

C++ Cookbook ™

Other resources from O’Reilly

Related titles C++ in a Nutshell

C++ Pocket Reference

UML 2.0 in a Nutshell

Learning UML

STL Pocket Reference

Unit Test Frameworks

Practical C++ Programming

oreilly.com oreilly.com is more than a complete catalog of O'Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

C++ Cookbook ™

D. Ryan Stephens, Christopher Diggins,
Jonathan Turkanis, and Jeff Cogswell

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

C++ Cookbook™

by D. Ryan Stephens, Christopher Diggins, Jonathan Turkanis, and Jeff Cogswell

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick

Production Editor: Matt Hutchinson

Production Services: Octal Publishing, Inc.

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

November 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Cookbook series designations, C++ Cookbook, the image of a collie, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00761-2

ISBN-13: 978-0-596-00761-4

[M]‘ [9/07]

v

Table of Contents

Preface . xi

1. Building C++ Applications . 1
1.1 Obtaining and Installing GCC 15
1.2 Building a Simple “Hello, World” Application

from the Command Line 18
1.3 Building a Static Library from the Command Line 23
1.4 Building a Dynamic Library from the Command Line 25
1.5 Building a Complex Application from the Command Line 33
1.6 Installing Boost.Build 38
1.7 Building a Simple “Hello, World” Application Using Boost.Build 40
1.8 Building a Static Library Using Boost.Build 44
1.9 Building a Dynamic Library Using Boost.Build 45

1.10 Building a Complex Application Using Boost.Build 46
1.11 Building a Static Library with an IDE 50
1.12 Building a Dynamic Library with an IDE 53
1.13 Building a Complex Application with an IDE 57
1.14 Obtaining GNU make 62
1.15 Building A Simple “Hello, World” Application with GNU make 64
1.16 Building a Static Library with GNU Make 72
1.17 Building a Dynamic Library with GNU Make 77
1.18 Building a Complex Application with GNU make 78
1.19 Defining a Macro 82
1.20 Specifying a Command-Line Option from Your IDE 84
1.21 Producing a Debug Build 85
1.22 Producing a Release Build 89
1.23 Specifying a Runtime Library Variant 92

vi | Table of Contents

1.24 Enforcing Strict Conformance to the C++ Standard 95
1.25 Causing a Source File to Be Linked Automatically Against

a Specified Library 99
1.26 Using Exported Templates 101

2. Code Organization . 105
2.1 Making Sure a Header File Gets Included Only Once 107
2.2 Ensuring You Have Only One Instance of a Variable

Across Multiple Source Files 108
2.3 Reducing #includes with Forward Class Declarations 110
2.4 Preventing Name Collisions with Namespaces 111
2.5 Including an Inline File 118

3. Numbers . 120
3.1 Converting a String to a Numeric Type 120
3.2 Converting Numbers to Strings 123
3.3 Testing Whether a String Contains a Valid Number 126
3.4 Comparing Floating-Point Numbers with Bounded Accuracy 129
3.5 Parsing a String Containing a Number in Scientific Notation 131
3.6 Converting Between Numeric Types 133
3.7 Getting the Minimum and Maximum Values for a Numeric Type 136

4. Strings and Text . 139
4.1 Padding a String 140
4.2 Trimming a String 142
4.3 Storing Strings in a Sequence 147
4.4 Getting the Length of a String 151
4.5 Reversing a String 153
4.6 Splitting a String 154
4.7 Tokenizing a String 157
4.8 Joining a Sequence of Strings 159
4.9 Finding Things in Strings 162

4.10 Finding the nth Instance of a Substring 165
4.11 Removing a Substring from a String 167
4.12 Converting a String to Lower- or Uppercase 168
4.13 Doing a Case-Insensitive String Comparison 171
4.14 Doing a Case-Insensitive String Search 173
4.15 Converting Between Tabs and Spaces in a Text File 175
4.16 Wrapping Lines in a Text File 178

Table of Contents | vii

4.17 Counting the Number of Characters, Words, and Lines
in a Text File 180

4.18 Counting Instances of Each Word in a Text File 183
4.19 Add Margins to a Text File 185
4.20 Justify a Text File 188
4.21 Squeeze Whitespace to Single Spaces in a Text File 190
4.22 Autocorrect Text as a Buffer Changes 191
4.23 Reading a Comma-Separated Text File 194
4.24 Using Regular Expressions to Split a String 196

5. Dates and Times . 198
5.1 Obtaining the Current Date and Time 198
5.2 Formatting a Date/Time as a String 201
5.3 Performing Date and Time Arithmetic 204
5.4 Converting Between Time Zones 205
5.5 Determining a Day’s Number Within a Given Year 207
5.6 Defining Constrained Value Types 208

6. Managing Data with Containers . 213
6.1 Using vectors Instead of Arrays 214
6.2 Using vectors Efficiently 218
6.3 Copying a vector 222
6.4 Storing Pointers in a vector 224
6.5 Storing Objects in a list 226
6.6 Mapping strings to Other Things 231
6.7 Using Hashed Containers 237
6.8 Storing Objects in Sorted Order 242
6.9 Storing Containers in Containers 245

7. Algorithms . 248
7.1 Iterating Through a Container 249
7.2 Removing Objects from a Container 256
7.3 Randomly Shuffling Data 259
7.4 Comparing Ranges 260
7.5 Merging Data 264
7.6 Sorting a Range 268
7.7 Partitioning a Range 271
7.8 Performing Set Operations on Sequences 272
7.9 Transforming Elements in a Sequence 276

viii | Table of Contents

7.10 Writing Your Own Algorithm 278
7.11 Printing a Range to a Stream 281

8. Classes . 285
8.1 Initializing Class Member Variables 286
8.2 Using a Function to Create Objects (a.k.a. Factory Pattern) 289
8.3 Using Constructors and Destructors to Manage Resources (or RAII) 291
8.4 Automatically Adding New Class Instances to a Container 294
8.5 Ensuring a Single Copy of a Member Variable 296
8.6 Determining an Object’s Type at Runtime 297
8.7 Determining if One Object’s Class Is a Subclass of Another 299
8.8 Giving Each Instance of a Class a Unique Identifier 301
8.9 Creating a Singleton Class 303

8.10 Creating an Interface with an Abstract Base Class 306
8.11 Writing a Class Template 310
8.12 Writing a Member Function Template 315
8.13 Overloading the Increment and Decrement Operators 318
8.14 Overloading Arithmetic and Assignment Operators

for Intuitive Class Behavior 320
8.15 Calling a Superclass Virtual Function 328

9. Exceptions and Safety . 330
9.1 Creating an Exception Class 330
9.2 Making a Constructor Exception-Safe 335
9.3 Making an Initializer List Exception-Safe 338
9.4 Making Member Functions Exception-Safe 341
9.5 Safely Copying an Object 346

10. Streams and Files . 351
10.1 Lining Up Text Output 352
10.2 Formatting Floating-Point Output 356
10.3 Writing Your Own Stream Manipulators 359
10.4 Making a Class Writable to a Stream 363
10.5 Making a Class Readable from a Stream 366
10.6 Getting Information About a File 368
10.7 Copying a File 370
10.8 Deleting or Renaming a File 374
10.9 Creating a Temporary Filename and File 376

10.10 Creating a Directory 378

Table of Contents | ix

10.11 Removing a Directory 380
10.12 Reading the Contents of a Directory 383
10.13 Extracting a File Extension from a String 385
10.14 Extracting a Filename from a Full Path 386
10.15 Extracting a Path from a Full Path and Filename 388
10.16 Replacing a File Extension 389
10.17 Combining Two Paths into a Single Path 390

11. Science and Mathematics . 394
11.1 Computing the Number of Elements in a Container 395
11.2 Finding the Greatest or Least Value in a Container 396
11.3 Computing the Sum and Mean of Elements in a Container 399
11.4 Filtering Values Outside a Given Range 402
11.5 Computing Variance, Standard Deviation,

and Other Statistical Functions 403
11.6 Generating Random Numbers 407
11.7 Initializing a Container with Random Numbers 409
11.8 Representing a Dynamically Sized Numerical Vector 410
11.9 Representing a Fixed-Size Numerical Vector 412

11.10 Computing a Dot Product 415
11.11 Computing the Norm of a Vector 416
11.12 Computing the Distance Between Two Vectors 417
11.13 Implementing a Stride Iterator 419
11.14 Implementing a Dynamically Sized Matrix 423
11.15 Implementing a Constant-Sized Matrix 426
11.16 Multiplying Matricies 429
11.17 Computing the Fast Fourier Transform 431
11.18 Working with Polar Coordinates 433
11.19 Performing Arithmetic on Bitsets 435
11.20 Representing Large Fixed-Width Integers 439
11.21 Implementing Fixed-Point Numbers 443

12. Multithreading . 446
12.1 Creating a Thread 447
12.2 Making a Resource Thread-Safe 450
12.3 Notifying One Thread from Another 458
12.4 Initializing Shared Resources Once 462
12.5 Passing an Argument to a Thread Function 463

x | Table of Contents

13. Internationalization . 466
13.1 Hardcoding a Unicode String 467
13.2 Writing and Reading Numbers 468
13.3 Writing and Reading Dates and Times 472
13.4 Writing and Reading Currency 477
13.5 Sorting Localized Strings 481

14. XML . 484
14.1 Parsing a Simple XML Document 485
14.2 Working with Xerces Strings 494
14.3 Parsing a Complex XML Document 496
14.4 Manipulating an XML Document 508
14.5 Validating an XML Document with a DTD 512
14.6 Validating an XML Document with a Schema 517
14.7 Transforming an XML Document with XSLT 520
14.8 Evaluating an XPath Expression 527
14.9 Using XML to Save and Restore a Collection of Objects 533

15. Miscellaneous . 539
15.1 Using Function Pointers for Callbacks 539
15.2 Using Pointers to Class Members 541
15.3 Ensuring That a Function Doesn’t Modify an Argument 544
15.4 Ensuring That a Member Function Doesn’t Modify Its Object 546
15.5 Writing an Operator That Isn’t a Member Function 548
15.6 Initializing a Sequence with Comma-Separated Values 550

Index . 555

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface

C++ runs on virtually every platform and in an infinite number of applications. If
you bought or might buy this book, you are probably an engineer or researcher writ-
ing one of these applications. But regardless of what you are writing and what plat-
form you are targeting, odds are that you will be re-solving many of the same
problems that other C++ programmers have been solving for years. What we have
done in this book is solve many of these common problems and explain each of the
solutions.

Whether you have been programming in C++ for years or are relatively new to the
language, you are probably familiar with the things you have rewrite on each new
project: Date and time parsing/arithmetic, manipulating string and text, working
with files, parsing XML, using the standard containers, and so on. These are the
kinds of problems this book contains solutions for. In some cases (e.g., date and time
arithmetic), the standard library contains very little support. In others (e.g., string
manipulation) the standard library contains functionally rich classes, but it can’t do
everything and some very common tasks are cumbersome.

The format is straightforward. Each recipe has a problem statement and a code solu-
tion, and most have a discussion that follows. We have tried to be pragmatic and
solve the problems at hand without digressing too far, but in many cases there are
related topics that are so useful (or just cool) that we have to provide a page or two
of explanation.

This is a book about solving common problems with C++, but not a book about
learning C++. We assume that you have at least a basic knowledge of C++ and
object-oriented programming. In particular, it will be helpful if you have at least
some familiarity with:

• C++ inheritance and virtual functions

• The standard library

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

• Components of the Standard Template Library (containers, iterators, and
algorithms)

• Templates

These are not strict prerequisites for reading this book, but having at least a basic
knowledge of them will help.

About the Examples
In crafting our code examples, we strove for simplicity, portability, and perfor-
mance. The design for each solution followed a similar path: use standard C++ (lan-
guage or library) if possible; if not, use a de facto standard as the replacement. For
example, many of the recipes that deal with strings use the standard string class, and
most of the mathematical and scientific recipes use standard numeric types, contain-
ers, and templates. The standard library has strong support for these areas, so stan-
dard facilities are a perfect fit. By comparison, however, C++ has little or no
standardized support for multithreading or XML parsing. Thus, we used the multi-
threading support provided in the Boost Threads library and the XML parsing func-
tionality provided by the Xerces parser.

Often, there are many ways to do the same thing in C++, which gives developers
flexibility, but also invites some controversy. Most of the examples illustrate the best
general solution we could come up with, but that doesn’t mean that it’s the best
solution ever. If there are alternative solutions that are better in some ways and not
as good in others (maybe the solution that uses the standard library is awkward or
unintuitive; in this case, we may provide an alternative that uses Boost), we present
the alternative anyway to give you some insight into the various solutions that are
available.

Lots of the examples use templates. If you don’t have much experience writing tem-
plates, you should get some soon. There is very little introductory material on tem-
plates in this book, except for two recipes in Chapter 8: 8.11 and 8.12. Most of the
interesting developments in C++ are in the areas of template metaprogramming and
policy-based design.

At the time of this writing, there is a lot of movement in the C++ community. The
first technical report (called TR1) is more or less stable. It is a standardized list of fea-
tures that will be eventually added to the next version of the C++ standard. It is not
required that standard library implementations support it, but many vendors have
already begun implementing TR1 and you can expect to see it appearing in shipped
compilers soon. Many of the libraries in TR1 first appeared in the Boost project.

We use libraries from Boost a lot. Boost is a set of open source, peer-reviewed, porta-
ble libraries that fill in many of the gaps in the standard library. The current version
as of this writing is 1.32, and 1.33 should be out any time now. We provide many

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

pointers to specific Boost libraries in the examples. For more information on Boost in
general, check out the project web site at www.boost.org.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, Unix utilities, commands, and command-line parameters.

<...>
Angle-brackets surround elements that you need to specify in commands and
command-line parameters when those elements appear inline, in italics.

Constant width
Indicates code or fragments thereof. For example, class names, method names,
and the like are rendered in constant width whenever they appear in the text.

Constant width bold
Shows user-input in mixed, input/output examples.

Constant width italic
Indicates user-specified items in syntax examples.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

Using Code Examples
This book is designed to help you get your job done. In general, you may use the
code in this book in your programs and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quot-
ing example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C++ Cookbook by D. Ryan

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Stephens, Christopher Diggins, Jonathan Turkanis, and Jeff Cogswell. Copyright
2006 O’Reilly Media, Inc., 0-596-00761-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/cplusplusckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

Acknowledgments

From D. Ryan Stephens
The most important people I have to thank are my wife, Daphne, and my chil-
dren, Jesse, Pascal, and Chloe. Writing a book is hard work, but above all it is
time-consuming work, and my family has been supportive and has tolerated my
late nights in the office in the best possible way.

I also have to thank the technical reviewers, who made this book better than it other-
wise would have been. As with so many things, it is always helpful to have a second,
third, and fourth set of eyes look over something for clarity and correctness. Many
thanks to Dan Saks, Uwe Schnitker, and David Theese.

Finally, I have to thank my editor, Jonathan Gennick, for his advice, which was
mostly grammatical, frequently stylistic, occasionally psychologically supportive, and
always good.

From Christopher Diggins
I wish to thank Kris Unger, Jonathan Turkanis, Jonathan Gennick, and Ryan
Stephens for their helpful suggestions and critiques, and making me a better writer
for it. A very special thanks to my wife Mélanie Charbonneau for brightening my life.

From Jonathan Turkanis
Because my chapters touched on so many different commerical products and open
source projects—and because I had so many questions about each of them—I have
an unusually large number of people to thank.

Let me first thank Ron Liechty, Howard Hinnant, and the engineers at Metrowerks
for answering every conceivable question and for providing me with several versions
of CodeWarrior.

I’d also like to thank the Boost.Build developers, especially Vladimir Prus, Rene Rivera,
and David Abrahams, not just for answering my questions but also for putting
together the Boost build system, which was the single most important source of
information for Chapter 1.

Thanks also to Walter Bright at Digital Mars; Greg Comeau at Comeau Computing;
P. J. Plauger at Dinkumware; Colin Laplace at Bloodshed Software; Ed Mulroy and
Pavel Vozenilek at the borland.public.* newsgroups; Arnaud Debaene and Igor
Tandetnik at microsoft.public.vc.languages; Earnie Boyd, Greg Chicares, Adib Taraben,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xvi | Preface

John Vandenberg, and Lennart Borgman at the MinGW/MSYS mailing list; Christopher
Faylor, Larry Hall, Igor Pechtchanski, Joshua Daniel Franklin, and Dave Korn at the
Cygwin list; Mike Stump and Geoffrey Keating at the GCC developers list; Mark
Goodhand at DecisionSoft; and David N. Bertoni at apache.org.

I’m also indebted to Robert Mecklenburg, whose book Managing Projects with GNU
make, Third Edition (O’Reilly) provided the foundation for my treatment of GNU
make.

In addition, Vladimir Prus, Matthew Wilson, Ryan Stephens, and Christopher Diggins
provided detailed criticism of early drafts of the manuscript.

Finally, I must thank my editor, Jonathan Gennick, my wife, Jennifer, and my
Grandfather, Louis S. Goodman, who taught me how to write.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Building C++ Applications

1.0 Introduction to Building
This chapter contains recipes for transforming C++ source code into executable pro-
grams and libraries. By working through these recipes, you’ll learn about the basic
tools used to build C++ applications, the various types of binary files involved in the
build process, and the systems that have been developed to make building C++
applications manageable.

If you look at the titles of the recipes in this chapter, you might get the impression
that I solve the same problems over and over again. You’d be right. That’s because
there are many ways to build C++ applications, and while I can’t cover them all, I try
to cover some of the most important methods. In the first dozen or so recipes, I show
how to accomplish three fundamental tasks—building static libraries, building
dynamic libraries, and building executables—using a variety of methods. The reci-
pes are grouped by method: first, I look at building from the command line, then
with the Boost build system (Boost.Build), and then with an Integrated Develop-
ment Environment (IDE), and finally with GNU make.

Before you start reading recipes, be sure to read the following introductory sections.
I’ll explain some basic terminology, provide an overview of the command-line tools,
build systems and IDEs covered in the chapter, and introduce the source code
examples.

Even if you’ll be using a build system or IDE, you should start by read-
ing the recipes on building from the command line: these recipes
introduce some essential concepts that you’ll need to understand later
in this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Building C++ Applications

Basic Terminology
The three basic tools used to build C++ applications are the compiler, the linker, and
the archiver (or librarian). A collection of these programs and possibly other tools is
called a toolset.

The compiler takes C++ source files as input and produces object files, which con-
tain a mixture of machine-executable code and symbolic references to functions and
data. The archiver takes a collection of object files as input and produces a static
library, or archive, which is simply a collection of object files grouped for convenient
use. The linker takes a collection of object files and libraries and resolves their sym-
bolic references to produce either an executable or dynamic library. Roughly speak-
ing, the linker operates by matching each use of a symbol to its definition. When an
executable or dynamic library is created, it is said to be linked; the libraries used to
build the executable or dynamic library are said to be linked against.

An executable, or application, is simply any program that can be executed by the oper-
ating system. A dynamic library, also called a shared library, is like an executable
except that it can’t be run on its own; it consists of a body of machine-executable
code that is loaded into memory after an application is started and can be shared by
one or more applications. On Windows, dynamic libraries are also called dynamic link
libraries (DLLs).

The object files and static libraries on which an executable depends are needed only
when the executable is built. The dynamic libraries on which an executable depends,
however, must be present on a user’s system when the executable is run.

Table 1-1 shows the file extensions typically associated with these four basic types of
files on Microsoft Windows and Unix. When I mention a file that has a different
extension on Windows and Unix, I’ll sometimes omit the extension if it’s clear from
the context.

In this chapter, whenever I say Unix, I mean Linux, too.

Table 1-1. File extensions on Windows and Unix

File type Windows Mac OS X Other Unix

Object files .obj .o .o

Static libraries .lib .a .a

Dynamic libraries .dll .dylib .so

Executables .exe No extension No extension

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Building | 3

When you build the examples in this chapter, your tools will generate
a number of auxiliary files with extensions that don’t appear in
Table 1-1. Unless I mention otherwise, you can safely ignore these
files. If you really want to know what they do, consult your toolset’s
documentation.

IDEs and Build Systems
The compiler, linker, and archiver are command-line tools, which means they are
designed to be run from a shell, such as bash on Unix or cmd.exe on Microsoft Win-
dows. The names of the input files and output files, together with any other neces-
sary configuration information, are passed to the compiler, linker, and archiver as
text on the command line. Invoking these tools by hand is tedious, however. Even
for small projects, it can be hard to remember the command-line options for each
tool and the order in which the project’s source and binary files must be compiled
and linked. When a source file is modified, you must determine which object files
need to be recompiled, which static libraries need to be updated, and which executa-
bles and dynamic libraries need to be relinked. If you rebuild more files than neces-
sary, you’ve wasted your time; if you don’t rebuild enough, you may end up with a
failed build or a buggy application. With large C++ projects—which can involve
thousands of separate files, including source files, object files, libraries, and executa-
bles—building from the command line is simply impossible.

There are two basic approaches to building large C++ applications:

• An IDE provides a graphical interface for organizing a collection of source files
and describing the binary files that should be generated from them. Once you
specify this information, you can generate the binary files simply by selecting an
appropriate command from a menu or toolbar. The IDE is responsible for deter-
mining the order in which the binary files should be generated, the tools needed
to generate them, and the command-line options that must be passed to the
tools. Whenever you modify one or more of your source files, you can instruct
the IDE to regenerate only those binary files that are out of date.

IDEs organize source files into collections called projects. An IDE project is usu-
ally associated with a single binary file, or with several variants of a binary file,
such as the debug and release builds of an application. Most IDEs allow users to
organize projects into groups called project groups, or solutions, and to specify
the dependencies between projects in a group.

• A build system provides a text file format for describing a collection of source
files and the binary files that should be generated from them, together with a
build tool that reads these text files and generates the binary files by invoking the
appropriate command-line tools. Typically, these text files are created and edited
using a text editor, and the build tool is invoked from the command line. Some

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Building C++ Applications

build systems, however, provide a graphical interface for editing the text files
and invoking the build tool.

While IDEs organize files into projects, build systems organize files into targets.
Most targets correspond to binary files that must be generated; other targets cor-
respond to actions the build tool must perform, such as installing an application.

The most common build tool is the make utility; the text files it relies on are called
makefiles. While there are many versions of make, in this chapter I will discuss GNU
make, the most powerful and portable make incarnation. GNU make is an extremely
flexible tool that can be used for much more than building C++ applications. It also
has the advantage of being widely used and well-understood by developers. Unfortu-
nately, getting GNU make to do exactly what you want it to do can be a challenge,
especially with complex projects involving multiple toolsets. For that reason, I will
also discuss Boost.Build, a powerful and extensible build system designed from the
ground up for building C++ applications.

For a thorough treatment of GNU make, see Managing Projects with
GNU make, Third Edition, by Robert Mecklenburg (O’Reilly).

Boost.Build was developed by members of the Boost C++ Libraries project. It has
been used by a large community of developers for several years, and is currently
under active development. Boost.Build uses a build tool called bjam and text files
called Jamfiles. Its greatest strength is the ease with which it allows you to manage
complex projects involving multiple platforms and build configurations. Although
Boost.Build started out as an extension of Perforce’s Jam build system, it has since
undergone extensive redesign. As this book goes to press, the Boost.Build developers
are preparing for the official release of the second major version of the build system,
which is the version described in this chapter.

Toolset Overview
In this chapter I’ll discuss seven collections of command-line tools: GCC, Visual
C++, Intel, Metrowerks, Borland, Comeau, and Digital Mars. Table 1-2 shows the
names of the command-line tools from the various toolsets; Table 1-3 shows where
they are located on your system, if you have them installed. Tool names for Win-
dows use the .exe suffix required for Windows executables; for toolsets that are
available for both Windows and Unix, I’ve put this suffix in brackets.

Table 1-2. Names of command-line tools for various toolsets

Toolset Compiler Linker Archiver

GCC g++[.exe] g++ ar[.exe]
ranlib[.exe]

Visual C++ cl.exe link.exe lib.exe

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Building | 5

Don’t let the number of toolsets scare you—you don’t need to learn them all. In
most cases you can simply skip the material that doesn’t relate to your toolset. If you
want to learn a little about other toolsets, however, be sure to read the sections on
Visual C++ and GCC, since these are the dominant toolsets on Windows and Unix.

Now let’s look at each of the seven toolsets.

The GNU Compiler Collection (GCC)

GCC is a collection of compilers for a wide assortment of languages, including C and
C++. It’s remarkable for being open source, available on almost every imaginable
platform, and highly conformant to the C++ language standard. It’s the dominant
compiler on many Unix platforms, and is also widely used on Microsoft Windows.
Even if GCC is not your primary toolset, you can learn a lot by compiling your code
with GCC. Also, if you think you know a way to improve the C++ language, you can
test your idea with the GCC code base.

Intel (Windows) icl.exe xilink.exe xilib.exe

Intel (Linux) icpc icpc ar
ranlib

Metrowerks mwcc[.exe] mwld[.exe] mwld[.exe]

Comeau como[.exe] como[.exe] Toolset-dependent

Borland bcc32.exe bcc32.exe
ilink32.exe

tlib.exe

Digital Mars dmc.exe link.exe lib.exe

Table 1-3. Location of your command-line tools

Toolset Location

GCC (Unix) Typically /usr/bin or /usr/local/bin

GCC (Cygwin) The bin subdirectory of your Cygwin installation

GCC (MinGW) The bin subdirectory of your MinGW installation

Visual C++ The VC/bin subdirectory of your Visual Studio installationa

a In previous versions of Visual Studio, the VC directory was called VC98 or Vc7.

Intel (Windows) The Bin subdirectory of your Intel compiler installation

Intel (Linux) The bin subdirectory of your Intel compiler installation

Metrowerks The Other Metrowerks Tools/Command Line Tools subdirectory of your CodeWarrior installation

Comeau The bin subdirectory of your Comeau installation

Borland The Bin subdirectory of your C++Builder, C++BuilderX or Borland command-line tools
installation

Table 1-2. Names of command-line tools for various toolsets (continued)

Toolset Compiler Linker Archiver

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Building C++ Applications

GCC comes with libstdc++, a good open source implementation of the C++ stan-
dard library. It can also be used with the open source STLPort C++ standard library
and with Dinkumware’s standard library.

To obtain GCC, see Recipe 1.1.

The GCC examples in this chapter were tested with GCC 3.4.3 and
GCC 4.0.0 on GNU/Linux (Fedora Core 3), with GCC 4.0.0 on Mac
OS X (Darwin 8.2.0), and with GCC 3.4.2 (MinGW) and 3.4.4
(Cygwin) on Windows 2000 Professional.

Visual C++

Microsoft’s toolset is the dominant toolset on the Windows platform. While several
old versions are still in wide use, the most recent version is highly standards conform-
ing. It is also capable of producing highly optimized code. Microsoft’s tools are distrib-
uted with the Visual C++ and Visual Studio development environments, discussed in
the next section. As of this writing, they are also available as part of the Visual C++
Toolkit 2003, which can be downloaded for free from www.microsoft.com.

Visual C++ comes with a customized version of the Dinkumware C++ standard
library implementation. Dinkumware’s C++ standard library is among the most effi-
cient and standards-conforming commercial implementation. It’s available for a wide
variety of platforms, including many of the other toolsets covered in this chapter.

The Visual C++ examples in this chapter were tested with Microsoft
Visual Studio .NET 2003 and Microsoft Visual Studio 2005 (Beta 2).
See Table 1-4.

Intel

Intel produces several C++ compilers for use with Intel processors. They are notable for
generating extremely fast code—perhaps the fastest available for the Intel architecture.

Table 1-4. Versions of Microsoft Visual Studio

Product name IDE version Compiler version

Microsoft Visual Studio 6.0 1200

Microsoft Visual Studio .NET 7.0 1300

Microsoft Visual Studio .NET 2003 7.1 1310

Microsoft Visual Studio 2005 (Beta 2) 8.0 1400

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Building | 7

Based on the C++ frontend from the Edison Design Group (EDG), they are also highly
standards conforming.

The Intel C++ Compiler for Windows makes use of Microsoft’s Visual C++ or
Visual Studio development environments, which must be installed for the Intel com-
piler to function properly. The compiler is designed for compatibility with Visual
C++: it can be used as a plug-in to the Visual C++ development environment, it can
generate code that is binary-compatible with code generated by the Visual C++ com-
piler, it offers many of the same command-line options as the Visual C++ compiler,
and—unless you tell it not to—it even emulates some Microsoft bugs. The commer-
cial version of the Intel C++ Compiler for Windows is available for purchase at
www.intel.com. A reasonably priced academic version is also available.

Whereas Intel’s compiler for Windows is designed to be compatible with the Visual
C++ compiler, Intel’s compiler for Linux is designed to be compatible with GCC. It
requires GCC to operate, supports a number of GCC options, and by default imple-
ments some GCC language extensions. The commercial version of the Intel C++
Compiler for Linux is available for purchase at www.intel.com. A noncommercial
version is available as a free download.

On Windows, the Intel compiler uses the Dinkumware standard library that ships
with Visual C++. On Linux, it uses libstdc++.

The Intel examples in this chapter were tested with the Intel C++
Compiler 9.0 for Linux on GNU/Linux (Fedora Core 3) and with the
Intel C++ Compiler 9.0 for Windows on Windows 2000 Professional.

Metrowerks

Metrowerks’s command-line tools, distributed with its CodeWarrior development
environment, are among the best available, both in terms of standards conformance
and the efficiency of the code they generate. They also come with MSL, Metrow-
erks’s first-rate implementation of the C++ standard library. Until recently, Metrowerks
produced tools for Windows, Mac OS, and a variety of embedded platforms. In
2004, however, Metrowerks sold its Intel x86 compiler and debugger technology to
Nokia and discontinued its CodeWarrior product line for Windows. In 2005, after
Apple Computer announced plans to switch to chips made by Intel, Metrowerks dis-
closed that the forthcoming CodeWarrior 10 for Mac OS will likely be the final
release for that platform. In the future, Metrowerks’s focus will be on embedded
development targeted at chips made by Freescale Semiconductor.

By the time you read this, Metrowerks will be a part of Freescale Semi-
conductor, and the name Metrowerks may no longer be associated
with the CodeWarrior product line. I’ll still use the name Metrowerks,
however, because it’s not yet clear what the future names will be.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Building C++ Applications

The Metrowerks examples in this chapter were tested with CodeWar-
rior 9.6 and 10.0 (Beta) on Mac OS X (Darwin 8.2.0) and with
CodeWarrior 9.4 on Windows 2000 Professional.

Borland

Borland’s command-line tools were once considered pretty good. As of September
2005, however, the last major update is over three years old and represents only an
incremental improvement of over the previous version, which was released in 2000.
As a result, Borland’s tools are now quite out-of-date. In 2003 Borland announced
plans for an ambitious redesign of its C++ compiler, using the EGD frontend; unfor-
tunately, Borland has made no new announcements about this plan for quite some
time. Borland’s command-line tools remain important, however, because they are
still in wide use.

Currently, the most recent versions of Borland’s command-line tools can be obtained
by purchasing the C++Builder or C++BuilderX development environments,
described in the next section, or by downloading the free personal edition of
C++BuilderX.

The Borland toolset comes with two C++ standard libraries: STLPort and an out-
dated version of Rogue Wave’s standard library. Borland is also working on produc-
ing a version of its tools that will be distributed with the Dinkumware standard
library.

The Borland examples in this chapter were tested with Borland C++
Builder 6.0 (compiler version 5.6.4) on Windows 2000 Professional.

Comeau

The Comeau C++ compiler is widely regarded as the most standards-conforming
C++ compiler. In addition to implementing the most recent version of the C++ lan-
guage, it supports several versions of C and a number of early dialects of C++. It’s
also among the least expensive, currently priced at $50.

Like the Intel compiler, Comeau uses the EDG frontend and requires a separate C
compiler to function correctly. Unlike Intel, Comeau can use a wide variety of
C compilers as backends.

Comeau is available for Microsoft Windows and for many Unix platforms. If
Comeau is not available on your platform, you can pay Comeau Computing to pro-
duce a custom port, but this is substantially more expensive. You can order the
Comeau compiler at www.comeaucomputing.com.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Building | 9

When I discuss Comeau on Unix, I’ll assume the backend compiler is
GCC. When I discuss Comeau on Windows, I’ll try to indicate how
the command-line options depend on the backend compiler. Since
Comeau can be used with so many backends, however, it’s not always
possible to be exhaustive.

Comeau comes with libcomo, an implementation of the C++ standard library based
on Silicon Graphics’s standard library. It can also be used with Dinkumware’s stan-
dard library.

The Comeau examples in this chapter assume that you’re using lib-
como and that you’ve configured the compiler to find libcomo auto-
matically. The examples have been tested with Comeau 4.3.3 and
libcomo 31 using GCC 3.4.3 as backend on GNU/Linux (Fedora Core 3)
and using Visual C++ .NET 2003 as backend on Windows 2000
Professional. (See Table 1-4.)

Digital Mars

Digital Mars is a C++ compiler written by Walter Bright. You can download it for
free from www.digitalmars.com; for a modest fee you can order a CD containing the
Digital Mars compiler, an IDE, and some other useful tools. The free version of the
compiler can be used to compile all the Digital Mars examples in this chapter except
for the ones that require a dynamic version of the runtime library, which is only
available on the CD.

Digital Mars is a very fast compiler and produces highly optimized code. Unfortu-
nately, it currently has some problems compiling code that uses advanced template
idioms. Fortunately, Walter Bright is very responsive to bug reports and is commit-
ted to making Digital Mars standards-conforming.

Digital Mars comes with two standard libraries: a port of the STLPort standard
library and an older standard library which is non-conforming and incomplete. For
backward compatibility, STLPort must be explicitly enabled by the user. All the Digi-
tal Mars examples in this chapter use the STLPort standard library.

The Digital Mars examples in this chapter have been tested using
Digital Mars 8.45 on Windows 2000 Professional.

IDE Overview
In this chapter I’ll cover four IDEs: Microsoft Visual C++, Metrowerks CodeWarrior,
Borland C++Builder, and Bloodshed Software’s Dev-C++. There are a number of
important IDEs I won’t discuss—Apple’s Xcode and the Eclipse Project are prominent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Building C++ Applications

examples—but the treatment of the four IDEs I do discuss should give you a good start
on learning to use other IDEs.

As with the command-line tools, feel free to skip material that doesn’t
relate to your IDE.

Visual C++

Microsoft Visual C++ is the dominant C++ development environment for Microsoft
Windows. It’s available as a standalone application or as part of the Visual Studio
suite, and it comes with a wide assortment of tools for Windows development. For
portable C++ development, its most notable features are the following:

• A highly conformant C++ compiler

• The Dinkumware C++ standard library

• A good visual debugger

• A project manager that keeps track of dependencies between projects

Several versions of Visual Studio are widely used. Because the names of the various
versions can be confusing, I’ve listed the most widely available versions in Table 1-4.

The first version of Visual C++ to include a first-class C++ compiler and standard
library appears in the third row of Table 1-4. All previous versions had serious stan-
dards-conformance problems.

CodeWarrior

CodeWarrior is Metrowerks’s cross platform development environment. It has many
of the same features as Visual C++, including:

• A highly conformant C++ compiler

• An excellent C++ standard library

• A good visual debugger

• A project manager that keeps track of dependencies between projects

One of CodeWarrior’s strengths has traditionally been the large number of platform
for which it was available; as explained in the last section, however, its Windows
product line has been discontinued and its Macintosh product line will likely be dis-
continued soon. However, it should remain an important platform for embedded
development.

When I discuss the CodeWarrior IDE, I’ll assume you’re using
CodeWarrior 10 for Mac OS X. The CodeWarrior IDE on other plat-
forms is very similar.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Building | 11

C++Builder

C++Builder is Borland’s development environment for Microsoft Windows applica-
tions. One of its main attractions is its support for Borland’s Visual Component
Library. For portable C++ development, however, its most notable features are

• An aging C++ compiler

• The STLPort standard library

• A good visual debugger

• A project manager with limited ability to handle dependencies between projects

I cover C++Builder because it is widely used and has a dedicated community of
users.

C++Builder should not be confused with C++BuilderX, a cross-platform develop-
ment environment released by Borland in 2003. Although C++BuilderX is a useful
development tool, it has not been a commercial success and it’s uncertain whether
Borland will release an updated version.

Dev-C++

Bloodshed Software’s Dev-C++ is a free C++ development environment for Win-
dows that uses the MinGW port of GCC, described in Recipe 1.1. It features a pretty
decent text editor and a visual interface to the GNU debugger.

Dev-C++ offers an incomplete graphical interface to GCC’s numerous command-
line options: in many cases users must configure their projects by entering com-
mand-line options in text boxes. In addition, its project manager can only handle one
project at a time and its visual debugger is unreliable. Despite these limitations, Dev-
C++ has an active community of users, including many university students. It is a
good environment for someone who wants to learn C++ and doesn’t own any C++
development tools.

John, Paul, George, and Ringo
Ever since Brian Kernighan and Dennis Ritchie published The C Programming Lan-
guage in 1978, it’s been traditional to begin learning a new programming language by
writing, compiling and running a toy program that prints “Hello, World!” to the
console. Since this chapter covers static and dynamic libraries as well as executables,
I’ll need a slightly more complex example.

Examples 1-1, 1-2, and 1-3 present the source code for the application hellobeatles,
which prints:

John, Paul, George, and Ringo

to the console. This application could have been written as a single source file, but I’ve
split it into three modules: a static library libjohnpaul, a dynamic library libgeorgeringo,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Building C++ Applications

and an executable hellobeatles. Furthermore, while each of the libraries could easily
have been implemented as a single header file and a single .cpp file, I’ve split the imple-
mentation between several source files to illustrate how to compile and link projects
containing more than one source file.

Before you start working through the recipes in this chapter, create
four sibling directories johnpaul, geogreringo, hellobeatles, and
binaries. In the first three directories, place the source files from Exam-
ples 1-1, 1-2, and 1-3. The fourth directory will be used for binary files
generated by IDEs.

The source code for libjohnpaul is presented in Example 1-1. The public interface of
libjohnpaul consists of a single function, johnpaul(), declared in the header johnpaul.
hpp. The function johnpaul() is responsible for printing:

John, Paul,

to the console. The implementation of johnpaul() is split between two source files,
john.cpp and paul.cpp, each of which is responsible for printing a single name.

Example 1-1. Source code for libjohnpaul

johnpaul/john.hpp

#ifndef JOHN_HPP_INCLUDED
#define JOHN_HPP_INCLUDED

void john(); // Prints "John, "

#endif // JOHN_HPP_INCLUDED

johnpaul/john.cpp

#include <iostream>
#include "john.hpp"

void john()
{
 std::cout << "John, ";
}

johnpaul/paul.hpp

#ifndef PAUL_HPP_INCLUDED
#define PAUL_HPP_INCLUDED

void paul(); // Prints " Paul, "

#endif // PAUL_HPP_INCLUDED

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Introduction to Building | 13

The source code for libgeorgeringo is presented in Example 1-2. The public interface
of libgeorgeringo consists of a single function, georgeringo(), declared in the header
georgeringo.hpp. As you might well guess, the function georgeringo() is responsible
for printing:

George, and Ringo

to the console. Again, the implementation of georgeringo() is split between two
source files, george.cpp and ringo.cpp.

johnpaul/paul.cpp

#include <iostream>
#include "paul.hpp"

void paul()
{
 std::cout << "Paul, ";
}

johnpaul/johnpaul.hpp

#ifndef JOHNPAUL_HPP_INCLUDED
#define JOHNPAUL_HPP_INCLUDED

void johnpaul(); // Prints "John, Paul, "

#endif // JOHNPAUL_HPP_INCLUDED

johnpaul/johnpaul.cpp

#include "john.hpp"
#include "paul.hpp"
#include "johnpaul.hpp"

void johnpaul()
{
 john();
 paul();
}

Example 1-2. Source code for libgeorgeringo

georgeringo/george.hpp

#ifndef GEORGE_HPP_INCLUDED
#define GEORGE_HPP_INCLUDED

void george(); // Prints "George, "

#endif // GEORGE_HPP_INCLUDED

Example 1-1. Source code for libjohnpaul (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Building C++ Applications

georgeringo/george.cpp

#include <iostream>
#include "george.hpp"

void george()
{
 std::cout << "George, ";
}

georgeringo/ringo.hpp

#ifndef RINGO_HPP_INCLUDED
#define RINGO_HPP_INCLUDED

void ringo(); // Prints "and Ringo\n"

#endif // RINGO_HPP_INCLUDED

georgeringo/ringo.cpp

#include <iostream>
#include "ringo.hpp"

void ringo()
{
 std::cout << "and Ringo\n";
}

georgeringo/georgeringo.hpp

#ifndef GEORGERINGO_HPP_INCLUDED
#define GEORGERINGO_HPP_INCLUDED

// define GEORGERINGO_DLL when building libgerogreringo.dll
if defined(_WIN32) && !defined(__GNUC__)
ifdef GEORGERINGO_DLL
define GEORGERINGO_DECL _ _declspec(dllexport)
else
define GEORGERINGO_DECL _ _declspec(dllimport)
endif
endif // WIN32

#ifndef GEORGERINGO_DECL
define GEORGERINGO_DECL
#endif

// Prints "George, and Ringo\n"
#ifdef __MWERKS__
pragma export on
#endif

Example 1-2. Source code for libgeorgeringo (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining and Installing GCC | 15

The header georgeringo.hpp contains some complex preprocessor directives. If you
don’t understand them, that’s okay. I’ll explain them in Recipe 1.4.

Finally, the source code for the executable hellobeatles is presented in Example 1-3. It
consists of a single source file, hellobeatles.cpp, which simply includes the headers
johnpaul.hpp and georgeringo.hpp and invokes the function johnpaul() followed by
the function georgeringo().

1.1 Obtaining and Installing GCC

Problem
You wish to obtain GCC, the free GNU C/C++ compiler.

Solution
The solution depends on your operating system.

GEORGERINGO_DECL void georgeringo();
#ifdef __MWERKS__
pragma export off
#endif

#endif // GEORGERINGO_HPP_INCLUDED

georgeringo/ georgeringo.cpp

#include "george.hpp"
#include "ringo.hpp"
#include "georgeringo.hpp"

void georgeringo()
{
 george();
 ringo();
}

Example 1-3. Source code for hellobeatles

hellobeatles/ hellobeatles.cpp

#include "johnpaul/johnpaul.hpp"
#include " georgeringo/ georgeringo.hpp"

int main()
{
 // Prints "John, Paul, George, and Ringo\n"
 johnpaul();
 georgeringo();
}

Example 1-2. Source code for libgeorgeringo (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Building C++ Applications

Windows

Install MinGW, Cygwin, or both.

To install MinGW, go to the MinGW homepage, www.mingw.org, and follow the
link to the MinGW download page. Download the latest version of the MinGW
installation program, which should be named MinGW-<version>.exe.

Next, run the installation program. It will ask you to specify where you want to
install MinGW. It may also ask you which packages you wish to install; at a mini-
mum, you must install gcc-core, gcc-g++, binutils, and the MinGW runtime, but you
may wish to install more. When the installation is complete, you will be able to run
gcc, g++, ar, ranlib, dlltool, and several other GNU tools from the Windows com-
mand line. You may wish to add the bin subdirectory of your MinGW installation to
your PATH environment variable so that you can specify these tools on the command
line by their simple names rather than by their full pathnames.

To install Cygwin, go to the Cygwin homepage, www.cygwin.com, and follow the
link Install Cygwin Now to download the Cygwin installation program. Next, run the
installation program. It will ask you to make a series of choices, such as where Cyg-
win should be installed.

I’m explaining the Cygwin installation process in detail because it can
be a bit complicated, depending on what you want to install. The pro-
cess may have changed by the time you read this, but if it has, it will
probably have been made easier.

The most important choice you must make is the selection of packages. If you have
enough disk space and a high-speed Internet connection, I recommend that you
install all of the packages. To do this, click once on the word Default next to the
word All at the top of the hierarchical display of packages. After a possibly long
pause, the word Default should change to Install.

If you are short on disk space, or if you have a slow Internet connection, you can
choose a smaller selection of packages. To select just the development tools, click
once on the word Default next to the word Devel. After a possibly long pause, the
word Default should change to Install. For an even smaller collection of packages,
expand the list of development packages by clicking on the + icon next to the word
Devel. Select the packages gcc-core, gcc-g++, and make by clicking on the word Skip,
opposite each package, causing Skip to change to Install.

When you are done selecting packages, press Finish. When the installation program
completes, the Cygwin installation directory should contain a file named cygwin.bat.
Running this script will display the Cygwin shell, a command-line environment from
which you can run gcc, g++, ar, ranlib, dlltool, make, and any other utilities you
chose to install. The installation process adds the bin subdirectory of the Cygwin
installation to your PATH environment variable, so you can also run these utilities

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining and Installing GCC | 17

from the Windows shell cmd.exe. You will find, however, that the Cygwin shell—a
port of the bash shell—is a much friendlier environment for running GNU utilities.

Unix

Check whether GCC is installed on your system by entering g++ -v from the com-
mand line. If GCC is installed, and if C++ language support is available, it should
print a message such as the following:

Using built-in specs.
Target: powerpc-apple-darwin8
Configured with: /private/var/tmp/gcc/gcc-5026.obj~19/src/configure
--disable-checking --prefix=/usr ...

If GCC is not installed, or if it is installed without support for C++, you will have to
install it yourself. In general this is a complex process that depends on your plat-
form; among other things, you may have to install GNU make and the GNU binutils
package. Detailed instructions are available at gcc.gnu.org/install.

If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode devel-
opment environment from Apple’s web site and follow the simple installation
instructions. Xcode is currently available at developer.apple.com/tools.

If you use Linux, some version of GCC should already be installed; type g++ -v to
determine the version. The current version of GCC is 4.0.0; if your version is not rel-
atively recent, use the package management system accompanying your Linux distri-
bution to install the most recent version.

Discussion
Cygwin and MinGW represent very different approaches to porting the GNU tools
to Windows. Cygwin is an ambitious project to produce a Unix-like environment
hosted by Windows. It provides a Unix-compatibility layer which allows programs
written for Unix to be compiled and run on Windows. Consequently, an enormous
assortment of Unix utilities are available for Cygwin. Even if you are not a Unix
developer, you may soon come to regard the Cygwin tools as indispensable.

MinGW, which stands for “Minimalist GNU for Windows,” provides a minimal
environment for building Windows executables using GCC. Among other things,
MinGW includes a port of GCC, a port of the GNU archiver and linker, and a port
of the GNU debugger GDB. It also includes MSYS, a command-line environment
capable of executing GNU makefiles and configure scripts. MSYS will be discussed in
Recipe 1.14.

One important difference between Cygwin and MinGW relates to licensing. With a
few exceptions, you can distribute binaries compiled with the MinGW port of GCC
under any license you wish. Binaries built with the Cygwin port of GCC, on the
other hand, are covered by the GNU General Public License (GPL) by default. If you
want to distribute a program compiled under Cygwin without making the source

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Building C++ Applications

available, you must purchase a license from Red Hat. For complete details, see the
Cygwin and MinGW websites.

See Also
Recipe 1.14

1.2 Building a Simple “Hello, World” Application
from the Command Line

Problem
You want to build a simple “Hello, World” program, such as that in Example 1-4.

Solution
Follow these steps:

1. Set any environment variables required by your toolset.

2. Enter a command telling your compiler to compile and link your program.

Scripts for setting environment variables are listed in Table 1-5; these scripts are
located in the same directory as your command-line tools (Table 1-3). If your toolset
does not appear in Table 1-5, you can skip the first step. Otherwise, run the appro-
priate script from the command line, if you are using Windows, or source the script,
if you are using Unix.

Example 1-4. A simple “Hello, World” program

hello.cpp

#include <iostream>

int main()
{
 std::cout << "Hello, World!\n";
}

Table 1-5. Scripts for setting environment variables required by your command-line
tools

Toolset Script

Visual C++ vcvars32.bat

Intel (Windows) iclvars.bata

Intel (Linux) iccvars.sh or iccvars.csh

Metrowerks (Mac OS X) mwvars.sh or mwvars.cshb

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Simple “Hello, World” Application from the Command Line | 19

Commands for compiling and linking hello.cpp are given in Table 1-6. To work prop-
erly, these commands require that your current directory is the directory containing
hello.cpp and that the directory containing the command-line compiler appears in
your PATH environment variable. If you ran a script in step 1, the latter condition will
be satisfied automatically. It’s also possible that when you installed your toolset, the
setup utility added the directory containing the command-line tools to your PATH.
Otherwise, you can either add the directory to your PATH, as shown in Table 1-7, or
specify the full file pathname on the command line.

For example, if you use Microsoft Visual Studio .NET 2003, and if it is installed in
the standard location on the C drive, change to the directory containing hello.cpp
and enter the commands shown below:

> "C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\bin\
vcvars32.bat"
Setting environment for using Microsoft Visual Studio .NET 2003 tools.

Metrowerks (Windows) cwenv.bat

Comeau Same as the backend toolset

a With earlier version of the Intel compiler, this script was named iccvars.bat.
b In versions of CodeWarrior prior to 10.0, there was a single csh script named mwvars.

Table 1-6. Commands for compiling and linking hello.cpp in a single step

Toolset Command Line

GCC g++ -o hello hello.cpp

Visual C++ cl -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t -Fehello hello.cpp

Intel (Windows) icl -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t -Fehello hello.cpp

Intel (Linux) icpc -o hello hello.cpp

Metrowerks mwcc -wchar_t on -cwd include -o hello hello.cpp

Comeau como -o hello hello.cpp

Borland bcc32 -q -ehello hello.cpp

Digital Mars dmc -Ae -Ar -I<dmcroot>/stlport/stlport
-o hello hello.cpp

Table 1-7. Adding a directory to your PATH environment variable for the duration of a
command-line session

Shell Command line

bash, sh, ksh (Unix) export PATH=<directory>:$PATH

csh, tsch (Unix) setenv PATH <directory>:$PATH

cmd.exe (Windows) set PATH=<directory>;%PATH%

Table 1-5. Scripts for setting environment variables required by your command-line
tools (continued)

Toolset Script

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Building C++ Applications

(If you have another version of Visual Studio or Visual C++ installed
and wish to use its tools from the command line, run vcvars32.bat for
that version.)
> cl -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t -Fehello
hello.cpp
hello

You can now run your program:

> hello
Hello, World!

Similarly, if you are using Intel 9.0 for Linux, and if it is installed in the standard
location /opt/intel/cc/9.0, open a bash shell, change to the directory containing hello.
cpp and enter the commands:

$. /opt/intel/cc/9.0/bin/iccvars.sh
$ icpc -o hello hello.cpp
$./hello
Hello, World!

Discussion
Environment variables are pairs of strings maintained by your system and accessible
to running applications. Command-line tools frequently refer to environment vari-
ables to learn details about your system and to obtain configuration information that
otherwise would have to be entered on the command line. The environment variable
you will encounter most often is PATH, which stores a list of directories that are
searched by the operating system when the name of an executable is entered on the
command line using its simple name rather than its full pathname. On Windows, the
directories in PATH are also searched when a dynamic library is loaded.

Command-line tools make use of environment variables on both Unix and Win-
dows, but on Unix there is typically a dominant C++ compiler and the environment
variables it requires are set by default to correct values. On Windows, however, there
have traditionally been a number of competing C++ compilers; two different compil-
ers will almost certainly have to look in different locations to find their standard
headers and their compiled runtime support libraries, for example. It’s, therefore,
common for Windows toolsets to provide scripts that set a number of environment
variables to record the locations of headers and libraries and other information.

One way to use such a script is to run it from the command line before invoking any of
the command-line tools, as I demonstrated for Visual C++ and Intel 9.0 for Linux. It’s
also possible to make the environment variable settings permanent so that you don’t
have to run the script each time you start a command-line session; how this is done,
depends on your operating system and on your shell. Changing your environment vari-
ables permanently is not always a good idea, however, since several toolsets may con-
tain tools with the same name, causing the wrong tool to be invoked during the build
process. For example, if you have multiple versions of Visual C++ installed, you must
make sure to run the correct version of vcvars32.bat before using the command-line

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Simple “Hello, World” Application from the Command Line | 21

tools. As another example, the toolsets Visual C++ and Digital Mars both contain tools
named link.exe and lib.exe.

Now let’s look at the command lines in Table 1-7. Remember that you only need to
be concerned with the row corresponding to your toolset. In general, the informa-
tion passed to the compiler falls into four categories:

• The name(s) of the input files

• The name(s) of the output files

• The locations to search for files

• General configuration information

In Table 1-6, there is just a single input file, hello.cpp, and it is passed to the com-
piler simply by writing the name of the file on the command line. It doesn’t matter
where you place the name of the input file, as long as it doesn’t appear in the middle
of another command-line option. In Table 1-7, I placed hello.cpp at the very end of
the command line.

There is also a single output file, hello.exe or hello, depending on the operating sys-
tem. In this case, however, the way the file name is passed to the compiler depends
on the toolset. Most toolsets use -o <file> to specify an output executable, but Visual
C++ and Intel for Windows use -Fe<file> and Borland uses -e<file>. Note that it’s
not necessary to specify the extension of an executable.

The only information in Table 1-7 that falls into the third category, locations to
search for files, appears in the command line for Digital Mars. Since the STLPort
library is not Digital Mars’s built-in standard library, the compiler must be told,
using the -I option, where to search for the STLPort headers. The STLPort headers
are located in the /stlport/stlport subdirectory of the Digital Mars installation; I speci-
fied this directory in Table 1-7 using the notation <dmcroot>/stlport/stlport. For
more information on -I option, see Recipe 1.5.

Most of the command-line options in Table 1-7 fall into the fourth category: general
configuration information. These options don’t apply to any particular file; instead
they enable or disable particular compiler features.

• The options -nologo (Visual C++ and Intel for Windows) and -q (Borland) tell
the compiler not to print its name and version to the console. This makes the
compiler’s output easier to read.

• The options -EHsc (Visual C++ and Intel for Windows) and -Ae (Digital Mars)
tell the compiler to enable C++ exception handling.

• The options -GR (Visual C++ and Intel for Windows) and -Ar (Digital Mars) tell
the compiler to enable runtime type information (RTTI).

• The options -Zc:wchar_t (Visual C++ and Intel for Windows) and -wchar_t on
(Metrowerks) tell the compiler to recognize wchar_t as a built-in type.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Building C++ Applications

• The option -Zc:forScope (Visual C++ and Intel for Windows) tells the compiler
to enforce modern for-scoping rules.

• The option -cwd include (Metrowerks) tells the compiler to begin searching for
an included header in the directory of the source file that contains the include
directive. This is the default behavior for all the toolsets but Metrowerks.

Next, let’s consider a second solution to the original problem. Instead of compiling
and linking with a single command, you can split the second step into two parts:

2a. Enter a command telling your compiler to compile your program to an object file
without linking.

2b. Enter a command telling your linker to create an executable from the object file
created in step 2a.

In this simple case, there’s no reason to compile and link separately. Separate compi-
lation and linking is frequently necessary, however, so it’s important to know how to
do it. For example, when creating a static library, you must compile without linking
and then pass the resulting object files to the archiver.

The commands for compiling and linking in two steps are presented in Tables 1-8
and 1-9. In several cases I’ve given an object file the extension o[bj] to indicate that a
single command line is valid for Windows and Unix except for the extension of the
object file.

Table 1-8. Commands for compiling hello.cpp without linking

Toolset Command line

GCC g++ -c -o hello.o hello.cpp

Visual C++ cl -c -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t -Fohello hello.cpp

Intel (Windows) icl -c -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t -Fohello hello.cpp

Intel (Linux) icpc -c -o hello.o hello.cpp

Metrowerks mwcc -c -wchar_t on -cwd include -o hello.o[bj]hello.cpp

Comeau como -c -o hello.o[bj] hello.cpp

Borland bcc32 -c -q -o hello.obj hello.cpp

Digital Mars dmc -c -Ae -Ar -I<dmcroot>/stlport/stlport -o hello.obj hello.cpp

Table 1-9. Commands for linking hello.exe or hello

Toolset Command line

GCC g++ -o hello hello.o

Visual C++ link -nologo -out:hello.exe hello.obj

Intel (Windows) xilink -nologo -out:hello.exe hello.obj

Intel (Linux) icpc -o hello hello.o

Metrowerks mwld -o hello hello.o[bj]

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Library from the Command Line | 23

For example, to build the executable hello with the GCC toolset, change to the direc-
tory containing hello.cpp and enter the following commands:

$ g++ -c -o hello.o hello.cpp
$ g++ -o hello hello.o

You can now run your program as follows:

$./hello
 Hello, World!

Table 1-9 is almost identical to Table 1-6. There are just two differences. First, the
option -c is used to tell the compiler to compile without linking. Second, the output
file is specified to be an object file hello.obj or hello.o rather than an executable. Most
compilers use the option -o <file> to specify the output file, but Visual C++ and Intel
for Windows use the option -Fo<file>. In addition, all the compilers except for
Visual C++ and Intel for Windows require that the extension of the object file be
specified.

By now, most of the command lines in Table 1-9 should be pretty easy to under-
stand, so I’ll just make two observations:

• The Digital Mars linker has an unusual command-line syntax, consisting of six
comma-separated fields used for specifying different types of input files. For now
you just need to know that the first field is for object files and the second is for
the output file. The option -noi tells the linker to perform case-sensitive linking,
which is necessary for C++ programs.

• The Borland linker, ilink32.exe, uses a syntax similar to that of Digital Mars. To
simplify the command line, I’ve used the compiler, bcc32.exe, to perform the
link step. Behind the scenes, bcc32.exe calls ilink32.exe.

See Also
Recipes 1.7 and 1.15

1.3 Building a Static Library from the Command Line

Problem
You wish to use your command-line tools to build a static library from a collection of
C++ source files, such as those listed in Example 1-1.

Comeau como --no_prelink_verbose -o hello hello.o[bj]

Borland bcc32 -q -ehello hello.cpp

Digital Mars link -noi hello.obj, hello.exe,NUL,user32.lib kernel32.lib,,

Table 1-9. Commands for linking hello.exe or hello (continued)

Toolset Command line

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Building C++ Applications

Solution
First, use your compiler to compile the source files into object files. If your source
files include headers located in other directories, you may need to use the -I option
to instruct your compiler where to search for headers; for more information, see Rec-
ipe 1.5. Second, use your archiver to combine the object files into a static library.

To compile each of the three source files from Example 1-1, use the command lines
listed in Table 1-8, modifying the names of the input and output files as needed. To
combine the resulting object files into a static library, use the commands listed in
Table 1-10.

For example, to compile john.cpp, paul.cpp, and johnpaul.cpp into object files using
GCC, change to the directory johnpaul and enter the following commands to pro-
duce the object files john.o, paul.o, and johnpaul.o:

$ g++ -c -o john.o john.cpp
$ g++ -c -o paul.o paul.cpp
$ g++ -c -o johnpaul.o johnpaul.cpp

Now link the object files into a static library as follows:

$ ar ru libjohnpaul.a john.o paul.o johnpaul.o
$ ranlib libjohnpaul.a

Discussion
With GCC on Unix you use two separate commands to create a static library: first,
you invoke the archiver ar, then you invoke a tool named ranlib. The ru option tells
ar to add the given object files to the specified archive if there are no existing archive
members with the same names, but to update an existing archive member only if the
given object file is newer than the existing member. Traditionally, after an archive
was created or updated, the tool ranlib was used to create or update the archive’s

Table 1-10. Commands for creating the archive libjohnpaul.lib or libjohnpaul.a

Toolset Command line

GCC (Unix)
Intel (Linux)
Comeau (Unix)

ar ru libjohnpaul.a john.o paul.o johnpaul.o
ranlib libjohnpaul.a

GCC (Windows) ar ru libjohnpaul.a john.o paul.o johnpaul.o

Visual C++
Comeau (with Visual C++)

lib -nologo -out:libjohnpaul.lib john.obj paul.obj johnpaul.obj

Intel (Windows) xilib -nologo /out:libjohnpaul.lib john.obj paul.obj johnpaul.obj

Metrowerks (Windows) mwld -library -o libjohnpaul.lib john.obj paul.obj johnpaul.obj

Metrowerks (Mac OS X) mwld -library -o libjohnpaul.a john.o paul.o johnpaul.o

Borland tlib libjohnpaul.lib /u /a /C +john +paul +johnpaul

Digital Mars lib -c -n libjohnpaul.lib john.obj paul.obj johnpaul.obj

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library from the Command Line | 25

symbol table, i.e., the index of the symbols that appear in the various object files it
contains. Today, on many systems, the archiver ar takes care of building or updating
the symbol table by itself, so running ranlib is not necessary. In particular, this is true
for the GNU version of ar. On some systems, however, the GCC compiler may be
used in conjunction with a non-GNU version of ar; for this reason, it’s best to run
ranlib just to be safe.

As you can see from Table 1-10, the Borland archiver tlib uses a slightly unusual syn-
tax: the plus signs before the object files tell tlib to add these object files to the
library. You should be able to understand all the other command lines fairly easily.

With some toolsets, the linker can be used as an archiver by passing an
appropriate command-line option. With other toolsets a separate
archiver must be used.

See Also
Recipes 1.8, 1.11, and 1.16

1.4 Building a Dynamic Library
from the Command Line

Problem
You wish to use your command-line tools to build a dynamic library from a collec-
tion of C++ source files, such as those listed in Example 1-2.

Solution
Follow these steps:

1. Use your compiler to compile the source files into object files. If you’re using
Windows, use the -D option to define any macros necessary to ensure that your
dynamic library’s symbols will be exported. For example, to build the dynamic
library in Example 1-2, you need to define the macro GEORGERINGO_DLL. If you’re
building a third-party library, the installation instructions should tell you what
macros to define.

2. Use your linker to create a dynamic library from the object files created in step 1.

If your dynamic library depends on other libraries, you’ll need to tell
the compiler where to search for the library headers, and to tell the
linker the names of the other libraries and where to find them. This is
discussed in detail in Recipe 1.5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Building C++ Applications

The basic commands for performing the first step are given Table 1-8; you’ll need to
modify the names of the input and output files appropriately. The commands for
performing the second step are given in Table 1-11. If you’re using a toolset that
comes with static and dynamic variants of its runtime libraries, direct the compiler
and linker to use a dynamically linked runtime, as described in Recipe 1.23.

As of September 2005, the Comeau toolset does not support building
dynamic libraries on Unix or Windows. Comeau Computing is cur-
rently working on dynamic library support, however, and expects it to
be implemented for some Unix platforms—including Linux—by the
end of 2005.

Table 1-11. Commands for creating the dynamic library libgeorgeringo.so, libgeorgeringo.dll, or
libgeorgeringo.dylib

Toolset Command line

GCC g++ -shared -fPIC -o libgeorgeringo.so george.o ringo.o georgeringo.o

GCC (Mac OS X) g++ -dynamiclib -fPIC -o libgeorgeringo.dylib george.o ringo.o georgeringo.o

GCC (Cygwin) g++ -shared -o libgeorgeringo.dll
-Wl,--out-implib,libgeorgeringo.dll.a
-W1,--export-all-symbols
-Wl,--enable-auto-image-base george.o ringo.o georgeringo.o

GCC (MinGW) g++ -shared -o libgeorgeringo.dll
-Wl,--out-implib,libgeorgeringo.a -W1,--export-all-symbols
-Wl,--enable-auto-image-base george.o ringo.o georgeringo.o

Visual C++ link -nologo -dll -out:libgeorgeringo.dll -implib:libgeorgeringo.lib george.obj ringo.obj
georgeringo.obj

Intel (Windows) xilink -nologo -dll -out:libgeorgeringo.dll -implib:libgeorgeringo.lib george.obj ringo.obj
georgeringo.obj

Intel (Linux) g++ -shared -fPIC -lrt -o libgeorgeringo.so george.o ringo.o georgeringo.o georgeringo.obj

Metrowerks (Windows) mwld -shared -export dllexport -runtime dm -o libgeorgeringo.dll -implib libgeorgeringo.lib
george.obj ringo.obj georgeringo.obj

Metrowerks (Mac OS X) mwld -shared -export pragma -o libgeorgeringo.dylib george.o ringo.o georgeringo.o

CodeWarrior 10.0 (Mac OS X)a

a CodeWarrior 10.0 for Mac OS X will provide dynamic variants of its runtime support libraries; these should
be used when building libgeorgeringo.dylib. (See Recipe 1.23.)

Consult the Metrowerks documentation.

Borland bcc32 -q -WD -WR -elibgeorgeringo.dll george.obj ringo.obj georgeringo.obj
implib -c libgeorgeringo.lib libgeorgeringo.dll

Digital Mars dmc -WD -L/implib:libgeorgeringo.lib -o libgeorgeringo.dll george.obj ringo.obj georgeringo.
obj user32.lib kernel32.lib

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library from the Command Line | 27

For example, to compile the source files from Example 1-2 into object files with the
Borland compiler, assuming that the directory containing the Borland tools is in your
PATH, change to the directory georgeringo and enter the following commands:

> bcc32 –c -q -WR -o george.obj george.cpp
george.cpp:
> bcc32 -c -q -WR -o ringo.obj ringo.cpp
ringo.cpp:
> bcc32 -c -q -WR -DGERORGERINGO_DLL -o georgeringo.obj georgeringo.cpp
georgeringo.cpp:

The compiler option -WR is used here to specify a dynamic variant of the runtime
library. These three commands will generate the object files george.obj, ringo.obj, and
georgeringo.obj. Next, enter the command:

> bcc32 -q -WD -WR -elibgeorgeringo.dll george.obj ringo.obj
georgeringo.obj

This will generate the dynamic library libgeorgeringo.dll. Finally, enter the command:

> implib –c libgeorgeringo.lib libgeorgeringo.dll

This will generate the import library libgeorgeringo.lib.

Discussion
How dynamic libraries are handled varies greatly depending on the operating system
and toolset. From the programmer’s point of view, the two most important differ-
ences are as follows:

Symbol visibility

Dynamic libraries can contain the definitions of classes, functions, and data. On some
platforms, all such symbols are automatically accessible to code which uses a
dynamic library; other systems offer programmers fine-grained control over which
symbols are accessible. Being able to determine which symbols should be visible on a
case-by-case basis is generally advantageous; it gives a programmer more explicit
control of his library’s public interface, and it often provides superior performance. It
also makes building and using dynamic libraries more complex, however.

With most Windows toolsets, in order for a symbol defined in a dynamic library to
be available to code which uses the dynamically library, it must be explicitly exported
when the dynamic library is built and imported when an executable or dynamic
library that uses the dynamic library is built. Some Unix toolsets also offer this flexi-
bility; this is true for recent versions of GCC on several platforms, for Metrowerks on
Mac OS X, and for Intel on Linux. In some cases, however, there is no alternative but
to make all symbols visible.

Passing libraries to the linker

On Unix, a dynamic library can be specified as input to the linker when code using
the dynamic library is linked. On Windows, except when using GCC, dynamic

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Building C++ Applications

libraries are not specified directly as input to the linker; instead, an import library or
module definition file is used.

Import libraries and module definition files

Import libraries, roughly speaking, are static libraries containing the information
needed to invoke functions in a DLL at runtime. It’s not necessary to know how they
work, only how to create and use them. Most linkers create import libraries automat-
ically when you build a DLL, but in some cases it may be necessary to use a separate
tool called an import librarian. In Table 1-11, I used the Borland import librarian
implib.exe to avoid the peculiar command-line syntax required by the Borland linker
ilink32.exe.

A module definition file, or .def file, is a text file that describes the functions and data
exported by a DLL. A .def file can be written by hand or automatically generated by a
tool. An example .def file for the library libgeorgeringo.dll is shown in Example 1-5.

Exporting symbols from a DLL

There are two standard methods for exporting symbols from a Windows DLL:

• Use the _ _declspec(dllexport) attribute in the DLL’s headers, and build an
import library for use when linking code that uses your DLL.

The _ _declspec(dllexport) attribute should be inserted at the beginning of the
declarations of exported functions and data, following any linkage specifiers,
and immediately following the class or struct keyword for exported classes.
This is illustrated in Example 1-6. Note that _ _declspec(dllexport) is not part
of the C++ language; it is a language extension implemented by most Windows
compilers.

• Create a .def file describing the functions and data exported by your dynamic
library.

Using a .def file has certain advantages; for instance, it can allow functions in a DLL
to be accessed by number rather than name, decreasing the size of a DLL. It also

Example 1-5. A module definition file for libgeorgeringo.dll

LIBRARY LIBGEORGERINGO.DLL

EXPORTS
 Georgeringo @1

Example 1-6. Using the _ _declspec(dllexport) attribute

_ _declpec(dllexport) int m = 3; // Exported data definition
extern _ _declpec(dllexport) int n; // Exported data declaration
_ _declpec(dllexport) void f(); // Exported function declaration
class _ _declpec(dllexport) c { // Exported class definition

/* ... */
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library from the Command Line | 29

eliminates the need for the messy preprocessor directives such as those in the header
georgeringo.hpp from Example 1-2. It has some serious drawbacks, however. For
example, a .def file cannot be used to export classes. Furthermore, it can be difficult
to remember to update your .def file when you add, remove, or modify functions in
your DLL. I therefore recommend that you always use _ _declspec(dllexport). To
learn the full syntax of .def files as well as how to use them, consult your toolset’s
documentation.

Importing symbols from a DLL

Just as there are two ways to export symbols from a DLL, there are two ways to
import symbols:

• In the headers included by source code that uses your DLL, use the attribute
_ _declspec(dllimport) and pass an import library to the linker when linking
code that uses your DLL.

• Specify a .def file when linking code which depends on you DLL.

Just as with exporting symbols, I recommend that you use the attribute _ _decl-
spec(dllimport) in your source code instead of using .def files. The attribute _ _decl-
spec(dllimport) is used exactly like the attribute _ _declspec(dllexport), discussed
earlier. Like _ _declspec(dllexport), _ _declspec(dllimport) is not part of the C++
language, but an extension implemented by most Windows compilers.

If you choose to use __declspec(dllexport) and __declspec(dllimport), you must be sure
to use _ _declspec(dllexport) when building your DLL and _ _declspec(dllimport)
when compiling code that uses your DLL. One approach would be to use two sets of
headers: one for building your DLL and the other for compiling code that uses your
DLL. This is not satisfactory, however, since it is difficult to maintain two separate
versions of the same headers.

Instead, the usual approach is to define a macro that expands to __declspec(dllexport)
when building your DLL and to _ _declspec(dllimport) otherwise. In Example 1-2, I
used the macro GEORGERINGO_DECL for this purpose. On Windows, GEORGERINGO_DECL
expands to _ _declspec(dllexport) if the macro GEORGERING_SOURCE is defined and to
_ _declspec(dllimport) otherwise. By defining GEORGERING_SOURCE when building the
DLL libgeorgeringo.dll but not when compiling code that uses libgeorgeringo.dll, you
obtain the desired result.

Building DLLs with GCC

The Cygwin and MinGW ports of GCC, discussed in Recipe 1.1, handle DLLs differ-
ently than other Windows toolsets. When you build a DLL with GCC, all functions,
classes, and data are exported by default. This behavior can be modified by passing the
option --no-export-all-symbols to the linker, by using the attribute __declspec-
(dllexport) in your source files, or by using a .def file. In each of these three cases,
unless you use the option --export-all-symbols to force the linker to export all symbols,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Building C++ Applications

the only exported functions, classes, and data will be those marked __decl-
spec(dllexport) or listed in the .def file.

It’s therefore possible to use the GCC toolset to build DLLs in two ways: like an
ordinary Windows toolset, exporting symbols explicitly using _ _declspec, or like a
Unix toolset, exporting all symbols automatically.* I used the latter method in
Example 1-2 and Table 1-11. If you choose this method, you should consider using
the option --export-all-symbols as a safety measure, in case you happen to include
headers containing _ _declspec(dllexport).

GCC differs from other Windows toolsets in a second way: rather than passing the
linker an import library associated with a DLL, you can pass the DLL itself. This is
usually faster than using an import library. It can also create problems, however,
since several versions of a DLL may exist on your system, and you must ensure that
the linker selects the correct version. In Table 1-11, to demonstrate how to create
import libraries with GCC, I chose not to use this feature.

With Cygwin, an import library for the DLL xxx.dll is typically named
xxx.dll.a, while with MinGW it is typically named xxx.a. This is just a
matter of convention.

GCC 4.0’s -fvisibility option

Recent versions of GCC on several platforms, including Linux and Mac OS X, give
programmers fine-grained control over which symbols in a dynamic library are
exported: the command-line option -fvisibility can be used to set the default
visibility of symbols in a dynamic library, and a special attribute syntax, similar
to _ _declspec(dllexport) on Windows, can be used within source code to modify
the visibility of symbols on a case-by-case basis. The -fvisibility option has several
possible values, but the two interesting cases are default and hidden. Roughly speak-
ing, default visibility means that a symbol is accessible to code in other modules; hid-
den visibility means that it is not. To enable selective exporting of symbols,
specify -fvisibility=hidden on the command line and use the visibility attribute to
mark selected symbols as visible, as shown in Example 1-7.

* Confusingly, exporting symbols using _ _declspec(dllexport) is sometimes called implicit exporting.

Example 1-7. Using the visibility attribute with the command-line option
-fvisibility=hidden

extern _ _attribute_ _((visibility("default"))) int m; // exported
extern int n; // not exported

_ _attribute_ _((visibility("default"))) void f(); // exported
void g(); // not exported

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library from the Command Line | 31

In Example 1-7, the attribute _ _attribute_ _((visibility("default"))) plays the
same role as _ _declspec(dllexport) in Windows code.

Using the visibility attribute presents some of the same challenges as using _ _decl-
spec(dllexport) and _ _declspec(dllimport), since you want the attribute to be
present when building a shared library, but not when compiling code that uses the
shared library, and you want it to be hidden entirely on platforms that don’t support
it. Just as with _ _declspec(dllexport) and _ _declspec(dllimport), this problem can
be solved with the preprocessor. For example, you can modify the header
georgeringo.hpp from Example 1-2 to take advantage of the visibility attribute as
follows:

georgeringo/georgeringo.hpp

#ifndef GEORGERINGO_HPP_INCLUDED
#define GEORGERINGO_HPP_INCLUDED

// define GEORGERINGO_DLL when building libgerogreringo
if defined(_WIN32) && !defined(__GNUC__)
ifdef GEORGERINGO_DLL
define GEORGERINGO_DECL _ _declspec(dllexport)
else
define GEORGERINGO_DECL _ _declspec(dllimport)
endif
else // Unix
if defined(GEORGERINGO_DLL) && defined(HAS_GCC_VISIBILITY)
define GEORGERINGO_DECL _ _attribute_ _((visibility("default")))
else
define GEORGERINGO_DECL
endif
endif

// Prints "George, and Ringo\n"
GEORGERINGO_DECL void georgeringo();

#endif // GEORGERINGO_HPP_INCLUDED

To make this work, you must define the macro HAS_GCC_VISIBILITY when building
on systems that support the -fvisibility option.

Recent versions of the Intel compiler for Linux also support the -fvisibility
option.

struct _ _attribute_ _((visibility("default"))) S { }; // exported
struct T { }; // not exported

Example 1-7. Using the visibility attribute with the command-line option
-fvisibility=hidden (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Building C++ Applications

Symbol Visibility with Metrowerks for Mac OS X

Metrowerks for Mac OS X provides several options for exporting symbols from a
dynamic library. When using the CodeWarrior IDE, you can use a symbol exports file,
which plays a role similar to a .def file on Windows. You can also choose to export all
symbols, using the option -export all, which is the default when building from the
command-line. The method I recommend is to use #pragma export in your source code
to mark the functions you wish to export, and to specify -export pragma on the com-
mand-line when building your dynamic library. The use of #export pragma is illus-
trated in Example 1-2: just invoke #pragma export on in your header files immediately
before a group of functions you want to export, and #export pragma off immediately
afterwards. If you want your code to work on toolsets other than Metrowerks, you
should place the invocations of #pragma export between #ifdef/#endif directives, as
illustrated in Example 1-2.

Command-line options

Let’s take a quick look at the options used in Table 1-11. Each command line specifies:

• The name of the input files: george.obj, ringo.obj, and georgeringo.obj

• The name of the dynamic library to be created

• On Windows, the name of the import library

In addition, the linker requires an option to tell it to build a dynamic library rather
than an executable. Most linkers use the option -shared, but Visual C++ and Intel
for Windows use -dll, Borland and Digital Mars use -WD, and GGC for Mac OS X
uses -dynamiclib.

Several of the options in Table 1-11 help dynamic libraries to be used more effec-
tively at runtime. For example, some Unix linkers should be told to generate
position-independent code using the option -fPIC (GCC and Intel for Linux). This
option makes it more likely that multiple processes will be able to share a single copy
of the dynamic library’s code; on some systems, failing to specify this option can
cause a linker error. Similarly, on Windows the GCC linker the option --enable-auto-
image-base makes it less likely that the operating system will attempt to load two
dynamic libraries at the same location; using this option helps to speed DLL loading.

You can pass options to GCC linker via the compiler by using the
compiler option -Wl,<option> to g++. (The letter following W is a
lowercase l.)

Most of the remaining options are used to specify runtime library variants, as
described in Recipe 1.23.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application from the Command Line | 33

See Also
Recipes 1.9, 1.12, 1.17, 1.19, and 1.23

1.5 Building a Complex Application
from the Command Line

Problem
You wish to use your command-line tools to build an executable that depends on
several static and dynamic libraries.

Solution
Start by building the static and dynamic libraries on which your application depends.
Follow the instructions distributed with the libraries, if they are from a third party;
otherwise, build them as described in Recipes 1.3 and 1.4.

Next, compile your application’s .cpp files into object files as described in “Building a
Simple “Hello, World” Program from the Command Line. You may need to use the -I
option to tell your compiler where to search for the headers needed by your applica-
tion, as shown in Table 1-12.

Finally, use your linker to produce an executable from the collection of object files
and libraries. For each library, you must either provide a full pathname or tell the
linker where to search for it.

At each stage of this process, if you are using a toolset which comes with static and
dynamic variants of its runtime libraries, and if your program uses at least one
dynamic library, you should direct the compiler or linker to use a dynamically linked
runtime library, as described in Recipe 1.23.

Table 1-13 presents commands for linking the application hellobeatles from Example 1-3.
It assumes that:

• The current directory is hellobeatles.

• The static library libjohnpaul.lib or libjohnpaul.a was created in the directory
johnpaul.

• The dynamic library georgeringo.dll, georgeringo.so, or georgeringo.dylib and its
import library, if any, were created in the directory georgeringo.

Table 1-12. Specifying directories to search for headers

Toolset Option

All -I<directory>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 1: Building C++ Applications

Since Comeau can’t build dynamic libraries, as mentioned in Recipe 1.4,
the entry for Comeau in Table 1-13 assumes that libgeorgeringo has
been built as a static library rather than as a dynamic library. To build
libgeorgeringo as a static library, remove the modifier GEORGERINGO_DECL
from the declaration of the function georgeringo() in Example 1-2.

Table 1-13. Commands for linking the application hellobeatle.exe

Toolset Input files Command line

GCC (Unix) hellobeatles.o
libjohnpaul.a
libgeorgeringo.so

g++ -o hellobeatles hellobeatles.o -L../johnpaul -L../georgeringo
-ljohnpaul -lgeorgeringo

or

g++ -o hellobeatles hellobeatles.o ../johnpaul/libjohnpaul.a
../georgeringo/libgeorgeringo.so

Intel (Linux) icpc -o hellobeatles hellobeatles.o
-L../johnpaul -L../georgeringo -ljohnpaul -lgeorgeringo

or

icpc -o hellobeatles hellobeatles.o ../johnpaul/libjohnpaul.a
../georgeringo/libgeorgeringo.so

Comeau (Unix) como --no_prelink_verbose -o hellobeatles hellobeatles.o
-L../johnpaul -L../georgeringo -ljohnpaul -lgeorgeringo

or

como --no_prelink_verbose -o hellobeatles hellobeatles.o ../johnpaul/
libjohnpaul.a ../georgeringo/libgeorgeringo.a

GCC (Mac OS X) hellobeatles.o
libjohnpaul.a
libgeorgeringo.dylib

g++ -o hellobeatles hellobeatles.o -L../johnpaul -L../georgeringo
-ljohnpaul -lgeorgeringo

or

g++ -o hellobeatles hellobeatles.o ../johnpaul/libjohnpaul.a
../georgeringo/libgeorgeringo.dylib

Metrowerks (Mac OS X) mwld -o hellobeatles hellobeatles.o -search -L../johnpaul -search
-L../georgeringo -ljohnpaul -lgeorgeringo

or

mwld -o hellobeatles hellobeatles.o ../johnpaul/libjohnpaul.a
../georgeringo/libgeorgering.dylib

GCC (Cygwin) hellobeatles.o
libjohnpaul.a
libgeorgeringo.dll.a

g++ -o hellobeatles hellobeatles.o -L../johnpaul -L../georgeringo
-ljohnpaul -lgeorgeringo

or

g++ -o hellobeatles hellobeatles.o
../johnpaul/libjohnpaul.a
../georgeringo/libgeorgeringo.dll.a

GCC (MinGW) hellobeatles.o
libjohnpaul.a
libgeorgeringo.a

g++ -o hellobeatles hellobeatles.o -L../johnpaul -L../georgeringo
-ljohnpaul -lgeorgeringo

or

g++ --o hellobeatles hellobeatles.o
../johnpaul/libjohnpaul.a
../georgeringo/libgeorgeringo.a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application from the Command Line | 35

For example, if you use Microsoft Visual Studio .NET 2003, and if it is installed in
the standard location on the C drive, you can build hellobeatles.exe from the com-
mand line by changing to the directory hellobeatles and entering the following from
the commands:

> "C:Program Files\Microsoft Visual Studio .NET 2003\VC\bin\
vcvars32.bat"
Setting environment for using Microsoft Visual Studio 2005 tools.
(If you have another version of Visual Studio or Visual C++ installed
and wish to use its tools from the command line, run vsvars32.bat for
that version.)
> cl -c -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t -MD -I..
-Fohellobeatles hellobeatles.cpp
hellobeatles.cpp
> link -nologo -out:hellobeatles.exe -libpath:../johnpaul
-libpath:../georgeringo libjohnpaul.lib libgeorgeringo.lib
hellobeatles.obj

Visual C++ hellobeatles.obj
libjohnpaul.lib
libgeorgeringo.lib

link -nologo -out:hellobeatles.exe -libpath:../johnpaul -libpath:../
georgeringo libjohnpaul.lib libgeorgeringo.lib hellobeatles.obj

Intel (Windows) xilink -nologo -out:hellobeatles-libpath:../johnpaul -libpath:../
georgeringo libjohnpaul.lib libgeorgeringo.lib hellobeatles.obj

Metrowerks (Windows) mwld-o hellobeatles
-search -L../johnpaul libjohnpaul.lib
-search -L../georgeringo libgeorgeringo.lib hellobeatles.obj

Metrowerks (Mac OS X)a mwld -o hellobeatles hellobeatles.o -search -L../johnpaul -search -L../
georgeringo libjohnpaul.a libgeorgeringo.dylib

CodeWarrior 10.0
(Mac OS X)b

Consult the Metrowerks documentation

Borland bcc32 -q -WR -WC -ehellobeatles -L.../johnpaul -L.../georgeringo
libjohnpaul.lib libgeorgeringo.lib hellobeatles.obj

Digital Mars link -noi hellobeatles.obj,hellobeatles.exe,NUL,user32.lib kernel32.lib ..
\johnpaul\ ..\georgeringo\ libjohnpaul.lib libgeorgeringo.lib,,

or

link -noi hellobeatles.obj,hellobeatles.exe,NUL,user32.lib kernel32.lib ..
\johnpaul\libjohnpaul.lib ..\georgeringo\libgeorgeringo.lib,,

Comeau (Windows) hellobeatles.obj
libjohnpaul.lib
libgeorgeringo.lib

como --no_prelink_verbose -o hellobeatles ../johnpaul/ libjohnpaul.lib .
./georgeringo/libgeorgeringo.lib
hellobeatles.obj

a hellobeatles may not execute properly when built with the indicated command line, since the application will make use of two copies of
Metrowerks’s static runtime support libraries. (See Recipe 1.23.)

b CodeWarrior 10.0 for Mac OS X will provide dynamic variants of its runtime support libraries; these should be used when building hello-
beatles. (See Recipe 1.23.)

Table 1-13. Commands for linking the application hellobeatle.exe (continued)

Toolset Input files Command line

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 1: Building C++ Applications

Discussion

Searching for included headers

The -I option is used to specify an include path. When a compiler—actually the pre-
processor—encounters an include directive of the form:

#include "file"

it typically first attempts to find the referenced file by interpreting the given path-
name relative to the location of the source file being processed. If this is unsuccess-
ful, it attempts to locate the file in one of the directories specified with the -I option,
and then in a list of toolset-dependent directories, which can often be configured
using environment variables.

The situation is similar when an included header is specified using angle brackets,
like so:

#include <file>

except that compilers generally don’t interpret the given pathname relative to the
location of the source file being processed.

Passing libraries to the linker

There are several interesting aspects of the command lines in Table 1-13.

On Windows, the input to the linker consists of object files, static libraries, and
import libraries; on Unix, it consists of object files, static libraries, and dynamic
libraries.

On both Windows and Unix, libraries can be passed to the linker in two ways:

• By specifying a pathname on the command line

• By specifying the simple name of the library together with a location to search
for the library

Table 1-13 illustrates both methods.

The locations to search for libraries can usually be specified on the command line.
Most linkers use the option -L<directory> for this purpose, but Visual C++ and Intel
for Windows use -lipath: <directory> and Metrowerks uses -search -L<directory>.
The Digital Mars linker allows library search paths to be listed on the command line
alongside library files, with search paths distinguished from library files by a trailing
backslash; it also requires that backslashes be used as pathname separators.

Comeau does not provide an option for specifying a library search
path on Windows.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application from the Command Line | 37

In addition to the locations explicitly specified, linkers usually search a list of toolset-
dependent directories, which can often be configured using environment variables.
On Windows, the list of directories typically includes the lib subdirectory of the
toolset installation. As a result, if you copy .lib files to this directory, you can specify
them by name on the command line without specifying a search location. If you
combine this method with the technique described in Recipe 1.25, you can avoid
passing the linker any information about a library.

The way the name of a library is specified to the linker differs between Unix and
Windows. On Windows, the full name of the library is specified, including the file
extension. On Unix—and on Windows when using the GCC toolset—libraries are
specified using the -l option followed by the name of the library, with the file exten-
sion and the lib prefix removed. This means that the name of a library must begin
with lib to be automatically found by the linker. More interestingly, it gives the linker
the opportunity to choose between several versions of a library. If the linker finds
both static and dynamic version of a library, the dynamic library is selected, unless
otherwise specified. On some systems, the linker may choose between several ver-
sions of a dynamic library based on the portion of the file name following .so.

Metrowerks supports both the Windows and the Unix styles for speci-
fying library names.

Finally, be aware that Unix linkers can be very sensitive to the order in which object
files and static libraries are specified on the command line: if a static library or object
file references a symbol defined in a second static library or object file, the first file
must appear before the second file on the command line. To resolve circular depen-
dencies, it is sometimes necessary to specify a given library or object file more than
once. Another solution is to pass a sequence of object files and static libraries to
linker bracketed by -(and -); this causes the file to be searched repeatedly until all
references are resolved. This option should be avoided if possible because it can sig-
nificantly degrade performance.

Running your application

If your application uses a dynamic variant of your toolset’s runtime library, the run-
time library must be available when your application is run and in a location where it
will be found automatically by the operating system’s dynamic loader. Typically, this
means that the dynamic runtime library must be placed either in the same directory
as your application or in one of a list of system-specific directories. This is more of a
concern when developing for Windows than when developing for Unix, since on
Unix the appropriate runtime libraries are often already installed in the correct loca-
tions. The names of the dynamic runtime libraries distributed with the various
toolsets are given in Recipe 1.23.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 1: Building C++ Applications

See Also
Recipes 1.10, 1.13, 1.18, and 1.23

1.6 Installing Boost.Build

Problem
You want to obtain and install Boost.Build.

Solution
Consult the Boost.Build documentation at www.boost.org/boost-build2 or follow these
steps:

1. Go to the Boost homepage, www.boost.org, and follow the Download link to
Boost’s SourceForge download area.

2. Download and unpack either the latest release of the package boost or the latest
release of the package boost-build. The former includes the full collection of
Boost libraries, while the latter is a standalone release of Boost.Build. Place the
unpacked files in a suitable permanent location.

3. Download and unpack the latest version of the package boost-jam for your plat-
form; this package includes a prebuilt bjam executable. If the package boost-jam
is not available for your platform, follow the instructions provided with the
package you downloaded in step 2 to build the executable from the source.

4. Copy bjam to a location in your PATH environment variable.

5. Permanently set the environment variable BOOST_BUILD_PATH to the Boost. Build
root directory. If you downloaded the package boost in step 1, the root directory
is the subdirectory tools/build/v2 of your Boost installation; otherwise, it is the
directory boost-build.

6. Configure Boost.Build for your toolsets and libraries by editing the configura-
tion file user-config.jam, located in the Boost.Build root directory. The file user-
config.jam contains comments explaining how to do this.

Discussion
The most difficult part of using Boost.Build is downloading and installing it. Eventu-
ally Boost may provide a graphical installation utility, but for the time being, you
must follow the above steps.

The purpose of step five is to help the build tool, bjam, find the root directory of the
build system. This step is not strictly necessary, however, since there is another way

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Installing Boost.Build | 39

to accomplish the same thing: simply create a file called boost-build.jam, with the sin-
gle line:

boost-build boost-build-root ;

and place it in the root directory of your project or in any of its parent directories.
The second method may be preferable if you wish to distribute Boost.Build with
your source code, since it makes the installation process easier for end users.

The sixth step is potentially the most complex, but in practice it is usually simple. If
you have just a single version of your toolset installed, and if it’s installed in a stan-
dard location, it’s sufficient for user-config.jam to consist of a single line of the form:

using <toolset> ;

For example, if you use Visual C++, the following will usually suffice:

using msvc ;

And if you use GCC, you can simply write:

using gcc ;

Things are slightly more complicated if you have more than one version of a toolset
installed, or if your toolset is installed in an unusual location. If your toolset is
installed in an unusual location, you tell Boost.Build where to find it by passing the
command to invoke the toolset’s compiler as the third argument to using. For
example:

using msvc : : "C:/Tools/Compilers/Visual Studio/Vc7/bin/cl" ;

If you have several versions of a toolset installed, you can invoke the using rule sev-
eral times with a single toolset name, passing a version identifier as the second argu-
ment and the compiler command as the third argument. For example, you might
configure two versions of the Intel toolset as follows:

using intel : 7.1 : "C:/Program Files/Intel/Compiler70/IA32/Bin/icl" ;
using intel : 8.0 : "C:/Program Files/Intel/CPP/Compiler80/IA32/Bin/icl" ;

The names used by Boost.Build for the seven toolsets covered in this chapter are
given in Table 1-14.

Table 1-14. Boost.Build toolset names

Toolset Name

GCC gcc

Visual C++ msvc

Intel intel

Metrowerks cw

Comeau como

Borland borland

Digital Mars dmc

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 1: Building C++ Applications

1.7 Building a Simple “Hello, World” Application
Using Boost.Build

Problem
You want to use Boost.Build to build a simple “Hello, World” program, such as the
one in Example 1-4.

Solution
Create a text file named Jamroot in the directory where you wish the executable and
any accompanying intermediate files to be created. In the file Jamroot, invoke two
rules, as follows. First, invoke the exe rule to declare an executable target, specifying
your .cpp file as a source. Next, invoke the install rule, specifying the executable tar-
get name and the location where you want the install directory. Finally, run bjam to
build your program.

For example, to build an executable hello or hello.exe from the file hello.cpp in
Example 1-4, create a file named Jamroot with the following content in the directory
containing hello.cpp, as shown in Example 1-8.

Next, change to the directory containing hello.cpp and Jamroot and enter the follow-
ing command:

> bjam hello

This command builds the executable hello or hello.exe in a subdirectory of the cur-
rent directory. Finally, enter the command:

> bjam dist

This command copies the executable to the directory specified by the location prop-
erty, which in this case is the current directory.

As this book goes to press, the Boost.Build developers are preparing
for the official release of Boost.Build version 2. By the time you read
this, Version 2 will probably already have been released; if not, you
can enable the behavior described in this chapter by passing the com-
mand-line option --v2 to bjam. For example, instead of entering bjam
hello, enter bjam --v2 hello.

Example 1-8. Jamfile for project hello

jamfile for project hello

exe hello : hello.cpp ;

install dist : hello : <location>. ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Simple “Hello, World” Application Using Boost.Build | 41

Discussion
The file Jamroot is an example of a Jamfile. While a small collection of C++ source
files might be managed using a single Jamfile, a large codebase will typically require
many Jamfiles, organized hierarchically. Each Jamfile resides in a separate directory
and corresponds to a separate project. Most Jamfiles are simply named Jamfile, but
the highest-level Jamfile—the Jamfile that resides in a directory that is an ancestor of
the directories containing all the other Jamfiles—is named Jamroot. The project
defined by this highest-level Jamfile is known as the project root. Each project except
the project root has a parent project, defined as the project in the nearest ancestor
directory containing a Jamfile.

This hierarchical design is quite powerful: for example, it makes it easy to apply a
requirement, such as thread support, to a project and all its descendants.

Each project is a collection of targets. Targets are declared by invoking rules, such as
the exe rule and the install rule. Most targets correspond to binary files, or more
precisely, to collections of related binary files, such as the debug and release builds of
an application.

The exe rule is used to declare an executable target. An invocation of this rule has the
form shown in Example 1-9.

Here, target-name specifies the name of the executable, sources specifies a list of source
files and libraries; requirements specifies properties that will apply to the target regard-
less of any additional properties requested on the command line or inherited from
another project; default-build specifies properties that will apply to the target unless a
feature with a different value is explicitly requested; usage-requirements specifies prop-
erties that will be propagated to all other targets that depend on this target.

Properties are specified in the form <feature>value. For example, to declare an exe-
cutable that will always be built with thread support, you could write:

exe hello
 : hello.cpp
 : <threading>multi
 ;

Example 1-9. Invocation of the exe rule

exe target-name
 : sources
 : requirements
 : default-build
 : usage-requirements
 ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 1: Building C++ Applications

You don’t have to write colons separating trailing arguments to a
Boost.Build rule unless you specify values for those arguments.

Several common features, and their possible values, are listed in Table 1-15.

When an executable target—or a target corresponding to a static or dynamic
library—is built, the file corresponding to the target is created in a descendent direc-
tory of the directory containing the Jamfile. The relative pathname of this directory
depends on the toolset and build configuration, but it always begins with bin. For
example, the executable from Example 1-8 might be created in the directory bin/
msvc/debug.

For simplicity I asked you to create the Jamfile from Example 1-8 in the same direc-
tory as the source file hello.cpp. In a real world project, however, you will often want
to keep your source and binary files in separate directories. In Example 1-8 you can
place the Jamfile anywhere you like, as long as you adjust the pathname hello.cpp so
that it points to the file hello.cpp.

The install rule instructs Boost.Build to copy the one or more files—specified as file
names or as main target names—to a specified location. An invocation of this rule
has the form shown in Example 1-10.

Here, target-name is the name of the target being declared and files is a list of one
or more files or targets to be copied. The remaining arguments, requirements,
default-build, and usage-requirements have the same meaning as in Example 1-9.

Table 1-15. Common Boost.Build features

Feature Value Effect

include Path Specifies an include path

define name[=value] Defines a macro

threading multi or single Enables or disables thread support

runtime-link static or shared Specifies runtime library linkinga

a See Recipe 1.23.

variant debug or release Requests a debug or release build

Example 1-10. Invocation of the install rule

install target-name
 : files
 : requirements
 : default-build
 : usage-requirements
 ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Simple “Hello, World” Application Using Boost.Build | 43

The location where the files are to be copied can be specified either as the target
name or as the value of the location property of a target requirement. For example,
in Example 1-8 you could have written the install target like so:

install . : hello ;

You could then install the executable as follows:

> bjam .

The method used in Example 1-8 is preferable, however, since it’s easier to remem-
ber a named target than a file pathname.

Finally, let’s look briefly at the syntax of the bjam command line. To build the target
xxx with your default toolset, enter the command:

> bjam xxx

To build the target xxx with the toolset yyy, enter the command:

> bjam xxx toolset=yyy

To build the target xxx with version vvv of toolset yyy, enter the command:

> bjam xxx toolset=yyy-vvv

To build specify a standard library zzz from the command line, use the syntax:

> bjam xxx stdlib=zzz

You can build several targets at once by entering several target names on the com-
mand line, and build all targets in the given project by specifying no target. Conse-
quently, you could have built and installed the executable from Example 1-9 by
simply entering:

> bjam

To remove all the files created during the build process, including the executable,
enter:

> bjam --clean

A property of the form <feature>value can be specified on the com-
mand line as feature=value.

See Also
Recipes 1.2 and 1.15

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 1: Building C++ Applications

1.8 Building a Static Library Using Boost.Build

Problem
You want to use Boost.Build to build a static library from a collection of C++ source
files, such as those listed in Example 1-1.

Solution
Create a Jamroot file in the directory where you wish the static library to be created.
In the file Jamroot, invoke the lib rule to declare a library target, specifying your .cpp
files as sources and the property <link>static as a requirement. Add a usage require-
ment of the form <include>path to specify the library’s include directory, i.e., the
directory with respect to which include directives for library headers should be
resolved. You may need to add one or more requirements of the form <include>path
to tell the compiler where to search for included headers. Finally, run bjam from the
directory containing Jamroot, as described in Recipe 1.7.

For example, to build a static library from the source files listed in Example 1-1, your
Jamroot might look like Example 1-11.

To build the library, enter:

> bjam libjohnpaul

Discussion
The lib rule is used to declare a target representing a static or dynamic library. It
takes the same form as the exe rule, as illustrated in Example 1-9. The usage require-
ment <include>.. frees projects that depend on your library from having to explic-
itly specify your library’s include directory in their requirements. The requirement
<link>static specifies that your target should always be built as a static library. If
you want the freedom to build a library target either as static or as dynamic, you can
omit the requirement <link>static. Whether the library is built as static or dynamic
can then be specified on the command line, or in the requirements of a target that

Example 1-11. A Jamfile to build the static library libjohnpaul.lib or libjohnpaul.a

Jamfile for project libjohnpaul

lib libjohnpaul
 : # sources
 john.cpp paul.cpp johnpaul.cpp
 : # requirements
 <link>static
 : # default-build
 : # usage-requirements
 <include>..
 ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library Using Boost.Build | 45

depends on the library target. For example, if the requirement <link>static were
omitted in Example 1-11, you could build the target libjohnpaul as a static library by
entering the command:

> bjam libjohnpaul link=static

Writing source code for a library that can be built either as static or dynamic is a bit
tricky, however, as discussed in Recipe 1.9.

See Also
Recipes 1.3, 1.11, and 1.16

1.9 Building a Dynamic Library Using Boost.Build

Problem
You wish to use Boost.Build to build a dynamic library from a collection of C++
source files, such as those listed in Example 1-2.

Solution
Create a Jamroot file in the directory where you wish the dynamic library—and the
import library, if any—to be created. In the file Jamroot, invoke the lib rule to
declare a library target, specifying your .cpp files as sources and the properties <link>
shared as a requirement. Add a usage requirement of the form <include>path to
specify the library’s include directory, i.e., the directory with respect to which
include directives for library headers should be resolved. If your source files include
headers from other libraries, you may need to add several requirements of the form
<include>path to tell the compiler where to search for included headers. You may
also need to add one or more requirements of the form <define>symbol to ensure that
your dynamic library’s symbols will be exported using _ _declspec(dllexport) on
Windows. Finally, run bjam from the directory containing Jamroot, as described in
Recipe 1.7.

For example, to build a dynamic library from the source files listed in Example 1-2,
create a file named Jamroot in the directory georgeringo, as shown in Example 1-12.

Example 1-12. A Jamfile to build the dynamic library georgeringo.so, georgeringo.dll, or
georgeringo.dylib

Jamfile for project georgringo

lib libgeorgeringo
 : # sources
 george.cpp ringo.cpp georgeringo.cpp
 : # requirements
 <link>shared
 <define>GEORGERINGO_DLL

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 1: Building C++ Applications

To build the library, enter:

> bjam libgeorgeringo

Discussion
As discussed in Recipe 1.8, the lib rule is used to declare a target representing a
static or dynamic library. The usage requirement <include>.. frees projects which
depend on your library from having to explicitly specify your library’s include direc-
tory in their requirements. The requirement <link>shared specifies that the target
should always be built as a dynamic library. If you want the freedom to build a
library target either as static or as dynamic, you can omit the requirement <link>
shared and specify this property on the command line, or in the requirements of a
target that depends on the library target. Writing a library which can be built as
either static or dynamic requires some care, however, because of the preprocessor
directives necessary to ensure that symbols are properly exported on Windows.
Rewriting Example 1-2 so that it can be built as either static or dynamic makes a
good exercise.

See Also
Recipes 1.4, 1.12, 1.17, and 1.19

1.10 Building a Complex Application Using
Boost.Build

Problem
You wish to use Boost.Build to build an executable that depends on several static
and dynamic libraries.

Solution
Follow these steps:

1. For each library on which the executable depends—unless it is distributed as a
prebuilt binary—create a Jamfile as described in Recipes 1.8 and 1.9.

2. Create a Jamroot file in the directory where you want the executable to be
created.

 : # default-build
 : # usage-requirements
 <include>..
 ;

Example 1-12. A Jamfile to build the dynamic library georgeringo.so, georgeringo.dll, or
georgeringo.dylib (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application Using Boost.Build | 47

3. In the file Jamroot, invoke the exe rule to declare an executable target. Specify
your .cpp files and the library targets on which the executable depends as
sources. Also, add properties of the form <include>path as sources, if necessary,
to tell the compiler where to search for library headers.

4. In the file Jamroot, invoke the install rule, specifying the properties <install-
dependencies>on, <install-type>EXE, and <install-type>SHARED_LIB as requirements.

5. Run bjam from the directory containing Jamroot as described in Recipe 1.7.

For example, to build an executable from the source files listed in Example 1-3, cre-
ate a file named Jamroot in the directory hellobeatles as shown in Example 1-13.

Now enter:

> bjam hellobeatles

from the directory hellobeatles. This first builds the two projects on which the target
hellobeatles depends, and then builds the target hellobeatles. Finally, enter:

> bjam dist

This copies the executable hellobeatles and the dynamic library georgeringo to the
directory containing hellobeatles.cpp.

As discussed in Recipe 1.5, before you can run hellobeatles, you may need to place a
copy of your toolset’s dynamic runtime library in a location where it can be found by
the operating system.

Example 1-13. A Jamfile to build the executable hellobeatles.exe or hellobeatles

Jamfile for project hellobeatles

exe hellobeatles
 : # sources
 ../johnpaul//libjohnpaul
 ../georgeringo//libgeorgeringo
 hellobeatles.cpp
 ;

install dist
 : # sources
 hellobeatles
 : # requirements
 <install-dependencies>on
 <install-type>EXE
 <install-type>SHARED_LIB
 <location>.
 ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 1: Building C++ Applications

Discussion

Library targets

The library targets on which a target depends are specified as sources using the nota-
tion path//target-name. In Recipes 1.8 and 1.9, I showed how to declare a target for
a library to be built from source code by Boost.Build. If a library is available as a pre-
built binary, however, you can declare a target for it as follows:

lib target-name
 :
 : <file>file-name
 ;

As explained in Recipe 1.7, most main targets correspond not to a single file but to
collections of related files, such as the debug and release build of an executable. To
declare a target for a prebuilt library that has several variants, you can use the follow-
ing notation:

lib target-name
 :
 : <file>file-name requirements

;

lib target-name
 :
 : <file>other-file-name other-requirements

;

For example, debug and release variants of a prebuilt library might be declared as
follows:

lib cryptolib
 :
 : <file> ../libraries/cryptolib/cryptolib_debug.lib

<variant>debug
;

lib cryptolib
 :
 : <file> ../libraries/cryptolib/cryptolib.lib
 <variant>release

;

If a prebuilt library is located in one the directories that is searched automatically by
the linker, as described in Recipe 1.5, you can declare a target for it as follows:

lib target-name
 :
 : <name>library-name
 ;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application Using Boost.Build | 49

Here, library-name is the name that should be passed to the linker, which may differ
from the actual file name, as discussed in Recipe 1.5. To tell the linker to look in a
particular directory, you can write

lib target-name
 :
 : <name>library-name
 <search>library-path
 ;

Installation. A complex application may need to be installed together with a number
of additional executables and dynamic libraries on which it depends. Rather than
specifying all these files individually, you can use the install-dependencies features,
which allows you to specify only the top-level executable target and the type of
dependencies that should be installed. In Example 1-13, the requirement <install-
dependencies>on turns on the install-dependencies feature, and the requirements
<install-type>EXE and <install-type>SHARED_LIB tells Boost.Build to install all
dependencies that are executables or shared libraries. Other possible values of the
install-type feature include LIB and IMPORT_LIB.

Project organization. All three Jamfiles involved in building the executable hellobeatles
are named Jamroot. This is fine in such a simple example, but in general it’s a good
idea to organize a collection of Jamfiles hierarchically, with a single top-level Jamfile
defining the project root. Arranging projects in this manner allows you to take
advantage of some of Boost.Build’s more sophisticated features, such as allowing
properties to be inherited by child projects. One way to accomplish this in the
present case is to change the names of the Jamfiles in the directories johnpaul,
georgeringo, and hellobeatles from Jamroot to Jamfile, and add to a Jamroot file in the
parent directory with the following content:

jamfile for example application

build-project hellobeatles ;

The rule build-project simply tells bjam to build a given project, which can be speci-
fied either by pathname or by a symbolic identifier. If you change to the directory
containing Jamroot and run bjam, the three child projects will be built.

See Also
Recipes 1.5, 1.13, and 1.18

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 1: Building C++ Applications

1.11 Building a Static Library with an IDE

Problem
You wish to use your IDE to build a static library from a collection of C++ source
files, such as those listed in Example 1-1.

Solution
The basic outline is as follows:

1. Create a new project and specify that you wish to build a static library rather
than an executable or a dynamic library.

2. Choose a build configuration (e.g., debug versus release, single-threaded versus
multithreaded).

3. Specify the name of your library and the directory in which it should be created.

4. Add your source files to the project.

5. If necessary, specify one or more directories where the compiler should search
for included headers. See Recipe 1.13.

6. Build the project.

The steps in this outline vary somewhat depending on the IDE; for example, with
some IDEs, several steps are combined into one or the ordering of the steps is differ-
ent. The second step is covered in detail in Recipes 1.21, 1.22, and 1.23. For now,
you should use default settings as much as possible.

For example, here’s how to build a static library from the source code in
Example 1-1 using the Visual C++ IDE.

Select New ➝ Project from the File menu, select Visual C++* in the left pane, select
Win32 Console Application, and enter libjohnpaul as your project’s name. From the
Win32 Application Wizard go to Application Settings, select Static library, uncheck
Precompiled header, and press Finish. You should now have an empty project with
two build configurations, Debug and Release, the former being the active configuration.

Next, display your project’s property pages by right-clicking on the project’s name in
the Solution Explorer and selecting Properties. Go to Configuration Properties ➝

Librarian ➝ General and enter the pathname of your project’s output file in the field
labeled Output File. The directory portion of the pathname should point to the
directory binaries which you created at the beginning of this chapter; the file name
portion should be libjohnpaul.lib.

* In versions of Visual C++ prior to Visual C++ 2005, this option was labeled Visual C++ Projects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Library with an IDE | 51

Finally, use Add Existing Item… from the Project menu to add the source files listed
in Example 1-1 to your project. Your project’s property pages should now contain a
node labeled “C/C++.” Go to Configuration Properties ➝ C/C++ ➝ Code Genera-
tion and specify Multi-threaded Debug DLL as the Runtime Library. You can now
build your project by selecting Build Solution from the Build menu. Verify that a file
named libjohnpaul.lib has been created in the directory binaries.

Instead of using Add Existing Item… to add the source files from
Example 1-1 to your project, you can use Add New Item… to create
blank source files and add them to your project. Then you can type or
paste the content from Example 1-1 into the newly created files. Simi-
lar remarks hold for other IDEs

Discussion
IDEs differ much more than toolsets. Each IDE provides its own way to create a
project, specify its configuration properties, and add files to it. Nonetheless, after you
have learned to use several IDEs, learning to use an additional IDE is generally easy.

When learning to use a new a new IDE, the features you should concentrate on are
these:

• How to create a new project

• How to specify the type of project (executable, static library, or dynamic library)

• How to add existing files to a project

• How to create new files and add them to a project

• How to specify the name of a project’s output file

• How to specify include paths

• How to specify library search paths

• How to specify libraries on which a project depends

• How to build a project

• How to organize collections of projects in to a group and specify their dependencies

This recipe demonstrates many of these features. Most of the other features are cov-
ered in Recipes 1.12 and 1.13.

Let’s look at how to build a static library using CodeWarrior, C++Builder, and Dev-
C++.

CodeWarrior

Select New... from the File menu, and select the Project tab of the New dialog. Enter
libjohnpaul.mcp as your project’s name, select a location where your project’s config-
uration files should be stored, and double-click Mac OS C++ Stationery. From the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 1: Building C++ Applications

New Project dialog, expand the nodes Mac OS X Mach-O and Standard Console,
then double-click C++ Console Mach-O. You should now have a project with two
targets, Mach-O C++ Console Debug and Mach-O C++ Console Final, the former
being the default target.

Since you will need to refer to these targets by name when you create a project which
depends on this project, you should give the targets descriptive names. For now,
rename just the debug target, as follows. Select the Targets tab on your project’s win-
dow, and double-click on the name of the debug target to display the Target Settings
Window. Then go to Target ➝ Target Settings and enter libjohnpaul Debug in the
field labeled Target Name.

Next, from the Target Settings Window, go to Target ➝ PPC Mac OS X Target. Spec-
ify Library as the Project Type, and enter libjohnpaul.a in the field labeled File
Name. Go to Target ➝ Target Settings and press Choose... to specify the directory
binaries as the location where the output file libjpohnpaul.a should be created.

Finally, select the Files tab on your project’s window and remove the existing source
files and libraries files by dragging them to Trash. Then use Add Files... from the
Project menu to add the source files listed in Example 1-1 to your project. You can
now build your project by selecting Make from the Project menu. Verify that a file
named libjohnpaul.a has been created in the directory binaries.

C++Builder

Select New ➝ Other… from the File menu and then select Library. You should now
have an empty project. Select Save Project As… on the File menu, select a directory
for storing your project’s configuration files and enter libjohnpaul.bpr as your
project’s name.

Next, select Options… from the Project menu to display the Project Options dialog.
Then go Directories and Conditionals and use the control next to Final output to
specify where your project’s output file, libjohnpaul.lib, should be created. By default
this file will be created in the same directory as libjohnpaul.bpr, but you should tell
C++Builder to create it in the directory binaries. If you wish, you can also use the
control next to Intermediate output to specify where object files should be created. By
default they will be created in the same directory as the source files.

Finally, use Add to Project… from the Project menu to add the source files listed in
Example 1-1 to your project. You can now build your project by selecting Make lib-
johnpaul from the Project menu. Verify that a file named libjohnpaul.lib has been cre-
ated in the directory binaries.

Dev-C++

Select New ➝ Project… from the File menu. From the New project dialog, select
Static Library and C++ Project and enter libjohnpaul as your project’s name. After

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library with an IDE | 53

pressing OK, specify the location where your project’s configuration file should be
located.

Next, select Project Options from the Project menu to display the Project Options
dialog. Then go to Build Options and verify that your project’s output file is named
libjohnpaul.a. Enter the pathname of the directory binaries under Executable output
directory. If you wish, you can enter the directory where object files will be created
under Object file output directory.

Finally, use Add to project from the Project menu to add the source files listed in
Example 1-1 to your project. You can now build your project by selecting Compile
from the Execute menu. Verify that a file named libjohnpaul.a has been created in the
directory binaries.

See Also
Recipes 1.3, 1.8, and 1.16

1.12 Building a Dynamic Library with an IDE

Problem
You wish to use your IDE to build a dynamic library from a collection of C++ source
files, such as those listed in Example 1-2.

Solution
The basic outline is as follows:

1. Create a new project and specify that you wish to build a dynamic library rather
than static library or an executable.

2. Choose a build configuration (e.g., debug versus release, single-threaded versus
multithreaded).

3. Specify the name of your library and the directory where it should be created.

4. Add your source files to the project.

5. On Windows, define any macros necessary to ensure that your dynamic library’s
symbols will be exported using _ _declspec(dllexport).

6. If necessary, specify one or more directories where the compiler should search
for included headers. See Recipe 1.13.

7. Build the project.

As with Recipe 1.11, the steps in this outline vary somewhat depending on the IDE.
The second step is covered in detail in Recipes 1.21, 1.22, and 1.23. For now, you
should use default settings wherever possible.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 1: Building C++ Applications

For example, here’s how to build a dynamic library from the source code in
Example 1-2 using the Visual C++ IDE.

Select New ➝ Project from the File menu, select Visual C++* in the left pane, select
Win32 Console Application and enter libgeorgeringo as your project’s name. From
the Win32 Application Wizard go to Application Settings, select DLL and Empty
Project, and press Finish. You should now have an empty project with two build
configurations, Debug and Release, the former being the active configuration.

Next, display your project’s property pages by right-clicking on the project’s name in
the Solution Explorer and selecting Properties. Go to Configuration Properties ➝

Linker ➝ General and enter the pathname of your project’s output file in the field
labeled Output File. The directory portion of the pathname should point to the
directory binaries which you created at the beginning of this chapter; the file name
portion should be libgeorgeringo.dll. Similarly, go to Configuration Properties ➝

Linker ➝ Advanced and enter the pathname of your DLL’s import library in the field
labeled Import Library. The directory portion of the pathname should point to the
directory binaries which you created at the beginning of this chapter; the file name
portion should be libgeorgeringo.lib

Next, use Add Existing Item… from the Project menu to add the source files listed in
Example 1-2 to your project.

Instead of using Add Existing Item… to add the source files from
Example 1-2 to your project, you can use Add New Item… to create
blank source files and add them to your project. Then you can type or
paste the content from Example 1-2 into the newly created files. Simi-
lar remarks hold for other IDEs.

Your project’s property pages should now contain a node labeled C/C++. Go to
Configuration Properties ➝ C/C++ ➝ Code Generation and define the macro
GEORGERINGO_DLL, as described in Recipe 1.19. Next, go to Configuration Propertiess
➝ C/C++ ➝ Code Generation and specify Multi-threaded Debug DLL as the Run-
time Library.

You can now build your project by selecting Build Solution from the Build menu.
Verify that two files named libgeorgeringo.dll and libgeorgeringo.lib have been cre-
ated in the directory binaries.

* In versions of Visual C++ prior to Visual C++ 2005, this option was labeled Visual C++ Projects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library with an IDE | 55

Discussion
As you saw in Recipe 1.11, each IDE provides its own way to create a project, spec-
ify its configuration properties, and add files to it. Let’s look at how to build a
dynamic library using CodeWarrior, C++Builder, and Dev-C++.

CodeWarrior

Select New... from the File menu, and select the Project tab of the New dialog. Enter
libgeorgeringo.mcp as your project’s name, select a location where your project’s
configuration files should be stored, and double-click Mac OS C++ Stationery. From
the New Project dialog, expand the nodes Mac OS X Mach-O and Standard Con-
sole, then double-click C++ Console Mach-O. You should now have a project with
two targets, Mach-O C++ Console Debug and Mach-O C++ Console Final, the
former being the default target.

Since you will need to refer to these targets by name when you create a project which
depends on this project, you should give the targets descriptive names. For now,
rename just the debug target, as follows. Select the Targets tab on your project’s win-
dow, and double-click on the name of the debug target to display the Target Settings
Window. Then go to Target ➝ Target Settings and enter libgeorgeringo Debug in the
field labeled Target Name.

Next, from the Target Settings Window, go to Target ➝ PPC Mac OS X Target. Spec-
ify Dynamic Library as the Project Type, and enter libgeorgeringo.dylib in the field
labeled File Name. Go to Target ➝ Target Settings and press Choose... to specify the
directory binaries as the location where the output file libgeorgeringo.dylib should be
created. Then, go to Linker ➝ PPC Mac OS X Linker. Select Use #pragma from the
drop-down list labeled Export Symbols, and make sure that the field labeled Main
Entry Point is empty.

Finally, select the Files tab on your project’s window and remove the existing
source files and libraries files by dragging them to Trash. Use Add Files... from the
Project menu to add the source files listed in Example 1-2 to your project. Then
use Add Files... to add the file dylib1.o, in the directory /usr/lib, and the files
MSL_All_Mach-O_D.dylib and MSL_Shared_AppAndDylib_Runtime_D.lib, in the
directory Metrowerks CodeWarrior/MacOS X Support/Libraries/Runtime/Runtime_
PPC/Runtime_MacOSX/Libs. If you were configuring the release target instead of
the debug target, you would add the libraries MSL_All_Mach-O.dylib and MSL_
Shared_AppAndDylib_Runtime.lib instead. You can now build your project by
selecting Make from the Project menu. Verify that a file named libgeorgeringo.
dylib has been created in the directory binaries.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 1: Building C++ Applications

C++Builder

Select New ➝ Other… from the File menu and then select DLL Wizard. From the
DLL Wizard dialog, select C++ and Multi Threaded. You should now have a project
containing a single source file Unit1.cpp. Remove Unit1.cpp from the project by
right-clicking and selecting Remove From Project. Select Save Project As… on the File
menu, select a directory for storing your project’s configuration files, and enter
libgeorgeringo.bpr as your project’s name.

Next, select Options... from the Project menu to display the Project Options dialog.
Then go to Directories and Conditionals and use the control next to Final output to
specify that your project’s output files should be created in the directory binaries. By
default, this file will be created in the same directory as libjohnpaul.bpr. If you wish,
you can also use the control next to Intermediate output to specify where object files
should be created. By default they will be created in the same directory as the source
files.

Next, define the macro GEORGERINGO_DLL, as described in Recipe 1.19.

Finally, use Add to Project… from the Project menu to add the source files listed in
Example 1-2 to your project. You can now build your project by selecting Make lib-
georgeringo from the Project menu. Verify that two files named libgeorgeringo.dll and
libgeorgeringo.lib have been created in the directory binaries.

Dev-C++

Select New ➝ Project… from the File menu. From the New project dialog, select
DLL and C++ Project and enter libgeorgeringo as your project’s name. After pressing
OK, specify the location where your project’s configuration file should be located.

Next, select Project Options from the Project menu to display the Project Option dia-
log. Then go to Build Options and verify that your project’s output file is named
libjohnpaul.dll. Enter the pathname of the directory binaries under Executable out-
put directory. If you wish, you can enter the directory where object files will be cre-
ated under Object file output directory.

Now, define the macro GEORGERINGO_DLL, as described in Recipe 1.19.

Finally, remove any existing source files from your project by right-clicking and
selecting Remove file. Use Save Project as… from the File menu to save your project’s
configuration file libgeorgeringo.dev. Then use Add to project from the Project menu
to add the source files listed in Example 1-2 to your project. Build your project by
selecting Compile from the Execute menu, and verify that a file named libjohnpaul.a
has been created in the directory binaries.

See Also
Recipes 1.4, 1.9, 1.17, 1.19, and 1.23

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application with an IDE | 57

1.13 Building a Complex Application with an IDE

Problem
You wish to use your IDE to build an executable that depends on several static and
dynamic libraries.

Solution
The basic outline is as follows:

1. If you are building the dependent libraries from the source, and they don’t come
with their own IDE projects or makefiles, create projects for them, as described
in Recipes 1.11 and 1.12.

2. Create a new project and specify that you wish to build an executable rather
than a library.

3. Choose a build configuration (e.g., debug versus release, single-threaded versus
multithreaded).

4. Specify the name of your executable and the directory in which it should be created.

5. Add your source files to the project.

6. Tell the compiler where to find the headers for the dependent libraries.

7. Tell the linker what libraries to use and where to find them.

8. If your IDE supports project groups, add all the projects mentioned above to a
single project group and specify the dependency relationships between them.

9. If your IDE supports project groups, build the project group from step 8. Other-
wise, build the projects individually, taking care to build each project before the
projects that depend on it.

As with Recipes 1.11 and 1.12, the steps in this outline vary somewhat depending on
the IDE. The third step is covered in detail in Recipes 1.21, 1.22, and 1.23. For now,
you should use the default settings wherever possible.

For example, here’s how to build an executable from the source code in Example 1-3
using the Visual C++ IDE.

Select New ➝ Project from the File menu, select Visual C++* in the left pane, select
Win32 Console Application and enter hellobeatles as your project’s name. From the
Win32 Application Wizard go to Application Settings, select Console Application
and Empty Project, and press Finish. You should now have an empty project
hellobeatles.vcproj with two build configurations, Debug and Release, the former

* In versions of Visual C++ prior to Visual C++ 2005, this option was labeled Visual C++ Projects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58 | Chapter 1: Building C++ Applications

being the active configuration. You should also have a solution hellobeatles.sln con-
taining the single project hellobeatles.vcproj.

Next, display your project’s property pages by right-clicking on the project’s name in
the Solution Explorer and selecting Properties. Go to Configuration Properties ➝

Linker ➝ General and enter the pathname of your project’s output file in the field
labeled Output File. The directory portion of the pathname should point to the
directory binaries which you created at the beginning of this chapter; the file name
portion should be hellobeatles.exe.

Next, use Add Existing Item… from the Project menu to add the source file
helllobeatles.cpp, from Example 1-3 to your project. Your project’s property pages
should now contain a node labeled C/C++. Go to Configuration Properties ➝ C/C++
➝ Code Generation and specify Multi-threaded Debug DLL as the Runtime Library.

Instead of using Add Existing Item… to add the source file
helllobeatles.cpp to your project, you can use Add New Item… to cre-
ate a blank source .cpp file and add it to your project. Then you can
type or paste the content from Example 1-3 into the newly created
files. Similar remarks hold for other IDEs.

Next, go to Configuration Properties ➝ C/C++ ➝ General and enter the directory that
contains the directories johnpaul and georgeringo—the grandparent directory of the
source files john.hpp, ringo.hpp, etc.—in the edit control labeled Additional Include
Directories. This will allow the include directives in the header hellobeatles.hpp to be
resolved correctly.

Next, using Add ➝ Existing Project… from the File menu, add the project files
libjohnpaul.vcproj and libgeorgeringo.vcproj to the solution hellobeatles. Select Project
Dependencies… from the Project menu to display the Project Dependencies dialog.
Select hellobeatles from the drop-down control and click the checkboxes next to
libjohnpaul and libgeorgringo.

If you know that you’ll be adding several projects to a single solution,
it’s not necessary to create a separate solution for each project. You
can create an empty solution by selecting New ➝ Blank Solution...
from the File menu, and then add new projects to the solution by
selecting New ➝ Project... from the File menu.

Finally, build the solution by selecting Build Solution from the Build menu. Verify that
files named libjohnpaul.lib, libgeorgeringo.dll, libgeorgeringo.lib, and hellobeatles.exe
have been created in the directory binaries. Now select Start Without Debugging from
the Debug menu to run your application.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application with an IDE | 59

Discussion
In the preceding example it was easy to specify that hellobeatles.exe depends on the
libraries libjohnpaul.lib and libgeorgeringo.dll because both libraries are built from
source code using Visual C++ projects. If you are building an application which
depends on libraries distributed as pre-built binaries with header files, you can
tell Visual C++ how to find them as follows: First, go to Configuration Properties ➝

C/C++ ➝ General and enter the directories that contain the library header files in the
edit control labeled Additional Include Directories. Then, go to Configuration Prop-
erties ➝ Linker ➝ Input and enter the names of the libraries in the field labeled Addi-
tional dependencies. Finally, go to Configuration Properties ➝ Linker ➝ General and
enter the pathnames of the directories containing the binary files in the edit control
labeled Additional Library Directories. Let’s look at how to build an executable from
the source code in Example 1-3 using CodeWarrior, C++Builder, and Dev-C++.

CodeWarrior

Select New... from the File menu, and select the Project tab of the New dialog. Enter
hellobeatles.mcp as your project’s name, select a location where your project’s con-
figuration files should be stored, and double-click Mac OS C++ Stationery. From the
New Project dialog, expand the nodes Mac OS X Mach-O and Standard Console,
then double-click C++ Console Mach-O. You should now have a project with two
targets, Mach-O C++ Console Debug and Mach-O C++ Console Final, the former
being the default target.

Since you will need to refer to these targets by name when you add dependencies to
this project, you should give the targets descriptive names. For now, rename just the
debug target, as follows. Select the Targets tab on your project’s window, and dou-
ble-click on the name of the debug target to display the Target Settings Window.
Then go to Target ➝ Target Settings and enter hellobeatles Debug in the field labeled
Target Name.

Next, Select the Targets tab on your project’s window, and double-click on the name
of the debug target to display the Target Settings Window. Go to Target ➝ PPC Mac
OS X Target, specify Executable as the Project Type, and enter hellobeatles in the
field labeled File Name. Go to Target ➝ Target Settings and press Choose... to spec-
ify the directory binaries as the location where the output file hellobeatles should be
created.

Select the Files tab on your project’s window and remove the existing source files and
MSL libraries files by dragging them to Trash. Use Add Files... from the Project menu to
add the source file hellobeatles.cpp listed in Example 1-3 to your project. Then use Add
Files... to add the files MSL_All_Mach-O_D.dylib and MSL_Shared_AppAndDylib_
Runtime_D.lib in the directory Metrowerks CodeWarrior/MacOS X Support/Libraries/
Runtime/Runtime_PPC/Runtime_MacOSX/Libs. If you were configuring the release tar-
get instead of the debug target, you would add the libraries MSL_All_Mach-O.dylib and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 1: Building C++ Applications

MSL_Shared_AppAndDylib_Runtime.lib instead. From the Target Settings Window, go
to Target ➝ Access Paths and click on the panel labeled User Paths. Use the control
labeled Add... to add the directory that contains the directories johnpaul and
georgeringo—the grandparent directory of the source files john.hpp, ringo.hpp, etc. This
will allow the include directives in the header hellobeatles.hpp to be resolved correctly.

Using Add Files... from the Project menu, add the project files libjohnpaul.mcp and
libgeorgeringo.mcp to the project hellobeatles.mcp. Go to the Targets tab and expand
the nodes labeled hellobeatles Debug, libjohnpaul.mcp and libgeorgeringo.mcp.
Click on the target icons next to the first child nodes of libjohnpaul.mcp and libgeor-
geringo.mcp, labeled libjohgnpaul Debug and libgeorgeringo Debug. Bold arrows
should appear on these two icons. Enlarge your project’s window, if necessary, to
expose a small link icon on the window’s far right side. Click twice in this column,
opposite the target icons with arrows. Two black dots should appear in this column.

Build the solution by selecting Make from the Project menu. The linker may display
a number of warnings about multiply-defined symbols, but these can safely be
ignored. You can suppress them by going to Linker ➝ Mac OS X Linker and check-
ing Suppress Warning Messages.

Verify that files named libjohnpaul.a, libgeorgeringo.dylib, and hellobeatles have been
created in the directory binaries. You can now run hellobeatles by placing a copy of
the libraries MSL_All_Mach-O_D.dylib in the directory binaries, changing to the
directory binaries, and entering ./hellobeatles from the command line.

C++Builder

Select New from the File menu and then select Console Wizard. From the Console
Wizard dialog, select C++, Multi Threaded, and Console Application. You should
now have a project containing a single source file Unit1.cpp. Remove Unit1.cpp from
the project by right-clicking and selecting Remove From Project. Select Save Project
As… on the File menu, select a directory for storing your project’s configuration files
and enter your project’s name as hello_beatles. I’ve included an underscore in the
project name because C++ Builder does not allow a project to have the same name
as a source file.

Next, select Options... from the Project menu to display the Project Options dialog.
Then go Directories and Conditionals and use the control next to Final output to
specify that your project’s output file, hello_beatles.exe, should be created. By default
this file will be created in the same directory as hello_beatles.bpr; tell C++Builder to
create it in the directory binaries. If you wish, you can also use the control next to
Intermediate output to specify where object files should be created. By default they
will be created in the same directory as the source files.

Next, use Add to Project… from the Project menu to add the source file helllobeatles.cpp
from Example 1-3 to your project.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application with an IDE | 61

Next, from Project Options go to Directories and Conditionals and use the control
next to Include path to select directory that contains the directories johnpaul and
georgeringo—the grandparent directory of the source files john.hpp, ringo.hpp, etc.
This will allow the include directives in the header hellobeatles.hpp to be resolved
correctly.

Next, right-click on the label ProjectGroup1, select Save Project Group As, select the
directory containing the file hello_beatles.bpr, and enter your project group’s name as
hello_beatles.bpg.

Next, add the project files libjohnpaul.bpr and libgeorgeringo.bpr to your project
group by right-clicking on the label hello_beatles and selecting Add Existing
Project…. Build these two projects, as described in Recipes 1.11 and 1.12, if you have
not already done so, then add the output files libjohnpaul.lib and libgeorgeringo.lib to
the project hello_beatles using Add to Project… from the Project menu. Use the up-
arrow key while holding down the Ctrl key, move the projects libjohnpaul and
libgeorgeringo above the project hello_beatles in the Project Manager to ensure that
they will be built first.

Finally, build the solution by selecting Make All Projects from the Build menu. Ver-
ify that a file named hellobeatles.exe has been created in the directory binaries. Select
Run from the Run menu to run the application.

Dev-C++

Select New ➝ Project… from the File menu. From the New project dialog, select
Console Application and C++ Project, and enter hellobeatles as your project’s name.
After pressing OK, specify the location where your project’s configuration file should
be located.

Next, from Project Options go to Build Options and verify that your project’s out-
put file is named hellobeatles.exe. Enter the pathname of the directory binaries under
Executable output directory. If you wish, you can enter the directory where object
files will be created under Object file output director.

Next, remove any existing source files from your project by right-clicking and select-
ing Remove file. Use Save Project as… from the File menu to save your project’s con-
figuration file hellobeatles.dev. Finally, use Add to project from the Project menu to
add the source file helllobeatles.cpp from Example 1-3 to your project.

Next, select Project Options from the Project menu to display the Project Options
dialog. Then go to Directories ➝ Include Directories, select the directory that con-
tains the directories johnpaul and georgeringo—the grandparent directory of the
source files john.hpp, ringo.hpp, etc.—and press Add. This will allow the include
directives in the header hellobeatles.hpp to be resolved correctly.

Finally, from Project Options go to Directories ➝ Libraries Directories and add the
directories that will contain the output files libjohnpaul.a and libgeorgeringo.a of the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 1: Building C++ Applications

projects libjohnpaul and libgeorgeringo. Then go to Parameters ➝ Linker and enter
the options -ljohnpaul and -lgeorgeringo.

Now build the three projects individually using Compile from the Execute menu,
making sure to build hellobeatles last. Run hellobeatles.exe by selecting Run from the
Execute menu.

See Also
Recipes 1.5, 1.10, and 1.18

1.14 Obtaining GNU make

Problem
You want to obtain and install the GNU make utility, useful for building libraries
and executables from source code.

Solution
The solution depends on your operating system.

Windows

While you can obtain prebuilt binaries for GNU make from several locations, to get
the most out of GNU make it should be installed as part of a Unix-like environment.
I recommend using either Cygwin or MSYS, which is a part of the MinGW project.

Cygwin and MinGW are described in Recipe 1.1.

If you installed Cygwin, as described in Recipe 1.1, you already have GNU make. To
run it from the Cygwin shell, simply run the command make.

To install MSYS, begin by installing MinGW, as described in Recipe 1.1. A future
version of the MinGW installer may give you the option of installing MSYS automat-
ically. For now, follow these additional steps.

First, from the MinGW homepage, http://www.mingw.org, go to the MinGW down-
load area and download the latest stable version of the MSYS installation program.
The name of the installation program should be MSYS-<version>.exe.

Next, run the installation program. You will be asked to specify the location of your
MinGW installation and the location where MSYS should be installed. When the
installation program completes, the MSYS installation directory should contain a file
named msys.bat. Running this script will display the MSYS shell, a port of the bash

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining GNU make | 63

shell from which you can run GNU make and other mingw programs such as g++,
ar, ranlib, and dlltool.

To use MSYS it is not necessary for the bin subdirectories of either
your MinGW installation or your MSYS installation to be in your PATH
environment variable.

Unix

First, check whether GNU make is installed on your system by running make -v
from the command line. If GNU make is installed, it should print a message like the
following:

GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
...

If your system has a non-GNU version of make, it’s possible that the GNU version is
installed under the name gmake. You can check this by entering gmake -v from the
command line.

If you use Mac OS X, the easiest way to obtain GNU make is to download the Xcode
development environment from Apple’s web site and follow the installation instruc-
tions. Xcode is currently available at developer.apple.com/tools.

Otherwise, download the latest version of GNU make from ftp://ftp.gnu.org/pub/gnu/
make, unpack it, and follow the installation instructions.

Discussion
The make utility comes in many flavors. Most toolsets provide some variant of make;
for example, Visual C++ comes with a make utility called nmake.exe. Usually these
toolset-specific versions of make have built-in features which make them easy to use
with their particular toolset. As a result, a discussion of make which covers multiple
toolsets will either have to describe several versions of make or will have to deal with
some cases where there is an imperfect fit between a particular version of make and a
particular toolset.

Instead of demonstrating more than one make utility, I’ve chosen to focus on GNU
make, which is easily the most powerful and portable make variant. GNU make is
designed to work first and foremost with GCC; as a result, using GNU make with
other toolsets, particularly Windows toolsets, can be tricky at times. Still, because
GNU make is so flexible, it’s far easier to use GNU make with non-GNU tools than it
is to use most of the other makes, such as nmake.exe, with a toolset other than the
one it was designed for.

Much of GNU make’s power comes from its ability to execute complex shell scripts.
If you’ve worked with both Unix and Windows, you know that the Windows shell

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 1: Building C++ Applications

cmd.exe leaves a lot to be desired: it’s missing many valuable commands, has a lim-
ited ability to execute scripts, and places severe restrictions on the length of com-
mand lines. Consequently, forcing GNU make to use cmd.exe severely limits its
usefulness. Fortunately, Cygwin and MSYS provide excellent environments for using
GNU make on Windows.

MSYS provides the minimal environment necessary to run Unix-style makefiles and
configure scripts on Windows. Among the useful tools it provides are awk, cat, cp,
grep, ls, mkdir, mv, rm, rmdir, and sed. MSYS was designed to work with GCC, and
it does so beautifully; it works somewhat less smoothly with other Windows
toolsets, however, particularly those that provide .bat files for setting environment
variables and those that use slashes (/) instead of a hyphens (-) for command-line
options.

Where MSYS is minimalist, Cygwin is maximalist. Cygwin make can do everything
MSYS make can do, and much more. Portable makefiles, however, restrict them-
selves to a narrow range of GNU utilities, and MSYS supports all of these.

See Also
Recipe 1.1

1.15 Building A Simple “Hello, World” Application
with GNU make

Problem
You want to use GNU make to build a simple “Hello, World” program, such as that
in Example 1-4.

Solution
Before you write your first makefile, you’ll need to know a little terminology. A
makefile consists of a collection of rules of the form

targets: prerequisites

command-script

Here targets and prerequisites are space-separated strings, and command-script
consists of zero or more lines of text, each of which begins with a Tab character. Tar-
gets and prerequisites are usually files names, but sometimes they are simply formal
names for actions for make to perform. The command script consists of a sequence
of commands to be passed to a shell. Roughly speaking, a rule tells make to generate
the collection of targets from the collection of prerequisites by executing the com-
mand script.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building A Simple “Hello, World” Application with GNU make | 65

Whitespace in makefiles is significant. Lines containing command
scripts must begin with a Tab rather than a Space—this is a source of
some of the most common beginner errors. In the following examples,
lines which begin with a Tab are indicated by an indentation of four
characters.

Now you’re ready to begin. Create a text file named makefile in the directory con-
taining your source file. In this file, declare four targets. Call the first target all, and
specify the name of the executable you wish to build as its sole prerequisite. It should
have no command script. Give the second target the same name as your executable.
Specify your application’s source file as its prerequisite, and specify the command
line needed to build the executable from the source file as your target’s command
script. The third target should be called install. It should have no prerequisites, and
should have a command script to copy the executable from the directory containing
the makefile to the directory where you want it installed. The last target should be
called clean. Like install, it should have no prerequisites. Its command script should
remove the executable and the intermediate object file from the current directory.
The clean and install targets should both be labeled as phony targets, using the
PHONY attribute.

For example, to build an executable from the source code in Example 1-4 using
GCC, your makefile might look as shown in Example 1-14.

To build an executable from the source code in Example 1-4 using Visual C++, you
can use the following makefile shown in Example 1-15.

Example 1-14. Makefile to build the executable hello with GCC

This is the default target, which will be built when
you invoke make
.PHONY: all
all: hello

This rule tells make how to build hello from hello.cpp
hello: hello.cpp
 g++ -o hello hello.cpp

This rule tells make to copy hello to the binaries subdirectory,
creating it if necessary
.PHONY: install
install:
 mkdir -p binaries
 cp -p hello binaries

This rule tells make to delete hello and hello.o
.PHONY: clean
clean:
 rm -f hello

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 1: Building C++ Applications

Commands and lists of targets or prerequisites can span more than
one line of text in a makefile by using the continuation character \, just
as in C++ source files.

To build your executable, set any environment variables required by your command-
line tools, change to the directory containing makefile and enter make. To copy your
executable to the binaries subdirectory, enter make install. To delete the executable
and the intermediate object file from the makefile directory, enter make clean.

If you have installed the Cygwin environment, described in Recipe 1.1,
you can execute the makefile in Example 1-15 directly from the
Windows shell cmd.exe.

You can also execute this makefile from the Cygwin shell, as follows.
From cmd.exe, run vcvars32.bat to set Visual C++’s environment vari-
ables. Next, run cygwin.bat to start the Cygwin shell. If you place the
Cygwin installation directory in your PATH, you can start the Cygwin
shell from cmd.exe simply by entering cygwin. Finally, change to the
directory containing the makefile and enter make.

Similarly, you can execute the makefile from the MSYS shell: run
vcvars32.bat from cmd.exe, then run msys.bat to start the MSYS shell.

If your toolset provides a script to set environment variables, running a
makefile from Cygwin or MSYS is slightly more involved than running
it from cmd.exe. It’s necessary for some makefiles, however, since they
simply won’t work from cmd.exe.

Example 1-15. Makefile to build the executable hello.exe with Visual C++

#default target
.PHONY: all
all: hello.exe

#rule to build hello.exe
hello.exe: hello.cpp
 cl -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t \
 -Fehello hello.cpp

.PHONY: install
install:
 mkdir -p binaries
 cp -p hello.exe binaries

.PHONY: clean
clean:
 rm -f hello.exe

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building A Simple “Hello, World” Application with GNU make | 67

Discussion
In the next few recipes, you’ll see that GNU make is a powerful tool for building
complex projects. But what does it actually do? Here’s how it works. When make is
invoked with no arguments, it looks in the current directory for a file named
GNUmakefile, makefile or Makefile, and attempts to build the first target it contains,
called the default target. If the default target is up to date—meaning that it exists,
that all its prerequisites are up to date, and that none of its prerequisites has been
modified more recently than it has—make’s job is done. Otherwise, it attempts to
generate the default target from its prerequisites by executing its command script.
Like the definition of up to date, this process is recursive: for each prerequisite which
is not up to date, make searches for a rule having that prerequisite as a target, and
starts the whole process again. This continues until the default target is up to date or
until an error occurs.

It follows from the above description that a target having no prerequisites is up to
date if and only if it corresponds to a file on the filesystem. Therefore, a target corre-
sponding to a non-existent file is never up to date, and can be used to force a com-
mand script to be executed unconditionally. Such targets are called phony targets.

By labeling a target with the .PHONY attribute, as in Examples 1-14
and 1-15, you can tell make that the target does not correspond to a
file, and so should always be always rebuilt.

Conversely, a prerequisite corresponding to an existing file is always up to date, pro-
vided it doesn’t appear as the target of a rule.

Now let’s look at what happens when we execute the makefile in Example 1-14. The
phony target all is always out of date: its only purpose is to tell make to build hello.
exe. In such a simple makefile, there’s no need for an all target; in more complex
examples, the all target may have several prerequisites. The rule with target hello
tells make to build hello, if necessary, by invoking g++. Assuming that the current
directory is empty except for makefile and hello.cpp, the target hello is not up to
date. The prerequisite is up to date, however, because the file hello.cpp exists, and
because hello.cpp does not appear as the target of any rule. Consequently, make
invokes g++ to compile and link hello.cpp, producing the file hello. The prerequisite
to the all target is now up to date, so make builds the all target—by executing an
empty command script—and exits.

When you invoke make with a command-line argument corresponding to a target,
make attempts to build that target. Therefore executing make install causes the fol-
lowing commands to be executed:

 mkdir -p binaries
 cp -p hello binaries

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68 | Chapter 1: Building C++ Applications

The first command creates the directory binaries, if it doesn’t already exist; the sec-
ond command copies hello to that directory. Similarly, make clean invokes the
command

rm -f hello

which deletes the hello.

If you’re using Windows, the mkdir, cp, and rm commands used by
the install and clean targets refer to the GNU tools distributed with
Cygwin or MSYS.

Once you understand how make analyzes dependencies, Example 1-14 may seem
pretty simple. In fact, however, it’s considerably more complicated than it needs to
be; looking at the various ways it can be simplified is a good way to learn some of the
rudiments of makefiles.

Make variables

GNU make supports variables whose values are strings. The most common use of
variables in makefiles is as symbolic constants; instead of hard-coding the name of a
file or a shell command in several locations within a makefile, you can assign the file
or command name to a variable and use the variable instead. This leads to simpler
and easier to maintain makefiles. For example, you can rewrite the makefile from
Example 1-14 using make variables, as shown in Example 1-6.

Example 1-16. Makefile to build the executable hello with GCC, modified to use make variables

Specify the target file and the install directory
OUTPUTFILE=hello
INSTALLDIR=binaries

Default target
.PHONY: all
all: $(OUTPUTFILE)

Build hello from hello.cpp
$(OUTPUTFILE): hello.cpp
 g++ -o hello hello.cpp

Copy hello to the binaries subdirectory
.PHONY: install
install:
 mkdir -p $(INSTALLDIR)
 cp -p $(OUTPUTFILE) $(INSTALLDIR)

Delete hello
.PHONY: clean
clean:
 rm -f $(OUTPUTFILE)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building A Simple “Hello, World” Application with GNU make | 69

Here I’ve introduced two make variables, OUTPUTFILE and INSTALLDIR. As you can see,
make variables can be assigned values using the assignment operator =, and they can
be evaluated by enclosing them in parentheses and prefixing a dollar sign.

You can also set the value of a make variable on the command line, using the syntax
make X=Y. In addition, when make starts up, each environment variable is used to
initialize a make variable with the same name and value. Values specified on the
command line take precedence over values inherited from the environment; values
specified in the makefile itself take precedence over values specified on the com-
mand line.

GNU make also supports automatic variables that take special values when evalu-
ated in a command script. Most importantly, the variable $@ represents the filename
of the target, the variable $< represents the filename of the first prerequisite, and the
variable $^ represents the sequence of prerequisites, separated by spaces. Using these
variables, we can further simplify the makefile from Example 1-16, as shown in
Example 1-17.

Within the command script g++ -o $@ $<, the variable $@ expands to hello and the
variable $< expands to hello.cpp. Therefore the makefile in Example 1-17 is equiva-
lent to that in Example 1-16, but involves less code duplication.

Implicit Rules

The makefile in Example 1-17 can still be radically simplified. In fact, the command
script associated with the target hello is superfluous, as you can demonstrate by exe-
cuting the makefile in Example 1-18.

Example 1-17. Makefile to build the executable hello with GCC, modified to use automatic variables

Specify the target file and the install directory
OUTPUTFILE=hello
INSTALLDIR=binaries

Default target
.PHONY: all
all: $(OUTPUTFILE)

Build hello from hello.cpp
$(OUTPUTFILE): hello.cpp
 g++ -o $@ $<

Install and clean targets as in Example 1-16

Example 1-18. Makefile to build the executable hello with GCC, modified to use implicit
rules

Specify the target file and the install directory
OUTPUTFILE=hello
INSTALLDIR=binaries

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 1: Building C++ Applications

How does make know how to build the executable hello from the source file hello.
cpp, without being told? The answer is that make maintains an internal database of
implicit rules representing operations commonly performed when building C and
C++ applications. For example, the implicit rule to generate an executable file from a
.cpp file looks like Example 1-19.

Rules with first lines of the form %xxx:%yyy are known as pattern rules; the % charac-
ter act as a wildcard. When no ordinary rule matches an out-of-date prerequisite,
make searches the available pattern rules. For each pattern rule, make tries to find a
string which when substituted for the wildcard character in the target portion of the
pattern rule yields the out-of-date prerequisite. If make finds such a string, make sub-
stitutes it for the wildcard character in both the target and prerequisite portions of
the pattern rule to produce a new rule. make then attempts to build the out-of-date
prerequisite using the new rule.

You can use make -p to print GNU make’s database of implicit rules.

For example, when the makefile in Example 1-18 is first executed, the prerequisite
hello of the default target all is out of date. Although hello does appear as a target
in the rule $(OUTPUTFILE): hello.cpp, this rule has no command script, and so is use-
less for building the file hello.make therefore searches its internal database, and finds
the rule shown in Example 1-19. By substituting the string hello for the wildcard
character in the rule in Example 1-19, make generates the following rule, with hello
as its target:

hello: hello.cpp
 $(LINK.cpp) $^ $(LOADLIBES) $(LDLIBS) -o $@

Default target
.PHONY: all
all: $(OUTPUTFILE)

Tell make to rebuild hello whenever hello.cpp is modified
$(OUTPUTFILE): hello.cpp

Install and clean targets as in Example 1-16

Example 1-19. A pattern rule from make’s internal database

%: %.cpp
commands to execute (built-in):
 $(LINK.cpp) $^ $(LOADLIBES) $(LDLIBS) -o $@

Example 1-18. Makefile to build the executable hello with GCC, modified to use implicit
rules (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building A Simple “Hello, World” Application with GNU make | 71

So far, so good—but clearly there’s more to the story. Looking once again through
make’s internal database reveals that the variable LINK.cpp expands, by default, to
$(LINK.cc). LINK.cc, in turn, expands by default to

$(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)

Finally, the variable CXX expands by default to g++, and the other four variables—
$(CXXFLAGS), $(CPPFLAGS), $(LDFLAGS), and $(TARGET_ARCH)—expand to empty
strings. When all these substitutions are carried out, we’re left with the following
rule, which by now may look familiar.

hello: hello.cpp
 g++ $^ -o $@

Confused? I don’t blame you. If you study the above explanation and
spend some time examining make’s internal database, implicit rules
will start to make sense.

Customization points

Now that you see how the pattern rule in Example 1-19 causes make to build the
executable hello from the source file hello.cpp, you might well wonder why it was
necessary to go through so many intermediate steps. Why not simply add the rule

%: %.cpp
 g++ $^ -o $@

to make’s internal database, instead of the complex rule in Example 1-19? The
answer is that the intermediate variables such as $(CXX), $(CXXFLAGS), $(CPPFLAGS),
and $(LDFLAGS), serve as user customization points. For example, you can specify
additional flags to be passed to the linker by specifying a value for LDFLAGS on the
command line, in a makefile, or by setting an environment variable. The variables
CPPFLAGS and CXXFLAGS play a similar role for C++ preprocessor and compiler
options, respectively. You can even specify a compiler other than GCC by setting the
variable CXX. For example, to build hello with Intel for Linux using the makefile in
Example 1-18, you can enter make CXX=icpc from the command line—assuming
you’ve set the environment variables required by the Intel compiler.

VPATH and the vpath directive

In Example 1-18, make is able to apply the correct pattern rule because the .cpp file
resides in the directory where the output file is to created. If your source files are in a
different directory, you can use the VPATH variable to tell make where to search for
targets or prerequisites:

VPATH = <path-to-cpp-files>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 1: Building C++ Applications

You can also use a vpath directive to tell make to look in a certain location for partic-
ular types of files:

look for .exp files in ../lib
vpath %. exp../lib

See Also
Recipes 1.2 and 1.7

1.16 Building a Static Library with GNU Make

Problem
You want to use GNU make to build a static library from a collection of C++ source
files, such as those listed in Example 1-1.

Solution
First, create a makefile in the directory where you want your static library to be cre-
ated, and declare a phony target all whose single prerequisite is the static library.
Next, declare your static library target. Its prerequisites should be the object files that
the library will contain, and its command script should be a command line to build
the library from the collection of object files, as demonstrated in Recipe 1.3. If you
are using GCC or a compiler with similar command-line syntax, customize the
implicit patterns rules, if necessary, by modifying one or more of the variables CXX,
CXXFLAGS, etc. used in make’s database of implicit rules, as shown in Recipe 1.15.
Otherwise, write a pattern rule telling make how to compile .cpp files into object
files, using the command lines from Table 1-8 and the pattern rule syntax explained
in Recipe 1.16. Next, declare targets indicating how each of your library’s source files
depends on the headers it includes, directly or indirectly. You can write these depen-
dencies by hand or arrange for them to be generated automatically. Finally, add
install and clean targets as demonstrated in Recipe 1.15.

For example, to build a static library from the source files listed in Example 1-2 using
GCC on Unix, create a makefile in the directory johnpaul, as shown in Example 1-20.

Example 1-20. Makefile for libjohnpaul.a using GCC on Unix

Specify extensions of files to delete when cleaning
CLEANEXTS = o a

Specify the target file and the install directory
OUTPUTFILE = libjohnpaul.a
INSTALLDIR = ../binaries

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Library with GNU Make | 73

Similarly, to build a static library using Visual C++, your makefile might look as
shown in Example 1-21.

Default target
.PHONY: all
all: $(OUTPUTFILE)

Build libjohnpaul.a from john.o, paul.o, and johnpaul.o
$(OUTPUTFILE): john.o paul.o johnpaul.o
 ar ru $@ $^
 ranlib $@

No rule to build john.o, paul.o, and johnpaul.o from .cpp
files is required; this is handled by make's database of
implicit rules

.PHONY: install
install:
 mkdir -p $(INSTALLDIR)
 cp -p $(OUTPUTFILE) $(INSTALLDIR)

.PHONY: clean
clean:
 for file in $(CLEANEXTS); do rm -f *.$$file; done

Indicate dependencies of .ccp files on .hpp files
john.o: john.hpp
paul.o: paul.hpp
johnpaul.o: john.hpp paul.hpp johnpaul.hpp

Example 1-21. Makefile for libjohnpaul.lib using Visual C++

Specify extensions of files to delete when cleaning
CLEANEXTS = obj lib

Specify the target file and the install directory
OUTPUTFILE = libjohnpaul.lib
INSTALLDIR = ../binaries

Pattern rule to build an object file from a .cpp file
%.obj: %.cpp
 "$(MSVCDIR)/bin/cl" -c -nologo -EHsc -GR -Zc:forScope -Zc:wchar_t \
 $(CXXFLAGS) $(CPPFLAGS) -Fo"$@" $<

Default target
.PHONY: all
all: $(OUTPUTFILE)

Build libjohnpaul.lib from john. obj, paul. obj, and johnpaul. obj
$(OUTPUTFILE): john.obj paul.obj johnpaul.obj
 "$(MSVCDIR)/bin/link" -lib -nologo -out:"$@" $^

Example 1-20. Makefile for libjohnpaul.a using GCC on Unix (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 1: Building C++ Applications

In Example 1-21, I’ve expressed Visual C++’s link.exe command as
"$(MSVCDIR)/bin/link", using the environment variable MSVCDIR set by
vcvars32.bat. This prevents confusion between the Visual C++ linker
and the Unix link command, supported by Cygwin and MSYS. For
consistency, I’ve also expressed Visual C++’s compile command using
MSVCDIR.

Discussion
Let’s walk through Example 1-20. I start by defining variables to represent the out-
put file, the install directory, and the extensions of files that should be deleted when
the target clean is built. Next, I declare the default target all, as in Example 1-14.

The rule to build the static library looks like this:

$(OUTPUTFILE): john.o paul.o johnpaul.o
 ar ru $@ $^
 ranlib $@

It’s a straightforward adaptation of the entry for GCC in Table 1-10. Here
$(OUTPUTFILE) and $@ both expand to libjohnpaul.a, and $^ expands to the list of
prerequisites john.o paul.o johnpaul.o.

The next two rules declare install and clean targets, as in Recipe 1.15. The only dif-
ference is that in Example 1-20 I use a shell looping construct to remove all files
whose extension appears in the list o a — i.e., all object or static library files:

for file in $(CLEANEXTS); do rm -f *.$$file; done

I’ve used a double dollar sign to prevent make from expanding the variable $$file
rather than passing it on to the shell.

The last three rules specify the dependency relationships between the library’s .cpp
files and the headers they include. There’s one rule for each .cpp file; its target is the

.PHONY: install
install:
 mkdir -p $(INSTALLDIR)
 cp -p $(OUTPUTFILE) $(INSTALLDIR)

.PHONY: clean
clean:
 for file in $(CLEANEXTS); do rm -f *.$$file; done

Indicate dependency of .cpp files on .hpp files
john.obj: john.hpp
paul.obj: paul.hpp
johnpaul. obj: john.hpp paul.hpp johnpaul.hpp

Example 1-21. Makefile for libjohnpaul.lib using Visual C++ (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Static Library with GNU Make | 75

object file to be built from the .cpp file, and its prerequisites are the header files
included—directly or indirectly—by the .cpp file:

john.o: john.hpp
paul.o: paul.hpp
johnpaul.o: john.hpp paul.hpp johnpaul.hpp

This can be understood as follows. If a .cpp file includes a header file—directly or indi-
rectly—it must be rebuilt each time the header is modified. However, since the .cpp file
exists and does not appear as the target of any rule, it is never out of date, as discussed
in Recipe 1.15. Consequently, when the header is modified, no recompilation is trig-
gered. The fix is to declare a rule making these dependencies explicit; whenever one of
the headers in question is modified, the object file corresponding to the .cpp will
become out of date, causing the .cpp file to be recompiled.

This solution is only adequate for very small projects, since it’s extremely difficult to
keep the targets representing source file dependencies synchronized with a changing
codebase. Fortunately, there are several methods for generating these dependencies
automatically. For example, you can replace the last three rules in Example 1-20 with
the following:

Generate dependencies of .cpp files on .hpp files
include john.d paul.d johnpaul.d

%.d: %.cpp
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

This bit of code relies on the compiler option -M which causes GCC to output
dependency information for inclusion in a makefile. For a detailed explanation of
how it works—and why it’s sometimes inadequate—see Managing Projects with
GNU make, Third Edition, by Robert Mecklenburg (O’Reilly).

Put the code to generate dependencies at the end of your makefile.

This method can be adapted to work with most toolsets, since most compilers pro-
vide an option similar to GCC’s -M; in fact, the option is usually either -M or -m.
Visual C++, however, does not provide an option for generating makefile dependen-
cies. If you use Visual C++, you have two choices. You can use the -Gm option,
together with one of the options -Zi or -ZI, discussed in Recipe 1.21. The -Gm
option tells the compiler to build a database, stored in a file with the extension idb,
containing information about dependencies between source files. The .idb file is cre-
ated when a .cpp file, or collection of .cpp files, is initially compiled. On subsequent
compilations, only those source files which have been modified or which depend on
headers which have been modified are recompiled.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 1: Building C++ Applications

Alternatively, you can use the -showIncludes option, together with the option -E. The
-showIncludes option causes the compiler to output a message to standard error each
time an include directive is encountered. The -E option tells the compiler to run the
preprocessor and then exit, without building any binary files. Using a bit of shell
scripting, you can use the output generated by -showIncludes to construct makefile
dependencies:

include john.d paul.d johnpaul.d

%.d: %.cpp
 "$(MSVCDIR)/bin/cl" -E -showIncludes $< 2> $@.$$$$ > /dev/null; \
 sed -n 's/^Note: including file: *\(.*\)/$*.obj•$*.d:\1/gp' \

< $@.$$$$ | sed 's:\\:/:g;s: :\\ :gp' > $@; \
 rm -f $@.$$$$

In this example, the character • represents a Tab.

Let’s make one last improvement to Example 1-20. Currently, the sequence john
paul johnpaul occurs in two places; in the prerequisites of the rule to build the static
library, and in the include directive used to generate dependencies. If the list of
source files changes, you’ll have to update the makefile in two locations. It’s better to
define a variable SOURCES, and to replace both occurrences of the sequence john paul
johnpaul with expressions involving SOURCES:

SOURCES = john.cpp paul.cpp johnpaul.cpp
...
Build libjohnpaul.a from john.o, paul.o, and johnpaul.o
$(OUTPUTFILE): $(subst .cpp,.o,$(SOURCES))
 ar ru $@ $^
 ranlib $@
...

Generate dependencies of .ccp files on .hpp files
include $(subst .cpp,.d,$(SOURCES))

%.d: %.cpp
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

Here I’m using the make function $(subst x,y,str), which replaces x with y every-
where in str.

GNU make supports a rich collection of functions for string and file-
name manipulation and more. It also supports user defined functions.
As usual, for a thorough treatment, see Managing Projects with GNU
make, Third Edition, by Robert Mecklenburg (O’Reilly).

See Also
Recipes 1.2 and 1.7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Dynamic Library with GNU Make | 77

1.17 Building a Dynamic Library with GNU Make

Problem
You wish to use GNU make to build a dynamic library from a collection of C++
source files, such as those listed in Example 1-2.

Solution
First, create a makefile in the directory where you want your dynamic library to be
created, and declare a phony target all whose single prerequisite is the dynamic
library. Next, declare your dynamic library target. Its prerequisites should be the
object files from which the library will be built, and its command script should be a
command line to build the library from the collection of object files, as demon-
strated in Recipe 1.4. If you are using GCC or a compiler with similar command-line
syntax, customize the implicit patterns rules, if necessary, by modifying one or more
of the variables CXX, CXXFLAGS, etc. used in make’s database of implicit rules, as shown
in Recipe 1.15. Otherwise, write a pattern rule telling make how to compile .cpp files
into object files, using the command lines from Table 1-8 and the pattern rule syn-
tax explained in Recipe 1.16. Finally, add install and clean targets, as demon-
strated in Recipe 1.15, and machinery to automatically generate source file
dependencies, as demonstrated in Recipe 1.16.

For example, to build a dynamic library from the source files listed Example 1-2
using GCC on Unix, create a makefile in the directory georgeringo, as shown in
Example 1-22.

Example 1-22. Makefile for libgeorgeringo.so using GCC

Specify extensions of files to delete when cleaning
CLEANEXTS = o so

Specify the source files, the target files,
and the install directory
SOURCES = george.cpp ringo.cpp georgeringo.cpp
OUTPUTFILE = libgeorgeringo.so
INSTALLDIR = ../binaries

.PHONY: all
all: $(OUTPUTFILE)

Build libgeorgeringo.so from george.o, ringo.o,
and georgeringo.o; subst is the search-and-replace
function demonstrated in Recipe 1.16
$(OUTPUTFILE): $(subst .cpp,.o,$(SOURCES))
 $(CXX) -shared -fPIC $(LDFLAGS) -o $@ $^

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 1: Building C++ Applications

Discussion
The makefile in Example 1-22 is a straightforward application of the ideas from
Recipes 1.4, 1.15, and 1.16. The main difference between Example 1-22 and
Example 1-20 is the rule for building lingeorgeringo.so from the object files george.o,
ringo.o, and georgeringo.o:

$(OUTPUTFILE): $(subst .cpp,.o,$(SOURCES))
 $(CXX) -shared -fPIC $(LDFLAGS) -o $@ $^

Here $(OUTPUTFILE) expands to lingeorgeringo.so and the expression $(subst .cpp,.
o,$(SOURCES)) expands to george.o, ringo.o, and georgeringo.o, as illustrated in Rec-
ipe 1.16. The command script $(CXX) -shared -fPIC $(LDFLAGS) -o $@ $^ is an adapta-
tion of the GCC command line presented in Table 1-11.

See Also
Recipes 1.4, 1.9, 1.12, 1.19, and 1.23

1.18 Building a Complex Application with GNU make

Problem
You wish to use GNU make to build an executable which depends on several static
and dynamic libraries.

.PHONY: install
install:
 mkdir -p $(INSTALLDIR)
 cp -p $(OUTPUTFILE) $(INSTALLDIR)

.PHONY: clean
clean:
 for file in $(CLEANEXTS); do rm -f *.$$file; done

Generate dependencies of .ccp files on .hpp files
include $(subst .cpp,.d,$(SOURCES))

%.d: %.cpp
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
rm -f $@.$$$$

Example 1-22. Makefile for libgeorgeringo.so using GCC (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application with GNU make | 79

Solution
Follow these steps:

1. Create makefiles for the libraries used by your application, as described in
Recipes 1.16 and 1.17. These makefiles should reside in separate directories.

2. Create a makefile in yet another directory. This makefile can be used to build
your application, but only after the makefiles in step 1 have been executed. Give
this makefile a phony target all whose prerequisite is your executable. Declare a
target for your executable with prerequisites consisting of the libraries which
your application uses, together with the object files to be built from your appli-
cation’s .cpp files. Write a command script to build the executable from the col-
lection libraries and object files, as described in Recipe 1.5. If necessary, write a
pattern rule to generate object files from .cpp files, as shown in Recipe 1.16. Add
install and clean targets, as shown in Recipe 1.15, and machinery to automati-
cally generate source file dependencies, as shown in Recipe 1.16.

3. Create a makefile in a directory which is an ancestor of the directories contain-
ing all the other makefiles—let’s call the new makefile the top-level makefile and
the others the subordinate makefiles. Declare a default target all whose prerequi-
site is the directory containing the makefile created in step 2. Declare a rule
whose targets consists of the directories containing the subordinate makefiles,
and whose command script invokes make in each target directory with a target
specified as the value of the variable TARGET. Finally, declare targets specifying
the dependencies between the default targets of the subordinate makefiles.

For example, to build an executable from the source files listed in Example 1-3 using
GCC on Unix, create a makefile as shown in Example 1-23.

Example 1-23. Makefile for hellobeatles.exe using GCC

Specify the source files, target files, the build directories,
and the install directory
SOURCES = hellobeatles.cpp
OUTPUTFILE = hellobeatles
LIBJOHNPAUL = libjohnpaul.a
LIBGEORGERINGO = libgeorgeringo.so
JOHNPAULDIR = ../johnpaul
GEORGERINGODIR = ../georgeringo
INSTALLDIR = ../binaries

#
Add the parent directory as an include path
#
CPPFLAGS += -I..

#
Default target
#

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 1: Building C++ Applications

Next, create a top-level makefile in the directory containing johnpaul, georgeringo,
hellobeatles, and binaries, as shown in Example 1-24.

.PHONY: all
all: $(HELLOBEATLES)

#
Target to build the executable.
#
$(OUTPUTFILE): $(subst .cpp,.o,$(SOURCES)) \
 $(JOHNPAULDIR)/$(LIBJOHNPAUL) \
 $(GEORGERINGODIR)/$(LIBGEORGERINGO)
 $(CXX) $(LDFLAGS) -o $@ $^

.PHONY: install
install:
 mkdir -p $(INSTALLDIR)
 cp -p $(OUTPUTFILE) $(INSTALLDIR)

.PHONY: clean
clean:
 rm -f *.o
 rm -f $(OUTPUTFILE)

Generate dependencies of .ccp files on .hpp files
include $(subst .cpp,.d,$(SOURCES))

%.d: %.cpp
 $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
 sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
 rm -f $@.$$$$

Example 1-24. Top level makefile for the source code from Examples 1-1, 1-2, and 1-3

All the targets in this makefile are phony
.PHONY: all johnpaul georgeringo hellobeatles

Default target
all: hellobeatles

The targets johnpaul, georgeringo, and hellobeatles represent
directories; the command script invokes make in each directory
johnpaul georgeringo hellobeatles:
 $(MAKE) --directory=$@ $(TARGET)

This rule indicates that the default target of the makefile
in directory hellobeatles depends on the default targets of
the makefiles in the directories johnpaul and georgeringo
.PHONY: hellobeatles
hellobeatles: johnpaul georgeringo

Example 1-23. Makefile for hellobeatles.exe using GCC (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building a Complex Application with GNU make | 81

To build hellobeatles, change to the directory containing the top-level makefile, and
enter make. To copy the files libjohnpaul.a, libgeorgeringo.so, and hellobeatles to the
directory binaries, enter make TARGET=install. To clean the project, enter make
TARGET=clean.

Discussion
The approach to managing complex projects demonstrated in this recipe is known as
recursive make. It allows you to organize a project into a collection of modules, each
with its own makefile, and to specify the dependencies between the modules. It’s not
limited to a single top-level makefile with a collection of child makefiles: the tech-
nique can be extended to handle multi-level tree structures. While recursive make
was once the standard technique for managing large projects with make, there are
other methods which are now considered superior. For details, refer once again to
Managing Projects with GNU make, Third Edition, by Robert Mecklenburg
(O’Reilly).

Example 1-23 is a straightforward application of the techniques demonstrated in
Recipes 1.15, 1.16, and 1.17. There’s really just one interesting point. As illustrated
in Recipe 1.15, when compiling hellobeatles.cpp from the command line it’s neces-
sary to use the option -I.. so that the compiler can find the headers johnpaul.hpp and
georgeringo.hpp. One solution would be to write an explicit rule for building hello-
beatles.o with a command script containing the option -I.., like so:

hellobeatles.o: hello.beatles.cpp
 g++ -c –I.. –o hellobeatles.o hellobeatles.cpp

Instead, I’ve taken advantage of the customization point CPPFLAGS, described in Rec-
ipe 1.15, to specify that whenever an object file is compiled from a .cpp file, the
option -I.. should be added to the command-line:

CPPFLAGS += -I..

I’ve used the assignment operator +=, instead of =, so that the effect will be cumula-
tive with whatever value of CPPFLAGS may have been specified on the command line
or in the environment.

Now let’s look at how Example 1-24 works. The most important rule is the one
which causes make to be invoked in each of the directories johnpaul, georgeringo,
and hellobeatles:

johnpaul georgeringo hellobeatles:
 $(MAKE) --directory=$@ $(TARGET)

To understand this rule, you need to know three things. First, the variable MAKE
expands to the name of the currently running instance of make. Usually this will be
make, but on some systems it could be gmake. Second, the command line option
--directory=<path> causes make to be invoked with <path> as its current directory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 1: Building C++ Applications

Third, a rule with several targets is equivalent to a collection of rules, each having
one target, and having identical command scripts. So the above rule is equivalent to:

johnpaul:
 $(MAKE) --directory=$@ $(TARGET)

georgeringo:
 $(MAKE) --directory=$@ $(TARGET)

hellobeatles:
 $(MAKE) --directory=$@ $(TARGET)

This in turn is equivalent to:

johnpaul:
 $(MAKE) --directory=johnpaul $(TARGET)

georgeringo:
 $(MAKE) --directory=georgeringo $(TARGET)

hellobeatles:
 $(MAKE) --directory=hellobeatles $(TARGET)

The effect of the rule, therefore, is to invoke the makefiles in each of the directories
johnpaul, georgeringo, and hellobeatles, with the value of the variable TARGET tacked
onto the command line. As a result, you can build target xxx of each of the subordi-
nate makefiles by executing the top-level makefile with the option TARGET=xxx.

The final rule of the makefile ensures that the subordinate makefiles are executed in
the correct order; it simply declares that the target hellobeatles depends on the tar-
gets johnpaul and georgeringo:

hellobeatles: johnpaul georgeringo

In a more complex application, there might be many dependencies between the exe-
cutable and its component libraries. For each such component, declare a rule indicat-
ing the other components on which it directly depends.

See Also
Recipes 1.5, 1.10, and 1.13

1.19 Defining a Macro

Problem
You want to define the preprocessor symbol name, assigning it either an unspecified
value or the value value.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Defining a Macro | 83

Solution
The compiler options for defining a macro from the command line are shown in
Table 1-16. Instructions for defining a macro from your IDE are given in Table 1-17.
To define a macro using Boost.Build, simply add a property of the form <define>
name[=value] to your target’s requirements, as shown in Table 1-15 and Example 1-12.

Discussion
Preprocessor symbols are used frequently in C++ source code to allow a single col-
lection of source files to be used with several build configurations or operating sys-
tems. For example, suppose you want to write a function that checks whether a file is
a directory. Currently, the C++ standard library does not provide the functionality
necessary to perform this task; consequently, your function will need to make use of
platform specific features. If you want your code to work both on Windows and on
Unix, you’ll have to make sure that the code that makes use of Windows-specific fea-
tures is not visible to the compiler when compiling on Unix, and vice versa. The
usual way to achieve this is through conditional compilation, as illustrated in
Example 1-25.

Table 1-16. Defining a macro from the command line

Toolset Option

All -Dname[=value]

Table 1-17. Defining a macro from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Preprocessor and
enter name[=value] under Preprocessor Definitions, using semicolons to separate multiple entries.

CodeWarrior From the Target Settings Window, go to Language Settings ➝ C/C++ Preprocessor and enter:

#define name[=value]

in the area labeled Prefix Text.

C++Builder From Project Options, go to Directories/Conditionals and enter name[=value] under Preprocessor
Definitions, using semicolons to separate multiple entries.

Dev-C++ From Project Options, select Parameters and enter:

-Dname[=value]

under C++ Compiler.

Example 1-25. Conditional compilation using predefined macros

#ifdef _WIN32
include <windows.h>
#else // Not Windows – assume we're on Unix
include <sys/stat.h>
#endif

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 1: Building C++ Applications

On Windows, all the toolsets except the Cygwin port of GCC define the macro _WIN32;
macros defined automatically in this way are known as predefined macros.
Example 1-25 uses the predefined macro WIN32 to determine which operating system
it is being compiled under and to enable the appropriate platform-specific code.

Often, however, the configuration information necessary to perform this kind of con-
ditional compilation is not available as predefined macros. In such cases, it’s neces-
sary to introduce your own macros and to give them appropriate values using the
methods shown in Tables 1-15, 1-16, and 1-17. A good example is Example 1-2.
On Windows, you want the function georgeringo() to be declared with the attribute
_ _declspec(dllexport) when the DLL georgeringo.dll is being built, but with the
attribute _ _declspec(dllimport) otherwise. As described in Recipe 1.4, you can
achieve this effect by defining the preprocessor symbol GEORGERINGO_DLL from the
command line when building the DLL, but not when compiling code that uses the
DLL.

When you fail to specify a value for a macro, most compilers assign it
the value 1, but others assign it an empty value. When macros are used
to enable conditional compilation as in Example 1-25, this difference
is not important; if you really need a macro to expand to a particular
value, however, you should specify that value explicitly using the syn-
tax -D<name>=<value>.

See Also
Recipes 1.4, 1.9, 1.12, and 1.17

1.20 Specifying a Command-Line Option
from Your IDE

Problem
You want to pass a command-line option to your compiler or linker, but it doesn’t
correspond to any of the project settings available through your IDE.

bool is_directory(const char* path)
{
#ifdef _WIN32
 // Windows implementation
#else
 // Unix implementation
#endif
}

Example 1-25. Conditional compilation using predefined macros (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Producing a Debug Build | 85

Solution
Many IDEs provide a way to pass command-line options directly to the compiler or
linker. This is summarized in Tables 1-18 and 1-19.

Discussion
Visual C++ provides extensive configuration options through its graphical interface,
but it also allows you to specify command-line options explicitly. CodeWarrior and
C++Builder do not allow you to set command-line options explicitly, but this is gen-
erally not a problem, since like Visual C++ they both provide extensive configura-
tion options through their graphical interfaces. Some IDEs, on the other hand,
provide little means to configure your command-line tools other than by explicitly
typing command-line options into a text field. Dev-C++ occupies a position some-
where in the middle: while Dev-C++ offers more graphical configuration options
than some IDEs designed for the GCC toolset, it is still frequently necessary to enter
explicit command-line options when using Dev-C++.

1.21 Producing a Debug Build

Problem
You want to build a version of your project that will be easy to debug.

Table 1-18. Specifying a compiler option from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Command Line and
enter the option under Additional options.

CodeWarrior n/a

C++Builder n/a

Dev-C++ From Project Options, select Parameters and enter the option under C++ Compiler.

Table 1-19. Specifying a linker option from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ Linker ➝ Command Line and
enter the option under Additional options.

Metrowerks n/a

C++Builder n/a

Dev-C++ From Project Options, select Parameters and enter the option under Linker.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 1: Building C++ Applications

Solution
In general, to produce a debug build, you must;

• Disable optimizations

• Disable expansion of inline function

• Enable generation of debugging information

Table 1-20 presents the compiler and linker options to disable optimization and
inlining; Table 1-21 presents the compiler and linker options to enable debugging
information.

Table 1-20. Disabling optimization and inlining from the command line

Toolset Optimization Inlining

GCC -O0 -fno-inlinea

a It’s not necessary to specify this option unless -O3 has also been specified.

Visual C++
Intel (Windows)

-Od -Ob0

Intel (Linux) -O0 -Ob0

-opt off -inline off

Comeau (Unix) -O0 --no_inlining

Comeau (Windows) Same as backend, but using a slash (/)
instead of a dash (-)

Borland -Od -vi-

Digital Mars -o+none –S -C

Table 1-21. Command-line options for enabling debug information

Toolset Compiler options Linker options

Comeau (Unix)
GCC
Intel (Linux)
Metrowerks

-g -g

Visual C++
Intel (Windows)

See Table 1-22. See Table 1-22.

Comeau (Windows) Same as backend, but using a slash (/) instead
of a dash (-).

Same as backend compiler option, but
using a slash (/) instead of a dash (-).

Borland -v -v

Digital Mars -g -co

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Producing a Debug Build | 87

Boost.Build provides a simple mechanism for producing a debug build: simply add
<variant>debug to your target’s requirements or use the command-line option
variant=debug, which can be abbreviated simply as debug.

Some IDEs also provide a simple way to produce a debug build. For instance, when
you create a new project with Visual C++, the IDE generates debug and release build
configurations automatically. To request a debug build, simply select Configuration
Manager… from the Build menu and select Debug as the active configuration. You
can also select Debug from the drop-down list of configurations on the standard
toolbar. The next time you build your project, it will produce a debug build.

Similarly, when you create a new project with CodeWarrior using one of Metrow-
erks’s project templates, called stationery, the IDE generates debug and release tar-
gets automatically. The name of the debug target may vary, but it should always
contain the word “debug”. To request a debug build, select Set Default Target from
the Project menu, and then select the menu item corresponding to the debug target.
You can also select the debug target from the drop-down list of targets on your
project’s window.

C++Builder does not support multiple build configurations for a single project, but it
does provide an easy way produce a debug build. To request a debug build, go to
Project Options ➝ Compiler and press Full debug. This will disable optimization
and inlining and enable debugging information.

If you are using an IDE that doesn’t provide preset debug and release configurations,
such as Dev-C++, or if you need more control over your project’s settings, refer to
Tables 1-23 through 1-25.

Table 1-22. Enabling debugging information with Visual C++ or Intel for Windows

Compiler options Linker options IDE optionsa

a To access these options, go to Configuration Properties ➝ C/C++ ➝ General ➝ Debug Information Format.

Description

-Z7 -debug C7 Compatible Debug info is stored in .obj
and .exe files.

-Zi [-Fd<pdb-file-for-obj>] -debug[-pdb:<pdb-file-for-exe>] Program Database Debug info is stored in .pdb
files; use the bracketed
options to specify the .pdb
files.

-ZI [-Fd<pdb-file-for-obj>] -debug [-pdb:<pdb-file-for-exe>] Program Database for
Edit & Continue

Debug info is stored in .pdb
files; use the bracketed
options to specify the .pdb
files. Your program can be
recompiled during a debug-
ging session.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 1: Building C++ Applications

Discussion
All toolsets provide an option to generate information in object files and executables
that allows debuggers to report useful information as a program is executed step by
step. This information generally includes the sources file names and line numbers
corresponding to particular object or machine code instructions, as well as informa-
tion about C++ objects occupying particular memory locations, including their
names and types.

Most toolsets store debugging information directly in object files and executables, but
some, also provide options for generating debugging information in separate database
files. For example, with Visual C++, the -Z7 compiler option specifies that debug
information should be placed in object files and executables, while the -Zi and -ZI
options specify that debugging information should be stored in program database files
with the extension .pdb. The -ZI option enables a feature called Edit and Continue,
which allows IDE users to modify and recompile their code without terminating a

Table 1-23. Disabling optimization from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Optimization and set
Optimization to Disabled. Use the default settings for the other properties on this page.

CodeWarrior From the Target Settings Window, go to Code Generation ➝ Global Optimizations and select Off.

C++Builder From Project Options, go to Compiler and select None under Code optimization.

Dev-C++ From Project Options, go to Compiler ➝ Optimization and set Perform a number of minor optimizations
to No; next, go to Compiler ➝ Optimization ➝ Further optimizations and set Optimize, Optimize more,
and Best Optimization to No.

Table 1-24. Disabling inlining from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Optimization and set
Inline Function Expansion to Default.

CodeWarrior From the Target Settings Window, go to Language Settings ➝ C/C++ Language and set Inline Depth to
Don’t Inline.

C++Builder From Project Options, go to Compiler and check Disable inline expansions under Debugging.

Dev-C++ See the entry for GCC in Table 1-20 and refer to Recipe 1.20.

Table 1-25. Enabling debug information from your IDE

IDE Configuration

Visual C++ See Table 1-22.

CodeWarrior From the Target Settings Window, go to Language Settings ➝ Linker ➝ PPC Mac OS X Linker and check
Generate SYM File and Full Path in SYM Files.

C++Builder From Project Options, go to Compiler and check Debug Information and Line Number Information.

Dev-C++ See the entry for GCC in Table 1-21 and refer to Recipe 1.20.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Producing a Release Build | 89

debugging session. Similarly, CodeWarrior for Mac OS X by default generates debug-
ging information in .SYM files.

Most toolsets can generate debugging information even when optimizations and
inlining are enabled, although in some cases debugging information may be incom-
patible with particular optimizations. When optimizations are enabled, however, the
compiler has the freedom to improve efficiency by reordering statements or com-
pletely reorganizing sections of code, as long as the observable behavior remains the
same. This makes debugging difficult, since there may no longer be a close corre-
spondence between locations in the source code and locations in the object or
machine code. The same is true for inlining: when the compiler expands a function
inline, the object code corresponding to the function body is generated within the
body of the calling function. When this code is executed, no stack frame is created
for the expanded function; among other things, this means that the debugger will not
be able to display the values of the function arguments and local variables. Typi-
cally, debuggers do not even attempt to report the source code locations correspond-
ing to the bodies of functions expanded inline.

Because of these considerations, the usual practice is to disable optimizations and
inlining when producing a debug build.

See Also
Recipe 1.22

1.22 Producing a Release Build

Problem
You want to produce a small, fast executable or dynamic library for distribution to
your customers.

Solution
In general, to produce a release build you must

• Enable optimizations

• Enable the expansion of inline function

• Disable the generation of debugging information

Table 1-26 presents the compiler and linker options to enable optimization and inlin-
ing. There are no command-line options for disabling the generation of debugging
information: when you build from the command line, debugging information is dis-
abled by default. If you use the GCC toolset, however, you can decrease the size of
executables and dynamics libraries by specifying the -s option to the linker.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 1: Building C++ Applications

Boost.Build provides a simple mechanism for producing a release build: simply add
<variant>release to your target’s requirements or use the command-line option
variant=release, which can be abbreviated simply as release.

Some IDEs also provide a simple way to produce a release build. For instance, as I
mentioned in Recipe 1.21, when you create a new project with Visual C++, the IDE
generates debug and release configurations automatically. To request a release build,
simply select Configuration Manager… from the Build menu and select Release as the
active configuration. You can also select Release from the drop-down list of configu-
rations on the standard toolbar. The next time you build your project, it will pro-
duce a release build.

Similarly, when you create a new project with CodeWarrior using one of Metrow-
erks’s project templates, called stationery, the IDE generates debug and release tar-
gets automatically. The name of the release target may vary, but it should always
contain the word “release” or “final.” To request a release build, select Set Default
Target from the Project menu, and then select the menu item corresponding to the
release target. You can also select the release target from the drop-down list of tar-
gets on your project’s window.

C++Builder does not support multiple build configurations for a single project, but it
does provide an easy way produce a release build. To request a release build, go to
Project Options ➝ Compiler and press Release. This will enable optimization and
inlining and disable debugging information.

If you are using an IDE which doesn’t provide preset debug and release configura-
tions, such as Dev-C++, or if you need more control over your project’s settings,
refer to Tables 1-27 through 1-29.

Table 1-26. Compiler options to enable optimization and inlining

Toolset Optimization Inlining

GCC -O3 -finline-functionsa

aThis option is enabled automatically when -O3 is specified.

Visual C++
Intel

-O2 -Ob1

Metrowerks -opt full -inline auto
-inline level=8

Comeau (Unix) -O3

Comeau (Windows) Same as backend, but using a slash (/)
instead of a dash (-)

--inlining

Borland -O2 -vi

Digital Mars -o+time Enabled by default

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Producing a Release Build | 91

Discussion
Most toolsets offer several options for optimization; some offer dozens. Which opti-
mizations you choose depends heavily on the requirements of your project. In an
embedded environment, for example, you may want to pick an optimization that
produces a smaller executable at the expense of some speed. In other cases, speed
may be paramount. Some optimizations will make your program faster on one plat-
form but slower on another. You might even find that certain options make parts of
your program faster and other parts slower.

While Tables 1-26 and 1-27 present good general-purpose optimization options, for
best results you should carefully consider your requirements, study your toolset’s
documentation, and conduct extensive tests.

Table 1-27. Enabling optimization from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Optimization and set
Optimization to Maximize Speed, Favor Size or Speed to Favor Fast Code, and Global Optimizations,
Enable Intrinsic Functions, and Omit Frame Pointers to Yes. Use the default settings for the other proper-
ties on this page.

CodeWarrior From the Target Settings Window, go to Code Generation ➝ Global Optimizations and select Level 4.

C++Builder From Project Options, go to Compiler and select Speed under Code optimization.

Dev-C++ See the entry for GCC in Table 1-26 and refer to Recipe 1.20.

Table 1-28. Enabling inlining from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Optimization and set
Inline Function Expansion to Any Suitable.

CodeWarrior From the Target Settings Window, go to Language Settings ➝ C/C++ Language. Set Inline Depth to 8,
check Auto-Inline and leave the other inlining options unchecked.

C++Builder From Project Options, go to Compiler and uncheck Disable inline expansions under Debugging.

Dev-C++ See the entry for GCC in Table 1-26 and refer to Recipe 1.20.

Table 1-29. Disabling debug information from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ General and select Dis-
abled as the Debug Information Format

Metrowerks From the Target Settings Window, go to Language Settings ➝ Linker ➝ x86 Linker and uncheck Store
full paths, Link debug info, and Debug inline functions.

C++Builder From Project Options, go to Compiler and uncheck Debug Information and Line Number Information.

Dev-C++ Make sure that the command-line option -g has not been specified, as described in Recipe 1.20.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 1: Building C++ Applications

This situation is similar with inlining, although toolsets usually provide fewer
options for inlining than for other optimizations.

See Also
Recipe 1.21

1.23 Specifying a Runtime Library Variant

Problem
Your toolset comes with several variants of its runtime support libraries and you
want to instruct your compiler and linker which variant to use.

Solution
Runtime libraries supplied with a given toolset can vary depending on whether they
are single- or multithreaded, whether they are static or dynamic, and whether or not
they were built with debugging information.

If you are using Boost.Build, these three choices can be specified using the threading,
runtime-link, and variant features, described in Table 1-15. For example, to specify
a statically linked runtime library, add <runtime-link>static to your target’s require-
ments, or use the command-line option runtime-link=static. To specify a multi-
threaded runtime library, add <threading>multi to your target’s requirements, or use
the command-line option threading=multi.

If you are building from the command line, use the compiler and linker options pre-
sented in Tables 1-30 through 1-36. The command-line options and library names
for debug and release configurations as generally quite similar; in the following
tables, the letters in brackets should be supplied only for debug configurations. The
names of the dynamic variants of the runtime libraries are provided in parentheses;
these libraries must be available at runtime if dynamic linking is selected.

Table 1-30. Compiler options for runtime library selection using Visual C++ or Intel (Windows)

Static linking Dynamic linking

Single-threaded -ML[d]a

a Beginning with Visual Studio 2005, currently in beta, the options -ML and -MLd have been deprecated, and single-threaded, statically
linked runtime libraries are no longer distributed.

n/a

Multithreaded -MT[d] -MD[d]
(msvcrt[d].dll,
 msvcr80[d].dll)b

b Previous versions of Visual C++ used the DLL’s msvcr71.dll, msvcr71d.dll, msvcr70.dll, msvcr70d.dll, etc.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Specifying a Runtime Library Variant | 93

For example, to specify a dynamically linked release build of the Visual C++ run-
time library, use the compiler option -MD. To specify a statically linked, single-
threaded debug build of the Metrowerks runtime library on Windows, use the com-
piler option -runtime ssd. To specify a single-threaded, dynamically linked build of
the Borland runtime library, pass the options -WM- -WR -WC to the compiler and to
the linker.

Instructions for specifying a runtime library variant from your IDE are presented in
Table 1-36.

Table 1-31. Compiler options for runtime library selection using Metrowerks (Windows)

Static linking Dynamic linking

Single-threaded -runtime ss[d] n/a

Multithreaded -runtime sm[d] -runtime dm[d]
(MSL_All-DLL90_x86[_D].dll)

Table 1-32. Command-line options for runtime library selection using CodeWarrior 10 for Max OS X

Static linking Dynamic linking

No options necessary Consult the Metrowerks documentation for command-line options
(MSL_All_Mach-O[_D].dylib).

Table 1-33. Compiler and linker options for runtime library selection using Borland

Static linking Dynamic linking

Single-threaded -WM -WM- -WR -WCa (cc3260.dll)

a The option -WC is required only when building a console application.

Multithreaded -WM -WM -WR -WCa (cc3260mt.dll)

Table 1-34. Compiler options for runtime library selection using Digital Mars (all runtime libraries
are multithreaded)

Static linking Dynamic linking

No options necessary -ND -D_STLP_USE_DYNAMIC_LIB
(sccrt70.dll, stlp45dm.dll)

Table 1-35. Linker options for runtime library selection using GCC

Static linking Dynamic linking

-statica

a This option disables all dynamic linking, not just dynamic linking with runtime support libraries.

No options necessary

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 1: Building C++ Applications

Discussion
A runtime library contains implementations of utility functions required by a pro-
gram while it is running. Runtime libraries generally contain implementations of
functions from the C standard library, platform specific functions for accessing oper-
ating system services such as threads and file systems, and functions that provide the
infrastructure for C++ language features such as runtime type information (RTTI)
and exception handling.

In most cases, the more choices you have, the better; the proliferation of runtime
library variants, however, presents some problems. The main challenge is ensuring
that all the components of an application—static libraries, dynamic libraries, and
executables—use a single variant of the runtime library. If not, the application may
fail to link, or hard-to-diagnose runtime failures may occur.

When using third-party libraries, you sometimes have no control over
which variants of the runtime libraries are linked against. In such
cases, you may be forced to use several runtime library variants in a
single application.

So how should you decide which runtime library to use? Two of the choices—sin-
gle- versus multi-threaded and debug versus release—are fairly straightforward.

If your project uses multiple threads, or depends on libraries which are multi-
threaded, you must select a multithreaded variant of the runtime library if your
toolset provides one. Calling runtime library functions from multiple threads if the
runtime library was not built with thread support can lead to unpredictable runtime
behavior. Similarly, if you are producing a debug build, you should use a debug vari-
ant of the runtime library, if available.

Table 1-36. Specifying a runtime library variant from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Code Genera-
tion and use the drop-down list labeled Runtime Library.

CodeWarrior For dynamic library projects, add the object file /usr/lib/dylib1.o and the libraries
MSL_Shared_AppAndDylib_Runtime[_D].lib and MSL_All_Mach-O[_D].dylib to your project,
and remove any libraries of the form MSL_<XXX>_Mach-O[_D].lib.
For executable projects, add the object file /usr/lib/crt1.o and the libraries
MSL_Shared_AppAndDylib_Runtime[_D].lib and MSL_All_Mach-O[_D].dylib to your project,
and remove any libraries of the form MSL_<XXX>_Mach-O[_D].lib.

C++Builder Whether a project will be single- or multithreaded must be specified when you create it. To select
a static or dynamic runtime library, go to Linker from Project Options and check or uncheck Use
dynamic RTL.

Dev-C++ To select a statically linked runtime library, specify the command-line option -static, as described
in Recipe 1.20.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Enforcing Strict Conformance to the C++ Standard | 95

The last choice—whether to use a static or dynamic runtime library—is more diffi-
cult. Using a statically linked runtime has several advantages. First, it can make the
overall size of your distribution smaller—if you would otherwise have to distribute a
dynamic runtime—since only those functions that your application uses will be
linked in. (If you know that the dynamic runtime is already available on your target
system, however, linking to the static runtime will probably make your distribution
larger.) Second, by linking with the static runtime, you avoid versioning problems
that can occur when several different versions of a dynamic library exist on a single
system.

Linking with a dynamic runtime library is also attractive, however. This is because a
very effective way to organize an application is as a collection of dynamic libraries.
For one thing, it allows parts of the application to be updated without requiring the
entire application to be reinstalled. Furthermore, applications can sometimes
improve their performance significantly by taking advantage of the delay-loading fea-
ture of DLLs on Windows. But because all components of an application should use
a single variant of the runtime library, once an application makes use of a single
dynamic library, all the component of that application should use dynamically linked
runtimes. As a result, using a dynamically linked runtime makes your application
easier to modularize.

I recommend that you choose dynamic linking most of the time. As mentioned ear-
lier, however, sometimes static linking is more appropriate. Sometimes, it’s impossi-
ble to know in advance what type of linking is appropriate, because you don’t know
how a library you’ve written will be used. In that case, a common solution is to pro-
vide multiple variants of your library, linked against different variants of the runtime
libraries.

See Also
Recipes 1.4, 1.5, 1.21, and 1.25

1.24 Enforcing Strict Conformance to the C++
Standard

Problem
You want your compiler to accept only programs that conform to the C++ language
standard.

Solution
Command-line options for specifying strict conformance to the C++ standard are
listed in Table 1-37. Instructions for enforcing strict conformance from your IDE are
given in Table 1-38.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 1: Building C++ Applications

Some of the compiler options I introduced in Table 1-6 can be consid-
ered conformance options. Examples include options to enable basic
language features such as wide-character support, exceptions, and
runtime type information. I’ve omitted these in Table 1-37.

Discussion
The C++ language was standardized in 1998 by the International Standards Organi-
zation (ISO); in the same year, the ISO standard was adopted by the American
National Standards Institute (ANSI). In 2003, a second edition of the standard was
approved; the second edition contained corrections and clarifications, but intro-
duced no new language features. Work is currently underway on an updated version
of the C++ standard that will contain some important new language features and an
expanded standard library.

Table 1-37. Enforcing strict conformance from the command line

Toolset Command-line compiler options

GCC -ansi -pedantic-errors

Visual C++ -Za

Intel (Windows) -Za -Qms0

Intel (Linux) -strict-ansia

a Versions of the Intel compiler for Linux prior to 9.0 used the option -strict_ansi.
When using -strict-ansi or -strict_ansi, it may be necessary to enable Intel’s standard library, using the
option -cxxlib-icc.

Metrowerks -ansi strict -iso_templates on -msext off

Comeau (Windows) --A

Comeau (Unix) --strict or -A

Borland -Ab

b With the option -A, some of the standard headers from the STLPort library may fail to compile.

Digital Mars -A

Table 1-38. Enforcing strict conformance from your IDE

IDE Configuration

Visual C++ From your project’s property pages, go to Configuration Properties ➝ C/C++ ➝ Language
and set Disable Language Extensions, Treat wchar_t as Built-in Type, and Force Conformance
in For Loop Scopes to Yes.

Metrowerks From the Target Settings Window, go to Language Settings ➝ C/C++ Language and check
ISO Template Parser, ANSI Strict, and ANSI Keywords Only. Make sure that the options Enable
C++ Exceptions, Enable RTTI support, Enable bool Support, and Enable wchar_t Support are
checked.

C++Builder From Project Options, go to Advanced Compiler and check ANSI under Language Compliance.

Dev-C++ See the entry for GCC in Table 1-37 and refer to Recipe 1.20.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Enforcing Strict Conformance to the C++ Standard | 97

At the time the standard was approved in 1998, no compiler came close to meeting
its requirements—though many were advertised as “ANSI-compliant.” Over the
years, however, vendors have worked hard to bring their tools into conformance. As
of September 2005, the latest versions of the GNU, Microsoft, Intel, Metrowerks,
and Comeau compilers are all highly conformant. Comeau and Intel, with their sup-
port for exported templates, can now almost claim to be 100% conformant.*

No compiler is able to enforce perfect conformance to the standard, if that means
refusing to compile any invalid program. This is not just because no compiler is
100% conformant: a more fundamental reason is that the C++ standard does not
require a compiler to reject all invalid programs. There is a carefully delimited set of
circumstances in which a compiler is required to issue a diagnostic, indicating an ill-
formed program; for many invalid programs, however, no diagnostic is required.
These are the programs that invoke what the standard calls undefined behavior at
runtime. And even when a diagnostic is required, a compiler is permitted to issue the
diagnostic and continue with compilation, possibly leading to the successful cre-
ation of an executable or library.

The main reason that compilers are not required to reject all nonconforming pro-
grams is that in many cases nonconformance is computationally difficult—or even
impossible—to detect. Another reason, discussed later, is that nonconforming pro-
grams are sometimes useful.

I recommend that you use your compiler’s strict conformance option as often as you
can. There are some cases where it may not be appropriate, however; to better
understand this, let’s look at several varieties of nonconforming code.

First, there is code that was legal in an early dialect of C++, before the language was
standardized. For example, in the early days of C++, the scope of a variable declared
in the initializer of a for loop extended to the end of the block containing the loop:

// WARNING: invalid code!
int main()
{
 for (int i = 0; i < 10; ++i)
 ;
 int j = i; // j == 10
}

This is not permitted by the standard, and offers no advantage over the standard
scoping rules. The need to compile code like the above should arise only when main-
taining legacy applications.

Another category of nonconforming code is code that uses experimental language
extensions that might eventually be incorporated into the C++ standard. For exam-
ple, many compilers provide an integral type long long guaranteed to have a size of

* Why almost? Because even Comeau and Intel have some bugs, and the interpretations of some parts of the
standard are disputed.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 1: Building C++ Applications

at least 64 bits. As another example, several compilers provide a built-in operator
typeof, with the same syntax as the sizeof operator, which returns the type of an
expression. Both of these features are likely to appear in the next version of the C++
standard, although the spelling of typeof is expected to change, probably to
decltype.

Be very careful before using an extension like this: before you know it, you may have
to port your code to a platform that does not implement the extension, or that imple-
ments it with different semantics.

A third category of nonconforming code is code that makes use of platform-specific
language extensions necessary to take advantage of operating system features. The
attributes _ _declspec(dllexport) and _ _declspec(dllimport), for building dynamic
libraries on Windows, and the attributes _ _stdcall, _ _fastcall and _ _cdecl, for
representing Windows calling conventions, fall into this category. Although these are
language extensions, most Windows compilers will accept code containing them
even in their strict-conformance mode.

A final category of nonconforming code is code that violates the C++ standard but is
perfectly valid according to some other useful standard. A prime example of such a
standard is C++/CLI, which is currently in the final stages of standardization by the
ECMA. C++/CLI is an extension to C++ that constitutes the C++ interface to the
Command Language Infrastructure, the core of Microsoft’s .NET Framework. When
compiling an application that uses certain C++/CLI extensions, a conforming C++
compiler is required to issue a diagnostic, but it’s free to generate a valid C++/CLI
application, if it supports the C++/CLI standard.

If you need to compile nonconforming code, first see whether it will compile using
the options in Tables 1-37 and 1-38. If not, some compilers offer a range of more
fine-grained conformance options that allow some nonconforming constructs to
compile but not others. For example, Comeau provides the option --long_long to
specify that the type long long should be recognized. Finally, some compilers pro-
vide options that cause them to report many violations of the standard as warnings
rather than errors. For example, GCC provides the option -pedantic for this purpose
and Comeau provides the options --a, for Windows, and --strict_warnings or -a, for
other platforms.

See Also
Recipe 1.2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Causing a Source File to Be Linked Automatically Against a Specified Library | 99

1.25 Causing a Source File to Be Linked Automatically
Against a Specified Library

Problem
You’ve written a library that you’d like to distribute as a collection of headers and
prebuilt static or dynamic libraries, but you don’t want users of your library to have
to specify the names of the binaries when they link their applications.

Solution
If you are programming for Windows and using the Visual C++, Intel, Metrowerks,
Borland, or Digital Mars toolsets, you can use pragma comment in your library’s head-
ers to specify the names, and optionally the full file pathnames, of the prebuilt bina-
ries against which any code that includes the headers should be linked.

For example, suppose you want to distribute the library from Example 1-1 as a static
library libjohnpaul.lib together with the header johnpaul.hpp. Modify the header as
shown in Example 1-26.

With this change, the Visual C++, Intel, Metrowerks, Borland, and Digital Mars
linkers will automatically search for the library libjohnpaul.lib when linking code that
includes the header johnpaul.hpp.

Discussion
In some ways, linking can be a more difficult phase of the build process than compil-
ing. One of the most common problems during linking occurs when the linker finds
the wrong version of a library. This is a particular problem on Windows, where run-
time libraries—and the libraries that depend on them—frequently come in many
variants. For this reason, libraries for Windows are often distributed with names
mangled to reflect the various build configurations. While this helps to reduce ver-
sion conflict, it also makes linking harder because you have to specify the correct
mangled name to the linker.

Example 1-26. Using pragma comment

#ifndef JOHNPAUL_HPP_INCLUDED
#define JOHNPAUL_HPP_INCLUDED

#pragma comment(lib, "libjohnpaul")

void johnpaul();

#endif // JOHNPAUL_HPP_INCLUDED

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 1: Building C++ Applications

For this reason, pragma comment is a very powerful tool. Among other things, it allows
you to specify the correct mangled name of a library in a header file, saving the user
the trouble of having to understand your name-mangling convention. If, in addition,
you design your installation process to copy the binary files to a location automati-
cally searched by the linker—such as the lib subdirectory of the Visual C++,
CodeWarrior, or C++Builder root directories—programmers will be able to use your
library simply by including your headers.

So far, so good. There’s just one problem: pragma comment is not recognized by all
compilers. If you wish to write portable code, you should invoke a pragma only after
verifying that it is supported by the toolset being used. For example, you could mod-
ify johnpaul.cpp to read:

#ifndef JOHNPAUL_HPP_INCLUDED
#define JOHNPAUL_HPP_INCLUDED

#if defined(_MSC_VER) || \
 defined(_ _ICL) || \
 defined(_ _MWERKS_ _) && defined(_WIN32) || \
 defined(_ _BORLANDC_ _) \
 defined(_ _DMC_ _) \
 /**/
pragma comment(lib, "libjohnpaul")
#endif

void johnpaul();

#endif // JOHNPAUL_HPP_INCLUDED

This example is already pretty complex, and, unfortunately, it’s still not exactly
right: some compilers that don’t support pragma comment define the macro _MSC_VER
for compatibility with Visual C++. Fortunately, Boost provides an easy solution:

#ifndef JOHNPAUL_HPP_INCLUDED
#define JOHNPAUL_HPP_INCLUDED

#define BOOST_LIB_NAME libjohnpaul
#define BOOST_AUTO_LINK_NOMANGLE
#include <boost/config/auto_link.hpp>

void johnpaul();

#endif // JOHNPAUL_HPP_INCLUDED

Here, the line:

#define BOOST_LIB_NAME libjohnpaul

specifies your library name, the line:

#define BOOST_AUTO_LINK_NOMANGLE

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Exported Templates | 101

indicates that you don’t want to use the Boost name-mangling convention, and the
line:

#include <boost/config/auto_link.hpp>

invokes pragma comment for compilers which support it.

See Also
Recipe 1.23

1.26 Using Exported Templates

Problem
You want to build a program that uses exported templates, meaning that it declares
templates in headers with the export keyword and places template implementations
in .cpp files.

Solution
First, compile the .cpp files containing the template implementations into object files,
passing the compiler the command-line options necessary to enable exported tem-
plates. Next, compile and link the .cpp files that use the exported templates, passing
the compiler and linker the command-line options necessary to enable exported tem-
plates as well as the options to specify the directories that contain the template
implementations.

The options for enabling exported templates are given in Table 1-39. The options for
specifying the location of template implementations are given in Table 1-40. If your
toolset does not appear in this table, it likely does not support exported templates.

Table 1-39. Options to enable exported templates

Toolset Script

Comeau (Unix) --export, -A or --strict

Comeau (Windows) --export or --A

Intel (Linux) -export or -strict-ansia

a Versions of the Intel compiler for Linux prior to 9.0 used the option -strict_ansi.

Table 1-40. Option to specify the location of template implementations

Toolset Script

Comeau --template_directory=<path>

Intel (Linux) -export_dir<path>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 1: Building C++ Applications

For example, suppose you want to compile the program displayed in Example 1-27.
It consists of three files:

• The file plus.hpp contains the declaration of an exported function template plus().

• The file plus.cpp contains the definition of plus().

• The file test.cpp includes the declaration—but not the definition—of plus(),
and defines a main() function that uses plus().

To compile plus.cpp to an object file plus.obj using Comeau on Unix, change to the
directory containing plus.cpp, plus.cpp, and test.cpp, and enter the following command:

$ como -c --export plus.cpp

This command also generates a file plus.et describing the template implementations
contained in plus.cpp.

For fun, open the file plus.et in a text editor.

Example 1-27. A simple program using exported templates

plus.hpp:

#ifndef PLUS_HPP_INCLUDED
#define PLUS_HPP_INCLUDED

export template<typename T>
T plus(const T& lhs, const T& rhs);

#endif // #ifndef PLUS_HPP_INCLUDED

plus.cpp:

#include "plus.hpp"

template<typename T>
T plus(const T& lhs, const T& rhs)
{
 return rhs + lhs;
}

test.cpp:

#include <iostream>
#include "plus.hpp"

int main()
{
 std::cout << "2 + 2 = " << plus(2, 2) << "\n";
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Exported Templates | 103

Next, compile test.cpp to an object file test.obj, as follows:

$ como -c --export test.cpp

Finally, link the executable test.exe:

$ como --export -o test test.obj

The last two commands could also have been combined:

$ como --export -o test test.cpp

You can now run test.exe:

$./test
 2 + 2 = 4

Alternatively, suppose that the files plus.hpp and plus.cpp are in a directory named
plus, while test.cpp is in a sibling directory test. To compile and link test.cpp, change
to the directory test and enter:

$ como --export --template_directory=../plus –I../plus -o test
test.cpp

Discussion
C++ supports two models for supplying the definitions of function templates and
static data members of class templates: the inclusion model and the separation model.
The inclusion model is familiar to all programmers who regularly use C++ tem-
plates, but often seems unnatural to programmer accustomed to writing nontem-
plated code. Under the inclusion model, the definition of a function template—or of
a static data member of a class template—must be included by each source file that
uses it. By contrast, for nontemplated functions and data it is sufficient for a source
file simply to include a declaration; the definition can be placed in a separate .cpp file.

The separation model is closer to the traditional manner of organizing C++ source
code. Templates declared with the export keyword do not need to have their defini-
tions included by source files that use them; instead, the definitions can be placed in
separate .cpp files. The parallel with traditional source code organization is not exact,
though, because even though code that uses an exported template does not need to
include its definition, it still depends on the definition in some subtle ways.

The separation model offers several potential benefits:

Reduced compilation times
Compilation time may improve with the separation model because a template’s
definition needs to be scanned less frequently and because the separation mod-
ules reduce dependencies between modules.

Reduced symbolic “pollution”
Names of functions, classes, and data used in a template’s implementation file can
be completely hidden from code that uses the template, reducing the possibility of
accidental name clashes. In addition, the author of a template implementation can

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 1: Building C++ Applications

worry less about accidental clashes with names from the source files that use the
template.

The ability to ship precompiled template implementations
In theory, under the separation mode, a vendor could ship template implementa-
tions that have been precompiled into a binary format somewhere between C++
source code and ordinary object files.

All three potential advantages of the separation model are controversial. First, while
some users have reported reduced compile times, the separation model can also lead
to longer compile times in some cases. At the moment, there is insufficient data to
make a definitive judgment. Second, while the separation model does reduce some
forms of symbolic pollution, the language rules necessary to support the separation
model, particularly the notion of two-phase lookup, have complicated the way tem-
plated code is written—even when using the inclusion model—and have had some
unintended consequences. Third, all existing implementations of the separation
model are based on the EDG frontend, and EDG has not yet provided any means to
compile source files containing exported template implementations into binary files
that can be shipped in lieu of the source.

There was an effort in 2003 to remove exported templates from future versions of the
C++ standard, but it failed. Consequently, exported templates are a permanent part
of the C++ language, and you should learn to use them.

See Also
Recipe 1.25

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

105

Chapter 2 CHAPTER 2

Code Organization

2.0 Introduction
Perhaps one of the reasons C++ has been so popular is its ability to serve small,
large, and massive projects well. You can write a few classes for a small prototype or
research project, and as the project grows and people are added, C++ will allow you
to scale the application into modules that have varying degrees of independence. The
trade-off is that you have to make time to do some manual reorganization along the
way (adding namespaces, rearranging your header files’ physical locations, etc.).
Usually this is worth it though, because you can make your application modular and
let different people focus only on their logical, functional areas.

The manual labor that you have to invest along the way is inversely proportional to
the amount of time you spend designing modularity in the first place. Start with
some of the good techniques for modularization, and your code base will scale.

If you don’t already use namespaces, you’ve probably at least heard of them, and
very likely you use one already: the std namespace, which is the namespace that con-
tains the standard library. Namespaces are not used as frequently as they ought to
be, in my experience, but that’s not because they’re complicated or using them
requires much effort. Recipe 2.3 explains how to modularize code with namespaces.

Many of the recipes in this chapter describe techniques that you apply from within
header files. Since there are a number of facilities discussed, each explaining a differ-
ent part of a header file, I have included Example 2-1 in the introduction, which
shows what a typical header file looks like that uses all of the techniques described in
this chapter.

Example 2-1. A header file

#ifndef MYCLASS_H_ _ // #include guards, Recipe 2.0
#define MYCLASS_H_ _

#include <string>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 2: Code Organization

Once you have your header file written and out of the way, most of the time you will
need an implementation file, too, by which I mean a .cpp file that contains defini-
tions and not just declarations. There is less that goes in an implementation file than
there is in a header file, but for the sake of completeness, Example 2-2 contains a
sample implementation file that goes with the header file presented in Example 2-1.

Of course, your implementation files will no doubt be full of thoughtful, well-writ-
ten comments, too, but I left that out for the sake of clarity.

namespace mylib { // Namespaces, Recipe 2.3

 class AnotherClass; // forward class declarations, Recipe 2.2
 class Logger;

 extern Logger* gpLogger; // External storage declaration, Recipe 2.1

 class MyClass {
 public:
 std::string getVal() const;
 // ...
 private:
 static int refCount_;
 std::string val_;
 }

// Inline definitions, Recipe 2.4
inline std::string MyClass::getVal() const {
 return(val_);
}

#include "myclass.inl"

} // namespace

#endif // MYCLASS_H_ _

Example 2-2. An implementation file

#include "myclass.h"

namespace mylib {

 MyClass::refCount_ = 0; // Static definition, Recipe 8.4

 MyClass::foo() { // Method implementations
 // ...
 }
}

Example 2-1. A header file (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making Sure a Header File Gets Included Only Once | 107

2.1 Making Sure a Header File Gets Included
Only Once

Problem
You have a header file that is included by several other files. You want to make sure
the preprocessor scans the declarations in the header file no more than once.

Solution
#define a macro in your header file, and include only the contents of the header file if
the macro hasn’t already been defined. You can use this combination of the #ifndef,
#define, and #endif preprocessor directives, as I did in Example 2-1:

#ifndef MYCLASS_H_ _ // #include guards
#define MYCLASS_H_ _

// Put everything here...

#endif // MYCLASS_H_ _

When the preprocessor scans this header file, one of the first things it will encounter
is the #ifndef directive and the symbol that follows. #ifndef tells the preprocessor to
continue processing on the next line only if the symbol MYCLASS_H_ _ is not already
defined. If it is already defined, then the preprocessor should skip to the closing
#endif. The line following #ifndef defines MYCLASS_H_ _, so if this file is scanned by
the preprocessor twice in the same compilation, the second time MYCLASS_H_ _ is
defined. By placing all of your code in between the #ifndef and #endif, you ensure
that it is only read once during the compilation process.

Discussion
If you don’t use this technique, which is called using include guards, you’ve probably
already seen “symbol already defined” compilation errors that result from not taking
a protective measure against multiple definitions. C++ does not allow you to define
the same symbol more than once, and if you do (on purpose or by accident) you get
a compilation error. Include guards prevent such errors, and they are pretty standard
practice.

The macros you #define don’t have to follow any particular format, but the syntax I
used above is common. The idea is to use a symbol that won’t conflict with another
macro and cause your file to inadvertently be skipped during preprocessing. In prac-
tice, you may see other techniques, such as including a header file or module version
in the macro, e.g., MYCLASS_H_V301_ _, or maybe even the author’s name. It isn’t that
important how you name it, so long as you are consistent. These macros should only
be referenced by the header file they are protecting, and nowhere else.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 2: Code Organization

In some code you may see external include guards, which are the same as the inter-
nal include guards I described earlier, except that they appear in the file that is
including the header file, not the header file itself:

#ifndef MYCLASS_H_ _
#include "myclass.h"
#endif

This short-circuits the inclusion process by not even including the file myclassh.h if
the macro MYCLASS_H_ _ is already defined. External include guards were advocated
several years ago to improve compile times for large projects, but compilers have
improved and they are no longer necessary. Don’t use them.

Even if you are working on a small project, it’s a good idea to put include guards in
your header files. If your header file is included by more than one other file, chances
are you’re going to get redefinition errors someday. Furthermore, small projects tend
to turn into larger projects in a short amount of time, and while a project may have
started off with a single executable and a set of header files that are only ever
included once, sooner or later the project will grow and compilation errors will start
to appear. If you add include guards from the beginning, you won’t have to go back
and add them to a bunch of files all at once sometime in the future.

2.2 Ensuring You Have Only One Instance
of a Variable Across Multiple Source Files

Problem
You need the same variable to be used by different modules in a program, and you
can only have one copy of this variable. In other words, a global variable.

Solution
Declare and define the variable in a single implementation file in the usual manner,
and use the extern keyword in other implementation files where you require access
to that variable at runtime. Often, this means including the extern declarations in a
header file that is used by all implementation files that need access to the global vari-
able. Example 2-3 contains a few files that show how the extern keyword can be
used to access variables defined in another implementation file.

Example 2-3. Using the extern keyword

// global.h
#ifndef GLOBAL_H_ _ // See Recipe 2.0
#define GLOBAL_H_ _

#include <string>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ensuring You Have Only One Instance of a Variable Across Multiple Source Files | 109

Discussion
The extern keyword is a way of telling the compiler that the actual storage for a vari-
able is allocated somewhere else. extern tells the linker that the variable it qualifies is
somewhere in another object file, and that the linker needs to go find it when creat-
ing the final executable or library. If the linker never finds the extern variable you
have declared, or it finds more than one of definition for it, you will get a link error.

Example 2-3 isn’t terribly exciting, but it illustrates the point well. My two global
variables are declared and defined in global.cpp:

int x = 7;
std::string s = "Kangaroo";

I need to be able to access them from other implementation files, so I put an extern
declaration for them in the header file global.h:

extern int x;
extern std::string s;

The distinction between declaration and definition is important. In C++, you can
declare something many times, so long as the declarations match, but you may only
define something once; this is called the one-definition rule (you can actually define it
more than once, in some cases, but only if the definitions are exactly the same—usu-
ally this is not a good idea). The extern keyword is a mechanism for telling the com-
piler and linker that the definition is somewhere else, to be resolved at link time.

extern int x;
extern std::string s;

#endif

// global.cpp
#include <string>

int x = 7;
std::string s = "Kangaroo";

// main.cpp
#include <iostream>
#include "global.h"

using namespace std;

int main() {

 cout << "x = " << x << endl;
 cout << "s = " << s << endl;
}

Example 2-3. Using the extern keyword (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 2: Code Organization

This is not to say that using extern should be a regular practice. You should use it
sparingly, and only when you have to, since it permits application-global variables.
Sometimes you may need this for truly global objects or data—a logging object; a
piece of hardware; a large, shared data object—but most of the time there are more
appropriate design alternatives.

2.3 Reducing #includes with Forward Class
Declarations

Problem
You have a header file that references classes in other headers, and you need to
reduce compilation dependencies (and perhaps time).

Solution
Use forward class declarations where possible to avoid unnecessary compilation
dependencies. Example 2-4 gives a short example of a forward class declaration.

Somewhere else there is a header and perhaps an implementation file that declares
and defines the class A, but from within myheader.h I don’t care about the details of
A: all I need to know is that A is a class.

Discussion
A forward class declaration is a way to ignore details that you don’t need to be con-
cerned with. In Example 2-4, myheader.h doesn’t need to know anything about the
class A except that it exists and that it’s a class.

Example 2-4. Forward class declaration

// myheader.h
#ifndef MYHEADER_H_ _
#define MYHEADER_H_ _

class A; // No need to include A's header

class B {
 public:
 void f(const A& a);
 // ...
 private:
 A* a_;
};

#endif

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Name Collisions with Namespaces | 111

Consider what would happen if you #included the header file for A, or, more realisti-
cally, the header files for the half-dozen or so classes you would use in a real header
file. Now an implementation file (myheader.cpp) includes this header, myheader.h,
because it contains the declarations for everything. So far, so good. If you change one
of the header files included by myheader.h (or one of the header files included by one
of those files), then all of the implementation files that include myheader.h will need
to be recompiled.

Forward declare your class and these compilation dependencies go away. Using a
forward declaration simply creates a name to which everything else in the header file
can refer. The linker has the happy task of matching up definitions in the implemen-
tation files that use your header.

Sadly, you can’t always use forward declarations. The class B in Example 2-4 only
uses pointers or references to A, so I can get away with a forward declaration. How-
ever, if I use an A member function or variable, or if I have an object of type A—and
not just a pointer or reference to one—in my definition for the class B, suddenly my
forward declaration is insufficient. This is because files including myheader.h need to
know the size of B, and if A is a member variable of B, then the compiler needs to
know A’s size to figure out B’s size. A pointer or a reference to something is always
the same size, so in the case where you are using pointers or references, the details of
A aren’t of interest to the compiler and therefore A’s header file isn’t necessary.

Not surprisingly, if you include any definition in myheader.h that uses members of A,
you have to #include A’s header. This is because the compiler needs to check the
function signature of the A member function or the data type of the A data member
you are referencing. To illustrate, this code requires an #include:

#include "a.h"

class B {
 public:
 void f(const A& a) {
 foo_ = a.getVal(); // Have to know if a.getVal is valid
 }
// ...

In general, use forward declarations when you can to reduce the amount of #include-
ing that goes on at compile time.

2.4 Preventing Name Collisions with Namespaces

Problem
You have names from unrelated modules that are clashing, or you want to avoid
such clashes by creating logical groups of code in advance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112 | Chapter 2: Code Organization

Solution
Use namespaces to modularize code. With namespaces, you can group large groups
of code in separate files into a single namespace. You can nest namespaces as deeply
as necessary to partition a large module into submodules, and consumers of your
module can selectively expose the elements in your namespace they want to use.
Example 2-5 shows a few of the ways you can use a namespace.

Example 2-5. Using namespaces

// Devices.h
#ifndef DEVICES_H_ _
#define DEVICES_H_ _

#include <string>
#include <list>

namespace hardware {

 class Device {
 public:
 Device() : uptime_(0), status_("unknown") {}
 unsigned long getUptime() const;
 std::string getStatus() const;
 void reset();
 private:
 unsigned long uptime_;
 std::string status_;
 };

 class DeviceMgr {
 public:
 void getDeviceIds(std::list<std::string>& ids) const;
 Device getDevice(const std::string& id) const;
 // Other stuff...
 };
}

#endif // DEVICES_H_ _

// Devices.cpp
#include "Devices.h"
#include <string>
#include <list>

namespace hardware {

 using std::string;
 using std::list;

 unsigned long Device::getUptime() const {
 return(uptime_);
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Name Collisions with Namespaces | 113

Discussion
Example 2-5 is a bit complicated, but let’s go through it piece by piece, because it
illustrates several key points about namespaces. Imagine that you are writing an
administrative application that needs to interface with a bunch of hardware devices.
You might want to divide your application into two or more namespaces to prevent

 string Device::getStatus() const {
 return(status_);
 }

 void DeviceMgr::getDeviceIds(list<string>& ids) const {
 }

 Device DeviceMgr::getDevice(const string& id) const {
 Device d;
 return(d);
 }
}

// DeviceWidget.h
#ifndef DEVICEWIDGET_H_ _
#define DEVICEWIDGET_H_ _

#include "Devices.h"

namespace ui {

 class Widget { /* ... */ };
 class DeviceWidget : public Widget {
 public:
 DeviceWidget(const hardware::Device& dev) : device_(dev) {}
 // Some other stuff
 protected:
 hardware::Device device_;
 };
}
#endif // DEVICEWIDGET_H_ _

// main.cpp
#include <iostream>
#include "DeviceWidget.h"
#include "Devices.h"

int main() {

 hardware::Device d;
 ui::DeviceWidget myWidget(d);
 // ...
}

Example 2-5. Using namespaces (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 2: Code Organization

naming collisions, or just to divide logically the two parts of the application in a way
that makes sense.

First, consider the file Devices.h. It contains a couple of classes that manage the hard-
ware elements, Device and DeviceMgr. I don’t want them in the global namespace
though (meaning their names are visible everywhere else in the program), so I put
them in the hardware namespace:

#ifndef DEVICES_H_ _ // See Recipe 2.0
#define DEVICES_H_ _

#include <string>
#include <list>

namespace hardware {

 class Device {
 // ...
 };

 class DeviceMgr {
 // ...
 };
}

#endif // DEVICES_H_ _

The mechanism is simple: wrap everything you want to put in your namespace in a
namespace block.

The above excerpt is the declaration of Device and DeviceMgr, but we still have to
think about the implementation, which is in Devices.cpp. Once again, wrap every-
thing in a namespace block—it is added to what’s already in that namespace:

#include "Devices.h"
#include <string>
#include <list>

namespace hardware {

 using std::string;
 using std::list;

 // Implementation for Device and DeviceMgr
}

At this point, the hardware namespace contains everything we need it to. All that’s
left is to use it from somewhere. There are a few ways to do this; the way I did it in
Example 2-5 is to qualify fully the name to the Device class with the namespace
name, like this:

#ifndef DEVICEWIDGET_H_ _
#define DEVICEWIDGET_H_ _

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Name Collisions with Namespaces | 115

#include "Devices.h"

namespace ui {

 class Widget { /* ... */ };
 class DeviceWidget : public Widget {
 public:
 DeviceWidget(const hardware::Device& dev) : device_(dev) {}
 // Other stuff...
 protected:

hardware::Device device_;
 };
}
#endif // DEVICEWIDGET_H_ _

I also did the same thing from main in main.cpp:

int main() {
 hardware::Device d;
 ui::DeviceWidget myWidget(d);
}

To add types to one of the namespaces, declare your header and implementation files
in the same way as in Example 2-5. Each time you wrap code in a namespace block,
it is added to that namespace, so you can have code that’s in the same namespace
that doesn’t have to know anything about the other code in that namespace.

If you use the approach of qualifying class names with their namespace, you will
quickly get tired of all the typing. There are a couple of ways to make this problem go
away. You can create an alias for a namespace-qualified type with the using keyword:

using hardware::Device;

int main() {
 Device d; // No namespace name needed
 ui::DeviceWidget myWidget(d);
}

In subsequent code, you can simply refer to the alias instead of the entire namespace
name. Or, you can import everything in the namespace by using the namespace
instead of one of the types it contains:

using namespace hardware;

int main() {
 Device d;
 ui::DeviceWidget myWidget(d);
}

You have probably already used this, or at least seen it in examples, when using the
standard library (many of the examples in this book use this technique). Everything
in the standard library is in the std namespace, so quite often, you will see this:

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 2: Code Organization

Importing an entire namespace is often a bad idea, though, and is generally consid-
ered a bad practice. We have imported the std namespace in most of the examples in
this book for clarity only, and, in general, recommend against doing so in real pro-
grams.

If you are importing an entire namespace, or several of them, the utility of
namespaces decreases significantly. One of the reasons namespaces exist is to reduce
naming collisions. If you import a bunch of different namespaces, then you increase
the probability of naming conflicts. Your code may compile fine and run now, but
someone, somewhere else, can add something to the namespace in the future and
create a conflict the next time your code is rebuilt.

You can also nest namespaces to divide the contents of a namespace into smaller
groups. For example, the hardware namespace I defined in Example 2-5 might actu-
ally contain a lot of network classes and more device classes, so I could partition the
namespace by nesting some others with more descriptive names:

namespace hardware {
 namespace net {
 // network stuff
 }
 namespace devices {
 // device stuff
 }
}

Now, I can access elements contained in the namespace with a bit more qualification:

// In some other file...
using hardware::devices::Device;

Namespaces are handy. There are a few cool things that you can do with namespaces
to make your life easier: namespace aliases, automatic name lookup in function
parameter namespaces, and name matching for function overloads in using declara-
tions. The last two are wordy, but simple.

A namespace alias is just what it sounds like: a (probably short) name that you can
substitute for another (probably long) namespace name. If you don’t want to use a
using statement, but also don’t want to type out a huge fully qualified name every
time you use a class, you can create an alias for it:

using dev = hardware::devices;
// ...
dev::Device d;

You can then use the alias when referring to elements in that namespace.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preventing Name Collisions with Namespaces | 117

C++ also provides automatic lookup in function parameter namespaces. So, for
example, the following code qualifies its argument with a namespace (dev is the
namespace that Device is declared in):

void f(dev::Device& d) {
 register(d); // This is actually dev::register
}

When you pass in a function parameter that belongs to a namespace, the compiler
includes that namespace when performing name lookup on functions within the
body of the function. You may not need this every day, but it saves a lot of typing or
an extra using directive when you do. The idea behind this is that functions that
operate on some type are often defined in the same namespace as that type. Inciden-
tally, it a good practice, in general, to put functions that operate on certain types in
the same namespace as those types, when possible.

The last cool thing about namespaces is name matching for overloads in using decla-
rations. Consider this example:

namespace mylib {
 void foo(int);
 void foo(double);
 void foo(std::string);
 // More overloads of foo()...
}

// In some other file...
using mylib::foo; // Which one does this use?

The using declaration matches all overloads of foo so you don’t have to write one for
each overload. The other benefit of this is that if an overload of foo is added, any
code with a declaration such as using mylib::foo “sees” it automatically because the
using declaration will pick it up (when the code containing the using declaration is
compiled, of course).

You have to use namespaces wisely, though, or you may get some unexpected com-
pilation errors or create them for others who use your code. Here are a few popular
guidelines when using namespaces:

Use using namespace xxx sparingly
As I explained earlier, importing an entire namespace increases the probability of
a name collision, either right now or in the future (someone may add to the
namespace you are using, creating a conflict in your code). It also dilutes the
modularity provided by namespaces.

Don’t use using statements in header files
Header files are included by lots of other files, so if you use a namespace or
something in a namespace in a header file, you expose what you are using to the

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 2: Code Organization

file that is including your header file. The solution to this problem is to qualify
fully everything you need in a header file.

Don’t put using declarations or definitions before #include directives
If you do this, then you expose whatever you’re using to the code in the header
file, which is probably not what the author of the header file intended.

If you obey these guidelines, using namespaces in a new project or adding them to an
existing project should be relatively easy.

2.5 Including an Inline File

Problem
You have a number of member functions or standalone functions that you want to
make inline, but you don’t want to define them all in the class definition (or even after
it) in the header file. This way, you keep declaration and implementation separate.

Solution
Create an .inl file and #include it at the end of your header file. This is equivalent to
putting the function definition at the end of the header file, but this lets you keep
declaration and definition separate. Example 2-6 shows how.

Example 2-6. Using an inline file

// Value.h
#ifndef VALUE_H_ _
#define VALUE_H_ _

#include <string>

class Value {
public:
 Value (const std::string& val) : val_(val) {}
 std::string getVal() const;
private:
 std::string val_;
};

#include "Value.inl"

#endif VALUE_H_ _

// Value.inl
inline std::string Value::getVal() const {
 return(val_);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Including an Inline File | 119

This solution doesn’t require much explanation. #include is replaced with the con-
tents of its argument, so what happens here is that the contents of Value.inl are
brought into the header file. Any file that includes this header, therefore, has the defi-
nition of the inline functions, but you don’t have to clutter up your class declaration.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120

Chapter 3CHAPTER 3

Numbers

3.0 Introduction
Even if you aren’t writing scientific or engineering applications, you will usually have
to work with numbers to some degree. This chapter contains solutions to common
problems when working with C++'s numeric types.

Several of the recipes contain techniques for converting numbers of various formats
(hexadecimal, floating-point, or scientific notation) from numeric types to strings or
vice versa. Writing code to make this transformation yourself is cumbersome and
tedious, so I present facilities from the standard library or one of the Boost libraries
to make the task easier. There are also a few recipes for dealing with only the
numeric types: safely converting between them, comparing floating-point numbers
within a bounded range, and finding the minimum and maximum values for numeric
types.

The recipes in this chapter provide solutions to some general problems you may run
into when working with numbers in C++, but it does not attempt to solve problems
that are specific to application domains. If you are writing scientific or engineering
applications, you should also take a look at Chapter 11, which contains recipes for
many common scientific and numerical algorithms.

3.1 Converting a String to a Numeric Type

Problem
You have numbers in string format, but you need to convert them to a numeric type,
such as an int or float.

Solution
You can do this in one of two ways, with standard library functions or with the
lexical_cast class in Boost (written by Kevlin Henney). The standard library functions

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting a String to a Numeric Type | 121

are cumbersome and unsafe, but they are standard, and in some cases, you need them,
so I present them as the first solution. lexical_cast is safer, easier to use, and just more
fun, so I present it in the discussion.

The functions strtol, strtod, and strtoul, defined in <cstdlib>, convert a null-ter-
minated character string to a long int, double, or unsigned long. You can use them to
convert numeric strings of any base to a numeric type. The code in Example 3-1
demonstrates a function, hex2int, that you can use for converting a hexadecimal
string to a long.

Here’s the output from this program:

4779
4779
0

The first two strings both contain the hexadecimal number 12AB. The first of the
two has the 0x prefix, while the second doesn’t. The third string doesn’t contain a
valid hexadecimal number; the function simply returns 0 in that case.

Discussion
Some people might be inclined to write their own function that converts hexadeci-
mal numbers to integers. But why reinvent the wheel? The standard library already
provides this functionality. Example 3-1 provides a wrapper function to simplify the

Example 3-1. Converting number strings to numbers

#include <iostream>
#include <string>
#include <cstdlib>

using namespace std;

long hex2int(const string& hexStr) {
 char *offset;
 if (hexStr.length() > 2) {
 if (hexStr[0] == '0' && hexStr[1] == 'x') {
 return strtol(hexStr.c_str(), &offset, 0);
 }
 }
 return strtol(hexStr.c_str(), &offset, 16);
}

int main() {
 string str1 = "0x12AB";
 cout << hex2int(str1) << endl;
 string str2 = "12AB";
 cout << hex2int(str2) << endl;
 string str3 = "QAFG";
 cout << hex2int(str3) << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 3: Numbers

calling of strtol. The strtol function is actually an older function from the C
library, and it requires you to pass in a pointer to a null-terminated string, along with
the address of another character pointer; this latter pointer receives the address of
where the parsing ended. In C++, however, most people prefer to work with the
more powerful string class rather than the older-style character pointers. Thus, this
hex2int function takes a string parameter.

The strtol function is a bit odd in that it allows you to use two different methods for
specifying a base of 16; you can either pass 16 as a third parameter to the function;
or, you can pass 0 for the base while preceding your string with the characters 0x
(just as you would do for specifying hexadecimal constants in your code; however,
remember that with strtol, you’re passing a string).

Example 3-1 allows you to use either method. If you pass a string such as 0x12AB, the
function will detect the 0x and pass it right on to strtol, with 0 for the third parame-
ter. Otherwise, the function will pass the string with 16 for the third parameter.

strtol and strtoul work the same way; the only difference is the return type. strtod
is similar, but does not allow you to specify a base.

These old-school C functions aren’t the only way to convert strings to numbers. The
Boost project provides a conversion class lexical_cast that does the same thing for
numeric strings of base 10. Example 3-2 shows how to use it.

The output from Example 3-2 is:

750
2.71
Bad cast: bad lexical cast: source type value could not be
interpreted as target

Example 3-2. Using lexical_cast

#include <iostream>
#include <string>
#include <boost/lexical_cast.hpp>

using namespace std;

int main() {
 string str1 = "750";
 string str2 = "2.71";
 string str3 = "0x7FFF";
 try {
 cout << boost::lexical_cast<int>(str1) << endl;
 cout << boost::lexical_cast<double>(str2) << endl;
 cout << boost::lexical_cast<int>(str3) << endl;
 }
 catch (boost::bad_lexical_cast& e) {
 cerr << "Bad cast: " << e.what() << endl;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Numbers to Strings | 123

You can see that it throws an exception for the last value, which is a hexadecimal
number. If you have to convert numbers of a base other than 10, you will have to use
the strtol functions.

There are versions of the strtol functions for wide characters, too. The wide charac-
ter equivalent to strtol is wcstol and it is declared in <cwchar>. The equivalent func-
tions for strtod and strtoul are wcstod and wcstoul. Each of these functions the
same way, except that the parameters that are char*’s in the narrow character func-
tions are wchar_t*’s in the wide character functions.

See Also
Recipe 3.2

3.2 Converting Numbers to Strings

Problem
You have numeric types (int, float) and you need to put the results in a string, per-
haps formatted a certain way.

Solution
There are a number of different ways to do this, all with benefits and drawbacks. The
first technique I will present uses a stringstream class to store the string data,
because it is part of the standard library and easy to use. This approach is presented
in Example 3-3. See the discussion for alternative techniques.

Example 3-3. Formatting a number as a string

#include <iostream>
#include <iomanip>
#include <string>
#include <sstream>

using namespace std;

int main() {

 stringstream ss;

 ss << "There are " << 9 << " apples in my cart.";
 cout << ss.str() << endl; // stringstream::str() returns a string
 // with the contents

 ss.str(""); // Empty the string
 ss << showbase << hex << 16; // Show the base in hexadecimal
 cout << "ss = " << ss.str() << endl;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 3: Numbers

The output of Example 3-3 looks like this:

There are 9 apples in my cart.
ss = 0x10
ss = 3.14

Discussion
A stringstream is a convenient way to put data into a string because it lets you use
all of the formatting facilities provided by the standard input and output stream
classes. In the simplest case in Example 3-3, I just use the left-shift operator (<<) to
write a combination of text and numeric data to my string stream:

ss << "There are " << 9 << " apples in my cart.";

The << operator is overloaded for built-in types to format the input accordingly.
When you want to get the string that holds your data, use the str member function:

cout << ss.str() << endl;

There are lots of stream manipulators in <iomanip>, and you can use them to do all
sorts of formatting of your numeric data as you put it in the string. I used showbase
and hex to format my number as hexadecimal in Example 3-3, but there are lots
more. For example, you can set the precision to display more than the default num-
ber of digits:

ss << setprecision(6) << 3.14285;

Using manipulators isn’t the most intuitive thing though, which is why there is a
Recipe on the subject. See Recipe 10.2 for more detailed information about format-
ting numeric data with stream manipulators.

Of course, as is often the case with C++, there is another way. The Boost Format
library (written by Samuel Krempp) contains a format class that makes formatting and
conversion extremely easy. Example 3-4 shows you how to do such a conversion.

 ss.str("");
 ss << 3.14;
 cout << "ss = " << ss.str() << endl;
}

Example 3-4. Formatting integers as hexadecimal

#include <iostream>
#include <boost/format.hpp>

using namespace std;
using boost::format;
using boost::io::str;
using boost::io::format_error;

int main() {

Example 3-3. Formatting a number as a string (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Numbers to Strings | 125

Here’s what you see when you run this program:

There are 3 ways to do this.
Those cost $50.
abc123

Using a format class involves two steps, creating the format object and then sending
it the content. To use the trivial case from Example 3-4, I create the format object
using the simplest version of its syntax:

format f("There are %1% ways %2% %3% %4%");

In the format string, the placeholders are numbers with a % on either side. Then I
start sending it the content for the format I provided:

f % 3;
f % "to" % "do" % "this.";

The % operator has been overridden in the formatting library to add the variables you
give it to the format object to its left. You can use it once per line or call it several
times in a row. It is analogous to the << operator for streams. Speaking of the <<
operator, it has also been overridden so you can write format objects directly to an
output stream. Alternatively, if you need to put the results in a string, use the str
member function:

string s = f.str();

 try {
 format f("There are %1% ways %2% %3% %4%");

 f % 3;
 f % "to" % "do" % "this.";

 cout << f << endl;

 f.clear(); // Clear buffers to format something else

 f.parse("Those cost $%d.");
 f % 50;

 cout << f << endl;

 int x = 11256099;

 string strx = str(format("%x") % x);
 cout << strx << endl;
 }
 catch (format_error &e) {
 cout << e.what() << endl;
 }
}

Example 3-4. Formatting integers as hexadecimal (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 3: Numbers

If you are a printf person, you can use printf format specifiers:

f.parse("Those cost $%d.");
f % 50;

If you feed too many or too few content variables to format and try to write it to a
stream or extract a formatted string, it will throw a format_error (or a subclass
thereof) exception.

The format class is quite powerful, and it has too many neat formatting capabilities
to list here, but it’s worth checking out. See Boost’s web site at www.boost.org to
download Boost or to read the documentation.

You can also convert numbers from numeric types to strings using sprintf or the
related functions. Typically, you should avoid this because it is unsafe and there are
better alternatives.

See Also
Chapter 10

3.3 Testing Whether a String Contains a Valid
Number

Problem
You have a string and you need to find out if it contains a valid number.

Solution
You can use the Boost lexical_cast function template to test for a valid number.
Using this approach, a valid number can include a preceding minus sign, or a preced-
ing plus sign, but not whitespace. I give a few examples of the kinds of formats that
work with lexical_cast in Example 3-5.

Example 3-5. Validating a string number

#include <iostream>
#include <boost/lexical_cast.hpp>

using namespace std;
using boost::lexical_cast;
using boost::bad_lexical_cast;

template<typename T>
bool isValid(const string& num) {

 bool res = true;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Testing Whether a String Contains a Valid Number | 127

Here’s the output from this example:

12345 is a valid integer.
12345 is a valid double.
12345 is a valid float.
1.23456 is NOT a valid integer.
1.23456 is a valid double.
1.23456 is a valid float.
-1.23456 is NOT a valid integer.
-1.23456 is a valid double.
-1.23456 is a valid float.
 - 1.23456 is NOT a valid integer.
 - 1.23456 is NOT a valid double.
 - 1.23456 is NOT a valid float.

 try {
 T tmp = lexical_cast<T>(num);
 }
 catch (bad_lexical_cast &e) {
 res = false;
 }

 return(res);
}

void test(const string& s) {

 if (isValid<int>(s))
 cout << s << " is a valid integer." << endl;
 else
 cout << s << " is NOT a valid integer." << endl;

 if (isValid<double>(s))
 cout << s << " is a valid double." << endl;
 else
 cout << s << " is NOT a valid double." << endl;

 if (isValid<float>(s))
 cout << s << " is a valid float." << endl;
 else
 cout << s << " is NOT a valid float." << endl;
}

int main() {

 test("12345");
 test("1.23456");
 test("-1.23456");
 test(" - 1.23456");
 test("+1.23456");
 test(" 1.23456 ");
 test("asdf");
}

Example 3-5. Validating a string number (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 3: Numbers

+1.23456 is NOT a valid integer.
+1.23456 is a valid double.
+1.23456 is a valid float.
 1.23456 is NOT a valid integer.
 1.23456 is NOT a valid double.
 1.23456 is NOT a valid float.
asdf is NOT a valid integer.
asdf is NOT a valid double.
asdf is NOT a valid float.

Discussion
The lexical_cast function template converts a value from one type to another. It is
declared like this:

template<typename Target, typename Source>
Target lexical_cast(Source arg)

Source is the type of the original variable, and Target is the type of the variable being
converted to. So, for example, if you want to convert from a string to an int, you
invoke lexical_cast like this:

int i = lexical_cast<int>(str); // str is a string

lexical_cast does the parsing and attempts the conversion. If the conversion is not
possible, it throws a bad_lexical_cast exception. In Example 3-5, I only want to test
for validity and don’t need to keep the destination variable around, so I return true if
no exception is thrown, false otherwise.

You only have to supply the first template argument to lexical_cast because it’s a
function template, which means the compiler can deduce the type of the function
argument and use that as the second template argument. Explaining this distinction
is more confusing than illustrating it, so let me use a code example. Instead of invok-
ing lexical_cast as in the previous code snippet, you could do this:

int i = lexical_cast<int, string>(str);

This means the same thing, but you don’t have to supply the string argument
because the compiler can see that str is a string and figure out the rest.

If you are going to write a similar wrapper function to test for validity and return true
or false, you would do well to write it as a function template. This way, you only
have to write it once with a parameterized type, and a different version will be instan-
tiated each time you use it on a different type.

lexical_cast is also handy for converting from one numeric type to another; I dis-
cuss more about that in Recipe 3.6.

See Also
Recipe 3.6

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Comparing Floating-Point Numbers with Bounded Accuracy | 129

3.4 Comparing Floating-Point Numbers
with Bounded Accuracy

Problem
You need to compare floating-point values, but you only want tests for equality,
greater-than, or less-than to be concerned with a limited number of digits. For exam-
ple, you want 3.33333 and 3.33333333 to show as being equal when comparing to a
precision of .0001.

Solution
Write your own comparison functions that take a parameter that bounds the accu-
racy of the comparison. Example 3-6 shows the basic technique for such comparison
functions.

Example 3-6. Comparing floating-point numbers

#include <iostream>
#include <cmath> // for fabs()

using namespace std;

bool doubleEquals(double left, double right, double epsilon) {
 return (fabs(left - right) < epsilon);
}

bool doubleLess(double left, double right, double epsilon,
 bool orequal = false) {
 if (fabs(left - right) < epsilon) {
 // Within epsilon, so considered equal
 return (orequal);
 }
 return (left < right);
}

bool doubleGreater(double left, double right, double epsilon,
 bool orequal = false) {
 if (fabs(left - right) < epsilon) {
 // Within epsilon, so considered equal
 return (orequal);
 }
 return (left > right);
}

int main() {

 double first = 0.33333333;
 double second = 1.0 / 3.0;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 3: Numbers

Following is the output from this example:

0.333333
0.333333
false
true
false
false
true
true

Discussion
The code in Example 3-6 starts with two values, 0.33333333 and whatever the com-
puter figures 1.0 / 3.0 to be. It prints out the two values using the default formatting
in cout; these two values appear to be the same at 0.333333. However, when you
compare these two values, they are indeed different. The value of 1.0 / 3.0 has more
significant digits than 0.33333333, and therefore, as far as your machine is con-
cerned, the two numbers are not equal. In some applications, however, you may
want these two numbers to show up as being the same.

The way to handle this is to write three of your own functions for comparing double
values: doubleLess, doubleEquals, and doubleGreater, each of which takes two double
values as parameters. Additionally, the doubleLess and doubleGreater take an addi-
tional parameter, which, when true, causes the functions to behave as less-than-or-
equal or greater-than-or-equal, respectively.

To make these functions handle a precision, first consider the doubleEquals function.
Instead of testing for equality, this function tests whether the difference between the
two numbers is within a user-specified epsilon. (The example uses .0001 for the epsi-
lon.) If so, then the function returns true, meaning the values are indeed the same.

 cout << first << endl;
 cout << second << endl;

 // Straight equalify test. Fails when you wouldn't want it to.
 // (boolalpha prints booleans as "true" or "false")
 cout << boolalpha << (first == second) << endl;
 // New equality. Passes as scientific app probably wants.
 cout << doubleEquals(first, second, .0001) << endl;
 // New less-than
 cout << doubleLess(first, second, .0001) << endl;
 // New Greater-than
 cout << doubleGreater(first, second, .0001) << endl;
 // New less-than-or-equal-to
 cout << doubleLess(first, second, .0001, true) << endl;
 // New greater-than-or-equal-to
 cout << doubleGreater(first, second, .0001, true) << endl;
}

Example 3-6. Comparing floating-point numbers (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a String Containing a Number in Scientific Notation | 131

Thus, the values 0.3333, 0.33333, 0.333333, 0.33333333333, and 0.33333323438
would all show up as being equal.

To handle a less-than and greater-than operation, first test whether the numbers are
equal within the range, as you did in the doubleEquals function. If so, then return
true if you want to include equality in the test, and false if you don’t. Otherwise, do
a straight comparison.

3.5 Parsing a String Containing a Number
in Scientific Notation

Problem
You have a string containing a number in scientific notation, and you want to store
the number’s value in a double variable.

Solution
The most direct way to parse a scientific notation number is by using the C++ library’s
built-in stringstream class declared in <sstream>, as you can see in Example 3-7.

Example 3-7. Parsing a number in scientific notation

#include <iostream>
#include <sstream>
#include <string>

using namespace std;

double sciToDub(const string& str) {

 stringstream ss(str);
 double d = 0;
 ss >> d;

 if (ss.fail()) {
 string s = "Unable to format ";
 s += str;
 s += " as a number!";
 throw (s);
 }

 return (d);
}

int main() {

 try {
 cout << sciToDub("1.234e5") << endl;
 cout << sciToDub("6.02e-2") << endl;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 3: Numbers

Following is the output from this code:

123400
0.0602
Whoops: Unable to format asdf as a number!

Discussion
The stringstream class is, not surprisingly, a string that behaves like a stream. It is
declared in <sstring>. If you need to parse a string that contains a number in scien-
tific notation (see also Recipe 3.2), a stringstream will do the job nicely. The stan-
dard stream classes already “know” how to parse numbers, so don’t waste your time
reimplementing this logic if you don’t have to.

In Example 3-7, I wrote the simple function sciToDub that takes a string parameter
and returns the double it contains, if it is valid. Within sciToDub, I use the
stringstream as follows:

stringstream ss(str); // Construct from a string
double d = 0;
ss >> d;

if (ss.fail()) {
 string s = "Unable to format ";
 s += str;
 s += " as a number!";
 throw (s);
}
return (d);

The most important part here is that all you have to do is use the right-shift operator
(>>) to read from the string stream into a double, just as you would read from cin.

Well, that’s not all you have to do. If there’s a value in the stringstream that can’t be
written to the variable on the right side of the >> operator, the fail bit is set on the
stream. You can check this bit using the fail member function (this is actually a
member function of basic_ios, which is a superclass of stringstream). Additionally,
the variable on the righthand side of the >> operator is unchanged if the operation
fails.

 cout << sciToDub("asdf") << endl;
 }
 catch (string& e) {
 cerr << "Whoops: " << e << endl;
 }
}

Example 3-7. Parsing a number in scientific notation (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Numeric Types | 133

In the interest of being generic, however, you can avoid having to write separate ver-
sions of sciToDub for ints, floats, doubles, and whatever else you want to convert to
by writing a function template. Consider this new version:

template<typename T>
T strToNum(const string& str) {
 stringstream ss(str);
 T tmp;
 ss >> tmp;

 if (ss.fail()) {
 string s = "Unable to format ";
 s += str;
 s += " as a number!";
 throw (s);
 }

 return (tmp);
}

Now, if you want to convert a string to a numeric type, you can do it like this:

double d = strToNum<double>("7.0");
float f = strToNum<float>("7.0");
int i = strToNum<int>("7.0");

You can also make the type of character a template parameter, but that’s straightfor-
ward to do, so I’ll leave it as an exercise for you.

See Also
Recipe 3.2

3.6 Converting Between Numeric Types

Problem
You have number of one type and you need to convert it to another, such as an int
to a short or a vice versa, but you want to catch any overflow or underflow errors at
runtime.

Solution
Use Boost’s numeric_cast class template. It performs runtime checks that throw an
exception of type bad_numeric_cast if you will overflow or underflow the variable
where you are putting a value. Example 3-8 shows you how to do this.

Example 3-8. Safe numeric conversions

#include <iostream>
#include <boost/cast.hpp>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 3: Numbers

Discussion
You are probably aware of the fact that the basic C++ types have different sizes. The
C++ standard has strict specifications for the relative size of types—an int is always

using namespace std;
using boost::numeric_cast;
using boost::bad_numeric_cast;

int main() {

 // Integer sizes
 try {
 int i = 32767;
 short s = numeric_cast<short>(i);

 cout << "s = " << s << endl;

 i++; // Now i is out of range (if sizeof(short) is 2)
 s = numeric_cast<short>(i);
 }
 catch (bad_numeric_cast& e) {
 cerr << e.what() << endl;
 }

 try {
 int i = 300;
 unsigned int ui = numeric_cast<unsigned int>(i);

 cout << ui << endl; // Fine

 i *= -1;
 ui = numeric_cast<unsigned int>(i); // i is negative!
 }
 catch (bad_numeric_cast& e) {
 cerr << e.what() << endl;
 }

 try {
 double d = 3.14;
 int i = numeric_cast<int>(d);

 i = numeric_cast<int>(d); // This shaves off the 0.14!

 cout << i << endl; // i = 3

 }
 catch (bad_numeric_cast& e) {
 cerr << e.what() << endl;
 }
}

Example 3-8. Safe numeric conversions (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Numeric Types | 135

at least as big as a short int—but it does not specify the absolute size. What this
means is that if you take a long int and try to put it in a short, or attempt to put an
int in an unsigned int, then you may be losing information about the value in the
source variable, such as its sign or even part of its numeric value.

Just knowing that this causes problems isn’t enough. You may have tight space
requirements and not want to use four bytes for a long when you can get away with
two for a short (if your platform, in fact, uses these sizes, which are common but not
guaranteed). Because of your space requirements, you want to try to store values in
the smallest possible type. If you want to live dangerously but want a safety net, use
Boost’s numeric_cast to catch loss of data at runtime.

The syntax of numeric_cast is straightforward. It is a function template, declared like
this:

template<typename Target, typename Source>
inline Target numeric_cast(Source arg)

It is just like lexical_cast if you have already read Recipes 3.1 or 3.3. There are two
template parameters, Target and Source, which represent the types of the originating
and destination values. Because it is a function template, the compiler can deduce
the type of the Source template argument, so you only need to supply Target, like
this:

int i = 32767;
short s = numeric_cast<short>(i);

short is the template argument for the Target parameter. The compiler figures out
that Source is an int because i is an int.

In this case, I am cramming an int into a short. On my (Windows XP) system, an
int is four bytes and a short is two. A short is signed, which means that I have 15
bits to represent a number with and, therefore, 32,767 is the maximum positive
value it can hold. The above piece of code goes off without a hitch, but when I incre-
ment i by one, it goes beyond the range of a short:

i++;
s = numeric_cast<short>(i); // Uh-oh

And a bad_numeric_cast exception is thrown—you get the idea. See the rest of
Example 3-8: numeric_cast also catches underflow if you try to assign a negative
signed value to an unsigned type.

But numeric_cast doesn’t solve all of your problems. If you try to put a floating-point
value in a nonfloating-point type, you lose everything to the right of the decimal, cor-
rect? numeric_cast does not help you with this, so don’t think that it can rescue you
from all of your risky endeavors. For example, consider this piece of code from
Example 3-8:

double d = 3.14;
int i = numeric_cast<int>(d); // Ouch

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 3: Numbers

No exception is thrown here. But it is if you try this:

double d = -3.14;
unsigned int ui = numeric_cast<unsigned in>(d);

Because regardless of you tossing everything to the right of the decimal point out the
window, you are losing the negative sign, and that is bad.

See Also
Recipes 3.1 and 3.3

3.7 Getting the Minimum and Maximum Values
for a Numeric Type

Problem
You need to know the largest or smallest representable value for your platform for a
numeric type, such as an int or double.

Solution
Use the numeric_limits class template in the <limits> header to get, among other
things, the largest and smallest possible values for a numeric type (see Example 3-9).

Example 3-9. Getting numeric limits

#include <iostream>
#include <limits>

using namespace std;

template<typename T>
void showMinMax() {
 cout << "min: " << numeric_limits<T>::min() << endl;
 cout << "max: " << numeric_limits<T>::max() << endl;
 cout << endl;
}

int main() {

 cout << "short:" << endl;
 showMinMax<short>();
 cout << "int:" << endl;
 showMinMax<int>();
 cout << "long:" << endl;
 showMinMax<long>();
 cout << "float:" << endl;
 showMinMax<float>();
 cout << "double:" << endl;
 showMinMax<double>();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Minimum and Maximum Values for a Numeric Type | 137

Here’s what I get on Windows XP using Visual C++ 7.1:

short:
min: -32768
max: 32767

int:
min: -2147483648
max: 2147483647

long:
min: -2147483648
max: 2147483647

float:
min: 1.17549e-038
max: 3.40282e+038

double:
min: 2.22507e-308
max: 1.79769e+308

long double:
min: 2.22507e-308
max: 1.79769e+308

unsigned short:
min: 0
max: 65535

unsigned int:
min: 0
max: 4294967295

unsigned long:
min: 0
max: 4294967295

 cout << "long double:" << endl;
 showMinMax<long double>();
 cout << "unsigned short:" << endl;
 showMinMax<unsigned short>();
 cout << "unsigned int:" << endl;
 showMinMax<unsigned int>();
 cout << "unsigned long:" << endl;
 showMinMax<unsigned long>();
}

Example 3-9. Getting numeric limits (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 3: Numbers

Discussion
Example 3-9 shows a simple example for getting the minimum and maximum values
for native numeric types. The numeric_limits class template has a specialization for all
of the built-in types, including both numeric and nonnumeric. The standard man-
dates that all of the types I use in Example 3-9 have a specialization of numeric_limits,
as well as these:

bool
char
signed char
unsigned char
wchar_t

min and max are static member functions in numeric_limits that return the highest
and lowest values for the type parameter you pass in.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

139

Chapter 4 CHAPTER 4

Strings and Text

4.0 Introduction
This chapter contains recipes for working with strings and text files. Most C++ pro-
grams, regardless of their application, manipulate strings and text files to some
degree. Despite the variety of applications, however, the requirements are often the
same—for strings: trimming, padding, searching, splitting, and so on; for text files:
wrapping, reformatting, reading delimited files, and more. The recipes that follow
provide solutions to many of these common needs that do not have ready-made solu-
tions in the C++ standard library.

The standard library is portable, standardized, and, in general, at least as efficient as
homemade solutions, so in the following examples I have preferred it over code from
scratch. It contains a rich framework for manipulating and managing strings and
text, much of which is in the form of the class templates basic_string (for strings),
basic_istream, and basic_ostream (for input and output text streams). Almost all of
the techniques in this chapter use or extend these class templates. In cases where
they didn’t have what I wanted, I turned to another area of the standard library that
is full of generic, prebuilt solutions: algorithms and containers.

Everybody uses strings, so chances are that if what you need isn’t in the standard
library, someone has written it. The Boost String Algorithms library, written by Pavol
Droba, fills many of the gaps in the standard library by implementing most of the
algorithms that you’ve had to use at one time or another, and it does it in a portable,
efficient way. Check out the Boost project at www.boost.org for more information
and documentation of the String Algorithms library. There is some overlap between
the String Algorithms library and the solutions I present in this chapter. In most
cases, I provide examples of or at least mention Boost algorithms that are related to
the solutions presented.

For most examples, I have provided both a nontemplate and a template version. I did
this for two reasons. First, most of the areas of the standard library that use character
data are class or function templates that are parameterized on the type of character,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 4: Strings and Text

narrow (char) or wide (wchar_t). By following this model, you will help maximize the
compatibility of your software with the standard library. Second, whether you are
working with the standard library or not, class and function templates provide an
excellent facility for writing generic software. If you do not need templates, however,
you can use the nontemplate versions, though I recommend experimenting with tem-
plates if you are new to them.

The standard library makes heavy use of templates and uses typedefs to insulate pro-
grammers from some of the verbose syntax that templates use. As a result, I use the
terms basic_string, string, and wstring interchangeably, since what applies to one
usually applies to them all. string and wstring are just typedefs for basic_string<char>
and basic_string<wchar_t>.

Finally, you will probably notice that none of the recipes in this chapter use C-style
strings, i.e., null-terminated character arrays. The standard library provides such a
wealth of efficient and extensible support for C++ strings that to use C-style string
functions (which were provided primarily for backward-compatibility anyway) is to
forego the flexibility, safety, and generic nature of what you get for free with your
compiler: C++ string classes.

4.1 Padding a String

Problem
You need to “pad,” or fill, a string with a number of occurrences of some character
to a certain width. For example, you may want to pad the string "Chapter 1" to 20
characters wide with periods, so that it looks like "Chapter 1...........".

Solution
Use string’s insert and append member functions to pad a string with characters on
the beginning or end. For example, to pad the end of a string to 20 characters with
X’s:

std::string s = "foo";
s.append(20 – s.length(), 'X');

To pad the string at the beginning instead:

s.insert(s.begin(), 20 – s.length(), 'X');

Discussion
The difference in usage between the two functions is insert’s first parameter. It is an
iterator that points to the character immediately to the right of where the insert
should occur. The begin member function returns an iterator pointing to the first ele-
ment in the string, so in the example, the series of characters is inserted to the left of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Padding a String | 141

that. The parameters common to both functions are the number of times to repeat
the character and the character itself.

insert and append are actually member functions of the basic_string class template
in the <string> header (string is a typedef for basic_string<char> and wstring is a
typedef for basic_string<wchar_t>), so they work for strings of narrow or wide char-
acters. Using them as needed, as in the above example, will work fine, but if you are
using basic_string member functions from within your own generic utility func-
tions, you should build on the standard library’s existing generic design and use a
function template. Consider the code in Example 4-1, which defines a generic pad
function template that operates on basic_strings.

pad in Example 4-1 pads the given string s up to some width n, with the character c.
Since the function template uses a parameterized type for the elements of the string
(T), it will work on a basic_string of any kind of character: char, wchar_t, or other
custom characters.

Example 4-1. A generic pad function template

#include <string>
#include <iostream>

using namespace std;

// The generic approach
template<typename T>
void pad(basic_string<T>& s,
 typename basic_string<T>::size_type n, T c) {
 if (n > s.length())
 s.append(n - s.length(), c);
}

int main() {

 string s = "Appendix A";
 wstring ws = L"Acknowledgments"; // The "L" indicates that
 // this is a wide char
 pad(s, 20, '*'); // literal
 pad(ws, 20, L'*');

 // cout << s << std::endl; // You shouldn't be able to
 wcout << ws << std::endl; // run these at the same time
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 4: Strings and Text

4.2 Trimming a String

Problem
You need to trim some number of characters from the end(s) of a string, usually
whitespace.

Solution
Use iterators to identify the portion of the string you want to remove, and the erase
member function to remove it. Example 4-2 presents the function rtrim that trims a
character from the end of a string.

Discussion
Example 4-2 will do the trick for strings of chars, but it only works for char strings.
Just like you saw in Example 4-1, you can take advantage of the generic design of
basic_string and use a function template instead. Example 4-3 uses a function tem-
plate to trim characters from the end of any kind of character string.

Example 4-2. Trimming characters from a string

#include <string>
#include <iostream>

// The approach for narrow character strings
void rtrim(std::string& s, char c) {

 if (s.empty())
 return;

 std::string::iterator p;
 for (p = s.end(); p != s.begin() && *--p == c;);

 if (*p != c)
 p++;

 s.erase(p, s.end());
}

int main()
{
 std::string s = "zoo";

 rtrim(s, 'o');

 std::cout << s << '\n';
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Trimming a String | 143

This function works exactly the same way as the previous, nongeneric, version in
Example 4-2, but since it is parameterized on the type of character being used, it will
work for basic_strings of any kind.

Examples 4-2 and 4-3 remove sequences of a single character from a string. Trim-
ming whitespace is different, however, because whitespace can be one of several
characters. Conveniently, the standard library provides a concise way to do this: the
isspace function in the <cctype> header (and its wchar_t equivalent, iswspace, in
<cwctype>). Example 4-4 defines a generic function that trims trailing whitespace.

Example 4-3. A generic version of rtrim

#include <string>
#include <iostream>

using namespace std;

// The generic approach for trimming single
// characters from a string
template<typename T>
void rtrim(basic_string<T>& s, T c)
{
 if (s.empty())
 return;

 typename basic_string<T>::iterator p;
 for (p = s.end(); p != s.begin() && *--p == c;);

 if (*p != c)
 p++;

 s.erase(p, s.end());
}

int main() {

 string s = "Great!!!!";
 wstring ws = L"Super!!!!";

 rtrim(s, '!');
 rtrim(ws, L'!');

 cout << s << '\n';
 wcout << ws << L'\n';
}

Example 4-4. Trim trailing whitespace

#include <string>
#include <iostream>
#include <cctype>
#include <cwctype>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 4: Strings and Text

The function template in Example 4-4, rtrimws, is a generic function template, simi-
lar to the previous examples, that accepts a basic_string and trims whitespace from
the end of it. But unlike the other examples, it takes a function object, and not a
character, that is used to test an element of the string to determine whether it should
be removed.

You don’t need to overload rtrimws as I did in the example, but it makes the syntax
cleaner when using the function, since the calling code can omit the predicate func-
tion argument when using them.

But alas, this solution requires that you write the code yourself. If you would rather
use a library—and a good one at that—Boost’s String Algorithms library supplies
lots of functions for trimming strings, and chances are that what you need is already

using namespace std;

template<typename T, typename F>
void rtrimws(basic_string<T>& s, F f) {

 if (s.empty())
 return;

 typename basic_string<T>::iterator p;
 for (p = s.end(); p != s.begin() && f(*--p););

 if (!f(*p))
 p++;

 s.erase(p, s.end());
}

// Overloads to make cleaner calling for client code
void rtrimws(string& s) {
 rtrimws(s, isspace);
}

void rtrimws(wstring& ws) {
 rtrimws(ws, iswspace);
}

int main() {

 string s = "zing ";
 wstring ws = L"zong ";

 rtrimws(s);
 rtrimws(ws);

 cout << s << "|\n";
 wcout << ws << L"|\n";
}

Example 4-4. Trim trailing whitespace (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Trimming a String | 145

there. In fact, there are lots of handy trimming functions in the String Algorithms
library, so if you can use Boost you should take a look. Table 4-1 lists the function
templates in the library that you can use for trimming strings, including some miscel-
laneous functions. Since these are function templates, they have template parame-
ters that represent the different types used. Here is what each of them mean:

Seq
This is a type that satisfies the sequence requirements as defined in the C++
standard.

Coll
This is a type that satisfies a less-restrictive set of requirements than a standard
sequence. See the Boost String Algorithms definitions a detailed description of
the requirements a collection satisfies.

Pred
This is a function object or function pointer that takes a single argument and
returns a bool—in other words, an unary predicate. You can supply your own
unary predicates to some of the trimming functions to trim elements that satisfy
certain criteria.

OutIt
This is a type that satisfies the requirements of an output iterator as defined in
the C++ standard, namely that you can increment it and assign to the new loca-
tion to add an element to the end of the sequence to which it points.

Table 4-1. Boost’s string trimming function templates

Declaration Description

template<typename Seq>
void trim(Seq& s,

const locale& loc =
locale());

Trim spaces from both ends of a string in place using the locale’s classifica-
tion function for identifying the space character.

template<typename Seq,
typename Pred>

void trim_if(Seq& s, Pred p);

Trim elements from each end of the sequence s for which p(*it) is
true, where it is an iterator that refers to an element in the sequence.
The trimming ceases when p(*it) = false.

template<typename Seq>
Seq trim_copy(const Seq& s,

const locale& loc =
locale());

Does the same thing as trim, but instead of modifying s it returns a new
sequence with the trimmed results.

template<typename Seq,
typename Pred>

Seq trim_copy_if(const Seq& s,
Pred p);

Does the same thing as trim_if, but instead of modifying s it returns a
new sequence with the trimmed results.

template<typename OutIt,
 typename Coll,
 typename Pred>

OutIt trim_copy_if(OutIt out,
const Coll& c, Pred p);

Does the same thing as the previous version of trim_copy_if, with a
few differences. First, it gives the guarantee of strong exception safety.
Second, it takes an output iterator as the first argument and returns an
output iterator that refers to one position past the end of the destination
sequence. Finally, it takes a collection type instead of a sequence type; see
the list before this table for more information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 4: Strings and Text

The first four function templates described in Table 4-1 are the core functionality of
the String Algorithms library’s trim functions. The rest are variations on those
themes. To see some of them in action, take a look at Example 4-5. It shows some of
the advantages of using these functions over string member functions.

trim_left
trim_right

Works like trim, but only for the left or right end of a string.

trim_left_if
trim_right_if

Works like trim_if, but only for the left or right end of a string.

trim_left_copy
trim_right_copy

Works like trim_copy, but only for the left or right end of a string.

trim_left_copy_if
trim_right_copy_if

Works like trim_copy_if, but only for the left or right end of a string.
Both have two versions, one that operates on a sequence and another that
operates on a collection.

Example 4-5. Using Boost’s string trim functions

#include <iostream>
#include <string>
#include <boost/algorithm/string.hpp>

using namespace std;
using namespace boost;

int main() {

 string s1 = " leading spaces?";

 trim_left(s1); // Trim the original
 string s2 = trim_left_copy(s1); // Trim, but leave original intact

 cout << "s1 = " << s1 << endl;
 cout << "s2 = " << s2 << endl;

 s1 = "YYYYboostXXX";
 s2 = trim_copy_if(s1, is_any_of("XY")); // Use a predicate to

 trim_if(s1, is_any_of("XY"));

 cout << "s1 = " << s1 << endl;
 cout << "s2 = " << s2 << endl;

 s1 = "1234 numbers 9876";
 s2 = trim_copy_if(s1, is_digit());

 cout << "s1 = " << s1 << endl;
 cout << "s2 = " << s2 << endl;

Table 4-1. Boost’s string trimming function templates (continued)

Declaration Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Strings in a Sequence | 147

Example 4-5 demonstrates how to use the Boost string trim functions. They are gen-
erally self-explanatory to use, so I won’t go into a detailed explanation beyond
what’s in Table 4-1. The one function that is in the example that isn’t in the table is
is_any_of. This is a function template that returns a predicate function object that
can be used by the trim_if-style functions. Use it when you want to trim a set of
characters. There is a similar classification function named is_from_range that takes
two arguments and returns an unary predicate that returns true when a character is
within the range. For example, to trim the characters a through d from a string, you
could do something like this:

s1 = "abcdXXXabcd";
trim_if(s1, is_from_range('a', 'd'));
cout << "s1 = " << s1 << endl; // Now s1 = XXX

Note that this works in a case-sensitive way, since the range a through d does not
include the uppercase versions of those letters.

4.3 Storing Strings in a Sequence

Problem
You want to store a set of strings in a sequence that looks and feels like an array.

Solution
Use a vector for array-like storage of your strings. Example 4-6 offers a simple example.

 // Nest calls to trim functions if you like
 s1 = " ****Trim!*** ";
 s2 = trim_copy_if(trim_copy(s1), is_any_of("*"));

 cout << "s1 = " << s1 << endl;
 cout << "s2 = " << s2 << endl;
}

Example 4-6. Store strings in a vector

#include <string>
#include <vector>
#include <iostream>

using namespace std;

int main() {

 vector<string> v;

 string s = "one";
 v.push_back(s);

Example 4-5. Using Boost’s string trim functions (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 4: Strings and Text

vectors follow array semantics for random access (they also do a lot more), so they
are easy and familiar to use. vectors are just one of many sequences in the standard
library, however; read on for more of this broad subject.

Discussion
A vector is a dynamically sized sequence of objects that provides array-style
operator[] random access. The member function push_back copies its argument via
copy constructor, adds that copy as the last item in the vector, and increments its
size by one. pop_back does the exact opposite, by removing the last element. Insert-
ing or deleting items from the end of a vector takes amortized constant time, and
inserting or deleting from any other location takes linear time. These are the basics of
vectors. There is a lot more to them.

In most cases, a vector should be your first choice over a C-style array. First of all,
they are dynamically sized, which means they can grow as needed. You don’t have to
do all sorts of research to figure out an optimal static size, as in the case of C arrays; a
vector grows as needed, and it can be resized larger or smaller manually if you need
to. Second, vectors offer bounds checking with the at member function (but not with
operator[]), so that you can do something if you reference a nonexistent index
instead of simply watching your program crash or worse, continuing execution with
corrupt data. Look at Example 4-7. It shows how to deal with out-of-bounds indexes.

 s = "two";
 v.push_back(s);

 s = "three";
 v.push_back(s);

 for (int i = 0; i < v.size(); ++i)
 {
 cout << v[i] << '\n';
 }
}

Example 4-7. Bounds-checking on vectors

#include <iostream>
#include <vector>
#include <exception>

using namespace std;

int main() {

 char carr[] = {'a', 'b', 'c', 'd', 'e'};

 cout << carr[100000] << '\n'; // Whoops, who knows what's going
 // to happen

Example 4-6. Store strings in a vector (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Strings in a Sequence | 149

If you catch out_of_range, defined in <stdexcept>, you can deal with invalid indexes
in a meaningful way. And you can call the what member function to, depending on
your implementation, get a useful error message, like this one returned by the code
in Example 4-7:

invalid vector<T> subscript

vectors aren’t your only option though. There are lots of ways to store sequences of
things in C++. In addition to vectors, there are lists, sets, and double-ended
queues (deques). All support many of the same operations, and each supports opera-
tions of its own. In addition, each has different algorithmic complexity guarantees,
storage requirements, and semantics in general. There is a lot to choose from.

Look at Example 4-6 closely. You will probably notice that I keep changing the value
of the string s before I add it to the back of the container with push_back. You could
reasonably expect the output to look like this:

three
three
three

I pushed the same string on the end of the vector three times, so each time I reassign
the string, don’t all vector elements now just refer to the same thing? No. This is an
important point about STL containers.

STL containers store copies of the objects you put into them, not the objects them-
selves. So after I’ve put all three of my strings in the container, there are four strings
in memory: the three copies that were made and are now “in” the container, and the
one copy I’ve been assigning values to.

Who cares? So a few extra copies have been made: big deal. It is a big deal, because if
whatever you are writing uses a lot of strings, you are going to pay for all of that
copying with processor time, or memory, or both. Copying elements in and out of
containers is the intentional behavior of the STL, and all containers work that way.

 vector<char> v;
 v.push_back('a');
 v.push_back('b');
 v.push_back('c');
 v.push_back('d');
 v.push_back('e');

 try {
 cout << v.at(10000) << '\n'; // at checks bounds and throws
 } catch(out_of_range& e) { // out_of_range if it's invalid
 cerr << e.what() << '\n';
 }
}

Example 4-7. Bounds-checking on vectors (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 4: Strings and Text

A solution to this (certainly not the solution) is to store pointers in the container
instead. Just remember that the container doesn’t delete the pointers when it is
destroyed. Your code allocated the memory for the pointer, so your code has to clean
it up. This goes for when the container is destroyed entirely, or when the element is
removed.

In the interest of providing alternative solutions, let’s explore another option. Con-
sider the class template list, defined in <list>, which is a doubly linked list. If you
plan on having lots of inserts and deletes in the middle of the sequence, or if you
want to ensure that iterators pointing to elements of the sequence are not invali-
dated when you modify the sequence, you may want to use a list. Example 4-8 uses
a list instead of a vector to store a few strings; it also uses for_each to iterate
through them and print them out instead of the index operator, as you would have
to do with a simple array.

The point of this digression from the original problem (storing strings in a sequence)
is to give a brief introduction to the sequences in the STL. I can’t give comprehen-
sive coverage of the topic here. For an overview of the STL, see Chapter 10 of C++ in
a Nutshell, by Ray Lischner (O’Reilly).

Example 4-8. Storing strings in a list

#include <string>
#include <list>
#include <algorithm>
#include <iostream>

using namespace std;

void write(const string& s) {
 cout << s << '\n';
}

int main() {
 list<string> lst;

 string s = "knife";
 lst.push_front(s);

 s = "fork";
 lst.push_back(s);

 s = "spoon";
 lst.push_back(s);

 // A list doesn't have random access, so
 // use for_each() instead
 for_each(lst.begin(), lst.end(), write);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting the Length of a String | 151

4.4 Getting the Length of a String

Problem
You need the length of a string.

Solution
Use string’s length member function:

std::string s = "Raising Arizona";
int i = s.length();

Discussion
Retrieving the length of a string is a trivial task, but it is a good opportunity to dis-
cuss the allocation scheme for strings (both wide and narrow character). strings,
unlike C-style null-terminated character arrays, are dynamically sized, and grow as
needed. Most standard library implementations start with an arbitrary (low) capac-
ity, and grow by doubling the capacity each time it is reached. Knowing how to ana-
lyze this growth, if not the exact algorithm, is helpful in diagnosing string
performance problems.

The characters in a basic_string are stored in a buffer that is a contiguous chunk of
memory with a static size. The buffer a string uses is an arbitrary size initially, and as
characters are added to the string, the buffer fills up until its capacity is reached.
When this happens, the buffer grows, sort of. Specifically, a new buffer is allocated
with a larger size, the characters are copied from the old buffer to the new buffer,
and the old buffer is deleted.

You can find out the size of the buffer (not the number of characters it contains, but
its maximum size) with the capacity member function. If you want to manually set
the capacity to avoid needless buffer copies, use the reserve member function and
pass it a numeric argument that indicates the desired buffer size. There is a maximum
size on the possible buffer size though, and you can get that by calling max_size. You
can use all of these to observe memory growth in your standard library implementa-
tion. Take a look at Example 4-9 to see how.

Example 4-9. String length and capacity

#include <string>
#include <iostream>

using namespace std;

int main() {

 string s = "";
 string sr = "";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 4: Strings and Text

With Visual C++ 7.1, my output looks like this:

s.length = 0
s.capacity = 15
s.max_size = 4294967294
sr.length = 0
sr.capacity = 9007
sr.max_size = 4294967294
s reached capacity of 15, growing...
s reached capacity of 31, growing...
s reached capacity of 47, growing...
s reached capacity of 70, growing...
s reached capacity of 105, growing...
s reached capacity of 157, growing...
s reached capacity of 235, growing...
s reached capacity of 352, growing...
s reached capacity of 528, growing...
s reached capacity of 792, growing...
s reached capacity of 1188, growing...
s reached capacity of 1782, growing...
s reached capacity of 2673, growing...
s reached capacity of 4009, growing...
s reached capacity of 6013, growing...
sr reached capacity of 9007, growing...
s reached capacity of 9019, growing...

What is happening here is that the buffer for the string keeps filling up as I append
characters to it. If the buffer is full (i.e., length = capacity), a new, larger buffer is

 sr.reserve(9000);

 cout << "s.length = " << s.length() << '\n';
 cout << "s.capacity = " << s.capacity() << '\n';
 cout << "s.max_size = " << s.max_size() << '\n';

 cout << "sr.length = " << sr.length() << '\n';
 cout << "sr.capacity = " << sr.capacity() << '\n';
 cout << "sr.max_size = " << sr.max_size() << '\n';

 for (int i = 0; i < 10000; ++i) {

 if (s.length() == s.capacity()) {
 cout << "s reached capacity of " << s.length()
 << ", growing...\n";
 }
 if (sr.length() == sr.capacity()) {
 cout << "sr reached capacity of " << sr.length()
 << ", growing...\n";
 }
 s += 'x';
 sr += 'x';
 }
}

Example 4-9. String length and capacity (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reversing a String | 153

allocated and the original string characters and the newly appended character(s) are
copied into the new buffer. s starts with the default capacity of 15 (results vary by
compiler), then grows by about half each time.

If you anticipate significant growth in your string, or you have a large number of
strings that will need to grow at least modestly, use reserve to minimize the amount
of buffer reallocation that goes on. It’s also a good idea to experiment with your stan-
dard library implementation to see how it handles string growth.

Incidentally, when you want to know if a string is empty, don’t check length against
zero, just call the empty member function. It is a const member function that returns
true if the length of the string is zero.

4.5 Reversing a String

Problem
You want to reverse a string.

Solution
To reverse a string “in place,” without using a temporary string, use the reverse
function template in the <algorithm> header:

std::reverse(s.begin(), s.end());

Discussion
reverse works simply enough: it modifies the range you give it such that it is in the
opposite order that it was originally. It takes linear time.

In the event that you want to copy the string to another string, but backward, use
reverse iterators, like this:

std::string s = "Los Angeles";
std::string rs;

rs.assign(s.rbegin(), s.rend());

rbegin and rend return reverse iterators. Reverse iterators behave as though they are
looking at the sequence backward. rbegin returns an iterator that points to the last
element, and rend returns an iterator that points to one before the first; this is exactly
opposite of what begin and end do.

But do you need to reverse the string in the first place? With rbegin and rend, any
member functions or algorithms that operate on iterator ranges can be used on the
reverse version of the string. And if you want to search through the string, you can
use rfind to do what find does but starting from the end of the string and moving
backward. For large strings, or large numbers of strings, reversing can be expensive,
so avoid it if you can.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 4: Strings and Text

4.6 Splitting a String

Problem
You want to split a delimited string into multiple strings. For example, you may
want to split the string "Name|Address|Phone" into three separate strings, "Name",
"Address", and "Phone", with the delimiter removed.

Solution
Use basic_string’s find member function to advance from one occurrence of the
delimiter to the next, and substr to copy each substring out of the original string.
You can use any standard sequence to hold the results; Example 4-10 uses a vector.

Example 4-10. Split a delimited string

#include <string>
#include <vector>
#include <functional>
#include <iostream>

using namespace std;

void split(const string& s, char c,
 vector<string>& v) {
 string::size_type i = 0;
 string::size_type j = s.find(c);

 while (j != string::npos) {
 v.push_back(s.substr(i, j-i));
 i = ++j;
 j = s.find(c, j);

 if (j == string::npos)
 v.push_back(s.substr(i, s.length()));
 }
}

int main() {
 vector<string> v;
 string s = "Account Name|Address 1|Address 2|City";

 split(s, '|', v);

 for (int i = 0; i < v.size(); ++i) {
 cout << v[i] << '\n';
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Splitting a String | 155

Discussion
Making the example above a function template that accepts any kind of character is
trivial; just parameterize the character type and change references to string to
basic_string<T>:

template<typename T>
void split(const basic_string<T>& s, T c,
 vector<basic_string<T> >& v) {
 basic_string<T>::size_type i = 0;
 basic_string<T>::size_type j = s.find(c);

 while (j != basic_string<T>::npos) {
 v.push_back(s.substr(i, j-i));
 i = ++j;
 j = s.find(c, j);

 if (j == basic_string<T>::npos)
 v.push_back(s.substr(i, s.length()));
 }
}

The logic is identical.

Notice, though, that I put an extra space between the last two right-
angle brackets on the last line of the function header. You have to do
this to tell the compiler that it’s not reading a right-shift operator.

Example 4-10 splits a string using a simple algorithm. Starting at the beginning, it
looks for the first occurrence of the delimiter c, then considers everything before it
and after the beginning the next meaningful chunk of text. The example uses the
find member function to locate the first occurrence of a character starting at a partic-
ular index in the original string, and substr to copy the characters in a range to a
new string, which is pushed onto a vector. This is the same behavior as the split
function in most scripting languages, and is actually a special case of tokenizing a
stream of text, which is described in Recipe 4.7.

Splitting strings based on single character delimiters is a common requirement, and it
probably won’t surprise you that it’s in the Boost String Algorithms library. It is easy
to use; see Example 4-11 to see how to split a string with Boost’s split function.

Example 4-11. Splitting a string with Boost

#include <iostream>
#include <string>
#include <list>
#include <boost/algorithm/string.hpp>

using namespace std;
using namespace boost;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 4: Strings and Text

split is a function template that takes three arguments. Its declaration looks like
this:

template<typename Seq,
 typename Coll,
 typename Pred>
Seq& split(Seq& s, Coll& c, Pred p,
 token_compress_mode_type e = token_compress_off);

The types Seq, Coll, and Pred, represent the types of the result sequence, the input
collection, and the predicate that will be used to determine if something is a delim-
iter. The sequence argument is a sequence in the C++ standard’s definition that con-
tains something that can hold pieces of what is in the input collection. So, for
example, in Example 4-11 I used a list<string>, but you could use something else
like a vector<string>. The collection argument is the type of the input sequence. A
collection is a nonstandard concept that is similar to a sequence, but with fewer
requirements (see the Boost documentation at www.boost.org for specifics). The
predicate argument is an unary function object or function pointer that returns a
bool indicating whether its argument is a delimiter or not. It will be invoked against
each element in the sequence in the form f(*it), where it is an iterator that refers to
an element in the sequence.

is_any_of is a convenient function template that comes with the String Algorithms
library that makes your life easier if you are using multiple delimiters. It constructs
an unary function object that returns true if the argument you pass in is a member of
the set. In other words:

bool b = is_any_of("abc")('a'); // b = true

This makes it easy to test for multiple delimiters without having to write the func-
tion object yourself.

int main() {

 string s = "one,two,three,four";
 list<string> results;

 split(results, s, is_any_of(",")); // Note this is boost::split

 for (list<string>::const_iterator p = results.begin();
 p != results.end(); ++p) {
 cout << *p << endl;
 }
}

Example 4-11. Splitting a string with Boost (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Tokenizing a String | 157

4.7 Tokenizing a String

Problem
You need to break a string into pieces using a set of delimiters.

Solution
Use the find_first_of and first_first_not_of member functions on basic_string to
iterate through the string and alternately locate the next tokens and non-tokens.
Example 4-12 presents a simple StringTokenizer class that does just that.

Example 4-12. A string tokenizer

#include <string>
#include <iostream>

using namespace std;

// String tokenizer class.
class StringTokenizer {

public:

 StringTokenizer(const string& s, const char* delim = NULL) :
 str_(s), count_(-1), begin_(0), end_(0) {

 if (!delim)
 delim_ = " \f\n\r\t\v"; //default to whitespace
 else
 delim_ = delim;

 // Point to the first token
 begin_ = str_.find_first_not_of(delim_);
 end_ = str_.find_first_of(delim_, begin_);
 }

 size_t countTokens() {
 if (count_ >= 0) // return if we've already counted
 return(count_);

 string::size_type n = 0;
 string::size_type i = 0;

 for (;;) {
 // advance to the first token
 if ((i = str_.find_first_not_of(delim_, i)) == string::npos)
 break;
 // advance to the next delimiter
 i = str_.find_first_of(delim_, i+1);
 n++;
 if (i == string::npos)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 4: Strings and Text

Discussion
Splitting a string with well-defined structure, as in Example 4-10, is nice, but it’s not
always that easy. Suppose instead that you have to tokenize a string instead of sim-
ply break it into pieces based on a single delimiter. The most common incarnation of
this is tokenizing based on ignoring whitespace. Example 4-12 gives an implementa-
tion of a StringTokenizer class (like the standard Java™ class of the same name) for
C++ that accepts delimiter characters, but defaults to whitespace.

 break;
 }
 return (count_ = n);
 }
 bool hasMoreTokens() {return(begin_ != end_);}
 void nextToken(string& s) {
 if (begin_ != string::npos && end_ != string::npos) {
 s = str_.substr(begin_, end_-begin_);
 begin_ = str_.find_first_not_of(delim_, end_);
 end_ = str_.find_first_of(delim_, begin_);
 }
 else if (begin_ != string::npos && end_ == string::npos)
 {
 s = str_.substr(begin_, str_.length()-begin_);
 begin_ = str_.find_first_not_of(delim_, end_);
 }

 }

private:
 StringTokenizer() {};
 string delim_;
 string str_;
 int count_;
 int begin_;
 int end_;
};

int main() {
 string s = " razzle dazzle giddyup ";
 string tmp;

 StringTokenizer st(s);

 cout << "there are " << st.countTokens() << " tokens.\n";
 while (st.hasMoreTokens()) {
 st.nextToken(tmp);
 cout << "token = " << tmp << '\n';
 }
}

Example 4-12. A string tokenizer (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Joining a Sequence of Strings | 159

The most important lines in StringTokenizer use basic_string’s find_first_of and
find_first_not_of member functions. I describe how they work and when to use
them in Recipe 4.9. Example 4-10 produces this output:

there are 3 tokens.
token = razzle
token = dazzle
token = giddyup

StringTokenizer is a more flexible form of the split function in Example 4-10. It
maintains state, so you can advance from one token to the next instead of parsing the
input string all at once. You can also count the number of tokens.

There are a couple of improvements you can make on StringTokenizer. First, for
simplicity, I wrote StringTokenizer to only work with strings, or in other words, nar-
row character strings. If you want the same class to work for both narrow and wide
characters, you can parameterize the character type as I have done in previous reci-
pes. The other thing you may want to do is extend StringTokenizer to allow more
friendly interaction with sequences and more extensibility. You can always write all
of this yourself, or you can use an existing tokenizer class instead. The Boost project
has a class named tokenizer that does this. See www.boost.org for more details.

See Also
Recipe 4.24

4.8 Joining a Sequence of Strings

Problem
Given a sequence of strings, such as output from Example 4-10, you want to join
them together into a single, long string, perhaps with a delimiter.

Solution
Loop through the sequence and append each string to the output string. You can
handle any standard sequence as input; Example 4-13 uses a vector of strings.

Example 4-13. Join a sequence of strings

#include <string>
#include <vector>
#include <iostream>

using namespace std;

void join(const vector<string>& v, char c, string& s) {

 s.clear();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 4: Strings and Text

Discussion
Example 4-13 has one technique that is slightly different from previous examples.
Look at this line:

for (vector<string>::const_iterator p = v.begin();

The previous string examples simply used iterators, without the “const” part, but
you can’t get away with that here because v is declared as a reference to a const
object. If you have a const container object, you can only use a const_iterator to
access its elements. This is because a plain iterator allows writes to the object it
refers to, which, of course, you can’t do if your container object is const.

I declared v const for two reasons. First, I know I’m not going to be modifying its
contents, so I want the compiler to give me an error if I do. The compiler is much
better at spotting that kind of thing than I am, especially since a subtle syntactic or
semantic error can cause an unwanted assignment. Second, I want to advertise to
consumers of this function that I won’t do anything to their container, and const is
the perfect way to do that. Now, I just have to create a generic version that works on
multiple character types.

 for (vector<string>::const_iterator p = v.begin();
 p != v.end(); ++p) {
 s += *p;
 if (p != v.end() - 1)
 s += c;
 }
}

int main() {

 vector<string> v;
 vector<string> v2;
 string s;

 v.push_back(string("fee"));
 v.push_back(string("fi"));
 v.push_back(string("foe"));
 v.push_back(string("fum"));

 join(v, '/', s);

 cout << s << '\n';
}

Example 4-13. Join a sequence of strings (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Joining a Sequence of Strings | 161

Just as in Recipe 4.6, making join generic with a function template is easy. All you
have to do is change the header to be parameterized on the type of character, like
this:

template<typename T>
void joing(const std::vector<std::basic_string<T> >& v, T c,
 std::basic_string<T>& s)

But vectors may not be your only input. You may be saddled with the task of joining
an array of C-style strings. C++ strings are preferable to C-style strings, so if you
have to do this, join them into a C++ string. Once you’ve done that, you can always
retrieve a C-style version by calling string’s c_str member function, which returns a
const pointer to a null-terminated character array.

Example 4-14 offers a generic version of join that joins an array of character arrays
into a string. Since the new, generic version is parameterized on the character type,
it will work for narrow or wide character arrays.

Example 4-14. Joining C-style strings

#include <string>
#include <iostream>

const static int MAGIC_NUMBER = 4;

template<typename T>
void join(T* arr[], size_t n, T c, std::basic_string<T>& s) {
 s.clear();

 for (int i = 0; i < n; ++i) {
 if (arr[i] != NULL)
 s += arr[i];
 if (i < n-1)
 s += c;
 }
}

int main() {
 std::wstring ws;

 wchar_t* arr[MAGIC_NUMBER];

 arr[0] = L"you";
 arr[1] = L"ate";
 arr[2] = L"my";
 arr[3] = L"breakfast";

 join(arr, MAGIC_NUMBER, L'/', ws);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 4: Strings and Text

4.9 Finding Things in Strings

Problem
You want to search a string for something. Maybe it’s a single character, another
string, or one of (or not of) an unordered set of characters. And, for your own rea-
sons, you have to find it in a particular way, such as the first or last occurrence, or
the first or last occurrence relative to a particular index.

Solution
Use one of basic_string’s “find” member functions. Almost all start with the word
“find,” and their name gives you a pretty good idea of what they do. Example 4-15
shows how some of the find member functions work.

Each of the find member functions is discussed in more detail in the “Discussion”
section.

Example 4-15. Searching strings

#include <string>
#include <iostream>

int main() {
 std::string s = "Charles Darwin";

 std::cout << s.find("ar") << '\n'; // Search from the
 // beginning
 std::cout << s.rfind("ar") << '\n'; // Search from the end

 std::cout << s.find_first_of("swi") // Find the first of
 << '\n'; // any of these chars

 std::cout << s.find_first_not_of("Charles") // Find the first
 << '\n'; // that's not in this
 // set

 std::cout << s.find_last_of("abg") << '\n'; // Find the first of
 // any of these chars
 // starting from the
 // end

 std::cout << s.find_last_not_of("aDinrw") // Find the first
 << '\n'; // that's not in this
 // set, starting from
 // the end
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding Things in Strings | 163

Discussion
There are six different find member functions for finding things in strings, each of
which provides four overloads. The overloads allow for either basic_string or charT*
parameters (charT is the character type). Each has a basic_string::size_type param-
eter pos that lets you specify the index where the search should begin, and there is
one overload with a size_type parameter n that allows you only to search based on
the first n characters from the set.

It’s hard to keep track of all of these member functions, so Table 4-2 gives a quick
reference of each function and its parameters.

All of these member functions return the index of the occurrence of what you are
looking for as a value of type basic_string<T>::size_type. If the search fails, it
returns basic_string<T>::npos, which is a special value (usually -1) that indicates
search failure. Even though it is usually -1, you should test for equality with npos to

Table 4-2. Member functions for searching strings

Member function Description

size_type find (const basic_string& str,
size_type pos = 0) const;

size_type find (const charT* s,
 size_type pos,
 size_type n) const;
size_type find (const charT* s,

size_type pos = 0) const;
size_type find (charT c,

size_type pos = 0) const;

Returns the index of the first instance of a character or sub-
string, starting at the beginning or the index indicated by the
pos parameter. If n is specified, then match the first n charac-
ters in the target string.

size_type rfind (...) Find the first instance of a character or substring, from the end
to the beginning. In other words, do the same thing as find,
but starting from the end of the string.

size_type find_first_of (...) Find the first occurrence of any of the characters in the set that
is provided as a basic_string or character pointer. If n is
specified, then only the first n characters in the set are
considered.

size_type find_last_of (...) Find the last occurrence of any of the characters in the set that
is provided as a basic_string or character pointer. If n is
specified, then only the first n characters in the set are
considered.

size_type find_first_not_of (...) Find the first occurrence of a character that is not one of the
characters in the set that is provided as a basic_string or
character pointer. If n is specified, then only the first n charac-
ters in the set are considered.

size_type find_last_not_of (...) Find the last occurrence of any of the characters in the set that
is provided as a basic_string or character pointer. If n is
specified, then only the first n characters in the set are
considered.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 4: Strings and Text

be as portable as possible; this also makes your intent clear, since by comparing to
npos you are explicitly checking for search failure and not some magic number.

With this variety of searching algorithms, you should be able to find what you’re
looking for, and if not, to use them in your own algorithms. If basic_string doesn’t
provide what you need, however, look in <algorithm> before you roll your own. The
standard algorithms operate on sequences by using iterators and, nearly as often,
function objects. Conveniently, basic_strings provide iterators for easy traversal, so
it is trivial to plug string iterators into standard algorithms. Say you want to find the
first occurrence of the same character twice in a row. You can use the adjacent_find
function template to find two equal, adjacent elements in a string (“adjacent” means
that their positions differ by one iterator, i.e., that *iter == *(iter + 1)).

std::string s = "There was a group named Kiss in the 70s";

std::string::iterator p =
 std::adjacent_find(s.begin(), s.end());

The result is an iterator that points to the first of the adjacent elements.

If you have to write your own algorithm for operating on strings, don’t use a
basic_string like you would a C-style string by using operator[] to get at each
item. Take advantage of the existing member functions. Each of the find functions
takes a size_type parameter that indicates the index where the search should pro-
ceed from. Using the find functions repeatedly, you can advance through the string
as you see fit. Consider Example 4-16, which counts the number of unique charac-
ters in a string.

Example 4-16. Counting unique characters

#include <string>
#include <iostream>

template<typename T>
int countUnique(const std::basic_string<T>& s) {
 using std::basic_string;

 basic_string<T> chars;

 for (typename basic_string<T>::const_iterator p = s.begin();
 p != s.end(); ++p) {
 if (chars.find(*p) == basic_string<T>::npos)
 chars += *p;
 }
 return(chars.length());
}

int main() {
 std::string s = "Abracadabra";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding the nth Instance of a Substring | 165

The find functions come in handy quite often. Keep them at the top of the list when
you have to find things in strings.

4.10 Finding the nth Instance of a Substring

Problem
Given two strings source and pattern, you want to find the nth occurrence of
pattern in source.

Solution
Use the find member function to locate successive instances of the substring you are
looking for. Example 4-17 contains a simple nthSubstr function.

 std::cout << countUnique(s) << '\n';
}

Example 4-17. Locate the nth version of a substring

#include <string>
#include <iostream>

using namespace std;

int nthSubstr(int n, const string& s,
 const string& p) {
 string::size_type i = s.find(p); // Find the first occurrence

 int j;
 for (j = 1; j < n && i != string::npos; ++j)
 i = s.find(p, i+1); // Find the next occurrence

 if (j == n)
 return(i);
 else
 return(-1);
}

int main() {
 string s = "the wind, the sea, the sky, the trees";
 string p = "the";

 cout << nthSubstr(1, s, p) << '\n';
 cout << nthSubstr(2, s, p) << '\n';
 cout << nthSubstr(5, s, p) << '\n';
}

Example 4-16. Counting unique characters (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 4: Strings and Text

Discussion
There are a couple of improvements you can make to nthSubstr as it is presented in
Example 4-17. First, you can make it generic by making it a function template
instead of an ordinary function. Second, you can add a parameter to account for sub-
strings that may or may not overlap with themselves. By “overlap,” I mean that the
beginning of the string matches part of the end of the same string, as in the word
“abracadabra,” where the last four characters are the same as the first four.
Example 4-18 demonstrates this.

The output for the strings in Example 4-18 is as follows:

ATAT as non-repeating occurs at 18
ATAT as repeating occurs at 11

See Also
Recipe 4.9

Example 4-18. An improved version of nthSubstr

#include <string>
#include <iostream>

using namespace std;

template<typename T>
int nthSubstrg(int n, const basic_string<T>& s,
 const basic_string<T>& p,
 bool repeats = false) {
 string::size_type i = s.find(p);
 string::size_type adv = (repeats) ? 1 : p.length();

 int j;
 for (j = 1; j < n && i != basic_string<T>::npos; ++j)
 i = s.find(p, i+adv);

 if (j == n)
 return(i);
 else
 return(-1);
}

int main() {
 string s = "AGATGCCATATATATACGATATCCTTA";
 string p = "ATAT";

 cout << p << " as non-repeating occurs at "
 << nthSubstrg(3, s, p) << '\n';
 cout << p << " as repeating occurs at "
 << nthSubstrg(3, s, p, true) << '\n';
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Removing a Substring from a String | 167

4.11 Removing a Substring from a String

Problem
You want to remove a substring from a string.

Solution
Use the find, erase, and length member functions of basic_string:

std::string t = "Banana Republic";
std::string s = "nana";

std::string::size_type i = t.find(s);

if (i != std::string::npos)
 t.erase(i, s.length());

This will erase s.length() elements starting at the index where find found the first
occurrence of the substring.

Discussion
There are lots of variations on the theme of finding a substring and removing it. For
example, you may want to remove all instances of a substring instead of just one. Or
just the last one. Or the seventh one. Each time the steps are the same: find the index
of the beginning of the pattern you want to remove, then call erase on that index for
the next n characters, where n is the length of the pattern string. See Recipe 4.9 for
the different member functions for finding things in strings.

Chances are you also want to make your substring-removal function generic, so you
can use it on strings of any kind of character. Example 4-19 offers a generic version
that removes all instances of the pattern from a string.

Example 4-19. Remove all substrings from a string (generic version)

#include <string>
#include <iostream>

using namespace std;

template<typename T>
void removeSubstrs(basic_string<T>& s,
 const basic_string<T>& p) {
 basic_string<T>::size_type n = p.length();

 for (basic_string<T>::size_type i = s.find(p);
 i != basic_string<T>::npos;
 i = s.find(p))
 s.erase(i, n);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 4: Strings and Text

The basic_string member function erase is what does the important work here. In
<string>, it is overloaded three times. The version I used in Example 4-19 accepts the
index to begin erasing at and the number of characters to erase. Another version
accepts starting and ending iterator arguments, and there is a version that takes a sin-
gle iterator and erases the element at that location. To ensure optimal performance,
prefer the first two when you plan to delete multiple contiguous elements instead of
repeatedly calling s.erase(iter) for each element you want to erase. In other words,
use member functions that operate on ranges instead of single elements—especially
for those member functions that modify the contents of the string (or sequence). By
doing so, you will avoid the extra function calls to erase for each element in the
sequence, and you will permit the string implementation to more intelligently man-
age its data.

4.12 Converting a String to Lower- or Uppercase

Problem
You have a string that you want to convert to lower- or uppercase.

Solution
Use the toupper and tolower functions in the <cctype> header to convert characters
to upper- or lowercase. Example 4-20 shows how to do it using these functions. See
the discussion for an alternative.

int main() {
 string s = "One fish, two fish, red fish, blue fish";
 string p = "fish";

 removeSubstrs(s, p);

 cout << s << '\n';
}

Example 4-20. Converting a string’s case

#include <iostream>
#include <string>
#include <cctype>
#include <cwctype>
#include <stdexcept>

using namespace std;

void toUpper(basic_string<char>& s) {
 for (basic_string<char>::iterator p = s.begin();
 p != s.end(); ++p) {

Example 4-19. Remove all substrings from a string (generic version) (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting a String to Lower- or Uppercase | 169

This produces the following output:

s = SHAZAM
ws = WHAM
s = shazam
ws = wham

 *p = toupper(*p); // toupper is for char
 }
}

void toUpper(basic_string<wchar_t>& s) {
 for (basic_string<wchar_t>::iterator p = s.begin();
 p != s.end(); ++p) {
 *p = towupper(*p); // towupper is for wchar_t
 }
}

void toLower(basic_string<char>& s) {
 for (basic_string<char>::iterator p = s.begin();
 p != s.end(); ++p) {
 *p = tolower(*p);
 }
}

void toLower(basic_string<wchar_t>& s) {
 for (basic_string<wchar_t>::iterator p = s.begin();
 p != s.end(); ++p) {
 *p = towlower(*p);
 }
}

int main() {

 string s = "shazam";
 wstring ws = L"wham";

 toUpper(s);
 toUpper(ws);

 cout << "s = " << s << endl;
 wcout << "ws = " << ws << endl;

 toLower(s);
 toLower(ws);

 cout << "s = " << s << endl;
 wcout << "ws = " << ws << endl;
}

Example 4-20. Converting a string’s case (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 4: Strings and Text

Discussion
One would think that the standard string class has a member function that converts
the whole thing to upper- or lowercase, but, in fact, it doesn’t. If you want to con-
vert a string of characters to upper- or lowercase, you have to do it yourself, sort of.

Not surprisingly, there is more than one way to convert a string’s case (and when I
say “string,” I mean a sequence of characters, either narrow or wide). The simplest
way to do it is with using one of the four-character conversion functions toupper,
towupper, tolower, and towlower. The first form of each of these is the narrow charac-
ter version; the second form (with the extra “w”) is its wide character equivalent.

Each of these functions converts the case of the character using the current global
locale’s rules for case conversion. Upper- and lowercase depend on the characters
being used in the current locale; some characters don’t have an upper- or lowercase
version, in which case the functions listed above will return the same character you
pass in. See Chapter 13 for more information on locales. The C++ facilities for deal-
ing with different locales are complicated, and I cannot do them justice here.

Doing the actual character conversion is easy. Consider the toUpper function in
Example 4-20:

void toUpper(basic_string<char>& s) {
 for (basic_string<char>::iterator p = s.begin();
 p != s.end(); ++p) {
 *p = toupper(*p);
 }
}

The line in bold does the real work. The version for wide characters is nearly identical:

void toUpper(basic_string<wchar_t>& s) {
 for (basic_string<wchar_t>::iterator p = s.begin();
 p != s.end(); ++p) {
 *p = towupper(*p);
 }
}

I overloaded toUpper for the different character types because there is no fully generic
toupper function to convert a character’s case (unless you are using facets from the
<locale> header, which I discuss below). Two simple functions, as above, will get the
job done.

There is another way to do this though, and the motivating factor for using this sec-
ond approach would be your need to use explicit locales. The following versions of
toUpper and toLower convert the case of a string, regardless of its character type, as
long as the named locale (which defaults to the current locale) supports case conver-
sion for that locale and character type.

template<typename C>
void toUpper2(basic_string<C>& s, const locale& loc = locale()) {
 typename basic_string<C>::iterator p;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Doing a Case-Insensitive String Comparison | 171

 for (p = s.begin(); p != s.end(); ++p) {
 *p = use_facet<ctype<C> >(loc).toupper(*p);
 }
}

template<typename C>
void toLower2(basic_string<C>& s, const locale& loc = locale()) {
 typename basic_string<C>::iterator p;
 for (p = s.begin(); p != s.end(); ++p) {
 *p = use_facet<ctype<C> >(loc).tolower(*p);
 }
}

The lines in bold do the real work. Functionally, they work the same as the upper-
and lowercase functions used in Example 4-20, except that they use the internation-
alization facilities in the <locale> header to do it. See Chapter 13 for a more thor-
ough discussion of locales, facets, and internationalization.

4.13 Doing a Case-Insensitive String Comparison

Problem
You have two strings, and you want to know if they are equal, regardless of the case
of the characters. For example, “cat” is not equal to “dog,” but “Cat,” for your pur-
poses, is equal to “cat,” “CAT,” or “caT.”

Solution
Compare the strings using the equal standard algorithm (defined in <algorithm>),
and supply your own comparison function that uses the toupper function in <cctype>
(or towupper in <cwctype> for wide characters) to compare the uppercase versions of
characters. Example 4-21 offers a generic solution. It also demonstrates the use and
flexibility of the STL; see the discussion below for a full explanation.

Example 4-21. Case-insensitive string comparison

1 #include <string>
2 #include <iostream>
3 #include <algorithm>
4 #include <cctype>
5 #include <cwctype>
6
7 using namespace std;
8
9 inline bool caseInsCharCompareN(char a, char b) {
10 return(toupper(a) == toupper(b));
11 }
12
13 inline bool caseInsCharCompareW(wchar_t a, wchar_t b) {
14 return(towupper(a) == towupper(b));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 4: Strings and Text

Discussion
The critical part of case-insensitive string comparison is the equality test of each cor-
responding pair of characters, so let’s discuss that first. Since I am using the equal
standard algorithm in this approach but I want it to use my special comparison crite-
rion, I have to create a standalone function to handle my special comparison.

Lines 9–15 of Example 4-21 define the functions that do the character comparison,
caseInsCharCompareN and caseInsCharCompareW. These use toupper and towupper to
convert each character to uppercase and then return whether they are equal.

Once I have my comparison functions complete, it’s time to use a standard algo-
rithm to handle applying my comparison functions to arbitrary sequences of charac-
ters. The caseInsCompare functions defined in lines 17–25 do just that using equal.
There are two overloads, one for each character type I care about. They both do the
same thing, but each instantiates the appropriate character comparison function for
its character type. For this example, I overloaded two ordinary functions, but you
can achieve the same effect with templates. See the sidebar “Should I Use a Tem-
plate?” for a discussion.

equal compares two sequence ranges for equality. There are two versions: one that
uses operator==, and another that uses whatever binary predicate (i.e., takes two
arguments and returns a bool) function object you supply. In Example 4-21,
caseInsCharCompareN and W are the binary predicate functions.

15 }
16
17 bool caseInsCompare(const string& s1, const string& s2) {
18 return((s1.size() == s2.size()) &&
19 equal(s1.begin(), s1.end(), s2.begin(), caseInsCharCompareN));
20 }
21
22 bool caseInsCompare(const wstring& s1, const wstring& s2) {
23 return((s1.size() == s2.size()) &&
24 equal(s1.begin(), s1.end(), s2.begin(), caseInsCharCompareW));
25 }
26
27 int main() {
28 string s1 = "In the BEGINNING...";
29 string s2 = "In the beginning...";
30 wstring ws1 = L"The END";
31 wstring ws2 = L"the endd";
32
33 if (caseInsCompare(s1, s2))
34 cout << "Equal!\n";
35
36 if (caseInsCompare(ws1, ws2))
37 cout << "Equal!\n";
38 }

Example 4-21. Case-insensitive string comparison (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Doing a Case-Insensitive String Search | 173

But that’s not all you have to do—you need to compare the sizes, too. Consider
equal’s declaration:

template<typename InputIterator1, typename InputIterator2,
 typename BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, BinaryPredicate pred);

Let n be the distance between first1 and last1, or in other words, the length of the
first range. equal returns true if the first n elements of both sequences are equal. That
means that if, given two sequences where the first n elements are equal, and the sec-
ond sequence has more than n elements, equal will return true. Include a size check
in your comparison to avoid this false positive.

You don’t need to encapsulate this logic in a function. Your code or your client’s
code can just call the algorithm directly, but it’s easier to remember and cleaner to
write this:

if (caseInsCompare(s1, s2)) {
// they are equal, do something

than this:

if ((s1.size() == s2.size()) &&
 std::equal(s1.begin(), s1.end(), s2.begin(), caseInsCharCompare<char>)) {
// they are equal, do something

whenever you want to do a case-insensitive string comparison.

4.14 Doing a Case-Insensitive String Search

Problem
You want to find a substring in a string without regard for case.

Solution
Use the standard algorithms transform and search, defined in <algorithm>, along
with your own special character comparison functions, similar to the approach pre-
sented in. Example 4-22 shows how to do this.

Example 4-22. Case-insensitive string search

#include <string>
#include <iostream>
#include <algorithm>
#include <iterator>
#include <cctype>

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 4: Strings and Text

By returning an iterator that refers to the element in the target string where the pat-
tern string starts, you ensure ease of compatibility with other standard algorithms
since most of them accept iterator arguments.

Discussion
Example 4-22 demonstrates the usual mode of operation when working with stan-
dard algorithms. Create the functions that do the work, then plug them into the
most appropriate algorithms as function objects. The charInsCharCompSingle func-
tion does the real work here but, unlike Example 4-21, this character comparison
function only uppercases the first argument. This is because a little later in
caseInsFind, I convert the pattern string to all uppercase before using it to search to
avoid having to uppercase each pattern character multiple times.

Once the comparison function is out of the way, use the transform and search stan-
dard algorithms to do two things. Use transform to uppercase the entire pattern (but
not the target string). After that, use search with the comparison function to find the
location of the substring.

Remember that standard algorithms operate on sequences, not just strings. They are
general algorithms that operate on, primarily but not exclusively, the standard con-
tainers, but they make no assumptions about the contents of the containers. All the
standard algorithms care about is that you supply a comparison function (or if not,

inline bool caseInsCharCompSingle(char a, char b) {
 return(toupper(a) == b);
}

string::const_iterator caseInsFind(string& s, const string& p) {
 string tmp;

 transform(p.begin(), p.end(), // Make the pattern
 back_inserter(tmp), // upper-case
 toupper);

 return(search(s.begin(), s.end(), // Return the iter-
 tmp.begin(), tmp.end(), // ator returned by
 caseInsCharCompSingle)); // search
}

int main() {
 string s = "row, row, row, your boat";
 string p = "YOUR";
 string::const_iterator it = caseInsFind(s, p);

 if (it != s.end()) {
 cout << "Found it!\n";
 }
}

Example 4-22. Case-insensitive string search (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Tabs and Spaces in a Text File | 175

they use the default operators) that somehow compares two elements and returns a
bool indicating whether the test is true or false.

There is one thing I should point out that looks odd in Example 4-22. You can see
that caseInsCompare returns a const_iterator, as in

string::const_iterator caseInsFind(const string& s,
 const string& p)

What if you want to modify the element that the returned iterator points to? This is a
reasonable request. The reason it is const is because the strings being passed into
caseInsFind are const, and therefore you can’t get a non-const iterator to a const
string. If you want an iterator you can use to modify the string, remove the const from
the parameters and change the function declaration to return a string::iterator
instead.

4.15 Converting Between Tabs and Spaces
in a Text File

Problem
You have a text file that contains tabs or spaces, and you want to convert from one
to the other. For example, you may want to replace all tabs with three spaces, or you
may want to do just the opposite and replace occurrences of some number of spaces
with a single tab.

Solution
Regardless of whether you are replacing tabs with spaces or spaces with tabs, use the
ifstream and ofstream classes in <fstream>. In the first (simpler) case, read data in
with an input stream, one character at a time, examine it, and if it’s a tab, write some
number of spaces to the output stream. Example 4-23 demonstrates how to do this.

Example 4-23. Replacing tabs with spaces

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {

 if (argc < 3)
 return(EXIT_FAILURE);

 ifstream in(argv[1]);
 ofstream out(argv[2]);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 4: Strings and Text

If, instead, you need to replace spaces with tabs, see Example 4-24. It contains the
function spacesToTabs that reads from an input stream, one character at a time, look-
ing for three consecutive spaces. When it finds three in a row, it writes a tab to the
output stream. For all other characters, or for fewer than three spaces, whatever is
read from the input stream is written to the output stream.

 if (!in || !out)
 return(EXIT_FAILURE);

 char c;
 while (in.get(c)) {
 if (c == '\t')
 out << " "; // 3 spaces
 else
 out << c;
 }

 out.close();

 if (out)
 return(EXIT_SUCCESS);
 else
 return(EXIT_FAILURE);
}

Example 4-24. Replacing spaces with tabs

#include <iostream>
#include <istream>
#include <ostream>
#include <fstream>
#include <cstdlib>

using namespace std;

void spacesToTabs(istream& in, ostream& out, int spaceLimit) {

 int consecSpaces = 0;
 char c;

 while (in.get(c)) {
 if (c != ' ') {
 if (consecSpaces > 0) {
 for (int i = 0; i < consecSpaces; i++) {
 out.put(' ');
 }
 consecSpaces = 0;
 }
 out.put(c);
 } else {
 if (++consecSpaces == spaceLimit) {

Example 4-23. Replacing tabs with spaces (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Tabs and Spaces in a Text File | 177

Discussion
The mechanism for both of these solutions is the same; only the algorithms differ.
Read characters from an input stream using get, and put them to an output stream
with put. Put your logic for doing the translation between calls to these two functions.

You probably noticed in Example 4-24 that in main I declared in and out to be of
types ifstream and ofstream, respectively, and that the parameters to spacesToTabs
are actually istream and ostream. I did this to allow spacesToTabs to work on any
kind of input or output streams (well, not any kind of stream—ones that inherit
from basic_istream or basic_ostream), and not just file streams. For example, you
may have the text you want to reformat in a string stream (istringstream and
ostringstream in <sstream>). In that case, do something like this:

istringstream istr;
ostringstream ostr;

// fill up istr with text...

spacesToTabs(istr, ostr);

As with strings, streams are actually class templates that are parameterized on the
type of character the stream operates on. For example, an ifstream is a typedef for

 out.put('\t');
 consecSpaces = 0;
 }
 }
 }
}

int main(int argc, char** argv) {

 if (argc < 3)
 return(EXIT_FAILURE);

 ifstream in(argv[1]);
 ofstream out(argv[2]);

 if (!in || !out)
 return(EXIT_FAILURE);

 spacesToTabs(in, out, 3);

 out.close();

 if (out)
 return(EXIT_SUCCESS);
 else
 return(EXIT_FAILURE);
}

Example 4-24. Replacing spaces with tabs (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 4: Strings and Text

basic_ifstream<char>, and a wifstream is a typedef for basic_ifstream<wchar_t>.
Thus, if you need spacesToTabs from Examples 4-23 or 4-24 to work on a stream of
any kind of character, you can use the class templates instead of the typedefs:

template<typename T>
void spacesToTabs(std::basic_istream<T>& in,
 std::basic_ostream<T>& out,
 int spaceLimit) { //...

4.16 Wrapping Lines in a Text File

Problem
You want to “wrap” text at a specific number of characters in a file. For example, if
you want to wrap text at 72 characters, you would insert a new-line character after
every 72 characters in the file. If the file contains human-readable text, you probably
want to avoid splitting words.

Solution
Write a function that uses input and output streams to read in characters with
istream::get(char), do some bookkeeping, and write out characters with ostream::
put(char). Example 4-25 shows how to do this for text files that contain human-
readable text without splitting words.

Example 4-25. Wrapping text

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
#include <cctype>
#include <functional>

using namespace std;

void textWrap(istream& in, ostream& out, size_t width) {

 string tmp;
 char cur = '\0';
 char last = '\0';
 size_t i = 0;

 while (in.get(cur)) {
 if (++i == width) {
 ltrimws(tmp); // ltrim as in Recipe
 out << '\n' << tmp; // 4.1
 i = tmp.length();
 tmp.clear();
 } else if (isspace(cur) && // This is the end of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Wrapping Lines in a Text File | 179

Discussion
textWrap reads characters, one at a time, from the input stream. Each character is
appended to a temporary string, tmp, until it reaches the end of a word or the maxi-
mum line width. If it reaches the end of a word but is not yet at the maximum line
width, the temporary string is written to the output stream. Otherwise, if the maxi-
mum line width has been exceeded, a new line is written to the output stream, the
whitespace at the beginning of the temporary string is removed, and the string is
written to the output stream. In this way, textWrap writes as much as it can to the
output stream without exceeding the maximum line width. Instead of splitting a
word, it bumps the word to the next line.

Example 4-25 uses streams nearly identically to Recipe 4.15. See that recipe for more
information on what streams are and how to use them.

 !isspace(last)) { // a word
 out << tmp;
 tmp.clear();
 }
 tmp += cur;
 last = cur;
 }
}

int main(int argc, char** argv) {
 if (argc < 3)
 return(EXIT_FAILURE);

 int w = 72;
 ifstream in(argv[1]);
 ofstream out(argv[2]);

 if (!in || !out)
 return(EXIT_FAILURE);

 if (argc == 4)
 w = atoi(argv[3]);

 textWrap(in, out, w);

 out.close();

 if (out)
 return(EXIT_SUCCESS);
 else
 return(EXIT_FAILURE);
}

Example 4-25. Wrapping text (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 4: Strings and Text

See Also
Recipe 4.15

4.17 Counting the Number of Characters, Words,
and Lines in a Text File

Problem
You have to count the numbers of characters, words, and lines—or some other type
of text element—in a text file.

Solution
Use an input stream to read the characters in, one at a time, and increment local sta-
tistics as you encounter characters, words, and line breaks. Example 4-26 contains
the function countStuff, which does exactly that.

Example 4-26. Calculating statistics about a text file

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <cctype>

using namespace std;

void countStuff(istream& in,
 int& chars,
 int& words,
 int& lines) {

 char cur = '\0';
 char last = '\0';
 chars = words = lines = 0;

 while (in.get(cur)) {
 if (cur == '\n' ||
 (cur == '\f' && last == '\r'))
 lines++;
 else
 chars++;
 if (!std::isalnum(cur) && // This is the end of a
 std::isalnum(last)) // word
 words++;
 last = cur;
 }
 if (chars > 0) { // Adjust word and line

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Counting the Number of Characters, Words, and Lines in a Text File | 181

Discussion
The algorithm here is straightforward. Characters are easy: increment the character
count each time you call get on the input stream. Lines are only slightly more diffi-
cult, since the way a line ends depends on the operating system. Thankfully, it’s usu-
ally either a new-line character (\n) or a carriage return line feed sequence (\r\l). By
keeping track of the current and last characters, you can easily capture occurrences
of this sequence. Words are easy or hard, depending on your definition of a word.

For Example 4-26, I consider a word to be a contiguous sequence of alphanumeric
characters. As I look at each character in the input stream, when I encounter a nonal-
phanumeric character, I look at the previous character to see if it was alphanumeric.
If it was, then a word has just ended and I can increment the word count. I can tell if
a character is alphanumeric by using isalnum from <cctype>. But that’s not all—you
can test characters for a number of different qualities with similar functions. See
Table 4-3 for the functions you can use to test character qualities. For wide charac-
ters, use the functions of the same name but with a “w” after the “is,” e.g., iswspace.
The wide-character versions are declared in the header <cwctype>.

 if (std::isalnum(last)) // counts for special
 words++; // case
 lines++;
 }
}

int main(int argc, char** argv) {

 if (argc < 2)
 return(EXIT_FAILURE);

 ifstream in(argv[1]);

 if (!in)
 exit(EXIT_FAILURE);

 int c, w, l;

 countStuff(in, c, w, l);
1
 cout << "chars: " << c << '\n';
 cout << "words: " << w << '\n';
 cout << "lines: " << l << '\n';
}

Example 4-26. Calculating statistics about a text file (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 4: Strings and Text

After all characters have been read in and the end of the stream has been reached,
there is a bit of adjustment to do. First, the loop only counts line breaks, and not,
strictly speaking, lines. Therefore, it will always be one less than the actual number
of lines. To make this problem go away I just increment the line count by one if there
are more than zero characters in the file. Second, if the stream ends with an alphanu-
meric character, the test for the end of the last word will never occur because I can’t
test the next character. To account for this, I check if the last character in the stream
is alphanumeric (also only when there are more than zero characters in the file) and
increment the word count by one.

The technique in Example 4-26 of using streams is nearly identical to that described
in Recipes 4.14 and 4.15, but simpler since it’s just inspecting the file and not mak-
ing any changes.

See Also
Recipes 4.14 and 4.15

Table 4-3. Character test functions from <cctype> and <cwctype>

Function Description

isalpha
iswalpha

Alpha characters: a–z, A–Z (upper- or lowercase).

isupper
iswupper

Alpha characters in uppercase only: A–Z.

islower
iswlower

Alpha characters in lowercase only: a–z.

isdigit
iswdigit

Numeric characters: 0–9.

isxdigit
iswxdigit

Hexadecimal numeric characters: 0–9, a–f, A–F.

isspace
iswspace

Whitespace characters: ’ ‘, \n, \t, \v, \r, \l.

iscntrl
iswcntrl

Control characters: ASCII 0–31 and 127.

ispunct
iswpunct

Punctuation characters that don’t belong to the previous groups.

isalnum
iswalnum

isalpha or isdigit is true.

isprint
iswprint

Printable ASCII characters.

isgraph
iswgraph

isalpha or isdigit or ispunct is true.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Counting Instances of Each Word in a Text File | 183

4.18 Counting Instances of Each Word in a Text File

Problem
You want to count the number of occurrences of each word in a text file.

Solution
Use operator>>, defined in <string>, to read contiguous chunks of text from the
input file, and use a map, defined in <map>, to store each word and its frequency in the
file. Example 4-27 demonstrates how to do this.

Example 4-27. Counting word frequencies

1 #include <iostream>
2 #include <fstream>
3 #include <map>
4 #include <string>
5
6 typedef std::map<std::string, int> StrIntMap;
7
8 void countWords(std::istream& in, StrIntMap& words) {
9
10 std::string s;
11
12 while (in >> s) {
13 ++words[s];
14 }
15 }
16
17 int main(int argc, char** argv) {
18
19 if (argc < 2)
20 return(EXIT_FAILURE);
21
22 std::ifstream in(argv[1]);
23
24 if (!in)
25 exit(EXIT_FAILURE);
26
27 StrIntMap w;
28 countWords(in, w);
29
30 for (StrIntMap::iterator p = w.begin();
31 p != w.end(); ++p) {
32 std::cout << p->first << " occurred "
33 << p->second << " times.\n";
34 }
35 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 4: Strings and Text

Discussion
Example 4-27 looks simple enough, but there is more going on than it appears. Most
of the subtleties have to do with maps, so let’s talk about them first.

If you’re not familiar with maps, you should be. A map is a container class template
that is part of the STL. It stores key-value pairs in order according to std::less, or
your custom comparison function, should you supply one. The kinds of keys and
values you can store in it depend only on your imagination; in this example, we are
just going to store strings and ints.

I used a typedef on line 6 to make the code cleaner:

typedef map<string, int> StrIntMap;

Thus, a StrIntMap is a map that stores string/int pairs. Each string is a unique
word—which is why I’m using it as the key—that has been read in and its associ-
ated int is the number of times it occurs. All that’s left is to read in each of the words
one-at-a-time, add it to the map if it’s not already there, and increment its associated
count value if it is.

This is what countWords does. The essential logic is brief:

while (in >> s) {
 ++words[s];
}

operator>> reads in contiguous chunks of non-whitespace from its lefthand side
operand (an istream) and places them in the righthand side operand (a string). Once
I’ve read a “word,” all I have to do is update the statistics in the map, and that is
done with the following line:

++words[s];

map defines operator[] for retrieving a value given a key (it actually returns a refer-
ence to the value itself), so to increment it, just increment the value indexed at the
particular key. But something about this might seem a little weird. What if the key
isn’t already in the map? Don’t we try to increment a nonexistent index, and crash
like we would with an array? No, map does operator[] differently than other STL
containers or ordinary, C-style arrays.

In a map, operator[] does two things: if the key does not already exist, it creates a
value by using that value’s type’s default constructor and adds that key/value pair to
the map, if the key already exists in the map, no modification is made. In both cases,
a reference to the value for the specified key is returned, even if that value was just
created with its default constructor. This is a handy feature (if you know it’s there),
because it eliminates the need for client code to check for a key’s existence before
inserting it.

Now, look at lines 32 and 33. The iterator refers to members called first and
second—what are those? maps play a trick on you by using another class template to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Add Margins to a Text File | 185

store your name value pairs: the pair class template defined in <utility> (included
by <map> already). If you are iterating through the items stored in a map, you will be
pointing to pair objects. Working with pairs is simple, the first item in a pair is
stored in the first member, and the second is stored in, well, second.

I used operator>> in Example 4-27 to read in contiguous chunks of text from the
input stream, which is different than some of the other examples. I did this to dem-
onstrate that it can be done, but you will almost certainly need to customize the
behavior based on your definition of a “word” in a text file. For example, consider an
excerpt of the output produced by Example 4-27:

with occurred 5 times.
work occurred 3 times.
workers occurred 3 times.
workers. occurred 1 times.
years occurred 2 times.
years. occurred 1 times.

Notice that the periods on the end of words are included as part of each word. Most
likely, you will want to change the definition of words to mean only alpha or alpha-
numeric characters, as I did in Recipe 4.17 by using some of the character-testing
functions in <cctype> and <cwctype>.

See Also
Recipe 4.17 and Table 4-3

4.19 Add Margins to a Text File

Problem
Given a text file, you want to add margins to it. In other words, you want to pad
either side of each line with some character so that each line is the same width.

Solution
Example 4-28 shows how to add margins to a file using streams, strings, and the
getline function template.

Example 4-28. Adding margins to a text file

#include <iostream>
#include <fstream>
#include <string>
#include <cstdlib>

using namespace std;
const static char PAD_CHAR = '.';

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 4: Strings and Text

This example makes a few assumptions about the format of the incoming text, so be
sure to read the next section for details.

// addMargins takes two streams and two numbers. The streams are for
// input and output. The first of the two numbers represents the
// left margin width (i.e., the number of spaces to insert at the
// beginning of every line in the file). The second number represents
// the total line width to pad to.
void addMargins(istream& in, ostream& out,
 int left, int right) {

 string tmp;

 while (!in.eof()) {
 getline(in, tmp, '\n'); // getline is defined
 // in <string>
 tmp.insert(tmp.begin(), left, PAD_CHAR);
 rpad(tmp, right, PAD_CHAR); // rpad from Recipe
 // 4.2
 out << tmp << '\n';
 }
}

int main(int argc, char** argv) {

 if (argc < 3)
 return(EXIT_FAILURE);

 ifstream in(argv[1]);
 ofstream out(argv[2]);

 if (!in || !out)
 return(EXIT_FAILURE);

 int left = 8;
 int right = 72;

 if (argc == 5) {
 left = atoi(argv[3]);
 right = atoi(argv[4]);
 }

 addMargins(in, out, left, right);

 out.close();

 if (out)
 return(EXIT_SUCCESS);
 else
 return(EXIT_FAILURE);
}

Example 4-28. Adding margins to a text file (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Add Margins to a Text File | 187

Discussion
addMargins assumes your input looks something like this:

The data is still inconclusive. But the weakness
in job creation and the apparent weakness in
high-paying jobs may be opposite sides of a coin.
Companies still seem cautious, relying on
temporary workers and anxious about rising health
care costs associated with full-time workers.

This text is wrapped at 50 characters (see Recipe 4.16), and is left justified (see Rec-
ipe 4.20). addMargins also assumes you want your output to look something like the
following, which uses periods instead of spaces to show where the padding has been
done:

........The data is still inconclusive. But the weakness................

........in job creation and the apparent weakness in....................

........high-paying jobs may be opposite sides of a coin................

........Companies still seem cautious, relying on.......................

........temporary workers and anxious about rising health...............

........care costs associated with full-time workers....................

By default, the left margin is eight characters and the total line length is 72. Of
course, if you know your input text will always be left and right justified, you can
simply pad each end of each line with as many characters as you see fit. Either way,
the logic is straightforward. Many of the techniques used in this recipe have been
covered already (streams, padding a string), so I won’t discuss them here. The one
function that has not yet appeared is getline.

If you want to read in text a line at a time, or to be more precise, you want to read in
text up to a particular delimiter, use the getline function template defined in
<string>, as I did in Example 4-28:

getline(in, tmp, '\n');

getline reads characters from the input stream and appends them to tmp until the
delimiter '\n' is reached, which is not appended to tmp. basic_istream has a mem-
ber function by the same name, but it behaves differently. It stores its output in a
character buffer, not a string. In this case, I want to take advantage of string mem-
ber functions, and don’t want to have to read a line into a character buffer redun-
dantly and then copy that into a string, so I used the string version of getline.

See Also
Recipes 4.16 and 4.20

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 4: Strings and Text

4.20 Justify a Text File

Problem
You want to right- or left-justify text.

Solution
Use streams and the standard stream formatting flags right and left that are part of
ios_base, defined in <ios>. Example 4-29 shows how they work.

This example takes three arguments: an input file, an output file, and the width to
right-justify to. You can use an input file like this:

With automatic download of Microsoft's (Nasdaq:
MSFT) enormous SP2 security patch to the Windows
XP operating system set to begin, the industry
still waits to understand its ramifications. Home
users that have their preferences set to receive
operating-system updates as they are made
available by Microsoft may be surprised to learn

Example 4-29. Justify text

#include <iostream>
#include <fstream>
#include <string>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {

 if (argc < 3)
 return(EXIT_FAILURE);

 ifstream in(argv[1]);
 ofstream out(argv[2]);

 int w = 72;
 if (argc == 4)
 w = atoi(argv[3]);

 string tmp;
 out.setf(ios_base::right); // Tell the stream to
 // right-justify
 while (!in.eof()) {
 out.width(w); // Reset width after
 getline(in, tmp, '\n'); // each write
 out << tmp << '\n';
 }
 out.close();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Justify a Text File | 189

that some of the software they already run on
their systems could be disabled by SP2 or may run
very differently.

and make it look like this:

 With automatic download of Microsoft's (Nasdaq:
 MSFT) enormous SP2 security patch to the Windows
 XP operating system set to begin, the industry
 still waits to understand its ramifications. Home
 users that have their preferences set to receive
 operating-system updates as they are made
 available by Microsoft may be surprised to learn
 that some of the software they already run on
 their systems could be disabled by SP2 or may run
 very differently.

The second text sample is right-justified to 50 characters.

Discussion
The ios_base class template has lots of flags for formatting numeric and text data
that is read from or written to streams. The two that control how text is justified are
right and left. They are static const members of ios_base, and are of type fmtflags
(which is implementation defined); all of this stuff is defined in <ios>.

To set formatting flags, use ios_base::setf. This ORs the flags you pass in with the
existing flags on the stream. For example, this line turns on right-justification:

out.setf(std::ios_base::right);

But right-justification doesn’t make much sense without a righthand margin to butt
up against. To set that margin, use ios_base::width, like this:

out.width(w);

This sets the width of the output field to the value passed in, meaning that when you
right-justify text, the beginning of the string will be padded with spaces as much as is
necessary to align the right end to the margin. Note that I set the width inside the
loop while I set the right flag prior to the loop. I had to do this because the width
resets to zero after each write to the stream. Format flags are not reset after writes, so
I only had to initialize them once and be done with it.

It’s always good to be tidy and responsible, though, so there is one more thing you
should do when using format flags: clean up after yourself.

Often, the stream you are writing to does not belong to you, especially if you are
writing a general-purpose library or API. For example, if you write a fancy logging
function that takes an output stream and a string, modifies the string, sets the for-
mat flags, and writes it to the stream, you have potentially unwanted side-effects.
After client code calls your logging function, its stream has potentially had its format
flags rearranged. The solution is to copy the old ones and restore them when you’re
done.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 4: Strings and Text

For example, a responsible error logging function might look like this:

using namespace std;

void logError(ostream& out, const string& s) {

 string tmp(s);
 tmp.insert(0, "ERROR: ");

 ios_base::fmtflags flgs = // setf returns the
 out.setf(ios_base::left); // flags that were
 // already there
 out.width(72);
 out << tmp << '\n';

out.flags(flgs); // reset to original
}

The flags member function works similarly to setf, but it doesn’t OR the flags you
give it with the stream’s current flags, it replaces them. Thus, when you call flags
and pass in the original formatting flags, you can feel good that you cleaned up after
yourself.

4.21 Squeeze Whitespace to Single Spaces in a Text
File

Problem
You have a text file with whitespace of varying lengths in it, and you want to reduce
every occurrence of a contiguous span of whitespace characters to a single space.

Solution
Use the operator>> function template, defined in <string>, to read in continuous
chunks of non-whitespace from a stream into a string. Then use its counterpart,
operator<<, to write each of these chunks to an output stream, and append a single
character after each one. Example 4-30 gives a short example of this technique.

Example 4-30. Squeezing whitespace to single spaces

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main(int argc, char** argv) {

 if (argc < 3)
 return(EXIT_FAILURE);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Autocorrect Text as a Buffer Changes | 191

Discussion
This is a simple thing to do if you take advantage of streams and strings. Even if you
have to implement a variation of this—for example, you may want to preserve new
lines—the same facilities do the trick. If you want to add new lines, you can use the
solution presented in Recipe 4.16 to insert them in the right place.

See Also
Recipes 4.15 and 4.16

4.22 Autocorrect Text as a Buffer Changes

Problem
You have a class that represents some kind of text field or document, and as text is
appended to it, you want to correct automatically misspelled words the way
Microsoft Word’s Autocorrect feature does.

Solution
Using a map, defined in <map>, strings, and a variety of standard library features, you
can implement this with relatively little code. Example 4-31 shows how to do it.

 ifstream in(argv[1]);
 ofstream out(argv[2]);

 if (!in || !out)
 return(EXIT_FAILURE);

 string tmp;

 in >> tmp; // Grab the first word
 out << tmp; // Dump it to the output stream

 while (in >> tmp) { // operator>> ignores whitespace, so all I have
 out << ' '; // to do is add a space and each chunk of non-
 out << tmp; // whitespace
 }

 out.close();
}

Example 4-31. Autocorrect text

#include <iostream>
#include <string>
#include <cctype>
#include <map>

Example 4-30. Squeezing whitespace to single spaces (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 4: Strings and Text

using namespace std;

typedef map<string, string> StrStrMap;

// Class for holding text fields
class TextAutoField {

public:
 TextAutoField(StrStrMap* const p) : pDict_(p) {}
 ~TextAutoField() {}

 void append(char c);
 void getText(string& s) {s = buf_;}

private:
 TextAutoField();
 string buf_;
 StrStrMap* const pDict_;
};

// Append with autocorrect
void TextAutoField::append(char c) {

 if ((isspace(c) || ispunct(c)) && // Only do the auto-
 buf_.length() > 0 && // correct when ws or
 !isspace(buf_[buf_.length() - 1])) { // punct is entered

 string::size_type i = buf_.find_last_of(" \f\n\r\t\v");

 i = (i == string::npos) ? 0 : ++i;

 string tmp = buf_.substr(i, buf_.length() - i);
 StrStrMap::const_iterator p = pDict_->find(tmp);

 if (p != pDict_->end()) { // Found it, so erase
 buf_.erase(i, buf_.length() - i); // and replace
 buf_ += p->second;
 }
 }
 buf_ += c;
}

int main() {

 // Set up the map
 StrStrMap dict;
 TextAutoField txt(&dict);

 dict["taht"] = "that";
 dict["right"] = "wrong";
 dict["bug"] = "feature";

Example 4-31. Autocorrect text (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Autocorrect Text as a Buffer Changes | 193

The output of Example 4-31 is:

Original: He's right, taht's a bug.
Corrected version is: He's wrong, that's a feature.

Discussion
strings and maps are handy for situations when you have to keep track of string
associations. TextAutoField is a simple text buffer that uses a string to hold its data.
What makes TextAutoField interesting is its append method, which “listens” for
whitespace or punctuation, and does some processing when either one occurs.

To make this autocorrect behavior a reality, you need two things. First, you need a
dictionary of sorts that contains the common misspelling of a word and the associ-
ated correct spelling. A map stores key-value pairs, where the key and value can be of
any types, so it’s an ideal candidate. At the top of Example 4-31, there is a typedef
for a map of string pairs:

typedef map<string, string> StrStrMap;

See Recipe 4.18 for a more detailed explanation of maps. TextAutoField stores a
pointer to the map, because most likely you would want a single dictionary for use by
all fields.

Assuming client code puts something meaningful in the map, append just has to peri-
odically do lookups in the map. In Example 4-31, append waits for whitespace or
punctuation to do its magic. You can test a character for whitespace with isspace, or
for punctuation by using ispunct, both of which are defined in <cctype> for narrow
characters (take a look at Table 4-3).

The code that does a lookup requires some explanation if you are not familiar with
using iterators and find methods on STL containers. The string tmp contains the last
chunk of text that was appended to the TextAutoField. To see if it is a commonly
misspelled work, look it up in the dictionary like this:

StrStrMap::iterator p = pDict_->find(tmp);

if (p != pDict_->end()) {

 string tmp = "He's right, taht's a bug.";
 cout << "Original: " << tmp << '\n';
 for (string::iterator p = tmp.begin();
 p != tmp.end(); ++p) {
 txt.append(*p);
 }

 txt.getText(tmp);

 cout << "Corrected version is: " << tmp << '\n';
}

Example 4-31. Autocorrect text (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

194 | Chapter 4: Strings and Text

The important point here is that map::find returns an iterator that points to the pair
containing the matching key, if it was found. If not, an iterator pointing to one past
the end of the map is returned, which is exactly what map::end returns (this is how all
STL containers that support find work). If the word was found in the map, erase the
old word from the buffer and replace it with the correct version:

buf_.erase(i, buf_.length() - i);
buf_ += p->second;

Append the character that started the process (either whitespace or punctuation) and
you’re done.

See Also
Recipes 4.17, 4.18, and Table 4-3

4.23 Reading a Comma-Separated Text File

Problem
You want to read in a text file that is delimited by commas and new lines (or any
other pair of delimiters for that matter). Records are delimited by one character, and
fields within a record are delimited by another. For example, a comma-separated text
file of employee information may look like the following:

Smith, Bill, 5/1/2002, Active
Stanford, John, 4/5/1999, Inactive

Such files are usually interim storage for data sets exported from spreadsheets, data-
bases, or other file formats.

Solution
See Example 4-32 for how to do this. If you read the text into strings one contigu-
ous chunk at a time using getline (the function template defined in <string>) you
can use the split function I presented in Recipe 4.6 to parse the text and put it in a
data structure, in this case, a vector.

Example 4-32. Reading in a delimited file

#include <iostream>
#include <fstream>
#include <string>
#include <vector>

using namespace std;

void split(const string& s, char c,
 vector<string>& v) {
 int i = 0;
 int j = s.find(c);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading a Comma-Separated Text File | 195

 while (j >= 0) {
 v.push_back(s.substr(i, j-i));
 i = ++j;
 j = s.find(c, j);

 if (j < 0) {
 v.push_back(s.substr(i, s.length()));
 }
 }
}

void loadCSV(istream& in, vector<vector<string>*>& data) {

 vector<string>* p = NULL;
 string tmp;

 while (!in.eof()) {
 getline(in, tmp, '\n'); // Grab the next line

 p = new vector<string>();
 split(tmp, ',', *p); // Use split from
 // Recipe 4.7
 data.push_back(p);

 cout << tmp << '\n';
 tmp.clear();
 }
}

int main(int argc, char** argv) {

 if (argc < 2)
 return(EXIT_FAILURE);

 ifstream in(argv[1]);

 if (!in)
 return(EXIT_FAILURE);

 vector<vector<string>*> data;

 loadCSV(in, data);

 // Go do something useful with the data...

 for (vector<vector<string>*>::iterator p = data.begin();
 p != data.end(); ++p) {
 delete *p; // Be sure to de-
 } // reference p!
}

Example 4-32. Reading in a delimited file (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Chapter 4: Strings and Text

Discussion
There isn’t much in Example 4-32 that hasn’t been covered already. I discussed
getline in Recipe 4.19 and vectors in Recipe 4.3. The only piece worth mentioning
has to do with memory allocation.

loadCSV creates a new vector for each line of data it reads in and stores it in yet
another vector of pointers to vectors. Since the memory for each of these vectors is
allocated on the heap, somebody has to de-allocate it, and that somebody is you (and
not the vector implementation).

The vector has no knowledge of whether it contains a value or a pointer to a value,
or anything else. All it knows is that when it’s destroyed, it needs to call the destruc-
tor for each element it contains. If the vector stores objects, then this is fine; the
object is properly destroyed. But if the vector contains pointers, the pointer is
destroyed, but not the object it points to.

There are two ways to ensure the memory is freed. First, you can do what I did in
Example 4-32 and do it manually yourself, like this:

for (vector<vector<string>*>::iterator p = data.begin();
 p != data.end(); ++p) {
 delete *p;
}

Or you can use a reference-counted pointer, such as the Boost project’s smart_ptr,
which will be part of the forthcoming C++0x standard. But doing so is nontrivial, so
I recommend reading up on what a smart_ptr is and how it works. For more infor-
mation on Boost in general, see the homepage at www.boost.org.

4.24 Using Regular Expressions to Split a String

Problem
You want to split a string into tokens, but you require more sophisticated searching
or flexibility than Recipe 4.7 provides. For example, you may want tokens that are
more than one character or can take on many different forms. This often results in
code, and causes confusion in consumers of your class or function.

Solution
Use Boost’s regex class template. regex enables the use of regular expressions on
string and text data. Example 4-33 shows how to use regex to split strings.

Example 4-33. Using Boost’s regular expressions

#include <iostream>
#include <string>
#include <boost/regex.hpp>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Regular Expressions to Split a String | 197

Discussion
Example 4-33 shows how to use regex to iterate over matches in a regular expres-
sion. The following line sets up the regular expression:

boost::regex re(",|:|-|\\s+");

What it says, essentially, is that each match of the regular expression is either a
comma, or a colon, or a dash, or one or more spaces. The pipe character is the logi-
cal operator that ORs each of the delimiters together. The next two lines set up the
iterator:

boost::sregex_token_iterator
 p(s.begin(), s.end(), re, -1);
boost::sregex_token_iterator end;

The iterator p is constructed using the regular expression and an input string. Once
that has been built, you can treat p like you would an iterator on a standard library
sequence. A sregex_token_iterator constructed with no arguments is a special value
that represents the end of a regular expression token sequence, and can therefore be
used in a comparison to know when you hit the end.

int main() {

 std::string s = "who,lives:in-a,pineapple under the sea?";

 boost::regex re(",|:|-|\\s+"); // Create the reg exp
 boost::sregex_token_iterator // Create an iterator using a
 p(s.begin(), s.end(), re, -1); // sequence and that reg exp
 boost::sregex_token_iterator end; // Create an end-of-reg-exp

// marker
 while (p != end)
 std::cout << *p++ << '\n';
}

Example 4-33. Using Boost’s regular expressions (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198

Chapter 5CHAPTER 5

Dates and Times

5.0 Introduction
Dates and times are surprisingly vast and complex topics. As a reflection of this fact,
the C++ standard library does not provide a proper date type. C++ inherits the
structs and functions for date and time manipulation from C, along with a couple of
date/time input and output functions that take into account localization. You can
find relief, however, in the Boost date_time Library by Jeff Garland, which is possi-
bly the most comprehensive and extensible date and time library for C++ available. I
will be using it in several of the recipes. There is an expectation among the C++ com-
munity that future date/time extensions to the standard library will be based on the
Boost date_time library.

The Boost date_time library includes two separate systems for manipulating dates
and times: one for manipulating times and one for manipulating dates using a Grego-
rian calendar. The recipes will cover both systems.

For more information on dates and times, specifically reading and writing them,
please see Chapter 13.

5.1 Obtaining the Current Date and Time

Problem
You want to retrieve the current date and time from the user’s computer, either as a
local time or as a Coordinated Universal Time (UTC).

Solution
Call the time function from the <ctime> header, passing a value of 0 as the parame-
ter. The result will be a time_t value. You can use the gmtime function to convert the
time_t value to a tm structure representing the current UTC time (a.k.a. Greenwich
Mean Time or GMT); or, you can use the localtime function to convert the time_t

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Obtaining the Current Date and Time | 199

value to a tm structure representing the local time. The program in Example 5-1
obtains the current date/time, and then converts it to local time and outputs it. Next,
the program converts the current date/time to a UTC date/time and outputs that.

Gregorian Calendar and Leap Years
The Gregorian calendar is the most widely used calendar in the Western world today.
The Gregorian calendar was intended to fix a flaw in the Julian calendar. The slow pro-
cess of adoption of the Gregorian calendar started in 1582.

The Julian calendar dictates that every fourth year is a leap year, but every hundredth
year is a non-leap year. The Gregorian calendar introduced a new exception that every
400 years should be a leap year.

Leap years are designed to compensate for the Earth’s rotation around the sun being
out of synchronization with the length of the day. In other words, dividing the length
of a solar year, by the length of a day is an irrational number. The result is that if the
calendar is not adjusted we would have seasonal drift, where the equinoxes and sol-
stices (which determine the seasons) would become further out of synchronization
with each new year.

Example 5-1. Getting the local and UTC times

#include <iostream>
#include <ctime>
#include <cstdlib>

using namespace std;

int main()
{
 // Current date/time based on current system
 time_t now = time(0);

 // Convert now to tm struct for local timezone
 tm* localtm = localtime(&now);
 cout << "The local date and time is: " << asctime(localtm) << endl;

 // Convert now to tm struct for UTC
 tm* gmtm = gmtime(&now);
 if (gmtm != NULL) {
 cout << "The UTC date and time is: " << asctime(gmtm) << endl;
 }
 else {
 cerr << "Failed to get the UTC date and time" << endl;
 return EXIT_FAILURE;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Chapter 5: Dates and Times

Discussion
The time function returns a time_t type, which is an implementation-defined arith-
metic type for representing a time period (a.k.a. a time interval) with at least a resolu-
tion of one second. The largest time interval that can be portably represented using a
time_t is ±2,147,483,648 seconds, or approximately 68 years.

A call to time(0) returns a time_t representing the time interval from an implementa-
tion defined base time (commonly 0:00:00 January 1, 1970) to the current moment.

A more workable representation of the current date and time is achieved by convert-
ing to a tm struct using the localtime or gmtime functions. A tm struct has the integer
fields shown in Example 5-2.

When using the gmtime function, be sure to check its return value. If the computer
running the code doesn’t have a local time zone defined, the gmtime function will be
unable to compute the UTC time, and will return 0. If you pass 0 to the asctime func-
tion, undefined behavior will result.

The localtime, gmtime, and asctime functions all return pointers to statically allo-
cated objects. This is more efficient for the library, but it means that subsequent calls
will change the value of those objects. The code in Example 5-3 shows how this can
have surprising effects.

The Year 2038 Bug
Since a time_t is only required to represent time intervals of ±68 years, and many
implementations use a base year of 1970 for representing the current time, there is an
inability for many popular C++ implementations to represent dates and times after
2038. This means that a lot of software could break in 2038, if programmers don’t take
adequate precautions.

Example 5-2. Layout of a tm struct

struct tm {
 int tm_sec; // seconds of minutes from 0 to 61 (60 and 61 are leap seconds)
 int tm_min; // minutes of hour from 0 to 59
 int tm_hour; // hours of day from 0 to 24
 int tm_mday; // day of month from 0 to 23
 int tm_mon; // month of year from 0 to 11
 int tm_year; // year since 1900
 int tm_wday; // days since sunday
 int tm_yday; // days since January 1st
 int tm_isdst; // hours of daylight savings time
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Formatting a Date/Time as a String | 201

5.2 Formatting a Date/Time as a String

Problem
You want to convert a date and/or time to a formatted string.

Solution
You can use the time_put template class from the <locale> header, as shown in
Example 5-4.

Example 5-3. Pitfalls of using asctime

void f() {
 char* x = asctime(localtime(time(0)));
 wait_for_15_seconds(); // do some long processing task
 asctime(localtime(time(0)));
 cout << x << endl; // prints out the current time, not fifteen seconds ago.
}

Example 5-4. Formatting a datetime string

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cstring>
#include <string>
#include <stdexcept>
#include <iterator>
#include <sstream>

using namespace std;

ostream& formatDateTime(ostream& out, const tm& t, const char* fmt) {
 const time_put<char>& dateWriter = use_facet<time_put<char> >(out.getloc());
 int n = strlen(fmt);
 if (dateWriter.put(out, out, ' ', &t, fmt, fmt + n).failed()) {
 throw runtime_error("failure to format date time");
 }
 return out;
}

string dateTimeToString(const tm& t, const char* format) {
 stringstream s;
 formatDateTime(s, t, format);
 return s.str();
}

tm now() {
 time_t now = time(0);
 return *localtime(&now);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Chapter 5: Dates and Times

Output of the program in Example 5-4 will resemble the following, depending on
your local settings:

Sunday July, 24 2005 05:48PM
2005-07-24 17:48:11

Discussion
The time_put member function put uses a formatting string specifier like the C
printf function format string. Characters are output to the buffer as they appear in
the format string unless they are preceded by a % sign. A character preceded by a %
sign is a format specifier and has the special meaning shown in Table 5-1. Format
specifiers may also support modifiers, such as an integer to specify the field width, as
in %4B.

int main()
{
 try {
 string s = dateTimeToString(now(), "%A %B, %d %Y %I:%M%p");
 cout << s << endl;
 s = dateTimeToString(now(), "%Y-%m-%d %H:%M:%S");
 cout << s << endl;
 }
 catch(...) {
 cerr << "failed to format date time" << endl;
 return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
}

Table 5-1. Date/time format specifiers

Specifier Description

a Abbreviated weekday name (e.g., Mon)

A Full weekday name (e.g., Monday)

b Abbreviated month name (e.g., Dec)

B Full month name (e.g., May)

c Complete date and time

d Day of the month (01–31)

H Hour (00–23)

I Hour (01–12)

j Day of the year (001–366)

m Month (01–12)

M Minutes (00–59)

p AM/PM designation

S Second, including up to two leap seconds

Example 5-4. Formatting a datetime string (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Formatting a Date/Time as a String | 203

The Boost date_time library discussed in later recipes does not have the formatting
capabilities offered by time_put. For convenience Example 5-5 contains several rou-
tines to convert from the Boost date/time classes to a tm struct, so that you can use
time_put routines.

See Also
Recipe 13.3

U Week number (00–53), with week 1 starting on the first Sunday

w Weekday (0–6), where Sunday is 0

W Week number (00–53), with week 1 starting on the first Monday

x Date in form MM/DD/YY

X Time in form HH/MM/SS with 24-hour clock

y Year within the current century (00–99)

Y Year

Z Time zone abbreviation, or empty if the system doesn’t know the
time zone

Example 5-5. Converting from Boost date/time classes to a tm struct

using boost::gregorian;
using boost::posix_time;

void dateToTmAux(const date& src, tm& dest) {
 dest.tm_mday = src.day();
 dest.tm_year = src.year() - 1900;
 dest.tm_mon = src.month() - 1;
}

void ptimeToTmAux(const ptime& src, tm& dest) {
 dest.tm_sec = src.seconds();
 dest.tm_min = src.minutes();
 dest.tm_hour = src.hours();
 dateToTmAux(src.date(), dest);
}

tm ptimeToTm(const ptime& t) {
 tm ret = tm();
 ptimeToTmAux(t, ret);
 return ret;
}

Table 5-1. Date/time format specifiers (continued)

Specifier Description

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Chapter 5: Dates and Times

5.3 Performing Date and Time Arithmetic

Problem
You want to know the amount of time elapsed between two date/time points.

Solution
If both date/time points falls between the years of 1970 and 2038, you can use a
time_t type and the difftime function from the <ctime> header. Example 5-6 shows
how to compute the number of days elapsed between two dates.

Example 5-6. Date and time arithmetic with time_t

#include <ctime>
#include <iostream>
#include <cstdlib>

using namespace std;

time_t dateToTimeT(int month, int day, int year) {
 // january 5, 2000 is passed as (1, 5, 2000)
 tm tmp = tm();
 tmp.tm_mday = day;
 tmp.tm_mon = month - 1;
 tmp.tm_year = year - 1900;
 return mktime(&tmp);
}

time_t badTime() {
 return time_t(-1);
}

time_t now() {
 return time(0);
}

int main() {
 time_t date1 = dateToTimeT(1,1,2000);
 time_t date2 = dateToTimeT(1,1,2001);

 if ((date1 == badTime()) || (date2 == badTime())) {
 cerr << "unable to create a time_t struct" << endl;
 return EXIT_FAILURE;
 }
 double sec = difftime(date2, date1);
 long days = static_cast<long>(sec / (60 * 60 * 24));
 cout << "the number of days between Jan 1, 2000, and Jan 1, 2001, is ";
 cout << days << endl;
 return EXIT_SUCCESS;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Time Zones | 205

The program in Example 5-6 should output :

the number of days between Jan 1, 2000, and Jan 1, 2001, is 366

Notice that the year 2000 is a leap year because even though it is divisible by 100; it
is also divisible by 400, thus it has 366 days.

Discussion
The time_t type is an implementation defined arithmetic type. This means it is either
an integer or floating-point type, and thus supports the basic arithmetic operations.
You can add, subtract, divide, multiply, and so forth. To compute the distance
between two time_t values to seconds, you need to use the difftime function. Do not
assume that time_t itself counts seconds, even if it is true. Many C++ implementa-
tions may very well quietly change it to count fractions of a second in the near future
(this is one reason why difftime returns a double).

If the limitations of time_t are too restricting then you will probably want instead to
use the various classes from the Boost date_time library to compute time intervals.
Example 5-7 shows how to use the Boost classes to calculate the number of days in
the 20th and the 21st centuries.

The program in Example 5-7 outputs:

The twentieth century had 36524 days
The twenty-first century will have 36525 days

5.4 Converting Between Time Zones

Problem
You want to convert the current time from one time zone to another.

Example 5-7. Date and time arithmetic with date_duration

#include <iostream>
#include <boost/date_time/gregorian/gregorian.hpp>

using namespace std;
using namespace boost::gregorian;

int main()
{
 date_duration dd = date(2000, 1, 1) - date(1900, 1, 1);
 cout << "The twentieth century had " << dd.days() << " days" << endl;
 dd = date(2100, 1, 1) - date(2000, 1, 1);
 cout << "The twenty-first century will have " << dd.days() << " days" << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Chapter 5: Dates and Times

Solution
To convert between time zones, use the time zone conversion routines from the
Boost date_time library. Example 5-8 shows how to finds the time in Tucson, Ari-
zona given a time in New York City.

The program in Example 5-8 outputs the following:

On May 1st, 2004, when it was 19:00 in New York, it was 16:00 in Arizona

Discussion
The time zone conversions in Example 5-8 goes through a two-step process. First, I
convert the time to UTC, and then convert the UTC time to the second time zone.
Note that the time zones in the Boost date_time library are represented as types
using the local_adjustor template class. Each type has conversion functions to con-
vert from the given time zone to UTC (the local_to_utc function), and to convert
from UTC to the given time zone (the utc_to_local function).

Example 5-8. Converting between time zones

#include <iostream>
#include <boost/date_time/gregorian/gregorian.hpp>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/date_time/local_time_adjustor.hpp>

using namespace std;
using namespace boost::gregorian;
using namespace boost::date_time;
using namespace boost::posix_time;

typedef local_adjustor<ptime, -5, us_dst> EasternTZ;
typedef local_adjustor<ptime, -7, no_dst> ArizonaTZ;

ptime NYtoAZ(ptime nytime) {
 ptime utctime = EasternTZ::local_to_utc(nytime);
 return ArizonaTZ::utc_to_local(utctime);
}

int main()
{
 // May 1st 2004,
 boost::gregorian::date thedate(2004, 6, 1);
 ptime nytime(thedate, hours(19)); // 7 pm
 ptime aztime = NYtoAZ(nytime);
 cout << "On May 1st, 2004, when it was " << nytime.time_of_day().hours();
 cout << ":00 in New York, it was " << aztime.time_of_day().hours();
 cout << ":00 in Arizona " << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining a Day’s Number Within a Given Year | 207

5.5 Determining a Day’s Number Within a Given Year

Problem
You want to determine a day’s number within a given year. For example, January 1 is
the first day of each year; February 5 is the 36th day of each year, and so on. But
since some years have leap days, after February 28, a given day doesn’t necessarily
have the same numbering each year.

Solution
The solution to this problem requires the solution to several problems simulta-
neously. First, you have to know how many days are in each month, which, in turn,
means you have to know how to determine whether a year is a leap year.
Example 5-9 provides routines for performing these computations.

Example 5-9. Routines for determining a day’s number within a given year

#include <iostream>

using namespace std;

enum MonthEnum {
 jan = 0, feb = 1, mar = 2, apr = 3, may = 4, jun = 5,
 jul = 6, aug = 7, sep = 8, oct = 9, nov = 10, dec = 11
};

bool isLeapYear(int y) {
 return (y % 4 == 0) && ((y % 100 != 0) || (y % 400 == 0));
}

const int arrayDaysInMonth[] = {
 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

int n;
int arrayFirstOfMonth[] = {
 n = 0,
 n += arrayDaysInMonth[jan],
 n += arrayDaysInMonth[feb],
 n += arrayDaysInMonth[mar],
 n += arrayDaysInMonth[apr],
 n += arrayDaysInMonth[may],
 n += arrayDaysInMonth[jun],
 n += arrayDaysInMonth[jul],
 n += arrayDaysInMonth[aug],
 n += arrayDaysInMonth[sep],
 n += arrayDaysInMonth[::oct],
 n += arrayDaysInMonth[nov]
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Chapter 5: Dates and Times

The program in Example 5-9 outputs the following:

July 1, 1971, was the 181 day of the year

Discussion
The code in Example 5-9 is a relatively straightforward but useful set of functions for
working with dates and leap years. Notice that I have abandoned what I call the
“document and pray” approach used in the previous recipes. What I mean by this is
that the months are no longer represented by indexes but rather enumerations. This
significantly reduces the chance of programmer error when passing a month to a
function as an argument.

The leap year computation shown in Example 5-9 is in accordance to the modern
Gregorian calendar. Every fourth year is a leap year, except every hundredth year
unless that year is divisible by 400 (e.g., 1896 was a leap year, 1900 wasn’t, 2000
was, 2004 was, 2100 will not be).

5.6 Defining Constrained Value Types

Problem
You want self-validating numerical types to represents numbers with a limited range
of valid values such as hours of a day or minutes of an hour.

int daysInMonth(MonthEnum month, int year) {
 if (month == feb) {
 return isLeapYear(year) ? 29 : 28;
 }
 else {
 return arrayDaysInMonth[month];
 }
}

int firstOfMonth(MonthEnum month, int year) {
 return arrayFirstOfMonth[month] + isLeapYear(year);
}

int dayOfYear(MonthEnum month, int monthDay, int year) {
 return firstOfMonth(month, year) + monthDay - 1;
}

int main() {
 cout << "July 1, 1971, was the " << dayOfYear(jul, 1, 1971);
 cout << " day of the year" << endl;
}

Example 5-9. Routines for determining a day’s number within a given year (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Defining Constrained Value Types | 209

Solution
When working with dates and times, frequently you will want values that are inte-
gers with a limited range of valid values (i.e., 0 to 59 for seconds of a minute, 0 to 23
for hours of a day, 0 to 365 for days of a year). Rather than checking these values
every time they are passed to a function, you would probably prefer to have them
validated automatically by overloading the assignment operator. Since there are so
many of these types, it is preferable to implement a single type that can handle this
kind of validation for different numerical ranges. Example 5-10 presents a
ConstrainedValue template class implementation that makes it easy to define ranged
integers and other constrained value types.

Example 5-10. constrained_value.hpp

#ifndef CONSTRAINED_VALUE_HPP
#define CONSTRAINED_VALUE_HPP

#include <cstdlib>
#include <iostream>

using namespace std;

template<class Policy_T>
struct ConstrainedValue
{
 public:
 // public typedefs
 typedef typename Policy_T policy_type;
 typedef typename Policy_T::value_type value_type;
 typedef ConstrainedValue self;

 // default constructor
 ConstrainedValue() : m(Policy_T::default_value) { }
 ConstrainedValue(const self& x) : m(x.m) { }
 ConstrainedValue(const value_type& x) { Policy_T::assign(m, x); }
 operator value_type() const { return m; }

 // uses the policy defined assign function
 void assign(const value_type& x) {
 Policy_T::assign(m, x);
 }

 // assignment operations
 self& operator=(const value_type& x) { assign(x); return *this; }
 self& operator+=(const value_type& x) { assign(m + x); return *this; }
 self& operator-=(const value_type& x) { assign(m - x); return *this; }
 self& operator*=(const value_type& x) { assign(m * x); return *this; }
 self& operator/=(const value_type& x) { assign(m / x); return *this; }
 self& operator%=(const value_type& x) { assign(m % x); return *this; }
 self& operator>>=(int x) { assign(m >> x); return *this; }
 self& operator<<=(int x) { assign(m << x); return *this; }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Chapter 5: Dates and Times

 // unary operations
 self operator-() { return self(-m); }
 self operator+() { return self(+m); }
 self operator!() { return self(!m); }
 self operator~() { return self(~m); }

 // binary operations
 friend self operator+(self x, const value_type& y) { return x += y; }
 friend self operator-(self x, const value_type& y) { return x -= y; }
 friend self operator*(self x, const value_type& y) { return x *= y; }
 friend self operator/(self x, const value_type& y) { return x /= y; }
 friend self operator%(self x, const value_type& y) { return x %= y; }
 friend self operator+(const value_type& y, self x) { return x += y; }
 friend self operator-(const value_type& y, self x) { return x -= y; }
 friend self operator*(const value_type& y, self x) { return x *= y; }
 friend self operator/(const value_type& y, self x) { return x /= y; }
 friend self operator%(const value_type& y, self x) { return x %= y; }
 friend self operator>>(self x, int y) { return x >>= y; }
 friend self operator<<(self x, int y) { return x <<= y; }

 // stream operators
 friend ostream& operator<<(ostream& o, self x) { o << x.m; return o; }
 friend istream& operator>>(istream& i, self x) {
 value_type tmp; i >> tmp; x.assign(tmp); return i;
 }

 // comparison operators
 friend bool operator<(const self& x, const self& y) { return x.m < y.m; }
 friend bool operator>(const self& x, const self& y) { return x.m > y.m; }
 friend bool operator<=(const self& x, const self& y) { return x.m <= y.m; }
 friend bool operator>=(const self& x, const self& y) { return x.m >= y.m; }
 friend bool operator==(const self& x, const self& y) { return x.m == y.m; }
 friend bool operator!=(const self& x, const self& y) { return x.m != y.m; }
 private:
 value_type m;
};

template<int Min_N, int Max_N>
struct RangedIntPolicy
{
 typedef int value_type;
 const static value_type default_value = Min_N;
 static void assign(value_type& lvalue, const value_type& rvalue) {
 if ((rvalue < Min_N) || (rvalue > Max_N)) {
 throw range_error("out of valid range");
 }
 lvalue = rvalue;
 }
};

#endif

Example 5-10. constrained_value.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Defining Constrained Value Types | 211

The program in Example 5-11 shows how you can use the ConstrainedValue type.

The output from the program in Example 5-11 is:

7/14/2005
are you sure you want to be using a Gregorian Calendar?

Discussion
Constrained value types are particularly relevant when working with dates and times,
because many values related to date/times are integers that must occur within a spe-
cific range of values (e.g., a month must be in the interval [0,11] or a day of the
month must be in the interval [0,30]). It is very time consuming and error prone to
manually check that every function parameter fits into a certain range. Just imagine if
you wanted to make a global change to how a million line program handled date
range errors!

The ConstrainedValue template class when used with a RangedIntPolicy template can
be used to define easily several different types that throw exceptions when assigned
values out of range. Example 5-12 shows some different examples of how you can
use ConstrainedValue to define new self-validating integer types.

Example 5-11. Using constained_value.hpp

#include "constrained_value.hpp"

typedef ConstrainedValue< RangedIntPolicy<1582, 4000> > GregYear;
typedef ConstrainedValue< RangedIntPolicy<1, 12> > GregMonth;
typedef ConstrainedValue< RangedIntPolicy<1, 31> > GregDayOfMonth;

using namespace std;

void gregOutputDate(GregDayOfMonth d, GregMonth m, GregYear y) {
 cout << m << "/" << d << "/" << y << endl;
}

int main() {
 try {
 gregOutputDate(14, 7, 2005);
 }
 catch(...) {
 cerr << "whoops, shouldn't be here" << endl;
 }
 try {
 gregOutputDate(1, 5, 1148);
 cerr << "whoops, shouldn't be here" << endl;
 }
 catch(...) {
 cerr << "are you sure you want to be using a Gregorian Calendar?" << endl;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Chapter 5: Dates and Times

The ConstrainedValue template class is an example of policy-based design. A policy
is a class passed as a template parameter that specifies aspects of the implementation
or behavior of the parameterized type. The policy passed to a ConstrainedValue is
expected to provide the implementation detail of how to assign between the same
specializations of the type.

Using policies can improve the flexibility of classes by deferring design decisions to
the user of the type. It is common to use policies when a group of types has a com-
mon interface but vary in their implementation. Policies are also particularly useful
when it is impossible to anticipate and satisfy all possible usage scenarios of a given
type.

There are many other policies you can possibly use with a ConstrainedValue type.
For instance, rather than throw an exception, you may choose to assign a default
value, or assign the nearest legal value. Furthermore, constraints don’t even have to
be ranges: you might even have a constraint that a value is always even.

Example 5-12. More of usage of ConstrainedValue

typedef ConstrainedValue< RangedIntPolicy <0, 59> > Seconds;
typedef ConstrainedValue< RangedIntPolicy <0, 59> > Minutes;
typedef ConstrainedValue< RangedIntPolicy <0, 23> > Hours;
typedef ConstrainedValue< RangedIntPolicy <0, 30> > MonthDays;
typedef ConstrainedValue< RangedIntPolicy <0, 6> > WeekDays;
typedef ConstrainedValue< RangedIntPolicy <0, 365 > > YearDays;
typedef ConstrainedValue< RangedIntPolicy <0, 51> > Weeks;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

213

Chapter 6 CHAPTER 6

Managing Data with Containers

6.0 Introduction
This chapter describes the data structures in the standard library that you can use to
store data. They are generally referred to as containers, since they “contain” objects
you add to them. This chapter also describes another sort of container that is not
part of the standard library, although it ships with most standard library implemen-
tations, namely the hashed container.

The part of the library that comprises the containers is often referred to as the Stan-
dard Template Library, or STL, because this is what it was called before it was
included in the C++ standard. The STL includes not only the containers that are the
subject of this chapter, but iterators and algorithms, which are the two other build-
ing blocks of the STL that make it a flexible, generic library. Since this chapter is pri-
marily about the standard containers and not the STL in its entirety, I will refer to
containers as the “standard containers” and not “STL containers,” as is done in
much of the C++ literature. Although I discuss iterators and algorithms as much as
necessary here, both are discussed in more detail in Chapter 7.

The C++ standard uses precise terminology to describe its collection of containers. A
“container” in the C++ standard library is a data structure that has a well-defined
interface described in the standard. For example, any C++ standard library class that
calls itself a container must support a member function begin that has no parameters
and that returns an iterator referring to the first element in that container. There are
a number of required constructors and member functions that define what it is to be
a container in C++ terms. There are also optional member functions only some con-
tainers implement, usually those that can be implemented efficiently.

The set of all containers is further subdivided into two different kinds of containers:
sequence containers and associative containers. A sequence container (usually just
called a sequence) stores objects in an order that is specified by the user, and pro-
vides a required interface (in addition to container requirements) for accessing and
manipulating the elements. Associative containers store their elements in sorted

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Chapter 6: Managing Data with Containers

order, and therefore do not permit you to insert elements at a specific location,
although you can provide hints when you insert to improve efficiency. Both
sequences and associative containers have a required interface they must support,
but only sequences have an additional set of operations that are only supported by
sequences for which they can be implemented efficiently. These additional sequence
operations provide more flexibility and convenience than the required interface.

This sounds a lot like inheritance. A sequence is a container, an associative con-
tainer is a container, but a container is not a sequence or an associative container. It’s
not inheritance, though, in the C++ sense, but it is inheritance conceptually. A
vector is a sequence, but it is its own, standalone class; it doesn’t inherit from a
container class or some such thing (standard library implementations are allowed
freedom in how they implement vector and other containers, but the standard
doesn’t mandate that a standard library implementation include a container base
class). A great deal of thought went into the design of the containers, and if you
would like to read more about it go pick up Matt Austern’s Generic Programming
and the STL (Addison Wesley).

This chapter has two parts. The first few recipes describe how to use vector, which is
a standard sequence, since it is one of the more popular data structures. They
describe how to use a vector effectively and efficiently. The rest of the recipes dis-
cuss most of the other standard containers that are widely applicable, including the
two nonstandard hashed containers I mentioned earlier.

6.1 Using vectors Instead of Arrays

Problem
You have to store things (built-in types, objects, pointers, etc.) in a sequence, you
require random access to elements, and you can’t be confined to a statically sized
array.

Solution
Use the standard library’s vector class template, which is defined in <vector>; don’t
use arrays. vector looks and feels like an array, but it has a number of safety and conve-
nience advantages over arrays. Example 6-1 shows a few common vector operations.

Example 6-1. Using common vector member functions

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using vectors Instead of Arrays | 215

Discussion
In general, if you need to use an array, you should use a vector instead. vectors offer
more safety and flexibility than arrays, and the performance overhead is negligible in
most cases—and if you find that it’s more than you can tolerate, you can fine-tune
vector performance with a few member functions.

If you’re not familiar with the containers that come with the standard library, or not
acquainted with using class templates (writing them is another matter), the way
vectors are declared in Example 6-1 may need some explanation. The declaration for
a vector looks like this:

vector<typename Value, // The type of element this vector will hold
 typename Allocator = allocator<Value> > // The memory allocator
 // to use

 vector<int> intVec;
 vector<string> strVec;

 // Add elements to the "back" of the vector with push_back
 intVec.push_back(3);
 intVec.push_back(9);
 intVec.push_back(6);

 string s = "Army";

 strVec.push_back(s);
 s = "Navy";
 strVec.push_back(s);
 s = "Air Force";
 strVec.push_back(s);

 // You can access them with operator[], just like an array
 for (vector<string>::size_type i = 0; i < intVec.size(); ++i) {
 cout << "intVec[" << i << "] = " << intVec[i] << '\n';
 }

 // Or you can use iterators
 for (vector<string>::iterator p = strVec.begin();
 p != strVec.end(); ++p) {
 cout << *p << '\n';
 }

 // If you need to be safe, use at() instead of operator[]. It
 // will throw out_of_range if the index you use is > size().
 try {
 intVec.at(300) = 2;
 }
 catch(out_of_range& e) {
 cerr << "out_of_range: " << e.what() << endl;
 }
}

Example 6-1. Using common vector member functions (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Chapter 6: Managing Data with Containers

The standard containers are parameterized by the type of objects you want them to
hold. There is also a template parameter for the memory allocator to use, but it
defaults to the standard one, and writing one is uncommon, so I don’t discuss it
here.

If you want a vector that holds ints, declare it as in the example:

vector<int> intVec;

And if you need one that holds strings, just change the vector’s type argument:

vector<string> strVec;

vectors can contain any C++ type that supports copy construction and assignment.

The next logical thing to do after you instantiate a vector is to put something in it.
Add items to the back of it with push_back:

intVec.push_back(3);
intVec.push_back(9);
intVec.push_back(6);

This is roughly equivalent to adding elements 0, 1, and 2 to an array. It is “roughly”
equivalent because, of course, push_back is a member function that returns void and
pushes its argument onto the back of the vector. operator[] returns the memory
location referenced by an index in an array. push_back makes sure there is enough
room in the vector’s internal buffer to add its argument; if there is, it adds the item
to the next unused index—if there isn’t room, it grows the buffer using an imple-
mentation-defined algorithm, then adds the argument object.

You can also insert items into the middle of a vector with the insert member func-
tion, though you should avoid it because doing so requires linear complexity. See
Recipe 6.2 for a more detailed discussion of how to sidestep performance problems
when using vectors. To insert an element, get an iterator to the point where you
want your insert to begin (for a discussion of iterators, see Recipe 7.1):

string s = "Marines";
vector<string>::iterator p = find(strVec.begin(),
 strVec.end(), s);

if (s != strVec.end()) // Insert s immediately before the element
 strVec.insert(p, s); // p points to

Overloaded versions of insert allow you to insert n copies of an object into a vector,
as well as insert an entire range from another sequence (that sequence may be
another vector, an array, a list, and so on).

Instead of inserting, you might want simply to assign the vector to a preexisting
sequence from somewhere else, erasing whatever was there before. The assign mem-
ber function does this. You can assign an entire range of values, or n copies of the
same object, to your vector like this:

string sarr[3] = {"Ernie", "Bert", "Elmo"};
string s = "Oscar";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using vectors Instead of Arrays | 217

strVec.assign(&sarr[0], &sarr[3]); // Assign this sequence
strVec.assign(50, s); // Assign 50 copies of s

assign will resize the vector’s buffer to accommodate the new sequence if it is larger
than the previous buffer size.

Once you have put your data in a vector, there are several ways for getting it back
out. Probably the most intuitive is operator[], which returns a reference or a const
reference to the item at that index, depending on whether the vector you are calling it
on is const or not. In this respect, it looks a lot like an array:

for (int i = 0; i < intVec.size(); ++i) {
 std::cout << "intVec[" << i << "] = "
 << intVec[i] << '\n'; // rvalue
}
intVec[2] = 32; // lvalue

operator[] also behaves like an array in that if you use an index that is higher than
the last element in the vector, the results are undefined, which usually means your
program will corrupt data or crash. You can avoid this by querying the vector for the
number of elements it contains with size(). You should prefer iterators to
operator[] though, because using iterators is the conventional way to iterate through
any standard container:

for (vector<string>::iterator p = strVec.begin();
 p != strVec.end(); ++p) {
 std::cout << *p << '\n';
}

Iterators are the more powerful approach because they allow for more generic inter-
action with containers. For example, if you write an algorithm that operates on a
sequence of elements between two iterators, it can run against any standard con-
tainer. This is a generic approach. If you use random access with operator[], you
limit yourself to only those containers that support random access. The former
approach is what allows the standard library algorithms in <algorithm> to work
seamlessly with the standard containers (and other things that behave like them).

vectors also provide you with safety that you just can’t get from a standard array.
Unlike arrays, vectors offer range-checking with the at member function. If you give
at an invalid index, it will throw an out_of_range exception, which you then have a
chance to catch and react accordingly. For example:

try {
 intVec.at(300) = 2;
}
catch(std::out_of_range& e) {
 std::cerr << "out_of_range: " << e.what() << std::endl;
}

As you know, if you reference an element past the end of an array with operator[], the
operator does what you have told it to and fetches whatever is at that memory loca-
tion. That’s not good because either your program crashes from accessing memory it

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Chapter 6: Managing Data with Containers

shouldn’t, or it silently updates memory that belongs to another heap object, which is
usually worse. operator[] works the same way for vector, but at least you can use at
when you need to be safe.

So that’s the crash course in vectors. But what is a vector? If you are writing in C++,
you are probably performance-aware, and don’t want to be given something and
simply told that it works. Fair enough. See Recipe 6.2 for a discussion of how vectors
work and tips for using them efficiently.

See Also
Recipe 6.2

6.2 Using vectors Efficiently

Problem
You are using vectors and you have tight space or time requirements and need to
reduce or eliminate overhead.

Solution
Understand how a vector is implemented, know the complexity of insertion and
deletion member functions, and minimize unnecessary memory churn with the
reserve member function. Example 6-2 shows a few of these techniques in action.

Example 6-2. Using a vector efficiently

#include <iostream>
#include <vector>
#include <string>

using std::vector;
using std::string;

void f(vector<string>& vec) { // Pass vec by reference (or
 // pointer, if you have to)
 // ...
}

int main() {

 vector<string> vec(500); // Tell the vector that you plan on
 // putting a certain number of objects
 // in it at construction
 vector<string> vec2;

 // Fill up vec...
 f(vec);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using vectors Efficiently | 219

Discussion
The key to using vectors efficiently lies in knowing how they work. Once you have a
good idea of how a vector is usually implemented, the performance hot spots
become obvious.

How vectors work

A vector is, essentially, a managed array. More specifically, a vector<T> is a chunk of
contiguous memory (i.e., an array) that is large enough to hold n objects of type T,
where n is greater than or equal to zero and is less or equal to an implementation-
defined maximum size. n usually increases during the lifetime of the container as you
add or remove elements, but it doesn’t decrease. What makes a vector different from
an array is the automatic memory management of that array, the member functions
for inserting and retrieving elements, and the member functions that provide meta-
data about the container, such as the size (number of elements) and capacity (the
buffer size), but also the type information: vector<T>::value_type is T’s type,
vector<T>::pointer is a pointer-to-T type, and so on. These last two, and several oth-
ers, are part of every standard container, and they allow you to write generic code
that works regardless of T’s type. Figure 6-1 gives a graphical depiction of what some
of vector’s member functions provide, given a vector that has a size of 7 and a capac-
ity of 10.

 vec2.reserve(500); // Or, after the fact, tell the vector
 // that you want the buffer to be big
 // enough to hold this many objects

 // Fill up vec2...
}

Figure 6-1. A vector’s innards

Example 6-2. Using a vector efficiently (continued)

size () q

capacity () q

push back (x) q

zq

front () q back () q

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Chapter 6: Managing Data with Containers

If you are curious how your standard library vendor has implemented vector, com-
pile Example 6-1 and step into every vector member function call, or, open the
<vector> header in your standard library implementation and take a look. It may not
be the most reader-friendly code you’ve ever seen, but it should be enlightening.
First, if you haven’t looked at much library code, it will give you an idea of what
implementation techniques are used to write efficient, portable, generic code. Sec-
ond, it will give you a concrete understanding of whatever container you’re using. If
you are writing code that may need to run with different standard library implemen-
tations, you should do this anyway.

Regardless of the library vendor, however, most implementations of vector are simi-
lar. There is a member variable that points to an array of Ts, and the elements you
add or assign are copy constructed or assigned into each array element.

Adding a T object to the buffer is usually done by using placement new—so called
because you give the type of object to be constructed as well as the address where it
should be constructed—to copy construct a new object in the next available slot. If,
instead, you are assigning a new value to a slot explicitly by using its index (with
operator[] or at), T’s assignment operator is used. Note that in both cases what hap-
pens is that your object is cloned via copy construction or T::operator=. The vector
does not simply store the address of the object you are adding. It is for this reason
that any type stored in a vector must be copy constructible and assignable. These
properties mean that an equivalent object of T can be created by calling T’s copy con-
structor or assignment operator. This is important, because of the copy-in, copy-out
semantics of vectors—if copy constructing or assigning one of your objects does not
work properly, then what you get out of a vector might be different than what you
put in. This is bad.

Once you have added a bunch of objects to a vector, its buffer becomes full and it
must grow to accommodate any new objects. The algorithm for growth is implemen-
tation defined, but what usually happens is that the buffer size of n is increased to 2n
+ 1. The important concept here is how vector grows the buffer. You can’t just tell
the operating system to extend your hunk of heap memory indefinitely; you have to
request a new chunk of memory that is bigger than the one you just had. As a result,
the process of increasing the buffer size is as follows:

1. Allocate memory for a new buffer.

2. Copy the old data into the new buffer.

3. Delete the old buffer.

This allows the vector to keep all of its objects in one contiguous chunk of memory.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using vectors Efficiently | 221

Optimizing vector performance

The previous section should give you a good idea of how objects are stored in a vec-
tor. And from that overview, the major performance points should have jumped out
at you, but in case they didn’t, I’ll discuss them.

To begin with, a vector (or any other standard library container) doesn’t store your
object, it stores a copy of your object. This means that each time you put something
in a vector, you aren’t really “putting” it anywhere; you’re copying it somewhere else
with its copy constructor or assignment operator. Similarly, when you retrieve a
value from a vector, you are copying what is in the vector at that location to your
local variable. Consider a simple assignment to a local variable from an element in a
vector:

vector<MyObj> myVec;
// Put some MyObj objects in myVec
MyObj obj = myVec[10]; // Copy the object at index 10

This assignment calls obj’s assignment operator with the object returned by
myVec[10] as its righthand side. The performance overhead from lots of object copies
will add up quickly, so it’s best if you avoid it.

Put pointers in the vector instead of the objects themselves to reduce copy overhead.
Storing pointers will require fewer CPU cycles to add or retrieve data, because point-
ers are quicker to copy than objects, and it will reduce the memory required by the
vector’s buffer. Just remember that if you add pointers to a standard library con-
tainer, the container doesn’t delete them when it’s destroyed. Containers destroy
only the objects they contain, i.e., the variable holding the addresses of the objects
pointed to, but a container doesn’t know that what it’s storing is a pointer or an
object, all it knows is that it’s some object of type T.

Resizing the memory buffer is also not cheap. Copying every element in the buffer is
a lot of work, and such a thing is best avoided. To protect against this, specify the
buffer size explicitly. There are a couple of ways to do this. The simplest way to do it
is during construction:

vector<string> vec(1000);

This reserves enough space for 1,000 strings and it initializes each slot in the buffer
with string’s default constructor. With this approach, you pay for constructing each
of these objects, but you add some measure of safety by initializing every element in
the buffer with an empty string. This means that if you reference an element that
hasn’t been assigned, you simply get an empty object.

If you want to initialize the buffer to something special, you can pass in the object
that you want to copy into each slot in the buffer:

string defString = "uninitialized";
vector<string> vec(100, defString);
string s = vec[50]; // s = "uninitialized"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Chapter 6: Managing Data with Containers

With this form, vec will copy construct 100 elements from defString.

The other way to reserve buffer space is to call the reserve member function some-
time after the vector has been constructed:

vector<string> vec;
vec.reserve(1000);

The biggest difference between calling reserve and specifying the size at construc-
tion is that reserve doesn’t initialize the slots in the buffer with anything. Specifi-
cally, this means that you shouldn’t reference indexes where you haven’t already put
something:

vector<string> vec(100);
string s = vec[50]; // No problem: s is now an empty string
vector<string> vec2;
vec2.reserve(100);
s = vec2[50]; // Undefined

Using reserve or specifying a number of default objects at construction will help you
avoid nasty buffer reallocation. That helps with performance, but also avoids another
problem: anytime a buffer is reallocated, any iterators you may have that refer to its
elements become invalid.

Finally, inserting anywhere but the end of a vector is not a good idea. Look again at
Figure 6-1. Since a vector is just an array with some other bells and whistles, it
should be easy to see why you should insert only at the end. The objects in the
vector are stored contiguously, so when you insert anywhere but at the end, say, at
index n, the objects from n+1 to the end must be shifted down by one (toward the
end) to make room for the new item. This operation is linear, which means it is
expensive for vectors of even modest size. Deleting an element in a vector has a simi-
lar effect: it means that all indexes larger than n must be shifted up one slot. If you
need to be able to insert and delete anywhere but the end of a container, you should
use a list instead.

6.3 Copying a vector

Problem
You need to copy the contents of one vector into another.

Solution
There are a couple of ways to do this. You can use a copy constructor when you cre-
ate a vector, or you can use the assign member function. Example 6-3 shows how to
do both.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Copying a vector | 223

Discussion
Copying a vector is easy; there are two ways to do it. You can copy construct one
vector from another, just like any other object, or you can use the assign member

Example 6-3. Copying vector contents

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>

using namespace std;

// Util function for printing vector contents
template<typename T>
void vecPrint (const vector<T>& vec) {
 cout << "{";
 for (typename vector<T>::const_iterator p = vec.begin();
 p != vec.end(); ++p) {
 cout << "{" << *p << "} ";
 }
 cout << "}" << endl;
}

int main() {

 vector<string> vec(5);
 string foo[] = {"My", "way", "or", "the", "highway"};

 vec[0] = "Today";
 vec[1] = "is";
 vec[2] = "a";
 vec[3] = "new";
 vec[4] = "day";

 vector<string> vec2(vec);
 vecPrint(vec2);

 vec.at(0) = "Tomorrow";

 vec2.assign(vec.begin(), vec.end()); // Copy each element over
 vecPrint(vec2); // with assign

 vec2.assign(&foo[0], &foo[5]); // Assign works for anything that
 vecPrint(vec2); // behaves like an iterator

 vector<string>::iterator p;

 p = find(vec.begin(), vec.end(), "new");

 vec2.assign(vec.begin(), p); // Copy a subset of the full range
 vecPrint(vec2); // of vec
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Chapter 6: Managing Data with Containers

function. There is little to say about the copy constructor; just pass in the vector you
want it to clone, and you’re done.

vector<string> vec2(vec);

In this case, vec2 will contain the same number of elements that are in vec, and each
one of those elements will be a copy of its corresponding index in vec. Each element
is copied with string’s copy constructor. Since this is construction, vec2’s buffer is
sized at least large enough to hold everything in vec.

assign works similarly, except that there is some additional work that goes on
behind the scenes, since now you are dealing with a target vector that may already
have data in it. First, the objects that are in the way, so to speak, must be destroyed.
assign first calls the destructor for each of the objects that vec2 already contains.
Once they are gone, it checks vec2’s buffer size to ensure it is big enough to hold
what it is about to receive from vec. If not, assign resizes the buffer to accommodate
the new data. Finally, it copies each element over.

Additionally, you can use assign for copying a subset of a sequence. For example, if
you just want to assign a subset of the elements in vec, just specify the range you
want to pull when calling assign:

vector<string>::iterator p;
p = std::find(vec.begin(), vec.end(), "new");
vec2.assign(vec.begin(), p);
vecPrint(vec2);

In this case, assign will copy everything up to, but not including, p. This is because,
as is the convention in all standard library containers and algorithms, assign(first,
last) copies the element pointed to by first up to, but not including, the element
pointed to by last. Such a range, that includes the first element but not the last ele-
ment, is often denoted as [first, last).

Use assign or the copy constructor instead of looping yourself. That is, don’t copy
each element by looping through vec and pushing each element on the back of vec2.
This requires more (redundant) code on your part, and disallows any optimizations
the implementer of your standard library may have used when writing assign or the
copy constructor.

6.4 Storing Pointers in a vector

Problem
For efficiency or other reasons, you can’t store copies of your objects in a vector, but
you need to keep track of them somehow.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Pointers in a vector | 225

Solution
Store pointers to your objects in a vector instead of copies of the objects themselves.
But if you do, don’t forget to delete the objects that are pointed to, because the
vector won’t do it for you. Example 6-4 shows how to declare and work with
vectors of pointers.

Discussion
You can store pointers in a vector just like you would anything else. Declare a vector
of pointers like this:

vector<MyClass*> vec;

The important thing to remember is that a vector stores values without regard for
what those values represent. It, therefore, doesn’t know that it’s supposed to delete
pointer values when it’s destroyed. If you allocate memory, then put pointers to that

Example 6-4. Using vectors of pointers

#include <iostream>
#include <vector>

using namespace std;

static const int NUM_OBJECTS = 10;

class MyClass { /*...*/ };

int main() {

 vector<MyClass*> vec;

 MyClass* p = NULL;

 // Load up the vector with MyClass objects
 for (int i = 0; i < NUM_OBJECTS; i++) {
 p = new MyClass();
 vec.push_back(p);
 }

 // Do something useful with this data, then delete the objects when
 // you're done
 for (vector<MyClass*>::iterator pObj = vec.begin();
 pObj != vec.end(); ++pObj) {
 delete *pObj; // Note that this is deleting what pObj points to,
 // which is a pointer
 }

 vec.clear(); // Purge the contents so no one tries to delete them
 // again
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Chapter 6: Managing Data with Containers

memory in a vector, you have to delete the memory yourself when you are done with
it. Don’t be fooled by the term “container” into thinking that somehow when you
store a pointer in a vector that it assumes ownership.

You should also explicitly empty the vector after you have deleted the pointers for
the same reason that you should set pointer variables to NULL when you’re done
with them. This will prevent them from erroneously being deleted again.

6.5 Storing Objects in a list

Problem
You need to store items in a sequence, but your requirements don’t match up well
with a vector. Specifically, you need to be able to efficiently add and remove items in
the middle of the sequence, not just at the end.

Solution
Use a list, declared in <list>, to hold your data. lists offer better performance and
more flexibility when modifying the sequence at someplace other than the beginning
or the end. Example 6-5 shows you how to use a list, and shows off some of its
unique operations.

Example 6-5. Using a list

#include <iostream>
#include <list>
#include <string>
#include <algorithm>

using namespace std;

// A simple functor for printing
template<typename T>
struct printer {
 void operator()(const T& s) {
 cout << s << '\n';
 }
};

bool inline even(int n) {
 return(n % 2 == 0);
}

printer<string> strPrinter;
printer<int> intPrinter;

int main() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Objects in a list | 227

Discussion
A list is a sequence provides constant complexity for inserting or deleting elements
at any position, but it requires linear complexity to find elements. lists are usually
implemented as a doubly linked list, which means that each element is stored in a
node that has a pointer to its previous and next elements in the sequence. It meets all
the requirements of a standard sequence container, plus provides a few unique mem-
ber functions.

 list<string> lstOne;
 list<string> lstTwo;

 lstOne.push_back("Red");
 lstOne.push_back("Green");
 lstOne.push_back("Blue");

 lstTwo.push_front("Orange");
 lstTwo.push_front("Yellow");
 lstTwo.push_front("Fuschia");

 for_each(lstOne.begin(), // Print each element in the list
 lstOne.end(), // with a custom functor, print
 strPrinter);

 lstOne.sort(); // list has a member for sorting
 lstTwo.sort();

 lstOne.merge(lstTwo); // Merge the two lists and print
 for_each(lstOne.begin(), // the results (the lists must be
 lstOne.end(), // sorted before merging)
 strPrinter);

 list<int> intLst;

 intLst.push_back(0);
 intLst.push_back(1);
 intLst.push_back(2);
 intLst.push_back(3);
 intLst.push_back(4);

 // Remove all values greater than 2
 intLst.remove_if(bind2nd(greater<int>(), 2));

 for_each(intLst.begin(),
 intLst.end(),
 intPrinter);

 // Or, remove all even values
 intLst.remove_if(even);
}

Example 6-5. Using a list (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Chapter 6: Managing Data with Containers

Declaring a list is straightforward, just give it the type of the elements you’re going
to store in it, and, optionally, specify a memory allocation class:

list<typename Value, // The type of element stored in the list
 typename Allocator = allocator<Value> > // The memory allocator
 // to use

The Value template parameter is the type of the elements that will be stored in the
list. It must be a type that supports copy construction and assignment. Allocator is
the memory allocation class to use; the standard allocator is the default (and will be
sufficient for most of your needs).

Following is a typical list declaration (from Example 6-5):

list<string> lstOne;

After you’ve declared your list, put some things in it with push_front or push_back,
like this:

lstOne.push_back("Red"); // Add these to the end of the list
lstOne.push_back("Green");
lstOne.push_back("Blue");

lstTwo.push_front("Orange"); // Add these to the beginning
lstTwo.push_front("Yellow");
lstTwo.push_front("Fuschia");

Pushing elements on a list takes constant time, but not amortized constant time as
with a vector. A list implementation does not need to occasionally resize its buffer,
so you won’t have the intermittent performance penalty you would with a vector.
The list will just have to update a handful of pointers, and not much else.

Use pop_front or pop_back (no arguments) to remove elements from the beginning or
end of the list. Despite their name, the “pop” member functions don’t return the
popped element, as you might expect à la typical stack semantics; to get a reference
to the element at the beginning or end of a sequence, use back or front.

Typically, a list looks like what is displayed in Figure 6-2. Each node has (at least)
three parts: the object it contains, a pointer to the previous node, and a pointer to
the next node. For the rest of this recipe, I will refer to the next and previous point-
ers as next_ and prev_.

Once you see how a list is implemented, it’s probably obvious why some of the
operations have different complexity than a vector. Adding an element anywhere in
the list requires only that the preceding and following items have their next_ and
prev_ pointers adjusted. One nice thing about lists is that only iterators pointing to
the affected object(s) are invalidated when you insert or erase elements. Iterators to
other elements are unaffected.

The insertion and deletion methods are insert and erase. insert takes an iterator as
its first argument, and either an object of type T, a number and then an object of type
T, or an ending iterator as its second argument. The iterator points to the item that is

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Objects in a list | 229

to have the insert performed immediately preceding it. Each of the insert overloads
is used like this:

list<string> strLst;
list<string>::iterator p;
// ...
string s = "Scion";

p = find(strLst.begin(), strLst.end(), // std::find from <algorithm>
 "Toyota");

strLst.insert(p, s); // Insert s right before p
strLst.insert(p, 16, s); // Insert 16 copies of s right before p
strLst.insert(p, myOtherStrLst.begin(), // Insert everything in
 myOtherStrLst.end()); // myOtherStrLst before p

Erasing elements is similar:

p = find(strLst.begin(), strLst.end(), // std::find from <algorithm>
 "Toyota");

strLst1.erase(p); // Erase this element
strLst2.erase(p, strLst.end()); // Erase p to the end
strLst3.clear(); // Erase all elements

In addition to the standard container member functions, list provides a few interest-
ing ones. The first is splice.

splice does what it sounds like: it splices two lists together. Here’s how I could
have spliced lstTwo into lstOne in Example 6-5:

list<string>::iterator p = // Find somewhere to insert the other
 std::find(lstOne.begin(), // list
 lstOne.end(), "Green");
lstOne.splice(p, lstTwo); // Insert lstTwo right before "Green"

Figure 6-2. A doubly linked list

front () P back () P

size () P

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Chapter 6: Managing Data with Containers

p is an iterator that refers to an element in lstOne. lstTwo is inserted into lstOne
immediately preceding p. As with an insertion, all that really needs to be done here is
to change the next_ and prev_ pointers on the affected nodes, so this operation takes
constant time. lstTwo is empty after you splice it into lstOne, which is why it is not a
const parameter. You can also insert a single element from lstTwo into lstOne, or a
range of items from lstTwo. In both cases, the items that are spliced in are removed
from the originating list.

If your lists are sorted (list has its own sort member function; std::sort won’t
work with a list), and you want to merge them together and preserve their sorted
order, use merge instead of splice. merge will combine the two lists into one, and if
two elements are equivalent, the one from lstOne comes first in the final list. As with
splice, the argument list is empty afterward.

list also has some cool aggregate operations for removing things. Imagine that you
want to erase all occurrences of an element. All you have to do is call remove with an
argument that, when compared to each item in the list, will give (*p == item) !=
false, where p is a list iterator. Call remove like this:

strLst.remove("Harry");

This will remove all elements from strLst where el == "Harry". If you want to
remove elements that satisfy some other predicate, such as being larger than some
value, use remove_if instead:

bool inline even(int n) {
 return(n % 2 == 0);
}

list<int> intLst;
// Fill up intLst...
intLst.remove_if(even); // Removes all elements where even(*p)
 // is != false

If your predicates are more complicated, consider using some of the functors in
<functional>. For example, if you want to remove elements that are greater than
some value, you can use greater (from <algorithm>) and bind2nd combined with
remove_if:

intLst.remove_if(std::bind2nd(std::greater<int>(), 2));

This will remove all values greater than 2 from intLst. The syntax is a little esoteric,
but what’s happening is straightforward. bind2nd takes two arguments, a function
object (call it f) and a value (v), and returns a function object that takes a single argu-
ment (arg) and invokes f(arg, v). bind2nd is a slick way to do just this sort of thing
without having to write a bunch of little functions.

A list is a good alternative to vector when you need a standard sequence container.
list’s different internal representation permits it to provide different complexities for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mapping strings to Other Things | 231

many of the standard sequence operations and a few interesting operations of its
own.

See Also
Recipe 6.1

6.6 Mapping strings to Other Things

Problem
You have objects that you need to store in memory, and you want to store them by
their string keys. You need to be able to add, delete, and retrieve items quickly
(with, at most, logarithmic complexity).

Solution
Use the standard container map, declared in <map>, to map keys (strings) to values
(any type that obeys value semantics). Example 6-6 shows how.

Example 6-6. Creating a string map

#include <iostream>
#include <map>
#include <string>

using namespace std;

int main() {

 map<string, string> strMap;

 strMap["Monday"] = "Montag";
 strMap["Tuesday"] = "Dienstag";
 strMap["Wednesday"] = "Mittwoch";
 strMap["Thursday"] = "Donnerstag";
 strMap["Friday"] = "Freitag";
 strMap["Saturday"] = "Samstag";
 // strMap.insert(make_pair("Sunday", "Sonntag"));
 strMap.insert(pair<string, string>("Sunday", "Sonntag"));

 for (map<string, string>::iterator p = strMap.begin();
 p != strMap.end(); ++p) {
 cout << "English: " << p->first
 << ", German: " << p->second << endl;
 }

 cout << endl;

 strMap.erase(strMap.find("Tuesday"));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Chapter 6: Managing Data with Containers

Discussion
A map is an associative container that maps keys to values, provides logarithmic com-
plexity for inserting and finding, and constant time for erasing single elements. It is
common for developers to use a map to keep track of objects by using a string key.
This is what Example 6-6 does; in this case, the mapped type happens to be a string,
but it could be nearly anything.

A map is declared like this:

map<typename Key, // The type of the key
 typename Value, // The type of the value
 typename LessThanFun = std::less<Key>, // The function/functor
 // used for sorting
 typename Alloc = std::allocator<Key> > // Memory allocator

Key and Value are the types of the key and associated value that will be stored in the
map. LessThanFun is a function or functor that takes two arguments and returns true
if the first is less than the second; the standard functor less is used by default. Alloc
is the memory allocator, which defaults to the standard allocator.

Using a map is easy enough. Declare the type of the key and value like this:

map<string, string> strMap;

This creates a map where both the key and the value are strings. Put objects in your
map with operator[], which is intuitive and easy to read:

strMap["Monday"] = "Montag";
strMap["Tuesday"] = "Dienstag";
strMap["Wednesday"] = "Mittwoch"; // ...

This inserts elements into the map with the index (e.g., "Monday") as the key and the
righthand side as the value. They are stored in order according to the LessThanFun
template parameter, if you supplied one; if not, map uses std::less<Key>.

To get values out of a map, use operator[] on the righthand side of assignment, like
this:

wedInGerman = strMap["Wednesday"];

In the manner of all standard containers, the value associated with the key
"Wednesday" is copied into the object wedInGerman using operator=.

operator[] is a convenient way to insert or update items in, or retrieve values from a
map, but it has subtle behavior that might not be what you expect. Strictly speaking,

 for (map<string, string>::iterator p = strMap.begin();
 p != strMap.end(); ++p) {
 cout << "English: " << p->first
 << ", German: " << p->second << endl;
 }
}

Example 6-6. Creating a string map (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mapping strings to Other Things | 233

operator[k] returns a reference to the value associated with k—whether k exists in
the map or not. If the k is in the map already, its associated value object is returned. If it
doesn’t, k is inserted and the value type’s default constructor is used to create a value
object for that key. To make this concrete, consider what the following code does:

map<string, string> mapZipCodes; // There are zero elements now

string myZip = mapZipCodes["Tempe"]; // Nothing is in the map yet,
 // but what is count() now?

What’s in myZip, and how many elements are in mapZipCodes now? Since operator[]
inserts the key you give it if it doesn’t already exist, myZip is an empty string and
there is now one element in mapZipCodes. This might not be the behavior you expect,
but whether it is or not, be aware that operator[] is not a const member function:
there is always the possibility that it will change the state of the map by adding a
node.

The insert member function provides an alternative for adding pairs to the map.
insert performs a strict insert, not an insert/update as operator[] does. If you are
using a map (and not a multimap, which can have duplicate keys), insert does noth-
ing if the key already exists. By comparison, operator[] replaces the value object for
the key you supply if it already exists.

But the syntax of insert requires a little more work than operator[], and this has to
do with how a map stores your data. Consider this line from Example 6-6:

strMap.insert(std::make_pair("Sunday", "Sonntag"));

A map stores your key/value pairs in a pair object. A pair is a simple utility class tem-
plate (declared in <utility> and included by <map>) that holds two values of two
types. To declare a pair of strings, do this:

pair<string, string> myPair;

The first and second elements in the pair are accessible by the public members first
and second. If you use operator[] to access elements in a map, then you don’t usually
have to deal with pairs directly, but with many of the other member functions you
do, so it’s good to know how to create and reference pair objects. Iterators, for
example, simply dereference to a pair object, so when you use them, as I did in
Example 6-6, you ought to know how to get at the key and its value.

for (map<string, string>::iterator p = strMap.begin();
 p != strMap.end(); ++p)
 cout << "English: " << p->first
 << ", German: " << p->second << endl;

The key is stored in first and the value is stored in second.

This doesn’t explain why I used make_pair, though. make_pair is a helper function
template that creates a pair object out of the arguments you give it. Some prefer this
to calling the pair constructor because a class template can’t use argument deduction

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234 | Chapter 6: Managing Data with Containers

to figure out its template parameters, whereas a function template can. Thus, these
two lines of code are functionally equivalent:

strMap.insert(std::make_pair("Sunday", "Sonntag"));
strMap.insert(std::pair<string, string>("Sunday", "Sonntag"));

maps prohibit duplicate keys. If you want to allow duplicate keys, you have to use a
multimap, which is a map that permits multiple equivalent keys. Its interface is identi-
cal to map, but the behavior of the member functions is necessarily different.
Table 6-1 lists the member functions that are in one but not the other, and explains
any behavioral differences in the common member functions. maps and multimaps
have some typedefs that describe the different values that are stored in them. In
Table 6-1, I use them as follows:

key_type
This is the type of the key. In a string map declared as map<string, MyClass*>,
key_type would be string.

mapped_type
This is the type of the value that the key maps to. In a string map declared as
map<string, MyClass*>, mapped_type would be MyClass*.

value_type
This is the type of the object that contains a key and a value, which, in a map or
mutimap, is a pair<const key_type, mapped_type>.

Table 6-1 also shows the behavioral differences between map and multimap.

Table 6-1. map versus multimap

Member function map, multimap, or both Behavior

T& operator[]
(const key_type& k)

map Returns a reference to the value object stored
with key k. If k is not already in the map, it is
added and a value object is created with its
default constructor.

iterator
insert(const value_type& v)

pair<iterator, bool>
insert(const value_type& v)

Both The first version inserts v into the mutimap and
returns an iterator that points to the inserted
pair. The second version inserts v into a map if
there is not already a key in the map equivalent
to the key of v. The pair returned contains an
iterator that points to the pair that was
inserted, if any, and a bool indicating whether
the insert was successful or not.

iterator
find(const key_type& k)

Both Returns an iterator or a const_iterator that
points to themapped_type that corresponds to
k. In a multimap, the iterator returned is not
guaranteed to point to the first value equivalent
to k. If there is no key equivalent to k, the
returned iterator is equivalent to end().

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mapping strings to Other Things | 235

If operator[] doesn’t work for you, there are other ways to find things in a map. You
can use the find member function:

map<string, string>::const_iterator p
 = strMap.find("Thursday");

if (p != strMap.end())
 cout << "Thursday = " << p->second << endl;

Just be aware that when you are using a multimap, the item returned isn’t guaranteed
to be the first element that is equivalent to the search key. If you want the first ele-
ment that is not less than some value or not more than some value, use lower_bound
or upper_bound. lower_bound returns an iterator to the first key/value pair equal to or
greater than its key_type argument. In other words, if your map is filled with days of
the week as in Example 6-6, the following will return an iterator that points to the
pair containing "Friday" and "Freitag":

p = strMap.lower_bound("Foo");

if (p != strMap.end())
 cout << p->first << " = " << p->second << endl;

This is because "Friday" is the first key greater than or equal to "Foo". upper_bound
works the same way, but in the opposite manner.

I mentioned at the beginning of this discussion that the elements in a map are stored
in sorted order according to their keys, so if you iterate from begin to end, each ele-
ment is “greater” than the previous element (in a multimap it is greater than or equal
to). But if you aren’t using something as trivial as strings or numbers as your keys,
you may have to specify how keys are compared when the map has to determine
what should be inserted where.

By default, keys are sorted using the standard functor less (declared in <functional>).
less is a binary function (takes two arguments of the same type) that returns a bool indi-
cating whether the first argument is less than the second. In other words, less(a, b)
returns a < b. If this is not what you want, create your own functor and declare the map
using it instead. For example, if you have a Person object as your key, and each Person
has a last name and a first name, you may want to compare last names and first names.
Example 6-7 presents one way to do this.

Example 6-7. Using your own sorting functor

#include <iostream>
#include <map>
#include <string>

using namespace std;

class Person {
 friend class PersonLessThan;
public:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Chapter 6: Managing Data with Containers

maps are a great way to store key/value pairs. Once you understand the subtle behav-
ior, such as how operator[] works and how the pairs are actually stored (as
pair<Key, Value> objects), maps provide great ease of use and good performance.

See Also
Recipe 6.7

 Person(const string& first, const string& last) :
 lastName_(last), firstName_(first) {}
 // ...
 string getFirstName() const {return(firstName_);}
 string getLastName() const {return(lastName_);}
private:
 string lastName_;
 string firstName_;
};

class PersonLessThan {
public:
 bool operator()(const Person& per1,
 const Person& per2) const {
 if (per1.lastName_ < per2.lastName_) // Compare last
 return(true); // names, then
 else if (per1.lastName_ == per2.lastName_) // first
 return(per1.firstName_ < per2.firstName_);
 else
 return(false);
 }
};

int main() {

 map<Person, string, PersonLessThan> personMap;

 Person per1("Billy", "Silly"),
 per2("Johnny", "Goofball"),
 per3("Frank", "Stank"),
 per4("Albert", "Goofball");

 personMap[per1] = "cool";
 personMap[per2] = "not cool";
 personMap[per3] = "not cool";
 personMap[per4] = "cool";

 for (map<Person, string, PersonLessThan>::const_iterator p =
 personMap.begin(); p != personMap.end(); ++p) {
 cout << p->first.getFirstName() << " " << p->first.getLastName()
 << " is " << p->second << endl;
 }
}

Example 6-7. Using your own sorting functor (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Hashed Containers | 237

6.7 Using Hashed Containers

Problem
You are storing keys and values, you need constant-time access to elements, and you
don’t need the elements to be stored in sorted order.

Solution
Use one of the hashed associated containers, hash_map or hash_set. Be aware, how-
ever, that these are not standard containers specified by the C++ Standard, rather
they are extensions that most standard library implementations include. Example 6-8
shows how to use a hash_set.

Discussion
Hashed containers are popular data structures in any language, and it is unfortunate
that C++ Standard does not require an implementation to supply them. All is not
lost, however, if you want to use a hashed container: chances are that the standard
library implementation you are using includes hash_map and hash_set, but the fact
that they are not standardized means their interfaces may differ from one standard
library implementation to the next. I will describe the hashed containers that are pro-
vided in the STLPort standard library implementation.

Example 6-8. Storing strings in a hash_set

#include <iostream>
#include <string>
#include <hash_set>

int main() {

 hash_set<std::string> hsString;
 string s = "bravo";

 hsString.insert(s);
 s = "alpha";
 hsString.insert(s);
 s = "charlie";
 hsString.insert(s);

 for (hash_set<string>::const_iterator p = hsString.begin();
 p != hsString.end(); ++p)
 cout << *p << endl; // Note that these aren't guaranteed
 // to be in sorted order
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

238 | Chapter 6: Managing Data with Containers

STLPort is a free, portable standard library implementation that has
been around for a long time and provides hashed containers. If you are
using a different library, the interface may be different, but the general
idea is the same.

The main characteristics of hashed containers (called hashed associative containers
by much of the C++ literature) are that they provide, in the average case, constant-
time location, insertion, and deletion of elements; in the worst case, operations
require linear complexity. The trade-off for all of these constant-time operations is
that the elements in a hashed container are not stored in order, as they are in a map.

Look at Example 6-8. Using a hashed container (in this case, a hash_set) is simple
enough—declare it like most other containers and start inserting things into it:

hash_set<string> hsString; // A hash_set of strings
string s = "bravo";
hsString.insert(s); // Insert a copy of s

Using a hash_map is similar, except that (minimally) you have to specify both the key
and the data types that will be used. This is identical to a map:

hash_map<string, string>
 hmStrings; // Map strings to strings
string key = "key";
string val = "val";
hmStrings[key] = val;

These are just the basics of using hashed containers; there are a handful of addi-
tional template parameters that let you specify the hash function to use, the function
to use to test for key equivalency, and an object to use for memory allocation. I dis-
cuss these a little later.

There are four hashed containers in most libraries, and they resemble the other asso-
ciative containers in the standard library (i.e., map and set), they are hash_map, hash_
multimap, hash_set, and hash_multiset. Hashed containers are all implemented using
a hash table. A hash table is a data structure that allows constant-time access to ele-
ments by, basically, using a hash function to “jump” to a location close to where the
desired object is stored instead of traversing through a tree-like structure. The differ-
ence between hash_map and hash_set is how the data are stored in the hash table.

The declarations for the hash table–based containers in STLPort are as follows:

hash_map<Key, // The type of the key
 Value, // The type of the value
 // associated with the key
 HashFun = hash<Key>, // The hash function to use
 EqualKey = equal_to<Key>, // Function to use for key
 // equivalence test
 Alloc = alloc> // The allocator to use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Hashed Containers | 239

hash_set<Key, // The type of the key
 HashFun = hash<Key>, // The hash function to use
 EqualKey = equal_to<Key>, // Function to use for key
 // equivalence test
 Alloc = alloc> // The allocator to use

A hash_map is a hash table that stores values as pair<const Key, Data> objects. What
this means is that when I describe hash tables below, the “elements” in the table are
key/value pairs; hash_maps don’t store the key and value separately (neither do maps).
A hash_set simply stores the key as the value type.

The HashFun template parameter is a function that turns objects of type Key into a
value that can be stored as a size_t. This is discussed more below. The EqualKey
template parameter is a function that takes two arguments and returns true if they
are equivalent. In hash_map and hash_set containers, no two keys can be equivalent;
hash_multimap and hash_multiset can have multiple equivalent keys. As with all con-
tainers, Alloc is the memory allocator that will be used.

A hash table has two parts. There is one relatively large vector where each index in
the vector is a “bucket.” Each bucket is actually a pointer to the first node in a rela-
tively short singly or doubly linked list (singly in STLPort). These lists are where the
actual data are stored. You can get the number of buckets in a hashed container with
the bucket_count member function. Figure 6-3 should give you an idea of what a
hash map looks like in memory.

Figure 6-3. A hash table

bucket count () q

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Chapter 6: Managing Data with Containers

Consider the use of the hash_set in Example 6-8. When you insert an element, the
container first has to figure out what bucket the element belongs to. It does that by
calling the hash function for the container on the key you passed in (hash functions
are discussed shortly) and calculates its modulus with the number of buckets. This
gives an index in the bucket vector.

If you aren’t familiar with what “hashing” is, it’s a straightforward concept. Given
some value (say, a char array), a hash function is a function that takes a single argu-
ment and returns a hash value of type size_t (i.e., a number). Ideally, you will want
a hash function that generates hash values that are usually unique, but they don’t
have to be. This function is not one-to-one in the mathematical sense: more than one
string can map to the same hash value. I’ll discuss why that’s okay in a moment.

STLPort includes such a hash function as a function template in <hash_map> and
<hash_set>. The function doesn’t work for just any object though, because it’s not
possible to make a fully generic hash function that works on any kind of input.
Instead, there are a number of specializations for the built-in types that are most
commonly used as the keys in a hash table. For example, if you want to see what a
hash value looks like, hash a character string:

std::hash<const char*> hashFun;

std::cout << "\"Hashomatic\" hashes to "
 << hashFun("Hashomatic") << '\n';

What you will see is something like this:

"Hashomatic" hashes to 189555649

STLPort provides specializations for the following types: char*, const char*, char,
unsigned char, signed char, short, unsigned short, int, unsigned int, long, and
unsigned long. That sounds like a lot, but what it means, ultimately, is that the
library has built-in hash function support for character strings or numbers. If you
want to hash something else, you have to supply your own hash function.

When you put something in a hash table, it figures out which bucket the item
belongs in with the modulo operator and the number of buckets, e.g., hashFun(key)
% bucket_count(). This is a fast operation that points right to the index in the main
vector where the bucket begins.

You can use a hashed container like any ordinary associative container, such as by
using operator[] to add elements to a hash_map. The difference is that you know
you’ll be getting constant time instead of logarithmic time with inserts and searches.
Consider Example 6-9, which contains a simple class for mapping login names to
Session objects. It uses a few of the capabilities of a hashed container that I have dis-
cussed in this recipe.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Hashed Containers | 241

Each key maps to a single bucket, and more than one key may be in the bucket. A
bucket is usually a singly or doubly linked list.

There is a great deal of literature on hash functions and tables. If you are interested
in this sort of thing, do a Google search for “C++ hash function.”

See Also
Recipe 6.6

Example 6-9. A simple session manager

#include <iostream>
#include <string>
#include <hash_map>

using namespace std;

class Session { /* ... */ };

// Make reading easier with a typedef
typedef hash_map<string, Session*> SessionHashMap;

class SessionManager {

public:
 SessionManager () : sessionMap_(500) {} // Initialize hash table
 // with 500 buckets
 ~SessionManager () {
 for (SessionHashMap::iterator p = sessionMap_.begin();
 p != sessionMap_.end(); ++p)
 delete (*p).second; // Destroy the Session object
 }

 Session* addSession(const string& login) {
 Session* p = NULL;
 if (!(p = getSession(login))) {
 p = new Session();
 sessionMap_[login] = p; // Assign the new session with
 } // operator[]
 return(p);
 }
 Session* getSession(const string& login) {
 return(sessionMap_[login]);
 }
 // ...

private:
 SessionHashMap sessionMap_;
};

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Chapter 6: Managing Data with Containers

6.8 Storing Objects in Sorted Order

Problem
You have to store a set of objects in order, perhaps because you frequently need to
access ordered ranges of these objects and you don’t want to pay for resorting them
each time you do this.

Solution
Use the associative container set, declared in <set>, which stores items in sorted
order. It uses the standard less class template, (which invokes operator< on its argu-
ments) by default, or you can supply your own sorting predicate. Example 6-10
shows how to store strings in a set.

Since the values are stored in sorted order, the output will look like this:

Bill
Howard
Randy
Steve

Example 6-10. Storing strings in a set

#include <iostream>
#include <set>
#include <string>

using namespace std;

int main() {

 set<string> setStr;
 string s = "Bill";

 setStr.insert(s);
 s = "Steve";
 setStr.insert(s);
 s = "Randy";
 setStr.insert(s);
 s = "Howard";
 setStr.insert(s);

 for (set<string>::const_iterator p = setStr.begin();
 p != setStr.end(); ++p)
 cout << *p << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Objects in Sorted Order | 243

Discussion
A set is an associative container that provides logarithmic complexity insertion and
find, and constant-time deletion of elements (once you have found the element you
want to delete). sets are unique associative containers, which means that no two ele-
ments can be equivalent, though you can use a multiset if you need to store multi-
ple instances of equivalent elements. You can think of a set as a set in the
mathematical sense, that is, a collection of items, with the added bonus that order is
maintained among the elements.

You can insert and find elements, but, like a list, a set does not allow random access
to elements. If you want something in a set, you have to look for it with the find
member function, or iterate through the elements using set<T>::iterator or set<T>:
:const_iterator.

The declaration of a set should look familiar:

set<typename Key, // The type of the element
 typename LessThanFun = std::less<Key>, // The function/functor
 // used for sorting
 typename Alloc = std::allocator<Key> > // Memory allocator

You always have to specify the Key, you sometimes should supply your own
LessThanFun, and you should rarely need to supply your own allocator (so I won’t
discuss how to write an allocator here).

The Key template parameter is, as is usually the case with the other standard con-
tainers, the type of the element that will be stored. It is typedef’d on the set as
set<Key>::key_type, so you have access to the type at runtime. The Key class has to
support copy construction and assignment, and you’re all set.

Example 6-10 shows how to use a set with strings. Using a set to store objects of any
other class works the same way; declare the set with the class name as the template
parameter:

std::set<MyClass> setMyObjs;

This is all you have to do to use a set in the simplest way possible. But most of the
time, life won’t be so simple. For example, if you are storing pointers in the set, you
can’t rely on the default sorting predicate because it’s just going to sort the objects by
their address. To make sure elements are sorted properly, you will have to supply
your own predicate for making less-than comparisons. Example 6-11 shows how.

Example 6-11. Storing pointers in a set

#include <iostream>
#include <set>
#include <string>
#include <functional>
#include <cassert>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Chapter 6: Managing Data with Containers

strPtrLess returns true if the string pointed to by p1 is less than the one pointed to
by p2. This makes it a binary predicate, because it takes two arguments and returns a
bool. Since operator< is defined for strings, I can just use that to make the compari-
son. In fact, if you want to take a more generic approach, use a class template for
your comparison predicate:

template<typename T>
class ptrLess {
public:
 bool operator()(const T* p1,
 const T* p2) {
 assert(p1 && p2);
 return(*p1 < *p2);
 }
};

This will work for pointers to anything that has operator< defined. You can declare a
set with it like this:

set<string*, ptrLess<string> > setStrPtr;

sets support many of the same functions as the standard sequence containers (e.g.,
begin, end, size, max_size), and other associative containers (e.g., insert, erase,
clear, find).

using namespace std;

// Class for comparing strings given two string pointers
struct strPtrLess {
 bool operator()(const string* p1,
 const string* p2) {
 assert(p1 && p2);
 return(*p1 < *p2);
 }
};

int main() {
 set<string*, strPtrLess> setStrPtr; // Give it my special
 // less-than functor
 string s1 = "Tom";
 string s2 = "Dick";
 string s3 = "Harry";

 setStrPtr.insert(&s1);
 setStrPtr.insert(&s2);
 setStrPtr.insert(&s3);

 for (set<string*, strPtrLess>::const_iterator p =
 setStrPtr.begin(); p != setStrPtr.end(); ++p)
 cout << **p << endl; // Dereference the iterator and what
 // it points to
}

Example 6-11. Storing pointers in a set (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Containers in Containers | 245

When you are using a set, remember that you pay for the sorting every time you
modify the state of the set. When the number of elements is large, the logarithmic
complexity of adding or deleting elements can add up—do you really need the
objects to be sorted all the time? If not, you may get better performance by storing
items in a vector or a list and sorting them only when you have to, which can usu-
ally be done in n*log(n) complexity.

6.9 Storing Containers in Containers

Problem
You have a number of instances of a standard container (lists, sets, etc.), and you
want to keep track of them by storing them in yet another container.

Solution
Store pointers to your containers in a single, master container. For example, you can
use a map to store a string key and a pointer to a set as its value. Example 6-12 pre-
sents a simple transaction log class that stores its data as a map of string-set pointer
pairs.

Example 6-12. Storing set pointers in a map

#include <iostream>
#include <set>
#include <map>
#include <string>

using namespace std;

typedef set<string> SetStr;
typedef map<string, SetStr*> MapStrSetStr;

// Dummy database class
class DBConn {
public:
 void beginTxn() {}
 void endTxn() {}
 void execSql(string& sql) {}
};

class SimpleTxnLog {

public:
 SimpleTxnLog() {}
 ~SimpleTxnLog() {purge();}

 // Add an SQL statement to the list
 void addTxn(const string& id,
 const string& sql) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Chapter 6: Managing Data with Containers

Discussion
Example 6-12 offers one situation where you might need to store containers within a
container. Imagine that you need to store a series of SQL statements in batches, to be
executed against a relational database all at once sometime in the future. That’s what
SimpleTxnLog does. It could stand to have a few more member functions to make it

 SetStr* pSet = log_[id]; // This creates the entry for
 if (pSet == NULL) { // this id if it isn't there
 pSet = new SetStr();
 log_[id] = pSet;
 }
 pSet->insert(sql);
 }

 // Apply the SQL statements to the database, one transaction
 // at a time
 void apply() {
 for (MapStrSetStr::iterator p = log_.begin();
 p != log_.end(); ++p) {
 conn_->beginTxn();

 // Remember that a map iterator actually refers to an object
 // of pair<Key,Val>. The set pointer is stored in p->second.
 for (SetStr::iterator pSql = p->second->begin();
 pSql != p->second->end(); ++pSql) {
 string s = *pSql;
 conn_->execSql(s);
 cout << "Executing SQL: " << s << endl;
 }

 conn_->endTxn();
 delete p->second;
 }
 log_.clear();
 }

 void purge() {
 for (MapStrSetStr::iterator p = log_.begin();
 p != log_.end(); ++p)
 delete p->second;

 log_.clear();
 }
 // ...

private:
 MapStrSetStr log_;
 DBConn* conn_;
};

Example 6-12. Storing set pointers in a map (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Storing Containers in Containers | 247

useful, and some exception handling to make it safe, but the purpose of the example
is to show how to store one kind of container in another.

To begin with, I created some typedefs to make the code easier to read:

typedef std::set<std::string> SetStr;
typedef std::map<std::string, SetStr*> MapStrSetStr;

When you are using templates of templates (of templates...ad nauseam), the decla-
rations will get very long, which makes them hard to read, so make your life easier by
employing typedef. Furthermore, using typedef makes it easier to change something
about the template declaration without having to search and replace through multi-
ple source files.

The DBConn class is a dummy class that is supposed to represent a connection to a
relational database. The interesting part comes when we get into the definition of
SimpleTxnLog, in the addTxn member function. At the beginning of the function, I do
this to see if there is already a set object for the id that was passed in:

SetStr* pSet = log_[id];

log_ is a map (see Recipe 6.6), so operator[] does a lookup of id to see if there is a
data object associated with it. If there is, the data object is returned and pSet is non-
NULL; if there isn’t, it creates it and returns the associated pointer, which will be NULL.
Then, I can check to see if pSet points to anything to determine if I need to create
another set:

if (pSet == NULL) {
 pSet = new SetStr(); // SetStr = std::set<std::string>
 log_[id] = pSet;
}

Once I create the set, I have to assign it back to the associated key in the map, since
pSet is a copy of the data object stored in the map (a set pointer), not the value itself.
Once I do that, all that’s left is to add an element to the set and return:

pSet->insert(sql);

With the above steps, I added a pointer to an address of one container (a set) to
another (a map). What I didn’t do was add a set object to a map. The difference is
important. Since containers have copy-in, copy-out semantics, doing the following
would copy the entire set s into the map:

set<string> s;
// Load up s with data...
log_[id] = s; // Copy s and add the copy to log_

This will cause a lot of extra copying that you probably don’t want. Therefore, the
general rule to follow when using containers of containers is to use containers of
pointers to containers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248

Chapter 7CHAPTER 7

Algorithms

7.0 Introduction
This chapter describes how to work with the standard algorithms and how to use
them on the standard containers. These algorithms were originally part of what is
often referred to as the Standard Template Library (STL), which is the set of algo-
rithms, iterators, and containers that now belong to the standard library (Chapter 6
contains recipes for working with the standard containers). I will refer to these sim-
ply as the standard algorithms, iterators, and containers, but keep in mind that they
are the same ones that other authors’ refer to as part of the STL. One of the pillars of
the standard library is iterators, so the first recipe explains what they are and how to
use them. After that, there are a number of recipes that explain how to use and
extend the standard algorithms. Finally, if what you need isn’t in the standard
library, Recipe 7.10 explains how to write your own algorithm.

The recipes presented here are largely biased toward working with the standard con-
tainers for two reasons. First, the standard containers are ubiquitous, and it’s better
to learn the standard than to reinvent the wheel. Second, the algorithms in the stan-
dard library implementations provide a good model to follow for interoperability and
performance. If you watch how the pros do it in the standard library code, you are
likely to learn a few valuable lessons along the way.

All standard algorithms use iterators. Even if you are already familiar with the con-
cept of iterators, which is the subject of the first recipe, take a look at Table 7-1,
which contains a list of the conventions I use in the rest of the chapter when listing
function declarations for the standard algorithms.

Table 7-1. Iterator category abbreviations

Abbreviation Meaning

In Input iterator

Out Output iterator

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Iterating Through a Container | 249

The standard algorithms also make use of function objects, or functors. A function
object is a class that has overridden operator() so that it can be called like a func-
tion. A functor that returns a bool (and does not maintain state, and is therefore
called pure) is called a predicate, and they are another regular feature in the standard
algorithms. Generally, a predicate takes one or two arguments: if it takes one argu-
ment, it is an unary predicate; and if it takes two, it is called a binary predicate. For
the sake of brevity, I use the abbreviations listed in Table 7-2 when listing function
declarations.

In most cases, a function pointer can be used when a functor argument is required.
When I use the term functor, I also mean function pointer unless otherwise noted.

7.1 Iterating Through a Container

Problem
You have a range of iterators—most likely from a standard container—and the stan-
dard algorithms don’t fit your needs, so you need to iterate through them.

Solution
Use an iterator or a const_iterator to access and advance through each of the ele-
ments in your container. In the standard library, algorithms and containers commu-
nicate using iterators, and one of the very ideas of the standard algorithms is that
they insulate you from having to use iterators directly unless you are writing your
own algorithm. Even so, you should understand the different kinds of iterators so
you can use the standard algorithms and containers effectively. Example 7-1 pre-
sents some straightforward uses of iterators.

Fwd Forward iterator

Bid Bidirectional iterator

Rand Random-access iterator

Table 7-2. Functor types

Type Name Description

UnPred An unary predicate. Takes one argument and returns a bool.

BinPred A binary predicate. Takes two arguments and returns a bool.

UnFunc An unary function. Takes one argument and returns anything.

BinFunc A binary function. Takes two arguments and returns anything.

Table 7-1. Iterator category abbreviations (continued)

Abbreviation Meaning

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Chapter 7: Algorithms

Example 7-1. Using iterators with containers

#include <iostream>
#include <list>
#include <algorithm>
#include <string>

using namespace std;

static const int ARRAY_SIZE = 5;

template<typename T,
 typename FwdIter>
FwdIter fixOutliersUBound(FwdIter p1,
 FwdIter p2,
 const T& oldVal,
 const T& newVal) {
 for (;p1 != p2; ++p1) {
 if (greater<T>(*p1, oldVal)) {
 *p1 = newVal;
 }
 }
}

int main() {

 list<string> lstStr;

 lstStr.push_back("Please");
 lstStr.push_back("leave");
 lstStr.push_back("a");
 lstStr.push_back("message");

 // Create an iterator for stepping through the list
 for (list<string>::iterator p = lstStr.begin();
 p != lstStr.end(); ++p) {
 cout << *p << endl;
 }

 // Or I can use a reverse_iterator to go from the end
 // to the beginning. rbegin returns a reverse_iterator
 // to the last element and rend returns a reverse_iterator
 // to one-before-the-first.
 for (list<string>::reverse_iterator p = lstStr.rbegin();
 p != lstStr.rend(); ++p) {
 cout << *p << endl;
 }

 // Iterating through a range
 string arrStr[ARRAY_SIZE] = {"My", "cup", "cup", "runneth", "over"};

 for (string* p = &arrStr[0];
 p != &arrStr[ARRAY_SIZE]; ++p) {
 cout << *p << endl;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Iterating Through a Container | 251

Discussion
An iterator is a type that is used to refer to a single object in a container. The stan-
dard containers use iterators as the primary means for accessing the elements they
contain. An iterator behaves like a pointer: you dereference an iterator (using the * or
-> operators) to access what it refers to, and you can move an iterator forward and
backward with syntax that looks like pointer arithmetic. An iterator is not exactly
like a pointer, however, for a few reasons. Before I get into that though, let’s cover
the essentials of how to use iterators.

Using iterators

You declare an iterator using the type that you plan on iterating through. For exam-
ple, in Example 7-1 I am using a list<string>, so I declare an iterator like this:

list<string>::iterator p = lstStr.begin();

The ::iterator part of this declaration may look a little unusual if you are not used
to working with the standard containers. It is a nested typedef on the list class tem-
plate created for just this reason—so that users of the container can create iterators
for this particular instantiation of a template. This is a standardized convention that
all of the standard containers obey; for example, you can declare an iterator to a
list<int> or to a set<MyClass> like this:

list<int>::iterator p1;
set<MyClass>::iterator p2;

To get back to the example, the iterator p is initialized with the first element in the
sequence, which is returned by begin. To advance forward to the next element, use
operator++. You can use preincrement (++p) or postincrement (p++), just as you
would with a pointer to an array element, but preincrement doesn’t create a tempo-
rary value to return each time, so it’s more efficient and is the preferred approach.
Postincrement (p++) has to create a temporary variable because it returns the value of
p before the increment. However, it can’t increment the value after it has returned, so
it has to make a copy of the current value, increment the current value, then return
the temporary value. Creating these temporary variables adds up after a while, so if
you don’t require postincrement behavior, use preincrement.

You will know when to stop advancing to the next element when you hit the end. Or,
strictly speaking, when you hit one past the end. The convention with the standard
containers is that there is a mystical value that represents one past the end of the

 // Using standard algorithms with a standard sequence
 list<string> lstStrDest;
 unique_copy(&arrStr[0], &arrStr[ARRAY_SIZE],
 back_inserter(lstStrDest));
}

Example 7-1. Using iterators with containers (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Chapter 7: Algorithms

sequence, and that value is returned by end. This works conveniently in a for loop, as
in the example:

for (list<string>::iterator p = lstStr.begin();
 p != lstStr.end(); ++p) {
 cout << *p << endl;
}

As soon as p equals end, you know that p can advance no further. If the container is
empty, begin == end is true, so the body of the loop is never executed. (However,
use the empty member function to test a container for emptiness, don’t compare
begin to end or check that size == 0).

That’s the simple functional explanation of iterators, but that’s not all. First, an itera-
tor as declared a moment ago works as an rvalue or an lvalue, which means you can
assign from its dereferenced value or assign to it. To overwrite every element in the
string list, I could write something like this:

for (list<string>::iterator p = lstStr.begin();
 p != lstStr.end(); ++p) {
 *p = "mustard";
}

Since *p refers to an object of type string, string::operator=(const char*) is used to
assign the new string to the element in the container. But what if lstStr is a const
object? In that case, an iterator won’t work because dereferencing it returns a non-
const object. You will need to use a const_iterator, which is an iterator that returns an
rvalue only. Imagine that you decide to write a simple function for printing the con-
tents of a container. Naturally, you will want to pass the container as a const reference:

template<typename T>
void printElements(const T& cont) {
 for(T::const_iterator p = cont.begin();
 p != cont.end(); ++p) {
 cout << *p << endl;
 }
}

Using const in this situation is the right thing to do, and a const_iterator will make
the compiler keep you honest if your code tries to modify *p.

The other thing you will need to do sooner or later is iterate through the container back-
ward. You can do this with a normal iterator, but there is a reverse_iterator that was
created for just this purpose. A reverse_iterator looks and feels like an ordinary
iterator, except that increment and decrement work exactly opposite to an ordinary
iterator, and instead of using a container’s begin and end methods, you use rbegin and
rend, which return reverse_iterators. A reverse_iterator views the sequence in the
opposite direction. For example, instead of initializing a reverse_iterator with begin,
you use rbegin, which returns a reverse_iterator that refers to the last element in the
sequence. operator++ advances backward, or toward the beginning, in the sequence.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Iterating Through a Container | 253

rend returns a reverse_iterator that points to one-before-the-first element. Here’s what
it looks like:

for (list<string>::reverse_iterator p = lstStr.rbegin();
 p != lstStr.rend(); ++p) {
 cout << *p << endl;
}

But you may not be able to use a reverse_iterator, in which case, you can use an
ordinary iterator, as in:

for (list<string>::iterator p = --lstStr.end();
 p != --lstStr.begin(); --p) {
 cout << *p << endl;
}

Finally, if you happen to know how far forward or backward you need to advance,
you can use arithmetic with integral values to move more than one position forward
or backward. Perhaps you want to get right to the middle of the list; you might do
this:

size_t i = lstStr.size();

list<string>::iterator p = begin();
p += i/2; // Move to the middle of the sequence

But beware: depending on the type of container you are using, this operation may be
constant or linear complexity. If you are using a container that stores elements con-
tiguously, such as a vector or deque, the iterator can calculate where it needs to
jump to and do it in constant time. But if you are using a node-based container, such
as a list, you can’t use these random-access operations. Instead, you have to
advance until you find the element you’re after. This is expensive. This is why your
requirements for how you iterate through a container or how you plan to find ele-
ments in it will dictate the best container to use for your situation. (See Chapter 6 for
more information on how the standard containers work.)

When using containers that allow random access, you should prefer iterators to
using operator[] with an index variable to access each element. This is especially
important if you are writing a generic algorithm as a function template because not
all containers support random-access iterators.

There are other things you can do with an iterator, but not just any iterator.
iterators belong to one of five categories that have varying degrees of functionality.
It’s not as simple as a class hierarchy though, so that’s what I describe next.

Iterator categories

Iterators supplied by different types of containers do not necessarily do all of the
same things. For example, a vector<T>::iterator lets you use operator+= to jump
forward some number of elements, while a list<T>::iterator does not. The differ-
ence between these two kinds of iterators is their category.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Chapter 7: Algorithms

An iterator category is an interface conceptually (not technically; there is no use of
abstract base classes to implement iterator categories). There are five categories,
and each offers an increasing number of capabilities. They are, from least functional
to most, as follows:

Input iterator
An input iterator supports advancing forward with p++ or ++p, and dereferenc-
ing with *p. You get back an rvalue when you dereference though. Input
iterators are used for things like streams, where dereferencing an input iterator
means pulling the next element off the stream, so you can only read a particular
element once.

Output iterator
An output iterator supports advancing forward with p++ or ++p, and dereferenc-
ing with *p. It’s different from an input iterator though, in that you can’t read
from one, you can only write to it—and only write to an element once. Also
unlike an input iterator, you get back an lvalue and not an rvalue, so you can
assign to it but not read from it.

Forward iterator
A forward iterator merges the functionality of an input iterator and an output
iterator: it supports ++p and p++, and you can treat *p as an rvalue or an lvalue.
You can use a forward iterator anywhere you need an input or an output
iterator, with the added benefit that you can read from or write to a derefer-
enced forward iterator as many times as you see fit.

Bidirectional iterator
As the name implies, a bidirectional iterator goes forward and backward. It is a
forward iterator that adds the ability to go backward using --p or p--.

Random-access iterator
A random-access iterator does everything a bidirectional iterator does, but it
also supports pointer-like operations. You can use p[n] to access the element
that is n positions after p in the sequence, or you can add to or subtract from p
with +, +=, -, or -= to move the iterator forward some number of elements in
constant time. You can also compare two iterators p1 and p2 with <, >, <=, or >=
to determine their relative order (as long as they both point to the same
sequence).

Or maybe you like to see things in Venn diagrams. In that case, see Figure 7-1.

Most of the standard containers support at least bidirectional iterators, some (vec-
tor and deque) provide random-access iterators. The iterator category a container
supports is specified in the standard.

Most of the time, you will use iterators for the simpler tasks: finding an element
and erasing it, or otherwise doing something to it. For this you need only a for-
ward iterator, which is available from all containers. But when you need to write

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Iterating Through a Container | 255

a nontrivial algorithm, or use one from the standard library, you will often require
more than a simple forward iterator. But how do you specify what you need?
That’s where iterator categories come in.

The different categories of iterators allow standard (or nonstandard) algorithms to
specify the range of functionality they require. Generally, standard algorithms oper-
ate on ranges specified with iterators, and not entire containers. The declaration of
a standard algorithm tells you what category of iterator it expects. For example,
std::sort requires random-access iterators, since it needs to be able to reference
nonadjacent elements in constant time. Thus, the declaration for sort looks like this:

template<typename RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

By the name of the iterator type, you can see that it expects it to be a random-access
iterator. If you try to compile sort on an iterator category other than random
access, it will fail, because lesser iterator categories do not implement the pointer-
arithmetic-like operations.

The iterator category provided by a particular container and that required by a par-
ticular standard algorithm is what determines which algorithms work with which
containers. Many of the standard algorithms are the subject of the rest of this chap-
ter. Table 7-1 shows the abbreviations I use in the rest of this chapter for the kinds of
iterators each algorithm accepts as arguments.

This recipe discussed iterators as they are used with containers. The iterator pat-
tern is not specific to containers, and thus there are other kinds of iterators. There
are stream iterators, stream buffer iterators, and raw storage iterators, but those
are not covered here.

Figure 7-1. Iterator categories

Input Output

Forward

Bidirectional

Random access

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Chapter 7: Algorithms

See Also
Chapter 6

7.2 Removing Objects from a Container

Problem
You want to remove objects from a container.

Solution
Use the container’s erase member function to erase a single element or a range of ele-
ments, and possibly use one of the standard algorithms to make the job easier.
Example 7-2 shows a couple of different ways to remove elements from a sequence.

Example 7-2. Removing elements from a container

#include <iostream>
#include <string>
#include <list>
#include <algorithm>
#include <functional>
#include "utils.h" // For printContainer(): see 7.10

using namespace std;

int main() {

 list<string> lstStr;

 lstStr.push_back("On");
 lstStr.push_back("a");
 lstStr.push_back("cloudy");
 lstStr.push_back("cloudy");
 lstStr.push_back("day");

 list<string>::iterator p;

 // Find what you want with find
 p = find(lstStr.begin(), lstStr.end(), "day");

 p = lstStr.erase(p); // Now p points to the last element

 // Or, to erase all occurrences of something, use remove
 lstStr.erase(remove(lstStr.begin(), lstStr.end(), "cloudy"),
 lstStr.end());
 printContainer(lstStr); // See 7.10
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Removing Objects from a Container | 257

Discussion
Use a container’s erase member function to remove one or more elements from it.
All containers have two overloads of erase: one that takes a single iterator argu-
ment that points to the element you want to delete, and another that takes two
iterators that represent a range of elements you want deleted. To erase a single ele-
ment, obtain an iterator referring to that element and pass the iterator to erase, as
in Example 7-2:

p = find(lstStr.begin(), lstStr.end(), "day");
p = lstStr.erase(p);

This will delete the object that p refers to by calling its destructor, and then do any
necessary reorganization of the remaining elements in the range. The reorganization
that happens depends on the type of container, and therefore the complexity of the
operation will vary from one kind of container to another. The signature and behav-
ior also differs slightly when you are using a sequence container versus an associa-
tive container.

In sequences, erase returns an iterator that refers to the first element immediately
following the last element that was deleted, which may be end if the last element in
the sequence was the last one deleted. The complexity of the operation is different
for each container because sequences are implemented in different ways. For exam-
ple, since all elements in a vector are stored in a contiguous chunk of memory,
removing an element from anywhere except the end requires shifting all the ele-
ments following it toward the beginning to fill the gap. This is a hefty performance
penalty (linear), which is why you shouldn’t use a vector if you have to delete (or
insert, for that matter) elements anywhere except at the end. I discuss this very mat-
ter in more detail in Recipe 6.2.

In associative containers, erase returns void. The complexity is amortized constant if
you are deleting a single element, and logarithmic plus the number of elements
deleted if you are deleting a range of elements. This is because associative containers
are often implemented as balanced trees (e.g., red-black tree).

erase is handy, but not very interesting. If you want more flexibility in how you
express what should be deleted, you will have to turn to the standard algorithms (in
<algorithm>). Consider this line from Example 7-2:

lstStr.erase(std::remove(lstStr.begin(), lstStr.end(), "cloudy"),
 lstStr.end());

Notice that I am still using erase, but this time, for my own reasons, I want to delete
all occurrences of the word “cloudy” from my list<string>. remove returns an
iterator, which I pass to erase as the beginning of the doomed range, and I pass end
to erase as the end point for the range. This deletes each object obj (by calling its
delete method) in the range for which obj == "cloudy" is true. But it may not behave
exactly as you expect. Here is where I need to clarify some terminology.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Chapter 7: Algorithms

remove doesn’t actually remove anything. It moves everything that isn’t equal to the
value you specify to the beginning of the sequence, and returns an iterator that
refers to the first element following them. Then, it is up to you to actually call erase
on the container to delete the objects between [p, end), where p is the iterator
returned by remove.

remove has some variants, too. What if you want to remove elements that satisfy some
predicate, and not simply those equal to some value? Use remove_if. For example,
imagine you have a class named Conn that represents some sort of connection. If the
connection has an idle time greater than some value, you want to remove it. First, cre-
ate a functor as follows:

struct IdleConnFn :
 public std::unary_function<const Conn, bool> { // Include this line
 bool operator() (const Conn& c) const { // so it works with
 if (c.getIdleTime() > TIMEOUT) { // other stuff in
 return(true); // <functional>
 }
 else
 return(false);
 }
} idle;

Then you can call remove_if with erase and pass in your functor, like this:

vec.erase(std::remove_if(vec.begin(), vec.end(), idle), vec.end());

You want to derive such functors from unary_function for a good reason. unary_function
defines some typedefs that are used by other functors in <functional>, and if they aren’t
there, the other functors won’t compile. For example, if you are particularly malicious,
and you want to remove connections that aren’t idle, you can employ the not1 functor
with your idle-checking functor:

vec.erase(std::remove_if(vec.begin(), vec.end(), std::not1(idle)),
 vec.end());

Finally, you may want to leave the original sequence alone (maybe it’s const) and
copy the results minus some elements into a new sequence. You can do that with
remove_copy and remove_copy_if, which work the same way as remove and remove_if,
except that there is also an output iterator you pass in where the resulting data is
supposed to go. For example, to copy strings from one list to another, do this:

std::remove_copy(lstStr.begin(), lstStr.end(), lstStr2, "cloudy");

The thing you have to remember when using remove_copy, or any standard algorithm
that writes to an output range, is that the output range must already be large enough
to accommodate the elements that are about to be written to it.

erase and remove (and its family of related algorithms) offer a convenient way to
erase certain elements from a sequence. They provide a clean, ready-made alterna-
tive to looping yourself to find all the elements you want, then erasing them one by
one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Randomly Shuffling Data | 259

See Also
Recipes 6.2 and 7.1

7.3 Randomly Shuffling Data

Problem
You have a sequence of data, and you need to jumble it into some random order.

Solution
Use the random_shuffle standard algorithm, defined in <algorithm>. random_shuffle
takes two random-access iterators, and (optionally) a random-number generation
functor, and rearranges the elements in the range at random. Example 7-3 shows
how to do this.

Your output might look like this:

0 1 2 3 4 5 6 7 8 9

8 1 9 2 0 5 7 3 4 6

Example 7-3. Shuffling a sequence at random

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include "utils.h" // For printContainer(): see 7.11

using namespace std;

int main() {

 vector<int> v;
 back_insert_iterator<std::vector<int> > p =
 back_inserter(v);

 for (int i = 0; i < 10; ++i)
 *p = i;

 printContainer(v, true);

 random_shuffle(v.begin(), v.end());

 printContainer(v, true);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Chapter 7: Algorithms

Discussion
random_shuffle is intuitive to use. Give it a range, and it will shuffle the range at ran-
dom. There are two versions, and their prototypes look like this:

void random_shuffle(RndIter first, RndIter last);
void random_shuffle(RndIter first, RndIter last, RandFunc& rand);

In the first version, the “random” is using an implementation-specific random-num-
ber generation function, which should be sufficient for most of your needs. If it
isn’t—perhaps you want a nonuniform distribution, e.g., Gaussian—you can write
your own and supply that instead using the second version.

Your random-number generator must be a functor that a single argument and
returns a single value, both of which are convertible to iterator_traits<RndIter>::
difference_type. In most cases, an integer will do. For example, here’s my knock-off
random-number generator:

struct RanNumGenFtor {
 size_t operator()(size_t n) const {
 return(rand() % n);
 }
} rnd;

random_shuffle(v.begin(), v.end(), rnd);

The applications to random_shuffle are limited to sequences that provide random-
access iterators (strings, vectors, and deques), arrays, or your custom containers
that do the same. You can’t randomly shuffle an associative container because its
contents are stored in sorted order. In fact, you can’t use any algorithm that modi-
fies its range (often referred to as a mutating algorithm) on an associative container.

7.4 Comparing Ranges

Problem
You have two ranges, and you need to compare them for equality or you need to see
which one comes first based on some ordering on the elements.

Solution
Depending on what kind of comparison you want to do, use one of the standard
algorithms equal, lexicographical_compare, or mismatch, defined in <algorithm>.
Example 7-4 shows several of them in action.

Example 7-4. Different kinds of comparisons

#include <iostream>
#include <vector>
#include <string>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Comparing Ranges | 261

The output of Example 7-4 looks like this:

The two sequences are NOT equal!
false
true
false

#include <algorithm>
#include "utils.h"

using namespace std;
using namespace utils;

int main() {

 vector<string> vec1, vec2;

 vec1.push_back("Charles");
 vec1.push_back("in");
 vec1.push_back("Charge");

 vec2.push_back("Charles");
 vec2.push_back("in");
 vec2.push_back("charge"); // Note the small "c"

 if (equal(vec1.begin(), vec1.end(), vec2.begin())) {
 cout << "The two ranges are equal!" << endl;
 } else {
 cout << "The two ranges are NOT equal!" << endl;
 }

 string s1 = "abcde";
 string s2 = "abcdf";
 string s3 = "abc";

 cout << boolalpha // Show bools as "true" or "false"
 << lexicographical_compare(s1.begin(), s1.end(),
 s1.begin(), s1.end()) << endl;
 cout << lexicographical_compare(s1.begin(), s1.end(),
 s2.begin(), s2.end()) << endl;
 cout << lexicographical_compare(s2.begin(), s2.end(),
 s1.begin(), s1.end()) << endl;
 cout << lexicographical_compare(s1.begin(), s1.end(),
 s3.begin(), s3.end()) << endl;
 cout << lexicographical_compare(s3.begin(), s3.end(),
 s1.begin(), s1.end()) << endl;

 pair<string::iterator, string::iterator> iters =
mismatch(s1.begin(), s1.end(), s2.begin());

 cout << "first mismatch = " << *(iters.first) << endl;
 cout << "second mismatch = " << *(iters.second) << endl;
}

Example 7-4. Different kinds of comparisons (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

262 | Chapter 7: Algorithms

false
true
first mismatch = e
second mismatch = f

Discussion
Use equal to compare two sequences for equality. It takes three or four arguments,
depending on the version you use. Here’s how equal is declared:

bool equal(In1 first1, In1 last1, In2 first2);
bool equal(In1 first1, In1 last1, In2 first2, BinPred pred);

equal compares each element between first1 and last1 with each element starting at
first2 using operator==. If you supply pred, equal uses that to test equality instead.
Ensure that the sequences each have the same length before calling equal; it assumes
the second range is at least as long as the first, and if it isn’t, the behavior is unde-
fined.

If you want to know more about how or where two sequences differ, you can use
lexicographical_compare or mismatch. lexicographical_compare compares two sequences
and returns true if the first is lexicographically less than the second, which means that
each pair of elements in the two sequences is compared using the < operator. The decla-
ration of lexicographical_compare looks like this:

bool lexicographical_compare(In1 first1, In1 last1,
 In2 first2, In2 last2);
bool lexicographical_compare(In1 first1, In1 last1,
 In2 first2, In2 last2,
 Compare comp);

As soon as operator< returns true, or the first sequence ends before the second, true is
returned. Otherwise, false is returned. Consider the character sequences in Example 7-4:

string s1 = "abcde";
string s2 = "abcdf";
string s3 = "abc";

lexicographical_compare(s1.begin(), s1.end(), // abcde < abcde
 s1.begin(), s1.end()); // = false
lexicographical_compare(s1.begin(), s1.end(), // abcde < abcdf
 s2.begin(), s2.end()); // = true
lexicographical_compare(s2.begin(), s2.end(), // abcdf < abcde
 s1.begin(), s1.end()); // = false
lexicographical_compare(s1.begin(), s1.end(), // abcde < abc
 s3.begin(), s3.end()); // = false
lexicographical_compare(s3.begin(), s3.end(), // abc < abcde
 s1.begin(), s1.end()); // = true

The complexity of lexicographical_compare is linear and will do a number of com-
parisons equal to the minimum of the two sequence lengths, or until the first time an
element in one of the sequences is less than the corresponding element in the other.
The comparisons are implemented entirely using operator<, so if iter1 and iter2 are

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Comparing Ranges | 263

iterators into the two sequences, the comparison stops as soon as *iter1 < *iter2 or
*iter2 < *iter1.

mismatch will tell you where two sequences differ. Its declaration is a little different
than equal and lexicographical_compare, though, because it returns a pair<> of
iterators instead of a bool. Here it is:

pair<In1, In2> mismatch(In1 first1, In1 last1, In2 first2);
pair<In1, In2> mismatch(In1 first1, In1 last1, In2 first2, BinPred);

The two iterators returned point to the differing elements in each of the sequences.
Consider Example 7-4:

string s1 = "abcde";
string s2 = "abcdf";
pair<string::iterator, string::iterator> iters =
 mismatch(s1.begin(), s1.end(), s2.begin());

cout << "first mismatch = " << *(iters.first) << '\n'; // 'e'
cout << "second mismatch = " << *(iters.second) << '\n';// 'f'

You have to ensure that the second range is at least as long as the first. If the second
sequence is shorter than the first, mismatch has no way to know it and will continue
making comparisons to elements past the end of the second sequence, which has
undefined behavior if it extends past the end of the second sequence. Additionally, if
there is no mismatch, the first iterator will be pointing to last1, which may not be
valid (e.g., if you passed in end() as last1).

You may have noticed from the declarations of each of these algorithms that the
types of the iterators for each of the two sequences are different. This means that
the two sequences can be containers of different types, so long as the type of the ele-
ment those iterators refer to have operator< defined for them. For example, you
may want to compare a string to a vector<char>:

string s = "Coke";
vector<char> v;

v.push_back('c');
v.push_back('o');
v.push_back('k');
v.push_back('e');

std::cout << std::lexicographical_compare(s.begin(), s.end(),
 v.begin(), v.end()) << '\n';

This compares each of the characters in the two sequences without regard for the
type of container that holds them.

The C++ standard library provides several different ways to compare sequences. If
none of these suits your needs, look at the source code for them; it will provide a
good example of how you can write your own efficient, generic algorithm.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

264 | Chapter 7: Algorithms

See Also
Recipe 7.1

7.5 Merging Data

Problem
You have two sorted sequences and you need to merge them.

Solution
Use either the merge or inplace_merge function template. merge merges two sequences
and puts the results in a third, and inplace_merge merges two contiguous sequences.
Example 7-5 shows how.

Example 7-5. Merging two sequences

#include <iostream>
#include <string>
#include <list>
#include <vector>
#include <algorithm>
#include <iterator>
#include "utils.h" // For printContainer(): see 7.10

using namespace std;

int main() {

 vector<string> v1, v2, v3;

 v1.push_back("a");
 v1.push_back("c");
 v1.push_back("e");

 v2.push_back("b");
 v2.push_back("d");
 v2.push_back("f");

 v3.reserve(v1.size() + v2.size() + 1);

 // Use a back_inserter from iterator to avoid having to put
 // a bunch of default objects in the container. But this doesn't
 // mean you don't have to use reserve!
 merge(v1.begin(), v1.end(),
 v2.begin(), v2.end(),
 back_inserter<vector<string> >(v3));

 printContainer(v3);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Merging Data | 265

The output of Example 7-5 looks like this:

a
b
c
d
e
f

b
d
e
a
c
f

a
b

 // Now make a mess
 random_shuffle(v3.begin(), v3.end());
 sort(v3.begin(), v3.begin() + v3.size() / 2);
 sort(v3.begin() + v3.size() / 2, v3.end());

 printContainer(v3);

 inplace_merge(v3.begin(), v3.begin() + 3, v3.end());

 printContainer(v3);

 // If you are using two lists, though, use list::merge instead.
 // As a general rule, blah blah...
 list<string> lstStr1, lstStr2;

 lstStr1.push_back("Frank");
 lstStr1.push_back("Rizzo");
 lstStr1.push_back("Bill");
 lstStr1.push_back("Cheetoh");

 lstStr2.push_back("Allie");
 lstStr2.push_back("McBeal");
 lstStr2.push_back("Slick");
 lstStr2.push_back("Willie");

 lstStr1.sort(); // Sort these or merge makes garbage!
 lstStr2.sort();

 lstStr1.merge(lstStr2); // Note that this only works with other
 // lists of the same type

 printContainer(lstStr1);
}

Example 7-5. Merging two sequences (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

266 | Chapter 7: Algorithms

c
d
e
f

Allie
Bill
Cheetoh
Frank
McBeal
Rizzo
Slick
Willie

Discussion
merge merges two sorted sequences and places the result into a third, optionally
using a caller-supplied comparison functor to determine when one element is less
than another—it uses operator< by default. The complexity is linear: the number of
comparisons performed during the merge is the sum of the two sequence lengths
minus one. The types of the elements in each sequence must be comparable with
operator< (or the comparison functor you supply), and they must be convertible to
the type of element in the output sequence via copy constructor or assignment; or
there must be conversion operators defined such that the type of the element in the
output sequence has assignment and copy construction defined for both types.

The declarations for merge look like this:

void merge(In1 first1, In1 last1, In2 first2, In2 last2, Out result)
void merge(In1 first1, In1 last1, In2 first2, In2 last2, Out result,
 BinPred comp)

Using merge is simple enough. Both sequences must be sorted (or the output will be
garbage), and neither is modified by merge. The output iterator where the results are
going to go must have enough room to accommodate the sum of the lengths of each
input sequence. You can do this by explicitly reserving enough storage, or, as I did in
Example 7-5, by using a back_inserter:

merge(v1.begin(), v1.end(),
 v2.begin(), v2.end(),
 back_inserter(v3));

A back_inserter is a class defined in <iterator> that provides a convenient way to
create an output iterator that calls push_back on a sequence every time you assign a
value to it. This way, you don’t have to explicitly size the output sequence. The fol-
lowing call creates a back_inserter for a vector<string> named v3.

back_inserter(v3);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Merging Data | 267

You don’t have to specify the template arguments because a back_inserter is a func-
tion template, not a class template, so the type of the call arguments can be deduced.
An equivalent call with explicit template arguments would look like this:

back_inserter<vector<string> >(v3);

Note, however, that sometimes you ought to explicitly size the output sequence,
especially when the output sequence is a vector. A vector may need to keep resizing
itself if you simply add items to it with push_back, and resizing is an expensive opera-
tion. See Recipe 6.2 for more details.

If there are two equivalent elements in the sequences, the one from the first sequence
will precede the one from the second. Therefore, if you call merge twice with the
input sequences switched, the resulting output sequences may be different (predict-
able and correct, but different).

Merging lists is a good example of a situation where you can use a sequence’s mem-
ber function or a similar standard algorithm. You should prefer a member function
over a standard algorithm that does the same thing, but this doesn’t always work,
and here’s an example of why.

Consider your list of strings from Example 7-5:

lstStr1.sort(); // Sort these or merge makes garbage!
lstStr2.sort();
lstStr1.merge(lstStr2); // This is list::merge

There are two reasons why this is different than calling std::merge. To begin with,
both lists must have the same type of elements. This is because list::merge is
declared like this:

void merge(list<T, Alloc>& lst)
template <typename Compare>
void merge(list<T, Alloc>& lst, Compare comp)

Where T is the same type as in the list class template itself. So you can’t, for exam-
ple, merge a list of null-terminated character arrays into a list of strings.

The other thing that’s different is that list::merge erases the input sequence, while
std::merge leaves the two input sequences untouched. Most likely, list::merge will
have better performance, since in most cases the elements in the list are relinked
instead of copied; but relinking is not guaranteed, so step into the source or experi-
ment to be sure.

You can also merge two contiguous sequences with inplace_merge. inplace_merge is
different from merge because it merges its two sequence arguments, well, in place. In
other words, if you have two sequences that are contiguous (i.e., they are parts of the
same sequence), and they are sorted, and you want the entire sequence sorted, you
can use inplace_merge instead of a sort algorithm. The advantage is that inplace_
merge can run in linear time if there is enough additional memory available. If there
isn’t, it runs in n log n, which is the average complexity of sort anyway.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

268 | Chapter 7: Algorithms

The declaration for inplace_merge is a little different from merge:

void inplace_merge(Bid first, Bid mid, Bid last)
void inplace_merge(Bid first, Bid mid, Bid last, BinPred comp)

inplace_merge requires bidirectional iterators, so you can’t use it interchangeably
with merge, but in most cases either should work. Like merge, it uses operator< by
default to determine elements’ relative order, and comp if you supply it.

7.6 Sorting a Range

Problem
You have a range of elements that you need to sort.

Solution
There are a handful of algorithms you can use for sorting a range. You can do a con-
ventional sort (ascending or descending order) with sort, defined in <algorithm>, or
you can use one of the other sorting functions, such as partial_sort. Have a look at
Example 7-6 to see how.

Example 7-6. Sorting

#include <iostream>
#include <istream>
#include <string>
#include <list>
#include <vector>
#include <algorithm>
#include <iterator>
#include "utils.h" // For printContainer(): see 7.10

using namespace std;

int main() {

 cout << "Enter a series of strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end; // This creates a "marker"
 vector<string> v(start, end);

 // The sort standard algorithm will sort elements in a range. It
 // requires a random-access iterator, so it works for a vector.
 sort(v.begin(), v.end());
 printContainer(v);

 random_shuffle(v.begin(), v.end()); // See 7.2

 string* arr = new string[v.size()];

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sorting a Range | 269

A run of Example 7-6 might look like this:

Enter a series of strings: a z b y c x d w
^Z

a b c d w x y z

w b y c a x z d

a b c d w x y z

a b c d w x y z

Discussion
Sorting is a common thing, and there are two ways you can sort a sequence. You can
keep elements in sorted order by using an associative container, but then you pay
logarithmic time for insertions. Or, you can sort them only as needed, for which you
have several options.

The sort standard algorithm does just what you’d expect: it sorts the elements in a
range in ascending order using operator<. Its declaration looks like this:

void sort(Rnd first, Rnd last);
void sort(Rnd first, Rnd last, BinPred comp);

As with most other algorithms, you can supply your own comparison operator for
sorting if operator< isn’t what you want. Complexity is, in the average case, n log n.
It can be quadratic in the worst case.

If you require that equivalent elements retain their relative order, use stable_sort. It
has the same signature, but guarantees that equivalent elements will not have their
relative order changed. Its complexity is also a little different in that it is n log n in

 // Copy the elements into the array
 copy(v.begin(), v.end(), &arr[0]);

 // Sort works on any kind of range, so long as its arguments
 // behave like random-access iterators.
 sort(&arr[0], &arr[v.size()]);
 printRange(&arr[0], &arr[v.size()]);

 // Create a list with the same elements
 list<string> lst(v.begin(), v.end());

 lst.sort(); // The standalone version of sort won't work; you have
 // to use list::sort. Note, consequently, that you
 // can't sort only parts of a list.

 printContainer(lst);
}

Example 7-6. Sorting (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

270 | Chapter 7: Algorithms

the worst case, as long as there is memory available. If there isn’t enough extra mem-
ory available, it can be at most n (log n)2.

sort doesn’t work for any container, though. It requires random-access iterators,
so if you are using a container that doesn’t provide them, it won’t work. The stan-
dard sequence containers deque, vector, and string/wstring (which are not contain-
ers, but satisfy almost all of the sequence container requirements), all provide
random access iterators. list is the only one that doesn’t. If you need to sort a list,
you can use list::sort. For example, in Example 7-6 you will probably notice that
list::sort takes no arguments:

lst.sort();

This makes it distinct from std::sort, in that you can’t sort only parts of a list. If
you need to sort parts of a sequence, you may be better off using a sequence other
than a list.

The concept of sorting is pretty straightforward, but there are a few variations on the
theme that are implemented in the standard library. The following list describes each
of them:

partial_sort
Takes three random-access iterators: first, middle, and last, and optionally a
comparison functor. It has two postconditions: the elements in the range (first,
middle) are all less than those in the range (middle, last), and the range (first,
middle) is sorted according to operator< or your comparison functor. In other
words, it sorts until the first n elements are sorted.

partial_sort_copy
Does the same thing as partial_sort, but places the results in an output range. It
takes the first n elements from the source range and copies them into the desti-
nation range in sorted order. If the destination range (n) is shorter than the
source range (m), only n items are copied into the destination range.

nth_element
Takes three random-access iterator arguments: first, nth, and last, and an
optional comparison functor It puts the element referred to by nth at the index
where it would be if the entire range were sorted. Consequently, all elements in
the range (first, nth) are less than the element at the nth position (those in (nth,
last) are not sorted, but are all greater than the ones preceding nth). You would
use this if you only want one or a few elements sorted in a range, but you don’t
want to pay for sorting the entire range if you don’t have to.

You can also partition the elements in a range according to your own criterion (func-
tor), and that is the subject of Recipe 7.7.

See Also
Recipe 7.7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Partitioning a Range | 271

7.7 Partitioning a Range

Problem
You have a range of elements that you need to partition in some well-defined way.
For example, you may want all elements less than a particular value moved to the
front of the range.

Solution
Use the partition standard algorithm with a predicate functor to move the elements
around however you like. See Example 7-7.

The output for Example 7-7 would look like the following:

Enter a series of strings: a d f j k l
^Z

a d f j k l
*p = j

Example 7-7. Partitioning a range

#include <iostream>
#include <istream>
#include <string>
#include <vector>
#include <algorithm>
#include <functional>
#include <iterator>
#include "utils.h" // For printContainer(): see Recipe 7.10

using namespace std;

int main() {

 cout << "Enter a series of strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end; // This creates a "marker"
 vector<string> v(start, end);

 // Rearrange the elements in v so that those that are less
 // than "foo" occur before the rest.
 vector<string>::iterator p =
 partition(v.begin(), v.end(),
 bind2nd(less<string>(), "foo"));
 printContainer(v);

 cout << "*p = " << *p << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

272 | Chapter 7: Algorithms

After the partition, the iterator p refers to the first element for which less(*p,
"foo") is not true.

Discussion
partition takes the beginning and end of a range and a predicate, and moves all ele-
ments for which the predicate is true to the beginning of the range. It returns an
iterator to the first element where the predicate is not true, or the end of the range
if all elements satisfy the predicate. Its declaration looks like this:

Bi partition(Bi first, Bi last, Pred pred);

pred is a functor that takes one argument and returns true or false. There is no
default predicate; you have to supply one that makes sense for what you are trying
to partition. You can write your own predicate, or use one from the standard
library. For example, from Example 7-7, you can see that I used less and bind2nd to
create a functor for me:

vector<string>::iterator p =
 partition(v.begin(), v.end(),
 bind2nd(less<string>(), "foo"));

What this does is move all elements less than "foo" before everything that is not.
bind2nd is not required here, but it is a convenient way to create automatically a
functor that takes one argument and returns the result of less<string>(*i, "foo")
for each element i in the sequence. You can also use stable_partition if you want
equivalent elements to retain their relative order.

partition, and other algorithms that change the order of the elements
in a range, do not work with the standard associative containers set,
multiset, map, and multimap. This is because associative containers
keep their elements in a well-defined order and only the containers
themselves are allowed to move or remove elements. You can use
partition with any range for which you can obtain at least bidirec-
tional iterators, which includes all of the standard sequence contain-
ers deque, vector, and list.

See Also
Recipe 7.9

7.8 Performing Set Operations on Sequences

Problem
You have sequences that you want to rearrange using set operations like union,
difference, or intersection.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Set Operations on Sequences | 273

Solution
Use the standard library functions built for exactly this purpose: set_union, set_dif-
ference, and set_intersection. Each of these performs its respective set operation
and places the results in an output range. See how to do this in Example 7-8.

Example 7-8. Using set operations

#include <iostream>
#include <algorithm>
#include <string>
#include <set>
#include <iterator>
#include "utils.h" // For printContainer(): see 7.10

using namespace std;

int main() {

 cout << "Enter some strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end;
 set<string> s1(start, end);

 cin.clear();

 cout << "Enter some more strings: ";
 set<string> s2(++start, end);

 set<string> setUnion;
 set<string> setInter;
 set<string> setDiff;

 set_union(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 inserter(setUnion, setUnion.begin()));

 set_difference(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 inserter(setDiff, setDiff.begin()));

 set_intersection(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 inserter(setInter, setInter.begin()));

 cout << "Union:\n";
 printContainer(setUnion);
 cout << "Difference:\n";
 printContainer(setDiff);
 cout << "Intersection:\n";
 printContainer(setInter);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

274 | Chapter 7: Algorithms

The output to this program looks like this (printContainer just prints the contents of
a container):

Enter some strings: a b c d
^Z
Enter some more strings: d e f g
^Z
Union: a b c d e f g
Difference: a b c
Intersection: d

Discussion
The set operations in the standard library all look and work pretty much the same.
Each takes two ranges, performs its respective operation on them, and places the
results in an output iterator. You have to make sure there is enough room in the out-
put sequence, or use an inserter or a back_inserter (see the discussion in Recipe 7.5
to see how to use a back_inserter).

The declaration for set_union looks like this:

Out set_union(In first1, In last1, In first2, In last2, Out result)

The declarations for set_difference, set_intersection, and set_symmetric_difference
all look the same.

To use these functions, do as I did in Example 7-8. To find the intersection of two
sets, for example, you might call set_intersection like this:

set_intersection(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 inserter(setInter, setInter.begin()));

The last argument to set_intersection needs further explanation. inserter is a func-
tion template defined in <iterator> that takes a container and an iterator and
returns an output iterator that calls insert on its first argument when values are
assigned to it. If you use it on a sequence container, it inserts values before the
iterator you pass in as its last argument. If you use it on an associative container as I
did in the previous code snippet, this iterator is ignored and elements are inserted
where they belong according to the container’s sort criteria.

sets are a convenient example for my purposes, but you can call the set operations
on any sequence, not just sets. For example, you may have lists that you want to do
some set operations on:

list<string> lst1, lst2, lst3;

// Fill them with data

lst1.sort();// Elements must be sorted
lst2.sort();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Set Operations on Sequences | 275

set_symmetric_difference(lst1.begin(), lst1.end(),
 lst2.begin(), lst2.end(),
 back_inserter(lst3));

However, since lists are not stored in sorted order, you have to sort them first or the
results of the set operations are invalid. Notice also that I used a back_inserter in
this example instead of an inserter. back_inserter works similarly to inserter,
except that it uses push_back to add elements to the container you give it. You don’t
need to do it this way; for example, you could resize the output container so that it’s
always big enough:

lst3.resize(lst1.size() + lst2.size());

set_symmetric_difference(lst1.begin(), lst1.end(),
 lst2.begin(), lst2.end(),

lst3.begin());

If the output sequence is large enough, you can just pass in an iterator pointing to
the first element in the sequence with begin.

In case you don’t know what set_symmetric_difference is, I’ll tell you. It’s the union
of the differences of two sets in opposite order. That is, if a and b are sets, the sym-
metric difference is a – b b – a. Another way to put it is to say that the symmetric
difference is the set of all elements that appear in one set but not the other.

There’s one more thing you should know about the set operations. Since sequences
don’t have to be unique, you can have a “set” with duplicate values. Strictly speak-
ing, of course, mathematical sets can’t contain duplicates, so this may not be intui-
tive. Consider what the output of Example 7-8 might look like if I used lists instead
of sets (you can enter duplicate values when running Example 7-8, but they aren’t
added to the sets because set::insert fails when the element being inserted already
exists in the set):

Enter some strings: a a a b c c
^Z
Enter some more strings: a a b b c
^Z
Union: a a a b b c c
Difference: a c
Intersection: a a b c

What’s happening here is that the set operations iterate through both sequences and
compare corresponding values to determine what to put in the output sequence.

Finally, the set operations in their default form (using operator< to compare ele-
ments) probably don’t work like you want them to if your sets contain pointers. To
get around this, write a functor that compares pointers’ objects, as in Recipe 7.4.

See Also
Recipe 7.4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

276 | Chapter 7: Algorithms

7.9 Transforming Elements in a Sequence

Problem
You have a sequence of elements and you have to do something to each one, either
in place or as it is copied to another sequence.

Solution
Use the transform or for_each standard algorithms. Both are simple, but allow you to
do almost anything you want to the elements in your sequence. See Example 7-9 for
an illustration.

Example 7-9. Transforming data

#include <iostream>
#include <istream>
#include <string>
#include <list>
#include <algorithm>
#include <iterator>
#include <cctype>
#include "utils.h" // For printContainer(): see 7.10

using namespace std;

// Convert a string to upper case
string strToUpper(const string& s) {
 string tmp;
 for (string::const_iterator p = s.begin(); p != s.end(); ++p)
 tmp += toupper(*p);
 return(tmp);
}

string strAppend(const string& s1, const string& s2) {
 return(s1 + s2);
}

int main() {

 cout << "Enter a series of strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end;
 list<string> lst(start, end), out;

 // Use transform with an unary function...
 transform(lst.begin(), lst.end(),
 back_inserter(out),
 strToUpper);

 printContainer(out);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transforming Elements in a Sequence | 277

Discussion
The obvious function for transforming data is transform. It has two forms. The first
form takes a sequence, an output iterator, and an unary functor. It applies the func-
tor to each element in the sequence and assigns the return value to the next element
pointed to by the output iterator. The output iterator can be another sequence or
the beginning of the originating sequence. In this respect, transform handles both
copy-style or in-place transformations.

Here’s what the declarations for transform look like:

Out transform(In first, In last, Out result, UnFunc f);
Out transform(In first1, In last1, In first2, In last2,
 Out result, BinFunc f);

Both versions return an iterator that refers to one past the end of the result sequence.

Using either version is straightforward. To copy strings from one sequence to
another, but in uppercase, do as I did in Example 7-9:

std::transform(lst.begin(), lst.end(),
 std::back_inserter(out), strToUpper);

If you want to modify the originating sequence, just pass in the beginning of the
sequence as the result iterator:

std::transform(lst.begin(), lst.end(),
 lst.begin(), strToUpper);

Using two sequences and a binary operation works the same way, and you can use
either one of the input sequences as the output sequence.

If you want to transform elements in place, you might want to avoid the overhead of
assigning each element to the return value of some function. Or if the functor you
want to use modifies its source object, you can use for_each instead:

void strToUpperInPlace(string& s) {
 for (string::iterator p = s.begin(); p != s.end(); ++p)
 *p = std::toupper(*p);

 cin.clear();

 cout << "Enter another series of strings: ";
 list<string> lst2(++start, end);
 out.clear();

 // ...or a binary function and another input sequence.
 transform(lst.begin(), lst.end(), lst2.begin(),
 back_inserter(out),
 strAppend);

 printContainer(out);
}

Example 7-9. Transforming data (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

278 | Chapter 7: Algorithms

}
// ...
std::for_each(lst.begin(), lst.end(), strToUpperInPlace);

If what you want to do is change the sequence itself and not necessarily change each
of its elements, see Recipe 7.6, where I describe many of the standard algorithms for
rearranging the elements in a sequence.

See Also
Recipes 7.1 and 7.6

Discussion

7.10 Writing Your Own Algorithm

Problem
You need to execute an algorithm on a range and none of the standard algorithms
meets your requirements.

Solution
Write your algorithm as a function template and advertise your iterator require-
ments with the names of your template parameters. See Example 7-10 for a variation
on the copy standard algorithm.

Example 7-10. Writing your own algorithm

#include <iostream>
#include <istream>
#include <iterator>
#include <string>
#include <functional>
#include <vector>
#include <list>
#include "utils.h" // For printContainer(): see 7.11

using namespace std;

template<typename In, typename Out, typename UnPred>
Out copyIf(In first, In last, Out result, UnPred pred) {
 for (;first != last; ++first)
 if (pred(*first))
 *result++ = *first;
 return(result);
}

int main() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Your Own Algorithm | 279

A sample run of Example 7-10 will look something like this:

Enter a series of strings: apple banana danish eclaire
^Z

apple banana

You can see that it only copies values less than “cookie” into the destination range.

Discussion
The standard library contains the copy function template, which copies elements
from one range to another, but there is no standard version that takes a predicate
and conditionally copies each element (i.e., a copy_if algorithm), so that’s what I
have implemented in Example 7-10. The behavior is simple enough: given a source
range and the beginning of the destination range, copy elements to the destination
range for which my unary predicate functor returns true.

The algorithm is simple, but there’s more going on with the implementation than
meets the eye. Starting with the declaration, you can see that there are three tem-
plate parameters:

template<typename In, typename Out, typename UnPred>
Out copyIf(In first, In last, Out result, UnPred pred) {

The first template parameter, In, is the type of the input iterator. Since this is the
input range, all copyIf needs to be able to do is extract the dereferenced value from
the iterator and increment the iterator to the next element. This describes the input
iterator category (iterator categories are described in Recipe 7.1), so that’s the kind
of iterator we will advertise we need by naming the template parameter In. There is
no standard convention (In and Out are my conventions, which I described in the first
recipe of this chapter), but it’s easy enough to get your point across with similar nam-
ing conventions: InIter, Input_T, or even InputIterator. The second template param-
eter, Out, is the type of the iterator that refers to the range where elements will be
copied to. copyIf needs to be able to write to the dereferenced value of the output
iterator and increment the iterator, which is the description of an output iterator.

 cout << "Enter a series of strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end; // This creates a "marker"
 vector<string> v(start, end);

 list<string> lst;

 copyIf(v.begin(), v.end(), back_inserter<list<string> >(lst),
 bind2nd(less<string>(), "cookie"));

 printContainer(lst);
}

Example 7-10. Writing your own algorithm (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

280 | Chapter 7: Algorithms

By advertising your iterator requirements with the template parameter names, you
make the calling conventions of the algorithm self-documenting. But why use two dif-
ferent iterator categories?

There are at least a couple of reasons why I used two different iterator categories in
copyIf. First, the operations on each range are slightly different, and since I will
never need to go backward in the input range, or assign to it, all I need is an input
iterator. Similarly, I will never need to read from the output range, so all I need
there is an output iterator. There are requirements for each of the iterators that do
not apply to the other, so it would make no sense to (for example) have one bidirec-
tional iterator type and use that for both ranges. Second, using two different
iterator types lets the caller read from one kind of range and write to another. In
Example 7-10, I read from a vector and wrote to a list:

vector<string> v(start, end);
list<string> lst;

copyIf(v.begin(), v.end(), back_inserter<list<string> >(lst),
 bind2nd(less<string>(), "cookie"));

If you try doing this using a single iterator type on your algorithm, it won’t compile.

In Example 7-10, I passed a back_inserter as the beginning of the output range
instead of, say, the iterator returned from lst.begin. I did this because lst has no
elements in it, and in this algorithm (as in the copy standard algorithm), the destina-
tion range has to be big enough to hold all of the elements that will be copied to it.
Otherwise, incrementing the output iterator result inside copyIf will have unde-
fined behavior. A back inserter returns an output iterator that calls push_back on its
container whenever you increment the iterator. This increases the size of lst by one
each time the output iterator result is incremented. I describe the back_inserter
class template in more detail in Recipe 7.5.

When writing your own algorithm for working with ranges (i.e., the standard con-
tainers), you should work with iterator arguments and not container arguments.
You may be tempted, for example, to declare copyIf to take two container argu-
ments instead of a source range and destination output iterator, but this is a less
general solution than using ranges. You can’t work with only a subset of elements in
a container if you take container arguments, for one. Furthermore, in the body of
copyIf, you would depend on the containers’ begin and end member functions to get
the range you were after, and the return type would depend on the type of container
used as the output range. This means that using nonstandard ranges will not work
with copyIf, such as built-in arrays or your own custom containers. These, and other
reasons, are why the standard algorithms all operate on ranges.

Finally, if you do write your own algorithm, double-check the standard algorithms
for what you need. They may seem like very simple algorithms at first glance, but
their apparent simplicity is because of their generality, and nine times out of ten they

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing a Range to a Stream | 281

can be extended in some fashion to meet your needs. Reusing the standard algo-
rithms is something you should strive for, since it goes along way in ensuring porta-
bility and efficiency.

See Also
Recipe 7.5

7.11 Printing a Range to a Stream

Problem
You have a range of elements that you want to print to a stream, most likely cout for
debugging.

Solution
Write a function template that takes a range or a container, iterates through each
element, and uses the copy algorithm and an ostream_iterator to write each element
to a stream. If you want more control over formatting, write your own simple
algorithm that iterates through a range and prints each element to the stream. (See
Example 7-11.)

Example 7-11. Printing a range to a stream

#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

int main() {

 // An input iterator is the opposite of an output iterator: it
 // reads elements from a stream as if it were a container.
 cout << "Enter a series of strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end;
 vector<string> v(start, end);

 // Treat the output stream as a container by using an
 // output_iterator. It constructs an output iterator where writing
 // to each element is equivalent to writing it to the stream.
 copy(v.begin(), v.end(), ostream_iterator<string>(cout, ", "));
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

282 | Chapter 7: Algorithms

The output for Example 7-11 might look like this:

Enter a series of strings: z x y a b c
^Z
z, x, y, a, b, c,

Discussion
A stream iterator is an iterator that is based on a stream instead of a range of ele-
ments in some container, and stream iterators allow you to treat stream input as an
input iterator (read from the dereferenced value and increment the iterator) or an
output iterator (just like an input iterator, but you write to its dereferenced value
instead of read from it). This makes for concise reading of values (especially strings)
from a stream, which is what I have done in a number of other examples in this
chapter, and writing values to a stream, which is what I have done in Example 7-11. I
know this recipe is about printing a range to a stream, but allow me to stray from the
path for a moment to explain input stream iterators since I use them in so many
examples in this chapter.

There are three key parts to the istream_iterator in Example 7-11. The first part is
creating the istream_iterator that refers to the start of the stream input. I do it like
this:

istream_iterator<string> start(cin);

This creates an iterator named start that refers to the first element in the input
sequence, just as vec.begin (vec is a vector) returns an iterator that refers to the first
element in a vector. The template argument string tells the istream_iterator that the
elements in this sequence are strings. The constructor argument cin is the input
stream to read from. This is an abstraction, though, because there is no first element
at this point because nothing has come in from cin. That will happen in a moment.

The second part to the input stream iterator is the end marker, which I created like
this:

istream_iterator<string> end;

The standard containers use the special value of one past the end to indicate the
point at which any algorithm using the range should stop. Since an input stream
iterator has no actual last element in memory, it uses a constructor with no argu-
ments to create a logical endpoint value that represents the point at which any algo-
rithm should stop iterating.

The last part of the istream_iterator technique is how I use it to extract values. A
convenient way to pull all values entered on a stream into a container is to use the
container’s range constructor. For example, if you construct a vector with two
iterators, the constructor will copy each element out of the range the iterators refer
to into itself. If I pass in the start and end iterators I just created, it looks like this:

vector<string> v(start, end);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Printing a Range to a Stream | 283

This is where the values are actually read from the stream. When v is constructed, it
starts at start and iterates forward until it reaches end. Each time v reads from
*start, it is equivalent to invoking something like this on cin:

cin >> v[i]; // v is a vector<string>

In other words, the next value is pulled from cin, is converted to a string, and is
inserted into the vector.

When you are using cin as the input stream, it is up to your platform to
decide what constitutes an end-of-file marker where the stream should
end. On Windows, I have to press Enter, Ctrl-Z, Enter to end the
stream input. Experiment on your platform to see what you have to do,
but chances are it’s a combination of these same key combinations.

Output stream iterators behave similarly to input stream iterators. In Example 7-11,
I copy from my vector of values to cout by creating an ostream_iterator that refers to
cout, like this:

copy(v.begin(), v.end(), ostream_iterator<string>(cout, ", "));

The template argument to ostream_iterator tells it that the elements I will be assign-
ing to it are strings. The first constructor argument to ostream_iterator is the stream I
will write to (which can be any output stream, including ofstreams and ostringstreams)
and the second is the delimiter I want to use. This provides a handy way to dump a
range of values to the standard output, which I do often when debugging.

If you want more control over the appearance of the output—such as wrapping the
sequence with brackets or curly braces, or avoiding the last delimiter on the end of
the sequence—doing so requires only a few more lines of code. Example 7-12 shows
the body of printContainer and printRange, the first of which I have been using
throughout examples in this chapter.

Example 7-12. Writing your own printing function

#include <iostream>
#include <string>
#include <algorithm>
#include <iterator>
#include <vector>

using namespace std;

template<typename C>
void printContainer(const C& c, char delim = ',', ostream& out = cout) {
 printRange(c.begin(), c.end(), delim, out);
}

template<typename Fwd>
void printRange(Fwd first, Fwd last, char delim = ',', ostream& out = cout) {
 out << "{";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

284 | Chapter 7: Algorithms

The function printRange is the more general approach, since it operates on a range
(this is explained in more detail in Recipe 7.10), but printContainer is more conve-
nient for printing an entire container. There are many more ways to do this. A cou-
ple that come to mind are defining a version of operator<< that operates on an
output stream and a container and using the for_each standard algorithm with a cus-
tom functor to write out each element in a stream.

 while (first != last) {
 out << *first;
 if (++first != last)
 out << delim << ' ';
 }
 out << "}" << endl;
}

int main() {

 cout << "Enter a series of strings: ";
 istream_iterator<string> start(cin);
 istream_iterator<string> end;
 vector<string> v(start, end);

 printContainer(v);
 printRange(v.begin(), v.end(), ';', cout);
}

Example 7-12. Writing your own printing function (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

285

Chapter 8 CHAPTER 8

Classes

8.0 Introduction
This chapter contains solutions to common problems related to working with C++
classes. The recipes are mostly independent, but they are organized into two parts,
which each make up about half the chapter. The first half of the chapter contains
solutions to common problems you may experience when constructing objects of a
class, such as using a function to create objects (which is often called a Factory pat-
tern) or using constructors and destructors to manage resources. The second half
contains solutions to problems post-construction, such as determining an object’s
type at runtime, and miscellaneous implementation techniques, such as how to cre-
ate an interface with an abstract base class.

Classes are, of course, the central feature of C++ that supports object-oriented pro-
gramming, and there are lots of different things you can do with classes. This chap-
ter does not contain recipes that explain the basics of classes: virtual functions
(polymorphism), inheritance, and encapsulation. I assume you are already familiar
with these general object-oriented design principles, whether it’s with C++ or
another language such as Java or Smalltalk. Rather, the purpose of this chapter is to
provide recipes for some of the mechanical difficulties you may run into when imple-
menting object-oriented designs with C++.

Object-oriented design and the related design patterns is a huge subject, and the lit-
erature on the subject is vast and comprehensive. I mention only a few design pat-
terns by name in this chapter, and they are the ones for which C++ facilities provide
an elegant or perhaps not-so-obvious solution. If you are unfamiliar with the con-
cept of design patterns, I recommend you read Design Patterns by Gamma, et al
(Addison Wesley), because it is a useful thing to know in software engineering; how-
ever, it is not a prerequisite for this chapter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

286 | Chapter 8: Classes

8.1 Initializing Class Member Variables

Problem
You need to initialize member variables that are native types, pointers, or references.

Solution
Use an initializer list to set the initial values for member variables. Example 8-1
shows how you can do this for native types, pointers, and references.

Discussion
You should always initialize native variables, especially if they are class member vari-
ables. Class variables, on the other hand, should have a constructor defined that will
initialize its state properly, so you do not always have to initialize them. Leaving a
native variable in an uninitialized state, where it contains garbage, is asking for trou-
ble. But there are a few different ways to do this in C++, which is what this recipe
discusses.

The simplest things to initialize are native types. ints, chars, pointers, and so on are
easy to deal with. Consider a simple class and its default constructor:

class Foo {
public:
 Foo() : counter_(0), str_(NULL) {}
 Foo(int c, string* p) :
 counter_(c), str_(p) {}
private:

Example 8-1. Initializing class members

#include <string>

using namespace std;

class Foo {
public:
 Foo() : counter_(0), str_(NULL) {}
 Foo(int c, string* p) :
 counter_(c), str_(p) {}
private:
 int counter_;
 string* str_;
};

int main() {

 string s = "bar";
 Foo(2, &s);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initializing Class Member Variables | 287

 int counter_;
 string* str_;
};

Use an initializer list in the constructor to initialize member variables, and avoid
doing so in the body of the constructor. This leaves the body of the constructor for
any logic that must occur at construction, and makes the member variables’ initial-
ization easy to locate. A minor benefit over just assigning member variables in the
constructor body, to be sure, but the benefits of using an initializer list becomes
more apparent when you have class or reference member variables, or when you are
trying to deal with exceptions effectively.

Members are initialized in the order they are declared in the class dec-
laration, not in the order they are declared in the initializer list.

Consider a class member variable using the same Foo class from Example 8-1:

class Foo {
public:
 Foo() : counter_(0), str_(NULL), cls_(0) {}
 Foo(int c, string* p) :
 counter_(c), str_(p), cls_(0) {}
private:
 int counter_;
 string* str_;
 SomeClass cls_;
};

In Foo’s default constructor, you don’t need to initialize cls_ because its default con-
structor will be called. But if you need to construct Foo with an argument, you should
add the argument to the initializer list as I did earlier instead of assigning it in the
body of the constructor. By taking the initializer list route, you avoid an extra step in
the construction of cls_ (because if you assign cls_ a value in the constructor body,
cls_ is constructed by its default constructor first, then assigned using the assign-
ment operator, versus being constructed once), but you also gain automatic excep-
tion handling. If an object is constructed in the initializer list, and that object throws
an exception during construction, the runtime environment destroys all other previ-
ously constructed objects in the list, and the exception continues to the caller of the
constructor. On the other hand, if you assign the argument in the body of the con-
structor, then you have to handle the exception with a try/catch block.

References are more complicated: initialization of reference variables (and const
members) actually requires use of the initializer list. According to the standard, a ref-
erence must always refer to a single variable, and can never be changed to refer to
another variable. At no time can a reference variable not refer to an object. There-
fore, for it to be assigned anything meaningful when a class member variable is a ref-
erence, it must happen at initialization, i.e., in the initializer list.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

288 | Chapter 8: Classes

The following is not allowed in C++:

int& x;

That is, you cannot declare a reference variable without initializing it. Instead, you
must initialize it to refer to some object. For nonmember variables, initialization
looks like this:

int a;
int& x = a;

Well, that’s all fine, but this creates a problem for classes. Suppose you want to have
a member variable in a class that is a reference, like so:

class HasARef {
public:
 int& ref;
};

Most compilers will accept this until you try to create an instance of the class, like
this:

HasARef me;

At this point, you’ll get an error. Here’s the error you get from gcc:

error: structure `me' with uninitialized reference members

Instead, use the initializer list:

class HasARef {
public:
 int &ref;
 HasARef(int &aref) : ref(aref) {}
};

Then, when you’re ready to create an instance of the class, you provide a variable
that the ref variable will refer to, like so:

int var;
HasARef me(var);

That’s how you initialize member variables safely and effectively. In general, use the
initializer list when possible and avoid initializing member variables in the body of
the constructor unless you have to. Even if you do have to do something to the vari-
able in the body of the constructor, you can at least use the initializer list to set it to a
valid initial value, and then update it in the body of the constructor.

See Also
Recipe 9.2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using a Function to Create Objects (a.k.a. Factory Pattern) | 289

8.2 Using a Function to Create Objects
(a.k.a. Factory Pattern)

Problem
Instead of creating a heap object with new, you need a function (member or standal-
one) to do the creation for you so that the type of the object being created is decided
dynamically. This sort of behavior is what the Abstract Factory design pattern
achieves.

Solution
You have a couple of choices here. You can:

• Have the function create an instance of the object on the heap, and return a
pointer to the object (or update a pointer that was passed in with the new
object’s address)

• Have the function create and return a temporary object

Example 8-2 shows how to do both of these. The Session class in the example could
be any class that you don’t want application code to create directly (i.e., with new),
but rather you want creation managed by some other class; in this example, the man-
aging class is SessionFactory.

Example 8-2. Functions that create objects

#include <iostream>

class Session {};

class SessionFactory {

public:
 Session Create();
 Session* CreatePtr();
 void Create(Session*& p);
 // ...
};

// Return a copy of a stack object
Session SessionFactory::Create() {
 Session s;
 return(s);
}

// Return a pointer to a heap object
Session* SessionFactory::CreatePtr() {
 return(new Session());
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 8: Classes

Discussion
Example 8-2 shows a few different ways to write a function that returns an object.
You may want to do this instead of using new if the object being allocated is coming
from a pool, is tied to hardware, or you want destruction of the objects to be man-
aged by something other than the caller. There are many reasons to use this approach
(which is why, incidentally, there is a design pattern for it); I have given only a few.
Thankfully, implementation of the Factory pattern in C++ is straightforward.

Returning the address of a new heap object or updating a reference to a pointer argu-
ment are the most common ways to do this. Their implementation is shown in
Example 8-2, and it is trivial, so there is no more to explain here. Less common,
however, is returning an entire object from a function, most likely because it brings
some caveats.

Returning a temporary object works by creating the object on the stack within the
body of the function. When the function returns, the compiler copies the data from
the temporary object to another temporary object that is actually returned by the
function. Finally, the object in the calling function is assigned the value of the tempo-
rary object with its assignment operator. What this means is that two objects are
actually created: the object in the factory function, and a temporary object that is
returned from the function, and then its contents are copied to the target object. This
is a lot of extra copying (although the compiler may optimize the temporary object
away), so be aware of what’s going on especially if you’re working with large objects
or frequent calls to this factory member function.

Also, this technique of copying a temporary object only works for objects that can
behave as value objects, meaning that when one is copied the new version is equiva-
lent to the original. For most objects this makes sense, but for others it doesn’t. For
example, consider creating an object of a class that listens on a network port. When

// Update the caller's pointer with the address
// of a new object
void SessionFactory::Create(Session*& p) {
 p = new Session();
}

static SessionFactory f; // The one factory object

int main() {
 Session* p1;
 Session* p2 = new Session();

 *p2 = f.Create(); // Just assign the object returned from Create
 p1 = f.CreatePtr(); // or return a pointer to a heap object
 f.Create(p1); // or update the pointer with the new address
}

Example 8-2. Functions that create objects (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Constructors and Destructors to Manage Resources (or RAII) | 291

you instantiate the object, it may begin listening on the target port, so you don’t
want to copy it to a new object because then you will have two objects attempting to
listen on the same port. In this case, you would want to return the address of a heap
object.

You should also take a look at Recipe 8.12 if you are writing a function or member
function to create objects. With function templates, you can write a single function
that returns a new object of any type. For example:

template<typename T>
T* createObject() {
 return(new T());
}

MyClass* p1 = createObject();
MyOtherClass* p2 = createObject();
// ...

This approach is handy if you want a single factory function to be able to create
objects of any number of classes (or a group of related classes) in the same way, with-
out having to write a redundant factory function multiple times.

See Also
Recipe 8.12

8.3 Using Constructors and Destructors to Manage
Resources (or RAII)

Problem
For a class that represents some resource, you want to use its constructor to acquire
it and the destructor to release it. This technique is often referred to as resource
acquisition is initialization (RAII).

Solution
Allocate or acquire the resource in the constructor, and free or release the resource in
the destructor. This reduces the amount of code a user of the class must write to deal
with exceptions. See Example 8-3 for a simple illustration of this technique.

Example 8-3. Using constructors and destructors

#include <iostream>
#include <string>

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 8: Classes

Discussion
The guarantees made by constructors and destructors offer a nice way to let the com-
piler clean up after you. Typically, you initialize an object and allocate any resources
it uses in the constructor, and clean them up in the destructor. This is normal. But
programmers have a tendency to use the create-open-use-close sequence of events,
where the user of the class is required to do explicit “opening” and “closing” of
resources. A file class is a good example.

The usual argument for RAII goes something like this. I could easily have designed
my HttpRequest class in Example 8-3 to make the user do a little more work. For
example:

class HttpRequest {
public:
 HttpRequest ();
 void open(const std::string& hostname);
 void send(std::string soapMsg);
 void close();
 ~HttpRequest ();
private:
 Socket* sock_;
};

class Socket {
public:
 Socket(const string& hostname) {}
};

class HttpRequest {
public:
 HttpRequest (const string& hostname) :
 sock_(new Socket(hostname)) {}
 void send(string soapMsg) {sock_ << soapMsg;}
 ~HttpRequest () {delete sock_;}
private:
 Socket* sock_;
};

void sendMyData(string soapMsg, string host) {
 HttpRequest req(host);
 req.send(soapMsg);
 // Nothing to do here, because when req goes out of scope
 // everything is cleaned up.
}

int main() {
 string s = "xml";
 sendMyData(s, "www.oreilly.com");
}

Example 8-3. Using constructors and destructors (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Constructors and Destructors to Manage Resources (or RAII) | 293

With this approach, a responsible version of sendMyData might look like this:

void sendMyData(std::string soapMsg, std::string host) {
 HttpRequest req;

 try {
 req.open();
 req.send(soapMsg);
 req.close();
 }
 catch (std::exception& e) {
 req.close();
 // Do something useful...
 }
}

This is more work without any benefit. This sort of design forces the user to write
more code and to deal with exceptions by cleaning up your class (assuming you
don’t call close in your destructor).

The RAII approach has wide applicability, especially when you want a guarantee that
something will be undone if an exception is thrown without having to put try/catch
code all over the place. Consider a desktop application that wants to display a mes-
sage on the status bar or title bar while some work is being done:

void MyWindow::thisTakesALongTime() {
 StatusBarMessage("Copying files...");
 // ...
}

All the StatusBarMessage class has to do is update the appropriate window with sta-
tus information when it is constructed, and reset it back to the empty string (or
whatever message was there previously) when it is destroyed. Here’s the key point: if
the function returns or an exception is thrown StatusBarMessage still gets its work
done. The compiler guarantees that the destructor will be called for a stack variable
whose scope has exited. Without this approach, the author of thisTakesALongTime
needs to carefully account for every control path so the wrong message doesn’t
remain on the window if the operation fails, the user cancels it, etc. Once again, this
results in less code and fewer errors for the author of the calling function.

RAII is no panacea, but if you have not used it before, chances are you can find a
number of places where it is useful. Another good example is locking. If you are
using RAII to manage locks on resources such as threads, pooled objects, network
connections, etc., you will find that this approach allows for stronger exception-
safety and less code. In fact, this is how the Boost multithreading library implements
locks to make for clean programming on the part of the user. See Chapter 12 for a
discussion of the Boost Threads library.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 8: Classes

8.4 Automatically Adding New Class Instances
to a Container

Problem
You need to store all instances of a class in a single container without requiring the
users of the class to do anything special.

Solution
Include in the class a static member that is a container, such as a list, defined in
<list>. Add an object’s address to the container at construction and remove it upon
destruction. Example 8-4 shows how.

Example 8-4. Keeping track of objects

#include <iostream>
#include <list>
#include <algorithm>

using namespace std;

class MyClass {
protected:
 int value_;
public:
 static list<MyClass*> instances_;
 MyClass(int val);
 ~MyClass();
 static void showList();
};

list<MyClass*> MyClass::instances_;

MyClass::MyClass(int val) {
 instances_.push_back(this);
 value_ = val;
}

MyClass::~MyClass() {
 list<MyClass*>::iterator p =
 find(instances_.begin(), instances_.end(), this);
 if (p != instances_.end())
 instances_.erase(p);
}

void MyClass::showList() {
 for (list<MyClass*>::iterator p = instances_.begin();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Automatically Adding New Class Instances to a Container | 295

Example 8-4 will create output like this:

1
10
100

Discussion
The approach in Example 8-4 is straightforward: use a static list to hold pointers
to objects. When an object is created, add its address to the list; when it’s
destroyed, remove it. There are a couple of things to remember.

As with any static data member, you have to declare it in the class header and
define it in an implementation file. Example 8-4 is all in one file, so it doesn’t apply
here, but remember that you should define the static variable in an implementation
file, not a header. See Recipe 8.5 for an explanation of why.

You don’t have to use a static member. You can, of course, use a global object, but
then the design is not self-contained. Furthermore, you have to allocate the global
object somewhere else, pass it in to MyClass at construction, and, in general, do a bit
more bookkeeping.

Be aware that the shared use of a global container like Example 8-4 will not work if
multiple threads are instantiating objects of MyClass. You need to serialize access to
the shared object through mutexes; see Chapter 12 for recipes relating to this and
other multithreading techniques.

If you want to keep track of all instances of a class, you may also want to use a Fac-
tory pattern. Essentially, this approach would mean that clients call a function to get
a new object instead of using the new operator. See Recipe 8.2 for more details on
how to do this.

See Also
Recipe 8.2

 p != instances_.end(); ++p)
 cout << (*p)->value_ << endl;
}

int main() {
 MyClass a(1);
 MyClass b(10);
 MyClass c(100);
 MyClass::showList();
}

Example 8-4. Keeping track of objects (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 8: Classes

8.5 Ensuring a Single Copy of a Member Variable

Problem
You have a member variable that you want only one instance of, no matter how
many instances of the class are created. This kind of member variable is generally
called a static member or a class variable, as opposed to an instance variable, which
is one that is instantiated with every object of a class.

Solution
Declare the member variable with the static keyword, then initialize it in a separate
source file (not the header file where you declared it) as in Example 8-5.

Example 8-5. Using a static member variable

// Static.h
class OneStatic {
public:
 int getCount() {return count;}
 OneStatic();
protected:
 static int count;
};

// Static.cpp
#include "Static.h"

int OneStatic::count = 0;

OneStatic::OneStatic() {
 count++;
}

// StaticMain.cpp
#include <iostream>
#include "static.h"

using namespace std;

int main() {
 OneStatic a;
 OneStatic b;
 OneStatic c;

 cout << a.getCount() << endl;
 cout << b.getCount() << endl;
 cout << c.getCount() << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining an Object’s Type at Runtime | 297

Discussion
static is C++’s way of allowing only one copy of something. If you declare a mem-
ber variable static, only one of it will ever be constructed, regardless of the number
of objects of that class that are instantiated. Similarly, if you declare a variable static
in a function, it is constructed at most once and retains its value from one function
call to another. With member variables, you have to do a little extra work to make
sure member variables are allocated properly, though. This is why there are three
files in Example 8-5.

First, you have to use the static keyword when you declare the variable. This is easy
enough: add this keyword in the class header in the header file Static.h:

protected:
static int count;

Once you have done that, you have to define the variable in a source file somewhere.
This is what allocates storage for it. Do this by fully qualifying the name of the vari-
able and assigning it a value, like this:

int OneStatic::count = 0;

In Example 8-5, I put this definition in the file Static.cpp. This is what you have to
do; you should not put the definition in the header file. If you do, storage will be
allocated in each implementation file that includes the header file, and either you will
get a linker error or, worse, there will be several instances of this member variable in
memory. This is not what you want if you need a static member variable.

In the main file, StaticMain.cpp, you can see what happens. Several instances of the
class OneStatic are created, and the default constructor of OneStatic increments the
static member variable by one each time. As a result, the output from main in
StaticMain.cpp is:

3
3
3

Each call to getCount returns the same integer value, even though each is invoked on
a different instance of the class.

8.6 Determining an Object’s Type at Runtime

Problem
At runtime, you need to interrogate dynamically the type of particular class.

Solution
Use runtime type identification (commonly referred to as RTTI) to query the address
of the object for the type of object it points to. Example 8-6 shows how.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 8: Classes

Discussion
Example 8-6 shows you how to use the operator typeid to determine and compare
the type of an object. typeid takes an expression or a type and returns a reference to
an object of type_info or a subclass of it (which is implementation defined). You can
use what is returned to test for equality or retrieve a string representation of the
type’s name. For example, you can compare the types of two objects like this:

if (typeid(b) == typeid(d)) {

This will return true if the type_info objects returned by both of these are equal. This
is because typeid returns a reference to a static object, so if you call it on two objects
that are the same type, you will get two references to the same thing, which is why
the equality test returns true.

You can also use typeid with the type itself, as in:

if (typeid(d) == typeid(Derived)) {

This allows you to explicitly test for a particular type.

Probably the most common use of typeid is for debugging. To write out the name of
the type, use type_info::name, like this:

std::cout << typeid(d).name() << std::endl;

Example 8-6. Using runtime type identification

#include <iostream>
#include <typeinfo>

using namespace std;

class Base {};
class Derived : public Base {};

int main() {

 Base b, bb;
 Derived d;

 // Use typeid to test type equality
 if (typeid(b) == typeid(d)) { // No
 cout << "b and d are of the same type.\n";
 }
 if (typeid(b) == typeid(bb)) { // Yes
 cout << "b and bb are of the same type.\n";
 }
 if (typeid(d) == typeid(Derived)) { // Yes
 cout << "d is of type Derived.\n";
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Determining if One Object’s Class Is a Subclass of Another | 299

When you are passing objects around of varying types, this can be a useful debug-
ging aid. The null-terminated string returned by name is implementation defined,
but you can expect (but not depend on) the name of the type most of the time. This
works for native types, too.

Do not abuse this technique by basing program logic on type information unless you
absolutely have to. In general, it is considered bad design to have logic that does
something along the lines of:

If obj has a type of X, do something else, if obj has a type of Y, do something else.

This approach is a bad design because the client code now contains superfluous
dependencies on the type of the object being used. It also results in a lot of messy if/
then code that is duplicated everywhere you want particular behavior for an object of
type X or Y. Object-oriented programming and polymorphic behavior exist in large
part so you don’t have to write this kind of logic. If you want type-specific, dynamic
behavior for some family of related classes, then they should all subclass the same
base class and use virtual functions to dynamically invoke potentially different
behavior based on the type.

RTTI adds overhead, so compilers don’t usually enable it by default. Chances are
your compiler has a command-line parameter to turn on RTTI. Also, this isn’t the
only way you can query type information, see Recipe 8.7 for another technique.

See Also
Recipe 8.7

8.7 Determining if One Object’s Class Is a Subclass
of Another

Problem
You have two objects, and you need to know if their respective classes have a base
class/derived class relationship or if they are unrelated.

Solution
Use the dynamic_cast operator to attempt to downcast from one type to another. The
result tells you about the class’s relationships. Example 8-7 presents some code for
doing this.

Example 8-7. Determining class relationships

#include <iostream>
#include <typeinfo>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 8: Classes

Discussion
Use the dynamic_cast operator to query the relationship between two types.
dynamic_cast takes a pointer or reference to a given type and tries to convert it to a
pointer or reference of a derived type, i.e., casting down a class hierarchy. If you
have a Base* that points to a Derived object, dynamic_cast<Base*>(&d) returns a
pointer of type Derived only if d is an object of a type that’s derived from Base. If this
is not possible (because Derived is not a subclass, directly or indirectly, of Base), the
cast fails and NULL is returned if you passed dynamic_cast a pointer to a derived
object. If it is a reference, then the standard exception bad_cast is thrown. Also, the
base class must be publicly inherited and it must be unambiguous. The result tells
you if one class is a descendant of another. Here’s what I did in Example 8-7:

if (dynamic_cast<Base*>(&d)) {

This returns a non-NULL pointer because d is an object of a class that is a descendant
of Base. Use this on any pair of classes to determine their relationship. The only
requirement is that the object argument is a polymorphic type, which means that it
has at least one virtual function. If it does not, it won’t compile. This doesn’t usually
cause much of a headache though, because a class hierarchy without virtual func-
tions is uncommon.

If the syntax is too messy for you, you can use a macro to hide some of the details:

#define IS_DERIVED_FROM(baseClass, x) (dynamic_cast<baseClass*>(&(x)))
//...
if (IS_DERIVED_FROM(Base, l)) { // ...

using namespace std;

class Base {
public:
 virtual ~Base() {} // Make this a polymorphic class
};
class Derived : public Base {
public:
 virtual ~Derived() {}
};

int main() {

 Derived d;

 // Query the type relationship
 if (dynamic_cast<Base*>(&d)) {
 cout << "Derived is a subclass of Base" << endl;
 }
 else {
 cout << "Derived is NOT a subclass of Base" << endl;
 }
}

Example 8-7. Determining class relationships (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Giving Each Instance of a Class a Unique Identifier | 301

This type information is not free, though, because dynamic_cast must traverse the
class hierarchy at runtime to determine if one class is a descendant of another, so be
smart about where you use it. Additionally, compilers don’t include this information
by default since there is overhead required for RTTI, and not everyone uses this fea-
ture, so you may have to enable it with a compiler switch.

See Also
Recipe 8.6

8.8 Giving Each Instance of a Class a Unique
Identifier

Problem
You want each object of a class to have a unique identifier.

Solution
Use a static member variable to keep track of the next available identifier to use. In
the constructor, assign the next available value to the current object and increment
the static member. See Example 8-8 to get an idea of how this works.

Example 8-8. Assigning unique identifiers

#include <iostream>

class UniqueID {
protected:
 static int nextID;
public:
 int id;
 UniqueID();
 UniqueID(const UniqueID& orig);
 UniqueID& operator=(const UniqueID& orig);
};

int UniqueID::nextID = 0;

UniqueID::UniqueID() {
 id = ++nextID;
}

UniqueID::UniqueID(const UniqueID& orig) {
 id = orig.id;
}

UniqueID& UniqueID::operator=(const UniqueID& orig) {
 id = orig.id;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

302 | Chapter 8: Classes

Discussion
Use a static variable to keep track of the next identifier to use. In Example 8-8, I
used a static int, but you can use anything as the unique identifier, so long as you
have a function that can generate the unique values.

In this case, the identifiers are not reused until you reach the maximum size of an int.
Once you delete an object, that object’s unique value is gone until the program
restarts or the identifier value maxes out and flips over. This uniqueness throughout
the program can have some interesting advantages. For example, if you’re working
with a memory management library that shuffles memory around and invalidates
pointers, you can be assured that the unique value will remain the same per object. If
you use the unique values in conjunction with Recipe 8.4, but use a map instead of a
list, you can easily locate your objects given the unique identifier. To do this, you
would simply map unique IDs to object instances, like so:

static map<int, MyClass*> instmap;

This way, any code that keeps track of an object’s identifier can find it later without
having to maintain a reference to it.

But that’s not the whole story. Consider the case where you need to add one of these
objects to a standard container (vector, list, set, etc.). The standard containers
store copies of the objects you add to them, not references or pointers to the objects
themselves (unless, of course, it is a container of pointers). Thus, the standard con-
tainers expect objects they contain to behave as value objects, which means objects
that, when assigned with the assignment operator, or copied with a copy construc-
tor, create new versions that are equal to the old versions.

This means that you have to make a decision on how you want your unique objects
to behave. When you create an object with a unique identifier and add it to a con-
tainer you then have two objects with the same identifier unless you’ve done some-
thing different in your assignment operator. You need to deal with the unique value
in your assignment operator and copy constructor in a way that makes sense. Does it
make sense for the object in the container to be equal to the original object? If so, the
standard copy constructor and assignment operators will get the job done, but you

 return(*this);
}

int main() {
 UniqueID a;
 std::cout << a.id << std::endl;
 UniqueID b;
 std::cout << b.id << std::endl;
 UniqueID c;
 std::cout << c.id << std::endl;
}

Example 8-8. Assigning unique identifiers (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Singleton Class | 303

should be explicit so users of your class know you did it that way on purpose and
didn’t just forget how containers work and get lucky. For example, to use the same
identifier values your copy constructor and assignment operator would look like this:

UniqueID::UniqueID(const UniqueID& orig) {
 id = orig.id;
}

UniqueID& UniqueID::operator=(const UniqueID& orig) {
 id = orig.id;
 return(*this);
}

But maybe it makes more sense to create another unique value for the object in the
container in the context of your application. In that case, just use the static variable
again as you did in the ordinary constructor, like this:

UniqueID::UniqueID(const UniqueID& orig) {
 id = ++nextID;
}

UniqueID& UniqueID::operator=(const UniqueID& orig) {
 id = ++nextID;
 return(*this);
}

You may still not be in the clear though. If UniqueID will be used by multiple threads,
you are going to run into trouble because access to the static variable is not synchro-
nized. See Chapter 12 for more information on making resources usable by multiple
threads.

See Also
Recipe 8.3

8.9 Creating a Singleton Class

Problem
You have a class that must only ever be instantiated once, and you need to provide a
way for clients to access that class in such a way that the same, single object is
returned each time. This is commonly referred to as a singleton pattern, or a single-
ton class.

Solution
Create a static member that is a pointer to the current class, restrict the use of con-
structors to create the class by making them private, and provide a public static
member function that clients can use to access the single, static instance.
Example 8-9 demonstrates how to do this.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

304 | Chapter 8: Classes

Discussion
There are many situations where you want at most one instance of a class—this is
why Singleton is a design pattern. With a few simple steps, it’s easy to implement a
singleton class in C++.

When you decide that you only want one instance of something, the static keyword
should come to mind. As I described in Recipe 8.5, a static member variable is one

Example 8-9. Creating a singleton class

#include <iostream>

using namespace std;

class Singleton {
public:
 // This is how clients can access the single instance
 static Singleton* getInstance();

 void setValue(int val) {value_ = val;}
 int getValue() {return(value_);}

protected:
 int value_;

private:
 static Singleton* inst_; // The one, single instance
 Singleton() : value_(0) {} // private constructor
 Singleton(const Singleton&);
 Singleton& operator=(const Singleton&);
};

// Define the static Singleton pointer
Singleton* Singleton::inst_ = NULL;

Singleton* Singleton::getInstance() {
 if (inst_ == NULL) {
 inst_ = new Singleton();
 }
 return(inst_);
}

int main() {

 Singleton* p1 = Singleton::getInstance();

 p1->setValue(10);

 Singleton* p2 = Singleton::getInstance();

 cout << "Value = " << p2->getValue() << '\n';
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Singleton Class | 305

such that there is at most one instance of it in memory. Use a static member vari-
able to keep track of the one object of your singleton class, as I did in Example 8-9:

private:
 static Singleton* inst_;

Keep it private to keep client code from knowing about it. Be sure to initialize it to
NULL with a static variable definition in an implementation file:

Singleton* Singleton::inst_ = NULL;

To keep clients from instantiating this class, make the constructors private, espe-
cially the default constructor.

private:
 Singleton() {}

This way, if anyone tries to create a new singleton class on the heap or the stack,
they’ll get a friendly compiler error.

Now that you’ve created a static variable to keep track of the one Singleton object,
and you’ve prohibited creation of Singleton objects by restricting their constructors,
all that’s left is to provide a way for clients to access the one instance of the Singleton
object. Do this with a static member function:

Singleton* Singleton::getInstance() {
 if (inst_ == NULL) {
 inst_ = new Singleton();
 }
 return(inst_);
}

You can see how this works. If the static Singleton pointer is NULL, create the object.
If it has already been created, just return its address. Clients can access the one
instance of Singleton by calling this static member:

Singleton* p1 = Singleton::getInstance();

And if you don’t want clients to deal with pointers, you can return a reference, too:

Singleton& Singleton::getInstance() {
 if (inst_ == NULL) {
 inst_ = new Singleton();
 }
 return(*inst_);
}

The point here is that in both cases you have prevented clients from creating
instances of a Singleton object and provided a single interface through which they
can gain access.

See Also
Recipe 8.3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

306 | Chapter 8: Classes

8.10 Creating an Interface with an Abstract Base Class

Problem
You need to define an interface that subclasses will implement, but the concept that
the interface defines is just an abstraction, and is not something that should be
instantiated itself.

Solution
Create an abstract class that defines the interface by declaring at least one of its func-
tions as pure virtual. Subclass this abstract class by clients who will use different
implementations to fulfill the same interface guarantees. Example 8-10 shows how
you might define an abstract class for reading a configuration file.

Example 8-10. Using an abstract base class

#include <iostream>
#include <string>
#include <fstream>

using namespace std;

class AbstractConfigFile {

public:
 virtual ~AbstractConfigFile() {}

 virtual void getKey(const string& header,
 const string& key,
 string& val) const = 0;
 virtual void exists(const string& header,
 const string& key,
 string& val) const = 0;
};

class TXTConfigFile : public AbstractConfigFile {

public:
 TXTConfigFile() : in_(NULL) {}
 TXTConfigFile(istream& in) : in_(&in) {}
 virtual ~TXTConfigFile() {}

 virtual void getKey(const string& header,
 const string& key,
 string& val) const {}
 virtual void exists(const string& header,
 const string& key,
 string& val) const {}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an Interface with an Abstract Base Class | 307

Discussion
An abstract base class (often referred to as an ABC) is a class that can’t be instanti-
ated and, therefore, serves only as an interface. A class is abstract if it declares at least
one pure virtual function or inherits one without implementing it. Thus, if a sub-
class of an ABC needs to be instantiated, it has to implement each of the virtual func-
tions, which means that it supports the interface declared by the ABC.

A subclass that inherits an ABC (and implements all of its pure virtuals) upholds the
contract defined by the interface. Consider the classes MyAppClass and TXTConfigFile
in Example 8-10. MyAppClass has a pointer member that points to an object of type
AbstractConfigFile:

const AbstractConfigFile* config_;

protected:
 istream* in_;
};

class MyAppClass {
public:
 MyAppClass() : config_(NULL) {}
 ~MyAppClass() {}
 void setConfigObj(const AbstractConfigFile* p) {config_ = p;}
 void myMethod();

private:
 const AbstractConfigFile* config_;
};

void MyAppClass::myMethod() {

 string val;
 config_->getKey("Foo", "Bar", val);
 // ...
}

int main() {

 ifstream in("foo.txt");
 TXTConfigFile cfg(in);

 MyAppClass m;

 m.setConfigObj(&cfg);

 m.myMethod();
}

Example 8-10. Using an abstract base class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

308 | Chapter 8: Classes

(I made it const because MyAppClass should not be changing the config file, only read-
ing from it.) Users can set the config file for MyAppClass with a setter member func-
tion, setConfigObj.

When it is time to use the config file for MyAppClass, as MyAppClass::myMethod does, it
can call any of the functions declared on AbstractConfigFile without regard for the
actual kind of config file that was used. It could be a TXTConfigFile, XMLConfigFile,
or anything else that inherits from AbstractConfigFile.

This polymorphic behavior is the benefit of inheritance in general: if your code refers
to a base class object, invoking virtual functions on it will dynamically use the cor-
rect versions of subclasses of that class, so long as the actual object you’re referring
to is an object of that subclass. But this is the case whether the base class is an ABC
or not, so what’s the difference?

There are two differences. A pure interface class (an ABC that provides no imple-
mentation) serves only as a contract that subclasses must obey if they want to be
instantiated. Often, this means that the is-a test for a subclass of a pure interface
class may fail (meaning you can’t say that an object of the subclass is an object of the
base class), but that the behaves-like-a test succeeds. This permits you to have some
separation of what something is versus what it can do. Think of Superman. He is a
person, but he is also a superhero. Superheroes can fly like a bird, but it is not cor-
rect to say that a superhero is a bird. You might design a class hierarchy for Super-
man like I did in Example 8-11.

Example 8-11. Using a pure interface

class Person {
public:
 virtual void eat() = 0;
 virtual void sleep() = 0;
 virtual void walk() = 0;
 virtual void jump() = 0;
};

class IAirborne {
public:
 virtual void fly() = 0;
 virtual void up() = 0;
 virtual void down() = 0;
};

class Superhero : public Person, // A superhero *is* a person
 public IAirborne { // and flies
public:
 virtual void eat();
 virtual void sleep();
 virtual void walk();
 virtual void jump();
 virtual void fly();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an Interface with an Abstract Base Class | 309

Lots of different kinds of things fly, though, so you don’t want an interface called, for
example, IBird. IAirborne indicates that anything that supports this interface can fly.
All it does is allow client code to rest assured that if it is working with an object
derived from IAirborne, the client code can call fly, up, and down.

The second difference is that an ABC can define an abstract entity that makes no
sense as an object because it is inherently general. In this case, the is-a test holds for
the inheritance, but the ABC is abstract because, by itself, it has no implementation
that can be instantiated as an object. Consider the AbstractConfigFile class in
Example 8-10: Does it make any sense to instantiate an AbstractConfigFile? No, it
only makes sense to instantiate different kinds of config files that have concrete repre-
sentation.

Here is a quick list of rules regarding abstract classes and pure virtual functions. A
class is abstract if:

• It declares at least one pure virtual function

• It inherits, but does not implement, at least one pure virtual function

An abstract class cannot be instantiated. However, with an abstract class you can:

• Have data members

• Have nonvirtual member functions

• Provide implementations for pure virtual functions

• Do most of the things you can in an ordinary class

In other words, you can do just about everything you can do with an ordinary class
except instantiate it.

Using ABCs in C++ requires discretion when it comes to implementation. Whether
you use an ABC as a pure interface or not is up to you. For example, assume for a

 virtual void up();
 virtual void down();
 virtual ~Superhero();
};

void Superhero::fly() {
 // ...
}

// Implement all of the pure virtuals in Superhero's superclasses...

int main() {

 Superhero superman;
 superman.walk(); // Superman can walk like a person
 superman.fly(); // or fly like a bird
}

Example 8-11. Using a pure interface (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

310 | Chapter 8: Classes

moment that in the superhero example I decided that the Person class should be
abstract, but since every kind of person has a first and last name, I want to add those
members to the class and the associated getter and setter member functions so that
authors of subclasses don’t have to.

class Person {
public:
 virtual void eat() = 0;
 virtual void sleep() = 0;
 virtual void walk() = 0;
 virtual void jump() = 0;
 virtual void setFirstName(const string& s) {firstName_ = s;}
 virtual void setLastName(const string& s) {lastName_ = s;}
 virtual string getFirstName() {return(firstName_);}
 virtual string getLastName() {return(lastName_);}
protected:
 string firstName_;
 string lastName_;
};

Now, if the Superhero subclass wants to override one of these functions, it can. All it has
to do is use the base class name to qualify which version it is invoking. For example:

string Superhero::getLastName() {
 return(Person::getLastName() + " (Superhero)");
}

Incidentally, you can still make these functions pure and provide a default imple-
mentation. You just have to use the = 0 syntax following the declaration and put the
actual definition somewhere else, like this:

class Person {
// ...
virtual void setFirstName(const string& s) = 0;
// ...
Person::setFirstName(const string& s) {
 firstName_ = s;
}

By doing this, you force subclasses to override it, but they can still call the default
version if they want to by using the fully qualified class name.

Finally, if you provide a virtual destructor in your base class (pure or not), you have
to provide a body for it. This is because the subclass destructor will call the base
class destructor automatically.

8.11 Writing a Class Template

Problem
You have a class whose members need to be different types in different situations,
and using conventional polymorphic behavior is cumbersome or redundant. In other

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing a Class Template | 311

words, as the class designer, you want a class user to be able to choose the types of
various parts of your class when he instantiates it, rather than setting them all in the
original definition of the class.

Solution
Use a class template to parameterize types that can be used to declare class members
(and much more). That is, write your class with placeholders for types; thus, leaving
it to the user of the class template to choose which types to use. See Example 8-12
for an example of a tree node that can point to any type.

Example 8-12. Writing a class template

#include <iostream>
#include <string>

using namespace std;

template<typename T>
class TreeNode {
public:
 TreeNode(const T& val) : val_(val), left_(NULL), right_(NULL) {}
 ~TreeNode() {
 delete left_;
 delete right_;
 }

 const T& getVal() const {return(val_);}
 void setVal(const T& val) {val_ = val;}
 void addChild(TreeNode<T>* p) {
 const T& other = p->getVal();
 if (other > val_)
 if (right_)
 right_->addChild(p);
 else
 right_ = p;
 else
 if (left_)
 left_->addChild(p);
 else
 left_ = p;
 }
 const TreeNode<T>* getLeft() {return(left_);}
 const TreeNode<T>* getRight() {return(right_);}

private:
 T val_;
 TreeNode<T>* left_;
 TreeNode<T>* right_;
};

int main() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

312 | Chapter 8: Classes

Discussion
Class templates provide a way for a class designer to parameterize types, so that they
can be supplied by a user of the class at the point the class is instantiated. Templates
might be a bit confusing though, so let me go through the example before coming
back to how it works.

Consider the declaration of the TreeNode class template in Example 8-12:

template<typename T>
class TreeNode { //...

The template<typename T> part is what makes this a class template and not an ordi-
nary class. What this line says is that T is the name of a type that will be given when
the class is used, but not right now where it is declared. The parameter T can then be
used throughout the declaration and definition of TreeNode as if it were any other
type, native or user defined. For example, I have a private member named val_ that I
want to be of type T, so I declare it like this:

T val_;

This simply declares a class member named val_ of some type that will be deter-
mined later in the same way I would declare an int, float, MyClass, or string named
val_. In this respect, you can think of it as something like a macro (i.e., using
#define), although the similarity with macros is little more than that.

Your type parameter can be used in any way you would use an ordinary parameter:
return values, pointers, member function parameters, and so on. Consider my getter
and setter methods for val_:

const T& getVal() const {return(val_);}
void setVal(const T& val) {val_ = val;}

getVal returns a const reference to val_, which is of type T, and setVal takes a refer-
ence to a T and sets val_ equal to it. Things get a little messier when it comes to the
getLeft and getRight member functions, so I’ll come back to those in a minute. Bear
with me.

Now that TreeNode has been declared with a type placeholder, some client code
somewhere has to use it. Here’s how.

 TreeNode<string> node1("frank");
 TreeNode<string> node2("larry");
 TreeNode<string> node3("bill");

 node1.addChild(&node2);
 node1.addChild(&node3);
}

Example 8-12. Writing a class template (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing a Class Template | 313

TreeNode is a simple implementation of a binary tree. To create a tree that stores
string values, create your nodes like this:

TreeNode<string> node1("frank");
TreeNode<string> node2("larry");
TreeNode<string> node3("bill");

The type between the angle brackets is what gets used for T when this class template
is instantiated. Template instantiation is the process the compiler goes through when
it builds a version of TreeNode where T is string. A binary, physical representation of
TreeNode<string> is created when it is instantiated (and only when it is instantiated).
What you get is a memory layout that is equivalent to if you had just written
TreeNode without the template keyword and type parameter, and used a string every-
where you used a T.

Instantiation of a template for a given type parameter is analogous to instantiation of
an object of a class. The key difference is that template instantiation occurs at com-
pile time, while object instantiation occurs at runtime. This means that if, instead of
a string, you wanted your binary tree to store ints, you would declare nodes like
this:

TreeNode<int> intNode1(7);
TreeNode<int> intNode2(11);
TreeNode<int> intNode3(13);

As with the string version, a binary entity is created for the TreeNode class template
using int as the internal type.

A minute ago, I said I would revisit the getLeft and getRight member functions.
Now that you are familiar with template instantiations (if you weren’t already), the
declaration and definition of getLeft and getRight may make more sense:

const TreeNode<T>* getLeft() {return(left_);}
const TreeNode<T>* getRight() {return(right_);}

What this says is that each of these member functions returns a pointer to an instan-
tiation of TreeNode for T. Therefore, when TreeNode is instantiated for, say, a string,
getLeft and getRight are instantiated like this:

const TreeNode<string>* getLeft() {return(left_);}
const TreeNode<string>* getRight() {return(right_);}

You aren’t limited to one template parameter though. You can use a bunch of them,
if you like. Imagine that you want to keep track of the number of children below a
given node, but users of your class may be pressed for space and not want to use an
int if they can get away with a short. Similarly, they may want to supply something
other than a simple, built-in type to tally the node usage, like their own number
class. In any case, you can allow them to do so with another template parameter:

template<typename T, typename N = short>
class TreeNode {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

314 | Chapter 8: Classes

// ...
 N getNumChildren();

private:
 TreeNode() {}
 T val_;
 N numChildren_;
// ...

This way, the person using your class can supply an int, short, or anything else he
wants to keep track of subtree size on each node.

You can also supply default arguments for template parameters, as I just did in the
example, with the same syntax you would use to declare default function parameters:

template<typename T, typename N = short>

As with default function arguments, you can only supply them for a given parameter if it
is either the last parameter or each parameter to the right of it has a default argument.

In Example 8-12, the definition for the template is given in the same place as the dec-
laration. Usually, I do this to conserve space in example code, but, in this case, there
is another reason. Templates (classes or functions—see Recipe 8.12) are only com-
piled into binary form when they are instantiated. Thus, you cannot have the tem-
plate declaration in a header file and its implementation in a source file (i.e., .cpp).
The reason is that there is nothing to compile! There are exceptions to this, but, gen-
erally speaking, if you are writing a class template, you should put its implementa-
tion in the header file or in an inline file that is included by the header.

If you do this, you will need to use a syntax that is a little unfamiliar. Declare the
member functions and the rest of the class template as you would an ordinary class,
but when you are defining the member functions, you have to include some extra
tokens to tell the compiler that this is for a class template. For example, you would
define getVal like this (compare this to Example 8-12):

template<typename T>
const T& TreeNode<T>::getVal() const {
 return(val_);
}

The body of the function looks the same.

Be careful with templates though, because if you write one that is used everywhere,
you can get code bloat, which is what happens when the same template with the
same parameters (e.g., TreeNode<int, short>) is compiled into separate object files.
Essentially, the same binary representation of an instantiated template is in multiple
files, and this can make your library or executable much larger than it needs to be.

One way to avoid this is to use explicit instantiation, which is a way to tell the com-
piler that it needs to instantiate a version of the class template for a particular set of
template arguments. If you do this in a place that is a common location that will be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing a Member Function Template | 315

linked to by multiple clients, you can avoid code bloat. For example, if I know that
throughout my application I will be using TreeNode<string>, I would put a line like
this in a common source file:

// common.cpp
template class TreeNode<string>;

Build a shared library with that file and then code that uses TreeNode<string> can use
the library dynamically without having to contain its own compiled version. Other
code can include the header for the class template, then link to this library and there-
fore avoid needing its own copy. This requires some experimentation though,
because not all compilers have the same problems with code bloat to the same
degree, but this is the general approach you can use to minimize it.

C++ templates (both class and function) are a vast subject, and there is a long list of
mind-bending techniques for powerful, efficient designs that use templates. A great
example of applications of class templates is the standard library containers, e.g.,
vector, list, set, etc., which is the subject of Chapter 15. Most of the interesting
developments that are happening in the C++ literature have to do with templates. If
you are interested in the subject, you should check out the newsgroups comp.lang.
std.c++ and comp.lang.c++. There are always interesting questions and answers
there.

See Also
Recipe 8.12

8.12 Writing a Member Function Template

Problem
You have a single member function that needs to take a parameter that can be of any
type, and you can’t or don’t want to be constrained to a particular type or category
of types (by using a base class pointer parameter).

Solution
Use a member function template and declare a template parameter for the type of
object the function parameter is supposed to have. See Example 8-13 for a short
example.

Example 8-13. Using a member function template

class ObjectManager {
public:
 template<typename T>
 T* gimmeAnObject();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

316 | Chapter 8: Classes

Discussion
When talking about function or class templates, the words parameter and argument
have some ambiguity. There are two kinds of each: template and function. Template
parameters are the parameters in the angle brackets, e.g., T in Example 8-13, and
function parameters are parameters in the conventional sense.

Consider the ObjectManager class in Example 8-13. It is a simplistic version of the
Factory pattern discussed in Recipe 8.2, so I have defined the member function
gimmeAnObject as something that creates new objects that client code would use
instead of calling new directly. I can do this by either returning a pointer to a new
object or by modifying a pointer passed in by the client code. Let’s take a look at
each approach.

Declaration of a template member function requires that you provide the template
keyword and the template parameters.

template<typename T>
T* gimmeAnObject();

template<typename T>
void gimmeAnObject(T*& p);

 template<typename T>
 void gimmeAnObject(T*& p);
};

template<typename T>
T* ObjectManager::gimmeAnObject() {
 return(new T);
}

template<typename T>
void ObjectManager::gimmeAnObject(T*& p) {
 p = new T;
}

class X { /* ... */ };
class Y { /* ... */ };

int main() {
 ObjectManager om;

 X* p1 = om.gimmeAnObject<X>(); // You have to specify the template
 Y* p2 = om.gimmeAnObject<Y>(); // parameter

 om.gimmeAnObject(p1); // Not here, though, since the compiler can
 om.gimmeAnObject(p2); // deduce T from the arguments
}

Example 8-13. Using a member function template (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing a Member Function Template | 317

Both of these member functions happen to use T as the template parameter, but they
don’t need to; they each represent the template parameter for that member function
only, so the names are unrelated. You have to do the same thing for your template
member function definition, i.e., use the template keyword and list all the template
parameters. Here’s what my definitions look like:

template<typename T>
T* ObjectManager::gimmeAnObject() {
 return(new T);
}

template<typename T>
void ObjectManager::gimmeAnObject(T*& p) {
 p = new T;
}

There are a couple of ways to call template member functions. First, you can invoke
them with explicit use of the template parameter, like this:

X* p1 = om.gimmeAnObject<X>();

X is just some class name. Or, you can let the compiler deduce the arguments for the
template parameters by passing in arguments of the type(s) of the template parame-
ters. For example, you can invoke the second form of gimmeAnObject without passing
in anything in angle brackets:

om.gimmeAnObject(p1);

This is because the compiler can deduce T by looking at p1 and recognizing that it’s
an X*. Template deduction only works for function templates (member or not) and
only works when the template parameters are deduced from the function arguments.

Member function templates aren’t the most popular feature in C++, but they come
in handy from time to time, so it’s good to know how to write one. I often see the
need crop up when I want a member function to work for types that are not related
by inheritance. For example, if I have a member function foo that I want to take a
single argument that is always going to be a class that inherits from some base class, I
don’t need a template: I can just make the parameter type a base class pointer or ref-
erence. Then, any objects of subclasses of the parameter class will work just fine—
such is the way of C++.

But you may want a function that operates on parameters that don’t all inherit from
the same base class(es). In this case, you can either write the same member function
several times—once for each type—or make it a template member function. Using
templates also permits specialization, which is a way of providing implementations
of templates for particular template arguments. But that’s beyond the scope of a sin-
gle recipe, so I won’t discuss it further here, but it’s a powerful technique, so if tem-
plate programming appeals to you, I encourage you check it out.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

318 | Chapter 8: Classes

See Also
Recipe 8.11

8.13 Overloading the Increment and Decrement
Operators

Problem
You have a class where the familiar increment and decrement operators make sense,
and you want to overload operator++ and operator-- to make incrementing and dec-
rementing objects of your class easy and intuitive to users.

Solution
Overload the prefix and postfix forms of ++ and -- to do what you want.
Example 8-14 shows the conventional technique for overloading the increment and
decrement operators.

Example 8-14. Overloading increment and decrement

#include <iostream>

using namespace std;

class Score {
public:
 Score() : score_(0) {}
 Score(int i) : score_(i) {}

 Score& operator++() { // prefix
 ++score_;
 return(*this);
 }
 const Score operator++(int) { // postfix
 Score tmp(*this);
 ++(*this); // Take advantage of the prefix operator
 return(tmp);
 }
 Score& operator--() {
 --score_;
 return(*this);
 }
 const Score operator--(int x) {
 Score tmp(*this);
 --(*this);
 return(tmp);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overloading the Increment and Decrement Operators | 319

Discussion
The increment and decrement operators often make sense for classes that represent
some sort of integer value. They are easy to use, as long as you understand the differ-
ence between prefix and postfix and you follow the conventions for return values.

Think about incrementing an integer. For some integer i, there are two ways to do it
with the ++ operator:

i++; // postfix
++i; // prefix

Both increment i: the first version creates a temporary copy of i increments i, then
returns the temporary value, the second increments i then returns it. C++ allows
operator overloading, which means you can make your favorite user-defined type (a
class or an enum) behave like an int in this regard.

Overload operator++ and operator-- to get what you want. Example 8-14 illustrates
how to overload both the prefix and postfix versions:

Score& operator++() { // prefix
 ++score_;
 return(*this);
}
const Score operator++(int) { // postfix
 Score tmp(*this);
 ++(*this);
 return(tmp);
}

Prefix appears as you would expect, but for the compiler to distinguish between the
two, an int parameter is included as part of the postfix operator declaration. It has
no semantic use; at runtime, it is always passed as zero so you can ignore it.

 }
 int getScore() const {return(score_);}

private:
 int score_;
};

int main() {
 Score player1(50);

 player1++;
 ++player1; // score_ = 52
 cout << "Score = " << player1.getScore() << '\n';
 (--player1)--; // score_ = 50
 cout << "Score = " << player1.getScore() << '\n';
}

Example 8-14. Overloading increment and decrement (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

320 | Chapter 8: Classes

Once you do this, you can use the Score class as you would an int:

Score player1(50);

player1++;
++player1; // score_ = 52

You probably noticed that the signatures for the prefix version of operator++ return a
reference to the current class. You should do this (instead of, say, returning void) so
that the object that is being incremented or decremented can be used in other expres-
sions. Consider this line from the example:

(--player1)--;

Strange, yes, but it illustrates a point. If prefix operator-- didn’t return anything
meaningful, then this expression would not compile. Another example would be a
function call:

foo(--player1);

The function foo expects an argument of type Score, and that’s exactly what you
have to return from prefix operator-- for this to compile.

Operator overloading is a powerful feature that lets you use the same operators on
user-defined types that you would on built-in types. Proponents of other languages
that do not allow operator overloading bemoan the potential for confusion and com-
plexity, and admittedly, lots of operators can be overloaded for any kind of custom
behavior. But when it comes to simple increment and decrement, it’s nice to be able
to customize your classes’ behavior to your liking.

See Also
Recipe 8.14

8.14 Overloading Arithmetic and Assignment
Operators for Intuitive Class Behavior

Problem
You have a class for which some of C++'s unary or binary operators make sense, and
you want users of your class to be able to use them when working with objects of
your class. For example, if you have a class named Balance that contains, essentially,
a floating-point value (i.e., an account balance), it would be convenient if you could
use Balance objects with some standard C++ operators, like this:

Balance checking(50.0), savings(100.0);

checking += 12.0;
Balance total = checking + savings;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior | 321

Solution
Overload the operators you want to use as member functions and standalone func-
tions to allow arguments of various types for which the given operator makes sense,
as in Example 8-15.

Example 8-15. Overloading unary and binary operators

#include <iostream>

using namespace std;

class Balance {
 // These have to see private data
 friend const Balance operator+(const Balance& lhs, const Balance& rhs);
 friend const Balance operator+(double lhs, const Balance& rhs);
 friend const Balance operator+(const Balance& lhs, double rhs);

public:
 Balance() : val_(0.0) {}
 Balance(double val) : val_(val) {}
 ~Balance() {}

 // Unary operators
 Balance& operator+=(const Balance& other) {
 val_ += other.val_;
 return(*this);
 }
 Balance& operator+=(double other) {
 val_ += other;
 return(*this);
 }

 double getVal() const {return(val_);}

private:
 double val_;
};

// Binary operators
const Balance operator+(const Balance& lhs, const Balance& rhs) {
 Balance tmp(lhs.val_ + rhs.val_);
 return(tmp);
}

const Balance operator+(double lhs, const Balance& rhs) {
 Balance tmp(lhs + rhs.val_);
 return(tmp);
}

const Balance operator+(const Balance& lhs, double rhs) {
 Balance tmp(lhs.val_ + rhs);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

322 | Chapter 8: Classes

Discussion
The most common case for operator overloading is assignment and arithmetic. There
are all sorts of classes for which arithmetic and assignment operators (addition, mul-
tiplication, modulo, left/right bit shift) make sense, whether you are using them for
math or something else. Example 8-15 shows the fundamental techniques for over-
loading these operators.

Let’s start with what is probably the most common operator to be overloaded, the
assignment operator. The assignment operator is what’s used when you assign one
object to another, as in the following statement:

Balance x(0), y(32);
x = y;

The second line is a shorthand way of calling Balance::operator=(y). The assign-
ment operator is different than most other operators because a default version is cre-
ated for you by the compiler if you don’t supply one. The default version simply
copies each member from the target object to the current object, which, of course, is
not always what you want, so you can override it to provide your own behavior, or
overload it to allow assignment of types other than the current type.

For the Balance class in Example 8-15, you might define the assignment operator like
this:

Balance& operator=(const Balance& other) {
 val_ = other.val_;
 return(*this);
}

The first thing that may jump out at you, if you’re not familiar with operator over-
loading, is the operator= syntax. This is the way all operators are declared; you can
think of each operator as a function named operator[symbol], where the symbol is the
operator you are overloading. The only difference between operators and ordinary

 return(tmp);
}

int main() {

 Balance checking(500.00), savings(23.91);

 checking += 50;
 Balance total = checking + savings;

 cout << "Checking balance: " << checking.getVal() << '\n';
 cout << "Total balance: " << total.getVal() << '\n';
}

Example 8-15. Overloading unary and binary operators (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior | 323

functions is the calling syntax. In fact, you can call operators using this syntax if you
feel like doing a lot of extra typing and having ugly code:

x.operator=(y); // Same thing as x = y, but uglier

The operation of my assignment operator implementation is simple. It updates the
val_ member on the current object with the value from the other argument, and then
returns a reference to the current object. Assignment operators return the current
object as a reference so that callers can use assignment in expressions:

Balance x, y, z;
// ...
x = (y = z);

This way, the return value from (y = z) is the modified object y, which is then passed
to the assignment operator for the object x. This is not as common with assignment
as it is with arithmetic, but you should return a reference to the current object just to
stick with convention (I discuss the issue as it relates to arithmetic operators shortly).

Simple assignment is only the beginning though; most likely you will want to use the
other arithmetic operators to define more interesting behavior. Table 8-1 lists all of
the arithmetic and assignment operators.

Table 8-1. Arithmetic and assignment operators

Operator Behavior

= Assignment (must be member function)

+
+=

Addition

-
-=

Subtraction

*
*=

Multiplication or dereferencing

/
/=

Division

%
%=

Modulo

++ Increment

-- Decrement

^
^=

Bitwise exclusive or

~ Bitwise complement

&
&=

Bitwise and

|
|=

Bitwise or

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

324 | Chapter 8: Classes

For most of the operators in Table 8-1 there are two tokens: the first is the version of
the operator that is used in the conventional manner, e.g., 1 + 2, and the second is the
version that also assigns the result of an operation to a variable, e.g., x += 5. Note that
the increment and decrement operators ++ and -- are covered in Recipe 8.13.

Implementing each of the arithmetic or assignment operators is pretty much the
same, with the exception of the assignment operator, which can’t be a standalone
function (i.e., it has to be a member function).

The addition operator is a popular choice for overloading, especially since it can be
used in contexts other than math, such as appending one string to another, so let’s
consider the addition assignment operator first. It adds the righthand argument to
the lefthand argument and assigns the resulting value to the lefthand argument, as in
the statements:

int i = 0;
i += 5;

After the second line has executed, the int i is modified by having 5 added to it. Sim-
ilarly, if you look at Example 8-15, you would expect the same behavior from these
lines:

Balance checking(500.00), savings(23.91);
checking += 50;

That is, you would expect that after the += operator is used, the value of checking has
increased by 50. Using the implementation in Example 8-15, this is exactly what hap-
pens. Look at the function definition for the += operator:

Balance& operator+=(double other) {
 val_ += other;
 return(*this);
}

For an assignment operator, the parameter list is what will be supplied to the opera-
tor as its righthand side; in this case, an integer. The body of the function is trivial:
all we are doing here is adding the argument to the private member variable. When
all the work is done, return *this. You should return *this from assignment and
arithmetic member operators so they can be used as expressions whose results can be

<<
<<=

Left shift

>>
>>=

Right shift

Table 8-1. Arithmetic and assignment operators (continued)

Operator Behavior

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior | 325

the input to something else. For example, imagine if I had declared operator+= this
way:

void operator+=(double other) { // Don't do this
 val_ += other;
}

Then someone wants to use this operator on an instance of my class somewhere and
pass the results to other function:

Balance moneyMarket(1000.00);
// ...
updateGeneralLedger(moneyMarket += deposit); // Won't compile

This creates a problem because Balance::operator+= returns void, and a function like
updateGeneralLedger expects to get a Balance object. If you return the current object
from arithmetic and assignment member operators, then you won’t have this prob-
lem. This doesn’t apply to all operators though. Other operators like the array sub-
script operator [] or the relational operator &&, return an object other than *this, so
this guideline holds for just arithmetic and assignment member operators.

That takes care of assignment operators that also do some arithmetic, but what
about arithmetic that doesn’t do assignment? The other way to use an arithmetic
operator is like this:

int i = 0, j = 2;
i = j + 5;

In this case, j is added to 5 and the result is assigned to i (which, if i were an object
and not a native type, would use i’s class’s assignment operator), but j is unchanged.
If you want the same behavior from your class, you can overload the addition opera-
tor as a standalone function. For example, you might want statements like this to
make sense:

Balance checking(500.00), savings(100.00), total(0);
total = checking + savings;

You can do this in two steps. The first step is to create the function that overloads
the + operator:

Balance operator+(const Balance& lhs, const Balance& rhs) {
 Balance tmp(lhs.val_ + rhs.val_);
 return(tmp);
}

This takes two const Balance objects, adds their private members, creates a tempo-
rary object, and returns it. Notice that, unlike the assignment operators, this returns
an object, not an object reference. This is because the object returned is a tempo-
rary, and returning a reference would mean that the caller has a reference to a vari-
able that is no longer there. This won’t work by itself though, because it needs access

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

326 | Chapter 8: Classes

to the private members of its arguments (assuming you’ve made the data members
nonpublic). To allow this, the Balance class has to declare this function as a friend:

class Balance {
 // These have to see private data
 friend Balance operator+(const Balance& lhs, const Balance& rhs);
 // ...

Anything declared as a friend has access to all members of a class, so this does the
trick. Just remember to declare the parameters const, since you probably don’t want
the objects modified.

This gets you most of the way, but you’re not quite all the way there yet. Users of
your class may put together expressions like this:

total = savings + 500.00;

This will work with the code in Example 8-15 because the compiler can see that the
Balance class has a constructor that takes a float, so it creates a temporary Balance
object out of 500.00 using that constructor. There are two problems with this
though: the overhead with creating temporary objects and Balance doesn’t have a
constructor for each possible argument that can be used with the addition operator.
Let’s say you have a class named Transaction that represents a credit or debit
amount. A user of Balance may do something like this:

Transaction tx(-20.00);
total = savings + tx;

This won’t compile because there is no operator that adds a Balance object and a
Transaction object. So create one:

Balance operator+(const Balance& lhs, const Transaction& rhs) {
 Balance tmp(lhs.val_ + Transaction.amount_);
 return(tmp);
}

There is some extra legwork though. You have to declare this operator a friend of
the Transaction class, too, and you have to create an identical version of this that
takes the arguments in the opposite order if you want to be able to use the argu-
ments to + in any order, or if you want the operation to be commutative, i.e., x + y =
y + x:

Balance operator+(const Transaction& lhs, const Balance& rhs) {
 Balance tmp(lhs.amount_ + rhs.val_);
 return(tmp);
}

By the same token, if you want to avoid the extra temporary object that is created
when a constructor is invoked automatically, you can create your own operators to
deal with any other kind of variable:

Balance operator+(double lhs, const Balance& rhs) {
 Balance tmp(lhs + rhs.val_);
 return(tmp);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior | 327

}
Balance operator+(const Balance& lhs, double rhs) {
 Balance tmp(lhs.val_ + rhs);
 return(tmp);
}

Again, you need to create two of them to allow expressions like this to work:

total = 500.00 + checking;

In this case, the construction of a temporary object is small and, relatively speaking,
inexpensive. But a temporary object is still a temporary object, and in simple, single
statements, it won’t create noticeable overhead, but you should always consider such
minor optimizations in a broader context—what if a million of these temporary
objects are created because a user wants to increment every element in a
vector<Balance>? Your best bet is to know how the class will generally be used and
measure the performance overhead if you aren’t sure.

It is reasonable to ask, at this point, why we need to create standalone functions for
these nonassignment arithmetic operators, and not just use member functions as we
did with assignment. In fact, you can declare these kinds of operators as member
functions on the class you are interested in, but it doesn’t make for commutative
operators. To make an operator commutative on a user-defined type, you would
have to declare it as a member function on both classes that could be involved in the
operation, and that will work (albeit with each of the classes knowing about each
other classes internal members), but it won’t work for operators that you want to use
with native types unless there are constructors that can be used, and even in that
case, you have to pay for the temporary objects.

Operator overloading is a powerful feature of C++, and like multiple inheritance, it
has proponents and critics. In fact, most other popular languages don’t support it at
all. If you use it with care, however, it can make for powerful, concise code that uses
your class.

Most of the standard operators have some conventional meaning, and in general,
you should follow the conventional meanings. For example, the << operator means
left-bit shift, or it means “put to” if you are dealing with streams, as in:

cout << "This is written to the standard output stream.\n";

If you decide to override << for one or more of your classes, you should make it do
one of these two things, or at least something that is analogous to them. Overload-
ing an operator is one thing, but giving an operator an entirely new semantic mean-
ing is another. Unless you are introducing a new convention that is ubiquitous
throughout your application or library (which still doesn’t mean it’s a good idea),
and it makes good intuitive sense to someone other than you, you should stick with
the standard meanings.

To overload operators effectively, there is a lot of legwork. But you only have to do it
once, and it pays off every time you use your class in a simple expression. If you use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

328 | Chapter 8: Classes

operator overloading conservatively and judiciously, it can make code easy to write
and read.

See Also
Recipe 8.13

8.15 Calling a Superclass Virtual Function

Problem
You need to invoke a function on a superclass of a particular class, but it is overrid-
den in subclasses, so the usual syntax of p->method() won’t give you the results you
are after.

Solution
Qualify the name of the member function you want to call with the target base class;
for example, if you have two classes. (See Example 8-16.)

Discussion
Making a regular practice of overriding C++’s polymorphic facilities is not a good
idea, but there are times when you have to do it. As with so many techniques in
C++, it is largely a matter of syntax. When you want to call a specific base class’s

Example 8-16. Calling a specific version of a virtual function

#include <iostream>

using namespace std;

class Base {
public:
 virtual void foo() {cout << "Base::foo()" << endl;}
};

class Derived : public Base {
public:
 virtual void foo() {cout << "Derived::foo()" << endl;}
};

int main() {
 Derived* p = new Derived();

 p->foo(); // Calls the derived version
 p->Base::foo(); // Calls the base version
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Calling a Superclass Virtual Function | 329

version of a virtual function, just qualify it with the name of the class you are after, as
I did in Example 8-16:

p->Base::foo();

This will call the version of foo defined for Base, and not the one defined for what-
ever subclass of Base p points to.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

330

Chapter 9CHAPTER 9

Exceptions and Safety

9.0 Introduction
This chapter contains recipes for using C++’s exception-handling features. C++ has
strong support for exception handling, and by employing a few techniques you can
write code that handles exceptional circumstances effectively and is easy to debug.

The first recipe describes C++’s semantics for throwing and catching exceptions,
then it explains how to write a class to represent exceptions. This is a good starting
point if you have little or no experience with exceptions. It also describes the stan-
dard exception classes that are defined in <stdexcept> and <exception>.

The rest of the recipes illustrate techniques for using exceptions optimally, and they
define several key terms along the way. Just throwing an exception when something
unexpected happens, or catching an exception only to print an error message and
abort does not make for good software. To use C++’s exception-handling facilities
effectively, you have to write code that doesn’t leak resources if an exception is
thrown, and that otherwise has well-defined behavior when an exception is thrown.
These are known as the basic and strong exception-safety guarantees. I describe tech-
niques you can use that allow you to make these guarantees for constructors and var-
ious member functions.

9.1 Creating an Exception Class

Problem
You want to create your own exception class for throwing and catching.

Solution
You can throw or catch any C++ type that lives up to some simple requirements,
namely that it has a valid copy constructor and destructor. Exceptions are a compli-
cated subject though, so there are a number of things to consider when designing a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an Exception Class | 331

class to represent exceptional circumstances. Example 9-1 shows what a simple
exception class might look like.

Discussion
C++ supports exceptions with three keywords: try, catch, and throw. The syntax
looks like this:

try {
 // Something that may call "throw", e.g.
 throw(Exception("Uh-oh"));
}
catch(Exception& e) {
 // Do something useful with e
}

An exception in C++ (Java and C# are similar) is a way to put a message in a bottle at
some point in a program, abandon ship, and hope that someone is looking for your
message somewhere down the call stack. It is an alternative to other, simpler tech-
niques, such as returning an error code or message. The semantics of using exceptions
(e.g., “trying” something, “throwing” an exception, and subsequently “catching” it)

Example 9-1. A simple exception class

#include <iostream>
#include <string>

using namespace std;

class Exception {

public:
 Exception(const string& msg) : msg_(msg) {}
 ~Exception() {}

 string getMessage() const {return(msg_);}
private:
 string msg_;
};

void f() {
 throw(Exception("Mr. Sulu"));
}

int main() {

 try {
 f();
 }
 catch(Exception& e) {
 cout << "You threw an exception: " << e.getMessage() << endl;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

332 | Chapter 9: Exceptions and Safety

are distinct from other kinds of C++ operations, so before I describe how to create an
exception class I will give a short overview of what an exception is and what it means
to throw or catch one.

When an exceptional situation arises, and you think the calling code should be made
aware of it, you can stuff your message in the bottle with the throw statement, as in:

throw(Exception("Something went wrong"));

When you do this, the runtime environment constructs an Exception object, then it
begins unwinding the call stack until it finds a try block that has been entered but
not yet exited. If the runtime environment never finds one, meaning it gets all the
way to main (or the top-level scope in the current thread) and can’t unwind the stack
any further, a special global function named terminate is called. But if it does find a
try block, it then looks at each of the catch statements for that try block for one that
is catching something with the same type as what was just thrown. Something like
this would suffice:

catch(Exception& e) { //...

At this point, a new Exception is created with Exception’s copy constructor from the
one that was thrown. (The one in scope at the throw is a temporary, so the compiler
may optimize it away.) The original exception is destroyed since it has gone out of
scope, and the body of the catch statement is executed.

If, within the body of the catch statement, you want to propagate the exception that
you just caught, you can call throw with no arguments:

throw;

This will continue the exception handling process down the call stack until another
matching handler is found. This permits each scope to catch the exception and do
something useful with it, then re-throw it when it is done (or not).

That’s a crash course in how exceptions are thrown and caught. Now that you’re
equipped with that knowledge, consider Example 9-1. You can construct an
Exception with a character pointer or a string, and then throw it. But this class is not
terribly useful, because it is little more than a wrapper to a text message. As a matter
of fact, you could get nearly the same results by just using a string as your exception
object instead:

try {
 throw(string("Something went wrong!"));
}
catch (string& s) {
 cout << "The exception was: " << s << endl;
}

Not that this is necessarily a good approach; my goal is to demonstrate the nature of
an exception: that it can be any C++ type. You can throw an int, char, class, struct,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating an Exception Class | 333

or any other C++ type if you really want to. But you’re better off using a hierarchy of
exception classes, either those in the standard library or your own hierarchy.

One of the biggest advantages to using an exception class hierarchy is that it allows
you to express the nature of the exceptional circumstance with the type of exception
class itself, rather than an error code, text string, severity level, or something else.
This is what the standard library has done with the standard exceptions defined in
<stdexcept>. The base class for the exceptions in <stdexcept> is exception, which is
actually defined in <exception>. Figure 9-1 shows the class hierarchy for the stan-
dard exception classes.

Each standard exception class, by its name, indicates what category of condition it is
meant to identify. For example, the class logic_error represents circumstances that
should have been caught during code writing or review, and its subclasses represent
subcategories of that: situations such as violating a precondition, supplying an out-
of-range index, offering an invalid argument, etc. The complementary case to a logi-
cal error is a runtime error, which is represented by runtime_error. This indicates sit-
uations that, more than likely, could not have been caught at code time such as
range, overflow, or underflow.

This is a limited set of exceptional situations, and the standard exception classes
probably don’t have everything you want. Chances are you want something more
application-specific like database_error, network_error, painting_error and so on. I

Figure 9-1. The standard exception hierarchy

exception

runtime_error

logic_error

domain_error

invalid_argument

length_error

out_of_range

range_error

overflow_error

underflow_error

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

334 | Chapter 9: Exceptions and Safety

will discuss this more later. Before that, though, let’s talk about how the standard
exceptions work.

Since the standard library uses the standard exception classes (imagine that), you can
expect classes in the standard library to throw one when there is a problem, as in try-
ing to reference an index beyond the end of a vector:

std::vector<int> v;
int i = -1;

// fill up v...

try {
 i = v.at(v.size()); // One past the end
}
catch (std::out_of_range& e) {
 std::cerr << "Whoa, exception thrown: " << e.what() << '\n';
}

vector<>::at will throw an out_of_range exception if you give it an index that is less
than zero or greater than size() – 1. Since you know this, you can write a handler to
deal with this kind of exceptional situation specifically. If you’re not expecting a spe-
cific exception, but instead would rather handle all exceptions the same way, you
can catch the base class for all exceptions:

catch(std::exception& e) {
 std::cerr << "Nonspecific exception: " << e.what() << '\n';
}

Doing so will catch any derived class of exception. what is a virtual member function
that provides an implementation-defined message string.

I am about to come full circle. The point of Example 9-1 followed by so much dis-
cussion is to illustrate the good parts of an exception class. There are two things that
make an exception class useful: a hierarchy where the class communicates the nature
of the exception and a message for the catcher to display for human consumers. The
exception class hierarchy will permit developers who are using your library to write
safe code and debug it easily, and the message text will allow those same developers
to present a meaningful error message to end-users of the application.

Exceptions are a complicated topic, and handling exceptional circumstances safely
and effectively is one of the most difficult parts of software engineering, in general,
and C++, in particular. How do you write a constructor that won’t leak memory if
an exception is thrown in its body, or its initializer list? What does exception-safety
mean? I will answer these and other questions in the recipes that follow.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Constructor Exception-Safe | 335

9.2 Making a Constructor Exception-Safe

Problem
Your constructor needs to uphold basic and strong exception-safety guarantees. See
the discussion that follows for the definitions of “basic” and “strong” guarantees.

Solution
Use try and catch in the constructor to clean up properly if an exception is thrown
during construction. Example 9-2 presents examples of the simple Device and Broker
classes. Broker constructs two Device objects on the heap, but needs to be able to
properly clean them up if an exception is thrown during construction.

Example 9-2. An exception-safe constructor

#include <iostream>
#include <stdexcept>

using namespace std;

class Device {
public:
 Device(int devno) {
 if (devno == 2)
 throw runtime_error("Big problem");
 }
 ~Device() {}
};

class Broker {

public:
 Broker (int devno1, int devno2) :
 dev1_(NULL), dev2_(NULL) {
 try {
 dev1_ = new Device(devno1); // Enclose the creation of heap
 dev2_ = new Device(devno2); // objects in a try block...
 }
 catch (...) {
 delete dev1_; // ...clean up and rethrow if
 throw; // something goes wrong.
 }
 }
 ~Broker() {
 delete dev1_;
 delete dev2_;
 }

private:
 Broker();
 Device* dev1_;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

336 | Chapter 9: Exceptions and Safety

Discussion
To say that a constructor, member function, destructor, or anything else is “excep-
tion-safe” is to guarantee that it won’t leak resources and possibly that it won’t leave
its object in an inconsistent state. In C++, these two kinds of guarantees have been
given the names basic and strong.

The basic exception-safety guarantee, which is quite intuitive, says that if an excep-
tion is thrown, the current operation won’t leak resources and the objects involved in
the operation will still be usable (meaning you can call other member functions and
destroy the object, i.e., it won’t be in a corrupt state). It also means the program will
be left in a consistent state, although it might not be a predictable state. The rules are
straightforward: if an exception is thrown anywhere in the body of (for example) a
member function, heap objects are not orphaned and the objects involved in the
operation can be destroyed or reset by the caller. The other guarantee, called the
strong exception-safety guarantee, ensures that the object state remains unchanged if
the operation fails. The latter applies to postconstruction operations on an object,
since, by definition, an object that throws an exception during construction is never
fully constructed and therefore never in a valid state. I will return to the subject of
member functions in Recipe 9.4. For now, let’s focus on construction.

Example 9-2 defines two classes, Device and Broker, that don’t do much, but could
easily represent any sort of device/broker scenario where you have some class that
opens a connection to each of two devices and manages communication between
them. A broker is useless if only one of the devices is available, so you want transac-
tional semantics when you instantiate a broker, such that if one of the two throws an
exception when it is being acquired, the other is released. This will ensure memory
and other resources are not leaked.

try and catch will do the job. In the constructor, wrap the allocation of heap objects
in a try block and catch anything that is thrown during their construction like this:

try {
 dev1_ = new Device(devno1);
 dev2_ = new Device(devno2);

 Device* dev2_;
};

int main() {

 try {
 Broker b(1, 2);
 }
 catch(exception& e) {
 cerr << "Exception: " << e.what() << endl;
 }
}

Example 9-2. An exception-safe constructor (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Constructor Exception-Safe | 337

}
catch (...) {
 delete dev1_;
 throw;
}

The ellipsis in the catch handler means that anything that is thrown will be caught.
This is what you need here, because all you’re doing is cleaning up after yourself if
something goes wrong, then rethrowing regardless of what sort of exception was
thrown. You need to rethrow so the client code that is trying to instantiate the Broker
object can do something useful with the exception, like write its error message some-
where.

I only delete dev1_ in the catch handler because the last chance for an exception to be
thrown is in the call to new for dev2_. If this throws an exception, than dev2_ will not
be assigned a value and, therefore, I don’t need to delete it. However, if you do
something after dev2_’s initialization, you will need to be sure to clean it up. For
example:

try {
 dev1_ = new Device(devno1);
 dev2_ = new Device(devno2);
 foo_ = new MyClass(); // Might throw
}
catch (...) {
 delete dev1_;
 delete dev2_;
 throw;
}

In this case, you don’t need to worry about deleting pointers that were never
assigned real values (as long as you properly initialized them in the first place), since
deleting a NULL pointer has no effect. In other words, if the assignment to dev1_
throws an exception, your catch handler still calls delete dev2_, but that’s okay as
long as you initialized it to NULL in the initializer list.

As I said in Recipe 9.1, designing a sound, flexible exception strategy can be tricky,
and exception-safety is no different. For a detailed look at designing exception-safe
code, see Exceptional C++ by Herb Sutter (Addison Wesley).

See Also
Recipe 9.3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

338 | Chapter 9: Exceptions and Safety

9.3 Making an Initializer List Exception-Safe

Problem
You have to initialize your data members in the constructor’s initializer list, and,
therefore, cannot use the approach described in Recipe 9.2.

Solution
Use a special syntax for try and catch that catches exceptions thrown in the initial-
izer list. Example 9-3 shows how.

Example 9-3. Handling exceptions in an initializer

#include <iostream>
#include <stdexcept>

using namespace std;

// Some device
class Device {
public:
 Device(int devno) {
 if (devno == 2)
 throw runtime_error("Big problem");
 }
 ~Device() {}
private:
 Device();
};

class Broker {

public:
 Broker (int devno1, int devno2)
 try : dev1_(Device(devno1)), // Create these in the initializer
 dev2_(Device(devno2)) {} // list.
 catch (...) {
 throw; // Log the message or translate the error here (see
 // the discussion)
 }
 ~Broker() {}

private:
 Broker();
 Device dev1_;
 Device dev2_;
};

int main() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making an Initializer List Exception-Safe | 339

Discussion
The syntax for handling exceptions in initializers looks a little different from the tra-
ditional C++ syntax because it uses the try block as the constructor body. The criti-
cal part of Example 9-3 is the Broker constructor:

Broker (int devno1, int devno2) // Constructor header is the same
 try : // Same idea as a try {...} block
 dev1_(Device(devno1)), // The initializers follow
 dev2_(Device(devno2)) {
 // This is the constructor body.
 }
 catch (...) { // The catch handler is *after*
 throw; // the constructor body
 }

try and catch behave as you would expect; the only difference from the usual syntax
of a try block is that when you want to catch exceptions thrown in an initializer list,
try is followed by a colon, then the initializer list, and then the try block, which is
also the body of the constructor. If anything is thrown in either the initializer list or
the constructor body, the catch handler that follows the constructor body will get it.
You can still embed additional try/catch pairs in the body of the constructor if you
have to, but nested try/catch blocks usually get ugly.

In addition to moving the member initialization to the initializer list, Example 9-3 is
different from Example 9-2 for another reason. The Device object members aren’t
created on the heap this time with new. I did this to illustrate a couple of points
regarding safety and member objects.

First, using stack instead of heap objects lets the compiler provide its built-in safety.
If any of the objects in the initializer list throws an exception during construction, its
memory is deallocated automatically as the stack unwinds in the exception-handling
process. Second, and even better, any other objects that have already been success-
fully constructed are destroyed without you having to catch the exception and delete
them explicitly.

But maybe you require or prefer heap members. Consider an approach like the origi-
nal Broker class in Example 9-2. You can just initialize your pointers in the initializer
list, right?

 try {
 Broker b(1, 2);
 }
 catch(exception& e) {
 cerr << "Exception: " << e.what() << endl;
 }
}

Example 9-3. Handling exceptions in an initializer (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

340 | Chapter 9: Exceptions and Safety

class BrokerBad {

public:
 BrokerBad (int devno1, int devno2)
 try : dev1_(new Device(devno1)), // Create heap objects with
 dev2_(new Device(devno2)) {} // initializers
 catch (...) {
 if (dev1_) {
 delete dev1_; // Shouldn't compile, and
 delete dev2_; // is a bad approach if it
 } // does
 throw; // Rethrow the same exception
 }
 ~BrokerBad() {
 delete dev1_;
 delete dev2_;
 }

private:
 BrokerBad();
 Device* dev1_;
 Device* dev2_;
};

No. There are two problems here. To begin with, this should not be allowed by your
compiler because the catch block of a constructor should not allow program code to
access member variables—at that point, they don’t exist. Second, even if your com-
piler permits it, it is a bad idea. Consider the case where the construction of dev1_’s
object throws an exception. This is the code that will be executed in the catch handler:

catch (...) {
 if (dev1_) { // What value does this contain?
 delete dev1_; // Now you are deleting an undefined value
 delete dev2_;
 }
 throw; // Rethrow the same exception
}

If an exception is thrown during the construction of dev1_, then new doesn’t get a
chance to return the address to the newly allocated memory and dev1_ is unchanged.
Then what does it contain? It’s undefined, because it was never initialized with a
value. As a result, when you call delete dev1_, you will probably be deleting a gar-
bage pointer address, which means your program will crash, you will get fired, and
you will have to live with that shame for the rest of your life.

To avoid such a life-altering fiasco, initialize your pointers to NULL in the initializer
list, and then create the heap objects in the constructor. This way it’s easy to catch
anything that goes wrong and clean up the mess, since calling delete on NULL point-
ers is okay.

BrokerBetter (int devno1, int devno2) :
dev1_(NULL), dev2_(NULL) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making Member Functions Exception-Safe | 341

 try {
 dev1_ = new Device(devno1);
 dev2_ = new Device(devno2);
 }
 catch (...) {
 delete dev1_; // This will always be valid
 throw;
 }
}

So, to summarize, if you must use pointer members, initialize them to NULL in the ini-
tializer list, then allocate their objects in the constructor using a try/catch block. You
can deallocate any memory in the catch handler. However, if you can work with auto-
matic members, construct them in the initializer list and use the special try/catch syn-
tax to deal with any exceptions.

See Also
Recipe 9.2

9.4 Making Member Functions Exception-Safe

Problem
You are writing a member function and you need it to uphold the basic and strong
exception-safety guarantees, namely that it won’t leak resources and it won’t leave
the object in an invalid state if an exception is thrown.

Solution
Be aware of what operations can throw exceptions and do them first, usually in a
try/catch block. Once the code that can throw exceptions is done executing, then
you can update the object state. Example 9-4 offers one way to make a member func-
tion exception-safe.

Example 9-4. An exception-safe member function

class Message {

public:
 Message(int bufSize = DEFAULT_BUF_SIZE) :
 bufSize_(bufSize),
 initBufSize_(bufSize),
 msgSize_(0),
 buf_(NULL) {
 buf_ = new char[bufSize];
 }

 ~Message() {
 delete[] buf_;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

342 | Chapter 9: Exceptions and Safety

Discussion
The class Message in Example 9-4 is a class for holding character data; you might use
such a thing to wrap text or binary data as it is passed from one system to another.
The member function of interest here is appendData, which appends the caller’s data

 // Append character data
 void appendData(int len, const char* data) {
 if (msgSize_+len > MAX_SIZE) {
 throw out_of_range("Data size exceeds maximum size.");
 }
 if (msgSize_+len > bufSize_) {

 int newBufSize = bufSize_;
 while ((newBufSize *= 2) < msgSize_+len);

 char* p = new char[newBufSize]; // Allocate memory
 // for new buffer

 copy(buf_, buf_+msgSize_, p); // Copy old data
 copy(data, data+len, p+msgSize_); // Copy new data

 msgSize_ += len;
 bufSize_ = newBufSize;

 delete[] buf_; // Get rid of old buffer and point to new
 buf_ = p;
 }
 else {
 copy(data, data+len, buf_+msgSize_);
 msgSize_ += len;
 }
 }

 // Copy the data out to the caller's buffer
 int getData(int maxLen, char* data) {
 if (maxLen < msgSize_) {
 throw out_of_range("This data is too big for your buffer.");
 }
 copy(buf_, buf_+msgSize_, data);
 return(msgSize_);
 }

private:
 Message(const Message& orig) {} // We will come to these
 Message& operator=(const Message& rhs) {} // in Recipe 9.5
 int bufSize_;
 int initBufSize_;
 int msgSize_;
 char* buf_;
};

Example 9-4. An exception-safe member function (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making Member Functions Exception-Safe | 343

to the data already in the buffer, growing the buffer if necessary. It upholds the
strong exception-safety guarantee, though it may not be clear at first glance why this
is the case.

Look at this part of appendData:

if (msgSize_+len > bufSize_) {

 int newBufSize = bufSize_;
 while ((newBufSize *= 2) < msgSize_+len);

 char* p = new char[newBufSize];

The point of this block of code is to grow the buffer. I grow the size of the buffer by
doubling it until it’s big enough. This piece of code is safe because the only part that
can throw an exception is the call to new, and I don’t update the object state or allo-
cate any other resources before that happens. It will throw bad_alloc if the operating
system is unable to allocate the requested piece of memory.

If the memory is allocated successfully, then I can start updating the state of the
object by copying the data and updating the member variables:

 copy(buf_, buf_+msgSize_, p);
 copy(data, data+len, p+msgSize_);

 msgSize_ += len;
 bufSize_ = newBufSize;

 delete[] buf_;
 buf_ = p;

None of these operations can throw exceptions, so we are in the clear. (This is only
because the data in the buffer is a sequence of chars; see the discussion that follows
Example 9-5 for further explanation.)

This solution is simple, and it is the general strategy for making member functions
strongly exception-safe: Do everything that might throw an exception first, then,
when all of the dangerous work is over with, take a deep breath and update the
object state. appendData just uses a temporary variable to hold the new buffer size.
This solves the problem with the buffer size, but does it truly uphold the basic guar-
antee of not leaking resources? Yes, but barely.

copy calls operator= on each element in the sequence that it is copying. In
Example 9-4, each element is a char, so we are safe because a single assignment of
one character to another can’t throw anything. But I said, barely, because you
shouldn’t let the safety of this special case make you think an exception will never
come out of copy.

Imagine for a moment that instead of a narrow character buffer, you have to write a
Message class that can contain an array of anything. You might write it as a class tem-
plate to look like Example 9-5.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

344 | Chapter 9: Exceptions and Safety

Example 9-5. A generic message class

template<typename T>
class MessageGeneric {

public:
 MessageGeneric(int bufSize = DEFAULT_BUF_SIZE) :
 bufSize_(bufSize),
 initBufSize_(bufSize),
 msgSize_(0),
 buf_(new T[bufSize]) {}

 ~MessageGeneric() {
 delete[] buf_;
 }

 void appendData(int len, const T* data) {
 if (msgSize_+len > MAX_SIZE) {
 throw out_of_range("Data size exceeds maximum size.");
 }
 if (msgSize_+len > bufSize_) {

 int newBufSize = bufSize_;
 while ((newBufSize *= 2) < msgSize_+len);

 T* p = new T[newBufSize];

 copy(buf_, buf_+msgSize_, p); // Can these throw?
 copy(data, data+len, p+msgSize_);

 msgSize_ += len;
 bufSize_ = newBufSize;

 delete[] buf_; // Get rid of old buffer and point to new
 buf_ = p;
 }
 else {
 copy(data, data+len, buf_+msgSize_);
 msgSize_ += len;
 }
 }

 // Copy the data out to the caller's buffer
 int getData(int maxLen, T* data) {
 if (maxLen < msgSize_) {
 throw out_of_range("This data is too big for your buffer.");
 }
 copy(buf_, buf_+msgSize_, data);
 return(msgSize_);
 }

private:
 MessageGeneric(const MessageGeneric& orig) {}
 MessageGeneric& operator=(const MessageGeneric& rhs) {}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making Member Functions Exception-Safe | 345

Now you have to be more careful, because you can’t make assumptions about the
target type. For example, how do you know that T::operator= won’t throw? You
don’t, so you have to be prepared for that possibility.

Wrap the calls to copy in a try block:

try {
 copy(buf_, buf_+msgSize_, p);
 copy(data, data+len, p+msgSize_);
}
catch(...) { // I don't care what was thrown; all I know
 delete[] p; // is that I have to clean up after myself,
 throw; // then rethrow.
}

Since you are catching any type that is thrown with the ellipsis operator, you can rest
assured that if T::operator= throws, you will catch it and be able to clean up the heap
memory you just allocated.

Strictly speaking, copy doesn’t actually throw anything, T::operator= does. This is
because copy (and the rest of the algorithms in the standard library) are generally
exception-neutral, which means that if whatever it is invoking throws an exception, it
will propagate it to the caller and not eat it (catch it and not rethrow). It reserves the
right to catch exceptions, do some clean-up, then rethrow them, but ultimately any-
thing that is thrown by a class or function the standard library is using will find its
way to the caller.

Making your member functions exception-safe is tedious work. It requires that you
consider all possible points where an exception can be thrown and that you deal
with them the right way. When can an exception be thrown? Anywhere a function
call is made. Operators for native data types can’t throw, and destructors should
never throw, but anything else, be it a standalone function, member function, opera-
tor, constructor, and so on, is a potential source of an exception. Examples 9-5 and
9-6 provide examples that use a narrow scope of exceptions. The classes contain very
few member variables, and the behavior of the class is discrete. As the number of
member functions and variables increase, and you introduce inheritance and virtual
functions, remaining strongly exception-safe becomes more challenging.

Finally, as with most application requirements, you only need to be as exception-safe
as you need to be. In other words, if you are writing a dialog-based wizard for generat-
ing web pages, your development schedule will probably preclude the necessary
research and testing for making it strongly exception-safe. Thus, it may be acceptable

 int bufSize_;
 int initBufSize_;
 int msgSize_;
 T* buf_;
};

Example 9-5. A generic message class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

346 | Chapter 9: Exceptions and Safety

to your client for users to encounter the occasional, ambiguous error message,
“Unknown error, aborting.” On the other hand, if you are writing software that con-
trols the angle of a helicopter rotor, your client will probably push for more safety
assurances than the occasional “Unknown error, aborting” message.

9.5 Safely Copying an Object

Problem
You need the basic class copy operations—copy construction and assignment—to be
exception-safe.

Solution
Employ the tactics discussed in Recipe 9.4 by doing everything that might throw first,
then changing the object state with operations that can’t throw only after the hazard-
ous work is complete. Example 9-6 presents the Message class again, this time with
the assignment operator and copy constructor defined.

Example 9-6. Exception-safe assignment and copy construction

#include <iostream>
#include <string>

const static int DEFAULT_BUF_SIZE = 3;
const static int MAX_SIZE = 4096;

class Message {

public:
 Message(int bufSize = DEFAULT_BUF_SIZE) :
 bufSize_(bufSize),
 initBufSize_(bufSize),
 msgSize_(0),
 key_("") {
 buf_ = new char[bufSize]; // Note: now this is in the body
 }

 ~Message() {
 delete[] buf_;
 }

 // Exception-safe copy ctor
 Message(const Message& orig) :
 bufSize_(orig.bufSize_),
 initBufSize_(orig.initBufSize_),
 msgSize_(orig.msgSize_),
 key_(orig.key_) { // This can throw...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Safely Copying an Object | 347

Discussion
The copy constructor and the private member swapInternals do all the work here.
The copy constructor initializes the primitive members and one of the nonprimitive
members in the initializer list. Then it allocates a new buffer and copies the data into
it. Simple enough, but why do it in this order? You could argue that all the initializa-
tion goes in the initializer list, but doing so can open the door for subtle bugs.

For example, you may want to put the buffer allocation in the initializer list, like this:

Message(const Message& orig) :
 bufSize_(orig.bufSize_),
 initBufSize_(orig.initBufSize_),
 msgSize_(orig.msgSize_),
 key_(orig.key_),

 buf_ = new char[orig.bufSize_]; // ...so can this
 copy(orig.buf_, orig.buf_+msgSize_, buf_); // This can't
 }

 // Exception-safe assignment, using the copy ctor
 Message& operator=(const Message& rhs) {

 Message tmp(rhs); // Copy construct a temporary
 swapInternals(tmp); // Swap members with it
 return(*this); // When we leave, tmp is destroyed, taking
 // the original data with it
 }

 const char* data() {
 return(buf_);
 }

private:
 void swapInternals(Message& msg) {
 // Since key_ is not a built-in data type it can throw,
 // so do it first.
 swap(key_, msg.key_);

 // If it hasn't thrown, then do all the primitives
 swap(bufSize_, msg.bufSize_);
 swap(initBufSize_, msg.initBufSize_);
 swap(msgSize_, msg.msgSize_);
 swap(buf_, msg.buf_);
 }
 int bufSize_;
 int initBufSize_;
 int msgSize_;
 char* buf_;
 string key_;
};

Example 9-6. Exception-safe assignment and copy construction (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

348 | Chapter 9: Exceptions and Safety

buf_(new char[orig.bufSize_]) {
 copy(orig.buf_, orig.buf_+msgSize_, buf_);
}

You might expect that everything will be fine, because if the new in the buffer alloca-
tion fails, all the other fully constructed objects will be destroyed. But this behavior is
not guaranteed, because the members are initialized in the order in which they are
declared in the class header, not the order in which you list them in the initializer list.
The order of the member declaration looks like this:

int bufSize_;
int initBufSize_;
int msgSize_;
char* buf_;
string key_;

As a result, buf_ will be initialized before key_. If the initialization of key_ throws
something, buf_ will not be destroyed and you will have created a hunk of unrefer-
enced memory. You can guard against this by using a try/catch block in the con-
structor (see Recipe 9.2), but it is easier just to put buf_’s initialization in the body of
the constructor where it is guaranteed to be called after the initializer list.

The call to copy won’t throw because it’s copying primitive values. But this is where
the subtleties of exception-safety come in: it can throw if it is copying objects (e.g., if
this is a generic container of T elements), in which case, you will need to catch it and
delete the associated memory.

The other way you may want to copy an object is by using the assignment operator,
operator=. Since it and the copy constructor have similar needs (e.g., make my mem-
bers equal to my argument’s members), reuse what you have already done and make
your life easier. The only twist is that you can make things slick by using a private
member to swap member data. I wish I had invented this technique, but I have to
credit Herb Sutter and Stephen Dewhurst since their writing is where I first saw it.

It may make sense to you at first glance, but I will explain just in case it doesn’t.
Consider the first line, which copy constructs a temporary object, tmp:

Message tmp(rhs);

Now we have just created a clone of the object we are assigning from. Essentially, tmp
is now equivalent to rhs. Now, swap its members with *this’s members:

swapInternals(tmp);

I will come back to swapInternals in a moment. For now, all we care about is that
now the *this’s members are the same as tmp’s were a second ago. And tmp was a
copy of rhs, so now *this is equivalent to rhs. But wait: we still have this temporary
object hanging around. No problem, when you return *this, tmp is automatically
destroyed when it goes out of scope, taking the old members with it.

return(*this);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Safely Copying an Object | 349

That’s it. But is it exception-safe? Constructing tmp is, since our constructor is excep-
tion-safe. The call to swapInternals is what does the majority of the work, so let’s
have a look at what it does to see if it’s safe.

swapInternals exchanges each data member in the current object with those in the
object that is passed in. It does this by using swap, which takes two arguments a and
b, creates a temporary copy of a, assigns b to a, and then assigns the temporary to b.
As such, it is exception-safe and exception-neutral because the only exceptions that
come out of it are those that may be thrown by the objects it is operating on. It uses
no dynamic memory, so it upholds the basic guarantee of not leaking resources.

Since key_ isn’t a primitive, which means that operations on it may throw an excep-
tion, I swap it first. That way, if it throws an exception, none of the other member
variables are corrupted. This doesn’t guarantee that key_ won’t be corrupted though.
When working with object members, you are at the mercy of their exception-safety
guarantees. If that doesn’t throw, I’m home free because I know that swapping
native variables won’t throw. Therefore, swapInternals is both basically and strongly
exception-safe.

This brings up an interesting point though. What if you have more than one object
member? If you had two string members, the beginning of swapInternals may look
like this:

void swapInternals(Message& msg) {
 swap(key_, msg.key_);
 swap(myObj_, msg.myObj_);
 // ...

There is a problem: If the second swap throws an exception, how can we safely undo
the first swap? In other words, now key_ has been updated with the new value, but
the swap of myObj_ failed, so key_ is now corrupt. If the caller catches the exception
and wants to proceed as though nothing happened, he is now working with some-
thing different than what he started with. Copying key_ to a temporary string first is
one approach, but it can’t guarantee safety because doing that copy may throw an
exception.

One way to get around this is to use heap objects:

void swapInternals(Message& msg) {
 // key_ is a string* and myObj_ is a MyClass*
 swap(key_, msg.key_);
 swap(myObj_, msg.myObj_);

Of course, this means that now you have more dynamic memory to manage, but
making exception-safety guarantees will often affect your design, so it is a good idea
to start thinking about it early in the design process.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

350 | Chapter 9: Exceptions and Safety

The theme for this recipe is unchanged from the previous recipes about exception-
safety. Do the work that might cause problems first, wait with a try/catch block just
in case something goes wrong, and, if something does go wrong, then clean up after
yourself. If nothing goes wrong, pat yourself on the back and update the object state.

See Also
Recipes 9.2 and 9.3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

351

Chapter 10 CHAPTER 10

Streams and Files

10.0 Introduction
Streams are one of the most powerful (and complicated) components of the C++
standard library. Using them for plain, unformatted input and output is generally
straightforward, but changing the format to suit your needs with standard manipula-
tors, or writing your own manipulators, is not. Therefore, the first few recipes
describe different ways to format stream output. The two after that describe how to
write objects of a class to a stream or read them from one.

Then the recipes shift from reading and writing file content to operating on the files
themselves (and directories). If your program uses files, especially if it’s a daemon or
server-side process, you will probably create files and directories, clean them up,
rename them, and so on. There are a number of recipes that explain how to do these
unglamorous, but necessary, tasks in C++.

The last third of the recipes demonstrate how to manipulate file and pathnames
themselves using many of the standard string member functions. Standard strings
contain an abundance of functions for inspecting and manipulating their contents,
and if you have to parse path and filenames they come in handy. If what you need is
not discussed in these recipes, take a look at Chapter 7, too—what you’re after
might be described there.

File manipulation requires direct interaction with the operating system (OS), and
there are often subtle differences (and occasionally glaring incompatibilities) between
OSs. Many of the typical file and directory manipulation needs are part of the stan-
dard C system calls, and work the same or similarly on different systems. Where
there are differences between OSs’ versions of libraries, I note it in the recipes.

As I have discussed in previous chapters, Boost is an open source project that has
generated a number of high-quality, portable libraries. But since this is a book about
C++ and not the Boost project, I have preferred standard C++ solutions whenever
possible. In many cases, however, (most notably Recipe 10.12) there isn’t a Standard

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

352 | Chapter 10: Streams and Files

C++ solution, so I have used the Boost Filesystem library written by Beman Dawes,
which provides a portable filesystem interface, to give a portable solution. Take a
look at the Boost Filesystem library if you have to do portable filesystem interac-
tion—you will save yourself lots of time and effort. For more information on the
Boost project, see www.boost.org.

10.1 Lining Up Text Output

Problem
You need to line up your text output vertically. For example, if you are exporting
tabular data, you may want it to look like this:

Jim Willcox Mesa AZ
Bill Johnson San Mateo CA
Robert Robertson Fort Collins CO

You will probably also want to be able to right- or left-justify the text.

Solution
Use ostream or wostream, for narrow or wide characters, defined in <ostream>, and the
standard stream manipulators to set the field width and justify the text. Example 10-1
shows how.

Example 10-1. Lining up text output

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

int main() {

 ios_base::fmtflags flags = cout.flags();
 string first, last, citystate;
 int width = 20;

 first = "Richard";
 last = "Stevens";
 citystate = "Tucson, AZ";

 cout << left // Left-justify in each field
 << setw(width) << first // Then, repeatedly set the width
 << setw(width) << last // and write some data
 << setw(width) << citystate << endl;

 cout.flags(flags);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Lining Up Text Output | 353

The output looks like this:

Richard Stevens Tucson, AZ

Discussion
A manipulator is a function that operates on a stream. Manipulators are applied to a
stream with operator<<. The stream’s format (input or output) is controlled by a set
of flags and settings on the ultimate base stream class, ios_base. Manipulators exist
to provide convenient shorthand for adjusting these flags and settings without hav-
ing to explicitly set them via setf or flags, which is cumbersome to write and ugly to
read. The best way to format stream output is to use manipulators.

Example 10-1 uses two manipulators to line up text output into columns. The
manipulator setw sets the field width, and left left-justifies the value within that field
(the counterpart to left is, not surprisingly, right). A “field” is just another way of
saying that you want the output to be padded on one side or the other to make sure
that the value you write is the only thing printed in that field. If, as in Example 10-1,
you left-justify a value, then set the field width, the next thing you write to the
stream will begin with the first character in the field. If the data you send to the
stream is not wide enough to span the entire field width, the right side of it will be
padded with the stream’s fill character, which is, by default, a single space. You can
change the fill character with the setfill manipulator, like this:

myostr << setfill('.') << "foo";

If the value you put in the field is larger than the field width, the entire value is
printed and no padding is added.

Table 10-1 contains a summary of manipulators that operate on any kind of value
(text, float, integer, etc.). There is a set of manipulators that apply only to floating-
point output, and they are described in Recipe 10.2.

Table 10-1. Text manipulators

Manipulator Description Sample output

left
right

Justify values within the current field width to either the
left or right side, and pad the remaining space with the
fill character.

Left-justified:

apple
bananna
cherry

Right-justified (with a field width of
10):

apple
bananna
cherry

setw(int n) Set the width of the field to n characters wide. See earlier example.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

354 | Chapter 10: Streams and Files

Some of the manipulators in Table 10-1 (and Table 10-2 in the next recipe) toggle
binary stream flags, and are actually implemented as two manipulators that turn a
flag on or off. Take boolalpha, for example. If you want Boolean values to be dis-
played as their written equivalents in the current locale (e.g., “true” and “false”), use
the boolalpha manipulator. To turn this behavior off, so that 0 and 1 are printed
instead, use noboolalpha, which is the default.

All manipulators have the behavior that they stay in effect until they are explicitly
changed, except for setw. In Example 10-1, you can see that it is called before each
write, but left is used only once. This is because the width is reset to zero after each
value is written to the stream with operator<<; to keep the same width for each field,
I had to call setw each time.

The standard manipulators provide a lot of functionality, but they don’t do every-
thing. If you want to write your own manipulators, see Recipe 10.2.

As with all other character-based classes in the standard library, manipulators work
on streams that use narrow or wide characters. Therefore, you can use them with
templates to write formatting utilities that operate on streams of any kind of charac-
ter. Example 10-2 presents the class template TableFormatter, which formats data
into equal-width columns and writes it to a stream.

setfill(int c) Use the character c to pad fields that have remaining
space.

cout << setfill('.')
<< setw(10)
<< right
<< "foo"

produces:

.......foo

boolalpha
noboolalpha

Display Boolean values as the current locale’s representa-
tion of the words true and false, instead of 1 and 0.

cout << boolalpha
<< true

produces:

true

endl Write a newline to the stream and flush the output
buffer.

n/a

ends Write a null character (‘\0’) to the stream. n/a

flush Flush the output buffer. n/a

Example 10-2. A generic class for tabular data

#include <iostream>
#include <iomanip>
#include <string>
#include <vector>

using namespace std;

Table 10-1. Text manipulators (continued)

Manipulator Description Sample output

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Lining Up Text Output | 355

// TableFormatter formats data for output to a stream of characters
// of type T.
template<typename T>
class TableFormatter {

public:
 TableFormatter(basic_ostream<T>& os) : out_(os) {}
 ~TableFormatter() {out_ << flush;}

 template<typename valT>
 void writeTableRow(const vector<valT>& v, int width);
 //...

private:
 basic_ostream<T>& out_;
};

template<typename T> // refers to class template param list
template<typename valT> // refers to mem fn template param list
void TableFormatter<T>::writeTableRow(const std::vector<valT>& v,
 int width) {

 ios_base::fmtflags flags = out_.flags();

 out_.flush();
 out_ << setprecision(2) << fixed; // Set the precision, in case
 // this is floating-point data
 for (vector<valT>::const_iterator p = v.begin();
 p != v.end(); ++p)
 out_ << setw(width) << left << *p; // Set the width, justify,
 // and write the element
 out_ << endl; // Flush
 out_.setf(flags); // Set the flags back to normal
}

int main() {

 TableFormatter<char> fmt(cout);

 vector<string> vs;

 vs.push_back("Sunday");
 vs.push_back("Monday");
 vs.push_back("Tuesday");

 fmt.writeTableRow(vs, 12);
 fmt.writeTableRow(vs, 12);
 fmt.writeTableRow(vs, 12);

 vector<double> vd;

Example 10-2. A generic class for tabular data (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

356 | Chapter 10: Streams and Files

The output from Example 10-2 looks like this:

Sunday Monday Tuesday
4.00 3.00 2.00 1.00

See Also
Table 10-1, Recipe 10.2

10.2 Formatting Floating-Point Output

Problem
You need to present floating-point output in a well-defined format, either for the
sake of precision (scientific versus fixed-point notation) or simply to line up decimal
points vertically for easier reading.

Solution
Use the standard manipulators provided in <iomanip> and <ios> to control the for-
mat of floating-point values that are written to the stream. There are too many com-
binations of ways to cover here, but Example 10-3 offers a few different ways to
display the value of pi.

 vd.push_back(4.0);
 vd.push_back(3.0);
 vd.push_back(2.0);
 vd.push_back(1.0);

 fmt.writeTableRow(vd, 5);
}

Example 10-3. Formatting pi

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

int main() {

 ios_base::fmtflags flags = // Save old flags
 cout.flags();

 double pi = 3.14159265;

 cout << "pi = " << setprecision(5) // Normal (default) mode; only
 << pi << '\n'; // show 5 digits, including both
 // sides of decimal point.

Example 10-2. A generic class for tabular data (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Formatting Floating-Point Output | 357

This will produce the following output:

pi = 3.1416
pi = +3.142
pi = 3.142e+003

Discussion
Manipulators that specifically manipulate floating-point output divide into two cate-
gories. There are those that set the format, which, for the purposes of this recipe, set
the general appearance of floating-point and integer values, and there are those that
fine-tune the display of each format. The formats are as follows:

Normal (the default)
In this format, the number of digits displayed is fixed (with a default of six) and
the decimal is displayed such that only a set number of digits are displayed at
one time. So, by default, pi would be displayed as 3.14159, and pi times 100
would display 314.159.

Fixed
In this format, the number of digits displayed to the right of the decimal point is
fixed, while the number of those displayed to the left is not. In this case, again with
a default precision of six, pi would be displayed as 3.141593, and pi times 100
would be 314.159265. In both cases, the number of digits displayed to the right of
the decimal point is six while the total number of digits can grow indefinitely.

Scientific
The value is shown as a single digit, followed by a decimal point, followed by a
number of digits determined by the precision setting, followed by the letter “e”
and the power of ten to raise the preceding value to. In this case, pi times 1,000
would display as 3.141593e+003.

Table 10-2 shows all manipulators that affect floating-point output (and sometimes
numeric output in general). See Table 10-1 for general manipulators you can use
together with the floating-point manipulators.

 cout << "pi = " << fixed // Fixed-point mode;
 << showpos // show a "+" for positive nums,
 << setprecision(3) // show 3 digits to the *right*
 << pi << '\n'; // of the decimal.

 cout << "pi = " << scientific // Scientific mode;
 << noshowpos // don't show plus sign anymore
 << pi * 1000 << '\n';

 cout.flags(flags); // Set the flags to the way they were
}

Example 10-3. Formatting pi (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

358 | Chapter 10: Streams and Files

In all three formats, all manipulators have the same effects except setprecision. In
the default mode, “precision” refers to the number of digits on both sides of the deci-
mal point. For example, to display pi in the default format with a precision of 2, do
this:

cout << "pi = " << setprecision(2)
 << pi << '\n';

Your output will look like this:

pi = 3.1

By comparison, consider if you want to display pi in fixed-point format instead:

cout << "pi = " << fixed
 << setprecision(2)
 << pi << '\n';

Table 10-2. Floating-point and numeric manipulators

Manipulator Description Sample output

Fixed Show floating-point values with a fixed number of digits
to the right of the decimal point.

With a default precision of six digits:

pi = 3.141593

scientific Show floating-point values using scientific notation,
which means a decimal number and an exponent
multiplier.

pi * 1000, with a default precision of
six digits:

pi = 3.141593e+003

setprecision Control the number of digits displayed in the output. (See
further explanation later.)

Pi in the default format, with a pre-
cision of 3:

pi = 3.14

In fixed format:

pi = 3.142

In scientific format:

pi = 3.142e+000

showpos
noshowpos

Show a plus sign in front of positive numbers. This works
for any kind of number, decimal or integer.

+3.14

showpoint
noshowpoint

Show the decimal, even if there are only zeros after it.
This works only for floating-point values, and not for
integers.

The following line, with a precision
of 2:

cout << showpoint << 2.0

will display like this:

2.00

showbase
noshowbase

Show the base for the number: decimal (none), octal
(leading zero), or hexadecimal (leading 0x). See the next
entry.

Decimal: 32
Octal: 040
Hexadecimal: 0x20

dec
oct
hex

Set the base for the numbers to be displayed to decimal,
octal, or hexadecimal. The base is not shown by default;
use showbase to display the base.

See previous entry.

Uppercase
nouppercase

Display values in uppercase. This sets the case for numeric out-
put, such as 0X for hexadecimal
numbers and E for numbers in scien-
tific notation.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Your Own Stream Manipulators | 359

Now the output will look like this:

pi = 3.14

This is because, in fixed-point format, the precision refers to the number of digits to
the right of the decimal point. If we multiply pi by 1,000 in the same format, the
number of digits to the right of the decimal remains unchanged:

cout << "pi = " << fixed
 << setprecision(2)
 << pi * 1000 << '\n';

produces:

pi = 3141.59

This is nice, because you can set your precision, set your field width with setw, right-
justify your output with right (see Recipe 10.1), and your decimal points will all be
lined up vertically.

Since a manipulator is just a convenient way of setting a format flag on the stream,
remember that the settings stick around until you undo them or until the stream is
destroyed. Save the format flags (see Example 10-3) before you start making changes,
and restore them when you are done

See Also
Recipe 10.3

10.3 Writing Your Own Stream Manipulators

Problem
You need a stream manipulator that does something the standard ones can’t. Or,
you want to have a single manipulator set several flags on the stream instead of call-
ing a set of manipulators each time you want a particular format.

Solution
To write a manipulator that doesn’t take an argument (à la left), write a function
that takes an ios_base parameter and sets stream flags on it. If you need a manipula-
tor that takes an argument, see the discussion a little later. Example 10-4 shows how
to write a manipulator that doesn’t take an argument.

Example 10-4. A simple stream manipulator

#include <iostream>
#include <iomanip>
#include <string>

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

360 | Chapter 10: Streams and Files

Discussion
There are two kinds of manipulators: those that accept arguments and those that
don’t. Manipulators that take no arguments are easy to write. All you have to do is
write a function that accepts a stream parameter, does something to it (sets a flag or
changes a setting), and returns it. Writing a manipulator that takes one or more argu-
ments is more complicated because you need to create additional classes and func-
tions that operate behind the scenes. Since argument-less manipulators are simple,
let’s start with those.

After reading Recipe 10.1, you may have realized that there are three floating-point
formats and only two manipulators for choosing the format. The default format
doesn’t have a manipulator; you have to set a flag on the stream to get back to the
default format, like this:

myiostr.setf(0, ios_base::floatfield);

But for consistency and convenience, you may want to add your own manipulator
that does the same thing. That’s what Example 10-4 does. The floatnormal manipula-
tor sets the appropriate stream flag to output floating-point data in the default format.

The compiler knows what to do with your new function because the standard library
already defines an operator for basic_ostream (basic_ostream is the name of the class
template that ostream and wostream are instantiations of) like this:

basic_ostream<charT,traits>& operator<<
(basic_ostream<charT,traits>& (* pf)(basic_ostream<charT,traits>&))

// make floating-point output look normal
inline ios_base& floatnormal(ios_base& io) {
 io.setf(0, ios_base::floatfield);
 return(io);
}
int main() {

 ios_base::fmtflags flags = // Save old flags
 cout.flags();

 double pi = 3.14159265;

 cout << "pi = " << scientific // Scientific mode
 << pi * 1000 << '\n';

 cout << "pi = " << floatnormal
 << pi << '\n';

 cout.flags(flags);
}

Example 10-4. A simple stream manipulator (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing Your Own Stream Manipulators | 361

In this example, pf is a pointer to a function that takes a basic_ostream reference
argument and returns a basic_ostream reference. This operator just calls your func-
tion with the current stream as an argument.

Writing manipulators that take arguments is more complicated. To understand why,
consider how a manipulator without arguments works. When you use a manipula-
tor like this:

myostream << myManip << "foo";

You use it without parenthesis, so that it actually resolves to the address of your
manipulator function. operator<< is what actually calls the manipulator function,
and it passes in the stream so the manipulator can do its work.

For the sake of comparison, say you have a manipulator that takes a numeric argu-
ment, so that, ideally, you would use it like this:

myostream << myFancyManip(17) << "apple";

How is this going to work? If you assume myFancyManip is a function that takes an
integer argument, then there is a problem: How do you pass the stream to the func-
tion without including in the parameters and using it explicitly? Here’s what you
might do:

myostream << myFancyManip(17, myostream) << "apple";

But this is ugly and redundant. One of the conveniences of a manipulator is the abil-
ity to just add it in line with a bunch of operator<<s and to read and use it easily.

The solution is to send the compiler on a detour. Instead of operator<< just invoking
your manipulator function on the stream, you need to introduce an ephemeral object
that returns something operator<< can use. Here’s how.

First, you need to define a temporary class to do the work. For the sake of simplic-
ity, say you want to write a manipulator called setWidth that does the same thing as
setw. The temporary structure you need to build should look something like this:

class WidthSetter {

public:
 WidthSetter (int n) : width_(n) {}
 void operator()(ostream& os) const {os.width(width_);}
private:
 int width_;
};

The function of this class is simple. Construct it with an integer argument, and when
operator() is invoked with a stream argument, set the width on the stream to the value
that the object was initialized with. The point of this behavior is that WidthSetter will

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

362 | Chapter 10: Streams and Files

be constructed by one function and used by another. Your manipulator function is
what will construct it, and it should look like this:

WidthSetter setWidth(int n) {
 return(WidthSetter(n)); // Return the initialized object
}

All this does is return a WidthSetter object that was initialized with the integer value.
This is the manipulator that you will use in line with operator<<s, like this:

myostream << setWidth(20) << "banana";

But this alone is not enough, because if setWidth just returns a WidthSetter object,
operator<< won’t know what to do with it. You have to overload operator<< so it
knows how to handle a WidthSetter:

ostream& operator<<(ostream& os, const WidthSetter& ws) {
 ws(os); // Pass the stream to the ws object
 return(os); // to do the real work
}

That solves the problem, but in a nongeneric way. You don’t want to have to write a
WidthSetter-style class for every argument-accepting manipulator you write (maybe
you do, but never mind that), so a better approach is to use templates and function
pointers to make a nice, generic infrastructure on which you can base any number of
manipulators. Example 10-5 provides the ManipInfra class and a version of
operator<< that uses template arguments to deal with the different kinds of charac-
ters a stream may handle and the different kinds of arguments a stream manipulator
might use.

Example 10-5. Manipulator infrastructure

#include <iostream>
#include <string>

using namespace std;

// ManipInfra is a small, intermediary class that serves as a utility
// for custom manipulators with arguments. Call its constructor with a
// function pointer and a value from your main manipulator function.
// The function pointer should be a helper function that does the
// actual work. See examples below.
template<typename T, typename C>
class ManipInfra {

public:
 ManipInfra (basic_ostream<C>& (*pFun)
 (basic_ostream<C>&, T), T val)
 : manipFun_(pFun), val_(val) {}
 void operator()(basic_ostream<C>& os) const
 {manipFun_(os, val_);} // Invoke the function pointer with the
private: // stream and value
 T val_;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Class Writable to a Stream | 363

If the sequence of events is still hazy, I suggest running Example 10-5 in the debug-
ger. Once you see it in action, it will make perfect sense.

10.4 Making a Class Writable to a Stream

Problem
You have to write a class to an output stream, either for human readability or persis-
tent storage, i.e., serialization.

 basic_ostream<C>& (*manipFun_)
 (basic_ostream<C>&, T);
};

template<typename T, typename C>
basic_ostream<C>& operator<<(basic_ostream<C>& os,
 const ManipInfra<T, C>& manip) {
 manip(os);
 return(os);
}

// Helper function that is ultimately called by the ManipInfra class
ostream& setTheWidth(ostream& os, int n) {
 os.width(n);
 return(os);
}

// Manipulator function itself. This is what is used by client
// code
ManipInfra<int, char> setWidth(int n) {
 return(ManipInfra<int, char>(setTheWidth, n));
}

// Another helper that takes a char argument
ostream& setTheFillChar(ostream& os, char c) {
 os.fill(c);
 return(os);
}

ManipInfra<char, char> setFill(char c) {
 return(ManipInfra<char, char>(setTheFillChar, c));
}

int main() {

 cout << setFill('-')
 << setWidth(10) << right << "Proust\n";
}

Example 10-5. Manipulator infrastructure (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

364 | Chapter 10: Streams and Files

Solution
Overload operator<< to write the appropriate data members to the stream.
Example 10-6 shows how.

Example 10-6. Writing objects to a stream

#include <iostream>
#include <string>

using namespace std;

class Employer {
 friend ostream& operator<< // This has to be a friend
 (ostream& out, const Employer& empr); // so it can access non-
public: // public members
 Employer() {}
 ~Employer() {}

 void setName(const string& name) {name_ = name;}
private:
 string name_;
};

class Employee {
 friend ostream& operator<<
 (ostream& out, const Employee& obj);
public:
 Employee() : empr_(NULL) {}
 ~Employee() {if (empr_) delete empr_;}

 void setFirstName(const string& name) {firstName_ = name;}
 void setLastName(const string& name) {lastName_ = name;}
 void setEmployer(Employer& empr) {empr_ = &empr;}
 const Employer* getEmployer() const {return(empr_);}

private:
 string firstName_;
 string lastName_;
 Employer* empr_;
};

// Allow us to send Employer objects to an ostream...
ostream& operator<<(ostream& out, const Employer& empr) {

 out << empr.name_ << endl;

 return(out);
}

// Allow us to send Employee objects to an ostream...
ostream& operator<<(ostream& out, const Employee& emp) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Class Writable to a Stream | 365

Discussion
The first thing you need to do is declare operator<< as a friend of the class you want
to write to a stream. You should use operator<< instead of a member function like
writeToStream(ostream& os) because the left-shift operator is the convention for writ-
ing everything else in the standard library to a stream. You need to declare it as a
friend because, in most cases, you want to write private members to the stream, and
non-friend functions can’t access them.

After that, define the version of operator<< that operates on an ostream or wostream
(defined in <ostream>) and your class that you have already declared as a friend. This is
where you have to decide which data members should be written to the stream. Typi-
cally, you will want to write all data members to the stream, as I did in Example 10-6:

out << emp.firstName_ << endl;
out << emp.lastName_ << endl;

In Example 10-6, I wrote the object pointed to by empr_ by invoking operator<< on it:

if (emp.empr_)
 out << *emp.empr_ << endl;

I can do this because empr_ points to an object of the Employer class, and, like
Employee, I have defined operator<< for it.

 out << emp.firstName_ << endl;
 out << emp.lastName_ << endl;
 if (emp.empr_)
 out << *emp.empr_ << endl;

 return(out);
}

int main() {

 Employee emp;
 string first = "William";
 string last = "Shatner";
 Employer empr;
 string name = "Enterprise";
 empr.setName(name);

 emp.setFirstName(first);
 emp.setLastName(last);
 emp.setEmployer(empr);

 cout << emp; // Write to the stream
}

Example 10-6. Writing objects to a stream (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

366 | Chapter 10: Streams and Files

When you are done writing your class’s members to the stream, your operator<<
must return the stream it was passed. You need to do this whenever you overload
operator<<, so it can be used in succession, like this:

cout << "Here's my object: " << myObj << '\n';

The approach I give is simple, and when you want to be able to write a class to an out-
put stream for human consumption, it will work just fine, but that’s only part of the
story. If you are writing an object to a stream, it’s usually for one of two reasons. Either
that stream goes somewhere that will be read by a person (cout, console window, a log
file, etc.), or the stream is a temporary or persistent storage medium (a stringstream, a
network connection, a file, etc.), and you plan on reassembling the object from that
stream in the future. If you need to recreate the object from a stream (the subject of
Recipe 10.5), you need to think carefully about your class relationships.

Implementing serialization for anything other than trivial classes is hard work. If
your class references (via pointer or reference) other classes—as most nontrivial
classes do—you have to accommodate the potential for circular references in a
meaningful way when writing out objects, and you have to reconstruct references
correctly when reading them in. If you have to build something from scratch, then
you’ll have to handle these design considerations, but if you can use an external
library, you should try the Boost Serialization library, which provides a framework
for serializing objects in a portable way.

See Also
Recipe 10.5

10.5 Making a Class Readable from a Stream

Problem
You have written an object of some class to a stream, and now you need to read that
data from the stream and use it to initialize an object of the same class.

Solution
Use operator>> to read data from the stream into your class to populate its data
members, which is simply the reverse of what Example 10-6 does. See Example 10-7
for an implementation.

Example 10-7. Reading data into an object from a stream

#include <iostream>
#include <istream>
#include <fstream>
#include <string>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Class Readable from a Stream | 367

using namespace std;

class Employee {
 friend ostream& operator<< // These have to be friends
 (ostream& out, const Employee& emp); // so they can access
 friend istream& operator>> // nonpublic members
 (istream& in, Employee& emp);

public:
 Employee() {}
 ~Employee() {}

 void setFirstName(const string& name) {firstName_ = name;}
 void setLastName(const string& name) {lastName_ = name;}

private:
 string firstName_;
 string lastName_;
};

// Send an Employee object to an ostream...
ostream& operator<<(ostream& out, const Employee& emp) {

 out << emp.firstName_ << endl;
 out << emp.lastName_ << endl;

 return(out);
}

// Read an Employee object from a stream
istream& operator>>(istream& in, Employee& emp) {

 in >> emp.firstName_;
 in >> emp.lastName_;

 return(in);
}

int main() {

 Employee emp;
 string first = "William";
 string last = "Shatner";

 emp.setFirstName(first);
 emp.setLastName(last);

 ofstream out("tmp\\emp.txt");

 if (!out) {
 cerr << "Unable to open output file.\n";
 exit(EXIT_FAILURE);
 }

Example 10-7. Reading data into an object from a stream (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

368 | Chapter 10: Streams and Files

Discussion
The steps for making a class readable from a stream are nearly identical to, but the
opposite of, those for writing an object to a stream. If you have not already read Rec-
ipe 10.4, you should do so for Example 10-7 to make sense.

First, you have to declare an operator>> as a friend of your target class, but, in this
case, you want it to use an istream instead of an ostream. Then define operator>>
(instead of operator<<) to read values from the stream directly into each of your class’s
member variables. When you are done reading in data, return the input stream.

See Also
Recipe 10.4

10.6 Getting Information About a File

Problem
You want information about a file, such as its size, device, last modification time,
etc.

Solution
Use the C system call stat in <sys/stat.h>. See Example 10-8 for a typical use of
stat that prints out a few file attributes.

 out << emp; // Write the Emp to the file
 out.close();

 ifstream in("tmp\\emp.txt");

 if (!in) {
 cerr << "Unable to open input file.\n";
 exit(EXIT_FAILURE);
 }

 Employee emp2;

 in >> emp2; // Read the file into an empty object
 in.close();

 cout << emp2;
}

Example 10-8. Obtaining file information

#include <iostream>
#include <ctime>

Example 10-7. Reading data into an object from a stream (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Getting Information About a File | 369

Discussion
The C++ standard library supports manipulation of file content with streams, but it
has no built-in support for reading or altering the metadata the OS maintains about a
file, such as its size, ownership, permissions, various timestamps, and other informa-
tion. However, standard C contains a number of standard system call libraries that
you can use to get this kind of information about a file, and that’s what
Example 10-8 uses.

There are two parts to obtaining file information. First, there is a struct named stat
that contains members that hold data about a file, and second there is a system call
(function) of the same name, which gets information about whatever file you specify
and populates a stat struct with it. A system call is a function that provides some
service from the OS. A number of system calls are part of Standard C, and many of

#include <sys/types.h>
#include <sys/stat.h>
#include <cerrno>
#include <cstring>

int main(int argc, char** argv)
{
 struct stat fileInfo;

 if (argc < 2) {
 std::cout << "Usage: fileinfo <file name>\n";
 return(EXIT_FAILURE);
 }

 if (stat(argv[1], &fileInfo) != 0) { // Use stat() to get the info
 std::cerr << "Error: " << strerror(errno) << '\n';
 return(EXIT_FAILURE);
 }

 std::cout << "Type: : ";
 if ((fileInfo.st_mode & S_IFMT) == S_IFDIR) { // From sys/types.h
 std::cout << "Directory\n";
 } else {
 std::cout << "File\n";
 }

 std::cout << "Size : " <<
 fileInfo.st_size << '\n'; // Size in bytes
 std::cout << "Device : " <<
 (char)(fileInfo.st_dev + 'A') << '\n'; // Device number
 std::cout << "Created : " <<
 std::ctime(&fileInfo.st_ctime); // Creation time
 std::cout << "Modified : " <<
 std::ctime(&fileInfo.st_mtime); // Last mod time
}

Example 10-8. Obtaining file information (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

370 | Chapter 10: Streams and Files

them are standardized across the different versions of Unix. The stat struct looks
like this (from Kernigan and Richie’s The C Programming Language [Prentice Hall]):

struct stat {
 dev_t st_dev; /* device of inode */
 ino_t st_ino; /* inode number */
 short st_mode; /* mode bits */
 short st_nlink; /* number of links to file */
 short st_uid; /* owner's user id */
 short st_gid; /* owner's group id */
 dev_t st_rdev; /* for special files */
 off_t st_size; /* file size in characters */
 time_t st_atime; /* time last accessed */
 time_t st_mtime; /* time last modified */
 time_t st_ctime; /* time inode last changed */
};

The meaning of each of stat’s members depends on the OS. For example, st_uid
and st_gid mean nothing on Windows systems; whereas on Unix systems, they actu-
ally contain the user and group ids of the file’s owner. Take a look at your OS docu-
mentation to see which values are supported and how to interpret them.

Example 10-8 shows how to display some of the portable members of stat. st_mode
contains a bit mask describing the type of file. You can use it to determine if the file
is a directory or not. st_size is the file size in bytes. The three time_t members are
timestamps of the access, modification, and creation times of the files.

The remaining members contain operating-system specific information. Consider
st_dev: on Windows systems, it contains the device number (drive) as an offset
from ASCII letter A (which is why I add an 'A' to it in the example—this gives you
the drive letter). But that won’t give you the same results on Unix; pass the value
returned to the ustat system call to obtain the filesystem name.

If you need more information about a file, the best thing to do is to do some investi-
gating in your OS’s documentation. The standard C system calls are Unix-centric, so
they are usually more useful on Unix systems (and have a number of other system
calls that can be used in conjunction with them). If you are not using Unix, chances
are there are proprietary libraries that ship with your OS’s development environ-
ment that provide more detailed information.

10.7 Copying a File

Problem
You need to copy one file to another in a portable manner, i.e., without using OS-
specific APIs.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Copying a File | 371

Solution
Use C++ file streams in <fstream> to copy data from one stream to another.
Example 10-9 gives an example of a buffered stream copy.

Discussion
Copying a file may appear to be a simple matter of reading from one stream and
writing to another. But the C++ streams library is large, and there are a number of
different ways to do the reading and the writing, so you should know a little about
the library to avoid costly performance mistakes.

Example 10-9 runs fast because it buffers input and output. The read and write func-
tions operate on entire buffers at a time—instead of a character-at-a-time copy
loop—by reading from the input stream to the buffer and writing from the buffer to
the output stream in chunks. They also do not do any kind of formatting on the data
like the left- and right-shift operators, which keeps things fast. Additionally, since the
streams are in binary mode, EOF characters can be read and written without inci-
dent. Depending on your hardware, OS, and so on, you will get different results for
different buffer sizes. Experiment to find the best parameters for your system.

Example 10-9. Copying a file

#include <iostream>
#include <fstream>

const static int BUF_SIZE = 4096;

using std::ios_base;

int main(int argc, char** argv) {

 std::ifstream in(argv[1],
 ios_base::in | ios_base::binary); // Use binary mode so we can
 std::ofstream out(argv[2], // handle all kinds of file
 ios_base::out | ios_base::binary); // content.

 // Make sure the streams opened okay...

 char buf[BUF_SIZE];

 do {
 in.read(&buf[0], BUF_SIZE); // Read at most n bytes into
 out.write(&buf[0], in.gcount()); // buf, then write the buf to
 } while (in.gcount() > 0); // the output.

 // Check streams for problems...

 in.close();
 out.close();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

372 | Chapter 10: Streams and Files

But there’s more to it than this. All C++ streams already buffer data when reading or
writing, so Example 10-9 is actually doing double buffering. The input stream has its
own internal stream buffer that holds characters that have been read from the source
but not extracted with read, operator<<, getc, or any other member functions, and the
output stream has a buffer that holds output that has been written to the stream but
not the destination (in the case of an ofstream, it’s a file but it could be a string, a net-
work connection, or who-knows-what). Therefore, the best thing to do is to let the
buffers exchange data directly. You can do this with operator<<, which behaves differ-
ently than usual when used with stream buffers. For example, instead of the do/while
loop in Example 10-9, use this:

out << in.rdbuf();

Don’t place this statement in the body of the loop, replace the loop with this single
line. It looks a little odd, since, typically, operator<< says, “take the righthand side
and send it to the lefthand stream,” but bear with me and it will make sense. rdbuf
returns the buffer from the input stream, and the implementation of operator<< that
takes a stream buffer as a righthand argument reads a character at a time from the
input buffer and writes it to the output buffer. When the input buffer is emptied, it
knows it has to refill itself with data from the real source, and operator<< is none the
wiser.

Example 10-9 shows how to copy the contents of a file yourself, but your OS is
responsible for managing the filesystem, which encompasses copying them, so why
not let the OS do the work? In most cases, the answer to this question is that a direct
call to the OS API is, of course, not portable. Boost’s Filesystem library masks a lot of
the OS-specific APIs for you by providing the function copy_file, which makes dif-
ferent OS calls based on the platform it was compiled for. Example 10-10 contains a
short program that copies a file from one location to another.

Example 10-10. Copying a file with Boost

#include <iostream>
#include <string>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

 // Parameter checking...

 try {
 // Turn the args into absolute paths using native formatting
 path src = complete(path(argv[1], native));
 path dst = complete(path(argv[2], native));

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Copying a File | 373

This a small program, but there are a few key parts that need explaining because
other recipes in this chapter use the Boost Filesystem library. To begin with, the cen-
tral component of the Boost Filesystem library is the path class, which represents, in
an OS-independent way, a path to a file or directory. You can create a path using
either a portable or OS-native string. In Example 10-10, I create a path out of the
program arguments (that I then pass to complete, which I discuss in a moment):

path src = complete(path(argv[1], native));

The first argument is the text of the path, e.g., "tmp\\foo.txt" and the second argu-
ment is the name of a function that accepts a string argument and returns a boolean
that validates that a path is valid according to certain rules. The native function
means to use the OS’s native format for validation. I used it in Example 10-10 because
the arguments are passed in from the command line where they are presumably typed
in by a human user, who will probably use the native OS format when specifying files.
There are a number of functions that you can use to validate file and directory names,
all of which are self-explanatory: portable_posix_name, windows_name, portable_name,
portable_directory_name, portable_file_name, and no_check. See the documentation
for specifics.

complete composes an absolute path using the current working directory and the rel-
ative path you pass it. Thus, I can do this to create an absolute path to the source
file:

path src = complete(path("tmp\\foo.txt", native));

complete handles the case where the first argument is already an absolute filename by
using the value given rather than trying to merge it with the current working direc-
tory. In other words, the following code invoked from a current directory of "c:\
myprograms" ignores the current working directory since the path given is already
complete:

path src = complete(path("c:\\windows\\garbage.txt", native));

Many of the Boost Filesystem functions will throw an exception if a precondition is not
met. The documentation has all the details, but a good example is with the copy_file
function itself. A file must exist before it can be copied, so if the source file does not
exist, the operation cannot succeed; therefore, copy_file will throw an exception.

 copy_file(src, dst);
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 }

 return(EXIT_SUCCESS);
}

Example 10-10. Copying a file with Boost (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

374 | Chapter 10: Streams and Files

Catch the exception as I did in Example 10-10 and you will get an error message that
explains the problem.

10.8 Deleting or Renaming a File

Problem
You have to remove or rename a file, and you want to do it portably, i.e., without
using OS-specific APIs.

Solution
The Standard C functions remove and rename, in <cstdio>, will do this. See
Example 10-11 for a brief demonstration of them.

Discussion
These system calls are easy to use: just call one or the other with the filename you
want to delete or rename. If something goes wrong, the return value is non-zero and
errno is set to the appropriate error number. You can use strerror or perror (both
declared in <cstdio>) to print out the implementation-defined error message.

Example 10-11. Removing a file

#include <iostream>
#include <cstdio>
#include <cerrno>

using namespace std;

int main(int argc, char** argv) {

 if (argc != 2) {
 cerr << "You must supply a file name to remove." << endl;
 return(EXIT_FAILURE);
 }

 if (remove(argv[1]) == -1) { // remove() returns -1 on error
 cerr << "Error: " << strerror(errno) << endl;
 return(EXIT_FAILURE);
 }
 else {
 cout << "File '" << argv[1] << "' removed." << endl;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Deleting or Renaming a File | 375

To rename a file, you can replace the remove call in Example 10-11 with the follow-
ing code:

if (rename(argv[1], argv[2])) {
 cerr << "Error: " << strerror(errno) << endl;
 return(EXIT_FAILURE);
}

The Boost Filesystem library also provides the ability to remove or rename a file.
Example 10-12 shows a short program for removing a file (or directory, but see the
discussion after the example).

The important part of Example 10-12 is the remove function. Call it with a valid path
argument that refers to a file or an empty directory, and it will be removed. For an
explanation of the path class and complete function, both of which are part of the Boost
Filesystem library, take a look at the discussion in Recipe 10.7. See Recipe 10.11 for an
example of how to remove a directory and all the files it contains.

Renaming a file or directory is similar. Replace the code in the try block in
Example 10-12 with this code:

path src = complete(path(argv[1], native));
path dst = complete(path(argv[2], native));
rename(src, dst);

Example 10-12. Removing a file with Boost

#include <iostream>
#include <string>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

 // Do parameter checking...

 try {
 path p = complete(path(argv[1], native));
 remove(p);
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 }
 return(EXIT_SUCCESS);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

376 | Chapter 10: Streams and Files

This will rename src to dst, so long as each is a valid path. src and dst don’t have to
have a common base directory, and in that respect, the rename function logically
moves a file or directory to a new base directory, so long as dst exists.

See Also
Recipe 10.7

10.9 Creating a Temporary Filename and File

Problem
You have to store some stuff on disk temporarily, and you don’t want to have to
write a routine that generates a unique name yourself.

Solution
Use either the tmpfile or tmpnam functions, declared in <cstdio>. tmpfile returns a
FILE* that is already opened for writing, and tmpnam generates a unique filename that
you can open yourself. Example 10-13 shows how to use tmpfile.

Discussion
There are two ways to create a temporary file; Example 10-13 shows the first way.
The function tmpfile is declared in <cstdio>, takes no parameters, and returns a
FILE* if successful, NULL if not. The FILE* is the same type you can use with the C

Example 10-13. Creating a temporary file

#include <iostream>
#include <cstdio>

using namespace std;

int main() {

 FILE* pf = NULL;
 char buf[256];

 pf = tmpfile(); // Create and open a temp file

 if (pf) {
 fputs("This is a temp file", pf); // Write some data to it
 }

 fseek(pf, 5, SEEK_SET); // Reset the file position
 fgets(buf, 255, pf); // Read a string from it
 fclose(pf);

 cout << buf << '\n';
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Temporary Filename and File | 377

input/output functions fread, fwrite, fgets, fputs, etc. tmpfile opens the temporary
file in “wb+” mode, which means you can write to it or read from it in binary mode
(i.e., the characters are not interpreted as they are read). When your program termi-
nates normally, the temporary file created by tmpfile is automatically deleted.

This may or may not work for you depending on your requirements. You will notice
that tmpfile does not give you a filename—how do you pass the file to another pro-
gram? You can’t; you’ll have to use a similar function instead: tmpnam.

tmpnam doesn’t actually create a temporary file, it just creates a unique file name that
you can use to go open a file using that name yourself. tmpnam takes a single char*
parameter and returns a char*. You can pass in a pointer to a char buffer (that has to
be at least as big as the macro L_tmpnam, also defined in <cstdio>), where tmpnam will
copy the temporary name, and it will return a pointer to the same buffer. If you pass
in NULL, tmpfile will return a pointer to a static buffer that contains the filename,
which means that subsequent calls to tmpnam will overwrite it. (See Example 10-14.)

Example 10-14. Creating a temporary filename

#include <iostream>
#include <fstream>
#include <cstdio>
#include <string>

using namespace std;

int main() {

 char* pFileName = NULL;

 pFileName = tmpnam(NULL);
 // Right here is where another program may get the same temp
 // filename.

 if (!pFileName) {
 cerr << "Couldn't create temp file name.\n";
 return(EXIT_FAILURE);
 }

 cout << "The temp file name is: " << pFileName << '\n';

 ofstream of(pFileName);

 if (of) {
 of << "Here is some temp data.";
 of.close();
 }

 ifstream ifs(pFileName);
 string s;

 if (ifs) {
 ifs >> s;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

378 | Chapter 10: Streams and Files

But there is something important you should know about tmpnam. It has a race condi-
tion whereby more than one process may generate the same filename if one calls
tmpname and the other calls tmpname before the first process opens the file. This is bad
for two reasons. First, a malicious program can do this to intercept the data in a tem-
porary file, and second, an unsuspecting program can get the same filename and sim-
ply corrupt or delete data.

10.10 Creating a Directory

Problem
You have to create a directory, and you want to do it portably, i.e., without using
OS-specific APIs.

Solution
On most platforms, you will be able to use the mkdir system call that is shipped with
most compilers as part of the C headers. It takes on different forms in different OSs,
but regardless, you can use it to create a new directory. There is no standard C++,
portable way to create a directory. Check out Example 10-15 to see how.

 cout << "Just read in \"" << s << "\"\n";
 ifs.close();
 }
}

Example 10-15. Creating a directory

#include <iostream>
#include <direct.h>
#include <cstring>
#include <errno.h>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {

 if (argc < 2) {
 cerr << "Usage: " << argv[0] << " [new dir name]\n";
 return(EXIT_FAILURE);
 }

 if (mkdir(argv[1]) == -1) { // Create the directory
 cerr << "Error: " << strerror(errno);
 return(EXIT_FAILURE);
 }
}

Example 10-14. Creating a temporary filename (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Directory | 379

Discussion
The system call for creating directories differs somewhat from one OS to another,
but don’t let that stop you from using it anyway. Variations of mkdir are supported
on most systems, so creating a directory is just a matter of knowing which header to
include and what the function’s signature looks like.

Example 10-15 works on Windows, but not Unix. On Windows, mkdir is declared in
<direct.h>. It takes one parameter (the directory name), returns -1 if there is an
error, and sets errno to the corresponding error number. You can get the implemen-
tation-defined error text by calling strerror or perror.

On Unix, mkdir is declared in <sys/stat.h>, and its signature is slightly different. The
error semantics are just like Windows, but there is a second parameter that specifies
the permissions to apply to the new directory. Instead, you must specify the permis-
sions using the traditional chmod format (see the chmod man page for specifics), e.g.,
0777 means owner, group, and others all have read, write, and execute permissions.
Thus, you might call it like this on Unix:

#include <iostream>
#include <sys/types.h>
#include <sys/stat.h>
#include <cstring>
#include <errno.h>
#include <cstdlib>

using namespace std;

int main(int argc, char** argv) {

 if (argc < 2) {
 cerr << "Usage: " << argv[0] << " [new dir name]\n";
 return(EXIT_FAILURE);
 }

 if (mkdir(argv[1], 0777) == -1) { // Create the directory
 cerr << "Error: " << strerror(errno);
 return(EXIT_FAILURE);
 }
}

If you want portability, and don’t want to write all the #ifdefs yourself, you should
consider using the Boost Filesystem library. You can create a directory using the
create_directory function, as shown in Example 10-16, which contains a short pro-
gram that creates a directory.

Example 10-16. Creating a directory with Boost

#include <iostream>
#include <string>
#include <cstdlib>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

380 | Chapter 10: Streams and Files

The create_directory function creates a directory identified by the path argument
you give it. If that directory already exists, a filesystem_error exception is thrown
(derived from the standard exception class). For an explanation of the path class and
complete function, both of which are part of the Boost Filesystem library, take a look
at the discussion in Recipe 10.7. See Recipe 10.11 for an example of how to remove a
directory and all the files it contains. If, on the other hand, portability is not a con-
cern, consult your OS’s proprietary filesystem API, which will most likely offer more
flexibility.

See Also
Recipe 10.12

10.11 Removing a Directory

Problem
You need to remove a directory, and you want to do it portably, i.e., without using
OS-specific APIs.

Solution
On most platforms, you will be able to use the rmdir system call that is shipped with
most compilers as part of the C headers. There is no standard C++, portable way to
remove a directory. rmdir takes on different forms in different OSs, but regardless,
you can use it to remove a directory. See Example 10-17 for a short program that
removes a directory.

#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

 // Parameter checking...

 try {
 path p = complete(path(argv[1], native));
 create_directory(p);
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 }

 return(EXIT_SUCCESS);
}

Example 10-16. Creating a directory with Boost (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Removing a Directory | 381

Discussion
The signature of rmdir is the same on most OSs, but the header file where it is
declared is not. On Windows, it is declared in <direct.h>, and on Unix, it is declared
in <unistd.h>. It takes one parameter (the directory name), returns -1 if there is an
error, and sets errno to the corresponding error number. You can get the implemen-
tation-defined error text by calling strerror or perror.

If the target directory is not empty rmdir will return an error. To list the contents of a
directory, to enumerate them for deletion, etc., see Recipe 10.12.

If you want portability, and don’t want to write a bunch of #ifdefs around the vari-
ous OS-specific directory functions, you should consider using the Boost Filesystem
library. The Boost Filesystem library uses the concept of a path to refer to a directory
or file, and paths can be removed with a single function, remove.

The function removeRecurse in Example 10-18 recursively removes a directory and all
of its contents. The most important part is the remove function (which is boost::
filesystem::remove, not a standard library function). It takes a path argument, and
removes it if it is a file or an empty directory, but it doesn’t remove a directory that
contains files.

Example 10-17. Removing a directory

#include <iostream>
#include <direct.h>

using namespace std;

int main(int argc, char** argv) {

 if (argc < 2) {
 cerr << "Usage: " << argv[0] << " [dir name]" << endl;
 return(EXIT_FAILURE);
 }

 if (rmdir(argv[1]) == -1) { // Remove the directory
 cerr << "Error: " << strerror(errno) << endl;;
 return(EXIT_FAILURE);
 }
}

Example 10-18. Removing a directory with Boost

#include <iostream>
#include <string>
#include <cstdlib>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace std;
using namespace boost::filesystem;

void removeRecurse(const path& p) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

382 | Chapter 10: Streams and Files

The code that iterates through the directory contents requires some explanation, and
that is the subject of Recipe 10.12.

The Boost Filesystem library is handy, but remember that Boost is not a formal stan-
dard and therefore is not guaranteed to run everywhere. If you examine the source
code for the Boost Filesystem library, you will notice that essentially, it compiles
native OS calls based on the target platform. If portability is not a concern, consult
your OS’s proprietary filesystem API, which will most likely offer more flexibility.

See Also
Recipe 10.12

 // First, remove the contents of the directory
 directory_iterator end;
 for (directory_iterator it(p);
 it != end; ++it) {

 if (is_directory(*it)) {
 removeRecurse(*it);
 }
 else {
 remove(*it);
 }
 }
 // Then, remove the directory itself
 remove(p);
}

int main(int argc, char** argv) {

 if (argc != 2) {
 cerr << "Usage: " << argv[0] << " [dir name]\n";
 return(EXIT_FAILURE);
 }

 path thePath = system_complete(path(argv[1], native));

 if (!exists(thePath)) {
 cerr << "Error: the directory " << thePath.string()
 << " does not exist.\n";
 return(EXIT_FAILURE);
 }

 try {
 removeRecurse(thePath);
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 return(EXIT_FAILURE);
 }
 return(EXIT_SUCCESS);
}

Example 10-18. Removing a directory with Boost (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Reading the Contents of a Directory | 383

10.12 Reading the Contents of a Directory

Problem
You need to read the contents of a directory, most likely to do something to each file
or subdirectory that’s in it.

Solution
To write something portable, use the Boost Filesystem library’s classes and func-
tions. It provides a number of handy utilities for manipulating files, such as a porta-
ble path representation, directory iterators, and numerous functions for renaming,
deleting, and copying files, and so on. Example 10-19 demonstrates how to use a few
of these facilities.

Example 10-19. Reading a directory

#include <iostream>
#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace boost::filesystem;

int main(int argc, char** argv) {

 if (argc < 2) {
 std::cerr << "Usage: " << argv[0] << " [dir name]\n";
 return(EXIT_FAILURE);
 }

 path fullPath = // Create the full, absolute path name
 system_complete(path(argv[1], native));

 if (!exists(fullPath)) {
 std::cerr << "Error: the directory " << fullPath.string()
 << " does not exist.\n";
 return(EXIT_FAILURE);
 }

 if (!is_directory(fullPath)) {
 std::cout << fullPath.string() << " is not a directory!\n";
 return(EXIT_SUCCESS);
 }

 directory_iterator end;
 for (directory_iterator it(fullPath);
 it != end; ++it) { // Iterate through each
 // element in the dir,
 std::cout << it->leaf(); // almost as you would
 if (is_directory(*it)) // an STL container
 std::cout << " (dir)";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

384 | Chapter 10: Streams and Files

Discussion
Like creating or deleting directories (see Recipes 10.10 and 10.11), there is no stan-
dard, portable way to read the contents of a directory. To make your C++ life easier,
the Filesystem library in the Boost project provides a set of portable routines for oper-
ating on files and directories. It also provides many more—see the other recipes in this
chapter or the Boost Filesystem web page at www.boost.com for more information.

Example 10-19 is a simple directory listing program (like ls on Unix or dir on MS-
DOS). First, it builds an absolute pathname out of the argument passed to the pro-
gram, like this:

path fullPath = complete(path(argv[1], native));

The data type of a path is called, appropriately, path. This is the type that the filesys-
tem routines operate on, and is easily convertible to a string by calling path::string.
Once the path has been assembled, the program checks its existence (with exists),
then checks to see if it is a directory with another utility function, is_directory. If it
is, then everything is in good shape and it can proceed to the real work of listing the
directory contents.

There is a class called directory_iterator in filesystem that uses standard iterator
semantics, like the standard containers, to allow you to use an iterator like you
would a pointer to a directory element. Unlike standard containers, however, there is
no end member function you can call on a directory that represents one-past-the-last-
element (i.e., vector<T>::end). Instead, if you create a directory_iterator with the
default constructor, it represents an end marker that you can use for comparison to
determine when you are done. So do this:

directory_iterator end;

and then you can create an iterator from your path, and compare it to end, like this:

for (directory_iterator it(fullPath);
 it != end; ++it) {
 // do whatever you want to *it
 std::cout << it->leaf();
}

The leaf member function returns a string representing the element referred to by a
path, and not the full path itself, which is what you get if you call the string mem-
ber function.

 std::cout << '\n';
 }

 return(EXIT_SUCCESS);
}

Example 10-19. Reading a directory (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Extracting a File Extension from a String | 385

If you have to write something that is portable, but for some reason you cannot use
Boost, take a look at the Boost code itself. It contains #ifdefs that deal with (for the
most part) Windows versus Posix OS interface environments and path particulars,
such as drive letters versus device names.

See Also
Recipes 10.10 and 10.11

10.13 Extracting a File Extension from a String

Problem
Given a filename or a complete path, you need to retrieve the file extension, which is the
part of a filename that follows the last period. For example, in the filenames src.cpp,
Window.class, and Resume.doc, the file extensions are .cpp, .class, and .doc.

Solution
Convert the file and/or pathname to a string, use the rfind member function to
locate the last period, and return everything after that. Example 10-20 shows how to
do this.

Example 10-20. Getting a file extension from a filename

#include <iostream>
#include <string>

using std::string;

string getFileExt(const string& s) {

 size_t i = s.rfind('.', s.length());
 if (i != string::npos) {
 return(s.substr(i+1, s.length() - i));
 }

 return("");
}

int main(int argc, char** argv) {

 string path = argv[1];

 std::cout << "The extension is \"" << getFileExt(path) << "\"\n";
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

386 | Chapter 10: Streams and Files

Discussion
To get an extension from a filename, you just need to find out where the last dot “.”
is and take everything to the right of that. The standard string class, defined in
<string> contains functions for doing both of these things: rfind and substr.

rfind will search backward for whatever you sent it (a char in this case) as the first
argument, starting at the index specified by the second argument, and return the
index where it was found. If the pattern wasn’t found, rfind will return string::npos.
substr also takes two arguments. The first is the index of the first element to copy,
and the second is the number of characters to copy.

The standard string class contains a number of member functions for finding things.
See Recipe 4.9 for a longer discussion of string searching.

See Also
Recipes 4.9 and 10.12

10.14 Extracting a Filename from a Full Path

Problem
You have the full path of a filename, e.g., d:\apps\src\foo.c, and you need to get the
filename, foo.c.

Solution
Employ the same technique as the previous recipe and use rfind and substr to find
and get what you want from the full pathname. Example 10-21 shows how.

Example 10-21. Extracting a filename from a path

#include <iostream>
#include <string>

using std::string;

string getFileName(const string& s) {

 char sep = '/';

#ifdef _WIN32
 sep = '\\';
#endif

 size_t i = s.rfind(sep, s.length());
 if (i != string::npos) {
 return(s.substr(i+1, s.length() - i));
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Extracting a Filename from a Full Path | 387

Discussion
See the previous recipe for details on how rfind and substr work. The only thing
noteworthy about Example 10-21 is that, as you probably are already aware, Win-
dows has a path separator that is a backslash instead of a forward-slash, so I added
an #ifdef to conditionally set the path separator.

The path class in the Boost Filesystem library makes getting the last part of a full
pathname—which may be a file or directory name—easy with the path::leaf mem-
ber function. Example 10-22 shows a simple program that uses it to print out
whether a path refers to a file or directory.

See the discussion in Recipe 10.7 for more information about the path class.

 return("");
}

int main(int argc, char** argv) {

 string path = argv[1];

 std::cout << "The file name is \"" << getFileName(path) << "\"\n";
}

Example 10-22. Getting a filename from a path

#include <iostream>
#include <cstdlib>
#include <boost/filesystem/operations.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

 // Parameter checking...

 try {
 path p = complete(path(argv[1], native));
 cout << p.leaf() << " is a "
 << (is_directory(p) ? "directory" : "file") << endl;
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 }

 return(EXIT_SUCCESS);
}

Example 10-21. Extracting a filename from a path (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

388 | Chapter 10: Streams and Files

See Also
Recipe 10.15

10.15 Extracting a Path from a Full Path and Filename

Problem
You have the full path of a filename, e.g., d:\apps\src\foo.c, and you need to get the
pathname, d:\apps\src.

Solution
Use the same technique as the previous two recipes by invoking rfind and substr to
find and get what you want from the full pathname. See Example 10-23 for a short
sample program.

Example 10-23. Get the path from a full path and filename

#include <iostream>
#include <string>

using std::string;

string getPathName(const string& s) {

 char sep = '/';

#ifdef _WIN32
 sep = '\\';
#endif

 size_t i = s.rfind(sep, s.length());
 if (i != string::npos) {
 return(s.substr(0, i));
 }

 return("");
}

int main(int argc, char** argv) {

 string path = argv[1];

 std::cout << "The path name is \"" << getPathName(path) << "\"\n";
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Replacing a File Extension | 389

Discussion
Example 10-23 is trivial, especially if you’ve already looked at the previous few reci-
pes, so there is no more to explain. However, as with many of the other recipes, the
Boost Filesystem library provides a way to extract everything but the last part of the
filename with its branch_path function. Example 10-24 shows how to use it.

Sample output from Example 10-24 looks like this:

D:\src\ccb\c10>bin\GetPathBoost.exe c:\windows\system32\1033
c:/windows/system32

See Also
Recipes 10.13 and 10.14

10.16 Replacing a File Extension

Problem
Given a filename, or a path and filename, you want to replace the file’s extension.
For example, if you are given thesis.tex, you want to convert it to thesis.txt.

Solution
Use string’s rfind and replace member functions to find the extension and replace
it. Example 10-25 shows you how to do this.

Example 10-24. Getting the base path

#include <iostream>
#include <cstdlib>
#include <boost/filesystem/operations.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

 // Parameter checking...

 try {
 path p = complete(path(argv[1], native));
 cout << p.branch_path().string() << endl;
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 }
 return(EXIT_SUCCESS);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

390 | Chapter 10: Streams and Files

Discussion
This solution is similar to the ones in the preceding recipes, but in this case I used
replace to replace a portion of the string with a new string. replace has three param-
eters. The first parameter is the index where the replace should begin, and the sec-
ond is the number of characters to delete from the destination string. The third
parameter is the value that will be used to replace the deleted portion of the string.

See Also
Recipe 4.9

10.17 Combining Two Paths into a Single Path

Problem
You have two paths and you have to combine them into a single path. You may have
something like /usr/home/ryan as a first path, and utils/compilers as the second,
and wish to get /usr/home/ryan/utils/compilers, without having to worry whether
or not the first path ends with a path separator.

Solution
Treat the paths as strings and use the append operator, operator+=, to compose a full
path out of partial paths. See Example 10-26.

Example 10-25. Replacing a file extension

#include <iostream>
#include <string>

using std::string;

void replaceExt(string& s, const string& newExt) {

 string::size_type i = s.rfind('.', s.length());

 if (i != string::npos) {
 s.replace(i+1, newExt.length(), newExt);
 }
}

int main(int argc, char** argv) {

 string path = argv[1];

 replaceExt(path, "foobar");
 std::cout << "The new name is \"" << path << "\"\n";
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Combining Two Paths into a Single Path | 391

Discussion
The code in Example 10-26 uses strings that represent paths, but there’s no addi-
tional checking on the path class for validity and the paths used are only as portable
as the values they contain. If, for example, these paths are retrieved from the user,
you don’t know if they’re using the right OS-specific format, or if they contain illegal
characters.

For many other recipes in this chapter I have included examples that use the Boost
Filesystem library, and when working with paths, this approach has lots of benefits.
As I discussed in Recipe 10.7, the Boost Filesystem library contains a path class that
is a portable representation of a path to a file or directory. The operations in the File-
system library mostly work with path objects, and as such, the path class can handle
path composition from an absolute base and a relative path. (See Example 10-27.)

Example 10-26. Combining paths

#include <iostream>
#include <string>

using std::string;

string pathAppend(const string& p1, const string& p2) {

 char sep = '/';
 string tmp = p1;

#ifdef _WIN32
 sep = '\\';
#endif

 if (p1[p1.length()] != sep) { // Need to add a
 tmp += sep; // path separator
 return(tmp + p2);
 }
 else
 return(p1 + p2);
}

int main(int argc, char** argv) {

 string path = argv[1];

 std::cout << "Appending somedir\\anotherdir is \""
 << pathAppend(path, "somedir\\anotherdir") << "\"\n";
}

Example 10-27. Combining paths with Boost

#include <iostream>
#include <string>
#include <cstdlib>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

392 | Chapter 10: Streams and Files

The output of the program in Example 10-27 might look like this:

D:\src\ccb\c10>bin\MakePathBoost.exe d:\temp some\other\dir
d:/temp/some/other/dir
D:/src/ccb/c10/some/other/dir

or:

D:\src\ccb\c10>bin\MakePathBoost.exe d:\temp c:\WINDOWS\system32
c:/WINDOWS/system32
c:/WINDOWS/system32

What you can see here is that complete and system_complete merge paths when pos-
sible, or return the absolute path when merging paths makes no sense. For example,
in the first output, the first argument given to the program is an absolute directory
and the second is a relative directory. complete merges them together and produces a
single, absolute path. The first argument to complete is the relative path, and the sec-
ond is the absolute path, and if the first argument is already an absolute path, the
second argument is ignored. That’s why in the second output you can see that the
argument "d:\temp" is ignored since the second argument I give is already an abso-
lute path.

system_complete only takes a single argument (the relative path in this case) and
appends it to the current working directory to produce another absolute path. Again,

#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

 // Parameter checking...

 try {
 // Compose a path from the two args
 path p1 = complete(path(argv[2], native),
 path(argv[1], native));
 cout << p1.string() << endl;

 // Create a path with a base of the current dir
 path p2 = system_complete(path(argv[2], native));
 cout << p2.string() << endl;
 }
 catch (exception& e) {
 cerr << e.what() << endl;
 }

 return(EXIT_SUCCESS);
}

Example 10-27. Combining paths with Boost (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Combining Two Paths into a Single Path | 393

if you give it a path that is already absolute, it ignores the current working directory
and simply returns the absolute path you gave it.

These paths are not reconciled with the filesystem though. You have to explicitly test
to see if a path object represents a valid filesystem path. For example, to check if one
of these paths exists, you can use the exists function on a path:

path p1 = complete(path(argv[2], native),
 path(argv[1], native));
if (exists(p1)) {
 // ...

There are many more functions you can use to get information about a path: is_dir-
ectory, is_empty, file_size, last_write_time, and so on. See the Boost Filesystem
library documentation at www.boost.org for more information.

See Also
Recipe 10.7

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

394

Chapter 11CHAPTER 11

Science and Mathematics

11.0 Introduction
C++ is a language well suited for scientific and mathematical programming, due to
its flexibility, expressivity, and efficiency. One of the biggest advantages of C++ for
numerical processing code is that it can help you avoid redundancy.

Historically, numerical code in many programming languages would repeat algo-
rithms over and over for different kinds of numerical types (e.g., short, long, single,
double, custom numerical types, etc.). C++ provides a solution to this problem of
redundancy through templates. Templates enable you to write algorithms independantly
of the data representation, a technique known commonly as generic programming.

C++ is not without its shortcomings with regards to numerical processing code. The
biggest drawback with C++—in contrast to specialized mathematical and scientific
programming languages—is that the standard library is limited in terms of support
of algorithms and data-types relevant to numerical programming. The biggest over-
sights in the standard library are arguably the lack of matrix types and arbitrary pre-
cision integers.

In this chapter, I will provide you with solutions to common numerical program-
ming problems and demonstrate how to use generic programming techniques to
write numerical code effectively. Where appropriate, I will recommend widely used
open-source libraries with commercially friendly licenses and a proven track record.
This chapter introduces the basic techniques of generic programming gradually from
recipe to recipe.

Many programmers using C++ still distrust templates and generic programming due
to their apparent complexity. When templates were first introduced into the language
they were neither well implemented nor well understood by programmers and com-
piler implementers alike. As a result, many programmers, including yours truly,
avoided generic programming in C++ for several years while the technology matured.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing the Number of Elements in a Container | 395

Today, generic programming is widely accepted as a powerful and useful program-
ming paradigm, and is supported by the most popular programming languages. Fur-
thermore, C++ compiler technology has improved by leaps and bounds, and modern
compilers deal with templates in a much more standardized and efficient manner. As
a result, modern C++ is a particularly powerful language for scientific and numerical
applications.

11.1 Computing the Number of Elements
in a Container

Problem
You want to find the number of elements in a container.

Solution
You can compute the number of elements in a container by using the size member
function or the distance function from the <algorithm> header as in Example 11-1.

The program in Example 11-1 produces the following output:

3
3

Discussion
The size member function, which returns the number of elements in a standard con-
tainer, is the best solution in cases where the container object is accessible. I also
demonstrated distance in Example 11-1, because when writing generic code it is
common to work with only a pair of iterators. When working with iterators, you
often don’t have access to the type of the container or to its member functions.

Example 11-1. Computing the Number of Elements in a Container

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int main() {
 vector<int> v;
 v.push_back(0);
 v.push_back(1);
 v.push_back(2);
 cout << v.size() << endl;
 cout << distance(v.begin(), v.end()) << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

396 | Chapter 11: Science and Mathematics

The distance function, like most STL algorithms, is actually a template function.
Since the type of the template argument can be deduced automatically by the com-
piler from the function arguments, you don’t have to explicitly pass it as a template
parameter. You can, of course, write out the template parameter explicitly if you
want to, as follows:

 cout << distance<vector<int>::iterator>(v.begin(), v.end()) << endl;

The distance function performance depends on the kind of iterator used. It takes
constant time if the input iterator is a random-access iterator; otherwise, it operates
in linear time. (Iterator concepts are explained in Recipe 7.1.)

See Also
Recipe 15.1

11.2 Finding the Greatest or Least Value
in a Container

Problem
You want to find the maximum or minimum value in a container.

Solution
Example 11-2 shows how to find the minimum and maximum elements in a con-
tainer by using the functions max_element and min_element found in the <algorithm>
header. These functions return iterators that point to the first occurence of an ele-
ment with the largest or smallest value, respectively.

Example 11-2. Finding the minimum or maximum element from a container

#include <algorithm>
#include <vector>
#include <iostream>

using namespace std;

int getMaxInt(vector<int>& v) {
 return *max_element(v.begin(), v.end());
}

int getMinInt(vector<int>& v) {
 return *min_element(v.begin(), v.end());
}

int main() {
 vector<int> v;
 for (int i=10; i < 20; ++i) v.push_back(i);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Finding the Greatest or Least Value in a Container | 397

The program in Example 11-2 produces the following output:

min integer = 10
max integer = 19

Discussion
You may have noticed the dereferencing of the return value from the calls to min_
element and max_element. This is because these functions return iterators and not
actual values, so the results have to be dereferenced. You may find it a minor incon-
venience to have to dereference the return type, but it avoids unnecssarily copying
the return value. This can be especially significant when the return value has expen-
sive copy semantics (e.g., large strings).

The generic algorithms provided by the standard library are obviously quite useful,
but it is more important for you to be able to write your own generic functions for
getting the minimum and maximum value from a container. For instance, let’s say
that you want a single function which returns the minimum and maximum values by
modifying reference parameters instead of returning them in a pair or some other
structure. This is demonstrated in Example 11-3.

 cout << "min integer = " << getMinInt(v) << endl;
 cout << "max integer = " << getMaxInt(v) << endl;
}

Example 11-3. Generic function for returning the minimum and maximum value

#include <algorithm>
#include <vector>
#include <iostream>

using namespace std;

template<class Iter_T, class Value_T>
void computeMinAndMax(Iter_T first, Iter_T last, Value_T& min, Value_T& max) {
 min = *min_element(first, last);
 max = *max_element(first, last);
}

int main() {
 vector<int> v;
 for (int i=10; i < 20; ++i) v.push_back(i);
 int min = -1;
 int max = -1;
 computeMinAndMax(v.begin(), v.end(), min, max);
 cout << "min integer = " << min << endl;
 cout << "max integer = " << max << endl;
}

Example 11-2. Finding the minimum or maximum element from a container (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

398 | Chapter 11: Science and Mathematics

In Example 11-3, I have written a computeMinAndMax function template which takes
two template parameters, one is the type of the iterator and the other is the type of
the minimum and maximum values. Because both template parameters are also func-
tion parameters, the C++ compiler is able to deduce the two separate types, Iter_T
and Value_T, just as I demonstrated in Recipe 11.1. This saves me from having to
specify the template parameters explicitly like:

compute_min_max<vector<int>::iterator, int>(...)

The min_element and max_element functions work by using operator< to compare the
values referenced by the iterators. This means that if an iterator does not reference a
type that supports comparison through the less-than operator, a compiler error will
result. The min_element and max_element functions, however, can be used with a
user-defined comparison functor, i.e., a function pointer or a function object.

The specific kind of functor needed by min_element and max_element is one that takes
two values of the type referenced by the iterator and returns a boolean value if one is
less than the other. A functor which returns a boolean value is known as a predicate.
Consider for instance the case of finding the greatest element of a set of user defined
type in Example 11-4.

Functors
Many STL algorithms accept user-defined function objects or pointers. Collectively,
these are known as functors. Sometimes in the literature, the term “function object” is
used interchangeably with the term functor, but I’ve reserved the use of function object
for refering specifically to instances of classes or structs that overload operator().

Of the two options, which one should you use? In the majority of cases, a function
object is more efficient because most compilers can more easily inline a function
object.

Another reason for using a function object is that it can have a state. You can pass val-
ues to its constructor, which it stores in its fields for use later on. This gives function
objects an expressive equivalency as with the concept of closures found in other pro-
gramming languages.

Finally, function objects can be defined within another function or class. Function
pointers have to be declared in a namespace scope.

Example 11-4. Finding the maximum element for user-defined types

#include <algorithm>
#include <vector>
#include <iostream>

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing the Sum and Mean of Elements in a Container | 399

The program in Example 11-4 produces the following output:

the best player is Garry Kasparov

In Example 11-4 I have shown how to provide max_element with a custom predicate.
The predicate is the function object IsWeakerPlayer.

Another alternative to pasing a user-defined predicate in Example 11-4 is to override
operator< for the ChessPlayer struct. This works fine for the specific case of the exam-
ple, but it presumes that the most important way to sort players is by rating. It may be
that sorting by name is more prevalent. Since choosing one method of sorting over
another in this case is an arbitrary choice, I prefer to leave operator< undefined.

11.3 Computing the Sum and Mean of Elements
in a Container

Problem
You want to compute the sum and mean of elements in a container of numbers.

struct ChessPlayer {
 ChessPlayer(const char* name, int rating)
 : name_(name), rating_(rating)
 { }
 const char* name_;
 int rating_;
};

struct IsWeakerPlayer {
 bool operator()(const ChessPlayer& x, const ChessPlayer& y) {
 return x.rating_ < y.rating_;
 }
};

int main()
{
 ChessPlayer kasparov("Garry Kasparov", 2805);
 ChessPlayer anand("Viswanathan Anand ", 2788);
 ChessPlayer topalov("Veselin Topalov", 2788);
 vector<ChessPlayer> v;
 v.push_back(kasparov);
 v.push_back(anand);
 v.push_back(topalov);
 cout << "the best player is ";
 cout << max_element(v.begin(), v.end(), IsWeakerPlayer())->name_;
 cout << endl;
}

Example 11-4. Finding the maximum element for user-defined types (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

400 | Chapter 11: Science and Mathematics

Solution
You can use the accumulate function from the <numeric> header to compute the sum,
and then divide by the size to get the mean. Example 11-5 demonstrates this using a
vector.

The program in Example 11-5 produces the following output:

sum = 10
count = 4
mean = 2.5

Discussion
The accumulate function generally provides the most efficient and simplest method
to find the sum of all the elements in a container.

Even though this recipe has a relatively simple solution, writing your own generic
function to compute a mean is not so easy. Example 11-6 shows one way to write
such a generic function:

The computeMean function in Example 11-6 is sufficient for most purposes but it has
one restriction: it doesn’t work with input iterators such as istream_iterator.

Example 11-5. Computing the sum and mean of a container

#include <numeric>
#include <iostream>
#include <vector>

using namespace std;

int main() {
 vector<int> v;
 v.push_back(1);
 v.push_back(2);
 v.push_back(3);
 v.push_back(4);
 int sum = accumulate(v.begin(), v.end(), 0);
 double mean = double(sum) / v.size();
 cout << "sum = " << sum << endl;
 cout << "count = " << v.size() << endl;
 cout << "mean = " << mean << endl;
}

Example 11-6. A generic function to compute the mean

template<class Iter_T>
double computeMean(Iter_T first, Iter_T last) {
 return static_cast<double>(accumulate(first, last, 0.0))
 / distance(first, last);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing the Sum and Mean of Elements in a Container | 401

An istream_iterator allows only a single pass over the data, so you can call either
accumulate or distance but once you call either function, the data is invalidated and
any further attempts to iterate over the data will likely fail. Example 11-7 demon-
strates how to write instead a more generic algorithm for computing the mean of a
sequence of numbers in a single pass.

istream_iterator and ostream_iterator
The istream_iterator and ostream_iterator class templates are special-purpose itera-
tors found in the the <iterator> header that allow you to treat streams as single-pass
containers.

The istream_iterator is an input iterator that wraps an input stream, such as cin or
ifstream allowing it to be used as a parameter for many generic functions. The
ostream_iterator is an output iterator that allows you to use output streams as if they
are containers.

Using istream_iterator and ostream_iterator are good habits to get in, as they make
it easier to write reusable code.

Example 11-7. A more generic function to compute the mean

#include <stdexcept>
#include <iostream>
#include <iterator>

using namespace std;

template<class Value_T, class Iter_T>
Value_T computeMean(Iter_T first, Iter_T last) {
 if (first == last) throw domain_error("mean is undefined");
 Value_T sum;
 int cnt = 0;
 while (first != last) {
 sum += *first++;
 ++cnt;
 }
 return sum / cnt;
}

int main() {
 cout << "please type in several integers separated by newlines" << endl;
 cout << "and terminated by an EOF character (i.e., Ctrl-Z)" << endl;
 double mean = computeMean<double>(
 istream_iterator<int>(cin),
 istream_iterator<int>());
 cout << "the mean is " << mean << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

402 | Chapter 11: Science and Mathematics

When writing generic code, you should always try to write for the most basic kind of
iterator possible. This implies that whenever you can you should try to write generic
algorithms that operate in a single pass over the input. By taking this approach, your
generic code is not restricted only to containers, but can also be used with input iter-
ators such as istream_iterator. As further motivation, single pass algorithms are
often more efficient.

It may be surprising that I decided to write the computeMean function in Example 11-7
to require that the return type is passed as a template parameter as opposed to
deducing it from the iterator type. This is because it is common for statistics to be
computed and represented with a higher level of precision than the numbers in the
container. For example, the code in Example 11-7 returns the mean of a set of inte-
gers as a double value.

11.4 Filtering Values Outside a Given Range

Problem
You want to ignore values from a sequence that fall above or below a given range.

Solution
Use the remove_copy_if function found in the <algorithm>, as shown in Example 11-8.

Example 11-8. Removing elements from a sequence below a value

#include <algorithm>
#include <vector>
#include <iostream>
#include <iterator>

using namespace std;

struct OutOfRange
{
 OutOfRange(int min, int max)
 : min_(min), max_(max)
 { }
 bool operator()(int x) {
 return (x < min_) || (x > max_);
 }
 int min_;
 int max_;
};

int main()
{
 vector<int> v;
 v.push_back(6);
 v.push_back(12);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing Variance, Standard Deviation, and Other Statistical Functions | 403

The program in Example 11-8 produces the following output:

12
18
24

Discussion
The remove_copy_if function copies the elements from one container to another
container (or output iterator), ignoring any elements that satisfy a predicate that
you provide (it probably would have been more accurate if the function was named
copy_ignore_if). The function, however, does not change the size of the target con-
tainer. If, as is often the case, the number of elements copied by remove_copy_if is
fewer than the size of the target container, you will have to shrink the target con-
tainer by calling the erase member function.

The function remove_copy_if requires a unary predicate (a functor that takes one
argument and returns a boolean value) that returns true when an element should not
be copied. In Example 11-8 the predicate is the function object OutOfRange. The
OutOfRange constructor takes a lower and upper range, and overloads operator().
The operator() function takes an integer parameter, and returns true if the passed
argument is less than the lower limit, or greater than the upper limit.

11.5 Computing Variance, Standard Deviation,
and Other Statistical Functions

Problem
You want to compute one or more of the common statistics such as variance, stan-
dard deviation, skew, and kurtosis of a sequence of numbers.

Solution
You can use the accumulate function from the <numeric> header to compute many
meaningful statistical functions beyond simply the sum by passing custom function
objects. Example 11-9 shows how to compute several important statistical func-
tions, using accumulate.

 v.push_back(18);
 v.push_back(24);
 v.push_back(30);
 remove_copy_if(v.begin(), v.end(),
 ostream_iterator<int>(cout, "\n"), OutOfRange(10,25));
}

Example 11-8. Removing elements from a sequence below a value (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

404 | Chapter 11: Science and Mathematics

Example 11-9. Statistical functions

#include <numeric>
#include <cmath>
#include <algorithm>
#include <functional>
#include <vector>
#include <iostream>

using namespace std;

template<int N, class T>
T nthPower(T x) {
 T ret = x;
 for (int i=1; i < N; ++i) {
 ret *= x;
 }
 return ret;
}

template<class T, int N>
struct SumDiffNthPower {
 SumDiffNthPower(T x) : mean_(x) { };
 T operator()(T sum, T current) {
 return sum + nthPower<N>(current - mean_);
 }
 T mean_;
};

template<class T, int N, class Iter_T>
T nthMoment(Iter_T first, Iter_T last, T mean) {
 size_t cnt = distance(first, last);
 return accumulate(first, last, T(), SumDiffNthPower<T, N>(mean)) / cnt;
}

template<class T, class Iter_T>
T computeVariance(Iter_T first, Iter_T last, T mean) {
 return nthMoment<T, 2>(first, last, mean);
}

template<class T, class Iter_T>
T computeStdDev(Iter_T first, Iter_T last, T mean) {
 return sqrt(computeVariance(first, last, mean));
}

template<class T, class Iter_T>
T computeSkew(Iter_T begin, Iter_T end, T mean) {
 T m3 = nthMoment<T, 3>(begin, end, mean);
 T m2 = nthMoment<T, 2>(begin, end, mean);
 return m3 / (m2 * sqrt(m2));
}

template<class T, class Iter_T>
T computeKurtosisExcess(Iter_T begin, Iter_T end, T mean) {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing Variance, Standard Deviation, and Other Statistical Functions | 405

The program in Example 11-9 produces the following output:

count = 6
sum = 124
mean = 20.6667
variance = 1237.22
standard deviation = 35.1742
skew = 1.75664
kurtosis excess = 1.14171

 T m4 = nthMoment<T, 4>(begin, end, mean);
 T m2 = nthMoment<T, 2>(begin, end, mean);
 return m4 / (m2 * m2) - 3;
}

template<class T, class Iter_T>
void computeStats(Iter_T first, Iter_T last, T& sum, T& mean,
 T& var, T& std_dev, T& skew, T& kurt)
{
 size_t cnt = distance(first, last);
 sum = accumulate(first, last, T());
 mean = sum / cnt;
 var = computeVariance(first, last, mean);
 std_dev = sqrt(var);
 skew = computeSkew(first, last, mean);
 kurt = computeKurtosisExcess(first, last, mean);
}

int main()
{
 vector<int> v;
 v.push_back(2);
 v.push_back(4);
 v.push_back(8);
 v.push_back(10);
 v.push_back(99);
 v.push_back(1);
 double sum, mean, var, dev, skew, kurt;
 computeStats(v.begin(), v.end(), sum, mean, var, dev, skew, kurt);
 cout << "count = " << v.size() << "\n";
 cout << "sum = " << sum << "\n";
 cout << "mean = " << mean << "\n";
 cout << "variance = " << var << "\n";
 cout << "standard deviation = " << dev << "\n";
 cout << "skew = " << skew << "\n";
 cout << "kurtosis excess = " << kurt << "\n";
 cout << endl;
}

Example 11-9. Statistical functions (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

406 | Chapter 11: Science and Mathematics

Discussion
Some of the most important statistical functions (e.g., variance, standard deviation,
skew, and kurtosis) are defined in terms of standardized sample moments about the
mean. The precise definitions of statistical functions vary somewhat from text to
text. This text uses the unbiased definitions of the statistical functions shown in
Table 11-1.

A moment is a characterization of a sequence of numbers. In other
words, it is a way to describe a set of number mathematically.
Moments form the basis of several important statistical functions,
such as the variance, standard deviation, skew, and kurtosis. A central
moment is a moment that is computed about the mean as opposed to
about the origin. A sample moment is a moment that is computed from
a discrete set of numbers instead of a function. A standardized moment
is a moment divided by a power of the standard deviation (the stan-
dard deviation is the square root of the second moment).

The simplest way to code the statistical functions is to define them all in terms of
moments. Since there are several different moments used, each one accepting a con-
stant integer value, I pass the constant as a template parameter. This allows the com-
piler to potentially generate more efficient code because the integer is known at
compile time.

The moment function is defined using the mathematical summation operator Σ.
Whenever you think of the summation operation you should think of the accumulate
function from the <numeric> header. The accumulate function has two forms: one
accumulates using operator+ and the other uses an accumulator functor that you
need to provide. Your accumulator functor will accept two values: the accumulated
value so far, and the value at a specific position in the sequence.

Example 11-10 illustrates how accumulate works by showing how the user supplied
functor is called repeatedly for each element in a series.

Table 11-1. Definitions of statistical functions

Statistical function Equation

nth central moment (µn) Σ (x i – mean)n P(x i)

Variance µ2

Standard deviation √µ2

Skew µ 3 /µ2
3/2

Kurtosis excess (µ 4 /µ2
2) – 3

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Generating Random Numbers | 407

11.6 Generating Random Numbers

Problem
You want to generate some random floating-point numbers in the interval of [0.0, 1.0)
with a uniform distribution.

Solution
The C++ standard provides the C runtime function rand in the <cstdlib> header that
returns a random number in the range of 0 to RAND_MAX inclusive. The RAND_MAX macro
represents the highest value returnable by the rand function. A demonstration of
using rand to generate random floating-point numbers is shown in Example 11-11.

The program in Example 11-11 should produce output similar to:

expect 5 numbers within the interval [0.0, 1.0)
0.010437
0.740997
0.34906
0.369293
0.544373

Example 11-10. Sample implementation of accumulate

template<class Iter_T, class Value_T, class BinOp_T>
Iter_T accumulate(Iter_T begin, Iter_T end, Value_T value, BinOp_T op) {
 while (begin != end) {
 value = op(value, *begin++)
 }
 return value;
}

Example 11-11. Generating random numbers using rand

#include <cstdlib>
#include <ctime>
#include <iostream>

using namespace std;

double doubleRand() {
 return double(rand()) / (double(RAND_MAX) + 1.0);
}

int main() {
 srand(static_cast<unsigned int>(clock()));
 cout << "expect 5 numbers within the interval [0.0, 1.0)" << endl;
 for (int i=0; i < 5; i++) {
 cout << doubleRand() << "\n";
 }
 cout << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

408 | Chapter 11: Science and Mathematics

Discussion
To be precise, random number generation functions, including rand, return pseudo-
random numbers as opposed to truly random numbers, so whenever I say random, I
actually mean pseudo-random.

Before using the rand function you need to seed (i.e., initialize) the random number
generator with a call to srand. This assures that subsequent calls to rand won’t pro-
duce the same sequence of numbers each time the program is run. The simplest way
to seed the random number generator is to pass the result from a call to clock from
the <ctime> header as an unsigned int. Reseeding a random number generator causes
number generation to be less random.

The rand function is limited in many ways. To begin with, it only generates integers,
and only does so using a uniform distribution. Furthermore, the specific random
number generation algorithm used is implementation specific and, thus, random
number sequences are not reproducible from system to system given the same seed.
This is a problem for certain kinds of applications, as well as when testing and
debugging.

A much more sophisticated alternative to rand is the Boost Random library by Jens
Maurer that has inspired the random number facilities proposed for TR1.

TR1 stands for Technical Report One, and is an official proposed
extension to the C++ 98 standard library.

The Boost Random library provides several high-quality random number generation
functions for both integer and floating-point types, and support for numerous kinds
of distributions. Example 11-12 demonstrates how you can produce random float-
ing-point numbers in the interval [0,1).

Example 11-12. Using the Boost Random library

#include <boost/random.hpp>
#include <iostream>
#include <cstdlib>

using namespace std;
using namespace boost;

typedef boost::mt19937 BaseGenerator;
typedef boost::uniform_real<double> Distribution;
typedef boost::variate_generator<BaseGenerator, Distribution> Generator;

double boostDoubleRand() {
 static BaseGenerator base;
 static Distribution dist;
 static Generator rng(base, dist);
 return rng();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initializing a Container with Random Numbers | 409

The main advantage of the Boost Random library, is that the pseudo-random num-
ber generation algorithm has guaranteed and reproducible randomness properties
based on the precise algorithm chosen. In Example 11-12 I use the Mersenne Twister
generator (mt19937) because it offers a good blend of performance and randomness.

11.7 Initializing a Container with Random Numbers

Problem
You want to fill an arbitrary container with random numbers.

Solution
You can use either the generate or generate_n functions from the <algorithm> header
with a functor that returns random numbers. See Example 11-13 for an example of
how to do this.

int main() {
 cout << "expect 5 numbers within the interval [0,1)" << endl;
 for (int i=0; i < 5; i++) {
 cout << boostDoubleRand() << "\n";
 }
 cout << endl;
}

Example 11-13. Initializing containers with random numbers

#include <algorithm>
#include <vector>
#include <iterator>
#include <iostream>
#include <cstdlib>

using namespace std;

struct RndIntGen
{
 RndIntGen(int l, int h)
 : low(l), high(h)
 { }
 int operator()() const {
 return low + (rand() % ((high - low) + 1));
 }
private:
 int low;
 int high;
};

Example 11-12. Using the Boost Random library (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

410 | Chapter 11: Science and Mathematics

The program in Example 11-13 should produce output similar to:

3
1
2
6
4

Discussion
The standard C++ library provides the functions generate and generate_n specifi-
cally for filling containers with the result of a generator function. These functions
accept a nullary functor (a function pointer or function object with no arguments)
whose result is assigned to contiguous values in the container. Sample implementa-
tions of the generate and generate_n functions are shown in Example 11-14.

11.8 Representing a Dynamically Sized Numerical
Vector

Problem
You want a type for manipulating numerical vectors with dynamic size.

Solution
You can use the valarray template from the <valarray> header. Example 11-15
shows how you can use the valarray template.

int main() {
 srand(static_cast<unsigned int>(clock()));
 vector<int> v(5);
 generate(v.begin(), v.end(), RndIntGen(1, 6));
 copy(v.begin(), v.end(), ostream_iterator<int>(cout, "\n"));
}

Example 11-14. Sample implementations of generate and generate_n

template<class Iter_T, class Fxn_T>
void generate(Iter_T first, Iter_T last, Fxn_T f) {
 while (first != last) *first++ = f();
}

template<class Iter_T, class Fxn_T>
void generate_n(Iter_T first, int n, Fxn_T f) {
 for (int i=0; i < n; ++i) *first++ = f();
}

Example 11-13. Initializing containers with random numbers (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing a Dynamically Sized Numerical Vector | 411

The program in Example 11-15 will output the following:

1, 2, 3
2, 4, 6
1, 2, 3

Discussion
Despite its name, vector is not intended to be used as a numerical vector; rather, the
valarray template is. The valarray is designed so that C++ implementations, espe-
cially those on high-performance machines, can apply specialized vector optimiza-
tions to it. The other big advantage of valarray is that it provides numerous
overloaded operators specifically for working with numerical vectors. These opera-
tors provide such functionality as vector addition and scalar multiplication.

The valarray template can also be used with the standard algorithms like a C-style
array. See Example 11-16 to see how you can create iterators to the beginning of, and
one past the end of, a valarray.

Even though it appears somewhat academic, you should not try to create an end iter-
ator for a valarray by writing &x[x.size()]. If this works, it is only by accident since
indexing a valarray past the last valid index results in undefined behaviour.

Example 11-15. Using valarray

#include <valarray>
#include <iostream>

using namespace std;

int main() {
 valarray<int> v(3);
 v[0] = 1; v[1] = 2; v[2] = 3;
 cout << v[0] << ", " << v[1] << ", " << v[2] << endl;
 v = v + v;
 cout << v[0] << ", " << v[1] << ", " << v[2] << endl;
 v /= 2;
 cout << v[0] << ", " << v[1] << ", " << v[2] << endl;
}

Example 11-16. Getting iterators to valarray

template<class T>
T* valarray_begin(valarray<T>& x) {
 return &x[0];
}

template<class T>
T* valarray_end(valarray<T>& x) {
 return valarray_begin(x) + x.size();
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

412 | Chapter 11: Science and Mathematics

The lack of begin and end member functions in valarray is decidedly non-STL-like.
This lack emphasizes that valarray does not model an STL container concept.
Despite that, you can use valarray with any of the generic algorithms where a ran-
dom-access iterator is required.

11.9 Representing a Fixed-Size Numerical Vector

Problem
You want an efficient representation for manipulating constant-sized numerical vectors

Solution
On many common software architectures, it is more efficient to use a custom vector
implementation than a valarray when the size is known at compile time.
Example 11-17 provides a sample implementation of a fixed-size vector template
called a kvector.

Example 11-17. kvector.hpp

#include <algorithm>
#include <cassert>

template<class Value_T, unsigned int N>
class kvector
{
public:
 // public fields
 Value_T m[N];

 // public typedefs
 typedef Value_T value_type;
 typedef Value_T* iterator;
 typedef const Value_T* const_iterator;
 typedef Value_T& reference;
 typedef const Value_T& const_reference;
 typedef size_t size_type;

 // shorthand for referring to kvector
 typedef kvector self;

 // member functions
 template<typename Iter_T>
 void copy(Iter_T first, Iter_T last) { copy(first, last, begin()); }
 iterator begin() { return m; }
 iterator end() { return m + N; }
 const_iterator begin() const { return m; }
 const_iterator end() const { return m + N; }
 reference operator[](size_type n) { return m[n]; }
 const_reference operator[](size_type n) const { return m[n]; }
 static size_type size() { return N; }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing a Fixed-Size Numerical Vector | 413

Usage of the kvector class template is demonstrated in Example 11-18.

 // vector operations
 self& operator+=(const self& x) {
 for (int i=0; i<N; ++i) m[i] += x.m[i]; return *this;
 }
 self& operator-=(const self& x) {
 for (int i=0; i<N; ++i) m[i] -= x.m[i]; return *this;
 }

 // scalar operations
 self& operator=(value_type x) {
 std::fill(begin(), end(), x); return *this;
 }
 self& operator+=(value_type x) {
 for (int i=0; i<N; ++i) m[i] += x; return *this;
 }
 self& operator-=(value_type x) {
 for (int i=0; i<N; ++i) m[i] -= x; return *this;
 }
 self& operator*=(value_type x) {
 for (int i=0; i<N; ++i) m[i] *= x; return *this;
 }
 self& operator/=(value_type x) {
 for (int i=0; i<N; ++i) m[i] /= x; return *this;
 }
 self& operator%=(value_type x) {
 for (int i=0; i<N; ++i) m[i] %= x; return *this;
 }
 self operator-() {
 self x;
 for (int i=0; i<N; ++i) x.m[i] = -m[i];
 return x;
 }

 // friend operators
 friend self operator+(self x, const self& y) { return x += y; }
 friend self operator-(self x, const self& y) { return x -= y; }
 friend self operator+(self x, value_type y) { return x += y; }
 friend self operator-(self x, value_type y) { return x -= y; }
 friend self operator*(self x, value_type y) { return x *= y; }
 friend self operator/(self x, value_type y) { return x /= y; }
 friend self operator%(self x, value_type y) { return x %= y; }
};

Example 11-18. Using kvector

#include "kvector.hpp"

#include <algorithm>
#include <numeric>
#include <iostream>

Example 11-17. kvector.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

414 | Chapter 11: Science and Mathematics

The program in Example 11-18 will produce the following output:

sum = 10
sum = 30
sum = 34

Discussion
The kvector template in Example 11-17 is a cross between a valarray and the array
template proposed for TR1. Like valarray, kvector represents a sequence of values of
a given numerical type, but like tr1::array, the size is known at compile time.

Salient features of kvector are that it supports array initialization syntax and it pro-
vides begin and end member functions. In effect, a kvector is considered a pseudo-
container, which means that it satisfies some but not all of the requirements of a
standard container concept. The result of this is that it is much easier to use kvector
with standard algorithms than a valarray.

Another advantage of the kvector template class is that it supports array initializa-
tion syntax as follows:

int x;
kvector<int, 3> k = { x = 1, x + 2, 5 };

This initializing syntax is only possible because kvector is an aggregate. An aggregate
is an array or a class with no user declared constructors, no private or protected non-
static data members, no base classes, and no virtual functions. Note that you can still
declare a kvector filled with default values as follows:

kvector<int, 3> k = {};

This fills the vector with zeros.

As you can see, I had to made a design trade-off between fully satisfying the stan-
dard container requirements or allowing the array initialization syntax. A similar
design trade-off was made in the design of the TR1 array template.

using namespace std;

int main() {
 kvector<int, 4> v = { 1, 2, 3, 4 };
 cout << "sum = " << accumulate(v.begin(), v.end(), 0) << endl;
 v *= 3;
 cout << "sum = " << accumulate(v.begin(), v.end(), 0) << endl;
 v += 1;
 cout << "sum = " << accumulate(v.begin(), v.end(), 0) << endl;
}

Example 11-18. Using kvector (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing a Dot Product | 415

Perhaps the biggest advantage of the kvector over dynamic vector implementations is
performance. The kvector template is much more efficient than most dynamic vec-
tor implementations for two main reasons: compilers are very good at optimizing
fixed-size loops, and there are no dynamic allocations. The performance difference is
particularly noticeable for small matricies (e.g., 2 × 2 or 3 × 3), which are common in
many kinds of applications.

11.10 Computing a Dot Product

Problem
You have two containers of numbers that are the same length and you want to com-
pute their dot product.

Solution
Example 11-19 shows how you can compute a dot product using the inner_product
function from the <numeric> header.

The program in Example 11-19 produces the following output:

the dot product of (1,2,3) and (4,6,8) is 40

What Is the “self” typedef?
The self typedef I use in Example 11-17 and in later examples is a convenient short-
hand that I use to refer to the type of the current class. It makes code much easier to
write and understand when the self typedef is used rather than writing out the name of
the class.

Example 11-19. Computing the dot product

#include <numeric>
#include <iostream>
#include <vector>

using namespace std;

int main() {
 int v1[] = { 1, 2, 3 };
 int v2[] = { 4, 6, 8 };
 cout << "the dot product of (1,2,3) and (4,6,8) is ";
 cout << inner_product(v1, v1 + 3, v2, 0) << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

416 | Chapter 11: Science and Mathematics

Discussion
The dot product is a form of inner product known as the Euclidean Inner Product.
The inner_product function is declared as follows:

template<class In, class In2, class T>
T inner_product(In first, In last, In2 first2, T init);

template<class In, class In2, class T, class BinOp, class BinOp2>
T inner_product(In first, In last, In2 first2, T init, BinOp op, Binop2 op2);

The first form of inner_product sums the result of multiplying corresponding ele-
ments from two containers. The second form of the inner_product function allows
you to supply your own pairwise operation and accumulation function. See
Example 11-20 to see a sample implementation demonstrating how inner_product
works.

Because of its flexible implementation, you can use inner_product for many more
purposes than just computing a dot product (e.g., you can use it to compute the dis-
tance between two vectors or compute the norm of a vector).

See Also
Recipes 11.11 and 11.12

11.11 Computing the Norm of a Vector

Problem
You want to find the norm (i.e., the length) of a numerical vector.

Solution
You can use the inner_product function from the <numeric> header to multiply a vec-
tor with itself as shown in Example 11-21.

Example 11-20. Sample implementation of inner_product()

template<class In, class In2, class T, class BinOp, class BinOp2>
T inner_product(In first, In last, In2 first2, T init, BinOp op, Binop2 op2) {
 while (first != last) {
 BinOp(init, BinOp2(*first++, *first2++));
 }
 return init;
}

Example 11-21. Computing the norm of a vector

#include <numeric>
#include <vector>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing the Distance Between Two Vectors | 417

The program in Example 11-21 produces the following output:

The length of the vector (3,4) is 5

Discussion
Example 11-21 uses the inner_product function from the <numeric> header to find
the dot product of the numerical vector with itself. The square root of this is known
as the vector norm or the length of a vector.

Rather than deduce the result type in the vectorNorm function, I chose to return a
long double to lose as little data as possible. If a vector is a series of integers, it is
unlikely that in a real example, that the distance can be meaningfully represented as
an integer as well.

11.12 Computing the Distance Between Two Vectors

Problem
You want to find the Euclidean distance between two vectors.

Solution
The Euclidean distance between two vectors is defined as the square root of the sum
of squares of differences between corresponding elements. This can be computed as
shown in Example 11-22.

#include <cmath>
#include <iostream>

using namespace std;

template<typename Iter_T>
long double vectorNorm(Iter_T first, Iter_T last) {
 return sqrt(inner_product(first, last, first, 0.0L));
}

int main() {
 int v[] = { 3, 4 };
 cout << "The length of the vector (3,4) is ";
 cout << vectorNorm(v, v + 2) << endl;
}

Example 11-22. Finding the distance between two vectors

#include <cmath>
#include <iostream>

using namespace std;

Example 11-21. Computing the norm of a vector (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

418 | Chapter 11: Science and Mathematics

The program in Example 11-22 produces the following output:

distance between vectors (1,5) and (4,9) is 5

Discussion
Example 11-22 is a straightforward recipe that shows how to write a simple generic
function in the style of the STL. To compute the vector distances, I could have
instead used the inner_product function I chose not to use a functor, because it was
more complex than was strictly needed. Example 11-23 shows how you can com-
pute vector distance using a functor and the inner_product function from the
<numeric> header.

template<class Iter_T, class Iter2_T>
double vectorDistance(Iter_T first, Iter_T last, Iter2_T first2) {
 double ret = 0.0;
 while (first != last) {
 double dist = (*first++) - (*first2++);
 ret += dist * dist;
 }
 return ret > 0.0 ? sqrt(ret) : 0.0;
}

int main() {
 int v1[] = { 1, 5 };
 int v2[] = { 4, 9 };
 cout << "distance between vectors (1,5) and (4,9) is ";
 cout << vectorDistance(v1, v1 + 2, v2) << endl;
}

Example 11-23. Computing the distance between vectors using inner_product

#include <numeric>
#include <cmath>
#include <iostream>
#include <functional>

using namespace std;

template<class Value_T>
struct DiffSquared {
 Value_T operator()(Value_T x, Value_T y) const {
 return (x - y) * (x - y);
 }
};

template<class Iter_T, class Iter2_T>
double vectorDistance(Iter_T first, Iter_T last, Iter2_T first2) {
 double ret = inner_product(first, last, first2, 0.0L,
 plus<double>(), DiffSquared<double>());
 return ret > 0.0 ? sqrt(ret) : 0.0;
}

Example 11-22. Finding the distance between two vectors (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing a Stride Iterator | 419

Because an implementation of inner_product() may contain special optimizations
for your platform and compiler, I prefer to use it where possible.

11.13 Implementing a Stride Iterator

Problem
You have a contiguous series of numbers and you want to iterate through the ele-
ments n at a time.

Solution
Example 11-24 presents a stride iterator class as a separate header file.

int main() {
 int v1[] = { 1, 5 };
 int v2[] = { 4, 9 };
 cout << "distance between vectors (1,5) and (4,9) is ";
 cout << vectorDistance(v1, v1 + 2, v2) << endl;
}

Example 11-24. stride_iter.hpp

#ifndef STRIDE_ITER_HPP
#define STRIDE_ITER_HPP

#include <iterator>
#include <cassert>

template<class Iter_T>
class stride_iter
{
public:
 // public typedefs
 typedef typename std::iterator_traits<Iter_T>::value_type value_type;
 typedef typename std::iterator_traits<Iter_T>::reference reference;
 typedef typename std::iterator_traits<Iter_T>::difference_type
 difference_type;
 typedef typename std::iterator_traits<Iter_T>::pointer pointer;
 typedef std::random_access_iterator_tag iterator_category;
 typedef stride_iter self;

 // constructors
 stride_iter() : m(NULL), step(0) { };
 stride_iter(const self& x) : m(x.m), step(x.step) { }
 stride_iter(Iter_T x, difference_type n) : m(x), step(n) { }

 // operators
 self& operator++() { m += step; return *this; }
 self operator++(int) { self tmp = *this; m += step; return tmp; }

Example 11-23. Computing the distance between vectors using inner_product (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

420 | Chapter 11: Science and Mathematics

Example 11-25 shows how to use the stride_iter from Example 11-24 to iterate
over a sequence of elements two at a time.

 self& operator+=(difference_type x) { m += x * step; return *this; }
 self& operator--() { m -= step; return *this; }
 self operator--(int) { self tmp = *this; m -= step; return tmp; }
 self& operator-=(difference_type x) { m -= x * step; return *this; }
 reference operator[](difference_type n) { return m[n * step]; }
 reference operator*() { return *m; }

 // friend operators
 friend bool operator==(const self& x, const self& y) {
 assert(x.step == y.step);
 return x.m == y.m;
 }
 friend bool operator!=(const self& x, const self& y) {
 assert(x.step == y.step);
 return x.m != y.m;
 }
 friend bool operator<(const self& x, const self& y) {
 assert(x.step == y.step);
 return x.m < y.m;
 }
 friend difference_type operator-(const self& x, const self& y) {
 assert(x.step == y.step);
 return (x.m - y.m) / x.step;
 }
 friend self operator+(const self& x, difference_type y) {
 assert(x.step == y.step);
 return x += y * x.step;
 }
 friend self operator+(difference_type x, const self& y) {
 assert(x.step == y.step);
 return y += x * x.step;
 }
private:
 Iter_T m;
 difference_type step;
};

#endif

Example 11-25. Using stride_iter

#include "stride_iter.hpp"

#include <algorithm>
#include <iterator>
#include <iostream>

using namespace std;

Example 11-24. stride_iter.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing a Stride Iterator | 421

The program in Example 11-25 produces the following output:

0
2
4
6

Discussion
Stride iterators are commonplace in matrix implementations. They provide a simple
and efficient way to implement matricies as a sequential series of numbers. The
stride iterator implementation presented in Example 11-24 acts as a wrapper around
another iterator that is passed as a template parameter.

I wanted the stride iterator to be compatible with the STL so I had to choose one of
the standard iterator concepts and satisfy the requirements. The stride iterator in
Example 11-24 models a random-access iterator.

In Example 11-26, I have provided a separate implementation for stride iterators
when the step size is known at compile time, called a kstride_iter. Since the step
size is passed as a template parameter, the compiler can much more effectively opti-
mize the code for the iterator, and the size of the iterator is reduced.

int main() {
 int a[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
 stride_iter<int*> first(a, 2);
 stride_iter<int*> last(a + 8, 2);
 copy(first, last, ostream_iterator<int>(cout, "\n"));
}

Example 11-26. kstride_iter.hpp

#ifndef KSTRIDE_ITER_HPP
#define KSTRIDE_ITER_HPP

#include <iterator>

template<class Iter_T, int Step_N>
class kstride_iter
{
public:
 // public typedefs
 typedef typename std::iterator_traits<Iter_T>::value_type value_type;
 typedef typename std::iterator_traits<Iter_T>::reference reference;
 typedef typename std::iterator_traits<Iter_T>::difference_type difference_type;
 typedef typename std::iterator_traits<Iter_T>::pointer pointer;
 typedef std::random_access_iterator_tag iterator_category;
 typedef kstride_iter self;

 // constructors
 kstride_iter() : m(NULL) { }

Example 11-25. Using stride_iter (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

422 | Chapter 11: Science and Mathematics

Example 11-27 shows how to use the kstride_iter.

 kstride_iter(const self& x) : m(x.m) { }
 explicit kstride_iter(Iter_T x) : m(x) { }

 // operators
 self& operator++() { m += Step_N; return *this; }
 self operator++(int) { self tmp = *this; m += Step_N; return tmp; }
 self& operator+=(difference_type x) { m += x * Step_N; return *this; }
 self& operator--() { m -= Step_N; return *this; }
 self operator--(int) { self tmp = *this; m -= Step_N; return tmp; }
 self& operator-=(difference_type x) { m -= x * Step_N; return *this; }
 reference operator[](difference_type n) { return m[n * Step_N]; }
 reference operator*() { return *m; }

 // friend operators
 friend bool operator==(self x, self y) { return x.m == y.m; }
 friend bool operator!=(self x, self y) { return x.m != y.m; }
 friend bool operator<(self x, self y) { return x.m < y.m; }
 friend difference_type operator-(self x, self y) {
 return (x.m - y.m) / Step_N;
 }
 friend self operator+(self x, difference_type y) { return x += y * Step_N; }
 friend self operator+(difference_type x, self y) { return y += x * Step_N; }
private:
 Iter_T m;
};

#endif

Example 11-27. Using kstride_iter

#include "kstride_iter.hpp"

#include <algorithm>
#include <iterator>
#include <iostream>

using namespace std;

int main() {
 int a[] = { 0, 1, 2, 3, 4, 5, 6, 7 };
 kstride_iter<int*, 2> first(a);
 kstride_iter<int*, 2> last(a + 8);
 copy(first, last, ostream_iterator<int>(cout, "\n"));
}

Example 11-26. kstride_iter.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing a Dynamically Sized Matrix | 423

11.14 Implementing a Dynamically Sized Matrix

Problem
You need to store and represent Matricies of numbers where the dimensions (num-
ber of rows and columns) are not known at compile time.

Solution
Example 11-28 provides a general purpose and efficient implementation of a dynami-
cally sized matrix class using the stride iterator from Recipe 11.12 and a valarray.

Example 11-28. matrix.hpp

#ifndef MATRIX_HPP
#define MATRIX_HPP

#include "stride_iter.hpp" // see Recipe 11.12

#include <valarray>
#include <numeric>
#include <algorithm>

template<class Value_T>
class matrix
{
public:
 // public typedefs
 typedef Value_T value_type;
 typedef matrix self;
 typedef value_type* iterator;
 typedef const value_type* const_iterator;
 typedef Value_T* row_type;
 typedef stride_iter<value_type*> col_type;
 typedef const value_type* const_row_type;
 typedef stride_iter<const value_type*> const_col_type;

 // constructors
 matrix() : nrows(0), ncols(0), m() { }
 matrix(int r, int c) : nrows(r), ncols(c), m(r * c) { }
 matrix(const self& x) : m(x.m), nrows(x.nrows), ncols(x.ncols) { }

 template<typename T>
 explicit matrix(const valarray<T>& x)
 : m(x.size() + 1), nrows(x.size()), ncols(1)
 {
 for (int i=0; i<x.size(); ++i) m[i] = x[i];
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

424 | Chapter 11: Science and Mathematics

 // allow construction from matricies of other types
 template<typename T>
 explicit matrix(const matrix<T>& x)
 : m(x.size() + 1), nrows(x.nrows), ncols(x.ncols)
 {
 copy(x.begin(), x.end(), m.begin());
 }

 // public functions
 int rows() const { return nrows; }
 int cols() const { return ncols; }
 int size() const { return nrows * ncols; }

 // element access
 row_type row_begin(int n) { return &m[n * cols()]; }
 row_type row_end(int n) { return row_begin() + cols(); }
 col_type col_begin(int n) { return col_type(&m[n], cols()); }
 col_type col_end(int n) { return col_begin(n) + cols(); }
 const_row_type row_begin(int n) const { return &m[n * cols()]; }
 const_row_type row_end(int n) const { return row_begin() + cols(); }
 const_col_type col_begin(int n) const { return col_type(&m[n], cols()); }
 const_col_type col_end(int n) const { return col_begin() + cols(); }
 iterator begin() { return &m[0]; }
 iterator end() { return begin() + size(); }
 const_iterator begin() const { return &m[0]; }
 const_iterator end() const { return begin() + size(); }

 // operators
 self& operator=(const self& x) {
 m = x.m; nrows = x.nrows; ncols = x.ncols; return *this;
 }
 self& operator=(value_type x) { m = x; return *this; }
 row_type operator[](int n) { return row_begin(n); }
 const_row_type operator[](int n) const { return row_begin(n); }
 self& operator+=(const self& x) { m += x.m; return *this; }
 self& operator-=(const self& x) { m -= x.m; return *this; }
 self& operator+=(value_type x) { m += x; return *this; }
 self& operator-=(value_type x) { m -= x; return *this; }
 self& operator*=(value_type x) { m *= x; return *this; }
 self& operator/=(value_type x) { m /= x; return *this; }
 self& operator%=(value_type x) { m %= x; return *this; }
 self operator-() { return -m; }
 self operator+() { return +m; }
 self operator!() { return !m; }
 self operator~() { return ~m; }

 // friend operators
 friend self operator+(const self& x, const self& y) { return self(x) += y; }
 friend self operator-(const self& x, const self& y) { return self(x) -= y; }
 friend self operator+(const self& x, value_type y) { return self(x) += y; }
 friend self operator-(const self& x, value_type y) { return self(x) -= y; }
 friend self operator*(const self& x, value_type y) { return self(x) *= y; }

Example 11-28. matrix.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing a Dynamically Sized Matrix | 425

Example 11-29 shows how you might use the matrix template class.

The program in Example 11-29 produces the following output:

(2,0)
(0,2)

Discussion
The design of the matrix template in Example 11-28 is heavily inspired by Bjarne
Stroustrup’s matrix template from The C++ Programming Language, Third Edition
(Addison Wesley). Stroustrup’s implementation differs in that its iterator uses slice
and a pointer to the valarray for indexing. The matrix implementation in
Example 11-27 uses instead the stride iterator from Recipe 11.12, making the itera-
tors more compact and, on some implementations, more efficient.

The matrix template class allows indexing of the element ith row and jth column
using a double subscripting operation. For example:

matrix<int> m(100,100);
cout << "the element at row 24 and column 42 is " << m[24][42] << endl;

The matrix template class also provides begin and end member functions, which
means that it can be used easily with the various STL algorithms.

 friend self operator/(const self& x, value_type y) { return self(x) /= y; }
 friend self operator%(const self& x, value_type y) { return self(x) %= y; }
private:
 mutable valarray<Value_T> m;
 int nrows;
 int ncols;
};

#endif

Example 11-29. Using the matrix template

#include "matrix.hpp"

#include <iostream>

using namespace std;

int main() {
 matrix<int> m(2,2);
 m = 0;
 m[0][0] = 1;
 m[1][1] = 1;
 m *= 2;
 cout << "(" << m[0][0] << "," << m[0][1] << ")" << endl;
 cout << "(" << m[1][0] << "," << m[1][1] << ")" << endl;
}

Example 11-28. matrix.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

426 | Chapter 11: Science and Mathematics

There is a line of code in Example 11-28 that might have caused you to raise your
eyebrows. That is the declaration:

mutable valarray<Value_T> m;

The declaration of the member field m as being mutable was a necessary evil. If it
wasn’t for this line I would not have been able to provide const iterators, because
you can’t create an iterator to a const valarray.

See Also
Recipes 11.15 and 11.16

11.15 Implementing a Constant-Sized Matrix

Problem
You want an efficient matrix implementation where the dimensions (i.e., number of
rows and columns) are constants known at compile time.

Solution
When the dimensions of a matrix are known at compile time, the compiler can more
easily optimize an implementation that accepts the row and columns as template
parameters as shown in Example 11-30.

Example 11-30. kmatrix.hpp

#ifndef KMATRIX_HPP
#define KMATRIX_HPP

#include "kvector.hpp"
#include "kstride_iter.hpp"

template<class Value_T, int Rows_N, int Cols_N>
class kmatrix
{
public:
 // public typedefs
 typedef Value_T value_type;
 typedef kmatrix self;
 typedef Value_T* iterator;
 typedef const Value_T* const_iterator;
 typedef kstride_iter<Value_T*, 1> row_type;
 typedef kstride_iter<Value_T*, Cols_N> col_type;
 typedef kstride_iter<const Value_T*, 1> const_row_type;
 typedef kstride_iter<const Value_T*, Cols_N> const_col_type;

 // public constants
 static const int nRows = Rows_N;
 static const int nCols = Cols_N;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing a Constant-Sized Matrix | 427

 // constructors
 kmatrix() { m = Value_T(); }
 kmatrix(const self& x) { m = x.m; }
 explicit kmatrix(Value_T& x) { m = x.m; }

 // public functions
 static int rows() { return Rows_N; }
 static int cols() { return Cols_N; }
 row_type row(int n) { return row_type(begin() + (n * Cols_N)); }
 col_type col(int n) { return col_type(begin() + n); }
 const_row_type row(int n) const {
 return const_row_type(begin() + (n * Cols_N));
 }
 const_col_type col(int n) const {
 return const_col_type(begin() + n);
 }
 iterator begin() { return m.begin(); }
 iterator end() { return m.begin() + size(); }
 const_iterator begin() const { return m; }
 const_iterator end() const { return m + size(); }
 static int size() { return Rows_N * Cols_N; }

 // operators
 row_type operator[](int n) { return row(n); }
 const_row_type operator[](int n) const { return row(n); }

 // assignment operations
 self& operator=(const self& x) { m = x.m; return *this; }
 self& operator=(value_type x) { m = x; return *this; }
 self& operator+=(const self& x) { m += x.m; return *this; }
 self& operator-=(const self& x) { m -= x.m; return *this; }
 self& operator+=(value_type x) { m += x; return *this; }
 self& operator-=(value_type x) { m -= x; return *this; }
 self& operator*=(value_type x) { m *= x; return *this; }
 self& operator/=(value_type x) { m /= x; return *this; }
 self operator-() { return self(-m); }

 // friends
 friend self operator+(self x, const self& y) { return x += y; }
 friend self operator-(self x, const self& y) { return x -= y; }
 friend self operator+(self x, value_type y) { return x += y; }
 friend self operator-(self x, value_type y) { return x -= y; }
 friend self operator*(self x, value_type y) { return x *= y; }
 friend self operator/(self x, value_type y) { return x /= y; }
 friend bool operator==(const self& x, const self& y) { return x != y; }
 friend bool operator!=(const self& x, const self& y) { return x.m != y.m; }
private:
 kvector<Value_T, (Rows_N + 1) * Cols_N> m;
};

#endif

Example 11-30. kmatrix.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

428 | Chapter 11: Science and Mathematics

Example 11-31 shows a program that demonstrates how to use the kmatrix template
class.

The program in Example 11-31 produces the following output:

Row 0 = 0 2 4 6
Row 1 = 8 10 12 14
Column 0 = 0 8

Example 11-31. Using kmatrix

#include "kmatrix.hpp"

#include <iostream>

using namespace std;

template<class Iter_T>
void outputRowOrColumn(Iter_T iter, int n) {
 for (int i=0; i < n; ++i) {
 cout << iter[i] << " ";
 }
 cout << endl;
}

template<class Matrix_T>
void initializeMatrix(Matrix_T& m) {
 int k = 0;
 for (int i=0; i < m.rows(); ++i) {
 for (int j=0; j < m.cols(); ++j) {
 m[i][j] = k++;
 }
 }
}

template<class Matrix_T>
void outputMatrix(Matrix_T& m) {
 for (int i=0; i < m.rows(); ++i) {
 cout << "Row " << i << " = ";
 outputRowOrColumn(m.row(i), m.cols());
 }
 for (int i=0; i < m.cols(); ++i) {
 cout << "Column " << i << " = ";
 outputRowOrColumn(m.col(i), m.rows());
 }
}

int main()
{
 kmatrix<int, 2, 4> m;
 initializeMatrix(m);
 m *= 2;
 outputMatrix(m);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Multiplying Matricies | 429

Column 1 = 2 10
Column 2 = 4 12
Column 3 = 6 14

Discussion
This design and usage for the kmatrix class template in Example 11-30 and
Example 11-31 is very similar to the matrix class template presented in Recipe 11.14.
The only significant difference is that to declare an instance of a kmatrix you pass the
dimensions as template parameters, as follows:

kmatrix<int, 5, 6> m; // declares a matrix with five rows and six columns

It is common for many kinds of applications requiring matricies that the dimensions
are known at compile-time. Passing the row and column size as template parameters
enables the compiler to more easily apply common optimizations such as loop-
unrolling, function inlining, and faster indexing.

Like the constant-sized vector template presented earlier (kvector), the
kmatrix template is particularly effective when using small matrix
sizes.

See Also
Recipes 11.14 and 11.16

11.16 Multiplying Matricies

Problem
You want to perform efficient multiplication of two matricies.

Solution
Example 11-32 shows an implementation of matrix multiplication that can be used
with both the dynamic- or fixed-size matrix implementations. This algorithm techni-
cally produces the result of the equation A=A+B*C, which is, perhaps surprisingly, an
equation more efficiently computed than A=B*C.

Example 11-32. Matrix multiplication

#include "matrix.hpp" // recipe 11.13
#include "kmatrix.hpp" // recipe 11.14
#include <iostream>
#include <cassert>

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

430 | Chapter 11: Science and Mathematics

Example 11-32 produces the following output:

(3, 4)
(6, 8)

Discussion
When multiplying two matricies, the number of columns in the first matrix must be
equal to the number of rows in the second matrix. The resulting matrix has the num-
ber of rows of the first matrix and the number of columns of the second matrix. I
assure that these conditions are true during debug builds by using the assert macro
found in the <cassert> header.

The key to efficient matrix multiplication is to avoid any superfluous creation and
copying of temporaries. Thus, the matrix multiplication function in Example 11-32
was written to pass the result by reference. If I had written a straightforward multi-
plication algorithm by overriding operator* it would result in the overhead of an
unneccessary allocation, copy, and deallocation of a temporary matrix. This can be
potentially very expensive when dealing with large matricies.

template<class M1, class M2, class M3>
void matrixMultiply(const M1& m1, const M2& m2, M3& m3)
{
 assert(m1.cols() == m2.rows());
 assert(m1.rows() == m3.rows());
 assert(m2.cols() == m3.cols());
 for (int i=m1.rows()-1; i >= 0; --i) {
 for (int j=m2.cols()-1; j >= 0; --j) {
 for (int k = m1.cols()-1; k >= 0; --k) {
 m3[i][j] += m1[i][k] * m2[k][j];
 }
 }
 }
}

int main()
{
 matrix<int> m1(2, 1);
 matrix<int> m2(1, 2);
 kmatrix<int, 2, 2> m3;
 m3 = 0;
 m1[0][0] = 1; m1[1][0] = 2;
 m2[0][0] = 3; m2[0][1] = 4;
 matrixMultiply(m1, m2, m3);
 cout << "(" << m3[0][0] << ", " << m3[0][1] << ")" << endl;
 cout << "(" << m3[1][0] << ", " << m3[1][1] << ")" << endl;
}

Example 11-32. Matrix multiplication (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Computing the Fast Fourier Transform | 431

The reason the matrix multiplication equation in Example 11-32 com-
putes A=A+B*C instead of A=B*C is that it avoids unneccessarily initializ-
ing the values of A.

See Also
Recipe 11.17

11.17 Computing the Fast Fourier Transform

Problem
You want to compute the Discrete Fourier Transform (DFT) efficiently using the
Fast Fourier Transform (FFT) algorithm.

Solution
The code in Example 11-33 provides a basic implementation of the FFT.

Example 11-33. FFT implementation

#include <iostream>
#include <complex>
#include <cmath>
#include <iterator>

using namespace std;

unsigned int bitReverse(unsigned int x, int log2n) {
 int n = 0;
 int mask = 0x1;
 for (int i=0; i < log2n; i++) {
 n <<= 1;
 n |= (x & 1);
 x >>= 1;
 }
 return n;
}

const double PI = 3.1415926536;

template<class Iter_T>
void fft(Iter_T a, Iter_T b, int log2n)
{
 typedef typename iterator_traits<Iter_T>::value_type complex;
 const complex J(0, 1);
 int n = 1 << log2n;
 for (unsigned int i=0; i < n; ++i) {
 b[bitReverse(i, log2n)] = a[i];
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

432 | Chapter 11: Science and Mathematics

The program in Example 11-33 produces the following output:

(16,16)
(-4.82843,-11.6569)
(0,0)
(-0.343146,0.828427)
(0,0)
(0.828427,-0.343146)
(0,0)
(-11.6569,-4.82843)

Discussion
The Fourier transform is an important equation for spectral analysis, and is required
frequently in engineering and scientific applications. The FFT is an algorithm for
computing a DFT that operates in N log2(N) complexity versus the expected N2 com-
plexity of a naive implementation of a DFT. The FFT achieves such an impressive
speed-up by removing redundant computations.

Finding a good FFT implementation written in idiomatic C++ (i.e., C++ that isn’t
mechanically ported from old Fortran or C algorithms) and that isn’t severely
restricted by a license is very hard. The code in Example 11-33 is based on public
domain code that can be found on the digital signal processing newswgoup on
usenet (comp.dsp). A big advantage of an idiomatic C++ solution over the more

 for (int s = 1; s <= log2n; ++s) {
 int m = 1 << s;
 int m2 = m >> 1;
 complex w(1, 0);
 complex wm = exp(-J * (PI / m2));
 for (int j=0; j < m2; ++j) {
 for (int k=j; k < n; k += m) {
 complex t = w * b[k + m2];
 complex u = b[k];
 b[k] = u + t;
 b[k + m2] = u - t;
 }
 w *= wm;
 }
 }
}

int main() {
 typedef complex<double> cx;
 cx a[] = { cx(0,0), cx(1,1), cx(3,3), cx(4,4),
 cx(4, 4), cx(3, 3), cx(1,1), cx(0,0) };
 cx b[8];
 fft(a, b, 3);
 for (int i=0; i<8; ++i)
 cout << b[i] << "\n";
}

Example 11-33. FFT implementation (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Working with Polar Coordinates | 433

common C-style FFT implementations is that the standard library provides the
complex template that significantly reduces the amount of code needed. The fft()
function in Example 11-33, was written to be as simple as possible rather than
focusing on efficiency.

11.18 Working with Polar Coordinates

Problem
You want to represent and manipulate polar coordinates.

Solution
The complex template from the <complex> header provides functions for conversion to
and from polar coordinates. Example 11-34 shows how you can use the complex
template class to represent and manipulate polar coordinates.

Example 11-34 produces the following output:

rho = 3, theta = 1.5708
rho = 5, theta = 0.643501

Discussion
There is a natural relationship between polar coordinates and complex numbers.
Even though the two are somewhat interchangeable, it is generally not a good idea to
use the same type to represent different concepts. Since using the complex template to
represent polar coordinates is inelegant, I have provided a polar coordinate class that
is more natural to use in Example 11-35.

Example 11-34. Using complex template class to represent polar coordinates

#include <complex>
#include <iostream>

using namespace std;

int main() {
 double rho = 3.0; // magnitude
 double theta = 3.141592 / 2; // angle
 complex<double> coord = polar(rho, theta);
 cout << "rho = " << abs(coord) << ", theta = " << arg(coord) << endl;
 coord += polar(4.0, 0.0);
 cout << "rho = " << abs(coord) << ", theta = " << arg(coord) << endl;
}

Example 11-35. A polar coordinate class

#include <complex>
#include <iostream>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

434 | Chapter 11: Science and Mathematics

In Example 11-35, I have defined the Polar type as a typedef’d specialization of the
BasicPolar template. This way you can have a convenient default but you can still

using namespace std;

template<class T>
struct BasicPolar
{
 public:
 typedef BasicPolar self;

 // constructors
 BasicPolar() : m() { }
 BasicPolar(const self& x) : m(x.m) { }
 BasicPolar(const T& rho, const T& theta) : m(polar(rho, theta)) { }

 // assignment operations
 self operator-() { return Polar(-m); }
 self& operator+=(const self& x) { m += x.m; return *this; }
 self& operator-=(const self& x) { m -= x.m; return *this; }
 self& operator*=(const self& x) { m *= x.m; return *this; }
 self& operator/=(const self& x) { m /= x.m; return *this; }
 operator complex<T>() const { return m; }

 // public member functions
 T rho() const { return abs(m); }
 T theta() const { return arg(m); }

 // binary operations
 friend self operator+(self x, const self& y) { return x += y; }
 friend self operator-(self x, const self& y) { return x -= y; }
 friend self operator*(self x, const self& y) { return x *= y; }
 friend self operator/(self x, const self& y) { return x /= y; }

 // comparison operators
 friend bool operator==(const self& x, const self& y) { return x.m == y.m; }
 friend bool operator!=(const self& x, const self& y) { return x.m != y.m; }
 private:
 complex<T> m;
};

typedef BasicPolar<double> Polar;

int main() {
 double rho = 3.0; // magnitude
 double theta = 3.141592 / 2; // angle
 Polar coord(rho, theta);
 cout << "rho = " << coord.rho() << ", theta = " << coord.theta() << endl;
 coord += Polar(4.0, 0.0);
 cout << "rho = " << coord.rho() << ", theta = " << coord.theta() << endl;
 system("pause");
}

Example 11-35. A polar coordinate class (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Arithmetic on Bitsets | 435

specialize the BasicPolar template using another numerical type if you prefer. This
technique is used in the standard library with the string class being a specialization
of the basic_string template.

11.19 Performing Arithmetic on Bitsets

Problem
You want to perform basic arithmetic and comparison operations on a set of bits as if
it were a binary representation of an unsigned integer number.

Solution
The functions in Example 11-36 provide functions that allow arithmetic and compar-
ison of bitset class template from the <bitset> header as if it represents an unsigned
integer.

Example 11-36. bitset_arithmetic.hpp

#include <stdexcept>
#include <bitset>

bool fullAdder(bool b1, bool b2, bool& carry) {
 bool sum = (b1 ^ b2) ^ carry;
 carry = (b1 && b2) || (b1 && carry) || (b2 && carry);
 return sum;
}

bool fullSubtractor(bool b1, bool b2, bool& borrow) {
 bool diff;
 if (borrow) {
 diff = !(b1 ^ b2);
 borrow = !b1 || (b1 && b2);
 }
 else {
 diff = b1 ^ b2;
 borrow = !b1 && b2;
 }
 return diff;
}

template<unsigned int N>
bool bitsetLtEq(const std::bitset<N>& x, const std::bitset<N>& y)
{
 for (int i=N-1; i >= 0; i--) {
 if (x[i] && !y[i]) return false;
 if (!x[i] && y[i]) return true;
 }
 return true;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

436 | Chapter 11: Science and Mathematics

template<unsigned int N>
bool bitsetLt(const std::bitset<N>& x, const std::bitset<N>& y)
{
 for (int i=N-1; i >= 0; i--) {
 if (x[i] && !y[i]) return false;
 if (!x[i] && y[i]) return true;
 }
 return false;
}

template<unsigned int N>
bool bitsetGtEq(const std::bitset<N>& x, const std::bitset<N>& y)
{
 for (int i=N-1; i >= 0; i--) {
 if (x[i] && !y[i]) return true;
 if (!x[i] && y[i]) return false;
 }
 return true;
}

template<unsigned int N>
bool bitsetGt(const std::bitset<N>& x, const std::bitset<N>& y)
{
 for (int i=N-1; i >= 0; i--) {
 if (x[i] && !y[i]) return true;
 if (!x[i] && y[i]) return false;
 }
 return false;
}

template<unsigned int N>
void bitsetAdd(std::bitset<N>& x, const std::bitset<N>& y)
{
 bool carry = false;
 for (int i = 0; i < N; i++) {
 x[i] = fullAdder(x[i], y[i], carry);
 }
}

template<unsigned int N>
void bitsetSubtract(std::bitset<N>& x, const std::bitset<N>& y) {
 bool borrow = false;
 for (int i = 0; i < N; i++) {
 if (borrow) {
 if (x[i]) {
 x[i] = y[i];
 borrow = y[i];
 }
 else {
 x[i] = !y[i];
 borrow = true;
 }

Example 11-36. bitset_arithmetic.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Performing Arithmetic on Bitsets | 437

 }
 else {
 if (x[i]) {
 x[i] = !y[i];
 borrow = false;
 }
 else {
 x[i] = y[i];
 borrow = y[i];
 }
 }
 }
}

template<unsigned int N>
void bitsetMultiply(std::bitset<N>& x, const std::bitset<N>& y)
{
 std::bitset<N> tmp = x;
 x.reset();

 // we want to minimize the number of times we shift and add
 if (tmp.count() < y.count()) {
 for (int i=0; i < N; i++)
 if (tmp[i]) bitsetAdd(x, y << i);
 }
 else {
 for (int i=0; i < N; i++)
 if (y[i]) bitsetAdd(x, tmp << i);
 }
}

template<unsigned int N>
void bitsetDivide(std::bitset<N> x, std::bitset<N> y,
 std::bitset<N>& q, std::bitset<N>& r)
{
 if (y.none()) {
 throw std::domain_error("division by zero undefined");
 }
 q.reset();
 r.reset();
 if (x.none()) {
 return;
 }
 if (x == y) {
 q[0] = 1;
 return;
 }
 r = x;
 if (bitsetLt(x, y)) {
 return;
 }

Example 11-36. bitset_arithmetic.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

438 | Chapter 11: Science and Mathematics

Example 11-37 shows how you might use the bitset_arithmetic.hpp header file.

 // count significant digits in divisor and dividend
 unsigned int sig_x;
 for (int i=N-1; i>=0; i--) {
 sig_x = i;
 if (x[i]) break;
 }
 unsigned int sig_y;
 for (int i=N-1; i>=0; i--) {
 sig_y = i;
 if (y[i]) break;
 }

 // align the divisor with the dividend
 unsigned int n = (sig_x - sig_y);
 y <<= n;

 // make sure the loop executes the right number of times
 n += 1;

 // long division algorithm, shift, and subtract
 while (n--)
 {
 // shift the quotient to the left
 if (bitsetLtEq(y, r))
 {
 // add a new digit to quotient
 q[n] = true;
 bitsetSubtract(r, y);
 }
 // shift the divisor to the right
 y >>= 1;
 }
}

Example 11-37. Using the bitset_arithmetic.hpp functions

#include "bitset_arithmetic.hpp"

#include <bitset>
#include <iostream>
#include <string>

using namespace std;

int main() {
 bitset<10> bits1(string("100010001"));
 bitset<10> bits2(string("000000011"));
 bitsetAdd(bits1, bits2);
 cout << bits1.to_string<char, char_traits<char>, allocator<char> >() << endl;
}

Example 11-36. bitset_arithmetic.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Large Fixed-Width Integers | 439

The program in Example 11-37 produces the following output:

0100010100

Discussion
The bitset class template comes with basic operations for manipulating sets of bits
but doesn’t provide any arithmetic or comparion operations. This is because the
library can’t safely assume what kind of numerical type a programmer might expect
an arbitrary set of bits to represent.

The functions in Example 11-36 treat a bitset as a representation of an unsigned
integer type, and provide you with functions for adding, subtracting, multiplying,
dividing, and comparing them. These functions can provide a basis for writing cus-
tom-sized integer types, and are used for such a purpose in Recipe 11.20.

I did not use the most efficient algorithms I could for Example 11-36. Instead I chose
the simplest possible algorithms because they are more easily understood. A much
more efficient implementation would use similar algorithms, but would operate on
words rather than single bits.

See Also
Recipe 11.20

11.20 Representing Large Fixed-Width Integers

Problem
You need to perform arithmetic of numbers larger than can be represented by a long
int.

Solution
The BigInt template in Example 11-38 uses the bitset from the <bitset> header to
allow you to represent unsigned integers using a fixed number of bits specified as a
template parameter.

Example 11-38. big_int.hpp

#ifndef BIG_INT_HPP
#define BIG_INT_HPP

#include <bitset>

#include "bitset_arithmetic.hpp" // Recipe 11.20

template<unsigned int N>
class BigInt

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

440 | Chapter 11: Science and Mathematics

{
 typedef BigInt self;
public:
 BigInt() : bits() { }
 BigInt(const self& x) : bits(x.bits) { }
 BigInt(unsigned long x) {
 int n = 0;
 while (x) {
 bits[n++] = x & 0x1;
 x >>= 1;
 }
 }
 explicit BigInt(const std::bitset<N>& x) : bits(x) { }

 // public functions
 bool operator[](int n) const { return bits[n]; }
 unsigned long toUlong() const { return bits.to_ulong(); }

 // operators
 self& operator<<=(unsigned int n) {
 bits <<= n;
 return *this;
 }
 self& operator>>=(unsigned int n) {
 bits >>= n;
 return *this;
 }
 self operator++(int) {
 self i = *this;
 operator++();
 return i;
 }
 self operator--(int) {
 self i = *this;
 operator--();
 return i;
 }
 self& operator++() {
 bool carry = false;
 bits[0] = fullAdder(bits[0], 1, carry);
 for (int i = 1; i < N; i++) {
 bits[i] = fullAdder(bits[i], 0, carry);
 }
 return *this;
 }
 self& operator--() {
 bool borrow = false;
 bits[0] = fullSubtractor(bits[0], 1, borrow);
 for (int i = 1; i < N; i++) {
 bits[i] = fullSubtractor(bits[i], 0, borrow);
 }
 return *this;

Example 11-38. big_int.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Representing Large Fixed-Width Integers | 441

 }
 self& operator+=(const self& x) {
 bitsetAdd(bits, x.bits);
 return *this;
 }
 self& operator-=(const self& x) {
 bitsetSubtract(bits, x.bits);
 return *this;
 }
 self& operator*=(const self& x) {
 bitsetMultiply(bits, x.bits);
 return *this;
 }
 self& operator/=(const self& x) {
 std::bitset<N> tmp;
 bitsetDivide(bits, x.bits, bits, tmp);
 return *this;
 }
 self& operator%=(const self& x) {
 std::bitset<N> tmp;
 bitsetDivide(bits, x.bits, tmp, bits);
 return *this;
 }
 self operator~() const { return ~bits; }
 self& operator&=(self x) { bits &= x.bits; return *this; }
 self& operator|=(self x) { bits |= x.bits; return *this; }
 self& operator^=(self x) { bits ^= x.bits; return *this; }

 // friend functions
 friend self operator<<(self x, unsigned int n) { return x <<= n; }
 friend self operator>>(self x, unsigned int n) { return x >>= n; }
 friend self operator+(self x, const self& y) { return x += y; }
 friend self operator-(self x, const self& y) { return x -= y; }
 friend self operator*(self x, const self& y) { return x *= y; }
 friend self operator/(self x, const self& y) { return x /= y; }
 friend self operator%(self x, const self& y) { return x %= y; }
 friend self operator^(self x, const self& y) { return x ^= y; }
 friend self operator&(self x, const self& y) { return x &= y; }
 friend self operator|(self x, const self& y) { return x |= y; }

 // comparison operators
 friend bool operator==(const self& x, const self& y) {
 return x.bits == y.bits;
 }
 friend bool operator!=(const self& x, const self& y) {
 return x.bits != y.bits;
 }
 friend bool operator>(const self& x, const self& y) {
 return bitsetGt(x.bits, y.bits);
 }
 friend bool operator<(const self& x, const self& y) {
 return bitsetLt(x.bits, y.bits);

Example 11-38. big_int.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

442 | Chapter 11: Science and Mathematics

The BigInt template class could be used to represent factorials, as shown in
Example 11-39.

 }
 friend bool operator>=(const self& x, const self& y) {
 return bitsetGtEq(x.bits, y.bits);
 }
 friend bool operator<=(const self& x, const self& y) {
 return bitsetLtEq(x.bits, y.bits);
 }
private:
 std::bitset<N> bits;
};

#endif

Example 11-39. Using the big_int class

#include "big_int.hpp"

#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>

using namespace std;

void outputBigInt(BigInt<1024> x) {
 vector<int> v;
 if (x == 0) {
 cout << 0;
 return;
 }
 while (x > 0) {
 v.push_back((x % 10).to_ulong());
 x /= 10;
 }
 copy(v.rbegin(), v.rend(), ostream_iterator<int>(cout, ""));
 cout << endl;
}

int main() {
 BigInt<1024> n(1);
 // compute 32 factorial
 for (int i=1; i <= 32; ++i) {
 n *= i;
 }
 outputBigInt(n);
}

Example 11-38. big_int.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing Fixed-Point Numbers | 443

The program in Example 11-39 outputs:

263130836933693530167218012160000000

Discussion
Large integers are common in many applications. In cryptography, for example, inte-
gers of 1,000 bits and larger are not uncommon. However, the current C++ stan-
dard provides integers only as large as a long int.

The number of bits in a long int is implementation specific, but is
guaranteed to be at least 32. And t probably won’t ever be as large as
1,000. Remember that one of those bits is reserved for the sign.

The next version of the standard (C++ 0x) is expected to follow the C99 standard
and provide a long long type that will be defined as being at least as large as a long
int, and possibly bigger. Despite this there will always be occasions where an integer
type larger than the largest primitive is needed.

The implementation I presented here is based on a binary representation of numbers
using a bitset, at a cost of some performance. What I lost in performance I more
than made up for in simplicity. A more efficient implementation of arbitrary preci-
sion numbers could easily fill the book.

See Also
Recipe 11.19

11.21 Implementing Fixed-Point Numbers

Problem
You want to perform computations on real numbers using a fixed-point representa-
tion of a real number rather than using a floating-point type.

Solution
Example 11-40 provides the implementation of a fixed-point real number, where the
number of places to the right of the binary point is a template parameter. For
instance basic_fixed_real<10> has 10 binary digits to the right of the binary point,
allowing it to represent numbers up to a precision of 1/1,024.

Example 11-40. Representing real numbers using a fixed-point implementation

#include <iostream>

using namespace std;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

444 | Chapter 11: Science and Mathematics

The program in Example 11-40 outputs:

6.25

Discussion
A fixed-point number, like a floating-point number, is an approximate representa-
tion of a real number. A floating-point number is stored as a mantissa (m), and an
exponent (e), to form the equation m * be, where b is some constant.

template<int E>
struct BasicFixedReal
{
 typedef BasicFixedReal self;
 static const int factor = 1 << (E - 1);
 BasicFixedReal() : m(0) { }
 BasicFixedReal(double d) : m(static_cast<int>(d * factor)) { }
 self& operator+=(const self& x) { m += x.m; return *this; }
 self& operator-=(const self& x) { m -= x.m; return *this; }
 self& operator*=(const self& x) { m *= x.m; m >>= E; return *this; }
 self& operator/=(const self& x) { m /= x.m; m *= factor; return *this; }
 self& operator*=(int x) { m *= x; return *this; }
 self& operator/=(int x) { m /= x; return *this; }
 self operator-() { return self(-m); }
 double toDouble() const { return double(m) / factor; }

 // friend functions
 friend self operator+(self x, const self& y) { return x += y; }
 friend self operator-(self x, const self& y) { return x -= y; }
 friend self operator*(self x, const self& y) { return x *= y; }
 friend self operator/(self x, const self& y) { return x /= y; }

 // comparison operators
 friend bool operator==(const self& x, const self& y) { return x.m == y.m; }
 friend bool operator!=(const self& x, const self& y) { return x.m != y.m; }
 friend bool operator>(const self& x, const self& y) { return x.m > y.m; }
 friend bool operator<(const self& x, const self& y) { return x.m < y.m; }
 friend bool operator>=(const self& x, const self& y) { return x.m >= y.m; }
 friend bool operator<=(const self& x, const self& y) { return x.m <= y.m; }
private:
 int m;
};

typedef BasicFixedReal<10> FixedReal;

int main() {
 FixedReal x(0);
 for (int i=0; i < 100; ++i) {
 x += FixedReal(0.0625);
 }
 cout << x.toDouble() << endl;
}

Example 11-40. Representing real numbers using a fixed-point implementation (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Implementing Fixed-Point Numbers | 445

A fixed-point number is almost the same but the exponent is also a constant. This
constant is passed to the basic_fixed_real in Example 11-40 as a template parameter.

By representing e as a constant, it allows fixed-point numbers to be represented
internally as integers and for the arithmetic operations on them to be performed
using integer artithmetic. This can often improve the speed of basic arithmetic opera-
tions especially addition and subtraction.

Fixed-point representations are less flexible than floating-point numbers, as they can
only represent a narrow range of values. The fixed_real type in Example 11-40 has a
range that can only represent values from –2,097,151 to +2,097,151 with a precision
of 1/1,024.

Implementing addition and subtraction of fixed-point numbers is straightforward
enough: I simply add or subtract the underlying representation. To perform division
and multiplication, I need an extra step of shifting the mantissa left or right to adjust
for the binary point.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

446

Chapter 12CHAPTER 12

Multithreading

12.0 Introduction
This chapter describes how to write multithreaded programs in C++ using the Boost
Threads library written by William Kempf. Boost is a set of open source, peer-
reviewed, portable, high-performance libraries ranging from simple data structures to
a complex parsing framework. The Boost Threads library is a framework for multi-
threading. For more information on Boost, see www.boost.org.

Standard C++ contains no native support for multithreading, so it is not possible to
write portable multithreaded code the same way you would write portable code that
uses other standard library classes like string, vector, list, and so on. The Boost
Threads library goes a long way toward making a standard, portable multithread-
ing library though, and it is designed to minimize many common multithreading
headaches.

Unlike the standard library or third-party libraries, however, using a multithreading
library is not as easy as unzipping it into a directory, adding your #includes, and cod-
ing away. For all but trivial multithreaded applications, you must design carefully
using proven patterns and known tactics to avoid bugs that are otherwise virtually
guaranteed to happen. In a typical, single-threaded application, it is easy to find
common programming errors: off-by-one loops, dereferencing a null or deleted
pointer, loss of precision on floating-point conversions, and so on. Multithreaded
programs are different. Not only is it tedious to keep track of what several threads
are doing in your debugger, but multithreaded programs are nondeterministic,
meaning that bugs may only show up under rare or complicated circumstances.

It is for this reason that this chapter should not be your introduction to multi-
threaded programming. If you have already done some programming with threads,
but not with C++ or the Boost Threads library, this chapter will get you on your
way. But describing the fundamentals of multithreaded programming is beyond the
scope of this book. If you have never done any multithreaded programming before,
then you may want to read an introductory book on multithreading, though such

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Thread | 447

titles are scant because most programmers don’t use threads (though they probably
ought to).

Much of the Boost documentation and some of the following recipes discuss the
classes using the concept/model idea. A concept is an abstract description of some-
thing, usually a class, and its behavior, without any assumptions about its implemen-
tation. Typically, this description includes construction and destruction behavior,
and each of the methods, including their preconditions, parameters, and postcondi-
tions. For example, the concept of a Mutex is something that can be locked and
unlocked by one thread at a time. A model is a concrete manifestation of a concept,
such as the mutex class in the Boost Threads library. A refinement on a concept is a
specialization of it, such as a ReadWriteMutex, which is a Mutex with some additional
behavior.

Finally, threads are doing one of three things: working, waiting for something, or
ready to go but not waiting for anything or doing any work. These states are called
run, wait, and ready. These are the terms I will use in the following recipes.

12.1 Creating a Thread

Problem
You want to create a thread to perform some task while the main thread continues
its work.

Solution
Create an object of the class thread, and pass it a functor that does the work. The
creation of the thread object will instantiate an operating system thread that begins
executing at operator() on your functor (or the beginning of the function if you
passed in a function pointer instead). Example 12-1 shows you how.

Example 12-1. Creating a thread

#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>

struct MyThreadFunc {
 void operator()() {
 // Do something long-running...
 }
} threadFun;

int main() {

 boost::thread myThread(threadFun); // Create a thread that starts
 // running threadFun

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

448 | Chapter 12: Multithreading

Discussion
Creating a thread is deceptively simple. All you have to do is create a thread object
on the stack or the heap, and pass it a functor that tells it where it can begin work-
ing. For this discussion, a “thread” is actually two things. First, it’s an object of the
class thread, which is a C++ object in the conventional sense. When I am referring to
this object, I will say “thread object.” Then there is the thread of execution, which is
an operating system thread that is represented by the thread object. When I say
“thread” (not in fixed-width font), I mean the operating system thread.

Let’s get right to the code in the example. The thread constructor takes a functor (or
function pointer) that takes no arguments and returns void. Look at this line from
Example 12-1:

boost::thread myThread(threadFun);

This creates the myThread object on the stack, which represents a new operating sys-
tem thread that begins executing threadFun. At that point, the code in threadFun and
the code in main are, at least in theory, running in parallel. They may not exactly be
running in parallel, of course, because your machine may have only one processor, in
which case this is impossible (recent processor architectures have made this not quite
true, but I’ll ignore dual-core processors and the like for now). If you have only one
processor, then the operating system will give each thread you create a slice of time
in the run state before it is suspended. Because these slices of time can be of varying
sizes, you can never be guaranteed which thread will reach a particular point first.
This is the aspect of multithreaded programming that makes it difficult: multi-
threaded program state is nondeterministic. The same multithreaded program, run
multiple times, with the same inputs, can produce different output. Coordinating
resources used by multiple threads is the subject of Recipe 12.2.

After creating myThread, the main thread continues, at least for a moment, until it
reaches the next line:

boost::thread::yield();

This puts the current thread (in this case the main thread) in a sleep state, which
means the operating system will switch to another thread or another process using

 boost::thread::yield(); // Give up the main thread's timeslice
 // so the child thread can get some work
 // done.

 // Go do some other work...

 myThread.join(); // The current (i.e., main) thread will wait
 // for myThread to finish before it returns

}

Example 12-1. Creating a thread (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Creating a Thread | 449

some operating-system-specific policy. yield is a way of telling the operating system
that the current thread wants to give up the rest of its slice of time. Meanwhile, the
new thread is executing threadFun. When threadFun is done, the child thread goes
away. Note that the thread object doesn’t go away, because it’s still a C++ object
that’s in scope. This is an important distinction.

The thread object is something that exists on the heap or the stack, and works just
like any other C++ object. When the calling code exits scope, any stack thread
objects are destroyed and, alternatively, when the caller calls delete on a thread*, the
corresponding heap thread object disappears. But thread objects are just proxies for
the actual operating system threads, and when they are destroyed the operating sys-
tem threads aren’t guaranteed to go away. They merely become detached, meaning
that they cannot later be rejoined. This is not a bad thing.

Threads use resources, and in any (well-designed) multithreaded application, access
to such resources (objects, sockets, files, raw memory, and so on) is controlled with
mutexes, which are objects used for serializing access to something among multiple
threads (see Recipe 12.2). If an operating system thread is killed, it will not release its
locks or deallocate its resources, similarly to how killing a process does not give it a
chance to flush its buffers or release operating system resources properly. Simply
ending a thread when you think it ought to be finished is like pulling a ladder out
from under a painter when his time is up.

Thus, we have the join member function. As in Example 12-1, you can call join to
wait for a child thread to finish. join is a polite way of telling the thread that you are
going to wait until it’s done working:

myThread.join();

The thread that calls join goes into a wait state until the thread represented by
myThread is finished. If it never finishes, join never returns. join is the best way to
wait for a child thread to finish.

You may notice that if you put something meaningful in threadFun, but comment out
the use of join, the thread doesn’t finish its work. Try this out by putting a loop or
some long operation in threadFun. This is because when the operating system
destroys a process, all of its child threads go with it, whether they’re done or not.
Without the call to join, main doesn’t wait for its child thread: it exits, and the oper-
ating system thread is destroyed.

If you need to create several threads, consider grouping them with a thread_group
object. A thread_group object can manage threads in a couple of ways. First, you can
call add_thread with a pointer to a thread object, and that object will be added to the
group. Here’s a sample:

boost::thread_group grp;
boost::thread* p = new boost::thread(threadFun);
grp.add_thread(p);
// do something...
grp.remove_thread(p);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

450 | Chapter 12: Multithreading

When grp’s destructor is called, it will delete each of the thread pointers that were
added with add_thread. For this reason, you can only add pointers to heap thread
objects to a thread_group. Remove a thread by calling remove_thread and passing in
the thread object’s address (remove_thread finds the corresponding thread object in
the group by comparing the pointer values, not by comparing the objects they point
to). remove_thread will remove the pointer to that thread from the group, but you are
still responsible for delete-ing it.

You can also add a thread to a group without having to create it yourself by calling
create_thread, which (like a thread object) takes a functor as an argument and
begins executing it in a new operating system thread. For example, to spawn two
threads in a group, do this:

boost::thread_group grp;

grp.create_thread(threadFun);
grp.create_thread(threadFun); // Now there are two threads in grp

grp.join_all(); // Wait for all threads to finish

Whether you add threads to the group with create_thread or add_thread, you can
call join_all to wait for all of the threads in the group to complete. Calling join_all
is the same as calling join on each of the threads in the group: when all of the
threads in the group have completed their work join_all returns.

Creating a thread object allows a separate thread of execution to begin. Doing it with
the Boost Threads library is deceptively easy, though, so design carefully. Read the
rest of the recipes in this chapter for more cautionary information about threads.

See Also
Recipe 12.2

12.2 Making a Resource Thread-Safe

Problem
You are using multiple threads in a program and you need to ensure a resource is not
modified by more than one thread at a time. In general, this process is called making
the resource thread-safe, or serializing access to it.

Solution
Use the class mutex, defined in boost/thread/mutex.hpp, to synchronize access among
threads. Example 12-2 shows a simple use of a mutex object to control concurrent
access to a queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Resource Thread-Safe | 451

Example 12-2. Making a class thread-safe

#include <iostream>
#include <boost/thread/thread.hpp>
#include <string>

// A simple queue class; don't do this, use std::queue
template<typename T>
class Queue {
public:
 Queue() {}
 ~Queue() {}

 void enqueue(const T& x) {
 // Lock the mutex for this queue
 boost::mutex::scoped_lock lock(mutex_);
 list_.push_back(x);
 // A scoped_lock is automatically destroyed (and thus unlocked)
 // when it goes out of scope
 }

 T dequeue() {
 boost::mutex::scoped_lock lock(mutex_);

 if (list_.empty())
 throw "empty!"; // This leaves the current scope, so the
 T tmp = list_.front(); // lock is released
 list_.pop_front();
 return(tmp);
 } // Again: when scope ends, mutex_ is unlocked

private:
 std::list<T> list_;
 boost::mutex mutex_;
};

Queue<std::string> queueOfStrings;

void sendSomething() {
 std::string s;
 for (int i = 0; i < 10; ++i) {
 queueOfStrings.enqueue("Cyrus");
 }
}

void recvSomething() {
 std::string s;

 for (int i = 0; i < 10; ++i) {
 try {s = queueOfStrings.dequeue();}
 catch(...) {}
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

452 | Chapter 12: Multithreading

Discussion
Making classes, functions, blocks of code, or other objects thread-safe is at the heart
of multithreaded programming. If you are designing a piece of software to be multi-
threaded, chances are that each thread will have its own set of resources, such as
stack and heap objects, operating system resources, and so on. But sooner or later
you will need to share something among threads. It may be a shared queue of incom-
ing work requests (as in a multithreaded web server) or something as simple as an
output stream (as in a log file, or even cout). The standard way of coordinating the
safe sharing of resources is with a mutex, which provides mutually exclusive access to
something.

The rest of this discussion describes what a mutex is in general and how to use
boost::mutex in particular to serialize access to resources. I use the concept/model
approach terminology that I mentioned briefly in the introduction to this chapter. A
concept is an abstract (language-independent) description of something, and a model
of a concept is its concrete representation in C++ class form. A refinement of a con-
cept is a given concept with some additional or augmented behavior.

Concurrent programming is a complicated subject though and there are many more
techniques than can fit in a single recipe. There are lots of different patterns that can
be used, and different strategies that should be used for different applications. If you
plan to do a significant amount of multithreaded programming, or if you are design-
ing performance-critical applications, you ought to pick up a good book on multi-
threaded patterns. Many of the problems that make debugging multithreaded
programs so difficult can be successfully averted with careful, tedious design.

Using mutexes

The mutex concept is simple: a mutex is something that represents a resource and
can be locked or unlocked by only one thread at a time. It is a flag used to coordi-
nate access to a resource by multiple consumers. In the Boost Threads library, the
mutex concept is modeled by the boost::mutex class. In Example 12-2, write access
to the Queue class is maintained with a mutex member variable:

boost::mutex mutex_;

int main() {
 boost::thread thr1(sendSomething);
 boost::thread thr2(recvSomething);

 thr1.join();
 thr2.join();
}

Example 12-2. Making a class thread-safe (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Resource Thread-Safe | 453

mutex_ must be locked by any member function that must change the state of the
queue of items that is maintained. The mutex object itself has no knowledge of what
it’s representing. It’s just a locked/unlocked flag that is shared by all consumers of
some resource.

In Example 12-2, when a Queue member function needs to change the state of the
object, it must first lock mutex_. Only one thread at a time can lock it, which is what
prevents multiple objects from modifying the state of a Queue object. Thus, a mutex is
a simple signaling mechanism, but it is more than just a bool or int, because a mutex
requires serialized access, which can only be guaranteed by the operating system ker-
nel. If you try doing the same thing with a bool, it won’t work because there’s noth-
ing that prevents multiple threads from modifying the state of a bool at the same
time. (Different operating systems have different ways of doing this, which is why it
is not easy to implement a portable threading library.)

mutex objects are locked and unlocked using several different locking strategies, the
simplest of which is the scoped_lock. A scoped_lock is a class that, when constructed
using a mutex argument, locks it until the lock is destroyed. Look at the enqueue
member function in Example 12-2 to see how scoped_lock works with a mutex:

void enqueue(const T& x) {
 boost::mutex::scoped_lock lock(mutex_);
 list_.push_back(x);
} // unlocked!

When lock is destroyed, mutex_ is unlocked. If the lock is constructed on a mutex that
is already locked by another thread, the current thread goes into a wait state until the
lock becomes available.

This design may seem a little odd at first—why not have lock and unlock methods on
mutex? The approach of using a scoped_lock class that locks on construction and
unlocks on destruction is actually much more convenient and less error-prone.
When you create a lock using the scoped_lock approach, it locks the object for its
lifetime, which means that you don’t have to unlock explicitly anything on every
control path. On the other hand, if you have to unlock a locked mutex explicitly, you
have to ensure that any exceptions that are thrown in your function (or anywhere
above your function on the call stack) are caught and the mutex is unlocked. With a
scoped_lock, if an exception is thrown or the function returns, the scoped_lock object
is automatically destroyed and the mutex is unlocked.

Using a mutex will get the job done, but it leaves a little to be desired. It makes no
distinction between reading and writing, which is significant, because it is inefficient
to force threads to wait in line to use a resource when many or all of them are doing a
read-only operation, which should not require exclusive access. For this, the Boost
Threads library provides read_write_mutex. Example 12-3 shows how you might
implement Example 12-2 using a read_write_mutex with a front member function
that allows the caller to retrieve a copy of the first item on the queue without pop-
ping it.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

454 | Chapter 12: Multithreading

Example 12-3. Using a read/write mutex

#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/thread/read_write_mutex.hpp>
#include <string>

template<typename T>
class Queue {
public:
 Queue() : // Use a read/write mutex and give writers priority

rwMutex_(boost::read_write_scheduling_policy::writer_priority) {}
 ~Queue() {}

 void enqueue(const T& x) {
 // Use a r/w lock since enqueue updates the state
 boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);
 list_.push_back(x);
 }

 T dequeue() {
 // Again, use a write lock
 boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);

 if (list_.empty())
 throw "empty!";
 T tmp = list_.front();
 list_.pop_front();
 return(tmp);
 }

 T getFront() {
 // This is a read-only operation, so you only need a read lock
 boost::read_write_mutex::scoped_read_lock readLock(rwMutex_);
 if (list_.empty())
 throw "empty!";
 return(list_.front());
 }

private:
 std::list<T> list_;
 boost::read_write_mutex rwMutex_;
};

Queue<std::string> queueOfStrings;

void sendSomething() {
 std::string s;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Resource Thread-Safe | 455

There are a few things I should point out here. Notice that now I am using a read_
write_mutex, like this:

boost::read_write_mutex rwMutex_;

The locks are also different when you’re using read/write mutexes. In Example 12-3,
when I want to lock the Queue for writing, I create a scoped_write_lock:

boost::read_write_mutex::scoped_write_lock writeLock(rwMutex_);

And when I just need to read the Queue, I use a scoped_read_lock:

boost::read_write_mutex::scoped_read_lock readLock(rwMutex_);

Read/write locks are handy, but they don’t prevent you from shooting yourself in the
foot. There is no compile-time check on the resource represented by rwMutex_ to
make sure you’re not changing it when you only have a read lock. Take extra care to
ensure a thread only modifies the state of an object when it has a write lock because
the compiler won’t.

 for (int i = 0; i < 10; ++i) {
 queueOfStrings.enqueue("Cyrus");
 }
}

void checkTheFront() {
 std::string s;

 for (int i = 0; i < 10; ++i) {
 try {s = queueOfStrings.getFront();}
 catch(...) {}
 }
}

int main() {

 boost::thread thr1(sendSomething);
 boost::thread_group grp;

 grp.create_thread(checkTheFront);
 grp.create_thread(checkTheFront);
 grp.create_thread(checkTheFront);
 grp.create_thread(checkTheFront);

 thr1.join();
 grp.join_all();
}

Example 12-3. Using a read/write mutex (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

456 | Chapter 12: Multithreading

Exactly how these locks are scheduled is determined by the scheduling policy you
chose when you constructed the mutex. There are four that are provided by the Boost
Threads library:

reader_priority
Threads waiting for a read lock will be granted the lock before those waiting for
a write lock.

writer_priority
Threads waiting for a write lock will be granted the lock before those waiting for
a read lock.

alternating_single_read
Alternate between read and write locks. Grant a single reader a read lock when it
is the readers’ “turn.” This policy gives writers priority in general. For example,
if the mutex is write-locked, and there are several pending read locks and one
pending write lock, one read lock will be granted, then the waiting write lock
will be granted, then all remaining read locks will be granted. This assumes no
new locks are requested during this period.

alternating_many_reads
Alternate between read and write locks. Grant all readers’ locks when it is the
readers’ “turn.” In other words, this policy empties the queue of all waiting read
locks in between write locks.

Each of these policies has different pros and cons, and they will perform differently
depending on your application. Deciding which policy to use takes careful consider-
ation, because simply going with reader or writer priority can result in starvation,
which I describe in more detail below.

Dangers

There are three basic problems that occur when you are programming with multiple
threads: deadlock, starvation, and race conditions. There are techniques for avoid-
ing each of them, with varying degrees of sophistication that are beyond the scope of
this recipe. I will describe what each of the problems is so you know how what to
watch out for, but if you plan on doing multithreaded application development, you
should do some homework on multithreaded patterns first.

Deadlock is a situation that involves at least two threads and two resources. Con-
sider two threads, A and B, and two resources, X and Y, where A has a lock on X and
B has a lock on Y. A deadlock occurs when A tries to lock Y and B tries to lock X. If
threads are not designed to break the deadlock somehow, then they will wait forever.

The Boost Threads library lets you avoid deadlocks with refinements to the mutex
and locking concepts. A try mutex is one that supports attempts at locking, using a
try lock that either succeeds or fails, but does not block and wait for the lock to
become available. Using models of these concepts in the form of try_mutex and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Making a Resource Thread-Safe | 457

scoped_try_lock, your code can go and do something else if the resource you need to
access is locked. There is also yet another refinement to the concept of a try lock, and
that is a timed lock. With a timed lock, a thread can give up after blocking for a spe-
cific amount of time. I do not discuss timed locks in detail here; have a look at the
Boost Threads documentation for details.

For example, in the Queue class in Example 12-2, you wanted to use a try mutex so
dequeue returns a bool indicating whether or not it was able to dequeue the first item.
This way, consumers of dequeue don’t have to wait around if the queue is locked.
Here’s how you could rewrite dequeue:

bool dequeue(T& x) {
boost::try_mutex::scoped_try_lock lock(tryMutex_);

 if (!lock.locked())
 return(false);
 else {
 if (list_.empty())
 throw "empty!";
 x = list_.front();
 list_.pop_front();
 return(true);
 }
}
private:
boost::try_mutex tryMutex_;
// ...

The mutex being used and the lock are different than those used in Example 12-2. Be
sure to correctly qualify the names of the mutex and lock classes you are using, oth-
erwise, you won’t get the behavior you expect.

When you serialize access to something, you tell consumers of it to line up and wait
their turn. If each of them stays in the same position in line, everybody gets a chance
to use the resource. But if you let some consumers cut in line, it is possible that those
at the back of the line never get their turn. This is starvation.

When using a mutex, consumers wait in a group and not a line. There is no guaranteed
order among threads that are waiting for the lock. For read/write mutexes, the Boost
Threads library uses the four scheduling policies described earlier. Therefore, when
using read/write mutexes, be aware of what the different scheduling policies mean, and
what your threads are doing. If you are using writer_priority, and you have lots of
threads creating write locks, your readers will starve; the same goes for reader_priority,
since these scheduling policies always prefer one type of lock over another. Through
testing, if you recognize that one kind of thread isn’t making as much progress as it
should, consider switching to an alternating_many_reads or alternating_single_read
policy. You specify the policy when constructing a read/write mutex.

Finally, a race condition is a situation where your code has made an assumption
about the order or atomicity of locks that has proven false. For example, consider a

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

458 | Chapter 12: Multithreading

consumer of the Queue class that interrogates the element on the front and condition-
ally dequeues it:

if (q.getFront() == "Cyrus") {
 str = q.dequeue();
 // ...

This code works fine in a single-threaded environment, because q won’t be modified
between the first and second lines. However, when using multiple threads, you have
to account for the situation where another thread modifies q at any moment—in fact,
you should assume that shared objects are modified when a thread doesn’t have
them locked. After line 1, another thread can come along and dequeue the next item
from q, which means that line 2 gets something unexpected or nothing at all. Both
getFront and dequeue lock the single mutex used to modify q, but in between it is
unlocked, and if another thread is waiting on the lock, it may snatch it up before line
2 has a chance.

A solution, for this particular race condition, is to ensure that a lock is held for the
duration of the operation. Create a member function called dequeueIfEquals that
only dequeues the next object if it equals the argument. dequeueIfEquals can use a
lock like anything else:

T dequeueIfEquals(const T& t) {
 boost::mutex::scoped_lock lock(mutex_);
 if (list_.front() == t)
 // ...

There are other kinds of race conditions, but this example should give you a general
idea of what to watch out for. As the number of threads and shared resources you are
using increases, the race conditions become more subtle and difficult to catch.
Therefore, you should take special care to design to prevent them.

Ensuring serialized access to resources is the most difficult thing about multithread-
ing, because when you don’t do it right, debugging it can be a nightmare. Since a
multithreaded program is inherently nondeterministic (because threads can execute
in different order and for different lengths of time each time the program is run), it is
painful to try and pinpoint exactly where or how a thread modifies something it
shouldn’t. More so than with single-threaded programming, a sound design will
minimize debugging and rework.

12.3 Notifying One Thread from Another

Problem
You are using a pattern where one thread (or group of threads) does something and
it needs to let another thread (or group of threads) know about it. You may have a
master thread that is handing out work to slave threads, or you may use one group of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Notifying One Thread from Another | 459

threads to populate a queue and another to remove the data from it and do some-
thing useful.

Solution
Use mutex and condition objects, declared in boost/thread/mutex.hpp and boost/
thread/condition.hpp. You can create a condition for each situation you want threads
to wait for, and notify any waiting threads on the condition. Example 12-4 shows
how to use signaling in a master/slave threading model.

Example 12-4. Signaling between threads

#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/thread/condition.hpp>
#include <boost/thread/mutex.hpp>
#include <list>
#include <string>

class Request { /*...*/ };

// A simple job queue class; don't do this, use std::queue
template<typename T>
class JobQueue {
public:
 JobQueue() {}
 ~JobQueue() {}

 void submitJob(const T& x) {
 boost::mutex::scoped_lock lock(mutex_);
 list_.push_back(x);
 workToBeDone_.notify_one();
 }

 T getJob() {
 boost::mutex::scoped_lock lock(mutex_);

 workToBeDone_.wait(lock); // Wait until this condition is
 // satisfied, then lock the mutex
 T tmp = list_.front();
 list_.pop_front();
 return(tmp);
 }

private:
 std::list<T> list_;
 boost::mutex mutex_;
 boost::condition workToBeDone_;
};

JobQueue<Request> myJobQueue;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

460 | Chapter 12: Multithreading

Discussion
A condition object uses a mutex, and lets you wait for a situation other than its
becoming unlocked. Consider Example 12-4, which is a modified version of the
Queue class presented in Example 12-2. I have modified Queue to be a specific kind of
queue, namely a JobQueue, where objects representing jobs are submitted by a mas-
ter thread and are retrieved by slave threads.

The most important change for the JobQueue class is the condition member variable
workToBeDone_. This is a condition that indicates whether or not there is work in the
queue. When a thread wants to retrieve an element from the job queue, it calls
getJob, which tries to acquire a lock on the mutex and then waits for the new condi-
tion with the following lines:

boost::mutex::scoped_lock lock(mutex_);
workToBeDone_.wait(lock);

The first line locks the mutex in the usual manner. The second line then unlocks the
mutex and waits, or goes to sleep, until the condition is met. The unlocking of the
mutex allows other threads to use that mutex—one of them might need it to set up
the condition we are waiting for—otherwise, other threads would be unable to lock
the mutex while one thread was waiting on the condition.

void boss() {
 for (;;) {
 // Get the request from somewhere
 Request req;
 myJobQueue.submitJob(req);
 }
}

void worker() {
 for (;;) {
 Request r(myJobQueue.getJob());
 // Do something with the job...
 }
}

int main() {
 boost::thread thr1(boss);
 boost::thread thr2(worker);
 boost::thread thr3(worker);

 thr1.join();
 thr2.join();
 thr3.join();
}

Example 12-4. Signaling between threads (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Notifying One Thread from Another | 461

In submitJob, after the job has been added to the internal list, I added the following
line:

workToBeDone_.notify_one();

This “satisfies” the condition that getJob is waiting for. Technically, this means that
if there are any threads who have called wait on this condition, that one of them is
put in a run state. In getJob, that means that execution continues at the following
line:

workToBeDone_.wait(lock);

But not just yet. wait does two things: it waits until someone calls notify_one or
notify_all on the condition that it’s waiting on, then it tries to lock the mutex it’s
associated with. So what actually happens when submitJob calls notify_all is that
the waiting thread is put in a run state and the next thing it does is try to lock the
mutex that submitJob still has locked, so it goes back into a wait state until submitJob
is complete. Thus, condition::wait requires that the mutex be locked when you call
it, at which point it is unlocked, then locked again when the condition is met.

Notify all threads that are waiting for some condition to be true by calling notify_all.
This works the same way as notify_one, except that all threads that are waiting on the
condition are changed to a run state. They all try and acquire the next lock though, so
what happens after that depends on the kind of mutex and the type of locks used.

A condition gives you something subtle that you don’t get when you are using
mutexes and locks alone. Consider the case of the Queue class presented earlier.
Threads waiting to dequeue something wait until they can acquire a write lock, then
pop the next item off the queue. This may appear to work fine without any sort of
signaling mechanism, but does it really? What about when the queue is empty? You
have a few choices for how you implement dequeue if you are waiting for a condition
to become true: acquire the lock; check to see if there are items in the queue or not, if
not, return; use another mutex that is locked when the queue is empty and unlocked
when it has data (not a good idea); or return a special value when the queue is
empty. These are either problematic or inefficient. If you simply return when the
queue is empty by throwing an exception or returning a special value, then your cli-
ents have to keep checking to see when something arrives. This is a needless drain on
resources.

A condition lets consumer threads sleep so the processor can do something else
while a condition is not met. Imagine a web server that uses a pool of worker threads
to handle incoming requests. It is far better to have child threads in a wait state when
there is no activity then to have them looping, or sleeping and waking up occasion-
ally to check the queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

462 | Chapter 12: Multithreading

12.4 Initializing Shared Resources Once

Problem
You have a number of threads that are using a resource that must only be initialized
once.

Solution
Either initialize the resource before the threads are started, or if you can’t, use the
call_once function defined in <boost/thread/once.hpp> and the type once_flag.
Example 12-5 shows how to use call_once.

Example 12-5. Initializing something once

#include <iostream>
#include <boost/thread/thread.hpp>
#include <boost/thread/once.hpp>

// Some sort of connection class that should only be initialized once
struct Conn {
 static void init() {++i_;}
 static boost::once_flag init_;
 static int i_;
 // ...
};

int Conn::i_ = 0;
boost::once_flag Conn::init_ = BOOST_ONCE_INIT;

void worker() {
 boost::call_once(Conn::init, Conn::init_);
 // Do the real work...
}

Conn c; // You probably don't want to use a global, so see the
 // next Recipe

int main() {

 boost::thread_group grp;

 for (int i = 0; i < 100; ++i)
 grp.create_thread(worker);

 grp.join_all();

 std::cout << c.i_ << '\n'; // c.i_ = 1
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Passing an Argument to a Thread Function | 463

Discussion
A shared resource has to be initialized somewhere, and you may want the first thread
to use it to do the initializing. A variable of type once_flag (whose exact type is plat-
form-dependent) and the call_once function can keep multiple threads from re-ini-
tializing the same object. You have to do two things.

First, initialize your once_flag variable to the macro BOOST_ONCE_INIT. This is a plat-
form-dependent value. In Example 12-5, the class Conn represents some sort of con-
nection (database, socket, hardware, etc.) that I only want initialized once even
though multiple threads may try to initialize it. This sort of thing comes up often
when you want to load a library dynamically, perhaps one specified in an applica-
tion config file. The once_flag is a static class variable because I only want one ini-
tialization, no matter how many instances of the class there may be. So, I give the
flag a starting value of BOOST_ONCE_INIT like this:

boost::once_flag Conn::initFlag_ = BOOST_ONCE_INIT;

Then, in my worker function, I invoke call_once, which synchronizes access to my
init flag and, therefore, forbids concurrent initialization. I pass two arguments to
call_once:

boost::call_once(Conn::init, Conn::initFlag_);

The first argument is the address of the function that will be doing the initialization.
The second is the flag. This way, multiple threads can try to initialize the Conn class,
but only the first will succeed.

12.5 Passing an Argument to a Thread Function

Problem
You have to pass an argument to your thread function, but the thread creation facili-
ties in the Boost Threads library only accept functors that take no arguments.

Solution
Create a functor adapter that takes your parameters and returns a functor that takes
no parameters. You can use the functor adapter where you would have otherwise put
the thread functor. Take a look at Example 12-6 to see how this is done.

Example 12-6. Passing an argument to a thread function

#include <iostream>
#include <string>
#include <functional>
#include <boost/thread/thread.hpp>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

464 | Chapter 12: Multithreading

Discussion
The fundamental problem you need to solve here is not specific to threading or
Boost, but a general problem when you have to pass a functor with one signature to
something that requires a different signature. The solution is to create an adapter.

The syntax can get a little messy, but essentially what Example 12-6 does is create a
temporary functor that the thread constructor can call as a function with no argu-
ments like it expects. First things first; use a typedef to make function pointer syntax
easier to read:

typedef void (*WorkerFunPtr)(const std::string&);

// A typedef to make the declarations below easier to read
typedef void (*WorkerFunPtr)(const std::string&);

template<typename FunT, // The type of the function being called
 typename ParamT> // The type of its parameter
struct Adapter {
 Adapter(FunT f, ParamT& p) : // Construct this adapter and set the
 f_(f), p_(&p) {} // members to the function and its arg

 void operator()() { // This just calls the function with its arg
 f_(*p_);
 }
private:
 FunT f_;
 ParamT* p_; // Use the parameter's address to avoid extra copying
};

void worker(const std::string& s) {
 std::cout << s << '\n';
}

int main() {

 std::string s1 = "This is the first thread!";
 std::string s2 = "This is the second thread!";

 boost::thread thr1(Adapter<WorkerFunPtr, std::string>(worker, s1));
 boost::thread thr2(Adapter<WorkerFunPtr, std::string>(worker, s2));

 thr1.join();
 thr2.join();
}

Example 12-6. Passing an argument to a thread function (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Passing an Argument to a Thread Function | 465

This creates a type WorkerFunPtr that is a pointer to a function that takes a string ref-
erence as an argument and returns void. After that, I created the Adapter class tem-
plate. It provides a way to instantiate a dynamic functor. Take a look at the
constructor:

template<typename FunT,
 typename ParamT>
struct Adapter {
 Adapter(FunT f, ParamT& p) :
 f_(f), p_(&p) {}
// ...

All the constructor does is initialize the two members, which can be any types, but
we expect them to be a function pointer and some parameter p of any type. I store
the address of the parameter instead of copying it by value to be efficient.

Now consider this line from the main thread:

boost::thread thr1(Adapter<WorkerFunPtr, std::string>(worker, s1));

The argument to thr1’s constructor is an instantiation of the Adapter class template,
using the two types WorkerFunPtr and std::string as its arguments. That instance
uses those two types for Adapter’s f_ and p_ members. Finally, Adapter overrides
operator(), so it can be called like a function. When it is called, it simply does this:

f_(*p_);

Using the Adapter class template, you can pass arguments to thread functions, albeit
with a little extra syntax. If you want to pass more than one argument, just add
another type and member variable to Adapter. The nice thing about this approach is
that you can create a set of generic adapter class templates and use them in various
other contexts.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

466

Chapter 13CHAPTER 13

Internationalization

13.0 Introduction
This chapter describes solutions to some common requirements when international-
izing C++ programs. Making software work in different locales (usually referred to
as localization) usually requires solving two problems: formatting user-visible strings
such that they obey local conventions (such as those for date, time, money, and
numbers), and reconciling data in different character sets. This chapter deals mostly
with the first issue, and only briefly with the second, because there is little standard-
ized support for different character sets since most aspects of it are largely implemen-
tation dependent.

Most software will also run in countries other than the one where it was written. To
support this practical reality, the C++ standard library has several facilities for writ-
ing code that will run in different countries. The design of these facilities, however, is
different than many other standard library facilities such as strings, file input and
output, containers, algorithms, and so forth. For example, the class that is used to
represent a locale is locale, and is provided in the <locale> header. locale provides
facilities for writing to and reading from streams using locale-specific formatting, and
for getting information about a locale, such as the currency symbol or the date for-
mat. The standard only requires that a single locale be provided though, and that is
the “C” or classic locale. The classic locale uses ANSI C conventions: American
English conventions and 7-bit ASCII character encoding. It is up to the implementa-
tion whether it will provide locale instances for the various languages and regions.

There are three fundamental parts to the <locale> header. First, there is the locale
class. It encapsulates all aspects of behavior for a locale that C++ supports, and it is
your entry point to the different kinds of locale information you need to do locale-
aware formatting. Second, the most granular part of a locale, and the concrete classes
you will be working with, are called facets. An example of a facet is a class such as
time_put for writing a date to a stream. Third, each facet belongs to a category, which
is a way of grouping related facets together. Examples of categories are numeric,

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Hardcoding a Unicode String | 467

time, and monetary (the time_put facet I mentioned a moment ago belongs to the
time category). I mention categories briefly in this chapter, but they only really come
in handy when you are doing some more sophisticated stuff with locales, so I don’t
cover their use in depth here.

Every C++ program has at least one locale, referred to as the global locale (it is often
implemented as a global static object). By default, it is the classic “C” locale unless
you change it to something else. One of the locale constructors allows you to instan-
tiate the user’s preferred locale, although an implementation is free to define exactly
what a user’s “preferred” locale is.

In most cases, you will only use locales when writing to or reading from streams.
This is the main focus of this chapter.

13.1 Hardcoding a Unicode String

Problem
You have to hardcode a Unicode, i.e., wide-character, string in a source file.

Solution
Do this by hardcoding the string with a prefix of L and typing the character into your
source editor as you would any other string, or use the hexadecimal number that rep-
resents the Unicode character you’re after. Example 13-1 shows how to do it both
ways.

Example 13-1. Hardcoding a Unicode string

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main() {

 // Create some strings with Unicode characters
 wstring ws1 = L"Infinity: \u221E";
 wstring ws2 = L"Euro: _";

 wchar_t w[] = L"Infinity: \u221E";

 wofstream out("tmp\\unicode.txt");
 out << ws2 << endl;
 wcout << ws2 << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 13: Internationalization

Discussion
Hardcoding a Unicode string is mostly a matter of deciding how you want to enter
the string in your source editor. C++ provides a wide-character type, wchar_t, which
can store Unicode strings. The exact implementation of wchar_t is implementation
defined, but it is often UTF-32. The class wstring, defined in <string>, is a sequence
of wchar_ts, just like the string class is a sequence of chars. (Strictly speaking, of
course, wstring is a typedef for basic_string<wchar_t>).

The easiest way to enter Unicode characters is to use the L prefix to a string literal, as
in Example 13-1:

wstring ws1 = L"Infinity: \u2210"; // Use the code itself
wstring ws2 = L"Euro: "; // Or just type it in

Now, you can write these wide-character strings to a wide-character stream, like this:

wcout << ws1 << endl; // wcout is the wide char version of cout

This goes for files, too:

wofstream out("tmp\\unicode.txt");
out << ws2 << endl;

The trickiest part of dealing with different character encodings isn’t embedding the
right characters in your source files, it’s knowing what kind of character data you are
getting back from a database, HTTP request, user input, and so on, and this is
beyond the realm of the C++ standard. The C++ standard does not require a partic-
ular encoding, rather that the character encoding used by your operating system to
store source files can be anything, as long as it supports at least the 96 characters
used by the C++ language. For characters that are not part of this character set,
called the basic source character set, the standard indicates that they must be avail-
able by using the \uXXXX or \UXXXXXXXX escape sequences, where each X is a hexadeci-
mal digit.

13.2 Writing and Reading Numbers

Problem
You need to write a number to a stream in a formatted way that obeys local conven-
tions, which are different depending on where you are.

Solution
Imbue the stream you are writing to with the current locale and then write the num-
bers to it, as in Example 13-2, or you can set the global locale and then create a
stream. The latter approach is explained in the discussion.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing and Reading Numbers | 469

Discussion
Example 13-2 shows how to use the user’s locale to format a floating-point number.
Doing so requires two steps, creating an instance of the locale class and then associ-
ating, or imbuing, the stream with it.

To begin with, Example 13-2 creates loc, which is a copy of the user’s locale. You
have to do this using locale’s constructor with an empty string (and not the default
constructor), like this:

locale loc("");

The difference is subtle but important, and I’ll come back to it in a moment. Creat-
ing a locale object in this way creates a copy of the “user’s locale,” which is some-
thing that is implementation defined. This means that if the machine has been
configured to use American English, locale::name() will return a locale string such
as "en_US", "English_United States.1252", "english-american", and so on. The actual
string is implementation defined, and the only one required to work by the C++
standard is "C".

By comparison, locale’s default constructor returns a copy of the current global
locale. There is a single, global locale object for every C++ program that is run
(probably implemented as a static variable somewhere in the runtime library—
exactly how this is done is implementation defined). By default, it is the C locale, and
you can replace it with locale::global(locale& loc). When streams are created, they
use the global locale at the time of creation, which means that cin, cout, cerr, wcin,
wcout, and wcerr use the C locale, so you have to change them explicitly if you want
the formatting to obey a certain locale’s conventions.

Example 13-2. Writing numbers using localized formatting

#include <iostream>
#include <locale>
#include <string>

using namespace std;

// There is a global locale in the background that is set up by the
// runtime environment. It is the "C" locale by default. You can
// replace it with locale::global(const locale&).
int main() {
 locale loc(""); // Create a copy of the user's locale
 cout << "Locale name = " << loc.name() << endl;

 cout.imbue(loc); // Tell cout to use the formatting of
 // the user's locale

 cout << "pi in locale " << cout.getloc().name() << " is "
 << 3.14 << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 13: Internationalization

Locale names are not standardized. Usually, however, they look something like this:

<language>_<country>.<codepage>

Where language is either a full language name, such as "Spanish", or a two-letter
code, such as "sp"; country is a country, such as "Colombia", or a two-letter country
code such as "CO", and code page is the code page, e.g., 1252. The language is the
only required part. Experiment using explicit locales on various systems to get a feel
for what the different names will look like using different compilers. If the locale
name you use is invalid, it will throw a runtime_error. Example 13-3 gives a few
examples of explicit locale names.

Example 13-3. Naming locales explicitly

#include <iostream>
#include <fstream>
#include <locale>
#include <string>

using namespace std;

int main() {
 try {
 locale loc("");
 cout << "Locale name = " << loc.name() << endl;

 locale locFr("french");
 locale locEn("english-american");
 locale locBr("portuguese-brazilian");

 cout.imbue(locFr); // Tell cout to use French formatting

 cout << "3.14 (French) = " << 3.14 << endl;
 cout << "Name = " << locFr.name() << endl;

 cout.imbue(locEn); // Now change to English (American)

 cout << "3.14 (English) = " << 3.14 << endl;
 cout << "Name = " << locEn.name() << endl;

 cout.imbue(locFr); // Tell cout to use Brazilian formatting

 cout << "3.14 (Brazil) = " << 3.14 << endl;
 cout << "Name = " << locBr.name() << endl;
 }
 catch (runtime_error& e) {
 // If you use an invalid locale name, a runtime_error exception
 // is thrown.
 cerr << "Error: " << e.what() << endl;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing and Reading Numbers | 471

The output of this program on Windows with Visual C++ 7.1 looks like this:

Locale name = English_United States.1252
3.14 (French) = 3,14
Name = French_France.1252
3.14 (English) = 3.14
Name = English_United States.1252
3.14 (Brazil) = 3,14
Name = Portuguese_Brazil.1252

You can see that my machine’s locale is U.S. English using codepage 1252. The
example also shows pi using a couple of other locales. Note that France and Brazil
use a comma instead of a decimal point. The thousands separator is different, too:
French and Portuguese use a space instead of a comma, so that 1,000,000.25 in
America would be written as 1 000 000,25 in French and Portuguese.

Creating locales with explicit names is something you shouldn’t have to do in most
cases anyway. For using locales to print numbers, dates, currency, or anything else,
you should simply instantiate a locale using an empty string, and imbue your streams
with it.

Locale behavior can be a bit confusing, so I will summarize important points:

• The default global locale is the “C” locale, because it is the only one guaranteed
to exist in every implementation, per the standard.

• The standard streams are all created using the global locale at program start-up,
which is the “C” locale.

• You can create a copy of the user’s current runtime locale by passing an empty
string to the locale constructor, e.g., locale("").

• You can create a locale object for a named locale by passing in a string that
identifies the locale, e.g., locale("portuguese-brazilian"). The strings are not
standardized, though.

• Once you have a locale object that represents the user’s default locale or a
named locale, you can set the global locale with locale::global. All streams that
are created subsequently will use the global locale.

• You can set the locale for a stream explicitly with the imbue member function.

When writing software to use locales, only use localized formatting for user-visible
data. That is, if you need to display a number in a format the user is familiar with,
instantiate a locale and imbue the stream with it to display the number correctly to the
user. But if you are writing data to a file or some other intermediate serialized storage,
use the C locale for portability. If your code explicitly changes the global locale, then
you will need to explicitly imbue your file streams with the C locale. You can do this
two ways, by creating a locale using the name “C,” or by calling locale::classic(),
like this:

ofstream out("data.dat");
out.imbue(locale::classic());
out << pi << endl; // Write using C locale

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 13: Internationalization

Reading numbers is similar. For example, to read in a number in French and write it
in the C locale, do this:

double d;
cin.imbue(locale("french"));
cin >> d;
cout << "In English: " << d;

If you run this program and enter 300,00, it will print out 300.

To make a stream obey a locale’s numeric conventions, explicitly imbue the stream
with the target locale object. Or, if you want all streams created to use a particular
locale, install it as the global locale. Currency is handled somewhat differently; see
Recipe 13.4 for examples of how to write and read currency.

See Also
Recipe 13.4

13.3 Writing and Reading Dates and Times

Problem
You need to display or read dates and times using local formatting conventions.

Solution
Use the time_t type and tm struct from <ctime>, and the date and time facets pro-
vided in <locale>, to write and read dates and times (facets are described in the dis-
cussion in a moment). See Example 13-4 for a sample.

Example 13-4. Writing and reading dates

#include <iostream>
#include <ctime>
#include <locale>
#include <sstream>
#include <iterator>

using namespace std;

void translateDate(istream& in, ostream& out) {

 // Create a date reader
 const time_get<char>& dateReader =
 use_facet<time_get<char> >(in.getloc());

 // Create a state object, which the facets will use to tell
 // us if there was a problem.
 ios_base::iostate state = 0;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing and Reading Dates and Times | 473

This program produces the following output:

3/28/2005
28.03.2005

Discussion
Writing and reading date and time data requires some knowledge of locale’s design
details. Read the introduction to this chapter if you aren’t already familiar with the
concepts of locales and facets.

C++ does not have a standard class for representing dates and times; the closest it
gets is the time_t type and struct tm from <ctime>. If you want to write and read
dates using standard library facilities, you will have to be able to convert whatever
nonstandard date representation you are using to a struct tm. It is worthwhile to do
so, since the implementation(s) you are using has probably already built in support
for formatting locale-sensitive dates.

 // End marker
 istreambuf_iterator<char> end;

 tm t; // Time struct (from <ctime>)

 // Now that all that's out of the way, read in the date from
 // the input stream and put it in a time struct.
 dateReader.get_date(in, end, in, state, &t);

 // Now the date is in a tm struct. Print it to the out stream
 // using its locale. Make sure you only print out what you
 // know is valid in t.
 if (state == 0 || state == ios_base::eofbit) {
 // The read succeeded.
 const time_put<char>& dateWriter =
 use_facet<time_put<char> >(out.getloc());

 char fmt[] = "%x";

 if (dateWriter.put(out, out, out.fill(),
 &t, &fmt[0], &fmt[2]).failed())
 cerr << "Unable to write to output stream.\n";
 } else {
 cerr << "Unable to read cin!\n";
 }
}

int main() {

 cin.imbue(locale("english"));
 cout.imbue(locale("german"));
 translateDate(cin, cout);
}

Example 13-4. Writing and reading dates (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 13: Internationalization

Earlier, I stated that a facet was an aspect of a locale that requires locale-specific
behavior. More concretely, a facet is a const instantiation of a class template for a
character type that looks up how it behaves based on the locale class you give it at
construction. In Example 13-4, I create an instance of the time_get facet like this:

const time_get<char>& dateReader =
 use_facet<time_get<char> >(in.getloc());

The function template use_facet looks up a given facet for a given locale. All of the
standard facets are class templates that accept a character type parameter, and since I
am reading and writing chars, I instantiate my time_get class for chars. The standard
requires that an implementation provide template specializations for char and wchar_t,
so they are guaranteed to exist (although it is not guaranteed to support a given locale
other than the C locale). The time_get object I created is const because the locale func-
tionality provided by an implementation is a set of rules for formatting various kinds of
data in different locales, and the rules are not user-editable, thus, the state of a given
facet should not be changed by consumer code.

The locale I pass to use_facet is the one associated with the stream I am about to
write to. getloc() is declared in ios_base and returns the locale associated with an
input or output stream. Using the locale that is already associated with the stream
you want to read from or write to is the best approach; passing in the locale name as
a parameter or being specified in some other manner is error prone.

Once I’ve created the object that’s going to do the actual reading, I need to create
something to capture stream state:

ios_base::iostate state = 0;

Facets don’t modify the state of the stream itself, e.g., set stream::failbit = 1;
instead, they will set the state in your state object to indicate that a date couldn’t be
read. This is because failure to read a formatted value isn’t a problem with the stream
necessarily—the input stream of characters may still be perfectly valid—but reading
it in the format you expect may not be possible.

The actual date information is stored in a struct tm. All I have to do is create a local
tm variable and pass its address to the time_get or time_put facets.

Once I have read in the date, I can check the state variable I used to see if all went as
expected. If it is equal to zero or ios_base::eofbit, then that indicates that the
stream state is okay and that my date was read in with no problem. Since in
Example 13-4 I want to write the date out to another stream, I have to create an
object for just that purpose. I do it like this:

const time_put<char>& dateWriter =
 use_facet<time_put<char> >(out.getloc());

This works the same way as the previous instantiation of a time_get class, but in the
other direction. After that, I created a formatting string (with printf-like formatting
syntax) that will print the date. “%x” prints the date and “%X” prints the time. Be

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing and Reading Dates and Times | 475

careful though: this example only read in the date, so the members of the struct tm
that have to do with time are undefined at this point.

Now, I can write to the output stream. Here’s how:

if (dateWriter.put(out, // Output stream iterator
 out, // Output stream
 out.fill(), // Fill char to use
 &t, // Addr of tm struct
 &fmt[0], // Begin and end of format string
 &fmt[2]
).failed()) // iter_type.failed() tells us if
 // there was a problem writing

time_put::put writes the date to the output stream you pass it using the locale it (the
time_put object) was created with. time_put::put returns an ostreambuf_iterator,
which has a member function failed that you can call to see if the iterator is in a cor-
rupt state.

get_date isn’t the only member function you can use to get components of a date
from a stream. There are a few of them:

get_date
Gets the date from a stream using a locale’s formatting rules

get_time
Gets the time from a stream using a locale’s formatting rules

get_weekday
Gets the weekday name, e.g., Monday, lundi,

get_year
Gets the year from a stream using a locale’s formatting rules

Something else that you may find handy is the date_order member function. It
returns an enumeration (time_base::dateorder in <locale>) that indicates the order
of month, day, and year in the date. This can be useful if you have to parse the date
output by time_get::put. Example 13-5 shows how to check the date order.

Example 13-5. Looking at date order

#include <iostream>
#include <locale>
#include <string>

using namespace std;

int main() {

 cin.imbue(locale("german"));

 const time_get<char>& dateReader =
 use_facet<time_get<char> >(cin.getloc());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 13: Internationalization

There is also another handy feature you can use when it comes to instantiating fac-
ets: has_facet. This is a function template that returns a bool indicating whether the
facet you want is defined for a given locale. So to be safe, take advantage of has_facet
whenever you are instantiating a facet. If it returns false, you can always default to
the classic C locale, since it’s guaranteed to be there by a standard-conforming imple-
mentation. has_facet looks like this:

if (has_facet<time_put<char> >(loc)) {
 const time_put<char>& dateWriter =
 use_facet<time_put<char> >(loc);

Once you get over the syntax of the time_get and time_put classes, you will find
them straightforward to use. As always, you can use typedef to minimize the num-
ber of unsightly angle brackets:

typedef time_put<char> TimePutNarrow;
typedef time_get<char> TimeGetNarrow;
// ...
const TimeGetNarrow& dateReader = use_facet<TimeGetNarrow>(loc);

Writing and reading dates in locale-specific formats is a bit tedious, but once you
have an understanding of locale’s expectations of you, it is effective and powerful.
Chapter 5 is entirely dedicated to the subject of dates and times, so for more detailed
formatting information when writing dates and times, see Recipe 5.2.

 time_base::dateorder d = dateReader.date_order();

 string s;

 switch (d) {
 case time_base::no_order:
 s = "No order";
 break;
 case time_base::dmy:
 s = "day/month/year";
 break;
 case time_base::mdy:
 s = "month/day/year";
 break;
 case time_base::ymd:
 s = "year/month/day";
 break;
 case time_base::ydm:
 s = "year/day/month";
 break;
 }

 cout << "Date order for locale " << cin.getloc().name()
 << " is " << s << endl;
}

Example 13-5. Looking at date order (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing and Reading Currency | 477

See Also
Chapter 5 and Recipe 5.2

13.4 Writing and Reading Currency

Problem
You need to write or read a formatted currency value to or from a stream.

Solution
Use the money_put and money_get facets to write and read currency, as shown in
Example 13-6.

Example 13-6. Writing and reading currency

#include <iostream>
#include <locale>
#include <string>
#include <sstream>

using namespace std;

long double readMoney(istream& in, bool intl = false) {

 long double val;

 // Create a reader facet
 const money_get<char>& moneyReader =
 use_facet<money_get<char> >(in.getloc());

 // End marker
 istreambuf_iterator<char> end;

 // State variable for detecting errors
 ios_base::iostate state = 0;

 moneyReader.get(in, end, intl, in, state, val);

 // failbit will be set if something went wrong
 if (state != 0 && !(state & ios_base::eofbit))
 throw "Couldn't read money!\n";

 return(val);
}

void writeMoney(ostream& out, long double val, bool intl = false) {

 // Create a writer facet
 const money_put<char>& moneyWriter =
 use_facet<money_put<char> >(out.getloc());

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 13: Internationalization

If you run Example 13-6, your output might look like this:

Dollars: $100
Euros: EUR77,54

Discussion
The money_put and money_get facets write and read formatted currency values to and
from a stream. They work almost identically to the date/time and numeric facets
described in previous recipes. The standard requires instantiations of these for nar-
row and wide characters, e.g., money_put<char> and money_put<wchar_t>. As with the
other facets, the get and put functions are verbose, but once you use them a few
times, the parameters are easy to remember. money_get and money_put use a
moneypunct class that stores formatting information.

First, let’s discuss writing money to a stream. The display of currency involves sev-
eral pieces: the currency sign, the positive or negative sign, the thousands separator,
and the decimal point. Most of these are optional, except the decimal point.

You create a money_put object with a character type and a locale, like this:

const money_put<char>& moneyWriter =
 use_facet<money_put<char> >(out.getloc());

Both the char and wchar_t versions of money_put are required by the C++ standard. It
is a good idea to use the locale of the stream you are writing to to avoid mismatches

 // Write to the stream. Call failed() (the return value is an
 // ostreambuf_iterator) to see if anything went wrong.
 if (moneyWriter.put(out, intl, out, out.fill(), val).failed())
 throw "Couldn't write money!\n";
}

int main() {

 long double val = 0;
 float exchangeRate = 0.775434f; // Dollars to Euros
 locale locEn("english");
 locale locFr("french");

 cout << "Dollars: ";
 cin.imbue(locEn);
 val = readMoney(cin, false);

 cout.imbue(locFr);
 // Set the showbase flag so the currency char is printed
 cout.setf(ios_base::showbase);
 cout << "Euros: ";
 writeMoney(cout, val * exchangeRate, true);
}

Example 13-6. Writing and reading currency (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing and Reading Currency | 479

that result from trying to keep the stream and the money_put object in sync. Next, call
the put method to write the currency value to an output stream:

if (moneyWriter.put(out, // Output iterator
 intl, // bool: use intl format?
 out, // ostream&
 out.fill(), // fill char to use
 val) // currency value as long double
 .failed())
 throw "Couldn't write money!\n";

money_put::put writes the date to the output stream you pass it using the locale it (the
money_put object) was created with. money_put::put returns an ostreambuf_iterator
that points to one past the last character output, which has a member function failed
you can call to see if the iterator is in a corrupt state.

The parameters to money_put::put are all self-explanatory, except maybe the second
one (the intl argument in the example). It is a bool that determines whether the cur-
rency symbol is used (e.g., $,), or the international three-letter code is used (e.g.,
USD, EUR). Set it to false to use the symbol, true to use the international code.

Writing currency to an output stream obeys some of the formatting flags on the
stream. Here is each flag and the effect it has on currency:

ios_base::internal
Wherever there is a space or nothing in the formatting of the currency, the fill
character will be used (and not a space). See the discussion of moneypunct below
for more information about the patterns used for formatting.

ios_base::left and ios_base::right
Causes the currency value to be left or right justified, and the remaining space up
to the width value is padded with the fill character (see the description of width
next). This is handy because it makes for easy tabular formatting of currency.

ios_base::width
money_put values will follow the standard rules for stream field width. By default,
values are left justified. If the field is larger than the value, the fill character given
to money_put is used.

ios_base::showbase
When this is true, the currency symbol is printed; otherwise, it is not.

As I said earlier, money_get and money_put use a moneypunct class, which is what actu-
ally stores the formatting information. You don’t need to worry about the moneypunct
class unless you are implementing a standard library, but you can use it to explore
the formatting used for a particular locale. moneypunct contains information such as
the currency symbol used, the character used for the decimal point, the format of
positive and negative values, and so on. Example 13-7 presents a short program for
printing out currency format information for a given locale.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 13: Internationalization

Example 13-7. Printing currency format info

#include <iostream>
#include <locale>
#include <string>

using namespace std;

string printPattern(moneypunct<char>::pattern& pat) {

 string s(pat.field); // pat.field is a char[4]
 string r;

 for (int i = 0; i < 4; ++i) {
 switch (s[i]) {
 case moneypunct<char>::sign:
 r += "sign ";
 break;
 case moneypunct<char>::none:
 r += "none ";
 break;
 case moneypunct<char>::space:
 r += "space ";
 break;
 case moneypunct<char>::value:
 r += "value ";
 break;
 case moneypunct<char>::symbol:
 r += "symbol ";
 break;
 }
 }
 return(r);
}

int main() {

 locale loc("danish");

 const moneypunct<char>& punct =
 use_facet<moneypunct<char> >(loc);

 cout << "Decimal point: " << punct.decimal_point() << '\n'
 << "Thousands separator: " << punct.thousands_sep() << '\n'
 << "Currency symbol: " << punct.curr_symbol() << '\n'
 << "Positive sign: " << punct.positive_sign() << '\n'
 << "Negative sign: " << punct.negative_sign() << '\n'
 << "Fractional digits: " << punct.frac_digits() << '\n'
 << "Positive format: "
 << printPattern(punct.pos_format()) << '\n'
 << "Negative format: "
 << printPattern(punct.neg_format()) << '\n';

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sorting Localized Strings | 481

Most of these methods are self-explanatory, but a few require further explanation.
First, the grouping method returns a string of characters that is interpreted as a string
of integers. Each character represents the grouping at that particular index in the
number, starting at the right side of the number. And if there is no value for an
index, the value for the next previous index is used. In other words, for standard
American formatting, there will be a value of 3 at index 0 in the string, which means
at index 0, the numbers should be grouped in triplets. Since there are no more val-
ues, all indexes greater than zero should also use grouping in triplets.

pos_format and neg_format return an object of type moneypunct<T>::pattern, which has
a member field that is a T[4], where T is the character type. Each element in field is
one of the enumerations moneypunct<T>::part, which has five possible values: none,
space, symbol, sign, and value. A string representation of currency has four parts (thus
the array of length four). Typically, the sequence of parts will be something like symbol
space sign value, which would mean to print a value as $ -32.00. Often, the positive
sign is the empty string since a value with no sign is generally assumed to be positive.
The negative sign can be more than one character, such as “(),” in which case the first
character is printed where the symbol part occurs in neg_format, and the remainder is
printed at the end, so you can have negative values represented as $(32.00).

Most of the time you will not need to worry about the formatting information stored
in moneypunct. But if you have to do a lot of formatting of money in different locales,
it’s worthwhile to experiment and see how different locales are formatted.

See Also
Recipes 13.2 and 13.3

13.5 Sorting Localized Strings

Problem
You have a sequence of strings that contain non-ASCII characters, and you need to
sort according to local convention.

 // Grouping is represented by a string of chars, but the meaning
 // of each char is its integer value, not the char it represents.
 string s = punct.grouping();
 for (string::iterator p = s.begin(); p != s.end(); ++p)
 cout << "Groups of: " << (int)*p << '\n';
}

Example 13-7. Printing currency format info (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 13: Internationalization

Solution
The locale class has built-in support for comparing characters in a given locale by
overriding operator. You can use an instance of the locale class as your comparison
functor when you call any standard function that takes a functor for comparison.
(See Example 13-8.)

Example 13-8. Locale-specific sorting

#include <iostream>
#include <locale>
#include <string>
#include <vector>
#include <algorithm>

using namespace std;

bool localeLessThan (const string& s1, const string& s2) {

 const collate<char>& col =
 use_facet<collate<char> >(locale()); // Use the global locale

 const char* pb1 = s1.data();
 const char* pb2 = s2.data();

 return (col.compare(pb1, pb1 + s1.size(),
 pb2, pb2 + s2.size()) < 0);
}

int main() {

 // Create two strings, one with a German character
 string s1 = "diät";
 string s2 = "dich";

 vector<string> v;
 v.push_back(s1);
 v.push_back(s2);

 // Sort without giving a locale, which will sort according to the
 // current global locale's rules.
 sort(v.begin(), v.end());
 for (vector<string>::const_iterator p = v.begin();
 p != v.end(); ++p)
 cout << *p << endl;

 // Set the global locale to German, and then sort
 locale::global(locale("german"));
 sort(v.begin(), v.end(), localeLessThan);
 for (vector<string>::const_iterator p = v.begin();
 p != v.end(); ++p)
 cout << *p << endl;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Sorting Localized Strings | 483

The first sort follows ASCII sorting convention, and therefore the output looks like
this:

dich
diät

The second sort uses the proper ordering according to German semantics, and it is
just the opposite:

diät
dich

Discussion
Sorting becomes more complicated when you’re working in different locales, and the
standard library solves this problem. The facet collate provides a member function
compare that works like strcmp: it returns -1 if the first string is less than the second, 0
if they are equal, and 1 if the first string is greater than the second. Unlike strcmp,
collate::compare uses the character semantics of the target locale.

Example 13-8 presents the function localeLessThan, which returns true if the first
argument is less than the second according to the global locale. The most important
part of the function is the call to compare:

col.compare(pb1, // Pointer to the first char
 pb1 + s1.size(), // Pointer to one past the last char
 pb2,
 pb2 + s2.size())

Depending on the execution character set of your implementation, Example 13-8
may return the results I showed earlier or not. But if you want to ensure string com-
parison works in a locale-specific manner, you should use collate::compare. Of
course, the standard does not require an implementation to support any locales other
than “C,” so be sure to test for all the locales you support.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

484

Chapter 14CHAPTER 14

XML

14.0 Introduction
XML is important in many areas, including information storage and retrieval, pub-
lishing, and network communication; in this chapter, you’ll learn to work with XML
in C++. Because this book is about C++ rather than XML, I’ll assume you already
have some experience with the various XML-related technologies I discuss, includ-
ing SAX, DOM, XML Schema, XPath, and XSLT. Don’t worry if you’re not an expert
in all of these areas; the recipes in this chapter are more or less independent of each
other, so you should be able to skip some of the recipes and still understand the rest.
In any case, each recipe provides a quick explanation of the XML concepts and tools
it uses.

If you come from another programming language, such as Java, you may expect to
find the tools for XML processing in C++ to be included in the C++ standard library.
Unfortunately, XML was in its infancy when the C++ standard was approved, and
while there’s strong interest in adding XML processing to a future version of the C++
standard library, for now you will have to rely on the collection of excellent third-
party XML libraries available in C++.

Before you start reading recipes, you may want to download and install the libraries
I’ll be covering in this chapter. Table 14-1 shows the homepage of each library;
Table 14-2 shows the features of each library and the recipes that use the library. The
table doesn’t show each library’s exact level of conformance to the various XML
specifications and recommendations because this information is likely to change in
the near future.

Table 14-1. C++ libraries for XML

Library name Homepage

TinyXml www.grinninglizard.com/tinyxml

Xerxes xml.apache.org/xerces-c

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Simple XML Document | 485

14.1 Parsing a Simple XML Document

Problem
You have a collection of data stored in an XML document. You want to parse the
document and turn the data it contains into a collection of C++ objects. Your XML
document is small enough to fit into memory and doesn’t use an internal Document
Type Definition (DTD) or XML Namespaces.

Solution
Use the TinyXml library. First, define an object of type TiXmlDocument and call its
LoadFile() method, passing the pathname of your XML document as its argument.
If LoadFile() returns true, your document has been successfully parsed. If parsing
was successful, call the RootElement() method to obtain a pointer to an object of
type TiXmlElement representing the document root. This object has a hierarchical
structure that reflects the structure of your XML document; by traversing this struc-
ture, you can extract information about the document and use this information to
create a collection of C++ objects.

For example, suppose you have an XML document animals.xml representing a col-
lection of circus animals, as shown in Example 14-1. The document root is named
animalList and has a number of child animal elements each representing an animal
owned by the Feldman Family Circus. Suppose you also have a C++ class named
Animal, and you want to construct a std::vector of Animals corresponding to the ani-
mals listed in the document.

Xalan xml.apache.org/xalan-c

Pathan 1 software.decisionsoft.com/pathanIntro.html

Boost.Serialization www.boost.org/libs/serialization

Table 14-2. How each library is used

Library name Features Recipes

TinyXml DOM (nonstandard) 14.1

Xerxes SAX2, DOM, XML Schema 14.2–14.8

Xalan XSLT, XPath 14.7–14.8

Pathan XPath 14.8

Boost.Serialization XML Serialization 14.9

Table 14-1. C++ libraries for XML (continued)

Library name Homepage

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 14: XML

Example 14-2 shows how the definition of the class Animal might look. Animal has
five data members corresponding to an animal’s name, species, date of birth, veteri-
narian, and trainer. An animal’s name and species are represented as std::strings,
its date of birth is represented as a boost::gregorian::date from Boost.Date_Time,
and its veterinarian and trainer are represented as instances of the class Contact, also
defined in Example 14-2. Example 14-3 shows how to use TinyXml to parse the doc-
ument animals.xml, traverse the parsed document, and populate a std::vector of
Animals using data extracted from the document.

Example 14-1. An XML document representing a list of circus animals

<?xml version="1.0" encoding="UTF-8"?>

<!-- Feldman Family Circus Animals -->

<animalList>
 <animal>
 <name>Herby</name>
 <species>elephant</species>
 <dateOfBirth>1992-04-23</dateOfBirth>
 <veterinarian name="Dr. Hal Brown" phone="(801)595-9627"/>
 <trainer name="Bob Fisk" phone="(801)881-2260"/>
 </animal>
 <animal>
 <name>Sheldon</name>
 <species>parrot</species>
 <dateOfBirth>1998-09-30</dateOfBirth>
 <veterinarian name="Dr. Kevin Wilson" phone="(801)466-6498"/>
 <trainer name="Eli Wendel" phone="(801)929-2506"/>
 </animal>
 <animal>
 <name>Dippy</name>
 <species>penguin</species>
 <dateOfBirth>2001-06-08</dateOfBirth>
 <veterinarian name="Dr. Barbara Swayne" phone="(801)459-7746"/>
 <trainer name="Ben Waxman" phone="(801)882-3549"/>
 </animal>
</animalList>

Example 14-2. The header animal.hpp

#ifndef ANIMALS_HPP_INCLUDED
#define ANIMALS_HPP_INCLUDED

#include <ostream>
#include <string>
#include <stdexcept> // runtime_error
#include <boost/date_time/gregorian/gregorian.hpp>
#include <boost/regex.hpp>

// Represents a veterinarian or trainer
class Contact {
public:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Simple XML Document | 487

 Contact() { }
 Contact(const std::string& name, const std::string& phone)
 : name_(name)
 {
 setPhone(phone);
 }
 std::string name() const { return name_; }
 std::string phone() const { return phone_; }
 void setName(const std::string& name) { name_ = name; }
 void setPhone(const std::string& phone)
 {
 using namespace std;
 using namespace boost;
 // Use Boost.Regex to verify that phone
 // has the form (ddd)ddd-dddd
 static regex pattern("\\([0-9]{3}\\)[0-9]{3}-[0-9]{4}");
 if (!regex_match(phone, pattern)) {
 throw runtime_error(string("bad phone number:") + phone);
 }
 phone_ = phone;
 }
private:
 std::string name_;
 std::string phone_;
};

// Compare two Contacts for equality; used in Recipe 14.9
// (for completeness, you should also define operator!=)
bool operator==(const Contact& lhs, const Contact& rhs)
{
 return lhs.name() == rhs.name() && lhs.phone() == rhs.phone();
}

// Writes a Contact to an ostream
std::ostream& operator<<(std::ostream& out, const Contact& contact)
{
 out << contact.name() << " " << contact.phone();
 return out;
}

// Represents an animal
class Animal {
public:
 // Default constructs an Animal; this is
 // the constructor you'll use most
 Animal() { }

 // Constructs an Animal with the given properties;
 // you'll use this constructor in Recipe 14.9
 Animal(const std::string& name,
 const std::string& species,
 const std::string& dob,

Example 14-2. The header animal.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 14: XML

 const Contact& vet,
 const Contact& trainer)
 : name_(name),
 species_(species),
 vet_(vet),
 trainer_(trainer)
 {
 setDateOfBirth(dob);
 }

 // Getters
 std::string name() const { return name_; }
 std::string species() const { return species_; }
 boost::gregorian::date dateOfBirth() const { return dob_; }
 Contact veterinarian() const { return vet_; }
 Contact trainer() const { return trainer_; }

 // Setters
 void setName(const std::string& name) { name_ = name; }
 void setSpecies(const std::string& species) { species_ = species; }
 void setDateOfBirth(const std::string& dob)
 {
 dob_ = boost::gregorian::from_string(dob);
 }
 void setVeterinarian(const Contact& vet) { vet_ = vet; }
 void setTrainer(const Contact& trainer) { trainer_ = trainer; }
private:
 std::string name_;
 std::string species_;
 boost::gregorian::date dob_;
 Contact vet_;
 Contact trainer_;
};

// Compare two Animals for equality; used in Recipe 14.9
// (for completeness, you should also define operator!=)
bool operator==(const Animal& lhs, const Animal& rhs)
{
 return lhs.name() == rhs.name() &&
 lhs.species() == rhs.species() &&
 lhs.dateOfBirth() == rhs.dateOfBirth() &&
 lhs.veterinarian() == rhs.veterinarian() &&
 lhs.trainer() == rhs.trainer();
}

// Writes an Animal to an ostream
std::ostream& operator<<(std::ostream& out, const Animal& animal)
{
 out << "Animal {\n"
 << " name=" << animal.name() << ";\n"
 << " species=" << animal.species() << ";\n"
 << " date-of-birth=" << animal.dateOfBirth() << ";\n"

Example 14-2. The header animal.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Simple XML Document | 489

 << " veterinarian=" << animal.veterinarian() << ";\n"
 << " trainer=" << animal.trainer() << ";\n"
 << "}";
 return out;
}

#endif // #ifndef ANIMALS_HPP_INCLUDED

Example 14-3. Parsing animals.xml with TinyXml

#include <exception>
#include <iostream> // cout
#include <stdexcept> // runtime_error
#include <cstdlib> // EXIT_FAILURE
#include <cstring> // strcmp
#include <vector>
#include <tinyxml.h>
#include "animal.hpp"

using namespace std;

// Extracts the content of an XML element that contains only text
const char* textValue(TiXmlElement* e)
{
 TiXmlNode* first = e->FirstChild();
 if (first != 0 &&
 first == e->LastChild() &&
 first->Type() == TiXmlNode::TEXT)
 {
 // the element e has a single child, of type TEXT;
 // return the child's
 return first->Value();
 } else {
 throw runtime_error(string("bad ") + e->Value() + " element");
 }
}

// Constructs a Contact from a "veterinarian" or "trainer" element
Contact nodeToContact(TiXmlElement* contact)
{
 using namespace std;
 const char *name, *phone;
 if (contact->FirstChild() == 0 &&
 (name = contact->Attribute("name")) &&
 (phone = contact->Attribute("phone")))
 {
 // The element contact is childless and has "name"
 // and "phone" attributes; use these values to
 // construct a Contact
 return Contact(name, phone);
 } else {
 throw runtime_error(string("bad ") + contact->Value() + " element");

Example 14-2. The header animal.hpp (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 14: XML

 }
}

// Constructs an Animal from an "animal" element
Animal nodeToAnimal(TiXmlElement* animal)
{
 using namespace std;

 // Verify that animal corresponds to an "animal" element
 if (strcmp(animal->Value(), "animal") != 0) {
 throw runtime_error(string("bad animal: ") + animal ->Value());
 }

 Animal result; // Return value
 TiXmlElement* element = animal->FirstChildElement();

 // Read name
 if (element && strcmp(element->Value(), "name") == 0) {
 // The first child element of animal is a "name"
 // element; use its text value to set the name of result
 result.setName(textValue(element));
 } else {
 throw runtime_error("no name attribute");
 }

 // Read species
 element = element->NextSiblingElement();
 if (element && strcmp(element->Value(), "species") == 0) {
 // The second child element of animal is a "species"
 // element; use its text value to set the species of result
 result.setSpecies(textValue(element));
 } else {
 throw runtime_error("no species attribute");
 }

 // Read date of birth
 element = element->NextSiblingElement();
 if (element && strcmp(element->Value(), "dateOfBirth") == 0) {
 // The third child element of animal is a "dateOfBirth"
 // element; use its text value to set the date of birth
 // of result
 result.setDateOfBirth(textValue(element));
 } else {
 throw runtime_error("no dateOfBirth attribute");
 }

 // Read veterinarian
 element = element->NextSiblingElement();
 if (strcmp(element->Value(), "veterinarian") == 0) {
 // The fourth child element of animal is a "veterinarian"
 // element; use it to construct a Contact object and
 // set result's veterinarian

Example 14-3. Parsing animals.xml with TinyXml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Simple XML Document | 491

 result.setVeterinarian(nodeToContact(element));
 } else {
 throw runtime_error("no veterinarian attribute");
 }

 // Read trainer
 element = element->NextSiblingElement();
 if (strcmp(element->Value(), "trainer") == 0) {
 // The fifth child element of animal is a "trainer"
 // element; use it to construct a Contact object and
 // set result's trainer
 result.setTrainer(nodeToContact(element));
 } else {
 throw runtime_error("no trainer attribute");
 }

 // Check that there are no more children
 element = element->NextSiblingElement();
 if (element != 0) {
 throw runtime_error(
 string("unexpected element:") +
 element->Value()
);

 }

 return result;
}

int main()
{
 using namespace std;

 try {
 vector<Animal> animalList;

 // Parse "animals.xml"
 TiXmlDocument doc("animals.xml");
 if (!doc.LoadFile())
 throw runtime_error("bad parse");

 // Verify that root is an animal-list
 TiXmlElement* root = doc.RootElement();
 if (strcmp(root->Value(), "animalList") != 0) {
 throw runtime_error(string("bad root: ") + root->Value());
 }

 // Traverse children of root, populating the list
 // of animals
 for (TiXmlElement* animal = root->FirstChildElement();
 animal;
 animal = animal->NextSiblingElement())

Example 14-3. Parsing animals.xml with TinyXml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 14: XML

Discussion
TinyXml is an excellent choice for applications that need to do just a bit of XML pro-
cessing. Its source distribution is small, it’s easy to build and integrate with projects,
and it has a very simple interface. It also has a very permissive license. Its main limi-
tations are that it doesn’t understand XML Namespaces, can’t validate against a
DTD or schema, and can’t parse XML documents containing an internal DTD. If
you need to use any of these features, or any of the XML-related technologies such as
XPath or XSLT, you should use the other libraries covered in this chapter.

The TinyXml parser produces a representation of an XML document as a tree whose
nodes represent the elements, text, comments and other components of an XML
document. The root of the tree represents the XML document itself. This type of rep-
resentation of a hierarchical document as a tree is known as a Document Object
Model (DOM). The TinyXml DOM is similar to the one designed by the World
Wide Web Consortium (W3C), although it does not conform to the W3C specifica-
tion. In keeping with the minimalist spirit of TinyXml, the TinyXml DOM is simpler
than the W3C DOM, but also less powerful.

The nodes in the tree representing an XML document can be accessed through the
interface TiXmlNode, which provides methods to access a node’s parent, to enumer-
ate its child nodes, and to remove child nodes or insert additional child nodes. Each
node is actually an instance of a more derived type; for example, the root of the tree
is an instance of TiXmlDocument, nodes representing elements are instances
TiXmlElement, and nodes representing text are instances of TiXmlText. The type of a
TiXmlNode can be determined by calling its Type() method; once you know the type
of a node, you can obtain a representation of the node as a more derived type by call-
ing one of the convenience methods such as toDocument(), toElement() and toText().

 {
 animalList.push_back(nodeToAnimal(animal));
 }

 // Print the animals' names
 for (vector<Animal>::size_type i = 0,
 n = animalList.size();
 i < n;
 ++i)
 {
 cout << animalList[i] << "\n";
 }
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-3. Parsing animals.xml with TinyXml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Simple XML Document | 493

These derived types contain additional methods appropriate to the type of node they
represent.

It’s now easy to understand Example 14-3. First, the function textValue() extracts
the text content from an element that contains only text, such as name, species, or
dateOfBirth. It does this by first checking that an element has only one child, and
that the child is a text node. It then obtains the child’s text by calling the Value()
method, which returns the textual content of a text node or comment node, the tag
name of an element node, and the filename of a root node.

Next, the function nodeToContact() takes a node corresponding to a veterinarian or
trainer element and constructs a Contact object from the values of its name and
phone attributes, which it retrieves using the Attribute() method.

Similarly, the function nodeToAnimal() takes a node corresponding to an animal element
and constructs an Animal object. It does this by iterating over the node’s children using
the NextSiblingElement() method, extracting the data contained in each element, and
setting the corresponding property of the Animal object. The data is extracted using the
function textValue() for the elements name, species, and dateOfBirth and the function
nodeToContact() for the elements veterinarian and trainer.

In the main function, I first construct a TiXmlDocument object corresponding to the file
animals.xml and parse it using the LoadFile() method. I then obtain a TiXmlElement
corresponding to the document root by calling the RootElement() method. Next, I
iterate over the children of the root element, constructing an Animal object from each
animal element using the function nodeToAnimal(). Finally, I iterate over the collec-
tion of Animal objects, writing them to standard output.

One feature of TinyXml that is not illustrated in Example 14-3 is the SaveFile()
method of TiXmlDocument, which writes the document represented by a TiXmlDocument
to a file. This allows you to parse an XML document, modify it using the DOM inter-
face, and save the modified document. You can even create a TiXmlDocument from
scratch and save it to disk:

// Create a document hello.xml, consisting
// of a single "hello" element
TiXmlDocument doc;
TiXmlElement root("hello");
doc.InsertEndChild(root);
doc.SaveFile("hello.xml");

See Also
Recipes 14.3 and 14.4

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 14: XML

14.2 Working with Xerces Strings

Problem
You want to be able to handle the wide-character strings used by the Xerces library
safely and easily. In particular, you want to be able to store strings returned by
Xerces functions as well as to convert between Xerces strings and C++ standard
library strings.

Solution
You can store wide-character strings returned by Xerces library functions using the
template std::basic_string specialized for the Xerces wide-character type XMLCh:

typedef std::basic_string<XMLCh> XercesString;

To translate between Xerces strings and narrow-character strings, use the overloaded
static method transcode() from the class xercesc::XMLString, defined in the header
xercesc/util/XMLString.hpp. Example 14-4 defines two overloaded utility functions,
toNative and fromNative, that use transcode to translate from narrow-character
strings to Xerces strings and vice versa. Each function has two variants, one that takes
a C-style string and one that takes a C++ standard library string. These utility func-
tions are all you’ll need to convert between Xerces string and narrow-character
strings; once you define them, you’ll never need to call transcode directly.

Example 14-4. The header xerces_strings.hpp, for converting between Xerces strings and
narrow-character strings

#ifndef XERCES_STRINGS_HPP_INCLUDED
#define XERCES_STRINGS_HPP_INCLUDED

#include <string>
#include <boost/scoped_array.hpp>
#include <xercesc/util/XMLString.hpp>

typedef std::basic_string<XMLCh> XercesString;

// Converts from a narrow-character string to a wide-character string.
inline XercesString fromNative(const char* str)
{
 boost::scoped_array<XMLCh> ptr(xercesc::XMLString::transcode(str));
 return XercesString(ptr.get());
}

// Converts from a narrow-character string to a wide-charactr string.
inline XercesString fromNative(const std::string& str)
{
 return fromNative(str.c_str());
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Working with Xerces Strings | 495

To convert between Xerces strings and std::wstrings, simply use the std::basic_string
constructor taking a pair of iterators. For example, you can define the following two
functions:

// Converts from a Xerces String to a std::wstring
std::wstring xercesToWstring(const XercesString& str)
{
 return std::wstring(str.begin(), str.end());
}

// Converts from a std::wstring to a XercesString
XercesString wstringToXerces(const std::wstring& str)
{
 return XercesString(str.begin(), str.end());
}

These functions rely on the fact that wchar_t and XMLCh are integral types each of
which can be implicitly converted to the other; it should work regardless of the size
of wchar_t, as long as no values outside the range of XMLCh are used. You can define
similar functions taking C-style strings as arguments, using the std::basic_string
constructor that takes a character array and a length as arguments.

Discussion
Xerces uses the null-terminated sequences of characters of type XMLCh to represent
Unicode strings. XMLCh is a typedef for an implementation-defined integral type hav-
ing a size of at least 16 bits—wide enough to represent almost all known characters
in any language using a single character. Xerces uses the UTF-16 character encod-
ing, which means that theoretically some Unicode characters must be represented by
a sequence of more than one XMLCh; in practice, however, you can think of an XMLCh
as directly representing a Unicode code point, i.e., the numerical value of a Unicode
character.

// Converts from a wide-character string to a narrow-character string.
inline std::string toNative(const XMLCh* str)
{
 boost::scoped_array<char> ptr(xercesc::XMLString::transcode(str));
 return std::string(ptr.get());
}

// Converts from a wide-character string to a narrow-character string.
inline std::string toNative(const XercesString& str)
{
 return toNative(str.c_str());
}

#endif // #ifndef XERCES_STRINGS_HPP_INCLUDED

Example 14-4. The header xerces_strings.hpp, for converting between Xerces strings and
narrow-character strings (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 14: XML

At one time, XMLCh was defined as a typedef for wchar_t, which meant you could eas-
ily store a copy of a Xerces string as a std::wstring. Currently, however, Xerces
defines XMLCh as a typedef for unsigned short on all platforms. Among other things,
this means that on some platforms XMLCh and wchar_t don’t even have the same
width. Since Xerces may change the definition of XMLCh in the future, you can’t count
on XMLCh to be identical to any particular type. So if you want to store a copy of a
Xerces string, you should use a std::basic_string<XMLCh>.

When using Xerces you will frequently need to convert between narrow-character
strings and Xerces strings; Xerces provides the overloaded function transcode() for
this purpose. transcode() can convert a Unicode string to a narrow-character string
in the “native” character encoding or a narrow-character string in the “native”
encoding to a Unicode string. What constitutes the native encoding is not precisely
defined, however, so if you are programming in an environment where there are sev-
eral commonly used character encodings, you may need to take matters into your
own hands and perform your own conversion, either by using a std::codecvt facet,
or by using Xerces’s pluggable transcoding services, described in the Xerces documen-
tation. In many cases, however, transcode() is all you need.

The null-terminate string returned by transcode() is dynamically allocated using the
array form of operator new; it’s up to you to delete it using delete []. This presents a
slight memory-management problem, since typically you will want to make a copy of
the string or write it to a stream before you delete it, and these operations can throw
exceptions. I’ve addressed this problem in Example 14-4 by using the template
boost::scoped_array, which takes ownership of a dynamically allocated array and
deletes it automatically when it goes out of scope, even if an exception is thrown. For
example, look at the implementation of fromNative:

inline XercesString fromNative(const char* str)
{
 boost::scoped_array<XMLCh> ptr(xercesc::XMLString::transcode(str));
 return XercesString(ptr.get());
}

Here, ptr takes ownership of the null-terminated string returned by transcode() and
frees it even if the XercesString constructor throws a std::bad_alloc exception.

14.3 Parsing a Complex XML Document

Problem
You have a collection of data stored in an XML document that uses an internal DTD
or XML Namespaces. You want to parse the document and turn the data it contains
into a collection of C++ objects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Complex XML Document | 497

Solution
Use Xerces’s implementation of the SAX2 API (the Simple API for XML, Version 2.0).
First, derive a class from xercesc::ContentHandler; this class will receive notifications
about the structure and content of your XML document as it is being parsed. Next, if
you like, derive a class from xercesc::ErrorHandler to receive warnings and error noti-
fications. Construct a parser of type xercesc::SAX2XMLReader, register instances of
your handler classes using the parser’s setContentHandler() and setErrorHandler()
methods. Finally, invoke the parser’s parse() method, passing the file pathname of
your document as its argument.

For example, suppose you want to parse the XML document animals.xml from
Example 14-1 and construct a std::vector of Animals representing the animals listed
in the document. (See Example 14-2 for the C++ definition of the class Animal.) In
Example 14-3, I showed how to do this using TinyXml. To make the problem more
challenging, let’s add namespaces to the document, as shown in Example 14-5.

To parse this document with SAX2, define a ContentHandler, as shown in Example 14-6,
and an ErrorHandler, as shown in Example 14-7. Then construct a SAX2XMLReader, regis-
ter your handlers, and run the parser. This is illustrated in Example 14-8.

Example 14-5. List of circus animals, using XML Namespaces

<?xml version="1.0" encoding="UTF-8"?>

<!-- Feldman Family Circus Animals with Namespaces -->

<ffc:animalList xmlns:ffc="http://www.feldman-family-circus.com">
 <ffc:animal>
 <ffc:name>Herby</ffc:name>
 <ffc:species>elephant</ffc:species>
 <ffc:dateOfBirth>1992-04-23</ffc:dateOfBirth>
 <ffc:veterinarian name="Dr. Hal Brown" phone="(801)595-9627"/>
 <ffc:trainer name="Bob Fisk" phone="(801)881-2260"/>
 </ffc:animal>

 <!-- etc. -->

</ffc:animalList>

Example 14-6. A SAX2 ContentHandler for parsing the document animals.xml

#include <stdexcept> // runtime_error
#include <vector>
#include <xercesc/sax2/Attributes.hpp>
#include <xercesc/sax2/DefaultHandler.hpp> // Contains no-op
 // implementations of
 // the various handlers
#include "xerces_strings.hpp" // Example 14-4
#include "animal.hpp"

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

498 | Chapter 14: XML

using namespace std;
using namespace xercesc;

// Returns an instance of Contact based
// on the given collection of attributes
Contact contactFromAttributes(const Attributes &attrs)
{
 // For efficiency, store frequently used string
 // in static variables
 static XercesString name = fromNative("name");
 static XercesString phone = fromNative("phone");

 Contact result; // Contact to be returned.
 const XMLCh* val; // Value of name or phone attribute.

 // Set Contact's name.
 if ((val = attrs.getValue(name.c_str())) != 0) {
 result.setName(toNative(val));
 } else {
 throw runtime_error("contact missing name attribute");
 }

 // Set Contact's phone number.
 if ((val = attrs.getValue(phone.c_str())) != 0) {
 result.setPhone(toNative(val));
 } else {
 throw runtime_error("contact missing phone attribute");
 }

 return result;
}

// Implements callbacks that receive character data and
// notifications about the beginnings and ends of elements
class CircusContentHandler : public DefaultHandler {
public:
 CircusContentHandler(vector<Animal>& animalList)
 : animalList_(animalList)
 { }

 // If the current element represents a veterinarian or trainer,
 // use attrs to construct a Contact object for the current
 // Animal; otherwise, clear currentText_ in preparation for the
 // characters() callback
 void startElement(
 const XMLCh *const uri, // namespace URI
 const XMLCh *const localname, // tagname w/ out NS prefix
 const XMLCh *const qname, // tagname + NS pefix
 const Attributes &attrs) // elements's attributes
 {
 static XercesString animalList = fromNative("animalList");
 static XercesString animal = fromNative("animal");

Example 14-6. A SAX2 ContentHandler for parsing the document animals.xml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Complex XML Document | 499

 static XercesString vet = fromNative("veterinarian");
 static XercesString trainer = fromNative("trainer");
 static XercesString xmlns =
 fromNative("http://www.feldman-family-circus.com");

 // Check namespace URI
 if (uri != xmlns)
 throw runtime_error(
 string("wrong namespace uri: ") + toNative(uri)
);
 if (localname == animal) {
 // Add an Animal to the list; this is the new
 // "current Animal"
 animalList_.push_back(Animal());
 } else if (localname!= animalList) {
 Animal& animal = animalList_.back();
 if (localname == vet) {
 // We've encountered a "veterinarian" element.
 animal.setVeterinarian(contactFromAttributes(attrs));
 } else if (localname == trainer) {
 // We 've encountered a "trainer" element.
 animal.setTrainer(contactFromAttributes(attrs));
 } else {
 // We've encountered a "name" , "species", or
 // "dateOfBirth" element. Its content will be supplied
 // by the callback function characters().
 currentText_.clear();
 }
 }
 }

 // If the current element represents a name, species, or date
 // of birth, use the text stored in currentText_ to set the
 // appropriate property of the current Animal.
 void endElement(
 const XMLCh *const uri, // namespace URI
 const XMLCh *const localname, // tagname w/ out NS prefix
 const XMLCh *const qname) // tagname + NS pefix
 {
 static XercesString animalList = fromNative("animal-list");
 static XercesString animal = fromNative("animal");
 static XercesString name = fromNative("name");
 static XercesString species = fromNative("species");
 static XercesString dob = fromNative("dateOfBirth");

 if (localname!= animal && localname!= animalList) {
 // currentText_ contains the content of the element
 // which has ended. Use it to set the current Animal's
 // properties.
 Animal& animal = animalList_.back();
 if (localname == name) {
 animal.setName(toNative(currentText_));

Example 14-6. A SAX2 ContentHandler for parsing the document animals.xml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

500 | Chapter 14: XML

 } else if (localname == species) {
 animal.setSpecies(toNative(currentText_));
 } else if (localname == dob) {
 animal.setDateOfBirth(toNative(currentText_));
 }
 }
 }
 // Receives notifications when character data is encountered
 void characters(const XMLCh* const chars,
 const unsigned int length)
 {
 // Append characters to currentText_ for processing by
 // the method endElement()
 currentText_.append(chars, length);
 }
private:
 vector<Animal>& animalList_;
 XercesString currentText_;
};

Example 14-7. A SAX2 ErrorHandler

#include <stdexcept> // runtime_error
#include <xercesc/sax2/DefaultHandler.hpp>

// Receives Error notifications.
class CircusErrorHandler : public DefaultHandler {
public:
 void warning(const SAXParseException& e)
 {
 /* do nothing */
 }
 void error(const SAXParseException& e)
 {
 throw runtime_error(toNative(e.getMessage()));
 }
 void fatalError(const SAXParseException& e) { error(e); }
};

Example 14-8. Parsing the document animals.xml with the SAX2 API

#include <exception>
#include <iostream> // cout
#include <memory> // auto_ptr
#include <vector>
#include <xercesc/sax2/SAX2XMLReader.hpp>
#include <xercesc/sax2/XMLReaderFactory.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include "animal.hpp"
#include "xerces_strings.hpp" // Example 14-4

using namespace std;
using namespace xercesc;

Example 14-6. A SAX2 ContentHandler for parsing the document animals.xml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Complex XML Document | 501

// RAII utility that initializes the parser and frees resources
// when it goes out of scope
class XercesInitializer {
public:
 XercesInitializer() { XMLPlatformUtils::Initialize(); }
 ~XercesInitializer() { XMLPlatformUtils::Terminate(); }
private:
 // Prohibit copying and assignment
 XercesInitializer(const XercesInitializer&);
 XercesInitializer& operator=(const XercesInitializer&);
};

int main()
{
 try {
 vector<Animal> animalList;

 // Initialze Xerces and obtain parser
 XercesInitializer init;
 auto_ptr<SAX2XMLReader>]
 parser(XMLReaderFactory::createXMLReader());

 // Register handlers
 CircusContentHandler content(animalList);
 CircusErrorHandler error;
 parser->setContentHandler(&content);
 parser->setErrorHandler(&error);

 // Parse the XML document
 parser->parse("animals.xml");

 // Print animals' names
 for (vector<Animal>::size_type i = 0,
 n = animalList.size();
 i < n;
 ++i)
 {
 cout << animalList[i] << "\n";
 }
 } catch (const SAXException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const XMLException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-8. Parsing the document animals.xml with the SAX2 API (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

502 | Chapter 14: XML

Discussion
Some XML parsers parse an XML document and return it to the user as a complex
C++ object. The TinyXml parser and the W3C DOM parser that you’ll see in the
next recipe both work this way. The SAX2 parser, by contrast, uses a collection of
callback function to deliver information about an XML document to the user as the
document is being parsed. The callback functions are grouped into several handler
interfaces: a ContentHandler receives notifications about an XML document’s ele-
ments, attributes, and text, an ErrorHandler receives warnings and error notifica-
tions, and a DTDHandler receives notifications about an XML document’s DTD.

Designing a parser around a collection of callback function has several important
advantages. For example, it makes it possible to parse documents that are too large
to fit into memory. In addition, it can save processing time by avoiding the numer-
ous dynamic allocations needed to construct nodes in an internal representation of
an XML document, and by allowing the user to construct her own representation of
a document’s data directly, instead of having to traverse the document tree as I did in
Example 14-3.

Example 14-8 is pretty straightforward: I obtain a SAX2 parser, register a Con-
tentHandler and ErrorHandler, parse the document animals.xml, and print the list
of Animals populated by the ContentHandler. There are two interesting points:
First, the function XMLReaderFactory::createXMLReader() returns a dynamically
allocated instance of SAX2XMLReader that must be freed explicitly by the user; I use
a std::auto_ptr for this purpose to make sure that the parser is deleted even in
the event of an exception. Second, the Xerces framework must be initialized using
xercesc::XMLPlatformUtils::Initialize() and be cleaned up using xercesc::
XMLPlatformUtils::Terminate(). I encapsulate this initialization and cleanup in a
class called XercesInitializer, which calls XMLPlatformUtils::Initialize() in its
constructor and XMLPlatformUtils::Terminate() in its destructor. This ensures
that Terminate() is called even if an exception is thrown. This is an example of
the Resource Acquisition Is Initialization (RAII) technique demonstrated in
Example 8-3.

Let’s look at how the class CircusContentHandler from Example 14-6 implements the
SAX2 ContentHandler interface. The SAX 2 parser calls the method startElement()
each time it encounters the opening tag of an element. If the element has an associ-
ated namespace, the first argument, uri, contains the element’s namespace URI, and
the second argument, localname, contains the portion of the element’s tag name fol-
lowing its namespace prefix. If the element has no associated namespace, these two
arguments are empty strings. The third argument contains the element’s tag name, if
the element has no associated namespace; if the element does have an associated
namespace, this argument may contain the element’s tag name as it appears in the
document being parsed, but it may also be an empty string. The fourth argument is
an instance of the class Attributes, which represents the element’s collection of
attributes.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Complex XML Document | 503

In the implementation of startElement() in Example 14-6, I ignore the animalList
element. When I encounter an animal element, I add a new Animal to its list of ani-
mals—let’s call this Animal the current Animal—and delegate the job of setting the
Animal’s properties to the handlers for other elements. When I encounter a
veterinarian or trainer element, I call the function contactFromAttributes to con-
struct an instance of Contact from the element’s collection of attributes, and then use
this Contact to set the current Animal’s veterinarian or trainer property. When I
encounter a name, species, or dateOfBirth element, I clear the member variable
currentText_, which will be used to store the element’s textual content.

The SAX2 parser calls the method characters() to deliver the character data con-
tained by an element. The parser is allowed to deliver an element’s character in a
series of calls to characters(); until an element’s closing tag is encountered, there’s
no guarantee that all its character data has been delivered. Consequently, in the
implementation of characters(), I simply append the provided characters to the
member variable currentText_, which I use to set the current Animal’s name, species,
or date of birth as soon as a closing name, species, or dateOfBirth tag is encountered.

The SAX2 parser calls the method endElement() each time it leaves an element. Its
arguments have the same interpretation as the first three arguments to startElement().
In the implementation of endElement() in Example 14-6, I ignore all elements other
than name, species, and dateOBirth. When a callback corresponding to one of these
elements occurs—signaling that the parser is just leaving the element—I use the
character data stored in currentText_ to set the current Animal’s name, species, or
date of birth.

Several important features of SAX2 are not illustrated in Examples 14-6, 14-7, and
14-8. For example, the class SAX2XMLReader provides an overload of the method parse()
taking an instance of xercesc::InputSource as an argument instead of a C-style string.
InputSource is an abstract class encapsulating a source of character data; its concrete
subclasses, including xercesc::MemBufInputSource and xercesc::URLInputSource, allow
the SAX2 parser to parse XML documents stored in locations other than the local file-
system.

Furthermore, the ContentHandler interface contains many additional methods, such
as startDocument() and endDocmuent(), which signal the start and end of the XML
document, and setLocator(), which allows you to specify a Locator object which
keeps track of the current position in the file being parsed. There are also other han-
dler interfaces, including DTDHandler and EntityResolver—from the core SAX 2.0
specification—and DeclarationHandler and LexicalHandler—from the standardized
extensions to SAX 2.0.

It’s also possible for a single class to implement several handler interfaces. The class
xercesc::DefaultHandler makes this easy, because it derives from all the handler inter-
faces and provides no-op implementations of their virtual functions. Consequently, I

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

504 | Chapter 14: XML

could have added the methods from CircusErrorHandler to CircusContentHandler,
and modified Example 14-8 as follows:

// Register handlers
CircusContentHandler handler(animalList);
parser->setContentHandler(&handler);
parser->setErrorHandler(&handler);

There’s one last feature of Example 14-8 you should notice: CircusContentHandler
makes no attempt to verify that the document being parsed has the correct struc-
ture—for instance, that its root is an animalList element or that all the children of
the root are animal elements. This is in sharp contrast with Example 14-3. For exam-
ple, the main() function in Example 14-3 verifies that the top-level element is an
animalList, and the function nodeToAnimal() verifies that its argument represents an
animal element with exactly five child elements of type name, species, dateOfBirth,
veterinarian, and trainer.

It’s possible to modify Example 14-6 so that it performs this type of error checking.
The ContentHandler in Example 14-9, for instance, verifies that the document’s root
element is an animalList, that its children are of type animal, and the children of an
animal element don’t contain other elements. It works by maintaining three boolean
flags, parsingAnimalList_, parsingAnimal_, and parsingAnimalChild_, which record
the region of the document that is being parsed at any given time. The methods
startElement() and endElement() simply update these flags and check them for con-
sistency, delegating the task of updating the current Animal to the helper methods
startAnimalChild() and endElementChild(), whose implementations are very similar
to the implementations of startElement() and endElement() in Example 14-6.

Example 14-9. A SAX2 ContentHandler for animals.xml that checks the document’s
structure

// Implements callbacks which receive character data and
// notifications about the beginnings and ends of elements
class CircusContentHandler : public DefaultHandler {
public:
 CircusContentHandler(vector<Animal>& animalList)
 : animalList_(animalList), // list to be populated
 parsingAnimalList_(false), // parsing state
 parsingAnimal_(false), // parsing state
 parsingAnimalChild_(false) // parsing state
 { }

 // Receives notifications from the parser each time
 // beginning of an element is encountered
 void startElement(
 const XMLCh *const uri, // Namespace uri
 const XMLCh *const localname, // simple tag name
 const XMLCh *const qname, // qualified tag name
 const Attributes &attrs) // Collection of attributes
 {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Complex XML Document | 505

 static XercesString animalList = fromNative("animalList");
 static XercesString animal = fromNative("animal");
 static XercesString xmlns =
 fromNative("http://www.feldman-family-circus.com");

 // Validate the namespace uri
 if (uri != xmlns)
 throw runtime_error(
 string("wrong namespace uri: ") + toNative(uri)
);

 // (i) Update the flags parsingAnimalList_, parsingAnimal_,
 // and parsingAnimalChild_, which indicate where we are
 // within the document
 // (ii) verify that the elements are correctly
 // nested;
 // (iii) Delegate most of the work to the method
 // startAnimalChild()
 if (!parsingAnimalList_) {
 // We've just encountered the document root
 if (localname == animalList) {
 parsingAnimalList_ = true; // Update parsing state.
 } else {
 // Incorrect nesting
 throw runtime_error(
 string("expected 'animalList', got ") +
 toNative(localname)
);
 }
 } else if (!parsingAnimal_) {
 // We've just encountered a new animal
 if (localname == animal) {
 parsingAnimal_ = true; // Update parsing state.
 animalList_.push_back(Animal()); // Add an Animal to the list.
 } else {
 // Incorrect nesting
 throw runtime_error(
 string("expected 'animal', got ") +
 toNative(localname)
);
 }
 } else {
 // We're in the middle of parsing an animal element.
 if (parsingAnimalChild_) {
 // Incorrect nesting
 throw runtime_error("bad animal element");
 }
 // Update parsing state.
 parsingAnimalChild_ = true;

Example 14-9. A SAX2 ContentHandler for animals.xml that checks the document’s
structure (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

506 | Chapter 14: XML

 // Let startAnimalChild() do the real work
 startAnimalChild(uri, localname, qname, attrs);
 }
 }

 void endElement(
 const XMLCh *const uri, // Namespace uri
 const XMLCh *const localname, // simple tag name
 const XMLCh *const qname) // qualified tag name
 {
 static XercesString animalList = fromNative("animal-list");
 static XercesString animal = fromNative("animal");

 // Update the flags parsingAnimalList, parsingAnimal_,
 // and parsingAnimalChild_; delegate most of the work
 // to endAnimalChild()
 if (localname == animal) {
 parsingAnimal_ = false;
 } else if (localname == animalList) {
 parsingAnimalList_ = false;
 } else {
 endAnimalChild(uri, localname, qname);
 parsingAnimalChild_ = false;
 }
 }

 // Receives notifications when character data is encountered
 void characters(const XMLCh* const chars, const unsigned int length)
 {
 // Append characters to currentText_ for processing by
 // the method endAnimalChild()
 currentText_.append(chars, length);
 }
private:
 // If the current element represents a veterinarian or trainer,
 // use attrs to construct a Contact object for the current
 // Animal; otherwise, clear currentText_ in preparation for the
 // characters() callback
 void startAnimalChild(
 const XMLCh *const uri, // Namespace uri
 const XMLCh *const localname, // simple tag name
 const XMLCh *const qname, // qualified tag name
 const Attributes &attrs) // Collection of attributes
 {
 static XercesString vet = fromNative("veterinarian");
 static XercesString trainer = fromNative("trainer");

 Animal& animal = animalList_.back();
 if (localname == vet) {
 // We've encountered a "veterinarian" element.

Example 14-9. A SAX2 ContentHandler for animals.xml that checks the document’s
structure (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Parsing a Complex XML Document | 507

Comparing Example 14-9 with Example 14-6, you can see how complex it can be to
verify a document’s structure using callbacks. What’s more, Example 14-6 still
doesn’t perform as much checking as Example 14-3: it doesn’t verify that the chil-
dren of an animal element appear in the correct order, for instance. Fortunately,
there are much easier ways to verify a document’s structure using SAX2, as you’ll see
in the Recipes 14.5 and 14.6.

 animal.setVeterinarian(contactFromAttributes(attrs));
 } else if (localname == trainer) {
 // We've encountered a "trainer" element.
 animal.setTrainer(contactFromAttributes(attrs));
 } else {
 // We've encountered a "name" , "species", or
 // "dateOfBirth" element. Its content will be supplied
 // by the callback function characters().
 currentText_.clear();
 }
 }

 // If the current element represents a name, species, or date
 // of birth, use the text stored in currentText_ to set the
 // appropriate property of the current Animal.
 void endAnimalChild(
 const XMLCh *const uri, // Namespace uri
 const XMLCh *const localname, // simple tag name
 const XMLCh *const qname) // qualified tag name
 {
 static XercesString name = fromNative("name");
 static XercesString species = fromNative("species");
 static XercesString dob = fromNative("dateOfBirth");

 // currentText_ contains the content of the element which has
 // just ended. Use it to set the current Animal's properties.
 Animal& animal = animalList_.back();
 if (localname == name) {
 animal.setName(toNative(currentText_));
 } else if (localname == species) {
 animal.setSpecies(toNative(currentText_));
 } else if (localname == dob) {
 animal.setDateOfBirth(toNative(currentText_));
 }
 }

 vector<Animal>& animalList_; // list to be populated
 bool parsingAnimalList_; // parsing state
 bool parsingAnimal_; // parsing state
 bool parsingAnimalChild_; // parsing state
 XercesString currentText_; // character data of the
 // current text node
};

Example 14-9. A SAX2 ContentHandler for animals.xml that checks the document’s
structure (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

508 | Chapter 14: XML

See Also
Recipes 14.1, 14.4, 14.5, and 14.6

14.4 Manipulating an XML Document

Problem
You want to represent an XML document as a C++ object so that you can manipu-
late its elements, attributes, text, DTD, processing instructions, and comments.

Solution
Use Xerces’s implementation of the W3C DOM. First, use the class xercesc::
DOMImplementationRegistry to obtain an instance of xercesc::DOMImplementation, then
use the DOMImplementation to create an instance of the parser xercesc::DOMBuilder.
Next, register an instance of xercesc::DOMErrorHandler to receive notifications of pars-
ing errors, and invoke the parser’s parseURI() method with your XML document’s URI
or file pathname as its argument. If the parse is successful, parseURI will return a pointer
to a DOMDocument representing the XML document. You can then use the functions
defined by the W3C DOM specification to inspect and manipulate the document.

When you are done manipulating the document, you can save it to a file by obtain-
ing a DOMWriter from the DOMImplementation and calling its writeNode() method with
a pointer to the DOMDocument as its argument.

Example 14-10 shows how to use DOM to parse the document animals.xml from
Example 14-1, locate and remove the node corresponding to Herby the elephant,
and save the modified document.

Example 14-10. Using DOM to load, modify, and then save an XML document

#include <exception>
#include <iostream> // cout
#include <xercesc/dom/DOM.hpp>
#include <xercesc/framework/LocalFileFormatTarget.hpp>
#include <xercesc/sax/SAXException.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include "animal.hpp"
#include "xerces_strings.hpp"

using namespace std;
using namespace xercesc;

/*
 * Define XercesInitializer as in Example 14-8
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manipulating an XML Document | 509

// RAII utility that releases a resource when it goes out of scope.
template<typename T>
class DOMPtr {
public:
 DOMPtr(T* t) : t_(t) { }
 ~DOMPtr() { t_->release(); }
 T* operator->() const { return t_; }
private:
 // prohibit copying and assigning
 DOMPtr(const DOMPtr&);
 DOMPtr& operator=(const DOMPtr&);
 T* t_;
};

// Reports errors encountered while parsing using a DOMBuilder.
class CircusErrorHandler : public DOMErrorHandler {
public:
 bool handleError(const DOMError& e)
 {
 std::cout << toNative(e.getMessage()) << "\n";
 return false;
 }
};

// Returns the value of the "name" child of an "animal" element.
const XMLCh* getAnimalName(const DOMElement* animal)
{
 static XercesString name = fromNative("name");

 // Iterate though animal's children
 DOMNodeList* children = animal->getChildNodes();
 for (size_t i = 0,
 len = children->getLength();
 i < len;
 ++i)
 {
 DOMNode* child = children->item(i);
 if (child->getNodeType() == DOMNode::ELEMENT_NODE &&
 static_cast<DOMElement*>(child)->getTagName() == name)
 {
 // We've found the "name" element.
 return child->getTextContent();
 }
 }
 return 0;
}

int main()
{
 try {
 // Initialize Xerces and retrieve a DOMImplementation;
 // specify that you want to use the Load and Save (LS)

Example 14-10. Using DOM to load, modify, and then save an XML document (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

510 | Chapter 14: XML

 // feature
 XercesInitializer init;
 DOMImplementation* impl =
 DOMImplementationRegistry::getDOMImplementation(
 fromNative("LS").c_str()
);
 if (impl == 0) {
 cout << "couldn't create DOM implementation\n";
 return EXIT_FAILURE;
 }

 // Construct a DOMBuilder to parse animals.xml.
 DOMPtr<DOMBuilder> parser =
 static_cast<DOMImplementationLS*>(impl)->
 createDOMBuilder(DOMImplementationLS::MODE_SYNCHRONOUS, 0);

 // Enable namespaces (not needed in this example)
 parser->setFeature(XMLUni::fgDOMNamespaces, true);

 // Register an error handler
 CircusErrorHandler err;
 parser->setErrorHandler(&err);

 // Parse animals.xml; you can use a URL here
 // instead of a file name
 DOMDocument* doc =
 parser->parseURI("animals.xml");

 // Search for Herby the elephant: first, obtain a pointer
 // to the "animalList" element.
 DOMElement* animalList = doc->getDocumentElement();
 if (animalList->getTagName() != fromNative("animalList")) {
 cout << "bad document root: "
 << toNative(animalList->getTagName())
 << "\n";
 return EXIT_FAILURE;
 }

 // Next, iterate through the "animal" elements, searching
 // for Herby the elephant.
 DOMNodeList* animals =
 animalList->getElementsByTagName(fromNative("animal").c_str());
 for (size_t i = 0,
 len = animals->getLength();
 i < len;
 ++i)
 {
 DOMElement* animal =
 static_cast<DOMElement*>(animals->item(i));
 const XMLCh* name = getAnimalName(animal);
 if (name != 0 && name == fromNative("Herby")) {
 // Found Herby -- remove him from document.

Example 14-10. Using DOM to load, modify, and then save an XML document (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Manipulating an XML Document | 511

Discussion
Like the TinyXml parser, the Xerces DOM parser produces a representation of an
XML document as a tree-structured C++ object with nodes representing the docu-
ment’s components. Xerces is a much more sophisticated parser, however: for
instance, unlike TinyXml, it understands XML Namespaces and can parse complex
DTDs. It also constructs a much more detailed representation of an XML document,
including its processing instructions and the namespace URIs associated with ele-
ments and attributes. Most importantly, it provides access to this information
through the interface described in the W3C DOM specification.

The W3C specification, which is still a work in progress, is divided into several “lev-
els”; currently, there are three levels. The classes DOMImplementation, DOMDocument,
DOMElement, and DOMNodeList, used in Example 14-10, are specified in DOM Level 1.
The classes DOMBuilder and DOMWrite are specified in DOM Level 3, as part of the
Load and Save recommendation.

The names of Xerces classes aren’t always the same as the names of
the W3C DOM interfaces they implement; this is because Xerces
implements several specifications in a single namespace, and attaches
prefixes to some class names to avoid name clashes.

 animalList->removeChild(animal);
 animal->release(); // optional.
 break;
 }
 }

 // Construct a DOMWriter to save animals.xml.
 DOMPtr<DOMWriter> writer =
 static_cast<DOMImplementationLS*>(impl)->createDOMWriter();
 writer->setErrorHandler(&err);

 // Save animals.xml.
 LocalFileFormatTarget file("animals.xml");
 writer->writeNode(&file, *animalList);
 } catch (const SAXException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const DOMException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-10. Using DOM to load, modify, and then save an XML document (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

512 | Chapter 14: XML

Example 14-10 should now be pretty easy to understand. I start by initializing Xerces
as shown in Example 14-8. Then I obtain a DOMImplementation from the
DOMImplementationRegistry, requesting the Load and Save feature by passing the string
"LS" to the static method DOMImplementationRegistry::getDOMImplementation(). I
next obtain a DOMBuilder from the DOMIMplementation. I have to cast the
DOMIMplementation to type DOMIMplementationLS, because Load and Save features are
not accessible from the DOMIMplementation interface specified by W3C DOM level 1.
The first argument to createDOMBuilder() indicates that the returned parser will oper-
ate in synchronous mode. The other possible mode, asynchronous mode, is not cur-
rently supported by Xerces.

After obtaining a DOMBuilder, I enable XML Namespace support, register an
ErrorHandler, and parse the document. The parser returns a representation of the doc-
ument as a DOMDocument; using the DOMDocument’s getElementsByTagName() method, I
obtain a DOMElement object corresponding to the document’s animalList element and
iterate over its children using an object of type DOMNodeList. When I find an element
that has a child element of type name containing the text "Herby", I remove it from the
document by calling the root element’s removeChild() method.

Just as SAX2XMLReader has a parse() method taking an instance of
InputSource, DOMBuilder has a parse() method taking an instance of
xercesc::DOMInputSource, an abstract class encapsulating a source of
character data. DOMInputSource has a concrete subclass Wrapper4DOMIn-
putSource that can be used to transform an arbitrary InputSource into
a xercesc::DOMInputSource. See Recipe 14.3.

Finally, I obtain a DOMWriter object from the DOMImplementation, in much the same
way that I obtained a DOMBuilder, and save the modified XML document to disk by
calling its writeNode() method with the document’s root element as argument.

You must free pointers returned by methods of the form
DOMImplementation::createXXX() by calling the method release().
Use the DOMPtr utility from Example 14-10 to make sure such pointers
are released even if an exception is thrown. Pointers returned by meth-
ods of the form DOMDocument::createXXX() need not be explicitly
released, although they can be if they are no longer needed. See the
Xerces documentation for details.

14.5 Validating an XML Document with a DTD

Problem
You want to verify that an XML document is valid according to a DTD.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Validating an XML Document with a DTD | 513

Solution
Use the Xerces library with either the SAX2 (Simple API for XML) or the DOM
parser.

To validate an XML document using SAX2, obtain a SAX2XMLReader, as in Example 14-8.
Next, enable DTD validation by calling the parser’s setFeature() method with the
arguments xercesc::XMLUni::fgSAX2CoreValidation and true. Finally, register an
ErrorHandler to receive notifications of DTD violations and call the parser’s parse()
method with your XML document’s name as its argument.

To validate an XML document using DOM, first construct an instance of XercesDOMParser.
Next, enable DTD validation by calling the parser’s setValidationScheme() method
with the argument xercesc:: XercesDOMParser::Val_Always. Finally, register an
ErrorHandler to receive notifications of DTD violations and call the parser’s parse()
method with your XML document’s name as its argument.

Here I’m using the class XercesDOMParser, an XML parser that has
been part of Xerces since before the DOM Level 3 DOMBuilder inter-
face was introduced. Using a XercesDOMParser makes the example a bit
simpler, but you can use a DOMBuilder instead if you like. See Discus-
sion and Recipe 14.4.

For example, suppose you modify the XML document animals.xml from
Example 14-1 to contain a reference to an external DTD, as illustrated in Examples
14-11 and 14-12. The code to validate this document using the SAX2 API is pre-
sented in Example 14-13; the code to validate it using the DOM parser is presented
in Example 14-14.

Example 14-11. DTD animals.dtd for the file animals.xml

<!-- DTD for Feldman Family Circus Animals -->

<!ELEMENT animalList (animal+)>
<!ELEMENT animal (name, species, dateOfBirth,
 veterinarian, trainer) >
<!ELEMENT name (#PCDATA)>
<!ELEMENT species (#PCDATA)>
<!ELEMENT dateOfBirth (#PCDATA)>
<!ELEMENT veterinarian EMPTY>
<!ELEMENT trainer EMPTY>
<!ATTLIST veterinarian
 name CDATA #REQUIRED
 phone CDATA #REQUIRED
>
<!ATTLIST trainer
 name CDATA #REQUIRED
 phone CDATA #REQUIRED
>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

514 | Chapter 14: XML

Example 14-12. The file animals.xml, modified to contain a DTD

<?xml version="1.0" encoding="UTF-8"?>

<!-- Feldman Family Circus Animals with DTD -->

<!DOCTYPE animalList SYSTEM "animals.dtd">

 <!-- same as Example 14-1 -->

</animalList>

Example 14-13. Validating the document animals.xml against a DTD using the SAX2 API

/*
 * Same includes as Example 14-8, except <vector> is not needed
 */

#include <stdexcept> // runtime_error
#include <xercesc/sax2/DefaultHandler.hpp>

using namespace std;
using namespace xercesc;

/*
 * Define XercesInitializer as in Example 14-8
 * and CircusErrorHandler as in Example 14-7
 */

int main()
{
 try {
 // Initialize Xerces and obtain a SAX2 parser
 XercesInitializer init;
 auto_ptr<SAX2XMLReader>
 parser(XMLReaderFactory::createXMLReader());

 // Enable validation
 parser->setFeature(XMLUni::fgSAX2CoreValidation, true);

 // Register error handler to receive notifications
 // of DTD violations
 CircusErrorHandler error;
 parser->setErrorHandler(&error);
 parser->parse("animals.xml");
 } catch (const SAXException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const XMLException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Validating an XML Document with a DTD | 515

Discussion
DTDs provide a simple way to constrain an XML document. For example, using a
DTD, you can specify what elements may appear in a document; what attributes an

Example 14-14. Validating the document animals.xml against the DTD animals.dtd using
XercesDOMParser

#include <exception>
#include <iostream> // cout
#include <stdexcept> // runtime_error
#include <xercesc/dom/DOM.hpp>
#include <xercesc/parsers/XercesDOMParser.hpp>
#include <xercesc/sax/HandlerBase.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include "xerces_strings.hpp" // Example 14-4

using namespace std;
using namespace xercesc;

/*
 * Define XercesInitializer as in Example 14-8
 * and CircusErrorHandler as in Example 14-7
 */

int main()
{
 try {
 // Initialize Xerces and construct a DOM parser.
 XercesInitializer init;
 XercesDOMParser parser;

 // Enable DTD validation
 parser.setValidationScheme(XercesDOMParser::Val_Always);

 // Register an error handler to receive notifications
 // of schema violations
 CircusErrorHandler handler;
 parser.setErrorHandler(&handler);

 // Parse and validate.
 parser.parse("animals.xml");
 } catch (const SAXException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const XMLException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

516 | Chapter 14: XML

element may have; and whether a particular element can contain child elements,
text, or both. It’s also possible to impose constraints on the type, order, and number
of an element’s children and on the values an attribute may take.

The purpose of DTDs is to identify the subset of well-formed XML documents that
are interesting in a certain application domain. In Example 14-1, for instance, it’s
important that each animal element has child elements name, species, dateofBirth,
veterinarian, and trainer, that the name, species, and dateOfBirth elements contain
only text, and that the veterinarian and trainer elements have both a name and a
phone attribute. Furthermore, an animal element should have no phone attribute, and
a veterinarian element should have no species children.

These are the types of restrictions enforced by the DTD in Example 14-11. For exam-
ple, the following element declaration states that an animal element must have child
elements name, species, dateOfBirth, veterinarian, and trainer, in that order.

<!ELEMENT animal (name, species, dateOfBirth,
 veterinarian, trainer) >

Similarly, the following attribute declaration indicates that a trainer element must
have name and phone attributes; the fact that no other attribute declarations for trainer
appears in the DTD indicates that these are the only two attributes a trainer ele-
ment may have:

<!ATTLIST trainer
 name CDATA #REQUIRED
 phone CDATA #REQUIRED
>

An XML document that contains a DTD and conforms to its constraints is said to be
valid. An XML parser that checks for validity in addition to checking for syntax errors
is called a validating parser. Although SAX2XMLReader parser and XercesDOMParser are
not validating parsers by default, they both provide a validation feature that can be
enabled as shown in Examples 14-13 and 14-14. Similarly, a DOMBuilder, described in
Recipe 14.4, can be made to validate by calling its setFeature() method with the
arguments fgXMLUni::fgDOMValidation and true.

The classes SAX2XMLReader, DOMBuilder, DOMWriter, and XercesDOMParser
support a number of optional features. With SAX2XMLReader and
DOMBuilder, you can enable and disable these features using the methods
setFeature() and setProperty(). The first method takes a string and a
boolean value; the second takes a string and a void*. You can also query
the enabled features using getFeature() and getProperty(). For conve-
nience, Xerces provides constants representing the names of features and
properties. The class DOMWriter supports setFeature() but not
setProperty(). The class XercesDOMParser supports neither method; it
provides separate setter and getter methods for each feature. See the
Xerces documentation for a complete list of supported features.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Validating an XML Document with a Schema | 517

See Also
Recipe 14.6

14.6 Validating an XML Document with a Schema

Problem
You want to verify that an XML document is valid according to a schema, as speci-
fied in the XML Schema 1.0 recommendation.

Solution
Use the Xerces library with either the SAX2 or the DOM parser.

Validating an XML document against a schema using the SAX2 API is exactly the
same as validating a document that contains a DTD, assuming the schema is con-
tained in or referenced from the target document. If you want to validate an XML
document against an external schema, you must call the parser’s setProperty()
method to enable external schema validation. The first argument to setProperty()
should be XMLUni::fgXercesSchemaExternalSchemaLocation or XMLUni::fgXercesSche-
maExternalNoNameSpaceSchemaLocation, depending on whether the schema has a tar-
get namespace. The second argument should be the location of the schema,
expressed as a const XMLCh*. Make sure to cast the second argument to void*, as
explained in Recipe 14.5.

Validating an XML document against a schema using the XercesDOMParser is similar
to validating a document against a DTD, assuming the schema is contained in or ref-
erenced from the target document. The only difference is that schema and
namespace support must be explicitly enabled, as shown in Example 14-15.

If you want to validate an XML document against an external schema with a target
namespace, call the parser’s setExternalSchemaLocation() method with your schema’s
location as its argument. If you want to validate an XML document against an external
schema that has no target namespace, call the parser’s setExternalNoNamespaceSchema-
Location() instead.

Similarly, to validate an XML document against a schema using a DOMBuilder, enable
its validation feature as follows:

DOMBuilder* parser = ...;
parser->setFeature(XMLUni::fgDOMNamespaces, true);

Example 14-15. Enabling schema validation with a XercesDOMParser

XercesDOMParser parser;
parser.setValidationScheme(XercesDOMParser::Val_Always);
parser.setDoSchema(true);
parser.setDoNamespaces(true);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

518 | Chapter 14: XML

parser->setFeature(XMLUni::fgDOMValidation, true);
parser->setFeature(XMLUni::fgXercesSchema, true);

To validate against an external schema using DOMBuilder, set the property XMLUni::
fgXercesSchemaExternalSchemaLocation or XMLUni::fgXercesSchemaExternalNoName-
SpaceSchemaLocation to the location of the schema.

For example, suppose you want to validate the document animals.xml from
Example 14-1 using the schema in Example 14-16. One way to do this is to add a ref-
erence to the schema to animals.xml, as shown in Example 14-17. You can then vali-
date the document with the SAX2 API, as shown in Example 14-13, or using DOM,
as shown in Example 14-14, with the modification indicated in Example 14-15.

Example 14-16. Schema animals.xsd for the file animals.xml

<?xml version="1.0" encoding="UTF-8"?>

<!-- Schema for Feldman Family Circus Animals -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xsd:element name="animalList">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="animal" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="species" type="xsd:string"/>
 <xsd:element name="dateOfBirth" type="xsd:date"/>
 <xsd:element name="veterinarian" type="contact"/>
 <xsd:element name="trainer" type="contact"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

<xsd:complexType name="contact">
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="phone" type="phone"/>
</xsd:complexType>

<xsd:simpleType name="phone">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\(\d{3}\)\d{3}-\d{4}"/>
 </xsd:restriction>
</xsd:simpleType>

</xsd:schema>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Validating an XML Document with a Schema | 519

Another way is to omit the reference to the schema and enable external schema vali-
dation. Example 14-18 shows how to do this with the DOM parser.

Example 14-17. The file animals.xml, modified to contain a reference to a schema

<?xml version="1.0" encoding="UTF-8"?>

<!-- Feldman Family Circus Animals with Schema -->

<animalList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="animals.xsd">

 <!-- same as Example 14-1 -->

</animalList>

Example 14-18. Validating an XML document against an external schema, using DOM

/*
 * Same includes as in Example 14-14
 */

using namespace std;
using namespace xercesc;

/*
 * Define XercesInitializer as in Example 14-8
 * and CircusErrorHandler as in Example 14-7
 */

int main()
{
 try {
 // Initialize Xerces and construct a DOM parser.
 XercesInitializer init;
 XercesDOMParser parser;

 // Enable validation
 parser.setValidationScheme(XercesDOMParser::Val_Always);
 parser.setDoSchema(true);
 parser.setDoNamespaces(true);
 parser.setExternalNoNamespaceSchemaLocation(
 fromNative("animals.xsd").c_str()
);

 // Register an error handler to receive notifications
 // of schema violations
 CircusErrorHandler handler;
 parser.setErrorHandler(&handler);

 // Parse and validate.
 parser.parse("animals.xml");
 } catch (const SAXException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

520 | Chapter 14: XML

Discussion
Like DTDs, discussed in the previous recipe, schemas constrain XML documents.
The purpose of a schema is to identify the subset of well-formed XML documents
that are interesting in a certain application domain. Schemas differ from DTDs in
three respects, however. First, the DTD concept and the associated notion of validity
are defined in the XML specification itself, while schemas are described in a separate
specification, the XML Schema recommendation. Second, while DTDs use the spe-
cialized syntax illustrated in Example 14-11, schemas are expressed as well-formed
XML documents. Third, schemas are far more expressive than DTDs. Because of
these last two points, schemas are widely regarded as superior to DTDs.

For example, the DTD in Example 14-11 was only able to require that veterinarian
elements have exactly two attributes, name and phone, with values consisting of char-
acters. By contrast, the schema in Example 14-16 requires that the value of the phone
attribute also match the regular expression \(\d{3}\)\d{3}-\d{4}, i.e., that it have
the form (ddd)xxx-dddd, where d represents an arbitrary digit. Similarly, while the
DTD was only able to require that the dateOfBirth element has textual content, the
schema requires that the text be of the form yyyy-mm-dd, where yyyy ranges from 0001
to 9999, mm ranges from 01 to 12, and dd ranges from 01 to 31. The ability to impose
these additional requirements is a great benefit, since it shifts work from the pro-
grammer to the parser.

See Also
Recipe 14.5

14.7 Transforming an XML Document with XSLT

Problem
You want to transform an XML document using an XSLT stylesheet.

 return EXIT_FAILURE;
 } catch (const XMLException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-18. Validating an XML document against an external schema, using DOM (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transforming an XML Document with XSLT | 521

Solution
Use the Xalan library. First, construct an instance of the XSTL engine xalanc::
XalanTransformer. Next, construct two instances of xalanc::XSLTInputSource—one
to represent the document to be transformed and the other to represent your
stylesheet—and an instance of xalanc::XSLTResultTarget to represent the document
to be generated by the transformation. Finally, call the XSLT engine’s transform()
method, passing the two XSLTInputSources and the XSLTResultTarget as arguments.

For example, suppose you want to be able to view the list of circus animals from
Example 14-1 with your web browser. An easy way to do this is with XSLT.
Example 14-19 shows an XSLT stylesheet that takes an XML document like animals.xml
as input and generates an HTML document containing a table with one data row per
animal listing the animal’s name, species, date of birth, veterinarian, and trainer.
Example 14-20 shows how to use the Xalan library to apply this stylesheet to the
document animals.xml. The HTML generated by the program in Example 14-20 is
shown in Example 14-21, reformatted for readability.

Example 14-19. Stylesheet for animals.xml

<?xml version="1.0" encoding="utf-8"?>

<!-- Stylesheet for Feldman Family Circus Animals -->

<xsl:stylesheet version="1.1"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html"/>
 <xsl:template match="/">
 <html>
 <head>
 <title>Feldman Family Circus Animals</title>
 </head>
 <body>
 <h1>Feldman Family Circus Animals</h1>
 <table cellpadding="3" border="1">
 <tr>
 <th>Name</th>
 <th>Species</th>
 <th>Date of Birth</th>
 <th>Veterinarian</th>
 <th>Trainer</th>
 </tr>
 <xsl:apply-templates match="animal">
 </xsl:apply-templates>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="animal">
 <tr>
 <td><xsl:value-of select="name"/></td>

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

522 | Chapter 14: XML

 <td><xsl:value-of select="species"/></td>
 <td><xsl:value-of select="dateOfBirth"/></td>
 <xsl:apply-templates select="veterinarian"/>
 <xsl:apply-templates select="trainer"/>
 </tr>
 </xsl:template>
 <xsl:template match="veterinarian|trainer">
 <td>
 <table>
 <tr>
 <th>name:</th>
 <td><xsl:value-of select="attribute::name"/></td>
 </tr>
 <tr>
 <th>phone:</th>
 <td><xsl:value-of select="attribute::phone"/></td>
 </tr>
 </table>
 </td>
 </xsl:template>
</xsl:stylesheet>

Example 14-20. Applying the stylesheet animals.xsl to the file animals.xml using Xalan

#include <exception>
#include <iostream> // cout
#include <xalanc/Include/PlatformDefinitions.hpp>
#include <xalanc/XalanTransformer/XalanTransformer.hpp>
#include <xalanc/XSLT/XSLTInputSource.hpp>
#include <xalanc/XSLT/XSLTResultTarget.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include "xerces_strings.hpp" // Example 14-4

using namespace std;
using namespace xercesc;
using namespace xalanc;

// RAII utility that initializes the parser and frees resources
// when it goes out of scope
struct XalanInitializer {
 XalanInitializer()
 {
 XMLPlatformUtils::Initialize();
 XalanTransformer::initialize();
 }
 ~XalanInitializer()
 {
 XalanTransformer::terminate();
 XMLPlatformUtils::Terminate();
 }
};

Example 14-19. Stylesheet for animals.xml (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transforming an XML Document with XSLT | 523

int main()
{
 try {
 XalanInitializer init; // Initialize Xalan.
 XalanTransformer xslt; // XSLT engine.
 XSLTInputSource xml("animals.xml"); // XML document from
 // Example 14-1.
 XSLTInputSource xsl("animals.xsl"); // Stylesheet from
 // Example 14-19.
 XSLTResultTarget html("animals.html"); // xslt's output.

 // Perform transformation.
 if (xslt.transform(xml, xsl, html) != 0) {
 cout << "xml error: " << xslt.getLastError() << "\n";
 }
 } catch (const XMLException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-21. HTML document generated by the program in Example 14-20

<html>
<head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Feldman Family Circus Animals</title>
</head>
<body>
 <h1>Feldman Family Circus Animals</h1>
 <table cellpadding="3" border="1">
 <tr>
 <th>Name</th>
 <th>Species</th>
 <th>Date of Birth</th>
 <th>Veterinarian</th>
 <th>Trainer</th>
 </tr>
 <tr>
 <td>Herby</td>
 <td>elephant</td>
 <td>1992-04-23</td>
 <td>
 <table>
 <tr><th>name:</th><td>Dr. Hal Brown</td></tr>
 <tr><th>phone:</th><td>(801)595-9627</td></tr>
 </table>
 </td>
 <td>

Example 14-20. Applying the stylesheet animals.xsl to the file animals.xml using Xalan (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

524 | Chapter 14: XML

Discussion
XSL Transformations (XSLT) is a language for transforming XML documents into
other XML documents. XSLT is a component of the Extensible Stylesheet Language
(XSL) family of specifications, which provides a framework for specifying visual rep-
resentations of XML documents. XSLT is useful for more than formatting, however;

 <table>
 <tr><th>name:</th><td>Bob Fisk</td></tr>
 <tr><th>phone:</th><td>(801)881-2260</td></tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>Sheldon</td>
 <td>parrot</td>
 <td>1998-09-30</td>
 <td>
 <table>
 <tr><th>name:</th><td>Dr. Kevin Wilson</td></tr>
 <tr><th>phone:</th><td>(801)466-6498</td></tr>
 </table>
 </td>
 <td>
 <table>
 <tr><th>name:</th><td>Eli Wendel</td></tr>
 <tr><th>phone:</th><td>(801)929-2506</td></tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>Dippy</td>
 <td>penguin</td>
 <td>2001-06-08</td>
 <td>
 <table>
 <tr><th>name:</th><td>Dr. Barbara Swayne</td></tr>
 <tr><th>phone:</th><td>(801)459-7746</td></tr>
 </table>
 </td>
 <td>
 <table>
 <tr><th>name:</th><td>Ben Waxman</td></tr>
 <tr><th>phone:</th><td>(801)882-3549</td></tr>
 </table>
 </td>
 </tr>
</table>
</body>
</html>

Example 14-21. HTML document generated by the program in Example 14-20 (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transforming an XML Document with XSLT | 525

for example, it is used by web servers to generate HTML documents on-the-fly and
by documentation generation systems such as DocBook.

XSLT transformations are expressed as XML documents called stylesheets. A
stylesheet acts on a source document to produce a result document. A stylesheet con-
sists of a collection of templates, which match nodes in the source document and are
applied to produce fragments of the result document. Templates are applied recur-
sively to the source document, generating fragments of the result document incre-
mentally until no more matches remain. Pattern matching is governed by the XPath
language, a language designed to extract information—strings, numbers, boolean val-
ues, and sets of nodes—from XML documents.

The stylesheet in Example 14-19 contains three templates. The primary template has
a match attribute equal to /, indicating that it matches the root of the source docu-
ment, meaning the node that is the parent of the source document’s root element
and any top-level processing instructions and comments. When this template is
applied, it generates a fragment of an HTML document containing the heading
“Feldman Family Circus Animals” and a table with a single row consisting of five th
elements containing the labels Name, Species, Date of Birth, Veterinarian, and
Trainer. This template contains an apply-templates element with match attribute
equal to animal. This causes the stylesheet’s second template—with match attribute
animal—to be applied once for each of the animal children of the document root, gen-
erating a table row for each child. The row generated for an animal element consists
of five td elements. The first three td elements contain the text value of the animal
element’s name, species, and dateOfBirth children, extracted using XSLT’s value-of
instruction. The last two td elements contains table elements created by applying the
stylesheet’s third template—with match attribute veterinarian|trainer—to the ani-
mal element’s veterinarian and trainer children.

Although I chose to specify local files for the stylesheet, source document, and result
document in Example 14-20, XSLTInputSources and XSLTResultTargets can be con-
structed from C++ standard library streams, allowing a XalanTransformer to accept
input and generate output at arbitrary locations. Furthermore, instead of accepting
input as instances of XSLTInputSource, a XalanTransformer can operate on a precom-
piled stylesheet, represented as an instance of xalanc::XalanCompiledStylesheet, and a
preparsed source document, represented as an instance of xalanc::XalanParsedSource.
This is illustrated in Example 14-22. If you need to apply a single stylesheet to multiple
source documents, using a XalanCompiledStylesheet can be much more efficient than
using an XSLTInputSource.

Example 14-22. Performing an XSLT transformation with a precompiled stylesheet

/*
 * Same includes as Example 14-20
 */

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 14: XML

See Also
Recipe 14.8

using namespace std;
using namespace xercesc;
using namespace xalanc;

/*
 * Define XalanInitializer as in Example 14-20
 */

int main()
{
 try {
 XalanInitializer init; // Initialize Xalan.
 XalanTransformer xslt; // XSLT engine.
 XSLTResultTarget html("animals.html"); // xslt's output.

 // Parse source
 XSLTInputSource xml("animals.xml");
 XalanParsedSource* parsedXml = 0;
 if (xslt.parseSource(xml, parsedXml) != 0) {
 cout << "xml error: " << xslt.getLastError() << "\n";
 }

 // Compile stylesheet.
 XSLTInputSource xsl("animals.xsl");
 XalanCompiledStylesheet* compiledXsl = 0;
 if (xslt.compileStylesheet(xsl, compiledXsl) != 0) {
 cout << "xml error: " << xslt.getLastError() << "\n";
 }

 // Perform transformation.
 if (xslt.transform(xml, xsl, html)) {
 cout << "xml error: " << xslt.getLastError() << "\n";
 }
 } catch (const XMLException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-22. Performing an XSLT transformation with a precompiled stylesheet (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Evaluating an XPath Expression | 527

14.8 Evaluating an XPath Expression

Problem
You want to extract information from a parsed XML document by evaluating an
XPath expression.

Solution
Use the Xalan library. First, parse the XML document to obtain a pointer to a
xalanc::XalanDocument. This can be done by using instances of XalanSourceTreeInit,
XalanSourceTreeDOMSupport, and XalanSourceTreeParserLiaison—each defined in the
namespace xalanc—like so:

#include <xercesc/framework/LocalFileInputSource.hpp>
#include <xalanc/XalanSourceTree/XalanSourceTreeDOMSupport.hpp>
#include <xalanc/XalanSourceTree/XalanSourceTreeInit.hpp>
#include <xalanc/XalanSourceTree/XalanSourceTreeParserLiaison.hpp>
...
int main()
{
 ...
 // Initialize the XalanSourceTree subsystem
 XalanSourceTreeInit init;
 XalanSourceTreeDOMSupport support;

 // Interface to the parser
 XalanSourceTreeParserLiaison liaison(support);

 // Hook DOMSupport to ParserLiaison
 support.setParserLiaison(&liaison);
 LocalFileInputSource src(document-location);
 XalanDocument* doc = liason.ParseXMLStream(doc);
 ...
}

Alternatively, you can use the Xerces DOM parser to obtain a pointer to a DOMDocument,
as in Example 14-14, and then use instances of XercesDOMSupport, XercesParserLiaison,
and XercesDOMWrapperParsedSource—each defined in namespace xalanc—to obtain a
pointer to a XalanDocument corresponding to the DOMDocument:

#include <xercesc/dom/DOM.hpp>
#include <xalanc/XalanTransformer/XercesDOMWrapperParsedSource.hpp>
#include <xalanc/XercesParserLiaison/XercesParserLiaison.hpp>
#include <xalanc/XercesParserLiaison/XercesDOMSupport.hpp>
...
int main() {
 ...
 DOMDocument* doc = ... ;
 XercesDOMSupport support;
 XercesParserLiaison liaison(support);
 XercesDOMWrapperParsedSource src(doc, liaison, support);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 14: XML

 XalanDocument* xalanDoc = src.getDocument();
 ...
}

Next, obtain a pointer to the node that serves as the context node when evaluating the
XPath expression. You can do this by using XalanDocument’s DOM interface. Construct
an XPathEvaluator to evaluate the XPath expression and a XalanDocumentPrefixResolver
to resolve namespace prefixes in the XML document. Finally, call the XPathEvaluator’s
evaluate() method, passing the DOMSupport, the context node, the XPath expression,
and the PrefixResolver as arguments. The result of evaluating the expression is returned
as an object of type XObjectPtr; the operations you can perform on this object depend
on its XPath data type, which you can query using the getType() method.

For example, suppose you want to extract a list of animals’ names from the docu-
ment animals.xml from Example 14-1. You can do this by parsing the document and
evaluating the XPath expression animalList/animal/name/child::text() with the
document root as context node. This is illustrated in Example 14-23.

Example 14-23. Evaluating an XPath expression using Xalan

#include <cstddef> // size_t
#include <exception>
#include <iostream> // cout
#include <xercesc/dom/DOM.hpp>
#include <xercesc/parsers/XercesDOMParser.hpp>
#include <xercesc/sax2/DefaultHandler.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include <xalanc/DOMSupport/XalanDocumentPrefixResolver.hpp>
#include <xalanc/XalanTransformer/XercesDOMWrapperParsedSource.hpp>
#include <xalanc/XercesParserLiaison/XercesParserLiaison.hpp>
#include <xalanc/XercesParserLiaison/XercesDOMSupport.hpp>
#include <xalanc/XPath/XObject.hpp>
#include <xalanc/XPath/XPathEvaluator.hpp>
#include "animal.hpp"
#include "xerces_strings.hpp"

using namespace std;
using namespace xercesc;
using namespace xalanc;

// RAII utility that initializes the parser and the XPath engine
// and frees resources when it goes out of scope
class XPathInitializer {
public:
 XPathInitializer()
 {
 XMLPlatformUtils::Initialize();
 XPathEvaluator::initialize();
 }
 ~XPathInitializer()
 {
 XPathEvaluator::terminate();

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Evaluating an XPath Expression | 529

 XMLPlatformUtils::Terminate();
 }
private:
 // Prohibit copying and assignment
 XPathInitializer(const XPathInitializer&);
 XPathInitializer& operator=(const XPathInitializer&);
};

// Receives Error notifications
class CircusErrorHandler : public DefaultHandler {
public:
 void error(const SAXParseException& e)
 {
 throw runtime_error(toNative(e.getMessage()));
 }
 void fatalError(const SAXParseException& e) { error(e); }
};

int main()
{
 try {
 // Initialize Xerces and XPath and construct a DOM parser.
 XPathInitializer init;
 XercesDOMParser parser;

 // Register error handler
 CircusErrorHandler error;
 parser.setErrorHandler(&error);

 // Parse animals.xml.
 parser.parse(fromNative("animals.xml").c_str());
 DOMDocument* doc = parser.getDocument();
 DOMElement* animalList = doc->getDocumentElement();

 // Create a XalanDocument based on doc.
 XercesDOMSupport support;
 XercesParserLiaison liaison(support);
 XercesDOMWrapperParsedSource src(doc, liaison, support);
 XalanDocument* xalanDoc = src.getDocument();

 // Evaluate an XPath expression to obtain a list
 // of text nodes containing animals' names
 XPathEvaluator evaluator;
 XalanDocumentPrefixResolver resolver(xalanDoc);
 XercesString xpath =
 fromNative("animalList/animal/name/child::text()");
 XObjectPtr result =
 evaluator.evaluate(
 support, // DOMSupport
 xalanDoc, // context node
 xpath.c_str(), // XPath expr
 resolver); // Namespace resolver
 const NodeRefListBase& nodeset = result->nodeset();

Example 14-23. Evaluating an XPath expression using Xalan (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

530 | Chapter 14: XML

Discussion
XPath is a pattern matching language designed to extract information from XML
documents. XPath’s main construct—the path expression—provides a hierarchical
syntax for referring to elements, attributes, and text nodes based on their names,
attributes, textual content, inheritance relations, and other properties. In addition to
operating on sets of nodes, or node sets, the XPath language can handle strings, num-
bers, and boolean values. XPath Version 2.0, which is not currently supported by the
Xalan library, provides an even richer data model, based on the XML Schema recom-
mendation. (See Recipe 14.5.)

XPath expressions are evaluated in the context of a node in an XML document,
called the context node, which is used to interpret relative constructs such as parent,
child, and descendent. In Example 14-23, I specified the root of the XML document
as the context node; this is the node that is the parent of the XML document’s root
element and of any top-level processing instructions and comments. When evalu-
ated with the root node as the context node, the path expression animalList/animal/
name/child::text() matches all text node children of name elements whose parent
element is an animal element and whose grandparent is an animalList element.

The evaluate() method of XPathEvaluator returns an XObjectPtr representing the
result of evaluating the XPath expression. The data type of an XObjectPtr can be que-
ried by dereferncing it to obtain an XObject and calling the method getType(); the
underlying data can then be accessed by calling num(), boolean(), str(), or nodeset().
Since the XPath expression in Example 14-23 represents a node set, I used the
nodeset() method to obtain a reference to a NodeRefListBase, which provides access
to the nodes in a node set through its getLength() and item() methods. The method

 // Iterate through the node list, printing the animals' names
 for (size_t i = 0,
 len = nodeset.getLength();
 i < len;
 ++i)
 {
 const XMLCh* name =
 nodeset.item(i)->getNodeValue().c_str();
 std::cout << toNative(name) << "\n";
 }
 } catch (const DOMException& e) {
 cout << "xml error: " << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-23. Evaluating an XPath expression using Xalan (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Evaluating an XPath Expression | 531

item() returns a pointer to a XalanNode, whose getNodeValue() method returns a
string with an interface similar to std::basic_string.

Since XPath provides an easy way to locate nodes in an XML document, it’s natural
to wonder whether you can use Xalan XPath expressions to obtain instances of
xercesc::DOMNode from a xercesc::DOMDocument. Indeed it is possible, but it is slightly
awkward; what’s more, by default, the xercesc::DOMNodes obtained in this way are
part of a read-only view of the XML document tree, which limits the usefulness of
XPath as a tool for DOM manipulation. There are ways to work around this restric-
tion, but they are complex and potentially dangerous.

Fortunately, the Pathan library provides an implementation of XPath that is compati-
ble with Xerces and which allows easy manipulation of the Xerces DOM.
Example 14-24 shows how to use Pathan to locate and remove the node correspond-
ing to Herby the elephant in the XML document from Example 14-1, by evaluating the
XPath expression animalList/animal[child::name='Herby']. Comparing this example
with Example 14-10 makes it clear how powerful the XPath language is.

Example 14-24. Locating a node and removing it using Pathan

#include <exception>
#include <iostream> // cout
#include <xercesc/dom/DOM.hpp>
#include <xercesc/framework/LocalFileFormatTarget.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include <pathan/XPathNamespace.hpp>
#include <pathan/XPathResult.hpp>
#include <pathan/XPathEvaluator.hpp>
#include <pathan/XPathExpression.hpp>
#include "xerces_strings.hpp" // Example 14-4

using namespace std;
using namespace xercesc;

/*
 * Define XercesInitializer as in Example 14-8, and
 * CircusErrorHandler and DOMPtr as in Example 14-10
 */

int main()
{
 try {
 // Initialize Xerces and retrieve a DOMImplementation.
 XercesInitializer init;
 DOMImplementation* impl =
 DOMImplementationRegistry::getDOMImplementation(
 fromNative("LS").c_str()
);
 if (impl == 0) {
 cout << "couldn't create DOM implementation\n";
 return EXIT_FAILURE;
 }

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

532 | Chapter 14: XML

 // Construct a DOMBuilder to parse animals.xml.
 DOMPtr<DOMBuilder> parser =
 static_cast<DOMImplementationLS*>(impl)->
 createDOMBuilder(
 DOMImplementationLS::MODE_SYNCHRONOUS, 0
);
 CircusErrorHandler err;
 parser->setErrorHandler(&err);

 // Parse animals.xml.
 DOMDocument* doc =
 parser->parseURI("animals.xml");
 DOMElement* animalList = doc->getDocumentElement();

 // Create XPath expression.
 auto_ptr<XPathEvaluator>
 evaluator(XPathEvaluator::createEvaluator());
 auto_ptr<XPathNSResolver>
 resolver(evaluator->createNSResolver(animalList));
 auto_ptr<XPathExpression>
 xpath(
 evaluator->createExpression(
 fromNative(
 "animalList/animal[child::name='Herby']"
).c_str(),
 resolver.get()
)
);
auto_ptr<XPathEvaluator> evaluator(XPathEvaluator::createEvaluator());
auto_ptr<XPathNSResolver> resolver(evaluator->createNSResolver(animalList));
auto_ptr<XPathExpression> xpath(
 evaluator->createExpression(
 fromNative("animalList/animal[child::name='Herby']").c_str(),
 resolver.get()
));

 // Evaluate the expression.
 XPathResult* result =
 xpath->evaluate(
 doc,
 XPathResult::ORDERED_NODE_ITERATOR_TYPE,
 0
);

 DOMNode* herby;
 if (herby = result->iterateNext()) {
 animalList->removeChild(herby);
 herby->release(); // optional.
 }

 // Construct a DOMWriter to save animals.xml.
 DOMPtr<DOMWriter> writer =

Example 14-24. Locating a node and removing it using Pathan (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using XML to Save and Restore a Collection of Objects | 533

Example 14-24 uses Pathan 1, which implements the XPath 1.0 recommendation,
the same version currently supported by Xalan. Pathan 2, currently available in a
beta version, provides a preliminary implementation of the XPath 2.0 recommenda-
tion. Pathan 2 represents a more faithful implementation of the XPath standard; I
recommend using Pathan 2 instead of Pathan 1 as soon as a non-beta version
becomes available.

See Also
Recipe 14.7

14.9 Using XML to Save and Restore a Collection
of Objects

Problem
You want to be able to save a collection of C++ objects to an XML document and
read it back into memory later.

Solution
Use the Boost Serialization library. This library allows you to save and restore objects
using classes called archives. To make use of this library, you must first make each of
your classes serializable, which just means that instances of the class can be written
to an archive, or serialized, and read back into memory, or deserialized. Then, at run-
time, you can save your objects to an XML archive using the << operator and restore
them using the >> operator.

 static_cast<DOMImplementationLS*>(impl)->createDOMWriter();
 writer->setErrorHandler(&err);

 // Save animals.xml.
 LocalFileFormatTarget file("circus.xml");
 writer->writeNode(&file, *animalList);
 } catch (const DOMException& e) {
 cout << toNative(e.getMessage()) << "\n";
 return EXIT_FAILURE;
 } catch (const XPathException &e) {
 cout << e.getString() << "\n";
 return EXIT_FAILURE;
 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-24. Locating a node and removing it using Pathan (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

534 | Chapter 14: XML

To make a class serializable, add a member function template serialize with the fol-
lowing signature:

template<typename Archive>
void serialize(Archive& ar, const unsigned int version);

The implementation of serialize should write each data member of the class to the
specified archive as a name-value pair, using the & operator. For example, if you want
to serialize and deserialize instances of the class Contact from Example 14-2, add a
member function serialize, as shown in Example 14-25.

Similarly, you can make the class Animal from Example 14-2 serializable, as shown in
Example 14-26.

Example 14-25. Adding support for serialization to the class Contact from Example 14-2

#include <boost/serialization/nvp.hpp> // "name-value pair"

class Contact {
...
private:
 friend class boost::serialization::access;
 template<typename Archive>
 void serialize(Archive& ar, const unsigned int version)
 {
 // Write (or read) each data-member as a name-value pair
 using boost::serialization::make_nvp;
 ar & make_nvp("name", name_);
 ar & make_nvp("phone", phone_);
 }
 ...
};

Example 14-26. Adding support for serialization to the class Animal from Example 14-2

...
// Include serialization support for boost::gregorian::date
#include <boost/date_time/gregorian/greg_serialize.hpp>
...
class Contact {
...
private:
 friend class boost::serialization::access;
 template<typename Archive>
 void serialize(Archive& ar, const unsigned int version)
 {
 // Write (or read) each data-member as a name-value pair
 using boost::serialization::make_nvp;
 ar & make_nvp("name", name_);
 ar & make_nvp("species", species_);
 ar & make_nvp("dateOfBirth", dob_);
 ar & make_nvp("veterinarian", vet_);
 ar & make_nvp("trainer", trainer_);

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using XML to Save and Restore a Collection of Objects | 535

You can now serialize an Animal by creating an XML archive of type boost::
archive::xml_oarchive and writing the animal to the archive using the << operator.
The xml_oarchive constructor takes a std::ostream as an argument; often this will
be an output stream for writing to a file, but in general it can be a stream for writ-
ing to any type of resource. After an Animal is serialized, it can be read back into
memory by constructing an XML archive of type boost::archive::xml_iarchive,
connecting it to the same resource as the original archive, and invoking the >>
operator.

Example 14-27 shows how to use Boost.Serialization to save a std::vector of Animals
to the file animals.xml and then load it back into memory. The contents of the file
animals.xml after running the program in Example 14-27 are shown in Example 14-28.

 }
...
};

Example 14-27. Serializing a std::vector of Animals

#include <fstream>
#include <boost/archive/xml_oarchive.hpp> // Archive for writing XML
#include <boost/archive/xml_iarchive.hpp> // Archive for reading XML
#include <boost/serialization/vector.hpp> // machinery for serializing
#include "animal.hpp" // std::vector

int main()
{
 using namespace std;
 using namespace boost::archive; // namespace for archives
 using namespace boost::serialization; // namespace for make_nvp

 try {
 // Populate list of animals
 vector<Animal> animalList;
 animalList.push_back(
 Animal("Herby", "elephant", "1992-04-23",
 Contact("Dr. Hal Brown", "(801)595-9627"),
 Contact("Bob Fisk", "(801)881-2260")));
 animalList.push_back(
 Animal("Sheldon", "parrot", "1998-09-30",
 Contact("Dr. Kevin Wilson", "(801)466-6498"),
 Contact("Eli Wendel", "(801)929-2506")));
 animalList.push_back(
 Animal("Dippy", "penguin", "2001-06-08",
 Contact("Dr. Barbara Swayne", "(801)459-7746"),
 Contact("Ben Waxman", "(801)882-3549")));

 // Construct XML output archive and serialize list
 ofstream fout("animals.xml");
 xml_oarchive oa(fout);

Example 14-26. Adding support for serialization to the class Animal from Example 14-2 (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

536 | Chapter 14: XML

 oa << make_nvp("animalList", animalList);
 fout.close();

 // Construct XML intput archive and deserialize list
 ifstream fin("animals.xml");
 xml_iarchive ia(fin);
 vector<Animal> animalListCopy;
 ia >> make_nvp("animalList", animalListCopy);
 fin.close();

 if (animalListCopy != animalList) {
 cout << "XML serialization failed\n";
 return EXIT_FAILURE;
 }

 } catch (const exception& e) {
 cout << e.what() << "\n";
 return EXIT_FAILURE;
 }
}

Example 14-28. The file animals.xml after running the program from Example 14-27

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<!DOCTYPE boost_serialization>
<boost_serialization signature="serialization::archive" version="3">
<animalList class_id="0" tracking_level="0" version="0">
 <count>3</count>
 <item class_id="1" tracking_level="0" version="0">
 <name>Herby</name>
 <species>elephant</species>
 <dateOfBirth class_id="2" tracking_level="0" version="0">
 <date>19920423</date>
 </dateOfBirth>
 <veterinarian class_id="3" tracking_level="0" version="0">
 <name>Dr. Hal Brown</name>
 <phone>(801)595-9627</phone>
 </veterinarian>
 <trainer>
 <name>Bob Fisk</name>
 <phone>(801)881-2260</phone>
 </trainer>
 </item>
 <item>
 <name>Sheldon</name>
 <species>parrot</species>
 <dateOfBirth>
 <date>19980930</date>
 </dateOfBirth>
 <veterinarian>
 <name>Dr. Kevin Wilson</name>
 <phone>(801)466-6498</phone>

Example 14-27. Serializing a std::vector of Animals (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using XML to Save and Restore a Collection of Objects | 537

Discussion
The Boost Serialization library provides the most comprehensive and flexible way to
save and restore C++ objects. It’s an extremely sophisticated framework; for exam-
ple, it’s able to serialize complex data structures containing cyclic references and
pointers to polymorphic objects. Furthermore, the library is useful for much more
than XML serialization: in addition to XML archives, it provides several types of text
and binary archives. The XML and text archives are portable, meaning that data can
be serialized on one system and deserialized on another; the binaries archives are
nonportable but compact.

The XML documents produced by Boost.Serialization do not conform to any pre-
existing specification, and the format may change in future versions of Boost. As a
result, you cannot use these documents in conjunction with other C++ serialization
frameworks. Nonetheless, XML serialization is useful because the serialized output is
easy for humans to read and can be processed by XML processing tools.

Examples 14-25 and 14-26 demonstrate intrusive serialization: the classes Animal and
Contact were modified to make them serializable. Boost.Serialization also supports
nonintrusive serialization, allowing classes to be made serializable without modifying
their definitions, provided that all of an object’s state is accessible through its public
interface. You’ve already seen an example of nonintrusive serialization in
Example 14-27: the template std::vector is serializable, despite the fact that its defi-
nition is unmodifiable by end-users. In fact, all standard library containers are serial-
izable; to make serialization available for a container defined in the standard header

 </veterinarian>
 <trainer>
 <name>Eli Wendel</name>
 <phone>(801)929-2506</phone>
 </trainer>
 </item>
 <item>
 <name>Dippy</name>
 <species>penguin</species>
 <dateOfBirth>
 <date>20010608</date>
 </dateOfBirth>
 <veterinarian>
 <name>Dr. Barbara Swayne</name>
 <phone>(801)459-7746</phone>
 </veterinarian>
 <trainer>
 <name>Ben Waxman</name>
 <phone>(801)882-3549</phone>
 </trainer>
 </item>
</animalList>

Example 14-28. The file animals.xml after running the program from Example 14-27 (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

538 | Chapter 14: XML

xxx, simply include the header boost/serialization/xxx.hpp. To learn more about non-
intrusive serialization, consult the Boost.Serialization documentation.

Examples 14-25 and 14-26 also illustrate the dual role of the & operator: it acts like
the << operator when an object is being serialized and like the >> operator when an
object is being deserialized. This is convenient, because it allows serialization and
deserialization to be implemented as a single function. In some cases, however, it’s
not appropriate to use a single function for serialization and deserialization; for those
cases, Boost.Serialization provides a mechanism for splitting the serialize() method
into separate load() and save() methods. If you need to take advantage of this fea-
ture, consult the Boost.Serialization documentation.

In Examples 14-25, 14-26, and 14-27, I use the function boost::serialization::
make_nvp to construct name-value pairs. Boost.Serialization also provides a macro
BOOST_SERIALIZATION_NVP that allows you to serialize a variable by specifying only its
name. The first component of the pair will be constructed automatically by the pre-
processor using the “stringizing” operator # to convert the macro parameters to
string constants:

// Same as ar & make_nvp("name_", name_);
ar & BOOST_SERIALIZATION_NVP(name_);

In the examples, I use make_nvp instead of BOOST_SERIALIZATION_NVP to give me more
control over the tag names, making the contents of XML archives easier to read.

The Boost.Serialization documentation recommends that the serialize() method be
declared private to reduce user errors when adding serialization support to classes
derived from other serializable classes. To allow Boost.Serialization to call your class’s
serialize() method, you must declare the class boost::serialization::access to be a
friend.

Finally, the second parameter of the serialize() method in Examples 14-25 and
14-26 is part of Boost.Serialization’s support for class versioning. The first time an
object of a certain class is saved to an archive, the class’s version is also saved; when
an instance of the class is deserialized, Boost.Serialization passes the stored version as
the second argument to serialize. This information can be used to customize deseri-
alization; for example, serialize might load the value of a member variable only if
the class version recorded in the archive is as least as high as the first version of the
class to declare that variable. By default, a class’s version is 0. To specify a class’s
version, invoke the macro BOOST_CLASS_VERSION—defined in the header boost/
serialization/version.hpp—passing the name of the class and class’s version as
arguments.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

539

Chapter 15 CHAPTER 15

Miscellaneous

15.0 Introduction
This chapter describes a few facets of C++ that don’t neatly fit into any of the other
chapters: function and member pointers, const variables and member functions, and
standalone (i.e., nonmember) operators and a few other topics.

15.1 Using Function Pointers for Callbacks

Problem
You plan to call some function func1, and at runtime you need it to invoke another
function func2. For one reason or another, however, you cannot simply hardcode the
name of func2 within func1. func2 may not be known definitively at compile time, or
perhaps func1 belongs to a third-party API that you can’t change and recompile. In
either case, you need a callback function.

Solution
In the case of the functions above, declare func1 to take a pointer to a function, and
pass it the address of func2 at runtime. Use a typedef to make the messy syntax eas-
ier to read and debug. Example 15-1 shows how to implement a callback function
with a function pointer.

Example 15-1. A callback function

#include <iostream>

// An example of a callback function
bool updateProgress(int pct) {

 std::cout << pct << "% complete...\n";
 return(true);
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

540 | Chapter 15: Miscellaneous

Discussion
In a situation such as that shown in Example 15-1, a function pointer is a good idea
if updateProgress and longOperation shouldn’t know anything about each other. For
example, a function that updates the progress by displaying it to the user—either in a
user interface (UI) dialog box, in a console window, or somewhere else—does not
care about the context in which it is invoked. Similarly, the longOperation function
may be part of some data loading API that doesn’t care whether it’s invoked from a
graphical UI, a console window, or by a background process.

The first thing you will want to do is determine what the signature of the function is
you plan to call and create a typedef for it. typedef is your friend when it comes to
function pointers, because their syntax is ugly. Consider how you would declare a
function pointer variable f that contains the address of a function that takes a single
integer argument and returns a boolean. It would look like this:

bool (*f)(int); // f is the variable name

One could argue, convincingly, that this is no big deal and that I’m just a whiner. But
what if you want a vector of such function pointers?

vector<bool (*)(int)> vf;

Or an array of them?

bool (*af[10])(int);

Function pointers do not look like ordinary C++ variable declarations whose format
is often a (qualified) type name followed by a variable name. This is why they can
make for messy reading.

Thus, in Example 15-1, I used a typedef like this:

typedef bool (*FuncPtrBoolInt)(int);

// A typedef to make for easier reading
typedef bool (*FuncPtrBoolInt)(int);

// A function that runs for a while
void longOperation(FuncPtrBoolInt f) {

 for (long l = 0; l < 100000000; l++)
 if (l % 10000000 == 0)
 f(l / 1000000);
}

int main() {

 longOperation(updateProgress); // ok
}

Example 15-1. A callback function (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Pointers to Class Members | 541

Once that was out of the way, I was free to declare function pointers that have the
signature of returning bool and accepting a single integer argument as I would any
other sort of parameter, like so:

void longOperation(FuncPtrBoolInt f) {
 // ...

Now, all longOperation needs to do is call f like it would any function:

f (l/1000000);

In this way, f can be any function that accepts an integer argument and returns bool.
Consider a caller of longOperation that doesn’t care about the progress. It can pass in
a function pointer of a no-op function:

bool whoCares(int i) {return(true);}
//...
longOperation(whoCares);

More importantly, which function to pass to longOperation can be determined
dynamically at runtime.

15.2 Using Pointers to Class Members

Problem
You need to refer to a data member or a member function with its address.

Solution
Use the class name and the scope operator (::) with an asterisk to correctly qualify
the name. Example 15-2 shows how.

Example 15-2. Obtaining a pointer to a member

#include <iostream>
#include <string>

class MyClass {

public:
 MyClass() : ival_(0), sval_("foo") {}
 ~MyClass() {}

 void incr() {++ival_;}
 void decr() {ival_--;}

private:
 std::string sval_;
 int ival_;
};

int main() {

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

542 | Chapter 15: Miscellaneous

Discussion
Pointers to members look and act differently than ordinary pointers. First of all, they
have funny syntax (not funny ha-ha, funny strange). Consider the following line,
from Example 15-2:

int MyClass::* mpi = &MyClass::ival_;

This declares and assigns a pointer to an integer that happens to be a member of the
class MyClass. Two things make this different than an ordinary int*. First, you have
to include the class name and the scope operator in between the data type and the
asterisk. Second, when you assign this pointer, you aren’t actually assigning it the
address of something in memory. The value &MyClass::ival_ is not a concrete value
in memory—it can’t be; it refers to the class name, not an object name—but what is
it? Think of it as an offset of the data member from the object’s start address.

 MyClass obj;

 int MyClass::* mpi = &MyClass::ival_; // Data member
 std::string MyClass::* mps = &MyClass::sval_; // pointers

 void (MyClass::*mpf)(); // A pointer to a member function that
 // takes no params and returns void
 void (*pf)(); // A normal function pointer

 int* pi = &obj.ival_; // int pointer referring to int member--no
 // problem.

 mpf = &MyClass::incr; // A pointer to a member function. You can't
 // write this value to a stream. Look at it
 // in your debugger to see what its
 // representation looks like.

 pf = &MyClass::incr; // Error: &MyClass::incr is not an instance
 // of a function

 std::cout << "mpi = " << mpi << '\n';
 std::cout << "mps = " << mps << '\n';
 std::cout << "pi = " << pi << '\n';
 std::cout << "*pi = " << *pi << '\n';

 obj.*mpi = 5;
 obj.*mps = "bar";

 (obj.*mpf)(); // now obj.ival_ is 6

 std::cout << "obj.ival_ = " << obj.ival_ << '\n';
 std::cout << "obj.sval_ = " << obj.sval_ << '\n';
}

Example 15-2. Obtaining a pointer to a member (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Using Pointers to Class Members | 543

The variable mpi has to be used with an instance of the class to which it applies. A lit-
tle further down in Example 15-2, this line uses mpi to assign an integer to the value
pointed to by mpi:

obj.*mpi = 5;

obj is an instance of the class MyClass. By referring to the member using the dot nota-
tion (or -> if you have a pointer to obj) and dereferencing mpi, you get a reference to
obj.ival_.

Pointers to member functions are essentially the same. Example 15-2 declares a
pointer to a member function of MyClass that returns void and takes no arguments:

void (MyClass::*mpf)();

Assign it to a value with the address-of operator:

mpf = &MyClass::incr;

To invoke it, place parenthesis around the main expression to ensure the compiler
knows what you’re doing, like this:

(obj.*mpf)();

There is one difference in data member pointers and function pointers though. If you
want to point an ordinary, nonmember pointer at a data member, just do it as you
would expect:

int* pi = &obj.ival_;

Of course, you use an object name and not a class name, because you are getting the
address of the concrete data member of a specific object somewhere in memory.
(Typically, though, you don’t want to give out addresses to your class’s data mem-
bers, lest they be inadvertently changed by reckless client code.)

By contrast, you can’t do the same thing with a member function because it makes
no sense. Consider a function pointer that assumes the same function signature as
MyClass::incr (i.e., returns void and takes no arguments):

void (*pf)();

Now, try to assign the address of a member function to it:

pf = &MyClass::incr; // Nope
pf = &obj.incr; // No dice

Neither of these will compile, and for good reason. A member function requires an
object context to make any sense, since it most likely refers to member variables.
Invoking a member function without an object would require that the member func-
tion not use any of the object’s members, which is presumably why it’s a member
function and not a standalone function.

See Also
Recipe 15.1

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

544 | Chapter 15: Miscellaneous

15.3 Ensuring That a Function Doesn’t Modify
an Argument

Problem
You are writing a function, and you need to guarantee that its arguments will not be
modified when it is invoked.

Solution
Declare your arguments with the keyword const to prevent your function from
changing the arguments. See Example 15-3 for a short sample.

Discussion
Example 15-3 demonstrates a straightforward use of const. There are a couple of
good reasons for declaring your function parameters const when you don’t plan on
changing them. First, you communicate your intent to human readers of your code.
By declaring a parameter as const, what you are saying, essentially, is that the const
parameters are for input. This lets consumers of your function, code with the
assumption that the values will not change. Second, it tells the compiler to disallow
any modifying operations, in the event you do so by accident. Consider an unsafe
version of concat from Example 15-3:

void concatUnsafe(std::string& s1,
 std::string& s2,

Example 15-3. Guaranteeing unmodified arguments

#include <iostream>
#include <string>

void concat(const std::string& s1, // These are declared const, so they
 const std::string& s2, // cannot be changed
 std::string& out) {
 out = s1 + s2;
}

int main() {

 std::string s1 = "Cabo ";
 std::string s2 = "Wabo";
 std::string s3;

 concat(s1, s2, s3);

 std::cout << "s1 = " << s1 << '\n';
 std::cout << "s2 = " << s2 << '\n';
 std::cout << "s3 = " << s3 << '\n';
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ensuring That a Function Doesn’t Modify an Argument | 545

 std::string& out) {
 out = s1 += s2; // Whoops, wrote to s1
}

Despite my fastidious coding habits, I have made a silly mistake and typed += when I
meant to type +. As a result, when concatUnsafe is called, it will modify the argu-
ments out and s1, which may come as surprise to the user—who would expect a con-
catenation function to modify one of the source strings?

const to the rescue. Create a new function concatSafe, declare the variables const as
in Example 15-3, and it won’t compile:

void concatSafe(const std::string& s1,
const std::string& s2,

 std::string& out) {
 out = s1 += s2; // Now you will get a compile error
}

concatSafe guarantees that the values in s1 and s2 will remain unchanged. It also
does something else: it allows the user to pass const arguments. For example, code
that needs to concatenate strings might look like this:

void myFunc(const std::string& s) { // Notice that s is const

 std::string dest;
 std::string tmp = "foo";

 concatUnsafe(s, tmp, dest); // Error: s is const

 // Do something with dest...
}

In this case, myFunc won’t compile because concatUnsafe does not maintain the const-
ness guarantee of myFunc. myFunc has made a guarantee to the world that it won’t mod-
ify the contents of s, which means that anything done to s within the body of myFunc
must uphold this promise. Of course, you can get around this by using const_cast to
cast away the const-ness, but that is just playing fast and loose with your variables, so
you should avoid it. concatSafe compiles and runs fine in this situation.

Pointers add a wrinkle to this otherwise rosy portrait of const. When you declare a
pointer variable as a parameter, there are two parts to it: the address itself and the
thing that address refers to. C++ lets you use const to constrain what you can do to
either one of these values. Consider yet another concatenation function that uses
pointers:

void concatUnsafePtr(std::string* ps1,
 std::string* ps2,
 std::string* pout) {
 *pout = *ps1 + *ps2;
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

546 | Chapter 15: Miscellaneous

This has the same problems as concatUnsafe, described earlier. Add const to guaran-
tee that the target strings aren’t updated:

void concatSaferPtr(const std::string* ps1,
const std::string* ps2,

 std::string* pout) {
 *pout = *ps1 + *ps2;
}

Great, now you can’t change *ps1 or *ps2. But you can still change ps1 or ps2, or in
other words, you can point them to some other string by changing the value of the
pointer, not the value it points to. There’s nothing to stop you, for instance, from
doing this:

void concatSaferPtr(const std::string* ps1,
const std::string* ps2,

 std::string* pout) {
 ps1 = pout; // Uh-oh
 *pout = *ps1 + *ps2;
}

Prevent this sort of mistake by using const yet again:

void concatSafestPtr(const std::string* const ps1,
 const std::string* const ps2,
 std::string* pout) {
 *pout = *ps1 + *ps2;
}

By using const on either side of the asterisk, you have made your function as safe as
it can be. This makes your intentions clear to consumers of your function, and it
keeps you honest just in case you make a typo.

See Also
Recipe 15.4

15.4 Ensuring That a Member Function Doesn’t
Modify Its Object

Problem
You need to invoke member functions on a const object, but your compiler is com-
plaining that it can’t convert the type of object you are operating from const type to
type.

Solution
Place the const keyword to the right of the member function declaration in both the
class declaration and definition. Example 15-4 shows how to do this.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ensuring That a Member Function Doesn’t Modify Its Object | 547

Discussion
Adding a trailing const to a member declaration and its definition forces the com-
piler to look more carefully at what that member’s body is doing to the object. const
member functions are not allowed to invoke any nonconst operation on data mem-
bers. If one does, compilation fails. For example, if, in RecordSet::getFieldVal, I
updated a counter member, it wouldn’t compile (assume that getFieldCount_ is a
member variable of RecordSet):

bool RecordSet::getFieldVal(int i, std::string& s) const {
 ++getFieldCount_; // Error: const member function can't modify
 // a member variable
 // ...
}

It can also help catch more subtle errors, similar to how const works in its variable-
qualifier role (see Recipe 15.3). Consider this silly typo:

bool RecordSet::getFieldVal(int i, std::string& s) const {

 fieldArray_[i] = s; // Oops, I meant the other way around
 // ...
}

Once again, the compiler will abort and give you an error because you are trying to
change a member variable, and that’s not allowed in const member functions. Well,
with one exception.

In a RecordSet class, like the (bare-bones) one presented in Example 15-4, you would
probably want member functions for moving forward and backward in the record
set, assuming there is the notion of a “current” record. A simple way to do this is to
keep an integer member variable that indicates the index of the current record; your

Example 15-4. Declaring a member function const

#include <iostream>
#include <string>

class RecordSet {
public:
 bool getFieldVal(int i, std::string& s) const;
 // ...
};

bool RecordSet::getFieldVal(int i, std::string& s) const {
 // In here, you can't modify any nonmutable data
 // members (see discussion)
}

void displayRecords(const RecordSet& rs) {
 // Here, you can only invoke const member functions
 // on rs
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

548 | Chapter 15: Miscellaneous

member functions for moving the current record forward or backward increment or
decrement this value:

void RecordSet::gotoNextRecord() const {
 if (curIndex_ >= 0 && curIndex_ < numRecords_-1)
 ++curIndex_;
}

void RecordSet::gotoPrevRecord() const {
 if (curIndex_ > 0)
 --curIndex_;
}

Clearly this won’t work if these member functions are const. Both update a data
member. But without this behavior, consumers of the RecordSet class won’t be able
to scroll through a const RecordSet object. This is a reasonable exception to the const
member function rules, so C++ has a mechanism to support it: the mutable keyword.

To allow curIndex_ to be updated by a const member function, declare it as mutable
in the class declaration like this:

mutable int curIndex_;

This gives you a free pass to modify curIndex_ from wherever you like. This should
be used judiciously, however, since it has the same effect as leaving your member
function nonconst to begin with.

Using const as in Example 15-4 is an effective technique for guaranteeing that a
member function does not change its object’s state. In general, this is good practice
because it communicates the behavior of the member function to users of the class,
and because it keeps you honest by forcing the compiler to validate your assertion
that a member function won’t do something it shouldn’t.

15.5 Writing an Operator That Isn’t a Member
Function

Problem
You have to write a binary operator, and you can’t or don’t want to make it a class
member function.

Solution
Use the operator keyword, a temporary variable, and a copy constructor to do most
of the work, and return the temporary object. Example 15-5 presents a simple string
concatenation operator for a custom String class.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Writing an Operator That Isn’t a Member Function | 549

Discussion
A standalone operator is declared and defined similarly to a member function opera-
tor. In Example 15-5, I could have implemented operator+ as a member function by
declaring it like this:

String operator+(const String& rhs);

Example 15-5. Concatenation with a nonmember operator

#include <iostream>
#include <cstring>

class String { // Assume the String class declaration
 // has at least everything shown here
public:
 String();
 String(const char* p);
 String(const String& orig);
 ~String() {delete buf_;}

 String& append(const String& s);
 size_t length() const;
 const char* data() const;
 String& operator=(const String& orig);

 // ...
};

String operator+(const String& lhs, const String& rhs) {

 String tmp(lhs); // Copy construct a temp object
 tmp.append(rhs); // Use a member function to do the real work

 return(tmp); // Return the temporary
}

int main() {

 String s1("banana ");
 String s2("rancher");
 String s3, s4, s5, s6;

 s3 = s1 + s2; // Works fine, no surprises
 s4 = s1 + "rama"; // Constructs "rama" automatically using
 // the constructor String(const char*)
 s5 = "ham " + s2; // Hey cool, it even does it backward
 s6 = s1 + "rama " + s2;

 std::cout << "s3 = " << s3.data() << '\n';
 std::cout << "s4 = " << s4.data() << '\n';
 std::cout << "s5 = " << s5.data() << '\n';
 std::cout << "s6 = " << s6.data() << '\n';
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

550 | Chapter 15: Miscellaneous

In most cases, this will work the same way regardless of whether you define
operator+ as a member or nonmember function, but there are at least a couple of rea-
sons why you would want to implement it as a nonmember function. The first is
conceptual: does it make sense to have an operator that returns a new, distinct
object? operator+ as a member function is not an inspector of the object’s state, nor
does it alter the object’s state. It’s a general utility function that happens to operate
on Strings, and, therefore, should not be a member function.

The second reason is technical. You can’t do the following with a member operator
(from the example):

s5 = "ham " + s2;

This won’t work because a character string doesn’t have an operator+ that takes a
String parameter. If, on the other hand, you have defined your standalone operator+
that takes two String parameters, your compiler will look to see if the String class
has a constructor that takes a const char* argument (or whatever type you are using
with a String) and construct a temporary object at runtime. The above code, there-
fore, is equivalent to this:

s5 = String("ham ") + s2;

The compiler saves you the extra keystrokes by just looking it up and invoking the
constructor for you.

Overloading the left- and right-shift operators (<< and >>) for streams also requires
that you use nonmember operators. For example, to put your new object to a stream
using left-shift, you would have to declare operator<<, like this:

ostream& operator<<(ostream& str, const MyClass& obj);

Of course, you can subclass one of the standard library stream classes, and add all
the left-shift operators you want, but is that really a good idea? If you do that, only
code that uses your new stream class will be able to write your custom class’s objects
to it. If you use a standalone operator, any code in the same namespace can just write
your object to an ostream (or read it from an istream) with no problem.

15.6 Initializing a Sequence with Comma-Separated
Values

Problem
You want to initialize a sequence with a comma-delimited set of values, like you can
with a built-in array.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initializing a Sequence with Comma-Separated Values | 551

Solution
You can use a comma-initialization syntax on standard sequences (such as vector
and list) by defining a helper class and overloading the comma operator for it as
demonstrated in Example 15-6.

Example 15-6. Utilities for comma initialization of standard sequences

#include <vector>
#include <iostream>
#include <iterator>
#include <algorithm>

using namespace std;

template<class Seq_T>
struct comma_helper
{
 typedef typename Seq_T::value_type value_type;
 explicit comma_helper(Seq_T& x) : m(x) { }
 comma_helper& operator=(const value_type& x) {
 m.clear();
 return operator+=(x);
 }
 comma_helper& operator+=(const value_type& x) {
 m.push_back(x);
 return *this;
 }
 Seq_T& m;
};

template<typename Seq_T>
comma_helper<Seq_T>
initialize(Seq_T& x) {
 return comma_helper<Seq_T>(x);
}

template<class Seq_T, class Scalar_T>
comma_helper<Seq_T>&
operator,(comma_helper<Seq_T>& h, Scalar_T x) {
 h += x;
 return h;
}

int main() {
 vector v;
 int a = 2;

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

552 | Chapter 15: Miscellaneous

Discussion
Often time standard sequences are initialized by calling a push_back member func-
tion several times. Since this is somewhat repetitive, I wrote a function, initialize,
which helps eliminate the tedium, by enabling comma initialization à la built-in
arrays.

You may not have been aware that the comma is an operator, let alone an override-
able one. You are not alone; it is not common knowledge. The comma operator was
allowed to be overloadable almost precisely for this purpose.

The solution uses a helper function initialize that returns a helper template,
comma_helper. The helper template holds a reference to the sequence and overloads
operator,, operator=, and operator+=.

This solution required that I define a separate helper function because of the way the
compiler reads the statement v = 1, 1, 2, ...;. The compiler treats v = 1 as a subex-
pression that is not legal because the standard sequences do not support assignment
from a single value. What initialize does is construct an appropriate comma_helper
object that can hold the sequence while overloading the assignment and comma
operator.

The comma operator, also known as the sequencing operator, has a default effect of
grouping expressions from left to right and has the same type and value as the right-
hand value. When overloaded, however, operator, takes on the new meaning and
loses the original semantics. This has a subtle effect that the left-to-right evaluation
of parameters is no longer guaranteed and code such as in Example 15-7 may not
behave as expected.

 int b = 5;
 initialize(v) = 0, 1, 1, a, 3, b, 8, 13;
 cout << v[3] << endl; // outputs 2
 system("pause");
 return EXIT_SUCCESS;
}

Example 15-7. Overloaded comma arguments evaluation order undefined

int prompt_user() {
 cout << "give me an integer ... ";
 cin >> n;
 return n;
}

void f() {
 vector<int> v;

Example 15-6. Utilities for comma initialization of standard sequences (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Initializing a Sequence with Comma-Separated Values | 553

The correct way to write f would be to place each call to prompt_user in a separate
statement.

The Boost Assign library by Thorsten Ottosen also supports a more
complete form of comma list initialization of standard collections,
among other forms of initializations. The library is available from http://
www.boost.org.

 // The following could result in v being initialized out of
 // sequence
 intialize(v) = prompt_user(), prompt_user();
}

Example 15-7. Overloaded comma arguments evaluation order undefined (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

555

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Numbers
2038 bug, 200

A
abstract base classes

interfaces, creating with, 306–310
rules, 309

Abstract Factory design patterns, 289
access

containers, 253
threads, serializing, 450–458

accumulate function, 406
adding

classes, 294
directories, 19
margins, 185–187
objects to vectors, 220
rules, 71
threads, 450

address-of operator, 543
-Ae option, 21
algorithms

containers
deleting objects, 256–258
iterating through, 249–255

ranges
comparing, 260–263
partitioning, 271
printing to streams, 281–284
sorting, 268–270

sequences
merging, 264–268
randomly shuffling data, 259

rearranging, 272–275
transforming elements, 276–278

String Algorithms library, 145
strings, searching, 164
writing, 278–281

aliases, namespaces, 116
aligning text, 352–356
alternating_many_reads mutex, 456
alternating_single_read mutex, 456
amortized constant time, 228
append function, 140
applications

building
Borland, 8
C++Builder, 11
CodeWarrior, 10
Comeau, 8
command-line tools, 33–37
complex applications, 46–49
complex applications with GNU make

utility, 78–82
complex applications with

IDEs, 57–62
Dev-C++, 11
Digital Mars, 9
dynamic libraries, 25–32, 45
dynamic libraries with GNU make

utility, 77
dynamic libraries with IDEs, 53–56
GCC, 5
Hello World, 18–23, 40–43
Hello World with GNU make

utility, 64–71
hellobeatles application, 11–15

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

556 | Index

applications, building (continued)
IDEs, 3, 9
Intel, 6
Metrowerks, 7
release builds, 89–92
runtime library variants, 92–95
static libraries, 23, 44
static libraries with GNU make

utility, 72–76
static libraries with IDEs, 50–53
terminology, 2
toolsets, 4
Visual C++, 6, 10

debugging, 85–89
defining macros, 82, 84
enforcing strict conformance, 95–98
exporting templates, 101–104
installing Boost.Build, 38
linking, 34

source files, 99–101
obtaining

GCC, 15–18
GNU make utility, 62

passing command-line options, 84
running, 37

applying
hashed containers, 237–241
lists, 226
pointers to class members, 541–543
pure interfaces, 308
set operations, 273
static member variables, 296
Xerces strings, 494–496

-Ar option, 21
archivers, 2
archives, 2, 533

creating, 24
arguments

functions, ensuring against
modifying, 544–546

threads, passing to, 463–465
arithmetic operations

date/time, calculating, 204
performing on bitsets, 435–439

arithmetic operators, overloading, 320–328
arrays, applying vectors instead of, 214–218
assigning unique identifiers to

classes, 301–303
assignment operators, overloading, 320–328
associating streams, 469
associative containers, 213
asynchronous mode, 512

Attribute() method, 493
attributes

declaring, 516
declspec(dllexport), 28
declspec(dllimport), 29
visibility, 30

autocorrecting text, 191–194
automatic variables, 69

B
back_inserter class, 266
bash, 3
basic arithmetic operations, performing on

bitsets, 435–439
basic exception-safety guarantee, 336
basic source character sets, 468
behavior, locales, 471
bidirectional iterators, 254
big_int class, 442
BigInt template, 439
binary files

ELF, 30
variants of, 3

binary operators, overloading, 321
binary trees, implementing, 313
bitsets, 435–439
bloat (code), 314
Boost, xii

directories
creating with, 379
deleting with, 381

files
copying with, 372
deleting with, 375

Filesystem library, 373
paths, combining with, 391
Random library, 408
Serialization library, 533
Threads library, 446

Boost.Build, 4
complex applications, 46–49
dynamic libraries, 45–46
Hello World, 40–43
installing, 38
static libraries, 44
toolsets, 39

Boost.Serialization, 538
BOOST_ONCE_INIT macro, 463
Borland, 8
bounded accuracy, comparing floating-point

numbers with, 129–131
bounds-checking on vectors, 148

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 557

buffers
memory, resizing, 221
sizing, 220
text, autocorrecting, 191–194

build systems, 3
build tools, 3
building

applications
Borland, 8
C++Builder, 11
CodeWarrior, 10
Comeau, 8
command-line tools, 33–37
debugging, 85–89
defining macros, 82, 84
Dev-C++, 11
Digital Mars, 9
enforcing strict conformance, 95–98
exporting templates, 101–104
GCC, 5
Hello World, 18–23, 40–43
Hello World with GNU make

utility, 64–71
hellobeatles, 11–15
IDEs, 3, 9
installing Boost.Build, 38
Intel, 6
linking source files, 99–101
Metrowerks, 7
obtaining GCC, 15–18
obtaining GNU make utility, 62
passing command-line options, 84
release builds, 89–92
runtime library variants, 92–95
terminology, 2
toolsets, 4
Visual C++, 6, 10

complex applications, 46–49
with GNU make utility, 78–82
with IDEs, 57–62

DLLs with GCC, 29
dynamic libraries, 25–32, 45

with GNU make utility, 77
with IDEs, 53–56

static libraries, 23, 44
with GNU make utility, 72–76
with IDEs, 50–53

C
C++Builder, 11

complex applications, building with, 60
dynamic libraries, building with, 56
static libraries, building with, 52

calculating
date/time arithmetic, 204
leap years, 208
text file statistics, 180

calendars
Gregorian, 199
Julian, 199

callback functions, pointers, 539–541
calling superclass virtual functions, 328
capacity, length of strings, 151
case sensitivity, converting strings, 168
caseInsCharCompareN function, 172
caseInsCharCompareW function, 172
case-insensitive strings

comparing, 171–173
searching, 173–175

categories of compilers, 21
central moments, 406
characters

counting, 180–182
encoding, 468
strings

padding, 140
storing, 147–150
trimming, 142–147

Unicode strings, hardcoding, 467
unique, counting, 164
whitespace, formatting, 190
Xerces strings, applying, 494–496

characters() method, 503
chars, initializing, 286
classes

adding, 294
back_inserter, 266
big_int, 442
ConstrainedValue, 211
exceptions, creating, 330–334
format, 124
forward declarations, 110
functions

calling superclass virtural, 328
creating objects, 289–291

interfaces, creating, 306–310
JobQueue, 460
lexical_cast, 122

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

558 | Index

classes (continued)
locale, 482
ManipInfra, 362
member classes, applying pointers

to, 541–543
member functions, writing

templates, 315–317
member variables

copying, 296
initializing, 286–288

Message, 342
objects

copying, 346–350
determining type at runtime, 297–299
subclasses, 299–301

operators
overloading,

arithmetic/assignment, 320–328
overloading,

increment/decrement, 318–320
Queue, 452
relationships, 299
resources, managing, 291–293
rules, 309
serialization, 533
singleton, creating, 303–305
StatusBarMessage, 293
streams

reading, 366–368
writing, 363–366

TableFormatter, 354
tabular data, 354
templates, writing, 310–315
time_get, 476
time_put, 476
unique identifiers, assigning, 301–303
versioning, 538

cmd.exe, 3
code

bloat, 314
forward class declarations, 110
header files, including only once, 107
inline files, including, 118
modularizing, 112
name collisions, preventing, 111–118
position independent, generating, 32
variables, ensuring one instance

of, 108–110
CodeWarrior, 10

complex applications, building with, 59
dynamic libraries, building with, 55

static libraries, building with, 51
Coll, 145
collisions, preventing with

namespaces, 111–118
combining paths, 390–393
Comeau, 8
comma operator, 552
command-line tools, 3, 4

applications, building, 33–37
Borland, 8
Comeau, 8
Digital Mars, 9
dynamic libraries, building, 25–32
environment variables, setting, 18
GCC, 5
Intel, 6
macros, defining, 83
Metrowerks, 7
options, 32

passing, 84
static libraries, building, 23
Visual C++, 6

commands
compiling hello.cpp, 22
rm -f hello, 68

comma-separated text, reading, 194–196
comma-separated values, intializing

sequences with, 550–553
comparing

case-insensitive strings, 171–173
ranges, 260–263

comparison functions, 129–131
compilers, 2

categories of, 21
dynamically linked runtime library, 33
options, 21

compiling
conditional compilation, 83
hello.cpp, 22

complex applications
building, 46–49
CodeWarrior, building with, 59
GNU make utility, building with, 78–82
IDEs, building with, 57–62

complex templates, 433
complex XML documents, parsing, 496–507
computing

DFT, 431
distance between vectors, 417–419
dot products, 415
FFT, 431

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 559

norm of vectors, 416
number of elements in containers, 395
statistics, 403–406

concatenation, nonmember operators, 548
concepts, 447, 452
concurrent programming, 452
conditional compilation, 83
Configuration Manager, 90
configuring

archives, 24
dynamic libraries, 26
inline files, 118

constant time, 228
constant-sized matricies,

implementing, 426–429
constrained value types, defining, 208–212
ConstrainedValue template class, 211
constructors

exceptions, making safe, 335–337
OutOfRange, 403
resources, managing, 291–293

containers
associative, 213
classes, adding, 294
elements, computing number of in, 395
hashed, applying, 237–241
iterating through, 249–255
objects

deleting, 256–258
storing in sorted order, 242–245

random access, 253
random numbers, initializing with, 409
resizing, 275
sequence, 213
storing in containers, 245–247
strings, mapping, 231–236
sum and mean of elements,

computing, 399–402
values, searching, 396–399
vectors

applying instead of arrays, 214–218
copying, 222–224
optimizing, 218–222
storing objects in lists, 226–231
storing pointers in, 224

converting
date/time to strings, 201–203
numbers to strings, 123–126
between numeric types, 133–136

spaces, 175–178
strings

lower- or uppercase, 168–171
to numeric types, 120–123

tabs, 175–178
between time zones, 205
Xerces strings, 494–496

Coordinated Universal Time (UTC), 198
copying

files, 370–374
member variables, 296
objects, 346–350
vectors, 222–224

counting
characters, 180–182
unique characters, 164
words, 180–185

.cpp files, 75
createDOMBuilder() method, 512
creating (see configuring)
C-style strings, joining, 161
currency, reading and writing, 477–481
current date and time, obtaining, 198–201
customization points, 71
-cwd option, 22
Cygwin

installing, 16
make utility, 64

cygwin.bat file, 16

D
data structures, 213
databases, makefiles, pattern rules from, 70
date_duration function, 205
dates

arithmetic, calculating, 204
current, obtaining, 198–201
day’s number within given years,

determining, 207
strings, converting, 201–203

deadlock, 456
debugging applications, 85–89
dec manipulator, 358
declaring

attributes, 516
elements, 516
forward class declarations, 110
iterators, 251
maps, 232

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

560 | Index

declaring (continued)
member function const, 547
variables, single instances of, 108

declspec(dllexport) attribute, 28
declspec(dllimport) attribute, 29
deconstructors, managing

resources, 291–293
decrement operators, overloading, 318–320
default-build, 41
defining

constrained value types, 208–212
macros, 82, 84
variables, single instances of, 108

delay-loading feature of DLLs, 95
deleting

directories, 380–382
files, 374–376
objects from containers, 256–258
substrings, 167

delimited strings, splitting, 154–156
dependency relationships, specifying, 74
deques (double-ended queues), 149
dequeueIfEquals function, 458
design, generic pad function template, 141
Dev-C++

complex applications, building with, 61
dynamic libraries, building with, 56
static libraries, building with, 52

DFT (Discrete Fourier Transform),
computing, 431

diagrams, Venn, 254
Digital Mars, 9
directories

adding, 19
creating, 378–380
deleting, 380–382
reading, 383–385
searching, 33

Discrete Fourier Transform (DFT),
computing, 431

distance between vectors,
computing, 417–419

distance function, 395
DLLs (dynamic link libraries), 2

GCC, building with, 29
symbols

exporting from, 28
importing from, 29

Document Object Model (see DOM)
Document Type Definition (see DTD)

documents
result, 525
source, 525
XML

evaluating XPath
expressions, 527–533

modifying, 508–512
parsing, 485–493, 496–507
saving collections of objects, 533–538
transforming, 520–526
validating with DTDs, 512–516
validating with schemas, 517–520

DOM (Document Object Model), 492
XML, modifying, 508

dot products, computing, 415
double-ended queues (deques), 149
doubleEquals function, 130
doubly linked lists, 229
DTD (Document Type Definition), 485

XML, validating, 512–516
dynamic libraries

Boost.Build, 45
building, 25–32
CodeWarrior, building with, 55
GNU make utility, building with, 77
IDEs, building with, 53–56
makefiles, 77

dynamic library, 2
dynamic link libraries (see DLLs)
dynamic_cast operator, 299
dynamically sized matricies,

implementing, 423–426
dynamically sized numerical vectors,

modifying, 410
dynamically linked runtime library, 33

E
EDG (Edison Design Group), 7
-EHsc option, 21
elements

containers
computing number of in, 395
deleting, 256–258

declaring, 516
ranges

partitioning, 271
sorting, 268–270

sequences, transforming in, 276–278
sum of/mean of, computing in

containers, 399–402

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 561

ELF (executable and linking format), 30
enabling exported templates, 101
encoding characters, 468
endElement() method, 503
enforcing strict conformance, 95–98
environment variables

PATH, adding directories, 19
setting, 18

erase function, 256
Euclidean distance, computing between

vectors, 417–419
Euclidean Inner Product, 416
evaluate() method, 530
evaluating XPath expressions, 527–533
exceptions

classes
copying objects, 346–350
creating, 330–334

constructors, making safe, 335–337
hierarchies, 333
initializers, making safe, 338–341
member functions, making safe, 341–346
out_of_range, 217, 334

executable and linking format (ELF), 30
executable library, 2
-export all option, 32
-export pragma option, 32
exporting

symbols from DLLs, 28
templates, 101–104

expressions
paths, 530
regular, splitting strings with, 196
XPath, evaluating, 527–533

Extensible Markup Language (see XML)
extensions, files, 2, 385, 389
extern keyword, 108
external include guards, 108
extracting

file extensions from strings, 385
filenames

file extensions from, 385
from paths, 386

F
facets, instantiating, 476
FFT (Fast Fourier Transform),

computing, 431
filenames

file extensions, extracting, 385
temporary, creating, 376–378

files
.cpp, 75
binary

ELF, 30
variants of, 3

copying, 370–374
cygwin.bat, 16
deleting, 374–376
directories

creating, 378–380
deleting, 380–382
reading, 383–385

extensions, 2
replacing, 389

headers, 105
including only once, 107
searching, 33, 36

implementation, 106
information, retrieving, 368–370
inline, including, 118
makefiles, 4, 82

building with GNU make, 65
module definition, 28
naming, 374–376
object, 2
paths, extracting filenames from, 386
renaming, 374–376
source, linking, 99–101
strings, extracting extensions from, 385
targets, 4
temporary, creating, 376–378

filtering values, 402
Fixed manipulator, 358
fixed-point numbers,

implementing, 443–445
fixed-size numerical vectors,

modifying, 412–415
flags

formatting, 189
once_flag variable, 463

floating-point numbers, comparing bounded
accuracy, 129–131

floating-point output, formatting, 356–359
format class, 124
formatting

classes
exceptions, 330–334
interfaces, 306–310
singleton, 303–305

currency, printing, 479
dates, 201–203
directories, 378–380

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

562 | Index

formatting (continued)
files, temporary, 376–378
flags, 189
floating-point output, 356–359
integers as hexidecimal, 124
numbers

localization, 468
as strings, 123

objects, applying functions to, 289–291
pi, 356
specifiers, date/time, 202
threads, 447–450
tm structs, 200
whitespace, 190

forward class declarations, 110
forward iterators, 254
Freescale Semiconductor, 7
frequencies, counting word, 183
functions

accumulate, 406
append, 140
arguments, ensuring against

modifying, 544–546
callback, pointers, 539–541
caseInsCharCompareN, 172
caseInsCharCompareW, 172
comparison, 129–131
date_duration, 205
dequeueIfEquals, 458
distance, 395
doubleEquals, 130
erase, 256
exception-safe, making, 341–346
generate, 409
generate_n, 409
get_date, 475
get_time, 475
get_weekday, 475
get_year, 475
hash, 240
inner_product, 415
insert, 140
join, 449
lexical_cast, 128
localeLessThan, 483
main, 493
maps, 234
max_element, 396
member (see member functions)
min_element, 396
multimaps, 234
nth_element, 270

nthSubstr, 165
numeric_cast, 135
objects

creating, 289–291
ensuring against modifying, 546–548

operators, writing that are not, 548–550
pad, 141
partial_sort, 268, 270
partial_sort_copy, 270
pop_back, 228
pop_front, 228
printf, 126
printRange, 284
rand, 407
remove, 258
remove_copy_if, 403
reverse, 153
rtrim, 142
rtrimws, 144
set_difference, 273
set_intersection, 273
set_union, 273
size, 395
splice, 229
stride_iter, 420
strings, searching, 163
strtol, 122
superclass virtual, calling, 328
templates, 315–317
textValue(), 493
time_put, 202
tmpfile, 376
tmpnam, 376
tolower, 168
toupper, 168
transcode(), 496
vectors, 214

functors, 249, 398
idle-checking, 258
sorting, 235
types, 249

-fvisibility option, 30

G
GCC (GNU Compiler Collection), 5, 30

DLLs, building with, 29
obtaining, 15–18

generate function, 409
generate_n function, 409
generating

position-independent code, 32
random numbers, 407–409

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 563

generic classes for tabular data, 354
generic message classes, 343
generic pad function template, 141
get_date function, 475
get_time function, 475
get_weekday function, 475
get_year function, 475
getElementByTagName() method, 512
global locales, 469, 483
global variables, 108
GNU Complier Collection (see GCC)
GNU make utility, 63, 67

complex applications, building
with, 78–82

dynamic libraries, building with, 77
Hello World, building with, 64–71
obtaining, 62
static libraries, building with, 72–76
variables, 68

-GR option, 21
greatest values, searching in

containers, 396–399
Gregorian calendar, 199
groups

projects, 3
threads, adding, 450

guaranteeing unmodified arguments, 544
guards, include, 107

H
handling exceptions, initializers, 338
hardcoding Unicode strings, 467
hash functions, 240
hash tables, 239
hashed containers, applying, 237–241
headers

files, 36, 105
including only once, 107

Hello World
Boost.Build, 40–43
building, 18–23
GNU make utility, building with, 64–71

hello.cpp, 42
compiling, 22

hello.exe, linking, 22
hellobeatles application, 11–15
hex manipulator, 358
hexidecimal integers, formatting as, 124
hidden visibility, 30
hierarchies, exceptions, 333

I
IDEs (Integrated Development

Environments), 1, 3, 9
C++Builder, 11
CodeWarrior, 10
complex applications, building

with, 57–62
Dev-C++, 11
dynamic libraries, building with, 53–56
macros, defining, 83
static libraries, building with, 50–53
Visual C++, 10

idle-checking functor, 258
imbuing streams, 469
implementation files, 106
implementing

binary trees, 313
constant-sized matricies, 426–429
dynamically sized matricies, 423–426
fixed-point numbers, 443–445
serialization, 366
stride iterators, 419–422

implicit rules, makefiles, 69
import libraries, 28
importing

namespaces, 116
symbols from DLLs, 29

include guards, 107
increment operators, overloading, 318–320
indexes, out-of-bounds, 148
information about files, retrieving, 368–370
infrastructure, manipulators, 362
initializers, making list

exception-safe, 338–341
initializing

containers with random numbers, 409
member variables, 286–288
sequences with comma-separated

values, 550–553
shared resources (threads), 462

inits, initializing, 286
inline files, including, 118
inner_product function, 415
input iterators, 254
insert function, 140
install rule, 42
installing

Boost.Build, 38
complex applications, 49
Cygwin, 16
MinGW, 16
packages, 16

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

564 | Index

instances
classes, adding, 294
variables, insuring one of, 108–110
words, counting, 183–185

instantiation
facets, 476
templates, 313

integers
hexidecimal, formatting as, 124
large fixed-width, 439–443

Integrated Development Environments (see
IDEs)

Intel C++ compilers, 6
interfaces, creating classes, 306–310
internal include guards, 108
internationalization

currency, reading and writing, 477–481
numbers, reading and writing, 468–472
strings, sorting localized, 481–483
Unicode strings, hardcoding, 467

intrusive serialization, 537
invoking rules, 41
istream_iterator class template, 401
iterators

bidirectional, 254
categories, 253, 255
category abbreviations, 249
containers

interacting with, 217
iterating through, 249–255

declaring, 251
forward, 254
input, 254
output, 254
random-access, 254
stride, implementing, 419–422
valarray templates, 411

J
Jam build system, 4
JobQueue class, 460
join function, 449
joining strings, sequences of, 159–161
Julian calendar, 199
justifying text, 188–190, 352–356

K
keywords, extern, 108
kmatrix template, 428
kstride_iter.hpp, 421

kurtosis of sequences, computing, 403–406
kvector template, 412

L
large fixed-width integers, 439–443
leap years, 199, 208
least values, searching in

containers, 396–399
left-justifying text, 188–190, 352–356
length

of strings, getting, 151–153
whitespace, formatting, 190

lexical_cast class, 122
lexical_cast function, 128
librarians, 2
libraries

Boost Random, 408
Boost serialization, 533
Boost Threads, 446
Boost.Filesystem, 373
dynamic, 2, 45–46
dynamically linked runtime, 33
import, 28
linkers, passing, 36
static (see static libraries)
String Algorithms, 145
targets, 48
XML, 484

libstdc++, 6
lines

counting, 180–182
text, wrapping, 178

linkers, 2
libraries, passing to, 36

linking
applications, 34
hello.exe, 22
source files, 99–101

Linux, ELF, 30
lists

doubly linked, 229
objects, storing in, 226–231
strings, storing, 150

LoadFile() method, 485, 493
localeLessThan function, 483
locales

behavior, 471
class, 482
global, 469, 483
naming explicitly, 470
sorting, 483

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 565

localization, 466
numbers, formatting, 468
strings, sorting, 481–483

locks
mutexes, unlocking, 460
scheduling, 456

lookups, two-phase, 104
lowercase, converting strings to, 168–171

M
Mac OS X, symbol visibility for, 32
macros

BOOST_ONCE_INIT, 463
defining, 82, 84
predefined, 84

main function, 493
maintenance, makefiles, 68
make utility, 4

GNU, 63, 67
variables, 68

makefiles, 4, 82
dependencies, 75
dynamic libraries, 77
Hello World, building with GNU

make, 65
implicit rules, 69
maintenance, 68
pattern rules, 70
subordinate, 79
top-level, 79
Unix, 72
Visual C++, 73

management
containers

applying hashed, 237–241
storing in containers, 245–247
storing objects in sorted

order, 242–245
resources, 291–293
sessions, 240
strings, mapping, 231–236
vectors

applying instead of arrays, 214–218
copying, 222–224
optimizing, 218–222
storing objects in lists, 226–231
storing pointers in, 224

ManipInfra class, 362
manipulators

dec, 358
Fixed, 358

hex, 358
infrastructure, 362
noshowbase, 358
noshowpoint, 358
noshowpos, 358
nouppercase, 358
oct, 358
scientific, 358
setprecision, 358
showbase, 358
showpoint, 358
showpos, 358
streams, writing, 359–363
strings, 124
text, 353
uppercase, 358

mapping strings, 231–236
maps function, 234
margins, adding, 185–187
matching names, 117
matricies

constant-sized, implementing, 426–429
dynamically sized,

implementing, 423–426
multiplying, 429

matrix template, 425
max_element function, 396
maximum elements, searching, 396
mean of elements, computing in

containers, 399–402
member functions

dequeueIfEquals, 458
erase, 256
exceptions, making safe, 341–346
get_date, 475
get_time, 475
get_weekday, 475
get_year, 475
join, 449
maps, 234
multimaps, 234
objects, ensuring against

modifying, 546–548
operators, writing that are not, 548–550
size, 395
strings, searching, 163
templates, writing, 315–317
time_put, 202
vectors, 214

member variables
copying, 296
initializing, 286–288

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

566 | Index

memory
buffers, resizing, 221
strings, mapping, 231–236
vectors, optimizing, 220

merging sequences, 264–268
Message class, 342
methods

Attribute(), 493
characters(), 503
createDOMBuilder(), 512
endElement(), 503
evaluate(), 530
getElementByTag(), 512
LoadFile(), 485, 493
removeChild(), 512
RootElement(), 485, 493
SaveFile(), 493
serialize, 538
startElement(), 503
toDocument(), 492
toElement(), 492
toText(), 492
Type(), 492
Value(), 493
writeNode(), 512

Metrowerks, 7
symbol visibility for Mac OS X, 32

Microsoft Windows (see Windows)
min_element function, 396
MinGW, installing, 16
minimum elements, searching, 396
models, 447, 452
modifying, 433

arguments, ensuring functions do
not, 544–546

dynamically sized numerical vectors, 410
fixed-size numerical vectors, 412–415
objects, ensuring functions do

not, 546–548
polar coordinates, 433
XML documents, 508–512

modularizing code, 112
module definition files, 28
moments, 406
money (see currency, reading and writing)
money_put object, 478
moving text, 352–356
MSYS, make utility, 64
multimaps function, 234

multiplying matricies, 429
multithreading

threads, 458–461
creating, 447–450
initializing shared resources, 462
passing arguments, 463–465
serializing access, 450–458

troubleshooting, 456
mutexes, 452

unlocking, 460
myThread object, 448

N
names

collisions, preventing, 111–118
filenames

creating temporary, 376–378
extracting file extensions from, 385

files, 374–376
locales, naming explicitly, 470
matching, 117

namespaces
aliases, 116
code, modularizing, 112
importing, 116
nesting, 116
rules, 117
XML, 497

narrow-character strings, converting Xerces
strings, 494

native types, initializing, 286
nesting namespaces, 116
nodes

searching, 531
sets, 530

-nologo option, 21
nonintrusive serialization, 537
nonmember operator concatenation, 548
norm of vectors, computing, 416
noshowbase manipulator, 358
noshowpoint manipulator, 358
noshowpos manipulator, 358
notification

conditions, 458–461
threads, 458–461

noupercase manipulator, 358
nth occurrence of patterns, searching, 165
nth_element function, 270
nthSubstr function, 165

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 567

numbers
currency, reading and writing, 477–481
fixed-point, implementing, 443–445
floating-point, 129–131
pi, formatting, 356
random

generating, 407–409
generators, 260
initializing containers, 409

reading, 468–472
statistics, computing, 403–406
stride iterators, implementing, 419–422
strings

converting to, 123–126
parsing, 131–133
testing, 126–128

writing, 468–472
numeric types

converting between, 133–136
strings, converting, 120–123
values, 136–138

numeric_cast function, 135

O
objects

classes, determining subclasses
of, 299–301

containers, deleting, 256–258
copying, 346–350
files, 2
functions

creating, 289–291
ensuring against modifying, 546–548

global locale, 469
lists, storing in, 226–231
money_put, 478
myThread, 448
returning, 290
storing, 242–245
streams, writing to, 364
thread_group, 449
tracking, 294
types, determining at runtime, 297–299
value, 290
vectors, adding to, 220
XML, saving collections of, 533–538

obtaining
current date and time, 198–201
GCC, 15–18
GNU make utility, 62

oct manipulator, 358
once_flag variable, 463
one-definition rule, 109
operators

address-of, 543
arithmetic, overloading, 320–328
assignment, overloading, 320–328
binary, overloading, 321
comma, 552
decrement, overloading, 318–320
dynamic_cast, 299
increment, overloading, 318–320
member functions, writing that are

not, 548–550
nonmember concatenation, 548
scope (::), 541
unary, overloading, 321

optimizing vectors, 218–222
options

command-line, 32
compilers, 21
exported templates, enabling, 101

ostream_iterator class template, 401
out_of_range exceptions, 217, 334
OutIt, 145
out-of-bounds indexes, 148
OutOfRange constructor, 403
output

floating-point, formatting, 356–359
iterators, 254

overloading
binary operators, 321
operators

arithmetic/assignment, 320–328
increment/decrement, 318–320

unary operators, 321

P
packages, installing, 16
pad function, 141
padding strings, 140
parent projects, 41
parsing

strings containing numbers, 131–133
TinyXML parser, 492
validating parser, 516
Xerces DOM parser, 511
XML documents, 485–493, 496–507

partial_sort function, 268, 270
partial_sort_copy function, 270

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

568 | Index

partitioning ranges, 271
passing

arguments to threads, 463–465
command-line options, 84
libraries to linkers, 36

PATH environment variables, adding
directories, 19

Pathan library, 531
paths

combining, 390–393
expressions, 530
files, extracting filenames from, 386

patterns
Abstract Factory design, 289
rules, 70, 72
singleton, creating, 303–305
strings, searching, 165
threads, notifying of conditions, 458–461

performance, vectors, 221
(see also optimizing vectors)

pi, formatting, 356
platforms, xi
pluggable transcoding services, 496
pointers

callback functions, 539–541
class members, applying to, 541–543
initializing, 286
storing, 243

polar coordinates, 433
polymorphic types, 300
pop_back function, 228
pop_front function, 228
portability, 471
porting GNU tools to Windows, 17
position independent code, generating, 32
pragma comment, 99
precedence of sequences, 267
Pred, 145
predefined macros, 84
predicates, 249
prerequisites, 64
preventing name collisions, 111–118
printf functions, 126
printing

currency formats, 479
ranges to streams, 281–284

printRange function, 284
programming, concurrent, 452
projects, 3

groups, 3
organizing, 49

parent, 41
root, 41

properties, viewing, 54
pure interfaces, applying, 308

Q
-q option, 21
Queue class, 452
queues, double-ended (deques), 149

R
race conditions, 456
RAII (Resource Acquisition Is

Initialization), 291–293, 502
rand function, 407
random access, containers, 253
random numbers

containers, initializing, 409
generating, 407–409
generators, 260

random-access iterators, 254
randomly shuffling data, 259
ranges

comparing, 260–263
partitioning, 271
sorting, 268–270
streams, printing to, 281–284
values, filtering outside of, 402

ranlib tool, 24
read_write_mutexes, 453
reader_priority mutex, 456
reading

classes from streams, 366–368
currency, 477–481
directories, 383–385
numbers, 468–472
text, 194–196

ready state, 447
rearranging sequences, 272–275
recursive make, 81
refinements, 447, 452
regular expressions, splitting strings

with, 196
relationships, classes, 299
release builds, 89–92
remove function, 258
remove_copy_if function, 403
removeChild() method, 512
renaming files, 374–376
replacing file extensions, 389

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 569

requirements, 41
resizing

containers, 275
memory buffers, 221

Resource Acquisition Is Initialization
(RAII), 291–293, 502

resources
managing, 291–293
threads, 449

initializing, 462–463
serializing access, 450–458

restoring objects, 533–538
result documents, 525
retrieving information about files, 368–370
returning objects, 290
reverse function, 153
reversing strings, 153
right-justifying text, 188–190, 352–356
rm -f hello command, 68
RootElement() method, 485, 493
rtrim function, 142
rtrimws function, 144
RTTI (runtime type identification), 297
rules

abstract base classes, 309
adding, 71
implicit, makefiles, 69
install, 42
invoking, 41
namespaces, 117
one-definition, 109
patterns, 70, 72
static libraries, 74

run state, 447
running applications, 37
runtime

dynamically linked libraries, 33
library variants, 92–95
objects, determining type at, 297–299
undefined behavior at, 97

runtime type identification (RTTI), 297

S
safety

constructors, making
exception-safe, 335–337

exception-safe assignment and copy
construction, 346–350

initializers, making
exception-safe, 338–341

member functions, making
exception-safe, 341–346

threads, serializing access, 450–458
sample moments, 406
SaveFile() method, 493
saving objects (XML), 533–538
SAX2 ContentHandler

interfaces, implementing, 502
XML, parsing, 497

scheduling locks, 456
schemas, validating XML

documents, 517–520
scientific manipulator, 358
scientific notation, parsing strings, 131–133
scope operator (::), 541
scripts, setting environment variables, 18
searching, 36, 162–165

case-insensitive strings, 173–175
header files, 33, 36
nodes, 531
values, containers, 396–399
wildcards, 70

self typedef, 415
Seq, 145
sequences

comma-separated-values, intializing
with, 550–553

containers, 213
elements, transforming, 276–278
kurtosis of, computing, 403–406
merging, 264–268
precedence of, 267
randomly shuffling, 259
rearranging, 272–275
sizing, 267
strings

joining, 159–161
storing in, 147–150

serialization
classes, 533
implementing, 366
intrusive, 537
nonintrusive, 537
threads, 450–458

serialize method, 538
services, pluggable transcoding, 496
session management, 240
set operations, performing on

sequences, 272–275
set_difference function, 273
set_intersection function, 273
set_union function, 273

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

570 | Index

setprecision manipulator, 358
sets

nodes, 530
pointers, storing, 243

setting environment variables, 18
shared library, 2
shared resources, initializing threads

once, 462
showbase manipulator, 358
-showIncludes option, 76
showpoint manipulator, 358
showpos manipulator, 358
signaling threads, 459
singleton classes, creating, 303–305
size member function, 395
sizing

buffers, 220
sequences, 267

skew, computing, 403–406
solutions, 3
sorting

functors, 235
locales, 483
localized strings, 481–483
objects, storing, 242–245
ranges, 268–270

source documents, 525
source files, linking, 99–101
sources, 41
spaces, converting, 175–178
splice function, 229
splitting strings, 154–156, 196
standard deviation, computing, 403–406
Standard Template Library, 213
standardized moments, 406
startElement() method, 503
starvation, 456
states, 447
static libraries, 2

Boost.Build, 44
building, 23
CodeWarrior, building with, 51
GNU make utility, building with, 72–76
IDEs, building with, 50–53
rules, 74

static member variables, applying, 296
stationery, 90
statistics

computing, 403–406
text files, calculating, 180

StatusBarMessage class, 293
STL (Standard Template Library), 213

storing
containers in containers, 245–247
objects, 242–245

in lists, 226–231
pointers, 243

in vectors, 224
strings, 147–150
Xerces strings, 494–496

streams
associating, 469
classes

reading, 366–368
writing, 363–366

floating-point output,
formatting, 356–359

manipulators, 124
writing, 359–363

ranges, printing to, 281–284
text, aligning, 352–356
wide-character, 468

strict conformance, enforcing, 95–98
stride iterators, implementing, 419–422
stride_iter function, 420
String Algorithms library, 145
strings, 162–165

case-insensitive
comparing, 171–173
searching, 173–175

date/time, converting, 201–203
files, extracting extensions from, 385
length of, getting, 151–153
localized, sorting, 481–483
lower- or uppercase, converting, 168–171
mapping, 231–236
numbers

converting to, 123–126
parsing, 131–133
testing, 126–128

numeric types, converting, 120–123
padding, 140
patterns, 165
reversing, 153
searching, 162–165

patterns, 165
sequences, joining, 159–161
splitting, 154–156

with regular expressions, 196
storing, 147–150
substrings, deleting, 167
tokenizing, 157–159
trimming, 142–147
Unicode, hardcoding, 467

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 571

wide-character, 468
Xerces, applying, 494–496

strong exception-safety guarantee, 336
strtol function, 122
structs (tm)

date/time classes, converting to, 203
formatting, 200

stylesheets, 525
subclasses, determining, 299–301
subordinate makefiles, 79, 82
substrings

deleting, 167–168
searching, 165

sum of elements, computing in
containers, 399–402

swapping member data, 348
symbol visibility, for Mac OS X, 32
symbols

exporting, 28
importing, 29

synchronous mode, 512
system calls, 369

T
TableFormatter class, 354
tables, hash, 239
tabs, converting, 175–178
tabular data, classes for, 354
targets, 4, 64

library, 48
templates, 525

BigInt, 439
classes, writing, 310–315
complex, 433
exporting, 101–104
generic pad function, 141
istream_iterator class, 401
kmatrix, 428
kvector, 412
lists, storing strings, 150
matrix, 425
member functions, writing, 315–317
ostream_iterator class, 401
strings, trimming, 145
valarray, 410

temporary files, creating, 376–378
testing strings, validating numbers, 126–128
text

aligning, 352–356
autocorrecting, 191–194
characters, counting, 180–182

floating-point output,
formatting, 356–359

justifying, 188–190
lines, wrapping, 178
manipulators, 353
margins, adding, 185–187
reading, 194–196
spaces, converting, 175–178
strings, converting case, 168
tabs, converting, 175–178
whitespace, formatting, 190
words, counting instances of, 183–185
(see also documents)

TextAutoField, 193
textValue() function, 493
thread_group object, 449
threads

access, serializing, 450–458
adding, 450
conditions, notifying of, 458–461
creating, 447–450
resources, 449

initializing, 462
passing arguments, 463–465

signaling, 459
time

arithmetic, calculating, 204
current, obtaining, 198–201
strings, converting, 201–203
zones, converting between, 205

time_get class, 476
time_put class, 476
time_put member function, 202
TinyXML parser, 492
TiXMLDocument type, 485
tm structs

date/time classes to, converting to, 203
formatting, 200

tmpfile function, 376
tmpnam function, 376
toDocument() method, 492
toElement() method, 492
tokenizing, 155

strings, 157–159
tolower function, 168
tools

build, 3
command-line, 3

Borland, 8
building applications, 33–37
building dynamic libraries, 25–32
building static libraries, 23

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

572 | Index

tools, command-line (continued)
Comeau, 8
defining macros, 83
Digital Mars, 9
GCC, 5
Intel, 6
Metrowerks, 7
options, 32
passing options, 84
setting environment variables, 18
Visual C++, 6

GNU make utility, obtaining, 62
make utility, 4

GNU, 63, 67
ranlib, 24

toolsets, 2, 4
BoostBuild, 39
Borland, 8
Comeau, 8
Digital Mars, 9
GCC, 5
Intel, 6
Metrowerks, 7
Visual C++, 6

top-level makefile, 79
toText() method, 492
toupper function, 168
tracking objects, 294
transcode() function, 496
transcoding, pluggable services, 496
transforming

elements in sequences, 276–278
XML documents, 520–526

trees, implementing binary, 313
trimming strings, 142–147
troubleshooting multithreading, 456
two-phase lookup, 104
Type() method, 492
types

constrained types, defining, 208–212
exception classes, 333
functors, 249
numeric

converting between, 133–136
converting strings to, 120–123
values, 136–138

objects, determining at runtime, 297–299
polymorphic, 300
TiXMLDocument, 485
user-defined, searching maximum

elements for, 398

U
unary operators, overloading, 321
unary predicates, 249
undefined behavior at runtime, 97
Unicode strings, hardcoding, 467
unique characters, counting, 164
unique identifiers, assigning

classes, 301–303
Unix

bash, 3
environment variables, 20
file extensions, 2
GCC, installing, 17
GNU make utility, obtaining, 63
makefiles, 72
position-independent code,

generating, 32
static libraries, 24

unlocking mutexes, 460
uppercase

manipulators, 358
strings, converting, 168–171

usage-requirements, 41
user-defined types, searching maximum

elements for, 398
UTC (Coordinated Universal Time), 198

V
valarray template, 410
validating

numbers, 126–128
XML documents

DTDs, 512–516
schemas, 517–520

Value() method, 493
values

comma-separated, intializing sequences
with, 550–553

constrained types, defining, 208–212
containers, searching, 396–399
filtering, 402
numeric types, 136–138
objects, 290

variables
automatic, 69
environment

adding directories, 19
setting, 18

global, 108
GNU make utility, 68
instances, insuring one of, 108–110

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 573

member
copying, 296
initializing, 286–288

once_flag, 463
VPATH, 71

variance, computing, 403–406
variants

binary files, 3
remove function, 258
runtime library, 92–95

vectors
arrays, applying instead of, 214–218
bounds-checking on, 148
copying, 222–224
distance between, computing, 417–419
dynamically sized numerical,

modifying, 410
fixed-size numerical, modifying, 412–415
norm of, computing, 416
objects, storing in lists, 226–231
optimizing, 218–222
pointers, storing in, 224
strings, storing in, 147

Venn diagrams, 254
versioning, classes, 538
viewing properties, 54

visibility
attributes, 30
symbols, 27

for Mac OS X, 32
Visual C++, 6, 10

makefiles, 73
makefiles, building Hello World, 66

VPATH variable, 71

W
W3C (World Wide Web Consortium), 492
wait state, 447
-wchar_t option, 21
whitespace

formatting, 190
strings, trimming characters, 143

wide-character streams, 468
wide-character strings, 468
wildcards, 70
Win32 Application Wizard, 54, 57
Windows

cmd.exe, 3
environment variables, 20

file extensions, 2
GCC, installing, 16
GNU make utility, obtaining, 62
GNU tools, porting to, 17
make utility, 64

words, counting, 180–185
World Wide Web Consortium (W3C), 492
wrapping lines in text files, 178
writeNode() method, 512
writer_priority mutex, 456
writing

algorithms, 278–281
class templates, 310–315
classes to output streams, 363–366
currency, 477–481
member function templates, 315–317
numbers, 468–472
operators that are not member

functions, 548–550
stream manipulators, 359–363

X
Xalan library, 527
Xerces

DOM parser, 511
strings, applying, 494–496

XML (Extensible Markup Language)
libraries, 484
modifying, 508–512
namespaces, 497
objects, saving collections of, 533–538
parsing, 485–493, 496–507
transforming, 520–526
validating

DTDs, 512–516
schemas, 517–520

Xerces strings, applying, 494–496
XPath expressions, evaluating, 527–533

XPath expressions, evaluating, 527–533
XSLT stylesheets, transforming XML

documents with, 520–526

Y
years, leap year computations, 208

Z
-Zc:forScope option, 22
-Zc:wchar_t option, 21
zones, converting between time zones, 205

About the Authors
D. Ryan Stephens is a software engineer, writer, and student living in Tempe,
Arizona. He enjoys programming in virtually any language, especially C++. His
interests include information retrieval and data mining, and pretty much anything
that has to do with algorithms and large data sets. When he’s not working, writing,
or programming, he plays with his kids, works on his house, or goes cycling.

Christopher Diggins is a freelance software developer and writer who has been
programming computers since he was haut comme trois pommes. Christopher writes
regularly for the C++ Users Journal and is the designer of the Heron programming
lanugage.

Jonathan Turkanis is the author of the Boost Iostreams library and several other
open source C++ libraries, covering areas such as smart pointers, runtime reflection,
component architectures, and aspect-oriented programming. He is a PhD candidate
in mathematical logic at the University of California at Berkeley.

Jeff Cogswell is a software engineer living near Cincinnati, Ohio. He has been
programming in C++ since around the time the language was invented and has
written extensively on the language, including two other C++ books. He also likes
programming in other languages, especially Python. When not working (which is
rare), he enjoys reading a good novel or playing the guitar.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of C++ Cookbook is a collie. The name refers to a type of
sheepherding dog that originated in the highlands of Scotland and Britain in the
1600s. One variety of sheep in the Scottish Highlands had dark markings around its
legs and face and was called the “Colley” sheep, a name derived from the Older Scots
word for “coal.” The modern version of the collie, lighter and more thick-boned than
its Scottish ancestors, was bred in England in the late 19th century. Today, collies are
primarily house pets, though they are still used as farm dogs in the United States.

There are two distinct breeds of collie: rough-coated collies were used to guard
sheep, and the smooth-coated variety drove the livestock to market. Both are limber,
streamlined dogs with a pronounced snout and pointed ears. They are 22–26 inches
tall and weigh 50–75 pounds. Their fur is usually white with a second color that can
vary from yellowish-white to brownish-red to coal-black.

Famous collies include Lassie, of course; Lyndon Johnson’s pet Blanco; and Laddie
from The Simpsons.

Matt Hutchinson was the production editor for C++ Cookbook . Octal Publishing,
Inc. provided production services. Darren Kelly, Adam Witwer, and Claire Cloutier
provided quality control.

Karen Montgomery designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from Cassell’s Natural
History. Karen Montgomery produced the cover layout with Adobe InDesign CS
using Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahl-
gren to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason
McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the
code font is LucasFont’s TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash
using Macromedia FreeHand MX and Adobe Photoshop CS. The tip and warning
icons were drawn by Christopher Bing. This colophon was written by Matt
Hutchinson.

	Table of Contents
	Preface
	About the Examples
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari Enabled
	Acknowledgments
	From D. Ryan Stephens
	From Christopher Diggins
	From Jonathan Turkanis

	Building C++ Applications
	1.0 Introduction to Building
	Basic Terminology
	IDEs and Build Systems
	Toolset Overview
	The GNU Compiler Collection (GCC)
	Visual C++
	Intel
	Metrowerks
	Borland
	Comeau
	Digital Mars

	IDE Overview
	Visual C++
	CodeWarrior
	C++Builder
	Dev-C++

	John, Paul, George, and Ringo

	1.1 Obtaining and Installing GCC
	Problem
	Solution
	Windows
	Unix

	Discussion
	See Also

	1.2 Building a Simple “Hello, World” Application from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.3 Building a Static Library from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.4 Building a Dynamic Library from the Command Line
	Problem
	Solution
	Discussion
	Symbol visibility
	Passing libraries to the linker
	Import libraries and module definition files
	Exporting symbols from a DLL
	Importing symbols from a DLL
	Building DLLs with GCC
	GCC 4.0’s -fvisibility option
	Symbol Visibility with Metrowerks for Mac OS X
	Command-line options

	See Also

	1.5 Building a Complex Application from the Command Line
	Problem
	Solution
	Discussion
	Searching for included headers
	Passing libraries to the linker
	Running your application

	See Also

	1.6 Installing Boost.Build
	Problem
	Solution
	Discussion

	1.7 Building a Simple “Hello, World” Application Using Boost.Build
	Problem
	Solution
	Discussion
	See Also

	1.8 Building a Static Library Using Boost.Build
	Problem
	Solution
	Discussion
	See Also

	1.9 Building a Dynamic Library Using Boost.Build
	Problem
	Solution
	Discussion
	See Also

	1.10 Building a Complex Application Using Boost.Build
	Problem
	Solution
	Discussion
	Library targets

	See Also

	1.11 Building a Static Library with an IDE
	Problem
	Solution
	Discussion
	CodeWarrior
	C++Builder
	Dev-C++

	See Also

	1.12 Building a Dynamic Library with an IDE
	Problem
	Solution
	Discussion
	CodeWarrior��
	C++Builder
	Dev-C++

	See Also

	1.13 Building a Complex Application with an IDE
	Problem
	Solution
	Discussion
	CodeWarrior�
	C++Builder
	Dev-C++

	See Also

	1.14 Obtaining GNU make
	Problem
	Solution
	Windows
	Unix

	Discussion
	See Also

	1.15 Building A Simple “Hello, World” Application with GNU make
	Problem
	Solution
	Discussion
	Make variables
	Implicit Rules
	Customization points
	VPATH and the vpath directive

	See Also

	1.16 Building a Static Library with GNU Make
	Problem
	Solution
	Discussion
	See Also

	1.17 Building a Dynamic Library with GNU Make
	Problem
	Solution
	Discussion
	See Also

	1.18 Building a Complex Application with GNU make
	Problem
	Solution
	Discussion
	See Also

	1.19 Defining a Macro
	Problem
	Solution
	Discussion
	See Also

	1.20 Specifying a Command-Line Option from Your IDE
	Problem
	Solution
	Discussion

	1.21 Producing a Debug Build
	Problem
	Solution
	Discussion
	See Also

	1.22 Producing a Release Build
	Problem
	Solution
	Discussion
	See Also

	1.23 Specifying a Runtime Library Variant
	Problem
	Solution
	Discussion
	See Also

	1.24 Enforcing Strict Conformance to the C++ Standard
	Problem
	Solution
	Discussion
	See Also

	1.25 Causing a Source File to Be Linked Automatically Against a Specified Library
	Problem
	Solution
	Discussion
	See Also

	1.26 Using Exported Templates
	Problem
	Solution
	Discussion
	See Also

	Code Organization
	2.0 Introduction
	2.1 Making Sure a Header File Gets Included Only Once
	Problem
	Solution
	Discussion

	2.2 Ensuring You Have Only One Instance of a Variable Across Multiple Source Files
	Problem
	Solution
	Discussion

	2.3 Reducing #includes with Forward Class Declarations
	Problem
	Solution
	Discussion

	2.4 Preventing Name Collisions with Namespaces
	Problem
	Solution
	Discussion

	2.5 Including an Inline File
	Problem
	Solution

	Numbers
	3.0 Introduction
	3.1 Converting a String to a Numeric Type
	Problem
	Solution
	Discussion
	See Also

	3.2 Converting Numbers to Strings
	Problem
	Solution
	Discussion
	See Also

	3.3 Testing Whether a String Contains a Valid Number
	Problem
	Solution
	Discussion
	See Also

	3.4 Comparing Floating-Point Numbers with Bounded Accuracy
	Problem
	Solution
	Discussion

	3.5 Parsing a String Containing a Number in Scientific Notation
	Problem
	Solution
	Discussion
	See Also

	3.6 Converting Between Numeric Types
	Problem
	Solution
	Discussion
	See Also

	3.7 Getting the Minimum and Maximum Values for a Numeric Type
	Problem
	Solution
	Discussion

	Strings and Text
	4.0 Introduction
	4.1 Padding a String
	Problem
	Solution
	Discussion

	4.2 Trimming a String
	Problem
	Solution
	Discussion

	4.3 Storing Strings in a Sequence
	Problem
	Solution
	Discussion

	4.4 Getting the Length of a String
	Problem
	Solution
	Discussion

	4.5 Reversing a String
	Problem
	Solution
	Discussion

	4.6 Splitting a String
	Problem
	Solution
	Discussion

	4.7 Tokenizing a String
	Problem
	Solution
	Discussion
	See Also

	4.8 Joining a Sequence of Strings
	Problem
	Solution
	Discussion

	4.9 Finding Things in Strings
	Problem
	Solution
	Discussion

	4.10 Finding the nth Instance of a Substring
	Problem
	Solution
	Discussion
	See Also

	4.11 Removing a Substring from a String
	Problem
	Solution
	Discussion

	4.12 Converting a String to Lower- or Uppercase
	Problem
	Solution
	Discussion

	4.13 Doing a Case-Insensitive String Comparison
	Problem
	Solution
	Discussion

	4.14 Doing a Case-Insensitive String Search
	Problem
	Solution
	Discussion

	4.15 Converting Between Tabs and Spaces in a Text File
	Problem
	Solution
	Discussion

	4.16 Wrapping Lines in a Text File
	Problem
	Solution
	Discussion
	See Also

	4.17 Counting the Number of Characters, Words, and Lines in a Text File
	Problem
	Solution
	Discussion
	See Also

	4.18 Counting Instances of Each Word in a Text File
	Problem
	Solution
	Discussion
	See Also

	4.19 Add Margins to a Text File
	Problem
	Solution
	Discussion
	See Also

	4.20 Justify a Text File
	Problem
	Solution
	Discussion

	4.21 Squeeze Whitespace to Single Spaces in a Text File
	Problem
	Solution
	Discussion
	See Also

	4.22 Autocorrect Text as a Buffer Changes
	Problem
	Solution
	Discussion
	See Also

	4.23 Reading a Comma-Separated Text File
	Problem
	Solution
	Discussion

	4.24 Using Regular Expressions to Split a String
	Problem
	Solution
	Discussion

	Dates and Times
	5.0 Introduction
	5.1 Obtaining the Current Date and Time
	Problem
	Solution
	Discussion

	5.2 Formatting a Date/Time as a String
	Problem
	Solution
	Discussion
	See Also

	5.3 Performing Date and Time Arithmetic
	Problem
	Solution
	Discussion

	5.4 Converting Between Time Zones
	Problem
	Solution
	Discussion

	5.5 Determining a Day’s Number Within a Given Year
	Problem
	Solution
	Discussion

	5.6 Defining Constrained Value Types
	Problem
	Solution
	Discussion

	Managing Data with Containers
	6.0 Introduction
	6.1 Using vectors Instead of Arrays
	Problem
	Solution
	Discussion
	See Also

	6.2 Using vectors Efficiently
	Problem
	Solution
	Discussion
	How vectors work
	Optimizing vector performance

	6.3 Copying a vector
	Problem
	Solution
	Discussion

	6.4 Storing Pointers in a vector
	Problem
	Solution
	Discussion

	6.5 Storing Objects in a list
	Problem
	Solution
	Discussion
	See Also

	6.6 Mapping strings to Other Things
	Problem
	Solution
	Discussion
	See Also

	6.7 Using Hashed Containers
	Problem
	Solution
	Discussion
	See Also

	6.8 Storing Objects in Sorted Order
	Problem
	Solution
	Discussion

	6.9 Storing Containers in Containers
	Problem
	Solution
	Discussion

	Algorithms
	7.0 Introduction
	7.1 Iterating Through a Container
	Problem
	Solution
	Discussion
	Using iterators
	Iterator categories

	See Also

	7.2 Removing Objects from a Container
	Problem
	Solution
	Discussion
	See Also

	7.3 Randomly Shuffling Data
	Problem
	Solution
	Discussion

	7.4 Comparing Ranges
	Problem
	Solution
	Discussion
	See Also

	7.5 Merging Data
	Problem
	Solution
	Discussion

	7.6 Sorting a Range
	Problem
	Solution
	Discussion
	See Also

	7.7 Partitioning a Range
	Problem
	Solution
	Discussion
	See Also

	7.8 Performing Set Operations on Sequences
	Problem
	Solution
	Discussion
	See Also

	7.9 Transforming Elements in a Sequence
	Problem
	Solution
	Discussion
	See Also
	Discussion

	7.10 Writing Your Own Algorithm
	Problem
	Solution
	Discussion
	See Also

	7.11 Printing a Range to a Stream
	Problem
	Solution
	Discussion

	Classes
	8.0 Introduction
	8.1 Initializing Class Member Variables
	Problem
	Solution
	Discussion
	See Also

	8.2 Using a Function to Create Objects (a.k.a. Factory Pattern)
	Problem
	Solution
	Discussion
	See Also

	8.3 Using Constructors and Destructors to Manage Resources (or RAII)
	Problem
	Solution
	Discussion

	8.4 Automatically Adding New Class Instances to a Container
	Problem
	Solution
	Discussion
	See Also

	8.5 Ensuring a Single Copy of a Member Variable
	Problem
	Solution
	Discussion

	8.6 Determining an Object’s Type at Runtime
	Problem
	Solution
	Discussion
	See Also

	8.7 Determining if One Object’s Class Is a Subclass of Another
	Problem
	Solution
	Discussion
	See Also

	8.8 Giving Each Instance of a Class a Unique Identifier
	Problem
	Solution
	Discussion
	See Also

	8.9 Creating a Singleton Class
	Problem
	Solution
	Discussion
	See Also

	8.10 Creating an Interface with an Abstract Base Class
	Problem
	Solution
	Discussion

	8.11 Writing a Class Template
	Problem
	Solution
	Discussion
	See Also

	8.12 Writing a Member Function Template
	Problem
	Solution
	Discussion
	See Also

	8.13 Overloading the Increment and Decrement Operators
	Problem
	Solution
	Discussion
	See Also

	8.14 Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior
	Problem
	Solution
	Discussion
	See Also

	8.15 Calling a Superclass Virtual Function
	Problem
	Solution
	Discussion

	Exceptions and Safety
	9.0 Introduction
	9.1 Creating an Exception Class
	Problem
	Solution
	Discussion

	9.2 Making a Constructor Exception-Safe
	Problem
	Solution
	Discussion
	See Also

	9.3 Making an Initializer List Exception-Safe
	Problem
	Solution
	Discussion
	See Also

	9.4 Making Member Functions Exception-Safe
	Problem
	Solution
	Discussion

	9.5 Safely Copying an Object
	Problem
	Solution
	Discussion
	See Also

	Streams and Files
	10.0 Introduction
	10.1 Lining Up Text Output
	Problem
	Solution
	Discussion
	See Also

	10.2 Formatting Floating-Point Output
	Problem
	Solution
	Discussion
	See Also

	10.3 Writing Your Own Stream Manipulators
	Problem
	Solution
	Discussion

	10.4 Making a Class Writable to a Stream
	Problem
	Solution
	Discussion
	See Also

	10.5 Making a Class Readable from a Stream
	Problem
	Solution
	Discussion
	See Also

	10.6 Getting Information About a File
	Problem
	Solution
	Discussion

	10.7 Copying a File
	Problem
	Solution
	Discussion

	10.8 Deleting or Renaming a File
	Problem
	Solution
	Discussion
	See Also

	10.9 Creating a Temporary Filename and File
	Problem
	Solution
	Discussion

	10.10 Creating a Directory
	Problem
	Solution
	Discussion
	See Also

	10.11 Removing a Directory
	Problem
	Solution
	Discussion
	See Also

	10.12 Reading the Contents of a Directory
	Problem
	Solution
	Discussion
	See Also

	10.13 Extracting a File Extension from a String
	Problem
	Solution
	Discussion
	See Also

	10.14 Extracting a Filename from a Full Path
	Problem
	Solution
	Discussion
	See Also

	10.15 Extracting a Path from a Full Path and Filename
	Problem
	Solution
	Discussion
	See Also

	10.16 Replacing a File Extension
	Problem
	Solution
	Discussion
	See Also

	10.17 Combining Two Paths into a Single Path
	Problem
	Solution
	Discussion
	See Also

	Science and Mathematics
	11.0 Introduction
	11.1 Computing the Number of Elements in a Container
	Problem
	Solution
	Discussion
	See Also

	11.2 Finding the Greatest or Least Value in a Container
	Problem
	Solution
	Discussion

	11.3 Computing the Sum and Mean of Elements in a Container
	Problem
	Solution
	Discussion

	11.4 Filtering Values Outside a Given Range
	Problem
	Solution
	Discussion

	11.5 Computing Variance, Standard Deviation, and Other Statistical Functions
	Problem
	Solution
	Discussion

	11.6 Generating Random Numbers
	Problem
	Solution
	Discussion

	11.7 Initializing a Container with Random Numbers
	Problem
	Solution
	Discussion

	11.8 Representing a Dynamically Sized Numerical Vector
	Problem
	Solution
	Discussion

	11.9 Representing a Fixed-Size Numerical Vector
	Problem
	Solution
	Discussion

	11.10 Computing a Dot Product
	Problem
	Solution
	Discussion
	See Also

	11.11 Computing the Norm of a Vector
	Problem
	Solution
	Discussion

	11.12 Computing the Distance Between Two Vectors
	Problem
	Solution
	Discussion

	11.13 Implementing a Stride Iterator
	Problem
	Solution
	Discussion

	11.14 Implementing a Dynamically Sized Matrix
	Problem
	Solution
	Discussion
	See Also

	11.15 Implementing a Constant-Sized Matrix
	Problem
	Solution
	Discussion
	See Also

	11.16 Multiplying Matricies
	Problem
	Solution
	Discussion
	See Also

	11.17 Computing the Fast Fourier Transform
	Problem
	Solution
	Discussion

	11.18 Working with Polar Coordinates
	Problem
	Solution
	Discussion

	11.19 Performing Arithmetic on Bitsets
	Problem
	Solution
	Discussion
	See Also

	11.20 Representing Large Fixed-Width Integers
	Problem
	Solution
	Discussion
	See Also

	11.21 Implementing Fixed-Point Numbers
	Problem
	Solution
	Discussion

	Multithreading
	12.0 Introduction
	12.1 Creating a Thread
	Problem
	Solution
	Discussion
	See Also

	12.2 Making a Resource Thread-Safe
	Problem
	Solution
	Discussion
	Using mutexes
	Dangers

	12.3 Notifying One Thread from Another
	Problem
	Solution
	Discussion

	12.4 Initializing Shared Resources Once
	Problem
	Solution
	Discussion

	12.5 Passing an Argument to a Thread Function
	Problem
	Solution
	Discussion

	Internationalization
	13.0 Introduction
	13.1 Hardcoding a Unicode String
	Problem
	Solution
	Discussion

	13.2 Writing and Reading Numbers
	Problem
	Solution
	Discussion
	See Also

	13.3 Writing and Reading Dates and Times
	Problem
	Solution
	Discussion
	See Also

	13.4 Writing and Reading Currency
	Problem
	Solution
	Discussion
	See Also

	13.5 Sorting Localized Strings
	Problem
	Solution
	Discussion

	XML
	14.0 Introduction
	14.1 Parsing a Simple XML Document
	Problem
	Solution
	Discussion
	See Also

	14.2 Working with Xerces Strings
	Problem
	Solution
	Discussion

	14.3 Parsing a Complex XML Document
	Problem
	Solution
	Discussion
	See Also

	14.4 Manipulating an XML Document
	Problem
	Solution
	Discussion

	14.5 Validating an XML Document with a DTD
	Problem
	Solution
	Discussion
	See Also

	14.6 Validating an XML Document with a Schema
	Problem
	Solution
	Discussion
	See Also

	14.7 Transforming an XML Document with XSLT
	Problem
	Solution
	Discussion
	See Also

	14.8 Evaluating an XPath Expression
	Problem
	Solution
	Discussion
	See Also

	14.9 Using XML to Save and Restore a Collection of Objects
	Problem
	Solution
	Discussion

	Miscellaneous
	15.0 Introduction
	15.1 Using Function Pointers for Callbacks
	Problem
	Solution
	Discussion

	15.2 Using Pointers to Class Members
	Problem
	Solution
	Discussion
	See Also

	15.3 Ensuring That a Function Doesn’t Modify an Argument
	Problem
	Solution
	Discussion
	See Also

	15.4 Ensuring That a Member Function Doesn’t Modify Its Object
	Problem
	Solution
	Discussion

	15.5 Writing an Operator That Isn’t a Member Function
	Problem
	Solution
	Discussion

	15.6 Initializing a Sequence with Comma-Separated Values
	Problem
	Solution
	Discussion

	Index

