

C++23 Best Practices

Jason Turner

This book is for sale at http://leanpub.com/cpp23_best_practices

This version was published on 2024-01-01

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an in-progress
ebook using lightweight tools andmany iterations to get reader feedback, pivot
until you have the right book and build traction once you do.

© 2024 Jason Turner

http://leanpub.com/cpp23_best_practices
https://leanpub.com
https://leanpub.com
https://leanpub.com/manifesto

Tweet This Book!
Please help Jason Turner by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought Jason Turner’s C++23 Best Practices book!

The suggested hashtag for this book is #cpp23_best_practices.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#cpp23_best_practices

http://twitter.com
https://twitter.com/intent/tweet?text=I%20just%20bought%20Jason%20Turner's%20C++23%20Best%20Practices%20book!
https://twitter.com/search?q=%23cpp23_best_practices
https://twitter.com/search?q=%23

For my wife, Jen.

Contents

Part I: Introduction and Philosophy of
Good C++ . 1

1: Introduction To The C++23 Edition . 2

2: Introduction To The Original Edition . 3

3: About Best Practices . 4

4: Slow Down . 7

5: Use AI Coding Assistants Judiciously . 8

6: C++ Is Not Magic . 9

7: Remember: C++ Is Not Object-Oriented 11

8: Learn Another Language . 13

9: Know Your Standard Library . 15

10: Use The Tools . 16

11: Don’t Invoke Undefined Behavior . 17

12: Never Test for this To Be nullptr, It’s UB 19

13: Never Test for A Reference To Be nullptr, It’s UB 22

CONTENTS

Part II: Use The Tools . 24

14: Use the Tools: Automated Tests . 25

15: Use the Tools: Continuous Builds . 28

16: Use the Tools: Compiler Warnings . 30

17: Use the Tools: Static Analysis . 32

18: Use The Tools: Consider Custom Static Analysis 34

19: Use the Tools: Sanitizers . 36

20: Use The Tools: Hardening . 39

21: Use the Tools: Multiple Compilers . 40

22: Use The Tools: Fuzzing and Mutating . 42

23: Use the Tools: Build Generators . 49

24: Use the Tools: Package Managers . 52

Part III: API and Code Design Guidelines . . 53

25: Make your interfaces hard to use wrong. 54

26: Consider If Using the API Wrong Invokes Undefined Behavior 55

27: Be Afraid of Global State . 57

28: Use Stronger Types . 58

29: Use [[nodiscard]] Liberally . 62

30: Forget Header Files Exist . 65

31: Export Module Overloads Consistently 68

CONTENTS

32: Prefer Stack Over Heap . 71

33: Don’t return raw pointers . 74

34: Know Your Containers . 75

35: Be Aware of Custom Allocation And PMR 77

36: Constrain Your Template Parameters With Concepts 80

37: Understand consteval and constinit 84

38: Prefer Spaceships . 87

39: Follow the Rule of 0 . 89

40: If You Must Do Manual Resource Management, Follow the Rule of 5 . 92

Part IV: Code Implementation Guidelines 95

41: Don’t Copy and Paste Code . 96

42: Prefer formatOver iostreamOr c-formatting Functions 98

43: constexpr All The Things! . 101

44: Make globals in headers inline constexpr 106

45: const Everything That’s Not constexpr 108

46: Always Initialize Your non-const, non-auto Values 112

47: Prefer auto in Many Cases. 115

48: Use Ranges and Views For Correctness and Readability 121

49: Don’t Reuse Views . 124

50: Prefer Algorithms Over Loops . 127

51: Use Ranged-For Loops When Views and Algorithms Cannot Help . . 129

52: Use auto in ranged for loops . 131

53: Avoid default In switch Statements . 133

54: Prefer Scoped enums . 137

55: Prefer if constexpr over SFINAE . 140

56: De-template-ize Your Generic Code . 146

57: Use Lippincott Functions . 149

58: No More new! . 152

59: Avoid std::bind and std::function . 154

60: Don’t Use initializer_list For Non-Trivial Types 159

61: Consider Designated Initializers (C++20) 161

Part V: Bonus Chapters .164

62: Improving Build Time . 165

63: Continue Your C++ Education . 167

64: Thank You . 171

65: Bonus: Understand The Lambda . 172

Part I: Introduction and
Philosophy of Good C++

1: Introduction To The C++23
Edition
It’s been about 3 years since I originally released the first edition of C++Best Prac-
tices. At the time of release, the book did not contain much C++20 information.

I chose to release theC++20updates (knownas the2ndEdition) for free toanyone
who had purchased the Leanpub ebook version.

I considered releasing this C++23 update also as a free 3rd Edition. However, as I
considered the updates that needed to occur, I decided it was time for an entirely
new releaseof thebook. This newbook is neededmainlybecauseC++23 changes
many fundamental thingswithhowweuse the language (suchas standard library
modules). But the break from the previous version also allows me to reorganize
the topics for better flow. I had avoided reorganizationwith any previous update
to avoid confusion (so coworkers would reference item 12 and know they were
all talking about the same item).

I have updated every relevant section of this book to represent how code should
look in C++23, and reorganized many topics. Rest assured, this is a large update
to the original C++ Best Practices book!

I try to apply all Best Practices in every example where they are appropriate.
This might make the examples more complex than they need to be, but it
decreases the chances that an example will be seen out of context and incom-
plete.

2

2: Introduction To The Original
Edition
My goal as a trainer and a contractor (seems to be) toworkme out of a job. I want
everyone to:

1. Learn how to experiment for themselves
2. Not just believe me, but test it
3. Learn how the language works
4. Stopmaking the samemistakes of the last generation

I’m thinking about changing my title from “C++ Trainer” to “C++ Guide.” I always
adapt my courses and material to the class I currently have. We might agree on
a class about X, but I change it to Y halfway through the first day to meet the
organization’s needs.

Along the way, we experiment and learn as a group. I often also learn while
teaching. Every group is unique; every class has new questions.

Many of the questions I get in classes are the same ones repeatedly to the point
where I get to look like amind reader as I anticipate the next question that will be
asked.

Hence, this book, and the Twitter thread that it came from, to help spread the
word on the long-standing best practices.

I wrote the book I wanted to read. It is intentionally straightforward, short, to
the point, and has specific action items.

3

3: About Best Practices
Best Practices, quite simply, are about

1. Reducing commonmistakes
2. Finding errors quickly
3. Without sacrificing (and often improving) performance

3.1: Why Best Practices?

First and foremost, let’s get this out of the way:

3.1.1: Your Project Is Not Special

If you are programming in C++, you, or someone at your company, cares about
performance. Otherwise, they’d probably be using some other programming
language. I’ve been to many companies who all tell me they are special because
they need to do things fast!

Spoiler alert: they are all making the same decisions for the same reasons.

There are very few exceptions. The outliers who make different decisions: they
are the organizations that are already following the advice in this book.

3.2: What’s The Worst That Can Happen?

I don’t want to be depressing, but let’s take a moment to ponder the worst-case
scenario if your project has a critical flaw.

4

About Best Practices 5

Game
Serious flaws lead to remote vulnerabilities or attack vectors.

Financial
Serious flaws lead to large amounts of lost money, accelerating trades,
market crash1.

Aerospace
Serious flaws lead to lost spacecraft or human life2.

Your Industry
Serious flaws lead to… Lost money? Lost jobs? Remote hacks? Worse?

3.3: Examples

Examples throughout this book use struct instead of class. The only difference
between struct and class is that struct has all members and base classes by
default public. Using structmakes examples shorter and easier to read.

3.4: Exercises

Eachsectionhasoneormoreexercises. Mostdonothavea rightorwronganswer.

Exercise: Look for exercises

Throughout the following chapters, you’ll see exercises like this one. Look for
them!

Exercises are:
1https://en.wikipedia.org/wiki/2010_flash_crash
2https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-

developer

https://en.wikipedia.org/wiki/2010_flash_crash
https://en.wikipedia.org/wiki/2010_flash_crash
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://en.wikipedia.org/wiki/2010_flash_crash
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer

About Best Practices 6

• Practical, and apply to your current code base to see immediate value.
• Make you think and understand the language a little bit deeper by doing
your own research.

3.5: Links and References

I’ve made an effort to reference those who I learned from and link to their talks
where possible. If I’ve missed something, please let me know.

4: Slow Down
Dozens of solutions exist in C++ for any given problem. Dozens of more opinions
exist for which of these solutions are the best. Copying and pasting from one
application to another is easy. Forging aheadwith the solutions you are comfort-
able with is easy.

How many times have you said, “wow, this is going to take a complicated class
hierarchy to implement this solution?” Or what about “I guess I need to add
macros here to implement these common functions.”

• If the solution seems large or complex, stop.
• Now is a good time to go for a walk and ponder the solution.
• When you’re done with your walk, discuss the design with a coworker, pet,
or rubber duck1.

Still haven’t found a more straightforward solution you are happy with? Ask on
Twitter or Slack if you can.

The key point is to not forge ahead blindly with the solutions with which you are
comfortable. Bewilling to stop for aminute. The older I get, the less time I spend
programming, and the more time I spend thinking. In the end, I implement the
solution as fast or faster than I used to and with less complexity.

1https://rubberduckdebugging.com/

7

https://rubberduckdebugging.com/
https://rubberduckdebugging.com/

5: Use AI Coding Assistants
Judiciously
AI codingassistants arebecomeubiquitous,withnearly every IDEand toolhaving
something built in. They appear to be rather powerful and are able to generate
convincing results. However, these results are not necessarily correct. Therefore,
I suggest these Best Practices for using your AI coding assistant.

1. Always double check the results you are given.
2. Use themmostly as a “smart rubber duck”.
3. Always double check the results you are given.
4. Use them to “flatten the learning curve.” If you ask the bot to generate an

example of a certain technique or API usage, you’ll likely get a meaningful
answer, but one that also has somemistakes in it.

5. Always double check the results you are given.

5.1: Resources

• C++ Weekly - Ep 371 - Best Practices for Using AI Code Generators1

1https://www.youtube.com/watch?v=I2c969I-KmM

8

https://www.youtube.com/watch?v=I2c969I-KmM
https://www.youtube.com/watch?v=I2c969I-KmM

6: C++ Is Not Magic
This section is just a reminder that we can reason about all aspects of C++. It’s
not a black box, and it’s not magic.

If you have a question, it’s usually easy to construct an experiment that helps you
answer the question for yourself.

A favorite tool of mine is this simple class that prints a debugmessage whenever
a special member function is called.

Figure 1. Understanding object lifetime tool

1 import std;
2
3 struct S {
4 S(){ std::println("S()"); }
5 S(const S &){ std::println("S(const S &)"); }
6 S(S &&){ std::println("S(S &&)"); }
7 S &operator=(const S &){
8 std::println("operator=(const S &)");
9 return *this;

10 }
11 S &operator=(S &&){
12 std::println("operator=(S &&)");
13 return *this;
14 }
15 ~S() { std::println("~S()"); }
16 };

9

C++ Is Not Magic 10

Exercise: Build your first C++
experiment.

Do you have a question about C++ that’s been nagging you? Can you design
an experiment to test it? Remember that Compiler Explorer now allows you to
execute code.

Exercise: Start collecting your
experiments.

Once you have created an experiment and test, be sure to save it. Consider using
GitHub gists as a simple way to save and share your tests with others.

6.1: Resources

• A quick start example with Compiler Explorer.1

1https://godbolt.org/z/3eGP56

https://godbolt.org/z/3eGP56
https://godbolt.org/z/3eGP56

7: Remember: C++ Is Not
Object-Oriented
I’m not the first person to state this, and I won’t be the last. I think this concept is
nowwell accepted, but I still see learners of C++ focusing on “OOP.”

Bjarne Stroustrup in The C++ Programming Language 3rd Edition states:

C++ is a general-purpose programming language with a bias towards
systems programming that

• is a better C,
• supports data abstraction,
• supports object-oriented programming, and
• supports generic programming.

You must understand that C++ is a multi-discipline programming language to
make the most of the language. C++ supports effectively all of the programming
paradigms that exist today.

• Procedural
• Functional
• Object-Oriented
• Generic
• Compile-Time (constexpr and template metaprogramming)

Knowing when it is appropriate to use each of these tools is the key to writing
goodC++. Projects that rigidly stick tooneparadigmmissouton thebest features
of the language.

11

Remember: C++ Is Not Object-Oriented 12

Don’t try to use every technique possible all of the time. Youwill end up
with a mess of difficult to maintain and read code. Appropriately using
the appropriate techniques at the appropriate times takes discipline
and practice.

Exercise: Question your current
design.

If you could break out of the current design your project is using, whatwould you
do differently?

7.1: Resources

• Functional Programming in C++1

• C++ Weekly Ep 137: C++ Is Not an Object Oriented Language2

1https://www.manning.com/books/functional-programming-in-c-plus-plus?a_aid=FPinCXX&a_bid=441f12cc
2https://youtu.be/AUT201AXeJg

https://www.manning.com/books/functional-programming-in-c-plus-plus?a_aid=FPinCXX&a_bid=441f12cc
https://youtu.be/AUT201AXeJg
https://www.manning.com/books/functional-programming-in-c-plus-plus?a_aid=FPinCXX&a_bid=441f12cc
https://youtu.be/AUT201AXeJg

8: Learn Another Language
Considering that C++ is not an object-oriented language, you have to knowmany
different techniques to make the most of C++.

The following exercises will help expose you to other languages. But the fact is
that currently, few languages are pure single paradigm languages.

Every language has its preferred way of doing things that work within the lan-
guage’s preferred paradigm.

Ben Deane recommends this set of languages that all programmers should
learn1:

• ALGOL family (C and descendants)
• Forth
• Lisp and dialects
• Haskell
• Smalltalk
• Erlang

Exercise: Pick a functional language
to learn

Can you find a pure functional language?

1http://www.elbeno.com/blog/?p=420

13

http://www.elbeno.com/blog/?p=420
http://www.elbeno.com/blog/?p=420
http://www.elbeno.com/blog/?p=420

Learn Another Language 14

Exercise: Pick an object-oriented
language to learn

Finding a pure object-oriented language is even harder! Even Java has lambda
functions these days.

Exercise: Pick a language with a
different syntax

Languages that look like C-family languages will likely be more comfortable for
you. Try to find a language that looks different and stretches your mind.

8.1: Resources

• Execution in the Kingdom of Nouns2 - gets you thinking about different
programming paradigms

2https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

9: Know Your Standard Library
The C++ standard library is continuously growing. In the C++23 standard the
library is approximately 1403 pages, or 66% of the standard. In C++17 it was only
965 pages.

It is important to be aware of the changes that have happened in the standard.
We will only touch on portions of them in this book, but some highlights from
C++20 and C++23 include:

• greatly expanded date/time library (with calendar)
• many changes to concurrency and threading support
• std::format
• ranges
• concepts
• <stacktrace> and other diagnostics helpers

Exercise: Browse through the list
of C++23 standard library changes
and see what catches your eye
https://en.cppreference.com/w/cpp/compiler_-
support/23

15

10: Use The Tools
Throughout this book youwill see references to tooling, and an entire section on
just “Use(ing) The Tools”.

C++, by default, has many gotchas, foot-guns and painful corner cases. We use a
wide variety of tools to mitigate these issues in C++.

This is a core principle in using C++ correctly: enable every possible tool that you
can!

16

11: Don’t Invoke Undefined
Behavior
Ok, there’s a lot that’s Undefined Behavior (UB), and it’s hard to keep track of, so
we’ll give some examples in the following sections. The critical thing that you
need to understand is that UB’s existence breaks your entire program.

[intro.abstract1]

A conforming implementation executing a well-formed program shall
produce the same observable behavior as one of the possible execu-
tions of the corresponding instance of the abstract machine with the
same program and the same input.
However, if any such execution contains an undefined operation, this
document places no requirement on the implementation executing
that program with that input (not even with regard to operations pre-
ceding the first undefined operation).

Note the sentence “this document places no requirement on the implementation
executing that program with that input (not even with regard to operations
preceding the first undefined operation)”

If you have UB, the entire program is suspect.

The next several items discuss ways to reduce the risk of undefined
behavior in your project.

Exercise: Using UBSan, ASan and
Warnings

1http://eel.is/c++draft/intro.compliance#intro.abstract-5

17

http://eel.is/c++draft/intro.compliance#intro.abstract-5
http://eel.is/c++draft/intro.compliance#intro.abstract-5

Don’t Invoke Undefined Behavior 18

Understanding all of Undefined Behavior is likely impossible. Fortunately, we do
have tools that help. Hopefully, you already have your code enabled for UBSan,
ASan, and have your warnings enabled. Now is a great time to go back and
evaluatewhat options youhave and see if there is anythingnewyou candiscover.

11.1: Resources

• C++Now 2018: John Regehr “Closing Keynote: Undefined Behavior and
Compiler Optimizations”2

• CppCon 2018: Barbara Geller & Ansel Sermersheim “Undefined Behavior is
Not an Error”3

2https://youtu.be/AeEwxtEOgH0
3https://youtu.be/XEXpwis_deQ

https://youtu.be/AeEwxtEOgH0
https://youtu.be/AeEwxtEOgH0
https://youtu.be/XEXpwis_deQ
https://youtu.be/XEXpwis_deQ
https://youtu.be/AeEwxtEOgH0
https://youtu.be/XEXpwis_deQ

12: Never Test for this To Be
nullptr, It’s UB
Figure 2. Invalid check for ‘this‘ to be ‘nullptr‘.

1 int Class::member() {
2 if (this == nullptr) {
3 // removed by the compiler, it would be UB
4 // if this were ever null
5 return 42;
6 } else {
7 return 0;
8 }
9 }

Technically it isn’t the check that is Undefined Behavior (UB). But it’s impossible
for the check ever to fail. If the thiswere to be equal to nullptr, youwould be in
a state of Undefined Behavior. People used to do this all the time, but it’s always
been UB. You cannot access an object outside its lifetime. Compilers today will
always remove this check.

The only way it’s theoretically possible for this to be null is when you call a
member directly on a null object.

19

Never Test for this To Be nullptr, It’s UB 20

Bad examples lie ahead, do not repeat them.

Figure 3. Bad call of member on ‘nullptr‘.

1 Type *obj = nullptr;
2 obj->do_thing(); // never do this

Even in the (technically OK, but never do this) scenario of calling delete this.

Figure 4. Bad example of ‘delete this‘.

1 struct S {
2 std::string data;
3
4 void delete_yourself() {
5 // do things
6 delete this; // technically OK
7
8 if (this) {
9 // this block will always be executed, nothing changed

10 // our view of `this`
11 }
12
13 // never do this
14 data.size(); // UB, data's lifetime has ended
15 }
16 };

There is no scenario in which a check for if (this)will return false on amodern
compiler.

Never Test for this To Be nullptr, It’s UB 21

Exercise: Do you check for this to be
nullptr?

A check for nullptr can hide as a check for NULL or a check against 0. A check for
this to be NULL is likely to only exist in very old code bases. Make sure you have
your warnings enabled, then look for these cases.

It’s probably interesting in general to search for this == in your codebase and
see what weird things are there.

12.1: Resources

• Porting to GCC-6 Optimizations remove null pointer checks for this1

1https://www.gnu.org/software/gcc/gcc-6/porting_to.html#this-cannot-be-null

https://www.gnu.org/software/gcc/gcc-6/porting_to.html#this-cannot-be-null
https://www.gnu.org/software/gcc/gcc-6/porting_to.html#this-cannot-be-null

13: Never Test for A Reference
To Be nullptr, It’s UB
Figure 5. Tests for ‘null‘ references are removed

1 int get_value(int &thing) {
2 if (&thing == nullptr) {
3 // removed by compiler
4 return 42;
5 } else {
6 return thing;
7 }
8 }

It’s UB to make a null reference, don’t try it. Always assume a reference refers to
a valid object. Use this fact to your advantage when designing API’s.

Exercise: Check for checking the
address of an object

There are many valid use cases for &thing == to check for a specific address of
an object, but there are also many ways this check can be wrong.

Search through your code for statements that check an object’smemory address
and understand what they are doing and how (or if) they work.

What other waysmight the address of an object be checked besides ==?

22

Never Test for A Reference To Be nullptr, It’s UB 23

This exercise gives you some great experience working with various searching /
grepping tools and playing with regex.

13.1: Resources

• -Wtautological-undefined-compare1

1https://clang.llvm.org/docs/DiagnosticsReference.html#wtautological-undefined-compare

https://clang.llvm.org/docs/DiagnosticsReference.html#wtautological-undefined-compare
https://clang.llvm.org/docs/DiagnosticsReference.html#wtautological-undefined-compare

Part II: Use The Tools

14: Use the Tools: Automated
Tests
You need a single command to run tests. If you don’t have that, no one will run
the tests.

• Catch21 - popular and well supported testing framework from Phil Nash2

and Martin Hořeňovský3

• doctest4 - similar to catch2, but trimmed for compile-time performance
• Google Test5

• Boost.Test6 - testing framework, boost style.

ctest7 is a test runner for CMake that can be used with any of the above frame-
works. It is utilized via the add_test8 feature of CMake.

An ideal build / test scenario with CMakemight look like this:

Figure 6. Possible easy build/test steps

1 cmake -S ../src/dir -B builddir -G <Generator>
2 cmake --build builddir --config <Configuration>
3 cd builddir
4 ctest -C <Configuration>

1https://github.com/catchorg/Catch2
2https://twitter.com/phil_nash
3https://twitter.com/horenmar_ctu
4https://github.com/onqtam/doctest
5https://github.com/google/googletest
6https://www.boost.org/doc/libs/1_74_0/libs/test/doc/html/index.html
7https://cmake.org/cmake/help/latest/manual/ctest.1.html
8https://cmake.org/cmake/help/latest/command/add_test.html

25

https://github.com/catchorg/Catch2
https://twitter.com/phil_nash
https://twitter.com/horenmar_ctu
https://github.com/onqtam/doctest
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_74_0/libs/test/doc/html/index.html
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://cmake.org/cmake/help/latest/command/add_test.html
https://github.com/catchorg/Catch2
https://twitter.com/phil_nash
https://twitter.com/horenmar_ctu
https://github.com/onqtam/doctest
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_74_0/libs/test/doc/html/index.html
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://cmake.org/cmake/help/latest/command/add_test.html

Use the Tools: Automated Tests 26

You need to be familiar with these tools, what they do, and pick from them.

Without automated tests the rest of this book is pointless. You cannot apply the
practical exercises if you cannot verify that you did not break the existing code.

Oleg Rabaev on CppCast stated:

• If a component is hard to test, it is not properly designed.
• If a component is easy to test, it is a good indication that it is properly
designed.

• If a component is properly designed, it is easy to test.

Exercise: Can you run a single
command to run a suite of tests?

• Yes: Excellent! Run the tests andmake sure they all pass!
• No: Does your program produce output?

– Yes: Startwith “Approval Tests9,”whichwill give you the foundation you
need to get started with testing.

– No: Develop a strategy for how to implement some minimal form of
testing.

14.1: Resources

• CppCon 2018: Phil Nash “Modern C++ Testing with Catch2”10

9https://cppcast.com/clare-macrae/
10https://youtu.be/Ob5_XZrFQH0

https://cppcast.com/clare-macrae/
https://youtu.be/Ob5_XZrFQH0
https://cppcast.com/clare-macrae/
https://youtu.be/Ob5_XZrFQH0

Use the Tools: Automated Tests 27

• CppCon2019: ClareMacrae “Quickly Testing LegacyC++CodewithApproval
Tests”11

• C++ on Sea 2020: Clare Macrae “Quickly and Effectively Testing Legacy C++
Code with Approval Tests”12

• CppCast Ep 263: Unit Testing with Oleg Rabaev13

11https://youtu.be/3GZHvcdq32s
12https://youtu.be/tXEuf_3VzRE
13https://cppcast.com/testing-oleg-rabaev/

https://youtu.be/3GZHvcdq32s
https://youtu.be/3GZHvcdq32s
https://youtu.be/tXEuf_3VzRE
https://youtu.be/tXEuf_3VzRE
https://cppcast.com/testing-oleg-rabaev/
https://youtu.be/3GZHvcdq32s
https://youtu.be/tXEuf_3VzRE
https://cppcast.com/testing-oleg-rabaev/

15: Use the Tools: Continuous
Builds
Without automated tests, it is impossible to maintain project quality.

In the C++ projects I have worked on throughout my career, I’ve had to support
some combination of:

• x86
• x64
• SPARC
• ARM
• MIPSEL

On

• Windows
• Solaris
• MacOS
• Linux

When you start to combine multiple compilers across multiple platforms and
architectures, it becomes increasingly likely that a significant change on one
platformwill break one or more other platforms.

To solve this problem, enable continuous builds with continuous tests for your
projects.

• Test all possible combinations of platforms that you support

28

Use the Tools: Continuous Builds 29

• Test Debug and Release separately
• Test all configuration options
• Test against newer compilers than you support or require

Sanitizers can only instrument code not removed by the optimizer, but
theoptimizer exploits some timesofUB, so youneedat leastDebug, De-
bug + Sanitizers, Release, Release + Sanitizers for at least one platform
you support!

If you don’t require 100% tests passing, you will never know the code’s
state.

Exercise: Enable continuous builds

Understand your organization’s current continuous build environment. If one
does not exist, what are the barriers to getting it set up? How hard would it be
to get something like GitLab, GitHub actions, Appveyor, or Travis set up for your
projects?

16: Use the Tools: Compiler
Warnings
There aremanywarnings you are not using,most of thembeneficial. -Wall is not
all warnings on GCC and Clang. -Wextra is still barely scratching the surface!

/Wall on MSVC is all of the warnings. Our compiler writers do not
recommend using /Wall on MSVC or -Weverything on Clang, because
many of these are diagnostic warnings that are not actionable. GCC
does not provide an equivalent.

Strongly consider -Wpedantic (GCC/Clang). This command line options disable
language extensions and get you closer to the C++ standard. The more warnings
you enable today, the easier time you will have with porting to another platform
in the future.

As of C++20 mode in MSVC /permissive- is no longer necessary, it is
now the default setting for cl.exe

Exercise: Enable More Warnings

1. Explore the set of warnings availablewith your compiler. Enable asmany as
you can.

2. Fix the new warnings generated.
3. Goto 1.

30

Use the Tools: Compiler Warnings 31

MSVC has an excellent set of warnings that can be enabled by warning
level. You can start with /W1 andwork yourway up to /W4 as you fix each
set of warnings.

This processwill feel tedious andmeaningless, but thesewarningswill catch real
bugs.

Exercise: Discuss enabling -Werror or
-WX on your CI to ensure warnings do
not accumulate.

K> I’ve observed that you need “Warnings as Errors” enabled on both developer
machines and CI, otherwise developers treat the CI as their enemy, and they
disable more andmore warnings!

16.1: Resources

• C++ Best Practices website curated list of warnings1

• GCC’s full warning list2

• Clang’s full warning list3

• MSVC’s Compiler warnings that are off by default4

• C++ Weekly Ep 168 - Discovering Warnings You Should Be Using5

1https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
2https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
3https://clang.llvm.org/docs/DiagnosticsReference.html
4https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-

2019
5https://youtu.be/IOo8gTDMFkM

https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-2019
https://youtu.be/IOo8gTDMFkM
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-2019
https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-2019
https://youtu.be/IOo8gTDMFkM

17: Use the Tools: Static
Analysis
Static analysis tools are tools that analyze your code without compiling or exe-
cuting it. Your compiler is one such tool and your first line of defense.

Many such tools are free and some are free for open source projects.

cppcheck and clang-tidy are twopopular and free toolswithmajor IDE andeditor
integration.

Exercise: Enable More Static Analysis

Visual Studio: look into Microsoft’s static analyzer that ships with it. Consider
using Clang Power Tools. Download cppcheck’s addon for visual studio

CMake: Enable cppcheck and clang-tidy integration

Exercise: Enable Static Analysis in
Your IDE

Most modern IDEs have built in support for clang-tidy and other static analysis
tools. Investigate how to enable that support and configure your .clang-tidy
file to have the analysis enabled that is appropriate for your project.

32

Use the Tools: Static Analysis 33

17.1: Resources

• cppbestpractices.com list of static analyzers1

1https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-
analyzers

https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-analyzers
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-analyzers
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-analyzers

18: Use The Tools: Consider
Custom Static Analysis
Remember to focus on making your interface hard to use wrong. Then, as a
second line of defense, consider writing your own static analysis.

These might take the form of:

• custom clang-tidy analysis1

• using clang-query to query the AST2 of your project for common errors
• writing a custom rule3 for cppcheck
• CodeQL4 custom check

Exercise: Look for common coding
errors.

Simply discuss common issues you see in your code base with other members
of your team. See if you can isolate one or two common issues that a custom
analysis check would be able to find. Implement a check with one of the above
tools.

1https://clang.llvm.org/extra/clang-tidy/Contributing.html
2https://clang.llvm.org/docs/LibASTMatchersReference.html
3https://sourceforge.net/projects/cppcheck/files/Articles/
4https://codeql.github.com/

34

https://clang.llvm.org/extra/clang-tidy/Contributing.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://sourceforge.net/projects/cppcheck/files/Articles/
https://codeql.github.com/
https://clang.llvm.org/extra/clang-tidy/Contributing.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://sourceforge.net/projects/cppcheck/files/Articles/
https://codeql.github.com/

Use The Tools: Consider Custom Static Analysis 35

18.1: Resources

• Lightning Talk: Using Clang Query to Isolate AST Elements - Kristen Shaker
- C++ on Sea 20225

• Database of custom cppcheck rules to study6

• CodeQL Tutorials7

5https://youtu.be/2LOxsfpCCyI
6https://github.com/embeddedartistry/cppcheck-rules
7https://codeql.github.com/docs/writing-codeql-queries/ql-tutorials/

https://youtu.be/2LOxsfpCCyI
https://youtu.be/2LOxsfpCCyI
https://github.com/embeddedartistry/cppcheck-rules
https://codeql.github.com/docs/writing-codeql-queries/ql-tutorials/
https://youtu.be/2LOxsfpCCyI
https://github.com/embeddedartistry/cppcheck-rules
https://codeql.github.com/docs/writing-codeql-queries/ql-tutorials/

19: Use the Tools: Sanitizers
The sanitizers are runtime analysis tools for C++ and are built into GCC, Clang,
and MSVC.

If you are familiar with Valgrind, the sanitizers provide similar functionality but
many orders of magnitude faster than Valgrind.

Available sanitizers are:

• Address (ASan)
• Undefined Behavior (UBSan) (More on Undefined Behavior later)
• Thread
• DataFlow (use for code analysis, not finding bugs)
• Lib Fuzzer (addressed in a later chapter)

Address sanitizer, UB Sanitizer, Thread sanitizer can findmany issues almost like
magic. Support is currently increasing in MSVC at the time of this book’s writing,
while GCC and Clang have more established support for the sanitizers.

John Regehr1 recommends always enabling ASan and UBSan during develop-
ment.

When an error such as an out of boundsmemory access occurs, the sanitizer will
give you a report of what conditions led to the failure, often with suggestions for
fixing the problem.

1https://twitter.com/johnregehr

36

https://twitter.com/johnregehr
https://twitter.com/johnregehr

Use the Tools: Sanitizers 37

You can enable Address and Undefined Behavior sanitizers with a command
similar to:

1 gcc -fsanitize=address,undefined <filetocompile>

Sanitizers must also be enabled during the linking phase of the project build.

Examples for how to use sanitizers with CMake exist in the C++ CMake
Template Project2

K> Remember to combine Debug, Release, Sanitizers-on, and Sanitizers-off
builds, as each combination can expose different code issues.

Exercise: Enable Sanitizers

• Investigate how to add sanitizer support for your existing project
• Enable ASan first
• Run the full test suite and investigate any problems found
• Enable UBSan second
• Run full test suite again

End goal: get all tests runningwith ASan, andUBSan enabled on your continuous
build environment.

Exercise: Fallback to Valgrind or Dr
Memory

2https://github.com/cpp-best-practices/cmake_template

https://github.com/cpp-best-practices/cmake_template
https://github.com/cpp-best-practices/cmake_template
https://github.com/cpp-best-practices/cmake_template

Use the Tools: Sanitizers 38

If you are unable to run ASan and UBSan on your environment, investigate run-
ning your test suite with either Dr Memory (Windows/Linux/MacOS) or Valgrind
(Linux/MacOS)

19.1: Resources

• AddressSanitizer (ASan) for Windows with MSVC3

• Sanitizers source and documentation on GitHub4

• Clang AddressSanitizer documentation5

• Clang UndefinedBehaviorSanitizer documentation6

3https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
4https://github.com/google/sanitizers
5https://clang.llvm.org/docs/AddressSanitizer.html
6https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://github.com/google/sanitizers
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://github.com/google/sanitizers
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

20: Use The Tools: Hardening
Safety is important in many industries, and with many products. If safety and
security are yourmain concerns, you should consider shipping your binarieswith
hardening.

TBD FILL OUT

Exercise: Consider UBSan Minimal
Runtime

The “minimal runtime” version of UBSan is designed for binary hardening.

39

21: Use the Tools: Multiple
Compilers
Support at least 2 compilers on your platform. Each compiler does different
analyses and implements the standard in a slightly different way.

If you use Visual Studio, you should be able to switch between clang and cl.exe
relatively easily. You can also use WSL and enable remote Linux Builds.

If you use Linux, you should be able to switch between GCC and Clang easily.

OnMacOS, be sure the compiler you are using iswhat you think it is. The
gcc command is likely a symlink to clang installed by Apple.

apple-clang is not the same thing as mainline clang and its version
numbers don’t match up. It’s often difficult to know which features
apple-clang supports. The cppreference compiler-support reference
might help1.

For installing newer or different compilers on your platform, the following is
available:

Ubuntu / Debian

• GCC - Toolchain PPA2

• Clang - apt packages3

Windows
1https://en.cppreference.com/w/cpp/compiler_support
2https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/ppa
3https://apt.llvm.org/

40

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/ppa
https://apt.llvm.org/
https://en.cppreference.com/w/cpp/compiler_support
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/ppa
https://apt.llvm.org/

Use the Tools: Multiple Compilers 41

• GCC MinGW4

• Clang official downloads5

MacOS

• Homebrew / MacPorts

Exercise: Add Another Compiler

Since youhave already enabled continuousbuilds of your system, it’s time to add
another compiler.

A new version of the compiler you currently require is always a good idea. But if
you only support GCC, consider adding Clang. Or if you only support Clang, add
GCC. If you’re on Windows, add MinGW or Clang in addition to MSVC.

Exercise: Add Another Operating
System

Hopefully, at least some portion of your project can be ported to another oper-
ating system. The exercise of getting parts of the project compiling on another
operating system and toolchain will teach you a lot about your code’s nature.

21.1: Resources

• C++Now2015: JasonTurner “ThinkingPortable: HowandWhy tomakeyour
C++ Cross Platform”6

4http://mingw.org/
5https://releases.llvm.org/download.html
6https://youtu.be/cb3WIL96N-o

http://mingw.org/
https://releases.llvm.org/download.html
https://youtu.be/cb3WIL96N-o
https://youtu.be/cb3WIL96N-o
http://mingw.org/
https://releases.llvm.org/download.html
https://youtu.be/cb3WIL96N-o

22: Use The Tools: Fuzzing and
Mutating
Your imagination limits the tests that you can create. Do you try to be malicious
whencallingyourAPIs? Doyou intentionallypassmalformeddata toyour inputs?
Do you process inputs from unknown or untrusted sources?

Generating all possible inputs to all possible function calls in all possible combi-
nations is impossible. Fortunately, tools exist to solve this problem.

22.1: Fuzzing

Fuzz testers generate strings of random data of various lengths. The test harness
youwrite consumes these strings of data and processes them in someway that is
appropriate for your application. The fuzz tester analyzes coverage data gener-
ated from your test’s execution and uses that information to remove redundant
tests and generate new novel and unique tests.

In theory, a fuzz test will eventually reach 100% code coverage of your tested
code, if left to run long enough. Combined with AddressSanitizer, this makes a
powerful tool for finding bugs in your code. One interesting article from 20151
describes how the combination of a fuzz tester and AddressSanitizer could have
found the security flaw “heartbleed” in OpenSSL in less than 6 hrs.

This 6 hrs is now drastically out of date. With modern fuzz testing tools
and newer computers, a vulnerability like heartbleed can be discovered
in just a fewminutes.

Fuzz testing primarily finds memory and security flaws.

1https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html

42

https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html

Use The Tools: Fuzzing and Mutating 43

Many different fuzzing tools exist. For the sake of this section, I am going to focus
on LLVM’s libFuzzer2. Most fuzz testers operate under the same premise.

2https://www.llvm.org/docs/LibFuzzer.html

https://www.llvm.org/docs/LibFuzzer.html
https://www.llvm.org/docs/LibFuzzer.html

Use The Tools: Fuzzing and Mutating 44

You must provide some sort of entry point. The entry point generally takes the
form of a function like:

Figure 7. libFuzzer entry point.

1 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,
2 size_t Size);

The Data pointer is always valid, and the Size parameter is >= 0.

If your libraryprimarilyparses input files (think libpng) thenyour job isquiteeasy:

Figure 8. libFuzzer data being used.

1 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,
2 size_t Size)
3 {
4 parseInput(Data, Size);
5 }

If your functions take data structures instead of input strings, your job is slightly
more complicated but doable.

Figure 9. Advanced libFuzzer data usage.

1 template<typename Type>
2 std::tuple<const uint8_t *, size_t, Type>
3 createStruct(const uint8_t *Data, size_t Size)
4 {
5 // we're only allowed to do this with trivial types
6 static_assert(std::is_trivial_v<Type>);
7 Type result{}; // default initialize
8 const auto bytesToRead = std::min(sizeof(Type), Size);
9 std::memcpy(&result, Data, bytesToRead);

10 return {std::next(Data, bytesToRead), Size - bytesToRead, result};
11 }
12
13 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,

Use The Tools: Fuzzing and Mutating 45

14 size_t Size)
15 {
16 // This example is meant as inspiration, it has not been
17 // tested in a real test
18 auto [newDataPtr, remainingSize, Obj1]
19 = createStruct<Type1>(Data,Size);
20 auto [lastDataPtr, lastSize, Obj2]
21 = createStruct<Type2>(newDataPtr, remainingSize);
22
23 functionToTest(Obj1, Obj2);
24 }

The fuzzer will quickly learn that any new data input where Size >
sizeof(Type1) + sizeof(Type1) does not generate new code paths and
will focus on the appropriate amount of data.

Look into the newer (2022) fuzzing library from Google FuzzTest3 de-
signed to simplify the process of hooking up fuzz tests into your project.

22.2: Mutating

Mutation testing works by modifying conditionals and constants in the code
being tested.

3https://github.com/google/fuzztest

https://github.com/google/fuzztest
https://github.com/google/fuzztest

Use The Tools: Fuzzing and Mutating 46

Figure 10. Pseudo code example.

1 bool greaterThanFive(const int value) {
2 return value > 5; // comparison
3 }
4
5 void tests() {
6 assert(greaterThanFive(6));
7 assert(!greaterThanFive(4));
8 }

Amutation tester couldmodify the constant 5or the > so the resulting codemight
become

Figure 11. Mutated code.

1 bool greaterThanFive(const int value) {
2 return value < 5; // mutated
3 }

Any test that continues to pass is a “mutant that has survived” andmay indicate
either a flawed test or a bug in the code.

Exercise: Create a fuzz test harness.

Apply the examples demonstrated here to create fuzz testers for your code. What
challenges do you hit?

Look at FuzzedDataProvider.h4 for more helper functions

4https://github.com/llvm-mirror/compiler-rt/blob/master/include/fuzzer/FuzzedDataProvider.h

https://github.com/llvm-mirror/compiler-rt/blob/master/include/fuzzer/FuzzedDataProvider.h
https://github.com/llvm-mirror/compiler-rt/blob/master/include/fuzzer/FuzzedDataProvider.h

Use The Tools: Fuzzing and Mutating 47

Exercise: Investigate mutation
testing.

The author of this book has no direct experience with mutation testing. Is it
something you can use in your project? What interesting resources do you find?

Exercise: Try FuzzTest if you can.

Only very recent versions of clang are supported by FuzzTest, look into the
currently supported compilers and see if you can try it with your code.

22.3: Resources

• C++Now 2018: Marshall Clow “Making Your Library More Reliable with
Fuzzing”5

• C++ Weekly Ep 85: Fuzz Testing6

• CppCast: Alex Denisov “Mutation Testing With Mull”7

• NDC TechTown 2019: Seph De Busser “Testing The Tests: Mutation Testing
for C++”8

• CppCon 2017: Kostya Serebryany “Fuzz or lose…”9

• CppCon 2020: Barnabás Bágyi “Fuzzing Class Interfaces for Generating and
Running Tests with libFuzzer”10 - Inspirational talk about using fuzzing in
novel ways. Video is not yet on YouTube, but look for it after this book is
published.

5https://youtu.be/LlLJRHToyUk
6https://youtu.be/gO0KBoqkOoU
7https://cppcast.com/alex-denisov/
8https://youtu.be/M-5_M8qZXaE
9https://youtu.be/k-Cv8Q3zWNQ

10https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-
with-libfuzzer?iframe=no

https://youtu.be/LlLJRHToyUk
https://youtu.be/LlLJRHToyUk
https://youtu.be/gO0KBoqkOoU
https://cppcast.com/alex-denisov/
https://youtu.be/M-5_M8qZXaE
https://youtu.be/M-5_M8qZXaE
https://youtu.be/k-Cv8Q3zWNQ
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://youtu.be/LlLJRHToyUk
https://youtu.be/gO0KBoqkOoU
https://cppcast.com/alex-denisov/
https://youtu.be/M-5_M8qZXaE
https://youtu.be/k-Cv8Q3zWNQ
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no

Use The Tools: Fuzzing and Mutating 48

• Autotest11 - Library associatedwith “Fuzzing Class Interfaces for Generating
and Running Tests with libFuzzer” talk.

• FuzzTest12 - Fuzz testing library from google.
• DeepState13 - Fuzz testing tools from TrailOfBits
• oss-fuzz14 - Continuous Fuzzing for Open Source Projects
• Mutate++15 - Mutation testing tool

11https://gitlab.com/wilzegers/autotest/
12https://github.com/google/fuzztest
13https://github.com/trailofbits/deepstate
14https://github.com/google/oss-fuzz
15https://github.com/nlohmann/mutate_cpp

https://gitlab.com/wilzegers/autotest/
https://github.com/google/fuzztest
https://github.com/trailofbits/deepstate
https://github.com/google/oss-fuzz
https://github.com/nlohmann/mutate_cpp
https://gitlab.com/wilzegers/autotest/
https://github.com/google/fuzztest
https://github.com/trailofbits/deepstate
https://github.com/google/oss-fuzz
https://github.com/nlohmann/mutate_cpp

23: Use the Tools: Build
Generators

• CMake1

• Meson2

• Bazel3

• Others4

Rawmake files or Visual Studio project files make each of the things listed above
too tricky to implement. Use a build tool to help youwithmaintaining portability
across platforms and compilers.

Treat your build scripts like any other code. They have their own set of best
practices, and it’s just as easy towrite unmaintainablebuild scripts as it is towrite
unmaintainable C++.

Build generators also help abstract and simplify your continuous build environ-
ment with tools like cmake --build, which does the correct thing regardless of
the platform in use.

1https://cmake.org
2https://mesonbuild.com/
3https://bazel.build/
4https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md

49

https://cmake.org
https://mesonbuild.com/
https://bazel.build/
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md
https://cmake.org
https://mesonbuild.com/
https://bazel.build/
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md

Use the Tools: Build Generators 50

Exercise: Investigate your build
system.

• Does your project currently use a build generator?
• How old are your build scripts?

See if there are current best practices you need to apply. Are there tidy-like or
formatting tools you can run on your build scripts?

Readbackover thepreviousbestpractices fromthisbookandseehowtheyapply
to your build scripts.

• Are you repeating yourself?
• Are there higher-level abstractions available?

Recent versions of CMakehave added tools like --profiling-output to
help you see where the generator is spending its time.

23.1: Resources

• Professional CMake: A Practical Guide5

• cmake-tidy6

• C++Now 2017: Daniel Pfeiffer “Effective CMake”7

• CppCon 2017: Mathieu Ropert “Using Modern CMake Patterns to Enforce a
Good Modular Design”8

• CppCon2018: Jussi Pakkanen“CompilingMulti-MillionLineC++CodeBases
Effortlessly with the Meson Build System”9

5https://crascit.com/professional-cmake/
6https://github.com/MaciejPatro/cmake-tidy
7https://youtu.be/bsXLMQ6WgIk
8https://youtu.be/eC9-iRN2b04
9https://youtu.be/SCZLnopmYBM

https://crascit.com/professional-cmake/
https://github.com/MaciejPatro/cmake-tidy
https://youtu.be/bsXLMQ6WgIk
https://youtu.be/eC9-iRN2b04
https://youtu.be/eC9-iRN2b04
https://youtu.be/SCZLnopmYBM
https://youtu.be/SCZLnopmYBM
https://crascit.com/professional-cmake/
https://github.com/MaciejPatro/cmake-tidy
https://youtu.be/bsXLMQ6WgIk
https://youtu.be/eC9-iRN2b04
https://youtu.be/SCZLnopmYBM

Use the Tools: Build Generators 51

• BazelCon 201910

• CppCon 2019: Mathieu Ropert “Cato the Elder”11 - Short rant about build
script quality

• C++ Weekly Ep 218 - The Ultimate CMake / C++ Quick Start12

• Twitter Discussion on CMake Resources13

10https://www.youtube.com/playlist?list=PLxNYxgaZ8Rsf-7g43Z8LyXct9ax6egdSj
11https://youtu.be/D07iF4Lp4kM
12https://youtu.be/YbgH7yat-Jo
13https://twitter.com/Cor3ntin/status/1310990444915032067

https://www.youtube.com/playlist?list=PLxNYxgaZ8Rsf-7g43Z8LyXct9ax6egdSj
https://youtu.be/D07iF4Lp4kM
https://youtu.be/YbgH7yat-Jo
https://twitter.com/Cor3ntin/status/1310990444915032067
https://www.youtube.com/playlist?list=PLxNYxgaZ8Rsf-7g43Z8LyXct9ax6egdSj
https://youtu.be/D07iF4Lp4kM
https://youtu.be/YbgH7yat-Jo
https://twitter.com/Cor3ntin/status/1310990444915032067

24: Use the Tools: Package
Managers
Recent years have seen an explosion of interest in package managers for C++.
These two have become the most popular:

• Vcpkg1

• Conan2

There is a definite advantage to using a package manager. Package managers
help with portability and reducing maintenance load on developers.

I also want to draw your attention to CPM3.

CPM provides a simple and straightforward direct integration into CMake for
building and linking to “fetch_content-able” CMake projects.

Exercise: What are your dependen-
cies?

Take time to inventory your project’s dependencies. Compare your dependen-
cies with what is available with the package managers above. Does any one
package manager have all of your dependencies? How out of date are your
current packages? What security fixes are you currently missing?

1https://github.com/Microsoft/vcpkg
2https://conan.io/
3https://github.com/cpm-cmake/CPM.cmake

52

https://github.com/Microsoft/vcpkg
https://conan.io/
https://github.com/cpm-cmake/CPM.cmake
https://github.com/Microsoft/vcpkg
https://conan.io/
https://github.com/cpm-cmake/CPM.cmake

Part III: API and Code
Design Guidelines

25: Make your interfaces hard
to use wrong.
Your interface is your first line of defense. If you provide an interface that is easy
to use wrong, your userswill use it wrong.

If you provide an interface that’s hard to use wrong, your users have to work
harder to use it wrong. But this is still C++; they will always find a way.

Interfaces hard to use wrong will sometimes result in more verbose code where
we would maybe like more terse code. You have to choose what is most impor-
tant. Correct code or short code?

This is a high-level concept; specific ideas will follow.

25.1: Resources

• The Little Manual of API Design1

1https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf

54

https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf
https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf

26: Consider If Using the API
Wrong Invokes Undefined
Behavior
Do you accept a raw pointer? Is it an optional parameter? What happens if
nullptr is passed to your function?

What happens if a value out of the expected range is passed to your function?

Some developers make the distinction between “internal” and “external” APIs.
They allow unsafe APIs for internal use only.

Is there any guarantee that an external user will never invoke the “inter-
nal” API?

Is thereanyguarantee that your internal userswill nevermisuse theAPI?

Exercise: Investigate Checked Types

The C++ Guideline Support Library (GSL) has a not_null pointer type that
guarantees, because of zero cost abstractions, that the pointer passed is never
nullptr. Would that work for your APIs that currently pass raw pointers
(assuming that rearchitecting the API is not an option)?

std::string_view (C++17) and std::span (C++20) are great alternatives to
pointer / length pairs passed to functions.

55

Consider If Using the API Wrong Invokes Undefined Behavior 56

26.1: Resources

• boost::safe_numerics1

1https://github.com/boostorg/safe_numerics

https://github.com/boostorg/safe_numerics
https://github.com/boostorg/safe_numerics

27: Be Afraid of Global State
Reasoning about global state is hard.

Any non-const static value, or std::shared_ptr<> could potentially be global
state. It is never known who might update the value or if it is thread-safe to do
so.

Global state can result in subtle and difficult to trace bugs where one function
changes global state, and another function either relies on that change or is
adversely affected by it.

Exercise: Global State, What’s Left?

If you’ve done the other exercises, you’ve already made all of your static vari-
ables const. This is great! You’ve possibly even made some of them constexpr,
which is even better!

But you probably have global state still lurking. Do you have a global singleton
logger? Could the logger be accidentally sharing state between the modules of
your system?

What about other singletons? Can they be eliminated? Do they have threading
initialization issues (what happens if two threads try to access one of the objects
for the first time at the same time)?

27.1: Resources

• Retiring the Singleton Pattern - Peter Muldoon - Meeting C++ 20191

1https://youtu.be/f46jmm7r8Yg

57

https://youtu.be/f46jmm7r8Yg
https://youtu.be/f46jmm7r8Yg

28: Use Stronger Types
Consider the API for POSIX socket:

Figure 12. POSIX socket API.

1 socket(int, int, int);

The parameters (in some order) represent:

• type
• protocol
• domain

This design is problematic, but there are less obvious ones lurking in our code.

Figure 13. Poorly defined constructor.

1 Rectangle(int, int, int, int);

This function could be (x, y, width, height), or (x1, y1, x2, y2). Less
likely, but still possible, is (width, height, x, y).

What do you think about an API that looks like this?

Figure 14. Strongly typed constructor.

1 Rectangle(Position, Size);

In many cases, it only takes a little effort to makemore strongly typed APIs.

58

Use Stronger Types 59

Figure 15. Stronger typed definitions.

1 struct Position {
2 int x;
3 int y;
4 };
5
6 struct Size {
7 int width;
8 int height;
9 };

10
11 struct Rectangle {
12 Position position;
13 Size size;
14 };

Which can then lead to other, logically composable statements with operator
overloads such as:

Figure 16. Coupled type operator overload.
1 // Return a new rectangle that has been
2 // moved by the offset amount passed in
3 Rectangle operator+(Rectangle, Position);

It’s possible thatmaking structs can increaseperformance in somecases
C++ Weekly Ep 119, Negative Cost Structs1.

28.1: Avoid Boolean Arguments

This chapter’s pre-release reader pointed out that Steve Maguire says, “Make
code intelligible at the point of call. Avoid Boolean arguments,” in Chapter 5 of
his book Writing Solid Code.

1https://youtu.be/FwsO12x8nyM

https://youtu.be/FwsO12x8nyM
https://youtu.be/FwsO12x8nyM

Use Stronger Types 60

InC++11,enum classgivesyouaneasyway toaddstronger typing, avoidboolean
parameters, andmake your API harder to use wrong.

Consider:

Figure 17. Non-obvious order of parameters.

1 struct Widget {
2 // this constructor is easy to use wrong, we
3 // can easily transpose the parameters
4 Widget(bool visible, bool resizable);
5 }

Compared to:

Figure 18. Stronger typing with scoped enumerations.

1 struct Widget {
2 enum struct Visible { True, False };
3 enum struct Resizable { True, False };
4
5 // still possible to use this wrong, but MUCH harder
6 Widget(Visible visible, Resizable resizable);
7 }

Identify the problematic APIs in your
existing code.

What function call do you regularly get out of order? How can it be fixed?

Exercise: Research strong typedef
libraries for C++.

Use Stronger Types 61

There are existing libraries that simplify some of the boilerplate code for you
when making a strongly typed int. Jonathan Muller, Bjorn Fahller, and Peter
Sommerlad have each written one, and others are available.

Exercise: Consider =deleteing
problematic conversions.

Figure 19. Simple function declaration.
1 double high_precision_thing(double);

What if calling the above with a float is likely to be a bug?

Figure 20. Deleting a problematic accidental promotion from ‘float‘ to ‘double‘.
1 double high_precision_thing(double);
2 double high_precision_thing(float) = delete;

Any function or overload can be =deleted in C++11.

Enable clang-tidy’s Easily Swappable Parameters2 check

28.2: Resources

• C++ Weekly Ep 107: “The Power of =delete”3

• Adi Shavit and Björn Fahller “The Curiously Recurring Pattern of Coupled
Types”4

• Research “Affine space types.”
• C++Now 2017: Jonathan Müller “Type-safe Programming”5

2https://clang.llvm.org/extra/clang-tidy/checks/bugprone-easily-swappable-parameters.html
3https://youtu.be/aAvjUU0m6AU
4https://youtu.be/msi4WNQZyWs
5https://youtu.be/iihlo9A2Ezw

https://clang.llvm.org/extra/clang-tidy/checks/bugprone-easily-swappable-parameters.html
https://youtu.be/aAvjUU0m6AU
https://youtu.be/msi4WNQZyWs
https://youtu.be/msi4WNQZyWs
https://youtu.be/iihlo9A2Ezw
https://clang.llvm.org/extra/clang-tidy/checks/bugprone-easily-swappable-parameters.html
https://youtu.be/aAvjUU0m6AU
https://youtu.be/msi4WNQZyWs
https://youtu.be/iihlo9A2Ezw

29: Use [[nodiscard]] Liberally
[[nodiscard]] is a C++ attribute that tells the compiler to warn if a return value
is ignored. It can be used on functions:

Figure 21. ‘[[nodiscard]]‘ example usage.

1 [[nodiscard]] int get_value();
2
3 int main()
4 {
5 // warning, [[nodiscard]] value ignored
6 get_value();
7 }

And on types:

Figure 22. ‘[[nodiscard]]‘ on types.

1 struct [[nodiscard]] ErrorCode{};
2
3 ErrorCode get_value();
4
5 int main()
6 {
7 // warning, [[nodiscard]] value ignored
8 get_value();
9 }

C++20 adds the ability to provide a description.

62

Use [[nodiscard]] Liberally 63

Figure 23. C++20’s ‘[[nodiscard]]‘ with description.

1 [[nodiscard("Ignoring this result leaks resources")]]

Our divide example is a straightforward application of [[nodiscard]].

Figure 24. ‘[[nodiscard]]‘ applied to ‘divide‘ function.

1 import std;
2
3 [[nodiscard]] constexpr auto divide(std::integral auto numerator,
4 std::integral auto denominator) {
5 // is integer division
6 if (denominator == 0) {
7 throw std::runtime_error("divide by 0!");
8 }
9 return numerator / denominator;

10 }
11
12 [[nodiscard]] constexpr auto divide(auto numerator, auto denominator) {
13 // is floating point division
14 return numerator / denominator;
15 }

And constructor:

Figure 25. Example of [[nodiscard]] constructor

1 struct Holder
2 {
3 // warn if the result of this constructor is unused
4 [[nodiscard]] Holder() = default;
5
6 // bad practice, but exists so that GCC does, in fact,
7 // generate a warning for this code below.
8 int *p = new int();
9 };

Use [[nodiscard]] Liberally 64

10
11 int main()
12 {
13 // should generate a warning
14 Holder();
15 }

Exercise: Determine a set of rules for
using [[nodiscard]]

Read the Reddit discussion “An Argument Pro Liberal Use Of nodiscard”1. Con-
sider your types and functions. Which values should be [[nodiscard]]?

Should it be a compiler error or warning to call these functions and ignore the
result?

• vector.size()
• vector.empty()
• vector.insert()

29.1: Resources

• “An Argument Pro Liberal Use Of nodiscard”2

• C++ Weekly Ep 30: C++17’s [[nodiscard]] Attribute3

• C++ Weekly Ep 199: C++20’s [[nodiscard]] Constructors And Their Uses4

1https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
2https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
3https://youtu.be/l_5PF3GQLKc
4https://youtu.be/E_ROB_xUQQQ

https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://youtu.be/l_5PF3GQLKc
https://youtu.be/E_ROB_xUQQQ
https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://youtu.be/l_5PF3GQLKc
https://youtu.be/E_ROB_xUQQQ

30: Forget Header Files Exist
C++23 has full support for C++ modules, and the standard library is now man-
dated to provide modules.

Figure 26. Before C++23 Modules

1 #include <string>
2 #include <vector>
3 #include <map>
4
5 int main()
6 {
7 std::map<int, std::vector<std::string>> data;
8 // do stuff
9 }

Figure 27. After C++23 Modules

1 import std;
2
3 int main()
4 {
5 std::map<int, std::vector<std::string>> data;
6 // do stuff
7 }

Evidence from Microsoft, who, at the time of the writing of this section, has the
most completemodules implementation, shows that this is actually considerably
faster than including header files.

Importing a module is basically “free”

65

Forget Header Files Exist 66

No code has to be immediately parsed when a module is included, so there’s
effectively no cost, which is why it’s OK that the entire standard library is now
included under a single import directive

This is a very basic (but complete) example of defining a C++20module.
See the resources for more information about actually using modules.

Figure 28. Very basic .ixx module interface file

1 // my_module.ixx
2 export module my_module;
3
4 import std;
5
6 // I'm only exporting the float overload
7 export constexpr [[nodiscard]] float calc(float val) noexcept
8 {
9 return val * 10.1f;

10 }
11
12 export void greet(std::string_view name);

Figure 29. Very basic .cppmodule implementation file

1 // my_module.cpp
2 module my_module;
3
4 import std;
5
6 void greet(std::string_view name)
7 {
8 std::println("Hello {}", name};
9 }

Forget Header Files Exist 67

Figure 30. Very basic module usage

1 import my_module;
2
3 int main()
4 {
5 greet("Jason");
6 }

30.1: Resources

• Modules the beginner’s guide - Daniela Engert - Meeting C++ 20191

• Contemporary C++ in Action - Daniela Engert - CppCon 20222

• So, You Want to Use C++ Modules … Cross-Platform? - Daniela Engert - C++
on Sea 20233

1https://youtu.be/Kqo-jIq4V3I
2https://youtu.be/yUIFdL3D0Vk
3https://youtu.be/DJTEUFRslbI

https://youtu.be/Kqo-jIq4V3I
https://youtu.be/yUIFdL3D0Vk
https://youtu.be/DJTEUFRslbI
https://youtu.be/DJTEUFRslbI
https://youtu.be/Kqo-jIq4V3I
https://youtu.be/yUIFdL3D0Vk
https://youtu.be/DJTEUFRslbI

31: Export Module Overloads
Consistently
C++23 modules should be used (remember to forget header files exist), but they
do introduce a new challenge to making sure your library can be correctly used.

If you are familiar with using DLL’s and explicit library exports (generally required
with MSVC, but also necessary if you choose to not export all symbols from a
dynamic library on any operating system) then youmay have seen code like this:

Figure 31. Simple library export example

1 EXTERN_DLL_EXPORT int calculate(int input) {
2 return input * 10;
3 }

68

Export Module Overloads Consistently 69

If you are inconsistent with your exports you will get a link error:

Figure 32. Simple library incorrect example

1 // library.hpp
2 [[nodiscard]] constexpr int calculate(int input) {
3 return input * 10;
4 }
5
6 EXTERN_DLL_EXPORT [[nodiscard]] constexpr int calculate(float input) {
7 return input * 10.1;
8 }

Figure 33. Simple library incorrect usage example

1 #include "library.hpp"
2 import std;
3
4 int main()
5 {
6 // this will compile but give link-time errors
7 // (either at static linking time or runtime linking)
8 // because the float overload was found at compile-time
9 // but not exported for library usage

10 std::println("{}", calculate(3));
11 }

Export Module Overloads Consistently 70

C++20 modules present us with a similar, but different, and potentially more
insidious problem.

Figure 34. Partially exported overload set

1 // library.ixx
2 export module library;
3
4 // I'm only exporting the float overload
5 export [[nodiscard]] constexpr float calculate(float val) noexcept
6 {
7 return val * 10.1f;
8 }
9

10 [[nodiscard]] constexpr int calculate(int val) noexcept
11 {
12 return val * 10;
13 }

Figure 35. Partially exported overload usage

1 import library;
2 import std;
3
4 int main()
5 {
6 // this will compile and link and issue no warnings, but will
7 // print float "30.3" instead of the probably expected int "30"
8 std::println("{}", calculate(3));
9 }

32: Prefer Stack Over Heap
Stack objects (locally scoped objects that are not dynamically allocated) are
much more optimizer friendly, cache-friendly, and may be entirely eliminated
by the optimizer. As Björn Fahller has said, “assume any pointer indirection is
a cachemiss.”

In the most simple terms:

Figure 36. OK idea, uses stack and can be optimized.

1 std::string make_string() { return "Hello World"; }

Figure 37. Bad idea, uses the heap.

1 std::unique_ptr<std::string> make_string() {
2 return std::make_unique<std::string>("Hello World");
3 }

Figure 38. OK idea.

1 void use_string() {
2 // This string lives on the stack
3 std::string value("Hello World");
4 }

Figure 39. Really bad idea, uses the heap and leaks memory.

1 void use_string() {
2 // The string lives on the heap
3 std::string *value = new std::string("Hello World");
4 }

71

Prefer Stack Over Heap 72

Remember, std::string itself might allocate internally, and use the
heap. If no heap usage at all is your goal, you will need to take other
measures. The goal is no unnecessary heap allocations.

Generally speaking, objects created with new expressions (or via make_unique
or make_shared) are heap objects, and have Dynamic Storage Duration. Objects
created in a local scope are stack objects and have Automatic Storage Duration.

N> It’s much easier for the compiler and tools to find reads of uninitialized stack
values than heap values.

Exercise: Look for heap usage

Sometimes developers with C and Java backgrounds have a hard time with this.
For Java, it’s because new is required to create objects. For C, it is because the C
compiler cannot perform the same kinds of optimizations that the C++ compiler
can because of differences in the language.

So someof this unnecessaryheapusagemayhaveendedup in your current code.

Exercise: Run a heap profiler

There are several heap profiling tools, and there may even be one built into your
IDE. Examine your heap usage and look for potential abuses of the heap in your
project. It’s possible that most of your heap allocations come from accidental
copies of containers such as std::string or std::vector.

32.1: Resources

• Code::Dive 2018: Björn Fahller “What Do You Mean By Cache Friendly?”1
1https://youtu.be/Fzbotzi1gYs

https://youtu.be/Fzbotzi1gYs
https://youtu.be/Fzbotzi1gYs

Prefer Stack Over Heap 73

• heaptrack - a heapmemory profiler for Linux2

• Massif: a heap profiler3

2https://github.com/KDAB/heaptrack
3https://valgrind.org/info/tools.html#massif

https://github.com/KDAB/heaptrack
https://valgrind.org/info/tools.html#massif
https://github.com/KDAB/heaptrack
https://valgrind.org/info/tools.html#massif

33: Don’t return raw pointers
Returning a raw pointer makes the reader of the code and user of the library
think too hard about ownership semantics. Prefer a reference, smart pointer,
non owning pointer wrapper, or consider an optional reference.

Figure 40. Function returning a raw pointer.

1 int *get_value();

Who owns this return value? Do I? Is it my job to delete it when I’m donewith it?

Or even worse, what if the memory was allocated by malloc and I need to call
free instead?

Is it a single int or an array of int?

This code has far toomany questions, and not even [[nodiscard]] can help us.

Exercise: Find the potential leaks in
your code

By now, you’ve done enough of these API related exercises to know what to do.
Go and look for these in your code! See if there’s a better way! Can you return a
value, reference, or std::unique_ptr instead?

74

34: Know Your Containers
Prefer your containers in this order:

• std::array<>
• std::vector<>

std::array<>
A fixed-size stack-based contiguous container. The data sizemust be known
at compile-time, and you must have enough stack space to hold the data.
This container helps us prefer stack over heap. Known location and contigu-
ousness results in std::array<> becoming a “negative cost abstraction.”
The compiler can perform an extra set of optimizations because it knows
the data’s size and location.

std::vector<>
A dynamically-sized heap-based contiguous container. While the compiler
does not know where the data will ultimately reside, it does know that the
elements are laid out adjacent to each other in RAM. Contiguousness gives
the compiler more optimization opportunities and is more cache-friendly.

Almost anything else needs a comment and justification for why. A flat mapwith
linear search is likely better than an std::map for small containers.

But don’t be too enthusiastic about this. If you need key lookup, use std::map
and evaluate if it has the performance and characteristics you want.

75

Know Your Containers 76

Exercise: Replace vectorWith array

Look for fixed-size vectors and replace them with array where possible. With
C++17’s Class Template Argument Deduction, this can be easier.

Figure 41. ‘const std::vector‘ with fixed-size data.

1 const std::vector<int> data{n+1, n+2, n+3, n+4};

can become

Figure 42. ‘const std::array‘ for fixed-size data.

1 const std::array<int, 4> data{n+1, n+2, n+3, n+4}; // C++11
2 const std::array data{n+1, n+2, n+3, n+4}; // C++17

You already made these const, now go back to constexpr them if you can.

34.1: Resources

• Bjarne Stroustrup “Are lists evil?”1

1https://www.stroustrup.com/bs_faq.html#list

https://www.stroustrup.com/bs_faq.html#list
https://www.stroustrup.com/bs_faq.html#list

35: Be Aware of Custom
Allocation And PMR
C++17 addedPolymorphicMemory Resources (PMR)whichmakes it trivially easy
to add your own custom allocation strategies to the standard containers.

(Unfortunately, only GCC and MSVC implement this C++17 feature at the time of
publication of this book.)

I do not recommend using PMR or other customallocation strategies everywhere
in the code. They should bemostly unnecessary if you follow the rest of the rules
in this book.

However, I do consider it to be a best practice to know that these strategies exist
and they can be used as tools to limit your use of the heap and get the “lastmile”
performance youmight need.

A simple example is:

77

Be Aware of Custom Allocation And PMR 78

Figure 43. simple PMR example

1 import std;
2
3 int main() {
4 // create stack space for data
5 std::array<std::byte, 2048> stackBuf;
6
7 // create monotonic_buffer_resource
8 // * no data is freed until the owning buffer is destroyed
9 std::pmr::monotonic_buffer_resource

10 rsrc(stackBuf.data(), stackBuf.size());
11
12 // all list nodes are created in the stackBuf storage
13 // without using any dynamic allocation
14 std::pmr::list<int> listOfThings{
15 {1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10},
16 &rsrc};
17 }

The C++ standard provides several different allocation strategies that can be
layeredwith fall-backs, and it’s easy to create your own. Check out the resources
for a comprehensive C++ Weekly playlist on this topic.

Exercise: Where Does PMR Fit In Your
Project?

• Run a heap profiler and look for extraneous heap allocations. Eliminate
those that you can.

• Experiment with PMR in the remaining hotspots to see where it might be
able to help.

Be Aware of Custom Allocation And PMR 79

Exercise: Understand “Winking Out”
Of Data

• This is an advanced topic and not for the faint of heart
• It is possible to actually create the contained object itself inside of the pmr
resource

• When youdo this it’s possible to safely avoid calling all destructors if all data
is owned by the one buffer resource

• Spend some time appreciating the concept1

35.1: Resources

• C++ Weekly PMR Playlist2

• Compiler Support Matrix On cppreference3

1https://github.com/lefticus/cpp_weekly/blob/master/PMR/performance_tests.cpp#L259-L274
2https://www.youtube.com/playlist?list=PLs3KjaCtOwSYXK0pxZZavDSF
3https://en.cppreference.com/w/cpp/compiler_support/17

https://github.com/lefticus/cpp_weekly/blob/master/PMR/performance_tests.cpp#L259-L274
https://www.youtube.com/playlist?list=PLs3KjaCtOwSYXK0pxZZavDSF
https://en.cppreference.com/w/cpp/compiler_support/17
https://github.com/lefticus/cpp_weekly/blob/master/PMR/performance_tests.cpp#L259-L274
https://www.youtube.com/playlist?list=PLs3KjaCtOwSYXK0pxZZavDSF
https://en.cppreference.com/w/cpp/compiler_support/17

36: Constrain Your Template
Parameters With Concepts
Concepts will result in better error messages (eventually) and better compile
times than SFINAE. Besides muchmore readable code than SFINAE.

If we continue to build on our divide example, we can take this if constexpr
version from the Prefer if constexpr over SFINAE chapter.

Figure 44. ‘if constexpr‘ version of ‘divide‘ function.

1 import std;
2
3 template <typename Numerator, typename Denominator>
4 [[nodiscard]] constexpr auto divide(Numerator numerator, Denominator de\
5 nominator) {
6 if constexpr (std::is_integral_v<Numerator> &&
7 std::is_integral_v<Denominator>) {
8 // is integral division
9 if (denominator == 0) {

10 throw std::runtime_error("divide by 0!");
11 }
12 }
13
14 return numerator / denominator;
15 }

And we can split it back out as two different functions using concepts.

Concepts can be used in several different contexts. This version uses a simple
requires clause after the function declaration.

80

Constrain Your Template Parameters With Concepts 81

Figure 45. Concepts in ‘requires‘ clause.

1 import std;
2
3 // overload resolution will pick the most specific version
4 template <typename Numerator, typename Denominator>
5 [[nodiscard]] constexpr auto divide(Numerator numerator, Denominator de\
6 nominator) requires
7 (std::is_integral_v<Numerator>
8 && std::is_integral_v<Denominator>) {
9 // is integral division

10 if (denominator == 0) {
11 throw std::runtime_error("divide by 0!");
12 }
13 return numerator / denominator;
14 }
15
16 template <typename Numerator, typename Denominator>
17 [[nodiscard]] constexpr auto divide(Numerator numerator, Denominator de\
18 nominator) {
19 return numerator / denominator;
20 }

This version uses concepts as function parameters. C++20 even has an “auto
concept,” which is an implicit template function.

Figure 46. Terse concepts requirement syntax.

1 import std;
2
3 [[nodiscard]] constexpr auto divide(std::integral auto numerator,
4 std::integral auto denominator) {
5 // is integer division
6 if (denominator == 0) {
7 throw std::runtime_error("divide by 0!");
8 }
9 return numerator / denominator;

Constrain Your Template Parameters With Concepts 82

10 }
11
12 [[nodiscard]] constexpr auto divide(auto numerator, auto denominator) {
13 // is floating point division
14 return numerator / denominator;
15 }

Concepts can define complex requirements, including expected mem-
bers. This section only barely touches on the possibilities.

Exercise: Understand what concepts
are provided with C++20.

As usual, cppreference helps by providing a list of concepts1.

Exercise: Create your own concept.

Does this example give you some idea for an example of a concept that youwould
want, but isn’t provided by <concepts>?

Look at the implementation of the very simple std::integral concept on cp-
preference2 and see if it inspires you.

1https://en.cppreference.com/w/cpp/concepts
2https://en.cppreference.com/w/cpp/concepts/integral

https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/concepts/integral
https://en.cppreference.com/w/cpp/concepts/integral
https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/concepts/integral

Constrain Your Template Parameters With Concepts 83

36.1: Resources

• C++ Weekly Ep 194: From SFINAE To Concepts With C++203

• C++ Weekly Ep 196: What is requires requires4

3https://youtu.be/dR64GQb4AGo
4https://youtu.be/tc0hVIOJk_U

https://youtu.be/dR64GQb4AGo
https://youtu.be/tc0hVIOJk_U
https://youtu.be/dR64GQb4AGo
https://youtu.be/tc0hVIOJk_U

37: Understand consteval and
constinit
I’ve already encouraged you to use constexpr.

C++20 added consteval and constinit, and it’s important to understand what
they do:

Variable Declaration:

• consteval int x = /**/ - not valid, consteval applies only to functions
• constexpr int x = /**/ - declares a const value that is usable at compile
time, andmay be evaluated at compile time, if required

• static constexpr int x = /**/ - declares a const value that is usable at
compile time, and is evaluated at compile time

• constinit int x = /**/ - not valid
• static constinit int x = /**/ - declares anon-const value (ie,mutable)
that is not usable at compile time, but is evaluated at compile time

Function Declaration:

• consteval int func(int) - declares a function thatmust be evaluated at
compile-time

• constexpr int func(int) - declares a function that may be called at
compile-time

• constinit int func(int) - not valid, constinit applies only to variables

84

Understand consteval and constinit 85

Exercise: Discuss if there is ever
a time when a user-defined-literal
should not be consteval?

User Defined Literals provide a shortcut for converting a literal into another type.

The standard library provides many different user defined literals. Two notable,
but distinct ones are for std::string1 and std::string_view2.

Figure 47. consteval udl

1 import std;
2
3 int main(const int argc, const char *[]) {
4 using std::literals::string_literals;
5 using std::literals::string_view_literals;
6
7 // Currently the standard library provided `s` literal
8 // is not `consteval`. Should it be?
9 const auto my_string

10 = "Hello World"s; // creates a string
11
12 // Currently the standard library provided `sv` literal
13 // is not `consteval`. Should it be?
14 const auto my_string_view
15 = "Hello World"sv; // creates a string_view
16 }

1https://en.cppreference.com/w/cpp/string/basic_string/operator%22%22s
2https://en.cppreference.com/w/cpp/string/basic_string_view/operator%22%22sv

https://en.cppreference.com/w/cpp/string/basic_string/operator%22%22s
https://en.cppreference.com/w/cpp/string/basic_string_view/operator%22%22sv
https://en.cppreference.com/w/cpp/string/basic_string/operator%22%22s
https://en.cppreference.com/w/cpp/string/basic_string_view/operator%22%22sv

Understand consteval and constinit 86

Exercise: What does it mean if a
function must be called at compile
time?

Figure 48. consteval exercise

1 consteval int get_value(const int input) {
2 return input * 42;
3 }
4
5 int main(const int argc, const char *[]) {
6 // will this code compile?
7 const auto value = get_value(argc);
8 }

37.1: Resources

• Andreas Fertig’s Blog: “A Neat Trick with consteval”3

• C++ Weekly Ep 304: “C++23’s if consteval vs C++20’s is_constant_-
evaluated vs C++17’s if constexpr”4

• C++ Weekly Ep 308: “if consteval - There’s More To This Story”5

3https://andreasfertig.blog/2021/07/cpp20-a-neat-trick-with-consteval/
4https://youtu.be/AtdlMB_n2pI
5https://youtu.be/y3r9l3LZiJ8

https://andreasfertig.blog/2021/07/cpp20-a-neat-trick-with-consteval/
https://youtu.be/AtdlMB_n2pI
https://youtu.be/AtdlMB_n2pI
https://youtu.be/y3r9l3LZiJ8
https://andreasfertig.blog/2021/07/cpp20-a-neat-trick-with-consteval/
https://youtu.be/AtdlMB_n2pI
https://youtu.be/y3r9l3LZiJ8

38: Prefer Spaceships
C++20 can generate any comparison operator for you (colloquially knows as the
“spaceship operator” because of its shape).

• If you define ==, the compiler will automatically generate !=
• If you define <=>, the compiler will generate all other comparisons (except
for == and !=)

• You can explicitly default any comparison operation

Figure 49. basic spaceship example

1 struct MyData
2 {
3 int i;
4 int j;
5
6 // provide all comparisons
7 friend auto operator<=>(const MyData &, const MyData &) = default;
8 };

The C++ standard has started deprecating explicit comparison operations, look
to it for examples.

Note that std::string, for the sake of performance, has a custom implemented
operator== (provides == and !=) and operator<=> (provides the rest).

https://en.cppreference.com/w/cpp/string/basic_string/operator_cmp

If youprovide a custom operator<=> for your type, the compilerwill not
provide a operator==or operator!= for you! This is similar to the “Rule
of 0” and “Rule of 5” for special member functions.

87

Prefer Spaceships 88

• If you provide a custom operator<=> you must provide your own
operator==

• It is unlikely that an explicitly defaulted operator==will do the correct thing
if you need a custom operator<=>

Exercise: Implement a spaceship
operator

Figure 50. spaceship operator exercise

1 import std;
2
3 struct Container
4 {
5 // fixed-capacity container.
6 std::array<int, 10> data;
7
8 // size is the number of currently used elements
9 std::size_t size;

10
11 // what does the comparison operator need to look like?
12 // will a defaulted one work?
13 // do we need a custom operator==?
14 };

38.1: Resources

• cppreference.com documentation1

1https://en.cppreference.com/w/cpp/language/default_comparisons

https://en.cppreference.com/w/cpp/language/default_comparisons
https://en.cppreference.com/w/cpp/language/default_comparisons

39: Follow the Rule of 0
Nodestructor is alwaysbetterwhen it’s thecorrect thing todo. Emptydestructors
can destroy performance:

• They make the type no longer trivial
• Have no functional use
• Can affect inlining of destruction
• Implicitly disable move operations

If you need a destructor because you are doing resource management
or defining a base class with virtual functions, you need to follow the
Rule of 5.

std::unique_ptr can help you apply the Rule of 0 if you provide a custom
deleter.

Exercise: Find Rule of 0 Violations in
Your Code

Look for code like this (I guarantee you will find it).

89

Follow the Rule of 0 90

Figure 51. Empty meaningless destructor.

1 struct S {
2 // a bunch of other things
3 ~S() {}
4 };

or worse:

Figure 52. Forward declared empty meaningless destructor.

1 // file.hpp
2 struct S {
3 ~S();
4 }
5
6 // file.cpp
7 S::~S() {}

Any mention of the special member functions implicitly disables the
compiler-generatedmove operations. This includes ~S() = default;.

Are these destructors necessary? Remove them if they are not.

If these destructors exist in types used in many places, you will likely be able
to measure smaller binary sizes and better performance by taking this simple
action.

Some uses of the pImpl idiom require you to define a destructor. In this case,
be sure to follow the Rule of 5.

Follow the Rule of 0 91

Exercise: Use compiler-explorer to
see one of the costs of breaking the
Rule of 0.

Figure 53. Rule of 0 surprise impact

1 // experiment with this C++20 example in
2 // compiler-explorer.com
3 #include <vector>
4 #include <string>
5
6 struct S
7 {
8 std::string data;
9

10 // uncomment this line and observe the size of the compiled
11 // binary in both -O3 and -O0 builds.
12 //~S() = default;
13 };
14
15 void some_func(std::vector<S> &data){
16 data.emplace_back();
17 }

39.1: Resources

• C++ Reference: The rule of three/five/zero1

• C++ Weekly Ep 154: “One Simple Trick for Reducing Code Bloat”2

• CppCon 2019: Jason Turner “Great C++ is_trivial”3

1https://en.cppreference.com/w/cpp/language/rule_of_three
2https://youtu.be/D8eCPl2zit4
3https://youtu.be/ZxWjii99yao

https://en.cppreference.com/w/cpp/language/rule_of_three
https://youtu.be/D8eCPl2zit4
https://youtu.be/ZxWjii99yao
https://en.cppreference.com/w/cpp/language/rule_of_three
https://youtu.be/D8eCPl2zit4
https://youtu.be/ZxWjii99yao

40: If You Must Do Manual
Resource Management, Follow
the Rule of 5
If you provide a destructor because std::unique_ptr doesn’t make sense for
your use case, you must =delete, =default, or implement the other special
member functions.

This rule was initially known as the Rule of 3 and is known as the Rule of 5 after
C++11.

Figure 54. The special member functions.

1 struct S {
2 S(); // default constructor
3 // does not affect other special member functions
4
5 // If you define any of the following, you must deal with
6 // all the others.
7 S(const S &); // copy constructor
8 S(S&&); // move constructor
9 S &operator=(const S &); // copy assignment operator

10 S &operator=(S &&); // move assignment operator
11 };

=delete is a safe way of dealing with the special member functions if
you don’t knowwhat to do with them!

You should also follow the Rule of 5 when declaring base classes with virtual
functions.

92

If You Must Do Manual Resource Management, Follow the Rule of 5 93

Figure 55. Rule of 5 with polymorphic types.

1 struct Base {
2 virtual void do_stuff();
3
4 // because of the virtual function we know this class
5 // is intended for polymorphic use, therefore our
6 // tools will tell us to define a virtual destructor
7 virtual ~Base() = default;
8
9 // and now we need to declare the other special members

10 // a good safe bet is to delete them, because properly and safely
11 // copying or assigning an object via a reference or pointer
12 // to a base class is hard / impossible
13
14 S(const S &) = delete;
15 S(S &&) = delete;
16 S &operator=(const S &) = delete;
17 S &operator=(S &&) = delete;
18 };
19
20 struct Derived : Base {
21 // We don't need to define any of the special members
22 // here, they are all inherited from `Base`.
23 }

Instead of = delete you can consider making these special members
protected.

If You Must Do Manual Resource Management, Follow the Rule of 5 94

Exercise: Implement your own
unique_ptr<> template

It’s hard to get it 100% right. Write tests. Understand why the defaulted special
member functions don’t work.

Bonus points: implement it with C++20’s constexprdynamic allocation support.

Exercise: Look for Rule of 5 violations
in your code

You are likely not providing consistent lifetime semantics in your existing code
when you are defining the special member functions. To assess the impact, you
can quickly = delete; any missing special member functions and see what
breaks.

40.1: Resources

• C++ Reference: The rule of three/five/zero1

1https://en.cppreference.com/w/cpp/language/rule_of_three

https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three

Part IV: Code
Implementation
Guidelines

41: Don’t Copy and Paste Code
If you find yourself going to select a block of code and copy it: stop!

Take a step back and look at the code again.

• Why are you copying it?
• How similar will the source be to the destination?
• Does it make sense to make a function?
• Remember, Don’t Be Afraid of Templates

I have found that this simple rule has had the most direct influence on my code
quality.

If the result of the paste operation was going in the current function, consider
using a lambda.

C++14 style lambdas, with generic (aka auto) parameters, give you a simple and
easy to use method of creating reusable code that can be shared with different
data types while not having to deal with template syntax.

Exercise: Try CPD.

There are a few different copy-paste-detectors that look for duplicated code in
your codebase.

For this exercise, download the PMD CPD tool1 and run it on your codebase.

If you use Arch Linux, this tool can be installedwith AUR. The package is pmd; the
tool is pmd-cpd.

1https://pmd.github.io/latest/pmd_userdocs_cpd.html

96

https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://pmd.github.io/latest/pmd_userdocs_cpd.html

Don’t Copy and Paste Code 97

Can you identify critical parts of your code that have been copied and pasted?
What happens if you find a bug in one version? Will you be sure to see all of the
locations that also need to be updated?

41.1: Resources

• Copy-Paste Programming2

• The Last Line Effect3

• i will not copy-paste code4

2https://www.viva64.com/en/t/0068/
3https://www.viva64.com/en/b/0260/
4https://twitter.com/bjorn_fahller/status/1072432257799987200

https://www.viva64.com/en/t/0068/
https://www.viva64.com/en/b/0260/
https://twitter.com/bjorn_fahller/status/1072432257799987200
https://www.viva64.com/en/t/0068/
https://www.viva64.com/en/b/0260/
https://twitter.com/bjorn_fahller/status/1072432257799987200

42: Prefer format Over iostream
Or c-formatting Functions
C++20 added the <format> header, which provides the function std::format.

std::format takes a format string, parameters, and returns an std::string
object.

format is

• faster to compile than iostreams
• faster to execute than iostreams
• more readable than iostreams
• more type safe than printf family of functions

Figure 56. Simple format usage

1 import std;
2
3 int main()
4 {
5 const auto result = std::format("Hello {}!", "Jason");
6 }

Unfortunately, C++20’s use cases were a little limited, with formatting to strings
being the main mechanism, we tend to end up with code that looks like this:

98

Prefer format Over iostream Or c-formatting Functions 99

Figure 57. Format cout usage

1 // using include because this is a C++20 example
2 #include <format>
3
4 int main()
5 {
6 std::cout << std::format("Hello {}!\n", "Jason");
7 }

To solve this problem, C++23 added the <print> header, which we can use via
modules.

Figure 58. Using std::println

1 import std;
2
3 int main()
4 {
5 std::println("Hello {}!", "Jason");
6 }

There are several overloads for std::print and the helper
std::println which automatically adds a newline to the end of
the message.

This example is overly complicated example!

Prefer format Over iostream Or c-formatting Functions 100

Figure 59. Using std::print’s overloads

1 import std;
2
3 int main()
4 {
5 std::print(std::cout, "Hello");
6 std::println(stdout, " World");
7 }

Exercise: Learn the syntax for
std::print and begin converting
std::cout to print code.

Exercise: Use clang-tidy’s modernize-
use-std-print1 to upgrade any printf
family functions you have.

Exercise: See if your AI coding
assistant can convert std::iostream
usage into std::format and std::print
commands (ChatGPT is known to be
reasonably good at this).

1https://clang.llvm.org/extra/clang-tidy/checks/modernize/use-std-print.html

https://clang.llvm.org/extra/clang-tidy/checks/modernize/use-std-print.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize/use-std-print.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize/use-std-print.html

43: constexpr All The Things!

I’m using a much stronger argument for constexpr than I ever have
before!

C++23 andmodules together eliminate almost every remaining reason to not be
using constexpr.

constexpr functions declared in your module interface file should now be your
default.

• With modules it is truly “pay for what you use” (almost 0 cost to the con-
sumer of the module)

• constexpr enables use cases you have not considered for compile-time
computation

• A powerful technique is to compute as much as possible at compile-time,
then continue computation at runtime from a known point

• These techniques are only possible if our core libraries are constexpr en-
abled.

Gone are the days of #define. constexpr should be your new default! Unfor-
tunately, people over-complicate constexpr, so let’s break down the simplest
thing.

You need C++26 to get constexpr trig functions from your standard
library.

If you see something like (I’ve seen in real code):

101

constexpr All The Things! 102

Figure 60. ‘static const‘ data known at compile time.

1 static const std::vector<int> angles{-90,-45,0,45,90};

This really needs to be:

Figure 61. Moving ‘static const‘ to ‘static constexpr‘.

1 static constexpr std::array angles{-90,-45,0,45,90};

static constexpr here is necessary to make sure the object is not
reinitialized each time the function / declaration is encountered. With
static the variable lasts for the lifetime of the program, andwe know it
will be initialized exactly once.

The difference is threefold.

• The size of the array is now known at compile time
• We’ve removed dynamic allocations
• We no longer pay the cost of accessing a static

For globals in header files, prefer inline constexpr over static
constexpr so that the linker merges data structures and reduces code
bloat.

Themain gains come from the first two, but we need a constexprmindset to be
looking for this kind of opportunity. We also need constexpr knowledge to see
how to apply it in the more complex cases.

The difference can be significant.

There might be times where a non-static constexpr local variable is
the most efficient option, because the data lives on the stack instead
of a different section of the binary. Check if this matters during your
optimization passes.

constexpr All The Things! 103

Technicallynon-staticconstexprvariablesdon’t havebecalculatedat
compile-time. However, it’s almost certain that they are, and it is handy
to think of them as calculated at compile-time.

Exercise: constexpr Your const Values

While reading code, look at all const values. Ask, “is this value known at compile
time?” If it is, what would it take to make the value constexpr?

Exercise: static constexpr Your static
const Values

Go through your current code base and look for code that is currently static
const. You probably have something, somewhere.

• If it’s currently static const, it’s likely the size and data are known at
compile time.

• Can this code become constexpr?
• What is preventing it from being constexpr?
• Howmuchworkwould it take tomodify the functionspopulating thestatic
const data so that they are also constexpr?

• Remember that if it’s a global in a header file, you should prefer inline
constexpr.

Exercise: Make header code constexpr

constexpr All The Things! 104

If you have functions and types that are already defined in header files, try to
make those functions and types fully constexpr enabled.

Exercise: Move header defined
constexpr functions into module
interface files

Wewant to avoid continuing to re-parse constexpr functions, andmodule inter-
face files give us that way.

Exercise: Look for additional non-IO
functions to make constexpr

At this point in your journey basically any non-IO function can be made into a
constexpr function.

• Move these functions into your module interface file.
• Make the functions constexpr.

43.1: Resources

• C++Now 2017: Ben Deane & Jason Turner “constexpr ALL the things1 (a bit
out of date with modern constexpr techniques)

• C++ Weekly Ep 233: constexprmap vs std::map2

• Meeting C++ 2017: Jason Turner “Practical constexpr”3

1https://youtu.be/HMB9oXFobJc
2https://youtu.be/INn3xa4pMfg
3https://youtu.be/xtf9qkDTrZE

https://youtu.be/HMB9oXFobJc
https://youtu.be/INn3xa4pMfg
https://youtu.be/xtf9qkDTrZE
https://youtu.be/HMB9oXFobJc
https://youtu.be/INn3xa4pMfg
https://youtu.be/xtf9qkDTrZE

constexpr All The Things! 105

• C++ Russia 2019: Hana Dusíková “A state of сompile time regular expres-
sions”4

• C++ Weekly Ep 312: Stop Using constexpr (And Use This Instead!)5

• C++ Weekly: constexpr vs static constexpr6

• C++ Weekly: static constexpr vs inline constexpr7

• cons_expr: a compile-time capable scheme-like scripting language8

4https://youtu.be/r_ZASJFQGQI
5https://youtu.be/4pKtPWcl1Go
6https://youtu.be/IDQ0ng8RIqs
7https://youtu.be/QVHwOOrSh3w
8https://github.com/lefticus/cons_expr

https://youtu.be/r_ZASJFQGQI
https://youtu.be/r_ZASJFQGQI
https://youtu.be/4pKtPWcl1Go
https://youtu.be/IDQ0ng8RIqs
https://youtu.be/QVHwOOrSh3w
https://github.com/lefticus/cons_expr
https://youtu.be/r_ZASJFQGQI
https://youtu.be/4pKtPWcl1Go
https://youtu.be/IDQ0ng8RIqs
https://youtu.be/QVHwOOrSh3w
https://github.com/lefticus/cons_expr

44: Make globals in headers
inline constexpr

1. Be afraid of global state!
2. Forget header files exist!

All global data should be constexpr

But global constexpr values are perfectly safe. They cannot mutate and they
cannot affect “spooky action at a distance.”

If you still have header files because you haven’t completely moved over to
modules yet…

All global constexpr values should be inline constexpr

Inside of module interfaces, constexpr globals and inline constexpr
globals both have “external linkage” so we don’t have to worry about
that.

106

Make globals in headers inline constexpr 107

Figure 62. static constexpr example

1 // my_library.hpp
2
3 // the object `dataset` will be duplicated in each .cpp
4 // file that includes this .hpp file
5 static constexpr auto dataset = make_data();

Figure 63. inline constexpr example

1 // my_library.hpp
2
3 // the object `dataset` will exist once in the entire binary
4 inline constexpr auto dataset = make_data();

45: const Everything That’s Not
constexpr
Many people (like Kate Gregory and James McNellis) have said this many times.
Making objects const does two things:

1. It forces us to think about the initialization and lifetime of objects, which
affects performance.

2. Communicates meaning to the readers of our code.

And as an aside, if it’s a static object, the compiler is now free to move it into the
constants portion of the binary, which can affect the optimizer.

Exercise: Look for const opportuni-
ties.

As you read through your code, you should look for variables that are not const
andmake them const.

• If a variable is not const, ask why not?
• Would using a lambda or adding a named function allow you to make the
value const?

108

const Everything That’s Not constexpr 109

1 const auto data = [](){ // no parameters
2 std::vector<int> result;
3 // fill result with things.
4 return result;
5 }(); // immediately invoked

Because of RVO, using a lambda will likely not add any overhead and
may increase performance.

Did you make any static variables const in the process? Then go to the
constexpr exercise.

const for values that are going to be returned can break implicit moves
in some cases!

However, it’s important to note that relying on implicit moves for return values
and RVO can be a little fragile in general. Best is to simply not ever give a name
to the object you are returning.

1 ReturnType some_function(int value)
2 {
3 // if the types of result and ReturnType differ,
4 // and an implicit conversion exists, you break
5 // implicit moves.
6 // If they are the same then you are hoping the
7 // compiler applies NRVO, which doesn't always work
8 // code with many branches
9 const auto result = get_value(value + 42);

10 return result;
11 }

const Everything That’s Not constexpr 110

Figure 64. Prefer not naming temporaries

1 ReturnType some_function(int value)
2 {
3 // if the types of result and ReturnType differ,
4 // and an implicit conversion exists, you get
5 // implicit moves.
6 // If they are the same, then guaranteed
7 // copy/move elision applies from C++17
8 return get_value(value + 42);
9 }

The clang-tidy No Automatic Move1 analysis is largely broken. It warns
even when NRVO copy elision applies, and doesn’t warn when it mat-
ters! (as of 2022-02-23). See this analysis: https://compiler-explorer.
com/z/a4K76nbhq.

You probably don’t want to make class members const; it can break
essential things such as move construction and move assignment, and
sometimes silently.

45.1: Resources

• CppCon 2014: James McNellis & Kate Gregory “Modernizing Legacy C++
Code”2

• CppCon 2019: Jason Turner “C++ Code Smells”3

• The implication of const or reference member variables in C++4

1https://clang.llvm.org/extra//clang-tidy/checks/performance-no-automatic-move.html
2https://youtu.be/LDxAgMe6D18
3https://youtu.be/f_tLQl0wLUM
4https://lesleylai.info/en/const-and-reference-member-variables/

https://clang.llvm.org/extra//clang-tidy/checks/performance-no-automatic-move.html
https://compiler-explorer.com/z/a4K76nbhq
https://compiler-explorer.com/z/a4K76nbhq
https://youtu.be/LDxAgMe6D18
https://youtu.be/LDxAgMe6D18
https://youtu.be/f_tLQl0wLUM
https://lesleylai.info/en/const-and-reference-member-variables/
https://clang.llvm.org/extra//clang-tidy/checks/performance-no-automatic-move.html
https://youtu.be/LDxAgMe6D18
https://youtu.be/f_tLQl0wLUM
https://lesleylai.info/en/const-and-reference-member-variables/

const Everything That’s Not constexpr 111

• C++Now 2018: Ben Deane “Easy to Use, Hard to Misuse: Declarative Style in
C++”5 (Builds on techniques that make applying const easier.)

5https://youtu.be/2ouxETt75R4

https://youtu.be/2ouxETt75R4
https://youtu.be/2ouxETt75R4
https://youtu.be/2ouxETt75R4

46: Always Initialize Your
non-const, non-auto Values
The ideal is to const everything, which forces you to initialize. However, that’s
not always possible.

Similarly, if you use auto, you are forced to initialize an object.

• The compiler will “throw away” operations on uninitialized values
• Make sure you have your -Wunitialized style warnings enabled

Be aware that there can be a difference between default initialization
and initialization that appears empty in some cases.

Compilers are not always perfect at catching uninitialized value usage. For
example, GCC (as of 2023-12-30) requires optimizations enabled to catch this
uninitialized variable access, which is UB.

Figure 65. Uninitialized variable read that GCC doesn’t catch without optimizations enabled

1 #include
2
3 float sum(std::span<float> values)
4 {
5 float result;
6
7 for (const auto f : values) {
8 result += f;
9 }

10
11 return result;
12 }

112

Always Initialize Your non-const, non-auto Values 113

Exercise: Understand which
constructor you are calling

Take this example codeandplaywith it at variousoptimization levels in compiler-
explorer.com to understand the difference that each constructor call might per-
form.

Figure 66. which constructor is called?

1 import std;
2
3 int main()
4 {
5 // std::string is not trivially constructible, so this calls
6 // the default constructor and it is initialized to ""
7 std::string str;
8
9 // explicitly call the default constructor

10 std::string str2{};
11
12 // call the constructor that takes a `const char *`
13 // try commenting this out as you play with various
14 // optimization levels
15 std::string str3 = "";
16 }

Exercise: Make sure -Wuninitialized
is not disabled, and take it seriously.

Always Initialize Your non-const, non-auto Values 114

46.1: Tools

• Valgrind’s Memcheck1

• Dr Memory2

46.2: Resources

• C++ Weekly - Ep 257 - Garbage In, Garbage Out - Why Initialization Matters3

• COVID-19 Research and Uninitialized Variable4

• Fuzzing Image Parsing in Windows, Part Two: Uninitialized Memory5

1https://www.valgrind.org/info/tools.html#memcheck
2https://dynamorio.org/drmemory_docs/page_uninit.html
3https://youtu.be/uYN6-YQPsGo
4https://www.viva64.com/en/b/0796/
5https://www.fireeye.com/blog/threat-research/2021/03/fuzzing-image-parsing-in-windows-uninitialized-

memory.html

https://www.valgrind.org/info/tools.html#memcheck
https://dynamorio.org/drmemory_docs/page_uninit.html
https://youtu.be/uYN6-YQPsGo
https://www.viva64.com/en/b/0796/
https://www.fireeye.com/blog/threat-research/2021/03/fuzzing-image-parsing-in-windows-uninitialized-memory.html
https://www.valgrind.org/info/tools.html#memcheck
https://dynamorio.org/drmemory_docs/page_uninit.html
https://youtu.be/uYN6-YQPsGo
https://www.viva64.com/en/b/0796/
https://www.fireeye.com/blog/threat-research/2021/03/fuzzing-image-parsing-in-windows-uninitialized-memory.html
https://www.fireeye.com/blog/threat-research/2021/03/fuzzing-image-parsing-in-windows-uninitialized-memory.html

47: Prefer auto in Many Cases.
I’m not an Almost Always Auto (AAA) person, but let me ask you this: What is the
result type of std::count?

My answer is, “I don’t care.”

Figure 67. ‘const auto‘

1 const auto result = std::count(/* stuff */);

or, if you prefer:

Figure 68. ‘auto const‘

1 auto const result = std::count(/* stuff */);

Using auto avoids unnecessary conversions and data loss. Same as
ranged-for loops. auto requires initialization, the same as const, the
same reasoning for why that’s good.

Figure 69. auto requires initializtion

1 auto i; // cannot compile
2 auto i = int; // cannot compile

Example:

Figure 70. Possible expensive conversion.

1 const std::string value = get_string_value();

What is the return type of get_string_value()? If it is std::string_view or
const char *, we will get a potentially costly conversion on all compilers with
no diagnostic.

115

Prefer auto in Many Cases. 116

Figure 71. No possible expensive conversion.

1 // avoids conversion
2 const auto value = get_string_value();

Furthermore, auto return types actually can significantly simplify generic code.

Figure 72. C++ 98 template usage.

1 // our example from "Don't Be Afraid of Templates"
2 template<typename Arithmetic>
3 Arithmetic divide(Arithmetic numerator, Arithmetic denominator) {
4 return numerator / denominator;
5 }

This code forcesus touse the same type for both thenumerator anddenominator
(play with this and see the weird compile errors you get).

Figure 73. C++ 98 template mademore generic?

1 template<typename Numerator, typename Denominator>
2 /*what's the return type*/
3 divide(Numerator numerator, Denominator denominator) {
4 return numerator / denominator;
5 }

C++98 provides no solution to this problem, but C++11 does.

Figure 74. C++11 trailing return types.

1 // use trailing return type
2 template<typename Numerator, typename Denominator>
3 auto divide(Numerator numerator, Denominator denominator)
4 -> decltype(numerator / denominator)
5 {
6 return numerator / denominator;
7 }

But in C++14, we can leave off the return type altogether (remember to Skip
C++11).

Prefer auto in Many Cases. 117

Figure 75. C++14 ‘auto‘ return types.

1 template<typename Numerator, typename Denominator>
2 auto divide(Numerator numerator, Denominator denominator)
3 {
4 return numerator / denominator;
5 }

In C++20 we can simplify this code further with auto function parameters (which
create implicit templates for us)

Figure 76. C++20 ‘auto‘ parameters.

1 auto divide(auto numerator, auto denominator)
2 {
3 return numerator / denominator;
4 }

Consider constraining these parameters if it makes sense for your application

Figure 77. Constrained auto parameters.

1 // this should also be constexpr and [[nodiscard]]
2 std::floating_point auto divide(
3 std::floating_point auto numerator, std::floating_point auto denomi\
4 nator)
5 {
6 return numerator / denominator;
7 }

Prefer auto in Many Cases. 118

Exercise: Become familiar with auto
deduction.

Figure 78. Ex1: what is the type of val?

1 const int *get();
2
3 int main() {
4 const auto val = get();
5 }

Figure 79. Ex2: what is the type of val?

1 const int &get();
2
3 int main() {
4 const auto val = get();
5 }

Figure 80. Ex3: what is the type of val?

1 const int *get();
2
3 int main() {
4 const auto *val = get();
5 }

Figure 81. Ex4: what is the type of val?

1 const int &get();
2
3 int main() {
4 const auto &val = get();
5 }

Prefer auto in Many Cases. 119

Figure 82. Ex5: what is the type of val?

1 const int *get();
2
3 int main() {
4 const auto &val = get();
5 }

Figure 83. Ex6: what is the type of val?

1 const int &get();
2
3 int main() {
4 const auto &&val = get();
5 }

Exercise: Build your experiment
library

The above exercise is perfect for building into a set of experiments that are saved
in your GitHub gists mentioned in C++ Is Not Magic

Prefer auto in Many Cases. 120

Exercise: Understand how auto and
template deduction relate

Understand the rules for type deduction of templates and how they relate to
auto.

Read the section in the C++ Programming Language Standard [dcl.spec.auto].

47.1: Resources

• clang-tidy modernize-use-auto1

• Almost Always Auto2

1https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-auto.html
2https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-auto.html
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-auto.html
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/

48: Use Ranges and Views For
Correctness and Readability
At their best C++20’s ranges and views can drastically increase readability and
correctness of your code without impacting performance or compile times.

At their worst C++20’s ranges and views can drastically increase compile times,
runtimes, and affect the readability of your code.

Because of some of the potential drawbacks to ranges and views, there are some
who recommend never using them. This book does not call for that. Instead, we
say that you should learn their strengths and weaknesses.

This author considers the humble case of “loop over all elements except for the
first item” to be the “killer feature” of ranges and views.

Figure 84. Skip first element, without ranges.

1 void print_all_but_first(const std::vector<int> &values) {
2 // forget this and you have UB with 0 element container
3 if (values.empty()) { return; }
4
5 for (auto itr = next(begin(values)); itr != end(values); ++itr) {
6 std::println("{}", *itr);
7 }
8 }

121

Use Ranges and Views For Correctness and Readability 122

Figure 85. Skip first element, with ranges.

1 void print_all_but_first(const std::vector<int> &values) {
2 for (const auto val : values | std::views::drop(1)) {
3 std::println("{}", val);
4 }
5 }

Be aware of these very simple but very powerful use cases, besides the much
more complex and composable features of the ranges library.

Exercise: Read through the set
of views available https://en.
cppreference.com/w/cpp/ranges.

Exercise: Use compiler explorer1
to compare and contrast the
two functions above at different
optimization levels.

48.1: Resources

• C++ Weekly - Ep 391 - Finally! C++23’s std::views::enumerate2

• C++ Weekly - Ep 398 - C++23’s zip_view3

1https://compiler-explorer.com
2https://youtu.be/HuRbLPRh-Nk
3https://youtu.be/MVXGdwREo_E

https://en.cppreference.com/w/cpp/ranges
https://en.cppreference.com/w/cpp/ranges
https://compiler-explorer.com
https://youtu.be/HuRbLPRh-Nk
https://youtu.be/MVXGdwREo_E
https://compiler-explorer.com
https://youtu.be/HuRbLPRh-Nk
https://youtu.be/MVXGdwREo_E

Use Ranges and Views For Correctness and Readability 123

• C++ Weekly - Ep 399 - C++23’s slide_view vs adjacent_view4

• C++ Weekly - Ep 401 - C++23’s chunk view and stride view5

• Effective Ranges: A Tutorial for Using C++2x Ranges - Jeff Garland - CppCon
20236

4https://youtu.be/czmGjH16Hb0
5https://youtu.be/3ZeV-F1Rbaw
6https://youtu.be/QoaVRQvA6hI

https://youtu.be/czmGjH16Hb0
https://youtu.be/3ZeV-F1Rbaw
https://youtu.be/QoaVRQvA6hI
https://youtu.be/QoaVRQvA6hI
https://youtu.be/czmGjH16Hb0
https://youtu.be/3ZeV-F1Rbaw
https://youtu.be/QoaVRQvA6hI

49: Don’t Reuse Views
Range views can hold state in unexpected ways, which can result in unexpected
code evaluation.

Figure 86. Reuse of drop, with caching effects

1 import std;
2
3 int main()
4 {
5 std::list<int> values{1,2,3,4,5,6,7,8,9};
6
7 auto drop_2 = values | std::views::drop(2);
8
9 std::println("{}", drop_2);

10
11 values.erase(values.begin());
12
13 std::println("{}", drop_2);
14 }

Youmight be surprised to know that the above code prints:

Figure 87. Reuse of drop output, with list.

1 > 3, 4, 5, 6, 7, 8, 9
2 > 3, 4, 5, 6, 7, 8, 9

However, if we change the code to use std::vector, we get the expected output.

124

Don’t Reuse Views 125

Figure 88. Reuse of drop, without caching effects

1 import std;
2
3 int main()
4 {
5 std::vector<int> values{1,2,3,4,5,6,7,8,9};
6
7 auto drop_2 = values | std::views::drop(2);
8
9 std::println("{}", drop_2);

10
11 values.erase(values.begin());
12
13 std::println("{}", drop_2);
14 }

Figure 89. Reuse of drop output, with vector.

1 > 3, 4, 5, 6, 7, 8, 9
2 > 4, 5, 6, 7, 8, 9

Some people would tell you to avoid views entirely, because of issues
like this.

Wewill take a more judicious approach.

Don’t reuse views!

The relatively simple solution to this problem:

Don’t Reuse Views 126

Figure 90. Using a lambda to create the view.

1 import std;
2
3 int main()
4 {
5 std::list<int> values{1,2,3,4,5,6,7,8,9};
6
7 auto drop_2 = []{ return values | std::views::drop(2); };
8
9 std::println("{}", drop_2());

10
11 values.erase(values.begin());
12
13 std::println("{}", drop_2());
14 }

49.1: Resources

• Denver C++Meetup: 2023-04 - TylerWeaver - ReadingRanges (Don’t TakeMy
Word For It)1

• Belle Views on C++ Ranges, their Details and the Devil - Nico Josuttis -
Keynote Meeting C++ 20222

1https://youtu.be/H-CMApmuBoQ
2https://youtu.be/O8HndvYNvQ4

https://youtu.be/H-CMApmuBoQ
https://youtu.be/H-CMApmuBoQ
https://youtu.be/O8HndvYNvQ4
https://youtu.be/O8HndvYNvQ4
https://youtu.be/H-CMApmuBoQ
https://youtu.be/O8HndvYNvQ4

50: Prefer Algorithms Over
Loops
Algorithms communicate meaning and help us apply the “const All The Things”
rule. In C++20, we get ranges, which make algorithmsmore comfortable to use.

It’spossible, takinga functional approachandusingalgorithms, thatwecanwrite
C++ that reads like a sentence.

Figure 91. Algorithms with ranges

1 const auto has_value
2 = std::any_of(container, greater_than(12));

Figure 92. Algorithms with explicit iterators

1 const auto has_value
2 = std::any_of(begin(container), end(container),
3 greater_than(12));

Note that in some rare cases1, your static analysis tools might be able to suggest
an algorithm to use.

Exercise: Study existing loops

Next time you are reading through a loop in your codebase, cross-reference it
with the C++ <algorithm> header2 and try to find an algorithm that applies
instead.

1https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/
2https://en.cppreference.com/w/cpp/algorithm

127

https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/
https://en.cppreference.com/w/cpp/algorithm
https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/
https://en.cppreference.com/w/cpp/algorithm

Prefer Algorithms Over Loops 128

This book only barely mentions C++20’s ranges. Compilers are just now
getting support for ranges as of the publication of this book. Ranges can
be composed and have full support for constexpr.

50.1: Resources

• GoingNative 2013: Sean Parent “C++ Seasoning”3

• CppCon 2018: Jonathan Boccara “105 Algorithms in Less Than an Hour”4

• C++ Now 2019: Conor Hoekstra “Algorithm Intuition”5

• MeetingC++ 2019: Conor Hoekstra “Better Algorithm Intuition”6

• Conor Hoekstra “The Twin Algorithms”7

• C++ Weekly Ep 187 “C++20’s constexpr Algorithms”8

• C++ Weekly Ep 105 “Learning “Modern” C++ 5: Looping And Algorithms9

• Algorithm Selection10

3https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
4https://youtu.be/2olsGf6JIkU
5https://youtu.be/48gV1SNm3WA
6https://youtu.be/TSZzvo4htTQ
7https://www.youtube.com/live/NiferfBvN3s
8https://youtu.be/9YWzXSr2onY
9https://youtu.be/A0-x-Djey-Q

10https://codereport.github.io/Algorithm-Selection/

https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
https://youtu.be/2olsGf6JIkU
https://youtu.be/48gV1SNm3WA
https://youtu.be/TSZzvo4htTQ
https://www.youtube.com/live/NiferfBvN3s
https://youtu.be/9YWzXSr2onY
https://youtu.be/A0-x-Djey-Q
https://codereport.github.io/Algorithm-Selection/
https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
https://youtu.be/2olsGf6JIkU
https://youtu.be/48gV1SNm3WA
https://youtu.be/TSZzvo4htTQ
https://www.youtube.com/live/NiferfBvN3s
https://youtu.be/9YWzXSr2onY
https://youtu.be/A0-x-Djey-Q
https://codereport.github.io/Algorithm-Selection/

51: Use Ranged-For Loops When
Views and Algorithms Cannot
Help
(Carefully) prefer ranges, views, and algorithms, but use ranged-for loops as your
next possible option.

Figure 93. ‘int‘ vs ‘std::size_t‘ when looping.

1 for (int i = 0; i < container.size(); ++i) {
2 // oops mismatched types
3 }

Figure 94. Mismatched containers while looping.

1 for (auto itr = container.begin();
2 itr != container2.end();
3 ++itr) {
4 // oops, most of us have done this at some point
5 }

Figure 95. Example of ranged-for loop.

1 for(const auto &element : container) {
2 // eliminates both other problems
3 }

Never mutate the container itself while iterating inside of a ranged-for
loop.

129

Use Ranged-For Loops When Views and Algorithms Cannot Help 130

Exercise: Modernize Your Loops

You probably have old-style loops in your code.

1. Apply clang-tidy’s modernize-loop-convert check.
2. Look for loops that could not be converted.

• Loops that could not be converted might represent bugs in the code
• Loops that could not be converted, but do not have bugs, are good
candidates for simplification

51.1: Resources

• clang-tidy modernize-loop-convert1

1https://clang.llvm.org/extra/clang-tidy/checks/modernize-loop-convert.html

https://clang.llvm.org/extra/clang-tidy/checks/modernize-loop-convert.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-loop-convert.html

52: Use auto in ranged for loops
Not using auto canmake it easier to have silent mistakes in your code.

Figure 96. Accidental conversions

1 for (const int value : container_of_double) {
2 // accidental conversion, possible warning
3 }

Figure 97. Accidental slicing

1 for (const base value : container_of_derived) {
2 // accidental silent slicing
3 }

Figure 98. No problem

1 for (const auto &value : container) {
2 // no possible accidental conversion
3 }

Prefer:

• const auto & for non-mutating loops
• auto & for mutating loops
• auto && only when you have to work with weird types like
std::vector<bool>, or if moving elements out of the container

131

Use auto in ranged for loops 132

Exercise: Understand std::map and
ranged for loops

Understand what this code is doing. Is it making a copy? Why and how?

Figure 99. Accidental copy?

1 std::map<std::string, int> get_map();
2
3 using element_type = std::pair<std::string, int>;
4
5 for (const element_type & : get_map())
6 {
7 }

Modern compilers can directly catch the above issue, but you have to
enable your warnings to see it!

Exercise: Enable ranged-loop related
warnings

Make sure -Wrange-loop-construct is enabled in your code, which is automat-
ically included with -Wall.

53: Avoid default In switch
Statements
This is an issue that is best describedwith a series of examples. Starting from this
one:

Figure 100. ‘switch‘ with warnings

1 enum class Values {
2 val1,
3 val2
4 };
5
6 [[nodiscard]] constexpr std::string_view get_name(Values value) {
7 switch (value) {
8 case Values::val1: return "val1";
9 case Values::val2: return "val2";

10 }
11 }

If you have enabled all of your warnings, then you will likely get a “not all code
paths return a value” warning here. Which is technically correct. We could
call get_name(static_cast<Values>(15)) and not violate any part of C++
[dcl.enum/5] except for the Undefined Behavior of not returning a value from a
function.

133

Avoid default In switch Statements 134

You’ll be tempted to fix this code like this:

Figure 101. ‘switch‘ with ‘default‘ to avoid warnings

1 enum class Values {
2 val1,
3 val2
4 };
5
6 [[nodiscard]] constexpr std::string_view get_name(Values value) {
7 switch (value) {
8 case Values::val1: return "val1";
9 case Values::val2: return "val2";

10 default: return "unknown";
11 }
12 }

But this introduces a new problem

Figure 102. Unhandled case

1 enum class Values {
2 val1,
3 val2,
4 val3 // added a new value
5 };
6
7 [[nodiscard]] constexpr std::string_view get_name(Values value) {
8 switch (value) {
9 case Values::val1: return "val1";

10 case Values::val2: return "val2";
11 default: return "unknown";
12 }
13 // no compiler diagnostic that `val3` is unhandled
14 }

Instead, prefer code like this:

Avoid default In switch Statements 135

Figure 103. Prefered version

1 enum class Values {
2 val1,
3 val2,
4 val3 // added a new value
5 };
6
7 [[nodiscard]] constexpr std::string_view get_name(Values value) {
8 switch (value) {
9 case Values::val1: return "val1";

10 case Values::val2: return "val2";
11 } // unhandled enum value warning now
12
13 return "unknown";
14 }

You shouldn’t ever get an “unreachable code” warning in the above
example because the range of valid values is nearly always larger than
the values you have defined.

Somemodern tools can detect these uses of default for you.

Exercise: Look for default:

What do you find in your code base? Did enabling warnings in previous exercises
find uses of default: for you already?

Exercise: Consider std::unreachable.

Avoid default In switch Statements 136

std::unreachable (added in C++23) explicitly invokes Undefined Behavior if it
is executed. It can be used for the “unreachable” case of a switch statement, to
ensure that the compiler does the optimal thing.

This is potentially frightening. Do you really want undefined behavior because
it’s “impossible” for code to be reached? Discuss this with your coworkers and
consider where / when / if you would use this tool. See the C++ Weekly episode
in the resources for more details.

53.1: Resources

• CppCon 2018: Jason Turner “Applied Best Practices”1

• C++ Weekly - Ep 393 - C++23’s std::unreachable2* -Wswitch-enum3

• -Wswitch4

1https://youtu.be/DHOlsEd0eDE
2https://youtu.be/ohMyb4jPIAQ
3https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch-enum
4https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch

https://youtu.be/DHOlsEd0eDE
https://youtu.be/ohMyb4jPIAQ
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch-enum
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch
https://youtu.be/DHOlsEd0eDE
https://youtu.be/ohMyb4jPIAQ
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch-enum
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch

54: Prefer Scoped enums
C++11 introduced scoped enumerations, intended to solvemany of the common
problems with enum inherited from C.

Figure 104. C++98 ‘enum‘s

1 enum Choices {
2 option1 // value in the global scope
3 };
4
5 enum OtherChoices {
6 option2
7 };
8
9 int main() {

10 int val = option1;
11 val = option2; // no warning
12 }

• enum Choices;

• enum OtherChoices;

These two can easily get mixed up, and they each introduce identifiers in the
global namespace.

• enum class Choices;

• enum class OtherChoices;

The values in these enumerations are scoped andmore strongly typed.

137

Prefer Scoped enums 138

Figure 105. C++11 scoped enumeration.

1 enum class Choices {
2 option1
3 };
4
5 enum class OtherChoices {
6 option2
7 };
8
9 int main() {

10 int val = option1; // cannot compile, need scope
11 int val2 = Choices::option1; // cannot compile, wrong type
12 Choices val = Choices::option1; // compiles
13 val = OtherChoices::option2; // cannot compile, wrong type
14 }

These enum class versions cannot get mixed up without much effort, and their
identifiers are now scoped, not global.

enum struct and enum class are equivalent. Logically enum struct makes
more sense since they are public names. Which do you prefer?

Exercise: enum struct or enum class

Decide if you prefer enum struct or enum class and develop a well-reasoned
answer as to why.

Prefer Scoped enums 139

Moving to scoped enumerations will probably find many bugs in your
code!

54.1: Resources

• CppCon 2018: Victor Ciura “Better Tools in Your Clang Toolbox”1 (Discusses
bugs found bymoving to enum class)

• cppreference.com Enumeration Declaration2

1https://youtu.be/4X_fZkl7kkU
2https://en.cppreference.com/w/cpp/language/enum

https://youtu.be/4X_fZkl7kkU
https://en.cppreference.com/w/cpp/language/enum
https://youtu.be/4X_fZkl7kkU
https://en.cppreference.com/w/cpp/language/enum

55: Prefer if constexpr over
SFINAE
SFINAE is kind-of write-only code. if constexpr doesn’t have the same flexibil-
ity, but use it when you can.

Let’s take our divide example last seen in Prefer auto in Many Cases:

Figure 106. C++14 divides template.

1 template<typename Numerator, typename Denominator>
2 auto divide(Numerator numerator, Denominator denominator)
3 {
4 return numerator / denominator;
5 }

We now want to add different behavior if we are doing integral division. Before
C++17, we would have used SFINAE (“Substitution Failure Is Not An Error”).
Essentially this means that if a function fails to compile, then it is removed from
overload resolution.

140

Prefer if constexpr over SFINAE 141

Figure 107. SFINAE ‘divide‘ function.

1 #include <stdexcept>
2 #include <type_traits>
3 #include <utility>
4
5 template <typename Numerator, typename Denominator,
6 std::enable_if_t<std::is_integral_v<Numerator> &&
7 std::is_integral_v<Denominator>,
8 int> = 0>
9 auto divide(Numerator numerator, Denominator denominator) {

10 // is integer division
11 if (denominator == 0) {
12 throw std::runtime_error("divide by 0!");
13 }
14 return numerator / denominator;
15 }
16
17 template <typename Numerator, typename Denominator,
18 std::enable_if_t<std::is_floating_point_v<Numerator> ||
19 std::is_floating_point_v<Denominator>,
20 int> = 0>
21 auto divide(Numerator numerator, Denominator denominator) {
22 // is floating point division
23 return numerator / denominator;
24 }

The if constexpr construct in C++17 can simplify this code:

Prefer if constexpr over SFINAE 142

Figure 108. ‘if constexpr‘ option for compile time behavior change.

1 import std;
2
3 // note that we could use `auto` for numerator and denominator
4 // but it would actually complicate the if constexpr code
5 // by requiring that we use `decltype` to get the type info
6 // back.
7 template <typename Numerator, typename Denominator>
8 [[nodiscard]] constexpr auto divide(Numerator numerator, Denominator de\
9 nominator) {

10 if constexpr (std::is_integral_v<Numerator> &&
11 std::is_integral_v<Denominator>) {
12 // is integral division
13 if (denominator == 0) {
14 throw std::runtime_error("divide by 0!");
15 }
16 }
17
18 return numerator / denominator;
19 }

Consider concepts over if constexpr for readability in many cases

Prefer if constexpr over SFINAE 143

Figure 109. Constraints instead of ‘if constexpr‘

1 import std;
2
3 // default overload chosen
4 [[nodiscard]] constexpr auto divide(auto numerator, auto denominator) {
5 return numerator / denominator;
6 }
7
8 // version called only if both parameters are integral
9 [[nodiscard]] constexpr auto divide(

10 std::integral auto numerator, std::integral auto denominator) {
11
12 // is integral division
13 if (denominator == 0) {
14 throw std::runtime_error("divide by 0!");
15 }
16
17 return numerator / denominator;
18 }

The code inside the if constexpr block must still be syntactically
correct. if constexpr is not the same as a #define.

Code that you might normally choose to put outside of the if block
might now need to live inside of the else to make sure it is not instanti-
ated with invalid types

Exercise: Look into “design by
introspection”

Prefer if constexpr over SFINAE 144

The combination of if constexpr, concepts, and requires results in a very
powerful, almost reflection-like capability.

Figure 110. ’Design by Introspection’ example

1 constexpr void add_values(auto &container, auto first, auto second)
2 {
3 // we ask, at compile time, if this container
4 // has a reserve and a size member.
5 if constexpr(requires {container.reserve(container.size() + 2); }) {
6 // if this is a valid operation, then perform it at runtime
7 container.reserve(container.size() + 2);
8 }
9

10 // either way, add the values
11 container.push_back(first);
12 container.push_back(second);
13 }

This techniquewas first proposedbyAndrei Alexandrescu in 2001, thenbrought
into C++20 by Kris Jusiak.

55.1: Resources

• C++ Weekly Special Edition: Using C++17’s constexpr if1

• C++ Weekly - Ep 122 - constexprwith optional and variant2

• CppCon 2017: Jason Turner “Practical C++17”3

1https://youtu.be/_Ny6Qbm_uMI
2https://youtu.be/2eCV_udkP_o
3https://youtu.be/nnY4e4faNp0

https://youtu.be/_Ny6Qbm_uMI
https://youtu.be/2eCV_udkP_o
https://youtu.be/nnY4e4faNp0
https://youtu.be/_Ny6Qbm_uMI
https://youtu.be/2eCV_udkP_o
https://youtu.be/nnY4e4faNp0

Prefer if constexpr over SFINAE 145

• C++ Weekly - Ep 242 - Design By Introspection in C++204

• C++17 In Tony Tables: constexpr if5

4https://youtu.be/sy32kAtsIKg
5https://github.com/tvaneerd/cpp17_in_TTs/blob/master/if_constexpr.md

https://youtu.be/sy32kAtsIKg
https://github.com/tvaneerd/cpp17_in_TTs/blob/master/if_constexpr.md
https://youtu.be/sy32kAtsIKg
https://github.com/tvaneerd/cpp17_in_TTs/blob/master/if_constexpr.md

56: De-template-ize Your
Generic Code
Move things outside of your templates when you can. Use other functions. Use
base classes. The compiler is still free to inline them or leave them out of line.

De-template-ization will improve compile times and reduce binary sizes. Both
are helpful. It also eliminates the thing that people think of as “template code
bloat” (which IMO doesn’t exist1) (article formatting got broken at some point,
sorry).

Figure 111. A new lambda for each function template instantiation.

1 template<typename T>
2 constexpr void do_things()
3 {
4 // this lambda must be generated for each
5 // template instantiation
6 auto lambda = [](){ /* some lambda that doesn't capture */ };
7 auto value = lambda();
8 }

Compared to:

1https://articles.emptycrate.com/2008/05/06/nobody_understands_c_part_5_template_code_bloat.html

146

https://articles.emptycrate.com/2008/05/06/nobody_understands_c_part_5_template_code_bloat.html
https://articles.emptycrate.com/2008/05/06/nobody_understands_c_part_5_template_code_bloat.html

De-template-ize Your Generic Code 147

Figure 112. Shared logic between template instantiations.

1 constexpr auto some_function() { /* do things*/ }
2
3 template<typename T>
4 constexpr void do_things()
5 {
6 auto value = some_function();
7 }

Nowonly one version of the inner logic is compiled, and it’s up to the compiler to
decide if they should be inlined.

Similar techniques apply to base classes and templated derived classes.

Exercise: Bloaty McBloatface and
-ftime-trace.

We’re getting more andmore tools available to look for bloat in our binaries and
analyze compile times. Look into these tools and other tools available on your
platform.

Run them against your binary and see what you find.

When using clang’s -ftime-trace, also look into ClangBuildAnalyzer.

56.1: Resources

• Templight2

• C++ Weekly Ep 89: “Overusing Lambdas”3

2https://github.com/mikael-s-persson/templight
3https://youtu.be/OmKMNQFx_8Y

https://github.com/mikael-s-persson/templight
https://youtu.be/OmKMNQFx_8Y
https://github.com/mikael-s-persson/templight
https://youtu.be/OmKMNQFx_8Y

De-template-ize Your Generic Code 148

• C++ Weekly Christmas Class 2019 - Chapter 34 (This is the first episode of
chapter 3, and it introduces the question of how and why two different
options differ5. The next several episodes in that playlist give some back-
ground, and the start of chapter 4 gives the answers. It is very much related
to template bloat questions.)

• Effective C++ (3rd Edition) Item44 - Factor parameter-independent code out
of templates

4https://www.youtube.com/watch?v=VEqOOKU8RjQ&list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-&index=16
5https://godbolt.org/z/b4znvK

https://www.youtube.com/watch?v=VEqOOKU8RjQ&list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-&index=16
https://godbolt.org/z/b4znvK
https://www.youtube.com/watch?v=VEqOOKU8RjQ&list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-&index=16
https://godbolt.org/z/b4znvK

57: Use Lippincott Functions
Samearguments asde-template-izing your code: This is ado-not-repeat-yourself
principle for exception handling routines.

If you have many different exception types to handle, you might have code that
looks like this:

Figure 113. Duplicated exception handling.

1 void use_thing() {
2 try {
3 do_thing();
4 } catch (const std::runtime_error &) {
5 // handle it
6 } catch (const std::exception &) {
7 // handle it
8 }
9 }

10
11 void use_other_thing() {
12 try {
13 do_other_thing();
14 } catch (const std::runtime_error &) {
15 // handle it
16 } catch (const std::exception &) {
17 // handle it
18 }
19 }

A Lippincott function (named after Lisa Lippincott) provides a centralized excep-
tion handling routine.

149

Use Lippincott Functions 150

Figure 114. Lippincott de-duplicated exception handling.

1 void handle_exception() {
2 try {
3 throw; // re-throw exception already in flight
4 } catch (const std::runtime_error &) {
5 } catch (const std::exception &) { }
6 }
7
8 void use_thing() {
9 try {

10 do_thing();
11 } catch (...) {
12 handle_exception();
13 }
14 }
15
16 void use_other_thing() {
17 try {
18 do_other_thing();
19 } catch (...) {
20 handle_exception();
21 }
22 }

This technique is not new - it has been available since the pre-C++98 days.

Exercise: Do You Use Exceptions?

If your project uses exceptions, there’s probably some ground for simplifying and
centralizing your error handling routines. If it does not use exceptions, then you
likely have other types of error handling routines that are duplicated. Can these
be simplified?

Use Lippincott Functions 151

57.1: Resources

• C++ Secrets: Using a Lippincott Function for Centralized Exception Han-
dling1

• C++ Weekly Ep 91: Using Lippincott Functions2

1https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
2https://youtu.be/-amJL3AyADI

https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://youtu.be/-amJL3AyADI
https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://youtu.be/-amJL3AyADI

58: No More new!
You’re already avoiding the heap and using smart pointers for resourcemanage-
ment, right?!

Take this to the next level and be sure to use std::make_unique<>()1 (C++14) in
the rare cases that you need the heap.

In the very rare cases you need shared ownership, use std::make_shared<>()2
(C++11).

Exercise: Do you use Qt or some
other widget library?

Have you ever thought about writing your own make_qobject helper? Give it the
semantics you need and be sure to use [[nodiscard]].

In any case, you can limit your use of new to a few core library helper functions.

Exercise: Use clang-tidy modernize
fixes.

With clang-tidy, you can automatically convert new statements into
make_unique<> and make_shared<> calls. Be sure to use -fix to apply the
change after it’s been discovered.

1https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
2https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

152

https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared
https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

No More new! 153

58.1: Resources

• clang-tidy modernize-make-shared3

• clang-tidy modernize-make-unique4

3https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-shared.html
4https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-unique.html

https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-shared.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-unique.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-shared.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-unique.html

59: Avoid std::bind and
std::function
While compilers continue to improve and the optimizers work around these
types’ complexity, it’s still very possible for either to add considerable compile-
time and runtime overhead.

C++14 lambdas, with generalized capture expressions, are capable of the same
things that std::bind is capable of.

std::function is not constexpr enabled, which is another reason it
might need to be avoided in your code.

Figure 115. ‘std::bind‘ to change parameter order

1 import std;
2
3 [[nodiscard]] constexpr double divide(double numerator, double denomina\
4 tor) {
5 return numerator / denominator;
6 }
7
8 auto inverted_divide = std::bind(divide,
9 std::placeholders::_2,

10 std::placeholders::_1);

154

Avoid std::bind and std::function 155

Figure 116. Lambda to change parameter order

1 import std;
2
3 [[nodiscard]] constexpr double divide(double numerator, double denomina\
4 tor) {
5 return numerator / denominator;
6 }
7
8 auto inverted_divide = [](const auto numerator,
9 const auto denominator) {

10 return divide(denominator, numerator)
11 }

Exercise: Compare the possibilities.

Take these options in Compiler Explorer. Howdo the compile times and resulting
assembly look?

Figure 117. ‘std::function‘ and ‘std::bind‘

1 import std;
2
3 // std::function is not constexpr enabled, so this
4 // cannot be `constexpr`
5 [[nodiscard]] std::function<int (int)> bind_3(auto func)
6 {
7 return std::bind(func, std::placeholders::_1, 3);
8 }
9

10 int main(int argc, const char *[])
11 {
12 return bind_3(std::plus<>{})(argc);
13 }

Avoid std::bind and std::function 156

Figure 118. ‘std::bind‘ only, for bonus points, what type is returned from the function ‘bind_3‘?

1 #include <functional>
2
3 // std::bind is constexpr enabled
4 [[nodiscard]] constexpr auto bind_3(auto func)
5 {
6 return std::bind(func, std::placeholders::_1, 3);
7 }
8
9 int main(int argc, const char *[])

10 {
11 return bind_3(std::plus<>{})(argc);
12 }

Figure 119. Only lambdas, no std library wrappers.

1 #include <functional>
2
3 [[nodiscard]] constexpr auto bind_3(auto func)
4 {
5 return [func](const int value){ return func(value, 3); };
6 }
7
8 int main(int argc, const char *[])
9 {

10 return bind_3(std::plus<>{})(argc);
11 }

Exercise: Look at std::bind_front,
std::bind_back

Avoid std::bind and std::function 157

Figure 120. C++23’s bind_back

1 #include <functional>
2
3 [[nodiscard]] constexpr auto bind_3(auto func)
4 {
5 return std::bind_back(func, 3);
6 }
7
8 int main(int argc, const char *[])
9 {

10 return bind_3(std::plus<>{})(argc);
11 }

Avoid std::bind and std::function 158

59.1: Resources

• CppCon 2015: Stephan T. Lavavej “: What’s New, And Proper Usage”1

• C++ Weekly Ep 16: “Avoiding std::bind”2

1https://youtu.be/zt7ThwVfap0
2https://youtu.be/ZlHi8txU4aQ

https://youtu.be/zt7ThwVfap0
https://youtu.be/ZlHi8txU4aQ
https://youtu.be/zt7ThwVfap0
https://youtu.be/ZlHi8txU4aQ

60: Don’t Use initializer_list
For Non-Trivial Types
“Initializer List” is anoverloaded term inC++. “Initializer Lists”areused todirectly
initialize values. initializer_list is used to pass a list of values to a function
or constructor.

Exercise: Understand the overhead
initializer_list can bring

Use Andreas Fertig’s awesome cppinsights.io1 to understand what these two
examples do

Figure 121. ‘initializer_list‘ constructor with ‘shared_ptr‘.

1 #include <vector>
2 #include <memory>
3
4 std::vector<std::shared_ptr<int>> vec{
5 std::make_shared<int>(40), std::make_shared<int>(2)
6 };

1http://cppinsights.io

159

http://cppinsights.io
http://cppinsights.io

Don’t Use initializer_list For Non-Trivial Types 160

Figure 122. ‘std::array‘ construction with ‘shared_ptr‘.

1 #include <array>
2 #include <memory>
3
4 std::array<std::shared_ptr<int>, 2> data{
5 std::make_shared<int>(40), std::make_shared<int>(2)
6 };

And explain the difference. If you can do this, you understand more than most
C++ developers.

Exercise: Understand why this
doesn’t compile

Figure 123. ‘initializer_list‘ construction with ‘unique_ptr‘.

1 #include <vector>
2 #include <memory>
3
4 std::vector<std::unique_ptr<int>> data{
5 std::make_unique<int>(40), std::make_unique<int>(2)
6 };

60.1: Resources

• C++Now 2018: Jason Turner “Initializer Lists Are Broken, Let’s Fix Them”2
(deep dive into the issues around these topics)

• C++ Insights3

2https://youtu.be/sSlmmZMFsXQ
3https://cppinsights.io/

https://youtu.be/sSlmmZMFsXQ
https://cppinsights.io/
https://youtu.be/sSlmmZMFsXQ
https://cppinsights.io/

61: Consider Designated
Initializers (C++20)
Direct-Initialization provides a highly efficient way of initializing public data
members.

Figure 124. direct-init example
1 #include <string>
2
3 struct Data
4 {
5 std::string first;
6 std::string second;
7 };
8
9 int main()

10 {
11 // directly-initialize the data members `first` and `second`
12 // this has no copy or move overhead nor questions
13 // about how to write an efficient constructor for it.
14 Data d{"Hello", "World"};
15 }

The downside is that this code is not very readable. We don’t know what those
two parameters "Hello" and "World" are initializing.

C++20 added “designated initializers” that allow you to specify the name of the
object you are initializing.

• They must be initialized in order
• Itemsmay be skipped
• Namesmust be consistently provided

161

Consider Designated Initializers (C++20) 162

Figure 125. designated-init example
1 #include <string>
2
3 struct Data
4 {
5 std::string first;
6 std::string second;
7 };
8
9 int main()

10 {
11 Data d{.first = "Hello", .second = "World"};
12 }

Important: compilers are inconsistent aboutwarning if youhave left out
a parameter when using designated initializers. Make sure you compile
with multiple compilers and high warning levels.

Exercise: Discuss with your team
what you prefer

• Is being able to skip a parameter an upside, or a downside?
• How important is it that parameters have a name?
• Does it matter if you have strong typing as a discipline in your system?

Exercise: Compare a simple struct
with public members to one with
private and constructors.

Consider Designated Initializers (C++20) 163

Figure 126. implement a constructor and getters

1 #include <string>
2
3 class Data
4 {
5 public:
6 // add constructor(s), getters and setters
7 // * Is this better?
8 // * How much compile-time and run-time
9 // overhead to does add?

10 private:
11 std::string first;
12 std::string second;
13 };

Inmany cases simplepublic structs arebetter than complex classeswith
getters, setters, and constructors. But this is only true if there are no
interdependencies between the values. (invariants)

61.1: Resources

• C++ Weekly Ep 127: C++20’s Designated Initializers1

• C++ Weekly Ep 274 - Why Is My Pair 310x Faster Than std::pair?2

• C++ Stories: C++20: Designated Initializers3

• Modernes C++: Designated Initializers4

• Abseil Tip of the Week #172: Designated Initializers5

1https://youtu.be/44rs_hX1dxE
2https://youtu.be/3LsRYnRDSRA
3https://www.cppstories.com/2021/designated-init-cpp20/
4https://www.modernescpp.com/index.php/designated-initializers
5https://abseil.io/tips/172

https://youtu.be/44rs_hX1dxE
https://youtu.be/3LsRYnRDSRA
https://www.cppstories.com/2021/designated-init-cpp20/
https://www.modernescpp.com/index.php/designated-initializers
https://abseil.io/tips/172
https://youtu.be/44rs_hX1dxE
https://youtu.be/3LsRYnRDSRA
https://www.cppstories.com/2021/designated-init-cpp20/
https://www.modernescpp.com/index.php/designated-initializers
https://abseil.io/tips/172

Part V: Bonus Chapters

62: Improving Build Time
A few practical considerations for making build time less painful

• De-template-ize your code where possible
• Use forward declarations where it makes sense to
• Enable PCH (precompiled headers) in your build system
• Use ccache or similar (many other options that change regularly, Google for
them)

• Be aware of unity builds
• Know the possibilities and limitations of extern template

• Use a build analysis tool to see where build time is spent

62.1: Use an IDE

This is themost surprising side effect of using amodern IDE that I have observed:
IDE’s do realtime analysis of the code. Realtime analysis means that you know
as you are typing if the code is going to compile. Therefore, you spend less time
waiting for builds.

Exercise: What are build times
costing you?

Try to figure out howmuchbuild times are costing in developer time and see how
much could be saved if build times were lessened.

165

Improving Build Time 166

62.2: Resources

• A guide to unity builds1

• Unity builds with Meson2

• Unity builds with CMake3

• PCH with Meson4

• PCH with CMake5

• ccache6

• CMake Compiler Launcher7

• Clang Build Analyzer8

• Getting started with C++ Build Insights9

• Introducing vcperf /timetrace for C++ build time analysis10

1https://onqtam.com/programming/2018-07-07-unity-builds/
2https://mesonbuild.com/Unity-builds.html
3https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
4https://mesonbuild.com/Precompiled-headers.html
5https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
6https://ccache.dev/
7https://cmake.org/cmake/help/latest/prop_tgt/LANG_COMPILER_LAUNCHER.html?highlight=ccache
8https://github.com/aras-p/ClangBuildAnalyzer
9https://docs.microsoft.com/en-us/cpp/build-insights/get-started-with-cpp-build-insights?view=vs-2019

10https://devblogs.microsoft.com/cppblog/introducing-vcperf-timetrace-for-cpp-build-time-analysis/

https://onqtam.com/programming/2018-07-07-unity-builds/
https://mesonbuild.com/Unity-builds.html
https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://mesonbuild.com/Precompiled-headers.html
https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
https://ccache.dev/
https://cmake.org/cmake/help/latest/prop_tgt/LANG_COMPILER_LAUNCHER.html?highlight=ccache
https://github.com/aras-p/ClangBuildAnalyzer
https://docs.microsoft.com/en-us/cpp/build-insights/get-started-with-cpp-build-insights?view=vs-2019
https://devblogs.microsoft.com/cppblog/introducing-vcperf-timetrace-for-cpp-build-time-analysis/
https://onqtam.com/programming/2018-07-07-unity-builds/
https://mesonbuild.com/Unity-builds.html
https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://mesonbuild.com/Precompiled-headers.html
https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
https://ccache.dev/
https://cmake.org/cmake/help/latest/prop_tgt/LANG_COMPILER_LAUNCHER.html?highlight=ccache
https://github.com/aras-p/ClangBuildAnalyzer
https://docs.microsoft.com/en-us/cpp/build-insights/get-started-with-cpp-build-insights?view=vs-2019
https://devblogs.microsoft.com/cppblog/introducing-vcperf-timetrace-for-cpp-build-time-analysis/

63: Continue Your C++
Education
You must continually learn if you want to become better at what you do, and
many resources are available to you to continue your C++ education.

63.1: Know How To Ask Questions

Kate Gregory has published an excellent article on how to ask questions1.

Some key points are:

• Don’t use screenshots
• Use good variable names
• Add some tests
• Listen to what people are telling you

63.2: Conferences And Local User Groups

There is almost certainly one near you. It’s a great way to network and learn new
things. Check out the ISO C++ Conferences Worldwide List2 and Meeting C++’s
User Groups List3.

I am finishing this book during the global COVID-19 pandemic. So conferences
and user groups are mostly on hold right now. But this presents an attractive
new opportunity for many.

1http://www.gregcons.com/KateBlog/HowToAskForCCodingHelp.aspx
2https://isocpp.org/wiki/faq/conferences-worldwide
3https://meetingcpp.com/usergroups/

167

http://www.gregcons.com/KateBlog/HowToAskForCCodingHelp.aspx
https://isocpp.org/wiki/faq/conferences-worldwide
https://meetingcpp.com/usergroups/
https://meetingcpp.com/usergroups/
http://www.gregcons.com/KateBlog/HowToAskForCCodingHelp.aspx
https://isocpp.org/wiki/faq/conferences-worldwide
https://meetingcpp.com/usergroups/

Continue Your C++ Education 168

Many of those conferences and user groups are now meeting online. It’s now
possible for us all to attendeachother’s user groups. TheNorthDenverMetroC++
Meetup4, for example, regularly has one attendee from Thailand eachmonth.

Note from the author: when interacting with the C++ community re-
member to treat otherswithdignity and respect; bepatient; take time to
understand the rules andnormsof theparticular communitywithwhich
you are interacting.

63.3: C++ Weekly

This book references C++Weekly throughout as a resource to go back to formore
information and examples to share with your coworkers. At this moment, the
show has been going for 235 weeks straight with many special editions, extras,
and live streams.

63.4: cppreference.com

The website is fantastic, but you might not know that you can create an account
and customize the content to the version of C++ you are using. Also, you can
execute examples and download an offline version5!

63.5: Hire a Trainer to Come Onsite for Your
Company

Team training gets your team thinking in a new direction, improves morale, and
boosts employee retention. Since you made it this far, I’m going to offer you a
coupon.

4https://www.meetup.com/North-Denver-Metro-C-Meetup/
5https://en.cppreference.com/w/Cppreference

https://www.meetup.com/North-Denver-Metro-C-Meetup/
https://www.meetup.com/North-Denver-Metro-C-Meetup/
https://en.cppreference.com/w/Cppreference
https://www.meetup.com/North-Denver-Metro-C-Meetup/
https://en.cppreference.com/w/Cppreference

Continue Your C++ Education 169

If youmention this book, you’ll get 10%off onsite training costs at your company
fromme. (travel costs not discounted). Hopefully, travel restrictions will not last
much longer.

63.6: YouTube

• C++ Weekly (Author’s Channel)6

• Andreas Fertig’s Channel7

• C++ on Sea8

• C++Now9

• code_report10

• code::dive11

• CopperSpice12

• Core C++13

• CppCon14

• CppNorth15

63.7: Podcasts

• CppCast16

6https://www.youtube.com/@cppweekly
7https://www.youtube.com/@andreas_fertig
8https://www.youtube.com/@cpponsea2834
9https://www.youtube.com/@BoostCon

10https://www.youtube.com/@code_report
11https://www.youtube.com/@codediveconference
12https://www.youtube.com/copperspice
13https://www.youtube.com/@corecpp
14https://www.youtube.com/@CppCon
15https://www.youtube.com/@cppnorth
16https://cppcast.com/

https://www.youtube.com/@cppweekly
https://www.youtube.com/@andreas_fertig
https://www.youtube.com/@cpponsea2834
https://www.youtube.com/@BoostCon
https://www.youtube.com/@code_report
https://www.youtube.com/@codediveconference
https://www.youtube.com/copperspice
https://www.youtube.com/@corecpp
https://www.youtube.com/@CppCon
https://www.youtube.com/@cppnorth
https://cppcast.com/
https://www.youtube.com/@cppweekly
https://www.youtube.com/@andreas_fertig
https://www.youtube.com/@cpponsea2834
https://www.youtube.com/@BoostCon
https://www.youtube.com/@code_report
https://www.youtube.com/@codediveconference
https://www.youtube.com/copperspice
https://www.youtube.com/@corecpp
https://www.youtube.com/@CppCon
https://www.youtube.com/@cppnorth
https://cppcast.com/

Continue Your C++ Education 170

63.8: Blogs and Useful Websites

• The Pasture17

• eel.is / current C++ draft18

• wg21.link / links to papers and standards19

• C++ Stories20

• Fluent C++21

17https://thephd.dev/
18http://eel.is/c++draft/
19https://wg21.link
20https://www.cppstories.com/
21https://www.fluentcpp.com/

https://thephd.dev/
http://eel.is/c++draft/
https://wg21.link
https://www.cppstories.com/
https://www.fluentcpp.com/
https://thephd.dev/
http://eel.is/c++draft/
https://wg21.link
https://www.cppstories.com/
https://www.fluentcpp.com/

64: Thank You
64.1: Sponsors

Thank you to all of my Book Supporter patrons who helped make this book
possible!

Adam Albright, AdamP Shield, Alejandro Lucena, Alexander Roper, Ali Raein, An-
drei Sebastian Cîmpean, Anton Smyk, Arman Imani, Ashley Gay, Bill Baker, Björn
Fahller, Brendan Nolan, Cem Dervis, Clint Rajaniemi, Cooper Healy, Corentin
Gay, David C Black, David Poole, Dennis Börm, Emyr Williams, Fedor Alekseev,
Ferdinand Stapenhorst, Florian Sommer, GwendolynHunt, Ivan Pakhomov, Jack
Glass, Jaewon Jung, Jakub Sanestrzik, Jeff Bakst, jimmy, Jonathan Watmough,
Kacper Kołodziej, Kedar Bhat, Kevin Stone, Kitty Raven, Lars Ove Larsen, Luke
Valenty, Magnus Westin, Marcin Zdun, Mark Guidarelli, Martin Hammerchmidt,
Matt Godbolt, Matthew Guidry, Michael Pearce, Michael Pettit, michel morel,
Mo Xiaoming, Namgoo Lee, Natalya Kochanova, Olafur Waage, Panos Gourgaris,
Pi, Ralph Jeffrey Steinhagen, Reiner Eiteljoerge, royaltrashfire, Samuel Egger,
Sebastian Raaphorst, Sergii Lovygin, Sergii Zaiets, Silver, Stefan Goetschi, Tim
Butler, Tobias Dieterich, Tomasz Cwik, Volker Schwaberow, Wenbo, William
Hawkins, Y, Yacob Cohen-Arazi, Yang, Ólafur Waage, Šimon Bařinka

64.2: Reviewers of C++17/20 Edition

Craig Scott and Alexander Roper, thank you for extensive notes and feedback
during prerelease.

171

65: Bonus: Understand The
Lambda
A surprising complexity hides behind the simple lambdaof C++. Initially added in
C++11, itwas initially constrained. With eachversionofC++, the lambdabecomes
more flexible and powerful.

Lambdas reverse some of the defaults from the rest of C++. Default const and
automatically constexpr when possible; they give us some of what we wish the
rest of the language could have.

Figure 127. Lambda grammar.

1 lambda-expression:
2 lambda-introducer lambda-declarator(opt) compound-statement
3 lambda-introducer < template-parameter-list > requires-clause(opt)
4 lambda-declarator(opt) compound-statement
5 lambda-introducer:
6 [lambda-capture(opt)]
7 lambda-declarator:
8 (parameter-declaration-clause) decl-specifier-seq(opt)
9 noexcept-specifier(opt) attribute-specifier-seq(opt)

10 trailing-return-type(opt) requires-clause(opt)

If you can read standard-eze1, you can dig into all of the features of C++20’s
lambdas yourself.

1http://eel.is/c++draft/expr.prim.lambda

172

http://eel.is/c++draft/expr.prim.lambda
http://eel.is/c++draft/expr.prim.lambda

Bonus: Understand The Lambda 173

Figure 128. Allowed lambdas as of C++20.

1 // valid empty lambda, does nothing
2 []{};
3 // optional to have parameter list
4 [](){};
5 // C++17 explicit constexpr and void return
6 []() constexpr -> void {};
7 // immediately invoked lambda
8 auto i = [](){ return 42; }();
9 // Not allowed before C++17, because constexpr

10 constexpr auto j = []{ return 42; }();
11 // generic lambda, C++14
12 [](auto x){ return x + 42; };
13 // variadic lambda, C++14
14 [](auto ... x){ return std::vector<int>(x...); };
15 // capture by copy, C++11
16 [i](){ return i + 42; };
17 // generalized capture, C++14 (what's the type of i?)
18 [i = 42]{ return i + 42; };
19 // stateful lambda, C++11
20 [i]() mutable { return ++i; };
21 // explicit template, C++20
22 []<typename T>(T x){ return x + 42; };
23
24 // C++14 generic lambda returning a C++20 lambda with variadic
25 // capture expression which returns a fold expression summation
26 // of the captured values.
27 [](auto ... val){ return [...val = val]{ return (val + ...); }; };

If you understand every aspect of C++’s lambdas and how the compiler imple-
ments them, you know everything important about C++.

This is why I put together my C++ class on YouTube about lambdas2.
2https://www.youtube.com/playlist?list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-

https://www.youtube.com/playlist?list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-
https://www.youtube.com/playlist?list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-

Bonus: Understand The Lambda 174

In 2018 when compilers first started supporting C++20’s new lambdas, I imple-
mented this mostly standards-compliant version of std::bind using lambdas.

(Continued on next page.)

Bonus: Understand The Lambda 175

Figure 129. ‘std::bind‘ implemented with C++20 lambdas.

1 template <std::size_t Idx>
2 struct Placeholder {};
3
4 template <typename T>
5 struct Bound {
6 constexpr decltype(auto) operator()(auto &&...param) const {
7 return t(std::forward<decltype(param)>(param)...);
8 }
9

10 T t;
11 };
12
13 template <typename T>
14 Bound(T) -> Bound<T>;
15
16 template <std::size_t Idx, typename T>
17 constexpr decltype(auto) get_param(const Placeholder<Idx> &,
18 T &&t) {
19 return std::get<Idx>(t);
20 }
21
22 template <typename Param, typename T>
23 constexpr decltype(auto) get_param(Param &¶m, T &&) {
24 return std::forward<Param>(param);
25 }
26
27 template <typename Param, typename T>
28 constexpr decltype(auto) get_param(const Bound<Param> &b,
29 T &&t) {
30 return std::apply(b, std::forward<T>(t));
31 }
32
33 constexpr decltype(auto) bind(auto &&callable, auto &&...param) {
34 return Bound{

Bonus: Understand The Lambda 176

35 [callable = std::forward<decltype(callable)>(callable),
36 ... xs = std::forward<decltype(param)>(param)]
37 (auto &&...values) {
38 auto passed_params =
39 std::forward_as_tuple(
40 std::forward<decltype(values)>(values)...);
41 return std::invoke(callable,
42 get_param(xs, passed_params)...);
43 }
44 };
45 }

I haven’t looked at this code in 2 years, but here is a Compiler Explorer link for
you to play with.

https://godbolt.org/z/hhde3P

Exercise: Understand the given
example and critique it.

What should I have done differently with the above example? Can it be con-
strained with concepts? Does it need better names? What would you do differ-
ently?

https://godbolt.org/z/hhde3P

	Table of Contents
	Part I: Introduction and Philosophy of Good C++
	1: Introduction To The C++23 Edition
	2: Introduction To The Original Edition
	3: About Best Practices
	4: Slow Down
	5: Use AI Coding Assistants Judiciously
	6: C++ Is Not Magic
	7: Remember: C++ Is Not Object-Oriented
	8: Learn Another Language
	9: Know Your Standard Library
	10: Use The Tools
	11: Don't Invoke Undefined Behavior
	12: Never Test for this To Be nullptr, It's UB
	13: Never Test for A Reference To Be nullptr, It's UB

	Part II: Use The Tools
	14: Use the Tools: Automated Tests
	15: Use the Tools: Continuous Builds
	16: Use the Tools: Compiler Warnings
	17: Use the Tools: Static Analysis
	18: Use The Tools: Consider Custom Static Analysis
	19: Use the Tools: Sanitizers
	20: Use The Tools: Hardening
	21: Use the Tools: Multiple Compilers
	22: Use The Tools: Fuzzing and Mutating
	23: Use the Tools: Build Generators
	24: Use the Tools: Package Managers

	Part III: API and Code Design Guidelines
	25: Make your interfaces hard to use wrong.
	26: Consider If Using the API Wrong Invokes Undefined Behavior
	27: Be Afraid of Global State
	28: Use Stronger Types
	29: Use [[nodiscard]] Liberally
	30: Forget Header Files Exist
	31: Export Module Overloads Consistently
	32: Prefer Stack Over Heap
	33: Don't return raw pointers
	34: Know Your Containers
	35: Be Aware of Custom Allocation And PMR
	36: Constrain Your Template Parameters With Concepts
	37: Understand consteval and constinit
	38: Prefer Spaceships
	39: Follow the Rule of 0
	40: If You Must Do Manual Resource Management, Follow the Rule of 5

	Part IV: Code Implementation Guidelines
	41: Don't Copy and Paste Code
	42: Prefer format Over iostream Or c-formatting Functions
	43: constexpr All The Things!
	44: Make globals in headers inline constexpr
	45: const Everything That's Not constexpr
	46: Always Initialize Your non-const, non-auto Values
	47: Prefer auto in Many Cases.
	48: Use Ranges and Views For Correctness and Readability
	49: Don't Reuse Views
	50: Prefer Algorithms Over Loops
	51: Use Ranged-For Loops When Views and Algorithms Cannot Help
	52: Use auto in ranged for loops
	53: Avoid default In switch Statements
	54: Prefer Scoped enums
	55: Prefer if constexpr over SFINAE
	56: De-template-ize Your Generic Code
	57: Use Lippincott Functions
	58: No More new!
	59: Avoid std::bind and std::function
	60: Don't Use initializer_list For Non-Trivial Types
	61: Consider Designated Initializers (C++20)

	Part V: Bonus Chapters
	62: Improving Build Time
	63: Continue Your C++ Education
	64: Thank You
	65: Bonus: Understand The Lambda

