than with procedural applications, as the combinations and order of operations
applied to a given object and influences from associated objects are numerous.

Nonetheless, there are metrics and processes we can apply to test OO software. These range from
understanding idioms and patterns we can apply for class specification, to creating drivers to test
classes both independently and as they relate to other classes. These processes can further include
creating scenarios to provide likely sequences of events or states that objects may progress through.
Relationships between objects, such as inheritance, association, and aggregation become very important
in testing; related objects can influence the state of an existing object.

Let’s begin our quest in testing OO software by understanding a simple pattern that we can often apply
to classes we develop. This idiom will ensure that a class is potentially complete, with no unexpected
behavior. We will start with the canonical class form.

Understanding the canonical class form
For many classes in C++, it is reasonable to follow a pattern for class specification to ensure that a new
class contains a full set of desired components. The canonical class form is a robust specification of
a class that enables class instances to provide uniform behavior (analogous to standard data types) in
areas such as initialization, assignment, argument passing, and usage in return values from functions.
The canonical class form will apply to most classes that are intended for either instantiation or that
will serve as public base classes for new derived classes. Classes that are intended to serve as private or
protected base classes (even if they may be instantiated themselves) may not follow all parts of this idiom.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter15
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter15
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter15
https://bit.ly/3AxyLFH

Understanding the canonical class form 395

A class following orthodox canonical form will include the following:

• A default constructor (or an =default prototype to explicitly allow this interface)

• A copy constructor

• An overloaded assignment operator

• A virtual destructor

Though any of the aforementioned components may be prototyped with =default to explicitly
utilize the default, system-supplied implementations, modern preferences are moving away from such
practices (as these prototypes are generally redundant). The exception is the default constructor whose
interface you will not otherwise get without using =default when other constructors are present.

A class following the extended canonical form will additionally include the following:

• A move copy constructor

• A move assignment operator

Let’s look at each component of the canonical class form in the next subsections.

Default constructor

A default constructor is necessary for simple instantiation. Though a default (empty) constructor will
be provided if a class contains no constructors, it is important to recall that a default constructor will
not be provided if a class contains constructors with other signatures. It is best to provide a default
constructor with reasonable, basic initialization, or alternatively, add =default to the default
constructor prototype; this is especially useful when in-class initialization is utilized.

Additionally, a default constructor for a given class’ base class will be called in the absence of an
alternate base class constructor specification in the member initialization list. If a base class has no
such default constructor (and one hasn’t been provided because a constructor with another signature
exists), the implicit call to the base class constructor will be flagged as an error.

Let’s also consider multiple inheritance situations in which a diamond-shaped hierarchy occurs,
and virtual base classes are used to eliminate duplication of the most base class subobjects within
instances of the most derived class. In this scenario, the default constructor for the now shared base
class subobject is called unless otherwise specified in the member initialization list of the derived class
responsible for creating the diamond shape. This occurs even if non-default constructors are specified
in the member initialization list at the middle level; remember these specifications are ignored when
the mid-levels specify a potentially shared virtual base class.

Testing Classes and Components396

Copy constructor

A copy constructor is often crucial for all objects containing pointer data members. Unless a copy
constructor is supplied by the programmer, a system-supplied copy constructor will be linked in when
necessary in the application. The system-supplied copy constructor performs a member-wise (shallow)
copy of all data members. This means that multiple instances of a class may contain pointers to shared
pieces of memory representing the data that should have been individualized. Unless resource sharing
is intended, raw pointer data members in the newly instantiated object will want to allocate their own
memory and copy the data values from the source object into this memory. Also, remember to use the
member initialization list in a derived class copy constructor to specify the base class’ copy constructor
to copy the base class data members. Certainly, copying the base class subobject in a deep fashion
is crucial; additionally, the base class data members are inevitably private, so selecting the base class
copy constructor in the derived class’ member initialization list is very important.

By specifying a copy constructor, we also help provide an expected manner for the creation of objects
passed (or returned) by value from a function. Ensuring deep copies in these scenarios is crucial. The
user may think these copies are by value, yet if their pointer data members are actually shared with
the source instance, it’s not truly passing (or returning) an object by value.

Overloaded assignment operator

An overloaded assignment operator, much like the copy constructor, is often also crucial for all
objects containing pointer data members. The default behavior for the system-supplied assignment
operator is a shallow assignment of data from source to destination object. Again, when data members
are raw pointers, unless the two objects want to share the resources for heap data members, it is highly
recommended that the assignment operator should be overloaded. Allocated space in the destination
object should be equal to the source data member sizes for any such pointer data members. The
contents (data) should then be copied from source to destination object for each pointer data member.

Also, remember that an overloaded assignment operator is not inherited; each class is responsible for
writing its own version. This makes sense, as the derived class inevitably has more data members to
copy than the assignment operator function in its base class. However, when overloading an assignment
operator in a derived class, remember to call the base class’ assignment operator to perform a deep
assignment of inherited base class members (which may be private and otherwise inaccessible).

Virtual destructor

A virtual destructor is required when using public inheritance. Often, derived class instances are
collected in a group and generalized by a set of base class pointers. Recall that upcasting in this
fashion is only possible to public base classes (not to protected or private base classes). When pointers
to objects are generalized in this fashion, a virtual destructor is crucial to allow the correct starting
point in the destructor sequence to be determined through dynamic (that is, runtime) binding versus
static binding. Recall that static binding would choose the starting destructor based on the pointer’s

Understanding the canonical class form 397

type, not what type the object actually is. A good rule of thumb is if a class has one or more virtual
functions, be sure to ensure that you also have a virtual destructor (even if it is only a virtual destructor
prototype utilizing =default).

Move copy constructor

A move copy constructor is much like a copy constructor and often crucial for all objects containing
pointer data members; however, the goal is to conserve memory as well as optimize performance
(such as by eliminating unnecessary copies of objects). Rather than the newly constructed object
becoming a deep copy of the source object, the motivation is to instead move the inner allocated
memory resources from the source instance to the newly allocated instance. With this goal of moving
resource ownership, we simply perform assignments for the pointer data members from the source
object to the data members pointed to by this. We then must null the source object’s pointers to
those data members so that both instances do not share the dynamically allocated data members. We
have, in essence, moved (the memory for) the pointer data members.

What about the non-pointer data members? The memory for these data members will be copied as
usual. The memory for the non-pointer data members and the memory for the pointers themselves
(not the memory pointed to by those pointers), still reside in the source instance. As such, the best we
can do is designate a null value (nullptr) for the source object’s pointers and place a 0 (or similar)
value in the non-pointer data members to indicate that these members are no longer relevant.

We will use the move() function, found in the C++ Standard Library, to indicate a move copy
constructor as follows:

Person p1("Alexa", "Gutierrez", 'R', "Ms.");

Person p2(move(p1)); // move copy constructor

Person p3 = move(p2); // also the move copy constructor

Additionally, with classes related by inheritance, we will also use move() in the member initialization
list of the derived class move copy constructor. This will specify the base class move copy constructor
to help initialize the subobject.

Move assignment operator

A move assignment operator is much like an overloaded assignment operator and is often crucial for
all objects containing pointer data members. However, the goal is to again conserve memory by moving
the dynamically allocated data of the source object to the destination object (versus performing a deep
assignment). As with the overloaded assignment operator, we will test for self-assignment and then
delete any previously dynamically allocated data members from the (pre-existing) destination object.
However, we will then simply copy the pointer data members from the source object to those in the
destination object. We will also null out the pointers in the source object so that the two instances do
not share these dynamically allocated data members.

Testing Classes and Components398

Also, much like the move copy constructor, non-pointer data members will be simply copied from source
to destination object and replaced with a nullptr value in the source object to indicate non-usage.

We will again use the move() function as follows:

Person p3("Alexa", "Gutierrez", 'R', "Ms.");

Person p5("Xander", "LeBrun", 'R', "Dr.");

p5 = move(p3); // move assignment; replaces p5

Additionally, with classes related by inheritance, we can again specify that the move assignment
operator of the derived class will call the base class move assignment operator to help complete the task.

Bringing the components of canonical class form together

Let’s see an example of a pair of classes that embrace the canonical class form. We will start with our
Person class. This example can be found, as a complete program, in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter15/Chp15-Ex1.cpp

class Person

{

private: // Note slightly modified data members

 string firstName, lastName;

 char middleInitial = '\0'; // in-class initialization

 // pointer data member to demo deep copy and operator =

 char *title = nullptr; // in-class initialization

protected: // Assume usual protected member functions exist

public:

 Person() = default; // default constructor

 // Assume other usual constructors exist

 Person(const Person &); // copy constructor

 Person(Person &&); // move copy constructor

 virtual ~Person() { delete [] title }; // virtual dest.

 // Assume usual access functions and virtual fns. exist

 Person &operator=(const Person &); // assignment op.

 Person &operator=(Person &&); // move assignment op.

};

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter15/Chp15-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter15/Chp15-Ex1.cpp

Understanding the canonical class form 399

// copy constructor

Person::Person(const Person &p): firstName(p.firstName),

 lastName(p.lastName), middleInitial(p.middleInitial)

{

 // Perform a deep copy for the pointer data member

 // That is, allocate memory, then copy contents

 title = new char [strlen(p.title) + 1];

 strcpy(title, p.title);

}

// overloaded assignment operator

Person &Person::operator=(const Person &p)

{

 if (this != &p) // check for self-assignment

 {

 // delete existing Person ptr data mbrs. for 'this'

 delete [] title;

 // Now re-allocate correct size and copy from source

 // Non-pointer data members are simply copied from

 // source to destination object

 firstName = p.firstName; // assignment btwn. strings

 lastName = p.lastName;

 middleInitial = p.middleInitial;

 title = new char [strlen(p.title) + 1]; // mem alloc

 strcpy(title, p.title);

 }

 return *this; // allow for cascaded assignments

}

In the previous class definition, we notice that Person contains a default constructor, copy constructor,
overloaded assignment operator, and a virtual destructor. Here, we have embraced the orthodox
canonical class form as a pattern applicable for a class that might one day serve as a public base class.
Also notice that we have added the prototypes for the move copy constructor and move assignment
operator to additionally embrace the extended canonical class form.

Testing Classes and Components400

The prototypes of the move copy constructor Person(Person &&); and the move assignment
operator Person &operator=(Person &&); contain parameters of type Person &&. These
are examples of r-value references. Arguments that can serve l-value references, such as Person
&, will bind to the original copy constructor and overloaded assignment operator, whereas r-value
reference parameters will bind to the applicable move methods instead.

Let’s now look at the definitions for the methods contributing to the extended canonical class form
– the move copy constructor and the move assignment operator for Person:

// move copy constructor

Person::Person(Person &&p): firstName(p.firstName),

 lastName(p.lastName), middleInitial(p.middleInitial),

 title(p.title) // dest ptr takes over src ptr's memory

{

 // Overtake source object's dynamically alloc. memory

 // or use simple assignments (non-ptr data members)

 // to copy source object's members in member init. list

 // Then null-out source object's ptrs to that memory

 // Clear source obj's string mbrs, or set w null char

 p.firstName.clear(); // set src object to empty string

 p.lastName.clear();

 p.middleInitial = '\0'; // null char indicates non-use

 p.title = nullptr; // null out src ptr; don't share mem

}

// move overloaded assignment operator

Person &Person::operator=(Person &&p)

{

 if (this != &p) // check for self-assignment

 {

 // delete destination object's ptr data members

 delete [] title;

 // for ptr mbrs: overtake src obj's dynam alloc mem

 // and null source object's pointers to that memory

 // for non-ptr mbrs, a simple assignment suffices

 // followed by clearing source data member

 firstName = p.firstName; // string assignment

 p.firstName.clear(); // clear source data member

Understanding the canonical class form 401

 lastName = p.lastName;

 p.lastName.clear();

 middleInitial = p.middleInitial; // simple =

 p.middleInitial = '\0'; // null char shows non-use

 title = p.title; // ptr assignment to take over mem

 p.title = nullptr; // null out src pointer

 }

 return *this; // allow for cascaded assignments

}

Notice, in the preceding move copy constructor for data members that are pointers, we overtake the
source object’s dynamically allocated memory by using simple pointer assignments in the member
initialization list (versus memory allocation such as we would employ in a deep copy constructor). We
then place a nullptr value in the source object’s pointer data members in the body of the constructor.
For non-pointer data members, we simply copy the values from the source to the destination object
and place a zeroed or empty value (such as '\0' for p.middleInitial or using clear() for
p.firstName) in the source object to indicate its further non-use.

In the move assignment operator, we check for self-assignment and then employ the same scheme
to merely move the dynamically allocated memory from the source object to the destination object
with a simple pointer assignment. We copy simple data members as well, and of course, replace source
object data values with either null pointers (nullptr) or zeroed values to indicate further non-use.
The return value of *this allows for cascaded assignments.

Now, let’s see how a derived class, Student, employs both the orthodox and extended canonical class
form while utilizing its base class components to aid in the implementation of selected idiom methods:

class Student: public Person

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 // one pointer data member to demo deep copy and op=

 const char *studentId = nullptr; // in-class init.

 static int numStudents;

public:

 Student(); // default constructor

 // Assume other usual constructors exist

 Student(const Student &); // copy constructor

 Student(Student &&); // move copy constructor

Testing Classes and Components402

 ~Student() override; // virtual destructor

 // Assume usual access functions exist

 // as well as virtual overrides and additional methods

 Student &operator=(const Student &); // assignment op.

 Student &operator=(Student &&); // move assignment op.

};

// See online code for default constructor implementation

// as well as implementation for other usual member fns.

// copy constructor

Student::Student(const Student &s): Person(s),

 gpa(s.gpa), currentCourse(s.currentCourse)

{ // Use member init. list to specify base copy

 // constructor to initialize base sub-object

 // Also use mbr init list to set most derived data mbrs

 // Perform deep copy for Student ptr data members

 // use temp - const data can't be directly modified

 char *temp = new char [strlen(s.studentId) + 1];

 strcpy (temp, s.studentId);

 studentId = temp;

 numStudents++;

}

// Overloaded assignment operator

Student &Student::operator=(const Student &s)

{

 if (this != &s) // check for self-assignment

 { // call base class assignment operator

 Person::operator=(s);

 // delete existing Student ptr data mbrs for 'this'

 delete [] studentId;

 // for ptr members, reallocate correct size and copy

 // from source; for non-ptr members, just use =

 gpa = s.gpa; // simple assignment

 currentCourse = s.currentCourse;

Understanding the canonical class form 403

 // deep copy of pointer data mbr (use a temp since

 // data is const and can't be directly modified)

 char *temp = new char [strlen(s.studentId) + 1];

 strcpy (temp, s.studentId);

 studentId = temp;

 }

 return *this;

}

In the preceding class definition, we again see that Student contains a default constructor, a copy
constructor, an overloaded assignment operator, and a virtual destructor to complete the orthodox
canonical class form.

Notice, however, that in the Student copy constructor, we specify the use of the Person copy
constructor through the member initialization list. Similarly, in the Student overloaded assignment
operator, once we check for self-assignment, we call the overloaded assignment operator in Person
to help us complete the task using Person::operator=(s);.

Let’s now look at the method definitions contributing to the extended canonical class form of Student
– the move copy constructor and the move assignment operator:

// move copy constructor

Student::Student(Student &&s): Person(move(s)), gpa(s.gpa),

 currentCourse(s.currentCourse),

 studentId(s.studentId) // take over src obj's resource

{

 // First, use mbr. init. list to specify base move copy

 // constructor to initialize base sub-object. Then

 // overtake source object's dynamically allocated mem.

 // or use simple assignments (non-ptr data members)

 // to copy source object's members in mbr. init. list.

 // Then null-out source object's ptrs to that memory or

 // clear out source obj's string mbrs. in method body

 s.gpa = 0.0; // then zero-out source object member

 s.currentCourse.clear(); // clear out source member

 s.studentId = nullptr; // null out src ptr data member

 numStudents++; // it is a design choice whether or not

 // to inc. counter; src obj is empty but still exists

}

Testing Classes and Components404

// move assignment operator

Student &Student::operator=(Student &&s)

{

 // make sure we're not assigning an object to itself

 if (this != &s)

 {

 Person::operator=(move(s)); // call base move oper=

 delete [] studentId; // delete existing ptr data mbr

 // for ptr data members, take over src objects memory

 // for non-ptr data members, simple assignment is ok

 gpa = s.gpa; // assignment of source to dest data mbr

 s.gpa = 0.0; // zero out source object data member

 currentCourse = s.currentCourse; // string assignment

 s.currentCourse.clear(); // set src to empty string

 studentId = s.studentId; // pointer assignment

 s.studentId = nullptr; // null out src ptr data mbr

 }

 return *this; // allow for cascaded assignments

}

Notice, in the previously listed Student move copy constructor, we specify the utilization of the
base class move copy constructor in the member initialization list. The remainder of the Student
move copy constructor is similar to that found in the Person base class.

Likewise, let’s notice in the Student move assignment operator, the call to the base class move
operator= with Person::operator=(move(s));. The remainder of this method is similar
to that found in the base class.

A good rule of thumb is that most non-trivial classes should minimally utilize the orthodox canonical
class form. Of course, there are exceptions. For example, a class that will only serve as a protected or
private base class need not have a virtual destructor because derived class instances cannot be upcast
past a non-public inheritance boundary. Similarly, if we have a good reason to not want copies or to
disallow an assignment, we can prohibit copies or assignments using the = delete specification in
the extended signature of either of these methods.

Nonetheless, the canonical class form will add robustness to classes that embrace this idiom. The
uniformity among classes utilizing this idiom with respect to their implementation of initialization,
assignment, and argument passing will be valued by programmers.

Let’s move forward to take a look at a complementary idea to the canonical class form, that of robustness.

Creating drivers to test classes 405

Ensuring a class is robust

An important feature of C++ is the ability to build libraries of classes for widespread reuse. Whether
we wish to achieve this goal, or simply wish to provide reliable code for our own organization’s use,
our code must be robust. A robust class will be well-tested, should follow the canonical class form
(except for requiring a virtual destructor in protected and private base classes), and be portable (or
included in a platform-specific library). Any class that is a candidate for reuse, or which is to be used
in any professional capacity, must absolutely be robust.

A robust class must ensure that all instances of a given class are fully constructed. A fully constructed
object is one in which all data members are appropriately initialized. All constructors for a given class
(including copy constructors) must be verified to initialize all data members. The values with which
data members are loaded should be checked for range suitability. Remember, an uninitialized data
member is a potential disaster! Precautions should be made in the event that a given constructor does
not complete properly or if the initial values of data members are inappropriate.

Fully constructed objects may be validated using a variety of techniques. A rudimentary (and not
advised) technique is to embed a status data member into each class (or derive or embed a status
ancestor/member). Set the status member to 0 in the member initialization list and to 1 as the last
line of the constructor. Probe this value after instantiation. The huge downfall of this approach is that
users will certainly forget to probe the fully constructed success flag.

An alternative to the simple, aforementioned scheme is to utilize in-class initialization for all simple
data types, resetting these members in the member initialization list of each alternate constructor
to the desired values. After instantiation, the values may again be probed to determine whether an
alternate constructor completed successfully. This is still far from an ideal implementation.

A much better technique is to utilize exception handling. Embedding exception handling inside each
constructor is ideal. If data members are not initialized within a suitable range, first try to re-enter
their values, or open an alternate database for input, for example. As a last resort, you can throw an
exception to report the not fully constructed object. We will more closely examine exception handling
with respect to testing later in this chapter.

Meanwhile, let us move forward with a technique to rigorously test our classes and components –
creating drivers to test classes.

Creating drivers to test classes
In Chapter 5, Exploring Classes in Detail, we briefly talked about breaking our code into source and header
files. Let us briefly recap. Typically, the header file will be named after the class (such as Student.h)
and will contain the class definition, plus any inline member function definitions. By placing inline
functions in a header file, they will be properly re-expanded should their implementations change
(as the header is subsequently included in each source file, creating a dependency with that header).

Testing Classes and Components406

The implementation for the methods of each class will be placed in a corresponding source code file
(such as Student.cpp), which will include the header on which it is based (that is, #include
"Student.h"). Note that the double quotes imply that this header is in our current working directory;
we could also specify a path as to where to find the header. By comparison, the angle brackets used
with C++ libraries tell the preprocessor to look in predesignated directories by the compiler. Also,
note that each derived class header file will include the header file for its base class (so that it may see
member function prototypes).

Note that any static data member or method definitions will appear in their corresponding source
code files (so that only one definition per application will exist).

With this header and source code file structure in mind, we can now create a driver to test each
individual class or each grouping of closely related classes (such as those related through association
or aggregation). Classes related through inheritance can be tested in their own, individual driver files.
Each driver file can be named to reflect the class that is being tested, such as StudentDriver.
cpp. The driver file will include the relevant header files for the class(es) being tested. Of course, the
source files from the classes in question would be compiled and linked to the driver file as part of the
compilation process.

The driver file can simply contain a main() function as a test bed to instantiate the class(es) in question
and serve as a scope to test each member function. The driver will test default instantiation, typical
instantiation, copy construction, assignment between objects, and each of the additional methods in
the class(es). Should virtual destructors or other virtual functions exist, we should instantiate derived
class instances (in the derived class’ driver), upcasting these instances to be stored using base class
pointers, and then invoke the virtual functions to verify that the correct behaviors occur. In the case
of a virtual destructor, we can trace which destructor is the entry point in the destruction sequence
by deleting a dynamically allocated instance (or waiting for a stack instance to go out of scope) and
single-stepping through our debugger to verify all is as expected.

We can also test that objects are fully constructed; we will see more on this topic shortly.

Assuming we have our usual Person and Student class hierarchy, here is a simple driver (the file
containing main()) to test the Student class. This driver can be found in our GitHub repository.
To make a complete program, you will also need to compile and link together the Student.cpp and
Person.cpp files found in this same directory. Here is the GitHub repository URL for the driver:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter15/Chp15-Ex2.cpp

#include "Person.h" // include relevant class header files

#include "Student.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

constexpr int MAX = 3;

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter15/Chp15-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter15/Chp15-Ex2.cpp

Creating drivers to test classes 407

int main() // Driver to test Student class, stored in above

{ // filename for chapter example consistency

 // Test all instantiation means, even copy constructor

 Student s0; // Default construction

 // alternate constructor

 Student s1("Jo", "Li", 'H', "Ms.", 3.7, "C++",

 "UD1234");

 Student s2("Sam", "Lo", 'A', "Mr.", 3.5, "C++",

 "UD2245");

 // These initializations implicitly invoke copy const.

 Student s3(s1);

 Student s4 = s2; // This is also initialization

 // Test the assignment operator

 Student s5("Ren", "Ze", 'A', "Dr.", 3.8, "C++",

 "BU5563");

 Student s6;

 s6 = s5; // this is an assignment, not initialization

 // Test each public method. A sample is shown here

 s1.Print(); // Be sure to test each method!

 // Generalize derived instances as base types

 // Do the polymorphic operations work as expected?

 Person *people[MAX] = { }; // initialized with nullptrs

 // base instance for comparison

 people[0] = new Person("Juliet", "Martinez", 'M',

 "Ms.");

 // derived instances, generalized with base class ptrs.

 people[1] = new Student("Zack", "Moon", 'R', "Dr.",

 3.8, "C++", "UMD1234");

 people[2] = new Student("Gabby", "Doone", 'A', "Dr.",

 3.9, "C++", "GWU4321");

 for (auto *item : people) // loop through all elements

 {

 item->IsA();

 cout << " ";

Testing Classes and Components408

 item->Print();

 }

 // Test destruction sequence (dynam. alloc. instances)

 for (auto *item : people) // loop thru all elements

 delete item; // engage virtual dest. sequence

 return 0;

}

Briefly reviewing the preceding program fragment, we can see that we have tested each means for
instantiation, including the copy constructor. We’ve also tested the assignment operator, verified
each member function works (an example method is shown), and verified that the virtual functions
(including the virtual destructor), work as intended.

Now that we have seen a basic driver test our classes, let’s consider some additional metrics we can
use when testing classes related via inheritance, association, or aggregation.

Testing related classes
With OO programs, it is not sufficient to simply test an individual class for completeness and robustness,
though these are good starting points. Completeness entails not only following the canonical class form
but also ensuring that data members have a safe means for access using appropriate access methods
(labeled as const when not modifying the instance). Completeness also verifies that the required
interface as specified by the OO design has been implemented.

Robustness leads us to verify that all of the aforementioned methods had been tested within an
appropriate driver, evaluated for platform independence, and verified that each means for instantiation
leads to a fully constructed object. We can augment this type of testing with threshold testing of data
members, for instance, noting when exceptions are thrown. Completeness and robustness, though
seemingly comprehensive, are actually the most straightforward means for OO component testing.

The more challenging means for testing is to test the interaction between related classes.

Testing classes related through inheritance, association, or
aggregation

Classes related through various object relationships require various additional means for component
testing. Objects with various relationships with one another can impact the state progression a given
instance may have during its life expectancy within the application. This type of testing will require the
most detailed effort. We will find that scenarios will be useful to help us capture the usual interactions
between related objects, leading to more comprehensive ways to test classes that interact with one another.

Let’s begin by considering how we can test classes related to inheritance.

Testing related classes 409

Adding strategies to test inheritance

Classes related through public inheritance need to have virtual functions verified. For example, have all
intended derived class methods been overridden? Remember, a derived class does not need to override
all virtual functions specified in its base class if base class behaviors are still deemed appropriate at the
derived class level. It will be necessary to compare the implementation to the design to ensure that we
have overridden all required polymorphic operations with suitable methods.

Certainly, the binding of virtual functions is done at runtime (that is, dynamic binding). It will
be important to create derived class instances and store them using base class pointers so that the
polymorphic operations can be applied. We then need to verify that the derived class behavior shines
through. If not, perhaps we may find ourselves in an unintended function hiding situation, or perhaps
the base class operation wasn’t marked virtual as intended (keeping in mind that the keywords
virtual and override at the derived class level, though nice and recommended, are optional
and do not affect the dynamic behavior).

Though classes related through inheritance have unique testing strategies, remember that instantiation
will create a single object, that is, of a base class or of a derived class type. When we instantiate one such
type, we have one such instance, not a pair of instances working together. A derived class merely has a
base class subobject, which is part of itself. Let’s consider how this compares with associated objects or
aggregates, which can be separate objects (association), potentially interacting with their companions.

Adding strategies to test aggregation and association

Classes related through association or aggregation may be multiple instances communicating with
one another and causing state changes with one another. This is certainly more complex than the
object relationship of inheritance.

Classes related via aggregation are generally easier to test than those related via association. Thinking
of the most common form of aggregation (composition), the embedded (inner) object is part of the
outer (whole) object. When the outer object is instantiated, we get the memory for the inner object
embedded within the whole. The memory layout is not tremendously different (other than the potential
ordering) when compared to the memory layout of a derived class instance, which contains a base
class subobject. In each case, we are still dealing with a single instance (even though it has embedded
parts). The point of comparison with testing, however, is that operations applied to the whole are often
delegated to the parts or components. We will rigorously need to test the operations, on the whole,
to ensure that they delegate necessary information to each of the parts.

Classes related via the lesser-used form of a general aggregation (where the whole contains pointers
to the parts versus the typical embedded object implementation of composition) have similar issues
to an association, as the implementation is similar. With that in mind, let’s take a look at testing issues
relating to associated objects.

Testing Classes and Components410

Classes related via an association are often independently existing objects, which at some point in
the application have created a link to one another. There may or may not be a predetermined point
in the application when the two objects create a link to one another. Operations applied to one
object may cause a change in the associated object. For example, let us consider a Student and a
Course. Both may exist independently, then at some point in the application, a Student may add
a Course with Student::AddCourse(). By doing so, not only does a particular Student
instance now contain a link to a specific Course instance, but the Student::AddCourse()
operation has caused a change in the Course class. That particular Student instance is now part of
a particular Course instance’s roster. At any point, the Course may be canceled, rippling a change
in all Student instances who are enrolled in that Course. These changes reflect states in which
each associated object may exist. For example, a Student may be in a state of currently enrolled, or
dropping a Course. There are many possibilities. How do we test all of them?

Adding scenarios to aid in testing object relationships

The notion of a scenario comes up in object-oriented analysis as a means to both create OO designs
and test them. A scenario is a descriptive walkthrough of a likely series of events that will occur
in an application. A scenario will feature classes and how they may interact with one another for a
specific situation. Many related scenarios can be collected into the OO concept of a use case. In the
OO analysis and design phases, scenarios help determine which classes may exist in the application
as well as operations and relationships each may have. In testing, scenarios can be reused to form
the basis for driver creation to test various object relationships. With this in mind, a series of drivers
can be developed to test numerous scenarios (that is, use cases). This type of modeling will more
thoroughly be able to provide a test bed for related objects than the initial, simple means of testing
for completeness and robustness.

Another area of concern between any type of related classes is that of version control. What happens,
for example, if a base class definition or default behavior changes? How will that impact a derived
class? How will that impact associated objects? With each change, we inevitably will need to revisit
component testing for all related classes.

Next, let’s consider how exception handling mechanisms factor into OO component testing.

Testing exception handling mechanisms
Now that we can create drivers to test each class (or a grouping of related classes), we will want to
understand which methods in our code may throw exceptions. For these scenarios, we will want to
add try blocks within the driver to ensure we know how to handle each potential exception thrown.
Before doing so, we should ask ourselves, did we include adequate exception handling in our code
during the development process? For example, considering instantiation, do our constructors check
whether an object is fully constructed? Do they throw exceptions if not? If the answer is no, our classes
may not be as robust as we had anticipated.

Summary 411

Let’s consider embedding exception handling into a constructor, and how we may construct a driver
to test all potential means for instantiation.

Embedding exception handling in constructors to create robust
classes

We may recall from our recent Chapter 11, Handling Exceptions, that we can create our own exception
classes, derived from the C++ Standard Library exception class. Let’s assume that we have
created such a class, namely ConstructionException. If at any point in a constructor we are
not able to properly initialize a given instance to provide a fully constructed object, we can throw
a ConstructionException from any constructor. The implication of potentially throwing a
ConstructionException is that we now should enclose instantiation within try blocks and
add matching catch blocks to anticipate a ConstructionException that may be thrown. Keep
in mind, however, that instances declared within the scope of a try block have scope only within the
try-catch pairing.

The good news is that if an object does not complete construction (that is, if an exception is thrown
before the constructor completes), the object will technically not exist. If an object does not technically
exist, there will be no necessary clean up of a partially instantiated object. We will, however, need to
think about what this means to our application if an instance we anticipate does not fully construct.
How will that alter the progression of our code? Part of testing is to ensure that we have considered
all ways in which our code may be used and bulletproof our code accordingly!

It is important to note that the introduction of try and catch blocks may alter our program flow,
and it is crucial to include this type of testing in our drivers. We may seek scenarios that account for
the try and catch blocks as we conduct our testing.

We have now seen how we can augment our test drivers to accommodate classes that may throw
exceptions. We have also discussed in this chapter adding scenarios in our drivers to help track the
states between objects with relationships and, of course, simple class idioms we can follow to set us
up for success. Let us now briefly recap these concepts before moving forward to our next chapter.

Summary
In this chapter, we have increased our ability to become better C++ programmers by examining various
OO class and component testing practices and strategies. Our primary goal is to ensure that our code
is robust, well-tested, and can be deployed error-free to our various organizations.

We have considered programming idioms, such as following the canonical class form to ensure that
our classes are complete and have expected behavior for construction/destruction, assignment, and
usage in argument passing and as return values from functions. We have talked about what it means
to create a robust class – one that follows the canonical class form that is also well-tested, platform-
independent, and tested for fully constructed objects.

Testing Classes and Components412

We have also explored how to create drivers to test individual classes or sets of related classes. We
have established a checklist of items to test individual classes within a driver. We have looked more
thoroughly at object relationships to understand that objects that interact with one another require
more sophisticated testing. That is, as objects move from state to state, they may be impacted by
associated objects, which can further alter their course of progression. We’ve added utilizing scenarios
as test cases for our drivers to better capture the dynamic states in which instances may move within
an application.

Finally, we have taken a look at how exception handling mechanisms can impact how we test our
code. We have augmented our drivers to account for the flow of control that try and catch blocks may
redirect our applications from their anticipated, typical progression.

We are now ready to continue forward with the next part of our book, design patterns and idioms in
C++. We will start with Chapter 16, Using the Observer Pattern. In the remaining chapters, we will
understand how to apply popular design patterns and employ them in our coding. These skills will
make us better programmers. Let’s move forward!

Questions
1. Consider a pair of classes from one of your previous exercises containing an object relationship

(hint – public inheritance will be easier to consider than association).

a. Do your classes follow the canonical class form? Orthodox or extended? Why, or why not?
If they do not and should, revise the classes to follow this idiom.

b. Would you consider your classes robust? Why, or why not?

2. Create a driver (or two) to test your pair of classes:

a. Be sure to test for the usual checklist of items (construction, assignment, destruction, the
public interface, upcasting (if applicable), and use of a virtual function).

b. (Optional) If you selected two classes related using association, create a separate driver to
follow a typical scenario detailing the interaction of the two classes.

c. Be sure to include testing of exception handling in one of your test drivers.

3. Create a ConstructionException class (derived from the C++ Standard Library
exception). Embed checks within your constructors in a sample class to throw a
ConstructionException when necessary. Be sure to enclose all forms of instantiation
of this class within the appropriate try and catch block pairings.

Part 4:
Design Patterns and

Idioms in C++

The goal of this part is to expand your C++ repertoire, beyond OOP and other necessary skills,
to include knowledge of core design patterns. Design patterns provide well-proven techniques
and strategies to solve recurring types of OO problems. This section introduces common design
patterns and demonstrates in depth how to apply these patterns by building on previous examples
within the book in creative ways. Each chapter contains detailed code examples to exemplify
each pattern.

The initial chapter in this section introduces the idea of design patterns and discusses the advantages
of utilizing such patterns within coding solutions. The initial chapter also introduces the Observer
pattern and provides an in-depth program to appreciate the various components of this pattern.

The next chapter explains the Factory Method pattern and likewise provides detailed programs,
showing how to implement the Factory Method pattern with and without an Object Factory.
This chapter additionally compares an Object Factory to an Abstract Factory.

The following chapter introduces the Adapter pattern and provides implementation strategies
and program examples using inheritance versus association to implement the Adapter class.
Additionally, an adapter as a simple wrapper class is illustrated.

The Singleton pattern is examined in the following chapter. Following two simple examples, a
paired-class implementation is demonstrated with a detailed example. Registries to accommodate
Singletons are also introduced.

The final chapter in this section and book introduces the pImpl pattern to reduce compile-time
dependencies within your code. A basic implementation is provided and then expanded upon
using unique pointers. Performance issues are additionally explored relating to this pattern.

This part comprises the following chapters:

• Chapter 16, Using the Observer Pattern

• Chapter 17, Applying the Factory Pattern

• Chapter 18, Applying the Adapter Pattern

• Chapter 19, Using the Singleton Pattern

• Chapter 20, Removing Implementation Details Using the pImpl Pattern

Part 4: Design Patterns and Idioms in C++414

16
Using the Observer Pattern

This chapter will begin our quest to expand your C++ programming repertoire beyond OOP concepts,
with the goal of enabling you to solve recurring types of coding problems by utilizing common design
patterns. Design patterns will also enhance code maintenance and provide avenues for potential code
reuse.

The goal of the fourth section of the book, beginning with this chapter, is to demonstrate and explain
popular design patterns and idioms and learn how to implement them effectively in C++.

In this chapter, we will cover the following main topics:

• Understanding the advantage of utilizing design patterns

• Understanding the Observer pattern and how it contributes to OOP

• Understanding how to implement the Observer pattern in C++

By the end of this chapter, you will understand the utility of employing design patterns in your code,
as well as understand the popular Observer pattern. We will see an example implementation of this
pattern in C++. Utilizing common design patterns will help you become a more beneficial and valuable
programmer by enabling you to embrace more sophisticated programming techniques.

Let’s increase our programming skillset by examining various design patterns, starting in this chapter
with the Observer pattern.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter16. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter16 in a file
named Chp16-Ex1.cpp under the aforementioned GitHub directory.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter16
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter16
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter16

Using the Observer Pattern416

The CiA video for this chapter can be viewed at: https://bit.ly/3A8ZWoy.

Utilizing design patterns
Design patterns represent a grouping of well-tested programming solutions for recurring types of
programming conundrums. Design patterns represent the high-level concept of a design issue and
how a generalized collaboration between classes can provide a solution that can be implemented in
a variety of ways.

There are many well-identified design patterns that have been recognized and described in the past
25+ years of software development. We will look at some popular patterns in the remaining chapters
of this book to give you a feel of how we can incorporate popular software design solutions into our
coding arsenal of techniques.

Why might we choose to utilize a design pattern? To start, once we have identified a type of programming
problem, we can make use of a tried and true solution that other programmers have tested comprehensively.
Additionally, once we employ a design pattern, other programmers immersing themselves in our code
(for maintenance or future enhancements) will have a basic understanding of the techniques we have
chosen, as core design patterns have become an industry standard.

Some of the earliest design patterns came about nearly 50 years ago, with the advent of the Model-
View-Controller paradigm, later simplified at times to Subject-View. For example, Subject-View is
a rudimentary pattern in which an object of interest (the Subject) will be loosely coupled with its
method of display (its View). The Subject and its View communicate with a one-to-one association.
Sometimes Subjects can have multiple Views, in which case the Subject is associated with many View
objects. If one View changes, a state update can be sent to the Subject, who can then send necessary
messages to the other Views so that they, too, can be updated to reflect how the new state may have
modified their particular View.

The original Model-View-Controller (MVC) pattern, emanating from early OOP languages such as
Smalltalk, has a similar premise, except that a Controller object delegates events between the Model
(that is, the Subject) and its View (or Views). These preliminary paradigms influenced early design
patterns; the elements of Subject-View or MVC can be seen conceptually as a rudimentary basis for
core design patterns today.

Many of the design patterns we will review in the remainder of this book will be adaptations of
patterns originally described by the Gang of Four (Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides) in Design Patterns, Elements of Reusable Object-Oriented Software. We will apply and
adapt these patterns to solve problems stemming from applications we have introduced in earlier
chapters of this book.

Let’s begin our pursuit of understanding and utilizing popular design patterns by investigating a pattern
in action. We will start with a behavioral pattern known as the Observer pattern.

https://bit.ly/3A8ZWoy

Understanding the Observer pattern 417

Understanding the Observer pattern
In the Observer pattern, an object of interest will maintain a list of observers who are interested in
state updates of the main object. The observers will maintain a link to their object of interest. We will
refer to the main object of interest as the Subject. The list of interested objects is known collectively as
the Observers. The Subject will inform any Observer of relevant state changes. The Observers, once
notified of any state changes of the Subject, will take any appropriate next action themselves (usually
through a virtual function invoked on each Observer by the Subject).

Already, we can imagine how an Observer pattern may be implemented using associations. In fact, the
Observer represents a one-to-many association. The Subject, for example, may use an STL list (or
vector) to collect a set of Observers. Each Observer will contain an association to the Subject. We
can imagine an important operation on the Subject, corresponding to a state change in the Subject,
issuing an update to its list of Observers to notify them of the state change. The Notify() method is,
in fact, invoked when a Subject’s state changes and uniformly applies polymorphic Observer Update()
methods on each of the Subject’s list of Observers. Before we get swept up in implementation, let’s
consider the key components comprising the Observer pattern.

The Observer pattern will include the following:

• A Subject, or object of interest. The Subject will maintain a list of Observer objects (a many-
sided association).

• A Subject will provide an interface to Register() or Remove() an Observer.

• A Subject will include a Notify() interface, which will update its Observers when the
Subject’s state has changed. The Subject will Notify() Observers by calling a polymorphic
Update() method on each Observer in its collection.

• An Observer class will be modeled as an abstract class (or interface).

• An Observer interface will provide an abstract, polymorphic Update() method to be called
when its associated Subject has changed its state.

• An association between each Observer to its Subject will be maintained in a concrete class,
derived from Observer. Doing so will alleviate awkward casting (compared to maintaining the
Subject link in the abstract Observer class).

• Both classes will be able to maintain their current state.

The aforementioned Subject and Observer classes are specified generically so that they may be
combined with a variety of concrete classes (mostly through inheritance) that desire to use the Observer
pattern. A generic Subject and Observer provide a great opportunity for reuse. With a design pattern,
many core elements of a pattern can often be set up more generically to allow for greater reuse of the
code itself, not only the reuse in the concept of the solution (pattern).

Let’s move forward to see a sample implementation of the Observer pattern.

Using the Observer Pattern418

Implementing the Observer pattern
To implement the Observer pattern, we will first need to define our Subject and Observer classes.
We will then need to derive concrete classes from these classes to incorporate our application specifics
and to put our pattern in motion. Let’s get started!

Creating an Observer, Subject, and domain-specific derived
classes

In our example, we will create Subject and Observer classes to establish the framework for
registering an Observer with a Subject and for the Subject to Notify() its set of observers
of a state change it may have. We will then derive from these base classes descendent classes we are
accustomed to seeing – Course and Student, where Course will be our concrete Subject and
Student will become our concrete Observer.

The application we will model will involve a course registration system and the concept of a waitlist.
As we have seen before in Question 2 of Chapter 10, Implementing Association, Aggregation, and
Composition, we will model a Student having an association to many Course instances, and a
Course having an association to many Student instances. The Observer pattern will come into
play when we model our waitlist.

Our Course class will be derived from Subject. The list of observers that our Course will inherit
will represent the Student instances on this Course’s waitlist. The Course will also have a list of
Student instances, representing students who have been successfully enrolled in the course at hand.

Our Student class will be derived from both Person and Observer. The Student will include
a list of Course instances in which that Student is currently enrolled. The Student will also have
a data member, waitListedCourse, which will correspond to an association to a Course that
the Student is waiting to add. This waitlisted Course represents the Subject from which we
will receive notifications. A notification will correspond to a state change indicating that the Course
now has room for a Student to add the Course.

It is from Observer that Student will inherit the polymorphic operation Update(), which
will correspond to the Student being notified that a spot is now open in the Course. Here, in
Student::Update(), we will include the mechanics to add a student’s waitListedCourse
(provided the course is open and has available seats). If the addition is successful, we will release the
Student from the course’s waitlist (the list of observers inherited by Course from Subject).
Naturally, the Student will be added to the current student list in the Course and the Course
will appear in that student’s current course list.

Implementing the Observer pattern 419

Specifying the Observer and the Subject

Let’s break down our example into components, starting with the pair of classes to specify our
Observer and Subject. This complete program can be found in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter16/Chp16-Ex1.cpp

#include <list> // partial list of #includes

#include <iterator>

using std::cout; // prefered to: using namespace std;

using std::endl;

using std::setprecision;

using std::string;

using std::to_string;

using std::list;

constexpr int MAXCOURSES = 5, MAXSTUDENTS = 5;

// Simple enums for states; we could have also made a

// hierarchy of states, but let's keep it simple

enum State { Initial = 0, Success = 1, Failure = 2 };

// More specific states for readability in subsequent code

enum StudentState { AddSuccess = State::Success,

 AddFailure = State::Failure };

enum CourseState { OpenForEnrollment = State::Success,

 NewSpaceAvailable = State::Success,

 Full = State::Failure };

class Subject; // forward declarations

class Student;

class Observer // Observer is an abstract class

{

private:

 // Represent a state as an int, to eliminate type

 // conversions between specific and basic states

 int observerState = State::Initial; // in-class init.

protected:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter16/Chp16-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter16/Chp16-Ex1.cpp

Using the Observer Pattern420

 Observer() = default;

 Observer(int s): observerState(s) { }

 void SetState(int s) { observerState = s; }

public:

 int GetState() const { return observerState; }

 virtual ~Observer() = default;

 virtual void Update() = 0;

};

In the previous class definition, we introduce our abstract Observer class. Here, we include
an observerState and protected constructors to initialize this state. We include a protected
SetState() method to update this state from the scope of a derived class. We also include
a public GetState() method. The addition of GetState() will facilitate implementation
within our Subject’s Notify() method by allowing us to easily check whether the state of our
Observer has changed. Though state information has historically been added to derived classes of
both Observer and Subject, we will instead generalize state information in these base classes.
This will allow our derived classes to remain more pattern-independent and instead focused on the
essence of the application.

Notice that our destructor is virtual, and we introduce an abstract method virtual void Update()
= 0; to specify the interface our Subject will invoke on its list of observers to delegate updates
to these Observer instances.

Now, let’s take a look at our Subject base class:

class Subject // Treated as an abstract class, due to

{ // protected constructors. However, there's

private: // no pure virtual function

 list<class Observer *> observers;

 int numObservers = 0;

 // Represent a state as an int, to eliminate

 // type conversions between specific and basic states

 int subjectState = State::Initial;

 list<Observer *>::iterator newIter;

protected:

 Subject() = default;

 Subject(int s): subjectState(s) { } // note in-class

 // init. above

 void SetState(int s) { subjectState = s; }

Implementing the Observer pattern 421

public:

 int GetState() const { return subjectState; }

 int GetNumObservers() const { return numObservers; }

 virtual ~Subject() = default;

 virtual void Register(Observer *);

 virtual void Release(Observer *);

 virtual void Notify();

};

In the aforementioned Subject class definition, we see that our Subject includes an STL list
to collect its Observer instances. It also includes the subjectState and a counter to reflect
the number of observers. Also, we include a data member to keep track of an uncorrupted iterator.
We’ll see this will be handy once we erase an element (list::erase() is an operation that will
invalidate a current iterator).

Our Subject class will also have protected constructors and a SetState() method, which
initializes or sets the Subject’s state. Though this class is not technically abstract (it does not contain
a pure virtual function), its constructors are protected to simulate an abstract class; this class is only
intended to be constructed as a subobject within a derived class instance.

In the public interface, we have some access functions to get the current state or number of observers.
We also have a virtual destructor, and virtual functions for Register(), Release(), and
Notify(). We will provide implementations for the latter three methods at this base class level.

Let’s next take a look at the default implementations of Register(), Release(), and Notify()
in our Subject base class:

void Subject::Register(Observer *ob)

{

 observers.push_back(ob); // Add an Observer to the list

 numObservers++;

}

void Subject::Release(Observer *ob) // Remove an Observer

{ // from the list

 bool found = false;

 // loop until we find the desired Observer

 // Note auto iter will be: list<Observer *>::iterator

 for (auto iter = observers.begin();

 iter != observers.end() && !found; ++iter)

 {

Using the Observer Pattern422

 if (*iter == ob)// if we find observer that we seek

 {

 // erase() element, iterator is now corrupt.

 // Save returned (good) iterator;

 // we'll need it later

 newIter = observers.erase(iter);

 found = true; // exit loop after found

 numObservers--;

 }

 }

}

void Subject::Notify()

{ // Notify all Observers

 // Note auto iter will be: list<Observer *>::iterator

 for (auto iter = observers.begin();

 iter != observers.end(); ++iter)

 {

 (*iter)->Update(); // AddCourse, then Release

 // Observer. State 'Success' is represented

 // generally for Observer (at this level we have

 // no knowledge of how Subject and Observer have

 // been specialized). In our application, this

 // means a Student (observer) added a course,

 // got off waitlist (so waitlist had a Release),

 // so we update the iterator

 if ((*iter)->GetState() == State::Success)

 iter = newIter; // update the iterator since

 } // erase() invalidated this one

 if (!observers.empty())

 { // Update last item on waitlist

 Observer *last = *newIter;

 last->Update();

 }

}

Implementing the Observer pattern 423

In the aforementioned Subject member functions, let’s begin by examining the void
Subject::Register(Observer *) method. Here, we simply add the Observer * specified
as a parameter to our STL list of observers (and increase the counter for the number of observers).

Next, let’s consider the inverse of Register() by reviewing void Subject::Release(Observer
*). Here, we iterate through our list of observers until we find the one we are seeking. We then
call list::erase() on that current item, set our found flag to true (to leave the loop), and
decrement the number of observers. Also, notice that we save the return value of list::erase(),
which is an updated (and valid) iterator to the list of observers. The iterator iter in the loop has
been invalidated with our call to list::erase(). We save this revised iterator in a data member
newIter so that we can access it shortly.

Finally, let’s take a look at the Notify() method in Subject. This method will be called once there
is a state change in the Subject. The goal will be to Update() all observers on the Subject’s
observer list. To do just that, we look through our list. One by one, we grab an Observer with the
list iterator iter. We call Update() on the current Observer with (*iter)->Update();.
We can tell whether the update has been a success for a given Observer by checking the observer’s
state using if ((*iter)->GetState() == State::Success). With a state of Success, we
know the observer’s actions will have caused the Release() function we just reviewed to be called
on itself. Because the list::erase() used in Release() has invalidated the iterator, we now
get the correct and revised iterator using iter = newIter;. Finally, outside of the loop, we call
Update() on the last item in the list of observers.

Deriving concrete classes from Subject and Observer

Let’s continue moving forward with this example by taking a look at our concrete classes derived from
Subject or Observer. Let’s start with Course, derived from Subject:

class Course: public Subject

{ // inherits Observer list;

 // Observer list represents Students on waitlist

private:

 string title;

 int number = 0; // course num, total num students set

 int totalStudents = 0; // using in-class initialization

 Student *students[MAXSTUDENTS] = { }; // initialize to

 // nullptrs

public:

 Course(const string &title, int num): number(num)

 {

 this->title = title; // or rename parameter

Using the Observer Pattern424

 // Note: in-class init. is in-lieu of below:

 // for (int i = 0; i < MAXSTUDENTS; i++)

 // students[i] = nullptr;

 }

 // destructor body shown as place holder to add more

 // work that will be necessary

 ~Course() override

 { /* There's more work to add here! */ }

 int GetCourseNum() const { return number; }

 const string &GetTitle() const { return title; }

 const AddStudent(Student *);

 void Open()

 { SetState(CourseState::OpenForEnrollment);

 Notify();

 }

 void PrintStudents() const;

};

bool Course::AddStudent(Student *s)

{ // Should also check Student hasn't been added to Course

 if (totalStudents < MAXSTUDENTS) // course not full

 {

 students[totalStudents++] = s;

 return true;

 }

 else return false;

}

void Course::PrintStudents() const

{

 cout << "Course: (" << GetTitle() <<

 ") has the following students: " << endl;

 for (int i = 0; i < MAXSTUDENTS &&

 students[i] != nullptr; i++)

 {

 cout << "\t" << students[i]->GetFirstName() << " ";

Implementing the Observer pattern 425

 cout << students[i]->GetLastName() << endl;

 }

}

In our aforementioned Course class, we include data members for the course title and number as
well as for the total number of students currently enrolled. We also have our list of students currently
enrolled, indicated by Student *students[MAXNUMBERSTUDENTS];. Additionally, keep in
mind that we inherit the STL list of observers from our Subject base class. This list of Observer
instances will represent the Student instances comprising our waitlist (of students) for the Course.

The Course class additionally includes a constructor, a virtual destructor, and simple access
functions. Note that the virtual destructor has more work to do than shown – if a Course destructs,
we must remember to first remove (but not delete) Student instances from the Course. Our
bool Course::AddStudent(Student *) interface will allow us to add a Student to a
Course. Of course, we should ensure that the Student has not already added the Course in the
body of this method.

Our void Course::Open(); method will be invoked on a Course to indicate that the course is
now available to add students. Here, we will first set the state to Course::OpenForEnrollment
(clearly indicating Open for Enrollment with the enumerated type) and then call Notify(). Our
Notify() method in base class Subject loops through each Observer, calling polymorphic
Update() on each observer. Each Observer is a Student; Student::Update() will allow
each Student on the waitlist to try to add the Course, which now is open to receive students. With
a successful addition to the course’s current student list, a Student will then request Release()
of its position on the waitlist (as an Observer).

Next, let’s take a look at our class definition for Student, our concrete class derived from both
Person and Observer:

class Person { }; // Assume our typical Person class here

class Student: public Person, public Observer

{

private:

 float gpa = 0.0; // in-class initialization

 const string studentId;

 int currentNumCourses = 0;

 Course *courses[MAXCOURSES] = { }; // set to nullptrs

 // Course we'd like to take - we're on the waitlist.

 Course *waitListedCourse = nullptr; // Our Subject

 // (in specialized form)

Using the Observer Pattern426

 static int numStudents;

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &, Course *);

 Student(const string &, const string &, char,

 const string &, float, const string &);

 Student(const Student &) = delete; // Copies disallowed

 ~Student() override; // virtual destructor

 void EarnPhD();

 float GetGpa() const { return gpa; }

 const string &GetStudentId() const

 { return studentId; }

 void Print() const override; // from Person

 void IsA() const override; // from Person

 void Update() override; // from Observer

 virtual void Graduate(); // newly introduced virtual fn

 bool AddCourse(Course *);

 void PrintCourses() const;

 static int GetNumberStudents() { return numStudents; }

};

Briefly reviewing the aforementioned class definition for Student, we can see that this class is derived
from both Person and Observer using multiple inheritance. Let’s assume our Person class is as
we have used in the past many times.

In addition to the usual components of our Student class, we add the data member Course
*waitListedCourse;, which will model the association to our Subject. This data member
will model the idea of a Course that we would very much like to add, yet currently cannot, that is,
a waitlisted course. Here, we are implementing the concept of a single waitlisted course, but we could
easily expand the example to include a list supporting multiple waitlisted courses. Notice that this link
(data member) is declared in the form of the derived type, Course, not the base type, Subject.
This is typical in the Observer pattern and will help us avoid dreaded down-casting as we override our
Update() method in Student. It is through this link that we will conduct our interaction with our
Subject and the means by which we will receive updates from our Subject as it changes states.

We also notice that we have virtual void Update() override; prototyped in Student.
This method will allow us to override the pure virtual Update() method specified by Observer.

Implementing the Observer pattern 427

Next, let’s review a selection of the various new member functions for Student:

// Assume most Student member functions are as we are

// accustomed to seeing. All are available online.

// Let's look at ONLY those that may differ:

// Note that the default constructor for Observer() will be

// invoked implicitly, thus it is not needed in init list

// below (it is shown in comment as a reminder it's called)

Student::Student(const string &fn, const string &ln,

 char mi, const string &t, float avg, const string &id,

 Course *c): Person(fn, ln, mi, t), // Observer(),

 gpa(avg), studentId(id), currentNumCourses(0)

{

 // Below nullptr assignment is no longer needed with

 // above in-class initialization; otherwise, add here:

 // for (int i = 0; i < MAXCOURSES; i++)

 // courses[i] = nullptr;

 waitListedCourse = c; // set initial waitlisted Course

 // (Subject)

 c->Register(this); // Add the Student (Observer) to

 // the Subject's list of Observers

 numStudents++;

}

bool Student::AddCourse(Course *c)

{

 // Should also check Student isn't already in Course

 if (currentNumCourses < MAXCOURSES)

 {

 courses[currentNumCourses++] = c; // set assoc.

 c->AddStudent(this); // set back-link

 return true;

 }

 else // if we can't add the course,

 { // add Student (Observer) to the Course's Waitlist,

 c->Register(this); // stored in Subject base class

Using the Observer Pattern428

 waitListedCourse = c; // set Student (Observer)

 // link to Subject

 return false;

 }

}

Let’s review the previously listed member functions. Since we are accustomed to most of the necessary
components and mechanics in the Student class, we will focus on the newly added Student
methods, starting with an alternate constructor. In this constructor, let us assume that we set most of
the data members as usual.The key additional lines of code here are waitListedCourse = c;
to set our waitlist entry to the desired Course (Subject), as well as c->Register(this);,
where we add the Student (Observer) to the Subject’s list (the formal waitlist for the course).

Next, in our bool Student::AddCourse(Course *) method, we first check that we haven’t
exceeded our maximum allowed courses. If not, we go through the mechanics to add the association to
link a Student and Course in both directions. That is, courses[currentNumCourses++]
= c; to have the student’s current course list contain an association to the new Course, as well as
c->AddStudent(this); to ask the current Course to add the Student (namely, this) to
its enrolled student list.

Let’s continue by reviewing the remainder of the new member functions for Student:

void Student::Update()

{ // Course state changed to 'Open For Enrollment', etc.

 // so we can now add it.

 if ((waitListedCourse->GetState() ==

 CourseState::OpenForEnrollment) ||

 (waitListedCourse->GetState() ==

 CourseState::NewSpaceAvailable))

 {

 if (AddCourse(waitListedCourse)) // success Adding

 {

 cout << GetFirstName() << " " << GetLastName();

 cout << " removed from waitlist and added to ";

 cout << waitListedCourse->GetTitle() << endl;

 // Set observer's state to AddSuccess

 SetState(StudentState::AddSuccess);

 // Remove Student from Course's waitlist

 waitListedCourse->Release(this); // Remove Obs.

 // from Subject

Implementing the Observer pattern 429

 waitListedCourse = nullptr; // Set Subject link

 } // to null

 }

}

void Student::PrintCourses() const

{

 cout << "Student: (" << GetFirstName() << " ";

 cout << GetLastName() << ") enrolled in: " << endl;

 for (int i = 0; i < MAXCOURSES &&

 courses[i] != nullptr; i++)

 cout << "\t" << courses[i]->GetTitle() << endl;

}

Continuing with the remainder of our previously mentioned Student member functions, next,
in our polymorphic void Student::Update() method, we conduct the desired adding of a
waitlisted course. Recall, Notify() will be called when there is a state change on our Subject
(Course). One such state change may be when a Course is Open for Enrollment, or perhaps a state
of New Space Available now exists following a Student dropping the Course. Notify() then
calls Update() on each Observer. Our Update() has been overridden in Student to get the
state of the Course (Subject). If the state indicates the Course is now Open for Enrollment or
has a New Space Available, we try AddCourse(waitListedCourse);. If this is a success, we
set the state of the Student (Observer) to StudentState::AddSuccess (Add Success) to
indicate that we have been successful in our Update(), which means we’ve added the Course.
Next, since we have added the desired course to our current course list, we can now remove ourselves
from the Course’s waitlist. That is, we will want to remove ourselves (Student) as an Observer
from the Subject (the Course’s waitlist) using waitListedCourse->Release(this);.
Now that we have added our desired waitlisted course, we can also remove our link to the Subject
using waitListedCourse = nullptr;.

Lastly, our aforementioned Student code includes a method to print the currently enrolled courses of
the Student with void Student::PrintCourses();. This method is pretty straightforward.

Bringing the pattern components together

Let us now bring all of our various components together by taking a look at our main() function to
see how our Observer pattern is orchestrated:

int main()

{ // Instantiate several courses

 Course *c1 = new Course("C++", 230);

Using the Observer Pattern430

 Course *c2 = new Course("Advanced C++", 430);

 Course *c3 = new Course("C++ Design Patterns", 550);

 // Instantiate Students, select a course to be on the

 // waitlist for -- to be added when registration starts

 Student s1("Anne", "Chu", 'M', "Ms.", 3.9, "66CU", c1);

 Student s2("Joley", "Putt", 'I', "Ms.", 3.1,

 "585UD", c1);

 Student s3("Geoff", "Curt", 'K', "Mr.", 3.1,

 "667UD", c1);

 Student s4("Ling", "Mau", 'I', "Ms.", 3.1, "55TU", c1);

 Student s5("Jiang", "Wu", 'Q', "Dr.", 3.8, "88TU", c1);

 cout << "Registration is Open" << "\n";

 cout << "Waitlist Students to be added to Courses";

 cout << endl;

 // Sends a message to Students that Course is Open.

 c1->Open(); // Students on waitlist will automatically

 c2->Open(); // be Added (as room allows)

 c3->Open();

 // Now that registration is open, add more courses

 cout << "During open registration, Students now adding

 additional courses" << endl;

 s1.AddCourse(c2); // Try to add more courses

 s2.AddCourse(c2); // If full, we'll be added to

 s4.AddCourse(c2); // a waitlist

 s5.AddCourse(c2);

 s1.AddCourse(c3);

 s3.AddCourse(c3);

 s5.AddCourse(c3);

 cout << "Registration complete\n" << endl;

 c1->PrintStudents(); // print each Course's roster

 c2->PrintStudents();

 c3->PrintStudents();

 s1.PrintCourses(); // print each Student's course list

 s2.PrintCourses();

 s3.PrintCourses();

Implementing the Observer pattern 431

 s4.PrintCourses();

 s5.PrintCourses();

 return 0;

}

Reviewing our aforementioned main() function, we first instantiate three Course instances. We
next instantiate five Student instances, utilizing a constructor that allows us to provide an initial
Course that each Student would like to add when course registration commences. Note that these
Students (Observers) will be added to the waitlist for their desired courses (Subject). Here,
a Subject (Course) will have a list of Observers (Students) who wish to add the course
when registration opens.

Next, we see that a Course that many Student instances desire becomes Open for Enrollment
for registration with c1->Open();. Course::Open() sets the state of the Subject to
CourseState::OpenForEnrollment, easily indicating the course is Open for Enrollment, and
then calls Notify(). As we know, Subject::Notify() will call Update() on the Subject’s
list of observers. It is here that an initial waitlisted Course instance will be added to a student’s
schedule and be subsequently removed as an Observer from the Subject’s waitlist.

Now that registration is open, each Student will try to add more courses in the usual manner using
bool Student::AddCourse(Course *), such as with s1.AddCourse(c2);. Should
a Course be full, the Student will be added to the Course’s waitlist (modeled as the inherited
Subject’s list of observers, which are in fact, derived Student types). Recall, Course inherits
from Subject, which keeps a list of students interested in adding a particular course (the waitlist
of observers). When the Course state changes to New Space Available, students on the waitlist (via
data member observers) will be notified, and the Update() method on each Student will
subsequently call AddCourse() for that Student.

Once we have added various courses, we will then see each Course print its roster of students, such
as c2->PrintStudents(). Likewise, we will then see each Student print the respective courses
in which they are enrolled, such as with s5.PrintCourses();.

Let’s take a look at the output for this program:

Registration is Open

Waitlist Students to be added to Courses

Anne Chu removed from waitlist and added to C++

Goeff Curt removed from waitlist and added to C++

Jiang Wu removed from waitlist and added to C++

Joley Putt removed from waitlist and added to C++

Ling Mau removed from waitlist and added to C++

During open registration, Students now adding more courses

Using the Observer Pattern432

Registration complete

Course: (C++) has the following students:

 Anne Chu

 Goeff Curt

 Jiang Wu

 Joley Putt

 Ling Mau

Course: (Advanced C++) has the following students:

 Anne Chu

 Joley Putt

 Ling Mau

 Jiang Wu

Course: (C++ Design Patterns) has the following students:

 Anne Chu

 Goeff Curt

 Jiang Wu

Student: (Anne Chu) enrolled in:

 C++

 Advanced C++

 C++ Design Patterns

Student: (Joley Putt) enrolled in:

 C++

 Advanced C++

Student: (Goeff Curt) enrolled in:

 C++

 C++ Design Patterns

Student: (Ling Mau) enrolled in:

 C++

 Advanced C++

Student: (Jiang Wu) enrolled in:

 C++

 Advanced C++

 C++ Design Patterns

Summary 433

We have now seen an implementation of the Observer pattern. We have folded the more generic
Subject and Observer classes into the framework of classes we are accustomed to seeing, namely
Course, Person, and Student. Let us now briefly recap what we have learned relating to patterns
before moving forward to our next chapter.

Summary
In this chapter, we have begun our pursuit to become better C++ programmers by expanding our
repertoire beyond OOP concepts to include the utilization of design patterns. Our primary goal is
to enable you to solve recurring types of coding problems using tried and true solutions by applying
common design patterns.

We have first understood the purpose of design patterns and the advantage of employing them in
our code. We have then specifically understood the premise behind the Observer pattern and how
it contributes to OOP. Finally, we have taken a look at how we may implement the Observer pattern
in C++.

Utilizing common design patterns, such as the Observer pattern, will help you more easily solve
recurring types of programming problems in a manner understood by other programmers. A key
tenant in OOP is to strive for the reuse of components whenever possible. By utilizing design patterns,
you will be contributing to reusable solutions with more sophisticated programming techniques.

We are now ready to continue forward with our next design pattern in Chapter 17, Implementing the
Factory Pattern. Adding more patterns to our collection of skills makes us more versatile and valued
programmers. Let’s continue forward!

Questions
1. Using the online code for the example in this chapter as a starting point and the solution

from a previous exercise (Question 3, Chapter 10, Implementing Association, Aggregation, and
Composition):

a. Implement (or modify your previous) Student::DropCourse(). When a Student
drops a Course, this event will cause the Course state to become state 2, New Space
Available. With the state change, Notify() will then be called on the Course (Subject),
which will then Update() the list of observers (students on the waitlist). Update() will
indirectly allow waitlisted Student instances, if any, to now add the Course.

b. Lastly, in DropCourse(), remember to remove the dropped course from the student’s
current course list.

2. What other examples can you imagine that might easily incorporate the Observer pattern?

17
Applying the Factory Pattern

This chapter will continue our pursuit to expand your C++ programming repertoire beyond core
OOP concepts, with the goal of enabling you to solve recurring types of coding problems utilizing
common design patterns. We know that incorporating design patterns can enhance code maintenance
and provide avenues for potential code reuse.

Continuing to demonstrate and explain popular design patterns and idioms and learning how to
implement them effectively in C++, we continue our quest with the Factory pattern, more precisely
known as the Factory Method pattern.

In this chapter, we will cover the following main topics:

• Understanding the Factory Method pattern and how it contributes to OOP

• Understanding how to implement the Factory Method pattern with and without an Object
Factory, and comparing an Object Factory to an Abstract Factory

By the end of this chapter, you will understand the popular Factory Method pattern. We will see two
example implementations of this pattern in C++. Adding additional core design patterns to your
programming repertoire will enable you to become a more sophisticated and valuable programmer.

Let’s increase our programming skillset by examining another common design pattern, the Factory
Method pattern.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter17. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter17 in a file
named Chp17-Ex1.cpp under the aforementioned GitHub directory.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter17
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter17
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter17

Applying the Factory Pattern436

The CiA video for this chapter can be viewed at: https://bit.ly/3QOmCC1.

Understanding the Factory Method pattern
The Factory pattern, or Factory Method pattern, is a creational design pattern that allows the creation
of objects without needing to specify the exact (derived) class that will be instantiated. A Factory
Method pattern provides an interface for creating an object, yet allows details within the creation
method to decide which (derived) class to instantiate.

A Factory Method pattern is also known as a virtual constructor. Much as a virtual destructor has
the specific destructor (which is the entry point of the destruction sequence) determined at runtime
through dynamic binding, the concept of a virtual constructor is such that the desired object to
instantiate is uniformly determined at runtime.

We cannot always anticipate the specific mix of related derived class objects needed in an application.
A Factory Method (or virtual constructor) can create, upon request, an instance of one of many related
derived class types, based on the input provided. A derived class object will be returned as its base
class type by the Factory Method, allowing objects to be both created and stored more generically.
Polymorphic operations can be applied to the newly created (upcasted) instances, allowing relevant
derived class behaviors to shine through. A Factory Method promotes loose coupling with client code
by removing the need to bind specific derived class types in the client code itself. The client merely
utilizes the Factory Method to create and provide appropriate instances.

With a Factory Method pattern, we will specify an abstract class (or interface) for collecting and
specifying the general behaviors of derived classes we wish to create. The abstract class or interface in
this pattern is known as Product. We then create the derived classes that we may want to instantiate,
overriding any necessary abstract methods. The various concrete derived classes are known as
Concrete Products.

We then specify a Factory Method whose purpose is to host an interface for uniformly creating instances
of Concrete Products. The Factory Method can either be placed in the abstract Product class or in a
separate Object Factory class; an Object Factory represents a class with the task of creating Concrete
Products. This Factory (creation) Method will be static if placed within the abstract Product class
and optionally static if instead placed within an Object Factory class. The Factory Method will decide
which specific Concrete Product to manufacture, based on a consistent list of input parameters. The
Factory Method will return a generalized Product pointer to the Concrete Product. Polymorphic
methods can be applied to the newly created object to elicit its specific behavior.

The Factory Method pattern will include the following:

• An abstract Product class (or interface).

• Multiple Concrete Product derived classes.

https://bit.ly/3QOmCC1

Implementing the Factory Method pattern 437

• A Factory Method in either the abstract Product class or in a separate Object Factory class.
The Factory Method will have a uniform interface to create an instance of any of the Concrete
Product types.

• Concrete Products will be returned by the Factory Method as generalized Product instances.

Keep in mind that a Factory Method (regardless of whether it is in an Object Factory) produces
Products. A Factory Method provides a uniform manner for producing many related Product types.
Multiple Factory Methods can exist to produce unique Product lines; each Factory Method can be
distinguished by a meaningful name, even if their signatures happen to be the same.

Let’s move forward to see two sample implementations of the Factory Method pattern.

Implementing the Factory Method pattern
We will explore two common implementations of the Factory Method pattern. Each will have design
trade-offs, certainly worthy of discussion!

Let’s start with the technique in which the Factory Method is placed in the abstract Product class.

Including the Factory Method in the Product class

To implement the Factory Method pattern, we will first need to create our abstract Product class as
well as our Concrete Product classes. These class definitions will begin the foundation on which to
build our pattern.

In our example, we will create our Product using a class we are accustomed to seeing – Student.
We will then create Concrete Product classes, namely GradStudent, UnderGradStudent, and
NonDegreeStudent. We will include a Factory Method in our Product (Student) class with a
consistent interface to create any of the derived Product types.

The components we will model complement our framework for our existing Student application by
adding classes to differentiate students based on their educational degree goals. The new components
provide the basis for a university matriculation (new Student admission) system.

Let us assume that rather than instantiating a Student, our application will instantiate various types
of Student – GradStudent, UnderGradStudent, or NonDegreeStudent – based on their
learning goals. The Student class will include an abstract polymorphic Graduate() operation; each
derived class will override this method with varying implementations. For example, a GradStudent
seeking a Ph.D. may have more degree-related criteria to satisfy in the GradStudent::Graduate()
method than other specializations of Student. They may require credit hours to be verified, a
passing grade point average to be verified, and verification that their dissertation has been accepted.
In contrast, an UnderGradStudent might only have their credit hours and overall grade point
average to be corroborated.

Applying the Factory Pattern438

The abstract Product class will include a static method, MatriculateStudent(), as the Factory
Method to create various types of students (the Concrete Product types).

Defining the abstract Product class

Let’s first take a look at the mechanics for the implementation of our Factory Method, beginning by
examining the definition for our abstract Product class, Student. This example can be found, as a
complete program, in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter17/Chp17-Ex1.cpp

// Assume Person class exists with its usual implementation

class Student: public Person // Notice that Student is now

{ // an abstract class

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId;

 static int numStudents;

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

 ~Student() override; // virtual destructor

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const

 { return studentId; }

 void SetCurrentCourse(const string &); // proto. only

 void Print() const override;

 string IsA() const override { return "Student"; }

 virtual void Graduate() = 0; // Student is abstract

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter17/Chp17-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter17/Chp17-Ex1.cpp

Implementing the Factory Method pattern 439

 // Create a derived Student type based on degree sought

 static Student *MatriculateStudent(const string &,

 const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 static int GetNumStudents() { return numStudents; }

};

// Assume all the usual Student member functions exist

In the previous class definition, we introduce our abstract Student class, which is derived from
Person (a concrete and hence instantiable class). This has been accomplished with the introduction of
the abstract method virtual void Graduate() = 0;. In our student matriculation example,
we will be following the design decision that only specific types of students should be instantiated,
that is, derived class types GradStudent, UnderGradStudent, or NonDegreeStudent.

In the preceding class definition, notice our Factory Method, with the prototype static Student
*MatriculateStudent();. This method will use a uniform interface and will provide the means
for the creation of various derived class types of Student. We will examine this method in detail
once we have seen the class definitions for the derived classes.

Defining the Concrete Product classes

Now, let’s take a look at our Concrete Product classes, starting with GradStudent:

class GradStudent: public Student

{

private:

 string degree; // PhD, MS, MA, etc.

public:

 GradStudent() = default;// default constructor

 GradStudent(const string &, const string &,

 const string &, char, const string &, float,

 const string &, const string &);

 // Prototyping default copy constructor isn't necessary

 // GradStudent(const GradStudent &) = default;

 // Since the most base class has virt dtor prototyped,

 // it is not necessary to prototype default destructor

 // ~GradStudent() override = default; // virtual dtor

 void EarnPhD();

 string IsA() const override { return "GradStudent"; }

 void Graduate() override;

Applying the Factory Pattern440

};

// Assume alternate constructor is implemented

// as expected. See online code for full implementation.

void GradStudent::EarnPhD()

{

 if (!degree.compare("PhD")) // only PhD candidates can

 ModifyTitle("Dr."); // EarnPhd(), not MA and MS

} // candidates

void GradStudent::Graduate()

{ // Here, we can check that the required num of credits

 // have been met with a passing gpa, and that their

 // doctoral or master's thesis has been completed.

 EarnPhD(); // Will change title only if a PhD candidate

 cout << "GradStudent::Graduate()" << endl;

}

In the aforementioned GradStudent class definition, we add a degree data member to indicate a
degree of "PhD", "MS", or "MA", and adjust the constructors and destructor, as necessary. We have
moved EarnPhD() to GradStudent, as this method is not applicable to all Student instances.
Instead, EarnPhD() is applicable to a subset of GradStudent instances; we will award the title
of "Dr." only to the Ph.D. candidates.

In this class, we have overridden IsA() to return "GradStudent". We have also overridden
Graduate() to go through the graduation checklist that is applicable for graduate students, calling
EarnPhD() if those checklist items have been met.

Now, let’s take a look at our next Concrete Product class, UnderGradStudent:

class UnderGradStudent: public Student

{

private:

 string degree; // BS, BA, etc

public:

 UnderGradStudent() = default;// default constructor

 UnderGradStudent(const string &, const string &,

 const string &, char, const string &, float,

 const string &, const string &);

Implementing the Factory Method pattern 441

 // Prototyping default copy constructor isn't necessary

 // UnderGradStudent(const UnderGradStudent &) =default;

 // Since the most base class has virt dtor prototyped,

 // it is not necessary to prototype default destructor

 // ~UnderGradStudent() override = default; // virt dtor

 string IsA() const override

 { return "UnderGradStudent"; }

 void Graduate() override;

};

// Assume alternate constructor is implemented

// as expected. See online code for full implementation.

void UnderGradStudent::Graduate()

{ // Verify that num of credits and gpa requirements have

 // been met for major and any minors or concentrations.

 // Have all applicable university fees been paid?

 cout << "UnderGradStudent::Graduate()" << endl;

}

Quickly taking a look at the previously defined UnderGradStudent class, we notice that it is very
similar to GradStudent. This class even includes a degree data member. Keep in mind that not
all Student instances will receive degrees, so we don’t want to generalize this attribute by defining it
in Student. Though we could have introduced a shared base class of DegreeSeekingStudent
for UnderGradStudent and GradStudent to collect this commonality, that fine level of
granularization would add an additional layer almost unnecessarily. The duplication here is a design
trade-off.

The key difference between these two sibling classes is the overridden Graduate() method. We can
imagine that the checklist for an undergraduate student for graduation may be quite different from
that of a graduate student. For this reason, we can reasonably differentiate the two classes. Otherwise,
they are very much the same.

Now, let’s take a look at our next Concrete Product class, NonDegreeStudent:

class NonDegreeStudent: public Student

{

public:

 NonDegreeStudent() = default; // default constructor

Applying the Factory Pattern442

 NonDegreeStudent(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 // Prototyping default copy constructor isn't necessary

 // NonDegreeStudent(const NonDegreeStudent &s)

 // =default;

 // Since the most base class has virt dtor prototyped,

 // it is not necessary to prototype default destructor

 // ~NonDegreeStudent() override = default; // virt dtor

 string IsA() const override

 { return "NonDegreeStudent"; }

 void Graduate() override;

};

// Assume alternate constructor is implemented as expected.

// See online code for full implementation.

void NonDegreeStudent::Graduate()

{ // Check if applicable tuition has been paid.

 // There is no credit or gpa requirement.

 cout << "NonDegreeStudent::Graduate()" << endl;

}

Taking a comparably quick look at the aforementioned NonDegreeStudent class, we notice that
this Concrete Product is similar to its sibling classes. However, there is no degree data member within
this class. Also, the overridden Graduate() method has less verification to undertake than in the
overridden versions of this method for either the GradStudent or UnderGradStudent classes.

Examining the Factory Method definition

Next, let’s take a look at our Factory Method, a static method in our Product (Student) class:

// Creates a Student based on the degree they seek

// This is a static Student method (keyword in prototype)

Student *Student::MatriculateStudent(const string °ree,

 const string &fn, const string &ln, char mi,

 const string &t, float avg, const string &course,

 const string &id)

Implementing the Factory Method pattern 443

{

 if (!degree.compare("PhD") || !degree.compare("MS")

 || !degree.compare("MA"))

 return new GradStudent(degree, fn, ln, mi, t, avg,

 course, id);

 else if (!degree.compare("BS") ||

 !degree.compare("BA"))

 return new UnderGradStudent(degree, fn, ln, mi, t,

 avg, course, id);

 else if (!degree.compare("None"))

 return new NonDegreeStudent(fn, ln, mi, t, avg,

 course, id);

}

The aforementioned static method of Student, MatriculateStudent(), represents the Factory
Method to create various Products (concrete Student instances). Here, based on the degree type that
the Student seeks, one of GradStudent, UnderGradStudent, and NonDegreeStudent will
be instantiated. Notice that the signature of MatriculateStudent() can handle the parameter
requirements for any of the derived class constructors. Also notice that any of these specialized instance
types will be returned as a base class pointer of the abstract Product type (Student).

An interesting option within the Factory Method, MatriculateStudent(), is that this
method is not obligated to instantiate a new derived class instance. Instead, it may recycle a previous
instance that may still be available. For example, imagine a Student is temporarily unregistered
in the university (due to late payment), yet has been kept available on a list of pending students. The
MatriculateStudent() method may instead choose to return a pointer to such an existing
Student. Recycling is an alternative within a Factory Method!

Bringing the pattern components together

Finally, let’s now bring all of our various components together by taking a look at our main() function
to see how our Factory Method pattern is orchestrated:

int main()

{

 Student *scholars[MAX] = { }; // init. to nullptrs

 // Student is now abstract; cannot instantiate directly

 // Use Factory Method to make derived types uniformly

 scholars[0] = Student::MatriculateStudent("PhD",

 "Sara", "Kato", 'B', "Ms.", 3.9, "C++", "272PSU");

Applying the Factory Pattern444

 scholars[1] = Student::MatriculateStudent("BS",

 "Ana", "Sato", 'U', "Ms.", 3.8, "C++", "178PSU");

 scholars[2] = Student::MatriculateStudent("None",

 "Elle", "LeBrun", 'R', "Miss", 3.5, "C++", "111BU");

 for (auto *oneStudent : scholars)

 {

 oneStudent->Graduate();

 oneStudent->Print();

 }

 for (auto *oneStudent : scholars)

 delete oneStudent; // engage virt dtor sequence

 return 0;

}

Reviewing our aforementioned main() function, we first create an array of pointers for potentially
specialized Student instances in their generalized Student form. Next, we invoke the static
Factory Method Student::MatriculateStudent(), within the abstract Product class, to
create the appropriate Concrete Product (derived Student class type). We create one of each of the
derived Student types – GradStudent, UnderGradStudent, and NonDegreeStudent.

We then loop through our generalized collection, calling Graduate() and then Print() for
each instance. For students earning a Ph.D. (GradStudent instances), their title will be changed
to "Dr." by the GradStudent::Graduate() method. Finally, we iterate through another loop
to deallocate each instance’s memory. Thankfully, Student has included a virtual destructor so that
the destruction sequence starts at the proper level.

Let’s take a look at the output for this program:

GradStudent::Graduate()

 Dr. Sara B. Kato with id: 272PSU GPA: 3.9 Course: C++

UnderGradStudent::Graduate()

 Ms. Ana U. Sato with id: 178PSU GPA: 3.8 Course: C++

NonDegreeStudent::Graduate()

 Miss Elle R. LeBrun with id: 111BU GPA: 3.5 Course: C++

An advantage of the preceding implementation is that it is very straightforward. However, we can see a
close coupling exists between the abstract Product, containing the Factory Method (which constructs
the derived class types), and the derived Concrete Products. Yet in OOP, a base class will ideally have
no knowledge of any descendent types.

Implementing the Factory Method pattern 445

A disadvantage to this closely coupled implementation is that the abstract Product class must
include a means for instantiation for each of its descendants in its static creation method,
MatriculateStudent(). Adding new derived classes now affects the abstract base class definition
– it needs to be recompiled. What if we don’t have access to the source code for this base class? Is there
a way to decouple the dependencies that exist between the Factory Method and the Products that the
Factory Method will create? Yes, there is an alternate implementation.

Let us now take a look at an alternate implementation of the Factory Method pattern. We will instead
use an Object Factory class to encapsulate our Factory Method of MatriculateStudent(),
rather than including this method in the abstract Product class.

Creating an Object Factory class to encapsulate the Factory
Method

For our alternative implementation of the Factory Method pattern, we will create our abstract Product
class with a slight deviation from its previous definition. We will, however, create our concrete Product
classes as before. These class definitions, collectively, will again begin the framework on which to base
our pattern.

In our revised example, we will define our Product again as the Student class. We will also again derive
Concrete Product classes of GradStudent, UnderGradStudent, and NonDegreeStudent.
This time, however, we will not include a Factory Method in our Product (Student) class. Instead,
we will create a separate Object Factory class that will include the Factory Method. As before, the
Factory Method will have a uniform interface to create any of the derived Product types. The Factory
Method need not be static, as it was in our last implementation.

Our Object Factory class will include MatriculateStudent() as the Factory Method to create
various types of Student instances (the Concrete Product types).

Defining the abstract Product class without the Factory Method

Let’s take a look at the mechanics for our alternate implementation of the Factory Method pattern,
beginning by examining the definition for our abstract Product class, Student. This example can
be found, as a complete program, in our GitHub repository at the following URL:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter17/Chp17-Ex2.cpp

// Assume Person class exists with its usual implementation

class Student: public Person // Notice Student is

{ // an abstract class

private:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter17/Chp17-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter17/Chp17-Ex2.cpp

Applying the Factory Pattern446

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId;

 static int numStudents; // Remember, static data mbrs

 // are also shared by all derived instances

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

 ~Student() override; // destructor

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const

 { return studentId; }

 void SetCurrentCourse(const string &); // proto. only

 void Print() const override;

 string IsA() const override { return "Student"; }

 virtual void Graduate() = 0; // Student is abstract

 static int GetNumStudents() { return numStudents; }

};

In our aforementioned class definition for Student, the key difference from our prior implementation
is that this class no longer contains a static MatriculateStudent() method to serve as the Factory
Method. Student is merely an abstract base class. Remember, all graduate students, undergraduate
students, and non-degree students are all specializations of Student, therefore static int
numStudents is a shared, collective count of all types of Student.

Defining the Concrete Product classes

With that in mind, let’s take a look at the derived (Concrete Product) classes:

class GradStudent: public Student

{ // Implemented as in our last example

};

class UnderGradStudent: public Student

Implementing the Factory Method pattern 447

{ // Implemented as in our last example

};

class NonDegreeStudent: public Student

{ // Implemented as in our last example

};

In our previously listed class definitions, we can see that our Concrete derived Product classes are
identical to our implementation for these classes as in our first example.

Adding the Object Factory class with the Factory Method

Next, let us introduce an Object Factory class that includes our Factory Method:

class StudentFactory // Object Factory class

{

public:

 // Factory Method creates Student based on degree sought

 Student *MatriculateStudent(const string °ree,

 const string &fn, const string &ln, char mi,

 const string &t, float avg, const string &course,

 const string &id)

 {

 if (!degree.compare("PhD") || !degree.compare("MS")

 || !degree.compare("MA"))

 return new GradStudent(degree, fn, ln, mi, t,

 avg, course, id);

 else if (!degree.compare("BS") ||

 !degree.compare("BA"))

 return new UnderGradStudent(degree, fn, ln, mi,

 t, avg, course, id);

 else if (!degree.compare("None"))

 return new NonDegreeStudent(fn, ln, mi, t, avg,

 course, id);

 }

};

Applying the Factory Pattern448

In the aforementioned Object Factory class definition (the StudentFactory class), we minimally
include the Factory Method specification, namely, MatriculateStudent(). The method is very
similar to that in our prior example. However, by capturing the creation of Concrete Products in an
Object Factory, we have decoupled the relationship between the abstract Product and the Factory
Method.

Bringing the pattern components together

Next, let’s compare our main() function to that of our original example to visualize how our revised
components implement the Factory Method pattern:

int main()

{

 Student *scholars[MAX] = { }; // init. to nullptrs

 // Create an Object Factory for Students

 StudentFactory *UofD = new StudentFactory();

 // Student is now abstract, cannot instantiate directly

 // Ask the Object Factory to create a Student

 scholars[0] = UofD->MatriculateStudent("PhD", "Sara",

 "Kato", 'B', "Ms.", 3.9, "C++", "272PSU");

 scholars[1] = UofD->MatriculateStudent("BS", "Ana",

 "Sato", 'U', "Dr.", 3.8, "C++", "178PSU");

 scholars[2] = UofD->MatriculateStudent("None", "Elle",

 "LeBrun", 'R', "Miss", 3.5, "C++", "111BU");

 for (auto *oneStudent : scholars)

 {

 oneStudent->Graduate();

 oneStudent->Print();

 }

 for (auto *oneStudent : scholars)

 delete oneStudent; // engage virt dtor sequence

 delete UofD; // delete factory that created various

 return 0; // types of students

}

Summary 449

Considering our previously listed main() function, we see that we have again created an array of
pointers to the abstract Product type (Student). We have then instantiated an Object Factory that
can create various Student instances of Concrete Product types with StudentFactory *UofD
= new StudentFactory();. As with the previous example, one instance of each derived type
GradStudent, UnderGradStudent, and NonDegreeStudent is created by the Object
Factory based upon the degree type sought by each student. The remainder of the code in main()
is as found in our prior example.

Our output will be the same as our last example.

The advantage of the Object Factory class over our prior means of implementation is that we have
removed the dependency of object creation from our abstract Product class (in the Factory Method)
with knowledge of what the derived class types are. That is, should we expand our hierarchy to include
new Concrete Product types, we do not have to modify the abstract Product class. Of course, we
will need to have access to modify our Object Factory class, StudentFactory, to augment our
MatriculateStudent() Factory Method.

A pattern related to this implementation, an Abstract Factory, is an additional pattern that allows
individual factories with a similar purpose to be grouped together. An Abstract Factory can be specified
to provide a means to unify similar Object Factories; it is a factory that will create factories, adding
yet another level of abstraction to our original pattern.

We have now seen two implementations of the Factory Method pattern. We have folded the concepts
of Product and Factory Method into the framework of classes we are accustomed to seeing, namely
Student, and descendants of Student. Let’s now briefly recap what we have learned relating to
patterns before moving forward to our next chapter.

Summary
In this chapter, we have continued our pursuit to become better C++ programmers by expanding
our knowledge of design patterns. In particular, we have explored the Factory Method pattern, both
conceptually and with two common implementations. Our first implementation included placing the
Factory Method in our abstract Product class. Our second implementation removed the dependency
between our Abstract Product and our Factory Method by instead adding an Object Factory class to
contain our Factory Method. We also very briefly discussed the notion of an Abstract Factory.

Utilizing common design patterns, such as the Factory Method pattern, will help you more easily
solve recurring types of programming problems in a manner understood by other programmers. By
utilizing core design patterns, you will be contributing to well-understood and reusable solutions with
more sophisticated programming techniques.

We are now ready to continue forward with our next design pattern, in Chapter 18, Implementing the
Adapter Pattern. Adding more patterns to our collection of skills makes us more versatile and valued
programmers. Let’s continue onward!

Applying the Factory Pattern450

Questions
1. Using the solution from a previous exercise (Question 1, Chapter 8, Mastering Abstract Classes),

augment your code as follows:

a. Implement the Factory Method pattern to create various shapes. You will have already
created an abstract base class of Shape and derived classes such as Rectangle, Circle,
Triangle, and possibly Square.

b. Choose whether to implement your Factory Method as a static method in Shape or as a
method in a ShapeFactory class (introducing the latter class if necessary).

2. What other examples can you imagine that might easily incorporate the Factory Method pattern?

18
A p p l y i n g t h e A d a p t e r

P a t t e r n

This chapter will extend our quest to expand your C++ programming skills beyond core OOP concepts,
with the goal of enabling you to solve recurring types of coding problems utilizing common design
patterns. Incorporating design patterns in coding solutions can not only provide elegant solutions but
also enhance code maintenance and provide potential opportunities for code reuse.

The next core design pattern that we will learn how to implement effectively in C++ is the Adapter pattern.

In this chapter, we will cover the following main topics:

• Understanding the Adapter pattern and how it contributes to OOP

• Understanding how to implement the Adapter pattern in C++

By the end of this chapter, you will understand the essential Adapter pattern and how it can be used to
either allow two incompatible classes to communicate or to upgrade unseemly code to well-designed
OO code. Adding another key design pattern to your knowledge set will refine your programming
skills to help make you a more valuable programmer.

Let’s increase our programming skillset by examining another common design pattern, the Adapter pattern.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter18. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter
number, followed by a dash, followed by the example number in the chapter at hand. For example,
the first full program in this chapter can be found in the subdirectory Chapter18 in a file named
Chp18-Ex1.cpp under the aforementioned GitHub directory.

The CiA video for this chapter can be viewed at: https://bit.ly/3Kaxckc.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter18
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter18
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter18
https://bit.ly/3Kaxckc

Applying the Adapter Pattern452

Understanding the Adapter pattern
The Adapter pattern is a structural design pattern that provides a means for converting an existing,
undesirable interface of a class to an interface that another class expects. An Adapter class will be
the link for communication between two existing components, adapting the interfaces so that the
two may share and exchange information. An Adapter allows two or more classes to work together
that otherwise could not do so.

Ideally, an Adapter will not add functionality but will add the preferred interface for usage (or conversion)
to either allow one class to be used in an expected manner or for two otherwise incompatible classes
to communicate with one another. In its most simple form, an Adapter simply converts an existing
class to support an expected interface as may be specified in an OO design.

An Adapter can be either associated with or derived from the class for which it is providing an adaptive
interface. If inheritance is used, a private or protected base class is appropriate to hide the underlying
implementation. If instead, the Adapter class is associated with the class having the undesirable
interface, the methods in the Adapter class (with the new interfaces) will merely delegate the work
to its associated class.

The Adapter pattern can also be used to add an OO interface to (that is, to wrap an OO interface
around) a series of functions or other classes, allowing assorted existing components to be utilized more
naturally in an OO system. This specific type of Adapter is known as a wrapper class. The originating
functions or utilities may even be written in another language, such as C (which would then require
special language tags, such as extern C, to allow the linker to resolve linkage conventions between
the two languages).

Utilizing the Adapter pattern has benefits. The Adapter allows the reuse of existing code by providing
a shared interface to allow otherwise unrelated classes to communicate. The OO programmer will
now use the Adapter class directly, allowing for easier maintenance of the application. That is, most
programmer interaction will be with a well-designed Adapter class, rather than with two or more odd
components. A small drawback of using an Adapter is a slightly decreased performance from the added
layer of code. However, most often, reusing existing components through providing a clean interface to
support their interaction is a winning proposition, despite a (hopefully small) performance trade-off.

The Adapter pattern will include the following:

• An Adaptee class, which represents the class with desirable utilities, yet which exists in a form
that is not suitable or as expected.

• An Adapter class, which adapts the interface of the Adaptee class to meet the needs of the
desired interface.

Implementing the Adapter pattern 453

• A Target class, which represents the specific, desired interface of the application at hand. A
class may be both a Target and an Adapter.

• Optional Client classes, which will interact with the Target class to fully define the application
at hand.

An Adapter pattern allows the reuse of qualified, existing components that do not meet the interface
needs of current application designs.

Let’s move forward to see two common applications of the Adapter pattern; one will have two potential
means for implementation.

Implementing the Adapter pattern
Let’s explore two common uses of the Adapter pattern. That is, creating an Adapter to bridge the gap
between two incompatible class interfaces or building an Adapter to simply wrap an existing set of
functions with an OO interface.

We will start with the usage of an Adapter providing a connector between two (or more) incompatible
classes. The Adaptee will be a well-tested class that we would like to reuse (but which has an undesirable
interface), and the Target classes will be those specified in our OO design for an application in the
making. Let’s now specify an Adapter to allow our Adaptee to work with our Target classes.

Using an Adapter to provide a necessary interface to an existing
class

To implement the Adapter pattern, we will first need to identify our Adaptee class. We will then
create an Adapter class to modify the interface of the Adaptee. We will also identify our Target class,
representing the class we need to model per our OO design. At times, our Adapter and Target may be
rolled into a single class. In an actual application, we will additionally have Client classes, representing
the full complement of classes found in the final application at hand. Let’s start with the Adaptee and
Adapter classes, as these class definitions will begin the foundation on which to build our pattern.

In our example, we will specify our Adaptee class as one we are accustomed to seeing – Person. We
will imagine that our planet has recently become aware of many other exoplanets capable of supporting
life and that we have benevolently made allies with each such civilization. Further imagining that the
various software systems on Earth would like to welcome and include our new friends, including
Romulans and Orkans, we would like to adapt some of our existing software to easily accommodate
the new demographics of our exoplanet neighbors. With that in mind, we will transform our Person
class to include more interplanetary terminology by creating an Adapter class, Humanoid.

In our forthcoming implementation, we will use private inheritance to inherit Humanoid (Adapter)
from Person (Adaptee), therefore hiding the underlying implementation of the Adaptee. We could
have alternatively associated a Humanoid with a Person (an implementation we will also review

Applying the Adapter Pattern454

in this section). We can then flesh out some derived classes of Humanoid within our hierarchy,
such as Orkan, Romulan, and Earthling, to accommodate the intergalactic application at
hand. The Orkan, Romulan, and Earthling classes can be considered our Target classes, or
those that our application will instantiate. We will choose to make our Adapter class, Humanoid,
abstract so that it is not directly instantiable. Because our specific derived classes (Target classes) can
be generalized by their abstract base class type (Humanoid) in our application (Client), we can also
consider Humanoid a Target class. That is, Humanoid can be viewed primarily as an Adapter, but
secondarily as a generalized Target class.

Our various Client classes can utilize derived classes of Humanoid, making instances of each of its
concrete descendants. These instances may be stored in their own specialized type or genericized using
Humanoid pointers. Our implementation is a modern take on the well-used Adapter design pattern.

Specifying the Adaptee and Adapter (private inheritance technique)

Let’s take a look at the mechanics of the first usage of our Adapter pattern, beginning by reviewing
the definition for our Adaptee class, Person. This example can be found, as a complete program,
in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex1.cpp

// Person is the Adaptee class (class requiring adaptation)

class Person

{

private:

 string firstName, lastName, title, greeting;

 char middleInitial = '\0'; // in-class initialization

protected:

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

 // default copy constructor prototype is not necessary

 // Person(const Person &) = default; // copy ctor

 // Default op= suffices, so we'll comment out proto.

 // (see online code for review of implementation)

 // Person &operator=(const Person &); // assignment op.

 virtual ~Person()= default; // virtual destructor

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex1.cpp

Implementing the Adapter pattern 455

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const

 { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 void SetGreeting(const string &);

 virtual const string &Speak() { return greeting; }

 virtual void Print() const;

};

// Assume constructors, destructor, and non-inline methods

// are implemented as expected (see online code)

In the previous class definition, we notice that our Person class definition is as we have been
accustomed to seeing it in many other examples throughout this book. This class is instantiable;
however, Person is not an appropriate class to instantiate in our intergalactic application. Instead,
the expected interface would be to utilize that found in Humanoid.

With that in mind, let’s take a look at our Adapter class, Humanoid:

class Humanoid: private Person // Humanoid is abstract

{

protected:

 void SetTitle(const string &t) { ModifyTitle(t); }

public:

 Humanoid() = default;

 Humanoid(const string &, const string &,

 const string &, const string &);

 // default copy constructor prototype not required

 // Humanoid(const Humanoid &h) = default;

 // default op= suffices, so commented out below, but

 // let's review how we'd write op= if needed

 // note explicit Humanoid downcast after calling base

 // class Person::op= to match return type needed here

 // Humanoid &operator=(const Humanoid &h)

 // { return dynamic_cast<Humanoid &>

 // (Person::operator=(h)); }

Applying the Adapter Pattern456

 // dtor proto. not required since base dtor is virt.

 // ~Humanoid() override = default; // virt destructor

 // Added interfaces for the Adapter class

 const string &GetSecondaryName() const

 { return GetFirstName(); }

 const string &GetPrimaryName() const

 { return GetLastName(); }

 // scope resolution needed in method to avoid recursion

 const string &GetTitle() const

 { return Person::GetTitle();}

 void SetSalutation(const string &m) { SetGreeting(m); }

 virtual void GetInfo() const { Print(); }

 virtual const string &Converse() = 0; // abstract class

};

Humanoid::Humanoid(const string &n2, const string &n1,

 const string &planetNation, const string &greeting):

 Person(n2, n1, ' ', planetNation)

{

 SetGreeting(greeting);

}

const string &Humanoid::Converse() // default definition

{ // for pure virtual function - unusual

 return Speak();

}

In the aforementioned Humanoid class, our goal is to provide an Adapter to contribute to the
expected interface that our intergalactic application requires. We simply derive Humanoid from
Person using private inheritance, hiding the public interfaces found in Person from use outside
the scope of Humanoid. We understand that the target application (Client) would not wish for the
public interfaces found in Person to be utilized by various subtypes of Humanoid instances. Notice
that we are not adding functionality, only adapting the interface.

We then notice the public methods introduced in Humanoid that provide the desired interfaces for
the Target class(es). The implementation of these interfaces is often straightforward. We simply call the
inherited method defined in Person, which will easily complete the task at hand (but which uses an
unacceptable interface to do so). For example, our Humanoid::GetPrimaryName() method

Implementing the Adapter pattern 457

simply calls Person::GetLastName(); to complete the task. However, GetPrimaryName()
may more so represent appropriate intergalactic lingo than Person::GetLastName(). We can
see how Humanoid is serving as an Adapter for Person. We can also see how most of the member
functions of the Adapter class, Humanoid, use inline functions to simply wrap the Person methods
with more suitable interfaces while adding no overhead.

Note that it is not necessary to precede the calls to Person base class methods within Humanoid
methods with Person:: (except when a Humanoid method calls the same named method in
Person, such as with GetTitle()). The scope resolution usage of Person:: avoids potential
recursion in these situations.

We also notice that Humanoid introduces an abstract polymorphic method (that is, a pure virtual
function) with the specification of virtual const string &Converse() = 0;. We have
made the design decision that only derived classes of Humanoid will be instantiable. Nonetheless, we
understand that public descendant classes may still be collected by their base class type of Humanoid.
Here, Humanoid serves primarily as the Adapter class and secondarily as a Target class offering the
suite of acceptable interfaces.

Notice that our pure virtual function virtual const String &Converse() = 0; includes
a default implementation. This is rare but allowed, so long as the implementation is not written inline.
Here, we utilize the opportunity to specify a default behavior for Humanoid::Converse(), by
simply calling Person::Speak().

Deriving concrete classes from the Adapter

Next, let’s extend our Adapter (Humanoid) and take a look at one of our concrete, derived Target
classes, Orkan:

class Orkan: public Humanoid

{

public:

 Orkan() = default; // default constructor

 Orkan(const string &n2, const string &n1,

 const string &t): Humanoid(n2, n1, t, "Nanu nanu")

 { }

 // default copy constructor prototype not required

 // Orkan(const Orkan &h) = default;

 // default op= suffices, so commented out below, but

 // let's review how we'd write it if needed

 // note explicit Orkan downcast after calling base

 // class Humanoid::op= to match return type needed here

 // Orkan &operator=(const Orkan &h)

Applying the Adapter Pattern458

 // { return dynamic_cast<Orkan &>

 // (Humanoid::operator=(h)); }

 // dtor proto. not required since base dtor is virt.

 // ~Orkan() override = default; // virtual destructor

 const string &Converse() override;

};

// Must override Converse to make Orkan a concrete class

const string &Orkan::Converse()

{

 return Humanoid::Converse(); // use scope resolution to

} // avoid recursion

In our aforementioned Orkan class, we use public inheritance to derive Orkan from Humanoid.
An Orkan Is-A Humanoid. As such, all of the public interfaces in Humanoid are available to
Orkan instances. Notice that our alternate constructor sets the default greeting message to "Nanu
nanu", per the Orkan dialect.

Because we wish O r k a n to be a concrete, instantiable class, we must override
Humanoid::Converse() and provide an implementation in the Orkan class. Notice, however,
that Orkan::Converse() simply calls Humanoid::Converse();. Perhaps Orkan finds
the default implementation in its base class acceptable. Notice that we use the Humanoid:: scope
resolution to qualify Converse() within the Orkan::Converse() method to avoid recursion.

Interestingly, had Humanoid not been an abstract class, Orkan would not have had to override
Converse() – the default behavior would have automatically been inherited. Yet, with Humanoid
defined as abstract, the override of Converse() is necessary within Orkan, otherwise, Orkan will
also be also viewed as an abstract class. No worries! We can utilize the benefit of the default behavior
of Humanoid::Converse() merely by calling it within Orkan::Converse(). This will
satisfy the requirements for making Orkan concrete, while allowing Humanoid to remain abstract,
while still providing the rare default behavior for Converse()!

Now, let’s take a look at our next concrete Target class, Romulan:

class Romulan: public Humanoid

{

public:

 Romulan() = default; // default constructor

 Romulan(const string &n2, const string &n1,

 const string &t): Humanoid(n2, n1, t, "jolan'tru")

 { }

Implementing the Adapter pattern 459

 // default copy constructor prototype not required

 // Romulan(const Romulan &h) = default;

 // default op= suffices, so commented out below, but

 // let's review how we'd write it if so needed

 // note explicit Romulan downcast after calling base

 // class Humanoid::op= to match return type needed here

 // Romulan &operator=(const Romulan &h)

 // { return dynamic_cast<Romulan &>

 // (Humanoid::operator=(h)); }

 // dtor proto. not required since base dtor is virt.

 // ~Romulan() override = default; // virt destructor

 const string &Converse() override;

};

// Must override Converse to make Romulan a concrete class

const string &Romulan::Converse()

{

 return Humanoid::Converse(); // use scope resolution to

} // avoid recursion

Taking a comparably quick look at the aforementioned Romulan class, we notice that this concrete
Target is similar to its sibling class, Orkan. We notice that the default message for the greeting passed
up to our base class constructor is "jolan'tru" to reflect Romulan dialect. Though we could
have made our implementation of Romulan::Converse() more intricate, we chose not to do
so. We can quickly understand the full scope of this class.

Next, let’s take a look at our third Target class, Earthling:

class Earthling: public Humanoid

{

public:

 Earthling() = default; // default constructor

 Earthling(const string &n2, const string &n1,

 const string &t): Humanoid(n2, n1, t, "Hello") { }

 // default copy constructor prototype not required

 // Earthling(const Romulan &h) = default;

 // default op= suffices, so commented out below, but

 // let's review how we'd write it if so needed

Applying the Adapter Pattern460

 // note explicit Earthling downcast after calling base

 // class Humanoid::op= to match return type needed here

 // Earthling &operator=(const Earthling &h)

 // { return dynamic_cast<Earthling &>

 // (Humanoid::operator=(h)); }

 // dtor proto. not required since base dtor is virt.

 // ~Earthling() override = default; // virt destructor

 const string &Converse() override;

};

// Must override to make Earthling a concrete class

const string &Earthling::Converse()

{

 return Humanoid::Converse(); // use scope resolution to

} // avoid recursion

Again, taking another comparably quick look at the aforementioned Earthling class, we notice
that this concrete Target is similar to its sibling classes, Orkan and Romulan.

Now that we have defined our Adaptee, Adapter, and multiple Target classes, let’s bring the pieces
together by examining the Client portion of our program.

Bringing the pattern components together

Finally, let us consider what a sample Client may look like in our overall application. Certainly, it
may consist of many files with a variety of classes. In its simplest form, as shown next, our Client will
contain a main() function to drive the application.

Let’s now take a look at our main() function to see how our pattern is orchestrated:

int main()

{

 list<Humanoid *> allies;

 Orkan *o1 = new Orkan("Mork", "McConnell", "Orkan");

 Romulan *r1 = new Romulan("Donatra", "Jarok",

 "Romulan");

 Earthling *e1 = new Earthling("Eve", "Xu",

 "Earthling");

Implementing the Adapter pattern 461

 // Add each specific type of Humanoid to generic list

 allies.push_back(o1);

 allies.push_back(r1);

 allies.push_back(e1);

 // Process the list of allies (which are Humanoid *'s

 // Actually, each is a specialization of Humanoid!)

 for (auto *entity : allies)

 {

 entity->GetInfo();

 cout << entity->Converse() << endl;

 }

 // Though each type of Humanoid has a default

 // Salutation, each may expand their skills with

 // an alternate language

 e1->SetSalutation("Bonjour");

 e1->GetInfo();

 cout << e1->Converse() << endl; // Show the Earthling's

 // revised language capabilities

 delete o1; // delete the heap instances

 delete r1;

 delete e1;

 return 0;

}

Reviewing our aforementioned main() function, we first create an STL list of Humanoid
pointers with list<Humanoid *> allies;. We then instantiate an Orkan, Romulan, and
an Earthling and add each to the list using allies.push_back(). Again, using the Standard
Template Library, we next create a list iterator to walk through the list of pointers to Humanoid instances.
As we iterate through our generalized list of allies, we call the approved interfaces of GetInfo()
and Converse() on each item in our list (that is, for each specific type of Humanoid).

Next, we specify one specific Humanoid, an Earthling, and change this instance’s default greeting
by invoking e1->SetSalutation("Bonjour");. By calling Converse() again on this
instance (we first did so on this object generically in the aforementioned loop), we can request that
the Earthling use "Bonjour" to greet allies instead of "Hello" (the default greeting for
Earthling).

Applying the Adapter Pattern462

Let’s take a look at the output for this program:

Orkan Mork McConnell

Nanu nanu

Romulan Donatra Jarok

jolan'tru

Earthling Eve Xu

Hello

Earthling Eve Xu

Bonjour

In the aforementioned output, notice that the planetary specification for each Humanoid is displayed
(Orkan, Romulan, and Earthling), followed by their secondary and primary names. Then, the
appropriate greeting is displayed for the particular Humanoid. Notice that Earthling Eve Xu
first converses using "Hello" and then later converses using "Bonjour".

An advantage of the preceding implementation (using a private base class to derive Adapter from
Adaptee) is that the coding is very straightforward. With this approach, any protected methods in the
Adaptee class can easily be carried down to be used within the scope of the Adapter methods. We will
soon see that protected members will be an issue should we instead use the association as a means of
connecting the Adapter to Adaptee.

A disadvantage of the prior mentioned approach is that it is a C++ specific implementation. Other
languages do not support private base classes. Alternatively, using a public base class to define the
relationship between Adapter and Adaptee would fail to conceal the unwanted Adaptee interface, and
would be a very poor design choice.

Considering an alternate specification of Adaptee and Adapter (association)

Let us now briefly consider a slightly revised version of the aforementioned Adapter pattern
implementation. We will instead use an association to model the relationship between the Adaptee
and Adapter. The concrete derived classes (Targets) will still be derived from the Adapter as before.

Here is an alternative implementation of our Adapter class, Humanoid, using an association between
Adapter and Adaptee. Though we will only review the portion of the code that differs from our initial
approach, the full implementation can be found as a complete program in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex2.cpp

// Assume that Person exists mostly as before – however,

// Person::ModifyTitle() must be moved from protected to

// public or be unused if modifying Person is not possible.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex2.cpp

Implementing the Adapter pattern 463

// Let's assume we moved Person::ModifyTitle() to public.

class Humanoid // Humanoid is abstract

{

private:

 Person *life = nullptr; // delegate all requests to

 // the associated object

protected:

 void SetTitle(const string &t)

 { life->ModifyTitle(t); }

public:

 Humanoid() = default;

 Humanoid(const string &, const string &,

 const string &, const string &);

 Humanoid(const Humanoid &h);// we have work for copies!

 Humanoid &operator=(const Humanoid &); // and for op=

 virtual ~Humanoid() // virtual destructor

 { delete life; life = nullptr; }

 // Added interfaces for the Adapter class

 const string &GetSecondaryName() const

 { return life->GetFirstName(); }

 const string &GetPrimaryName() const

 { return life->GetLastName(); }

 const string &GetTitle() const

 { return life->GetTitle();}

 void SetSalutation(const string &m)

 { life->SetGreeting(m); }

 virtual void GetInfo() const { life->Print(); }

 virtual const string &Converse() = 0; // abstract class

};

Humanoid::Humanoid(const string &n2, const string &n1,

 const string &planetNation, const string &greeting)

{

 life = new Person(n2, n1, ' ', planetNation);

 life->SetGreeting(greeting);

Applying the Adapter Pattern464

}

// copy constructor (we need to write it ourselves)

Humanoid::Humanoid(const Humanoid &h)

{ // Remember life data member is of type Person

 delete life; // delete former associated object

 life = new Person(h.GetSecondaryName(),

 h.GetPrimaryName(),' ', h.GetTitle());

 life->SetGreeting(h.life->Speak());

}

// overloaded operator= (we need to write it ourselves)

Humanoid &Humanoid::operator=(const Humanoid &h)

{

 if (this != &h)

 life->Person::operator=(dynamic_cast

 <const Person &>(h));

 return *this;

}

const string &Humanoid::Converse() //default definition for

{ // pure virtual fn - unusual

 return life->Speak();

}

Notice in the aforementioned implementation of our Adapter class, Humanoid is no longer derived
from Person. Instead, Humanoid will add a private data member Person *life;, which
will represent an association between the Adapter (Humanoid) and the Adaptee (Person). In
our Humanoid constructors, we will need to allocate the underlying implementation of the Adaptee
(Person). We will also need to delete the Adaptee (Person) in our destructor.

Similar to our last implementation, Humanoid offers the same member functions within its public
interface. However, notice that each Humanoid method delegates, through the associated object, a
call to the appropriate Adaptee methods. For example, Humanoid::GetSecondaryName()
merely calls life->GetFirstName(); to delegate the request (versus calling the inherited,
corresponding Adaptee methods).

As in our initial implementation, our derived classes from Humanoid (Orkan, Romulan, and
Earthling) are specified in the same fashion, as is our Client within our main() function.

Implementing the Adapter pattern 465

Choosing the relationship between Adaptee and Adapter

An interesting point to consider when choosing between private inheritance or association as the
relationship between Adapter and Adaptee is whether or not the Adaptee contains any protected
members. Recall that the original code for Person included a protected ModifyTitle()
method. Should protected members exist in the Adaptee class? The private base class implementation
allows those inherited, protected members to continue to be accessed within the scope of the Adapter
class (that is, by methods of the Adapter). However, using the association-based implementation, the
protected methods in the Adaptee (Person) are unusable in the scope of the Adapter. To make this
example work, we were required to move Person::ModifyTitle() to the public access region.
However, modifying the Adaptee class is not always possible, nor is it necessarily recommended.
Considering the protected member issue, our initial implementation using a private base class is the
stronger implementation, as it does not depend on us modifying the class definition of the Adaptee
(Person).

Let us now take a brief look at an alternate usage of the Adapter pattern. We will simply be using an
Adapter class as a wrapper class. We will add an OO interface to an otherwise loosely arranged set of
functions that work well, but lack the desired interface our application (Client) desires.

Using an Adapter as a wrapper

As an alternative usage of the Adapter pattern, we will wrap an OO interface around a grouping of
related external functions. That is, we will create a wrapper class to encapsulate these functions.

In our example, the external functions will represent a suite of existing database access functions. We
will assume that the core database functionality is well tested for our data type (Person) and has
been used problem-free. However, these external functions by themselves present an undesirable and
unexpected functional interface.

We will instead wrap the external functions by creating an Adapter class to encapsulate their collective
functionality. Our Adapter class will be CitizenDataBase, representing an encapsulated means
for reading and writing Person instances from and to a database. Our existing external functions
will provide the implementation for our CitizenDataBase member functions. Let us assume
that the OO interfaces, as defined in our Adapter class, meet the requirements of our OO design.

Let’s take a look at the mechanics of our simple wrapper Adapter pattern, beginning by examining
external functions providing the database access functionality. This example can be found, as a complete
program, in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex3.cpp

// Assume Person class exists with its usual implementation

Person objectRead; // holds the object from current read

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter18/Chp18-Ex3.cpp

Applying the Adapter Pattern466

 // to support a simulation of a DB read

void db_open(const string &dbName)

{ // Assume implementation exists

 cout << "Opening database: " << dbName << endl;

}

void db_close(const string &dbName)

{ // Assume implementation exists

 cout << "Closing database: " << dbName << endl;

}

Person &db_read(const string &dbName, const string &key)

{ // Assume implementation exists

 cout << "Reading from: " << dbName << " using key: ";

 cout << key << endl;

 // In a true implementation, we would read the data

 // using the key and return the object we read in

 return objectRead; // non-stack instance for simulation

}

const string &db_write(const string &dbName, Person &data)

{ // Assume implementation exists

 const string &key = data.GetLastName();

 cout << "Writing: " << key << " to: " <<

 dbName << endl;

 return key;

}

In our previously defined external functions, let’s assume all functions are well tested and allow
Person instances to be read from or written to a database. To support this simulation, we have
created an external Person instance with Person objectRead; to provide a brief, non-stack
located storage place for a newly read instance (used by db_read()) until the newly read instance
is captured as a return value. Keep in mind that the existing external functions do not represent an
encapsulated solution.

Implementing the Adapter pattern 467

Now, let’s create a simple wrapper class to encapsulate these external functions. The wrapper class,
CitizensDataBase, will represent our Adapter class:

// CitizenDataBase is the Adapter class

class CitizenDataBase // Adapter wraps undesired interface

{

private:

 string name;

public:

 // No default constructor (unusual)

 CitizenDataBase(const string &);

 CitizenDataBase(const CitizenDataBase &) = delete;

 CitizenDataBase &operator=(const CitizenDataBase &)

 = delete; // disallow =

 virtual ~CitizenDataBase(); // virtual destructor

 inline Person &Read(const string &);

 inline const string &Write(Person &);

};

CitizenDataBase::CitizenDataBase(const string &n): name(n)

{

 db_open(name); // call existing external function

}

CitizenDataBase::~CitizenDataBase()

{

 db_close(name); // close database with external

} // function

Person &CitizenDataBase::Read(const string &key)

{

 return db_read(name, key); // call external function

}

const string &CitizenDataBase::Write(Person &data)

{

Applying the Adapter Pattern468

 return db_write(name, data); // call external function

}

In our aforementioned class definition for our Adapter class, we simply encapsulate the external
database functionality within the CitizenDataBase class. Here, CitizenDataBase is not
only our Adapter class but also our Target class, as it contains the interfaces our application at hand
(Client) expects. Notice that the CitizenDataBase methods of Read() and Write() have
both been inlined in the class definition; their methods merely call the external functions. This is an
example of how a wrapper class with inline functions can be a low-cost Adapter class, adding a very
minimal amount of overhead (constructors, destructor, and potentially other non-inline methods).

Now, let’s take a look at our main() function, which is a streamlined version of a Client:

int main()

{

 string key;

 string name("PersonData"); // name of database

 Person p1("Curt", "Jeffreys", 'M', "Mr.");

 Person p2("Frank", "Burns", 'W', "Mr.");

 Person p3;

 CitizenDataBase People(name); // open Database

 key = People.Write(p1); // write a Person object

 p3 = People.Read(key); // using a key, retrieve Person

 return 0;

} // destruction will close database

In the aforementioned main() function, we first instantiate three Person instances. We then
instantiate a CitizenDataBase to provide encapsulated access to write or read our Person
instances, to or from the database. The methods for our CitizenDataBase constructors call the
external function db_open() to open the database. Likewise, the destructor calls db_close().
As expected, our CitizenDataBase methods for Read() and Write() will each, respectively,
call the external functions, db_read() or db_write().

Let’s take a look at the output for this program:

Opening database: PersonData

Writing: Jeffreys to: PersonData

Reading from: PersonData using key: Jeffreys

Closing database: PersonData

Summary 469

In the aforementioned output, we can notice the correlation between the various member functions
to the wrapped, external functions via construction, a call to write and read, and then the destruction
of the database.

Our simple CitizenDataBase wrapper is a very straightforward, but reasonable, use of the
Adapter pattern. Interestingly, our CitizenDataBase also has commonalities with the Data Access
Object pattern, as this wrapper provides a clean interface to a data storage mechanism, concealing
the implementation (access) to the underlying database.

We have now seen three implementations of the Adapter pattern. We have folded the concepts of
Adapter, Adaptee, Target, and Client into the framework of classes we are accustomed to seeing, namely
Person, as well as into descendants of our Adapter (Orkan, Romulan, and Earthling, as
in our first two examples). Let us now briefly recap what we have learned relating to patterns before
moving forward to our next chapter.

Summary
In this chapter, we have advanced our pursuit to become better C++ programmers through widening
our knowledge of design patterns. We have explored the Adapter pattern in both the concept and
through multiple implementations. Our first implementation used private inheritance two derive the
Adapter from the Adaptee class. We specified our Adapter as an abstract class and then used public
inheritance to introduce several Target classes based on the interface provided by our Adapter class.
Our second implementation instead modeled the relationship between the Adapter and Adaptee
using association. We then looked at an example usage of an Adapter as a wrapper to simply add an
OO interface to existing function-based application components.

Utilizing common design patterns, such as the Adapter pattern, will help you more easily reuse existing,
well-tested portions of code in a manner understood by other programmers. By utilizing core design
patterns, you will be contributing to well-understood and reusable solutions with more sophisticated
programming techniques.

We are now ready to continue forward with our next design pattern, in Chapter 19, Using the Singleton
Pattern. Adding more patterns to our arsenal of programming skills makes us more versatile and
valued programmers. Let’s continue forward!

Applying the Adapter Pattern470

Questions
1. Using the Adapter examples found in this chapter, create a program as follows:

a. Implement a CitizenDataBase that stores various types of Humanoid instances
(Orkan, Romulan, Earthling, and perhaps Martian). Decide whether you will
use the private base class Adapter-Adaptee relationship or the association relationship
between the Adapter and Adaptee (hint: the private inheritance version will be easier).

b. Noting that the CitizenDataBase handles Person instances, can this class be used
as-is to store various types of Humanoid instances, or must it be adapted in some way?
Recall that Person is a base class of Humanoid (if you chose this implementation), but
also remember that we can never upcast past a non-public inheritance boundary.

2. What other examples can you imagine that might easily incorporate the Adapter pattern?

19
U s i n g t h e S i n g l e t o n P a t t e r n

This chapter will continue our goal to expand your C++ programming skills beyond core OOP concepts,
with the objective of empowering you to solve recurring types of coding conundrums utilizing core
design patterns. Utilizing design patterns in coding solutions can not only provide refined solutions
but also contribute to easier code maintenance and provide potential opportunities for code reuse.

The next core design pattern that we will learn how to implement effectively in C++ is the Singleton
pattern.

In this chapter, we will cover the following main topics:

• Understanding the Singleton pattern and how it contributes to OOP

• Implementing the Singleton pattern in C++ (with simple techniques versus a paired-class
approach), and using a registry to allow many classes to utilize the Singleton pattern

By the end of this chapter, you will understand the Singleton pattern and how it can be used to ensure
that only a single instance of a given type can exist. Adding an additional core design pattern to your
knowledge set will further augment your programming skills to help you become a more valuable
programmer.

Let’s increase our programming skillset by examining another common design pattern, the Singleton
pattern.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter19. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the chapter
number, followed by a dash, followed by the example number in the chapter at hand. For example,
the first full program in this chapter can be found in the subdirectory Chapter19 in a file named
Chp19-Ex1.cpp under the aforementioned GitHub directory.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter19
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter19
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter19

Using the Singleton Pattern472

The CiA video for this chapter can be viewed at: https://bit.ly/3ThNKe0.

Understanding the Singleton pattern
The Singleton pattern is a creational design pattern that guarantees only one instance will exist for a
class embracing this idiom; two or more instances of the type may simply not exist simultaneously.
A class embracing this pattern will be known as a Singleton.

A Singleton can be implemented using static data members and static methods. This means that a
Singleton will have a global point of access to the instance at hand. This ramification initially seems
dangerous; introducing global state information into the code is one criticism that has led the Singleton
to sometimes be considered an anti-pattern. However, with the appropriate use of access regions for
the static data members defining the Singleton, we can insist that access to the Singleton (other than
initialization) only uses the appropriate static methods of the class at hand (and alleviate this potential
pattern concern).

Another criticism of the pattern is that it is not thread-safe. There may be race conditions to enter the
segment of code where the Singleton instance is created. Without guaranteeing mutual exclusivity
to that critical region of code, the Singleton pattern will break, allowing multiple such instances. As
such, if multithreaded programming is employed, so must be proper locking mechanisms to protect
the critical region of code where the Singleton is instantiated. A Singleton (implemented using static
memory) is shared memory between threads in the same process; at times, Singleton can be criticized
for monopolizing resources.

The Singleton pattern can utilize several techniques for implementation. Each manner of implementation
inevitably will have benefits and drawbacks. We will use a pair of related classes, Singleton
and SingletonDestroyer, to robustly fulfill the pattern. Whereas there are more simple,
straightforward implementations (two of which we will briefly review), the simplest techniques leave
the possibility that the Singleton will not be adequately destructed. Recall that a destructor may include
important and necessary activities.

Singletons tend to be long-lived; it is, therefore, appropriate for a Singleton to be destructed just before
the application terminates. Many Clients may have pointers to a Singleton, so no single Client should
delete the Singleton. We will see that a Singleton will be self-created, so it should ideally be self-
destructed (that is, with the help of its SingletonDestroyer). As such, the paired-class approach,
though not as simple, will ensure proper Singleton destruction. Note that our implementation will
also allow the Singleton to be directly deleted; this is rare, but our code will also handle this situation.

The Singleton pattern with the paired-class implementation will include the following:

• A Singleton class, which represents the core mechanics needed to implement the concept of
a Singleton.

• A SingletonDestroyer class, which will serve as a helper class to Singleton, ensuring that
a given Singleton is properly destructed.

https://bit.ly/3ThNKe0

Implementing the Singleton pattern 473

• A class derived from Singleton represents a class that we want to ensure can only create a
single instance of its type at a given time. This will be our Target class.

• Optionally, the Target class may be both derived from Singleton and another class, which
may represent existing functionality that we would like to specialize in or simply encompass
(that is, mix-in). In this case, we will multiply inherit from an application-specific class and
the Singleton class.

• Optional Client classes, which will interact with the Target class(es) to fully define the application
at hand.

• Alternatively, the Singleton may also be implemented within a Target class, bundling the class
functionalities together in a single class.

• A true Singleton pattern can be expanded to allow for multiple (discrete), but not an undetermined
number of instances to be made. This is rare.

We will focus on a traditional Singleton pattern that ensures only a single instance of a class embracing
this pattern will exist at a given time.

Let’s move forward to first examine two simple implementations, then our preferred paired-class
implementation of the Singleton pattern.

Implementing the Singleton pattern
The Singleton pattern will be used to ensure that a given class may only instantiate a single instance of
that class. However, a true Singleton pattern will also have expansion capabilities to allow for multiple
(but a well-defined number of) instances to be made. This unusual and not well-known caveat of the
Singleton pattern is rare.

We will start with two simple Singleton implementations to understand their limitations. We will then
progress to the more robust paired-class implementation of the Singleton, with the most common
pattern goal of only allowing one Target class instantiation at any given time.

Using a simple implementation

To implement a very simple Singleton, we will use a straightforward single class specification for the
Singleton itself. We will define a class, known as Singleton, to encapsulate the pattern. We will
ensure that our constructor(s) are private so that they cannot be applied more than once. We will also
add a static instance() method to provide the interface for instantiation of the Singleton
object. This method will ensure that the private construction occurs exactly once.

Using the Singleton Pattern474

Let’s take a look at this straightforward implementation, which can be found in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex1.cpp

class Singleton

{

private:

 static Singleton *theInstance; // initialized below

 Singleton(); // private to prevent multiple

 // instantiation

public:

 static Singleton *instance(); // interface for creation

 virtual ~Singleton(); // never called, unless you

}; // delete Singleton explicitly,

 // which is unlikely and atypical

Singleton *Singleton::theInstance = nullptr; // extern var

 // to hold static member

Singleton::Singleton()

{

 cout << "Constructor" << endl;

 // Below line of code is not necessary and therefore

 // commented out – see static member init. above

 // theInstance = nullptr;

}

Singleton::~Singleton() // the destructor is not called in

{ // the typical pattern usage

 cout << "Destructor" << endl;

 if (theInstance != nullptr)

 {

 Singleton *temp = theInstance;

 // Remove pointer to Singleton and prevent recursion

 // Remember, theInstance is static, so

 // temp->theInstance = nullptr; would be duplicative

 theInstance = nullptr;

 delete temp; // delete the Singleton

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex1.cpp

Implementing the Singleton pattern 475

 // Note, delete theInstance; without temp usage

 // above would be recursive

 }

}

Singleton *Singleton::instance()

{

 if (theInstance == nullptr)

 theInstance = new Singleton();// allocate Singleton

 return theInstance;

}

int main()

{

 // create Singleton

 Singleton *s1 = Singleton::instance();

 // returns existing Singleton (not a new one)

 Singleton *s2 = Singleton::instance();

 // note: addresses are the same (same Singleton!)

 cout << s1 << " " << s2 << endl;

 return 0;

}

Notice, in the aforementioned class definition, we include data member static Singleton
*theInstance; to represent the Singleton instance itself. Our constructor is private so it
cannot be used multiple times to create multiple Singleton instances. Instead, we add a static
Singleton *instance() method to create the Singleton. Within this method, we check
whether data member theInstance is equal to the nullptr and if so, we instantiate the one
and only Singleton instance.

Outside of the class definition, we see the external variable (and its initialization) to support
the memory requirements of the static data member with the definition of Singleton
*Singleton::theInstance = nullptr;. We also see how, in main(), we call the static
instance() method to create a Singleton instance using Singleton::instance().
The first call to this method will instantiate a Singleton, whereas subsequent calls to this method
will merely return a pointer to the existing Singleton object. We can verify that the instances are
the same by printing the address of these objects.

Using the Singleton Pattern476

Let’s take a look at the output for this simple program:

Constructor

0xee1938 0xee1938

In the previously mentioned output, we notice something perhaps unexpected – the destructor is not
called! What if the destructor had crucial tasks to perform?

Understanding a key deficiency with the simple Singleton implementation

The destructor is not called for our Singleton in the simple implementation merely because we have
not deleted the dynamically allocated Singleton instance through either the s1 or s2 identifiers.
Why not? There clearly may be multiple pointers (handles) to a Singleton object. Deciding which
handle should be responsible for removing the Singleton is difficult to determine – the handles
would minimally need to collaborate or employ reference counting.

Additionally, a Singleton tends to exist for the duration of the application. This longevity further
suggests that a Singleton should be in charge of its own destruction. But how? We soon see an
implementation that will allow a Singleton to control its own destruction with a helper class. With
the simple implementation, however, we might simply throw our hands in the air and suggest that the
operating system will reclaim the memory resources when the application terminates – including the
heap memory for this small Singleton. This is true; however, what if an important task needs to be
completed in the destructor? We are running into a limitation within the simple pattern implementation.

If we need the destructor to be called, shall we resort to allowing one of the handles to delete the
instance using, for example, delete s1;? We have previously reviewed issues regarding whether
to allow any one handle to perform the deletion, but let’s now additionally examine potential issues
within the destructor itself. For example, if our destructor hypothetically only includes delete
theInstance;, we will have a recursive function call. That is, calling delete s1; will invoke the
Singleton destructor, yet delete theInstance; within the destructor body will recognize
theInstance as a Singleton type and again call the Singleton destructor – recursively.

Not to worry! Our destructor, as shown, instead manages recursion by first checking whether
theInstance data member is not equal to the nullptr and then arranges for temp to point
to theInstance to save a handle to the instance we need to delete. We then make the assignment
temp->theInstance = nullptr; to prevent recursion when we delete temp;. Why?
Because delete temp; will also call the Singleton destructor. Upon this destructor call,
temp will bind to this and will fail the conditional test if (theInstance != nullptr)
on this first recursive function call, backing us out of continued recursion. Note that our upcoming
implementation with a paired-class approach will not have this potential issue.

It is important to note that in an actual application, we would not create a domain-unspecific
Singleton instance. Rather, we would factor our application into the design to employ the pattern.
After all, we want to have a Singleton instance of a meaningful class type. To do so using our

Implementing the Singleton pattern 477

simple Singleton class as a basis, we simply inherit our Target (application-specific) class from
Singleton. The Target class will also have private constructors – ones that accept the arguments
necessary to adequately instantiate the Target class. We will then move the static instance()
method from Singleton to the Target class and ensure that the argument list for instance()
accepts the necessary arguments to pass to a private Target constructor.

To sum up, our simple implementation has the inherent design flaw that there is no guaranteed proper
destruction for the Singleton itself. Letting the operating system collect the memory when the
application terminates does not call the destructor. Choosing one of many handles for the Singleton
to delete the memory, though possible, requires coordination and also defeats the usual application
of the pattern to allow the Singleton to live for the duration of the application.

Let us next consider an alternate simple implementation of using a reference to static local memory,
rather than a pointer to heap memory, for our Singleton.

An alternate simple implementation

As an alternative approach for implementing a very straightforward Singleton, we will modify the
previous simple class definition. First, we will remove the static pointer data member (which was
dynamically allocated within Singleton::instance()). Instead of using a static data member
within the class, we will use a (non-pointer) static local variable within the instance() method
to represent the Singleton.

Let’s take a look at this alternative implementation, which can be found in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex1b.cpp

class Singleton

{

private:

 string data;

 Singleton(string d); // private to prevent multiple

public: // instantiation

 static Singleton &instance(string); // return reference

 // destructor is called for the static local variable

 // declared in instance() before the application ends

 virtual ~Singleton(); // destructor is now called

 const string &getData() const { return data; }

};

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex1b.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex1b.cpp

Using the Singleton Pattern478

Singleton::Singleton(string d): data(d) // initialize data

{

 cout << "Constructor" << endl;

}

Singleton::~Singleton()

{

 cout << "Destructor" << endl;

}

// Note that instance() takes a parameter to reflect how we

// can provide meaningful data to the Singleton constructor

Singleton &Singleton::instance(string d)

{ // create the Singleton with desired constructor; But,

 // we can never replace the Singleton in this approach!

 // Remember, static local vars are ONLY created and

 // initialized once - guaranteeing one Singleton

 static Singleton theInstance(d);

 return theInstance;

}

int main()

{

 // First call, creates/initializes Singleton

 Singleton &s1 = Singleton::instance("Unique data");

 // Second call returns existing Singleton

 // (the static local declaration is ignored)

 Singleton &s2 = Singleton::instance("More data");

 cout << s1.getData() << " " << s2.getData() << endl;

 return 0;

}

Notice, in the aforementioned Singleton class definition, we no longer include a static data member (nor the
external static variable declaration to support this data member) to represent the Singleton instance
itself. Instead, we have specified the Singleton’s implementation using a static local (non-pointer) variable
in the static instance() method. Our constructor is private; it can be invoked to initialize this static
local variable within a static member function of the class. The local variable, as static (and not a pointer

Implementing the Singleton pattern 479

with an allocation), will only be created and initialized once. Its space will be set aside when the application
starts and the static variable will be initialized upon the first call to instance(). Subsequent calls to
instance() will not yield a replacement of this Singleton; the static local variable declaration
will be ignored for anything other than the first call to instance(). Notice that the return value of
instance() is now a reference (&) to this static local Singleton instance. Remember, a static
local variable will exist for the entire application (it is not stored on the stack with other local variables).

Also, quite importantly, notice that we have passed data to initialize the Singleton to the instance()
method via the parameter list; this data is passed along to the Singleton constructor. The ability
to construct the Singleton with appropriate data is quite important. By implementing the Singleton
as a static local (non-pointer) variable in the static instance() method, we have the opportunity
to construct the Singleton within this method. Note that a static pointer data member defined in the
class also has this ability, as the allocation (and hence construction, such as in the previous example)
is also made within the instance() method. However, a non-pointer static data member of the
class would not allow the ability to provide meaningful constructor arguments because the instance
would be created and initialized at the start of the program before such meaningful initializers would
be available (not actually within the instance() method). In the latter case, the Singleton would
only be returned from instance(), not initialized within it.

Now notice, in main(), we call the static instance() method to create a Singleton instance
using Singleton::instance(). We create an alias, s1, using a reference to the Singleton
returned from Singleton::instance(). The first call to this method will instantiate the
Singleton, whereas subsequent calls to this method will merely return a reference to the existing
Singleton object. We can verify that the instance referenced by both aliases (s1 and s2) is the
same object by printing the data contained within the Singleton.

Let’s take a look at the output for this simple program:

Constructor

Unique data

Unique data

Destructor

In the previously mentioned output, we notice that the destructor is automatically called to clean up
the Singleton before the application ends. We also notice that the attempted creation of the second
Singleton instance only returns the existing Singleton. This is because the static local variable,
theInstance, is only created and initialized only once per application, no matter how many times
instance() is invoked (a simple property of static local variables). However, this implementation
also has a potential drawback; let’s take a look.

Using the Singleton Pattern480

Understanding a limitation with the alternate simple Singleton
implementation

The implementation using a non-pointer static local variable in instance() for the Singleton
does not give us the flexibility to change the Singleton. In a function, any static local variable has its
memory set aside when the application begins; this memory is only initialized once (on the initial
call to instance()). The implication is that we always have exactly one Singleton in the
application. The space for this Singleton exists even if we never call instance() to initialize it.

Additionally, the Singleton in this implementation cannot be exchanged for another Singleton
object due to the nature of how static local variables are implemented. In some applications, we may
want one Singleton object at a time, yet also desire the ability to change out one instance of a
Singleton for another. Imagine, for example, that an organization can have exactly one president;
however, it is desirable that the (Singleton) president can be replaced every few years with a different
(Singleton) president. The initial simple implementation using a pointer allows for this possibility,
yet has the potential deficiency that its destructor is never called. Each of the simple implementations
has a potential drawback.

Now, because we understand the limitations of the simple Singleton implementations, we will instead
move onward to a preferred paired-class implementation of the Singleton pattern. The paired-class
approach will guarantee proper destruction of our Singleton, whether the application allows
the Singleton to be destructed just prior to the application’s termination through the deliberate
class pairing (the most frequently encountered situation), or in the rare case that a Singleton is
destroyed prematurely in the application. This approach will also allow us to replace a Singleton with
another instance of a Singleton.

Using a more robust paired-class implementation

To implement the Singleton pattern with a paired-class approach in a nicely encapsulated fashion,
we will define a Singleton class to purely add the core mechanics of creating a single instance. We
will name this class Singleton. We will then add a helper class to Singleton, known as
SingletonDestroyer, to ensure that our Singleton instance always goes through proper
destruction before our application terminates. This pair of classes will be related through aggregation and
association. More specifically, the Singleton will conceptually contain a SingletonDestroyer
(aggregate), and the SingletonDestroyer will hold an association to the (outer) Singleton
in which it is conceptually embedded. Because the implementation of the Singleton and
SingletonDestroyer is through static data members, the aggregation is conceptual – static
members are stored as external variables.

Implementing the Singleton pattern 481

Once these core classes have been defined, we will consider how we may incorporate the Singleton
pattern into a class hierarchy with which we have familiarity. Let’s imagine that we would like to
implement a class to encapsulate the concept of a president. Whether it be a president of a nation or
the president of a university, it is important that there be only one president at a given point in time.
President will be our Target class; President is a good candidate to utilize our Singleton pattern.

It is interesting to note that, whereas there will only be one president at a given point in time, it is
possible to replace a president. For example, the term of a U.S. president is only four years at a time,
with possible re-election for one more term. There may be similar conditions for a university president.
A president may leave prematurely through resignation, impeachment, or death, or may simply leave
upon term expiration. Once a sitting president’s existence is removed, it is then acceptable to instantiate
a new, Singleton President. Hence, our Singleton pattern allows only one Singleton of the Target
class at a given point in time.

Reflecting on how we may best implement a President class, we realize that a President Is-A
Person and also needs to mix-in Singleton capabilities. With this in mind, we now have our
design. President will use multiple inheritances to extend the concept of Person and to mix-in
the functionality of a Singleton.

Certainly, we could have built a President class from scratch, but why do so when the Person
components of the President class are represented in a well-tested and available class? Also,
certainly, we could embed the Singleton class information into our President class, rather
than inheriting it from a separate Singleton class. Absolutely, this is also an option. However, our
application will instead encapsulate each piece of the solution. This will enable easier future reuse.
Nonetheless, the design choices are many.

Specifying the Singleton and the SingletonDestroyer

Let’s take a look at the mechanics of our Singleton pattern, starting by examining the Singleton
and SingletonDestroyer class definitions. These classes work cooperatively to implement the
Singleton pattern. This example can be found, as a complete program, on our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex2.cpp

class Singleton; // Necessary forward class declarations

class SingletonDestroyer;

class Person;

class President;

class SingletonDestroyer

{

private:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex2.cpp

Using the Singleton Pattern482

 Singleton *theSingleton = nullptr;

public:

 SingletonDestroyer(Singleton *s = nullptr)

 { theSingleton = s; }

 // disallow copies and assignment

 SingletonDestroyer(const SingletonDestroyer &)

 = delete;

 SingletonDestroyer &operator=

 (const SingletonDestroyer &) = delete;

 ~SingletonDestroyer(); // dtor shown further below

 void setSingleton(Singleton *s) { theSingleton = s; }

 Singleton *getSingleton() { return theSingleton; }

};

In the aforementioned code segment, we begin with several forward class declarations, such as
class Singleton;. These declarations allow references to be made to these data types before
their complete class definitions have been seen by the compiler.

Next, let’s take a look at our SingletonDestroyer class definition. This simple class contains
a private data member, Singleton *theSingleton;, which will be the association to the
Singleton that the SingletonDestroyer will one day be responsible for deallocating (we
will examine the destructor definition for SingletonDestroyer shortly). Notice that our
destructor is not virtual as this class is not meant to be specialized.

Notice that our constructor has a default value of the nullptr specified for the Singleton
*, which is an input parameter. SingletonDestroyer also contains two member functions,
setSingleton() and getSingleton(), which merely provide the means to set and get the
associated Singleton member.

Also notice that both the use of the copy constructor and the overloaded assignment operator in
SingletonDestroyer have been disallowed using =delete in their prototypes.

Before we examine the destructor for this class, let us examine the class definition for Singleton:

// Singleton will be mixed-in using inheritance with a

// Target class. If Singleton is used stand-alone, the data

// members would be private. Also be sure to add a

// Static *Singleton instance();

// method to the public access region.

class Singleton

{

Implementing the Singleton pattern 483

protected: // protected data members

 static Singleton *theInstance;

 static SingletonDestroyer destroyer;

protected: // and protected member functions

 Singleton() = default;

 // disallow copies and assignment

 Singleton(const Singleton &) = delete;

 Singleton &operator=(const Singleton &) = delete;

 friend class SingletonDestroyer;

 virtual ~Singleton()

 { cout << "Singleton destructor" << endl; }

};

The aforementioned Singleton class contains protected data member static Singleton
*theInstance;, which will represent (when allocated) a pointer to the one and only instance
allocated for a class employing the Singleton idiom.

The protected data member static SingletonDestroyer destroyer; represents a
conceptual aggregate or contained member. The containment is truly only conceptual, as static data
members are not stored within the memory layout for any instance; they are instead stored in external
memory and name-mangled to appear as part of the class. This (conceptual) aggregate subobject,
destroyer, will be responsible for the proper destruction of the Singleton. Recall that the
SingletonDestroyer has an association with the one and only Singleton, representing
the outer object in which the SingletonDestroyer is conceptually contained. This association
is how the SingletonDestroyer will access the Singleton.

When the memory for the external variable that implements the static data member static
SingletonDestroyer destroyer; goes away at the end of the application, the destructor
for SingletonDestroyer (the static, conceptual, subobject) will be called. This destructor
will delete theSingleton;, ensuring that the outer Singleton object (which was
dynamically allocated), will have the appropriate destructor sequence run on it. Because the destructor
in Singleton is protected, it is necessary that SingletonDestroyer is specified as a friend
class of Singleton.

Notice that both uses of the copy constructor and the overloaded assignment operator in Singleton
have been disallowed using =delete in their prototypes.

In our implementation, we have assumed that Singleton will be mixed-in via inheritance to a
derived Target class. It will be in the derived class (the one that intends to use the Singleton idiom),
that we provide the required static instance() method to create the Singleton instance.
Note that had Singleton been used as a standalone class to create Singletons, we would instead
add static Singleton* instance() to the public access region of Singleton.

Using the Singleton Pattern484

We would also then move the data members from the protected to the private access region. However,
having an application-unspecific Singleton is only of use to demonstrate the concept. Instead, we will
apply the Singleton idiom to an actual type requiring the use of this idiom.

With our Singleton and SingletonDestroyer class definitions in place, let’s next examine
the remaining implementation necessities for these classes:

// External (name mangled) vars to hold static data mbrs

Singleton *Singleton::theInstance = nullptr;

SingletonDestroyer Singleton::destroyer;

// SingletonDestroyer destructor definition must appear

// after class definition for Singleton because it is

// deleting a Singleton (so its destructor can be seen)

// This is not an issue when using header and source files.

SingletonDestroyer::~SingletonDestroyer()

{

 if (theSingleton == nullptr)

 cout << "SingletonDestroyer destructor: Singleton

 has already been destructed" << endl;

 else

 {

 cout << "SingletonDestroyer destructor" << endl;

 delete theSingleton;

 }

}

In the aforementioned code fragment, let’s first notice the two external variable definitions that
provide the memory to support the two static data members within the Singleton class – that is,
Singleton *Singleton::theInstance = nullptr; and SingletonDestroyer
Singleton::destroyer;. Recall that static data members are not stored within any instance
of their designated class. Rather, they are stored in external variables; these two definitions designate
the memory. Notice that the data members are both labeled as protected. This means that though
we may define their outer storage directly in this manner, we may not access these data members
other than through static member functions of Singleton. This will give us some peace of mind.
Though there is a potential global access point to the static data members, their levied protected
access region requires appropriate static methods of the Singleton class to be used to properly
manipulate these important members.

Implementing the Singleton pattern 485

Next, draw your attention to the destructor for SingletonDestroyer. This clever destructor
first checks whether its association to the Singleton for which it is responsible is equal to the
nullptr. This will be rare and will happen in the very unusual situation when a Client releases the
Singleton object directly with an explicit delete.

The usual destruction scenario in the SingletonDestroyer destructor will be the execution
of the else clause in which the SingletonDestructor, as a static object, will be responsible
for the deletion, and hence destruction, of its paired Singleton. Remember, there will be a
contained SingletonDestroyer object within the Singleton. The memory for this static
(conceptual) subobject will not go away until the application has finished. Recall that static memory
is not actually part of any instance. However, the static subobject will be destructed just prior to
main()’s completion. So, when the SingletonDestroyer is destructed, its usual case will
be to delete theSingleton;, which will release its paired Singleton’s memory, allowing the
Singleton to be properly destructed.

The driving design decision behind the Singleton pattern is that a Singleton is a long-lived object,
and its destruction may most often correctly occur near the end of the application. The Singleton is
responsible for its own inner Target object creation so that the Singleton should not be deleted (and
hence destructed) by a Client. Rather, the preferred mechanism is that the SingletonDestroyer,
when removed as a static object, deletes its paired Singleton.

Nonetheless, occasionally, there are reasonable scenarios for deleting a Singleton mid-application.
Should a replacement Singleton never be created, our SingletonDestroyer destructor will
still work correctly, identifying that its paired Singleton has already been released. However, it is
more likely that our Singleton will be replaced with another Singleton instance somewhere
in the application. Recall our application example where a president may be impeached, resign, or
die, but will be replaced by another president. In these cases, it is acceptable for a Singleton to be
deleted directly and a new Singleton is then created. In this case, the SingletonDestroyer
will now reference the replacement Singleton.

Deriving a Target class from Singleton

Next, let’s take a look at how we can create our Target class, President, from Singleton:

// Assume our Person class is as we are accustomed

// A President Is-A Person and also mixes-in Singleton

class President: public Person, public Singleton

{

private:

 President(const string &, const string &, char,

 const string &);

Using the Singleton Pattern486

public:

 ~President() override; // virtual destructor

 // disallow copies and assignment

 President(const President &) = delete;

 President &operator=(const President &) = delete;

 static President *instance(const string &,

 const string &, char, const string &);

};

President::President(const string &fn, const string &ln,

 char mi, const string &t): Person(fn, ln, mi, t),

 Singleton()

{

}

President::~President()

{

 destroyer.setSingleton(nullptr);

 cout << "President destructor" << endl;

}

President *President::instance(const string &fn,

 const string &ln, char mi, const string &t)

{

 if (theInstance == nullptr)

 {

 theInstance = new President(fn, ln, mi, t);

 destroyer.setSingleton(theInstance);

 cout << "Creating the Singleton" << endl;

 }

 else

 cout << "Singleton previously created.

 Returning existing singleton" << endl;

 // below cast is necessary since theInstance is

 // a Singleton *

 return dynamic_cast<President *>(theInstance);

}

Implementing the Singleton pattern 487

In our aforementioned Target class, President, we merely inherit President from Person
using public inheritance and then multiply inherit President from Singleton to mix-in the
Singleton mechanics.

We place our constructor in the private access region. Static method instance() will utilize this
constructor internally to create the one and only Singleton instance permitted, to adhere to the
pattern. There is no default constructor (unusual) because we do not wish to allow President
instances to be created without their relevant details. Recall that C++ will not link in a default constructor
if we have provided an alternate constructor interface. As we do not desire copies of a President
or the assignment of a President to another potential President, we have disallowed copies
and assignments using the =delete specification in the prototypes for these methods.

Our destructor for President is simple, yet crucial. In the case that our Singleton object will
be deleted explicitly, we prepare by setting destroyer.setSingleton(nullptr);. Recall,
President inherits the protected static SingletonDestroyer destroyer; data
member. Here, we are setting the destroyer’s associated Singleton to the nullptr. This line
of code in our President destructor then enables the destructor in SingletonDestroyer
to accurately depend on checking for the unusual case of whether its associated Singleton has
already been deleted before commencing the usual deletion of its Singleton counterpart.

Finally, we have defined a static method to provide the creation interface for our President as a
Singleton with static President *instance(const string &, const string
&, char, const string &);. In the definition of instance(), we first check whether
the inherited, protected data member Singleton *theInstance is equal to the nullptr.
If we have not yet allocated the Singleton, we allocate President using the aforementioned
private constructor and assign this newly allocated President instance to theInstance. This
is an upcast from a President * to a Singleton *, which is no problem across a public
inheritance boundary. If, however, in the instance() method, we find that theInstance is
not equal to a nullptr, we simply return a pointer to the previously allocated Singleton object.
As users will undoubtedly want to use this object as a President to enjoy the inherited Person
features, we downcast theInstance to President * for its return value from this method.

Finally, let us consider the logistics of a sample Client in our overall application. In its simplest form,
our Client will contain a main() function to drive the application and showcase our Singleton pattern.

Bringing the pattern components together within the Client

Let’s now take a look at our main() function to see how our pattern is orchestrated:

int main()

{

 // Create a Singleton President

 President *p1 = President::instance("John", "Adams",

 'Q', "President");

Using the Singleton Pattern488

 // This second request will fail, returning

 // the original instance

 President *p2 = President::instance("William",

 "Harrison", 'H', "President");

 if (p1 == p2) // Verification there's only one object

 cout << "Same instance (only 1 Singleton)" << endl;

 p1->Print();

 // SingletonDestroyer will release Singleton at end

 return 0;

}

Reviewing our main() function in the preceding code, we first allocate a Singleton President
using President *p1 = President::instance("John", "Adams", 'Q',
"President");. We then try to allocate an additional President on the next line of code
using *p2. Because we can only have one Singleton (a President mixes-in a Singleton),
a pointer is returned to our existing President and stored in p2. We verify that there is only one
Singleton by comparing p1 == p2; the pointers indeed point to the same instance.

Next, we take advantage of using our President instance in its intended manner, such as by using
some of the inherited member functions from Person. As an example, we invoke p1->Print();.
Certainly, our President class could have added specialized functionality that would be appropriate
to utilize in our Client as well.

Now, at the end of main(), our static object SingletonDestroyer Singleton::destroyer;
will be appropriately destructed before its memory is reclaimed. As we have seen, the destructor for
SingletonDestroyer will (most often) issue a delete to its associated Singleton (which
is actually a President) using delete theSingleton;. This will trigger our President
destructor, Singleton destructor, and Person destructor to each be called and executed (going
from most specialized to most general subobjects). As our destructor in Singleton is virtual, we
are guaranteed to start at the proper level for destruction and to include all destructors.

Let’s take a look at the output for this program:

Creating the Singleton

Singleton previously created. Returning existing singleton

Same instance (only 1 Singleton)

President John Q Adams

SingletonDestroyer destructor

President destructor

Singleton destructor

Person destructor

Implementing the Singleton pattern 489

In the preceding output, we can visualize the creation of the Singleton President, as well as see
that the second instance() request for a President merely returns the existing President.
We then see the details of the President that were printed.

Most interestingly, we can see the destruction sequence for the Singleton, which is driven by
the static object reclamation of the SingletonDestroyer. Through proper deletion of the
Singleton in the SingletonDestroyer destructor, we see that President, Singleton,
and Person destructors are each invoked as they contribute to the complete President object.

Examining explicit Singleton deletion and its impact on SingletonDestroyer
destructor

Let’s take a look at an alternate version of the Client with an alternate main() function. Here, we
force deletion of our Singleton; this is rare. In this scenario, our SingletonDestroyer
will not delete its paired Singleton. This example can be found, as a complete program, in our
GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-
Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex3.
cpp

int main()

{

 President *p1 = President::instance("John", "Adams",

 'Q', "President");

 President *p2 = President::instance("William",

 "Harrison", 'H', "President");

 if (p1 == p2) // Verification there's only one object

 cout << "Same instance (only 1 Singleton)" << endl;

 p1->Print();

 delete p1; // Delete the Singleton – unusual.

 return 0; // Upon checking, the SingletonDestroyer

} // will no longer need to destroy its paired Singleton

In the aforementioned main() function, notice that we explicitly deallocate our Singleton President
using delete p1;, versus allowing the instance to be reclaimed via static objection deletion as
the program ends. Fortunately, we have included a test in our SingletonDestroyer destructor
to let us know whether the SingletonDestroyer must delete its associated Singleton or
whether this deletion has already occurred.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter19/Chp19-Ex3.cpp

Using the Singleton Pattern490

Let’s take a look at the revised output to notice the differences from our original main():

Creating the Singleton

Singleton previously created. Returning existing singleton

Same instance (only 1 Singleton)

President John Q Adams

President destructor

Singleton destructor

Person destructor

SingletonDestroyer destructor: Singleton has already been
destructed

In the aforementioned output for our revised Client, we can again visualize the creation of the Singleton
President, the unsuccessful creation request of a second President, and so on.

Let’s notice the destruction sequence and how it differs from our first Client. Here, the Singleton
President is explicitly deallocated. We can see the proper deletion of the President through
the call and execution of the destructors in President, Singleton, and Person as each is
executed. Now, when the application is about to end and the static SingletonDestroyer is about
to have its memory reclaimed, we can visualize the destructor called on the SingletonDestroyer.
However, this destructor no longer will delete its associated Singleton.

Understanding design advantages and disadvantages

An advantage of the preceding (paired-class) implementation of the Singleton pattern (irrespective
of which main() is employed) is that we have guaranteed proper destruction of the Singleton.
This happens regardless of whether the Singleton is long-lived and is deleted in its usual fashion
by its associated SingletonDestroyer, or whether it is deleted earlier on in the application
directly (a rare scenario).

A disadvantage of this implementation is inherited from the concept of the Singleton. That is,
there can only be one derived class of Singleton that incorporates the specific mechanics of the
Singleton class. Because we have inherited President from Singleton, we are using the
Singleton logistics (namely static data members, stored in external variables) for President and
President alone. Should another class wish to be derived from Singleton to embrace this
idiom, the internal implementation for the Singleton has already been utilized for President.
Ouch! That does not seem fair.

Not to worry! Our design can be easily expanded to accommodate multiple classes that wish to use our
Singleton base class. We will augment our design to accommodate multiple Singleton objects.
We will assume, however, that we still intend to have only one Singleton instance per class type.

Implementing the Singleton pattern 491

Another potential concern is thread safety. For example, if multithreaded programming will be utilized,
we need to ensure that our static President::instance() method acts as though it is
atomic, that is, uninterruptible. We can do this through carefully synchronized access to the static
method itself.

Let us now take a brief look at how we may expand the Singleton pattern to solve this issue.

Using a registry to allow many classes to utilize Singleton

Let us more closely examine a shortcoming with our current Singleton pattern implementation. Currently,
there can only be one derived class of Singleton that can effectively utilize the Singleton class.
Why is this? Singleton is a class that comes with external variable definitions to support the static
data members within the class. The static data member representing theInstance (implemented
using the external variable Singleton *Singleton::theInstance) may only be set to
one Singleton instance. Not one per class – there is only one set of external variables creating the
memory for the crucial Singleton data members of theInstance and destroyer. Herein
lies the problem.

We can, instead, specify a Registry class to keep track of the classes applying the Singleton pattern.
There are many implementations for a Registry, and we will review one such implementation.

In our implementation, the Registry will be a class that pairs class names (for classes employing
the Singleton pattern) with Singleton pointers to the single allowed instance of each registered
class. We will still derive each Target class from Singleton (and from any other class as deemed
appropriate by our design).

Our instance() method in each class derived from Singleton will be revised, as follows:

• Our first check within instance() will be to call a Registry method (with the derived
class’ name) asking whether a Singleton had previously been created for that class. If the
Registry method determines a Singleton for the requested derived type has previously
been instantiated, a pointer to the existing instance will be returned by instance().

• Instead, if the Registry provides permission to allocate the Singleton, instance()
will allocate the Singleton much as before, setting the inherited protected data member of
theInstance to the allocated derived Singleton. The static instance() method
will also set the backlink through the inherited protected destroyer data member using
setSingleton(). We will then pass the newly instantiated derived class instance (which
is a Singleton) to a Registry method to Store() the newly allocated Singleton
within the Registry.

Using the Singleton Pattern492

We notice that four pointers to the same Singleton will exist. One will be the specialized pointer
of our derived class type, which is returned from our derived class instance() method. This
pointer will be handed to our Client for application usage. The second Singleton pointer will be
the pointer stored in our inherited, protected data member theInstance. The third Singleton
pointer will be the pointer stored in the SingletonDestroyer. The fourth pointer to the
Singleton will be a pointer that is stored in the Registry. No problem, we can have multiple
pointers to a Singleton. This is one reason the SingletonDestroyer, used in its traditional
destruction capacity, is so important – it will destroy our one and only Singleton for each type
at the end of the application.

Our Registry will maintain a pair for each class employing the Singleton pattern, consisting
of a class name and the (eventual) pointer to the specific Singleton for the corresponding class.
The pointer to each specific Singleton instance will be a static data member and will additionally
require an external variable to garner its underlying memory. The result is one additional external
variable per class embracing the Singleton pattern.

The idea of the Registry can be expanded further still if we choose to additionally accommodate
the rare use of the Singleton pattern to allow multiple (but a finite set of) Singleton objects per
class type. This rare existence of controlled, multiple singletons is known as the Multiton pattern.
An example of this extended pattern in action might be that we chose to model a high school that
has a single principal, yet multiple vice-principals. Principal would be an expected derived class
of Singleton, yet the multiple vice-principals would represent a fixed number of instances of the
Vice-Principal class (derived from Singleton). Our registry could be expanded to allow
up to N registered Singleton objects for the Vice-Principal type (the multiton).

We have now seen an implementation of the Singleton pattern using a paired-class approach. We have
folded the classes and concepts of Singleton, SingetonDestroyer, Target, and Client into
the framework of classes we are accustomed to seeing, namely Person, as well as into a descendant
class of our Singleton and Person (President). Let’s now briefly recap what we have learned
relating to patterns before moving forward to our next chapter.

Summary
In this chapter, we have furthered our goal of becoming better C++ programmers by expanding
our programming repertoire by embracing another design pattern. We have explored the Singleton
pattern by first employing two simple approaches, and then a paired-class implementation using
Singleton and SingletonDestroyer. Our approach uses inheritance to incorporate our
Singleton’s implementation into our Target class. Optionally, we incorporate a useful, existing base
class into our Target class using multiple inheritances.

Questions 493

Making use of core design patterns, such as the Singleton pattern, will help you more easily reuse
existing, well-tested portions of code in a manner understood by other programmers. By employing
familiar design patterns, you will be contributing to well-understood and reusable solutions with
avant-garde programming techniques.

We are now ready to continue onward with our final design pattern in Chapter 20, Removing
Implementation Details Using the pImpl Pattern. Adding more patterns to our arsenal of programming
skills makes us more versatile and valued programmers. Let’s continue onward!

Questions
1. Using the Singleton pattern examples found in this chapter, create a program to accomplish

the following:

a. Implement either an interface for a President to Resign() or implement the
interface to Impeach() a President. Your method should delete the current
Singleton President (and remove that link from the SingletonDestroyer).
SingletonDestroyer has a setSingleton() method that may be useful to
aid in removing the backlink.

b. Noting that the former Singleton President has been removed, create a new President
using President::instance(). Verify that the new President has been installed.

c. (Optional) Create a Registry to allow Singleton to be used effectively in multiple
classes (not mutually exclusively, as is the current implementation).

2. Why can you not label the static instance() method as virtual in Singleton and
override it in President?

3. What other examples can you imagine that might easily incorporate the Singleton pattern?

20
Removing Implementation

Details Using the pImpl Pattern

This chapter will wrap up our quest to expand your C++ programming repertoire beyond core OOP
concepts, with the objective of further empowering you to solve recurring types of coding problems,
utilizing common design patterns. Incorporating design patterns in your coding can not only provide
refined solutions but also contribute to easier code maintenance and provide for potential code reuse.

The next design pattern that we will learn how to implement effectively in C++ is the pImpl pattern.

In this chapter, we will cover the following main topics:

• Comprehending the pImpl pattern and how it reduces compile-time dependencies

• Understanding how to implement the pImpl pattern in C++ using association and unique pointers

• Recognizing performance issues relating to pImpl and necessary trade-offs

By the end of this chapter, you will understand the pImpl pattern and how it can be used to separate
implementation details from a class interface to reduce compiler dependencies. Adding an additional
design pattern to your skillset will help you become a more valuable programmer.

Let’s increase our programming skillset by examining another common design pattern, the pImpl
pattern.

Removing Implementation Details Using the pImpl Pattern496

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter20. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter20 in a
file named Chp20-Ex1.cpp under the aforementioned GitHub directory. Some programs are in
applicable subdirectories as indicated in the examples.

The CiA video for this chapter can be viewed at: https://bit.ly/3CfQxhR.

Understanding the pImpl pattern
The pImpl pattern (pointer to Implementation idiom) is a structural design pattern that separates the
implementation of a class from its public interface. This pattern was originally known as the Bridge
pattern by the Gang of Four (GofF) and is also known as the Cheshire Cat, compiler-firewall idiom,
d-pointer, opaque pointer, or Handle pattern.

The primary purpose of this pattern is to minimize compile-time dependencies. The result of reducing
compile-time dependencies is that changes in a class definition (most notably, the private access region)
will not send a wave of timely recompilations throughout a developing or deployed application. Instead,
the necessary recompiled code can be isolated to the implementation of the class itself. The other pieces
of the application that depend on the class definition will no longer be affected by recompilation.

Private members within a class definition can affect a class with respect to recompilation. This is
because changing the data members can alter the size of an instance of that type. Also, private member
functions must be matched by signature to function calls for overloading resolution as well as potential
type conversions.

The manner in which traditional header (.h or .hpp) and source code files (.cpp) specify dependencies
trigger recompilation. By removing the class inner implementation details from a class header file
(and placing these details in a source file), we can remove many dependencies. We can change which
header files are included in other header and source code files, streamlining the dependencies and
hence the recompilation burden.

The pImpl pattern will compel the following adjustments to a class definition:

• Private (non-virtual) members will instead be replaced by a pointer to a nested class type that
includes the former private data members and methods. A forward declaration to the nested
class will also be necessary.

• The pointer to the implementation (pImpl) will be an association to which method calls of
the class implementation will be delegated.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter20
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter20
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter20
https://bit.ly/3CfQxhR

Implementing the pImpl pattern 497

• The revised class definition will exist in a header file for the class embracing this idiom. Any
formerly included header files that this header file once depended upon will now be moved to
instead be included in the source code file for this class.

• Other classes including the header file of a pImpl class will now not face recompilation should
the implementation of the class within its private access region be modified.

• To effectively manage dynamic memory resources of the associated object that represents the
implementation, we will use a unique pointer (smart pointer).

The compilation freedom within the revised class definition takes advantage of the fact that pointers
only require a forward declaration of the class type of the pointer to compile.

Let’s move forward to first examine a basic, and then a refined, implementation of the pImpl pattern.

Implementing the pImpl pattern
In order to implement the pImpl pattern, we will need to revisit the typical header and source file
composition. We will then replace the private members in a typical class definition with a pointer to
the implementation, taking advantage of an association. The implementation will be encapsulated
within a nested class of our target class. Our pImpl pointer will delegate all requests to our associated
object that provides the inner class details or implementation.

The inner (nested) class will be referred to as the implementation class. The original, now outer, class
will be referred to as the target or interface class.

We will start by reviewing the typical (non-pImpl pattern) file composition containing class definitions
and member function definitions.

Organizing file and class contents to apply the pattern basics

Let’s first review the organization strategy of the typical C++ class with respect to file placement
regarding the class definition and member function definitions. We will next consider the revised
organization strategy of a class utilizing the pImpl pattern.

Reviewing typical file and class layout

Let’s take a look at a typical class definition and how we previously have organized a class with respect
to source and header files, such as in our discussions in Chapter 5, Exploring Classes in Detail, and in
Chapter 15, Testing Classes and Components.

Removing Implementation Details Using the pImpl Pattern498

Recall that we organized each class into a header (.h or .hpp) file containing the class definition and
inline function definitions, plus a corresponding source code (.cpp) file containing the non-inline
member function definitions. Let’s review a familiar sample class definition, Person:

#ifndef _PERSON_H // preprocessor directives to avoid

#define _PERSON_H // multiple inclusion of header

using std::string;

class Person

{

private:

 string firstName, lastName, title;

 char middleInitial = '\0'; // in-class initialization

protected:

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &); // alternate constructor

 // prototype not needed for default copy constructor

 // Person(const Person &) = default; // copy ctor

 virtual ~Person() = default; // virtual destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 virtual void Print() const;

 virtual void IsA() const;

 virtual void Greeting(const string &) const;

 Person &operator=(const Person &); // overloaded op =

};

#endif

Implementing the pImpl pattern 499

In the aforementioned header file (Person.h), we have included our class definition for Person
as well as inline function definitions for the class. Any larger inline function definitions not appearing
within the class definition (indicated with the keyword inline in the prototype) would also appear
in this file, after the class definition itself. Notice the use of preprocessor directives to ensure that a
class definition is only included once per compilation unit.

Let’s next review the contents of the corresponding source code file, Person.cpp:

#include <iostream> // also incl. other relevant libraries

#include "Person.h" // include the header file

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::string;

// Include all the non-inline Person member functions

// The alt. constructor is one example of many in the file

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): firstName(fn), lastName(ln),

 middleInitial(mi), title(t)

{

 // dynamically alloc. memory for any ptr data mbrs here

}

In the previously defined source code file, we define all the non-inline member functions for the class,
Person. Though not all methods are shown, all can be found in our GitHub code. Also, if the class
definition contains any static data members, the definition of the external variables designating the
memory for these members should be included in the source code file.

Let’s now consider how we can remove the implementation details from the Person class definition
and its corresponding header file, by applying the pImpl pattern.

Applying the pImpl pattern with revised class and file layout

To employ the pImpl pattern, we will reorganize our class definition and its respective implementation.
We will add a nested class within our existing class definition to represent the private members of
our original class and the core of its implementation. Our outer class will include a pointer of the
inner class type, serving as an association to our implementation. Our outer class will delegate all
implementation requests to the inner, associated object. We will restructure the placement of classes
and source code within the header and source code files.

Removing Implementation Details Using the pImpl Pattern500

Let’s take a closer look at our revised implementation for our class to understand each new detail
required to implement the pImpl pattern. This example, composed of a source file PersonImpl.
cpp and one header file Person.h, can be found in the same directory as a simple driver to test
the pattern in our GitHub repository. To make a complete executable, you will need to compile and
link together PersonImp.cpp and Chp20-Ex1.cpp (the driver), found in this same directory.
Here is the GitHub repository URL for the driver:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter20/Chp20-Ex1.cpp

#ifndef _PERSON_H // Person.h header file definition

#define _PERSON_H

class Person

{

private:

 class PersonImpl; // forward declaration nested class

 PersonImpl *pImpl = nullptr; // ptr to implementation

 // of class

protected:

 void ModifyTitle(const string &);

public:

 Person(); // default constructor

 Person(const string &, const string &, char,

 const string &);

 Person(const Person &); // copy const. will be defined

 virtual ~Person(); // virtual destructor

 const string &GetFirstName() const; // no longer inline

 const string &GetLastName() const;

 const string &GetTitle() const;

 char GetMiddleInitial() const;

 virtual void Print() const;

 virtual void IsA() const;

 virtual void Greeting(const string &) const;

 Person &operator=(const Person &); // overloaded =

};

#endif

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter20/Chp20-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter20/Chp20-Ex1.cpp

Implementing the pImpl pattern 501

In our aforementioned revised class definition for Person, notice that we have removed the data
members in the private access region. Any non-virtual private methods, had they existed, would
have also been removed. Instead, we include a forward declaration to our nested class with class
PersonImpl;. We also declare a pointer to the implementation using PersonImpl *pImpl;,
which represents an association to the nested class members encapsulating the implementation. In
our initial implementation, we will use a native (raw) C++ pointer to specify the association to the
nested class. We will subsequently revise our implementation to utilize a unique pointer.

Notice that our public interface for Person is much as before. All of our existing public and protected
methods exist as expected, interface-wise. We notice, however, that the inline functions (which depend
on the implementation of the data members) have been replaced with non-inline member function
prototypes.

Let’s move forward to see the class definition for our nested class, PersonImpl, as well as the
placement of the member functions of PersonImpl and Person in a common source code file,
PersonImpl.cpp. We will start with the nested PersonImpl class definition:

// PersonImpl.cpp source code file includes nested class

// Nested class definition supports implementation

class Person::PersonImpl

{

private:

 string firstName, lastName, title;

 char middleInitial = '\0'; // in-class initialization

public:

 PersonImpl() = default; // default constructor

 PersonImpl(const string &, const string &, char,

 const string &);

 // Default copy ctor does not need to be prototyped

 // PersonImpl(const PersonImpl &) = default;

 virtual ~PersonImpl() = default; // virtual destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 void ModifyTitle(const string &);

 virtual void Print() const;

 virtual void IsA() const { cout << "Person" << endl; }

Removing Implementation Details Using the pImpl Pattern502

 virtual void Greeting(const string &msg) const

 { cout << msg << endl; }

 PersonImpl &operator=(const PersonImpl &);

};

In the previously mentioned nested class definition for PersonImpl, notice that this class looks
surprisingly similar to the original class definition for Person. We have private data members and
a full host of member function prototypes, even some inline functions written for brevity (which
won’t actually be inlined because they are virtual). PersonImpl represents the implementation for
Person, so it is crucial that this class can access all data and implement each method fully. Notice
that the scope resolution operator (::) in the definition of class Person::PersonImpl is
used to specify that PersonImpl is a nested class of Person.

Let’s continue by taking a look at the member function definitions for PersonImpl, which will
appear in the same source file PersonImpl.cpp as the class definition. Though some methods
have been abbreviated, their full online code is available in our GitHub repository:

// File: PersonImpl.cpp - See online code for full methods

// Nested class member functions.

// Notice that the class name is Outer::Inner class

// Notice that we are using the system-supplied definitions

// for default constructor, copy constructor and destructor

// alternate constructor

Person::PersonImpl::PersonImpl(const string &fn,

 const string &ln, char mi, const string &t):

 firstName(fn), lastName(ln),

 middleInitial(mi), title(t)

{

}

void Person::PersonImpl::ModifyTitle(const string &newTitle)

{

 title = newTitle;

}

void Person::PersonImpl::Print() const

{ // Print each data member as usual

Implementing the pImpl pattern 503

}

// Note: same as default op=, but it is good to review what

// is involved in implementing op= for upcoming discussion

Person::PersonImpl &Person::PersonImpl::operator=

 (const PersonImpl &p)

{

 if (this != &p) // check for self-assignment

 {

 firstName = p.firstName;

 lastName = p.lastName;

 middleInitial = p.middleInitial;

 title = p.title;

 }

 return *this; // allow for cascaded assignments

}

In the aforementioned code, we see the implementation for the overall Person class using the
nested class PersonImpl. We see the member function definitions for PersonImpl and
notice that the bodies of these methods are exactly how we previously implemented the methods
in our original Person class without the pImpl pattern. Again, we notice the use of the scope
resolution operator (::) to specify the class name for each member function definition, such as void
Person::PersonImpl::Print() const. Here, Person::PersonImpl indicates the
nested class of PersonImpl within the Person class.

Next, let’s take a moment to review the member function definitions for Person, our class employing
the pImpl pattern. These methods will additionally contribute to the PersonImpl.cpp source code
file and can be found in our GitHub repository:

// Person member functions – also in PersonImpl.cpp

Person::Person(): pImpl(new PersonImpl())

{ // As shown, this is the complete member fn. definition

}

Person::Person(const string &fn, const string &ln, char mi,

 const string &t):

 pImpl(new PersonImpl(fn, ln, mi, t))

{ // As shown, this is the complete member fn. definition

Removing Implementation Details Using the pImpl Pattern504

}

Person::Person(const Person &p):

 pImpl(new PersonImpl(*(p.pImpl)))

{ // This is the complete copy constructor definition

} // No Person data members to copy from 'p' except deep

 // copy of *(p.pImpl) to data member pImpl

Person::~Person()

{

 delete pImpl; // delete associated implementation

}

void Person::ModifyTitle(const string &newTitle)

{ // delegate request to the implementation

 pImpl->ModifyTitle(newTitle);

}

const string &Person::GetFirstName() const

{ // no longer inline in Person;

 // non-inline method further hides implementation

 return pImpl->GetFirstName();

}

// Note: methods GetLastName(), GetTitle(), and

// GetMiddleInitial() are implemented similar to

// GetFirstName(). See online code

void Person::Print() const

{

 pImpl->Print(); // delegate to implementation

} // (same named member function)

// Note: methods IsA() and Greeting() are implemented

// similarly to Print() – using delegation. See online code

Implementing the pImpl pattern 505

Person &Person::operator=(const Person &p)

{ // delegate op= to implementation portion

 pImpl->operator=(*(p.pImpl)); // call op= on impl. piece

 return *this; // allow for cascaded assignments

}

In the aforementioned member function definitions for Person, we notice that all methods delegate
the required work to the nested class via the associated pImpl. In our constructors, we allocate the
associated pImpl object and initialize it appropriately (using the member initialization list of each
constructor). Our destructor is responsible for deleting the associated object using delete pImpl;.

Our Person copy constructor will set member pImpl to the newly allocated memory, while
invoking the PersonImpl copy constructor for the nested object creation and initialization, passing
*(p.pImpl) to the nested object’s copy constructor. That is, p.pImpl is a pointer, so we dereference
the pointer using * to obtain a referenceable object for the PersonImpl copy constructor.

We use a similar strategy in our overloaded assignment operator for Person. That is, there are no
data members other than pImpl to perform a deep assignment, so we merely call the PersonImpl
assignment operator on associated object pImpl, again passing in *(p.pImpl) as the right-hand
value.

Finally, let us consider a sample driver to demonstrate our pattern in action. Interestingly, our driver
will work with either our originally specified non-pattern class (source and header files) or with our
revised pImpl pattern-specific source and header files!

Bringing the pattern components together

Let’s finally take a look at our main() function in our driver source file Chp20-Ex1.cpp to see
how our pattern is orchestrated:

#include <iostream>

#include "Person.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

constexpr int MAX = 3;

int main()

{

 Person *people[MAX] = { }; // initialized to nullptrs

 people[0] = new Person("Elle", "LeBrun", 'R',"Ms.");

 people[1] = new Person("Zack", "Moon", 'R', "Dr.");

 people[2] = new Person("Gabby", "Doone", 'A', "Dr.");

Removing Implementation Details Using the pImpl Pattern506

 for (auto *individual : people)

 individual->Print();

 for (auto *individual : people)

 delete individual;

 return 0;

}

Reviewing our aforementioned main() function, we simply dynamically allocate several Person
instances, call selected Person method(s) on the instances (Print()), and then delete each instance.
We have included the Person.h header file, as expected, to be able to utilize this class. From the
Client’s point of view, everything looks as usual and appears pattern unspecific.

Note that we separately compile PersonImp.cpp and Chp20-Ex1.cpp, linking the object files
together into an executable. However, due to the pImpl pattern, if we change the implementation for
Person, the change will be encapsulated by its implementation in the PersonImp nested class.
Only PersonImp.cpp will require recompilation. The Client will not need to recompile the driver,
Chp20-Ex1.cpp, because the changes will not have occurred in the Person.h header file (which
the driver depends on).

Let’s take a look at the output for this program:

Ms. Elle R. LeBrun

Dr. Zack R. Moon

Dr. Gabby A. Doone

In the aforementioned output, we see the expected results of our simple driver.

Let’s move forward to consider how we may improve our implementation of the pImpl pattern using
a unique pointer.

Improving the pattern with a unique pointer

Our initial implementation using an association with a native C++ pointer relieves many compiler
dependencies. This is because the compiler only needs to see a forward class declaration of the pImpl
pointer type in order to compile successfully. So far, we have achieved the core goal of using the pImpl
pattern – reducing recompilation.

However, there is always criticism of using native or raw pointers. We are responsible for managing
the memory ourselves, including remembering to delete the allocated nested class type in our outer
class destructor. Memory leaks, memory misuse, and memory errors are potential drawbacks for
managing memory resources ourselves with raw pointers. For that reason, it is customary to implement
the pImpl pattern using smart pointers.

We will continue our quest to implement pImpl by examining a key component often used with the
pImpl pattern – smart pointers, or more specifically, the unique_ptr.

Implementing the pImpl pattern 507

Let’s start by understanding smart pointer basics.

Understanding smart pointers

To implement the pImpl pattern customarily, we must first understand smart pointers. A smart
pointer is a small wrapper class that encapsulates a raw pointer, ensuring that the pointer it contains
is automatically deleted when the wrapper object goes out of scope. The class implementing the smart
pointer can be implemented using templates to create a smart pointer for any data type.

Here is a very simple example of a smart pointer. This example can be found on our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter20/Chp20-Ex2.cpp

#include <iostream>

#include "Person.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

template <class Type>

class SmartPointer

{

private:

 Type *pointer = nullptr; // in-class initialization

public:

 // Below ctor also handles default construction

 SmartPointer(Type *ptr = nullptr): pointer(ptr) { }

 virtual ~SmartPointer(); // allow specialized SmrtPtrs

 Type *operator->() { return pointer; }

 Type &operator*() { return *pointer; }

};

SmartPointer::~SmartPointer()

{

 delete pointer;

 cout << "SmartPtr Destructor" << endl;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter20/Chp20-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter20/Chp20-Ex2.cpp

Removing Implementation Details Using the pImpl Pattern508

int main()

{

 SmartPointer<int> p1(new int());

 SmartPointer<Person> pers1(new Person("Renee",

 "Alexander", 'K', "Dr."));

 *p1 = 100;

 cout << *p1 << endl;

 (*pers1).Print(); // or use: pers1->Print();

 return 0;

}

In the previously defined, straightforward SmartPointer class, we simply encapsulate a raw
pointer. The key benefit is that the SmartPointer destructor will ensure that the raw pointer is
destructed when the wrapper object is popped off the stack (for local instances) or before the program
terminates (for static and extern instances). Certainly, this class is basic, and we must determine the
desired behaviors for the copy constructor and the assignment operator. That is, allow shallow copies/
assignment, require deep copies/assignment, or disallow all copies/assignment. Nonetheless, we can
now visualize the concept of a smart pointer.

Here is the output for our smart pointer example:

100

Dr. Renee K. Alexander

SmartPtr Destructor

SmartPtr Destructor

The aforementioned output shows that the memory for each object contained within a SmartPointer
is managed for us. We can quite easily see with the "SmartPtr Destructor" output strings
that the destructor for each object is called on our behalf when the local objects in main() go out
of scope and are popped off the stack.

Understanding unique pointers

A unique pointer, specified as unique_ptr in the Standard C++ Library, is a type of smart pointer
that encapsulates exclusive ownership and access to a given heap memory resource. A unique_ptr
cannot be duplicated; the owner of a unique_ptr will have sole use of that pointer. Owners of
unique pointers can choose to move these pointers to other resources, but the repercussions are that
the original resource will no longer contain the unique_ptr. We must #include <memory>
to include the definition for unique_ptr.

Implementing the pImpl pattern 509

Additional types of smart pointers
Other types of smart pointers are available in the Standard C++ Library, in addition to
unique_ptr, such as weak_ptr and shared_ptr. These additional types of smart
pointers will be explored in Chapter 21, Making C++ Safer.

Modifying our smart pointer program to instead utilize unique_ptr, we now have the following:

#include <iostream>

#include <memory>

#include "Person.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::unique_ptr;

int main()

{

 unique_ptr<int> p1(new int());

 unique_ptr<Person> pers1(new Person("Renee",

 "Alexander", 'K', "Dr."));

 *p1 = 100;

 cout << *p1 << endl;

 (*pers1).Print(); // or use: pers1->Print();

 return 0;

}

Our output will be similar to the SmartPointer example; the difference is that no "SmartPtr
Destructor" call message will be displayed (as we are using a unique_ptr instead). Notice that
because we included using std::unique_ptr;, we did not need to qualify unique_ptr
with std:: in the unique pointer declaration.

With this knowledge, let’s add unique pointers to our pImpl pattern.

Removing Implementation Details Using the pImpl Pattern510

Adding unique pointers to the pattern

To implement the pImpl pattern using a unique_ptr, we will make minimal changes to our previous
implementation, starting with our Person.h header file. The full program example of our pImpl
pattern utilizing a unique_ptr can be found in our GitHub repository and will additionally include
a revised file for PersonImpl.cpp. Here is the URL for the driver, Chp20-Ex3.cpp; note the
subdirectory, unique, in our GitHub repository for this complete example:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter20/unique/Chp20-Ex3.cpp

#ifndef _PERSON_H // Person.h header file definition

#define _PERSON_H

#include <memory>

class Person

{

private:

 class PersonImpl; // forward declaration nested class

 std::unique_ptr<PersonImpl> pImpl; //unique ptr to impl

protected:

 void ModifyTitle(const string &);

public:

 Person(); // default constructor

 Person(const string &, const string &, char,

 const string &);

 Person(const Person &); // copy constructor

 virtual ~Person(); // virtual destructor

 const string &GetFirstName() const; // no longer inline

 const string &GetLastName() const;

 const string &GetTitle() const;

 char GetMiddleInitial() const;

 virtual void Print() const;

 virtual void IsA() const;

 virtual void Greeting(const string &) const;

 Person &operator=(const Person &); // overloaded =

};

#endif

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter20/unique/Chp20-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter20/unique/Chp20-Ex3.cpp

Understanding pImpl pattern trade-offs 511

Notice, in the revised aforementioned class definition for Person, the unique pointer declaration
of std::unique_ptr<PersonImpl> pImpl;. Here, we use the std:: qualifier because
the standard namespace has not been explicitly included in our header file. We also #include
<memory> to gain the definition for unique_ptr. The remainder of the class is identical to our
initial implementation of pImpl using an association implemented with a raw pointer.

Next, let’s understand the extent to which our source code needs to be modified from our initial pImpl
implementation. Let’s now take a look at the necessary modified member functions in our source file,
PersonImpl.cpp:

// Source file PersonImpl.cpp

// Person destructor no longer needs to delete pImpl member

// and hence can simply be the default destructor!

// Note: prototyped with virtual in header file.

Person::~Person() = default;

// unique_pointer pImpl will delete its own resources

Taking a look at the aforementioned member functions requiring modification, we see that it is only
the Person destructor! Because we are using a unique pointer to implement the association to the
nested class implementation, we no longer need to manage the memory for this resource ourselves.
That’s pretty nice! With these minor changes, our pImpl pattern now features a unique_ptr to
designate the implementation of the class.

Next, let’s examine some of the performance issues relating to using the pImpl pattern.

Understanding pImpl pattern trade-offs
Incorporating the pImpl pattern into production code has both benefits and disadvantages. Let’s review
each so that we can better understand the circumstances that may warrant deploying this pattern.

The negligible performance issues encompass most of the disadvantages. That is, nearly every request
made of the target (interface) class will need to be delegated to its nested implementation class. The
only requests that can be handled by the outer class will be those not involving any data members; those
circumstances will be extraordinarily rare! Another disadvantage includes slightly higher memory
requirements of instances to accommodate the added pointer as part of the pattern implementation.
These issues will be paramount in embedded software systems and those requiring peak performance,
but relatively minor otherwise.

Maintenance will be a little more difficult for classes employing the pImpl pattern, an unfortunate
disadvantage. Each target class is now paired with an extra (implementation) class, including a set of
forwarding methods to delegate requests to the implementation.

Removing Implementation Details Using the pImpl Pattern512

A few implementation difficulties may also arise. For example, if any of the private members (now
in the nested implementation class) need to access any of the protected or public methods of the
outer (interface) class, we will need to include a backlink from the nested class to the outer class to
access that member. Why? The this pointer in the inner class will be of the nested object type. Yet
the protected and public methods in the outer object will expect a this pointer to the outer object
– even if those public methods will then redelegate the request to call a private nested class method
for help. This backlink will also be required to call public virtual functions of the interface from the
scope of the inner class (implementation). Keep in mind, however, that we impact performance with
another added pointer per object and with delegation to call each method in the associated object.

There are several advantages of utilizing the pImpl pattern, offering important considerations. Of
most importance, recompile time during the development and maintenance of code decreases
significantly. Additionally, the compiled, binary interface of a class becomes independent of the
underlying implementation of the class. Changing the implementation of a class only requires the
nested implementation class to be recompiled and linked in. Users of the outer class are unaffected.
As a bonus, the pImpl pattern provides a way to hide the underlying private details of a class, which
may be useful when distributing class libraries or other proprietary code.

An advantage of including a unique_ptr in our pImpl implementation is that we have guaranteed
proper destruction of the associated implementation class. We also have the potential to save inadvertent
programmer-introduced pointer and memory mishaps!

The use of the pImpl pattern is a trade-off. Careful analysis of each class and of the application at hand
will help determine whether the pImpl pattern is appropriate for your design.

We have now seen implementations of the pImpl pattern initially using a raw pointer, and then applying
a unique_ptr. Let us now briefly recap what we have learned relating to patterns before moving
to the bonus chapter of our book, Chapter 21, Making C++ Safer.

Summary
In this chapter, we have advanced our objective of becoming more indispensable C++ programmers
by furthering our programming skills with another core design pattern. We have explored the
pImpl pattern with an initial implementation using native C++ pointers and association and then
improved our implementation by using a unique pointer. By examining the implementation, we easily
understand how the pImpl pattern reduces compile-time dependencies and can make our code more
implementation-dependent.

Making use of core design patterns, such as the pImpl pattern, will help you more easily contribute to
reusable, maintainable code that is understood by other programmers familiar with common design
patterns. Your software solutions will be based on creative and well-tested design solutions.

We have now completed our final design pattern together, wrapping up a long journey of understanding
OOP in C++. You now have a multitude of skills, including a deep understanding of OOP, extended
language features, and core design patterns, all of which make you a more valuable programmer.

Questions 513

Though C++ is an intricate language with additional features, supplemental techniques, and additional
design patterns to discover, you have more than a solid basis and level of expertise to easily navigate
and embrace any additional language features, libraries, and patterns you may wish to acquire. You’ve
come a long way; this has been an adventurous journey together! I have enjoyed every minute of our
quest and I hope you have as well.

We began by reviewing basic language syntax and understanding the C++ essentials necessary to
serve as building blocks for our then-upcoming OOP journey. We then embraced C++ as an OOP
language, learning not only essential OO concepts but also how to implement them with either C++
language features, coding techniques, or both. We then extended your skills by adding knowledge
of exception handling, friends, operator overloading, templates, STL basics, and testing OO classes
and components. We then ventured into sophisticated programming techniques by embracing core
design patterns and delving into code by applying each pattern of interest.

Each of these acquired skill segments represents a new tier of C++ knowledge and mastery. Each will
help you to create more easily maintainable and robust code. Your future as a well-versed, skilled OO
programmer in C++ awaits. Now, let’s move on to our bonus chapter, and then, let’s get programming!

Questions
1. Modify the pImpl pattern example in this chapter, which uses a unique pointer to additionally

introduce unique pointers within the implementation of the nested class.

2. Revise your Student class from a previous chapter solution to simply inherit from the
Person class in this chapter that embraces the pImpl pattern. What difficulties, if any, do you
have? Now, modify your Student class to additionally utilize the pImpl pattern with a unique
pointer. A suggested Student class is one that includes an association with a Course. Now,
what difficulties, if any, do you have?

3. What other examples can you imagine that might reasonably incorporate the pImpl pattern
for relative implementation independence?

Part 5:
Considerations for

Safer Programming
in C++

The goal of this part is to understand what can be done as a programmer to make C++ a safer
language, which in turn will help make our programs more robust. At this point, we will have
learned a lot about C++, from language essentials to implementing OO designs in C++. We will
have added additional skills to our repertoire, such as using friends and operator overloading,
exception handling, templates, and the STL. We will have even looked in depth at a handful of
popular design patterns. We will know that we can do nearly anything in C++, but we will have
also seen that having so much power can leave room for cavalier programming and grave errors,
which can lead to unwieldy code that is difficult to maintain.

In this section, we will review what we have learned throughout the book with a keen eye toward
understanding how we can work to make our code bulletproof. We will work toward a set of core
programming guidelines to follow with one goal in mind: to make our programs safe!

We will revisit and expand upon our knowledge of smart pointers (unique, shared, and weak)
as well as introduce a complimentary idiom, RAII. We will review what we have seen along the
way relating to safety issues with native C++ pointers and sum up our safety concerns with a
programming guideline: always prefer smart pointers in newly created C++ code.

We will review modern programming features, such as range-based for loops and for-each
style loops to understand how these simple constructs can help us avoid common errors. We will
revisit auto instead of explicit typing to add safety to our code. We will revisit using well-tested
STL types to ensure our code is not error-prone with ad hoc containers. We will revisit how the
const qualifier can add safety to our code in a variety of ways. By reviewing specific language
features used throughout the book, we will revisit how each of these features can add safety to
our code. We will also consider thread safety and how various topics we have seen throughout
the book relate to thread safety.

Finally, we will discuss core programming guidelines, such as preferring initialization over
assignment, or using one of virtual, override, or final to specify polymorphic operations
and their methods. We will understand the importance of adopting a programming guideline
and see the resources available to support programming safely in C++.

This part comprises the following chapter:

• Chapter 21, Making C++ Safer

Part 5: Considerations for Safer Programming in C++516

21
Making C++ Safer

This bonus chapter will add insight into what we can do as C++ programmers to make the language
as safe as possible in our everyday usage. We have progressed from basic language features to our
core interest of OO programming with C++, to additional useful language features and libraries
(exceptions, operator overloading, templates, and STL), to design patterns to give us a knowledge
base to solve recurring types of OO programming problems. At every point along the way, we’ve seen
that C++ requires extra care on our part to avoid tricky and potentially problematic programming
situations. C++ is a language that will allow us to do anything, but with this power comes the need for
guidelines to ensure our programming follows safe practices. After all, our goal is to create programs
that will run successfully without errors and, additionally, be easy to maintain. The ability of C++ to
do anything needs to be paired with sound practices to simply make C++ safer.

The goal of this chapter is to revisit topics that we have covered in previous chapters, reviewing them with
an eye toward safety. We will also incorporate topics strongly related to ones we have seen previously.
This chapter is not meant to cover wholly new topics or previous topics in great depth, but to provide
a grouping of safer programming practices and the encouragement to seek further information on
each topic as needed. Some of these topics can encompass entire chapters (or books) themselves!

In this bonus chapter, we will cover selected popular programming conventions to meet our safety
challenge:

• Revisiting smart pointers (unique, shared, and weak), as well as a complementary idiom (RAII)

• Using modern for loops (range-based, for-each) to avoid common errors

• Adding type safety: usage of auto instead of explicit typing

• Preferring usage of STL types for simple containers (std::vector, and so on)

• Utilizing const appropriately to ensure non-modification of select items

• Understanding thread safety issues

• Considering core programming guideline essentials, such as preferring initialization to
assignment, or choosing only one of virtual, override, or final

Making C++ Safer518

• Adopting C++ core programming guidelines for safety (build and assemble one, if necessary)

• Understanding resources for programming safety in C++

By the end of this chapter, you will understand some of the current industry standards and concerns for
programming safely in C++. This chapter is not meant to be a comprehensive list of all safety concerns
and practices in C++, but to showcase the types of issues you will need to become mindful of as a
successful C++ programmer. In some cases, you may desire to investigate a topic more deeply to gain
a more thorough level of competence and proficiency. Adding safety to your C++ programming will
make you a more valuable programmer, as your code will be more reliable and have more longevity
and success.

Let’s round out our programming skillset by considering how we can make C++ safer.

Technical requirements
Online code for full program examples can be found in the following GitHub URL: https://
github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-
with-CPP/tree/main/Chapter21. Each full program example can be found in the GitHub
repository under the appropriate chapter heading (subdirectory) in a file that corresponds to the
chapter number, followed by a dash, followed by the example number in the chapter at hand. For
example, the first full program in this chapter can be found in the subdirectory Chapter21 in a
file named Chp21-Ex1.cpp under the aforementioned GitHub directory. Some programs are in
applicable subdirectories as indicated in the examples.

The CiA video for this chapter can be viewed at: https://bit.ly/3wpOG6b.

Revisiting smart pointers
Throughout the book, we have developed a reasonable understanding of how to use raw or native
C++ pointers, including the associated memory allocation and deallocation for heap instances. We
have persevered through native C++ pointers because they are pervasive in existing C++ code. Having
knowledge of how to properly utilize native pointers is essential in working with the volume of existing
C++ code currently in use. But, for newly created code, there is a safer way to manipulate heap memory.

We have seen that dynamic memory management with native pointers is a lot of work! Especially
when there may be multiple pointers to the same chunk of memory. We’ve talked about reference
counting to shared resources (such as heap memory) and mechanisms for deleting memory when all
instances are done with the shared memory. We also know that memory deallocation can easily be
overlooked, leading to memory leakage.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter21
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter21
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main/Chapter21
https://bit.ly/3wpOG6b

Revisiting smart pointers 519

We have also seen, firsthand, that errors with native pointers can be costly. Our programs can end
abruptly when we dereference memory we don’t intend to access, or when we dereference uninitialized
native pointers (interpreting the memory to contain a valid address and meaningful data at that
address—neither of which are actually valid). Pointer arithmetic to walk through memory can be
laden with errors by an otherwise adept programmer. When a memory error is made, pointer or heap
memory misuse are often the culprits.

Certainly, using references can ease the burden of many errors with native pointers. But references can
still point to dereferenced heap memory that someone forgets to deallocate. For these and many other
reasons, smart pointers have become popular in C++ with the primary purpose of making C++ safer.

We’ve talked about smart pointers in previous chapters and have seen them in action with our pImpl
pattern (using unique_ptr). But there are more types of smart pointers for us to review in addition
to unique: shared and weak. Let’s also make a programming premise (a future style guide addition)
to prefer smart pointers in our newly created code to native pointers for the purpose and value of
pointer safety.

Recall that a smart pointer is a small wrapper class that encapsulates a raw or native pointer, ensuring
that the pointer it contains is automatically deleted when the wrapper object goes out of scope. The
Standard C++ Library implementations of unique, shared, and weak smart pointers use templates to
create a specific category of smart pointer for any data type.

Though we could devote an entire chapter to each type of smart pointer in depth, we will review each
type briefly as a starting point to encourage their usage in newly created code to support our goal of
making C++ safer.

Now, let’s revisit each type of smart pointer, one by one.

Using smart pointers – unique

Recall that a unique pointer, specified as unique_ptr in the Standard C++ Library, is a type of
smart pointer that encapsulates exclusive ownership and access to a given heap memory resource. A
unique_ptr cannot be duplicated; the owner of a unique_ptr will have sole use of that pointer.
Owners of unique pointers can choose to move these pointers to other resources, but the repercussions
are that the original resource will no longer contain unique_ptr. Recall that we must use #include
<memory> to include the definition for unique_ptr.

Making C++ Safer520

Here is a very simple example illustrating how to create unique pointers. This example can be found
in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex1.cpp

#include <iostream>

#include <memory>

#include "Person.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::unique_ptr;

// We will create unique pointers, with and without using

// the make_unique (safe wrapper) interface

int main()

{

 unique_ptr<int> p1(new int(100));

 cout << *p1 << endl;

 unique_ptr<Person> pers1(new Person("Renee",

 "Alexander",'K', "Dr."));

 (*pers1).Print(); // or use: pers1->Print();

 unique_ptr<Person> pers2; // currently uninitialized

 pers2 = move(pers1); // take over another unique

 // pointer's resource

 pers2->Print(); // or use: (*pers2).Print();

 // make_unique provides a safe wrapper, eliminating

 // obvious use of heap allocation with new()

 auto pers3 = make_unique<Person>("Giselle", "LeBrun",

 'R', "Ms.");

 pers3->Print();

 return 0;

}

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex1.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex1.cpp

Revisiting smart pointers 521

First, notice that because we included using std::unique_ptr;, we did not need to qualify
unique_ptr or make_unique with std:: in the unique pointer declarations. In this small
program, we create several unique pointers, starting with one to point to an integer, p1, and one
to point to an instance of a Person, pers1. Each of these variables has exclusive use of the heap
memory each points to because we are using unique pointers.

Next, we introduce a unique pointer, pers2, that takes over the memory originally allocated and
linked to pers1 using pers2 = move(pers1);. The original variable no longer has access to
this memory. Note that though we could have allocated pers2 to have its own, unique heap memory,
we instead chose to demonstrate how to allow one unique pointer to relinquish its memory to another
unique pointer using move(). Changing the ownership of unique pointers with move() is typical,
as unique pointers cannot be copied (because that would allow two or more pointers to share the
same memory and, therefore, not be unique!)

Finally, we create another unique pointer, pers3, that utilizes make_unique as a wrapper to
allocate the heap memory for the unique pointer that pers3 will represent. The preference for using
make_unique is that the call to new() will be made internally, on our behalf. Additionally, any
exceptions thrown during the construction of the object will be handled for us, as will any call to
delete(), should the underlying new() not complete successfully and a call to delete() is
then warranted.

The heap memory will be managed for us automatically; this is one of the benefits of using a smart
pointer.

Here is the output for our unique_ptr example:

100

Dr. Renee K. Alexander

Dr. Renee K. Alexander

Ms. Giselle LeBrun

Person destructor

Person destructor

Under the hood, the destructor will automatically be called for each object pointed to by a smart pointer,
when the memory is no longer utilized. In the case of this example, the destructor for each Person
object is called on our behalf when the local objects in main() go out of scope and are popped off
the stack. Note that our Person destructor contains a cout statement so that we can visualize that
there are only two Person objects destructed. Here, the destructed Person objects represent the
instance taken over by pers2 (from pers1) via the move() statement, and the pers3 object that
was created using the make_unique wrapper.

Next, let’s add examples using shared and weak smart pointers.

Making C++ Safer522

Using smart pointers – shared

A shared pointer, specified as shared_ptr in the Standard C++ Library, is a type of smart pointer
that permits shared ownership of and access to a given resource. The last shared pointer to the resource
in question will trigger the destruction and memory deallocation of the resource. Shared pointers can
be used in multithreaded applications; however, race conditions may occur if non-constant member
functions are used to modify the shared resource. Since shared pointers only provide reference counting,
we will need to enlist additional library methods to solve these issues (alleviating race conditions,
synchronizing access to critical regions of code, and so on). The Standard C++ Library, for example,
provides overloaded atomic methods to lock, store, and compare the underlying data pointed to by
a shared pointer.

We have seen many example programs that could take advantage of shared pointers. For example,
we utilized associations between the Course and Student classes – a given student is associated
with many courses and a given course is associated with many students. Clearly, multiple Student
instances may point to the same Course instance, and vice versa.

Previously, with raw pointers, it was the programmer’s responsibility to employ reference counting.
In contrast, using shared pointers, the internal reference counter is atomically incremented and
decremented in support of both pointer and thread safety.

Dereferencing a shared pointer is nearly as fast as dereferencing a raw pointer; however, because a
shared pointer represents a wrapped pointer in a class, constructing and copying a shared pointer
is more expensive. However, we are interested in making C++ safer, so we will simply note this very
minor performance expense and move forward.

Let’s take a look at a very simple example using shared_ptr. This example can be found in our
GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex2.cpp

#include <iostream>

#include <memory>

#include "Person.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::shared_ptr;

int main()

{

 shared_ptr<int> p1 = std::make_shared<int>(100);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex2.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex2.cpp

Revisiting smart pointers 523

 // alternative to preferred, previous line of code:

 // shared_ptr<int> p1(new int(100));

 shared_ptr<int> p2;// currently uninitialized (caution)

 p2 = p1; // p2 now shares the same memory as p1

 cout << *p1 << " " << *p2 << endl;

 shared_ptr<Person> pers1 = std::make_shared<Person>

 ("Gabby", "Doone", 'A', "Miss");

 // alternative to preferred, previous lines of code:

 // shared_ptr<Person> pers1(new Person("Gabby",

 // "Doone",'A', "Miss"));

 shared_ptr<Person> pers2 = pers1; // initialized

 pers1->Print(); // or use: (*pers1).Print();

 pers2->Print();

 pers1->ModifyTitle("Dr."); // changes shared instance

 pers2->Print();

 cout << "Number of references: " << pers1.use_count();

 return 0;

}

In the aforementioned program, we create four shared pointers – two to point to the same integer
(p1 and p2) and two to point to the same instance of Person (pers1 and pers2). Each of these
variables may change the specific shared memory they point to because we are using shared pointers
(which allow such a reassignment). A change to the shared memory through pers1, for example,
will be reflected should we then review the (shared) memory through pointer pers2; both variables
point to the same memory location.

The heap memory will again be managed for us automatically as a benefit of using smart pointers. In
this example, the memory will be destructed and deleted when the last reference to the memory is
removed. Notice that reference counting is done on our behalf and that we can access this information
using use_count().

Let us notice something interesting about the previous example. Notice the mixed use of -> and . notation
with shared pointer variables pers1 and pers2. For example, we utilize pers1->Print(); and
yet we also utilize pers1.use_count(). This is no mistake and reveals the wrapper implementation
of the smart pointer. With that in mind, we know that use_count() is a method of shared_ptr.
Our shared pointers pers1 and pers2 are each declared as instances of shared_ptr (definitely

Making C++ Safer524

not using raw C++ pointers with the symbol *). Hence, dot notation is appropriate to access method
use_count(). Yet, we are using -> notation to access pers1->Print();. Here, recall that
this notation is equivalent to (*pers1).Print();. Both operator* and operator-> in
the shared_ptr class are overloaded to delegate to the wrapped, raw pointer contained within the
smart pointer. Hence, we may utilize standard pointer notation to access Person methods (through
the safely wrapped raw pointer).

Here is the output for our shared_ptr pointer example:

100 100

Miss Gabby Doone

Miss Gabby Doone

Dr. Gabby Doone

Number of references: 2

Person destructor

Shared pointers seem like a wonderful way to ensure that memory resources pointed to by multiple
pointers are properly managed. Overall, this is true. However, there are situations with circular
dependencies such that shared pointers simply cannot release their memory – another pointer is
always pointing to the memory in question. This happens when a cycle of memory is orphaned; that
is, when no outside shared pointers point into the circular connection. In such unique cases, we might
actually (and counterintuitively) mismanage memory with shared pointers. In these situations, we
can elicit help from a weak pointer to help us break the cycle.

With that in mind, let’s next take a look at weak smart pointers.

Using smart pointers – weak

A weak pointer, specified by weak_ptr in the Standard C++ Library, is a type of smart pointer
that does not take ownership of a given resource; instead, the weak pointer acts as an observer. Weak
pointers can be used to help break a circular connection that may exist between shared pointers; that
is, situations where the destruction of a shared resource would otherwise never occur. Here, a weak
pointer is inserted into the chain to break the circular dependency that shared pointers alone might
otherwise create.

As an example, imagine our Student and Course dependencies from our initial programming
examples utilizing association, or from our more complex program illustrating the Observer pattern.
Each contains pointer data members of the associated object types, effectively creating a potential
circular dependency. Now, should an outside (from the circle) shared pointer exist, such as an external
list of courses or an external list of students, the exclusive circular dependency scenario may not arise.
In this case, for example, the master list of courses (the external pointer, separate from any circular
dependency existing between the associated objects) will provide the means to cancel a course, leading
to its eventual destruction.

Revisiting smart pointers 525

Likewise in our example, an external set of students comprising the university’s student body can provide
an external pointer to the potentially circular shared pointer scenario resulting from the association
between Student and Course. Yet in both of these cases, work will need to be done to remove a
canceled course from a student’s course list (or remove a dropped student from a course’s student list).
The removal of the associations in this scenario reflects accurately managing a student’s schedule or
a course’s attendance list. Nonetheless, we can imagine scenarios where a circular connection may
exist without an outside handle to the links (unlike the aforementioned scenario, which has outside
links into the circle).

In the case where a circular dependency exists (with no outside influences), we will need to downgrade
one of the shared pointers to a weak pointer. A weak pointer will not control the lifetime of the
resource that it points to.

A weak pointer to a resource cannot access the resource directly. This is because operators * and ->
are not overloaded in the weak_ptr class. You will need to convert the weak pointer to a shared
pointer in order to access methods of the (wrapped) pointer type. One way to do this is to apply the
lock() method to a weak pointer, as the return value is a shared pointer whose contents are locked
with a semaphore to ensure mutual exclusivity to the shared resource.

Let’s take a look at a very simple example using weak_ptr. This example can be found on our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex3.cpp

#include <iostream>

#include <memory>

#include "Person.h"

using std::cout; // preferred to: using namespace std;

using std::endl;

using std::weak_ptr;

using std::shared_ptr;

int main()

{

 // construct the resource using a shared pointer

 shared_ptr<Person> pers1 = std::make_shared<Person>

 ("Gabby", "Doone", 'A', "Miss");

 pers1->Print(); // or alternatively: (*pers1).Print();

 // Downgrade resource to a weak pointer

 weak_ptr<Person> wpers1(pers1);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex3.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex3.cpp

Making C++ Safer526

 // weak pointer cannot access the resource;

 // must convert to a shared pointer to do so

 // wpers1->Print(); // not allowed! operator-> is not

 // overloaded in weak_ptr class

 cout << "# references: " << pers1.use_count() << endl;

 cout << "# references: " << wpers1.use_count() << endl;

 // establish a new shared pointer to the resource

 shared_ptr<Person> pers2 = wpers1.lock();

 pers2->Print();

 pers2->ModifyTitle("Dr."); // modify the resource

 pers2->Print();

 cout << "# references: " << pers1.use_count() << endl;

 cout << "# references: " << wpers1.use_count() << endl;

 cout << "# references: " << pers2.use_count() << endl;

 return 0;

}

In the aforementioned program, we allocate our resource using a shared pointer in pers1. Now,
let us imagine we had a reason in our program to downgrade our resource to a weak pointer –
perhaps we would like to insert a weak pointer to break an otherwise cycle of shared pointers. Using
weak_ptr<Person> wpers1(pers1);, we establish a weak pointer to this resource. Notice
that we cannot use wpers1 to call Print();. This is because operator-> and operator*
have not been overloaded in the weak_ptr class.

We print out use_count() for each of pers1 and wpers1 to notice that each shows a value of
1. That is, there is only one non-weak pointer controlling the resource in question (the weak pointer
may temporarily hold the resource, but cannot modify it).

Now, imagine that we would like to convert the resource pointed to by wpers1 on-demand to
another shared pointer, so that we may access the resource. We can do so by first gaining a lock on
the weak pointer; lock() will return a shared pointer whose contents are protected by a semaphore.
We assign this value to pers2. We then call pers2->ModifyTitle("Dr."); on the resource
using the shared pointer.

Revisiting smart pointers 527

Finally, we print out use_count() from the perspective of each of pers1, wpers1, and pers2.
In each case, the reference count will be 2, as there are two non-weak pointers referencing the shared
resource. The weak pointer does not contribute to the reference count of that resource, which is exactly
how weak pointers can help break a chain of circular dependencies. By inserting a weak pointer into
the dependency loop, the reference count to the shared resource will not be affected by the weak
pointer’s presence. This strategy allows the resource to be deleted when only the weak pointer to the
resource remains (and the reference count is 0).

The heap memory will again be managed for us automatically as a benefit of using smart pointers. In
this example, the memory will be destructed and deleted when the last reference to the memory is
removed. Again, note that the weak pointer did not contribute a reference to this count. We can see
from the cout statement in the Person destructor that only one instance was destructed.

Here is the output for our weak_ptr pointer example:

Miss Gabby Doone

references: 1

references: 1

Miss Gabby Doone

Dr. Gabby Doone

references: 2

references: 2

references: 2

Person destructor

In this section, we’ve reviewed and added to the basics regarding smart pointers. However, there could
be a chapter easily spent on each type of smart pointer. Nonetheless, hopefully, you have enough
comfort with the essentials to begin to include a variety of smart pointers in your code and investigate
each type further as your need arises.

Exploring a complementary idea – RAII

A programming idiom that complements smart pointers (as well as other concepts) is RAII (Resource
Acquisition Is Initialization). RAII binds the life cycle of a (potentially shared) resource to the lifetime
of an object by requiring the resource to be acquired before use. This concept can help control the life
cycle of a shared resource. RAII can be applied to concepts we have previously seen, such as allocated
heap memory (through the usage of smart pointers), or to the concept of reference counting that we
covered in Chapter 10, Implementing Association, Aggregation, and Composition. This programming
technique is also applicable to multithreaded programming (accessing shared resources with a mutex
lock), as well as to coordinate access to other shared resources such as sockets, files, or databases.
Ownership of a resource can be transferred from one object to another safely using a move() operation.

Making C++ Safer528

Many C++ class libraries follow RAII for resource management, such as std::string and
std::vector. These classes follow the idiom in that their constructors acquire the necessary
resources (heap memory), and release the resources automatically in their destructors. The user of
these classes is not required to explicitly release any memory for the container itself. In these class
libraries, RAII as a technique is used to manage these resources, even though the heap memory is not
managed using smart pointers. Instead, the concepts of RAII are encapsulated and hidden within the
class implementations themselves.

When we implemented our own smart pointers in Chapter 20, Removing Implementation Details Using
the pImpl Pattern, we used RAII, without knowing it, to ensure the allocation of the heap resource within
our constructor and the release of the resource in our destructor. The smart pointers implemented in
the Standard C++ Library (std::unique_ptr, std::shared_ptr, and std::weak_ptr)
embrace this idiom as well. Embracing RAII by using classes employing this idiom (or by adding it
yourself to classes when this is not possible), can help ensure code is safer and easier to maintain.
Because of the safety and robustness that this idiom adds to code, savvy developers urge us to embrace
RAII as one of the most important practices and features available in C++.

Next in our effort to make C++ safer, let’s consider several easy C++ features we can easily embrace
to ensure our coding is more robust.

Embracing additional C++ features promoting safety
As we have seen through 20 previous chapters of programming, C++ is an extensive language. We
know that C++ has great power and that we can do nearly anything in C++. As object-oriented C++
programmers, we have seen how to adopt OO designs, with the goal of making our code more easily
maintainable.

We have also gained a lot of experience utilizing raw (native) pointers in C++, primarily because raw
pointers are very pervasive in existing code. You truly need experience and facility in using native
pointers for when the need arises. In gaining this experience, we have seen firsthand the pitfalls we
may encounter with mismanagement of heap memory – our programs may have crashed, we may
have leaked memory, overwritten memory accidentally, left dangling pointers, and so on. Our first
order of business in this chapter was to prefer using smart pointers in newly created code – to promote
safety in C++.

Now, we will explore other areas of C++ that we can similarly employ safer features. We have seen
these various features throughout the book; it is important to establish a guideline that select language
features promote safety in C++. Just because we can do anything in C++ doesn’t mean that we should
routinely include features in our repertoire that have a high level of misuse associated with them.
Applications that continually crash (or crash even once) are unacceptable. Certainly, we have noted
no-nos throughout the book. Here, let’s point out language features that are worth embracing to further
our goal of making C++ safer, leaving our applications more robust and more easily maintainable.

Let’s start by reviewing simple items we can incorporate into our everyday code.

Embracing additional C++ features promoting safety 529

Revisiting range for loops

C++ has a variety of looping constructs that we have seen throughout the book. One common error
that occurs when processing a complete set of items is correctly keeping track of how many items are
in the set, especially when this counter is used as a basis to loop through all items in the set. Processing
too many elements when our set is stored as an array, for example, could lead our code to raise an
exception unnecessarily (or worse, could lead our program to crash).

Rather than relying on a MAX value to conduct our looping for all elements in a set, it is more desirable
to loop through every item in the set in a way that doesn’t count on the programmer correctly
remembering this upper loop value. Instead, for each item in the set, let’s do some sort of processing.
A for-each loop answers this need quite nicely.

One common error that occurs when processing a non-complete set of items is correctly keeping track
of how many items are currently in the set. For example, a Course may have a maximum number
of students permitted. Yet, as of today, only half of the potential Student slots are filled. When we
peruse the list of students enrolled in the course, we need to ensure we are processing only the filled
student spots (that is, the current number of students). Processing all maximum student spots would
clearly be an error and could lead our program to crash. In this scenario, we must use care to iterate
only over the currently utilized Student spots in the Course, either through using logic to exit a
loop when appropriate or by selecting a container type whose current size represents the complete size
of the set to be iterated upon (with no empty to be filled spots); the latter scenario making a for-each
loop an ideal choice.

Also, what if we rely on looping based upon a currentNumStudents counter? This may be better
than a MAX value in cases as previously illustrated, but what if we’ve not kept that counter correctly
updated? We’re subject to an error on this as well. Again, combining a container class where the
number of entries represents the current number of entries with a for-each type of loop can ensure
that we process the complete, current grouping in a less error-prone manner.

Now that we have revisited modern and more safe looping styles, let’s embrace auto to ensure type
safety. We will then see an example incorporating these collective features.

Using auto for type safety

Many situations arise in which using auto makes coding easier with respect to variable declarations,
including loop iterators. Additionally, using auto instead of explicit typing can ensure type safety.

Choosing to use auto is a simple way to declare a variable that has a complicated type. Using auto can
also ensure that the best type is chosen for a given variable and that implicit conversion will not occur.

We can use auto as a placeholder for types in a variety of situations, allowing the compiler to deduce
what is needed in a particular situation. We can even use auto as a return type for a function in
many cases. Using auto allows our code to appear more generic and can complement templates as
an alternative to genericizing a type. We can pair auto with const, and also pair these qualifiers

Making C++ Safer530

with references; note that these qualifiers combined cannot be extrapolated with auto and must be
specified individually by the programmer. Additionally, auto cannot also be used with qualifiers
augmenting a type, such as long or short, nor can it be used with volatile. Though outside
the scope of our book, auto can be utilized with lambda expressions.

Of course, using auto has a few drawbacks. For example, if the programmer doesn’t understand
the type of object being created, the programmer may anticipate the compiler to select a certain
type, and yet another (unexpected) type is deduced. This may create subtle errors in your code. For
example, if you have overloaded functions for both the type you think auto will select and for the
type the compiler actually deduces the auto declaration to be, you may call a different function than
anticipated! Certainly, this may mostly be due to the programmer not fully understanding the context
of usage at hand when inserting the auto keyword. Another drawback is when the programmer
uses auto just to force the code to compile, without truly working through the syntax at hand and
thinking about how the code should be written.

Now that we have revisited adding auto to our code, let’s revisit embracing STL in our everyday
code. We will then see an example incorporating these collective features.

Preferring STL for simple containers

The Standard Template Library, as we’ve seen in Chapter 14, Understanding STL Basics, includes a
very complete and robust set of container classes that are widely utilized in C++ code. Using these
well-tested components instead of native C++ mechanisms (such as an array of pointers) to collect
like items can add robustness and reliability to our code. The memory management is eased on our
behalf (eliminating many potential errors).

The STL, by using templates to implement its large variety of container classes, allows its containers
to be used generically for any data type our programs may encounter. By comparison, had we utilized
native C++ mechanisms, it is likely that we may have tied our implementation to a specific class type,
such as an array of pointers to Student. Certainly, we could have implemented an array of pointers
to a templatized type, but why do so when such a nice variety of well-tested containers are readily
available for our use?

STL containers also avoid using new() and delete() for memory management, choosing to use
allocators to improve efficiency for STL’s underlying memory management. For example, a vector, stack,
or queue may grow and shrink in size. Rather than allocating the maximum number of elements you
may anticipate (which may be both difficult to estimate or inefficient to over-allocate for typical usage
that does not reach the maximum), a certain buffer size or a number of elements may be allocated
under the hood up front. This initial allocation allows multiple additions to the container without a
resize necessary for each new addition to the set (as might otherwise be done to avoid over-allocation).
Only when the underlying container’s internal allocation (or buffer) size exceeds the pre-allocated
amount will an internal reallocation be necessary (unknown to the user of the container). The expense
of an internal reallocation, or a move, is the allocation of a larger piece of memory, copying from the
original memory to the larger piece, and then the release of the original memory. The STL works

Embracing additional C++ features promoting safety 531

to fine-tune, under the hood, the internal allocations to balance typical usage needs versus costly
reallocation that might otherwise be performed.

Now that we have revisited preferring STL in our code, let’s revisit applying const when necessary to
ensure code isn’t modified unless we so intend it to be. We will wrap up this section with an example
illustrating all of the key safety points featured in this section.

Applying const as needed

Applying the const qualifier to objects is an easy way to indicate that instances that should not be
modified are not, in fact, modified. We may recall that const instances may only call const member
functions. And that const member functions may not modify any part of the object calling the
method (this). Remembering to utilize this simple qualifier can ensure that this chain of checkpoints
occurs for objects that we truly do not intend to modify.

With that in mind, remember that const can be utilized in parameter lists, to qualify objects and
methods. Using const adds readability to the objects and methods it qualifies as well as adding the
valuable enforcement of read-only objects and methods. Let’s remember to use const as needed!

Now, let’s take a look at how we can use each of these easily added C++ features that contribute to
safer programming. This example revisits preferred looping styles, using auto for type safety, using
the STL for simple containers, and applying const as appropriate. This example can be found in
our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex4.cpp

#include <vector>

using std::vector;

// Assume additional #include/using as typically included

// Assume classes Person, Student are as typically defined

// In this const member function, no part of 'this' will

// be modified. Student::Print() can be called by const

// instances of Student, including const iterators

void Student::Print() const

{ // need to use access functions as these data members

 // are defined in Person as private

 cout << GetTitle() << " " << GetFirstName() << " ";

 cout << GetMiddleInitial() << ". " << GetLastName();

 cout << " with id: " << studentId << " GPA: ";

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex4.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex4.cpp

Making C++ Safer532

 cout << setprecision(3) << " " << gpa;

 cout << " Course: " << currentCourse << endl;

}

int main()

{ // Utilize STL::vector instead of more native C++ data

 // structures (such as an array of pointers to Student)

 // There's less chance for us to make an error with

 // memory allocation, deallocation, deep copies, etc.

 vector<Student> studentBody;

 studentBody.push_back(Student("Hana", "Sato", 'U',

 "Miss", 3.8, "C++", "178PSU"));

 studentBody.push_back(Student("Sam", "Kato", 'B',

 "Mr.", 3.5, "C++", "272PSU"));

 studentBody.push_back(Student("Giselle", "LeBrun", 'R',

 "Ms.", 3.4, "C++", "299TU"));

 // Notice that our first loop uses traditional notation

 // to loop through each element of the vector.

 // Compare this loop to next loop using an iterator and

 // also to the preferred range-for loop further beyond

 // Note: had we used MAX instead of studentBody.size(),

 // we'd have a potential error – what if MAX isn't the

 // same as studentBody.size()?

 for (int i = 0; i < studentBody.size(); i++)

 studentBody1[i].Print();

 // Notice auto keyword simplifies iterator declaration

 // However, an iterator is still not the most

 // preferred looping mechanism.

 // Note, iterator type is: vector<Student>::iterator

 // the use of auto replaces this type, simplifying as:

 for (auto iter = studentBody.begin();

 iter != studentBody.end(); iter++)

 (*iter).EarnPhD();

Embracing additional C++ features promoting safety 533

 // Preferred range-for loop

 // Uses auto to simplify type and const to ensure no

 // modification. As a const iterator, student may only

 // call const member fns on the set it iterates thru

 for (const auto &student : studentBody)

 student.Print();

 return 0;

}

In the aforementioned program, we initially notice that we have included the use of std::vector
from C++’s STL. Further in main(), we notice the instantiation of a vector using vector<Student>
studentBody;. Utilizing this well-tested container class certainly adds robustness to our code
versus managing a dynamically sized array ourselves.

Next, notice the specification of a constant member function void Student::Print() const;.
Here, the const qualification ensures that no part of the object invoking this method (this) will
be able to be modified. Furthermore, should any const instances exist, they will be able to invoke
Student::Print() as the const qualification guarantees this method to be safe (that is, read-
only) for const instances to utilize.

Next, we notice three looping styles and mechanisms, progressing from least to most safe in style. The
first loop cycles through each element in the loop with a traditional style for loop. What if we had
used MAX for the looping condition instead of studentBody.size()? We might have tried to
process more elements than are currently in the container; this type of oversight can be error-prone.

The second loop utilizes an iterator and the auto keyword to make the type specification easier (and
hence safer) for the iterator itself. Iterators, though well defined, are still not the preferred looping
mechanism. A subtlety from the increment in the second statement in the for statement can also
lead to inefficiency. Consider, for example, the pre versus post increment in the statement that is
executed before the loop condition is retested (that is, ++iter). Had this been iter++, the code
would be less efficient. This is because iter is an object and the pre-increment returns a reference
to the object, whereas the post-increment returns a temporary object (what is created and destroyed
with each loop iteration). The post-increment also utilizes an overloaded function, so the compiler
cannot optimize its usage.

Finally, we see the preferred and safest looping mechanism, featuring a range-for loop combined
with auto for the iterator specification (to simplify the type declaration). The use of auto replaces
vector<Student>::iterator as the type for iter. Any time there is an ease in notation,
there is also less room for error. Also, notice the use of const added to the iterator declaration to
ensure that the loop will only call non-modifiable methods on each instance iterated upon; this is an
example of an additional, appropriate safety feature we can employ in our code.

Making C++ Safer534

Here is the output for our aforementioned program:

Miss Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Mr. Sam B. Kato with id: 272PSU GPA: 3.5 Course: C++

Ms. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

Everyone to earn a PhD

Dr. Hana U. Sato with id: 178PSU GPA: 3.8 Course: C++

Dr. Sam B. Kato with id: 272PSU GPA: 3.5 Course: C++

Dr. Giselle R. LeBrun with id: 299TU GPA: 3.4 Course: C++

We have now revisited several straightforward C++ language features that can easily be embraced to
promote safety in our everyday coding practices. Using range-for loops provides code simplification
and removes dependencies from often incorrect upper limits of loop iteration. Embracing auto
simplifies variable declarations, including within loop iterators, and can help ensure type safety versus
explicit typing. Using well-tested STL components can add robustness, reliability, and familiarity to
our code. Finally, applying const to data and methods is an easy way to ensure data is not modified
unintentionally. Each of these principles is easy to employ and adds value to our code by adding to
its overall safety.

Next, let’s consider how understanding thread safety can contribute to making C++ safer.

Considering thread safety
Multithreaded programming in C++ is an entire book unto itself. Nonetheless, we have mentioned
several situations throughout the book that potentially require the consideration of thread safety. It
is worth re-iterating these topics to provide an overview of the issues you may encounter in various
niches of C++ programming.

A program may be comprised of multiple threads, each of which may potentially compete against one
another to access a shared resource. For example, a shared resource could be a file, socket, region of
shared memory, or output buffer. Each thread accessing the shared resource needs to have carefully
coordinated (known as mutually exclusive) access to the resource.

Imagine, for example, if two threads wanted to write output to your screen. If each thread could
access the output buffer associated with cout without waiting for the other to complete a cohesive
statement, the output would be a garbled mess of random letters and symbols. Clearly, synchronized
access to a shared resource is important!

Thread safety involves understanding atomic actions, mutual exclusion, locks, synchronization, and
so on—all of which are aspects of multithreaded programming.

Let’s begin with an overview of threads and multithreaded programming.

Considering thread safety 535

Multithreaded programming overview

A thread is a separate flow of control within a process, conceptually working like a subprocess (or
further subdivision of a process) within a given process. Threads are sometimes referred to as threads
of control. Applications that have many threads of control are known as multithreaded applications.

In uniprocessor environments, threads give the appearance that multiple tasks are running concurrently.
Just as with processes, threads are swapped in and out of the CPU quickly to appear to the user that they
are being processed simultaneously (though they aren’t). In a shared, multiprocessor environment, the
use of threads within an application can significantly speed up processing and allow parallel computing
to be realized. Even in a uniprocessor system, threads can actually (and perhaps counterintuitively)
speed up a process, in that one thread may run while waiting for the I/O of another thread to complete.

Threads related by the tasks they are performing may find themselves in similar methods of a class
simultaneously. If each thread is working on a distinct dataset (such as a distinct this pointer, even if
working within the same method), there is generally no need to synchronize access to those methods.
For example, imagine s1.EarnPhd(); and s2.EarnPhD();. Here, two separate instances are
in the same method (possibly concurrently). However, the datasets worked upon in each method
differ – in the first scenario, s1 will bind to this; in the second scenario, s2 will bind to this.
There is most likely no overlap in shared data between the two instances. However, if these methods
are accessing static data (that is shared by all instances of a given class, such as a numStudents data
member), synchronization to the critical pieces of code accessing the shared memory regions will be
required. Traditionally, system-dependent locks or semaphores are added around data or functions
that require mutual exclusivity to critical regions of code.

Multithreaded programming in C++ is available through a variety of commercial or public domain
multithreading libraries. Additionally, the Standard C++ Library features thread support in a
variety of capacities including using std::condition_variable for thread synchronization,
std::mutex to ensure mutual exclusivity of critical resources (by avoiding race conditions), and
std::semaphore to model resource counting. By instantiating a std::thread object and
becoming proficient with the aforementioned features, we can add multithreaded programming
using an established C++ library. Additionally, the std::atomic template can be added to a type
to establish it as an atomic type and ensure type-safe synchronization. The std::exception_ptr
type allows the transport of exceptions between coordinating threads. Overall, there are many thread
library features to consider; this is a vast topic.

The details for multithreaded programming are beyond the scope of this book; however, we can discuss
scenarios within this book that may be augmented to require the knowledge of using threads. Let’s
revisit some of those situations.

Making C++ Safer536

Multithreaded programming scenarios

There are many programming scenarios that can benefit from the use of multithreaded programming.
We will just mention a few that extend the ideas we have covered in this book.

The Observer pattern may certainly be employed in multithreaded programming scenarios! In
these instances, care must be used in the Update() and Notify() methods of Observer and
Subject, respectively, to add synchronization and locking mechanisms.

Smart pointers, such as shared_ptr and weak_ptr, can be used in multithreaded applications and
already include the means to lock and synchronize access to shared resources via reference counting
(and with the use of atomic library methods).

Objects related through association may arise with multithreaded programming or through shared
memory regions. Any time access is conducted through a shared resource using multithreaded
programming, mutexes (locks) should be employed to ensure mutual exclusivity to those shared
resources.

Objects throwing exceptions that need to communicate with one another will need to include
synchronization within catcher blocks or delegate exceptions to the main() program thread. Employing
worker threads to communicate with the main() program thread is a typical design model. Utilizing
shared memory is a means to store the data that will need to be shared between threads coordinating
with a throw and catch of the exception itself. An instance of std::exception_ptr can be
utilized with std::current_exception() to store an instance needing to be shared. This
shared instance (between threads) can be rethrown to a participating thread using std::rethrow_
exception().

Multithreaded programming is a fascinating topic unto itself and requires in-depth understanding to
utilize safely in C++. We’ve revisited a few areas in which thread safety considerations may complement
areas we have covered in this book. It is highly recommended to delve deeply into thread safety in
C++ before embarking on adding multithreaded programming to your code.

Next, let’s move forward to investigate how programming guidelines can add a necessary level of
safety to C++ programming.

Utilizing core programming guidelines
Programming guidelines are much more than a set of conventions to indicate how many spaces to
indent or naming conventions for variables, functions, classes, data members, and member functions.
A modern programming guideline is a covenant between programmers within an organization to
create code adhering to specific standards, with the largest goal to provide robust and easily extensible
code by following these common standards. The bottom line is that most of the conventions contained
within a programming guideline are simply to make programming in C++ safer.

Utilizing core programming guidelines 537

The consensus of what comprises a C++ programming guideline may vary from organization to
organization, but there are many resources available (including from standards committees) to provide
examples and direction.

Let’s move forward to examine a sampling of programming guide essentials and then discuss adopting
a core set of guidelines, as well as understanding resources widely available for programming safely
in C++.

Examining guideline essentials

Let’s start by examining a sampling of meaningful conventions to follow from a typical C++ programming
guideline. We have examined many of these programming issues throughout the book, yet it is useful
to review a few items to provide a starting point for choosing conventions to promote C++ safety.

Preferring initialization over assignment

Always choose initialization, whenever possible, over assignment. It’s simply more efficient and safer!
Use in-class initialization or the member initialization list. When assignment is used after initialization,
it can be less efficient. Imagine, for example, a member object that is default constructed, only to
quickly overwrite its values with more suitable values via assignment in the body of the constructor.
It would have been more efficient to utilize the member initialization list to initialize this member
object via an alternate constructor.

Also, neglecting to give each piece of memory an initial value can cost us dearly in terms of safety –
memory in C++ is not clean, so it is truly inappropriate to interpret whatever is in an uninitialized
variable (or data member) as valid. Accessing an uninitialized value is an undefined behavior. We
truly never know what is lurking in uninitialized memory, but we know it is never the correct value
to be used as an initializer!

Let’s review preferred initialization with a small program. This example can be found in our GitHub:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex5.cpp

class Person

{

private:

 string firstName; // str mbrs are default constructed so

 string lastName; // we don't need in-class initializers

 char middleInitial = '\0'; // in-class initialization

 string title;

protected:

 void ModifyTitle(const string &);

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex5.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex5.cpp

Making C++ Safer538

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

 // use default copy constructor and default destructor

 // inline function definitions

 const string &GetFirstName() const { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

};

// With in-class initialization, it often not necessary to

// write the default constructor yourself – there's often

// nothing remaining to initialize!

// alternate constructor

// Note use of member init list to initialize data members

Person::Person(const string &fn, const string &ln, char mi,

 const string &t): firstName(fn),

 lastName(ln), middleInitial(mi), title(t)

{

 // no need to assign values in body of method –

 // initialization has handled everything!

}

Examining the preceding code, we notice that the Person class uses in-class initialization to set
the middleInitial data member to the null character ('\0'). For each instance of Person,
middleInitial will be set to the null character prior to any constructor call that further initializes
the instance in question. Notice that the other data members in the class are all of type string.
Because string is a class itself, these data members are actually member objects of type string
and will be default constructed, appropriately initializing each of these string members.

Next, notice that we opted not to provide a default (no argument) constructor, allowing the system-
supplied default constructor to be linked in for us. In-class initialization, coupled with the appropriate
member object initialization of the string members, left no additional initialization necessary for
new Person instances, and hence no need for a programmer-specified default constructor.

Utilizing core programming guidelines 539

Finally, notice our use of the member initialization list in the alternate constructor for Person. Here,
each data member is set with an appropriate value from the parameter list of this method. Notice
that every data member is set via initialization, leaving no assignments necessary in the body of the
alternate constructor.

Our preceding code follows the popular code guideline: whenever possible, always opt to set values
via initialization versus assignment. Knowing that each data member has an appropriate value during
construction leads us to provide a safer code. Initialization is also more efficient than assignment.

Now, let’s consider another core C++ guideline relating to virtual functions.

Choosing one of virtual, override, or final

Polymorphism is a wonderful concept that C++ easily supports with the use of virtual functions. We
learned in Chapter 7, Utilizing Dynamic Binding through Polymorphism, that the keyword virtual
is used to indicate a polymorphic operation – an operation that may be overridden by derived classes
with a preferred method. Derived classes are not obligated to override a polymorphic operation (virtual
function) by providing a new method, but may find it meaningful to do so.

When a derived class chooses to override a virtual function introduced by a base class with a new method,
the overridden method may use both the keywords virtual and override in the signature of the
method. However, it is a convention to use only override at this overridden (derived class) level.

When a virtual function is introduced in the hierarchy, it may be desirable at some point to indicate
that a certain method is the final implementation of this operation. That is, the operation in question
may no longer be overridden. We know that it is appropriate to apply the final specifier to the virtual
function at this level of the hierarchy to indicate that a given method may no longer be overridden.
Though we may also include the keyword virtual at this level as well, it is recommended to only
utilize final.

To sum up, when specifying a virtual function, only choose one label at each level: virtual, override,
or final – even though the keyword virtual can be added to complement override and final.
By doing so, it will be much clearer if the virtual function at hand is newly introduced (virtual),
an overridden method of a virtual function (override), or the final method of a virtual function
(final). Clarity causes fewer errors to occur and that helps make C++ safer.

Let’s review the preferred keyword usage with virtual functions with a program segment. The complete
example can be found in our GitHub repository:

https://github.com/PacktPublishing/Deciphering-Object-Orient-
ed-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex6.cpp

class Person

{

private:

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex6.cpp
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/blob/main/Chapter21/Chp21-Ex6.cpp

Making C++ Safer540

 string firstName;

 string lastName;

 char middleInitial = '\0'; // in-class initialization

 string title; // Mr., Ms., Mrs., Miss, Dr., etc.

protected:

 void ModifyTitle(const string &);

public:

 Person() = default; // default constructor

 Person(const string &, const string &, char,

 const string &);

 virtual ~Person(); // virtual destructor

 const string &GetFirstName() const

 { return firstName; }

 const string &GetLastName() const { return lastName; }

 const string &GetTitle() const { return title; }

 char GetMiddleInitial() const { return middleInitial; }

 virtual void Print() const; // polymorphic operations

 virtual void IsA() const; // introduced at this level

 virtual void Greeting(const string &) const;

};

// Assume the non-inline member functions for Person

// follow and are as we are accustomed to seeing

class Student: public Person

{

private:

 float gpa = 0.0; // in-class initialization

 string currentCourse;

 const string studentId;

 static int numStudents; // static data member

public:

 Student(); // default constructor

 Student(const string &, const string &, char,

 const string &, float, const string &,

 const string &);

 Student(const Student &); // copy constructor

Utilizing core programming guidelines 541

 ~Student() override; // virtual destructor

 void EarnPhD();

 // inline function definitions

 float GetGpa() const { return gpa; }

 const string &GetCurrentCourse() const

 { return currentCourse; }

 const string &GetStudentId() const

 { return studentId; }

 void SetCurrentCourse(const string &); // proto. only

 // In the derived class, keyword virtual is optional,

 // and not currently recommended. Use override instead.

 void Print() const final; // override is optional here

 void IsA() const override;

 // note, we choose not to redefine (override):

 // Person::Greeting(const string &) const

 static int GetNumberStudents(); // static mbr. function

};

// definition for static data member

int Student::numStudents = 0; // notice initial value of 0

// Assume the non-inline, non-static member functions for

// Students follow and are as we are accustomed to seeing

In the preceding example, we see our Person class that we have carried forward throughout the
book. As a base class, notice that Person specifies polymorphic operations of Print(), IsA(), and
Greeting(), as well as the destructor using the virtual keyword. These operations are intended
to be overridden by a derived class with more suitable methods (not including the destructor), but are
not required to be overridden should the derived class find the base class implementation suitable.

In the derived class, Student, we override IsA() with a more suitable method. Notice that we use
override in the signature of this function, though we could have also included virtual. Next,
notice that we have chosen not to override Greeting() at the Student level; we can assume
that Student finds the implementation in Person acceptable. Also notice that the destructor is
overridden to provide the entry point to the destruction chain. Recall with a destructor that not only
is the derived class destructor called, but the base class destructor will also be called (implicitly as
the last line of code in the derived class destructor), allowing the object’s full destruction sequence
to properly commence.

Making C++ Safer542

Finally, notice that Print() has been overridden as final in Student. Though we could have
added override to the signature of this function as well, we choose to only utilize final per the
recommended coding convention.

Now, let’s look at another typical element in a typical C++ programming set of guidelines, relating
to smart pointers.

Preferring smart pointers in new code

We have utilized many native (raw) C++ pointers in this book, as you will undoubtedly be asked to
immerse yourself in existing code in which they are plentiful. Having native pointer experience and
facility will make you a safer programmer when asked to step into situations that use native pointers.

However, for safety’s sake, most programming guides will recommend using smart pointers exclusively
in newly created code. After all, their use adds little overhead and can help eliminate many of the
potential pitfalls of managing heap memory by the programmer. Smart pointers also aid in exception
safety. For example, exception handling implies that the expected flow of code may be interrupted
at nearly any time, leading to potential memory leaks with traditional pointer usage. Smart pointers
can alleviate some of this burden and provide for exception safety.

Using smart pointers is so important in original code that this point is worth repeating: choosing
smart pointers over native pointers leads to safer and far easier to maintain code in C++. The code will
also be easier to write, eliminating the need for many destructors, automatically blocking undesired
copies and assignment (unique_ptr), and so on. With that in mind, whenever possible, choose
smart pointers in newly created code.

We’ve seen smart pointers in this book as well as native pointers. Now, you can choose to use smart
pointers in the new code that you create – this is highly recommended. Certainly, there may be some
scenarios when this is not possible; perhaps you are creating new code that interfaces heavily with
existing native pointer code and need to utilize the same data structures. Nonetheless, you can strive
to use smart pointers, when possible, yet you have the flexibility and experience to understand the
vast amounts of existing code, libraries, and online examples that exist utilizing native pointers.

What could be better for safety than to have the facility of smart pointers for your original code, paired
with the knowledge of native pointers to use only when necessary?

There are many examples of programming guidelines that can be easily followed to make your code
safer. The aforementioned examples are just a few of many to illustrate the types of practices you will
expect to see in a set of essential C++ programming guidelines.

Now, let’s consider how we can assemble or adopt core programming guidelines to help make our
code safer.

Summary 543

Adopting a programming guideline

Whether you build or assemble a set of programming guidelines yourself or adhere to a set governed
by an organization you are a member of, adopting a core set of C++ programming guidelines is crucial
to ensure your code is as safe and robust as possible, translating to more easily maintainable code.

Guidelines should always remain fluid as the language evolves. Let’s next consider resources for finding
core C++ programming guidelines to either follow directly or to revisit incrementally to improve the
accepted guidelines within your organization.

Understanding resources for programming safely in C++

There are many online resources for programming guidelines in C++. The essential resource, however, is
the ISO C++ Core Guidelines, assembled primarily by Bjarne Stroustrup and Herb Sutter, which can be
found at the following GitHub URL: https://github.com/isocpp/CppCoreGuidelines/
blob/master/CppCoreGuidelines.md. Their collective goal is to help programmers use
modern C++ safely and more effectively.

Selected market sectors may have guidelines imposed upon them to obtain or ensure certification
within an industry. For example, MISRA is a set of C++ coding standards for the Motor Industry
Software Reliability Association; MISRA has also been adopted as a standard across other industries,
such as for medical systems. Another coding standard, developed for embedded systems, is CERT,
developed at Carnegie Mellon University (CMU). Once an acronym for Computer Emergency
Response Team, CERT is now a registered trademark of CMU. CERT has been adopted in many
financial sectors as well. JSF AV C++ (Joint Strike Fighter Air Vehicle C++) is a C++ coding standard
used in the aerospace engineering domain, developed by Lockheed Martin, to ensure error-free code
for safety-critical systems.

Undoubtedly, each organization you join as a contributor will have a base set of programming
guidelines for all programmers in the group to follow. If not, a wise move will be to suggest employing
a core set of C++ programming guidelines. After all, you will need to help maintain your own code as
well as the code of your colleagues; a uniform and expected set of standards will make this endeavor
manageable for everyone involved.

Summary
In this bonus chapter, we have added to our objective of becoming indispensable C++ programmers
by understanding the importance of programming safely in C++. After all, our primary goal is to
create robust and easily maintainable code. Incorporating safe programming practices will help us
achieve this goal.

We have reviewed concepts seen throughout the book, as well as related ideas that culminate in
adopting a set of core programming guidelines to ensure safer coding practices.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Making C++ Safer544

First, we reviewed smart pointers, examining three types from the Standard C++ Library, namely
unique_ptr, shared_ptr, and weak_ptr. We understand that these classes employ the RAII
idiom by providing wrappers to allocate and deallocate heap memory safely on our behavior in
well-tested standard library classes. We put forth a guideline: always prefer smart pointers in newly
created code.

Next, we reiterated a variety of programming practices that we have seen throughout the book that
we can employ to make our coding safer overall. For example, preferring for-each style loops and
using auto for type safety. Also, using STL containers versus less robust native mechanisms, and also
adding the const qualifier for data and methods to ensure read-only access when so needed. These
practices are examples (among many) that can help ensure our code is as safe as possible.

Next, we introduced multithreaded programming in C++ and reviewed programming scenarios we
have seen previously that may benefit from the use of threads. We also took a look ahead at the classes
available in the Standard C++ Library in support of multithreaded programming, including those that
provide synchronization, mutex locks, semaphores, and creating atomic types.

Finally, we examined programming guideline essentials to better understand rules that may be
beneficial in a C++ core programming guide. For example, we reviewed preferring initialization over
the assignment, virtual function usage with regard to the keywords virtual, override, and
final, as well as previously examined topics from this chapter. We talked about the importance of
adopting a comprehensive set of core programming guidelines for C++ as well as resources to find
sample guidelines used as industry standards.

Understanding how to make C++ safer as you apply the many features covered in the book will
undoubtedly make you a more valuable programmer. You now have core language skills plus a very
solid understanding of OOP in C++ (essential concepts and how to implement them in C++ with
either direct language support or using programming techniques). We have augmented your skills with
knowledge of exception handling, friends, operator overloading, templates, STL basics, and testing
OO classes and components. We have also embraced core design patterns, delving into each pattern
with comprehensive programming examples. Finally in this chapter, we have reviewed how to safely
put together the knowledge you have learned by choosing to employ safer programming practices at
each available opportunity.

As we wrap up our bonus chapter together, you are now ready to journey further on your own,
applying C++ to many new and existing applications. You are ready to create safe, robust, and easy
to maintain code. I am sincerely hopeful that you are as intrigued by C++ as I am. Once again, let’s
get programming!

Assessments

The programming solution for each chapter’s questions can be found in our GitHub repository at the
following URL: https://github.com/PacktPublishing/Deciphering-Object-
Oriented-Programming-with-CPP/tree/main. Each full program solution can be found
in our GitHub repository in the subdirectory Assessments , and then under the appropriate chapter
heading (subdirectory, such as Chapter01), in a file that corresponds to the chapter number,
followed by a dash, followed by the solution number in the chapter at hand. For example, the solution
for Question 3 in Chapter 1, Understanding Basic C++ Assumptions, can be found in the subdirectory
Assessments/Chapter01 in a file named Chp1-Q3.cpp under the aforementioned GitHub
directory.

The written responses for non-programming questions can be found in the following sections, organized
by chapter, as well as in the aforementioned GitHub in the appropriate Assessments subdirectory for a
given chapter. For example, Assessments/Chapter01/Chp1-WrittenQs.pdf will contain
the answers to the non-programming solutions for Chapter 1, Understanding Basic C++ Assumptions.
Should an exercise have a programming portion and a follow-up question to the program, the answer to
the follow-up question may be found both in the next sections (as well as in the aforementioned .pdf
file) and in a comment at the top of the programming solution in GitHub (as it may be appropriate to
review the solution in order to fully understand the answer to the follow-up question).

Chapter 1, Understanding Basic C++ Assumptions
1. A flush may be useful, rather than and endl, for clearing the contents of a buffer associated

with cout for the situations where you do not wish the cursor to be advanced to the next
line for output. Recall, an endl manipulator is merely a newline character plus a buffer flush.

2. Choosing a pre versus a post increment for a variable, such as ++i (versus i++) will have
an impact on the code when used in conjunction with a compound expression. A typical
example would be result = array[i++]; versus result = array[++i];. With
the post-increment (i++) the contents of array[i] will be assigned to result and then
i is incremented. With the pre-increment, i is first incremented and then result will have
the value of array[i] (that is, using the new value of i as an index).

3. Please see Assessments/Chapter01/Chp1-Q3.cpp in the GitHub repository.

https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main
https://github.com/PacktPublishing/Deciphering-Object-Oriented-Programming-with-CPP/tree/main

Assessments546

Chapter 2, Adding Language Necessities
1. The signature of a function is the function’s name plus its type and number of arguments (no

return type). This relates to name mangling as the signature helps the compiler provide a unique,
internal name for each function. For example, void Print(int, float); may have
mangled name of Print_int_float();. This facilitates overloaded functions by giving
each function a unique name so that when a call is made, it is evident by the internal function
name as to which function is being invoked.

2. a – d. Please see Assessments/Chapter02/Chp2-Q2.cpp in the GitHub repository.

Chapter 3, Indirect Addressing: Pointers
1. a – f. Please see Assessments/Chapter03/Chp3-Q1.cpp in the GitHub repository.

d. (follow-up question) Print(Student) is less efficient than Print(const
Student *) as the initial version of this function passes an entire object on the stack,
whereas the overloaded version passes only a pointer on the stack.

2. Assuming we have an existing pointer to an object of type Student, such as:
Student *s0 = new Student; (this Student is not yet initialized with data)

a. const Student *s1; (does not require initialization)

b. Student *const s2 = s0; (requires initialization)

c. const Student *const s3 = s0; (also requires initialization)

3. Passing an argument of type const Student * to Print() would allow a pointer to
a Student to be passed into Print() for speed, yet the object pointed to could not be
dereferenced and modified. Yet passing a Student * const as a parameter to Print()
would not make sense because a copy of the pointer would be passed to Print(). Marking
that copy additionally as const (meaning not allowing changing where the pointer points)
would then be meaningless, as disallowing a copy of a pointer to be changed has no effect
on the original pointer itself. The original pointer was never in jeopardy of its address being
changed within the function.

4. There are many programming situations that might use a dynamically allocated 3-D array. For
example, if an image is stored in a 2-D array, a collection of images might be stored in a 3-D
array. Having a dynamically allocated 3-D array allows for any number of images to be read in
from a filesystem and stored internally. Of course, you’d need to know how many images you’ll
be reading in before making the 3-D array allocation. For example, a 3-D array might hold 30
images, where 30 is the third dimension to collect the images in a set. To conceptualize a 4-D
array, perhaps you would like to organize sets of the aforementioned 3-D arrays.

Assessments 547

For example, perhaps you have a set of 31 images for the month of January. That set of
January images is a 3-D array (2-D for the image and the third dimension for the set of 31
images comprising January). You may wish to do the same for every month. Rather than
having separate 3-D array variables for each month’s image set, we can create a fourth
dimension to collect the years’ worth of data into one set. The fourth dimension would have
an element for each of the 12 months of the year. How about a 5-D array? You can extend
this image idea by making the fifth dimension a way to collect various years of data, such
as collecting images for a century (fifth dimension). Now we have images organized by
century, then organized by year, then month, then by image (the image requiring the first
two dimensions).

Chapter 4, Indirect Addressing: References
1. a – c. Please see Assessments/Chapter04/Chp4-Q1.cpp in the GitHub repository.

c. (follow-up question) Pointer variables need not only call the version of
ReadData(Student *) that accepts a pointer to a Student and reference variables
need not only call the version of ReadData(Student &) that accepts a reference to a
Student. For example, a pointer variable may be dereferenced with * and then call the
version that accepts a reference. Likewise, a reference variable may have its address taken
using & and then call the version that accepts a pointer (though this is less commonly done).
You simply need to make the data types match with respect to what you are passing and
what the function expects.

Chapter 5, Exploring Classes in Detail
1. a – e. Please see Assessments/Chapter05/Chp5-Q1.cpp in the GitHub repository.

Chapter 6, Implementing Hierarchies with Single
Inheritance

1. a – d. Please see Assessments/Chapter06/Chp6-Q1.cpp in the GitHub repository.

2. a – c. (Optional) Please see Chapter06/Assessments/Chp6-Q2.cpp in the GitHub
repository.

Chapter 7, Utilizing Dynamic Binding through
Polymorphism

1. a – e. Please see Assessments/Chapter07/Chp7-Q1.cpp in the GitHub repository.

Assessments548

Chapter 8, Mastering Abstract Classes
1. a – d. Please see Assessments/Chapter08/Chp8-Q1.cpp in the GitHub repository.

e. Depending on your implementation, your Shape class may or may not be considered an
interface class. If your implementation is an abstract class that contains no data members
and only abstract methods (pure virtual functions), your Shape implementation is
considered an interface class. If your Shape class, however, stores area as a data member
once it has been calculated by the overridden Area() method in the derived classes, it is
then just an abstract base class.

Chapter 9, Exploring Multiple Inheritance
1. Please see Assessments/Chapter09/Chp9-Q1.cpp in the GitHub repository.

a. There is one LifeForm subobject.

b. The LifeForm constructor and destructor are each invoked once.

c. The default constructor for LifeForm would be invoked if the specification of an
alternate constructor of LifeForm(1000) was removed from the member initialization
list of the Centaur constructor.

2. Please see the Assessments/Chapter09/Chp9-Q2.cpp in the GitHub repository.

a. There are two LifeForm sub-objects.

b. The LifeForm constructor and destructor are each invoked twice.

Chapter 10, Implementing Association, Aggregation, and
Composition

1. Please see Assessments/Chapter10/Chp10-Q1.cpp in the GitHub repository.

(follow-up question) Once you have overloaded a constructor that accepts a University
& as a parameter, this version may be invoked using a University * by first
dereferencing the pointer to the University within the constructor call (to make a
referenceable object).

2. a – f. Please see Assessments/Chapter10/Chp10-Q2.cpp in the GitHub repository.

3. a – b. (optional) Please see Assessments/Chapter10/Chp10-Q3.cpp in the GitHub
repository.

Chapter 11, Handling Exceptions
1. a – c. Please see Assessments/Chapter11/Chp11-Q1.cpp in the GitHub repository.

Assessments 549

Chapter 12, Friends and Operator Overloading
1. Please see Assessments/Chapter12/Chp12-Q1.cpp in the GitHub repository.

2. Please see Assessments/Chapter12/Chp12-Q2.cpp in the GitHub repository.

3. Please see Assessments/Chapter12/Chp12-Q3.cpp in the GitHub repository.

Chapter 13, Working with Templates
1. a – b. Please see Assessments/Chapter13/Chp13-Q1.cpp in the GitHub repository.

2. Please see Assessments/Chapter13/Chp13-Q2.cpp in the GitHub repository.

Chapter 14, Understanding STL Basics
1. a – b. Please see Assessments/Chapter14/Chp14-Q1.cpp in the GitHub repository.

2. Please see Assessments/Chapter14/Chp14-Q2.cpp in the GitHub repository.

3. Please see Assessments/Chapter14/Chp14-Q3.cpp in the GitHub repository.

4. Please see Assessments/Chapter14/Chp14-Q4.cpp in the GitHub repository.

Chapter 15, Testing Classes and Components
1. a. Your classes follow orthodox canonical class form if they each include a (user-specified)

default constructor, copy constructor, overloaded assignment operator, and a virtual destructor.
Your classes additionally follow extended canonical class form if they also include a move copy
constructor and an overloaded move assignment operator.

b. Your class will be considered robust if it follows canonical class form and ensures that
all instances of a class have the means to be fully constructed. Testing a class can ensure
robustness.

2. a – c. Please see Assessments/Chapter15/Chp15-Q2.cpp in the GitHub repository.

3. Please see Assessments/Chapter15/Chp15-Q3.cpp in the GitHub repository.

Chapter 16, Using the Observer Pattern
1. a – b. Please see Assessments/Chapter16/Chp16-Q1.cpp in the GitHub repository.

2. Other examples which may easily incorporate the Observer pattern include any application
requiring customers to receive notification of backordered products that they desire. For example,
many people may wish to receive the Covid-19 vaccine and wish to be on a waiting list at a
vaccine distribution site. Here, a VaccineDistributionSite (the subject of interest) can
be inherited from Subject and contain a list of Person objects, where Person inherits from

Assessments550

Observer. The Person objects will contain a pointer to the VaccineDistributionSite.
Once enough supply for the vaccine exists at a given VaccineDistributionSite (that
is, a distribution event has occurred), Notify() can be called to update the Observer
instances (people on the waitlist). Each Observer will be sent an Update(), which will be
the means to allow that person to schedule an appointment. If the Update() returns success
and the Person has been scheduled for an appointment, the Observer can release itself
from the waiting list with the Subject.

Chapter 17, Applying the Factory Pattern
1. a – b. Please see Assessments/Chapter17/Chp17-Q1.cpp in the GitHub repository.

2. Other examples which may easily incorporate the Factory Method pattern include many types
of applications in which various derived classes may need to be instantiated based upon the
specific values provided at construction. For example, a payroll application may require various
types of Employee instances, such as Manager, Engineer, Vice-President, and so
on. A factory method can provide a way to instantiate the various types of Employee based
on the information provided when the Employee is hired. The Factory Method pattern is a
pattern that can be applied to many types of applications.

Chapter 18, Applying the Adapter Pattern
1. a – b. Please see Assessments/Chapter18/Chp18-Q1.cpp in the GitHub repository.

2. Other examples which may easily incorporate the Adapter pattern include many examples of
repurposing existing, well tested non-OO code to provide an OO interface (that is, a wrapper
type of Adapter). Other examples include creating an Adapter to convert a formerly used class
into a currently needed class (again with the idea of reusing previously created and well-tested
components). An example is to adapt a Car class that has been previously used to represent
gasoline engine cars into a class that models an ElectricCar.

Chapter 19, Using the Singleton Pattern
1. a – c. Please see Assessments/Chapter19/Chp19-Q1.cpp in the GitHub repository.

2. We cannot label the static instance() method as virtual in Singleton and override it
in President, simply because static methods can never be virtual. They are statically bound,
and never receive a this pointer. Also, the signature may need to be different (and no one
likes an un-intentional function hiding situation).

3. Other examples which may easily incorporate the Singleton pattern include creating a Singleton
CEO of a company, a Singleton TreasuryDepartment for a country, or a Singleton Queen
of a nation. Each of these Singleton instances offers the opportunity to establish a registry to
keep track of multiple Singleton objects. That is, many countries may have a single Queen.

Assessments 551

In this case, the registry would allow not just one Singleton per object type, but one Singleton
per other qualifiers, such as nation. This is an example of the rare case in which more than one
Singleton object of a given type can occur (but always a controlled number of such objects).

Chapter 20, Removing Implementation Details Using the
pImpl Pattern

1. Please see Assessments/Chapter20/Chp20-Q1.cpp in the GitHub repository.

2. Please see Assessments/Chapter20/Chp20-Q2.cpp in the GitHub repository.

(follow-up question) In this chapter, simply inheriting Student from the Person class
that embraces the pImpl pattern presents no logistical difficulties. Additionally, modifying
the Student class to also employ the pImpl pattern and utilize a unique pointer is more
challenging. Various approaches may run across various difficulties, including dealing with
inline functions, down-casting, avoiding explicit calls to the underlying implementation, or
requiring back pointers to help invoke virtual functions. Please see the online solution for
details.

3. Other examples which may easily incorporate the pImpl pattern for relative implementation
independence include creating generic GUI components, such as for Window, Scrollbar,
Textbox, and so on, for various platforms (derived classes). The implementation details
can easily be hidden. Another example could be proprietary commercial classes in which the
developer wishes to hide the implementation details that might otherwise be seen in a header file.

Index

Symbols
=default prototype

using 200
2-D arrays

allocating, dynamically 57-59
pointers to pointers, allocating

dynamically 60-62

A
abstract class

about 234
example, examining 240-250
implementing, with pure virtual

functions 234-236
object-oriented (OO) concept 234

Abstract Data Types (ADTs) 192, 367
Abstract Factory 449
abstracting 108
abstract method 234
abstract Product class

defining 438, 439
defining, without Factory Method

pattern 445, 446
abstract types

derived class objects, generalizing as 239

access labels
modifying, in base class list by using

protected or private base classes 185, 186
using 117-121

access regions
using 117-121

Adaptee class
about 452
alternate specification, considering 462-464
specifying 454-457
versus Adapter pattern 465

Adapter class 452
Adapter pattern

about 452, 453
alternate specification, considering 462-464
benefits 452
components, bringing together 460-462
concrete classes, deriving 457-460
implementing 453
specifying 454-457
using, as wrapper class 465-469
using, to provide necessary interface

to existing class 453, 454
versus Adaptee class 465

Index554

addition operator
overloading, as member function 340
overloading, as non-member function

(using friends) 341-343
address-of operator

using 49, 50
aggregation 280
algorithms 367
alias declaration 19
alternate design

considering 275-277
arrays

allocating and deallocating, at runtime 53
assignment operator

overloading 337-339
association

about 288
example 289
implementing 289-297
multiplicity 288

associative containers 366
attributes 107
auto

using, for type safety 529, 530

B
backlink maintenance

utilizing 298
base class

about 169
creating, to illustrate implementation

inheritance 187-191
base class, constructor

specifying, with member
initialization list 175-177

base classes
defining 170-172

base class methods
overriding 205-208

Bridge pattern 496

C
C++ features

auto, using for type safety 529, 530
const, applying 531-534
embracing, to ensure robust coding 528
range for loops 529
STL, preferring for simple

containers 530, 531
C++ language syntax

array 5-7
comment styles 4
reviewing 4
standard data types 4, 5
variable declarations 4, 5
variables 5-7

C++ operators
reviewing 14, 15

canonical class form
about 394
extended canonical form 395
orthodox canonical form 395

canonical class form, components
copy constructor 396
default constructor 395
example 398-404
move assignment operator 397, 398
move copy constructor 397
overloaded assignment operator 396
virtual destructor 396

Cheshire Cat 496
child class 169

Index 555

class
about 19, 20, 107-112
specifying, as final 173

class attribute 157
class content

organizing, to apply pattern basics 497
classes

testing, by creating drivers 405-408
classes, related to aggregation

testing 409, 410
classes, related to association

testing 409, 410
classes, related to inheritance

testing 409
class layout

reviewing 497-499
Client classes 453, 473
comparison operator

overloading 340
compiler-firewall idiom 496
composition

about 280
alternate implementation,

considering for 287
defining 280
implementing 281-287

Computer Emergency Response
Team (CERT) 543

concrete classes
deriving, from Adapter pattern 457-460
deriving, from Observer class 423-429
deriving, from Subject class 423-429

Concrete Product
about 436
Classes, defining 439-446

const
applying 531-534

constant objects
pointers, using to 70, 71
references, using 95, 96

constant objects, as function arguments
pointers, using 96-98

constant objects, as return types
from functions

pointers, using 96-98
constant pointers

using, to constant objects 72, 73
using, to objects 71, 72

const data members
adding 148-153

constexpr qualifiers
using 28
variables 28-30

const member functions
using 154-157

const qualifier
using, with pointers 70
using, with references 94

const qualifiers
using 28
variables 28-30
with function 31

constructors
about 122
basics, applying 122-125
full program, example 177-185
overloading 122-125
using, with in-class initializers 126, 127

container classes 366
control structures 10, 11
conversion constructors

about 134
creating 134-139

Index556

copy constructors
about 396
creating 127-134

customized exception classes
creating 319-322

D
Data Access Object pattern 469
data members

about 109
qualifiers, applying to 144

default constructor 395
default values 35
dereference operators

using 49, 50
derived classes

about 169
defining 170-172

derived class objects
generalizing 208, 209
generalizing, as abstract types 239

design patterns
about 416
utilizing 416

destructor invocations 174
destructors

about 139
basics, applying 140-144
usage 140-144

diamond-shaped hierarchy
creating 263-267

discriminators design
considering 275-277

domain-specific derived classes
creating 418

do while constructs 11-13
d-pointer 496

drivers
creating, to test classes 405-408

dynamic binding
about 224
runtime binding, comprehending of

methods to operations 224, 225
v-table, interpreting 226
v-table, interpreting in detail 227-230

dynamic exception specifications
about 316
unexpected types, dealing with 317, 318

E
else if statement 10, 11
else statement 10, 11
encapsulation

about 108, 328
OOP concept, breaking 328

enum 20-22
exception handling

about 306
utilizing, with catch keyword 306-309
utilizing, with throw keyword 306-309
utilizing, with try keyword 306-309

exception handling, mechanics
assortment, adding of handlers 312-315
dependent items, grouping together

within try block 315
exploring, with typical variations 310
passing, to outer handlers 310-312
specifications, examining in function

prototypes 316, 317
unexpected types, dealing of

dynamic exceptions 317
unexpected types, dealing of

dynamic exceptions 318

Index 557

exception handling mechanisms
about 405
embedding, in constructors to

create robust classes 411
testing 410

exception hierarchies
creating, of user defined exception types 324
customized exception classes, using 319-322
standard exception objects, using 318, 319
utilizing 318

explicit Singleton deletion
examining, impact on SingletonDestroyer

destructor 489, 490
extended canonical form 395

F
Factory Method pattern

about 436
abstract Product class, defining 438, 439
abstract Product class, defining

without 445, 446
components, bringing together

443, 444, 448, 449
Concrete Product classes, defining 439-442
definition, examining 442, 443
implementing 437
including, in Product class 437
Object Factory class, adding with 447, 448
Object Factory class, creating

to encapsulate 445
file content

organizing, to apply pattern basics 497
first in, first out (FIFO) 380
for loops constructs 11-13
forward declaration 32

friend classes
about 328, 329
accessing with 331-334
syntax, examining 329-331

friend functions
about 328, 329
accessing with 331-334
syntax, examining 329-331

full program example
examining 356-360

fully constructed object 405
function

definition 32
hiding considering 219-224
objects 367
revisiting 15-17

function overloading
about 38
ambiguities, arising 43-45
basics 38-41
eliminating, with standard type

conversion 41-43
function overriding 208
function pointer 225
function prototypes

default values, adding to 35, 36
defining 32, 33
exception specifications, examining 316, 317
naming arguments 34, 35
with different default values, in

different scopes 36-38
working with 32

functions
pointers, passing as arguments to 65-67
pointers, using as return values from 68, 69
pointers, using with 65
references as arguments, passing 89-91

Index558

references as return values, using 92-94
references, using 88

functors
about 367, 387
used, for examining STL map 387, 389

G
Gang of Four (GofF) 496
generalization

about 169
deciphering 169

generalized aggregation
about 280
defining 287
implementing 288

H
Handle pattern 496
Has-A relationships

supporting 263

I
if statement 10, 11
implementation class 497
implementation inheritance

about 185
access labels, modifying in base

class list by using protected or
private base classes 185, 186

base class, creating to illustrate 187-191
private base class, using to implement one

class in terms of another 192-194
protected base class, using to implement

one class in terms of another 195-201
implicit constructor 174

in-class initializers
constructors, using within 126, 127

indirect addressing 49
inheritance 169
inheritance hierarchy

class, specifying as final 173
inherited access regions

examining 172
inherited constructors 174
inherited destructors 174
inherited members

accessing 170-172
inline functions

adding, for potential efficiency 144-148
mechanisms, using 144

instance 107
instantiation 109
interface class

about 236, 497
considering, as implemented in C++ 237
creating 236-239

I/O
iostream library 7, 8
iostream manipulators 9, 10
recapping 7

iostream library 7, 8
iostream manipulators 9, 10
IsA() 236, 242, 245, 249
Is-A relationships

about 169, 234, 237
supporting 262, 263

istream 7
iterators 366

J
Joint Strike Fighter Air Vehicle

C++ (JSF AV C++) 543

Index 559

L
last in, first out (LIFO) 378
leaf-node 173
looping constructs 11-13
l-value

about 95
references 400

M
member functions

about 109-112
internals, examining 113-117
qualifiers, applying to 144

member initialization list
adding 148-153
using, to specifying base class

constructor 175-177
members 117
method 107
mix-in classes 237
mix-in relationships

supporting 262, 263
Model-View-Controller (MVC) 416
Motor Industry Software Reliability

Association (MISRA) 543
move assignment operator 397, 398
move copy constructor 397
multiple inheritance

Has-A relationships, supporting 263
Is-A relationships, supporting 262, 263
mechanics 254-261
mix-in relationships, supporting 262, 263
usage, examining 261, 262

multithreaded applications 535

multithreaded programming
overview 535
scenarios 536

Multiton pattern 492
mutually exclusive 534

N
namespace keyword 22-24
N-D arrays

allocating, dynamically 62-64
nested exception class

creating 322-324

O
object 107
Object Factory class

about 436, 437
adding, with Factory Method

pattern 447, 448
advantage 449
creating, to encapsulate Factory

Method pattern 445
object-oriented (OO)

about 105
concepts 108
concepts, expanding 168
concept, of polymorphism 204, 205
specialization, deciphering 169
terminology 107, 108
terminology, expanding 168

object-oriented (OO) concept
interface class, creating 236-239
of abstract class 234

object-oriented (OO), terminology
generalization, deciphering 169
specialization, deciphering 169

Index560

Object-Oriented Programming (OOP) 105
Observer class

concrete classes, deriving from 423-429
creating 418
specifying 419-423

Observer pattern
about 417
components, bringing together 429-433
implementing 418

Observers 417
OO testing

contemplating 394
opaque pointer 496
operations 107
operator function

about 335
implementing 336

operator overloading
about 334, 361
adding, to genericize template code 361-363
essentials, deciphering 334, 335
used, for making template flexible

and extensible 361
operators delete()

using 50, 51
operators new()

using 50, 51
Orkan 458
orthodox canonical form 395
ostream 7
overloaded assignment operator 396

P
parent class 169
pImpl pattern

about 496, 497
advantages 512

compelling, adjustments to
class definition 496

file and class contents, organizing
to apply pattern basics 497

implementing 497
improving, with unique pointer 506
performance issues, examining 511, 512
unique pointer, adding to 510, 511

pImpl pattern, class utilizing strategy
applying, with file layout 499-505
applying, with revised class 499-505
class layout, reviewing 497-499
components, bringing together 505, 506
typical file, reviewing 497-499

pointers
address-of operators, using 49, 50
basics 48
basics, reviewing 49
const qualifier, using with 70
creating and using, to user

defined types 51, 53
dereference operators, using 49, 50
memory allocation 48
operators delete(), using 50, 51
operators new(), using 50, 51
passing, as arguments to functions 65-67
using 99, 100
using, as return values from functions 68, 69
using, to constant objects 70, 71
using, to constant objects as

function arguments 96-98
using, to constant objects as function

arguments from functions 73-76
using, to constant objects as return types

from functions 73-76, 96-98
using, to objects of unspecified types 76, 77
using, with functions 65

pointer to Implementation idiom (pImpl) 496

Index 561

polymorphism
about 204
implementing, with virtual functions 205
OO concept 204, 205

polymorphism, with virtual functions
base class methods, overriding 205-208
defining 205-208
derived class objects, generalizing 208, 209
function hiding, considering 219-224
pieces, putting together 211-219
virtual destructors, utilizing 209, 210

Print() 236, 242, 245, 249
private base class

using, to implement one class in
terms of another 192-194

private members 172
Product 436
Product class

Factory Method pattern, including 437
programming guide, essentials

examining 537
final, selecting 539-541
initialization, preferring over

assignment 537, 538
override, selecting 539-541
smart pointers, preferring in code 542
virtual, selecting 539-541

programming guidelines
adopting 543
essentials, examining 537
resources, considering for finding 543
utilizing 536, 537

protected base class
using to implement one class in

terms of another 196-201
using, to implement one class in

terms of another 195

protected members 173
public members 173
pure virtual functions

nuances 235
used, for implementing abstract

class 234-236

R
reference counting

utilizing 298
references

const qualifier, using 94
using, to constant objects 95, 96

references, as arguments
passing, to functions 89-91

references, as return values
using, from functions 92-94

reference variables
about 84
accessing 84-86
declaring 84-86
initializing 84-86

Registry 491
related classes

testing 408
Resource Management Is Initialization (RAII)

exploring 527, 528
robust class 405
robust paired-class implementation

advantages 490
disadvantages 490
using 480, 481

r-value references 99, 400

Index562

S
scenarios

adding, to aid in testing object
relationships 410

sequential containers 366
shared pointer

about 522
examples, adding with 522-524

signature of a function 38
single-dimension arrays

allocating, dynamically 53-57
single inheritance 169
Singleton class 472
SingletonDestroyer class

about 472
specifying 481-485

SingletonDestroyer destructor
explicit Singleton deletion, impact

examining 489, 490
Singleton pattern

about 472, 473
alternate simple implementation 477-479
alternate simple implementation,

limitations 480
components, bringing together

within Client 487-489
deficiency, understanding with

implementing 476, 477
implementing 473
registry, used for allowing classes

to utilize 491, 492
robust paired-class implementation,

using 480, 481
simple implementation, using 473, 475
specifying 481-485
Target class, deriving from 485-487

smart pointers
about 299, 506-508, 518
types 509
using, for safety 78, 79

smart pointers, types
shared pointer 522-524
unique pointer 519-521
weak pointer 524-527

software testing 394
Speak() 236, 242, 245, 249
specialization

about 169
deciphering 169

stack 192
standard exception objects

using 318, 319
Standard Template Library (STL)

contents and purpose, surveying 366, 367
preferring, for simple containers 530, 531

standard type conversion
ambiguities, arising 43-45
used, for eliminating function

overloading 41-43
static data members

utilizing 157-164
static member functions

utilizing 157-164
STL containers

customizing 389, 390
deque, using 375-378
iterator, using 370-372
list, using 368, 369
map, examining 383-387
map, examining with functor 387, 389
priority queue, using 382, 383
queue, using 380-382
stack, using 378-380

Index 563

utilizing 367
vector, using 373-375

STL deque
using 375-378

STL in C++, components
algorithms 366
containers 366
functions 366
iterators 366

STL iterator
using 370-372

STL list
using 368, 369

STL map
examining 384-387
examining, with functor 387, 389

STL priority queue
using 382, 383

STL queue
using 380-382

STL stack
using 378-380

STL vector
using 373-375

strongly-typed enum 20-22
struct 18
Subject 417
Subject class

concrete classes, deriving from 423-429
creating 418
specifying 419-423

Subject-View 416

T
Target class

about 453, 473, 497
deriving, from Singleton pattern 485-487

template basics
examining 348-350
exploring, to genericize code 348

template class
about 350
creating 353-355
full program example, examining 356-360
using 353-355

template functions
about 350
creating 351, 352
using 351, 352

this pointer 113-117
thread 535
thread safety

considering 534
threads of control 535
try block

dependent items, grouping
together within 315

typedef declaration 19
typical file

reviewing 497-499
typical variations

exception handling mechanics,
exploring with 310

U
underlying implementation

reviewing 98, 99
unique pointer

about 508, 509, 519-521
adding, to pImpl pattern 510, 511
used, for improving pImpl pattern 506

unordered containers 366
user defined exception types

exception hierarchies, creating 324

Index564

user defined types
alias declaration, using 19
class 19, 20
enum 20-22
objects, referencing 87, 88
pointers, creating and using to 51-53
reference link 87
reviewing 17
strongly-typed enum 20-22
struct 18
typedef declaration 19

V
virtual 206
virtual base classes

about 267
utilizing, to eliminate duplication 267-275

virtual constructor 436
virtual destructors

about 236, 396
utilizing 209, 210

virtual function pointer table (v-table)
about 225
interpreting 226-230

virtual function pointer (vptr) 225
virtual functions

defining 205-208
used, for implementing polymorphism 205

void pointers
creating 77, 78

W
weak pointer

about 524
examples, adding with 524-527

while loop constructs 11-13
wrapper class

about 452
Adapter pattern, using as 465-469

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C++20 STL Cookbook

Bill Weinman

ISBN: 978-1-80324-871-4

• Understand the new language features and the problems they can solve

• Implement generic features of the STL with practical examples

• Understand standard support classes for concurrency and synchronization

• Perform efficient memory management using the STL

• Implement seamless formatting using std::format

• Work with strings the STL way instead of handcrafting C-style code

https://www.packt.com/product/programming/b18267-c-20-stl-cookbook/

Other Books You May Enjoy 567

CMake Best Practices

Rafał Świdziński

ISBN: 978-1-80107-005-8

• Understand best practices for building C++ code

• Gain practical knowledge of the CMake language by focusing on the most useful aspects

• Use cutting-edge tooling to guarantee code quality with the help of tests and static and dynamic
analysis

• Discover how to manage, discover, download, and link dependencies with CMake

• Build solutions that can be reused and maintained in the long term

• Understand how to optimize build artifacts and the build process itself

https://www.packt.com/product/programming/b17205-modern-cmake-for-c/

Other Books You May Enjoy568

C++ High Performance

Björn Andrist, Viktor Sehr

ISBN: 978-1-83921-654-1

• Write specialized data structures for performance-critical code

• Use modern metaprogramming techniques to reduce runtime calculations

• Achieve efficient memory management using custom memory allocators

• Reduce boilerplate code using reflection techniques

• Reap the benefits of lock-free concurrent programming

• Gain insights into subtle optimizations used by standard library algorithms

• Compose algorithms using ranges library

• Develop the ability to apply metaprogramming aspects such as constexpr, constraints, and
concepts

• Implement lazy generators and asynchronous tasks using C++20 coroutines

https://www.packt.com/product/programming/b15619-c-high-performance/

Other Books You May Enjoy 569

CMake Best Practices

Fedor G. Pikus

ISBN: 978-1-80020-811-7

• Discover how to use the hardware computing resources in your programs effectively

• Understand the relationship between memory order and memory barriers

• Familiarize yourself with the performance implications of different data structures and
organizations

• Assess the performance impact of concurrent memory accessed and how to minimize it

• Discover when to use and when not to use lock-free programming techniques

• Explore different ways to improve the effectiveness of compiler optimizations

• Design APIs for concurrent data structures and high-performance data structures to avoid
inefficiencies

https://www.packt.com/product/programming/b16229-the-art-of-writing-efficient-programs/

570

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Deciphering Object-Oriented Programming with C++, we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-804-61390-8
https://packt.link/r/1-804-61390-8

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
C++ Building Block Essentials
	Chapter 1: Understanding Basic C++ Assumptions
	Technical requirements
	Reviewing basic C++ language syntax
	Comment styles
	Variable declarations and standard data types
	Variables and array basics

	Recapping basic I/O
	The iostream library
	Basic iostream manipulators

	Revisiting control structures, statements, and looping
	Control structures – if, else if, and else
	Looping constructs – while, do while, and for loops

	Reviewing C++ operators
	Revisiting function basics
	Reviewing user defined type basics
	struct
	typedef and “using” alias declaration
	class
	enum and strongly-typed enum

	Recapping namespace basics
	Summary
	Questions

	Chapter 2: Adding Language Necessities
	Technical requirements
	Using the const and constexpr qualifiers
	const and constexpr variables
	const qualification with functions

	Working with function prototypes
	Defining function prototypes
	Naming arguments in function prototypes
	Adding default values to function prototypes
	Prototyping with different default values in different scopes

	Understanding function overloading
	Learning the basics of function overloading
	Eliminating excessive overloading with standard type conversion
	Ambiguities arising from function overloading and type conversion

	Summary
	Questions

	Chapter 3: Indirect Addressing – Pointers
	Technical requirements
	Understanding pointer basics and memory allocation
	Revisiting pointer basics
	Using the address-of and dereference operators
	Using operators new() and delete()
	Creating and using pointers to user defined types

	Allocating and deallocating arrays at runtime
	Dynamically allocating single dimension arrays
	Dynamically allocating 2-D arrays – an array of pointers
	Dynamically allocating 2-D arrays – pointers to pointers
	Dynamically allocating N-D arrays – pointers to pointers to pointers

	Using pointers with functions
	Passing pointers as arguments to functions
	Using pointers as return values from functions

	Using the const qualifier with pointers
	Using pointers to constant objects
	Using constant pointers to objects
	Using constant pointers to constant objects
	Using pointers to constant objects as function arguments and as return types from functions

	Using pointers to objects of unspecified types
	Creating void pointers

	Looking ahead to smart pointers for safety
	Summary
	Questions

	Chapter 4: Indirect Addressing – References
	Technical requirements
	Understanding reference basics
	Declaring, initializing, and accessing references
	Referencing existing objects of user defined types

	Using references with functions
	Passing references as arguments to functions
	Using references as return values from functions

	Using the const qualifier with references
	Using references to constant objects
	Using pointers to constant objects as function arguments and as return types from functions

	Realizing underlying implementation and restrictions
	Understanding when we must use pointers instead of references

	Summary
	Questions

	Part 2:
Implementing Object-Oriented Concepts in C++
	Chapter 5: Exploring Classes in Detail
	Technical requirements
	Introducing object-oriented terminology and concepts
	Understanding object-oriented terminology
	Understanding object-oriented concepts

	Understanding class and member function basics
	Examining member function internals; the “this” pointer
	Using access labels and access regions
	Understanding constructors
	Applying constructor basics and overloading constructors
	Constructors and in-class initializers
	Creating copy constructors
	Creating conversion constructors

	Understanding destructors
	Applying destructor basics and proper usage

	Applying qualifiers to data members and member functions
	Adding inline functions for potential efficiency
	Adding const data members and the member initialization list
	Using const member functions
	Utilizing static data members and static member functions

	Summary
	Questions

	Chapter 6: Implementing Hierarchies with Single Inheritance
	Technical requirements
	Expanding object-oriented concepts and terminology
	Deciphering generalization and specialization

	Understanding single inheritance basics
	Defining base and derived classes and accessing inherited members
	Examining inherited access regions
	Specifying a class as final

	Understanding inherited constructors and destructors
	Implicit constructor and destructor invocations
	Usage of member initialization list to select a base class constructor
	Putting all the pieces together

	Implementation inheritance – changing the purpose of inheritance
	Modifying access labels in the base class list by using protected or private base classes
	Creating a base class to illustrate implementation inheritance
	Using a private base class to implement one class in terms of another
	Using a protected base class to implement one class in terms of another

	Summary
	Questions

	Chapter 7: Utilizing Dynamic Binding through Polymorphism
	Technical requirements
	Understanding the OO concept of polymorphism
	Implementing polymorphism with virtual functions
	Defining virtual functions and overriding base class methods
	Generalizing derived class objects
	Utilizing virtual destructors
	Putting all the pieces together
	Considering function hiding

	Understanding dynamic binding
	Comprehending runtime binding of methods to operations
	Interpreting the v-table in detail

	Summary
	Questions

	Chapter 8: Mastering Abstract Classes
	Technical requirements
	Understanding the OO concept of an abstract class
	Implementing abstract classes with pure virtual functions
	Creating interfaces
	Generalizing derived class objects as abstract types
	Putting all the pieces together
	Summary
	Questions

	Chapter 9: Exploring Multiple Inheritance
	Technical requirements
	Understanding multiple inheritance mechanics
	Examining reasonable uses for multiple inheritance
	Supporting Is-A and mix-in relationships
	Supporting Has-A relationships

	Creating a diamond-shaped hierarchy
	Utilizing virtual base classes to eliminate duplication
	Considering discriminators and alternate designs
	Summary
	Questions

	Chapter 10: Implementing Association, Aggregation, and Composition
	Technical requirements
	Understanding aggregation and composition
	Defining and implementing composition
	Defining and implementing a generalized aggregation

	Understanding association
	Implementing association
	Utilizing backlink maintenance and reference counting

	Summary
	Questions

	Part 3:
Expanding Your C++ Programming Repertoire
	Chapter 11: Handling Exceptions
	Technical requirements
	Understanding exception handling
	Utilizing exception handling with try, throw, and catch
	Exploring exception handling mechanics with typical variations

	Utilizing exception hierarchies
	Using standard exception objects
	Creating customized exception classes
	Creating hierarchies of user defined exception types

	Summary
	Questions

	Chapter 12: Friends and Operator Overloading
	Technical requirements
	Understanding friend classes and friend functions
	Using friend functions and friend classes
	Making access safer when using friends

	Deciphering operator overloading essentials
	Implementing operator functions and knowing when friends might be necessary

	Summary
	Questions

	Chapter 13: Working with Templates
	Technical requirements
	Exploring template basics to genericize code
	Examining the motivation for templates

	Understanding template functions and classes
	Creating and using template functions
	Creating and using template classes
	Examining a full program example

	Making templates more flexible and extensible
	Adding operator overloading to further genericize template code

	Summary
	Questions

	Chapter 14: Understanding STL Basics
	Technical requirements
	Surveying the contents and purpose of the STL
	Understanding how to use essential STL containers
	Using STL list
	Using STL iterator
	Using STL vector
	Using STL deque
	Using STL stack
	Using STL queue
	Using STL priority queue
	Examining STL map
	Examining STL map using a functor

	Customizing STL containers
	Summary
	Questions

	Chapter 15: Testing Classes and Components
	Technical requirements
	Contemplating OO testing
	Understanding the canonical class form
	Default constructor
	Copy constructor
	Overloaded assignment operator
	Virtual destructor
	Move copy constructor
	Move assignment operator
	Bringing the components of canonical class form together
	Ensuring a class is robust

	Creating drivers to test classes
	Testing related classes
	Testing classes related through inheritance, association, or aggregation

	Testing exception handling mechanisms
	Embedding exception handling in constructors to create robust classes

	Summary
	Questions

	Part 4:
Design Patterns and Idioms in C++
	Chapter 16: Using the Observer Pattern
	Technical requirements
	Utilizing design patterns
	Understanding the Observer pattern
	Implementing the Observer pattern
	Creating an Observer, Subject, and domain-specific derived classes

	Summary
	Questions

	Chapter 17: Applying the Factory Pattern
	Technical requirements
	Understanding the Factory Method pattern
	Implementing the Factory Method pattern
	Including the Factory Method in the Product class
	Creating an Object Factory class to encapsulate the Factory Method

	Summary
	Questions

	Chapter 18: Applying the Adapter Pattern
	Technical requirements
	Understanding the Adapter pattern
	Implementing the Adapter pattern
	Using an Adapter to provide a necessary interface to an existing class
	Using an Adapter as a wrapper

	Summary
	Questions

	Chapter 19: Using the Singleton Pattern
	Technical requirements
	Understanding the Singleton pattern
	Implementing the Singleton pattern
	Using a simple implementation
	An alternate simple implementation
	Using a more robust paired-class implementation
	Using a registry to allow many classes to utilize Singleton

	Summary
	Questions

	Chapter 20: Removing Implementation Details Using the pImpl Pattern
	Technical requirements
	Understanding the pImpl pattern
	Implementing the pImpl pattern
	Organizing file and class contents to apply the pattern basics
	Improving the pattern with a unique pointer

	Understanding pImpl pattern trade-offs
	Summary
	Questions

	Part 5:
Considerations for Safer Programming in C++
	Chapter 21: Making C++ Safer
	Technical requirements
	Revisiting smart pointers
	Using smart pointers – unique
	Using smart pointers – shared
	Using smart pointers – weak
	Exploring a complementary idea – RAII

	Embracing additional C++ features promoting safety
	Revisiting range for loops
	Using auto for type safety
	Preferring STL for simple containers
	Applying const as needed

	Considering thread safety
	Multithreaded programming overview
	Multithreaded programming scenarios

	Utilizing core programming guidelines
	Examining guideline essentials
	Adopting a programming guideline
	Understanding resources for programming safely in C++

	Summary

	Assessments
	Chapter 1, Understanding Basic C++ Assumptions
	Chapter 2, Adding Language Necessities
	Chapter 3, Indirect Addressing: Pointers
	Chapter 4, Indirect Addressing: References
	Chapter 5, Exploring Classes in Detail
	Chapter 6, Implementing Hierarchies with Single Inheritance
	Chapter 7, Utilizing Dynamic Binding through Polymorphism
	Chapter 8, Mastering Abstract Classes
	Chapter 9, Exploring Multiple Inheritance
	Chapter 10, Implementing Association, Aggregation, and Composition
	Chapter 11, Handling Exceptions
	Chapter 12, Friends and Operator Overloading
	Chapter 13, Working with Templates
	Chapter 14, Understanding STL Basics
	Chapter 15, Testing Classes and Components
	Chapter 16, Using the Observer Pattern
	Chapter 17, Applying the Factory Pattern
	Chapter 18, Applying the Adapter Pattern
	Chapter 19, Using the Singleton Pattern
	Chapter 20, Removing Implementation Details Using the pImpl Pattern

	Index
	About Packt
	Other Books You May Enjoy

